
TASM/TLNK/TLIB Relocatable
Record and File Formats

 Version 91.1
6/15/91

Copyright 1986-1991 by Logical Systems

Contents
1 Introduction
2 Individual Record Descriptions

General Characteristics
Detailed Record Descriptions

T_RESERVED
T_REL_FILE
T_LIB_FILE
T_LD_FILE
T_SIZE
T_EOF
T_SYMBOL
T_FILENAME
T_MODULE
T_ALIGN
T_DATA
T_REL_DATA
T_RELSYM_DATA
T_RELREL_DATA
T_ADDR_DATA
T_STORAGE
T_DEF
T_SET
T_REL_OP
T_RELSYM_OP
T_RELREL_OP
T_ADDR_OP
T_LOAD
T_STACK
T_ENTRY
T_DEBUG_DATA
T_DEBUG_SYM
T_WRELREL_OP

3 Record Order Within Files
TASM Output Files/TLNK Input Files

Introduction
General Relocatable Record Structure
General Load File Record Structure

TLNK Output Files/Loader Input Files
Introduction
General Load File Record Structure

TLIB Output Files (libraries)
Introduction
General Library Record Structure

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Library File Overhead Record Structure

2

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Introduction

All non-text files used by the Toolset share a common record structure. Each file
consists of a series of these records appended together with no intervening space or
separators. Not all file formats use all records; each of the three types of files uses a
different mixture. The three basic file types are:

TASM output file/TLNK input file. This file encodes the relocatable
information that TASM generates when assembling a Transputer assembly language
source file. TLNK in turn reads this file to translate the relocatable form into a
downloadable "object" file. The standard filename extension for these files is ".TRL"
(Transputer ReLocatable).

TLNK output file/loader input file. This file encodes the object file produced
by TLNK in a format suitable for use with the various loaders provided with the Toolset.
Files in this format have instantiated load and stack addresses and are completely
resolved with regard to intermodule linkages. The standard filename extension for these
files is ".TLD" (Transputer downLoaD).

TLIB output file/TLNK library file. This file is used to gather a number of
".TRL" format files into a "library" for use with TLNK. The TLIB librarian has many
facilities for manipulating files in this format. The standard filename extension for these
files is ".TLL" (Transputers Like Libraries).

In addition to these standard formats, the TASM and TLNK programs use
variants of these formats for internal temporary files. This document makes no claim of
documenting such internal usage, however, the individual record descriptions contain
some mention of which records are used (if not HOW they are used...).

The remainder of this document covers the file formats in two stages. First the
individual records which make up the various files are discussed. Following that, the
rules for record order within the files are covered.

Individual Record Descriptions

General Characteristics

1. A file is considered to be a stream of 8 bit "bytes". If this is not the case with a
particular computer system, either a "protocol conversion" library must be used to make
it appear that this is the case, or the various Transputer Toolset utilities must be modified
to accomodate the differences.

2. All fields within records are "little-endian"; The lowest order byte is found first in
the file, followed by the second lowest order byte, etc. Within a byte each bit is labeled
from right to left, lowest order to highest order, numbered from #0 to #7.

3. Fields within a record are either considered to be signed or unsigned as
appropriate. Signed fields are assumed to be in two's complement format. The size in
bytes and sign status of each field is indicated in the descriptions.

3

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

4. Each record consists of a 1 byte header field which gives the record "type". The
"type" is right justified in the low order bits and the rest of the header byte is zero.
Following this, the remainder of the record consists of a fixed number of fields (which
may be of variable length depending on the record type).

