
TASM Transputer Assembler User Guide

TASM Version 91.1
5/15/91

Copyright 1986-1991 by Logical Systems

Contents

1 Introduction
Overview
System Requirements

2 Usage
Examples
Option Information
Option Descriptions

3 TASM Assembly Language Syntax & Semantics
TASM Assembly Language Introduction
TASM Pseudo-Opcodes
Sample TASM Program
Assembly Language Listing Format
Assembly Language & Macros
Operational Statistics
Using the Preprocessor with TASM
Notes on Using the Preprocessor

4 Appendix A: Error Messages
Types of Error Messages
Error Message Descriptions

5 Appendix B: Transputer Instruction Set
Direct Functions
Indirect Functions

6 Appendix C: TASM Internals
Source Code Organization and Compiling

Transputer Toolset TASM Transputer Assembler

Introduction

Overview

TASM is a relocating assembler for INMOS Transputers. It supports standard
INMOS mnemonics and allows splitting a program into separate pieces which are
combined at linkage time. TASM is designed to be used in two ways:

1. As a post-pass to the TCX "C" compiler. The compiler generates an assembly
language output file and TASM is used to turn it into relocatable format. The advantage
of this scheme is the fact that the compiler can allow in-line assembly language without
having to also have a redundant assembler built in.

2. As a stand-alone tool for doing assembly language programming on the
Transputer. In this role it is often combined with the preprocessor from the "C" compiler
(PP), which allows multi-line recursive macros, conditional assembly, include files, etc.
TASM has been designed to be used with PP and can parse information PP provides to
generate an assembly listing of source code which may have originated in many different
files and been subsequently combined by PP.

The architecture of the Transputer requires that some of the code generation be
delayed until the linker/locater stage to insure minimum length prefix strings are
generated for all instructions. TASM supports this by determining which instructions
can be "finished" and which cannot at assembly time. TASM finishes those which can be
and provides information to the linker (TLNK), about the others.

TASM uses a multiple pass algorithm to determine which instructions can be
"finished" and what the corresponding minimum length instruction prefix strings should
be. The algorithm used doesn't guarantee minimum length prefixes in all cases
(generating a minimum length program is a theoretically "hard" problem), but does a
pretty fair job in a moderate amount of time.

System Requirements

TASM requires approximately 256K of program memory space to run. It should
run in any environment which supports other major system development tools
(compilers, etc). TASM does use a fair bit of disk space with temporary, output, and
listing files. As an estimate, you should have disk space available that is twice the size of
the input file for the temporary files, and space equal to the size of the input file for the
output file (both types of files will be used at the same time when TASM is generating
the output file). If you wish to generate a listing file you should have additional space
available equal to twice the input file size. Note that a fair amount of I/O is done to the
temporary files and they should be located on the fastest mass storage device available
(see Usage section below for more information on how to specify this).

2

TASM Transputer Assembler Transputer Toolset

Usage

The general form of the TASM command line is:

tasm <input_filename> [<temp_directory>] [-[options]*]*

The basic idea is to specify the required input filename (complete with filename
extension if not ".tal"), followed by an optional temporary file directory pathname,
followed by any options needed. Note that in this case, since no explicit output filename
has been specified, the output filename will default to that of the input filename, but with
an extension of ".trl" in place of any extension the input filename had.

The temporary file pathname is used to tell TASM to use somewhere other than
the current directory (or if the "TMP" environment variable exists, the directory it
specifies), to hold the temporary files TASM generates. If possible, the temporary file
pathname (whether explicit or via "TMP"), should be set to the fastest mass storage
available (ideally a ram-disk). The process of assembling code for the Transputer may
involve making the equivalent of many passes over the source text (most of which are
done using temporary files).

Examples

Assume you wish to assemble a program stored on file "foo.tal"; The syntax
needed is simply:

tasm foo

In this case TASM would use the "TMP" directory (or the current directory if
"TMP" isn't defined), to hold its temporary files ("foo.1" and "foo.2"). If you had fast
storage available on pathname "/fast" you could use:

tasm foo /fast

If you wanted to write the relocatable output to some file other than "foo.trl", say
"foobar.huh", you would use the "-o" option flag followed by the desired output
filename:

tasm foo /fast -o foobar.huh

3

Transputer Toolset TASM Transputer Assembler

Option Information

As seen above with the "-o" flag, an option flag may need a following parameter,
although many option flags are simple switches which may be grouped together
following a common "-" option flag lead-in. For instance, if you wish to toggle the
verbose output mode and you wish to generate an assembly listing, the following
command line will do it:

tasm foo -lv

Where the "l" indicates you want the listing and the "v" sets the output mode to
verbose if TASM defaults to quiet and vice versa (actual default depends on the
configuration of TASM). The above result could also be obtained by separating the
option flags:

tasm foo -l -v

Please note, although in the above examples the option flags were in lowercase,
uppercase is also allowed (some systems support nothing else)!

Option Descriptions

The following descriptions detail all the option flags available with TASM, what
each does, and what additional parameters are required (if any):

Option flag: -c

This option is provided to "compress" the TASM output file. Doing this removes
all the debug information. The big motivation is that this often cuts the output file size in
half! It is particularly useful when building libraries or other chunks of code which aren't
routinely debugged.

Option flag: -l

As mentioned previously, this option causes TASM to generate an assembly
listing. The filename for the listing is the same as the output filename with an extension
of ".lst". For example:

tasm foo -l

TASM would read the input file from "foo.tal", use "foo.trl" as the output file
AND write the listing to "foo.lst". The "-l" option is not allowed if the original source
text was not assembly language (see the "-t" option below). See later sections of this
chapter for a description of the assembly language listing format.

4

TASM Transputer Assembler Transputer Toolset

Option flag: -o <output_filename>

This option flag allows you to explicitly specify the output filename (including
extension), for TASM to use for the relocatable output file. If you don't provide an
explicit extension TASM will use ".trl".

Option flag: -q{0|1|2}

These option flags allow you to control the level of prefix byte optimization that
TASM will perform. The choices are "-q0" (no optimization, all references will be 8
bytes long), "-q1" (optimize to minimize the number of symbols and references which
are passed on to the linkage phase), and the default, "-q2" (maximum optimization by
deferring ALL boundary cases to link time). The "-q1" option is mainly provided for
backward compatibility with pre-87.8 versions of TASM (where it was the default). The
"-q0" option speeds up the execution of TASM in addition to potentially speeding up the
execution of TLNK. During the early stages of program development use of the "-q0"
flag on all files which make up a program (including those from libraries), will eliminate
the otherwise required prefix optimization performed by TLNK and thus hasten the
development cycle. On the down side the "-q0" option nearly doubles the program code
size and execution time!

