Express C

User’s Guide

Version 3.0

© ParaSoft Corporation, 1988, 1989, 1990

ceep tel s

-
EIFED S

e
‘r
e

e d
LN

P Eaad

AROL R Fal DR g PR o 3 N R b

o
P
y‘?é“ .
; i
» B
P z
- N
kY
N
I
s
v Ay §
H
- A G R RS D e ek » e s .

TR L e

A % ERR
- - d Al 5
3 : ‘

All brand and product names are trademarks or reglstered trademarks of
thexr reSpectlve holders

I
-8y

-

[

Copyrxght ©4 1988 1989, 1990

ParaSoft Corporation 3
: - 2500, E.Foothill Blvd. el
oo s Pasadena, CA 91107

PmrtedmtheUﬁA

Table of Contents

Chapter 1: Overview 2
What is Express and what kind of systems can be built with it?

1 Overview L i e e e e e e e e e e e e e e e e e 3

2 What Expressis NOT. ¢ i v v v v e vt e e 3

21 AnOperatingSystem.« . ¢ v v v e e e e e e e e 3

22 ALanguage.t i e s e e e e e e e e e e e e e e e 6

23 TheUltimate Solution. e e e e e e e e e e e e e e 6

3 Whatis EXpress?. i . e e e e e e e e e e e e e e e e 6

31 An“OperatingSystem™ ¢ ¢ ¢ ¢ 4 v v e e e e e e e . 7

32 A Parallel Processing Toolkit 8

4 How toRun Parallel Programs. 9

5 WherecanIuse EXpress? i i v v e v e e e e e 14

6 Conclusions ¢ i i i i e e e e e e e e e e . 16

Chapter 2: An Express tutorial 18

An introduction to parallel processing with Express

1 Introduction0 0t e e e e e e e e e 19

2 Overview e e e e e e e e e e e e e e e 20

21 Hardware. L0 e e e e e e e e e e e . 20

22 Software e e e e e e e e e e e e e e e e e e 22

23 MessagePassing. L 000 s e e e e e e 23

24 ExpressProgrammingModels.. 25

3 AnIntroductionto EXPress. e e 4 v u e e e 27

31 TheExercises i i i it e e e e e e 27

Exercise 1. HelloWorld. 28

Exercise 2. AParallelHelloWorld. 30

Exercise 3. Matrix by Vector Multiplication.. 33

Exercise 4. AParallelSum. 36

Exercise 5. ‘Averaging the contents of a ﬁle b e e e e 39

Exercise 6. A Host - Node Program. e, R Y X

Exercise 7. The “ng” program. Automatic decomposing tools.. . . . 49

Exercise 8. Two .dimensional decomposition with graphics 55

32 Summary. . . e e .;;.:___, G e e e e e e e e e 59

4 Advanced Apphcatlons C e ' ... 60

Exercise 9. Porting exlstmg codes ALMandclbrot program 61

Exercise 10. Matrix transposmon.' 66

Exercise 11. A Spread-sheet Program-.. 68

5 Formoreinformation.00 ... 70

Chapter 3 Express 4 74
A ponable efficient communication system for parallel computers
and much more

1 - IodUCHON « & & v v v e e e e e e e e e 75

2 - Fundamentals oo e 71

. 2.1 System Configuration; Booting Express 77

22 Programmingmodels., 78

2 3 - Software Initialization; Languages. 80

“3 " Processor Allocation and Program Loading. 81

3.1 " ProcessorAllocation L0000 o000 82

4 Node Addressed Interprocessor: Commumcanon 87

41 Messages,NodesandTypes e e e e e e 88

- 42 Blocking Communication Functions 90

- 43" ~Non-blocking Communication Functions e e e e e 94

5 Topology Independent Communication 100

5.1 Automatic Decomposition and Run-Time Configuration 100

.. 52 Using the Automated DecompositionTools 106

. 5.3 Utility Functions and global communication. 112

6 I/Oand Cubix o 115

7 Hardware Dependent Communication. 118

8 Complete Example Programs e e e e e e e e e e e e 122

81 "The*RING”Program. ¢« v v v o .. 122

8.2‘ Other Exampleso 0o e . 130

Chapter 4. Cubix o 132
Programmmg parallel computers without programmmg hosts

I3 _Introducnon e e e e e e e e e e e e e e e e e 133

2 A Different Perspective e 134

3 TheCatch-I/Omodes. 135

- 3.1 Synchronous /O Modes. e e e e e e e e 136

32 AsynchronousMode L0000 0oL 143

33 BufferingModes. Lo Lo 147

3.4 Muliple hosts, Distributed filesystems, etc. 148

4 Debugging: ALastResort 0. .. 149

5 Executing Cubix oo 151

6 Examples e e e e e e e e e e e e e e 151

7 CommonErrors. e e e 152

8 Conclusions e e e e e 153

i

Multltaskmg | E 156

Executmg mu]n le rocesses on individual processors

Introduction e e e e e e e L0157

1

2 Asynchronous Processing - exhandle Lo.. . L 159
3 Mutual Exclusion - Semaphores 166
4 Executing alternate node programs under Cubix.172

5 Portable useof exhandle IS Y

Chapter 6: Parallel Graphics

A s1mp1e, portable, parallel graphics system '"Plotix

1 Introduction PR T ¥ A
2 Coordinate systems e e e e e oL 176
3 Starting, Stopping and Flushing S)
4 GraphicalInput. e e L 184
5 High Level Functionality - Contouring, Clipping, etc..185
6 Colors e e e e e e 187
7 Hardware Dependencies e o . ey, 188
8 Examples e e e .. 190
8.1 The Interaction between Plotix and the exgrld tools 190
8.2 Otherexampleprograms. e 192

9 The Low Level Contouring System e e e . 192
10 Output Device Characteristics 195
10.1 IBM PC and compatibles, Borland Graphics Interface - “~-Thgi”196
10.2 IBM Enhanced Graphics Adapter - “~-Tega”. 196
10.3 SUN system, suntools environment - “~Tsun”. 197
104 SUNsystem, Xwindows-“-TX”197
105 PoStSCript- “~TPS” A T 3
10.6 AXIS NCUBE systems - “~-Trt”,and “~Tnat™. 199
10.7 Macintosh systems - no switch.% .70, 199
Chapter 7: Debugging Parallel Programs 202

Using ndb, a source level debugger for parallel programs

1 Introductiono L0 Lo e . .203
2 ndbinaction L L L. oL 000 s e e e 204
3 GettingStarted L. L0 e 217
4 SetsandPromptso 0oL o o000 219
5 Programs thatneedinputo, 220
6 Examining the processstate 220
7 Tracing back through subroutinecalls. 222

iii

10
11
12

ExaminingData o000 oo 224
Running programs -Breakpointso 0oL 225
Using ndb as a calculator - format modification. 226
Assembly Level Debugging.o 000, 227
Miscellaneous Commands o000 L 228

1ntroduction e 233

- ExecutionProfilingo 000000000 235
2.1 General ProfilingCommands. 235
2.2 Detailsfor CubixPrograms « . ¢« o 4 e . . . 237
2.3 Details for Host-Node Programs. 239

2.4 Analyzing the Execution Profile - xtool. 240
Communication Profiling. o000 00 0oL 242
3.1 General Profiling Commands. 243
3.2 Details for CubixPrograms« .0 243
3.3 Details for Host-Node programs. 244
34 Analyzing the Communication Profile-ctool 245
EventDrivenProfilingo oL S . .254

4.1 General ProfilingCommands. 255
42 Measuring time intervals with “Toggles” 258
43 Details for CubixPrograms 259
44 Details for Host-Node programs. 260
4.5 Analyzing the Event Profile-etool 260
4.6 Analyzing the “Toggle” data-etool -t 269
Exampleprogramso 0w e e e e 269

51 Cubixprogram 0o e e e e 271
52 Host-Node Program, “Host”code 274
53 Host-Node Program, “Node”code. 276

Chapter 9: Network Configuration 278
Using Cnftool to build multi- transputer networks for Express

1 Introduction L L Lo 0L 0oL e e e 279

2 Topologies and Routing Strategies 279

3 Configuring Simple Networks 282

31 Machines with mechanicallinks. 282

3.2 Electrically Configured Machines 287

33 Minimaluseofcnftool L. L oL o oo 292

4 Configuring a Multi Host System. 293

5 Cosmetic Improvementso 296

iv

6 Displaying Routing Information S T 296
7 cnftool withoutgraphics 297
8 Transputer Variants of Standard Topologies 300
Chapter 10: Multiple Hosts 302

Building networks with multiple host processors and using £xpress

1 Introductiono L L0 L Lo 303
2 The “RESET” problem - mechanical connectors. 305
3 The “RESET” problem - Electrical connections 306
4 Configuring Hosts and Booting Express. L0309
5 Using Cubix in a multi-host environment 310
6 Writing host programs in a multihost environment 312
7 Combining Cubix withahostprogram 315
Chapter 11: Customizing Express 318
Modifying the installation, size and performance of Express with
Excustom
1 Customizing EXpresso 000 e e 319
2 The Express “Customization”file 319
3 Modifying System Parameters withexcustom. 320
4 Expressbuffers 0.0 e e 321
5 Express and the Transputer MemoryMap 324
6 Expresson UNIXmachines 327
7 Listing of Express customization variables 328
8 Default locations for Express customizationfiles 332
81 MS-DOS.o 332
82 Unixandlook-alikes, 332
83 Macintosho oo e e e e 332
84 VMS . . . L e e e e e e e e e 333
Appendix A: Index ...t e e e e 334

General index to Express and the examples from the text

© ParaSoft Corporation, 1988, 1989, 1990

Overview

What is Express and what kind of systems
can be built with it?

p 1 Overview

L A major barrier to the effective use of parallel machines is the bewildering array of
hardware and software configurations. Every machine is different from all the others - often
radically so. There is an enormous proliferation of new computer languages, programming
methodologies and operating systems with no accepted standards.

One of the great difficulties for most people in making the transition from sequential to
parallel computing is the enormous initial time investment in learning the basics and getting
the first program running. It is often found that once this hurdle has been overcome parallel
processing can become easy and even, dare one say it, satisfying.

What comprises the initial barrier which makes the entry into parallel processing so hard?
While each parallel machine makes it’s own claims to be just like something else; “UNIX
like operating system”, “VAX like architecture”, “Compatible with MS-DOS”, the
cumulative effect of all the small (and sometimes not so small) variations in operating
systems, programming models, development tools, etc. makes an overwhelming
difference. :

Into this chaotic, stumbling environment we introduce Express.

What can it do?
How can it help?
What makes it different or better than anything else?

The purpose of this document is to explain some of the things that make Express different
from other approaches to parallel computing. Before going into specific details, however,
one might distinguish Express from other systems by saying that it is solely concerned
with parallel processing. It has nothing to say about operating systems or languages or
hardware at all. It is a system that evolved directly from the experiences of people who
wrote parallel programs and while advanced concepts of software engineers are included
in the system, no abstruse theory motivated its design; merely the desire to produce
applications which effectively harness the power of parallel processors.

Because of its concrete (some might say limited) goals Expressis very simple to learn and
use. Getting started under Expressis very straightforward - hopefully this will enable more
people to get involved in parallel processing which, in turn, will result in the availability of
more and better software. Eventually it might even be possible to realize the goals set years
ago when parallel processing was first held up as the programming paradigm of the future.

2 What Expressis NOT

" In order to understand how Express differs from other parallel processing “solutions” it is
probably most important to understand what Express doesn’t do. In a later section we can
then explain just what is available in a much less confusing way.

21 An Operating System

The most disheartening thing that can possibly happen to a newcomer to parallel processing
is to open the manual and read

Why is Express
different?

Simple to learn

Leaves existing
operating system
intact

Express adds to
the existing
commands set of
the host

“Boot the new, parallel operating system MAGIC_OS”

There you are, seated at your familiar terminal, with your nicely personalized environment
under your fingertips and you are told to throw it all away. The manual probably contains
some phrase in it which claims that MAGIC_0S is “just like UNIX” or similar but you
would be wise not to be fooled. At this point you may be faced with learning a whole new
set of commands, a new editor, new backup procedures the list is endless. Furthermore
you probably have particular software that ran on your old system that you won’t be able
to use now without some time consuming switching around of operating systems. You are
probably going to end up in an environment with no “tools” in which you are expected to
generate the world’s fastest, and most parallel piece of software.

This is not to decry the efforts of many people who are developing extremely powerful and
new operating systems for both conventional and parallel processors. On the contrary, such
effort is to be encouraged since it will certainly pave the way to better solutions, one day.

- On the other hand it is extremely painful for the user to have to make the transition to a new

operating system at the same time as the transition to parallel programming.

Express avoids this situation by making absolutely no statements about operating systems.
All that is provided are the basic tools to access the parallel processing system at hand from
the native operating system that you started with.

This point may seem rather subtle at first but may be clarified by considering the evolution
of a simple PC based computer, shown schematically in Figure 1. Originally one starts with
a normal PC running, for the sake of argument, MS-DOS. Such users are notorious
“collectors” of software and tools. Each DOS system has its own little quirks designed to
make life easier for its user. Software for many different purposes is probably involved;
data-base, spreadsheet, games etc.... all the trappings that make programming pleasant.

In order to achieve greater speeds we now purchase a piece of parallel hardware such as a
transputer board. Typically, little software is supplied with such systems so we are now left
with a potentially very powerful computer but few tools to actually obtain real speedups.

To progress further one has to bring in software. One option is to acquire MAGIC_0S and
run it on both the host and the parallel processing hardware. After loading up the new
software you are thrown into a situation like that in the bottom right of Figure 1. MS-DOS,
with all its familiar commands has disappeared and been replaced by MAGIC 0S which
also resides on the parallel machine. The mysterious parallel computer has become slightly
more usable - it can at least communicate with programs running on the host, although it
may be difficult to tell that this is so since the host is now a completely different machine
from the PC it began as.

The alternative option is Express, shown in the lower left part of Figure 1. In this case the
host environment remains just as it was. If you like to use VEDIT under MS-DOS then you
still can. You develop all Express programs within the native environment of the host
machine to which a few commands are added to control, debug and analyze programs
running in parallel. Only when the parallel codes run do you get involved with the parallel
machine. Even then the degree to which you are affected is under your control - if you wish
to have half your program run under DOS on the PC while the other half computes in
parallel, Express will do it for you. Finally the new hardware is revealed as the powerful

PC

<+
MS-DOS

Purchase Hardware

|

PC Bare hard-
+ + ware, no soft-
MS-DOS ware (useless)
Purchase Software

PC
+ Magic_0OS
MS-DOS+
Familiar computing environ- New environment for both
ment with access to powerful user and computer completely
computing machine. replaces existing software.