5. Records which are generated by Transputer instructions to TASM and are
completely "bound" (the instruction "prefix" is completely determined), turn into
T_DATA records. Those which aren't turn into some form of T_XXX_OP record.
Within these records the basic opcode byte is encoded in the last field (named "opcode").
The 4 high order bits in this field determine which of the basic 16 functions is desired
("ldc", "stl"...). The 4 low order bits are normally zero with the following exceptions:

It is sometimes possible to simulate the operation of a particular instruction with
another combination of instructions. An example is a "ldc" which is used to load
0x80000000 on a 32 bit Transputer. Using the normal prefix technique this instruction is
8 bytes long. It may be functionally replaced by a "mint" instruction which is two bytes
long and executes faster. TASM can be instructed to allow this sort of optimization by
the use of the ".ldc" pseudo-opcode instead of the normal "ldc" instruction. The effect
this has is that the lowest order bit within the 4 low order bits is set to "1" indicating that
functional replacements for the basic instruction are allowed (currently only used with
the "ldc" opcode).

In a similar fashion, TASM can be instructed to generate runtime relocatable code
by the use of the ".rel" pseudo-op. This is encoded by a "2" in the low order 4 bits of the
"ldc" opcode which indicates that ".ldc" instructions which form address expressions
must be "bound" by TLNK into a "ldc"/"ldpi" instruction sequence instead of whatever
form generates the best code (indicated by a "1" as described above). Since only address
expressions are affected by this, the only record type which will use this is the
T_ADDR_OP type with "ldc" as the opcode.

6. Records which are generated by TASM in response to the 16 basic opcodes
contain immediate data information. As mentioned, if the immediate data is completely
known at assembly time TASM can "bind" the instruction and turn the record type into
T_DATA. Those instruction which aren't known at assembly time are passed on to
TLNK with some implied assumptions about instruction length. These assumptions are
reflected in the "minimum length" field. This works as follows:

• The overall instruction length (counting prefix bytes), may be no shorter than the
specified "minimum length" (in bytes).

• Within the above constraint, the resulting instruction may be no longer than
necessary. This is required since TASM may have already used the fact that it knew
what the instruction length was (even if not the actual instruction prefix string), in the
construction of other instruction prefix strings whose values are dependent on this
instruction.

4

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Detailed Record Descriptions

In the following descriptions the record "type" (taken from the record header
field), is used to label the record. Following that the record fields are shown in a tabular
fashion (with the field size in bytes and signed/unsigned status listed above):

Record: 0 Name: T_RESERVED

1U
[0]

This record is reserved for future use by Logical Systems. It is used internally in
TASM to convey assembly error information. As used in TASM the record format is:

1U 2U 1U 1U
[0] [line #] [length] [error code]

Where "line #" is the source line the error appeared on, "length" is the default
instruction length to assume for the instruction which generated the error, and "error
code" is the ASCII character to place on the listing output file.

Record: 1 Name: T_REL_FILE

1U 1U
[1] [processor type]

This record appears as the first record in ".TRL" format relocatable files. The
"processor type" field is used to encode the CPU type for which the code was assembled:

"processor type" Meaning

0 The CPU type is unknown (32 bit CPU).
1 The code is for a T400/T414/T425 CPU.
2 The code is for a T800/T801/T805 CPU.
3 The code is for a T212/T222/T225 CPU.

This record should only appear once at the beginning of ".TRL" files. It is also
appears within ".TLL" files since libraries will contain the entire contents of one or more
".TRL" files (plus overhead records).

5

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 2 Name: T_LIB_FILE

1U 1U
[2] [processor type]

This record appears as the first record in ".TLL" format library files. The
"processor type" field is used to encode the CPU type for which ALL the code in the
library was originally assembled:

"processor type" Meaning

0 The CPU type is unknown (32 bit CPU).
1 The code is for a T400/T414/T425 CPU.
2 The code is for a T800/T801/T805 CPU.
3 The code is for a T212/T222/T225 CPU.

This record should only appear once at the beginning of ".TLL" files (it is used
nowhere else).

Record: 3 Name: T_LD_FILE

1U 1U
[3] [processor type]

This record appears as the first record in ".TLD" format download files. The
"processor type" field is used to encode the CPU type for which the code was assembled
and linked:

"processor type" Meaning

0 The CPU type is unknown (32 bit CPU).
1 The code is for a T400/T414/T425 CPU.
2 The code is for a T800/T801/T805 CPU.
3 The code is for a T212/T222/T225 CPU.