Option flag: -t

This option flag is used if the input file TASM is assembling was the result of a
language translator. What this actually does is to inhibit TASM from counting input
lines in an attempt to keep track of source input line numbers. TASM still accepts and
updates its line number information in response to "#line" directives which are presumed
to reflect the line numbers in the original source text. Using this option allows the line
number information which is contained in the relocatable output file to represent the
original source code line numbers instead of the (in this case), intermediate assembly
language file line numbers. Using this option disables the generation of an assembly
language source listing.

Option flag: -v

This option flag toggles TASM between the verbose and quiet output modes.
Depending on the configuration of TASM this option will either cause additional
information to be written to the user or disable same (the opposite of whatever the default
setting is).

5

Transputer Toolset TASM Transputer Assembler

TASM Assembly Language Syntax and Semantics

The next several sections describe the syntax and semantics of the assembly
language TASM accepts.

TASM has some syntax and semantic features in common with "C". Rather than
repeat information which is familiar to many, we will refer you to a "C" reference
manual for explanations about some features. The manual we recommend is:

"C" A Reference Manual
Samuel P. Harbison/Guy L. Steele Jr.
Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

Most other "C" texts also provide the level of description needed to understand
the features TASM shares with "C".

TASM Assembly Language Introduction

TASM uses the standard INMOS abbreviations for instruction names (see
appendix B for a listing of these). TASM is line oriented with one instruction allowed
per line. Each line has the following format:

[<label_field>] [<opcode_field>] [<operand_field>]

Some sample assembly language statements:

test j @test ;Doesn't go anywhere very fast
mint ;Minimum integer instruction
.db "hello\n" ;Define "C"-style string constant

label3 ;Single label with no opcode
label4: ;Colons in labels are ignored

As you can see, comments are allowed after a trailing ";", and last until the end of
the line. Comments may appear anywhere in a line (including the first column), but
anything afterwards is ignored.

Labels are optional and must begin in the first column. The opcode field holds
the instruction or pseudo-op name, it must not begin in the first column. The operand
field contains any required parameters for the instruction or pseudo-op listed prior to it
on the line. Fields should be separated with either spaces or tabs.

Labels and other TASM symbols are from 1 to 255 characters long. They are
case sensitive. Labels begin with a letter, a "_" or a "?". They may contain those
symbols plus digits. Labels may optionally be terminated with (or contain), one or more
colon characters. Colon characters are allowed for compatibility with other assemblers
and do not count as part of the label (you should not use a colon in any symbols you use
in any operand fields).

6

TASM Transputer Assembler Transputer Toolset

The operand field follows the label field and contains either an instruction opcode
or a pseudo-opcode. The pseudo-op's are begun with a ".", but are otherwise similar in
form to opcodes (see the next section for information about them). The operand field
contains different types of things depending on what the preceeding opcode or pseudo-op
is. The types are:

• "C" style constant expressions. These include character constants and the other
standard "C" features. You may also include symbols in constant expressions as long as
they are defined in a ".set" pseudo-op prior to the constant expression in the file (no
forward references allowed). Please see a "C" reference manual for a description of the
constant expression syntax. Some examples:

'a'
-12
+1
(234+0x12)/022 + '\n'
'\033'+'\r'
23 ? 17 : 55
(help + me) / 0x3 ;'help' and 'me' must be

; already ".set"
$12 ;'$' causes wordlength scaling

In the above examples note that TASM allows a unary "+", which is not legal in
"C" (pre-ANSI anyway). The value of a constant expression is just its numerical
equivalent. Thus, a constant expression in a data definition pseudo-op just defines a byte
or word location with the specified value. A constant expression as an operand to an
instruction just uses the numerical value to compute a prefix string for the instruction.

Note that the '$' symbol may be used before the start of a constant expression to
force the value of the expression to be scaled (divided), by the processor wordlength in
bytes. Since the '$' may only appear as the first character in an operand field, it can only
be used when the operand is a "pure" constant and not as part of the constant component
of a non-constant expression. The expression to which the '$' operator is applied must be
a multiple of the scaling wordlength or an error will be flagged.

• "C" style string constants. These include the normal character escapes allowed
by "C" and are only legal for use with the define byte pseudo-ops (".db" or ".dbnz"). A
string used with the ".db" pseudo-op will have the normal "C" style zero termination
character while a string used with ".dbnz" will omit the terminator (the two pseudo-ops
are otherwise identical). For example:

.db "Testing 1 2 3\n"

7

Transputer Toolset TASM Transputer Assembler

• Address expressions. These consist of an symbol name followed by an optional
constant expression. Some examples:

hello+27
frank
start -27+(0x66/2)

The value of the symbols used in the above examples is the address of the
corresponding symbol definitions, NOT the relative offset from the current program
counter to the symbol. These types of expressions are not fully bound at assembly time
since the actual load address for the program is unknown. The term "bound" is used here
to mean that the value of the prefix string for an instruction (or the value to store into a
data word), can't be determined until the actual location for the symbol definition is
assigned by the linker (TLNK). These expressions are allowed as operands of
instructions or define word (".dw"), pseudo-ops (essentially word size "pointers").

• Relative expressions. These consist of a "@" followed by an optional symbol
name, followed by an optional constant expression. These are allowed as operands of
instructions or define word (".dw"), pseudo-ops. They allow the PC relative offset from
the instruction (or data item), to the specified constant or symbolic address to be the
value of the expression. Some examples:

@1
@hello +27
@ 100 - 0x10000
@ Gorge - ('a' + 'z') - 1

Note that there is a difference in value when a relative expression is used with an
instruction versus its use in a ".dw" pseudo-op. When used with an instruction, the
expression is evaluated so as to produce a prefix string which will correctly access the
desired value (remember that the Transputer computes all relative offsets with reference
to the memory location FOLLOWING the opcode byte of the instruction). In the case of
the ".dw" pseudo-op, the value of the expression is the relative offset referenced to the
START of the ".dw" memory location.

Note that if a relative expression contains a symbol it must immediately follow
the "@". If the expression doesn't contain a symbol the constant expression is evaluated
and the result is used as an address from which a relative offset is computed, starting at
the "appropriate" current PC location, to determine the value to prefix the instruction
with. For instance, if you wanted to create a jump to location 45 (decimal), you would
use:

j @45

Note that expressions which contain non-symbolic relative expressions can't be
bound at assembly time since the load address for the instruction or data reference is
unknown until link/locate time.

8

TASM Transputer Assembler Transputer Toolset

Some examples of relative expression instructions with symbol names:

cj @hello + 10
call @Byte_output
.dw @Beginning_of_data + 10

Symbolic relative expressions can be bound at assembly time (assuming the
symbol is defined locally, and there are no unbound instructions which are between the
symbol definition and the instruction or ".dw" which references it).

