
Transputer 'C' Library Description

Version 91.1
11/15/91

Copyright 1987-1991 by Logical Systems

Contents

1 Introduction
Overview

2 Normal "C" Library Functions
Character Classification and Mapping
Numeric Conversion
Math

Emulated Math on Transputers
Heap Management

Heap Placement and Size
String Manipulation
Input/Output

Alternatives to "_main"
"_ns_main"
"_vcmain"
"_ns_vcmain"

Miscellaneous
3 Transputer Specific Library Functions

Introduction
Transputer Channel Communications
Transputer Virtual Channel Communications
Transputer Channel Status Testing
Transputer Virtual Channel Status Testing
Transputer Concurrency (Jeffrey Mock Model)
Transputer Concurrency (Fork/Join Model)
Transputer Semaphore Support
Transputer Timing and Scheduling
Transputer Miscellaneous

4 Examples
Introduction
Sample Programs

5 Detailed Library Function Descriptions

Transputer Toolset Transputer 'C' Library Description

Introduction

Overview

There are two general classes of library functions provided with the Transputer
Toolset:

1. Standard "C" library routines. These include most of the functions in the
proposed ANSI "C" standard, plus many of the routines which were common before it
(in what is sometimes called "classic" "C").

2. Transputer specific routines. These allow access to the rich set of communication
and parallel processing primitives which the Transputer microcode supports. Many of
these functions are optionally supported by the compiler as "inline" functions to take full
advantage of the instruction set.

The following two sections summarize both classes of functions, and provide
general comments concerning use with the Transputer Toolset. After this, a section is
devoted to a series of increasingly complex example programs. Finally, the last section
of the manual contains detailed individual descriptions of the library functions (presented
in alphabetic order).

2

Transputer 'C' Library Description Transputer Toolset

Normal "C" Library Functions

Character Classification and Mapping

The following functions are provided:

isalnum Test for alphanumeric "char"
isalpha Test for alphabetic "char"
isascii Test for ASCII "char"
iscntrl Test for control "char"
isdigit Test for decimal digit "char"
isgraph Test for printable "char"
islower Test for lower case "char"
isprint Test for printable "char" and space
ispunct Test for punctuation "char"
isspace Test for whitespace "char"
isupper Test for upper case "char"
isxdigit Test for hexadecimal digit "char"
toascii Convert "char" to ASCII (0x00-0x7F)
tolower Convert upper case "char" to lower
toupper Convert lower case "char" to upper

Numeric Conversion

The following functions are provided (floating point conversions are only
available for the 32 bit Transputers):

atof Convert string to "double"
atoi Convert string to "int"
atol Convert string to "long"
frexp/frexpf Convert "double/float" to fraction & exp.
ldexp/ldexpf Compose "double/float"
modf/modff Decompose "double/float"
strtod Convert string to "double"
strtol Convert string to "long"
strtoul Convert string to "unsigned long"

3

Transputer Toolset Transputer 'C' Library Description

Math

The following functions are provided for 32 bit Transputers:

abs Compute "int" absolute value
acos/acosf Compute "double/float" arc-cosine
asin/asinf Compute "double/float" arc-sine
atan/atanf Compute "double/float" arc-tangent
atan2/atan2f Compute "double/float" arc-tangent
cabs/cabsf Compute "double/float" complex abs. value
ceil/ceilf Compute "double/float" ceiling
cos/cosf Compute "double/float" cosine
cosh/coshf Compute "double/float" hyperbolic cosine
div Compute "int" division/remainder
exp/expf Compute "double/float" exponential
fabs/fabsf Compute "double/float" absolute value
fft/fftf Compute "double/float" FFT transform
floor/floorf Compute "double/float" floor
fmod/fmodf Compute "double/float" remainder
frand/frandf Compute "double/float" random number
hypot/hypotf Compute "double/float" Euclidean distance
ifft/ifftf Compute "double/float" inverse FFT
labs Compute "long" absolute value
ldiv Compute "long int" division/remainder
log/logf Compute "double/float" natural log
log10/log10f Compute "double/float" log base 10
modf/modff Compute truncated "double/float"
pow/powf Compute "double/float" x^y
rand Compute "int" random number
sin/sinf Compute "double/float" sine
sinh/sinhf Compute "double/float" hyberbolic sine
sqrt/sqrtf Compute "double/float" square root
srand Set "rand/frand/frandf" random seed
tan/tanf Compute "double/float" tangent
tanh/tanhf Compute "double/float" hyperbolic tangent

Floating point library functions come in two flavors:

1. The normal "double" precision routines. These take "double" arguments and
return a "double" result.

1. A complementary set of "single" precision routines. These take "float" arguments
and return a "float" result. They are differ from the "double" versions by having a "f"
suffix added to the routine name (ANSI convention). Thus, both "sin" and "sinf"
routines exist in the library.

In order to get correct results with the "sinf" function, the "math.h" include file
must be used so that a ANSI prototype is in scope indicating that the argument to "sinf"
will really be a "float" (instead of the normal default promotion to "double").

Some of the single precision routines are only provided for floating-point
Transputers.

4

Transputer 'C' Library Description Transputer Toolset

Emulated Math on Transputers

When compiling floating point code, the TCX "C" compiler has been optimized
for use with Transputers with floating point hardware support. When used to generate
floating point code for other types of 32 bit Transputers, TCX generates "emulation"
instructions which correspond to the instructions found on floating point Transputers.
These instructions are converted into function calls by TASM and invoke a simulation
package included in the library. The simulation package can handle all the floating point
code generated by TCX with one exception:

Floating point Transputers automatically save the floating point registers when a
context switch occurs from low to high priority. Since there is no way the simulation
package can tell when this occurs, it doesn't have a way of simulating the register save
operation. Thus, if you use floating point code in both a low AND a high priority
process whose execution may be interleaved, you must inform the simulation when to
save the registers. This is accomplished by calling the "savefp" function from each high
priority process which uses floating point PRIOR to any floating point code getting
executed. You pass "savefp" a pointer to a structure of type "FPstate" (defined in
"conc.h"), which will be used to store the current contents of the simulated floating point
registers. Similarly, you must call "restorefp" with the same pointer just PRIOR to
finishing the high priority process (after all floating point operations have been
completed), to restore the previous values of the registers.

The simulation package has been carefully constructed such that the context
switches which occur as a result of the timeslicing of low priority processes can't cause
corruption of the simulated registers. Thus, you don't need to call "savefp" and
"restorefp" if all of your floating point is in processes with the same priority.

5

Transputer Toolset Transputer 'C' Library Description

Heap Management

The following functions are supported:

addfree Add memory to heap
calloc Allocate and init memory from heap
cfree Return a block of memory to heap
free Return a block of memory to heap
malloc Allocate memory from heap
realloc Change size of allocated memory

Because of the possibility of destroying the "C" heap, the dynamic memory
routines have the appropriate critical sections protected (via "ProcToHigh"/"ProcToLow"
function calls). This allows low and high priority processes to coexist without heap
concurrency battles.

Heap Placement and Size

The location and size of the heap can be configured in the following two fashions:

1. By default, the heap is set to begin immediately after the highest addressed code
or data in the Transputer "C" program. This placement is performed automatically by
TLNK since the starting label is defined in a high numbered load module (#254, see the
TLNK documentation for more information about this facility). The default heap size is
set to 128K bytes (32K bytes on 16 bit Transputers). You may change the size setting by
modifying the contents of the "env.c" library file, or you may explicitly set the heap end
address by modifying the "_heapend" pointer (defined in "env.c"), to be whatever the
desired ending address is. This pointer should be modified prior to any use of the "C"
heap and should be set to a word aligned address (bottom two bits should be zero for a 32
bit Transputer). If you don't wish to use this heap allocation method, simply set
"_heapend" to MostNeg (0x80000000 if 32 bit Transputer, 0x8000 if 16 bit), and no heap
memory will be allocated from this area.

Note that you must NOT set "_heapend" to MostNeg if you are planning on using
Software Virtual Channels. The initialization performed by the "_vcmain" or
"_ns_vcmain" entry point functions requires a small amount of heap to be available prior
to the user-provided "main" function being called.

2. In addition to the above automatic source of heap memory, you may manually add a
region of memory to the heap using the "addfree" function. This function may be used in
place of the above facility (if you've set "_heapend" to MostNeg), or both techniques may
be used in combination. You may also add more than one additional region using
multiple calls to "addfree", but each region thus added is disjoint (even if they are
adjacent), and they may not be later combined into a single, larger, region.

6

Transputer 'C' Library Description Transputer Toolset

String Manipulation

The following functions are supported:

bcmp Compare memory regions for equality
bcopy Copy memory region (unsafe if overlap)
bzero Initialize memory region to zero
index Find first occurrence of "char" in string
memccpy Copy memory region to a certain "char"
memchr Search memory region for certain "char"
memcmp Compare memory regions
memcpy Copy memory region (unsafe if overlap)
memmove Copy memory region (safe if overlap)
memset Set memory region to "char" value
rindex Find last occurrence of "char" in string
strcat String concatenation
strchr Find first occurrence of "char" in string
strcmp Compare strings
strcpy Copy string
strcspn Find length of string not in "char" set
strerror Map "errno" error # to error message
strlen Find string length
strncat String concatenation with length
strncmp Compare strings with length
strncpy Copy string with length
strpbrk Find first "char" from set in string
strrchr Find last occurrence of "char" in string
strspn Find length of "char" set in string
strstr Find substring in string
strtok Split string into tokens

7

Transputer Toolset Transputer 'C' Library Description

Input/Output

The following functions are supported:

clearerr Clear stream error & EOF flags
close Close file
creat Create new file
dup Duplicate file handle
dup2 Duplicate file handle
exit Close files and exit program
fclose Close stream
fcloseall Close all streams
fdopen Convert handle to stream
feof Check for EOF on stream
ferror Check for error on stream
fflush Flush stream buffer
fgetc Read character from stream
fgets Read line from stream
fileno Convert stream to handle
fopen Open stream
fprintf Formatted write to stream
fputc Write character to stream
fputs Write line to stream
fread Block read from stream
freopen Redirect stream
fscanf Formatted read from stream
fseek Change read/write position in stream
ftell Report read/write position in stream
fwrite Block write to stream
getc Read character from stream
getch Read character from console without echo
getchar Read character from "stdin" stream
getche Read character from console with echo
gets Read line from "stdin" stream
kbhit Check if console key pressed
lseek Change read/write position in file
open Open file
printf Formatted write to "stdout" stream
putc Write character to stream
putchar Write character to "stdout" stream
puts Write line to "stdout" stream
read Block read from file
remove Delete file
rename Rename file
rewind Rewind stream
scanf Formatted read from "stdin" stream
sprintf Formatted write to memory
sscanf Formatted read from memory
tmpfile Create temporary file
tmpnam Create unique file name
ungetc Push back character to stream
unlink Delete file
vfprintf Variable arg. formatted write to stream

8

Transputer 'C' Library Description Transputer Toolset

vprintf Variable arg. formatted write to "stdout"
vsprintf Variable arg. formatted write to memory
write Block write to file
_ns_exit Non-server replacement for "exit"
_ns_main Non-server replacement for "_main"
_ns_printf Non-server replacement for "_printf"
_printf Simple version of "printf"

All the "C" library I/O functions are implemented via the "C" remote I/O protocol
(you must use the "cio.exe" I/O server when loading the program). Starting with
Transputer Toolset Version 91.1 the I/O functions may be also be used
"simultaneously" by multiple processes on the root node. To make this possible the
remote I/O protocol code is now protected from concurrent access using a semaphore.
See the CIO documentation for more information about this package.

Thanks to the addition of Software Virtual Channels to the Transputer
Toolset, you may also optionally perform "C" I/O from nodes other than the root.
Simply select the appropriate virtual channel entry point when linking the program, tell
LD-NET you will be using virtual channels in the appropriate "Network Information
File" (file extension ".nif"), and you are ready to go. See the next section(s), and the
Transputer Virtual Channel Communcations section for more detailed information.

If you plan on sharing files among nodes in your network the CIO documentation
should be consulted for details about concurrent file I/O.

User additions to the provided set of I/O functions are supported using the
CIOEXT server extension facility. See the "_cioext" library function description and the
CIO documentation for more information.

Alternatives to "_main"

As many of you know, "_main" is a traditional name for the initial entry address
for a "C" program. The "_main" entry point function is charged with performing
whatever initialization/interpretation a particular host environment requires in order to
provide a proper environment for the user "C" program. When finished, "_main" passes
control to the the user supplied "main" function for execution of the application code.

The Transputer Toolset also uses a "_main" approach to program startup. By
default, TLNK will link in a "_main" function which performs the following actions:

A. Sets up the "_node_number", "_boot_chan_in", "_boot_chan_out",
"_host_chan_in", "_host_chan_out", "_HostIn" and "_HostOut" external variable values.
See the Transputer Miscellaneous section for information about what these variables
hold.

B. Sets up the "argc"/"argv" command line arguments.

C. Calls the user supplied "main" function.

D. If returned to, calls "exit".

9

Transputer Toolset Transputer 'C' Library Description

As the Transputer Toolset can be used in a variety of ways, using the default
"_main" entry point may not always be appropriate. For example, "_main" assumes you
will only be performing "C" library I/O calls on the root node using the CIO I/O server.
It also assumes you will not be using Software Virtual Channels. If one of these
assumptions is incorrect you will probably want to use one of the provided alternatives to
"_main":

"_ns_main"

This entry point function performs the same general operations as "_main",
EXCEPT, no host I/O is performed. Since no host I/O is assumed, this function must
dummy up the "argc"/"argv" command line arguments as it can't actually find out what
they might have been. Why should you use this entry point when "_main" can do more?

A. If you will not be using the CIO host I/O server, or the node that this program
will be loaded onto isn't the root node, you can't perform any standard "C" library I/O
anyway (at least without Software Virtual Channels which we will discuss in the next
two sections). If you link a program with the default "_main" entry point, and run it on
the root node, it will immediately attempt to contact CIO to get the command line
arguments. If CIO isn't present the Transputer program will simply hang!

B. Since "_main" uses CIO to get the host command line arguments, it requires that
the Transputer program include the code for communicating with CIO. While this is
automatically performed for you, it also requires additional program memory space. If
you are running a small program on a Transputer configured without external memory
this "overhead" code may be very undesirable!

For both these reasons, "_ns_main", has been provided. Assuming no other "C
library I/O functions are called within the application program, this will obviate the need
for CIO. In conjunction with "_ns_main", two other functions are provided ("_ns_exit"
and "_ns_printf"), which provide replacements for "exit" and "_printf", respectively,
when running without CIO. The output from "_ns_printf()" is sent over the "bootstrap"
link as straight ASCII text and may be displayed using a simple I/O server such as TIO.

Of course, you may wish to use both "_main" and "_ns_main" on different
programs in a network of Transputers. Using the default "_main" for the root node and
"_ns_main" for the other nodes allows the root node to perform host I/O while the remote
nodes gain the benefits of smaller program size. Prior to the introduction of Software
Virtual Channels this was almost a mandatory configuration! Note that you could
always use link communication from remote nodes to the root node and then allow the
root to do the actual host I/O. This sort of configuration is also the approach used by
most other standalone "C" development packages that compete with the Transputer
Toolset.

If you wish to use the "_ns_main" entry point, and are using the TCC command
driver to compile/link your program, add a "-e _ns_main" directive to the TCC command
line. See the TCC documentation for more detailed information.

10

Transputer 'C' Library Description Transputer Toolset

"_vcmain"

This entry point function corresponds to "_main", except it also supports
Software Virtual Channels. Use of either this entry point, or "_ns_vcmain" described
in the next section, is ESSENTIAL if virtual channels are to be used on a particular
node! This entry point may be used with programs linked for all nodes in a Transputer
network. Using this entry point has the advantage that it allows all nodes in the network
to get a copy of the command line arguments, and to perform host I/O. It also permits
host I/O requests to co-exist with user application virtual channel communication, all of
which use the same basic physical links. Finally, it permits various sorts of network
utilities such as debuggers and profilers to transparently access any node in the network.
Of course, with all these advantages, there are some drawbacks:

A. This entry point causes the creation of a link "sentinel" input process for every
physical link which is used by any user or host I/O virtual channel. It also causes the
allocation of some heap memory to store routing information and virtual channel control
information. This overhead makes fitting an application program on a Transputer
without external memory somewhat more difficult. In addition, since a more complex
multi-threaded protocol must be used on all physical channels (particularly including that
between the root node and the host), there is more runtime overhead involved in host I/O
for the root node compared to a root node program linked with the default "_main" entry
point.

Note that a MAJOR amount of effort has been expended in the design and
implementation of the Software Virtual Channel facility to minimize both the memory
overhead and the performance loss, still, until the Transputers which handle virtual
channels in hardware are available, you pay a penalty! See the Transputer Virtual
Channel Communications section for related information.

B. In general, if you wish to use virtual channels (or non-root host I/O), on any node
on the network, you must link all the programs to be run on the network with either the
"_vcmain" or the "_ns_vcmain" entry points. See the next section for information about
"_ns_vcmain". This all-or-nothing behavior is required since if a node wishes to
communicate with the host, or another node to which it isn't directly connected, the
messages must be relayed through a set of intermediate nodes. These intermediate nodes
thus must also be capable of supporting virtual channels.

There are ways to work around this: You can tell LD-NET that a particular node
will not be doing any host I/O, and that ALL the physical links associated with the node
should be reserved for "raw" (non-virtual channel protocol), use. If you decide to do
this you can link the program for that node with the "_ns_main" entry point as it will not
require any of the virtual channel stuff. You can also link a program with either
"_vcmain" or "_ns_vcmain" so that you still have host I/O access, and yet at the same
time have LD-NET reserve some of the physical links connected to the node for "raw"
use. These options allow an advanced network application which uses virtual channels
where convenient, and direct physical link usage were maximum throughput is needed!
Note, of course, that since telling LD-NET that a link should be reserved for "raw" usage
constrains it from using it during the mapping of host I/O and user virtual channels to the
physical links in the network, doing so may reduce the performance of some virtual
channel communication paths.

11

Transputer Toolset Transputer 'C' Library Description

If you wish to use the "_vcmain" entry point, and are using the TCC command
driver to compile/link your program, add a "-e _vcmain" directive to the TCC command
line. See the TCC documentation for more detailed information.

"_ns_vcmain"

The "_ns_vcmain" entry point is like "_vcmain", except no host I/O is provided
for. This entry point is analogous to "_ns_main" in the sense that it assumes the program
will need no host I/O and can thus save the overhead of having to link in the CIO
protocol code. As with "_ns_main", the command line arguments are dummied up. As
mentioned in the previous section, you can freely mix programs using the "_ns_vcmain"
and the "_vcmain" entry points in a network using Software Virtual Channels. If you
wish to use virtual channels, but do not require host I/O (ie. CIO), you can link ALL the
programs in the network with "_ns_vcmain"! One drawback to using "_ns_vcmain" is
that since it has no provisions for host I/O, nodes running programs linked with
"_ns_vcmain" may not be interrogated by host-based network analysis tools such as
debuggers or profilers.

If you wish to use the "_ns_vcmain" entry point, and are using the TCC command
driver to compile/link your program, add a "-e _ns_vcmain" directive to the TCC
command line. See the TCC documentation for more detailed information.

Miscellaneous

The following miscellaneous functions are provided (host time related functions
are only available for the 32 bit Transputers):

asctime Format "broken-down" time
ctime Format local time
errno System error variable
getenv Get environment variable value
gmtime Convert time to "broken-down" UTC time
isort Insertion sort
localtime Convert time to "broken-down" local time
longjmp Non-local jump
perror Write "errno" message to "stderr" stream
qsort Quick sort
setjmp Register environment for non-local jump
ssort Shell sort
system Invoke host command processor
time Read system calendar time
va_arg Access processed variable argument
va_end Terminate variable argument processing
va_start Initialize variable argument processing
_cioext Use server extension facility

12

Transputer 'C' Library Description Transputer Toolset

Transputer Specific Library Functions

Introduction

A collection of functions is included in the library which implements a
Transputer-oriented concurrency and interface library. The specification of many of the
routines in this library is from a paper titled "Processes, Channels and Semaphores
(Version 2)" written by Jeffrey Mock of Pixar. A copy of this paper is included in the
documentation package by permission of the author. Several notes about the paper and
associated routines are in order:

1. The implementation of the "SemP" and "SemV" semaphore routines in the library
is modeled after the version Jeffrey did and doesn't support mixing high and low priority
processes. Another set of routines (named "HSemP" and "HSemV"), is available as an
extension to work with mixed priority tasks (although they are slower than the mono-
priority versions).

2. The include file specified in the paper has been changed from "con.h" to "conc.h"
for the Transputer Toolset implementation.

3. When Jeff wrote his paper ANSI "C" wasn't a major issue. The Transputer
Toolset implementation of his library has been updated to use "void *" pointers for the
communication I/O buffer pointers and to use "void" as the return type for functions
which are to be run in parallel. These changes are consistent with what other vendors
using Jeff's approach have done.

The concurrency model which Jeffrey implemented is often called "OCCAM-
like"; since he defined routines which allow many of the control structures and process
models, supported by OCCAM, to be used with "C" programs. In addition to this
paradigm, the Transputer Toolset library contains routines which support a "Fork/Join"
concurrency model. The inclusion of both approaches, together with the excellent
hardware support the Transputer provides for concurrent programming in general, makes
for simple and efficient creation of programs containing many independent processes.

13

Transputer Toolset Transputer 'C' Library Description

Transputer Channel Communication

The following functions are provided:

ChanAlloc Dynamically allocate a channel
ChanFree Free a dynamically allocated channel
ChanIn Read message from a channel
ChanInChanFail Read message from channel with aux. reset
ChanInChar Read byte from a channel
ChanInInt Read word from a channel
ChanInTimeFail Read message from channel with timeout
ChanOut Write message to channel
ChanOutChanFail Write message to channel with aux. reset
ChanOutChar Write byte to channel
ChanOutInt Write word to channel
ChanOutTimeFail Write message to channel with timeout
ChanReset Reset channel

Transputer Virtual Channel Communication

The following functions are provided:

VChan Get a virtual channel pointer
VChanIn Read message from a virtual channel
VChanInChar Read byte from a virtual channel
VChanInInt Read word from a virtual channel
VChanOut Write message to virtual channel
VChanOutChar Write byte to virtual channel
VChanOutInt Write word to virtual channel
VChanVIn Read variable length from virtual channel
VChanVOut Write variable length to virtual channel

These functions provide a user program interface to either the Software Virtual
Channel facility, for networks of existing T2/T4/T8 processors, or the underlying
hardware virtual channel mechanism provided with upcoming Transputers. The concept
of a "virtual channel" comes from the next generation of Transputers designed by
INMOS. The appropriate INMOS documentation should be consulted for information
about the motivation and philosophy behind the design of virtual channels.

The basic concept is that of a full duplex communication path between any two
processes, on any two processors, in a Transputer network. Details of message protocol
and routing are completely hidden by the hardware and software implementations, the
user merely reads and writes messages as if to a regular "soft" channel. A further
advantage to this approach is that the actual connection topology for virtual channels is
determined at network load time, and may be changed between program executions.
With correct application program design no recompilation is necessary to adapt to widely
differing network topologies.

14

Transputer 'C' Library Description Transputer Toolset

Although detailed explanations are deferred to the individual function
descriptions (and the LD-NET documentation), the following is an outline of how virtual
channels work within the Transputer Toolset framework:

To configure a virtual channel, you add a channel definition to the "network
information file" used by LD-NET to load a particular network. The channel definition
specifies which node each end of the channel is connected to, and more particularly,
which "logical" channel on each node is to be used. From the perspective of the
application program, the "logical" channel number is converted to a virtual channel
pointer by a call to "VChan". Given the virtual channel pointer, the program can perform
virtual channel I/O using any of the virtual channel communications routines, such as
"VChanIn", "VChanOut", etc. Since virtual channels are full duplex, you may have both
an input and output process using the same virtual channel, on the same node, at the same
time.

"logical" channels are arbitrary, user specified, numbers which can range from 6
to 32767. Note that using smaller numbers helps to minimize memory overhead.
Although the "logical" channel number information would normally be compiled into a
program image, the information about what is connected to the other end is only
specified by the "network information file" (".nif" file), at load time. This allows the
easy construction of program modules which don't care about specific network topology.
Of course, you could also have the program choose from a selection of configured
"logical" channels by, for example, reading the desired "logical" channel number from a
configuration file on the host.

In order to actually use virtual channels with the program running on a particular
node you must also link that program with a special entry point (either "_vcmain" or
"_ns_vcmain"). See the Alternatives to "_main" section for more detail on this.

Of course, the Software Virtual Channel stuff has been carefully designed to be
STRICTLY compatible, at the user program interface level, with the published
specifications for the new Transputers which feature hardware virtual channel support.
When the appropriate Transputers are available you need merely recompile your existing
application code and go! Thus the descriptions of these functions are independent of
what type of Transputer your program will be (eventually), running with.

To aid backward compatibility to existing T2/T4/T8 code, the virtual channel
functions accept regular "soft" channel pointers in addition to those obtained from the
"VChan" function. Since T2/T4/T8 "soft" channels are simplex only, and require non-
zero length messages, using them isn't strictly portable to future Transputers. You can
obtain a strictly conforming virtual channel, which IS portable, by simply telling LD-
NET that both ends of a virtual channel communication are on the same node. Using the
"native" soft channels has a performance advantage when the communication is local to a
node, so of course, you must decide where to make the tradeoff.

15

Transputer Toolset Transputer 'C' Library Description

Transputer Channel Status Testing

The following functions are provided:

ProcAlt Block until input channel is ready
ProcAltList Block until input channel is ready
ProcSkipAlt See if input channel is ready
ProcSkipAltList See if input channel is ready
ProcTimerAlt Block until channel or timer ready
ProcTimerAltList Block until channel or timer ready

Transputer Virtual Channel Status Testing

The following functions are provided:

VProcAlt Block until virtual channel is ready
VProcAltList Block until virtual channel is ready
VProcSkipAlt See if virtual channel is ready
VProcSkipAltList See if virtual channel is ready
VProcTimerAlt Block until virtual channel/timer ready
VProcTimerAltList Block until virtual channel/timer ready

These functions provide input alternation facilities for virtual channels. Note that
virtual channel communication may occur purely for synchronization purposes, by
sending and receiving zero length messages. The various virtual channel "Alt" routines
consider a zero length message to be a valid termination condition.

