
PP "C" Preprocessor User Guide

PP Version 91.1
6/1/91

Program by Gary Oliver & Kirk Bailey
Documentation by Logical Systems

Contents

1 Introduction
Overview
System Requirements

2 Usage
Examples
Option Information
Option Descriptions
PP Syntax & Semantics
PP Pragma Support
PP Predefined Symbols
PP Default Include File Pathname
Non-Standard Features of PP

3 Appendix A: Error Messages
Types of Error Messages
Error Message Descriptions

4 Appendix B: PP Internals
Source Code Organization & Compiling
Configuring the PP Source Code

Transputer Toolset PP "C" Preprocessor

Introduction

Overview

PP is a preprocessor for the "C" programming language. It conforms to the ANSI
"C" standard (ANSI X3.159-1989), and contains options for backward compatibility with
programs written for non-ANSI preprocessors. Although PP is designed for the "C"
language, its facilities can be used to aid the programming process in other languages (it
is particularly useful for augmenting assemblers which lack file inclusion and macro
capability). PP contains a number of novel features implemented via ANSI suggested
extension techniques which greatly enhance its usefulness with "C" and other languages.

PP is written in the "C" programming language and can be (relatively), easily
configured to run on a wide range of machines. PP currently runs on various platforms
running BSD and SYS5 UNIX and under MS-DOS using Microsoft "C" version 6 or
Borland "C" version 2.0. PP may also be run under MS-DOS with the QCX Z80, and
TCX Transputer, cross compilers. Finally, last (and least), it runs under Z80 CP/M 2.2
using the QC version 3.2 and 4.0 compilers. An experimental version is also running on
the VAX under VMS.

Unlike the rest of this software development package, PP has been placed in the
public domain. This means no copyright is claimed and you may do what you wish with
it. As a point of courtesy, please retain the authorship information in the source code and
documentation.

If you are familiar with how a "C" preprocessor works skip the rest of this
section:

The basic function of the preprocessor is reading "C" source code files and
handling the file inclusion, conditional compilation, macros and other lexical
manipulations which are requested by the programmer. When finished, the preprocessor
writes out a simplified version of the input source code file out for later compilation by
the "C" compiler proper. The original "C" compilers, produced by Bell Labs and others,
all organized the preprocessor activity (often called a "pass" in compiler parlance), to
operate in this fashion. As computer systems with larger memories become available it is
getting common to see "C" compilers which integrate the preprocessor pass with the rest
of the compiler as one program. In any event, the preprocessor can be thought of as a
distinct entity and in the implementation of PP this is literally the case.

2

PP "C" Preprocessor Transputer Toolset

System Requirements

PP was originally written using the QC "C" compiler (version 3.2), under CP/M
2.2 on the Z80. It is run in other environments by recompiling and changing some
configuration parameters (or worst case by modifying the source code for compilers with
non-standard libraries or environments). Configurations for which it has been tested
include running under MS-DOS for use with the QCX Z80, and TCX Transputer, cross
compilers and under various flavors of UNIX. PP is modest in its requirements for
memory and disk space and should have little trouble running in a environment which
currently supports any sort of "C" compiler.

Usage

The general form of the PP command line is:

pp <input_filename> -[options]*

The basic idea is to specify the required input filename (complete with filename
extension), followed by any options needed. Note that in this case, since no explicit
output filename has been specified, the output filename will default to that of the input
filename, but with an extension of ".pp" in place of any extension the input filename had.

Examples

Assume you wish to preprocess a "C" program stored on file "foo.c"; The syntax
needed is simply:

pp foo.c

No sweat right! If you wanted to write the output to some file other than
"foo.pp", say "foobar", you would use the "-o" option flag followed by the desired output
filename:

pp foo.c -o foobar

3

Transputer Toolset PP "C" Preprocessor

Option Information

As seen above with the "-o" option, an option flag may need a following
parameter, although many option flags are simple switches which may be grouped
together following a common "-" option flag lead-in. For instance, if you wish to see a
debugging statistics summary when PP exits AND you do not wish to abort on errors
(return a non-zero value for the PP exit code), the following command line will do it
(turning "foo.c" into "foo.pp"):

pp foo.c -se

Where the "s" indicates you want the debugging statistics summary and the "e"
inhibits PP from returning an error code. The above result could also be obtained by
separating the option flags:

pp foo.c -s -e

Please note, although in the above examples the option flags were in lowercase,
uppercase is also allowed (some systems support nothing else)!

4

PP "C" Preprocessor Transputer Toolset

Option Descriptions

The following descriptions detail all the option flags available with PP, what each
does, and what additional parameters are required. If you aren't generally familiar with
the "C" preprocessor you should consult one of the many available books on "C"
programming. Now, on to the command line options:

-c 0

If this option flag is given the preprocessor will examine the contents of strings
when looking for formal parameter names in the replacement list for a macro. This
option is disabled by default (in conformance with ANSI desires), and can have
unexpected side effects when mixed with the ANSI "#" and "##" operators (or strings
which contain "#" or "##" character sequences). Another side effect is that any
"whitespace" inside strings will be collapsed to a single space. This option is provided
for use with "C" programs which need this capability but new use of it is heavily
discouraged. The same effect may be had in a more selective fashion by using the
"#pragma arg_string" and "#pragma no arg_string" directives presented in the section
below labeled PP Predefined Symbols. The best alternative is to use the ANSI "#"
operator together with the string concatenation facility of ANSI style "C" compilers
(including TCX). Whitespace is allowed between the "c" and the "0" on the command
line.

-c 1

This option flag instructs PP to allow macro replacement to occur inside
"#pragma asm" blocks. This option is disabled by default. See the PP Pragma Support
section for a description of what "#pragma asm" does. Whitespace is allowed between
the "c" and the "1".

-c 2

This option flag allows PP to correctly handle "recursive" comments. These
comments are disallowed by ANSI (the option is disabled by default), but are
occasionally useful. As a general rule, portability dictates that you avoid using this
facility. However, as a temporary tool during program development, the ability to
"comment out" sections of code is handy. Whitespace is allowed between the "c" and the
"2".

