
The Bucknell Logical Systems C Handbook

Dr� Daniel C� Hyde

Computer Science Department

Bucknell University

Lewisburg� Pennsylvania �����

hyde�bucknell�edu

February �� ����

Copyright ����

By Dr� Daniel C� Hyde

Permission to copy without fee all or part of this manual

is granted provided that the copies are not made

or distributed for direct commercial advantage and
this copyright notice appears on the �rst page�

�

Contents

� Introduction �

� Using Logical Systems Parallel C �

��� Running Ordinary C Programs on One Transputer �

����� To Setup� Compile and Run �

����� Further Details �

��� Running Concurrent C Programs on One Transputer �

����� Using the LSC Concurrent Routines �

����� Sample Concurrent Program �

��� Running on a Network of Transputers �

����� Setting Board Topology �

����� Loading a Network of Transputers �

��� LSC Examples �

��� How to Make and Use �nif Files in Logical Systems C � 	

����� Form of �nif
le � 	

����� Field ��� Node Number � 	

����� Field ��� Program to Download � 	

����� Field ��� Parent Node �

����� Fields ������ Link Connections �

����� Planning �

����� Example �nif File ��

��� Generating Random Numbers and Timing Programs in LSC ��

����� Random Numbers ��

����� Timing ��

����� Sample Code ��

��� Debugging LSC Programs ��

��� Common Pitfalls in Logical Systems C ��

��	 Introduction ��

��� Student Misunderstandings ��

����� The ProcAlloc Statement ��

����� ProcRun vs� ProcPar ��

����� ChanIn and ChanOut ��

���� Logical Systems C Quirks ��

�

������ Arrays in Sequential Processing ��

������ Array Problem Revisited ��

���� Conclusion ��

�

� Introduction

This manual describes the running of Logical Systems C programs on Bucknell University�s Transputer
network� The Transputer network consists of four Inmos B�� boards installed in a Sun�� server called
�hydra�� The four boards are populated with T� Transputers� The students access the Transputer
network by way of the Department of Computer Science�s Sun network which consists of about � Sun�s
and Sun�s�

While some of the material is implementation dependent� much of the material would be useful to others
using Logical System C in a Sun environment or an IBM PC compatable environment�

� Using Logical Systems Parallel C

You will write programs in a parallel C developed by Logical Systems�� which compiles on the Sun�s and
loads onto the Transputer network� Extensions to the C language have been added for message passing
between concurrent processes �much like in Occam�� The extensions are in the form of library calls �See
pages ������� in Logical Systems C for the Transputer� Version ���� User Manual available from Logical
Systems���

��� Running Ordinary C Programs on One Transputer

����� To Setup� Compile and Run

To run a C program on one Transputer� do the following steps�

�� Source the
le �logicalC�setup �or put the contents in your �cshrc
le��

� source �logicalC�setup

Below is a copy of Bucknell�s setup
le�

� setup file for Logical Systems C

� path of files is �home�hydra�local�LogicalC�lsc����

� Installed March �	
 ���� by Dan Hyde

set path � �path �home�hydra�local�LogicalC�lsc�����

setenv TMP �usr�tmp

setenv PPINC �home�hydra�local�LogicalC�lsc�����include

setenv TLIB �home�hydra�local�LogicalC�lsc�����library

setenv LINKNAME �dev�bxiv�

� the next four lines are for aliases to allow a user to switch from

� one board to another of the four B��� boards

alias b� �setenv LINKNAME �dev�bxiv��

alias b� �setenv LINKNAME �dev�bxiv��

alias b� �setenv LINKNAME �dev�bxiv��

alias b� �setenv LINKNAME �dev�bxiv��

�� To compile and link a C
le called mine�c do the following on a SUN ��

� tcc mine

�Logical Systems� P� O� Box ����� Corvallis� OR �����

�

This should create a
le with a �tld extension if there were no compiler errors�

�� To load onto one Transputer� do the following on the sun server hydra�

� ld�one mine cio

where cio is the host server interface program� This uses the �tld
le to load the Transputer� start
execution on the Transputer and interact with the screen and keyboard�

����� Further Details

You can redirect the input by

� ld�one mine cio � mydata

You can redirect output by

� ld�one mine cio � myout

To change between the four Transputer boards� type b�� b�� b� or b�� These are aliases in the setup
le�

��� Running Concurrent C Programs on One Transputer

����� Using the LSC Concurrent Routines

To use the concurrent routines� insert the following �include�
le�

�include �conc�h�

�

����� Sample Concurrent Program

Below is a Logical Systems C program which allocates three concurrent processes P�� P�� and P� which all
run on one Transputer� The program allocates three channels which are used to send integers from P� and
P� to P�� P� uses an ProcAlt to determine which channel has a message then a ChanInInt to read it�

If you know Occam� you can easily write Logical Systems C concurrent programs by using the constructs that
correspond to Occam� For channels� you use the ChanAlloc� ChanIn and ChanOut functions� For concurrent
processes you use ProcAlloc� ProcFree� ProcAlt and ProcPar functions� Of course� Logical Systems C is more
�exible than Occam as you can allocate and free processes at run time� have recursive functions and dynamic
memory allocation� all which are not possible in Occam�

��������������������������� file mine�c ����������������������������

�� Logical Systems C example with three concurrent processes� ��

�� P� and P� each send an integer to P�� P� receives the integers and ��

�� displays them� By Dan Hyde
 July ��
 ���� ��

�include �stdio�h�

�include �conc�h�

�define WS�SIZE ���� �� work space size ��

P��Process �p
 Channel �out�

�

int y�

y � ��

ChanOutInt�out
 y��

�

P��Process �p
 Channel �out�

�

int z�

z � 	�

ChanOutInt�out
 z��

�

P��Process �p
 Channel �in�
 Channel �in��

�

int which
 i
 x�

printf���nStarting Program��n���

for �i � �� i��� i����

which � ProcAlt�in�
 in�
 NULL��

if �which �� �� �

x � ChanInInt�in���

printf��in� � �d�n�
 x��

�

else �

x � ChanInInt�in���

printf��in� � �d�n�
 x��

�

�

printf���nProgram termination��n���

�

�

main��

�

Process �p�
 �p�
 �p��

Channel �a
 �b
 �c�

�� allocate channels ��

a � ChanAlloc���

b � ChanAlloc���

c � ChanAlloc���

�� allocate process p�
 one parameter �� chan a ��

p� � ProcAlloc�P�
 WS�SIZE
 �
 a��

�� allocate process p�
 one parameter �� chan b ��

p� � ProcAlloc�P�
 WS�SIZE
 �
 b��

�� allocate process p�
 two parameters �� chans a and b ��

p� � ProcAlloc�P�
 WS�SIZE
 �
 a
 b��

ProcPar�p�
 p�
 p�
 NULL��

ProcFree�p���

ProcFree�p���

ProcFree�p���

�

��� Running on a Network of Transputers

����� Setting Board Topology

Before you can run on multiple Transputers� you must be using board � or board � and have set the topology
of the Transputers� hardware links on the board as described on page �� of The Bucknell Transputer Handbook
Using Inmos�s Toolset�

����� Loading a Network of Transputers

To load a network of Transputers� we use ld�net instead of ld�one� ld�net requires a network information

le with an �nif extension� This
le is a simple description of Transputer node numbers� the program to
run on each and the connection of the links� See the section on �nif
les on how to create them�

To run the below program� we use ld�net with the test�nif
le�

� ld�net test

Notice that we do not need the cio parameter which we used with ld�one�

The � node number� �those are underlines�� variable holds the network address for the processor which is
running the program� The declaration for � node number� is in conc�h�

Below is an example LSC program that runs on two Transputers� By using � node number�� we distinguish
at run time what code to execute� This allows us to write one program and load it on both Transputers�
Or� we could have easily used two separate
les� Notice that we did not need to allocate any channels as we
used the prede
ned channels which correspond to the Transputer�s links� e� g�� LINK�IN� when we allocated
the processes�

�

�� test�c �� Written by John Douglass ��

�� Logical Systems C program to time communication between two Transputers ��

�include �stdio�h�

�include �stdlib�h� �� needed for rand function ��

�include �conc�h�

�define WS�SIZE ����

�define TICKSPERSEC �����

�define NUM ��� �� number of messages to be sent ��

process� �Process �p
 Channel �in
 Channel �out�

�

int x
 y�

int B NUM!�

x � ChanInInt�in�� �� wait for start signal ��

SetTime����

ChanIn�in
 �char �� B
 sizeof�B���

y � Time���

printf���n Time for communication is �f seconds�n�
 �float� y � �float�

TICKSPERSEC��

printf���n Received �d random numbers from process ��n�n�
 NUM��

for �x��� x � NUM� x���

printf���t�d�n�
 B x!��

�

process� �Process �p
 Channel �in
 Channel �out�

�

int A NUM!�

int i�

for �i��� i � NUM� i���

A i! � rand��� �� generate NUM random integers ��

ChanOutInt�out
 ��� �� send signal to start timing ��

ChanOut�out
 �char �� A
 sizeof�A���

�

main��

�

if ��node�number �� �� �

Process �p��

p� � ProcAlloc�process�
 WS�SIZE
 �
 LINK�IN
 LINK�OUT��

ProcPar�p�
 NULL��

�

else �

Process �p��

p� � ProcAlloc�process�
 WS�SIZE
 �
 LINK�IN
 LINK�OUT��

ProcPar�p�
 NULL��

�

�

�

Here is the test�nif
le for the program�

� This is the test�nif file for the test of communications

� John Douglass �������

�
 test
 R�
 �

 � �!
 �

�
 test
 R�

 � �!

 �

��� LSC Examples

The Logical Systems C system comes with several examples� The below code is a unmodi
ed copy of exam��c
in the directory�

�home�hydra�local�LogicalC�lsc�����example

This directory which came with the compiler has other examples you may want to look at� We suggest you
look at or try exam��c� exam��c to exam	�c and pipe��nif�

�� exam��c file ��

�include �stdio�h�

�include �conc�h�

main���

Channel �chan�

int id � ��

if��node�number �� ��

�

��

� We are the root Transputer
 inform the user as the

� various node addresses arrive� Note that we listen for

� input from the bootstrap link also but this doesn�t

� matter since it shouldn�t generate any output"

��

printf��Root node ID � was �d�n�
�node�number��

printf��Booted from input channel# �p�n�
�boot�chan�in��

while���

�

chan � LINK�IN � ��int� ProcAlt�LINK�IN
LINK�IN

LINK�IN
LINK�IN
����

printf���nMessage on input channel# �p�n�
chan��

ChanIn�chan
�char �� $id
���

printf��Message was node ID � �d�n�
id��

�

�

else

�

��

� We are not the root
 look at all input links and send

� any node addresses we get out the link we were

� bootstrapped on�

��

ChanOut��boot�chan�out
�char �� $�node�number
���

while���

	

�

chan � LINK�IN � ��int� ProcAlt�LINK�IN
LINK�IN

LINK�IN
LINK�IN
����

ChanIn�chan
�char �� $id
���

ChanOut��boot�chan�out
�char �� $id
���

�

�

�

Here is a �nif
le for this example�

� Network Information File for exam��c

� Dan Hyde
 April ��
 ����

�

�
 ex�
 R�
 �

 � �!
 �

�
 ex�
 R�

 � �!

 �

The above code demonstrates a simple approach to using C on multiple Transputers� We have one process
running on each Transputer and we communicate on the link channels directly� This means we don�t have
to worry about creating new processes or creating new channels� boot chan out and boot chan in are the
channels used to boot the Transputer� Therefore� you can be sure they are connected to a neighboring
Transputer which is closer to the SUN host�

Notice that by using the node number variable we can write one program which we run on many Transputers�
This may be wasteful of memory space but makes programming easier�

��� How to Make and Use �nif Files in Logical Systems C

The �nif extension on a
le stands for network information �le� This
le gives information about Transputer
links to the network program loader ld�net used by Logical Systems C� It is therefore very important that
you create the �nif
les with careful deliberation�

����� Form of �nif �le

The
le is organized as a sequence of node descriptions� one per line ending with a ���� The node description
will take the following form�

node�
 program name
 parent node
 link �
 link �
 link �
 link ��

����� Field ��� Node Number

The node number can be a number of the user�s choice� This number must be a positive integer and may
range from � to �� Non�consecutive numbers may be used but they must be distinct� Node number
 is reserved to represent the host interface �i�e� the SUN�� By convention node number � should be the
root Transputer in the network� The node number provided in the �nif
le is available to the user during
execution as the contents of the � node number� external integer variable de
ned in conc�h�

����� Field ��� Program to Download

Contains the name of the program to download to that particular node� By default� a
le name extension
of �tld is assumed if none is speci
ed�

�

����	 Field ��� Parent Node

This
eld contains both the number of the parent node and an indication about whether the �system� or
�sub�system� output of the parent node controls the reset for this node� System output is denoted by an
R and sub�system output is denoted by an S� No more than one node may be connected to the �system�
or �sub�system� output of its parent node� Since node number is de
ned to be the host interface� a
eld
containing �R� should be used with the root node to describe who resets it� It is important that there exist
a link between a node and it�s parent node�

����� Fields �	
��� Link Connections

The last four
elds in the line are used to specify which node each link is connected to� If a link is unconnected�
its entry may be left blank �a comma is still required as a place holder�� It is best to explicitly declare which
link of the node you are connected to� this is done using the �� �� notation� For example�

�
 zip
 R�
 �
 � �!
 � �!
 �

In this example� the root node ��� is loaded with program �zip�tld�� is reset by the system output of the
host� and its link is connected to the host� link � is connect to node � link �� link � is connected to node �
link �� and link � is left unconnected�

����� Planning

Careful planning of the �nif
le at the beginning will increase your understanding of the
le and possibly
prevent you from experiencing errors in your program which occur not in the code but in the way in which
you set the network links� The
rst phase of this planning is to draw a diagram of your program showing the
communication paths between your processes� In this example there are four processes� two which generate
data and a third which merges this data and a fourth which prints it out�

a

b

p1

p2

print
c d

p3

Figure �� Process Diagram

Now carefully map this diagram to a diagram of Transputers which each have four links� Remember that
the node one Transputer is the one which can do i�o� and that it�s link � must go to node � Remember to
set the topology of the Transputers��

�see reference in Transputer Manual� page ���

��

to host

node 1 node 2 node3

0

1

2

3

0 0

1 1

2

3

2

3

2

3

1

0

node 4

Figure �� Transputer mapping

����� Example �nif File

The following
le would be a sample �nif
le for the above example�

� �nif file for the above diagram�

�
 print
 R�
 �

 � �!
 �

�
 p�
 R�

 � �!
 � �!
 � �!�

�
 p�
 R�

 � �!

 �

�
 p�
 S�
 � �!

 �

��� Generating Random Numbers and Timing Programs in LSC

This section is for the student who needs either to generate random values in Logical Systems C or to time
code which is written in Logical Systems C� For reference see Logical Systems C for the Transputer� Version

���� User Manual �

����� Random Numbers

Generating numbers in Logical Systems is very simple� First the user must include stdlib�h in his or
her program� De
ned within this library are three useful functions srand��� rand��� and frand��� The

rst of these functions takes an unsigned integer as a parameter� This function will set the seed for the
pseudo�random number generator� The functions rand�� and frand�� return an integer random number
and a �oating�point random number in the range � � x � ��� respectively�

����� Timing

Timing sections of code is essentially very easy in Logical Systems C� Two functions� SetTime�� and Time���

are provided in order to help the programmer� The
rst� SetTime takes an integer as a parameter� this integer
is what the timer in ticks for the current priority level will be set to� The second Time takes no parameters
but instead returns the value of the timer �in ticks� for the current priority level� These two functions are
de
ned in conc�h which must be included in the program�

The only other bit of information a person needs to know is that the timer runs at di�erent rates for high ��
�S�tick� and low priority ��� �S�tick� processes� This means that there are ��� ticks per second and
������ ticks per second respectively�

�You must use a capital 	T
 on this function name as time�� is a di�erent function�

��

����� Sample Code

Here is an working example which demonstrates both random number generation and timing of code�

�include �stdio�h�

�include �conc�h�

�include �stdlib�h�

�define TICKSPERSEC ����� �� for a low priority process ��

main��

�

int runtime� �� will store the elapsed time ��

int A ���!� �� array for random values ��

int result� �� temporary result ��

int i
 j� �� loop counters ��

for �i��� i � ���� i���

A i! � rand��� �� store rnd number in A i! ��

printf���n About to reset the timer�n���

SetTime���� �� reset timer to zero ��

for �i��� i � ����� i���

for �j��� j � ���� j���

result � A j! � ��

runtime � Time���

printf��The runtime is �f seconds�n�
 �float� runtime � �float�

TICKSPERSEC��

�

��� Debugging LSC Programs

Output and input statements� e� g�� printf and scanf� may only occur in the program running on the root
Transputer� Also� all of the printf statements should appear in only one concurrent process�

When debugging concurrent LSC programs on one Transputer� one may insert printfs in any concurrent
process as long as no other process tries to print� It is best to have a screen manager process which collects
the debugging messages by way of a vector of channels and displays them on the screen�

Debugging on multiple Transputers is more di�cult� Always debug a concurrent version of the program on
one Transputer before moving the program to a network of Transputers� If you design your program with
this move in mind� the move should be straight�forward�

When debugging programs on multiple Transputers� always double check your �nif
le carefully� If your
program hangs� concentrate
rst on getting the communication working between the Transputers� Once that
is working� you can send debugging messages to the screen manager on the root Transputer�

��

��� Common Pitfalls in Logical Systems C

The following four sections were written by John Douglass of Bucknell University�s class of �		��

��	 Introduction

This section documents some pitfalls which were discovered during a
rst experience with Logical Systems
C� It assumes the reader has a basic knowledge of C and has available as reference Chapters ��� ��� and
�� of Logical Systems C for the Transputer� Version ���� User Manual � A previous knowledge of Occam is
helpful but not required�

���
 Student Misunderstandings

After having read Chapters �� and �� of Logical Systems C for the Transputer� Version ���� User Manual �
I felt that I was ready to begin programming� This section of the Handbook is designed to help prevent you
from making the same errors I did� mostly from not reading carefully enough �and to save you the hours of
debugging which I took to
nd the errors��

����� The ProcAlloc Statement

The ProcAlloc statement� is used to allocate a stack frame so that a new process may be executed� A new
process is allocated as follows �from LSC Manual��

�include �conc�h�

Process �ProcAlloc �func
 sp
 nparam
 p�
 p�
 ���
 pn�

int ��func����

int sp�

nparam�

ProcAlloc �� takes a pointer to a function that contains the code for the process� The parameter sp
indicates the amount of stack space required for the process� Not being sure of what value to use� I used
��	� as it is used in all the LSC Manual�s examples� Using for the default value as suggested in the manual
did not work�

nparam speci
es the number of words of space to allocate o� the stack space initially for parameters to the
function� p�
 p�
 ���
 pn is the list of parameters� The name �nparam� is misleading as it is the number
of words needed and not the number of parameters� For example� a double variable takes two words� From
my experience� integer variables and channels take one word� Arrays of integers and channels also take one
word as only a pointer is passed�

A sample invocation of this statement�

PRINT�Process �p
 int a
 int b�

�

int c�

c � a � b�

�� print c here ��

�

�See Chapter ��� page ��� and Chapter �� page ����

��

Process �print� �� process pointer ��

x � ��

y � ��

if ��print � ProcAlloc�PRINT
 ����
 �
 x
 y�� �� NULL �

exit����

ProcPar�print
 ���
 NULL��

x � ��

y � ��

ProcPar�print
 ���
 NULL��

This invocation will allocate stack space for the process PRINT and assign it to the process pointer print�
You then start the process by using the ProcPar or the ProcRun command�

The important thing to note here is that the execution of the ProcAlloc statement binds the actual param�
eters a and b to the current values of the formal parameters x and y� In the above example� both the
rst
and second executions of ProcPar will send the PRINT process x � � and y � � even though their values
have been modi
ed before the second call� One solution to this problem is to invoke ProcAlloc again after
the modi
cation of x and y� However this solution produces unnecessary overhead�

A better solution to this problem is to use call by reference� In C this means that we must place an �
before x and y in the ProcAlloc statement and a � before instances of a and b in the PRINT function� For
example�

PRINT�Process �p
 int �a
 int �b�

�

int c�

c � �a � �b�

�� print c here ��

�

Process �print� �� process pointer ��

x � ��

y � ��

if ��print � ProcAlloc�PRINT
 ����
 �
 $x
 $y�� �� NULL �

exit����

ProcPar�print
 ���
 NULL��

x � ��

y � ��

ProcPar�print
 ���
 NULL��

This invocation binds the addresses of x and y and the � before the a and b dereferences these� Now we can
modify x and y and reinvoke print and still get the correct values�

����� ProcRun vs� ProcPar

Another error which I experienced was my incorrect use of ProcRun� There are some subtle di�erences
between the way in which ProcPar and ProcRun� which I did not pick up when I read the manual� Take for
instance the following code�

Process �print� �� process pointer ��

x � ��

y � ��

�See Chapter ��� pages ������� for use of ProcPar and ProcRun�

��

if ��print � ProcAlloc�PRINT
 ����
 �
 $x
 $y�� �� NULL �

exit����

ProcPar�print
 ���
 NULL��

ProcPar here is used to invoke an instance of the process PRINT� Important to note is that this statement
will block execution of the calling process until all of the procs in the list have completed� This is di�erent
from ProcRun� which takes only one process as an argument� ProcRun will spawn a process and then allow
the continuation of the calling process� This di�erence can lead to hard to track down errors� for instance�

Process �print� �� process pointer ��

x � ��

y � ��

if ��print � ProcAlloc�PRINT
 ����
 �
 $x
 $y�� �� NULL �

exit����

ProcRun�print��

ProcFree�print��

In the above code an instance of the process PRINT is spawned by the ProcRun execution� However the
calling process then continues and executes the ProcFree statement which will free the process pointer�
This can cause very serious errors� To avoid this error� use the ProcPar statement with one process instead�
for instance�

ProcPar�print
 NULL��

ProcFree�print��

This will spawn an instance of the print process and then block execution of the calling process until the
print process has completed its execution�

����� ChanIn and ChanOut

ChanIn and ChanOut read�write byte streams� This is an important point to emphasize� For example� the
following code would not send out the
rst � integers of the list�

int list ��!� �� initialize to some values ��

x � ��

ChanOut�out
 �char �� list
 x��

The code sends out the
rst two integers in the list� This is because each integer is � bytes� To correct this
we should use the following statement�

ChanOut�out
 �char �� list
 � � x��

To send the whole list we can use the sizeof�� function� For example�

ChanOut�out
 �char �� list
 sizeof�list���

Similarly� we must be careful when we use ChanIn�

��

���� Logical Systems C Quirks

The following are particular quirks to Logical Systems C running on Transputers which I found unusual and
undocumented�

������ Arrays in Sequential Processing

One of the
rst problems I encountered when using Logical Systems C for a simple sort program �i� e�� no
concurrent processes�� was the allocation of stackspace for the main� I had de
ned in the main function a
local array A of integers to be of size �� Being used to programming on machines with virtual memory
this was perfectly normal� However this caused my program to just lock up on the Transputers� After
eliminating all other possibilities� it was determined that the problem was the program was running out of
memory� I theorize that the stackspace was being stored in the Transputer�s on�chip memory and the array
exceeded the � KBytes allowed�

To solve this problem I simply moved the declaration of the array to make it global� This meant the array
A was now being stored in the global stack space� Another solution is to make A static� this also has the
e�ect of storing A not in the stack space but in the global area�

������ Array Problem Revisited

After having solved my array memory problem� I went on to splitting my sequential sorting program into a
concurrent version which used two sort processes and a merge� The sort processes would send the results of
sorting half a list to the merge� which would merge the two halves into a
nal list� These two sort processes
were invoked from one process declaration� For example�

Sort��Process �p
 Channel �out
 Channel �in�

�

�� Intent# sorts values and sends them to Merge ��

int i� �� loop index ��

int n� �� number of elements to generate ��

static int A MAX!�

n � ChanInInt�in�� �� receive value from merge ��

GenArray�A
 n�� �� generate n rnd elements ��

ChanOutInt�out
 ��� �� send start timer to merge ��

Sort�A
 n�� �� sort the arrays ��

for �i��� i � n� i��� �� send values out ��

ChanOutInt�out
 A i!��

ChanOutInt�out
 ���� �� send done signal ��

�

main

�

Channel �a
 �b
 �y
 �z
 ����

Process �sort�
 �sort�
 ����

�� allocate channels here ��

�� allocate process sort�
 two parameters �� chans a and y ��

if ��sort� � ProcAlloc�Sort�
 WS�SIZE
 �
 a
 y�� �� NULL�

��

printf��No Memory for process �Sort���n���

�� allocate process sort�
 two parameters �� chans b and z ��

if ��sort� � ProcAlloc�Sort�
 WS�SIZE
 �
 b
 z�� �� NULL�

printf��No Memory for process �Sort���n���

ProcPar�sort�
 sort�
 merge
 NULL��

�

This however led to inconsistent results� At times the program would sort and merge the list correctly� at
others it would have elements which were incorrectly placed� The problem here was the use of the static
array� The solution from last section was the cause of the problem this time� Since the function Sort� is
instantiated in both sort� and tt sort� and the declaration is static� the processes share the same storage
for array A�

The proper solution here is just to remove the static from the declaration� This will not create a memory
problem as before since the memory used for the process is the stack space created when you do the ProcAlloc
command�

The problem here is actually of a much �broader scope any local function which may be called by two or
more concurrent processes must be !re�entrant�� To insure that a function is re�entrant it should be written
with no static or global variables and no I� memory�registers� In other words� ALL write variables must
be volatile or stack based���

���� Conclusion

Many of the problems I encountered when using Logical Systems C were simple misunderstandings� It is
best to read the documentation carefully before trying to program� The above errors are just the problems
which I had the most di�cultly with and are certainly not all the pitfalls that you will encounter�

�This is from a e�mail message by Scott Cannon� Department of Computer Science� Utah State University� who helped

answer a question about LSC�

��

	Title
	Contents
	1 Introduction
	2 Using Logical Systems Parallel C
	2.1 Running Ordinary C Programs on One Transputer
	2.1.1 To Setup Compile and Run
	2.1.2 Further Details

	2.2 Running Concurrent C Programs on One Transputer
	2.2.1 Using the LSC Concurrent Routines
	2.2.2 Sample Concurrent Program

	2.3 Running on a Network of Transputers
	2.3.1 Setting Board Topology
	2.3.2 Loading a Network of Transputers

	2.4 LSC Examples
	2.5 How to Make and Use .nif Files in Logical Systems C
	2.5.1 Form of .nif file
	2.5.2 Field #1: Node Number
	2.5.3 Field #2: Program to Download
	2.5.4 Field #3: Parent Node
	2.5.5 Fields #4-#7: Link Connections
	2.5.6 Planning
	2.5.7 Example .nif File

	2.6 Generating Random Numbers and Timing Programs in LSC
	2.6.1 Random Numbers
	2.6.2 Timing
	2.6.3 Sample Code

	2.7 Debugging LSC Programs
	2.8 Common Pitfalls in Logical Systems C
	2.9 Introduction
	2.10 Student Misunderstandings
	2.10.1 The ProcAlloc Statement
	2.10.2 ProcRun vs. ProcPar
	2.10.3 ChanIn and ChanOut

	2.11 Logical Systems C Quirks
	2.11.1 Arrays in Sequential Processing
	2.11.2 Array Problem Revisited

	2.12 Conclusion