As with the other virtual channel functions, you may mix "soft" and virtual
channels together, with the limitation that older Transputers are not specified to operate
correctly with zero length messages.

16

Transputer 'C' Library Description Transputer Toolset

Transputer Concurrency (Jeffrey Mock Model)

The following functions are provided:

ProcAlloc Dynamically allocate process
ProcFree Free a dynamically allocated process
ProcInit Initialize process
ProcPar Start process(es)
ProcParam Modify process parameters
ProcParList Start list of processes
ProcPriPar Start processes at mixed priorities
ProcRun Start process at current priority
ProcRunHigh Start process at high priority
ProcRunLow Start process at low priority
ProcStop Kill process
ProcToHigh Make current process be high priority
ProcToLow Make current process be low priority
ProcWait Block for specified time

Transputer Concurrency (Fork/Join Model)

The following functions are provided:

PFork Fork process at current priority
PForkHigh Fork process at high priority
PForkInit Initialize process forking structure
PForkLow Fork process at low priority
PHalt Kill process and save state
PJoin Block until forked processes terminate
PRun Start process
PSetup Initialize process structure
PStop Kill process

These routines are provided with the Transputer Toolset for cases where code
being ported to the Transputer might already use this flavor of multiprogramming, as
well as for new applications for which this model is appropriate. In general, these
routines are somewhat lower level than similar functions described in the Jeffrey Mock
paper, and have the corresponding benefit of lower overhead.

Note that these routines use the OCCAM notion of what a process descriptor is
(ie. a workspace pointer and priority OR'ed together). The "PDes" data structure
(defined in file "conc.h"), serves exactly this purpose.

17

Transputer Toolset Transputer 'C' Library Description

Transputer Semaphore Support

The following functions are supported:

HSemP Mixed-priority semaphore "P" operation
HSemV Mixed-priority semaphore "V" operation
SemAlloc Dynamically allocate semaphore
SemFree Free a dynamically allocated semaphore
SemP Mono-priority semaphore "P" operation
SemV Mono-priority semaphore "V" operation
_HSemP Primitive for "HSemP"
_HSemV Primitive for "HSemV"
_SemP Primitive for "SemP"
_SemV Primitive for "SemV"

Transputer Timing and Scheduling

The following functions are supported:

GetHiPriQ Get high priority queue pointers
GetLoPriQ Get low priority queue pointers
ProcAfter Block until specified time
ProcCall Call function with new stack
ProcGetPriority Determine current process priority
ProcReschedule Move process to the back of the queue
SetHiPriQ Initialize high priority queue pointers
SetLoPriQ Initialize low priority queue pointers
SetTime Set current priority timer
Time Read current priority timer

Transputer Miscellaneous

The following functions are supported on Transputers which support the
corresponding instructions:

BitCnt Count bits set in a word
BitRevNBits Variable bit reversal
BitRevWord Reverse bits in word
Move2D 2-D block move
Move2DNonZero 2-D (non-zero byte) block move
Move2DZero 2-D (zero byte) block move
restorefp Restore floating point pseudo-registers
savefp Save floating point pseudo-registers
_boot_chan_in Pointer to bootstrap input channel
_boot_chan_out Pointer to bootstrap output channel
_host_chan_in Pointer to host input channel
_host_chan_out Pointer to host output channel
_HostIn Pointer to host input function
_HostOut Pointer to host output function
_node_number Network node address

18

Transputer 'C' Library Description Transputer Toolset

The "_boot_chan_in" and "_boot_chan_out" variables are declared in "conc.h".
They are pointers to the "hard" input and output channels which were used to bootstrap
the Transputer node.

The "_host_chan_in" and "_host_chan_out" variables are also declared in
"conc.h"; they hold pointers to the channels to use when communicating with the host. If
the program has been linked with either "_main", "_ns_main" or "_ns_vcmain", these
pointers will simply be copies of "_boot_chan_in" and "_boot_chan_out" (respectively).
If the program has been linked with "_vcmain" and loaded with LD-NET configured to
allow virtual channels, these variables will hold the virtual channel pointers for reading
from, and writing to, the host I/O server (CIO). See the Alternatives to "_main"
section for more information about the various entry points.

The "_HostIn" and "_HostOut" variables are function pointers which are declared
in "conc.h". These variables are set by the various entry point functions to provide the
host I/O code in the library with a pointer to the correct functions for either "hard" or
virtual channel I/O to the host. The "_HostIn" variable will point to the "ChanIn"
function if non-virtual channel host I/O is needed. If virtual channel host I/O is
required, "_HostIn" will point to "VChanIn". The "_HostOut" function is used in a
similar fashion to point to the appropriate output function, either "ChanOut" or
"VChanOut". Note that these variables are not intended for general application program
usage as doing so will likely foul up the communication protocol between the host I/O
code residing on the Transputer, and CIO running on the host.

The "_node_number" variable is again declared in "conc.h"; it holds the user
supplied network address for the node. This variable is often quite useful in application
programming as it allows modified runtime program behavior depending on the address
of the node. The example programs in the following section take advantage of this
feature.

See the LD-ONE and, particularly, the LD-NET documentation for more
information about many of these variables.

19

Transputer Toolset Transputer 'C' Library Description

Examples

Introduction

The examples provided in this section focus on the Transputer-specific aspects of
the library. For information about using the standard "C" library routines, the following
two books are recommended:

"C" A Reference Manual
Samuel P. Harbison/Guy L. Steele Jr.

Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

The "C" Programming Language (Second Edition)
Brian W. Kernighan/Dennis M. Ritchie

Prentice-Hall, Inc.
Englewood Cliffs, NJ 07632

Sample Programs

Being traditional, we start with a Transputer version of "Hello World":

#include <stdio.h>
#include <conc.h>

main()
{
printf("Hello World (Node %d)\n",_node_number);
}

This code is provided as "exam1.c" in the example code directory.

The "_node_number" variable holds the network address for the processor which
is running the program. See the documentation for the LD-ONE and LD-NET programs,
and the Transputer Miscellaneous discussion in the previous section, for more
information about "_node_number". An external declaration for "_node_number" is
contained in "conc.h".

This program should be linked with either "_main" or "_vcmain" as an entry
point. "_main" is the default and is appropriate for use with a single processor.
"_vcmain" uses the Software Virtual Channel facility, in conjunction with LD-NET, to
allow the program to be run on an arbitrary number of processors in a network. In either
case you should run with CIO as the host I/O server.

20

Transputer 'C' Library Description Transputer Toolset

We can also get the same result without requiring that the CIO host server be run.
Assuming the entry point is changed to "_ns_main", and the TIO program is used to
display text written to the Transputer link:

#include <stdio.h>
#include <conc.h>

main()
{
_ns_printf("Hello World (Node %d)\n",_node_number);
}

This code is provided as "exam2.c" in the example code directory.

You will have to manually terminate TIO after the message is displayed (usually
by typing control-c). Note that "_ns_printf" stands for NoServer-printf (no server
protocol is used). The TIO program writes whatever it reads from the link to "stdout" as
straight ASCII. The "exam2.c" program should only be run on the root node.

Suppose we wish to continue to avoid using the CIO server, but want a more
powerful print formatting routine than "_ns_printf" (which was designed to use minimal
memory, not be full-featured). For example:

#include <stdio.h>
#include <conc.h>

main()
{
char buf[80];

sprintf(buf,"Hello World (Node %.4d)\n",_node_number);
ChanOut(_boot_chan_out,buf,strlen(buf));
}

This code is provided as "exam3.c" in the example code directory.

Again, you will have to manually terminate TIO after the message is displayed.
This program should only be run on the root node. Note the use of the "ChanOut"
channel communication function, and the predefined channel pointer "_boot_chan_out"
(for information about "_boot_chan_out" see the Transputer Miscellaneous discussion
in the previous section). This example still doesn't require any protocol on the link, but
shows how messages of arbitrary complexity may be generated and written to a link.
Since CIO will normally be used as the host server, and all the usual "C" primitives may
then be used for I/O from the root Transputer, this isn't usually done. However, there is
one case where this type of thing comes in very handy:

21

Transputer Toolset Transputer 'C' Library Description

As most programmers are humans, and humans are generally fallible, they tend to
make programming mistakes. Finding these mistakes can be particularly challenging
when they occur in a program distributed across a network of processors. If you have a
network capable debugger, and the problem is nice enough to not blow away the network
communication kernel (no memory protection after all), great! If not, a viable debugging
approach is to have available a spare computer, with a link interface, to use as a "probe".
This computer runs a copy of something like TIO, and the "probe" link is connected to a
spare link on the Transputer node which is having trouble. This allows the "printf"
approach to debugging without disturbing the normal I/O or link usage. It does require a
spare link, and patience, however! Of course, if you have a network source level
debugger, this may seem antiquated, but it does allow you to (eventually), find even
"impossible" bugs!

CIO is assumed to be the host I/O server for the rest of the sample programs.
Similarly, "_main" or "_vcmain" (as appropriate), is assumed to be the entry point
symbol specified to TLNK ("_main" is the default). If you are using the TCC command
driver program you specify the "_vcmain" entry point by adding a "-e _vcmain" directive
to the TCC command line.

The previous examples have been programs which either run on a single
processor, or use the Software Virtual Channel facility to "transparently" run on more
than one processor. While some Transputer systems fall into this category, many more
involve multiple nodes in some type of network where nodes are assigned different
"jobs". The following program generalizes the "Hello World" program to run on more
than one Transputer. It does so WITHOUT using virtual channels:

#include <stdio.h>
#include <conc.h>

main()
{
Channel *chan;
int id = 0;

if(_node_number == 1)
{

/*
 * We are the root Transputer, inform the user as the
 * various node addresses arrive. Note that we listen for
 * input from the bootstrap link also but this doesn't
 * matter since it shouldn't generate any output!
 */

printf("Root node ID # was %d\n",_node_number);
printf("Booted from input channel: %p\n",_boot_chan_in);
while(1)

{
chan = LINK0IN +
ProcAlt(LINK0IN,LINK1IN,LINK2IN,LINK3IN,0);

printf("\nMessage on input channel: %p\n",chan);
ChanIn(chan,&id,2);
printf("Message was node ID # %d\n",id);
}

22

Transputer 'C' Library Description Transputer Toolset

}
else

{
/*
 * We are not the root, look at all input links and send
 * any node addresses we get out the link we were
 * bootstrapped on.
 */

ChanOut(_boot_chan_out,&_node_number,2);
while(1)

{
chan = LINK0IN +

ProcAlt(LINK0IN,LINK1IN,LINK2IN,LINK3IN,0);
ChanIn(chan,&id,2);
ChanOut(_boot_chan_out,&id,2);
}

}
}

This code is provided as "exam4.c" in the example code directory. It should be
linked with the "_main" entry point.

A copy of this program is loaded and run on every node in the network. The root
node then collects the network addresses as they trickle in and sends them to CIO for
display on the host system. You will have to manually terminate the execution of CIO
when the last message has been displayed since no provision is made in the program to
break out of the "infinite" read loop. For information about configuring and loading
programs on a network see the LD-NET documentation.

While this program is fairly simple-minded, it does provide an idea of how a
more sophisticated program might be constructed for use in a "farm" application. For
our purposes, a "farm" application is defined to be one in which the exact topology of the
network is ignored, each node (except the root), is considered to be equivalent, and all
nodes work on independent pieces of the project. Many simulation and numerical
analysis applications fit into the "farm" model fairly well. The following "prime" solver
is an example of this type of program (warning: the algorithm used is quite stupid):

23

Transputer Toolset Transputer 'C' Library Description

#include <stdio.h>
#include <conc.h>
#define MAX_PRIME 10000 /* Largest # to test */
#define NUM_NODES 4 /* # of Transputer nodes */
#define INCR (NUM_NODES * 2) /* Prime interval */

main()
{
Channel *chan;
unsigned int child_data = 0;
unsigned int i,j;
unsigned int num_primes = 0;

/*
 * Check 1/N of the numbers for primality, where N
 * is the number of Transputer nodes.
 */

for(i = (_node_number * 2) + 1; i < MAX_PRIME; i+= INCR)
{
for(j = 3; j < i; j++)

{
if((i % j) == 0)

break;
}

if(j >= i)
num_primes++;

}
/*
 * Report results back either to user or parent node.
 */

if(_node_number == 1) /* Root node */
{
num_primes++; /* Acct for 2 being prime */
for(i = 1; i < NUM_NODES; i++)

{
chan = LINK0IN +

ProcAlt(LINK0IN,LINK1IN,LINK2IN,LINK3IN,0);
ChanIn(chan,&child_data,2);
num_primes += child_data;
}

printf("%u primes less than %u found\n",
num_primes,MAX_PRIME);

}
else /* Non-root node */

{
ChanOut(_boot_chan_out,&num_primes,2);
while(1)

{
chan = LINK0IN +

ProcAlt(LINK0IN,LINK1IN,LINK2IN,LINK3IN,0);
ChanIn(chan,&child_data,2);
ChanOut(_boot_chan_out,&child_data,2);
}

}
}

24

Transputer 'C' Library Description Transputer Toolset

This code is provided as "exam5.c" in the example code directory. It should be
linked with the "_main" entry point.

Note that the "NUM_NODES" macro must be set to the number of Transputer
nodes which are used. Also, the node numbers (as listed in the ".nif" file), must be
consecutive starting with one.

Of course, with a few modifications, the number of processor nodes could be
determined at run time instead of compile time. Also, most real "farm" applications
require that data be received from the root node (or host), as well as sent to it. Again, the
changes are straightforward, but beyond the scope of this (trivial), example.

Although the "farm" model is appropriate for many applications, it is less than
ideal for some. A good example is any application which is naturally "pipelined". To
get maximum performance with this sort of application it is necessary to make the
network topology "fit" the application. One application class which often benefits from
this is "digital signal processing" (DSP). The following simple filter application is
assumed to be executed on four Transputer nodes connected in a ring. The following
ring topology is assumed for this example:

Node 1 is connected to node 2 through link 1.
Node 1 is connected to node 4 through link 2.
Node 2 is connected to node 3 through link 1.
Node 2 is connected to node 1 through link 2.
Node 3 is connected to node 4 through link 1.
Node 3 is connected to node 2 through link 2.
Node 4 is connected to node 1 through link 1.
Node 4 is connected to node 3 through link 2.

This topology is provided in a LD-NET compatible format as "pipe4.nif" in the
example code directory.

25

Transputer Toolset Transputer 'C' Library Description

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <conc.h>

#define DATA_SETS 100 /* # of data sets to do */
#define NUM_POINTS 32 /* # of complex data points */
#define LOG_POINTS 5 /* Log base 2 of NUM_POINTS */
#define WS_SIZE 8192 /* Workspace size/process */

COMPLEX in_data[NUM_POINTS];
COMPLEX out_data[NUM_POINTS];

void
inbuf(Process *p) /* Write data to pipeline */

{
int i,j;

for(i = 0; i < DATA_SETS; i++)
{
for(j = 0; j < NUM_POINTS; j++) /* Random */

{
out_data[j].real = frand();
out_data[j].imag = frand();
}

ChanOut(LINK1OUT,out_data,sizeof(out_data));
}

}

void
outbuf(Process *p) /* Read data from pipeline */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Read and toss */
ChanIn(LINK2IN,in_data,sizeof(in_data));

}

main()
{
if(_node_number == 1) /* Root node */

{
Process *in,*out;

if((in = ProcAlloc(inbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'inbuf'\n");
exit(1);
}

if((out = ProcAlloc(outbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'outbuf'\n");
exit(1);
}

26

Transputer 'C' Library Description Transputer Toolset

ProcPar(in,out,NULL); /* Start I/O processes */
ProcFree(in); /* Return heap storage */
ProcFree(out);
printf("All done\n");
}

else if(_node_number == 2) /* 1st pipeline stage */
{
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));
fft(in_data,LOG_POINTS);
ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}
else if(_node_number == 3) /* 2nd pipeline stage */

{
int i;

while(1)
{
ChanIn(LINK2IN,in_data,sizeof(in_data));
in_data[0].real = in_data[0].imag = 0.0; /* DC */
for(i = 0; i < NUM_POINTS; i++)

{
in_data[i].real /= NUM_POINTS; /* Normalize */
in_data[i].imag /= NUM_POINTS;
}

ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}
else /* 3rd pipeline stage */

{
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));
ifft(in_data,LOG_POINTS);
ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}
}

This code is provided as "exam6.c" in the example code directory. It should be
linked with the "_main" entry point.

This application has two processes running on the root node; one filling the
pipeline (with random data), and one removing the resulting data. Each of the three
nodes in the pipeline has one process which reads a input data array, performs a
computation on it, and writes the result to the next stage.

27

Transputer Toolset Transputer 'C' Library Description

The first stage in the pipeline performs a forward FFT to convert the
(presumably), time series input data into the frequency domain. The second stage
normalizes the data and removes the "DC" component. The third stage performs a
inverse FFT to transform the data back into the time domain. If you are not familiar with
this type of DSP operation, don't worry: the important point is the general organization of
the pipeline of processors, and the read/compute/write action at each node.

Note that in this case each node is running the same program and we determine at
run time what a particular node should do. This has the disadvantage that each node
contains code which it will never use. In larger applications it is common to actually run
a physically different program on each node. See the LD-NET documentation for more
information on loading programs on networks of Transputers.

Of course, in any real application, some investigation into the execution profile
of each program in the "pipeline" should be performed to determine how to distribute the
execution tasks across the available processors ("load balancing").

Another point to note is that there is no overlapping between link I/O and
computation on the nodes in the pipeline. In this particular case this isn't much of a
problem since the FFT operations swamp out the time taken by the I/O (particularly on
Transputers without hardware floating point support). For the usual case were I/O is
more of a bottle-neck, the following example program shows a skeleton of how you
might set up a pipeline application with, and without, buffer processes attached to the
input and output links at each stage of the pipe:

First we modify the previous example to stub out the pipeline computation
actions:

#include <stdio.h>
#include <conc.h>

#define DATA_SETS 250 /* # of data sets to do */
#define NUM_POINTS 2048 /* # of data points */
#define WS_SIZE 8192 /* Workspace size/process */

int in_data[NUM_POINTS];
int out_data[NUM_POINTS];

void
inbuf(Process *p) /* Root node: Write to pipe */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Random data */
ChanOut(LINK1OUT,out_data,sizeof(out_data));

}

28

Transputer 'C' Library Description Transputer Toolset

void
outbuf(Process *p) /* Root node: Read frm pipe */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Read and toss */
ChanIn(LINK2IN,in_data,sizeof(in_data));

}

main()
{
if(_node_number == 1) /* Root node */

{
Process *in,*out;

if((in = ProcAlloc(inbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'inbuf'\n");
exit(1);
}

if((out = ProcAlloc(outbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'outbuf'\n");
exit(1);
}

ProcPar(in,out,NULL); /* Start I/O processes */
ProcFree(in); /* Return heap storage */
ProcFree(out);
printf("All done\n");
}

else if(_node_number == 2) /* 1st pipeline stage */
{
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));

/*
 * Add the computation for the 1st stage of the pipeline.
 */

ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}
else if(_node_number == 3) /* 2nd pipeline stage */

{
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));

/*
 * Add the computation for the 2nd stage of the pipeline.
 */

ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}

29

Transputer Toolset Transputer 'C' Library Description

else /* 3rd pipeline stage */
{
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));

/*
 * Add the computation for the 3rd stage of the pipeline.
 */

ChanOut(LINK1OUT,in_data,sizeof(in_data));
}

}
}

This code is provided as "exam7.c" in the example code directory. It should be
linked with "_main" for an entry point.

Now we present another version with buffer processes attached to the input and
output links of each processor in the pipeline. Note, in this example two processes are
running on the root Transputer, and three processes on the rest of the nodes:

#include <stdio.h>
#include <conc.h>

#define DATA_SETS 250 /* # of data sets to do */
#define NUM_POINTS 2048 /* # of data points */
#define WS_SIZE 8192 /* Workspace size/process */

int comp_data[NUM_POINTS]; /* Buffer for compute */
int in_data[NUM_POINTS]; /* Buffer for input */
int out_data[NUM_POINTS]; /* Buffer for output */

void
inbuf(Process *p) /* Root node: Write to pipe */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Random data */
ChanOut(LINK1OUT,out_data,sizeof(out_data));

}

void
outbuf(Process *p) /* Root node: Read frm pipe */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Read and toss */
ChanIn(LINK2IN,in_data,sizeof(in_data));

}

30

Transputer 'C' Library Description Transputer Toolset

void
pinbuf(Process *p,Channel *cin)

{ /* Pipeline node: Read from buffer process */
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));
ChanOut(cin,in_data,sizeof(in_data));
}

}

void
poutbuf(Process *p,Channel *cout)

{ /* Pipeline node: Write to buffer process */
while(1)

{
ChanIn(cout,out_data,sizeof(out_data));
ChanOut(LINK1OUT,out_data,sizeof(out_data));
}

}

main()
{
if(_node_number == 1) /* Root node */

{
Process *in,*out;

if((in = ProcAlloc(inbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'inbuf'\n");
exit(1);
}

if((out = ProcAlloc(outbuf,WS_SIZE,0)) == NULL)
{
printf("No memory for process 'outbuf'\n");
exit(1);
}

ProcPar(in,out,NULL); /* Start I/O processes */
ProcFree(in); /* Return heap storage */
ProcFree(out);
printf("All done\n");
}

else
{
Channel *cin,*cout;
Process *in,*out;

if((cin = ChanAlloc()) == NULL)
exit(1); /* No memory, quit */

if((in = ProcAlloc(pinbuf,WS_SIZE,1,cin)) == NULL)
exit(1); /* No memory, quit */

ProcRun(in); /* Run async. in process */
if((cout = ChanAlloc()) == NULL)

exit(1); /* No memory, quit */

31

Transputer Toolset Transputer 'C' Library Description

if((out = ProcAlloc(poutbuf,WS_SIZE,1,cout)) == NULL)
exit(1); /* No memory, quit */

ProcRun(out); /* Run async. out process */
if(_node_number == 2) /* 1st stage */

{
while(1)

{
ChanIn(cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 1st stage of the pipeline.
 */

ChanOut(cout,comp_data,sizeof(comp_data));
}

}
else if(_node_number == 3) /* 2nd stage */

{
while(1)

{
ChanIn(cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 2nd stage of the pipeline.
 */

ChanOut(cout,comp_data,sizeof(comp_data));
}

}
else /* 3rd stage */

{
while(1)

{
ChanIn(cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 3rd stage of the pipeline.
 */

ChanOut(cout,comp_data,sizeof(comp_data));
}

}
}

}

This code is provided as "exam8.c" in the example code directory. It should be
linked with "_main" as an entry point.

Note that we used internal ("soft"), channels to communicate between the buffer
processes and the computation process.

The previous examples have exclusively used functions from the "Jeffrey Mock"-
specified process primitives in the library. To show how the "Fork/Join" process
primitives might be used, the next example is another way to accomplish the same results
as in the preceding example:

32

Transputer 'C' Library Description Transputer Toolset

#include <stdio.h>
#include <conc.h>

#define DATA_SETS 250 /* # of data sets to do */
#define NUM_POINTS 2048 /* # of data points */
#define WS_SIZE 256 /* Workspace size/process */

int comp_data[NUM_POINTS]; /* Buffer for compute */
int in_data[NUM_POINTS]; /* Buffer for input */
int out_data[NUM_POINTS]; /* Buffer for output */
char inbufws[WS_SIZE]; /* Workspace for "inbuf" */

void
inbuf() /* Root node: Write to pipe */

{
int i;

for(i = 0; i < DATA_SETS; i++) /* Random data */
ChanOut(LINK1OUT,out_data,sizeof(out_data));

}

void
pinbuf(Channel *cin)

{ /* Pipeline node: Read from buffer process */
while(1)

{
ChanIn(LINK2IN,in_data,sizeof(in_data));
ChanOut(cin,in_data,sizeof(in_data));
}

}

void
poutbuf(Channel *cout)

{ /* Pipeline node: Write to buffer process */
while(1)

{
ChanIn(cout,out_data,sizeof(out_data));
ChanOut(LINK1OUT,out_data,sizeof(out_data));
}

}

33

Transputer Toolset Transputer 'C' Library Description

main()
{
if(_node_number == 1) /* Root node */

{
int i;
Forkblk f;
PDes p;

PForkInit(f,2); /* 2 processes on root node */
p = PSetup(inbufws,inbuf,WS_SIZE,0);
PFork(f,p); /* Start "inbuf" process */
for(i = 0; i < DATA_SETS; i++) /* Read/toss */

ChanIn(LINK2IN,in_data,sizeof(in_data));
PJoin(&f); /* Synchronize processes */
printf("All done\n");
}

else
{
Channel cin = NOPROCESS;
Channel cout = NOPROCESS;
char inws[WS_SIZE],outws[WS_SIZE];

PRun(PSetup(inws,pinbuf,WS_SIZE,1,&cin) | 1);
PRun(PSetup(outws,poutbuf,WS_SIZE,1,&cout) | 1);
if(_node_number == 2) /* 1st stage */

{
while(1)

{
ChanIn(&cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 1st stage of the pipeline.
 */

ChanOut(&cout,comp_data,sizeof(comp_data));
}

}
else if(_node_number == 3) /* 2nd stage */

{
while(1)

{
ChanIn(&cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 2nd stage of the pipeline.
 */

ChanOut(&cout,comp_data,sizeof(comp_data));
}

}

34

Transputer 'C' Library Description Transputer Toolset

else /* 3rd stage */
{
while(1)

{
ChanIn(&cin,comp_data,sizeof(comp_data));

/*
 * Add the computation for the 3rd stage of the pipeline.
 */

ChanOut(&cout,comp_data,sizeof(comp_data));
}

}
}

}

This code is provided as "exam9.c" in the example code directory. It should be
linked with "_main" as the entry point.