5

Transputer Toolset PP "C" Preprocessor

-c 3

This option flag instructs PP to rescan the fully argument replaced (and argument
macro expanded), result of a macro call for further preprocessing directives in
conjunction with the final re-scan of the macro replacement list for additional macros to
expand. If directives are encountered they are executed in the normal fashion. This
option is disabled by default and is expressly prohibited by ANSI. It is included in PP
since it makes multi-line macros much more useful (they of course, are also not included
in ANSI). Regardless of the setting of this option, "#pragma" directives are ALWAYS
recognized during the re-scanning of the macro replacement string. Whitespace is
allowed between the "c" and the "3". A few points about these "nested" directives are in
order:

1. Any use of "##" or "#" on a nested "#define" or #pragma define" will not give the
expected result since the "##" and "#" operators are evaluated and discarded BEFORE
the subsequent re-scan of the body runs into the "nested" directive which contained them.

2. Any line in the replacement list which begins with "#" is not automatically macro
replaced UNLESS the arguments to that directive would be normally macro replaced
anyway ("#define" and "#undef" being among those which would not). Note that the
directive name is never macro replaced (unless it was originally the result of formal
parameter substitution and macro replacement). One consequence of this is that ANSI
macro "scoping" rules for macro formal arguments may be violated since the directive
forms a new "top-level" basis for evaluating formal parameter scope. The normal
scoping implied by the "nesting" still holds however (ie. if macro A is called recursively
or co-recursively within the replacement list for macro A). The distinction between
"body" scoping and "formal parameter" scoping here is subtle, read (and re-read), the
ANSI specification to get a better idea of how ANSI has changed the rules for macro
substitution.

3. The syntax for these directives doesn't conflict with ANSI since ANSI disallows a
"#" which doesn't preceed a formal parameter. By definition, if the "#" qualified as an
ANSI operator then the "#" would end up disappearing and a "stringized" formal
parameter would replace it (which doesn't have the same form as a directive).

-c 4

This option flag implements the "stacking" model for "#define" and "#undef"
directives. In this model each subsequent "define" of the same symbol "hides" the
previous definition of the symbol (which can be later re-enabled by a "#undef"). ANSI
mandates a "binary" model for "#define/#undef" and thus this option is disabled by
default. The ANSI model is "safer" programming practice and its use is encouraged.
Whitespace is allowed between the "c" and the "4".

6

PP "C" Preprocessor Transputer Toolset

-c 5

This option forces PP to recognize and translate incoming Trigraph character
sequences. Although ANSI mandates this, the option is disabled by default since it can
"break" existing code and is of somewhat limited utility (depends on what your national
character set is of course). Whitespace is allowed between the "c" and the "5".

-d <macro_symbol_name>[=<macro_expression>]

The "-d" option flag allows you to define a preprocessor macro symbol from the
command line. If you do not specify the "=<macro_expression>" clause the symbol is
given a default value of "1". Note that if the expression clause IS present, it must contain
no whitespace between the symbol name and the equals sign or between the equals sign
and the expression (or within the expression). The following examples define the
preprocessor symbol "hi" to a value of "1" within file "foo.c":

pp foo.c -dhi Or equivalently: pp foo.c -dhi=1

-e

As mentioned previously, this option flag tells PP not to return an abort exit
return value (a non-zero value), even if errors were detected.

-i <include_file_pathname>

This option flag lets you specify a non-standard pathname for include files to be
found on. Only one include file path should be specified for each "-i" option flag. The
basic search strategy for include files for non-CP/M versions of PP is as follows:

If the #include filename is bracketed by quotes, search the current directory first
to find the specified include file. If PP can't find the file, it searches on the directories
given by the "-i" switches in the order they appear on the command line. If PP still can't
find the file it then checks to see if an environment variable by the name of "PPINC"
exists, if so it interprets the associated value as a ';' separated list of directories to search.
If the PPINC variable doesn't exist PP will use the default system configured include file
pathname for the "final" search path ("/usr/include" or "/include" depending on how the
system is configured, see the PP Default Include File Pathname section for a
description of DFLT_PATH). If the #include filename was bracketed by angle brackets
instead of quotes, PP omits the initial search of the current directory.

7

Transputer Toolset PP "C" Preprocessor

If you have a CP/M version of the preprocessor, things get a little more
complicated. First of all, since CP/M doesn't support the concept of a tree structured file
system, directories don't really exist. To compensate for this a pair consisting of a CP/M
drive and user number is used in place of a directory pathname. Thus, if you wished to
specify a include file search on drive C, user number 5 you would use (with our old
standby "foo.c"):

pp foo.c -i c5

Note that the system configured include file pathname is "A0" (which is searched
last). All the stuff so far operates in an analogous fashion to the non-CP/M case, but here
is where things get different: If a file by the name of "path.ppi" is present on the system
configured include file pathname, it is read and the contents used as if they were read
from a series of "-i" switches on the command line. If this file is present its contents
OVERRIDE the system configured include file pathname. Thus the basic strategy for
searching for CP/M include files is as follows:

If the #include filename is bracketed by quotes, search the current drive and user
number for the include file. If PP can't find it there it searches the "-i" drive/user-number
pairs that were on the command line in the order they were present. If it hasn't yet found
the include file it searches the drive/user-number pairs it found on file "path.ppi" (if the
file existed on A0, if not search A0 for the include file). If the include filename was
enclosed by angle brackets instead, the above process occurs, but the initial search of the
current drive and user number is omitted.

-l a

If this option flag is given, the output of the preprocessor contains the abbreviated
form of line number information via "#<line-number>" pseudo-preprocessor directives.
Whitespace is allowed between the "l" and the "a".

-l l

If this option flag is given the output of the preprocessor contains the expanded
form of line number information via "#line <line-number>" pseudo-preprocessor
directives. Whitespace is allowed between the two "l"s. This option flag is the default if
no "-l" option flag is given.

-l n

If this option flag is given, the output of the preprocessor doesn't contain either of
the two forms of line number information. Note: if this option is used there is no way to
tell where a particular output line written by the preprocessor was originally read from.
This causes error messages written by any downline program (such as the compiler), to
contain incorrect filename and line number information.

8

PP "C" Preprocessor Transputer Toolset

-o <output_filename>

As mentioned, this option flag allows you to explicitly specify the output
filename for PP to use.

-s

This option flag allows you to generate a statistics summary when PP terminates.
This option flag is only available when PP is compiled with the DEBUG configuration
definition set to TRUE in "pp.h" (the default in the release versions of PP). This option
provides information of interest to those debugging PP or bringing it up on systems with
marginal resources (particularly memory).

-t a <string_of_characters>

This option flag causes all the characters present in the "string_of_ characters" to
be added to the preprocessors's idea of what a alpha character is (a letter). This affects
token recognization and all other cases where the preprocessor requires a alpha to be
present.

-t r <string_of_characters>

Like "-t a" above, but this option flag removes the corresponding characters from
the alpha class.