Figure 1. The evolution of a personal computer into a parallel
computer

resource it was supposed to be.

Note that this discussion is not specific to MS-DOS. Users of UNIX, VMS and Macintosh
are just as loth to leave their customized environments.

22 A Language

One of the other areas which has undergone much study in recent years is the search for the

“Parallel” “perfect” language which will make parallel programming totally transparent to everybody.

languages This search rivals that for the Golden Fleece or the Holy Grail in terms of its immense value
to the world at large; were such a language found life would indeed be easy. Unfortunately,
however, similar comments apply in this case as in the last. Since no perfect parallel
programming language seems to be available yet why not continue to use old-fashioned
languages. After all, vast amounts of code have been written in C and Fortran - why not use
it as the basis for development?

It is surely unreasonable to expect someone with 350,000 lines of code written in Fortran
Dusty decks 66 to convert it into some extremely clever parallel language which must be debugged
afresh.

Again it becomes a question of how much transition one wants to go through in order to get
involved in parallel programming. Just as it is much easier to work in a familiar operating
system/environment it is most often best to start from an existing sequential program. In
this way the changes necessary to achieve parallelism can be monitored more easily and
comparisons are much simpler.

In response to the question of languages Express again replies with a stubborn “No
comment”’; language compilers are indeed provided with Express and some of them do in
fact have “parallel” extensions but the extent to which these are used is entirely up to the
user. If you have a program in Fortran 66 then Express will quite happily allow you to
parallelize and execute it. If you like OCCAM or concurrent Prolog (and a compiler is
available) Express will let you use that too!

2.3 The Ultimate Solution

As has already been hinted several times, Express is not going to make parallel
programming completely automatic. It will not take an existing piece of code and run it N
times faster on N processors. On the other hand it DOES provide the tools which allow you
a good shot at this sort of performance. By allowing users the freedom to work within their
own personal environments with whatever languages are appropriate, the number of “new”
features which must be understood before parallel processing can begin is minimized. As
a consequence, results are much easier to attain and understand.

Expressincludes On the other hand, Express is happy to “incorporate” features from advanced operating

advanced systems and languages wherever possible. This allows advanced users more scope in
Z‘;Z‘r’zg}' and achieving better performance and also provides a solid basis for future research. Express

also evolves as hardware changes. The system runs on a wide variety of architectures and
will continue to expand. It’s goal, however, is always to allow maximum performance with
the minimum of interference.

| 3 What is Express?

" The previous section explained at some length some of the things which Express does not
do. In this section we will discuss some of the basic concepts underlying what Express
actually does.

31 An“Operating System”

Earlier it was pointed out that Express was not an operating system in the conventional
sense since the user was able to pursue the quest for performance with all the tools of their
native environment be that MS-DOS, UNIX, VMS, Macintosh or any other. In a stricter
sense, however, Express must be called an operating system since it provides the basic
operational functionality for the creation of parallel programs. In an early chapter of the
Express manuals you will indeed find an instruction to

“Load the Express operating system”

The important point to note, however, is that this has absolutely no impact on your familiar
working environment. Consistent with Express’ philosophy it concerns only the parallel
processor itself. The Express kernel merely provides the basic functionality needed by
parallel programs - the ability to communicate, share data, read files, do graphics, get
debugged, analyze performance etc. Furthermore, it does so in a totally transparent manner.

Many other systems use the word ‘transparent’ in their documentation and this has come to
mean something quite specific - in parallel processing it generally means that no special
precautions need to be taken by the parallel program other than those implicit in the system
in use. In the Express context, however, we mean something more - the facilities offered
to the parallel program look just like they would to a program running on the host. You
don’t have to be concerned with a “new operating” system on the parallel machine just as
it was of no concern on the host machine. Indeed a programmer familiar with, say, the VMS
way of doing things can use the mind-set that the parallel program is running in a VMS
environment. It can then access files and use the operating system just as-a VMS program
might.

This, therefore, is the reason for the quotes in the statement that Express is an “operating
system”. In the strictest sense of the phrase it is indeed a distributed operating system for a
parallel computer. However it is extremely unobtrusive and has the ability to adapt itself to
the requirements of the users of whatever target operating system seems best.

Notice in all of the above that we keep talking about parallel programs using the services
of the operating system. This is another area in which confusion has arisen. The phrase

“operating system” has connotations quite outside the original scope of the phrase. Often -

included in the concept of what an operating system does is the ability to handle terminals,
list directories, print files etc. In the Express world these things are all dealt with by
whatever operating system is already available. If you are in a UNIX environment then
typing ‘1s’ at your terminal lists files and ‘print’ will print them out in both VMS and
MS-DOS. Express provides none of these facilities - it merely lets you use whatever was
originally there.

Express provides services that are needed to run applications on the parallel computer and
as a result can often quite happily co-exist with other “operating systems”. Obvious cases
are such distributed operating systems as Mach or Hel1ios. Both are complete in the sense
that they allow the user to log in directly to a node of a parallel machine, list and print files
etc. In such an environment a user of Express would see the basic utilities of the
underlying Mach or Helios while simultaneously being able to take advantage of the
parallel processing features and tools provided by Express.

Express uses
conventional
compilers from
other companies

The Express
kernel and its
functions

Making the
parallel computer
behave as though it
were its host

Co-existence with
“paralleloperating
systems”

A parallel
processing
“toolkit”

3.2

A Parallel Processing Toolkit

In the previous section we explained how Express must, strictly speaking be classed as an
“Operating System” albeit a highly non-obtrusive one. At the level seen by the user
Express is best classified as a set of tools and utilities designed for parallel processing.
Basically the tools that make up the system are

1.

Low level communication primitives for sending messages between
processors, peripherals and other system components. This level provides
for simple node addressed message passing with a sophisticated “typing”
mechanism to differentiate between incoming messages.

High level message passing routine which perform a wide variety of
common parallel processing tasks including broadcasts, global averaging,
global min/max, data redistribution, etc.

An automatic “domain decomposition” library which can map problems
from the physical domain in which they are naturally expressed to the
underlying topology of the parallel computer hardware. This software
allows programs to be completely independent of the hardware on which
they run and also allows trivial scaling from one to many hundreds of
processors by the modification of a run-time parameter.

A transparent I/O system. This allows any node in the machine access to the
operating system facilities which would normally be available to the host
processor. Several “modes” of operation tailored to the particular problem
at hand.

A parallel graphics system. Device independent, run-time configurable
graphics is available to all processors. Both low level vector graphics
primitives and higher level packages (contouring, 3-D) are available for a
variety of output devices.

A totally integrated multitasking system which allows both local and remote
task generation through the message system.

NDB - a source level debugger for parallel programs. Similar syntax to the
popular SUN utility, dbx. Allows direct interactive access to program
execution on the parallel machine. Breakpoints, stack tracing, printing
variables etc. Powerful additions to standard utilities explicitly for parallel
processing.

PM - A graphical system for evaluating and enhancing the performance of
parallel programs. Three styles of profiling are possible covering the entire
range of potential bottlenecks. This system allows you to analyze such
things as subroutine usage, communication overheads, load balancing,
interprocessor timing differences etc., etc.

While this list serves to enumerate the various utilities included in the Express package it
gives little insight into the functionality and simplicity of the system. The tools have
evolved over five years of research into parallel applications and represent the wishes/
requirements of a large user community. One particular example might serve to illustrate

the point.

Consider a fairly simple problem: calculating the average intensity of the pixels which
make up a large X-ray image, in parallel. An obvious approach to this problem is to divide
up the image into lots of small areas and allot one to each processor in the system. Each
processor then adds up the pixels in its region, combines its results with the other nodes and
prints out the result.

Although this seems to be quite a simple problem, getting it right can be quite tricky. You
have to figure out how much of the picture is to be given to each node, get the data there
and then collect and sum up the results. Furthermore, it would be nice if the code could be
structured in such a way that it evolved with the hardware - if you buy four times as many
nodes it would be good if the code could run immediately on the larger number of
ProCcessors.

Express provides facilities for performing all these tasks.

1. A utility that generates runtime parameters allowing programs to adapt, at
runtime to their environment; number of nodes etc.

2. A tool that automatically maps the large image into smaller pieces suitable
for distributing to the individual processors. Automatically calculates the
size of each piece and its position in the “bigger” picture.

3. An interface to the I/O system that lets the parallel program read the image
data directly from a disk file anywhere in the system, with each node getting
the correct piece of the input data.

4. A “combine” function that makes the global accumulation of data such as
the average intensity quite trivial.

Each of these tools is built upon lower level utilities that are also available to the
programmer. Where Express differs from other systems, however, is that it does not stop
at providing only the low level tools with the disclaimer that “All higher utilities can be
generated by the user”. While this may be technically correct, Express goes all the way by
actually providing the extra functionality.

While we typically find that significant applications can be parallelized with only a few
subroutine calls the Express library is itself quite large. In order to help users find good
starting places from which they can build Express is supplied with a library of example
codes which demonstrate various parallel processing techniques and the utilities needed to
make them run efficiently on a distributed machine.

4 How to Run Parallel Programs

" The fundamental goal of parallel processing is to achieve computing performance greater
than that currently available. The procedure by which this is to be accomplished, however,
is not well specified. Express, however, allows you maximum flexibility in designing and
implementing parallel applications. Before even addressing the problems of “parallel
computing” itself we should illustrate the means by which one can attack the problem. In
order to demonstrate a couple of the possibilities consider a simple application sketched out
in Figure 2.

A simple problem
and its Express
solution

Automatic
“domain”
decomposition

Only a few routines
required for real
applications

Sample Application

I/O and User Interface Main “number-crunch-

b ”»”

ng
10-20% of total time

80-90% of total time

Figure 2. Schematic of typical application code.
Programming
models
There are two major components of the program. On the left is the “user interface”
consisting of the I/O and graphics-bound pieces of the system. In a data base system this

10

might be the parser that deals with user inquiries and the terminal control system for data
entry while in a mechanical engineering problem one might have to read the details of a
large structure from a disk file. To the right is the compute-bound phase of the code. To use
the two examples from above one might need to search, sort and collect statistics from a
large data-base, or calculate the stress-strain relationships of a large bridge. While these
examples carry little detail they serve to illustrate two important categories of computing
activity in an application.

The most common approach to solving a problem such as these is shown in Figure 3 - the

[

Figure 3. Solution of problem on a single processor

entire program runs on a single computer. This is “sequential” computing and is limited by
the speed of the particular computer system in use. Its advantages, on the other hand, are
manifest;

1. You do all your programming in a convenient environment with easy access
to a wide variety of programming tools developed over many years.

2. The program is easy to debug using whatever high level tools are available
on the host computer

3. Program flow is simple to understand resulting in easy diagnosis of
bottlenecks.

4. When finally debugged the resulting code is probably reasonably portable

and can be executed on a wide variety of uni-processor systems with various
cost/performance payoffs.

Let us now move into the misty world of parallel computing. Suppose that one has
purchased some parallel processing system. How best to take advantage of its power? A
simple scenario is presented in Figure 4.

Using the conventional system tools available to us in the previous scenario we identify the
slowest parts of our application which would, therefore, benefit most from parallelization.
With this information in hand we divide up the program into two pieces, one for the host
machine and one for the parallel processor. The host deals with the “once-only” aspects of
the code such as initialization, cleaning up and any other non-time critical tasks while the
hard work is “farmed out” to the parallel processor.

11

Sequential
computing

“Host-Node”
programming
model

Data

h—.——
Results

[

Figure 4. Problem decomposition for host and nodes

What does this scenario have to otter?

1. Significant parts of the original code remain intact and need not even be
recompiled since they will run on the host machine. This enables a
developer to maintain a complex product but still offer a parallel processing
version for enhanced performance.

2. The compute intensive parts of the problem have been given to the
“subroutine engine” - the parallel processor. The code to be executed there
can be optimized for the parallel processor configuration in use,
independent of the program running on the host.

This picture is identical in concept to the idea of “floating point co-processors™ such as
those found in most high performance systems today. While the host performs whatever
work it is best capable of doing, the really hard stuff is sent off to another processor better
matched to its requirements. Both processors continue at their own pace and get together to
exchange data and results whenever necessary.

In Express we refer to this style of computation as “host-node” since both types of
computer are involved. One of the most important problems with this style is that one
typically has to maintain two programs, one for the host and another for the nodes. These
are usually to be compiled in totally different manners and may be quite hard to “glue” back
together whenever the programis to be run on a conventional sequential computer. In many
cases the requirement to maintain two versions of the same code for parallel and sequential
use is too great for many developers.

This style of programming is well suited to a wide class of applications. In particular it
provides an easy way to get going on the parallel system by minimizing the amount of
material which must be re-worked for the new machine. On the other hand it may have
certain disadvantages in the I/O area - each invocation of the subroutine farm may require
that large amounts of data be transmitted to the parallel machine which could, in fact, have

12

been generated internally.
Another programming style supported by Express, therefore, is shown in Figure 5. In this

L]

Figure S. Program decomposed for nodes only

model the entire application is executed on the parallel system. A set of generic server
processes are available to handle the I/O, system and graphical needs of the program. An
important feature of this style is that the entire application is maintained the same way - you
don’t have to keep two compilers in mind etc.

Under Express this programming style is referred to as the Cubix model after the generic
server which executes on the host.

Obviously the three figures represent various degrees of the same thing, from purely
sequential programming to a style where the entire application runs on the parallel machine.
The important point to note is that Express enforces no particular style but rather lets you
adapt your strategy to the requirements of an application. Among the points which may
influence the decision are

» Does the application require too much memory to run entirely on the parallel
machine?

» How tightly coupled to the host computer does the application need to be - are
there particular I/O devices that need rapid response?

» How much machine specific code resides in the application? If one has devoted
significant effort in, for example, machine coding particular parts of the
application then these might best still run on the host while other parts of the
program run in parallel.

* How important is ease of maintenance?

A very important feature of both styles of programming is that Express does not affect the
environment of the host machine. This is (obviously) the feature that allows parts of your
code to run intact, but is also important since it allows you to develop the code with familiar

13

The Cubix

programming

model

Express supports
all programming
models

Hardware
configurations

Space-sharing:
multiple users

Many hosts - one
parallel computer

tools. Editors, disks etc. are all available in the usual manner. Furthermore Express
provides you with the advanced debugging and performance monitoring facilities that
allow you to actually DO effective parallel processing.

An important feature of parallel programs written in Express is their machine
independence. This leads to two very important conclusions.

Parallel programs written in Express can run on machines of any size without software
changes. This means, for example, that a code developed on a development system with
only one or two processors will execute transparently on 200 nodes with no modifications.
The only difference to the user is the hundredfold increase in speed!