Several points to note in this example:

1. The processes created with the "Fork/Join" primitives do not provide an
automatic ("Process *"), first parameter to spawned processes. In the "Fork/Join" model
there is no requirement for the "Process" data structure.

2. We have chosen to allocate the stack/workspace for the processes explicitly
(either globally or as an "auto" variable), rather than use "ProcAlloc" to get the required
memory from the heap. The memory could have been allocated from the heap using a
call to "malloc", but it isn't required.

3. We explicitly declared and initialized the "soft" channels being used. Again, we
could have used "ChanAlloc" to get the memory from the heap and initialize it, but it
isn't required (and takes more time).

We have now seen examples of programs which were both independent, and
completely dependent, on a particular network topology. Between these two approaches
there is a vast middle ground where optimum topology is somewhat important (or
changes during different phases of program execution), but other factors take precedence.
Although Transputer networks exist which are completely electrically programmable,
nearly all have at least some contraints on allowed topologies.

35

Transputer Toolset Transputer 'C' Library Description

Assuming your application needs to communicate with a node with which it isn't
directly connected, and the Transputers you are using don't support hardware virtual
channels, you have two options:

1. Build the actual communication topology into the application. This type of
application is typified by communication instructions such as: "send this message out link
2", or, "if it comes in on link 1, send it out link 3", and so forth. This may be the best
approach for fairly simple applications which execute on a fixed topology. This will
often provide the highest possible communication performance if the majority of
communication is between processes on neighboring nodes which have exclusive use of
the connecting link.

2. Use the Software Virtual Channel facility to allow sending and receiving
processes to function without reference to physical connections, or network topology.
This approach offers slightly reduced communication performance, but often simplifies
the job of programming a network application. It also generally improves the topology
independence of the resulting application. See the LD-NET documentation and the
Alternatives to "_main" section for general comments concerning configuring and
linking programs for use with virtual channels. See the Transputer Virtual Channel
Communications and Transputer Virtual Channel Status Testing sections for
information about how to make use of virtual channels in user applications.

To illustrate some of the advantages of virtual channels we present a simple gate-
level hardware simulator:

#include <stdio.h>
#include <stdlib.h>
#include <conc.h>

#define WS_SIZE 1024 /* Workspace size/process */

void *
get_ws(void)

{ /* Get a process workspace */
void *rval;

if((rval = malloc(WS_SIZE)) == NULL)
{
printf("Unable to 'malloc' storage for process

workspace\n");
exit(1);
}

return (rval);
}

36

Transputer 'C' Library Description Transputer Toolset

void
nand(int input1,int input2,int output)

{ /* Perform logical NAND operation */
Channel *in1;
Channel *in2;
Channel *out;

in1 = VChan(input1); /* Get channel addresses */
in2 = VChan(input2);
out = VChan(output);

if((in1 == NULL) || (in2 == NULL) || (out == NULL))
PStop(); /* Die if not needed */

while(1)
VChanOutChar(out,! (VChanInChar(in1) &

VChanInChar(in2)));
}

void
wired_or(int input,int output1,int output2)

{ /* Duplicate input on two outputs */
int data;
Forkblk f;
Channel *in;
Channel *out1;
Channel *out2;
PDes p;
void *ws;

in = VChan(input); /* Get channel addresses */
out1 = VChan(output1);
out2 = VChan(output2);

if((in == NULL) || (out1 == NULL) || (out2 == NULL))
PStop(); /* Die if not needed */

ws = get_ws(); /* Get workspace for parallel output */

while(1)
{
data = VChanInChar(in);
PForkInit(f,2); /* Outputs to be done in parallel */
p = PSetup(ws,VChanOutChar,WS_SIZE,2,out1,data);
PFork(f,p);
VChanOutChar(out2,data);
PJoin(&f); /* Synchronize processes */
}

}

37

Transputer Toolset Transputer 'C' Library Description

void
main()

{
Forkblk f;
int i;
Channel *in;
Channel *out1;
Channel *out2;
PDes p;
void *ws;

/*
 * Convert logical VChan numbers to channel pointers.
 */

in = VChan(6);
out1 = VChan(7);
out2 = VChan(8);

if((in == NULL) || (out1 == NULL) || (out2 == NULL))
{
printf("Virtual channels not correctly configured\n");
exit(1);
}

/*
 * Run three NAND processes.
 */

PRun(PSetup(get_ws(),nand,WS_SIZE,3,9,10,11) | 1);
PRun(PSetup(get_ws(),nand,WS_SIZE,3,12,13,14) | 1);
PRun(PSetup(get_ws(),nand,WS_SIZE,3,15,16,17) | 1);

/*
 * Run two WIRED-OR processes.
 */

PRun(PSetup(get_ws(),wired_or,WS_SIZE,3,18,19,20) | 1);
PRun(PSetup(get_ws(),wired_or,WS_SIZE,3,21,22,23) | 1);

/*
 * Stimulate "external" logic function and display results.
 */

ws = get_ws(); /* Get workspace for parallel output */

printf("Truth Table For Externally Configured
Function\n\n");

printf(" Input1 Input2 | Output\n");
printf(" ------------------------------\n");
for(i = 0; i < 4; i++)

{
printf("\t%d\t%d\t|\t",(i & 1) != 0,(i & 2) != 0);
PForkInit(f,2); /* Outputs to be done in parallel */
p = PSetup(ws,VChanOutChar,WS_SIZE,2,out1,

((i & 1) != 0));
PFork(f,p);
VChanOutChar(out2,((i & 2) != 0));
PJoin(&f); /* Synchronize processes */
printf("%d\n",VChanInChar(in));
}

}

38

Transputer 'C' Library Description Transputer Toolset

This code is provided as "exam10.c" in the example code directory. It should be
linked with "_vcmain" as the entry point. To run this example on a single node, use LD-
NET with either "and.nif", "or.nif" or "nand.nif" as the "Network Information File".
These files contain virtual channel configurations which use the three NAND gates and
two WIRED-OR connections available in the program to compute various boolean
functions of two inputs.

Examining the "exam10.c" code from the beginning:

The "get_ws" function is used to obtain a process workspace from the heap using
"malloc". Note that this differs from the "exam9.c" program where the concurrent
process workspaces were taken from the initial process workspace.

The "nand" function reads two one byte boolean values from two virtual
channels. It computes the boolean NAND function of the inputs and writes the result out
a third virtual channel. In the "exam10.c" program up to three copies of this function
may be running concurrently.

The "wired_or" function reads a one byte value from a virtual channel and writes
the same value in parallel to two other virtual channels. The writes to the two output
virtual channels must be done in parallel to avoid any output order dependent behavior.
In the "exam10.c" program up to two copies of this function may be running
concurrently.

The "main" function starts three copies of the "nand" function and two copies of
the "wired_or" function as concurrent processes. It then writes all four combinations of
two boolean values to the two output virtual channels. Finally, it reads from a third
virtual input channel the results of the computation, and displays a truth table to the user.

Some comments on the program:

1. All the virtual channels were used for one-way communication. This was
appropriate for this application, but some other application might take advantage of the
two-way nature of virtual channels. After all, this is the most significant difference
between virtual channels and regular T2/T4/T8 channels!

2. Only one node was used. This example ignores the benefits that virtual channel
use provides for network topology independence. The use of the different ".nif" files for
the various boolean functions does show some of the benefits of load-time
reconfiguration.

If you are planning an application with heavy virtual channel message volume,
and you are using the Software Virtual Channel facility, you should still plan on paying
some attention to the mapping of your problem to the network topology. Your
application will run correctly even if you don't, but the run-time performance may not be
optimal. LD-NET incorporates a sophisticated routing generation algorithm, still if all
the communication must transit completely across the network, it won't happen as fast as
if the source and destination are reasonably close together (in a topological sense). Even
topological independence involves tradeoffs!

39

Transputer Toolset Transputer 'C' Library Description

This completes the Sample Program section. At this point you should be ready
to start trying things out (and making your own mistakes). During the course of
developing your application, please consider sending a copy of any non-proprietary,
generally-useful, programs you create to Logical Systems (for inclusion on a future
"sampler" disk).

40

abs
compute integer absolute value

SYNOPSIS

#include <stdlib.h>

int abs(int i)

DESCRIPTION

The abs function returns the integer absolute value of an integer argument i.

RETURN VALUE

See above

RELATED FUNCTIONS

labs, fabs, fabsf

acos/acosf
compute arc-cosine

SYNOPSIS

#include <math.h>

double acos(double x)

float acosf(float x)

DESCRIPTION

The acos function returns the principal value of the arc-cosine of x (in radians).
The acosf function does the same thing for a single precision argument.

RETURN VALUE

A domain error ("errno" is set to EDOM), occurs if the absolute value of x is
greater than one. Otherwise, the return value falls in the range [0,PI] radians.

RELATED FUNCTIONS

asin, atan, cos, sin, tan

addfree
add memory for heap allocation

SYNOPSIS

#include <stdlib.h>

void addfree(void *ptr, size_t size)

DESCRIPTION

Add a region of memory to be used by the "C" heap allocation routines. ptr
should point to the start of the region to add, size is the length in bytes. Regions added to
the heap in this fashion are disjoint from other parts of the heap. This means blocks
allocated from this heap region aren't mergable with those from other regions when freed
(for the purpose of creating a block larger than any one region).

You should ensure that the region of memory you are adding isn't used in any
other way by your program, including as part of the default heap!

RETURN VALUE

None

RELATED FUNCTIONS

calloc, cfree, free, malloc, realloc

asctime
format broken-down time

SYNOPSIS

#include <time.h>

char *asctime(const struct tm *timeptr)

DESCRIPTION

The asctime function converts the broken-down time in the structure pointed to
by timeptr, into an ASCII string representation. A sample of the string representation:

"Sat Aug 15 01:03:51 1972\n\0"

RETURN VALUE

The asctime function returns a pointer to the converted string. Note that the
string is stored in a static data area which is shared with the "ctime" function. The string
will be overwritten upon subsequent calls to either function.

RELATED FUNCTIONS

ctime, gmtime, localtime, time

asin/asinf
compute arc-sine

SYNOPSIS

#include <math.h>

double asin(double x)

float asinf(float x)

DESCRIPTION

The asin function returns the principal value of the arc-sine of x (in radians). The
asinf function does the same thing for a single precision argument.

RETURN VALUE

A domain error ("errno" is set to EDOM), occurs if the absolute value of x is
greater than (1). Otherwise, the return value falls in the range [-PI/2,+PI/2] radians.

RELATED FUNCTIONS

acos, atan, cos, sin, tan

atan/atanf
compute arc-tangent

SYNOPSIS

#include <math.h>

double atan(double x)

float atanf(float x)

DESCRIPTION

The atan function returns the principal value of the arc-tangent of x in radians.
The atanf function does the same thing for a single precision argument.

RETURN VALUE

The return value falls in the range [-PI/2,+PI/2] radians.

RELATED FUNCTIONS

acos, asin, atan2, cos, sin, tan

atan2/atan2f
compute arc-tangent of x/y

SYNOPSIS

#include <math.h>

double atan2(double x, double y)

float atan2f(float x, float y)

DESCRIPTION

The atan2 function returns the principal value of the arc-tangent of x/y using the
signs of both arguments to determine the quadrant of the return value (in radians). The
atan2f function does the same thing for single precision arguments.

RETURN VALUE

A domain error ("errno" is set to EDOM), occurs if both x and y are zero.
Otherwise, the return value falls in the range [-PI,+PI] radians.

RELATED FUNCTIONS

atan

atof/atoi/atol
convert strings to numbers

SYNOPSIS

#include <stdlib.h>

double atof(const char *cptr)

int atoi(const char *cptr)

long atol(const char *cptr)

DESCRIPTION

The atof function converts an ASCII numeric string pointed to by cptr into the
equivalent floating point number. The atoi and atol functions do the same thing for
integers, and long integers, respectively. In all cases, the strings are assumed to be base
10, whitespace is allowed before the numeric string, and the first unrecognized character
stops the conversion.

atof recognizes a numeric string consisting of an optional sign, a digit sequence
with optional decimal point, and an optional exponent ('e' or 'E', optional sign and
exponent digit sequence).

atoi and atol recognize integral numbers consisting of an optional sign and digit
sequence.

RETURN VALUE

The converted value.

RELATED FUNCTIONS

strtod, strtol, strtoul

bcmp
compare bytes

SYNOPSIS

#include <string.h>

int bcmp(const void *s1, const void *s2, size_t n)

DESCRIPTION

The bcmp function compares byte string s1 against byte string s2 for n bytes,
returning zero if they are identical, nonzero otherwise.

RETURN VALUE

See above

RELATED FUNCTIONS

memcmp

bcopy
string copy with length

SYNOPSIS

#include <string.h>

void *bcopy(const void *src, void *dst, size_t n)

DESCRIPTION

The bcopy function copies n bytes from the location pointed to by src to the
location pointed to by dst.

The bcopy function is equivalent to "memcpy", but with a reversed src and dst
argument order.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef bcopy

RETURN VALUE

Returns the value of dst.

RELATED FUNCTIONS

memcpy, memmove, strcpy

BitCnt
count the number of 1 bits set

SYNOPSIS

#include <conc.h>

int BitCnt(int i)

DESCRIPTION

Supplied only for Transputers which support the corresponding instruction. The
BitCnt function takes a single integer argument and returns the number of 1 bits set.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef BitCnt

RETURN VALUE

See above

RELATED FUNCTIONS

BitRevNBits, BitRevWord

BitRevNBits
variable bit reversal

SYNOPSIS

#include <conc.h>

int BitRevNBits(int numbits, int data)

DESCRIPTION

Supplied only for Transputers which support the corresponding instruction. The
BitRevNBits function takes two integer arguments; numbits specifies how many of the
bits in data should be reversed (counting from least significant bit). The result of the
reversal is returned. All high order bits not involved in the reversal are zeroed.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef BitRevNBits

RETURN VALUE

See above

RELATED FUNCTIONS

BitCnt, BitRevWord

BitRevWord
reverse bits in word

SYNOPSIS

#include <conc.h>

int BitRevWord(int data)

DESCRIPTION

Supplied only for Transputers which support the corresponding instruction. The
BitRevWord function reverses the bit pattern in data end-for-end, and returns the result.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef BitRevWord

RETURN VALUE

See above

RELATED FUNCTIONS

BitCnt, BitRevNBits

bzero
set a range of memory to a value

SYNOPSIS

#include <string.h>

void bzero(void *dst, size_t n)

DESCRIPTION

The bzero function writes n zero bytes into memory starting at dst.

RETURN VALUE

None

RELATED FUNCTIONS

memset

cabs/cabsf
compute complex absolute value

SYNOPSIS

#include <math.h>

double cabs(COMPLEX x)

float cabsf(COMPLEXF x)

DESCRIPTION

The cabs function returns the absolute value of a complex number x. A call to
cabs is equivalent to the following expression:

hypot(x.real,x.imag)

The cabsf function does the same thing for a single precision argument.

RETURN VALUE

See above

RELATED FUNCTIONS

fft, ifft

calloc
allocate and initialize heap memory

SYNOPSIS

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size)

DESCRIPTION

The calloc function allocates, and bitwise zeroes, a region of heap memory large
enough to hold nmemb items of size bytes each.

RETURN VALUE

If it is impossible to satisfy the request, or size is zero, a NULL pointer is
returned. Otherwise, a pointer is returned to the start of the allocated region.

RELATED FUNCTIONS

addfree, cfree, free, malloc, realloc

ceil/ceilf
compute "ceiling"

SYNOPSIS

#include <math.h>

double ceil(double x)

float ceilf(float x)

DESCRIPTION

The ceil and ceilf functions return the smallest floating point integral value not
less than x.

RETURN VALUE

See above

RELATED FUNCTIONS

floor, floorf

cfree
free heap memory

SYNOPSIS

#include <stdlib.h>

void cfree(void *ptr)

DESCRIPTION

The cfree function returns the previously allocated region of heap memory
pointed to by ptr to the heap free storage pool.

The value of ptr must be the result of an earlier call to "calloc", "malloc", or
"realloc"; or the results are undefined.

The cfree function is equivalent to the "free" function.

RETURN VALUE

None

RELATED FUNCTIONS

addfree, calloc, free, malloc, realloc

ChanAlloc/ChanFree
communication channel allocation

SYNOPSIS

#include <conc.h>

Channel *ChanAlloc(void)

void ChanFree(Channel *ptr)

DESCRIPTION

The ChanAlloc function returns a pointer to an initialized software "channel".
The memory for the "channel" is obtained from the heap.

The ChanFree function takes a "channel" previously allocated using ChanAlloc
and returns it to the heap free storage pool.

Note that "channels" may also be statically allocated (either globally or as "auto"
variables), if the dynamic creation and destruction allowed by ChanAlloc and ChanFree
isn't required.

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

ChanAlloc either returns a pointer to the allocated "channel", or NULL if no
heap memory was available.

There is no return value from ChanFree.

RELATED FUNCTIONS

ChanIn, ChanInChanFail, ChanInChar, ChanInInt, ChanInTimeFail, ChanOut,
ChanOutChanFail, ChanOutChar, ChanOutInt, ChanOutTimeFail, ChanReset

ChanIn/ChanInChar/ChanInInt
reading from channels

SYNOPSIS

#include <conc.h>

void ChanIn(Channel *c, void *ptr, int n)

char ChanInChar(Channel *c)

int ChanInInt(Channel *c)

DESCRIPTION

The ChanIn function reads n bytes of data, from the "channel" pointed to by c, to
the buffer pointed to by ptr. The ChanInChar and ChanInInt functions may be used to
read, and return, the value of a byte or word, respectively, read from the "channel"
pointed to by c.

The Transputer supports a message passing paradigm, in hardware, using the
concept of "channels". Briefly, "channels" are unidirectional message passing funnels
between two processes, or processors (consult the appropriate INMOS documentation for
a more detailed explanation). The ChanIn, ChanInChar, and ChanInInt functions
allow for the reading of data from a "channel"; the complementary "ChanOut",
"ChanOutChar" and "ChanOutInt" routines may be used to write data to a "channel".

In the Transputer model, "channel" communication may also be used as a
scheduling mechanism. This works because no buffering is associated with a "channel";
the communication occurs only when both the reading and writing processes are ready.

In Transputer terminology, "channels" are classified as either "hard" or "soft".
"hard channels" are those associated with the physical links between Transputers, "soft
channels" are those used for intra-processor communication. One implementation
difference between these two classes of channels may sometimes be usefully exploited:

The message length for the reading and writing process doing "channel"
communication must be identical for "soft channels", but may be different if "hard
channels" are used. For example, this means that a process using a "hard channel" can
send a 6 byte message as one "ChanOut" call, while the corresponding ChanIn call on
the connected processor could be broken into two ChanIn calls for 3 bytes each. This
feature is particularly useful when implementing packet based communication protocols
(the overhead portion of the packet can be received separately, and used to configure the
length of the ChanIn call used to read the rest of the packet).

In order to be used, "channels" must be initialized. This is accomplished
automatically by the "ChanAlloc" function, and should also be done by the programmer
for "channels" created in other ways. For example, a "channel" might be declared and
initialized in "C" using the following statement:

Channel xyz = NOPROCESS;

Where "xyz" is the name of the "channel", and the macro NOPROCESS is used to
supply the correct initial value. The NOPROCESS macro definition, and symbolic
definitions for the addresses of the "hard channels", may be found in the "conc.h" include
file.

These functions are implemented "inline". To get a functional version, precede
your call with:

#undef ChanIn

Or

#undef ChanInChar

Or

#undef ChanInInt

For additional information about the "channel" primitives, see the included paper
by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

ChanAlloc, ChanFree, ChanInChanFail, ChanInTimeFail, ChanOut,
ChanOutChanFail, ChanOutChar, ChanOutInt, ChanOutTimeFail, ChanReset

ChanInChanFail/ChanInTimeFail
error read from channel

SYNOPSIS

#include <conc.h>

int ChanInChanFail(Channel *c1, void *ptr, int n, Channel *c2)

int ChanInTimeFail(Channel *c, void *ptr, int n, int t)

DESCRIPTION

The ChanInChanFail function is equivalent to the "ChanIn" function up through
the first three parameters. In addition, a fourth parameter has been added (c2), which
allows the "channel" read operation on c1 to be aborted when an "int" is written to the
auxiliary channel c2 (and thus c2 becomes ready for reading by ChanInChanFail). This
allows another process to "timeout" a communication operation. The ChanInChanFail
function automatically resets channel c1 if the communication is aborted. Note that if
channel c1 is a "hard" channel, and communication was in progress, the reset will cause
the communication operation to never complete (from the point of view of the other
processor).

The ChanInTimeFail function is like ChanInChanFail, except the fourth
parameter is a "time" value which is compared to the hardware clock associated with the
current priority level. When the hardware clock is "after" the specified value t, the
communication is aborted and the "channel" is reset.

For additional information about the "channel" primitives, see the included paper
by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

Either function returns zero if the communication completed, or one if the
communication was aborted.

RELATED FUNCTIONS

ChanAlloc, ChanFree, ChanIn, ChanInChar, ChanInInt, ChanOut,
ChanOutChanFail, ChanOutChar, ChanOutInt, ChanOutTimeFail, ChanReset

ChanOut/ChanOutChar/ChanOutInt
writing to channels

SYNOPSIS

#include <conc.h>

void ChanOut(Channel *c, void *ptr, int n)

void ChanOutChar(Channel *c, int byte)

void ChanOutInt(Channel *c, int word)

DESCRIPTION

The ChanOut function writes n bytes of data, to the "channel" pointed to by c,
from the buffer pointed to by ptr. The ChanOutChar and ChanOutInt functions may
be used to write the value of a byte or word, respectively, to the "channel" pointed to by
c.

See the discussion for the corresponding read operations ("ChanIn" ...), for a
more lengthy introduction.

These functions are implemented "inline". To get a functional version, precede
your call with:

#undef ChanOut

Or

#undef ChanOutChar

Or

#undef ChanOutInt

For additional information about the "channel" primitives, see the included paper
by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ChanAlloc, ChanFree, ChanIn, ChanInChanFail, ChanInChar, ChanInInt,
ChanInTimeFail, ChanOutChanFail, ChanOutTimeFail, ChanReset

ChanOutChanFail/ChanOutTimeFail
error write to channel

SYNOPSIS

#include <conc.h>

int ChanOutChanFail(Channel *c1, void *ptr, int n, Channel *c2)

int ChanOutTimeFail(Channel *c, void *ptr, int n, int t)

DESCRIPTION

The ChanOutChanFail function is equivalent to the "ChanOut" function up
through the first three parameters. In addition, a fourth parameter has been added (c2),
which allows the "channel" write operation on c1 to be aborted when an "int" is written
to the auxiliary channel c2 (and thus c2 becomes ready for reading by
ChanOutChanFail). This allows another process to "timeout" a communication
operation. The ChanOutChanFail function automatically resets channel c1 if the
communication is aborted. Note that if channel c1 is a "hard" channel, and
communication was in progress, the reset will cause the communication operation to
never complete (from the point of view of the other processor).

The ChanOutTimeFail function is like ChanOutChanFail, except the fourth
parameter is a "time" value which is compared to the hardware clock associated with the
current priority level. When the hardware clock is "after" the specified value t, the
communication is aborted and the "channel" is reset.

For additional information about the "channel" primitives, see the included paper
by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

Either function returns zero if the communication completed, or one if the
communication was aborted.

RELATED FUNCTIONS

ChanAlloc, ChanFree, ChanIn, ChanInChanFail, ChanInChar, ChanInInt,
ChanInTimeFail, ChanOut, ChanOutChar, ChanOutInt, ChanReset

ChanReset
reset a channel

SYNOPSIS

#include <conc.h>

int ChanReset(Channel *c)

DESCRIPTION

The ChanReset function is an extremely low level function which is used to reset
and initialize a Transputer channel. The value returned reflects the current status of the
channel.

Under normal circumstances, use of this function should NEVER be required,
and it is included only to provide a "C" binding for the Transputer "resetch" instruction.
Consult the appropriate INMOS instruction set documentation for further information.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ChanReset

RETURN VALUE

The current status of the channel being reset. This is either the process descriptor
of the process blocked on the channel, or the value of the NOPROCESS macro (if the
channel was not in use).

RELATED FUNCTIONS

ChanAlloc, ChanFree, ChanIn, ChanInChanFail, ChanInChar, ChanInInt,
ChanInTimeFail, ChanOut, ChanOutChanFail, ChanOutChar, ChanOutInt,
ChanOutTimeFail

_cioext
host specific server extensions

SYNOPSIS

#include <cioext.h>

int _cioext(int fn, void *ibuf, int ilen, void *obuf, int olen)

DESCRIPTION

The _cioext function provides a user extensible, remote procedure call
mechanism for use with the CIO host I/O server. The arguments to _cioext are:

1. fn - The desired user extension function code.

2. ibuf - A pointer to the input buffer for the user extension function.

3. ilen - The number of bytes in ibuf. The input buffer must be shorter than
MAX_MSG_DATA as defined in cio.h (25000 bytes in the standard Transputer Toolset
release).

4. obuf - A pointer to the output buffer for the user extension function.

4. olen - The number of bytes to return to obuf. The output buffer must be shorter
than MAX_MSG_DATA as defined in cio.h (25000 bytes in the standard Transputer
Toolset release).

The actual functions which are available are dependent on the capabilities
implemented in the "cioext.c" file (which is linked with CIO). See the CIO "C" I/O
Driver User Guide manual for further information.

RETURN VALUE

If the input or output buffers are too large -1 is returned. Otherwise the return
value is completely dependent on the implementation of the specific function being
invoked.

RELATED FUNCTIONS

None

clearerr
clear stream status

SYNOPSIS

#include <stdio.h>

void clearerr(FILE *stream)

DESCRIPTION

The clearerr function resets the "eof" and "error" status flags associated with the
specified stream.