This record should only appear once at the beginning of ".TLD" files (it is used
nowhere else).

6

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Record: 4 Name: T_SIZE

1U 4S 4S
[4] [date/time] [library subfile size]

This record is used in ".TLL" format libraries to indicate the size in bytes of a
library sub-module (one of the ".TRL" format files which makes up a library). This
record also records the last modification date and time of the file before it was part of the
library. This date and time is displayed when a library is listed using TLIB and is also
used to set the modification date and time of any file which is created as a copy of the
corresponding library subfile. The "date/time" modification field is encoded as the
number of seconds since 00:00:00 GMT, January 1, 1970. This is the normal date/time
format provided by the "time()" "C" library function. The "library subfile size" is simply
the size of the subfile in bytes (the subfile immediately follows this record in the library).

Record: 5 Name: T_EOF

1U 2U
[5] [line #]

This record is the last record in ".TRL", ".TLL" and ".TLD" files. It also appears
at the end of each library subfile in ".TLL" files. Any data which trails this "final" record
in one of these files is ignored. The "line #" field records the line number of the source
level statement which generated the T_EOF record. If the source code is assembly
language which has been run through TASM, this line number reflects the line number of
the ".END" pseudo-opcode.

7

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 6 Name: T_SYMBOL

1U 1U 1U VAR
[6] [public/external] [symbol length] [symbol name]

This record is used in the ".TRL" and ".TLL" files. It is used to hold the name of
an external symbol. In ".TRL" files, one or more of these records follows the initial
T_REL_FILE and they hold the external symbol names which are defined or referenced
in the file. In ".TLL" files these symbols appear both within library subfiles (as
described for ".TRL" files), and copies of those symbols which are "defined" in the
subfile appear in a overhead structure for each library subfile. See the section on ".TLL"
record order for more information about this overhead structure. The "public/external"
field is set to a binary "1" if the symbol is public (a definition), binary "0" if the symbol
is external (a reference). The "symbol length" field determines the length of the
following "symbol name" field in bytes and ranges from 1 to 255 bytes. There is NO
zero termination byte in the "symbol name" field and most ASCII characters may be used
in a symbol name (except zero, although many control characters and other strange
values will cause difficulty with linker maps and may not be possible to specify as an
"entry point" symbol to TLNK).

Within a ".TRL" file, symbol names are referenced via a "symbol number". The
symbol numbers start at 0 within each file, with any symbols which are present in
T_SYMBOL records representing the low ordered numbers. Within the sequence of
T_SYMBOL records, the first record in the file is equivalent to #0, the second
T_SYMBOL represents #1, etc. Any symbol numbers referenced which are greater than
that represented by T_SYMBOL records are defined to be references to "local" symbols.
These references are defined by corresponding T_DEF records which represent the value
of the corresponding symbol by implicit position within the file (the symbol number is
mentioned explicitly in the T_DEF record). Another symbol definition mechanism is the
T_SET record which allows for "constant" definitions (the symbol value and number are
explicitly present).

While exporting of "local" symbols is unusual in an assembler, the Transputer
encourages this activity by allowing all immediate data references to be variable length.
If you want variable length external references you pay a price in terms of additional
complexity!

8

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Record: 7 Name: T_FILENAME

1U 2U 2U
[7] [previous line #] [new line #]

(continued with) 1U VAR
[filename size] [filename]

This record is present in ".TRL" and ".TLD" files and is used to indicate that the
code and data following was taken from a different original source code file. Since
".TRL" files are present within ".TLL" files, this record also appears there. As most
records contain an explicit line number, this record is only present when a different
source code file is being used, not just for a line number change. Fields within this
record contain the line number of the last source line read from the "old" file, the first
source line read from the "new" file, and the name of the new source file (in the
conventional format of a name length within the range of 0 to 255 ASCII characters,
followed by the actual name string WITHOUT a zero byte terminator). A name length
of 0 represents a NULL filename.