• Difference expressions. These consist of an optional wordlength scaling
operator ('$'), a symbol name minus another symbol name, followed by an optional
constant expression. Some examples:

@hello-@goodby + 1
hello-goodby
zip-zap + 21
$zip-zap + 4

To most assemblers this type of expression is just a normal "absolute" reference.
TASM treats this as a special case since the variable length effects of the unbound prefix
strings may cause this expression to be only partly bound at assembly time. This form of
expression may be used with both instructions and ".dw" pseudo-ops (the '$' operator can
only be used with instructions), but will probably be used most as an operand to "ldc"
instructions which compute the branch length for "lend" instructions. For example:

begin ;Beginning of loop body
<body of loop>
<load pointer to "lend" parameter block>
ldc @end-@begin ;Compute branch length for

;"lend"
lend ;Go back to beginning of loop

end ;End of loop body

Note that the optional '$' wordlength scaling operator causes the value of the
remainder of the expression to be scaled by the wordlength (in bytes), of the processor
family for which TASM is assembling code.

• Floating point constants. These are used with the ".real32" and ".real64"
pseudo-ops to initialize memory locations with the equivalent number represented in
either IEEE 32 bit or 64 bit binary format. The floating point constant syntax follows
that of "C". TASM doesn't support floating point assembly time math, just the
conversion operation (similar to initializing memory locations with the results of the "C"
"atof" function). Some examples:

.real32 0.0 ;Initialize a word to 0.0

.real32 3.1415926,12 ;Initialize two words

.real64 1.0,2.0,3e-39 ;Initialize three double
;words

9

Transputer Toolset TASM Transputer Assembler

TASM Pseudo-Opcodes

The previous section covered the operand fields of instructions and pseudo-op's in
abstract, this section covers them in detail.

All TASM source files must begin with a pseudo-op which tells TASM what
Transputer the code is being assembled for, since different versions support different
instructions (and possibly different ways of generating code). The currently supported
Transputers are the T2 series (T212/T222/T225), the T4 series (T400/T414/T425), and
the T8 series (T800/T801/T805). To select a Transputer CPU type use one of the
following pseudo-ops:

.all ;Instructions for all 32 bit CPU types

.t212 ;T212/T222/T225 are described as "t212"

.t414 ;T400/T414/T425 are described as "t414"

.t800 ;T800/T801/T805 are described as "t800"

Note that ".all" is the default if no processor type is explicitly selected. The ".all"
selection is primarily used when building code which is intended to run on any 32 bit
Transputer (such as demonstration programs). Also note that both opcodes and pseudo-
ops may be in either upper or lower case and that all pseudo-op names begin with a
period.

All TASM source files should end with:

.end ;No operand is required

This causes anything beyond it in the source code to be ignored. The use of this
pseudo-op is not strictly required since TASM treats the end of the file as a defacto
".end", but it is important when TASM is being used with the preprocessor (PP). PP will
otherwise remove any trailing comments and conditional assembly code from the input
file to TASM, and thus remove the trailing stuff from any assembly listing which TASM
makes.

10

TASM Transputer Assembler Transputer Toolset

Between these two pseudo-op's lies the body of the code. The remaining pseudo-
ops are:

1. #line <line_number> [<filename>]

This violates the normal rules about pseudo-op's in that it begins with a "#", and it
also starts in the first column. This is emitted by the preprocessor to update TASM about
where the next input line to TASM really came from in the source file. The optional
filename field indicates that the next line is also coming from a different original source
file (the result of PP doing a #include). The information from these pseudo-ops is used
to enable TASM to put the code from the original source file on the assembly listing,
instead of the merged mess which PP generates. Use your "C" reference to find out
further about this preprocessor directive.

2. .align

This pseudo-op tells TASM to word-align the next instruction or data statement.

3. .db <value_for_byte> ["," <value_for_byte>]*

This pseudo-op is used to initialize memory bytes to specific values. The
"value_for_byte" field may be either a constant expression, or it may be a "C" style string
(complete with automatic zero termination).

4. .dbnz <value_for_byte> ["," <value_for_byte>]*

This pseudo-op is identical to ".db" except the automatic zero byte termination of
strings is eliminated. This pseudo-op was implemented to simplify the use of TASM
with languages other that "C" (although the "C" string character escape sequences are still
used).

5. .ds <number_of_bytes>

This pseudo-op reserves storage for the specified "number_of_bytes". Any
constant expression may be used in the operand field. The space reserved in this way
will be initialized to zero when the program is downloaded to the Transputer.

11

Transputer Toolset TASM Transputer Assembler

6. .dw <value_for_word> ["," <value_for_word>]*

This pseudo-op is used to initialize memory words (2 or 4 consecutive bytes
depending on wordlength), to specific values. Note that this pseudo-op does NOT
automatically perform word alignment; Use a ".align" prior to the ".dw" if alignment is
necessary. The "value_for_word" field may contain the same types of operands as
allowed for instructions (see the section on instruction operand fields). As mentioned in
that secion, relative expressions applied to ".dw" are relative to the beginning of the
word, NOT the location following, as is the case with relative references in instructions.
You may not use "C" style string constants with the ".dw" pseudo-op.

7. .emulate

This pseudo-op enables instruction "emulation". This is used when you wish to
simulate the effects of instructions which the currently selected Transputer processor type
doesn't directly support. For example, you tell TASM you are using a T414 processor
(via a ".t414"), then use a "DUP" instruction (after having given the ".emulate"
directive). TASM will treat this as if you had given it an instruction of the form:

call @?DUP

Note that the instruction name called is always in upper case regardless of its
original case in the input file. Also TASM will generate a ".ext" reference for symbols
created this way if they haven't been previously encountered in the source file. It is up to
the programmer to supply the simulation routine being called!

8. .ext <symbol_name> ["," <symbol_name>]*

The specified "symbol_name"s are declared to be defined "external" to this source
file. It's presumed that the definitions will appear in other files which will be combined
with the relocatable output of this one at link time. You may not both define a symbol
within the current source file AND declare it ".ext". If a symbol which is declared ".ext"
is not also referenced in the source file, the "external" reference is not included in the
relocatable output file (no error is generated).

12

TASM Transputer Assembler Transputer Toolset

9. .ldc <operand_field>

This pseudo-op has the same syntax and semantics as the normal "ldc"
instruction, but TASM and TLNK are free to use instructions other than "ldc" to load the
desired value onto the top of the stack. This is useful when the immediate data to load is
a large negative number and an equivalent code sequence of "mint"/"adc" can be used to
load the same value in fewer bytes and instruction cycles. Another form of instruction
sequence which may be generated is a "ldc"/"ldpi" sequence for cases when the current
program counter is close to the desired address. This pseudo-op is extensively used by
the TCX "C" compiler to minimize the length of static references. Note that this pseudo-
op is affected by the ".rel" and ".norel" pseudo-op's when generating address expressions
(code which computes the address of a symbol), for example:

.ldc zip + 21 ;Load address of "zip" + 21 bytes

Normally, this is allowed to use any of the optimization techniques to minimize
the length of the generated code. However, if the ".rel" pseudo-op has been given, this
form of reference is constrained to use the "ldc"/"ldpi" instruction sequence to maintain
the runtime relocation capability. Note that all other forms of the ".ldc" instruction are
unaffected by the current ".rel"/ ".norel" setting.