RETURN VALUE

None

RELATED FUNCTIONS

feof, ferror, rewind

close
low level file close

SYNOPSIS

#include <stdio.h>

int close(int handle)

DESCRIPTION

Closes the file with file descriptor handle.

The file must have been previously opened by a call to "open" or "creat".

Note that termination of a program via "exit", or a return from "main", also closes
all open files.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The close function returns zero if the file was successfully closed. A return value
of (-1), indicates an error, and "errno" is set appropriately.

RELATED FUNCTIONS

creat, dup, dup2, open, read, write

cos/cosf
compute cosine

SYNOPSIS

#include <math.h>

double cos(double x)

float cosf(float x)

DESCRIPTION

The cos function returns the cosine of x (measured in radians). The cosf function
does the same thing for a single precision argument.

RETURN VALUE

A large magnitude argument may yield a result with little significance.

RELATED FUNCTIONS

acos, asin, atan, sin, tan

cosh/coshf
compute hyperbolic cosine

SYNOPSIS

#include <math.h>

double cosh(double x)

float coshf(float x)

DESCRIPTION

The cosh function returns the hyperbolic cosine of x. The coshf function does the
same thing for a single precision argument.

RETURN VALUE

A range error ("errno" is set to ERANGE), occurs if the magnitude of x is too
large.

RELATED FUNCTIONS

sinh, tanh

creat
low level file creation

SYNOPSIS

#include <stdio.h>
#include <fcntl.h>

int creat(char *path, int mode)

DESCRIPTION

The creat function either creates a new file, or opens and truncates an existing
file. If the file specified by path doesn't already exist, it is created with read/write
permission as set by mode. If the file already exists, and its permissions allow writing,
the file is truncated to zero length and opened for writing.

The mode parameter applies only to newly created files, and determines what
permission setting the file should be given when closed.

The following symbolic bit mask macro definitions are used with creat:

S_IREAD - Allow file reading
S_IWRITE - Allow file writing

If the values of the above two macros are bitwise OR'ed together, and passed as
the mode parameter, the file is assumed to allow both reading and writing.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The creat function returns a positive value (a "handle"), for the file if the
open/create is successful, otherwise (-1) is returned and "errno" is set appropriately.

RELATED FUNCTIONS

close, dup, dup2, open, read, write

ctime
format local time

SYNOPSIS

#include <time.h>

char *ctime(const time_t *timer)

DESCRIPTION

The ctime function converts the calendar time specified by timer into local time
in the form of an ASCII string. A sample of the string representation:

"Sat Aug 15 01:03:51 1972\n\0"

The ctime function may be thought of as a functional equivalent for the following
expression:

asctime(localtime(timer))

RETURN VALUE

The ctime function returns a pointer to the converted string. Note that the string
is stored in a static data area which is shared with the "asctime" function. The string will
be overwritten upon subsequent calls to either function.

RELATED FUNCTIONS

asctime, gmtime, localtime, time

div
compute integer quotient and remainder

SYNOPSIS

#include <stdlib.h>

div_t div(int num, int denom)

DESCRIPTION

The div function returns the integer quotient and remainder of dividing num by
denom. If the division is inexact, the sign of the quotient will be the same as the
algebraic quotient, and the magnitude of the quotient will be the largest integer less than
the magnitude of the algebraic quotient. If the result can be represented, then:

num = quotient * denom + remainder

RETURN VALUE

The quotient and remainder are returned in a structure of type "div_t", which has
two integer members, "quot" and "rem".

RELATED FUNCTIONS

ldiv

dup/dup2
low level file handle duplication

SYNOPSIS

#include <stdio.h>

int dup(int handle)

int dup2(int handle, int handle2)

DESCRIPTION

The dup and dup2 functions assign a second handle to a function which already
has one.

The dup function returns the next available handle for the file specified by
handle.

The dup2 function forces handle2 to refer to the same file as handle. This will
require closing any existing file which is opened with handle2.

These functions are not supported in the ANSI standard library, thus use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

Both dup and dup2 return (-1) on failure and set the value of "errno" as
appropriate. On success, dup returns the second handle, dup2 returns zero.

RELATED FUNCTIONS

close, creat, open, read, write

exit
terminate program execution

SYNOPSIS

#include <stdlib.h>

void exit(int status)

DESCRIPTION

The exit function terminates program execution and returns control to the host
environment. The status parameter is used to return a exit code for the program.

Other than the status code, calling exit is equivalent to returning from the "main"
function:

1. All open output streams are flushed.

2. All open streams and files are closed.

RETURN VALUE

There is (and can be), no return value, since control is passed to the host
environment after exit is called.

RELATED FUNCTIONS

None

exp/expf
compute exponential

SYNOPSIS

#include <math.h>

double exp(double x)

float expf(float x)

DESCRIPTION

The exp function returns the floating point exponential function of x. The expf
function does the same thing for a single precision argument.

RETURN VALUE

A range error ("errno" is set to ERANGE), occurs if x is too large.

RELATED FUNCTIONS

log, log10, pow

fabs/fabsf
compute floating point absolute value

SYNOPSIS

#include <math.h>

double fabs(double x)

float fabsf(float x)

DESCRIPTION

The fabs function returns the floating point absolute value of a floating point
argument x. The fabsf function does the same thing for a single precision argument.

On floating point Transputers this function is implemented "inline". To get a
functional version, precede your call with:

#undef fabs

Or,

#undef fabsf

RETURN VALUE

See above

RELATED FUNCTIONS

abs, labs

fclose/fcloseall
close streams

SYNOPSIS

#include <stdio.h>

int fclose(FILE *stream)

int fcloseall(void)

DESCRIPTION

The fclose function causes any buffered data for the specified stream to be
written out, and the stream to be closed. The fcloseall function does the same thing for
all currently open streams.

Note that termination of a program via "exit", or a return from "main", also closes
all open files.

RETURN VALUE

These functions return EOF to indicate an error. The fclose function returns zero
for success. The fcloseall function returns the number of open streams which were
closed.

RELATED FUNCTIONS

close, fflush, fopen

fdopen
convert handle to stream

SYNOPSIS

#include <stdio.h>

FILE *fdopen(int handle, const char *mode)

DESCRIPTION

The fdopen function associates a stream with a file previously opened with
handle. The allowed format for the mode string is the same as used with the "fopen"
function, but must not conflict with the original access permission when the file was
opened using "open" or "creat".

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The fdopen function returns NULL on error, otherwise a pointer to the opened
stream.

RELATED FUNCTIONS

fileno, fopen

feof/ferror
check stream status

SYNOPSIS

#include <stdio.h>

int feof(FILE *stream)

int ferror(FILE *stream)

DESCRIPTION

The feof function returns a non-zero value if EOF has been reached for the
specified stream (assumed to be open for reading). The ferror function returns non-zero
when an error has been detected during reading or writing of the specified stream.

RETURN VALUE

See above. The functions return non-zero if the predicate being tested is TRUE,
zero if FALSE.

RELATED FUNCTIONS

clearerr

fflush
flush stream

SYNOPSIS

#include <stdio.h>

int fflush(FILE *stream)

DESCRIPTION

The fflush function causes any buffered data for the named stream to be written,
if the stream is open for writing; or purged, if the stream is open for reading. The fflush
call also purges anything buffered by a prior "ungetc" call.

RETURN VALUE

The fflush function returns EOF on error and zero for success.

RELATED FUNCTIONS

fclose

fft/fftf
compute forward FFT transform

SYNOPSIS

#include <math.h>

void fft(COMPLEX x[], int logsize)

void fftf(COMPLEXF x[], int logsize)

DESCRIPTION

The fft function performs a radix-2, forward, Fast Fourier Transform on an input
array of complex floating point numbers (x). The fftf function does the same thing for
an array of single precision floating point numbers. The transform is done in-place, so
the output data is also stored into x. The logsize parameter is the log (base 2), of the
number of complex numbers in the array. In the following definition, N is equal to the
number of elements in the array (2**logsize):

 N - 1
 \----
 \ -j(2(PI)/N)kn
x'(k) =) x(n)e
 /
 /----
 n = 0

Note that there is considerable disagreement in the literature about what
constitutes the "forward" transform, and what should be called the "inverse" (see the
"ifft" routine description). Also, for a complete forward-inverse transform to produce the
original data values, a scaling factor of 1/N must be applied to the data. Some authorities
apply it all on the forward or inverse transforms, others apply 1/sqrt(N) to each. With
this in mind, the fft and "ifft" functions do not perform any scaling. If your application
requires it, you must apply it directly to the individual data points produced by one of the
transforms.

RETURN VALUE

None. Note that for floating point Transputers, the fftf function has been hand
optimized, for speed, in assembly language.

RELATED FUNCTIONS

ifft

fgetc
read character

SYNOPSIS

#include <stdio.h>

int fgetc(FILE *stream)

DESCRIPTION

The fgetc function obtains the next character (if available), from the input
stream. The "getc" macro is functionally equivalent (ignoring side effects).

RETURN VALUE

The fgetc function returns EOF on error, or the character read. The character is
treated as unsigned for purposes of distinguishing it from the error return.

RELATED FUNCTIONS

fputc, getc, getchar, putc, putchar, ungetc

fgets
read a line

SYNOPSIS

#include <stdio.h>

char *fgets(char *ptr, int n, FILE *stream)

DESCRIPTION

The fgets function reads at most n-1 characters from the stream, and places them
in memory starting at ptr. A newline, or EOF, also terminates the read operation (the
newline is retained). A '\0' character is added after the last character read.

RETURN VALUE

The fgets function returns NULL if an error was detected (or EOF found before
any characters were read). On success ptr is returned.

RELATED FUNCTIONS

fputs, gets, puts

fileno
convert stream to handle

SYNOPSIS

#include <stdio.h>

int fileno(FILE *stream)

DESCRIPTION

The fileno function converts a stream into the corresponding file handle.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

See above

RELATED FUNCTIONS

fdopen

floor/floorf
compute "floor"

SYNOPSIS

#include <math.h>

double floor(double x)

float floorf(float x)

DESCRIPTION

The floor and floorf functions return the largest floating point integral value not
greater than x.

RETURN VALUE

See above

RELATED FUNCTIONS

ceil, ceilf

fmod/fmodf
compute floating point remainder

SYNOPSIS

#include <math.h>

double fmod(double x, double y)

float fmodf(float x, float y)

DESCRIPTION

The fmod and fmodf functions compute the floating point remainder of x/y.

RETURN VALUE

The functions return the value x - (i * y), for some integer i such that if y is non-
zero, the result has the same sign as x and magnitude less than the magnitude of y. If y is
zero the results are undefined.

RELATED FUNCTIONS

None

fopen
open stream

SYNOPSIS

#include <stdio.h>

FILE *fopen(const char *path, const char *mode)

DESCRIPTION

The fopen function opens the file specified by path, for reading and/or writing,
as indicated by mode. The mode string specifies the allowed operations (all settings
assume the file will be text and CR/LF mapping may be used by the host OS if
necessary):

"a" - Open the file for appending (at the end). The file is created if it
doesn't exist.

"a+" - Open the file for reading and appending (at the end). The file is
created if it doesn't exist.

"r" - Open the file for reading (the file must already exist).
"r+" - Open the file for reading and writing (the file must already exist).
"w" - Open/create the file for writing. If the file exists the contents are

purged.
"w+" - Open/create the file for reading and writing. If the file exists the

contents are purged.

To open a "binary" file without any CR/LF mapping nonsense, append a 'b'
character at the end of the mode string (or optionally before the '+', if one is used). For
example, to open a binary file in "r+" mode, either of the following are legal:

"r+b" or "rb+"

RETURN VALUE

The fopen function returns NULL on error, otherwise the new stream pointer.

RELATED FUNCTIONS

fclose

fprintf
formatted write to stream

SYNOPSIS

#include <stdio.h>

int fprintf(FILE *stream, const char *format, ...)

DESCRIPTION

The fprintf function writes to the specified stream. The write is formatted under
the control of the format argument, which specifies how subsequent arguments (if any),
are to be converted for output. See the "printf" function description for more information
about formatting options.

RETURN VALUE

The number of characters written (negative values indicate an error).

RELATED FUNCTIONS

printf, sprintf, vfprintf, vprintf, vsprintf

fputc
write a character

SYNOPSIS

#include <stdio.h>

int fputc(int c, FILE *stream)

DESCRIPTION

The fputc function writes the character specified by c to the output stream.

RETURN VALUE

The fputc function returns the character written (or EOF on error).

RELATED FUNCTIONS

fgetc, getc, getchar, putc, putchar, ungetc

fputs
write a line

SYNOPSIS

#include <stdio.h>

int fputs(const char *ptr, FILE *stream)

DESCRIPTION

The fputs function writes a '\0' terminated string (pointed to by ptr), to the
specified stream. The '\0' is not written.

RETURN VALUE

The fputs function returns EOF if an error occurs; otherwise a non-negative
value.

RELATED FUNCTIONS

fgets, gets, puts

frand/frandf
floating point random number

SYNOPSIS

#include <stdlib.h>

double frand(void)

float frandf(void)

DESCRIPTION

The frand function returns a sequence of pseudo-random floating point values in
the range of zero to one (inclusive). The frand function uses the same seed as the
integer "rand" function, and thus, may also be initialized using the "srand" function. The
frandf function does the same thing as frand, but produces a single precision result.

RETURN VALUE

See above

RELATED FUNCTIONS

rand, srand

fread
read from stream

SYNOPSIS

#include <stdio.h>

size_t fread(void *ptr, size_t size, size_t nmembs, FILE *stream)

DESCRIPTION

The fread function reads nmembs worth of data items, each of size bytes, from
stream, into memory starting at the address specified by ptr.

RETURN VALUE

The number of data items successfully read. This number may be less than
nmembs if an error or EOF is encountered.

RELATED FUNCTIONS

fwrite

free
free heap memory

SYNOPSIS

#include <stdlib.h>

void free(void *ptr)

DESCRIPTION

The free function returns the previously allocated region of heap memory pointed
to by ptr to the heap free storage pool.

The value of ptr must be the result of an earlier call to "calloc", "malloc", or
"realloc"; or the results are undefined.

The free function is equivalent to the "cfree" function.

RETURN VALUE

None

RELATED FUNCTIONS

addfree, calloc, cfree, malloc, realloc

freopen
redirect stream

SYNOPSIS

#include <stdio.h>

FILE *freopen(const char *path, const char *mode, FILE *stream)

DESCRIPTION

The freopen function closes whatever is associated with stream and opens the
file specified by path and assigns stream to it. The allowed format for the mode string
is the same as used with the "fopen" function.

This function is conventionally used to redirect the streams which are
automatically opened for the user program ("stdio", "stdout", and "stderr").

RETURN VALUE

The freopen function returns NULL on error and closes the original stream. On
success, freopen returns a pointer to the "new" stream.

RELATED FUNCTIONS

fopen

frexp/frexpf
decompose floating point number

SYNOPSIS

#include <math.h>

double frexp(double value, int *exp)

float frexpf(float value, int *exp)

DESCRIPTION

The frexp function breaks a floating point value into a normalized fraction and a
integral power of two. The integral value is stored in the "int" pointed to by exp. The
frexpf function does the same thing for a single precision argument.

RETURN VALUE

These functions return a floating point number, such that the number has
magnitude in the range [1/2,1] or zero, and value equals the number raised to the power
*exp. If value is zero, both parts of the result are also.

RELATED FUNCTIONS

ldexp

fscanf
formatted read from stream

SYNOPSIS

#include <stdio.h>

int fscanf(FILE *stream, const char *format, ...)

DESCRIPTION

The fscanf function reads from the specified stream. The read is formatted
under the control of the format argument, which specifies the legal input text sequences
and conversion instructions. Subsequent arguments (if any), are used as pointers to the
objects which receive converted data from the input. See the "scanf" function description
for more information about formatting options.

RETURN VALUE

The fscanf function returns EOF if an input failure occurs before any
conversions. Otherwise, fscanf returns the number of input sequences which were
matched, converted, and assigned. The number of sequences returned, may be less than
the number provided for in the format string, if a match fails, or EOF is encountered.

If EOF occurs in the middle of matching an input sequence, such that the match
may already be considered successful (not counting optionally matched whitespace), the
EOF is considered to merely terminate the current match. Any remaining conversions,
however, will be immediately aborted if they require input.

RELATED FUNCTIONS

scanf, sscanf, strtod, strtol, strtoul

fseek
change position within stream

SYNOPSIS

#include <stdio.h>

int fseek(FILE *stream, long int offset, int origin)

DESCRIPTION

The fseek function changes the current read/write position within the specified
stream. The new position is computed as an offset (in bytes), from the measuring
position specified by origin. Three macro definitions in "stdio.h" indicate the legal
values for origin:

1. SEEK_SET - The value of offset is measured from the start of the stream.

2. SEEK_CUR - The value of offset is measured from the current position in the
stream.

3. SEEK_END - The value of offset is measured from the end of the stream.

Note that for host environments which perform CR/LF mapping, seeks on "text"
streams may produces unexpected results unless the value used for offset is either zero,
or was returned from a previous call to the "ftell" function. If a value returned from a
"ftell" call is used, the origin value to the fseek call should be "SEEK_CUR".

RETURN VALUE

Zero on success, non-zero if the request is illegal. An example of an illegal
request: calling fseek with an origin value of "SEEK_SET", and a negative offset,
(seeking before the beginning of a file).

RELATED FUNCTIONS

ftell, lseek, rewind

ftell
report current position within stream

SYNOPSIS

#include <stdio.h>

long int ftell(FILE *stream)

DESCRIPTION

The ftell function reports the current read/write position within the specified
stream. For a binary stream, this value is the number of bytes from the beginning of the
file. If the host environment performs CR/LF mapping within "text" streams, the
reported value has no simple definition, and is mainly used to keep track of a particular
stream position which will later be returned to using a "fseek" function call.

RETURN VALUE

The current stream position value is returned on success, (-1L) on failure.

RELATED FUNCTIONS

fseek, lseek, rewind

fwrite
write to stream

SYNOPSIS

#include <stdio.h>

size_t fwrite(const void *ptr, size_t size, size_t nmembs, FILE *stream)

DESCRIPTION

The fwrite function writes nmembs worth of data items, each of size bytes, to
stream, from memory starting at the address specified by ptr.

RETURN VALUE

The number of data items successfully written. This number may be less than
nmembs if an error is encountered.

RELATED FUNCTIONS

fread

getc/getch/getchar/getche
read a character

SYNOPSIS

#include <stdio.h>

int getc(FILE *stream)

int getch(void)

int getchar(void)

int getche(void)

DESCRIPTION

The getc macro obtains the next character (if available), from the input stream.
Since getc is defined to be a macro, the stream argument may be evaluated more than
once, and must not have side-effects. To get a functional version, use either the "fgetc"
equivalent, or precede the function call with:

#undef getc

The getch function is probably specific to MS-DOS. It reads, without echoing, a
single character from the console. When reading a cursor key, or function key, getch
must be called twice (the second call gets the actual scan code).

The getchar macro obtains the next character (if available), from the input stream
"stdin". To get a functional version, use either the "fgetc(stdin)" equivalent, or precede
the function call with:

#undef getchar

The getche function is probably specific to MS-DOS. It reads, and echoes, a
single character from the console. When reading a cursor key, or function key, getche
must be called twice (the second call gets the actual scan code).

RETURN VALUE

The getch and getche functions returns the character, or portion thereof, read.
There is no error return.

The getc and getchar macros/functions return EOF on error, or the character
read. The characters are treated as unsigned for purposes of distinguishing them from the
error return.

RELATED FUNCTIONS

fgetc, fputc, putc, putchar, ungetc

getenv
read environment value

SYNOPSIS

#include <stdlib.h>

char *getenv(const char *name)

DESCRIPTION

The getenv function searches an "environment list", provided by the host
environment, for a string that matches name. If a matching string is found, a pointer is
returned to the string "value" associated with it. The memory associated with the
returned value should not be modified by the programmer. Since it is possible for the
host environment to change, subsequent calls to getenv (for the same name), may return
different pointers (and assigned values).

In the Transputer Toolset implementation of getenv, the "value" is stored in
memory obtained from the heap using the "malloc" function. If necessary, the memory
may be returned to the heap using a call to "free" (with the pointer returned from the
original call to getenv).

RETURN VALUE

See above. If no match for name is found, getenv returns NULL.

RELATED FUNCTIONS

None

GetHiPriQ/GetLoPriQ
save queue pointers

SYNOPSIS

#include <conc.h>

void GetHiPriQ(int ptrs[])

void GetLoPriQ(int ptrs[])

DESCRIPTION

These functions provide "C" bindings for the Transputer "saveh" (GetHiPriQ),
and "savel" (GetLoPriQ), instructions. The ptrs array will have the queue "front"
pointer stored in ptrs[0], and the queue "back" pointer in ptrs[1] upon return. See the
appropriate INMOS documentation for more information about the "saveX" instructions.

These functions are implemented "inline". To get a functional version, precede
your call with:

#undef GetHiPriQ

Or,

#undef GetLoPriQ

RETURN VALUE

None

RELATED FUNCTIONS

SetHiPriQ, SetLoPriQ

gets
read a line

SYNOPSIS

#include <stdio.h>

char *gets(char *ptr)

DESCRIPTION

The gets function reads characters from the input stream "stdin", into memory
starting at ptr. Characters are read until EOF, or a newline character is read (it is
discarded). A '\0' character is added after the last character read.

You must ensure that the character array (pointed to by ptr), is large enough to
hold the worst case input line, otherwise corruption of other data or code is likely. For
new work we suggest you use the "fgets" function instead.

RETURN VALUE

The gets function returns NULL if an error was detected (or EOF was found
before any characters were read). On success ptr is returned.

RELATED FUNCTIONS

fgets, fputs, puts

gmtime
determine Coordinated Universal Time

SYNOPSIS

#include <time.h>

struct tm *gmtime(const time_t *timer)

DESCRIPTION

The gmtime function converts the calendar time specified by timer into UTC
time, and stores the resulting broken-down time into an internal static data area.

RETURN VALUE

The gmtime function returns a pointer to the converted broken-down time. The
broken-down time data area is static, and is shared with the "asctime", "ctime" and
"localtime" functions. The data will be overwritten upon subsequent calls to any of these
four functions.

RELATED FUNCTIONS

asctime, ctime, localtime, time

hypot/hypotf
compute Euclidean distance

SYNOPSIS

#include <math.h>

double hypot(double x, double y)

float hypotf(float x, float y)

DESCRIPTION

The hypot function returns the length, of the hypotenuse, of a right triangle
whose sides have lengths x and y. The hypotf function does the same thing for single
precision arguments. A call to these functions is roughly equivalent to a "sqrt" function
call with the following arguments:

sqrt(x*x + y*y)

Note that the equivalent "sqrt" function call will often be less accurate than a call
to hypot; particularly when the magnitudes of x and y are greatly different.

RETURN VALUE

See above. A range error ("errno" is set to ERANGE), or domain error ("errno"
is set to EDOM), may occur depending on the parameter values.

RELATED FUNCTIONS

sqrt

HSemP/_HSemP/HSemV/_HSemV
mixed-priority semaphores

SYNOPSIS

#include <conc.h>

int HSemP(Semaphore s)

int _HSemP(Semaphore *s)

int HSemV(Semaphore s)

int _HSemV(Semaphore *s)

DESCRIPTION

The HSemP and HSemV macros implement semaphore operations on the
Transputer. They are equivalent to the "SemP" and "SemV" functions, but may be used
where processes at mixed priority levels will be sharing the same semaphore (s). These
functions ensure correct mixed priority operation by internally switching to high priority
during the semaphore access (with a somewhat higher overhead than the mono-priority
versions). The _HSemV and _HSemP functions are primitives used by the macros, and
are generally not called directly.

See the description of the "SemP" and "SemV" functions for more information
about using these macros.

RETURN VALUE

These functions return the "use" field from the s "Semaphore" structure.

RELATED FUNCTIONS

SemAlloc, SemFree, SemP, SemV

ifft/ifftf
compute inverse FFT transform

SYNOPSIS

#include <math.h>

void ifft(COMPLEX x[], int logsize)

void ifftf(COMPLEXF x[], int logsize)

DESCRIPTION

The ifft function performs a radix-2, inverse, Fast Fourier Transform on an input
array of complex floating point numbers (x). The ifftf function does the same thing for
an array of single precision floating point numbers. The transform is done in-place, so
the output data is also stored into x. The logsize parameter is the log (base 2), of the
number of complex numbers in the array. In the following definition, N is equal to the
number of elements in the array (2**logsize):

 N - 1
 \----
 \ j(2(PI)/N)kn
x'(k) =) x(n)e
 /
 /----
 n = 0

Note that there is considerable disagreement in the literature about what
constitutes the "forward" transform, and what should be called the "inverse" (see the "fft"
routine description). Also, for a complete forward-inverse transform pair to produce the
original data values, a scaling factor of 1/N must be applied to the data. Some authorities
apply it all on the forward or inverse transforms, others apply 1/sqrt(N) to each. With
this in mind, the ifft and "fft" functions do not perform any scaling. If your application
requires it, you must apply it directly to the individual data points produced by one of the
transforms.

RETURN VALUE

None. Note that for floating point Transputers, the ifftf function has been hand
optimized, for speed, in assembly language.

RELATED FUNCTIONS

fft

index
search string for character

SYNOPSIS

#include <string.h>

char *index(const char *ptr, int c)

DESCRIPTION

The index function searches a string, pointed to by ptr, for the first occurrence of
the character c. A pointer to where the character was found is returned, or NULL, if a
'\0' string terminator was found instead. The '\0' character is considered part of the string
and may be searched for. This function is called "strchr" in ANSI libraries, and use of
that name is recommended for all new work.

RETURN VALUE

See above

RELATED FUNCTIONS

rindex, strchr, strrchr

is*
classify characters

isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit

SYNOPSIS

#include <ctype.h>

int isalnum(int c)

int isalpha(int c)

int isascii(int c)

int iscntrl(int c)

int isdigit(int c)

int isgraph(int c)

int islower(int c)

int isprint(int c)

int ispunct(int c)

int isspace(int c)

int isupper(int c)

int isxdigit(int c)

DESCRIPTION

These macros classify an argument, c, as to whether it belongs in a particular set.
The macros are designed to evaluate the argument only once, and are safe for use with
arguments with side-effects.