Further, parallel programs written in Express are independent of the topology of the
underlying hardware system. This allows Express applications to run on a wide variety of
machines; transputer networks, hypercubes, shared memory architectures etc. It also opens
the way to “network optimization” - on transputer systems, for example, one can adapt the
interprocessor network to the particular program being executed. The advantage of
Express in this regard is that this optimization can be done after the program is running.
Normally one would implement and debug the algorithm on some general topology and
then, using the performance evaluation software contained in Express, modify the network
to achieve the best performance. It is not necessary to make the network design decision in
advance.

5 Where can I use Express?

In the previous sections we discussed a few of the features of Express as they pertain to
developing parallel programming strategies and getting started with parallel programming.
Another important area is that of system design - actually putting together a parallel
processing system for your application.

The simplest types of system are similar to that shown in Figure 4. One has a single
workstation attached to some sort of parallel processing system. This “entry level” system
is ideal for dedicated programmers or embedded systems. At the next higher level,
however, are bigger systems designed for use by multiple users. After all, parallel
programming resources are not so inexpensive that they needn’t be shared.

In a timesharing operating system environment such as UNIX or VMS, for example, a
simple solution to this problem is shown in Figure 6. Several terminals or workstations can
be connected to a single host machine which is itself connected to the parallel computer
system. Under Express this type of environment can be managed quite simply - users are
allocated processors according to the needs of their applications. Each can run in whatever
mode is appropriate and the system allocates resources dynamically.

This system provides simple multi-user access to the power of the parallel computer by
taking advantage of the operating system available on the host computer. This is entirely
consistent with the Express concept under which one uses the capabilities of the host
computer rather than replacing them with another totally disjoint operating system.

Under single user systems such as MS-DOS or Macintosh one cannot, however, operate a
sharing system in this manner. Instead Express supports the “workbench” concept shown
in Figure 7. Several user systems are connected to the parallel computing resource directly

14

UNIX or VMS
Local area net.

MS-DOS terminal 4{_!—“’
E &)

Figure 6. Multi-user access under timesharing operating system

Disk Farm

5 o =
' S EBw
2. B

Figure 7. Express Workbench

rather than through any single host machine. Again Express controls access to the resource
in a dynamic manner allocating nodes as requested. Such a system might, for example, be
used in large data-base project; one machine might control overall system functions such
as backing up and starting the system while others are used as data-entry and inquiry sites.
Alternatively each could be responsible for an entirely different application.

An important variation of this theme is also indicated in this figure - the possibility of
adding additional peripheral devices to the system. In the data-base case just mentioned one Disk farms
might very well require additional disk space. Such devices may be attached anywhere
within the system; Express is able to locate such peripherals on the basis of system
configuration information. Furthermore one of the modes of operation of the various

15

servers allows programs running on the nodes to access information and/or system
resources located anywhere within the network. This means, for example, that a program
might read input from one file system, send output to another and direct graphical
information to special purpose hardware.

Disk Farm

MS-DOS :]

workstation '
S B

MS-DOS :]

workstation | ' VMS
= VAXstation
Ll VMS
; VAXstation
L1
-
UNIX Network

Figure 8. Heterogeneous parallel processing net

The network need not be homogeneous. In figure 8 several types of computer are attached
to a centralized parallel processing system. Many types of processor are included which
each have access to the parallel computing resources as well as the associated peripherals.

6 Conclusions

" Express is a system designed solely to facilitate the process of building and executing
parallel programs. Its features include

» Cooperates with existing operating systems to allow users the facility to
develop, debug and offer applications running in familiar, highly developed
environments.

» Supports a wide variety of programming paradigms; applications may run
completely on the parallel machine or pieces may continue to execute on the

16

host computer. Much of the original code can be left intact.

The deterministic nature of the parallel processing model allows us to
use intuition gained on sequential computers while writing and debugging
parallel programs.

Able to take advantage of hardware/software developments and evolve as new
technologies appear.

Large set of “primitive” operations allow both high-level and low-level use.
Designed by users to meet their own needs.

Semi-automatic decomposition system allows many applications to be
parallelized with little effort.

Guarantees scalability - No recoding necessary to take advantage of more
Processors.

Offers the developer the assurance of portability - programs developed under
can be executed on many different parallel computer systems.

High degree of reconfigurability allows multiple users to simultaneously take
advantage of parallel processing facilities.

Support for multiple peripheral devices allows for the construction of
specialized networks tailored to application requirements.

Supports both static and dynamic load balancing of data decomposed problems.

17

An Express tutorial

An introduction to parallel processing
with Express

g 1 Introduction

L.}, Parallel computing is the technique of using more than one processor at a time to solve a

computational problem. This can be anything from controlling a robot arm to updating a
spread-sheet or calculating the aerodynamic properties of a new automotive design.

In general we can imagine three reasons for doing parallel processing:

* Speed
This usually the most important motivation. The original concept of parallel
processing was to increase the execution speed of existing and new programs
by executing parts of them on different processors. If for some reason the
parallel code does not execute faster than its sequential counterpart the whole
process of parallelization can be considered a failure.

* Memory requirements.
The problems being tackled today in both scientific and business sectors are
characterized by their large size. One important limit often reached on
conventional supercomputers is the amount of physical memory available.
Large scale parallel computers offer the advantage of virtually unlimited
memory resources allowing us to attempt problems which would ordinarily be
beyond the scope of sequential machines.

e Cost effectiveness.

The developments of the last decade in VLSI and other technologies have
resulted in dramatic improvements in both the cost and performance of low-
priced microprocessors. The so-called “cost-performance ratio” of high-end
systems has not improved nearly as much. The result is that purely on the basis
of computing power per dollar, CPU’s like the Inmos T800 Transputer, the Intel
80x86 and 1860 and the NCUBE processors are markedly superior in this regard
to current mainframes and supercomputers. The crucial question is how to turn
the superior cost-performance ratio into sheer performance by simultaneously
utilizing multiple processors. This is the goal of parallel computing.

An assortment of computer hardware manufacturers have taken up the challenge of
building parallel hardware, ranging in size from two to several thousand processors.
University and government research groups have demonstrated that these systems can be
used to solve real problems in science and engineering in a cost-effective and efficient
manner. ParaSoft Corporation supplies a software environment for many of these systems
which is uniform and easy to use.

The purpose of this chapter is to clarify some of the basic issues in parallel computing, and
to de-mystify some of its secrets. It is also a tutorial on the use of Express. It is divided
into two parts. The first is a low level introductory tutorial which introduces some of the
basic concepts in programs which have no real substance. The second part covers more
sophisticated examples of Express programs which each provide a basis for real
applications in both scientific and business fields.

19

Why parallel
computing?

The need for speed

Big problems
require more
memory than is
available on
current
supercomputers

Parallel
computers use
cheaper
components than
supercomputers

A definition of a
parallel computer

Hardware and
software issues

Parallelprocessing
hardware

Shared memory
systems

g 2 Overview

b As is generally the case in computer engineering, parallel computing can be divided into

two parts: hardware and software. Hardware designers are concerned, above and beyond
their usual concerns, with how to connect the processors to one another and to memory.
System software designers generally try to hide the hardware decisions from application
developers, with the least possible performance penalty, while application software
designers are concerned with splitting problems into pieces, decomposition, to make
effective use of the parallel processor. In the following sections we will consider some
general features of parallel hardware, and how an application developer can use the
ParaSoft data-parallel programming environment, Express, to develop his own parallel

programs.
2.1 Hardware

Parallel hardware comprises, by definition, more than one central processing unit or CPU.
On the other hand, there is more to a piece of parallel hardware than a collection of CPUs.
Otherwise any home with a microwave oven and a programmable VCR might be
considered a parallel computer. The extra ingredient, that allows the processors to work
together on a single problem, is a communication medium through which data, such as
intermediate results, can be communicated.

In some systems the processors share a single bank of memory, as in Figure 1. This type of
architecture has the appealing property of allowing almost unlimited communication
between processors, but this generality is not without its price. It is all too easy to devise
incorrect and unreliable communication strategies using such a general mechanism. In
addition, it is difficult (and expensive) to design the memory so it is fast enough to keep up
with the demands of a large number of processors. Despite these issues ParaSoft’s
Express can easily run on such shared memory systems.

Shared Memory

SR

Figure 1. A shared memory architecture.

Another general class of parallel architectures, is shown in Figure 2.This architecture is

20

known as a “distributed memory” system because each processor has its own private
memory store, which cannot be accessed directly by any other processor. Only one
processor has direct access to any given piece of memory. For the processors to coordinate
their efforts in this type of system they must communicate directly by actively sending and
receiving information across “links”.

Designs of this type are often distinguished by the topology of the interconnection system,
e.g., hypercube, two-dimensional torus, etc. These terms refer to the way the individual
processors are connected up with one another. It is impractical, with any more than a
handful of processors, to connect each and every processor directly to all of the others.
Instead, hardware designers provide a few direct connections (typically four to eleven) on
each processor, and the ensembles are hooked up in some regular fashion, e.g. as an n-
dimensional hypercube.

Figure 2. A distributed memory architecture

The types of machines so far described are denoted MIMD (Multiple Instruction Multiple
Data) architectures since each processor executes its own instructions and operates on its
own data independently of the other nodes. This is not to say, of course, that any given node
may or may not have to cooperate with others in the network but this is algorithm dependent
rather than being imposed by any hardware model.

The last class of parallel computers are the SIMD (Single Instruction Multiple Data)
machines. This architecture uses of many processors which execute exactly the same
instruction (or no instruction at all) at the same time with each processor operating on its
own data. Currently Express does not run on this type of machine.

For the rest of this tutorial we will restrict our attention to MIMD machines on many of
which Express currently runs.

21

Distributed
memory machines

MIMD machines

SIMD machines

The role of the host
yrocessor

Locking and
semaphores for
shared memory

Advanced
languages for
SIMD machines

The flexibility of
distributed memory
MIMD machines

Express a simple
alternative

Hiding the details
of the parallel
computer's
hardware

An important feature of typical hardware designs is the so-called “host”. This processor
provides the environment seen by programmers and users of the system, i.e., the operating
systems, editors, graphics devices, printers, disks, network services and other features that
make up a modern computer system. The host computer is usually a personal computer,
workstation, or a mini-computer. The environment is that provided by DOS, Unix,
Macintosh, VMS, or whatever operating system is appropriate for the particular host, with
a few low-level extensions to allow access to the parallel processor. The nature of these
extensions determines the software support for a given parallel computer system and also,
to some extent, what types of programs may be written on that machine.

2.2 Software

While parallel computer hardware is available in a large number of forms the associated
software is much more varied.

Shared memory architectures offer sophisticated “locking” and *“semaphore” operations
and are currently supporting compilers which automatically parallelize certain program
features.

Programming SIMD machines typically involves either new languages designed for very
fine-grain parallelism or else modifications of existing languages such as *Lisp or C* used
on the Connection Machine.

Distributed memory MIMD machines, as might be deduced from their extreme flexibility,
support nearly all programming models. This is one of the reasons that they are believed to
promise the most in terms of ultimate system performance. Unfortunately it also means that
the potential user must choose between a wide variety of software systems.

Fortunately, the Express system provides a simple choice.
When programming with EXpress one uses a system comprised of

« A set of compilers for conventional high level languages such as C and
FORTRAN

* A library of system calls which provide parallel processing primitives at all
levels of sophistication from low level message passing to automatic
decomposition and parallelization tools.

» A set of sophisticated support tools including parallel debugging and
performance analysis systems and an automatic parallelization tool.

The goal of Express is to make programming a parallel computer as much like
programming a normal sequential computer as possible. This allows one to use all the
knowledge developed over years of programming in a new environment, minimizing the
amount of material and/or technique that must be learned from scratch.

One way in which this is done is to hide the details of the parallel computer in use. If you
are more than a little confused by the discussion of the previous section which showed
some of the types of parallel computer you need not worry since the Express model of a
parallel computer is that shown in Figure 3. The host and all the nodes are connected to one
another through the Express system. At the user level no account need be taken of the
clever and/or complex ways in which the hardware has been constructed - using the

22

Express model we can program as though every node were connected to every other.

Express

@ @ Proc 2 Proc 3

Figure 3. A parallel computer system viewed through Express

Express also offers an enormous range of parallel processing routines in its runtime library
in the hope that whatever operation you may wish to perform has already been supplied.
This obviously reduces the amount of “parallel” code that you have to write. Unfortunately,
it also increases the apparent complexity of the Express system by making the manuals
very thick! One of the purposes of this tutorial, therefore, is to point out some of the most
commonly used routines and to point you to the manual pages which you will need most.

We should obviously note that there are many other parallel processing models and
software systems than Express. Each offers its own type of parallelism and encourages
different programming styles and thought patterns.We believe, however, that Express
offers the simplest approach to parallel processing without compromising performance.

2.3 Message Passing

The above section might have left you with the impression that Express encompassed all
parallel processing paradigms. This is partially true - you can write almost every kind of
parallel algorithm using the tools provided by Express. The one concept that unifies all of
the Express system, however, is that of “message passing”.

To understand what message passing is all about let us consider a simple model of a bank.
The are several tellers at their stations and a single line of customers waiting to be served.
Each teller is currently working on a transaction for a client.

This is a good example of parallel processing. Each teller works on transactions for a single
client independently of the other tellers. Consider, however, what happens when the teller
is done with his customer. Several possibilities exist:

» The teller can do nothing.

23

The Express run-
time library

A “message
passing”
programming
model

No communication
usually means that
no useful work gets
done

The shared
memory approach
leads to bottlenecks
and wasted work

A “message
passing” approach

The physical
structure of a
message

Comparing the
efficiency of
possible parallel
solutions

+ The teller can run round the counter, attract the attention of the next customer
and escort them to their station to begin a new transaction.

« Either by voice or some other sign the teller can inform the next customer in line
that they are free. The customer walks up to the teller’s window and beings his
transaction.

The first possibility represents the situation in a parallel processing system when none of
the nodes communicates with any of the others - nothing gets done. Eventually, of course,
the bank’s manager may come round to check on his tellers and, noting that one or more
are idle, arrange service for some new customers. This, of course, means that he will have
to communicate with both the tellers and the customers. In general we can observe that it
is a rare parallel program that can function with absolutely no communication between
Processors.

The second and third possibilities (and any others that eventually serve all the customers)
exhibit a standard feature of parallel processing - how to inform the system that more work
can be done by a certain processing unit - in this case the teller wanting another customer.

The second solution, above, is characteristic of the:solution adopted on shared memory
machines - i.e., those with an architecture similar to that shown in Figure 1. We assume that
the queue of customers is placed in the shared memory and each teller is represented by a
node of the machine. As soon as a teller completes a task he goes to the queue in shared
memory and fetches the next unit of work, removing it from the queue.