-u <macro_symbol_name>

This option flag allows you to do the equivalent of a #undef on one of the
predefined preprocessor symbols (see the PP Predefined Symbols section for
information about what initial symbols PP defines depending on what system it is
configured for).

9

Transputer Toolset PP "C" Preprocessor

-v

This option flag toggles PP between the verbose and quiet output modes. The
default output mode is dependent on the setting of the VERBOSE comfiguration option
in "pp.h" which in turn is dependent on the host operating system with which PP is being
used. On the Macintosh, PP defaults to the quiet output mode, on other systems the
default is verbose. See Appendix B for more information on the VERBOSE
configuration option. Assuming the verbose mode is ON, PP will print out identification
information followed by a record of what it does. This record includes the output file
name, which input files were processed, how many preprocessor symbols remained
defined when PP finished and how many symbols were used (worst case), during
processing.

-z

This option flag turns on the debugging messages that PP can print during
operation. This option is only available if the DEBUG definition in "pp.h" is set TRUE
when PP is compiled (which is the case for the release versions). The debugging output
is somewhat cryptic, but since you probably don't need it unless you change PP, you
should understand the source code well enough to decipher it.

-?

This option flag causes a mini version of this option description section to be
printed out to you. PP will not do anything else when this happens, including
preprocessing a file! You get the same effect as this option by making any sort of
command line syntax error.

10

PP "C" Preprocessor Transputer Toolset

PP Syntax and Semantics

PP conforms to the syntax and semantics of a ANSI "C" Standard preprocessor.
As mentioned, it also contains compatibility options for use with programs written using
previous flavors of "C" preprocessors. For most of the common questions you should
consult one of the many "C" programming books. A good one is:

"C" A Reference Manual
Samuel P. Harbison/Guy L. Steele Jr.
Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632, USA

This book covers both traditional and ANSI style preprocessors and is a
reasonable reference. For details about ANSI "C" macro substitution rules the only
known reference with enough meat is the Draft Standard itself and only then in
conjunction with the examples it provides (the text is ambiguous about some of the finer
points).

One part of the standard which is implementation dependent is the selection of
which #pragma statements you support.

PP Pragma Support

PP explicitly supports 27 #pragma directives. They are:

#pragma arg_string

Using this pragma is equivalent to setting the "-c0" command line configuration
switch (ie. it allows macro formal parameters to be recognized within string constants).

#pragma asm

This is used only with either the QC, QCX or TCX compilers. It causes all the
code between this and the next "#pragma endasm" to be output to the compiler without
changes as assembly language inline code (a opening "#asm" is emitted to let the
compiler know what's going on). Note that whether macro substitution occurs in the
code between the pragmas is dependent on the setting of the "#pragma [no] asm_expand"
pragma (see below), or the "-c1" command line option flag. "#pragma asm" statements
may not be nested.

11

Transputer Toolset PP "C" Preprocessor

#pragma asm_expand

This pragma is used with "#pragma asm"/"#pragma endasm" directives to enable
macro expansion within inline assembly language blocks.

#pragma comment_recurse

Using this pragma is equivalent to setting the "-c2" command line configuration
switch (ie. PP allows recursive comments).

#pragma define

Identical to a normal "#define" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma elif

Identical to a normal "#elif" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma else

Identical to a normal "#else" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma endasm

The other half of the "#pragma asm" directive above. This directive emits a
"#endasm" directive to the compiler and terminates the inline assembly language
inclusion. Macro substitution is unconditionally enabled by this directive (since it may
have been turned off).

12

PP "C" Preprocessor Transputer Toolset

#pragma endif

Identical to a normal "#endif" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma endmacro

Terminates the most recent un-terminated "#pragma macro name(...)" directive.

#pragma error message_text

Like "#pragma message", but the occurence of this directive is counted as an error
by PP and affects the exit return value (unless a "-e" option overrides it). The new draft
ANSI "C" standard includes a "#error" directive which duplicates this pragma (except the
string to be displayed is contained in quotes), thus the use of this pragma for new work is
discouraged.

#pragma if

Identical to a normal "#if" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma ifdef

Identical to a normal "#ifdef" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for
the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

13

Transputer Toolset PP "C" Preprocessor

#pragma ifndef

Identical to a normal "#ifndef" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists (unlike the non-pragma variant
which is dependent on the setting of a configuration option). The configuration option
for the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

#pragma macro name(parameters...)

This pragma allows multiple line macros to be defined. The macro operation is
the same as the normal "#define", but the body of the macro extends to the next matching
"#pragma endmacro". Note that this type of macro definition can be nested! You may
also include other "#pragma" directives in the replacement list (or normal directives if the
"-c3" command line option has been given or the equivalent via a "pragma
macro_rescan" directive).

#pragma macro_rescan

Using this pragma is equivalent to setting the "-c3" command line configuration
switch (ie. it allows non-pragma directives to be recognized in macro replacement lists).
See the description in the Option Descriptions section (option "-c3"), for more
information about the effects of this pragma.

#pragma macro_stack

Using this pragma is equivalent to setting the "-c4" command line configuration
switch (ie. the "stacking" model of "#define/#undef" directives is used).

#pragma message message_text

Prints everything on the line after the "message" keyword to standard output.
Any macros in "message_text" are expanded.

#pragma no arg_string

Like "#pragma arg_string", except macro formal parameter recognition within
string constants is DISABLED (per ANSI specification).

14

PP "C" Preprocessor Transputer Toolset

#pragma no asm_expand

Like "#pragma asm_expand" above, but this disables macro expansion within
inline assembly language blocks. This condition is the default if no "#pragma
asm_expand"/"#pragma no asm_expand" directives are encountered.

#pragma no comment_recurse

Like "#pragma comment_recurse", except recursive comments are DISABLED
per ANSI specification.

#pragma no macro_rescan

Like "#pragma macro_rescan", except recognition of non-pragma directives in
macro replacement lists is DISABLED per ANSI specification.

#pragma no macro_stack

Like "#pragma macro_stack", except the ANSI "binary" model of
"#define/#undef" is used instead of the stacking model.

#pragma no trigraph

Like "#pragma trigraph", except Trigraph sequence recognition and translation is
DISABLED.

#pragma trigraph

Using this pragma is equivalent to setting the "-c5" command line configuration
switch (ie. PP will recognize and translate Trigraph sequences on input per ANSI
specification).