The following descriptions cover the individual macros (and indicate what
combination of the other macros is equivalent):

isalnum - True for alphanumeric characters (isalpha || isdigit).

isalpha - True for lower or upper case letters (islower || isupper).

isascii - True for ASCII characters (0x00-0x7F).

iscntrl - True for control characters (0x00-0x1F, 0x7F).

isdigit - True for a decimal digit ('0'-'9').

isgraph - True for printing characters except space (0x21-0x7E).

islower - True for lower case letters ('a'-'z').

isprint - True for printing characters (0x20-0x7E).

ispunct - True for printing characters other than space (and except anything
 isalnum is true for).

isspace - True for whitespace characters (' ', '\f', '\n', '\r', '\t', '\v').

isupper - True for upper case letters ('A'-'Z').

isxdigit - True for hexadecimal digits ('0'-'9', 'a'-'f', 'A'-'F').

RETURN VALUE

All the macros evaluate to a non-zero truth value if the predicate is satisfied;
otherwise zero to indicate failure.

RELATED FUNCTIONS

toascii, tolower, toupper

isort
insertion sort

SYNOPSIS

#include <stdlib.h>

void isort(void *base, size_t nmemb, size_t size, int (*compare)(const void *,
const void *))

DESCRIPTION

The isort function is an implementation of the "insertion sort" algorithm which
has the same calling sequence as the standard "qsort" function. This function may be
used to advantage (compared to "qsort"), when the number of items to be sorted is small
(less than 10 or 20).

See the "qsort" function description for detailed parameter explanations.

RETURN VALUE

None

RELATED FUNCTIONS

qsort, ssort

kbhit
check console for keystroke

SYNOPSIS

#include <stdio.h>

int kbhit(void)

DESCRIPTION

The kbhit function returns a non-zero value if a key has been pressed on the
system console, zero if not. This function is not part of the ANSI library, and isn't
supported under many host environments.

RETURN VALUE

See above

RELATED FUNCTIONS

None

labs
compute long absolute value

SYNOPSIS

#include <stdlib.h>

long labs(long l)

DESCRIPTION

The labs function returns the long integer absolute value of a long integer
argument l.

RETURN VALUE

See above

RELATED FUNCTIONS

abs, fabs, fabsf

ldexp/ldexpf
compose floating point number

SYNOPSIS

#include <math.h>

double ldexp(double value, int exp)

float ldexpf(float value, int exp)

DESCRIPTION

The ldexp function builds a floating point number by multiplying the value by
the quantity 2**exp. The ldexpf function does the same thing for a single precision
argument.

RETURN VALUE

See above. A range error ("errno" is set to ERANGE), occurs if the number is
not representable in the floating point format.

RELATED FUNCTIONS

frexp

ldiv
compute long integer quotient and remainder

SYNOPSIS

#include <stdlib.h>

ldiv_t ldiv(long int num, long int denom)

DESCRIPTION

The ldiv function returns the long integer quotient and remainder of dividing
num by denom. If the division is inexact, the sign of the quotient will be the same as the
algebraic quotient, and the magnitude of the quotient will be the largest integer less than
the magnitude of the algebraic quotient. If the result can be represented, then:

num = quotient * denom + remainder

RETURN VALUE

The quotient and remainder are returned in a structure of type "ldiv_t", which has
two long integer members, "quot" and "rem".

RELATED FUNCTIONS

div

localtime
determine local time

SYNOPSIS

#include <time.h>

struct tm *localtime(const time_t *timer)

DESCRIPTION

The localtime function converts the calendar time specified by timer, into local
time, and stores the resulting broken-down time into an internal static data area.

RETURN VALUE

The localtime function returns a pointer to the converted broken-down time. The
broken-down time data area is static, and is shared with the "asctime", "ctime" and
"gmtime" functions. The data will be overwritten upon subsequent calls to any of these
four functions.

RELATED FUNCTIONS

asctime, ctime, gmtime, time

log/logf
compute natural logarithm

SYNOPSIS

#include <math.h>

double log(double x)

float logf(float x)

DESCRIPTION

The log function returns the floating point natural logarithm of x. The logf
function does the same thing for a single precision argument.

RETURN VALUE

A domain error ("errno" set to EDOM), occurs if x is negative. A range error
("errno" is set to ERANGE), occurs if x is zero.

RELATED FUNCTIONS

exp, log10, pow

log10/log10f
compute base-10 logarithm

SYNOPSIS

#include <math.h>

double log10(double x)

float log10f(float x)

DESCRIPTION

The log10 function returns the floating point base-10 logarithm of x. The log10f
function does the same thing for a single precision argument.

RETURN VALUE

A domain error ("errno" set to EDOM), occurs if x is negative. A range error
("errno" is set to ERANGE), occurs if x is zero.

RELATED FUNCTIONS

exp, log, pow

longjmp
non-local jump

SYNOPSIS

#include <setjmp.h>

void longjmp(jmp_buf env, int val)

DESCRIPTION

A call to the longjmp function causes the current function and stack environment
to be replaced with the conditions which existed when the most recent call to the
"setjmp" function occurred which used the same "jmp_buf" structure (env). If the
"setjmp" function hasn't been called with env, or was not called from a function earlier in
the set of nested calls, the results are undefined.

After the longjmp call is completed, all local variable information present at the
previous call to "setjmp" is available, although changes which occurred chronologically
after the "setjmp" call will generally be in effect.

RETURN VALUE

After the longjmp call, the program continues execution as if it had just returned
from "setjmp" with a return value of val. Since the return value of "setjmp" is used to
distinguish between the initial registration call to "setjmp", and the subsequent activation
through the longjmp call, the value of val must not be zero (it will be mapped into a
value of one automatically if zero is used).

RELATED FUNCTIONS

setjmp

lseek
change position within file

SYNOPSIS

#include <stdio.h>

long int lseek(int handle, long int offset, int origin)

DESCRIPTION

The lseek function changes the current read/write position within the file
specified by handle. The new position is computed as an offset (in bytes), from the
measuring position specified by origin. Three macro definitions in "stdio.h" indicate the
legal values for origin:

1. SEEK_SET - The value of offset is measured from the start of the file.

2. SEEK_CUR - The value of offset is measured from the current position in the
file.

3. SEEK_END - The value of offset is measured from the end of the file.

The lseek function is not supported in the ANSI standard library, thus use in new
work is discouraged (the "fseek" function is the recommended replacement).

RETURN VALUE

The new read/write position (in bytes), as measured from the start of the file. A
negative return value indicates an error.

RELATED FUNCTIONS

close, creat, fseek, ftell, open, read, rewind, write

malloc
allocate heap memory

SYNOPSIS

#include <stdlib.h>

void *malloc(size_t size)

DESCRIPTION

The malloc function allocates a region of heap memory large enough to hold an
object of size bytes.

RETURN VALUE

If it is impossible to satisfy the request, or size is zero, a NULL pointer is
returned. Otherwise, a pointer is returned to the start of the allocated region.

RELATED FUNCTIONS

addfree, calloc, cfree, free, realloc

memccpy
string copy with length and terminator

SYNOPSIS

#include <string.h>

void *memccpy(const void *dst, const void *src, int c, size_t n)

DESCRIPTION

The memccpy function copies bytes from src to dst, until either n bytes have
been copied, or a character equal to c is copied, whichever happens first.

RETURN VALUE

If the character c is copied, the return value will be the next address after the
copied character in the dst string. If c is not found, the copy is terminated because of the
maximum length n, and a NULL pointer is returned.

RELATED FUNCTIONS

memccpy, memcpy, strcpy

memchr
string search with length

SYNOPSIS

#include <string.h>

void *memchr(const void *ptr, int c, size_t n)

DESCRIPTION

The memchr function searches at most n bytes, starting at ptr, for the byte value
c.

RETURN VALUE

If the character c is found, the return value will be a pointer to it. If c is not
found, NULL is returned.

RELATED FUNCTIONS

memccpy

memcmp
compare bytes

SYNOPSIS

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n)

DESCRIPTION

The memcmp function compares byte string s1 against byte string s2 for n bytes,
returning zero if they are identical, a negative integer if string s1 is lexicographically less
than string s2, and a positive integer otherwise.

RETURN VALUE

See above

RELATED FUNCTIONS

bcmp

memcpy
string copy with length

SYNOPSIS

#include <string.h>

void *memcpy(void *dst, const void *src, size_t n)

DESCRIPTION

The memcpy function copies n bytes from the location pointed to by src to the
location pointed to by dst.

The memcpy function is equivalent to "bcopy", but with a reversed src and dst
argument order.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef memcpy

RETURN VALUE

Returns the value of dst.

RELATED FUNCTIONS

bcopy, memmove, strcpy

memmove
overlapping string copy with length

SYNOPSIS

#include <string.h>

void *memmove(void *dst, const void *src, size_t n)

DESCRIPTION

The memmove function copies n bytes from the location pointed to by src to the
location pointed to by dst. The memmove function is like "memcpy", except it correctly
handles copying where the src and dst strings overlap.

RETURN VALUE

Returns the value of dst.

RELATED FUNCTIONS

bcopy, memcpy, strcpy

memset
string initialize

SYNOPSIS

#include <string.h>

void *memset(void *ptr, int c, size_t n)

DESCRIPTION

The memset function writes n copies of the character c into memory starting at
ptr.

RETURN VALUE

Returns the value of ptr.

RELATED FUNCTIONS

bcopy, memcpy, memmove, strcpy

modf/modff
truncate floating point number

SYNOPSIS

#include <math.h>

double modf(double x, double *y)

float modff(float x, float *y)

DESCRIPTION

The modf function breaks a floating point number, x, into integral and fractional
parts. Both components retain the same sign as x. The integral part is stored as a
floating point number at the address pointed to by y; the fractional part is returned as the
value of the function. The modff function does the same thing for single precision
arguments.

RETURN VALUE

See above.

RELATED FUNCTIONS

None

Move2D/Move2DNonZero/Move2DZero
2D block move

SYNOPSIS

#include <conc.h>

void Move2D(void *src, void *dst, int w, int n, int sw, int dw)

void Move2DNonZero(void *src, void *dst, int w, int n, int sw, int dw)

void Move2DZero(void *src, void *dst, int w, int n, int sw, int dw)

DESCRIPTION

These functions provide "C" bindings for the two dimensional block move
instructions supported by some Transputers. The functions are only available on
Transputers which support the instructions.

The arguments to all three functions are identical:

src - The source base address for the move.

dst - The destination base address for the move.

w - The width in bytes of the rows to be copied.

n - The number of rows to be copied.

sw - The source array "stride" width in bytes.

dw - The destination array "stride" width in bytes.

The Move2D function uses the "move2dinit" and "move2dall" instructions to
perform a two dimensional block move, without worrying about the values of the bytes
moved.

The Move2DNonZero function is the same as Move2D, except only bytes which
are non-zero are copied from the source to the destination (uses the "move2dnonzero"
instruction instead of "move2dall").

The Move2DZero function is the same as Move2D, except only bytes which are
zero are copied from the source to the destination (uses the "move2dzero" instruction
instead of "move2dall").

These functions are implemented "inline". To get a functional version, precede
your call with:

#undef Move2D

Or,

#undef Move2DNonZero

Or,

#undef Move2DZero

See the applicable INMOS documentation for more information about the
underlying instructions used by these functions.

RETURN VALUE

None

RELATED FUNCTIONS

None

_ns_exit
non-server exit

SYNOPSIS

#include <stdlib.h>

void _ns_exit(void)

DESCRIPTION

The _ns_exit function is an analog to "exit" which is used when a program
running on the Transputer isn't connected to a host server. Under these circumstances,
(there is no environment to return a status value to), this function simply stops the current
process.

This function is one of three functions which are provided for use when no host
server is desired. The others:

"_ns_main" - A replacement for "_main" (specified to TLNK as the desired entry
point). Does everything the normal "_main" does except request command line
arguments from the host.

"_ns_printf" - Equivalent in capabilities to "_printf", except no I/O server is
assumed. All output is written to the "_host_chan_out" "hard" channel as plain ASCII
text (no protocol).

There are a number of reasons to use these functions in lieu of the full fledged
equivalents:

1. They are very simple, and are useful during the early stages of a port of the
Transputer Toolset (when not everything might be working correctly).

2. They use a very small amount of ram. This is useful when the program being run
doesn't require anything beyond "_printf" for I/O, and you wish to get the last ounce of
performance out of it by loading everything possible in on-chip ram. A related case is
when hardware development is underway, and only on-chip ram is currently functioning
(or that is all the design allows the Transputer).

To use these three functions, they must replace the normal protocol-driven host
I/O services. This is done by specifying "_ns_main" as the entry point to TLNK, and
ensuring that no routine which requires the host server is called during program
execution.

RETURN VALUE

None

RELATED FUNCTIONS

_ns_printf

_ns_printf
non-server _printf

SYNOPSIS

#include <stdio.h>

void _ns_printf(const char *format, ...)

DESCRIPTION

The _ns_printf function is an analog to "_printf" which is used when a program
running on the Transputer isn't connected to a host server. All output is written to the
"_host_chan_out" "hard" channel as plain ASCII text (no protocol).

This function is one of three functions which are provided for use when no host
server is desired. The others:

"_ns_main" - A replacement for "_main" (specified to TLNK as the desired entry
point). Does everything the normal "_main" does except request command line
arguments from the host.

"_ns_exit" - Like, "exit", but doesn't require host server.

There are a number of reasons to use these functions in lieu of the full fledged
equivalents:

1. They are very simple, and are useful during the early stages of a port of the
Transputer Toolset (when not everything might be working correctly).

2. They use a very small amount of ram. This is useful when the program being run
doesn't require anything beyond "_printf" for I/O, and you wish to get the last ounce of
performance out of it by loading everything possible in on-chip ram. A related case is
when hardware development is underway, and only on-chip ram is currently functioning
(or that is all the design allows the Transputer).

To use these three functions, they must replace the normal protocol-driven host
I/O services. This is done by specifying "_ns_main" as the entry point to TLNK, and
ensuring that no routine which requires the host server is called during program
execution.

WARNING: UNLIKE THE REGULAR "_printf", THIS FUNCTION IS NOT
SAFE TO USE CONCURRENTLY. RESTRICT YOUR USE OF "_ns_printf" TO
A SINGLE PROCESS.

RETURN VALUE

None

RELATED FUNCTIONS

_ns_exit

open
low level file open

SYNOPSIS

#include <stdio.h>
#include <fcntl.h>

int open(char *path, int flags, int mode)

DESCRIPTION

The open function opens the file specified by path. The allowed operations on
the file are controlled by the setting of flags, and the mode parameter is used to specify
the desired access permissions when open is told to create the file.

The following symbolic bit mask definitions are used with the flags parameter:

O_APPEND - Position the file pointer to the end of the file prior to
performing a write.

O_BINARY - Open the file in untranslated mode (no CR/LF mapping
nonsense).

O_CREAT - If the file doesn't exist create it and open it for writing. See the
following description for the mode flag.

O_EXCL - Return an error if the file exists (used with O_CREAT).
O_NONBLOCK - Return if the I/O would block.
O_RDONLY - Open file only for reading.
O_RDWR - Open the file for reading and writing.
O_TEXT - Open the file in translated mode (perform CR/LF mapping if

host OS requires it).
O_TRUNC - Open the file and toss contents.
O_WRONLY - Open file only for writing.

If the values of the above macros are bitwise OR'ed together, and passed as the
flags parameter, the actions are presumed to be combined (not all combinations are legal
however).

Note that not all of the macro definitions are usable with all the host operating
systems which exist. In particular, the O_BINARY and O_TEXT flags are commonly
restricted to PC's and VMS, while the O_NONBLOCK flag is used mostly with UNIX
and derivatives. If a flag has no meaning in a particular environment it may still be used
in programs without any adverse effects.

The mode parameter applies only when the O_CREAT bit is part of the flags
argument, and determines what permission setting the file should be given when closed
(see the "creat" function description).

The following symbolic bit mask macro definitions are allowed with mode:

S_IREAD - Allow file reading
S_IWRITE - Allow file writing

If the values of the above two macros are bitwise OR'ed together, and passed as
the mode parameter, the file is assumed to allow both reading and writing.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The open function returns a positive value (a "handle"), for the file if the
open/create is successful, otherwise (-1) is returned and "errno" is set appropriately.

RELATED FUNCTIONS

close, creat, dup, dup2, read, write

perror
write "errno" message

SYNOPSIS

#include <stdio.h>

void perror(const char *ptr)

DESCRIPTION

The perror function writes the error message corresponding to the current value
of "errno" to the "stderr" output stream. The error message printed is composed of the
string pointed to by ptr (if non-NULL), followed by a colon and space, and the error
message which corresponds to the value of "errno".

There is a basic problem when using this function (or "strerror"), to print the
meaning of a value in "errno":

1. The value of "errno" may be the result of a host server I/O error; whereupon the
host environment definitions for "errno" should be used.

2. The value of "errno" may be a result of a error detected with the runtime library
on the Transputer; thus the Transputer Toolset "errno" definitions should be used.

The solution actually adopted was to only report the "errno" values (and naming
scheme), which are used by the library functions running on the Transputer. For errors
which happen on the host system, the results of the perror function aren't defined.

A further problem with "errno" arises because it is a shared global variable. In a
program consisting of many processes, each of which uses the same "errno", how do you
determine which process detected the error?

RETURN VALUE

None

RELATED FUNCTIONS

strerror

PFork/PForkHigh/PForkLow
process forking

SYNOPSIS

void PFork(Forkblk f, PDes p)

void PForkHigh(Forkblk f, PDes p)

void PForkLow(Forkblk f, PDes p)

DESCRIPTION

These three routines start a new process at either the current priority (PFork),
high priority (PForkHigh), or low priority (PForkLow). These routines are part of the
"Fork/Join concurrency model" library package provided with the Transputer Toolset.
The routines take two parameters; a "Forkblk" structure f, and a process descriptor
structure p.

The "Forkblk" structure, f, must have been previously initialized with a call to
"PForkInit". The "PDes" structure, p, must have been previously initialized with a call to
"PSetup". The forked process terminates by returning from the initial entry function
specified to "PSetup" when p was initialized.

WARNING: THESE FUNCTIONS ARE IMPLEMENTED AS MACROS! THEY
SHOULD NOT BE CALLED WITH A "p" PARAMETER WHOSE
EVALUATION INVOLVES "SIDE EFFECTS", AS THE PARAMETER WILL
BE EVALUATED MORE THAN ONCE! DOING SOMETHING LIKE:

PFork(f,PSetup(...stuff...));

WILL NOT WORK! DO THE FOLLOWING INSTEAD:

PDes p;
...
p = PSetup(...stuff...);
PFork(f,p);

See the Transputer Concurrency (Fork/Join Model) section at the beginning of
this manual for more information.

RETURN VALUE

These routines have no return value and are implemented as macros.

RELATED FUNCTIONS

PForkInit, PHalt, PJoin, PRun, PSetup, PStop

PForkInit
initialize process fork structure

SYNOPSIS

void PForkInit(Forkblk f, int n)

DESCRIPTION

The PForkInit macro initializes a "Forkblk" structure. This function is part of
the "Fork/Join concurrency model" library package provided with the Transputer
Toolset. The function takes two parameters; a "Forkblk" structure to initialize, f, and the
number of processes which will be forked, n.

The fork/join operation is similar to using one of the "ProcPar*" functions, except
the originating parent process continues execution in parallel with the forked child. This
avoids the allocation of an extra stack (workspace), and also the need for an initial entry
function for the extra process. The parameter, n, thus specifies the total number of
outstanding processes which will be synchronized with the later "PJoin" call (including
the original parent process). After the "PJoin" call (which will block the parent until all
child processes terminate), the parent process will awake and continue execution. Note
that all the child processes need not be forked at the same time. If the number of
children to be forked is not known in advance, the number can be adjusted at run time
with the proviso that it always remain positive. For example, the following program
skeleton shows one approach to adjusting the number dynamically:

PForkInit(f,1);
for(...)

{
...
p = PSetup(...)
pri = ProcToHigh();
f.count++;
if(pri)

(void) ProcToLow();
PFork(f,p);
...
}

PJoin(f);

WARNING: THIS FUNCTION IS IMPLEMENTED AS A MACRO! IT SHOULD
NOT BE CALLED WITH A "f" PARAMETER WHOSE EVALUATION
INVOLVES "SIDE EFFECTS", AS THE PARAMETER WILL BE EVALUATED
MORE THAN ONCE!

See the Transputer Concurrency (Fork/Join Model) section at the start of this
manual for more information.

RETURN VALUE

This routine has no return value and is implemented as a macro.

RELATED FUNCTIONS

PFork, PForkHigh, PForkLow, PHalt, PJoin, PRun, PSetup, PStop

PHalt
kill current process and save descriptor

SYNOPSIS

#include <conc.h>

void PHalt(PDes *pid)

DESCRIPTION

The PHalt function kills the current process and stores the terminated process
descriptor in pid. Since the process descriptor is saved, the process may be later
restarted using "PRun". This function is part of the "Fork/Join concurrency model"
library package provided with the Transputer Toolset.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef PHalt

RETURN VALUE

None

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PJoin, PRun, PSetup, PStop

PJoin
merge previously forked processes

SYNOPSIS

#include <conc.h>

void PJoin(Forkblk *f)

DESCRIPTION

The PJoin function blocks until all processes which are associated with the
"Forkblk" structure (f), terminate. The "Forkblk" structure is assumed to have been
initialized by a call to "PForkInit", and subsequent process fork actions (calls to "PFork",
"PForkHigh" or "PForkLow"). This function is part of the "Fork/Join concurrency
model" library package provided with the Transputer Toolset.

See the Transputer Concurrency (Fork/Join Model) section at the start of this
manual for more information.

RETURN VALUE

None

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PHalt, PRun, PSetup, PStop

pow/powf
compute x to the y power

SYNOPSIS

#include <math.h>

double pow(double x, double y)

float powf(float x, float y)

DESCRIPTION

The pow function returns the the value of x raised to the power y. The powf
function does the same thing for single precision arguments.

RETURN VALUE

See above. A domain error occurs if x is negative and y is non-integral ("errno"
is set to EDOM). A range error ("errno" is set to ERANGE), may also occur.

RELATED FUNCTIONS

exp, log, log10

printf
formatted write

SYNOPSIS

#include <stdio.h>

int printf(const char *format, ...)

DESCRIPTION

The printf function writes to the "stdout" stream. The write is formatted under
the control of the format argument, which specifies how subsequent arguments (if any),
are to be converted for output. If there are too few arguments to match the requirements
of the format string, the results are undefined. If arguments remain after meeting the
requirements of the format string, they are evaluated and ignored. The printf function
returns when it finishes evaluating the format string.

The format string consists of a '\0' terminated character sequence composed of
ordinary characters (other than '%'), which are simply copied to "stdout". The '%'
character is used to mark the beginning of a format specification.

Format Specification

A format specification is generally used to describe how an argument to "printf"
should be converted, formatted, and written to "stdout". After the '%' character, the
following fields make up a format specification:

1. Zero or more "flags". These are general qualifiers to the format specification.

2. An optional, non-zero, decimal integer specifying a minimum field width for the
result. If the converted and formatted value has fewer characters than the field width, it
will be padded with spaces on the left (or right, if the "left adjustment" flag, described
later, has been given), to the minimum field width.

3. An optional "precision" qualifier which gives the minimum number of digits to
appear for the 'd', 'i', 'o', 'u', 'x', and 'X' conversions, the number of digits to appear after
the decimal point for 'e', 'E', and 'f' conversions, the maximum number of significant
digits for the 'g' and 'G' conversions, or the maximum number of characters to be written
from a string with the 's' conversion. The "precision" qualifier takes the form of a period,
followed by an optional decimal integer (zero is assumed if the integer is omitted).

4. An optional 'h' qualifier indicating that the argument to the following 'd', 'i', 'o',
'u', 'x', or 'X' conversion will be a "short int" or "unsigned short int" (or that the argument
to a 'n' conversion will be a "short int" pointer). In place of the 'h', a 'l' may appear,
which has the same general meaning as 'h', except all arguments are assumed to be
"long", rather than "short". The final optional alternative to the 'h' and 'l' qualifiers is 'L',
which indicates the argument to the following 'e', 'E', 'f', 'g', or 'G' conversion will be of
type "long double", rather than "double". If the 'h', 'l', or 'L' qualifiers is used with a
conversion other than one of the ones listed, the results are undefined.

5. Finally, the character which specifies which conversion is to be performed.

Note that either the minimum field width, or the "precision" (or both), may use '*'
in place of the decimal integer, to allow the values to be dynamically configured. The '*'
is replaced with the value of an additional argument to printf (at run time). If either '*'
option is used, corresponding integer argument(s) must be supplied to printf (in order),
before the argument which is the subject of the conversion. A negative field width
argument is taken as a '-' flag, followed by a positive field width. A negative precision is
ignored.

Flags

The legal "flags" are:

'-' - Left justify the conversion within the field.

'+' - Force a sign to be written for signed conversions.

' ' - Prepend a space before the result for signed conversions if the result was non-
negative (and a '+' sign wouldn't normally be printed). The '+' flag takes precedence over
this flag if both are used.

'#' - Use an "alternate" form for the conversion. For 'o', this increases the precision
to force the first digit of the result to be zero. For 'x' or 'X', a non-zero result will have
'0x' or '0X' (respectively), prepended. For the 'e', 'E', 'f', 'g', and 'G' conversions, the
result will always have a decimal point (the decimal point is not normally written unless
at least one digit follows it). For the 'g' and 'G' conversions, trailing zeros (otherwise
pruned), will be written. The '#' flag produces undefined results with conversions other
than these.