As used by TASM, one of these records is present JUST after the last
T_SYMBOL record in the ".TRL" file. This filename represents the actual input
filename that TASM used when reading the assembly language file (or a NULL filename
if TASM is compressing the output file and removing debug information). Assuming
TASM is retaining debug information, subsequent T_FILENAME records represent the
various "#line" input statements which TASM processes WHICH contain an explicit
filename. "#line" statements with just a line number are represented by changes in the
line number fields within subsequent non-T_FILENAME records.

Record: 8 Name: T_MODULE

1U 2U 1U
[8] [line #] [module #]

This record is present in ".TRL" files (and thus ".TLL" files). It is NOT present
in ".TLD" files! This record is used to represent the results of a ".mod" pseudo-opcode
in the input file to TASM. It represents the selection of a new "load region" within the
source file. As used by TASM, an initial T_MODULE is output which specifies a
module number of 0 (in the "module #" field). Any actual ".mod" pseudo-opcodes will
generate additional T_MODULE records. As expected, the "line #" field indicates the
input source line number the ".mod" was encountered on (as updated via "#line"
statements).

9

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 9 Name: T_ALIGN

1U 2U
[9] [line #]

This record is present in ".TRL" (and thus ".TLL" files). It tells TLNK that the
following code or data should be "word" aligned. The "line #" field gives the line
number where the ".align" occurred (although these records are also generated implicitly
by ".mod" changes and for other TASM purposes).

Record: 10 Name: T_DATA

1U 2U 2U VAR
[10] [line #] [# of data bytes] [data]

This record is present in ".TRL", ".TLL" and ".TLD" files. It holds the basic
"object" data generated by code or data statements. As the instruction and data binding
progresses from assembly (TASM), through link and locate (TLNK), most other
relocatable records become T_DATA records. This record contains a "line #" field,
followed by field defining the length of the data field (1-65535 bytes), and finally the
variable length data byte field proper.

Record: 11 Name: T_REL_DATA

1U 2U 4S
[11] [line #] [address]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent a
word of data which is to be initialized to the relative offset between where the first byte
of data will be located and the indicated memory address. This record is generated by
TASM in response to statements such as:

.dw @0x10 ;Offset between data start and address 0x10

Record: 12 Name: T_RELSYM_DATA

1U 2U 2U 4S
[12] [line #] [symbol #] [offset]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent a
word of data which is to be initialized to the relative offset between where the first byte
of data will be located and the defined value of the "symbol #" (the defined value will be
the symbol's address for a simple label). The "offset" field is used to hold a constant
offset to the relative offset between the data and the symbol definition. Some example
TASM input statements:

10

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

.dw @hello ;Offset between data start and value of "hello"

.dw @hello+22 ;Like above but with a constant "offset" of 22

11

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 13 Name: T_RELREL_DATA

1U 2U 2U 2U
[13] [line #] [left symbol #] [right symbol #]

(continued with) 4S
[offset]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent a
word of data which is to be initialized to the difference between the defined values of the
two symbols modified by a constant "offset". Some example TASM input statements:

.dw @hello-@goodbye ;Constant offset of zero

.dw hello-goodbye ;The same since both are "relative"

.dw hello-goodbye-1 ;A constant "offset" of -1 (bytes)

Record: 14 Name: T_ADDR_DATA

1U 2U 2U 4S
[14] [line #] [symbol #] [offset]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent a
word of data which is to be initialized to the defined value of the symbol modified by a
constant "offset". Some example TASM input statements:

.dw hello ;Constant offset of zero

.dw hello+1 ;Constant offset of 1 byte

Record: 15 Name: T_STORAGE

1U 2U 4S
[15] [line #] [# of data bytes]

This record is present in ".TRL", ".TLL" and ".TLD" files. It serves as a place-
holder for the specified # of bytes of uninitialized data. The area reserved using this
record is initialized to contain all zero's during the bootstrap process.