#pragma undef

Identical to a normal "#undef" except since it's a "pragma" it will always be
recognized and processed in macro replacement lists; unlike the non-pragma variant
which is dependent on the setting of a configuration option. The configuration option for

15

Transputer Toolset PP "C" Preprocessor

the non-pragma variant is controlled by the "-c3" command line option flag and the
"pragma [no] macro_rescan" pragmas.

16

PP "C" Preprocessor Transputer Toolset

#pragma value

This pragma allows a simple form of preprocessing time arithmetic. The
arguments to it are identical to a "#if" (or "#pragma if"), but the effect is that the
evaluated value is converted to a decimal number and written to the output stream.

Note that any "#pragma" directives which are not recognized by PP are passed
through to the output file with the understanding that somewhere down the line another
program WILL recognize and process them.

PP Predefined Symbols

PP supports several predefined macro symbols. The following are defined for all
host and target system configurations:

__LINE__

Is replaced by the line number of the input file on which it occurred.

__FILE__

Is replaced by the filename of the current input file, bracketed with double quotes.

The above two symbols allow you to create completely customized error
checking and reporting. One good use is the creation of an "ASSERT" macro which
checks assertions about "C" programs. For example:

#define ASSERT(test) if(! (test)) \
printf("Assertion FALSE on file: %s, line:%d\n" \

,__FILE__,__LINE__); \ else;

You can then use this macro to "alert" you when the various things you took for
granted in writing the program no longer hold (particularly portability dependencies).
For instance, suppose you are depending on the fact that of two configuration macro
definitions, only one of them is set TRUE at any one time. Let FALSE be defined to be
0, TRUE be defined to be 1, and the two configuration options be CONFIGA and
CONFIGB (both set to TRUE to illustrate the technique):

ASSERT((CONFIGA + CONFIGB) == TRUE)

The above test will cause the ASSERT macro to generate code that will cause
your program to let you know that something has been configured incorrectly!
Alternately, you could have the body of the ASSERT macro issue a "#pragma error" or
"#pragma message" if the conditions you are checking can be detected at preprocessing
time (as in the example above).

17

Transputer Toolset PP "C" Preprocessor

__DATE__

This symbol is replaced by the system local date as of the start of PP execution.
The date is in month, day and year format, surrounded by double quotes. For example:

"Feb 12 1986"

__TIME__

This symbol is replaced by the system local time as of the start of PP execution.
The time is in 24 hour format with hours, minutes and seconds, separated by colons, and
surrounded by double quotes. For example:

"23:45:15"

The use of the __DATE__ and __TIME__ symbols is dependent on a operating
system which supports date and time.

__NEXT__
__NOW__
__PREV__

These three symbols are used to control the activity of the unique number
generator. The __NOW__ symbol is replaced by the current value of the generator (an
unsigned number which is initialized to zero). Each time PP encounters __NEXT__ it
increments the unique number generator by one and returns the new value. Each time PP
encounters __PREV__ it decrements the unique number generator by one and returns the
previous value. These three symbols are designed for use within macro bodies when
creation of "local" variable names is useful. The "##" operator may be used to glue
together the numbers generated this way with other preprocessor tokens. For example:

#define glue(a,b) a##b

#pragma macro ...
__NEXT__
#pragma define label(a,b) glue(a,b)
#pragma define label1 label(L1,__NOW__)
#pragma define label2 label(L2,__NOW__)

#pragma endmacro

18

PP "C" Preprocessor Transputer Toolset

The first macro definition creates a macro which glues its arguments together
without macro expanding either of them (because of the semantics of the "##"
operator). Then, within the macro where "local" variable names are desired, the call of
__NEXT__ generates a new unique number (note that the number is written out by PP,
and must be turned into a no-op for whatever language PP is being used with).
Following this, the "label" macro serves to provide a layer of insulation between the
desired operation (performed by the "glue" macro), and the actual tokens to glue
together. This is done since then the formal parameter strings are macro expanded
BEFORE being glued together thus allowing the "__NOW__" macro to expand to the
current value of the unique number generator. Finally, the last two macro definitions
create shortform names for the variables. The variables themselves will be symbols of
the form "L1XXX" and "L2XXX" where the "XXX" parts are identical variable length
decimal digit strings (since __NOW__ was used instead of __NEXT__).

Note that since "C" preprocessor macro expansion holds off the binding until the
very end. If __NEXT__ had been used in either definition it would have generated a
different symbol each time "label1" or "label2" is referenced, which is not very
useful if you plan on using the symbol more than once!

The unique number generator can also be used for other purposes. It's handy
whenever a series of numbers is required at compile time. The __NEXT__, __NOW__
and __PREV__ symbols are not part of the ANSI Draft Proposed "C" Standard and
shouldn't be used if portability is paramount. On the other hand, they are VERY useful
within multi-line assembly language macros! Since the ANSI standard doesn't allow
those either you aren't making your portability problems any worse...

The following predefined macros are used to get the current value of some of the
PP configuration options. The value will be "1" if the associated configuration option is
enabled and "0" if the option is disabled (they all are disabled by default). For
descriptions of the meanings of these see the previous section for the corresponding
"#pragma <name>" directive.

__ARG_STRING__
__ASM_EXPAND__
__COMMENT_RECURSE__
__MACRO_RESCAN__
__MACRO_STACK__
__TRIGRAPH__

The other predefined macro symbols which exist are dependent on which
TARGET system PP is generating code for. The possible choices are:

1. BSD 4.X UNIX systems (configuration option TARGET set to T_BSD in
"pp.h"). The symbols "unix" and "BSD" are both predefined to a value of "1".

2. Mac's running MPW (configuration option TARGET set to T_MPW in "pp.h").

19

Transputer Toolset PP "C" Preprocessor

3. Z80 code to run under CP/M, compiled under CP/M (written using the QC
native compiler), configuration option TARGET set to T_QC in "pp.h"). The symbols
"QC" and "CPM" are both predefined to "1".

4. Z80 code to run under CP/M, compiled under MS-DOS (written using the
QCX cross compiler, configuration option TARGET set to T_QCX in "pp.h"). The
symbols "QC" and "CPM" are both predefined to "1".

5. Transputer code (written using the TCX cross compiler, configuration option
TARGET set to T_TCX in "pp.h"). The symbol "TC" is predefined to "1".

6. Generic SYS5 UNIX systems (configuration option TARGET set to T_UNIX in
"pp.h"). The symbol "unix" is predefined with a value of "1".