'0' - For the 'd', 'i', 'o', 'u', 'x', 'X', 'e', 'E', 'f', 'g', and 'G' conversions, leading zeros
(following any base or sign indication), are used to pad the result to the field width. This
is in lieu of the padding with spaces which would normally occur. The '-' flag takes
precedence over the '0' flag. If an explicit precision is specified for the 'd, 'i', 'o', 'u', 'x',
and 'X' conversions, the '0' flag is also ignored. The '0' flag produces undefined results
with conversions other than these.

Conversions

The following are the legal conversion characters:

'c' - A "int" argument is converted to "unsigned char", and the resulting character
written out.

'd'
'i'
'o'
'u'
'x'
'X' - A "int" argument is converted to signed decimal ('d' or 'i'), unsigned octal ('o'),
unsigned decimal ('u'), or unsigned hexadecimal ('x' or 'X'). The letters "abcdef" are used
for the six additional digits needed with 'x' ("ABCDEF" with 'X'). The "precision"
qualifier specifies the minimum number of digits to appear (expanded, if necessary, with
leading zeros). If no "precision" is specified, the default is one digit. If zero is converted
with a precision of zero, nothing will be printed.

'e'
'E' - A "double" argument is converted in the style [-]d.dddeSdd ('S' represents a '+'
or '-' sign). The 'E' form will substitute 'E' for the 'e' exponent field character. The
number of digits after the decimal point is equal to the "precision". If no "precision" is
specified, the default is six digits. If the "precision" is zero, no decimal point is written.
The exponent always contains at elast two digits. The result is rounded to the number of
digits written.

'f' - A "double" argument is converted to decimal notation in the style [-]ddd.ddd,
where the number of digits after the decimal point is equal to the "precision". If no
"precision" is specified, the default is six digits. If the "precision" is zero, no decimal
point is written. If a decimal point appears, it will be followed by at least one digit. The
result is rounded to the number of digits written.

'g'
'G' - A "double" argument, to be converted with 'g', is equivalent to using either 'f' or
'e', depending on the characteristics of the value being converted. If the 'G' conversion is
used, the conversion is equivalent to using 'E'. The "precision" specifies the number of
significant digits (minimum one). The 'e' conversion will only be used if the exponent is
less than (-4), or greater than (or equal to), the "precision". Trailing zeros are removed
from the fractional part of the result. A decimal point only appears if followed by a
digit.

'n' - A "integer" pointer argument is assumed. The current number of characters
written (so far), by this printf call, is stored at the address specified in the argument.

'p' - A "void" pointer is displayed in an implementation dependent manner
(hexadecimal notation for the Transputer Toolset).

's' - The argument is assumed to be a pointer to an array of characters (a '\0'
terminated "string"). No more characters are written than the "precision" (if specified).

'%' - A '%' is written to "stdout" (ie. a "%%" format specification writes a single '%').

Conversion specifications other than these produce undefined results.

Don't Worry

In no case does a small field width cause truncation of a result! If the result of a
conversion is wider than the field, the field width is expanded. There is, however, a
maximum field width (per-conversion), of 509 characters in this implementation.

RETURN VALUE

The number of characters written (negative values indicate an error).

RELATED FUNCTIONS

fprintf, sprintf, vfprintf, vprintf, vsprintf

EXAMPLES

To print a date and time in the form "Saturday, June 2, 10:01", where "weekday"
and "month" are pointers to '\0' terminated strings:

#include <stdio.h>

print_date(char *weekday, char *month, int day, int hour, int min)
{
printf("%s, %s %d, %.2d:%.2d\n", weekday, month, day, hour,

min);
}

To print PI to 4 decimal places:

#include <stdio.h>
#include <math.h>

main()
{
printf("pi=%.4f", 4.0 * atan(1.0));
}

_printf
simple formatted write

SYNOPSIS

#include <stdio.h>

int _printf(const char *format, ...)

DESCRIPTION

The _printf function is a stripped down version of the normal "printf" function.
It is mainly used where the full facilities of "printf" are not required, and the vastly
smaller amount of memory consumed is helpful. It doesn't support floating point, option
"flags", field widths or precision values. It also doesn't support any return value (despite
the prototype). See the "printf" function description for more information.

RETURN VALUE

None

RELATED FUNCTIONS

printf

ProcAfter
suspend process until specified time

SYNOPSIS

#include <conc.h>

void ProcAfter(int time)

DESCRIPTION

The ProcAfter function blocks the current process until the value of the timer for
the current priority level is after time. Note that the timer runs at different rates for high
(1 uS/tick), and low priority (64 uS/tick), processes.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ProcAfter

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcWait, SetTime, Time

ProcAlloc
allocate asynchronous process

SYNOPSIS

#include <conc.h>

Process *ProcAlloc(void (*f)(), int s, int np, int p1, int p2, ...)

DESCRIPTION

The ProcAlloc function builds a stack frame for a new process using memory
obtained from the heap. It also allocates memory for a "Process" structure which will
define the stack frame characteristics. The stack frame is set to a total size of s bytes, and
is initialized with the values of np words worth of integral parameters (p1, p2, ...). The
initial function to execute in the new process is set using function pointer f; it will be
passed the parameters (process_ptr, p1, p2, ...), upon process creation. The process_ptr
parameter will be of type "Process *" and will be the address of the "Process" structure
returned by the ProcAlloc call.

The s (stack size), parameter may be set to zero, in which case 64K bytes will be
allocated on 32 bit Transputers (2K bytes on 16 bit Transputers). Remember that the
default heap size is only 128K bytes (32K bytes on the 16 bit Transputers), and counting
overhead, only one 64K region may be successfully allocated on a 32 bit Transputer.
Modification of the default heap size will allow allocation up to the limits of physical
memory availability (see the Heap Management section at the beginning of this manual
for more information). The actual amount of stack space required will vary based on the
demands the process places on "auto" variables, and the nesting depth of function calls,
etc. Keep in mind, for example, that the "printf" family of library functions requires 600
or 700 bytes of stack space! There is also a "minimum" stack size specification which is
allowed based on having space to set up the function linkage, and store the parameters,
and the requested allocation will be increased to this "minimum" if necessary.

On successful allocation, ProcAlloc returns a pointer to an initialized "Process"
structure (memory for which it has also allocated from the heap). This structure may be
later used with one of the process creation functions such as "ProcRun", "ProcRunHigh",
"ProcRunLow", "ProcPar", "ProcParList", or "ProcPriPar".

When (or if), a process allocated in this fashion is no longer in use, the memory
used may be returned to the heap using the "ProcFree" function. If it is just desired to
change the parameters in the process, a call to "ProcParam" may be used (without
requiring returning the old stack frame and getting a new one).

Note that if a more "static" approach to stack frame creation is desired, the
"ProcInit" function should be considered in lieu of ProcAlloc. If "ProcInit" is used, the
"Process" structure may also be statically allocated and the use of the heap entirely
avoided. The "Fork/Join" functions ("PFork", "PJoin", PSetup", "PRun", ...), could also
be used to completely eliminate the need for a "Process" structure.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

The ProcAlloc function returns NULL if it was unable to allocate the requested
stack frame. Otherwise, a pointer to the initialized "Process" structure is returned.

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PJoin, ProcFree, ProcInit, ProcPar,
ProcParam, ProcParList, ProcPriPar, ProcRun, ProcRunHigh, ProcRunLow, PRun,
PSetup

ProcAlt*
determine the status of channels

ProcAlt
ProcAltList
ProcSkipAlt
ProcSkipAltList
ProcTimerAlt
ProcTimerAltList

SYNOPSIS

#include <conc.h>

int ProcAlt(Channel *c1, ...)

int ProcAltList(Channel **clist)

int ProcSkipAlt(Channel *c1, ...)

int ProcSkipAltList(Channel **clist)

int ProcTimerAlt(int time, Channel *c1, ...)

int ProcTimerAltList(int time, Channel **clist)

DESCRIPTION

These functions allow a process to determine the status of one or more Transputer
input channels.

ProcAlt, ProcSkipAlt, and ProcTimerAlt take an explicit NULL terminated list
of pointers to channels as parmeters. ProcAltList, ProcSkipAltList, and
ProcTimerAltList take a NULL terminated array of pointers to channels as a parameter.
Note that the channel pointers are prioritized based on the order they are listed in.

ProcAlt and ProcAltList cause the current process to block until one of the
channels in its argument list is ready for input. On completion, the routine returns a zero
based index into the parameter list for the ready channel.

ProcSkipAlt and ProcSkipAltList check specified channels. If one of the
channels is ready for input, a zero based index into the parameter list is returned,
otherwise (-1) is returned. These routines do not block waiting for one of the channels,
they return immediately.

ProcTimerAlt and ProcTimerAltList block the current process until one of the
channels is ready for input or the value of the clock (as read by the "Time" function), is
after the time parameter. If the routine times out, a -1 is returned, otherwise a zero based
index into the parameter list is returned.

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

ChanIn, ChanInChar, ChanInInt, ChanOut, ChanOutChar, ChanOutInt,
ProcAfter, ProcWait, Time

ProcCall
call a function with a new workspace

SYNOPSIS

#include <conc.h>

int ProcCall(int (*func), void *ws, int wssize, int p1, ...)

DESCRIPTION

 The ProcCall function allows you to call a function and specify the region of
memory it should use for its workspace (stack). A pointer to the function to call is
passed as func, the start of the new workspace to use as ws, and the workspace size as
wssize (in bytes). Up to five integer parameters may be passed to the function (p1, ...).

Because the Transputer has internal ram which is MUCH faster to access than
normal ram, this function has been implemented to allow the programmer to dynamically
utilize this scarce resource. Moving the workspace of computationally intensive
functions into the fast ram is usually a good first cut at improving execution speed.

It is not uncommon for "C" programs to execute 40% faster when the workspace
is moved into internal memory. The overhead of ProcCall is about 5 times the overhead
of a normal function call.

The fast ram may be used in a static fashion for the stack (as well as program and
data storage), by directives to the TLNK linker. See the TLNK Transputer Linker
User Guide for more information about these possibilities.

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores. Note that the "internal" keyword used in the example in
his paper is not needed with the Transputer Toolset, and is replaced by directives to
TLNK.

RETURN VALUE

The value returned is that produced by the call to func.

RELATED FUNCTIONS

None

EXAMPLE

Call a function named "compute" with one parameter (the integer value 13):

#include <conc.h>

#define SIZE 512
char stack[SIZE];
extern int compute();

main()
{
int result;

result = ProcCall(compute, stack, SIZE, 13);
}

In this case, "compute" is executed with its stack stored in 512 bytes of memory
(the "stack" array). Often, the array reference is replaced by the physical address of the
desired region in internal ram. You must ensure that the region you specify is both,
unused during the execution time of this function, and large enough for the stack space
the function (and any nested calls), require.

ProcGetPriority
get current process priority level

SYNOPSIS

#include <conc.h>

int ProcGetPriority(void)

DESCRIPTION

The ProcGetPriority function atomically returns the current priority level.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ProcGetPriority

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

0 if the current process is high priority, 1 if low.

RELATED FUNCTIONS

ProcToLow, ProcToHigh

ProcFree
deallocate asynchronous process

SYNOPSIS

#include <conc.h>

void ProcFree(Process *p)

DESCRIPTION

The ProcFree function returns a "Process" structure pointed to by p (and the
associated stack frame it defines), to the heap free memory pool. The structure pointed
to by p MUST have been originally obtained by a call to "ProcAlloc", or the results are
undefined. You should also ensure that no currently running (or ever executable),
process is using the stack frame being deallocated.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcInit, ProcPar, ProcParam, ProcParList, ProcPriPar, ProcRun,
ProcRunHigh, ProcRunLow

ProcInit
initialize asynchronous process

SYNOPSIS

#include <conc.h>

void ProcInit(Process *p, void (*f)(), void *sp, int s, int np, int p1, int p2, ...)

DESCRIPTION

The ProcInit function takes a pointer p to a "Process" structure, and related
information about the process, and initializes the "Process" structure accordingly. The
required process information is:

1. A pointer f to the function to call upon process creation.

2. A stack frame pointed to by sp, which is s bytes long.

3. A list of np words worth of integral parameters to be passed to the initial function
(p1, p2, ...).

The ProcInit function is called by "ProcAlloc" to initialize the stack frames it
allocates from the heap. ProcInit may be called directly when you wish to use memory
obtained elsewhere for the stack frame and "Process" structure.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcFree, ProcPar, ProcParam, ProcParList, ProcPriPar, ProcRun,
ProcRunHigh, ProcRunLow

ProcPar/ProcParList
run asynchronous processes

SYNOPSIS

#include <conc.h>

void ProcPar(Process *p1, Process *p2, ...)

void ProcParList(Process **plist)

DESCRIPTION

The ProcPar function takes a NULL terminated parameter list of "Process"
pointers, and runs all the associated processes (p1, p2, ...), in parallel. Control is
returned to the calling function when all the initiated processes terminate. The
ProcParList function does the same thing but uses a pointer to a NULL terminated
vector of "Process" pointers (plist), as a parameter instead.

In either case, the processes are run at the same priority as the calling function.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcFree, ProcInit, ProcParam, ProcPriPar, ProcRun, ProcRunHigh,
ProcRunLow

ProcParam
modify asynchronous process parameters

SYNOPSIS

#include <conc.h>

void ProcParam(Process *p, int p1, int p2, ...)

DESCRIPTION

The ProcParam function takes a pointer p to a "Process" structure, and a set of
integral parameters (p1, p2, ...), for the function to be called by that process, and
initializes the process stack frame so that the function will get the parameters when the
process is created. The "Process" structure must have been previously initialized by
either "ProcAlloc" or "ProcInit" for correct operation. The ProcParam function is used
when it is desired to re-use an existing "Process" structure and stack frame and just
change the parameters to the function call. The stack frame must not be in use by a
running process or the results are undefined.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcFree, ProcInit, ProcPar, ProcParList, ProcPriPar, ProcRun,
ProcRunHigh, ProcRunLow

ProcPriPar
run mixed priority processes

SYNOPSIS

#include <conc.h>

void ProcPriPar(Process *phigh, Process *plow)

DESCRIPTION

The ProcPriPar function takes two "Process" pointer arguments, and runs the
associated processes in parallel. The first process argument (phigh), is run as a high
priority process, the second (plow), is run at low priority. Control is returned to the
calling function when both processes terminate.

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcFree, ProcInit, ProcPar, ProcParam, ProcParList, ProcRun,
ProcRunHigh, ProcRunLow

ProcReschedule
suspend and delay current process

SYNOPSIS

#include <conc.h>

void ProcReschedule(void)

DESCRIPTION

The ProcReschedule function blocks the current process and places it at the end
of the process queue at the current priority. This function may be used to implement a
"busy wait" mechanism while giving other processes a chance to execute. Where
possible, you should avoid this function in favor of one of the more efficient, and
elegant, approaches supported by the Transputer hardware. For example, if you need to
wait on input data on a channel, use one of the "ProcAlt" family of functions instead.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ProcReschedule

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

None

ProcRun/ProcRunHigh/ProcRunLow
run asynchronous process

SYNOPSIS

#include <conc.h>

void ProcRun(Process *p)

void ProcRunHigh(Process *p)

void ProcRunLow(Process *p)

DESCRIPTION

These functions create a new process using the information in the "Process"
structure pointed to by p.

The ProcRun function causes the new process to have the same priority as the
process which calls ProcRun. The ProcRunHigh function forces the process to execute
at high priority, while ProcRunLow forces low priority execution.

The "Process" structure must have been previously initialized by a call to
"ProcAlloc" or "ProcInit" (possibly modified by a call to "ProcParam").

For additional information about process primitives, see the included paper by
Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAlloc, ProcInit, ProcPar, ProcParam, ProcParList, ProcPriPar

ProcStop
kill current process

SYNOPSIS

#include <conc.h>

void ProcStop(void)

DESCRIPTION

The ProcStop function kills the current process. As the process descriptor
information is not saved (see the "Phalt" function), there is no way to later restart a
process killed in this fashion.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ProcStop

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

This function is equivalent to the "PStop" function.

RETURN VALUE

None

RELATED FUNCTIONS

PHalt, PStop

ProcToHigh
change to high priority

SYNOPSIS

#include <conc.h>

int ProcToHigh(void)

DESCRIPTION

The ProcToHigh function forces the current process to execute at high priority.
It is designed to be used with the "ProcToLow" function to protect critical code sections.

RETURN VALUE

The previous priority level is returned: zero if it was already at high priority, one
if it was at low priority.

RELATED FUNCTIONS

ProcToLow

ProcToLow
change to low priority

SYNOPSIS

#include <conc.h>

int ProcToLow(void)

DESCRIPTION

The ProcToLow function forces the current process to execute at low priority. It
is designed to be used with the "ProcToHigh" function to protect critical code sections.

RETURN VALUE

The previous priority level is returned: one if it was already at low priority, zero
if it was at high priority.

RELATED FUNCTIONS

ProcToHigh

ProcWait
suspend process for specified time

SYNOPSIS

#include <conc.h>

void ProcWait(int time)

DESCRIPTION

The ProcWait function blocks the current process for at least time timer ticks.
Note that the timer runs at different rates for high (1 uS/tick), and low priority (64
uS/tick), processes.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef ProcWait

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAfter, SetTime, Time

PRun
process fork primitive

SYNOPSIS

#include <conc.h>

void PRun(PDes p)

DESCRIPTION

The PRun function takes an initialized "PDes" structure, p, and starts the
associated process. This function is part of the "Fork/Join concurrency model" library
package provided with the Transputer Toolset, and is a primitive used by the "PFork",
"PForkHigh", and "PForkLow" macros. Boiled down, this function is a "C" binding for
the Transputer "runp" instruction.

The "PDes" structure, p, must have been initialized with a previous call to the
"PSetup" function. Note that "PSetup" doesn't provide the low order priority bit (if
needed). To run a process at low priority you execute something like:

PRun(PSetup(...) | 1);

Other process descriptors which may be used with PRun come from functions
such as "PHalt", "ChanReset", etc. See the appropriate INMOS documentation
concerning the "runp" instruction for more information.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef PRun

See the Transputer Concurrency (Fork/Join Model) section at the start of this
manual for more information.

RETURN VALUE

None

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PHalt, PJoin, PSetup, PStop

PSetup
initialize process fork process

SYNOPSIS

#include <conc.h>

PDes PSetup(void *ws, void (*func)(), int wsize, int psize, ...)

DESCRIPTION

The PSetup function initializes a workspace and process descriptor for used with
a later "process fork" operation ("PFork", "PForkHigh" or "PForkLow"). The "PDes"
structure returned is an initialized process descriptor which points to the new "forkable"
process created by PSetup. The PSetup function is analogous to "ProcInit", except the
"Process" structure is not required. The parameters include a pointer to the memory area
to use for the new process workspace (stack), ws, the size of the workspace in bytes,
wsize, a pointer to the function to serve as entry point for the new process, func, and a
specification of how many words worth of memory the parameters to be passed to the
function will occupy, psize. If psize is non-zero, the desired parameters should follow
psize in the function argument list.

The PSetup function is part of the "Fork/Join concurrency model" library
package provided with the Transputer Toolset. See the Transputer Concurrency
(Fork/Join Model) section at the start of this manual for more information.

RETURN VALUE

See above

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PHalt, PJoin, PRun, PStop

PStop
kill current process

SYNOPSIS

#include <conc.h>

void PStop(void)

DESCRIPTION

The PStop function kills the current process. As the process descriptor
information is not saved (see the "PHalt" function), there is no way to later restart a
process killed in this fashion. This function is part of the "Fork/Join concurrency model"
library package provided with the Transputer Toolset.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef PStop

This function is equivalent to the "ProcStop" function.

RETURN VALUE

None

RELATED FUNCTIONS

PFork, PForkHigh, PForkInit, PForkLow, PHalt, PJoin, PRun, PSetup

putc/putchar
write a character

SYNOPSIS

#include <stdio.h>

int putc(int c, FILE *stream)

int putchar(int c)

DESCRIPTION

The putc macro writes the character specified by c to the output stream. Since
putc is defined to be a macro, the arguments may be evaluated more than once, and must
not have side-effects. To get a functional version, use either the "fputc" equivalent, or
precede the function call with:

#undef putc

The putchar macro is identical to putc, but without the stream argument ("stdout"
is assumed). The same precautions relative to argument side effects (and solutions),
apply.

RETURN VALUE

These functions return the character written (or EOF on error).

RELATED FUNCTIONS

fgetc, fputc, getc, getchar, ungetc

puts
write a line

SYNOPSIS

#include <stdio.h>

int puts(const char *ptr)

DESCRIPTION

The puts function writes the string pointed to by ptr to the "stdout" stream. A
newline is written to replace the terminating '\0' character.

RETURN VALUE

The puts function returns EOF if an error occurs; otherwise a non-negative value.

RELATED FUNCTIONS

fgets, fputs, gets

qsort
quick sort

SYNOPSIS

#include <stdlib.h>

void qsort(void *base, size_t nmemb, size_t size, int (*compare)(const void *,
const void *))

DESCRIPTION

The qsort function is an implementation of the "quick sort" algorithm. It sorts an
array of nmemb objects, the first object of which base points to. Each object is size
bytes in size. The array is sorted in ascending order using a programmer supplied
comparison function (pointed to by compare).

The compare function takes two arguments which point to two objects to be
compared. The compare function should return a positive value if the first object is
considered to be "greater-than" the second object; a value of zero if the objects are
considered to be "equal"; otherwise a negative value.

The order "equal" elements have in the resulting sorted array is undefined (in sort
terminology, qsort is "unstable").

Two other sort routines are provided with the same calling sequence as qsort, for
use where the data set matches special circumstances. See the "isort" and "ssort"
descriptions for more information.

RETURN VALUE

None

RELATED FUNCTIONS

isort, ssort

rand
integral random number

SYNOPSIS

#include <stdlib.h>

int rand(void)

DESCRIPTION

The rand function returns a sequence of pseudo-random integers in the range of
zero to 2**31. No other library function calls rand; but the "frand" function shares the
same "seed". The "seed" may be set for rand using the "srand" function.

RETURN VALUE

See above

RELATED FUNCTIONS

frand, srand

read
low level file read

SYNOPSIS

#include <stdio.h>

int read(int handle, char *buf, size_t n)

DESCRIPTION

The read function reads n bytes, from the file opened with handle, to the buffer
pointed to by buf.

The file must have been previously opened by a call to "open" or "creat", and be
readable.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The read function returns the number of bytes actually read. A return value of
zero indicates EOF, (-1) indicates an error ("errno" will be set appropriately).

If the file being read has been opened in a "text" mode, and the host OS performs
CR/LF mappings, the return value may be less than what was requested WITHOUT
indicating that no more bytes are available in the file (beyond those fetched by the
current read call).

Note the difficulty that reading a 65535 byte file on a computer with a 16 bit "int"
size causes (the non-error and error return values are the same).

RELATED FUNCTIONS

close, creat, dup, dup2, open, write

realloc
change allocation of heap memory

SYNOPSIS

#include <stdlib.h>

void *realloc(void *ptr, size_t size)

DESCRIPTION

The realloc function changes the size of an existing allocated region of heap
memory. The contents of the region will be unchanged up to the lesser of the old and
new size values. If the new size is larger, the value of the newly allocated portion of the
region is undefined. If the value of ptr is NULL, the function behaves like the "malloc"
function called with size as the parameter. If the requested space is unavailable, the
region pointed to by ptr is not changed. If size is zero, and the value of ptr wasn't
NULL, the ptr region is returned to the heap free storage pool.

If the value of ptr wasn't NULL, and the value wasn't the result of an earlier call
to "calloc", "malloc" or "realloc", the results are undefined.

RETURN VALUE

If it is impossible to satisfy the request, or size is zero, a NULL pointer is
returned. Otherwise, a pointer is returned to the start of the (possibly moved), allocated
region.

RELATED FUNCTIONS

addfree, calloc, cfree, free, malloc

remove
delete file

SYNOPSIS

#include <stdio.h>

int remove(const char *pathname)

DESCRIPTION

The remove function deletes the file specified by pathname. If the file is
currently open the results are undefined.

RETURN VALUE

If the deletion is successful, zero is returned; otherwise non-zero.

RELATED FUNCTIONS

rename, unlink

rename
change file name

SYNOPSIS

#include <stdio.h>

int rename(const char *oldname, const char *newname)

DESCRIPTION

The rename function changes the name of the file pointed to by oldname, into
the name pointed to by newname. If a file already exists using the newname string as a
name, the results are undefined.

RETURN VALUE

If the renaming is successful, zero is returned; otherwise non-zero. If not
successful, the original name is still in force.

RELATED FUNCTIONS

None

restorefp
restore floating point pseudo registers

SYNOPSIS

#include <conc.h>

void restorefp(FPstate *fp)

DESCRIPTION

The restorefp function is only required for programs which use floating point,
and are running on Transputers which lack hardware floating point support. It allows
restoring the floating point emulation registers which were saved as a result of a previous
call to "savefp". As mentioned in the "savefp" description, use of these functions is only
required when floating point operations are being done by processes at both low and high
priority.

See the "savefp" function description for more information about how these
functions should be used.

RETURN VALUE

None

RELATED FUNCTIONS

savefp

rewind
rewind stream

SYNOPSIS

#include <stdio.h>

void rewind(FILE *stream)

DESCRIPTION

The rewind function rewinds the current read/write position for stream to the
very beginning. It also clears the "error" and "eof" flags for the stream.

RETURN VALUE

None

RELATED FUNCTIONS

fseek, ftell, lseek

rindex
reverse search string for character

SYNOPSIS

#include <string.h>

char *rindex(const char *ptr, int c)

DESCRIPTION

The rindex function searches a string, pointed to by ptr, for the last occurrence
of the character c. A pointer to where the character was found is returned, or NULL, if a
'\0' string terminator was found instead. The '\0' character is considered part of the string
and may be searched for. This function is called "strrchr" in ANSI libraries, and use of
that name is recommended for all new work.