The third solution in the above list is typical of that used on distributed memory machines
like that shown in Figure 2. We store the queue of customers in one of the nodes (or even
the host) and let the nodes do the teller’s work. When a teller is finished he communicates
this fact with the machine that contains the queue of customers. The node holding the queue
removes the first in line from his list and sends it back to the free teller.

The communication occurring in this last example is what *“‘message passing” is all about.
The situation with the two nodes representing the teller and the processor maintaining the
customer list is shown in Figure 4. The node on the right sends out a message containing
the information “I’m free” to the node managing the customer list. Similarly the managing
node sends back a piece of information describing the next customer in line, what
transactions he wishes to perform, etc.

Physically a message is a stream of bytes copied from one processor’s memory.The teller,
for example, could create a character string in memory containing the text “I’m free” and
then send this to the managing processor. Similarly the customer queue is probably
maintained as some sort of linked data structure. The managing node calculates which part
of this structure is required by the teller node and sends it back, re-organizing its internal
data structures as necessary to reflect the new “first customer”.

In the above discussion of possible solutions to the problem of assigning the next piece of
work it may be observed that the “message passing” solution is the one that gets the job
done fastest by minimizing the amount of overhead imposed on the teller in getting the
attention of the next customer. This is not coincidental.

The overheads in using shared memory machines tend to be hidden somewhat by the fact

24

Node a) Node b)
Manages Customer list A Teller

—— |Imfree!| o |

Figure 4. Messages in the banking system

that a piece of code that references memory may, in fact, involve many operations including
locking and unlocking semaphores and resolving conflicts with other processors that wish
to use the same memory. The problems are made worse by the availability of high-speed
caches on advanced architecture machines which means that further decisions have to be
made as to whether the shared data can be cached or not.

The distributed memory algorithm, however, is remarkably simple and has the benefit that
its overheads can be easily assessed by evaluating the inter node communication speed.

It is primarily for this reason that Express adopts the message passing style of parallel
processing. A further reason is that we can easily implement the message passing
programming style on shared memory architectures while the converse is very difficult.

It is important to note that, as discussed above, parallel algorithms in Express can be
evaluated by considering the size and frequency of the internode message traffic. This
allows us to make good a priori predictions of the performance of our algorithms and also
to choose effectively between several possible implementations of the same program.

24 Express Programming Models.

The first question that crosses the mind of someone contemplating programming a parallel
computer is “How do you keep track of which processor is doing what?”” Although it is
possible to devise more complicated scenarios, the simplest, and most common,
organization of Express programs is for each and every processor to run exactly the same
program. This is not to say that they have the same data, or even that they are executing the
same instructions, but only that the compiled program is identical in each processor. Once
the program is loaded, the individual processors can, and almost always do, distinguish
themselves and start working on different aspects of the problem. For example, in the
banking program discussed above one node would probably be distinguished by managing
the customer queue.

25

Despiteits message
passing structure,
Express can
execute onall types
of parallel
processors

How many
programs should |
write?

Who does the 1/10?

Running sequential
programs on
parallel computers

The programming
model used in this
tutorial

Another possibility is that different processors execute completely different programs or
multiple tasks. This programming model is also supported by Express, but because it is
more complicated we will not use it in this tutorial. If you wish to leamn more about this
style of programming you should read about the expload function in the Express
Reference Manual and about the ‘£’ switch in the Cubix section of the manual.

Similarly we will concentrate most on the Cubix programming model in which we only
write code to run on the nodes of the parallel computer. The host processor is taken care of
by a “universal host program” which just does what the nodes tell it. This style of
programming is the easiest to use and all but one of the examples will be written this way.
The sole exception is used to show the trade-offs between this model of computation and
that in which we write code for both host and node processors and have the two
communicate using the Express functions.

The whole idea behind this style of Express programming is to write one sequential code
which can then execute in parallel. In this programming model only one program is needed
for the parallel machine. Furthermore this same program will usually run on any number of
processors and even on different types of parallel processors! This programming model is
probably the only one that makes any sense when we imagine programming machines with
thousands of nodes. If we had to build a separate program for each one we would rapidly
lose our ability to control such a large project.

In this model the advantage obtained from the parallelism occurs when different sets of data
are loaded into different processors. Because the data is distributed, each processor has less
work to do and the whole program runs faster. In an ideal world the program would run N
times faster when running on N processors. In reality this speedup is rarely obtained since
the processors usually need to communicate with each other (as in the banking example)
and may need to interact with the outside world. Both of these activities reduce the “speed-
up” obtained.

The programming model we will be describing in this tutorial, therefore, takes the
following form:

» A single program is written and compiled.
e This program is loaded into one or more parallel computer nodes.

» The program begins to execute in each node. For the most part the nodes operate
independently on their own data.

» Whenever a node requires more data or whenever its data needs to be updated
in some way messages are sent.

The most important benefit of this programming model is that the underlying code is
basically the same as would be the case if it were executing on a conventional sequential
computer. We can use all our normal intuition about programs when writing, developing
and debugging the code. For this reason we can offer the following general piece of advice
when writing parallel programs with Express:

26

If you don’t know what to do in a particular situation, do
what you would do in a sequential program.

It normally works!

3 An Introduction to Express

" As far as using the Express tools and utilities the situation is basically as shown in
Figure 5.. The system consists of a host with the parallel machine attached. The host is used

Figure 5. Express world

for program development and is where the various compilers, editors, debuggers etc. are
run. This machine executes one of the standard operating systems mentioned before: DOS,
UNIX, VMS, Macintosh, etc. The nodes of the parallel machine run the Express kemel.
An extremely important command, therefore, is the one which loads the Express kernel
into the parallel computer. This command is exinit.

This command has to be executed correctly before accessing the parallel machine. Before
exinit can be executed, however, Express must be installed and configured to run on
your particular hardware. For information on how to install and configure Express refer to
the Introductory Guide to Express for your system.

Once Express has been installed and configured you should load the system by executing
the command

exinit
Normally you do this by typing the above name at the command prompt. In some versions
of Express, particularly those that run in windowing environments such as MicroSoft

Windows or the Macintosh other approaches may be necessary. See the Introductory Guide
for more details.

Everything should now be ready for you to write and execute Express programs.

31

The rest of this section is written in the following style. Each exercise is introduced by the

The Exercises

27

The operating
system of the host is
unchanged when
using Express

Make sure that
your hardware is
installed and
configured
correctly before
starting this
tutorial

The exercises

Use your
Introductory Guide
for more
information

Some rough notes
about compiling
and linking this
program

following symbol

The general format of the exercises is that the purpose is explained together with the
techniques which are being exhibited. This is followed by a description of the technical
things that the program should do together with an indication of the manual pages
containing the necessary information. This material should suffice for you to write the
indicated program yourself. In any case the text of a working program is shown which can,
if you wish, be copied onto you machine. We also discuss the execution of the program and
any special features of its operation.

The comments about the compilation are deliberately vague in this text. All but one of the
examples is a simple Cubix program and you should be able to find out the details of the
compilation process by reading the section “Compiling a first program” of your
Introductory Guide. Similarly we will not mention the initialization process again. If your
programs have bugs, however, you may need to re-initialize the Express kernel with the
exinit command. This can be done at any time.

Exercise 1. Hello World.

The objective of this exercise is to write a program to print the immortal string “Hello
World” from the nodes of the parallel processor. This program will execute on any number
of nodes and will exhibit some of the features of the parallel 1/O system built into Express.

In order to write this program we can use our intuition about sequential programs as
suggested in the preceding comments and just write the code as we normally would for a
sequential computer.

No additional manual pages need be consulted for this exercise.

The following is probably similar to the code you should use.

#include <stdio.h>

main ()

{
printf ("Hello world.\n");
exit (0);

}

Program 1. Code which prints the immortal text “Hello world”.

To make things a little more concrete let’s assume that you have written this programin a
file called ex1.c with some standard editor or word processor. To compile this code for
use on the parallel system we have to execute one of the compilers. Furthermore we must

28

tell the system that the program being compiled is to be used in the Cubix programming
model and should be linked with the appropriate libraries.

While the command to do this varies from system to system a typical version would be
tcc -o exl exl.c -lcubix

To execute this program we should again consult our introductory guide - the section called
“Running Programs: Cubix or Not?” contains instructions on how to run Cubix programs.
In general, however, we can execute this program on a single node by typing a command
similar to

cubix -nl exl

In this command cubix is the name of Express I/O server which will load the program
into the parallel machine and start it running. It also performs the I/O and system services
requested by the nodes. The ‘~-n1’ switch indicates how many nodes should be used.

If you run this program you should see, printed on the screen, the text
Hello world.

Try running the program on different numbers of processors by changing the value after the
‘-n’ switch in the above command. Notice how the string “Hello world” appears only
once however many nodes we use.

While this program hasn’t demonstrated any great parallelism so far it has illustrated some
very important points about Express and the parallel I/O model.

One of the most powerful features of Express is that this program, and virtually any other
sequential program that would run on the host processor, can be run on the parallel
processor even though it contains system calls that operate on the file system and terminals
attached to the host processor. Express allows you to execute all of the system calls of the
host operating system directly from a parallel program. In addition to the system-call
library of the host processor, Express provides an implementation of the ANSI C
“Standard Library”, including features like portable I/O constructs, data conversions, and
string handling. Taken together, these features provide an environment for the parallel
program that is an extension of the programming environment on the host processor.

While this is an extremely important observation the ex1 program actually shows more -
the parallel features of the Express I/O system.

If you ran the ex1 program on multiple processors then you probably noticed that the
output of the program did not depend on the number of processors which took part in
executing the program. One of the most important features of the Express I/O system is
that files are always in one of three “modes”: single,multiple or asynchronous.

These I/O modes are tailored to the general observation that the parallel computer system
generally has several computing nodes but only one or two hosts. As a result we encounter
three common situations.

1. Each processor prints the same message to the host at the same time. This
is very common when a program starts and asks for parameters. In this case
each program will usually want the same parameters and there is no reason

29

.. and a few abowt
running it

Only one line of
output, even when
run on 200 nodes

Running sequential
programs in
parallel

Why there is only
one line of output -
the Express /0
modes

Single mode

Multiple mode

Asynchronous
mode

to see the same prompt from all processors. In this case Express prints the
message from the first processor, synchronizes all other processors and
checks that the message is really the same in all processors. (It aborts if not.)
This means that a print f statement in this mode is a barrier. It is executed
in a “loosely synchronous” fashion - each processor waits until all other
processors execute this call. This is called “single” mode and is the default
mode for all files when Express programs start. This is why only one line
of output is generated from the ex1 example irrespective of the number of
nodes used.

Each processor wants to send different data but all processors wish to
contribute. In this case each processor puts data in its internal buffer which
is not output until an fflush call is executed.This call forces the
processors to empty their I/O buffers in order of increasing processor
number. This means that data from processor number O appears first
followed by data from node 1, node 2, etc. Again the £f1ush system call
is a barrier requiring a “loosely synchronous” call. On the other hand
individual “writes” to a file in this mode can be made at will. This mode is
called “multiple” and is generally used to dump data to files or displays in
an orderly fashion.

Each processor sends data totally independently. In this mode I/O
statements can be executed on different processors at any time and cause
output to be sent to the outside world whenever executed. This mode is
called “asynchronous” and is mostly used for reporting errors. It is difficult
to use for backing up/restoring data because the unpredictable order in
which data is placed in a file makes it difficult to restore.

As we mentioned before every file in Express is in one of these modes.While the above
discussion has been mostly concerned with output the modes also apply to input and
general system calls. For example single mode input means that the data read on the host
will be automatically broadcast to all processors. It is important to note, however, that the
I/O mode is associated with each file, rather than the system as a whole. This means that
you can have one file in “multi” mode while the others are still in “single” mode.

I/O modes can also be changed after a file is open. While the default is to open a file in
“single” mode the following system calls can be used to modify its behavior

fsingl (fp) sets the indicated file to “single” mode.
fmulti (£p) sets the indicated file to “multiple’ mode.
fasync (fp) sets the indicated file to “asynchronous’ mode.

Exercise 2. A Parallel Hello World.

If you make no effort to request some kind of parallel behavior, the result of running a
program under Express will be indistinguishable from running the same program on the
host. This leads us to our next example, in which we begin to explore parallel programming.

30

The objective of the next program is to master the Express I/O modes and learn how
processors can distinguish each other.

If you wish to write this program yourself it should do the following:
¢ Read a value from stdin in “single” mode and print it, also in “single” mode.

+ Find the unique “processor number” assigned to each node and print it, in
“multi”’ mode.

* Read a set of distinct values, one per processor, and print them.

To complete this exercise you will need to understand the various file modes discussed in
connection with the previous exercise. More details can be found in the manuals pages for
fmulti, fsingl and fasync.

To find out how processors can identify themselves we need the exparam system call
described on the manual page of the same name. This routine requires a single argument
which is a pointer to a structure of type nodenv, defined in the standard header file
express.h. It assigns values to various fields in the structure of which the most
interesting are procnum and nprocs. The former is the “processor number” of the node
making the call and is used to number the nodes 0, 1, 2, etc. The latter is the total number
of nodes taking part in the current execution of the program.

Sample code for this exercise is shown below.

#include "express.h"
#include <stdio.h>

struct nodenv env;

main ()
{
int val;
/ *
* First get enviroment information so that we can
* learn our processor number.

*/
exparam(&env) ;
/*
* Ask for a number - stdout is in singl mode.
*/
printf ("Enter 1 number\n");
/*
* Now read it - stdin is in singl mode.
*/
scanf ("%d4", &val);
/-k
* Print it - stdout is still in singl mode.
*/

31

Getting runtime
information about
the system -
exparam

8

Learning more
about the I!10
system by omitting
parts of this code

/*

* Now ask for a different number for each processor.
* stdout is still in singl mode.

*/

/*
* Switch stdin into multi mode and to get
* a different number in each node.

*/

/*
* Switch stdout to multi-mode and print value and
* processor id.

printf ("The number is %d\n",val);

printf ("Enter %d numbers\n",env.nprocs);

fmulti (stdin);
scanf ("%d", &val);

*/
fmulti (stdout) ;
printf ("I am processor %d, my value is %d\n",
env.procnum,val);
/*
* Do not forget to flush - stdout is in multi-mode.
*/
fflush (stdout) ;
/*
* exit
*/

exit (0);

Program 2. Code which reads and prints numbers from different
Processors.

If you compile and run this program in the same manner as described for the first exercise
you will notice an important difference - the “multi” mode I/O requests operate in a
different way in each node.