10. .mod <module_number>

TASM supports up to 256 different "modules", numbered 0 to 255. These
modules are used to allow code and data which should be physically located in separate
memory areas to be combined into the same source text stream. This facility corresponds
to the "code" and "data" regions available with many assemblers, except 256 different
modules are allowed. By default, if no ".mod" is given, the code and data which is
present in the source file is placed into module 0. The linker (TLNK), allows you to
select where each module from each source file will end up (or you may let it do the
locating job for you).

11. .noemulate

This allows you to "turn-off" the instruction simulation facility which a previous
".emulate" enabled.

12. .norel

A complement to the ".rel" pseudo-op, this allows the address form of the ".ldc"
instruction to generate the shortest/fastest possible code, ignoring the possibility of
program runtime relocation. This pseudo-op is in effect by default and is used to "turn-
off" the effects of a previous ".rel" pseudo-op.

13

Transputer Toolset TASM Transputer Assembler

13. .pub <symbol_name> ["," <symbol_name>]*

The specified "symbol_name"s are declared to be defined within this source file
and are made "public", so that other files may refer to the symbol. You may not declare
a symbol both ".pub" and ".ext". If a symbol which is declared ".pub" is not also defined
in the source file, the "public" reference is not included in the relocatable output file (no
error is generated).

14. .real32 <fp_value_for_word> [","
<fp_value_for_word>]*

This pseudo-op is used to initialize memory words (4 consecutive bytes), to
values which correspond to the IEEE 32 bit floating point representation of the specified
value. Note that this pseudo-op does NOT automatically perform word alignment; Use a
".align" prior to the ".real32" if alignment is necessary. The "fp_value_for_word" field
may contain the same types of floating point constants that "C" allows.

15. real64 <fp_value_for_double_word>
["," <fp_value_for_double_word>]*

This pseudo-op is used to initialize memory double words (8 consecutive bytes),
to values which correspond to the IEEE 64 bit floating point representation of the
specified value. Note that this pseudo-op does NOT automatically perform word
alignment; Use a ".align" prior to the ".real64" if alignment is necessary. The
"fp_value_for_double_word" field may contain the same types of floating point constants
that "C" allows.

16. .rel

Forces all ".ldc" pseudo-op's which follow to generate runtime relocatable code
by using the "ldc"/"ldpi" instruction sequence for symbolic address expressions. This
pseudo-op allows the generation of position independent code (assuming address
expressions are not also used in initialized data areas, etc). Note that this pseudo-op will
generally result in a somewhat larger/slower program since the other possibilities for
".ldc" instruction optimization are thereby disabled. This pseudo-op is NOT in effect
initially in TASM and may be turned off once invoked by the later use of the ".norel"
pseudo-op.

14

TASM Transputer Assembler Transputer Toolset

17. .retf <workspace_adjust_constant>

This pseudo-op is used by our "C" compiler as a function exit code short form. It
translates into a "ajw" instruction with the specified "workspace_adjust_constant" used as
the operand field, followed by a "ret". A couple of notes about the results of this pseudo-
op: First if the constant value is zero, no "ajw" is generated. Second, any code after a
".retf" and before a "label" or pseudo-op is encountered is removed. Additionally, if the
pseudo-op encountered is another ".retf", the SECOND ".retf" is also removed!

18. .set <symbol_name> "," <constant_expression>

The specified "symbol_name" is defined to have the value of the corresponding
constant expression. This pseudo-op provides a "equate" capability for forward and
backward references. The symbol name may be subsequently used in the "constant
expression" part of the operand field for an instruction or pseudo-op which follows the
".set" in the source file. The symbol is otherwise treated identically to symbols defined
as labels (it may be declared "public" for instance).

19. .sym <symbol_name> ["," <address_expression>]
["," <constant_expression>]*

This pseudo-op is used to hold debugging information for use by other tools in
the Transputer Toolset. The arbitrary string, "symbol_name", is assigned a series of
values including an optional, symbolic, "address_expression" (whose exact value is
unknown until linkage time), and zero or more, 4 byte, "constant_expression" fields. The
actual use of this statement involves a "convention" between the tool generating them
(TCX), and a later debugging tool which interprets them. See the information about the
"T_DEBUG_DATA", and "T_DEBUGSYM_DATA", relocatable records, in the
"TASM/TLNK/TLIB RELOCATABLE RECORD AND FILE FORMAT" manual, for
more information.

20. .val <symbol_name> "," <constant_expression>

This pseudo-op is similar to ".set" but is used for assigning purely local constant
values to the "symbol_name". The references to a symbol defined this way must be
strictly backwards and may not be external to the file. The primary advantage of ".val"
over ".set" is that the symbol name used by ".val" may be redefined by a subsequent
".val" without having to create a new symbol. This is not possible with ".set" since both
forwards and backwards references are allowed.

15

Transputer Toolset TASM Transputer Assembler

Assembly Language Listing Format

As mentioned elsewhere, TASM will generate an assembly language listing if the
"-l" command line option flag is given. This file will be written on a filename which is
the same as the input filename, but with an extension of ".lst" in place of any extension
the input file had. TASM is designed to be used with the PP preprocessor, this carries
over to the design of the listing facility for TASM. In particular, TASM can use
information PP inserts in the input file to determine where the source text it is reading
originally came from (say via "#include" PP directives). Using this information, TASM
will find and use the original source code from wherever it came from when it creates the
assembly listing.

TASM can't create an assembly listing if the original source code was written in
some language other than assembly (see the "-t" option flag).

As a side note: If TASM detected assembly time errors it doesn't generate a
relocatable output file. It also doesn't do the final "binding" passes it needs to resolve all
the "relative" operand fields for instructions. This shows up on the assembly listing as
instructions which are listed as "un-bound" (see below), when they really could have
been bound.

The format of the assembly listing is:

<status><line><location><assembled_code><source_code>

The "status" field is used to show any error flags which were generated by that
source code line, or a "." if something on the line was not completely bound at assembly
time. The possible error flags are:

"D" Duplicate symbol definition error.
"E" Expression field error.
"F" Floating point constant error.
"N" Not implemented error (opcode/pseudo-op).
"O" Opcode/pseudo-op unknown error.
"U" Undefined symbol error.

See the corresponding error messages in appendix A for more information about
what causes these errors. If the instruction was "bound", and didn't contain any errors,
this field is blank.

16

TASM Transputer Assembler Transputer Toolset

The "line" field indicates which source code line this is. Note that the source
code filename is shown on a banner at the top of the page initially, and a new page eject
and banner is generated whenever the source code filename changes.

The "location" field. This indicates the current location counter relative to the
currently active "module". This value will not be correct if the program contains any
"un-bound" references, or errors, since the actual sizing and locating is delayed until
linkage time. This field is shown for instructions or pseudo-ops which do anything
"interesting", and unconditionally for the first line in a new source file.