7. VAX VMS systems (configuration option TARGET set to T_VMS in "pp.h").
The symbol "VMS" is predefined to be "1".

8. XENIX systems (configuration option TARGET set to T_XENIX in "pp.h").

PP Default Include File Pathname

The default include file pathname used by PP is determined by the definition of
DFLT_PATH in "pp.h". This in turn is dependent on the setting of the HOST
configuration definition (also in "pp.h"). The possible settings are:

1. BSD 4.X UNIX systems (configuration option HOST set to H_BSD). The
default include file pathname (DFLT_PATH), is set to "/usr/include".

2. CP/M systems (configuration option HOST set to H_CPM). The default include
file pathname (DFLT_PATH), is set "A0" and the use of the pathname file PATHFILE
(defined in "pp.h"), is supported. The PATHFILE definition is set to "path.ppi" in the
release versions of PP (see the description of the "-i" command line option in the Option
Descriptions section).

3. Mac's running MPW (configuration option HOST set to H_MPW in "pp.h").
The default include file pathname (DLFT_PATH), is set to "TIncludes".

4. MS-DOS systems (configuration option HOST set to H_MSDOS). The default
include file pathname (DFLT_PATH), is set to "/include".

5. Generic SYS5 UNIX systems (configuration option HOST set to H_UNIX).
The default include file pathname (DFLT_PATH), is set to "/usr/include".

6. VAX VMS systems (configuration option HOST set to H_VMS). The default
include file pathname (DLFT_PATH), is set to "crel$include:".

7. XENIX systems (configuration option HOST set to H_XENIX in "pp.h"). The
default include file pathname (DLFT_PATH), is set to "/usr/include".

20

PP "C" Preprocessor Transputer Toolset

Non-Standard Features of PP

Conforming to the standard is all well and good, but extensions are really where
the fun is! PP includes an extended form of macro parameter processing:

When defining a macro or #define, an optional form of formal parameter
definition is allowed. If the formal parameter is enclosed in square brackets, then
optional director fields are placed after the formal name to control the manner in which
the actual parameter is bound to the formal at invocation. PP currently supports either
"RQ" or "RN" as director fields. RQ causes any "" characters (surrounding a string) to be
removed at the time the parameter is bound to the formal parameter name. For example:

#pragma macro asm([line,RQ])
;
#pragma asm
line
#pragma endasm
#pragma endmacro

In fact, the above IS the internal definition of the asm() function. This function is
provided on many "C" compilers as a more dignified way of doing inline assembly
language processing than "#asm"/"#endasm". Thus, the "asm()" function is converted by
PP using the above macro INTO "#asm"/"#endasm" pairs and included code! For
example:

asm("ADD");

This is written to the output file by PP as:

;
#asm
ADD
#endasm

In contrast to "RQ", the "RN" director causes any newlines contained in the
corresponding macro parameter to be replaced with blanks during invocation. This is
useful when macro arguments are to be used with other PP facilities which are line
oriented (such as "#if").

Finally, two preprocessing "pseudo" functions have been added to PP to facilitate
compile time string processing optimization. These functions are used in a similar
fashion to "defined", except they require parenthesis around the argument:

_isstring()

21

Transputer Toolset PP "C" Preprocessor

This function evaluates to TRUE if its argument is a "C" string constant. If not it
evaluates to FALSE.

_strsize()

This function requires that its parameter be a "C" string constant (or several
adjacent string constants). It evaluates to the amount of storage in bytes which will be
required to hold the composite string (including the terminating '\0').

The above two PP functions, together with the "#pragma value" directive allows a
modest amount of compile time optimization in choosing which runtime function (if
any), is needed to evaluate a particular string operation. For example:

#pragma macro strlen([x,RN])
#pragma if _isstring(x)
((size_t)
#pragma value (_strsize(x) - 1)
)
#pragma else
strlen(x)
#pragma endif
#pragma endmacro

This removes the call to the "strlen" routine if the result is known at compile time.
Similar techniques can be used to conditionally convert "strcpy" calls into "memcpy",
etc.

22

PP "C" Preprocessor Transputer Toolset

Appendix A: Error Messages

Types of Error Messages

There are three classes of error messages which PP can generate:

1. Warnings. The general form of these informative messages is:

<filename> @ line_number: WARNING: message_text

Where the "<filename>" field indicates the current source code file being read,
the "line_number" field gives the line where the problem was detected, and the
"message_text" field indicates the actual problem encountered.

2. Non-fatal errors. These are used for reporting actual error conditions which will
affect the error count PP keeps, and the error status of the return value given when PP
exits. The exit error status set by encountering one or more non-fatal errors may be
overridden by using the "-e" command line option flag to indicate you do not wish to
abort on errors. The format for non-fatal errors is:

<filename> @ line_number: message_text

Where "<filename>", "line_number" and "message_text" have the same meaning
as in the "warning" message description above.

3. Fatal errors. If the problem detected by PP is so severe that it can't continue
operating, it will give a "fatal" error message:

FATAL: message_text

After printing one of these messages, PP will immediately exit with its error
return code set. This happens regardless of whether the command line contained a "-e"
option flag or not.

In addition to the above warning and error messages, the user may initiate two
forms of messages using pragma directives:

4. Normal non-fatal error messages with custom "message_text" fields. These
are generated using the "#pragma error message_text" directive and are treated in all
aspects as if the error was detected by PP itself.

23

Transputer Toolset PP "C" Preprocessor

5. Informative messages using the "#pragma message message_text" directive.
This message doesn't signal an error and is not treated as such by PP. The output format
is:

<filename> @ line_number: MESSAGE: message_text

Error Message Descriptions

The following descriptions list the various warning and error messages which PP
can generate (in alphabetic order):

<filename> @ line_number: Already within "#pragma asm"

This error occurs when another "#pragma asm" is encountered while still within a
previous one. These critters can't be nested.

<filename> @ line_number: Bad directive

On the specified input filename, at the specified line #, a bad preprocessor
directive was encountered (a "#" on a line by itself?).

<filename> @ line_number: Bad include argument

The filename parameter to a "#include" was not in correct form.

<filename> @ line_number: Bad parameter to "#error"

The string display parameter to a "#error" was not in correct form.

<filename> @ line_number: "#elif" outside of "#if"

This error indicates a "#elif" directive was found outside the scope of a
"#if"/"#endif" conditional compilation statement.

<filename> @ line_number: "#else" already encountered

24

PP "C" Preprocessor Transputer Toolset

This error indicates a "#else" directive was encountered in a conditional
compilation statement which already contained a "#else" within the same scope.

25

Transputer Toolset PP "C" Preprocessor

<filename> @ line_number: "#else" outside of "#if"

This error indicates a "#else" directive was found outside the scope of a
"#if"/"#endif" conditional compilation statement.