If you wish there are several important things that can be done with this code to exhibit
important features of the I[/O modes.

Try leaving out the call to fmulti (stdout) before printing the last
message. cubix will abort with a message that you have violated the “loosely
synchronous” constraint. This is because you would have attempted to print out
non-identical strings in “single” mode. This is a very common error.

Try leaving out the call to fflush (stdout) at the end of the program.
Notice how it still runs correctly. This is because the call to exit at the end of
the code implicitly flushes all open files. Verify that some form of “flush” is
necessary by replacing the call to exit with a scanf. Now the program stops

32

and waits for your input before printing the identifying information from the
previous print f which is still buffered inside the nodes.

This example illustrates a very important point - we can run sequential programs on parallel
computers but need to make small modifications in order to extract the parallel behavior.
One of the advantages of Express is that the library of utilities available to the programmer
is sufficiently large as to make the task fairly straightforward.

Exercise 3. Matrix by Vector Multiplication.

Although it may seem that little has been learned about parallel processing so far the I/O
modes in Express are powerful enough to allow us to implement a simple matrix-vector
multiplication routine.

We will multiply a matrix with N rows and M columns by a vector with M entries. This
program will operate on vectors of any size, M, and runs on N processors. For now this is
a real restriction - we cannot use this code to multiply matrixes of order 100 unless we have
100 nodes. Nonetheless this code is quite instructive and when we have learned about the
semi-automatic decomposing tools in a later exercise it will be a simple matter to relax the
restrictions of this code.

To solve this problem we need to have some idea of how the data will be distributed among
the processors. The process of assigning values to nodes is known as “decomposition” and
is of central importance in designing and implementing a parallel algorithm. So important
is this issue, in fact, that Express provides a library of routines for performing commonly
occurring decompositions automatically.

In this case we will distribute the matrix and vector data so that each processor has one row
of the matrix and all the vector entries. The resulting decomposition is shown in Figure 5.

The important question in this exercise is how to actually achieve this data distribution -
i.e., how can we get the data to the node which is supposed to read it?

The simplest way is by using different I/O modes.

Because the vector is to be duplicated in every node we can read it in “single” mode. The
matrix, however, need to be distributed cyclically, the first to node 0, the next to node 1,
etc. This is exactly the way we would naturally get the data if read in “multi” mode.

Once the data is in place we can perform local operations to calculate individual entries in
the matrix-vector product which can then be printed in “muli” mode.

The basic program outline is, therefore:

» Find how many processors are in use and use this value as N, the number of
rows in the matrix.

» Prompt for the value, M, the length of the vector.

» Read the vector from stdin in single mode, automatically generating a copy
in each node.

* Read the matrix elements from stdin in “multi” mode, automatically

33

Using the 1/10
system to distribute
data among
processors

Vector.

Processor 1 M entri es,
contained
in every

Processor 2 node.

Processor 3

Processor 4

Matrix.
NxM entries,
Distributed, one row per node.

Figure 5. Data distribution for matrix vector multiplication

distributing every N value to a single processor.

¢ Perform the local matrix-vector multiplication and send the results to stdout
in “multi” mode. '

Since this code uses only those features of Express which we have already learned no new
manual pages need be consulted to write this code.

Sample code is shown below.

finclude "express.h"
#include <stdio.h>
#define MAXVEC 20 /* Size of biggest vector */

struct nodenv env;
float vector[MAXVEC], matrix[MAXVEC], value;
main ()

{

int i,size;

/*
* Get environment
*/

exparam(&env) ;
/*

* First get size of the vector

34

*/
printf ("Enter size of the vector\n");

/*
* Now read it.
*/

scanf ("%d", &size):;

if(size >= MAXVEC) {

printf ("Vector too big, max is %d\n",MAXVEC);
exit (1) ;

}
/*
* Ask for wvector
x/

printf ("Enter vector numbers\n");
/*
* Read vector
*/

for(i=0;i<size;i++) scanf("%f", &vector(i]);
/*
* Ask for matrix
x/

printf ("Enter %d numbers\n",env.nprocs * size);
/*

* Switch to multi mode on stdin and read it
*/
fmulti (stdin);
for(i=0;i<size;i++)scanf ("%$f", &matrix[i]);
/*
* Now data is in processors. Perform multiplication.
*/
value = 0.0;
for(i=0;1i<size;i++) {
value = value + matrix[i]*vector[i];
}
/-k
* Switch stdout to multi and print value and
* processor id.

*/
fmulti (stdout);
printf ("I am processor %d, my value is %f\n",
env.procnum, value) ;
/*
* Do not forget to flush
*/
fflush(stdout);
/*

35

* exit
*x/
exit (0);

Program 3. Code which multiplies matrix by vector, in parallel.

The above code demonstrates an important part of Express parallel programming model:
the same sequential program is executed by all processors and parallelism is achieved by
distributing data and having each node work on a fraction of the whole problem.

Exercise 4. A Parallel Sum.

When writing programs that use the data distribution techniques, just shown, we need to
extract some property of a set of data that is distributed across a number of processors. A
good example might be an average or maximum of a set of values. Since this type of
operation is so common Express has a function in its runtime library which generalizes
this concept for parallel processors.

“Global” This function, excombine, is just one of a set of “global” functions which apply

operations greatly commonly occurring parallel operations to data sets distributed among processors. You

simplify common nioht be interested in reading the manual pages for excombine, exconcat,

programming asks exbroadcast and exchange in the Reference Manual for more details and examples
of their use.

In this exercise we will demonstrate the use of the excombine function by assuming that
we need to calculate the global sum of a set of values distributed among the processors.

The basic steps required by the program are
* Read in a data set and distribute it among the nodes.
» Execute excombine to make the sum global.
* Print the results.

This function is the first explicit “message passing” routine that we will use. In the previous
exercises we managed to create parallel programs merely by exploiting the capabilities of
the I/O system. Now we must use the actual routines that implement “message passing”.

The arguments o The excombine function has seven arguments:
excombine . .. « . ' . .
* A pointer to a buffer containing data to be “combined”. In our case this will be

the local sum which we wish to make global. Excombine will overwrite the
data pointed to by this argument by the global value obtained by combining with
the other nodes.

* A pointer to a function which combines individual data items. This function
should be written by the user and is called internally by Express to combine
elements of the array pointed to by the first argument. In our case this function
will add values together.

36

+ The size of an individual data item.

e The number of items to be combined. excombine allows many values to be
operated on in a single function call. In our case we wish to combine only our
local sums, a single item.

» The number of processors contributing to the global operation. In our case we
wish all the nodes to combine their sums so we use the special value
ALLNODES defined in the header file express.h.

e A list of processors. This argument is only used if we wish to combine results
from less than all the nodes, In our case we can safely make this argument the
NULL pointer.

» A pointer to a message type. All Express messages carry types and all the
message passing functions require this parameter. In general this argument is
used to prevent confusion between overlapping messages but since our program
will only be sending a single message its value is irrelevant. We could choose
any value between 0 and 16383 (inclusive).

The function pointed to by the second argument to excombine is very important since it
indicates exactly what operation will be performed when excombine is called.

This function, which must be supplied by the user, will be called with three arguments. The
first two are pointers to “items” in the same sense as passed to the original call to
excombine. These can be anything from simple integers to complex structures or arrays.
The user function must apply some combining operation to these two items, overwriting
that pointed to by the first argument. The third argument supplied to the user routine is the
“size” value passed as the third argument to excombine.

A final important detail concerns the value which should be returned by the user routine -
if this value is different from 0 the system assumes that some sort of error has occurred and
aborts the excombine operation.

This discussion has probably made the use of excombine seem very complicated. In
practice, however, it is very straightforward as the code for this exercise shows.

#include “express.h"
#include <stdio.h>

struct nodenv env;

main ()
{
int wval, add();
int type = 100;
/-k
* First get environment information - processor id.
*/
exparam(&env) ;

37

The user supplied
function is the key
to the operation of
excombine

*
/* Ask for different number for each processor
*
/ printf ("Enter %$d numbers\n",env.nprocs);
*
/* Switch stdin into multi mode and get numbers.
*
/ fmulti (stdin);
scanf ("%d", &val) ;

/*
* Call excombine to perform summation
*/
excombine (&val, add, sizeof(val), 1, ALLNODES,
(int *)0, &type);
/*

* Switch stdout to multi and print value and
* processor id.

*/
fmulti (stdout) ;
printf ("I am processor %d, my value is %d\n",
env.procnum, val) ;
/*
* Do not forget to flush
*/
fflush (stdout) ;
/*
* exit
x/
exit (0);
}
/*
* Function used for addition
*/

int add(pl,p2,size)
int *pl, *p2, size;
{

/*

* Perform sumation and save the result in local wvalue

*/
*pl += *p2;
return(0) ;

Program 4, Parallel sum

38

Note that we only combine a single value from each node in this example. In the next
exercise we will extend this example to find the average of a large data set on the disk of
the host.

An extremely important fact about this program is that no reference has been made to the
underlying hardware topology. As a result this program runs on any type of parallel
computer with any hardware configuration. This behavior is typical of the high level
utilities supplied with Express - most common parallel processing operations have
corresponding routines in the runtime library making life much simpler for the developer
of parallel programs.

Exercise 5. Averaging the contents of a file.

In this exercise we extend the model of the previous example by performing an average of
a set of values contained in a file. While previous exercises have contained some
assumptions about where to find the data, how many objects were to be read in, etc. we
work hard in this exercise to eliminate any such assumptions and produce a robust piece of
parallel code. Of course, the resulting code will still share with its predecessors the ability
to execute on any number of processors, independent of the hardware topology or
architecture.

In this exercise we will make use of C’s conventional command line argument mechanism
to pass to our program the name of a file which should be examined. Then, using the
techniques of the previous exercise we will read data values from this file and add them to
a local sum. Once complete we use excombine to add up the local sums and also the total
number of items read from the file and use these quantities to build the global average. Note
that we make no assumptions about the number of items in the file being exactly divisible
by the number of nodes and as a result we cannot make any assumptions about how many
items contributed to the local sum on any node - we must use excombine to add up these
numbers too.

The basic program outline should be

* Using the command line arguments, open the data-base file containing the items
to be read.

* Read single items from the file distributing them individually to the nodes using
“multi” mode. Take care to deal correctly with the end-of-file condition.

* Use excombine to find out how many items have been read.

* Use excombine to find the “global” total of the items read and use this to
compute the average.

« Print the global average.

The only really new issues in this example concern the passing of command line arguments
to node programs. You may wish to read the manual pages for the ex1oad functions and
also for the cubix command to learn how this is done.

If you are unfamiliar with the mechanisms used to detect end-of-file conditions in standard

39

This program runs
on any parallel
architecture and
any number of
processors

Passing command
line arguments to
node programs

The Express
manuals don’t
discuss standard C
practice

file I/O you may also wish to read about fscanf in any good C reference. (This
information is not contained in the Express manuals since it is standard practice.) The
basic method used is to monitor the value returned from £ scanf£. Traditionally this routine
returns the number of items read from the input file. Since we are trying to read a single
item we can look for any behavior different from this and treat it as the end-of-file
condition.

Finally, the method used to pass command line arguments to node programs should be
learned by consulting your Introductory guide. In general any text following the name of
the program to be loaded in the cubix command line will be passed to the node program
as argc and argv. Thus the command

cubix -n4 ex5 data.dat

normally causes the program ex5 to be loaded into 4 nodes and passed the following
parameters

argc = 2
argvi{0] = "ex5"
argv[l] = "data.dat"

Note that the windowing versions of Express work slightly differently - they have spaces
in their input dialog boxes in which arguments can be inserted.

#include <stdio.h>
#include "express.h"

int type = 100;
/* Could equally well be any non-negative value */

/*
* The next two functions are used in calls to excombine
*/
add_int (pl, p2, size)
int *pl, *p2, size;
{
*pl += *p2;
return 0;

}

add dbl(pl, p2, size)
double *pl, *p2;
int size;
{
*pl += *p2;
return 0;
}
/*
* Command line arguments can be passed to node programs

* through the conventional argc,
*/

main (argc, argv)

int argc:;

char *argv(]:;

{

argv mechanism.

FILE *fp;
double newval, total = 0.:;
int nitems;

if ((fp = fopen(argv([l], "r")) == (FILE *)NULL) {
perror (argv([l]);
exit (1) ;
}
fmulti (fp) ;
/*
* Read values from the file until fscanf fails.
*x/
nitems = 0;
while (fscanf (fp, "%$1f", &newval) == 1) {
total += newval;
nitems++;

}

* ok X

Now we have the local sum. Find out how many items

were read from the file by combining the “nitems”
variables.

»

*x/
excombine (&nitems, add _int, sizeof (nitems), 1,
ALLNODES, (int *)0, &type):;

/*

* Similarly get the global total of items read.
*/

excombine (&total, add dbl, sizeof (total), 1,
ALLNODES, (int *)0, &type):

/*

* Compute the average and print it out.

*x/

printf ("Average: %f\n",total/(double)nitems);
exit (0);

Program 5. Global sum of values stored in a disk file

Again it is important to note that this program runs on any number of nodes irrespective of
the type of parallel machine in use. The use of the Express system calls guarantees

41

The restrictions of
the Cubix
programming
model

The alternative
“host-node”
programming
model

Allocating and de-
allocating nodes;
loading programs

hardware independence. Furthermore, the power of the excombine function should now
be apparent. In this example we were able to use it for two different purposes by merely
supplying pointers to two different two-line functions.

Exercise 6. A Host - Node Program.

Up to now all the programs presented have used the Express I/O server Cubix. As can be
seen this type of programming is quite straightforward but it has some restrictions. The
most serious of these is that it only provides basic operating system facilities to the node
programs - it cannot and does not support all the different types of graphics libraries or
every type of data-base interface. Further, by placing all the code for your parallel programs
in the nodes of the machine you lose direct control of the host. If your program needs to
have direct, low level, access to peripheral devices, for example, another programming
model may be more appropriate.

Express provides for these cases by allowing you to use the “host-node” programming
model. In this type of program you extract the compute-intensive aspects of your
application and execute them on the parallel computer nodes. The interface or control
portions of your code remain on the host computer. The interface between these two
program is provided by Express function calls which allow data to be transferred between
host and nodes as though the host computer were just an additional node in the parallel
computer network. In this way an existing piece of code can be maintained almost
completely intact - only a small portion is extracted and parallelized.

In this exercise we will construct a ““host-node” version of Exercise 4. This will show us
some of the features of this programming model and will also illustrate some of the draw-
backs associated with this model.