12

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Record: 16 Name: T_DEF

1U 2U 2U
[16] [line #] [symbol #]

This record is present in ".TRL" (and thus ".TLL"), files. It serves as a place-
holder for the definition position of a symbol in the file. Exactly one of these records is
present for every label in the input file during the execution of TASM. T_DEF records
whose relative address can't be completely bound by TASM are passed along to TLNK
for further processing.

Record: 17 Name: T_SET

1U 2U 2U 4S
[17] [line #] [symbol #] [value]

This record is present in ".TRL" (and thus ".TLL"), files. It is similar in function
to T_DEF, except it arises out of symbols defined by ".set" pseudo-opcodes in TASM.
There is only one T_SET record for a particular symbol in a file, but its position within
the file is not significant (the "value" field is used instead). T_SET records are only
externally written by TASM when the value is being exported (via a ".pub" pseudo-
opcode), or the symbol value is needed in some other record which couldn't be
completely bound at assembly time. An example of this would be if the symbol defined
in this fashion was one of the two symbols present in a "symbol"-"symbol" expression
within some other record, and where the other symbol couldn't be completely bound by
TASM.

Record: 18 Name: T_REL_OP

1U 2U 1U 4S
[18] [line #] [minimum length] [address]

(continued with) 1U
[opcode]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent an
instruction whose immediate data is the relative offset between the beginning of the
following instruction and the indicated memory address. This record is generated by
TASM in response to statements such as:

j @0x1000 ;Jump to absolute location 0x1000

13

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 19 Name: T_RELSYM_OP

1U 2U 1U 2U
[19] [line #] [minimum length] [symbol #]

(continued with) 4S 1U
[offset] [opcode]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent an
instruction whose immediate data is the relative offset between the beginning of the
following instruction and the indicated symbol #, modified by a constant offset. This
record is generated by TASM in response to statements such as:

j @hello ;Jump to location defined by "hello", 0 offset
j @hello-3 ;Jump to 3 bytes before symbol definition addr

Record: 20 Name: T_RELREL_OP

1U 2U 1U 2U
[20] [line #] [minimum length] [left symbol #]

(continued with) 2U 4S 1U
[right symbol #] [offset] [opcode]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent an
instruction whose immediate data is the difference between the defined values (or
addresses), of two symbols modified by a constant offset. This record is generated by
TASM in response to statements such as:

ldc @hello-@goodbye ;Load difference between defs, 0 offset
ldc hello-goodbye ;Same as above since difference is relative
ldc a1-a2+0x100 ;Difference plus offset of 0x100

14

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Record: 21 Name: T_ADDR_OP

1U 2U 1U 2U
[21] [line #] [minimum length] [symbol #]

(continued with) 4S 1U
[offset] [opcode]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent an
instruction whose immediate data is the defined value of the "symbol #", modified by a
constant offset. This record is generated by TASM in response to statements such as
(assuming "hello" is a label definition and "byte_count" is a symbol defined by a ".set"
pseudo-opcode):

ldc hello ;Load a pointer to "hello", 0 offset
ldc byte_count+1 ;Load symbolic value plus 1

Record: 22 Name: T_LOAD

1U 4S
[22] [load address]

This record is only present in ".TLD" files. It is used to specify a load address
for the T_DATA records which follow. There will always be at least one of these
records in a ".TLD" file but more than one may exist as the result of location directives
given to TLNK. The "load address" is simply the next address to load code or data into.

Record: 23 Name: T_STACK

1U 4S
[23] [stack address]

This record is only present in ".TLD" files. It is used to specify an initial starting
address for the workspace pointer (stack). There will be exactly one of these records in
each ".TLD" file.

Record: 24 Name: T_ENTRY

1U 4S
[24] [entry point address]

This record is only present in ".TLD" files. It is used to specify an initial
program starting address. There will be exactly one of these records in each ".TLD" file.