<filename> @ line_number: "#endif" outside of "#if"

This error indicates that a "#endif" was encountered that had no matching "#if".

<filename> @ line_number: EOF in comment

This error indicates an end of file was encountered while processing a comment.

<filename> @ line_number: Expression: Bad operand: token

The listed preprocessor token is not a valid operand at this point in the evaluation
of a preprocessor constant expression.

<filename> @ line_number: Expression: Division by zero

A division or remainder operator in a preprocessor constant expression had zero
as the right operand.

<filename> @ line_number: Expression: EOL in '' constant

This error is generated during the evaluation of a preprocessor constant
expression when the end-of-line character is detected within a character constant.

<filename> @ line_number: Expression: ':' expected

This error is generated during the evaluation of a preprocessor constant
expression when a ternary operator is being processed ("?:"), and the colon is not where
it should be.

26

PP "C" Preprocessor Transputer Toolset

<filename> @ line_number: Expression: Expected operand: token

The listed preprocessor token was expected in the constant expression expression
at some point and was not found.

<filename> @ line_number: Expression: Illegal character escape

This indicates that a illegal character followed the backslash escape character in a
character constant expression. This is detected during the evaluation of preprocessor
constant expressions.

<filename> @ line_number: Expression: Illegal hex digit

This indicates that an illegal character was found in a hex character constant.
This is detected during the evaluation of preprocessor constant expressions.

<filename> @ line_number: Expression: Illegal octal digit

This indicates that an illegal character was found in a octal character constant.
This is detected during the evaluation of preprocessor constant expressions.

<filename> @ line_number: Expression: Invalid operator: operator

This error is generated during the evaluation of a preprocessor constant
expression when a unexpected token/symbol/operator is encountered.

<filename> @ line_number: Expression: Mismatched "()"

This error is generated during the evaluation of a preprocessor constant
expression when a matching ")" is not present for a previous "(".

<filename> @ line_number: Expression: Mismatched apostrophes

This error is detected during preprocessor constant expression evaluation when a
character constant is encountered (an opening apostrophe), without a closing, matching,
apostrophe.

27

Transputer Toolset PP "C" Preprocessor

<filename> @ line_number: Expression: Missing '('

This error is generated when a pseudo function such as "_isstring" is used within
a preprocessor constant expression and the leading "(" is missing.

<filename> @ line_number: Expression: Missing ')'

This error is generated when a pseudo function such as "defined()" is used within
a preprocessor constant expression and the trailing ")" is missing.

<filename> @ line_number: Expression: Not an identifier: macro_symbol_name

This error is generated when the macro symbol name used in a "defined()" pseudo
function is not a legal symbol name.

<filename> @ line_number: Expression: sizeof() not allowed

This error message is generated during the evaluation of a preprocessor constant
expression when the "sizeof()" pseudo function is referred to. This function is not
implemented in PP. The ANSI "C" standard specifically prohibits the use "sizeof" in
preprocessor constant expressions.

<filename> @ line_number: Expression: Token too long

A token was encountered during preprocessor constant expression evaluation
which was too long for PP. The limit definition for this is TOKENSIZE in "pp.h".

<filename> @ line_number: _strsize: Missing string

This happens when the PP "pseudo" function "_strsize" is called with something
other than a "C" string constant as an argument. You MUST use the "_isstring" function
and a "#if" to ensure that "strsize" is only called with a constant string as an argument.
This specific error message is generated when the first parameter isn't a string.

28

PP "C" Preprocessor Transputer Toolset

<filename> @ line_number: _strsize: Not a string

This happens when the PP "pseudo" function "_strsize" is called with something
other than a "C" string constant as an argument. You MUST use the "_isstring" function
and a "#if" to ensure that "strsize" is only called with a constant string as an argument.
This specific error message is generated when the first parameter was a legal string, but
some subsequent token, which was encountered before the terminating ")", wasn't a legal
string constant.

FATAL: Bad option: option_string

The option_string you used was incorrect in some fashion.

FATAL: Input and output filenames are the same: filename

You can't use the same "filename" for both the input and output.

FATAL: Out of memory

This error message is generated whenever any of the PP functions which use
"malloc" to get memory are unable to obtain the amount needed.

FATAL: Pushback buffer overflow

This error message happens when the "pushback" buffer (used during macro
expansion, etc.), overflows. The buffer size is defined by PUSHBACKSIZE defined in
"pp.h".

FATAL: Unable to create output file: filename

Unable to open/create the output "filename".

FATAL: Unable to close output file: output_filename

This error is detected when PP is finished and attempts to close the output file.

29

Transputer Toolset PP "C" Preprocessor

FATAL: Unable to open input file: filename

The open attempt for the input "filename" failed.

FATAL: Unexpected EOF

This error occurs when EOF is encountered in some place where it really doesn't
belong (say within the parameter list for a macro, or somewhere like that).

FATAL: Too many pathnames

Generated if too many command line "-i" switches were given. Remember that
the configuration include file path and any paths specified in the "pathname" file also
count against this limit.

<filename> @ line_number: "#if" stack overflow

The nesting level of conditional compilation directives was exceeded. The limit
is defined by IFSTACKSIZE in "pp.h".

<filename> @ line_number: Illegal directive

On the specified input filename and line # an illegal preprocessor directive was
found.

<filename> @ line_number: Illegal disk drive specifier

Only used by the CP/M version of PP. Indicates the drive name used in a include
file pathname specification was not in the range of "a" to "p".

<filename> @ line_number: Illegal file name

The filename for a "#include" was in bad form.

<filename> @ line_number: Illegal or out of place token: token_string

30

PP "C" Preprocessor Transputer Toolset

This error message is generated when a unexpected token type is encountered
during the parsing of the parameters for a macro.

31

Transputer Toolset PP "C" Preprocessor

<filename> @ line_number: Illegal redefinition of symbol name:
macro_symbol_name

You get this if you redefine an existing macro symbol to a new value. This error
can only occur if you are using the "non-stacking" model of macro definitions (ANSI),
where each new definition is either identical to the previous definition (and ignored), or
different (causing this error message).

<filename> @ line_number: Illegal symbol name: macro_symbol_name

This error message is generated by malformed macro symbol names.

<filename> @ line_number: Illegal user number

Only used by the CP/M version of PP. Indicates the user # used with a include
file pathname specification was not in the range of 0 to 31.

<filename> @ line_number: Include filename too long

Self explanatory. The limit is defined by FILENAMESIZE in "pp.h".