The basic idea of the system is that the host program will allocate a number of nodes in the
parallel machine and download the separately compiled node program. It then reads the
values to be summed and sends them to the nodes. Finally the host reads back the sum and
prints it out. The node program merely waits for values to appear from the host, adds them
up and sends back the sum. All communication between host and nodes and among the
nodes is done with Express system calls.

The basic outline for the host program is, therefore
» Prompt the user to enter the number of nodes to use.
« Allocate this many nodes.
« Download the node program.

» Read data values from the terminal and send one to each node with the Express
exwrite routine.

* Read the sum from the nodes with exread and print it.
* De-allocate the nodes.

The new routines whose manual pages you may wish to examine at this point are exopen
and ex1oad which are responsible for the second and third items above - allocating nodes

42

and loading programs respectively. The routine exclose performs the node de-allocation
procedure and has its own manual page. The basic node to node communication routines
are described in the manual pages for exread and exwrite and the issue of sending
messages to host processors is discussed in the Express section of the User’s Guide.

The node program must perform the following steps
 Identify processor numbers by calling exparam.
* Read values from the host with exread.
e Calculate the global sum with excombine.
* Node 0 sends back the sum with exwrite.

Notice that in the last step only node O sends back the reply. This is a typical technique
when using the “global” communication functions in this way - if every node were to send
the sum back to the host we would have to read many superfluous messages all containing
the same information. To prevent this we merely pick out one node to send the message.

The new communication routines in this exercise, exread and exwr ite both expect four
arguments:

e A pointer to a region of memory containing the data to be sent (exwrite)or
into which the incoming data should be placed (exread).

* The number of bytes to be transmitted (exwrite) or the maximum number of
bytes to be placed in memory (exread).

* A pointer to an integer variable containing the processor number of the node to
which communication is being performed. To communicate with the host
processor we use the special variable HOST defined in the header file
express.h.

* Apointer to an integer variable containing the “message type” to be used for this
communication. This value can be any positive number less than 16384 and is
used to differentiate between overlapping communication requests. Since this
exercise has no such communication we need not worry. Nevertheless we
follow the general practice of assigning one message type to the input phase of
the program and another to the output messages.

You now have all the basic information required about the communication routines
required to program this exercise. Unfortunately there is a hidden “catch”.

The most tricky problem arising from the “host-node” computation model concerns the fact
that the host processor and the node CPU’s are rarely the same type of microprocessor.
Consider, for example, a transputer system (INMOS) with a Sun workstation or Macintosh
host (Motorola), or an NCUBE machine (proprietary chip) with a Sun workstation host. In
these cases we have to be concerned with the bit-structure of the quantities that we
communicate between the host and node processors.

The simplest issue to deal with is that of “word length”. An integer on the host, for example,
is often 16-bits while the nodes most commonly use 32-bit integers. This problem is simply
dealt with by choosing data types of matching lengths. Typically floating point numbers

43

The most basic
communication
routines: exread
and exwrite

Communicating
with a host

The problems of
“host-node”
programming

Different numbers
of bytes for
variable types such
as int

Byte ordering
within variables

Structure
alignment

Cubix has similar
problems if we use
binary 110 rather
than ASCIT

IO from node
programs

Compiling the node
part of “host-
node” programs

already match so the only issue is to use “long” variables for communicating integer
values since these are normally 32-bits on all machines.

The second issue concerns the order of the bytes within a word. Machines such as PC’s
store the least significant byte of a word at the lowest memory address while Motorola
microprocessors such as are found in Sun workstations store the most significant byte at the
lowest address. The consequence of this is that “byte-swapping” must be performed when
communicating data between microprocessors with opposite byte ordering. To help in this
task Express provides a set of library routines (_ex_swab, _ex swaw, _ex swad)to
perform these functions in both host and node processors. Note that “byte-swapping” twice
results in the same result as not swapping at all so if you are working on a system that
requires byte swapping be careful to do it either in the host or in the nodes but not both!

The last problem is the most complex and deals with structure alignment. The exact layout
of the individual bytes in a structure are normally of no interest to C programmers.
Unfortunately, if we intend to communicate structures between host and node processors
we have to take precautions that both machines lay them out in the same way. Otherwise
data that is valid in one node will be garbage in the other. This issue must really be resolved
on a case by case basis although we can observe that using only “long” integers and
floating point values in structures is generally safe since all quantities are then multiples of
32-bits in length.

Up to now Cubix has taken care of all these problems for us because we have been careful
to use “formatted” (i.e., ASCII) I/O. In this case all the internal transformations are
performed automatically by Express. If we had opted to use binary I/O in any of the
examples we would have had to face this problem because Express does not attempt to
“byte-swap” binary data.

A last, but VERY IMPORTANT point about the “host-node” programming model is that
the node program should not do any I/O. This means that system calls such as open,
close, read, printf£, scanf should be restricted to the host program. All I/O to the
nodes should actually be performed in the host and the data sent, as messages, to the node
program. This restriction is caused by the fact that the cubix I/O process which we
previously used to run our programs will not normally be running when we execute our
“host-node” program and I/O requests cannot be serviced. If your host has a real “multi-
tasking” operating system such as UNIX it is actually possible to have both the cubix I/
O process and your user “host” program run at once. In this case you can have the best of
both worlds - parallel I/O from every node and the host program. The technique involved
in setting up such a system is described on the manual page for exshare and is also
discussed in the chapter “Multi-host systems” in the User’s Guide.

At this point you have all the information necessary to write the “host-node” program.
Unfortunately the complications do not end here. The procedures necessary to compile and
link this code are also different from those so far encountered.

For the node program the process is quite similar to that already used and you should be
able to find the details in the Introductory Guide. Basically the only change is to omit the
switch which previously linked in the Cubix libraries. Thus a command which was
previously

tcc -0 foo foo.c =-lcubix
would probably become
tcc -0 foo foo.c

in which no “library” switches are given. This is a very important point - if you accidentally
link in the Cubix libraries you will generate a program that won’t run.

Compiling the host program is fairly straightforward. Essentially you use the conventional
compiler/linker that would be used to generate any other program running on the host but
link in special libraries containing the Express interface routines. The Introductory Guide
has all the details.

Finally we execute the host program just as we would any other program running on the
host computer.

In this section we actually have two program pieces to present since the host and node parts
of the program will be compiled and linked separately. Since the node program is quite
similar to those already presented we show it first.

/*

* NODE PROGRAM for global addition of a set of values
* gsent from the host processor.

*/

#include "express.h"

#define INT32 long

struct nodenv env;

main ()
{
INT32 val;
int add();
int type = 101,src = HOST, dest = HOST;
/*
* First get enviroment information - processor id.
*/
exparam(&env) ;
/*
* Read data from the host
*x/
exread(&val, sizeof (val), &src, &type);
/*
* Call excombine to perform summation
*/

type = 100;
excombine (&val, add, sizeof(val), 1, ALLNODES,
(int *)0, s&type);

45

Compiling the host
part of “host-
node” programs

Replacing 110
statements with
communication
calls - a common
scheme in “host-
node” programs

/*
* Send result to the host if node 0

*/
if (env.procnum == 0) {
type = 102; _
exwrite (&val,sizeof (val), &dest, &type):
e }:
* exit
*/
exit (0);
}
/*
* Function used for addition
*/

int add(pl,p2,size)
int *pl, *p2, size;
{
*pl += *p2;
return 0;

Program 6. Node program for parallel sum

Most of this code should look fairly familiar. The new features are the calls to exread and
exwrite which replace the calls to scanf and printf in the Cubix version of this
code. They are now responsible for getting the data to be combined from the host and
sending back the sum.

The other interesting point is the use of the INT32 macro to define the types of the
variables used for communication between host and nodes. As indicated previously we
must carefully match the length of the data objects used in the two processors and so we
choose the “long” type for this exercise.

The code for the host program has a fair amount of superficial complexity associated with
the (de)allocation of the processors which will perform the calculations for us. It is shown
below.

/-k

* HOST PROGRAM for calculating the sum of a set of
* yvalues by sending them to the nodes.

*/
#include "express.h"
#include <stdio.h>
#define INT32 long

char *dev = "/dev/transputer";
char *node = "node";

main ()

{
INT32 val;
int src = 0, nprocs,i, £fd;
int type = 101;

/*
* First get number of processors
*/
printf ("\nHow many processors do you want? ");
scanf ("%d", &nprocs) ;
/ *
* Get access to parallel machine
*/
if((fd = exopen(dev, nprocs, DONTCARE)) < 0){
printf ("Failed to access %d nodes\n",nprocs);
exit (1);
}
/*
* Load node program to parallel machine
*/
if (exload(fd, node) < 0) {
printf("Failed to load program %s\n",node);
exit (2);
}
/*

* Ask for different number for each processor
* and send to processors
*/
printf ("Enter %d numbers\n",nprocs):
for (i=0; i<nprocs;i++) {
scanf ("%1d", &val);
/*
* Swap bytes if necessary. Asume INT32 is 4 bytes
*/
#ifdef SWAP
_ex_swaw(&val, &val, sizeof(val));

#endif
exwrite (&val, sizeof(val), &i, &type);
}
/*
* Read data from processor 0
*/
type = 102;

47

Specifying the
name of the
hardware device to
use

Using the
preprocessor to
enable the byte
swapping

A more complex
strategy for byte

swapping

exread(&val,sizeof (val), &src, &type):;
/*
* Swap bytes if necessary. Asume INT is 4 bytes
*x/
$ifdef SWAP
ex swaw(&val, &val, sizeof(val));

#endif
/*
* Print the result
*/
printf ("The value is %ld\n",val);
/*
* Do not forget to release nodes
*/
exclose (fd);
/*
* exit
*/
exit (0) ;
}

Program 7. Host program for parallel sum

Important features of the host program are the allocation of the processors with the
exopen system call and the loading of the node program with exload. The first
argument to exopen indicates the name of the parallel computer device which you wish
to use. This name depends on what sort of hardware you have available - the manual page
for exopen contains a list of currently supported devices and their names.The second
argument to exload is the name of the node program and must correspond to that used
when compiling the node code. In this case we have assumed that the program to be loaded
has been called “node”.

Notice that we again use the macro definition of INT32 to ensure that data objects
communicated between processors will have equal length.

The other important feature of the host program is contained in the lines surrounded by the
preprocessor directives

$ifdef SWAP
_ex swaw(....
#endif

As promised earlier these lines contain “byte-swapping” function calls to transform the
data representation of the host to that of the nodes. We use the preprocessor definition
feature so that we can turn the “byte-swapping” on or off when compiling the code. This
enables us to use the same source code on machines which require “byte-swapping” and
also on those that don’t by using different ‘~D’ options when compiling.

A slightly trickier alternative which is to arrange for the host and node programs to

exchange a 32-bit value with a predetermined bit pattern when the code starts up.
(0x12345678 is a good candidate.) From this one can often deduce whether or not “byte-
swapping” is necessary allowing decisions to be made at run-time. The advantage of this
scenario is that you don’t have to even think about preprocessor definitions when compiling
for a new machine.

An informative exercise results from omitting the byte swapping in one of the cases where
it is necessary - the resulting “garbage” printed at the end of the program is quite
characteristic and you will quite readily recognize it in future occurrences.

This exercise has probably convinced you that “host-node” programming is too difficult for
real work and you should stick to the Cubix model. In common with many contrived
examples, however, this exercise has demonstrated almost every feature and complexity of
the “host-node” programming style without adding any real substance in the form of a real
program that accomplished some real task. Furthermore the additional lines of code which
allocate, load and de-allocate the parallel computer nodes are virtually identical in every
“host-node” application and can be simply copied from one to another. As a result we
believe that the “host-node” computation model can easily be used in real applications and
often offers substantial benefits in terms of the amount of code that can be reused - often
without even recompiling it.

In the next exercise we return to the Cubix model of computation to demonstrate the semi- -

automatic decomposition system contained within Express. These tools provide the basis
of a huge number of successful parallel codes and their study is an important part of
learning about Express.

Exercise 7. The “Ring” program. Automatic decomposing tools.

So far in this tutorial we have written parallel programs that used the fundamental I/O
modes and the “global” communication routine excombine to achieve parallelism. While
we have already written quite important parallel algorithms we must, sooner or later,
address the issue of interprocessor communication.

The basic message passing routines exread and exwrite that were introduced in the last
section had, as their third argument, a pointer to an integer value containing the processor
number of the node with which we wished to communicate. In the “host-node” program
just presented the situation was really rather simple - the nodes only communicated with
the HOST processor while the host dealt with each node in turn. The assignment of the node
argument was quite straightforward, and could furthermore be made in a manner that did
not depend on the topology of the parallel hardware in use.

The reader might be wondering how, in general, we are going to continue this practice as
the underlying problem becomes more complex.

In this section we will begin to resolve this issue by considering the following problem:

Each node is required to take a simple message and circulate it, in the most efficient manner
possible, through each of the other processors in our network. The result should be that
every node has seen the message originating in every other node.

49

Specifying
processor numbers
when using
Express routines

A problem with a
“logical topology”

Aidealized parallel
algorithm which
doesn’t worry
about the hardware

Assigning
processor number
for the “ring”
topology

Lest the reader think that this is a frivolous exercise we might point out that this algorithm
is the basis for a large fraction of the interesting physical simulations - gravity, melting, etc.
are all processes controlled by the need for such an algorithm.

A particularly elegant solution to this problem requires thinking of arranging the
processors, logically, in a “ring” as shown in Figure 6. Each processor is assigned a

Messages sent to fwdnode.

Messages sent to bcknode.

Figure 6. Communication around a ring of processors

“forward” and “backward” neighbor with whom it communicates. The basic algorithm,
therefore, is the following

* Send the message originating from this node to our “forward” neighbor.

» Repeat N-1 times the process of reading the message from our “backward”
neighbor and forwarding it to our “forward” neighbor.

A minute’s thought should be enough to convince the reader that this process does, in fact,
result in every node seeing the messages originating in every other node as required by the
problem statement. Note, however, that the nodes do not necessarily have to be connected

in the ring pattern by the hardware - we only imagine them to be so for the construction of
our algorithm.

The question, therefore, is the assignment of the “forward” and “backward” processor

50

numbers which will be required in the Express system calls required to send and forward
messages. One simple solution is to use the numbers assigned by the exparam function -
if we are assigned processor number P we can then have P+1 as our “forward” neighbor
and P-1 as the “backward” node. (Modulo the number of nodes, of course - processor 0
cannot have node -1 as its “backward” neighbor!) This technique also removes any
topology dependence from the algorithm - as long as the processors are numbered
consecutively from O everything will work correctly.