15

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 25 Name: T_DEBUG_DATA

1U 2U 4S 2U VAR
[25] [line #] [value] [data length] [data]

This record is optionally present in ".TRL", ".TLL" and ".TLD" files, and is used
to hold debugging information. The record is generated by TASM when it encounters a
".SYM" pseudo opcode. For example:

.sym zip,27

This builds a record with a "value" field of 27, and the name "zip" in the variable
length "data" field. Note that the "data" field has the following internal structure:

1U VAR VAR
[symbol length] [symbol name] [additional data]

The "symbol length" field holds the length of the symbol (3 in the example of
"zip" above), and the "symbol name" field holds the actual name string. The "symbol
name" field may be from 0 to 255 bytes long depending on the value of "symbol length".

The "data length" field would contain 4 in this example (1 for the "symbol
length" field and 3 for the actual "symbol name"). Note that it is possible for "additional
data" to follow the name in the record. This consists of zero or more signed, four byte,
values which hold more information about the symbol. In TASM this data is supplied to
the ".SYM" pseudo opcode by appending extra comma separated expressions after the
"value". For example:

.sym zip,27,1,2,3

This statement will cause a record which contains three "additional data" fields to
be generated which will contain the values 1, 2 and 3 respectively. Note that you can
determine the number of these fields present in the "data" section by subtracting the size
of the "symbol length" field from the "data length" field and dividing the result by 4.

Obviously, the actual use of the T_DEBUG_DATA field is part of a convention
between the tool which generates the records and the tool which later interprets them.
For the case of records which are written by TASM at the request of the TCX "C"
compiler, the following conventions hold:

1. The "symbol name" field holds the "real" source level name of a "C" variable or
function.

2. The "value" field holds either the physical address of the variable/function or the
local workspace offset of the variable (depending on the storage class).

3. Two "additional data" fields are generated; the first holds the "storage class" of
the variable/function, the second holds a bit mask of the "top level type" information for
the variable/function.

16

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

The "storage class" entry is defined by a set of macro definitions in the "tcx.h"
TCX compiler include file. The following values are of interest:

Macro Name Value Description

SC_GLOBAL 2 A var/func external definition.
SC_ST_GLB 3 A "static" var/func external definition.
SC_STATIC 6 A "static" variable inside a function.
SC_AUTO 7 A "auto" variable inside a function.
SC_ARG 8 A "parameter" variable inside a function.
SC_REG 9 A "register" variable inside a function.

The "top level type" bit mask entry is also defined in "tcx.h" with the following
values of interest:

Macro Name Bit Position Description

UNSIGNED_NODE 0x40000000 Variable is of type "unsigned".
SIGNED_NODE 0x20000000 Variable is of type "signed".
CONST_NODE 0x10000000 Variable is of type "const".
VOID_NODE 0x08000000 Variable is of type "void".
CHAR_NODE 0x04000000 Variable is of type "char".
SHORT_NODE 0x02000000 Variable is of type "short".
INT_NODE 0x01000000 Variable is of type "int".
LONG_NODE 0x00800000 Variable is of type "long".
FLOAT_NODE 0x00400000 Variable is of type "float".
DOUBLE_NODE 0x00200000 Variable is of type "double".
LDOUBLE_NODE 0x00100000 Variable is of type "long double".
PTR_NODE 0x00080000 Variable is of type "pointer".
STRUCT_NODE 0x00040000 Variable is of type "struct".
UNION_NODE 0x00020000 Variable is of type "union".
ENUM_NODE 0x00004000 Variable is of type "enum".
ARRAY_NODE 0x00002000 Variable is an array.
FUNC_NODE 0x00001000 Variable is a function.

Note that the above information provides only superficial type information, thus
the field name: "top level type".