The "assembled_code" field. This field contains up to the first 8 bytes of code
the instruction or data pseudo-op generated. If the source line is "un-bound", and this
information isn't known yet, this field is used to show the value of whatever the source
code operand field contained in the form of a constant expression.

The "source_code" field. This contains the original source code as read from
whatever file originally held it (assuming PP was used), or simply the TASM input file if
PP isn't being used.

Assembly Language & Macros

When PP is being used with TASM, multi-line macros may cause many assembly
language statements to be generated for a single "source" statement. This is handled on
the assembly listing by simply showing the single original source code line. The
problem is that the meanings of the various fields to the left of the source code line
change somewhat. The basic rules are:

• The "status" field shows the first error encountered in the assembly statements
which were generated by that source code line. If no errors need to be reported this field
will contain a "." if any of the statements generated were unbound. If none of these
conditions prevailed this field will be blank to indicate no trouble.

• The "line" field acts normally and shows the source text line number.

• The "location" field shows the location counter of the first instruction or pseudo-
op in the macro expansion which generated any code. In other words, it reflects the start
of the macro if anything "useful" happens.

• The "assembled_code" field shows the contents of the first operation in the
macro expansion which placed anything in this field. It doesn't append the code
generated by later instructions in the macro if the field isn't full yet.

• The "source_code" field acts normally and shows the original source text of the
macro call.

17

Transputer Toolset TASM Transputer Assembler

Operational Statistics

Assuming no errors were encountered, TASM adds some operational information
to the listing following the source code (this information is also written to standard
output if you haven't disabled "verbose" output mode). The information written consists
of the number of external symbols which were defined or referenced, the number of local
symbols which were defined, and the number of local symbols which were "exported" in
the relocatable output file for eventual binding by TLNK. The percentage of TASM's
symbol table capacity which was used is also indicated. Note, within TASM, both local
and external symbols use the same symbol table.

The last item on the listing (or standard output), is a count of the total errors
encountered. This is a useful addition to the line-by-line error indications since multi-
line macro expansion sometimes generates more than the one error which can be flagged
on a given source line.

Using the Preprocessor with TASM

Using the preprocessor (PP), with TASM greatly improves the ease of
programming, and the resulting readablity, of assembly language programs. If TASM is
being used as a post-pass to the TCX "C" compiler, PP is not required (the "C" compiler
handles those sorts of details with the help of PP itself). Assuming you are programming
directly in assembly language, PP used with TASM offers the following improvements
over using TASM by itself:

• Macro processing. PP allows both simple text replacement and powerful multi-
line parameterized macros. Workspace offsets, symbolically defined configuration
values, etc., are all good uses for this facility. The fancy parameterized macros are nice
for creating in-line code, and PP has facilities for generating "unique" symbols which can
be used to allow "local" labels and symbols within macro body expansions.

• Include files. PP allows nested include files to be used. This is useful when a set
of configuration parameters is being shared by all the files in a program, but you only
want to have one set of definitions.

• Conditional Assembly. Using PP allows you to do "C" style conditional
assembly. This is useful when you wish to have two or more versions of a program share
the same source text (and thus get updated together).

• "C" style comments. You may use "C" style comments in source code for
TASM when you use PP (since it filters them out).

To find more out about these facilities consult your "C" reference manual. You
may also want to consult "PP 'C' PREPROCESSOR USER GUIDE" for implementation-
dependent information about PP.

18

TASM Transputer Assembler Transputer Toolset

Notes on Using the Preprocessor

The following example will preprocess and assemble a file named "test.pal":

tcc test.pal +a-l -c

Note that the "+a-l" directive tells TCC to pass a "-l" directive to TASM telling it
to generate a "test.lst" assembly language listing file. The "-c" flag tells TCC that linking
will not be necessary. The relocatable output file will be written on "test.trl".

A few notes should be mentioned about using PP with TASM:

1. If you are having trouble, or are unsure where a problem lies, check the output
file written by PP to see what TASM is really getting as input. This is necessary since
TASM shows the original source text on the assembly listing, not what it actually read as
processed by PP. This is particularly useful in debugging macro's, since the assembly
listing only shows the macro "call", not the subsequent expansion.

2. Within macros you should be careful about using ";" assembly language
comments. Remember that these comments are NOT comments to PP and it will pass
them on through to TASM. A place where this crops up is when you define a symbol to
have some value in a "#define" macro and follow it with a ";" comment in the source
text. The result is that anything you place in the operand field AFTER the spot where the
macro replacement is done, gets commented out! As a general rule you should use "C"
style comments for anything involving macros.

19

Transputer Toolset TASM Transputer Assembler

Appendix A: Error Messages

Types of Error Messages

There are three classes of error messages which TASM can generate:

• Warnings. These are used to report problems which aren't severe enough to
cause TASM to abort (exit with a non-zero return value). These messages usually
indicate trouble which isn't immediate, but may be soon! The format for warnings is:

WARNING: message_text

• Non-fatal errors. These are used for reporting actual error conditions which will
affect the return value given when TASM exits. If one or more non-fatal errors are
encountered TASM will return a non-zero return code, otherwise it will give a return
code of zero. Another result of encountering non-fatal errors is that the generation of a
relocatable output file is inhibited (although if a assembly listing was requested it will be
generated). The format for non-fatal errors is:

<filename> @ line_number: message_text

Where the "<filename>" field indicates the current source code file being read,
the "line_number" field gives the line where the problem was detected, and the
"message_text field indicates the actual problem encountered. Note that non-fatal errors
are also displayed on the listing (see the Assembly Language Listing Format section
for a description of the format).

• Fatal errors. If the problem detected by TASM is so severe that it can't continue
operating, it will give a "fatal" error message:

FATAL: message_text

After printing one of these messages, TASM will immediately exit with its error
return code set (non-zero).

20

TASM Transputer Assembler Transputer Toolset

Error Message Descriptions

The following descriptions list the various error messages which TASM can
generate (in alphabetic order):

<filename> @ line_number: Duplicate symbol definition:
symbol_name

The named symbol was either defined more than once, or defined once and
mentioned in a ".ext" pseudo-op.

<filename> @ line_number: Expression field error

This error is generated whenever an illegal expression is present in the operand
field of a opcode or pseudo-op. A few of the possible causes:

• Having an expression field which is not representable in 16 bits when
assembling for a 16 bit processor.

• Using anything other than a string or a constant expression with a ".db"
pseudo-op. If you want to reference an address you need to use a ".dw"
instead.

• Using a "relative" reference within a ".dw" pseudo-op. Only constant
expressions or address references are allowed there.

• Using a module number which is outside the range of 0 to 255 which is
allowed for ".mod" declarations.

FATAL: Corrupted temp file: filename

This error usually occurs when the contents of a temporary file get corrupted by
the file system somehow. If you have been changing TASM or recompiling it for
another system, this error message indicates that the "type" field in one of the internal
temporary file records was not one of the allowed types. This generally happens when
you make a change to one of the places which adds or removes temporary file records
without changing all the other occurences (you will generally need to make changes to
files "tasm2.c", "tasm4.c", and "tasm5.c" together).