<filename> @ line_number: Include file stack overflow

If too many nested include files are used you get this error. The limit value is
defined by FILESTACKSIZE in "pp.h".

<filename> @ line_number: Invalid formal parameter

This error message is generated when you specify a formal flag trailing a []
formal parameter block which is not begun by a alpha. See the Non-Standard Features
of PP section for more information about this extension.

<filename> @ line_number: Invalid formal parameter flag: flag_name

This error message is generated when you specify a formal flag trailing a []
formal parameter block which is not implemented. At the moment, "RQ" is the only
legal flag string (see the Non-Standard Features of PP section for more information
about this extension).

32

PP "C" Preprocessor Transputer Toolset

<filename> @ line_number: "#line" argument error

An error was encountered when an incoming "#line" preprocessor directive was
being parsed.

<filename> @ line_number: Macro body overflow

PP was unable to fit the macro body text into the expansion buffer. This is
generally caused by recursive or deeply nested macro calls.

<filename> @ line_number: Macro too long

PP was unable to fit the macro body text into the expansion buffer. This is
generally caused by recursive or deeply nested macro calls.

<filename> @ line_number: Not within "#pragma asm"

This error occurs when a "#pragma endasm" is encountered without a matching
"#pragma asm" having been encountered first.

<filename> @ line_number: Parameter buffer overflow

PP was unable to fit the macro parameter token into the parameter buffer. This is
generally because the parameter was itself the result of a macro which expanded in size
greatly.

<filename> @ line_number: "#pragma endmacro" illegal outside
macro

This error occurs when a "#pragma endmacro" is encountered without a matching
"#pragma macro" directive.

<filename> @ line_number: Read buffer overflow

The input line read by PP was too large to fit into the corresponding buffer for
that token type.

33

Transputer Toolset PP "C" Preprocessor

<filename> @ line_number: Token too long

A token was encountered which was too long for PP. The limit definition for this
is TOKENSIZE in "pp.h".

<filename> @ line_number: Unable to close include path file: path_file

This error message can only occur on CP/M versions of PP. It happens when PP
is closing "path_file" after reading the desired include file search pathnames.

<filename> @ line_number: Unable to close input/include file: filename

This error is generated whenever a input source or include file gets an error when
it is closed.

<filename> @ line_number: Unable to open include file: filename

The specified "filename" can't be found on any of the provided include file search
paths.

<filename> @ line_number: Unterminated conditional

On the specified input file, at the specified line #, the end of the input file was
reached without a closing "#endif" for a preprocessor conditional compilation directive.

<filename> @ line_number: WARNING: Bad format on include path file:
path_file

This error message is only used on CP/M versions of PP, when the include file
paths specified on "path_file" aren't decipherable ("path_file" defaults to "path.ppi" in the
release version). When this happens the default configuration pathname is used in place
of whatever "path.ppi" was trying to specify.

34

PP "C" Preprocessor Transputer Toolset

<filename> @ line_number: WARNING: "/*" found in comment

This is just a warning message indicating that a "/*" was detected while hunting
for a "*/" comment terminator. This message is only possible if recursive comments
have been disabled (see RECURSIVE_COMMENTS in appendix B).

<filename> @ line_number: WARNING: Incorrect argument count for:
macro_symbol_name

Generated when you use a parameterized macro and supply the wrong number of
arguments.

<filename> @ line_number: WARNING: Redefining symbol: macro_symbol_name

You get this if you redefine an existing macro symbol to a new value. This error
can only occur if you are using the "stacking" model of macro definitions (non-ANSI),
where each new definition hides the previous definition until a subsequent "#undef"
agains brings it to view.

<filename> @ line_number: WARNING: Symbol already defined: macro_symbol_name

If a command line symbol defined via a "-d" option flag is given which conflicts
with an existing macro symbol name, this error message is given and the new definition
is ignored.

<filename> @ line_number: WARNING: Symbol not defined: macro_symbol_name

If you attempt to un-define a non-existant predefined macro symbol you get this
warning.

35

Transputer Toolset PP "C" Preprocessor

Appendix B: PP Internals

Source Code Organization and Compiling

The "C" source code for PP is contained in two include files ("pp.h" and
"ppext.h"), and eight source code files ("pp1.c" through "pp8.c"). To compile the
program you compile all eight source code files and link the result together to form the
PP executable (see the notes in the next section if you are compiling the CP/M version).
If you intend to do any significant work on PP it is recommended that you set up a
"makefile" file for the preprocessor with the dependencies set such that a change in the
include file causes all the source code files to be recompiled, but that changes to
individual source code files do not force the recompiling of the others. A sample
"makefile" file is provided for use with the supplied MAKE utility and Microsoft 'C'
version 6.00a or Borland C V2.0. The "makefile" file will also be useful with most
UNIX versions of MAKE assuming the compile/link commands are changed to whatever
the local environment requires. If you do not have a MAKE facility you should at least
set up a batch/command file to compile PP (too many mistakes otherwise)!

The following is a brief description of the contents of the source code files:

"pp.h"

The main PP "C" include file. Contains the macro definitions for the
configuration options and the external structure and data definitions. Also, contains the
macro definitions which are used to make the various internal PP states and data
information "symbolic". Note that this include file is used by all eight source code files,
but it behaves differently when it is included by "pp1.c" than when the other files include
it. This is caused by a "MAIN" symbol which is defined in "pp1.c" and not in the others.
This allows data definitions for "pp1.c" (where global data is defined), to be defined in
"pp.h".

"ppext.h"

This include file contains external function definitions for the functions which
make up PP. This file is included in all eight source files.

"pp1.c"

This source code file contains most of the global data definitions (see "pp.h"), and
also the command line interface code for PP.

"pp2.c"

36

PP "C" Preprocessor Transputer Toolset

This source code file contains the higher level code for handling preprocessor
macros and the preprocessor symbol table.

37

Transputer Toolset PP "C" Preprocessor

"pp3.c"

This source code file contains the general I/O functions used by PP, including
both external file and internal buffer I/O. Note that the read character function "nextc"
which is used extensively is not in this file, moreover it doesn't exist! In actual fact, it is
a macro definition for a function pointer (defined in "pp.h"), which points to the actual
function desired (for instance "gchbuf" in "pp3.c"). In a similar vein, the "achar"
function defined in this file is replaced by a macro definition in "pp.h" if the PP
preprocessor symbol in "pp.h" is TRUE (see the next section and the source code for
more information).

"pp4.c"

This source code file contains the general preprocessor token processing and
classification routines. Note the "istype" function is replaced by a macro definition in
"pp.h" if the PP preprocessor symbol in "pp.h" is TRUE (see the next section and the
source code for more information).