17

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

Record: 26 Name: T_DEBUGSYM_DATA

1U 2U 4S 2U 2U
[26] [line #] [value] [data length] [symbol #]

(continued with) VAR
[data]

This record is extremely similar to the T_DEBUG_DATA record, except it is
used where the "value" field in the generating ".SYM" record is symbolic (instead of
being a strictly constant expression). For example:

.sym zip,zap+27

In this case the "symbol #" field in the record is associated with "zap" and the
"value" field would hold the offset of "27". The "data length" field holds the size of the
"data" field in bytes.

This record is commonly used for getting the address of a function or variable
from the linker. Note that the linker converts this type of record into the
T_DEBUG_DATA form when the associated address has been determined (the address is
added to the offset in the "value" field and used for the "value" field of the new
T_DEBUG_DATA record).

This record is present in ".TRL" and ".TLL" files. See the description of the
T_DEBUG_DATA record for information about the contents of the "data" field.

Record: 27 Name: T_WRELREL_OP

1U 2U 1U 2U
[27] [line #] [minimum length] [left symbol #]

(continued with) 2U 4S 1U
[right symbol #] [offset] [opcode]

This record is present in ".TRL" (and thus ".TLL" files). It is used to represent an
instruction whose immediate data is the difference between the defined values (or
addresses), of two symbols modified by a constant offset SCALED by the word length of
the processor. This record must resolve into a value which can be divided by the word
length with a remainder of zero. This record is generated by TASM in response to
statements such as:

ldc $@hello-@goodbye ;Load diff between defs / wordlength
ldc $hello-goodbye ;Same as above since difference is relative
ldc $a1-a2+0x100 ;(diff + 0x100) / wordlength

18

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Record Order Within Files

TASM Output Files/TLNK Input Files

Introduction

As expected, TASM output files (also called relocatable files), use most of the
record types. The records which don't appear in these files are:

T_RESERVED These are for internal use only.
T_LIB_FILE Used only for TLIB library files.
T_LD_FILE Used only by TLNK output files.
T_SIZE Used only for TLIB library files.
T_LOAD Used only for TLNK output files.
T_STACK Used only for TLNK output files.
T_ENTRY Used only for TLNK output files.

The following description provides some information about individual record
order within a relocatable file. For more information check the detailed record
descriptions above.

General Relocatable Record Structure

First record: T_REL_FILE

The record defines the file to be a relocatable file and keeps track of the CPU for
which the code in the file is intended (T414B, T800, ...).

External symbol definition/reference record #1: T_SYMBOL
External symbol definition/reference record #2: T_SYMBOL
...
External symbol definition/reference record #N: T_SYMBOL

One T_SYMBOL record is present for each external symbol used in TASM
(either via ".ext" or ".pub"). These records start immediately following the
T_REL_FILE record.

Last record: T_EOF

This record defines the end of the relocatable file.

General Load File Record Structure

Given the previously mentioned records, the middle of the relocatable file
consists of a sequence of the remaining types of records. See the Detailed Record
Descriptions section for more information about these records.

19

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

TLNK Output Files/Loader Input Files

Introduction

Load files produced by TLNK contain a fairly small subset of the records
mentioned elsewhere in this document. In general, you need the file type; the load, stack
and entry point addresses; the actual data and T_STORAGE place-holders, and the
information about where the data in the load file originated from. Optionally, debug
information records may be present unless the "-C" flag has been used with
TCX/TASM/TLNK to remove them (which makes the file MUCH smaller).

General Load File Record Structure

First record: T_LD_FILE

The record defines the file to be a load file and keeps track of the CPU for which
code in the file is intended.

Second record: T_LOAD

The record specifies the "default" load address for the file. This address is set by
TLNK to the start of off-chip ram (based on the CPU type). If the user explicitly
specifies a load address to TLNK an additional T_LOAD is placed later in the file.

Third record: T_STACK

Sets the initial workspace pointer (stack), address for the program. The default
value used by TLNK is the top of the on-chip ram, however the user may explicitly
request it to be somewhere else.