21

Transputer Toolset TASM Transputer Assembler

FATAL: Error reading input file: filename

TASM got an error return during one of its read operations on input file
"filename". This usually indicates trouble with whatever mass storage device is being
used, and/or a corrupted input file. If the preprocessor (PP), was used to prepare the
input source file AND a listing is being requested, this error could indicate problems
have cropped up in one of the source files between the time PP originally read it, and
when TASM re-reads it to generate the assembly listing.

FATAL: Error reading temp file: filename

TASM got an error return during one of its read operations on temporary file
"filename". This usually indicates trouble with whatever mass storage device is being
used.

FATAL: Error setting stream buffer for file: filename

This error results when TASM is compiled with a non-zero IOBUFSIZE in file
"taldef.h" but is unable to explicitly set the temporary file I/O buffer using "setvbuf"
during execution. The return code from the "setvbuf" call is what actually triggers this
error. As a workaround you can set IOBUFSIZE to 0 and recompile TASM, or you can
figure out what is wrong with your "C" library. The file listed is the temporary file to
which TASM was attempting to attach the buffer.

FATAL: Error writing listing file: filename

At some point TASM was unable to write to the named listing file. This
generally occurs because of insufficient file space.

FATAL: Error writing output file: filename

TASM detected an error while it was writing the relocatable output file. This
error generally occurs when insufficient disk space is available for the output file, as well
as the temporary files which also exist during this period.

FATAL: Error writing temp file: filename

At some point TASM was unable to write to the named temporary file. This
generally occurs because of insufficient space on whatever device the temporary files are
being written on (either the "TMP" directory, the current directory, or a special "fast" one
selected via the command line).

22

TASM Transputer Assembler Transputer Toolset

FATAL: Insufficient stream buffer memory for file: filename

If the value of IOBUFSIZE in "taldef.h" is non-zero, TASM will explicitly
allocate temporary file I/O buffers (via "malloc" calls). If the memory can't be obtained
for one of these buffers, this error message results. The filename listed is the one for
which the buffer was intended. To get around this problem you should try to increase the
amount of available "C" heap memory. If you are using TASM on a PC, get rid of any
unnecessary memory resident programs. As a last ditch effort you can reduce the value
of IOBUFSIZE and recompile TASM, but TASM execution speed will suffer noticeably.

FATAL: Insufficient symbol table string memory

TASM was unable to obtain (via "malloc" calls), enough memory to hold all of
the symbols and labels used in the input file. The obvious solution is to reduce the
number and length of the symbols in the input file. If you are using TASM on a PC you
should try eliminating unnecessary memory resident programs as a first step in getting
more memory.

FATAL: Line too long in input file: filename

TASM read an input line which was longer than 300 bytes (as the release version
is configured). This error is generally the result of self-recursive macro expansion by the
preprocessor (PP), or the use of a filter program on the input source file which removed
the end-of-line markers.

FATAL: Output file name same as input

You have the same filename specified for both input and output. Remember that
the default output filename extension is ".trl".

FATAL: Symbol table full

As configured in the release version, the symbol table can hold 4096 entries. This
value may be increased if TASM is being run on a machine with a larger than 64K byte
direct addressing range. Note that the symbol table size must be a power of two to make
the hashing function work. If you can't increase the symbol table size you will have to
break the input file up into separate pieces.

23

Transputer Toolset TASM Transputer Assembler

FATAL: TASM internal error #XXX

These errors should never occur! If one does it generally indicates a violation of
one or more prefix optimization "constraints". If this error message does occur, please
send a machine-readable copy of the offending TASM input file together with a
description of what command line switches were used to either Logical Systems or the
dealer where you purchased the product. Be sure to indicate what operating system
TASM was running under and the complete text of the resulting error message (plus any
other information you feel is pertinent). As a workaround, you can try adding, deleting
or moving around bits of code in your program to see if you can avoid the exact sequence
of optimization steps which provoked the problem.

FATAL: The size of SLONG is not correctly configured

This error message can only appear when you are recompiling TASM. It
indicates that the "typedef" for SLONG which appears in "taldef.h" is set for a storage
class which is less than 4 bytes long. The SLONG storage class MUST be signed for
TASM to operate correctly.

FATAL: Unable to close input file: filename

You can only get this error message when you ask TASM to generate a listing
file. It indicates that TASM was unable to close the named file during the process of re-
reading whatever source files actually made up the input source file TASM read
(assuming the preprocessor was involved), and generating the resulting listing.

FATAL: Unable to generate non-assembly language listing

This error is reported whenever both the "-l" and "-t" switches are given. You
can only use one of these switches at a time.

FATAL: Unable to open input file: filename

The open attempt for the input "filename" failed. Verify that the input file exists
and that the filename extension is correct (remember that ".tal" is the default if none is
specified). If the preprocessor (PP), is being used with TASM, AND an assembly listing
has been requested, this error message can also be generated. This occurs if one of the
source files which PP used to create the input file for TASM was no longer there when
TASM tried to re-read it to generate the listing. You can tell which of these two cases is
the problem by noticing which input filename is mentioned in the error message.

24

TASM Transputer Assembler Transputer Toolset

FATAL: Unable to open listing file: filename

TASM was unable to open the listing "filename". The filename is created by
taking the filename from the input file (and input file pathname), and appending the
extension ".lst" in place of any extension the input file had.

FATAL: Unable to open output file: filename

TASM was unable to open the output "filename". This filename is either the
default one generated using the input filename with a new extension (".trl"), or it was
explicitly specified by you using a "-o" option flag.

FATAL: Unable to open temporary file: filename

The open attempt for the temporary "filename" failed. This filename includes
whatever directory pathname was specified for temporary files.

FATAL: Unexpected EOF in input file: filename

This error is encountered when a listing is being generated and TASM is reading
the various source files which the preprocessor (PP), used to create the input file. This
error indicates that TASM found one of the input files was shorter than PP lead it to
believe with information passed via "#line" statements. This error may also be generated
without the help of PP, if the input source file has somehow gotten corrupted between the
time TASM read the input code from it and when it was re-read to generate the listing
file.

<filename> @ line_number: Floating point constant error

This error message is generated for floating point constants used with either
".real32" or ".real64" which are out of range of the particular IEEE format selected. This
usually means an error in a mantissa or exponent field.

<filename> @ line_number: Not implemented (pseudo-op)

This error message is generated for opcodes or pseudo-op's which are not yet
implemented, but whose names have been reserved.

25

Transputer Toolset TASM Transputer Assembler

<filename> @ line_number: Opcode/pseudo-op unknown: opcode_name

The named "opcode" appeared in the opcode field of an instruction but was not
recognized by TASM. This is generally caused by not declaring what type of processor
TASM is assembling for (".T414", etc.), or using an instruction which is not valid with
the selected processor type.