An important issue, however, concerns the efficiency of this approach. To evaluate this we
really must address the issue of hardware connectivity although our eventual solution will
not depend on it. The method described above works reasonably well on a hardware system
that is fully connected as shown in Figure 6. In this type of network every node can

0

Figure 7. A fully connected parallel processing network

communicate directly with all others and the mapping we have envisaged will succeed.

A rather different outcome would be seen, however, if we were to run our program on a
network of the form shown in Figure 6. This network is a square array connecting each
node to only two others. It is very common in practical hardware implementations. The
problem with the mapping described above is that no direct connection exists between
node 3 and its “forward” neighbor, node 0. Similarly node 2 is unconnected to its
“backward” neighbor, node 1. In practice this means that messages will travel much more
slowly between the unconnected nodes than the connected ones since Express has much
more work to do in forwarding messages. As a result the “ring” communication program
will execute more slowly on the “square” network than the fully connected one. On some
types of hardware it might execute as much as twice more slowly.

The solution to this problem is, however, quite straightforward. On the “square” network
we should re-assign the “forward” and “backward” node numbers to take advantage of the
topology of the hardware. In particular the assignments

Node 0 Forward 1, backward 2
Node 1 Forward 3, backward 0

51

Comparing the
outcome on

different types of
hardware

Forwarding
between nodes
takes longer than
direct
communication

Making the
program smart
enough to
reconfigure itself

Setting up
“logical”
topologies with
exgridinit

Figure 8. A partially connected parallel processing network

Node 2 Forward 0, backward 3
Node 3 Forward 2, backward 1

lead to a communication pattern in which nodes only communicate with other nodes to
which they have direct hardware connections. As a result the program runs just as fast as it
did on the fully connected network.

The important issue, of course, is how our programs should deal with this without having
to hard-wire processor numbers into the source code.

The solution is to use Express’ exgrid utility.

This is a set of tools designed to map problems such as the one we have described onto the
underlying hardware topology in an efficient, portable manner. In circumstances such as
we have been describing in this section its use can save us from complex coding to perform
optimal “mappings” and many hours of “debugging” when one person alters the
interprocessor connections without telling other workers. It also helps with mapping multi-
dimensional problems as we will see in the next section.

The function which is used to initialize the decomposition tools is exgridinit. (This
and other functions are described on the exgrid page in the Reference manual - you may
want to read this for more information.) The arguments passed to exgridinit tell the
system the “dimensionality” of the logical system being used and the number of processors
to assign to each “logical” dimension.

The use of the word “logical” in the above discussion may cause confusion. In fact it is
usually obvious in any practical system what the appropriate dimension should be. In an
image analysis problem, for example, the dimension will be2 and we need to tell
exgridinit how many processors to assign to the horizontal and vertical axes of our
images. In a structural analysis system the dimensionality will be either 2 or 3 depending
on how many real-world dimensions the system can handle. Again exgridinit will
expect to be told how many nodes to assign to each physical dimension. In our current

52

example we are interested in arranging the processors in a “ring” which is one dimensional.
We also tell exgridinit to use all the processors in the ring scheme.

Note that it is sometimes difficult to decide how many processors should be assigned to a
given dimension, especially if you wish to run your program on many differently sized
machines. For this reason a function exgridsplit is provided to perform the
assignment for you. This function can be used to generate the parameters that will be passed
to exgridinit.

Once exgridinit has been called the mapping between hardware and the user’s
“logical” topology is defined. To find out the processor numbers which should be passed
to the communication routines we now use the exgridnode routine. This expects three
arguments as follows

» The processor number at which we originate the message. This will normally be
the value returned in the procnum field of the structure returned by exparam.

» The dimension of the “logical” mapping along which we wish to send the
message.

e The “distance” along this axis measured in units of “nodes”. Positive and
negative values cause travel in opposite directions.

To illustrate the simplicity of this method we can assign the “forward” and “backward”
processor numbers with the statements

backnode = exgridnode (env.procnum, 0, -1);
nextnode = exgridnode (env.procnum, 0, 1);

i.e., we travel one processor in the positive and negative directions along “dimension 0" of
our ring.

The beauty of this system is that we can maintain the independence of the program from
the topology or architecture of the hardware while keeping its performance as high as
possible. Furthermore we never need to know any of the processor numbers involved in
message transactions - we just take the values returned by exgridnode and pass them to
the communication routines without ever having to interpret their exact values.

Most of the hard work in building the “ring” program can now be done automatically. A
further optimization, however, can be made if we consider the way in which messages are
passed around the ring. It is a matter of little concern whether the message being sent to the
“forward” node goes before or after that being received from the “backward” node - the two
messages can go simultaneously as far as our algorithm is concerned. This allows us to
replace the calls to exwrite and exread which we might have imagined using with a
single call to exchange. This routine essentially performs the combined actions of a read/
write pair but allows possible hardware optimizations for increased efficiency. It also
allows us to simplify the modifications to the code required for parallel processing.

The arguments to this function, which is described on the exchange manual page are
essentially the four arguments to exread followed by the four arguments to exwrite. It
is important to note, however, that the sensible interpretations of conflicting arguments are
made - if the data to be sent has the same address as that being received then exchange

53

Assigning
processors to
logical dimensions

Assigning
processor numbers
in a portable,
efficient manner

Sending and
receiving messages
simultaneously
with exchange

makes sure that the transmitted message has sent the old data before any new information
overwrites it.

The outline of our “ring” program should, therefore, be

¢ Use exparam to find out how many processors are in use and which processor
number is assigned to each node.

e Call exgridinit to initialize the “ring” topology.
e Call exgridnode twice to find our “forward” and “backward” neighbors.

* Loop over the number of processors using exchange to both send and receive
messages.

« Print a message to show the transit of the messages around the “ring”.

The ring code can be compiled and run as a standard Cubix program as described in the
previous sections.

Sample code for this exercise is shown below

#include "express.h"
#include <stdio.h>

struct nodenv env;

main ()
{
int val;
int type = 100, nextnode, backnode, 1i;
/*
* First get environment information - processor id.
*/
exparam({&env) ;
val = env.procnum;
/*
* Call exgridinit to initialise topology
x/
exgridinit (1, & (env.nprocs));
/*

* Call exgridnode to find where to send and from
* to read

*/

nextnode exgridnode (env.procnum, 0, 1);
backnode = exgridnode (env.procnum, 0, -1);
/*
* Switch stdout to multi to print value as it
* moves around the ring.

*/

54

fmulti (stdout) ;

/*
* Set the ring loop.
*/
for (i=0;i<env.nprocs;i++) {
/*
* Call exchange to send
*/
exchange (&val, sizeof(val), &backnode, &type,
&val, sizeof(val), &nextnode, &type):;
/ *
* Print the value and processor number
*x/
printf ("Processor %d has value %d\n",
env.procnum, val);
/*
* Do not forget to flush
*/
fflush(stdout);
}
/*
* exit
*/

exit (0);

Program 8. Ring program

The beauty of this program is that it runs on any number of nodes regardless of the way in
which the underlying hardware is connected. Furthermore the user is never concerned with
the actual values returned by the exgridnode routine - all programming is done in the
“logical” configuration assigned by exgrid.

In this case the whole concept of interprocessor communication has been replaced by Think of
communication between “data domains” - the algorithm requires that a processor access a communication in
value contained in a data region other than its own. As a result it uses the exgrid utilities li’;ﬁ'e iisd‘;sm

to return a “magic token™ which enables that processor to acquire the data it requires. No - . .
knowledge of “processors” ever enters into this thinking - only the data domain as ,u4, individual

decomposed by exgrid is relevant. nodes

While this exercise has presented the exgrid functions in a simple, and somewhat
abstract, one dimensional example the next exercise should provide more “feel” for the
tools by mapping a two dimensional problem and adding graphics.

Exercise 8. Two dimensional decomposition with graphics

In the previous exercise we learned how to apply the automatic decomposing tools to a one

55

Extending to two
dimensions

Elementary
graphics

Buffering in the
graphics system

The mapping
between flushing
modes in Cubix
and Plotix

dimensional problem. In this exercise we will use the same tools for a two dimensional
topology typical of that used in computer graphics, image analysis, electromagnetism, fluid
flow, cellular automata, expert systems and a whole host of other applications. To bring out
the important features of this type of decomposition we will use the Express parallel
graphics system, Plotix.

The goal of this program is to decompose a two-dimensional data set among the processors
and display, on our monitor, a two-dimensional array of colored regions. Each region will
represent the portion of the initial data set assigned to an individual processor and will be
assigned a unique color.

All the parallel processing elements of this program are already to hand. Following the
discussion of the previous exercise we will use the exgrid tools to assign processors to
the two dimensional topology. Since we may want to run this program on odd numbers of
nodes we will use the exgridsplit function to assign processors to the two-dimensions
of the problem. The actual division of the input array between the processors is performed
by the exgridsize function. This requires, as input, a processor number and the global
size of the data set to be decomposed. It returns to us the starting index and local size of the
piece of the data set which should be distributed to the indicated processor.

To display the colored regions on the screen we will use the features of the parallel graphics
library, Plotix. For our purposes only a few routines are required and their manual pages
should be consulted for details

openpl Initializes the display device and assigns a buffer for use with
graphical objects.

vport Assigns a region of the display surface to a node.

box Draws a rectangular region in a given color.

closepl Deactivates the display device and returns to normal modes.
usendplot Flushes the graphical objects to the display device.

Each of these functions, except the last, might have been expected on the grounds of
previous experience with graphical systems. The last function is required because Plotix,
in common with Cubix, involves the concept of internal “buffering” for the sake of
efficiency. If we drew every object on the display as soon as a node created it Plotix would
be an extremely slow system because it would have to send a small message to the host
processor for every single graphical item. Instead it uses the buffer allocated when openpl
is called to store up information for later display when one of the sendplot routines is
used. In this case many short messages are combined into one large one as the system is
extremely efficient.

As may be apparent, this concept is identical to that used in Cubix and, as might be
expected there are three flushing commands corresponding to the three Cubix I/O modes

sendplot Assumes that all nodes wish to draw the same objects. Forces a
synchronization and sends data from the graphics buffer on node 0.
This corresponds to the Cubix “single” mode.

usendplot Each node sends data to the display, in order of increasing processor

56

number. This call matches the idea of the Cubix “multi” mode in that
all processors are forced to synchronize.

asendplot Any node may flush its data independently to the host with this call.
No internode synchronization is required and data may appear in an
unpredictable order. Corresponds to the “async” mode of Cubix.

Note that one important difference between the Plotix flushing modes and those of Cubix
is that the latter occasionally flushes buffers automatically, for example, when they are full
and in “single” mode. Plotix never flushes automatically - if the graphics buffer fills up data
at the beginning is overwritten by new data - the buffer is treated in a “circular” fashion.

This discussion would allow us to write a simple program that draws squares on the display
but we need to address the issue of coordinate systems in order to pass the correct values to
the box routine.

After the call to openpl the whole display surface is mapped to the range 0.0 to 1.0 in each
direction. Together with the information returned from the call to exgridsize we could
now display the regions on the display. Instead we opt to use the vport function to re-map
the surface of the display device which each processor is allowed to use. By default each
node can address the entire view surface. The arguments to the vport function define a
rectangular region, as a fraction of the whole, into which the calling node can draw. Using
the data returned by the exgridsize call we can, therefore, redefine the active portions
of the display and then have each node draw a “unit box” in its viewport.

The outline of the program is, therefore, as follows:
¢« Call exparam to identify processor numbers and the number of nodes
participating.
* Partition the nodes by calling exgridsplit.
» Initialize the two dimensional mapping with exgridinit.
» Decompose the two-dimensional array with exgridsize.
 Start the graphics by calling openpl
* Use the data returned by exgridsize to call vport.
» Call box to draw a colored rectangular region on the display.
« Call usendplot to flush a different sub-image from each node.

Since the resulting program will need to be linked with the Plotix libraries as well as the
usual Cubix library we will need to modify slightly the procedure used when compiling/
linking this code. Normally this is just a matter of changing the -lcubix or ~kcubix
flags to ~1plotix or ~kplotix respectively. The manual page for the appropriate
compiler and the Introductory Guides also offer suggestions.

To run this program you will also have to modify the normal procedure. In most cases you
have to indicate a display type for graphical output by specifying a ‘~T’ switch to the
cubix command. To execute on an IBM compatible PC, for example, you need the switch
‘~Tbgi’ while Sun workstations use ‘-~Tsun’ for Sunview and ‘-TX’ for Xwindows. The
Plotix chapter of the User’s Guide contains details of the switches for the supported

57

Coordinate systems
in Plotix

Modifying the
compilation
process to link the
Plotix library

Running with a
graphics device

graphics devices.

The following is sample code for this exercise.

/*

* Code demonstrating the two dimensional decomposition
* of an array using the exgrid primitives and PLOTIX.
*/

#include "express.h"

#include <stdio.h>

/*
* Size of array to be decomposed

*/

#define SSIZE 100

int global([2] = {SSIZE,SSIZE};
int start(2],size[2],procs(2];

struct nodenv env;

main ()
{
float x0,y0,x1,vy1l:;
/*
* First get environment information - processor id, etc.
*/
exparam(&env) ;
/*
* Call exgridsplit & exgridinit to initialise topology
*/
exgridsplit (env.nprocs, 2, procs);
exgridinit (2, procs);
/*
* Call exgridsize to organize data distribution
*/
exgridsize (env.procnum, global, size, start):;
/*
* Calculate the corners of this processor’s
* window, as fractions of the whole display.
*/
x0 = (float)start[0]/SSIZE;

y0 = (float)start{1]1/SSIZE;
x1l = x0 + (float)size[0]/SSIZE;
yl = y0 + (float)size{l]/SSIZE;

/-k
* QOpen graphics device. If fails, exit cleanly

58

*/
if (openpl (DONTCARE, (FILE *)NULL) < 0) {
fprintf (stderr,
"Failed to initialize graphics\n");
exit (0);
}
/*
* Call vport map each processor’s piece of the
* decomposed data to the display surface.
*x/
vport (x0, y0, x1, yl);
/*
* Draw the box using a color based on our processor
* number and flush it to the display
*/
box (0.0, 0.0, 1.0, 1.0, 2+env.procnum, 1);
usendplot () ;

/*
* Close graphics device and exit.
*/

closepl();
exit (0);

Program 9. The Box Program

It is informative to execute this program on a variety of numbers of nodes and watch the
various decompositions automatically appear on the display. Even though we didn’t
actually do anything with the data we decomposed it should by now be apparent that basic
operations are trivially built into the system by using routines such as exgridnode.

One other, very important point is that we can easily modify important parameters
associated with this decomposition. If, for example, we wished to examine the possibilities
of one dimensional decompositions for a certain algorithm we merely change the 2 in the
calls to exgridsplit and exgridinit to 1 and Express does all the rest. We could
similarly extend this decomposition to three dimensions, although the graphics would then
need some attention.