RETURN VALUE

See above

RELATED FUNCTIONS

index, strchr, strrchr

savefp
save floating point pseudo registers

SYNOPSIS

#include <conc.h>

void savefp(FPstate *fp)

DESCRIPTION

The savefp function is only required for programs which use floating point, and
are running on Transputers which lack hardware floating point support. It allows saving
the floating point emulation registers for later restoration with a call to "restorefp". Use
of these functions is only required when floating point operations are being done by
processes at both low and high priority.

On floating point Transputers, a context switch from low to high priority results
in the automatic saving of the low priority floating point registers by the processor. For
Transputers which lack floating point support, this action is simulated by having the high
priority process call "savefp" to save the previous "pseudo floating point register" values
prior to performing any floating point operations. When the process is finished with all
floating point use, a matching call to "restorefp" may be used to restore the previous
values.

Using this technique, the floating point emulation routines may be shared by both
low and high priority processes without conflict. Note that only high priority processes
which use floating point will require this protection.

The parameter to savefp should be a structure of type FPstate (fp), whose storage
duration lasts between the time savefp is called, and the (later), matching call to
"restorefp".

RETURN VALUE

None

RELATED FUNCTIONS

restorefp

scanf
formatted read

SYNOPSIS

#include <stdio.h>

int scanf(const char *format, ...)

DESCRIPTION

The scanf function reads from the "stdin" stream. The read is formatted under
the control of the format argument, which specifies the legal input text sequences and
conversion instructions. Subsequent arguments (if any), are used as pointers to the
objects which receive converted data from the input. If there are too few arguments to
match the requirements of the format string, the results are undefined. If arguments
remain after meeting the requirements of the format string, they are evaluated and
ignored. scanf returns when the input text fails to match the requirements of the format
string, or when the format string is exhausted.

The format string consists of a '\0' terminated character sequence composed of:

1. Whitespace characters. These match zero or more whitespace characters read
from the input (the whitespace read is ignored).

2. Ordinary characters (non-'%'). These must match exactly with characters read
from the input (which are ignored after being read).

3. Format specifications (starting with '%'). These are generally used to describe
what input text is a legal match for this part of the format string, how to read and
convert the text, and how to store the result.

Format Specification

After the '%' character, the following fields make up a format specification:

1. An optional assignment suppression character ('*'). This causes any text read
while matching this format specification to be discarded. No argument is need in the call
to scanf to store the results of this conversion.

2. An optional decimal integer which specifies the maximum field width.

3. An optional 'h', 'l', or 'L' character, which defines the size of the receiving object.
The 'd', 'i', and 'n' conversion specifiers are preceded with 'h' to indicate the
corresponding argument is a pointer to "short int", or by 'l', to indicate a pointer to "long
int". The 'o', 'u', and 'x' conversion specifiers are treated in the same fashion, except the
parameters are taken to be "unsigned short int", and "unsigned long int", respectively.
The 'l' character may be used with the 'e', 'f', and 'g' conversion specifiers to indicate a
pointer to "double" ("float" is the default), or, alternatively, 'L' may be used to indicate a
pointer to "long double". If the 'h', 'l', or 'L' characters are used with any other
conversion specifier, the results are undefined.

4. Finally, the character which specifies the desired input sequnce to match and
convert.

Note that input whitespace is ignored for the purposes of reading and matching
conversions (except with the '[', 'c' and 'n' conversion specifiers).

Conversions

The following are the legal conversion characters:

'c' - Matches a sequence of input characters up to the specified field width (default
of one). The corresponding argument will be a pointer to a character array large enough
to store the matched sequence.

'd' - Matches an optionally signed decimal integer. The format matched is
equivalent to that accepted by the "strtol" function with a "base" argument of ten. The
corresponding argument will be a pointer to "int".

'e'
'E'
'f'
'g'
'G' - Matches an optionally signed floating point number. The format matched is
equivalent to that accepted by the "strtod" function. The corresponding argument will be
a pointer to "float".

'i' - Matches an optionally signed integer, whose format is either decimal,
hexadecimal, or octal. The format matched is equivalent to that accepted by the "strtol"
function with a "base" argument of zero. The corresponding argument will be a pointer
to "int".

'n' - No input is matched or read. The corresponding argument will be a pointer to
"int", into which a current count of the input characters read by this call to scanf will be
written. Evaluation of this conversion specifier doesn't affect the return value from scanf
(the # of successful assignments).

'o' - Matches an optionally signed octal integer. The format matched is equivalent to
that accepted by the "strtoul" function with a "base" argument of eight. The
corresponding argument will be a pointer to "unsigned int".

'p' - Matches an implementation defined sequence which is produced by the 'p'
conversion specifier in the "printf" function. This "address" value takes the form of a
normal hexadecimal integer in the Transputer Toolset.

's' - Matches a sequence of non-whitespace characters. The coresponding argument
will be a pointer to a character array large enough to store the string (and the terminating
'\0' which is automatically added).

'u' - Matches an optionally signed decimal integer. The format matched is
equivalent to that accepted by the "strtoul" function with a "base" argument of ten. The
corresponding argument will be a pointer to "unsigned int".

'x'
'X' - Matches an optionally signed hexadecimal integer. The format matched is
equivalent to that accepted by the "strtoul" function with a "base" argument of sixteen.
The corresponding argument will be a pointer to "unsigned int".

'[' - Matches a non-empty set of characters from a set of "expected" characters. The
corresponding argument will be a pointer to a character array large enough to store the
string (and the terminating '\0' which is automatically added). The conversion specifier
includes all subsequent characters in the format string until a matching ']' is encountered.
The characters between the brackets constitute the "expected" set, unless a '^' character
immediately follows the '[' (in which case all characters EXCEPT THOSE listed,
constitute the "expected" set). As a special case, the ']' is allowed to be in the "expected"
set if it immediately follows the '[' (or to not be in the "expected" set, if it immediately
follows a "[^"). When the special case is in effect, the concluding ']' will be the second
one encountered in the format string.

'%' - Matches a literal '%' in the input. This allows "%%" to behave like an ordinary
character in the format string.

Conversion specifications other than these produce undefined results.

Caveat

There is a maximum field width (per-conversion), of 509 characters, for this
implementation.

RETURN VALUE

The scanf function returns EOF if an input failure occurs before any conversions.
Otherwise, scanf returns the number of input sequences which were matched, converted,
and assigned. The number of sequences returned, may be less than the number provided
for in the format string, if a match fails, or EOF is encountered.

If EOF occurs in the middle of matching an input sequence, such that the match
may already be considered successful (not counting optionally matched whitespace), the
EOF is considered to merely terminate the current match. Any remaining conversions,
however, will be immediately aborted if they require input.

RELATED FUNCTIONS

fscanf, sscanf, strtod, strtol, strtoul

EXAMPLES

The program fragment:

#include <stdio.h>
int n,i; float x; char name[49];
n = scanf("%d%f%s", &i, &x, name);

with the input line:

24 54.31E-1 johnson

will assign the value 3 to 'n', 24 to 'i', 5.431 to 'x', and store the string "johnson\0" into
array "name". Or:

#include <stdio.h>
int i; float x; char name[51];
scanf("%2d%f%*d %[0123456789]", &i, &x, name);

with the input line:

45678 0123 55:72

will assign the value 45 to 'i', 678.0 to 'x', will skip 0123, and store the string "55\0" into
array "name". The next character to be read will be ':'.

To repeatably read a quantity, unit of measure, and the name of an item, the
following code fragment:

#include <stdio.h>
int cnt; float quant; char units[25]; item [25];
while(!eof(stdin) && !ferror(stdin))

{
cnt = scanf("%f%24s of %24s",&quant, &units, &item);
scanf("%*[^\n]"); /* Slurp rest of line */
}

with input lines:

1 quart of milk
100 degrees Celsius
loads of fun

will produce a series of actions equivalent to:

1. quant = 1.0; strcpy(units,"quart"); strcpy(item,"milk"); cnt = 3;
2. quant = 100.0; strcpy(units,"degrees"); cnt = 2; /* No "of" */
3. cnt = 0; /* No quantity */
4. cnt = EOF; /* No input data */

SemAlloc/SemFree
semaphore allocation

SYNOPSIS

#include <conc.h>

Semaphore *SemAlloc(void)

void SemFree(Semaphore *s)

DESCRIPTION

The SemAlloc function returns a pointer to an initialized semaphore. The
memory for the semaphore is obtained from the heap.

The SemFree function takes a semaphore, s, previously allocated using
SemAlloc, and returns it to the heap free storage pool.

Note that semaphores may also be statically allocated (either globally, or as
"auto" variables), if the dynamic creation and destruction allowed by SemAlloc and
SemFree isn't required. To "statically" allocate/initialize a semaphore, the following
might be used:

Semaphore xyz = SEMAPHOREINIT;

For additional information, see the included paper by Jeff Mock: Processes,
Channels and Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

HSemP, HSemV, SemP, SemV

SemP/_SemP/SemV/_SemV
mono-priority semaphores

SYNOPSIS

#include <conc.h>

int SemP(Semaphore s)

int _SemP(Semaphore *s)

int SemV(Semaphore s)

int _SemV(Semaphore *s)

DESCRIPTION

The SemP and SemV macros implement semaphore operations on the
Transputer. These macros must not be used in situations where the same semaphore is
shared among processes at different priority levels (use "HSemP" and "HSemV" in those
cases). The SemP macro implements the "P" operation on a semaphore; it blocks the
current process until the semaphore, s, is free. The SemV macro implements the
complementary "V" operation, freeing the semaphore and starting the first process (if
any), waiting in the semaphore queue. Note that the parameter to these functions is the
semaphore proper, not a pointer to it. The _SemP and _SemV functions are primitives
used by the macros (they should not be called directly).

The semaphore implementation is such that the routines may be used either as
"binary" or "counting" semaphores.

Semaphores to be used by these routines must be initialized before use. This is
automatically handled by the "SemAlloc" function, and should be performed manually if
the semaphore is "statically" declared. See the "SemAlloc" function description for more
information.

WARNING: THE SemP and SemV FUNCTIONS ARE IMPLEMENTED AS
MACROS! THEY SHOULD NOT BE CALLED WITH A "s" PARAMETER
WHOSE EVALUATION INVOLVES "SIDE EFFECTS", AS THE PARAMETER
WILL BE EVALUATED MORE THAN ONCE!

For additional information, see the included paper by Jeff Mock: Processes,
Channels and Semaphores.

RETURN VALUE

These functions return the "use" field from the s "Semaphore" structure.

RELATED FUNCTIONS

HSemP, HSemV, SemAlloc, SemFree

setjmp
initialize non-local jump

SYNOPSIS

#include <setjmp.h>

int setjmp(jmp_buf env)

DESCRIPTION

A call to the setjmp function saves a copy of the calling environment in the
"jmp_buf" argument, env, for later use by a "longjmp" call. See the description of the
"longjmp" function for more information.

RETURN VALUE

If the return is from the initial, direct, invocation of setjmp, zero is returned. If
the return is a result of a subsequent call to the "longjmp" function, the return value is
non-zero.

RELATED FUNCTIONS

longjmp

SetHiPriQ/SetLoPriQ
set queue pointers

SYNOPSIS

#include <conc.h>

void SetHiPriQ(void *front, void *back)

void SetLoPriQ(void *front, void *back)

DESCRIPTION

These functions provide "C" bindings for the Transputer "sthf/sthb" (SetHiPriQ),
and "stlf/stlb" (SetLoPriQ), instructions. The front parameter is used to set the queue
front pointer, the back parameter sets the queue back pointer. The values being set
should be word aligned. See the appropriate INMOS documentation for more
information about the "stXX" instructions.

These functions are implemented "inline". To get a functional version, precede
your call with:

#undef SetHiPriQ

Or,

#undef SetLoPriQ

RETURN VALUE

None

RELATED FUNCTIONS

GetHiPriQ, GetLoPriQ

SetTime
set timer value for current priority

SYNOPSIS

#include <conc.h>

void SetTime(int time)

DESCRIPTION

The SetTime function sets the timer for the current priority level to time. Note
that the timer runs at different rates for high (1 uS/tick), and low priority (64 uS/tick),
processes.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef SetTime

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

ProcAfter, ProcWait, Time

sin/sinf
compute sine

SYNOPSIS

#include <math.h>

double sin(double x)

float sinf(float x)

DESCRIPTION

The sin function returns the sine of x (measured in radians). The sinf function
does the same thing for a single precision argument.

RETURN VALUE

A large magnitude argument may yield a result with little significance.

RELATED FUNCTIONS

acos, asin, atan, cos, tan

sinh/sinhf
compute hyperbolic sine

SYNOPSIS

#include <math.h>

double sinh(double x)

float sinhf(float x)

DESCRIPTION

The sinh function returns the hyperbolic sine of x. The sinhf function does the
same thing for a single precision argument.

RETURN VALUE

A range error ("errno" is set to ERANGE), occurs if the magnitude of x is too
large.

RELATED FUNCTIONS

cosh, tanh

sprintf
formatted write to memory

SYNOPSIS

#include <stdio.h>

int sprintf(char *ptr, const char *format, ...)

DESCRIPTION

The sprintf function writes characters into the array pointed to by ptr. The write
is formatted under the control of the format argument, which specifies how subsequent
arguments (if any), are to be converted. See the "printf" function description for more
information about formatting options.

RETURN VALUE

The number of characters written into the array (not counting the terminating '\0'
character).

RELATED FUNCTIONS

fprintf, printf, vfprintf, vprintf, vsprintf

sqrt/sqrtf
compute square root

SYNOPSIS

#include <math.h>

double sqrt(double x)

float sqrtf(float x)

DESCRIPTION

The sqrt function returns the floating point square root of a non-negative floating
point argument x. The sqrtf function does the same thing for a single precision
argument.

On floating point Transputers this function is implemented "inline". To get a
functional version, precede your call with:

#undef sqrt

Or,

#undef sqrtf

RETURN VALUE

A domain error ("errno" is set to EDOM), occurs if x is negative.

RELATED FUNCTIONS

None

srand
set random number seed

SYNOPSIS

#include <stdlib.h>

void srand(unsigned int)

DESCRIPTION

The srand function sets the pseudo-random number "seed" value, for subsequent
calls to "frand" and "rand". Explicitly calling srand, with the same value, allows
restarting the same sequence. The initial setting of the "seed" is equivalent to calling
srand with a seed value of one.

RETURN VALUE

None

RELATED FUNCTIONS

frand, rand

sscanf
formatted read from memory

SYNOPSIS

#include <stdio.h>

int sscanf(const char *ptr, const char *format, ...)

DESCRIPTION

The sscanf function reads characters from the array pointed to by ptr. The read
is formatted under the control of the format argument, which specifies the legal input
text sequences and conversion instructions. Subsequent arguments (if any), are used as
pointers to the objects which receive converted data from the input. See the "scanf"
function description for more information about formatting options.

RETURN VALUE

The sscanf function returns EOF if an input failure (running into the '\0' string
terminator), occurs before any conversions. Otherwise, sscanf returns the number of
input sequences which were matched, converted, and assigned. The number of
sequences returned, may be less than the number provided for in the format string, if a
match fails, or '\0' is encountered.

If running into '\0' occurs in the middle of matching an input sequence, such that
the match may already be considered successful (not counting optionally matched
whitespace), the '\0' is considered to merely terminate the current match. Any remaining
conversions, however, will be immediately aborted if they require input.

RELATED FUNCTIONS

fscanf, scanf, strtod, strtol, strtoul

ssort
shell sort

SYNOPSIS

#include <stdlib.h>

void ssort(void *base, size_t nmemb, size_t size, int (*compare)(const void *,
const void *))

DESCRIPTION

The ssort function is an implementation of the "shell sort" algorithm which has
the same calling sequence as the standard "qsort" function. This function may be used to
advantage for medium sized and large data sets which provoke worst case "qsort"
performance (either almost already sorted or anti-sorted input data, depending on
implementation). Note that for more arbitrary input data, "qsort" will almost always be
faster.

See the "qsort" function description for detailed parameter explanations.

RETURN VALUE

None

RELATED FUNCTIONS

isort, qsort

strcat
string concatenation

SYNOPSIS

#include <string.h>

char *strcat(char *dst, const char *src)

DESCRIPTION

The strcat function appends the string pointed to by src, to the end of the string
pointed to by dst. A copy of the first character of the src string overwrites the '\0' string
terminator at the original end of the dst string; a copy of the second character in the src
string is written in the next location beyond the end of dst, etc. The '\0' terminator in the
src string is included in the copy to form a new dst string termination. If the resulting
dst string overlaps the src string, the results are undefined.

RETURN VALUE

The dst address is returned.

RELATED FUNCTIONS

strncat

strchr
search string for character

SYNOPSIS

#include <string.h>

char *strchr(const char *ptr, int c)

DESCRIPTION

The strchr function searches a string, pointed to by ptr, for the first occurrence
of the character c. A pointer to where the character was found is returned, or NULL, if a
'\0' string terminator was found instead. The '\0' character is considered part of the string
and may be searched for.

RETURN VALUE

See above

RELATED FUNCTIONS

strrchr

strcmp
string compare

SYNOPSIS

#include <string.h>

int strcmp(const char *s1, const char *s2)

DESCRIPTION

The strcmp function compares the string pointed to by s1 and the string pointed
to by s2.

RETURN VALUE

The strcmp function returns a value greater than zero if string s1 is
lexicographically greater than string s2. If string s1 is equal to s2, a value of zero is
returned. If string s1 is lexicographically less than string s2, a negative value is returned.

RELATED FUNCTIONS

memcmp, strncmp

strcpy
string copy

SYNOPSIS

#include <string.h>

char *strcpy(char *dst, const char *src)

DESCRIPTION

The strcpy function copies the string pointed to by src, to the address pointed to
by dst. The '\0' string termination is part of the string copied. If the resulting dst string
overlaps the src string, the results are undefined.

This function is implemented as a macro and may be "inlined" depending on the
value of src. To get a functional version, precede your call with:

#undef strcpy

RETURN VALUE

The dst address is returned.

RELATED FUNCTIONS

memcpy, memmove, strncpy

strcspn
character class complement substring search

SYNOPSIS

#include <string.h>

size_t strcspn(const char *s1, const char *s2)

DESCRIPTION

The strcspn function returns the length of the maximum initial segment of the
string pointed to by s1 which contains no characters from the string pointed to by s2.

RETURN VALUE

See above

RELATED FUNCTIONS

strpbrk, strspn

strerror
convert error into string

SYNOPSIS

#include <string.h>

char *strerror(int errnum)

DESCRIPTION

The strerror function takes an argument, errnum, which represents a value to
which the "errno" variable could be set, and returns a string describing the error. The
string buffer used is static, and may be overwritten by a subsequent call to strerror.

There is a basic problem when using this function (or "perror"), to translate the
meaning of a value taken from "errno":

1. The value of "errno" may be the result of a host server I/O error; whereupon the
host environment definitions for "errno" should be used.

2. The value of "errno" may be the result of an error detected by the runtime library
on the Transputer; thus the Transputer Toolset "errno" definitions should be used.

The scheme actually adopted was to only report the "errno" values (and naming
scheme), which are used by the library functions running on the Transputer. For errors
which happen on the host system, the results of the strerror function aren't defined.

A further problem with "errno" arises because it is a shared global variable. In a
program consisting of many processes, each of which uses the same "errno", how do you
determine which process detected the error?

RETURN VALUE

A pointer to the error message.

RELATED FUNCTIONS

perror

strlen
string length

SYNOPSIS

#include <string.h>

size_t strlen(const char *ptr)

DESCRIPTION

The strlen function returns the length in bytes (not counting the '\0' terminator),
of the string pointed to by ptr.

This function is implemented as a macro and may be "inlined" depending on the
value of ptr. To get a functional version, precede your call with:

#undef strlen

RETURN VALUE

See above

RELATED FUNCTIONS

None

strncat
string concatenation with length

SYNOPSIS

#include <string.h>

char *strncat(char *dst, const char *src, size_t n)

DESCRIPTION

The strncat function appends up to n characters of the string pointed to by src, to
the end of the string pointed to by dst. A copy of the first character of the src string
overwrites the '\0' string terminator at the original end of the dst string; a copy of the
second character in the src string is written in the next location beyond the end of dst,
etc. A '\0' terminator is always written to the end of the new dst string. If the resulting
dst string overlaps the src string, the results are undefined.

RETURN VALUE

The dst address is returned.

RELATED FUNCTIONS

strcat

strncmp
string compare with length

SYNOPSIS

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n)

DESCRIPTION

The strncmp function compares up to n characters from the string pointed to by
s1 to the string pointed to by s2. The '\0' string terminator also stops the comparsion if
the strings are shorter than n bytes in length.

RETURN VALUE

The return value of strncmp is based on at most the first n characters in the
strings being compared. The strncmp function returns a value greater than zero if string
s1 is lexicographically greater than string s2. If string s1 is equal to s2, a value of zero is
returned. If string s1 is lexicographically less than string s2, a negative value is returned.

RELATED FUNCTIONS

memcmp, strcmp

strncpy
string copy with length

SYNOPSIS

#include <string.h>

char *strncpy(char *dst, const char *src, size_t n)

DESCRIPTION

The strncpy function copies up to n characters from the string pointed to by src,
to the address pointed to by dst. The '\0' string termination is part of the string copied
and is counted against the maximum length n. If the resulting dst string overlaps the src
string, the results are undefined. If the src string was shorter than n bytes in length
(counting terminator), '\0' padding bytes are appended to the dst string until n bytes total
have been written.

RETURN VALUE

The dst address is returned.

RELATED FUNCTIONS

memcpy, memmove, strcpy

strpbrk
character class string search

SYNOPSIS

#include <string.h>

char *strpbrk(const char *s1, const char *s2)

DESCRIPTION

The strpbrk function finds the first occurrence, in the string pointed to by s1, of
any character in the string pointed to by s2.

RETURN VALUE

A pointer to the character found, or NULL if no character from s2 is found in s1.

RELATED FUNCTIONS

memchr, strchr

strrchr
reverse search string for character

SYNOPSIS

#include <string.h>

char *strrchr(const char *ptr, int c)

DESCRIPTION

The strrchr function searches a string, pointed to by ptr, for the last occurrence
of the character c. A pointer to where the character was found is returned, or NULL, if a
'\0' string terminator was found instead. The '\0' character is considered part of the string
and may be searched for.

RETURN VALUE

See above

RELATED FUNCTIONS

strchr

strspn
character class substring search

SYNOPSIS

#include <string.h>

size_t strspn(const char *s1, const char *s2)

DESCRIPTION

The strspn function returns the length of the maximum initial segment of the
string pointed to by s1 which contains only characters from the string pointed to by s2.

RETURN VALUE

See above

RELATED FUNCTIONS

strcspn, strpbrk

strstr
substring search

SYNOPSIS

#include <string.h>

char *strstr(const char *s1, const char *s2)

DESCRIPTION

The strstr function returns a pointer to the first occurrence of the string pointed
to by s2, in the string pointed to by s1. The '\0' string terminator is not counted as part of
the search.

RETURN VALUE

On success, a pointer to the matching string found in the string pointed to by s1.
On failure, a NULL pointer is returned. If s2 is of zero length, s1 is returned.

RELATED FUNCTIONS

strcspn, strpbrk, strspn

strtod/strtol/strtoul
convert strings to numbers

SYNOPSIS

#include <stdlib.h>

double strtod(const char *nptr, char **endptr)

long strtol(const char *nptr, char **endptr, int base)

unsigned long strtoul(const char *nptr, char **endptr, int base)

DESCRIPTION

The strtod function converts an ASCII numeric string pointed to by nptr into the
equivalent floating point number. The strtol and strtoul functions do the same thing for
long integers, and unsigned long integers, respectively. In all cases, whitespace is
allowed before the numeric string and the first unrecognized character (in the selected
base), stops the conversion. Also, if endptr is non-NULL, a pointer to the unrecognized
character is stored into the object pointed to by endptr.

strtod recognizes a numeric string consisting of an optional sign, a digit sequence
with optional decimal point, and an optional exponent ('e' or 'E', optional sign and
exponent digit sequence).

strtol and strtoul recognize integral numbers consisting of an optional sign and
digit sequence in a specified base. If the value of base is zero, the expected digit
sequence is that of a "C" integer constant (ie. decimal, hexadecimal, or octal notation,
without any integer suffix). If the value of base is between 2 and 36, the expected digit
sequence is a sequence of numbers and letters representing an integer with radix
specified by base. The letters from 'a' ('A'), through 'z' ('Z'), are used for the values 10 to
35 when base is greater that 10; only digits and letters whose value is less than the base
are allowed. If the value of base is 16, the "0x" and 0X" hexadecimal prefixes are
permitted.

RETURN VALUE

The converted value. If no conversion could be performed (or the correct value
would cause underflow), zero is returned. If the correct value would cause overflow
strtod returns +/- HUGE_VAL, strtol returns LONG_MAX/LONG_MIN, and strtoul
returns ULONG_MAX. If underflow or overflow is detected, "errno" is set to
ERANGE.

RELATED FUNCTIONS

atof, atoi, atol

strtok
break string into tokens

SYNOPSIS

#include <string.h>

char *strtok(char *s1, const char *s2)

DESCRIPTION

The strtok function returns pointers into the string pointed to by s1, which are
delimited by characters in the string pointed to by s2. The strtok function is designed to
be used repetitively to decompose a string into individual '\0' terminated substrings. The
strtok function remembers, between calls, where it was in processing the string pointed
to by s1. This, the s1 argument should be replaced with a NULL pointer for the second
and subsequent calls to strtok for the same (s1), string. The delimiter string, s2, may
vary from one call to the next.

The first call to strtok returns a NULL pointer if the first character in the string
pointed to by s1, is also in the delimiter string, s2. If not, strtok searches for the first
character in s1 which is in s2, replaces it with a '\0' terminator, and returns the pointer s1.

Each subsequent call behaves in a similar fashion, except, the search begins at the
first character after the '\0' terminator written by the previous call to strtok.

RETURN VALUE

A pointer to the start of the next token, or NULL if no token matching the
delimiting characters could be found.

RELATED FUNCTIONS

None

system
call host command processor

SYNOPSIS

#include <stdlib.h>

int system(const char *ptr)

DESCRIPTION

The system function passes the string pointed to by ptr, to the host environment
command processor for execution. If ptr is NULL, the system function may be used to
determine if a command processor exists.