WARNING: Unable to close output file: filename

During the cleanup process TASM removes the output file it creates if any
errors were detected during operation. This error message indicates that TASM was
unable to close the output file. Causes include the normal spectrum of file system related
maladies.

WARNING: Unable to close temp file: filename

During the cleanup process, prior to TASM terminating, the temporary files are
closed and deleted. This message indicates that TASM was unable to close the named
temporary file (something is probably happening to the file system).

WARNING: Unable to remove output file: filename

During the cleanup process TASM removes the output file it creates if any errors
were detected during operation. This error message indicates that TASM was unable to
delete the output file. Causes include the normal spectrum of file system related
maladies.

WARNING: Unable to remove temp file: filename

During the cleanup process, prior to TASM terminating, the temporary files are
closed and deleted. This message indicates that TASM was unable to remove the named
temporary file (something is probably happening to the file system).

<filename> @ line_number: Undefined symbol: symbol_name

This error message is generated when the named symbol is referenced but not
defined within the input file (either by a label or ".ext" pseudo-op).

26

TASM Transputer Assembler Transputer Toolset

Appendix B: Transputer Instruction Set

The following descriptions of the Transputer instruction set are only intended for
purposes of illustrating which instructions TASM can assemble. Please consult the
appropriate INMOS documentation for information about instruction set formats and the
internal architecture of the various CPU's.

Direct Functions

There are 16 direct functions, executed by all the INMOS Transputers, which can
have operands. They are (in alphabetic order):

Instruction Hex Value CPU Description

ADC 8 All Add constant
AJW B All Adjust workspace
CALL 9 All Call subroutine
CJ A All Conditional jump
EQC C All Equals constant

J 0 All Jump
LDC 4 All Load constant
LDL 7 All Load local

LDLP 1 All Load local pointer
LDNL 3 All Load non-local
LDNLP 5 All Load non-local pointer
NFIX 6 All Negative prefix
OPR F All Operate (meta instruction)

PFIX 2 All Prefix
STL D All Store local
STNL E All Store non-local

Indirect Functions

The use of the OPR instruction, in conjunction with the operand register, allows a
large number of "indirect" instructions which are built using prefix strings to OPR. The
following instruction list shows the indirect instructions, sorted in alphabetic order.
Since INMOS makes more than one type of Transputer, the list has a "CPU" column
which indicates whether the particular instruction is supported by at least some members
of both the 16 and 32 bit Transputer families (listed as "16/32"), some non-16 bit (ie. 32
bit), processors ("All"), only by the 16 bit machines (T212/T222/T225, listed as "T212"),
only by the non floating point 32 bitters (T400/T414/T425, listed as "T414"), or only by
the floating point processors (T800/T801/T805, listed as "T800").

In addition, the floating point processors support a FPENTRY instruction which
allows the current value in the A register to be used as an extended floating point
operation code. TASM implements these extended operation codes as "macro"
instructions which consist of a LDC with the appropriate extended code, followed by a

27

Transputer Toolset TASM Transputer Assembler

FPENTRY. These instructions are listed as "SEQ" (INMOS terminology), in the CPU
column and are only available on the T8 processors.

28

TASM Transputer Assembler Transputer Toolset

Instruction Hex Value CPU Description

ADD 05 16/32 Add
ALT 43 16/32 Alt start

ALTEND 45 16/32 Alt end
ALTWT 44 16/32 Alt wait

AND 46 16/32 Boolean AND
BCNT 34 16/32 Byte count

BITCNT 76 16/32 Count bits set in word
BITREVNBITS 78 16/32 Reverse bottom N bits in word
BITREVWORD 77 16/32 Reverse bits in word

BREAK B1 16/32 Breakpoint
BSUB 02 16/32 Byte subscript

CCNT1 4D 16/32 Check count from 1
CFLERR 73 T414 Check real32 fp infinity or NAN

CLRHALTERR 57 16/32 Clear halt-on-error
CLRJ0BREAK B2 16/32 Clear breakpoint flag

CRCBYTE 75 16/32 Calculate CRC on byte
CRCWORD 74 16/32 Calculate CRC on word

CSNGL 4C 16/32 Check single
CSUB0 13 16/32 Check subscript from 0

CWORD 56 16/32 Check word
DIFF 04 16/32 Difference
DISC 2F 16/32 Disable channel
DISS 30 16/32 Disable skip
DIST 2E 16/32 Disable timer
DIV 2C 16/32 Divide
DUP 5A 16/32 Duplicate top of stack

ENBC 48 16/32 Enable channel
ENBS 49 16/32 Enable skip
ENBT 47 16/32 Enable timer
ENDP 03 16/32 End process
FMUL 72 All Fractional multiply

FPADD 87 T800 Floating point add
FPB32TOR64 9A T800 Convert bit32 to real64

FPCHKERR 83 T800 Check floating error
FPDIV 8C T800 Floating point divide
FPDUP A3 T800 Floating point duplicate

FPENTRY AB T800 Floating point unit entry
FPEQ 95 T800 Floating point equality
FPGT 94 T800 Floating point greater-than

FPI32TOR32 96 T800 Convert int32 to real32
FPI32TOR64 98 T800 Convert int32 to real64

FPINT A1 T800 Round fp to floating integer
FPLDNLADDDB A6 T800 Floating ld non-local and add real64
FPLDNLADDSN AA T800 Floating ld non-local and add real32

FPLDNLDB 8A T800 Floating load non-local real64
FPLDNLDBI 82 T800 Floating ld non-local indexed real64
FPLDNLSN 8E T800 Floating load non-local real32

FPLDNLSNI 86 T800 Floating ld non-local indexed real32
FPLDNLMULSN AC T800 Floating ld non-local and mul real32
FPLDNLMULDB A8 T800 Floating ld non-local and mul real64

FPLDZERODB A0 T800 Floating point load zero real64

29

Transputer Toolset TASM Transputer Assembler

FPLDZEROSN 9F T800 Floating point load zero real32
FPMUL 8B T800 Floating point multiply
FPNAN 91 T800 Floating point test for NAN

FPNOTFINITE 93 T800 Floating pt test for NAN or infinite
FPORDERED 92 T800 Floating point orderability
FPREMFIRST 8F T800 Floating point remainder first step
FPREMSTEP 90 T800 Floating pt remainder iteration step

FPREV A4 T800 Floating point reverse
FPRTOI32 9D T800 Convert real to int32

FPSTNLDB 84 T800 Floating store non-local real64
FPSTNLI32 9E T800 Floating point store non-local int32
FPSTNLSN 88 T800 Floating store non-local real32

FPSUB 89 T800 Floating point subtract
FPTESTERR 9C ALL Test fp error false and clear

FPUABS 0B SEQ Floating point absolute
FPUCHKI32 0E SEQ Check fp in range of type int32
FPUCHKI64 0F SEQ Check fp in range of type int64