"pp5.c"

This source code file contains the conditional compilation code for PP.

"pp6.c"

This source code file contains the "pragma" processing code for PP.

"pp7.c"

This source code file contains the error message processing routines for PP.

"pp8.c"

This source code file contains the constant expression evaluation code for PP.

"ppbanner.c"

This source code file is only needed when compiling PP with the HOST
definition set to H_CPM, see the next section for more details.

38

PP "C" Preprocessor Transputer Toolset

Configuring the PP Source Code

There are two areas (at least), of the "pp.h" file which need to be changed if you
plan on moving PP to another operating environment. You need to set the "HOST"
macro definition to one of: H_BSD, H_CPM, H_MPW, H_MSDOS, H_UNIX, H_VMS
or H_XENIX. You also need to specify the "TARGET" environment for the "C" code
which PP is compiling: T_BSD, T_MPW, T_QC, T_QCX, T_TCX, T_UNIX, T_VMS
or T_XENIX. As released, the CP/M version of PP is set to HOST == H_CPM and
TARGET == T_QC. The MS-DOS version of PP for use with either the QCX or TCX
cross compilers is set to HOST == H_MSDOS and TARGET == T_QCX (or T_TCX as
appropriate). Note that if you select HOST == H_CPM (as in the CP/M release), you
must provide an additional file ("ppbanner.c"), to be linked in with the eight source files.
"ppbanner.c" contains a single data structure definition of the form:

char *ver_id="PP Vxxx";

This line defines the startup banner for PP to print to the user. In development
work under CP/M this file is automatically emitted by the "make" utility and includes the
current data and time. If you select any other host environment other than H_CPM this
file is not required and you need to edit the VERSION macro definition in pp.h to change
the banner value.

The most generic of the configuration options are the HOST == H_UNIX and
TARGET == T_UNIX selections. These assume "C" standard library routines and are a
good first step when moving PP. Note that the "TARGET" configuration options are
primarily used to select what "predefined" preprocessor definitions are generated. If you
select T_UNIX you get the predefined symbol "unix". If you select T_BSD you get
"unix" and "BSD". If you select T_VMS you get "VMS". If you select T_QC or T_QCX
you get "QC" and "CPM". If you select T_TCX you get "TC".

Another function of the "TARGET" selection is to include facilities in PP which
are required for particular "C" compilers. For instance, the QC/QCX/TCX compilers
allow inline assembly language which is done via PRAGMA's and is only enabled if
TARGET is set to T_QC, T_QCX or T_TCX. See the source code (particularly "pp.h")
for additional information about this stuff. Note that not all combinations of the supplied
configuration options have been tested and that minor problems may arise with some.

Another configuration option which may need to be changed is the PP_SYSIO
macro definition in "pp.h". If this macro is defined PP is compiled to use the lowest
level character I/O available from "C" ("open", "read", etc.). This level of I/O tends to be
less portable between different compilers and machines than the higher level stream I/O
used if PP_SYSIO is not defined. Note that which version of the PP_SYSIO macro needs
to be modified in "pp.h" depends on the setting of the HOST configuration options. As a
concrete example of this the Lattice MS-DOS compiler version 2.15E would not run
correctly with PP_SYSIO defined. Changes have since been made to PP which might
make it more robust to whatever the problem was (or Lattice may have improved things
with newer versions). In any event, when moving PP you might want to comment out
the appropriate PP_SYSIO definition initially.

39

Transputer Toolset PP "C" Preprocessor

Like all the above, the DFLT_PATH configuration option is a macro defined in
"pp.h". It allows you to specify the default search path to use when PP encounters a
"#include <XXX>" statement. The default pathname is appended in front of the "XXX"
filename to determine where to read the include file from. Like PP_SYSIO, the
particular DFLT_PATH which you need to change in "pp.h" depends on the HOST
configuration parameter. Note that if the HOST == H_CPM configuration option is
selected the situation is much different. Because CP/M 2.2 (assumed with HOST ==
H_CPM), doesn't support a tree structured directory drive/user-number pairs are used
instead. Another feature added to the CP/M version is the existance of a default "path"
file: What happens is that when PP starts up it looks on the drive/user-number pair
specified in DFLT_PATH to attempt to read a file whose name is defined by another
macro definition in "pp.h" which is named PATHFILE. The contents of this file (named
"path.ppi" in the CP/M release), are read and interpreted as if they were a series of "-i"
include pathname specifiers on the PP command line. See the "-i" command line option
information in section "PP Syntax & Semantics" for more information about include file
search paths.

The ENV_PATH configuration option is a macro defined in "pp.h" which is used
to allow DFLT_PATH to be supplanted by a user specified environment variable. The
environment variable to be used is specified by the value of ENV_PATH. See the "-i"
command line option information in section "PP Syntax & Semantics" for more
information about include file search paths.

If you are moving PP to another machine you should make sure that the DEBUG
definition in "pp.h" is set to TRUE. This causes code to be included which allows the "-
z" command line flag to output debugging information to the console when PP is
running. The DEBUG flag is enabled in the release versions of PP and it should
probably stay enabled unless severe space restrictions force otherwise. Note that the
debug messages are somewhat cryptic, but they really do help narrow problems down!
See the source code for the possible messages and their meaning (if you are debugging
changes you've made you already know more than I can tell you about this sort of stuff)!

If the "C" compiler you are using to compile PP doesn't handle parameterized
macro's, but does handle most other preprocessor facilities, you can set the PP macro
definition (in "pp.h"), to be FALSE. This causes all instances of parameterized macro's
to be replaced with actual function calls. Although this is a somewhat esoteric
configuration option, it was required with the original version of QC which was used to
develop PP.

Another "major" configuration option: The VERBOSE macro definition in
"pp.h" selects whether PP is verbose by default or not. If verbose is defined to be
FALSE, then PP is quiet by default and the "-v" switch has to be thrown to make it
verbose. If VERBOSE is TRUE, then PP is verbose by default and throwing "-v" makes
it quiet.

40

	Contents
	1 Introduction
	Overview
	System Requirements

	2 Usage
	Examples
	Option Information
	Option Descriptions
	PP Syntax and Semantics
	PP Pragma Support
	PP Predefined Symbols
	PP Default Include File Pathname
	Non-Standard Features of PP

	3 Appendix A: Error Messages
	Types of Error Messages
	Error Message Descriptions

	4 Appendix B: PP Internals
	Source Code Organization and Compiling
	Configuring the PP Source Code