RETURN VALUE

If ptr was NULL, a non-zero return value indicates a command processor exists.
If ptr was non-NULL (a string), the return value is assumed to be a value returned from
the command processor after execution of the supplied string.

RELATED FUNCTIONS

exit

tan/tanf
compute tangent

SYNOPSIS

#include <math.h>

double tan(double x)

float tanf(float x)

DESCRIPTION

The tan function returns the tangent of x (measured in radians). The tanf
function does the same thing for a single precision argument.

RETURN VALUE

A large magnitude argument may yield a result with little significance.

RELATED FUNCTIONS

acos, asin, atan, cos, sin

tanh/tanhf
compute hyperbolic tangent

SYNOPSIS

#include <math.h>

double tanh(double x)

float tanhf(float x)

DESCRIPTION

The tanh function returns the hyperbolic tangent of x. The tanhf function does
the same thing for a single precision argument.

RETURN VALUE

See above

RELATED FUNCTIONS

cosh, sinh

time
determine calendar time

SYNOPSIS

#include <time.h>

time_t time(time_t *timer)

DESCRIPTION

The time function determines the current calendar time.

RETURN VALUE

The time function returns the best approximation to the current time the host
system can compute. If timer is not a NULL pointer, the return value is also stored in
the object it points to.

RELATED FUNCTIONS

asctime, ctime, gmtime, localtime

Time
get timer value for current priority

SYNOPSIS

#include <conc.h>

int Time(void)

DESCRIPTION

The Time function atomically returns the value of the timer for the current
priority level. Note that the timer runs at different rates for high (1 uS/tick), and low
priority (64 uS/tick), processes.

This function is implemented "inline". To get a functional version, precede your
call with:

#undef Time

For additional information see the included paper by Jeff Mock: Processes,
Channels, and Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

ProcAfter, ProcWait, SetTime

tmpfile
create temporary file

SYNOPSIS

#include <stdio.h>

FILE *tmpfile(void)

DESCRIPTION

The tmpfile function creates a temporary binary file which is automatically
deleted when it is closed (or the program terminates). The file is opened in the "wb+"
mode (see the "fopen" function description for more information).

RETURN VALUE

A pointer to the opened stream, or NULL if the file couldn't be created.

RELATED FUNCTIONS

fopen, tmpnam

tmpnam
create unique filename

SYNOPSIS

#include <stdio.h>

char *tmpnam(char *ptr)

DESCRIPTION

The tmpnam function creates a filename which is designed to not conflict with
existing files. The tmpnam function generates a different name each time it is called, up
to at least TMP_MAX times.

If the argument, ptr, is non-NULL, the generated name is stored starting at the
location it points to. The return value will be set to ptr.

If ptr is NULL, the return value will point to an internal buffer area, which may
be overwritten on subsequent tmpnam calls.

There is an inherent race condition in using this function involving the time
between the tmpnam call and the subsequent file creation call. We suggest you use the
"tmpfile" function for all new work.

RETURN VALUE

See above

RELATED FUNCTIONS

tmpfile

toascii/tolower/toupper
map characters

SYNOPSIS

#include <ctype.h>

int toascii(int c)

int tolower(int c)

int toupper(int c)

DESCRIPTION

These macros/functions map various classes of characters into other classes. The
argument, c, is the character to be mapped. These macros/functions are designed to
evaluate the argument only once, and are safe for use with arguments with side-effects.
The individual descriptions:

toascii - Map c into the ASCII character set (c & 0x7F).

tolower - If c is a upper case character, convert it to the lower case equivalent.
Leaves other characters unchanged.

toupper - If c is a lower case character, convert to to the upper case equivalent.
Leaves other characters unchanged.

RETURN VALUE

The (possibly), converted character.

RELATED FUNCTIONS

isalnum, isalpha, isascii, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit

ungetc
push back a character

SYNOPSIS

#include <stdio.h>

int ungetc(int c, FILE *stream)

DESCRIPTION

The ungetc function pushes the character specified by c, back onto the input
stream. Only one ungetc operation is guaranteed to work without an intervening read
operation (although some host systems will support more). Characters pushed back onto
a stream are read in the reverse order they were pushed.

Use of one of the file positioning functions ("fseek", "rewind", ...), will cause any
pushed back characters to be discarded. A successful call to "ungetc" will clear the EOF
flag for the stream. EOF may not be pushed back.

RETURN VALUE

The ungetc function returns the character pushed back (or EOF on error).

RELATED FUNCTIONS

fgetc, fputc, getc, getchar, putc, putchar

unlink
delete file

SYNOPSIS

#include <stdio.h>

int unlink(const char *pathname)

DESCRIPTION

The unlink function deletes the file specified by pathname. If the file is
currently open the results are undefined.

The unlink function is not part of the ANSI standard library. We recommend use
of the equivalent "remove" function for new work.

RETURN VALUE

If the deletion is successful, zero is returned; otherwise non-zero.

RELATED FUNCTIONS

remove, rename

va_arg
variable argument access macro

SYNOPSIS

#include <stdarg.h>

type va_arg(va_list ap, type_expression)

DESCRIPTION

The va_arg macro expands to an expression which has the type and value of the
next argument in the argument list managed by the "va_list" structure, ap. Each
invocation of va_arg modifies ap so that successive arguments are returned. The
"va_list" structure, ap, must have been initialized by a call to "va_start" prior to any use
of va_arg. The parameter, type_expression, is a type name specified such that
appending a '*' to the parameter will yield a legal "C" type expression which is a pointer
to the specified type.

See the description of the "va_end" macro for further information (and an
example of use).

RETURN VALUE

The value of the next argument in the variable argument list (assumed to be of
type type).

RELATED FUNCTIONS

va_end, va_start

va_end
variable argument termination macro

SYNOPSIS

#include <stdarg.h>

void va_end(va_list ap)

DESCRIPTION

The va_end macro terminates processing of the arguments in a variable argument
list, ap. This macro should be called after the argument list is initialized by a call to
"va_start", and has been accessed through a series of "va_arg" calls. The example shows
the usage of the three macros.

RETURN VALUE

None

RELATED FUNCTIONS

va_arg, va_start

EXAMPLE

The function, "argtbl", builds an array of pointers to strings which represents the
parameters passed to "argtbl". The argument array is then passed to function "argtbl2"
for further processing:

#include <stdarg.h>

#define MAX_ARGS 30 /* Whatever the application
requires */

void argtbl(int num_ptrs, ...)
{
va_list ap;
char *arg_ptrs[MAX_ARGS];
int ptr_num = 0;

if(num_ptrs > MAX_ARGS)
num_ptrs = MAX_ARGS;

va_start(ap, num_ptrs);
while(ptr_num < num_ptrs)

arg_ptrs[ptr_num++] = va_arg(ap, char *);
va_end(ap);
argtbl2(num_ptrs, arg_ptrs);
}

Note that in this example, each call to "argtbl" must have a first parameter which
defines how many following parameters are in the argument list.

va_start
variable argument initialization macro

SYNOPSIS

#include <stdarg.h>

void va_start(va_list ap, right_param)

DESCRIPTION

The va_start macro initializes the "va_list" structure, ap, such that subsequent
calls to the "va_arg" macro will evaluate to the arguments in the enclosing function
parameter list. These parameters will be located immediately after the last listed formal
parameter, right_param (right before the ", ...").

See the description of the "va_end" macro for further information (and an
example of use).

RETURN VALUE

None

RELATED FUNCTIONS

va_arg, va_end

VChan
get virtual channel pointer

SYNOPSIS

#include <conc.h>

Channel *VChan(int lchan)

DESCRIPTION

The VChan function translates a logical channel number (lchan), into the
corresponding virtual channel pointer. The virtual channel pointer which is returned may
then be used with the various virtual channel I/O routines.

The user selected lchan value can range from 6 to 32767. It must be the same
value used to refer to the same channel (on a given node), in the "Network Information
File" to be used with LD-NET. LD-NET uses the information during loading to
configure and route virtual channels. VChan is basically a mechanism to allow the
application program to get a pointer to a virtual channel that LD-NET sets up during the
loading process.

Whenever possible, smaller logical channel numbers should be used since it
minimizes the memory overhead of the virtual channel control information. See the LD-
NET documentation for additional information about logical channels and associated
memory usage.

Channel pointers returned by VChan may only be used with the various virtual
channel I/O routines. Using a virtual channel pointer with a non-virtual channel I/O
routine will not work, and may "crash" the Transputer node.

RETURN VALUE

A pointer to the corresponding virtual channel. If lnum is outside the range of 6
to 32767 (or wasn't mentioned in the "Network Information File" used by LD-NET to
load this node), NULL will be returned.

RELATED FUNCTIONS

VChanIn, VChanInChar, VChanInInt, VChanOut, VChanOutChar, VChanOutInt,
VChanVin, VChanVOut, VProc*

VChanIn/VChanInChar/VChanInInt
reading from virtual channels

SYNOPSIS

#include <conc.h>

void VChanIn(Channel *c, void *ptr, int n)

char VChanInChar(Channel *c)

int VChanInInt(Channel *c)

DESCRIPTION

The VChanIn function reads n bytes of data, from the virtual channel pointed to
by c, to the buffer pointed to by ptr. The VChanInChar and VChanInInt functions
may be used to read, and return, the value of a byte or word, respectively, read from the
virtual channel pointed to by c.

These functions are analogous to the "ChanIn", "ChanInChar" and "ChanInInt"
functions (see descriptions elsewhere in this manual), but these functions support both
virtual and regular ("soft"), channels. When used with regular channels the two sets of
functions are equivalent.

When used with a virtual channel, the VChanIn function allows the receipt of a
zero length message. This "synchronization-only" behavior is not allowed with regular
channels on T2/T4/T8 processors. When receiving zero length messages, the specific
destination buffer pointer value (ptr), is unimportant. A value of NULL is a good choice
since it helps document what is going on.

All messages read using one of these functions must be matched by a
corresponding virtual channel output function call whose message length EXACTLY
matches. If variable length data transfer is needed, you should first send a message
header specifying the size of the variable length data to come, followed by sending the
actual data. This allows the input and output operations to always have matching
message lengths. See the "VChanVIn" and "VChanVOut" functions for another
approach to variable length virtual channel communication.

Since virtual channels are bi-directional, it is perfectly permissable to have
processes concurrently performing input and output on the same "end" of a virtual
channel. Since each "end" of a virtual channel is independent, you can potentially have
four processes working on the same virtual channel (although perhaps not all on the same
node since the "ends" may be on different nodes). As regular T2/T4/T8 channels are uni-
directional you may only have one input and one output process working on the same
channel, even if you use them with these virtual channel input functions.

For additional information about "regular channel" primitives, see the included
paper by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

VChan, VChanOut, VChanOutChar, VChanOutInt, VChanVIn, VChanVOut,
VProc*

VChanOut/VChanOutChar/VChanOutIn
t

writing to virtual channels

SYNOPSIS

#include <conc.h>

void VChanOut(Channel *c, void *ptr, int n)

void VChanOutChar(Channel *c, int byte)

void VChanOutInt(Channel *c, int word)

DESCRIPTION

The VChanOut function writes n bytes of data, to the virtual channel pointed to
by c, from the buffer pointed to by ptr. The VChanOutChar and VChanOutInt
functions may be used to write the value of a byte or word, respectively, to the virtual
channel pointed to by c.

When used with a virtual channel, the VChanOut function allows the
transmission of a zero length message. This "synchronization-only" behavior is not
allowed with regular channels on T2/T4/T8 processors. When sending zero length
messages, the specific source buffer pointer value (ptr), is unimportant. A value of
NULL is a good choice since it helps document what is going on.

See the discussion for the corresponding input operations ("VChanIn" ...), for a
more lengthy introduction.

For additional information about "regular channel" primitives, see the included
paper by Jeff Mock: Processes, Channels, and Semaphores.

RETURN VALUE

None

RELATED FUNCTIONS

VChan, VChanIn, VChanInChar, VChanInInt, VChanVIn, VChanVOut, VProc*

VChanVIn/VChanVOut
variable length virtual channel I/O

SYNOPSIS

#include <conc.h>

int VChanVIn(Channel *c, void *ptr, int n)

void VChanVOut(Channel *c, void *ptr, int n)

DESCRIPTION

The VChanVIn function reads at most n bytes of data, from the virtual channel
pointed to by c, to the buffer pointed to by ptr. The return value is the number of bytes
actually read, or -1 if the message is longer than n bytes. The VChanVOut function
writes n bytes of data, to the virtual channel pointed to by c, from the buffer pointed to
by ptr.

These functions are similar to "VChanIn"/"VChanOut", except for the variable
length capability. These functions should only be used with virtual channels since
regular T2/T4/T8 "soft" channels do not support this capability. For proper operation,
messages to be received by the VChanVin function should always be sent by the
VChanVOut function (and vice-versa).

Note that it is perfectly permissable for the output message length specified to
VChanVOut, or the maximum input message length specified to VChanVIn, to be zero.
This provides the capability of a "synchronization-only" message. When receiving or
sending zero length messages, the specific buffer pointer value (ptr), is unimportant. A
value of NULL is a good choice since it helps document what is going on.

See the "VChanIn" function description for more information about virtual
channel usage.

RETURN VALUE

See above

RELATED FUNCTIONS

VChan, VChanIn, VChanInChar, VChanInInt, VChanOut, VChanOutChar,
VChanOutInt, VProc*

vfprintf
vararg formatted write to stream

SYNOPSIS

#include <stdio.h>
#include <stdarg.h>

int vfprintf(FILE *stream, const char *format, va_list arg)

DESCRIPTION

The vfprintf function is identical to the "fprintf" function, except it uses a
"packaged" argument structure, instead of a variable length argument list. The
"packaged" argument structure is initialized by a "va_start" macro call, followed by an
optional "va_arg" macro call for each argument to be added. The vfprintf function does
not invoke the "va_end" macro. See the descriptions of the "va_start", "va_arg", and
"va_end" macros, for more information.

RETURN VALUE

The number of characters written (negative values indicate an error).

RELATED FUNCTIONS

fprintf, printf, sprintf, va_arg, va_end, va_start, vprintf, vsprintf

vprintf
vararg formatted write

SYNOPSIS

#include <stdio.h>
#include <stdarg.h>

int vprintf(const char *format, va_list arg)

DESCRIPTION

The vprintf function is identical to the "printf" function, except it uses a
"packaged" argument structure, instead of a variable length argument list. The
"packaged" argument structure is initialized by a "va_start" macro call, followed by an
optional "va_arg" macro call for each argument to be added. The vprintf function does
not invoke the "va_end" macro. See the descriptions of the "va_start", "va_arg", and
"va_end" macros, for more information.

RETURN VALUE

The number of characters written (negative values indicate an error).

RELATED FUNCTIONS

fprintf, printf, sprintf, va_arg, va_end, va_start, vfprintf, vsprintf

VProcAlt*
determine the status of virtual channels

VProcAlt
VProcAltList
VProcSkipAlt
VProcSkipAltList
VProcTimerAlt
VProcTimerAltList

SYNOPSIS

#include <conc.h>

int VProcAlt(Channel *c1, ...)

int VProcAltList(Channel **clist)

int VProcSkipAlt(Channel *c1, ...)

int VProcSkipAltList(Channel **clist)

int VProcTimerAlt(int time, Channel *c1, ...)

int VProcTimerAltList(int time, Channel **clist)

DESCRIPTION

These functions allow a process to determine the status of one or more input
virtual channels. On T2/T4/T8 processors these functions may also be used with regular
"soft" channels with the restriction that the associated input must be of non-zero length.
These functions operate correctly with either zero or non-zero length input messages
when used with virtual channels.

VProcAlt, VProcSkipAlt, and VProcTimerAlt take an explicit NULL
terminated list of pointers to channels as parmeters. VProcAltList, VProcSkipAltList,
and VProcTimerAltList take a NULL terminated array of pointers to channels as a
parameter. Note that the channel pointers are prioritized based on the order they are
listed in.

VProcAlt and VProcAltList cause the current process to block until one of the
channels in its argument list is ready for input. On completion, the routine returns a zero
based index into the parameter list for the ready channel.

VProcSkipAlt and VProcSkipAltList check specified channels. If one of the
channels is ready for input, a zero based index into the parameter list is returned,
otherwise (-1) is returned. These routines do not block waiting for one of the channels,
they return immediately.

VProcTimerAlt and VProcTimerAltList block the current process until one of
the channels is ready for input or the value of the clock (as read by the "Time" function),
is after the time parameter. If the routine times out, a -1 is returned, otherwise a zero
based index into the parameter list is returned.

These functions are equivalent to the "ProcAlt*" functions described elsewhere in
this manual, except they can handle both regular and virtual channels. For additional
information on the non-virtual channel versions (which is also applicable to these
functions), see the included paper by Jeff Mock: Processes, Channels, and
Semaphores.

RETURN VALUE

See above

RELATED FUNCTIONS

ProcAfter, ProcWait, Time, VChan, VChanIn, VChanInChar, VChanInInt,
VChanOut, VChanOutChar, VChanOutInt, VChanVin, VChanVOut

vsprintf
vararg formatted write to memory

SYNOPSIS

#include <stdio.h>
#include <stdarg.h>

int vsprintf(char *ptr, const char *format, va_list arg)

DESCRIPTION

The vsprintf is identical to the "sprintf" function, except it uses a "packaged"
argument structure, instead of a variable length argument list. The "packaged" argument
structure is initialized by a "va_start" macro call, followed by an optional "va_arg" macro
call for each argument to be added. The vsprintf function does not invoke the "va_end"
macro. See the descriptions of the "va_start", "va_arg", and "va_end" macros, for more
information.

RETURN VALUE

The number of characters written (not counting the '\0' terminating character).

RELATED FUNCTIONS

fprintf, printf, sprintf, va_arg, va_end, va_start, vfprintf, vprintf

write
low level file write

SYNOPSIS

#include <stdio.h>

int write(int handle, char *buf, size_t n)

DESCRIPTION

The write function writes n bytes of data, to the file opened with handle, from
the buffer pointed to by buf.

The file must have been previously opened by a call to "open" or "creat", and be
writable.

As this function is not supported in the ANSI standard library, its use in new
work is discouraged (see the "fopen", "fclose", "fread", and "fwrite" functions for the
recommended replacements).

RETURN VALUE

The write function returns the number of bytes actually written. A return value
of (-1) indicates an error and "errno" will be set appropriately.

Note the difficulty that writing a 65535 byte file on a computer with a 16 bit "int"
size causes (the non-error and error return values are the same).

RELATED FUNCTIONS

close, creat, dup, dup2, open, read

	Contents
	1 Introduction
	Overview

	2 Normal "C" Library Functions
	Character Classification and Mapping
	Numeric Conversion
	Math
	Emulated Math on Transputers

	Heap Management
	Heap Placement and Size

	String Manipulation
	Input/Output
	Alternatives to "_main"
	"_ns_main"
	"_vcmain"
	"_ns_vcmain"

	Miscellaneous

	3 Transputer Specific Library Functions
	Introduction
	Transputer Channel Communication
	Transputer Virtual Channel Communication
	Transputer Channel Status Testing
	Transputer Virtual Channel Status Testing
	Transputer Concurrency (Jeffrey Mock Model)
	Transputer Concurrency (Fork/Join Model)
	Transputer Semaphore Support
	Transputer Timing and Scheduling
	Transputer Miscellaneous

	4 Examples
	Introduction
	Sample Programs

	5 Detailed Library Function Descriptions
	abs - compute integer absolute value
	acos/acosf - compute arc-cosine
	addfree - add memory for heap allocation
	asctime - format broken-down time
	asin/asinf - compute arc-sine
	atan/atanf - compute arc-tangent
	atan2/atan2f - compute arc-tangent of x/y
	atof/atoi/atol - convert strings to numbers
	bcmp - compare bytes
	bcopy - string copy with length
	BitCnt - count the number of 1 bits set
	BitRevNBits - variable bit reversal
	BitRevWord - reverse bits in word
	bzero - set a range of memory to a value
	cabs/cabsf - compute complex absolute value
	calloc - allocate and initialize heap memory
	ceil/ceilf - compute "ceiling"
	cfree - free heap memory
	ChanAlloc/ChanFree - communication channel allocation
	ChanIn/ChanInChar/ChanInInt - reading from channels
	ChanInChanFail/ChanInTimeFail - error read from channel
	ChanOut/ChanOutChar/ChanOutInt - writing to channels
	ChanOutChanFail/ChanOutTimeFail - error write to channel
	ChanReset - reset a channel
	_cioext - host specific server extensions
	clearerr - clear stream status
	close - low level file close
	cos/cosf - compute cosine
	cosh/coshf - compute hyperbolic cosine
	creat - low level file creation
	ctime - format local time
	div - compute integer quotient and remainder
	dup/dup2 - low level file handle duplication
	exit - terminate program execution
	exp/expf - compute exponential
	fabs/fabsf - compute floating point absolute value
	fclose/fcloseall - close streams
	fdopen - convert handle to stream
	feof/ferror - check stream status
	fflush - flush stream
	fft/fftf - compute forward FFT transform
	fgetc - read character
	fgets - read a line
	fileno - convert stream to handle
	floor/floorf - compute "floor"
	fmod/fmodf - compute floating point remainder
	fopen - open stream
	fprintf - formatted write to stream
	fputc - write a character
	fputs - write a line
	frand/frandf - floating point random number
	fread - read from stream
	free - free heap memory
	freopen - redirect stream
	frexp/frexpf - decompose floating point number
	fscanf - formatted read from stream
	fseek - change position within stream
	ftell - report current position within stream
	fwrite - write to stream
	getc/getch/getchar/getche - read a character
	getenv - read environment value
	GetHiPriQ/GetLoPriQ - save queue pointers
	gets - read a line
	gmtime - determine Coordinated Universal Time
	hypot/hypotf - compute Euclidean distance
	HSemP/_HSemP/HSemV/_HSemV - mixed-priority semaphores
	ifft/ifftf - compute inverse FFT transform
	index - search string for character
	is* - classify characters
	isort - insertion sort
	kbhit - check console for keystroke
	labs - compute long absolute value
	ldexp/ldexpf - compose floating point number
	ldiv - compute long integer quotient and remainder
	localtime - determine local time
	log/logf - compute natural logarithm
	log10/log10f - compute base-10 logarithm
	longjmp - non-local jump
	lseek - change position within file
	malloc - allocate heap memory
	memccpy - string copy with length and terminator
	memchr - string search with length
	memcmp - compare bytes
	memcpy - string copy with length
	memmove - overlapping string copy with length
	memset - string initialize
	modf/modff - truncate floating point number
	Move2D/Move2DNonZero/Move2DZero - 2D block move
	_ns_exit - non-server exit
	_ns_printf - non-server _printf
	open - low level file open
	perror - write "errno" message
	PFork/PForkHigh/PForkLow - process forking
	PForkInit - initialize process fork structure
	PHalt - kill current process and save descriptor
	PJoin - merge previously forked processes
	pow/powf - compute x to the y power
	printf - formatted write
	_printf - simple formatted write
	ProcAfter - suspend process until specified time
	ProcAlloc - allocate asynchronous process
	ProcAlt* - determine the status of channels
	ProcCall - call a function with a new workspace
	ProcGetPriority - get current process priority level
	ProcFree - deallocate asynchronous process
	ProcInit - initialize asynchronous process
	ProcPar/ProcParList - run asynchronous processes
	ProcParam - modify asynchronous process parameters
	ProcPriPar - run mixed priority processes
	ProcReschedule - suspend and delay current process
	ProcRun/ProcRunHigh/ProcRunLow - run asynchronous process
	ProcStop - kill current process
	ProcToHigh - change to high priority
	ProcToLow - change to low priority
	ProcWait - suspend process for specified time
	PRun - process fork primitive
	PSetup - initialize process fork process
	PStop - kill current process
	putc/putchar - write a character
	puts - write a line
	qsort - quick sort
	rand - integral random number
	read - low level file read
	realloc - change allocation of heap memory
	remove - delete file
	rename - change file name
	restorefp - restore floating point pseudo registers
	rewind - rewind stream
	rindex - reverse search string for character
	savefp - save floating point pseudo registers
	scanf - formatted read
	SemAlloc/SemFree - semaphore allocation
	SemP/_SemP/SemV/_SemV - mono-priority semaphores
	setjmp - initialize non-local jump
	SetHiPriQ/SetLoPriQ - set queue pointers
	SetTime - set timer value for current priority
	sin/sinf - compute sine
	sinh/sinhf - compute hyperbolic sine
	sprintf - formatted write to memory
	sqrt/sqrtf - compute square root
	srand - set random number seed
	sscanf - formatted read from memory
	ssort - shell sort
	strcat - string concatenation
	strchr - search string for character
	strcmp - string compare
	strcpy - string copy
	strcspn - character class complement substring search
	strerror - convert error into string
	strlen - string length
	strncat - string concatenation with length
	strncmp - string compare with length
	strncpy - string copy with length
	strpbrk - character class string search
	strrchr - reverse search string for character
	strspn - character class substring search
	strstr - substring search
	strtod/strtol/strtoul - convert strings to numbers
	strtok - break string into tokens
	system - call host command processor
	tan/tanf - compute tangent
	tanh/tanhf - compute hyperbolic tangent
	time - determine calendar time
	Time - get timer value for current priority
	tmpfile - create temporary file
	tmpnam - create unique filename
	toascii/tolower/toupper - map characters
	ungetc - push back a character
	unlink - delete file
	va_arg - variable argument access macro
	va_end - variable argument termination macro
	va_start - variable argument initialization macro
	VChan - get virtual channel pointer
	VChanIn/VChanInChar/VChanInInt - reading from virtual channels
	VChanOut/VChanOutChar/VChanOutInt - writing to virtual channels
	VChanVIn/VChanVOut - variable length virtual channel I/O
	vfprintf - vararg formatted write to stream
	vprintf - vararg formatted write
	VProcAlt* - determine the status of virtual channels
	vsprintf - vararg formatted write to memory
	write - low level file write