FPUCLRERR 9C SEQ Clear floating point error
FPUDIVBY2 11 SEQ Floating point divide by 2.0

FPUEXPDEC32 09 SEQ Floating point divide by 2^32
FPUEXPINC32 0A SEQ Floating point multiply by 2^32

FPUMULBY2 12 SEQ Floating point multiply by 2.0
FPUNOROUND 0D SEQ Conv real64 to real32 w/o rounding
FPUR32TOR64 07 SEQ Convert real32 to real64
FPUR64TOR32 08 SEQ Convert real64 to real32

FPURM 05 SEQ Set fp rounding to round to -infinity
FPURN 22 SEQ Set fp rounding to round-to-nearest
FPURP 04 SEQ Set fp rounding to round to +infinity
FPURZ 06 SEQ Set fp rounding to round-to-zero

FPUSETERR 23 SEQ Set floating point error
FPUSQRTFIRST 01 SEQ Floating point square-root first step
FPUSQRTLAST 03 SEQ Floating point square-root last step
FPUSQRTSTEP 02 SEQ Floating point square-root step

GAJW 3C 16/32 General adjust workspace
GCALL 06 16/32 General call

GT 09 16/32 Greater than
IN 07 16/32 Input message

LADD 16 16/32 Long add
LB 01 16/32 Load byte

LDDEVID 17C 16/32 Load device ID
LDIFF 4F 16/32 Long difference
LDINF 71 T414 Load real32 floating point infinity

LDIV 1A 16/32 Long divide
LDMEMSTARTVAL 7E 16/32 Load "MemStart" address

LDPI 1B 16/32 Load pointer to instruction
LDPRI 1E 16/32 Load current priority

LDTIMER 22 16/32 Load timer
LEND 21 16/32 Loop end
LMUL 31 16/32 Long multiply
LSHL 36 16/32 Long shift left
LSHR 35 16/32 Long shift right
LSUB 38 16/32 Long subtract
LSUM 37 16/32 Long sum
MINT 42 16/32 Minimum integer

30

TASM Transputer Assembler Transputer Toolset

MOVE 4A 16/32 Move message
MOVE2DALL 5C ALL 2D block move
MOVE2DINIT 5B ALL Initialize 2D block move

MOVE2DNONZERO 5D ALL2D block move, non-zero bytes
MOVE2DZERO 5E ALL 2D block move, zero bytes

MUL 53 16/32 Multiply
NORM 19 16/32 Normalize

NOT 32 16/32 Boolean NOT
OR 4B 16/32 Boolean OR

OUT 0B 16/32 Output message
OUTBYTE 0E 16/32 Output byte

OUTWORD 0F 16/32 Output word
POP 79 16/32 Pop stack

POSTNORMSN 6C T414 Post-normalize real32 fp number
PROD 08 16/32 Product
REM 1F 16/32 Remainder

RESETCH 12 16/32 Reset channel
RET 20 16/32 Return
REV 00 16/32 Reverse
ROT 79 16/32 Rotate stack

ROUNDSN 6D T414 Round real32 floating point number
RUNP 39 16/32 Run process

SAVEH 3E 16/32 Save high priority queue registers
SAVEL 3D 16/32 Save low priority queue registers

SB 3B 16/32 Store byte
SETERR 10 16/32 Set error

SETHALTERR 58 16/32 Set halt-on-error
SETJ0BREAK B3 16/32 Set breakpoint flag

SHL 41 16/32 Shift left
SHR 40 16/32 Shift right

START 1FF 16/32 Mostly simulate hardware reset
STARTP 0D 16/32 Start process

STHB 50 16/32 Store high priority back pointer
STHF 18 16/32 Store high priority front pointer
STLB 17 16/32 Store low priority back pointer
STLF 1C 16/32 Store low priority front pointer

STOPERR 55 16/32 Stop on error
STOPP 15 16/32 Stop process

STTIMER 54 16/32 Store timer
SUB 0C 16/32 Subtract
SUM 52 16/32 Sum

TALT 4E 16/32 Timer alt start
TALTWT 51 16/32 Timer alt wait
TESTERR 29 16/32 Test error false and clear

TESTHALTERR 59 16/32 Test halt-on-error
TESTHARDCHAN 2D 16/32 Report link engine current status

TESTJ0BREAK B4 16/32 Test breakpoint flag
TESTPRANAL 2A 16/32 Test processor analyzing

TIMERDISABLEH 7A 16/32 Disable high priority timer
TIMERDISABLEL 7B 16/32 Disable low priority timer
TIMERENABLEH 7C 16/32 Enable high priority timer
TIMERENABLEL 7D 16/32 Enable low priority timer

TIN 2B 16/32 Timer input
UNPACKSN 63 T414 Unpack real32 floating pt number

31

Transputer Toolset TASM Transputer Assembler

WCNT 3F 16/32 Word count
WSUB 0A 16/32 Word subscript

WSUBDB 81 T800 Form double word subscript
XDBLE 1D 16/32 Extend to double

XOR 33 16/32 Boolean XOR
XWORD 3A 16/32 Extend to word

32

TASM Transputer Assembler Transputer Toolset

Appendix C: TASM Internals

Source Code Organization and Compiling

The TASM system consists of six "C" source files and four include files:

1. "tasm1.c". Top level and I/O primitives.

2. "tasm2.c". Input parsing.

3. "tasm3.c". Integer expression evaluator.

4. "tasm4.c". Prefix "binding" and optimization.

5. "tasm5.c". Output and listing generation.

6. "tasm6.c". Floating point conversion.

7. "taldef.h". Configuration include file for TASM and the other assembly language
tools in the Transputer Toolset. Contains the host operating system configuration
selection logic, symbolic opcode names, etc.

8. "tasmdef.h". Include file, for TASM only, which defines configuration settings.

9. "tasmtyp.h". Include file for, TASM only, which defines structure types, etc.

10. "tasmext.h". Include file for, TASM only, which defines external function and
data types.

For MS-DOS source distributions the supplied "makefile" may be used with the
MAKE utility to build "tasm.exe" using Microsoft "C" V6.00a or Borland C++ V2.0 (the
Microsoft/Borland "C" compilers are not supplied and must be purchased separately).
For Macintosh source file distributions consult the supplemental information your vendor
has included with the Transputer Toolset.

33

	Contents
	1 Introduction
	Overview
	System Requirements

	2 Usage
	Examples
	Option Information
	Option Descriptions

	3 TASM Assembly Language Syntax and Semantics
	TASM Assembly Language Introduction
	TASM Pseudo-Opcodes
	Assembly Language Listing Format
	Assembly Language & Macros
	Operational Statistics
	Using the Preprocessor with TASM
	Notes on Using the Preprocessor

	4 Appendix A: Error Messages
	Types of Error Messages
	Error Message Descriptions

	5 Appendix B: Transputer Instruction Set
	Direct Functions
	Indirect Functions

	6 Appendix C: TASM Internals
	Source Code Organization and Compiling