Fourth record: T_ENTRY

Sets the program entry point address. TLNK assigns this to be the value of the
"_main" symbol by default, but it may be explicitly set by the user.

Last record: T_EOF

This record defines the end of the load file.

Given the previously mentioned records, the middle of the load file consists of a
sequence of the following four (optionally five), records:

Initialized code and data: T_DATA

Uninitialized data: T_STORAGE

Source filename information: T_FILENAME

User specified load addresses: T_LOAD

20

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Debugging information: T_DEBUG

21

Transputer Toolset TASM/TLNK/TLIB Relocatable Record & File Formats

TLIB Output Files (libraries)

Introduction

Libraries produced by TLIB may be thought of as a series of relocatable files
(TASM output files), together with some library overhead information to delineate the
beginning and end of files and the library proper. The following description covers the
library file format at the symbolic record level and treats the embedded relocatable files
as indivisible entities (see the Detailed Record Descriptions section for more
information about relocatable records).

General Library Record Structure

First record: T_LIB_FILE

The record defines the file to be a library and keeps track of the CPU for which
code in the library is intended.

Library file #1 records
Library file #2 records
...
Library file #N records

These library file records are the collection of library overhead and actual
relocatable file records which make up an entry in the library. Note that if a library is
"empty" it will contain only the T_LIB_FILE and T_EOF records and no library file
records. The structure of the library file records is defined in the next section.

Last record: T_EOF

This record defines the end of the library.

Library File Overhead Record Structure

First record: T_FILENAME

This record holds the filename of the individual relocatable file in the library.
This name is the one which was given when the file was added to the library and may be
different than any name which is recorded in the relocatable file proper (since source
filename and line number information appear in relocatable files). This is the only name
which is used to refer to the file as far as TLIB is concerned.

External symbol definition record #1: T_SYMBOL
External symbol definition record #2: T_SYMBOL
...
External symbol definition record #N: T_SYMBOL

This series of records keeps track of which external symbols are defined in this
library file. The records are sorted on the symbol names (ASCII order). Although it is
not illegal to have a relocatable file with no external symbol definitions, it is fairly
meaningless to TLNK (TLIB will generate a warning message if this is detected).

22

TASM/TLNK/TLIB Relocatable Record & File Formats Transputer Toolset

Size/date record: T_SIZE

This record holds two things:

1. The creation date of the relocatable file (not the library, just the individual
relocatable "subfile" in the library).

2. The size of the actual relocatable file in bytes. This is the same as the number of
bytes that the file takes up when it is not part of a library. Since the library copy of the
relocatable file has the same data as the individual file, this record also defines the size of
the relocatable file records which follow this record (see the TASM Output Files/TLNK
Input Files section for more information). Another way to look at it is that if you add
this size to the current file position you will be pointing at the first record of the NEXT
library file.

23

	Contents
	1 Introduction
	2 Individual Record Descriptions
	General Characteristics
	Detailed Record Descriptions
	T_RESERVED
	T_REL_FILE
	T_LIB_FILE
	T_LD_FILE
	T_SIZE
	T_EOF
	T_SYMBOL
	T_FILENAME
	T_MODULE
	T_ALIGN
	T_DATA
	T_REL_DATA
	T_RELSYM_DATA
	T_RELREL_DATA
	T_ADDR_DATA
	T_STORAGE
	T_DEF
	T_SET
	T_REL_OP
	T_RELSYM_OP
	T_RELREL_OP
	T_ADDR_OP
	T_LOAD
	T_STACK
	T_ENTRY
	T_DEBUG_DATA
	T_DEBUGSYM_DATA
	T_WRELREL_OP

	3 Record Order Within Files
	TASM Output Files/TLNK Input Files
	Introduction
	General Relocatable Record Structure
	General Load File Record Structure

	TLNK Output Files/Loader Input Files
	Introduction
	General Load File Record Structure

	TLIB Output Files (libraries)
	Introduction
	General Library Record Structure
	Library File Overhead Record Structure