3.2 Summary

At this point the basic introduction to Express is complete. The information so far
presented should be enough to build a wide variety of real applications despite the fact that
the codes we have looked at so far have been mere “toys”. The next few sections of this
document extend the ideas presented up to this point by showing more complete and/or
familiar algorithms which may be useful as the basis for complete programs.

At this point it is probably useful to summarize the Express system calls that have been
used in constructing the programs developed so far. Despite the large number of routines

59

Modifying the
decomposition
scheme using
exgrid

A list of the most
commonly used
Express routines

in the runtime library we have so far built 8 quite useful programs each of which exhibits
useful features using only the following routines:

fsingl, fmulti
Switches a file between “single” and “multi” modes for 1/O.

exparam
Used to find crucial runtime parameters such as processor number and the
number of nodes working on the same problem

excombine
Used to “globalize” distributed data - i.e., generate a single result from a set
of data which has been decomposed among processors.

exgrid
A library of routines which collectively allow sophisticated decomposition
strategies without user intervention and which allows the programmer to be
completely free of the underlying parallel computer’s architecture and
topology.

exchange

A routine which allows us to “simultaneously” send and receive data.

exread, exwrite
Basic message passing functions which allow us to send and receive
messages from other processors.

exopen, exload, exclose
Control operations performed only by “host” programs to allocate, load and
deallocate groups of nodes in the parallel computer.

_ex_swaw
A byte swapping routine used only when the host and nodes of the
architecture in use have different byte ordering properties.

Using onlyafew Everything else we have used has been purely sequential code as might be found in any
Expressroutines sequential programming system! This is one of the reasons that we believe that
geisusalong way orooramming in Express is just like programming sequential computers - you use all your

old code and merely add a few calls to the runtime library to exploit the parallel computer.

It is probably true that well over half of all parallel programs can be built using only these
functions and we encourage you to study their manual pages when building your own
programs.

4 Advanced Applications

" Now that we have seen some of the basic operations of Express in a variety of applications
we can start to build “real” programs. We use the term real in quotes here because it is
obviously impossible to give the text of any commercial quality application in this
document.

60

The techniques used, however, are no different from those already seen in the previous
exercises - we have already written the bulk of the extra code that must be added to an
application to make it run in parallel under Express.

This section begins by showing the Express solution to the Mandelbrot Set. This is not a
particularly interesting problem in its own right but it shows the steps necessary to take an
existing sequential program and run it in parallel. You might use this as a guideline to your
own parallelization strategies.

Exercise 9. Porting existing codes: A Mandelbrot program

So far we have written all our example codes from scratch using, as a guide, the instructions
laid out in each exercise. In this case we will first construct a purely sequential program and
then examine the techniques used to parallelize it under Express.

The particular example which will be used is that of a program to generate and display a
portion of the ubiquitous Mandelbrot set. For those unfamiliar with this topic the following
is a brief discussion of the algorithm. More advanced discussions can be found in the
numerous articles and books on the subject.

Briefly, each point of the complex plane, c, is assigned an integer value by considering the
sequence of values:

zo=0

= 2
Zptl T 20 t C

The integer value assigned to the point ¢ is the smallest value of n for which | z | is greater
than some arbitrary constant.

To display the Mandelbrot set on a computer screen, a portion of the complex plane is
identified with the screen. Hence, each pixel in the screen corresponds to a different value
of c. The color of the pixel is chosen from a “palette” according to the value of n. Exactly
how the palette is constructed is a matter of artistic, rather than mathematical, judgment.

To render an image of the Mandelbrot set, one must specify the region of the complex plane
that is desired. A very simple sequential program to display a portion of the set is shown in
Program 10.

First the user is asked to indicate the desired region of the complex plane. It then opens the
graphical output device using the Plotix subroutine openpl, and determines the resolution
of the device with the subroutine aspect. Once the resolution is known, it allocates an
array, called screen, of the appropriate size and calls the subroutine mbrot fill to
determine n, for each pixel on the screen. Finally, it calls mbrot display which uses
the Plotix marker and color functions to display individual pixels. As we shall see,
when we use Express to parallelize this program, the subroutines mbrot f£ill and
mbrot_display will not have to change. The only changes necessary are a few
additional subroutine calls within main to automatically decompose the data.

/*

61

Using the existing
techniques to build
“real” programs

A brief
introduction to the
Mandelbrot set

Use of Plotix in a
sequential
Mandelbrot code

Mandelbrot set

Now that a sequential program to render the Mandlebrot set is in hand, we can consider how
to parallelize it.

As we have already seen Express provides a number of routines, collectively called the
exgrid library, which are very useful for a decomposition such as this. The idea is to
simply assign approximately equal subsets of the pixels to each processor. By following the
generally encouraged practice of writing the main program in a “modular” style, we find
that all we need to change are some of the arguments to the subroutines, mbrot_fill and
mbrot_display. The subroutines themselves, and hence the bulk of the actual program
remain completely unchanged by parallelization. In fact, the changes we are about to make
are essentially ignorant of the fact that we are dealing with a program to render the
Mandlebrot set. Any program with a similar two-dimensional structure can be treated in
exactly the same way.

To begin we initialize the exgrid library by calling exgridinit. The function
exgridsize can be used to tell us how much of the array representing the screen should
be calculated in each processor. This function fills two auxiliary arrays with values that
describe the decomposition of the array screen. These values, which are not necessarily
the same in all processors, are kept in the variablesy _start,x_start,ht local and
wdth_local. The starting values in x and y, and the extent of the local array in width and
helght allow us to calculate the corners of the limited “local” region of the complex plane
for which each node is responsible. The values that are returned by exgridsize are
different in each processor, and the regions assigned to each processor form a non-
overlapping array that covers the entire screen, as in Figure 9.

Next we observe that the arguments to mbrot fill specify the coordinates and
dimensions of interest in the complex plane. To ensure that each processor evaluates only
pixels within its region, all we need to do is change these arguments to correspond to the
coordinates and dimensions of the processor’s region, rather than the entire screen. This is
the purpose of the ten or so lines of arithmetic that appears before the call tombrot fill
in Program 11.. Finally, the Plotix function vport can be used to map the graphlcal output
from each processor onto the exact portion of the graphical device that corresponds to the
region computed in mbrot fill. By using vport we eliminate the need to change the
mbrot_display subroutine in any way.

Notice how we are using almost exactly the same techniques in this program as were used
in Exercise 8. This is typical of Express programs - the overall structure is quite similar
from one program to the next. The parallel version of the Mandelbrot program is shown
below

#include <stdio.h>
#include "express.h"

main ()

{
double center_x, center_y, cmplx _wdth, cmplx ht;

63

Parallelizing
Mandelbrot
automatically

Domain
decompositionwith
exgrid

wdth

~—- (center_x local,
center_y local)

/

local_ start

ht local

wdth local

Figure 9. A domain decomposition for the screen for displaying the
Mandiebrot set, as used in Program 11.

double center_x local, center_y local;
double ht_ fraction, wdth_fraction;
double x_start_ f, y_start f;

int x_start, y_start;

int *screen;

double ht f, wdth f;

int ht, wdth;

int ht_local, wdth local;

struct nodenv nenv;

int global{2];

int local_start (2], local_sz([2], nprocs(2];

printf ("Enter the real and imag. components ");
printf ("of the center of the screen "):;
scanf ("%$1f%1f", ¢er x, ¢er y);

printf ("Enter the horizontal dimension of the");

printf("screen in the complex plane ");
scanf ("%1f", &cmplx wdth);
/*
* Open the graphical device and determine it’s
* resolution

*/
openpl (32768, (FILE *)O0);
aspect (&wdth_f, &ht f);
cmplx ht = cmplx wdth * ht_f/wdth f;
ht = (int)ht_£f;
wdth = (int)wdth_ f;
/*

* Call exparam, exgridinit and exgridsize to
* determine what portion of the screen is to be
* calculated in this processor.

*/

exparam(&nenv) ;

exgridsplit (nenv.nprocs, 2, nprocs):;

exgridinit (2, nprocs);

global([0] = ht;

global({l] = wdth;

exgridsize (nenv.procnum, global, local sz,

local_start);

/*

* Allocate the array representing the screen
*/

ht local = local_sz[0];

wdth local = local_sz[1];

screen = (int *)calloc(ht_local * wdth_local,

sizeof (int));

/*

* Determine the coordinates of the center controlled

* by this processor.
*/
y_start = local_start(0];
X_start = local_start([1l];
ht fraction = (double)ht local/ht f;
wdth fraction = (double)wdth local/wdth f;
x_start_f = (double)x_start/wdth f;
y_start f = (double)y start/ht f;
center_x local = center x + cmplx wdth*

(x_start_f + (wdth_fraction - 1.)/2.);

center_y local = center_ y + cmplx ht *
(y_start_f + (ht fraction - 1.)/2.);
/*

65

Matrix
tfransposition

* Fill in the screen

*/
mbrot_fill (screen, wdth_local, ht_local,
center x local, center_y local,
cmplx _wdth * wdth fraction,
cmplx_ht * ht_fraction);
/*

* Set up the graphics coordinate system to correspond
* with pixels
*x/
space(0.,0., (double)wdth local, (double)ht local);
/*
* Set up a viewport on the device so this processor
* maps into the right place

*/
vport(x_start_f, y start f,
x_start_f+wdth fraction,
y_start_f+ht fraction);
/*
* Finally, render the image on the device.
*/

mbrot_display (screen, wdth_local, ht_local):;
closepl();
exit (0);

Program 11. A parallel version of the program to display a
representation of the Mandlebrot set using Plotix.

Exercise 10. Matrix transposition

The example we will consider in this section is the transposition of a matrix. We assume
that the matrix has been decomposed among the processors in a manner similar to that used
for the array screen in the Mandelbrot example, and that the individual elements have
been filled in, perhaps by repeated calls to scanf, as in the “sum” example. Furthermore,
for simplicity, we assume that the matrix is square, that the number of processors is a
perfect square and that the matrix fits “evenly” into the processors. Relaxing one or more
of these restrictions is an instructive exercise for the reader. The matrix is decomposed in
exactly the same way as was the screen in Figure 9. As a result the code to perform this
decomposition would look very similar to that of Program 11.

The subroutine transpose is shown in Program 12. It is called with arguments
specifying the input and the output arrays and the number of rows (and columns) that are
stored locally within each processor.

The program first places the transpose of the local input array into the output array. Then,
it identifies the processor in which these values belong. This is done with the

66

exgridcoord and exgridproc functions, which convert a processor number into
indices into an array of processors, and vice versa. Note that the eventual home of the
values is coincidentally the source of the values which belong in the current processor, so
the source and the destination arguments to exchange are identical. Finally, the
communication function exchange is called to send the data to its destination and receive
the data from the source.

#include "express.h"

transpose (inarray, outarray, nrows_local)
int *inarray, *outarray;
int nrows_local;
{
int i, j, me([2], him[2]:;
struct nodenv nenv;
int type = 1234; /* Any value is ok here */
int his_procnum, len;

exparam{&nenv) ;
/*
* First transpose the part of the matrix on this
* processor.

*/
for (i=0; i<nrows_local; i++){
for(j=0; Jj<nrows_ local; j++){
outarray(j+i*nrows_local] =
inarray[i+j*nrows locall;
}
}
/%
* Figure out where I am in the big picture.
*/
exgridcoord(nenv.procnum, me) ;
/*

* Now exchange my horizontal and vertical coordinates
* to determine where my transpose is in the big
* picture
*/

him[0] = me[l];

him[1l] = me[0];
/*
* Finally, figure out the processor number of my
* transpose
*/

his_procnum = exgridproc (him);
/*

67

Porting an existing
System - the options

Modifying this
strategy is an easy
exercise.

* Now exchange the data

*/
len = nrows_local * nrows_local * sizeof(int);
exchange (outarray, len, &his procnum, &type,
outarray, len, &his procnum, &type):;
}
Program 12. A subroutine to transpose a matrix that is decomposed by

the exgrid library.

Exercise 11. A Spread-sheet Program

The final example of a parallel program we will consider is a spread-sheet program similar
to any of the popular ones that run on personal computers. Again, the domain
decomposition is as in Figure 9. Each processor assumes responsibility for a portion of the
entire spread-sheet. Obviously, a spread-sheet program is much too complicated to
consider in all its detail. Most commercial spread-sheets include features like highly
sophisticated input languages and graphical interfaces. In regard to these features, we
simply point out that a parallel computer is no harder to program than a sequential one.
With the Cubix system, any spread-sheet program written in a high-level language that runs
on the host can be recompiled (if the source code is available) and run on the parallel
processor. Alternatively the host interface can be left intact and the computationally
difficult updates can be passed to the parallel computer by using the ‘“host-node”

programming model.

The time-consuming piece of a spread-sheet program is the update phase, when potentially
thousands of cells must be modified to reflect new information. Fortunately, this is the
piece that is amenable to parallel computation by domain decomposition.

To simplify memory allocation we program the decomposition as a 4x4 array (16
processors) directly into the code. Furthermore, we assume that a given cell can depend
only on other cells in the same row. The extension to intra-column dependencies is
essentially accomplished by replacing “row” by “col” and vice versa in Program 14..

#include "express.h"

/*
* Fix the decomposition so it has 16 processors in a
* 4x4 array. This could be computed at run-time based
* on the number of processors available, at the
* expense of a few calls to the memory allocation
* function calloc() and the function exgridsize()
*/

#define N_ROWS_PROC 4

#define N_COLS PROC 4

int nprocs([2] = {N_COLS PROC, N _ROWS PROC};

68

int nrows, ncols;

int nrows_local, ncols_local;
int row_partners[N_COLS PROC];
struct cell *spread_sheet;

decompose ()
/* Call this after the total number of rows and

* columns, nrows and ncols, have been set

*/

int size globall2], size_local[2], start(2];
int me([2], partner(2];
struct nodenv nenv;

exparam{&nenv) ;

exgridinit (2, nprocs);

size[0] = ncols;

size[l] = nrows;

exgridsize (nenv.procnum, size_global,

size_local, start);

ncols_local = size_local[0];

nrows_local = size local(l];

spread_sheet = (struct cell *)calloc(
nrows_local * ncols_local,
sizeof (struct cell)):

exgridcoord (nenv.procnum, me);

for(col=0; col<N_COLS_PROC; col++) {

partner(0] = col;
partner([l] = me(l];
row_partners(col] = exgridproc (partner);

}

Program 13. A routine to set up some external variables for use in a
spread-sheet.

We set up a decomposition of the spread-sheet cells that is essentially identical to that in
Figure 9. The parameters, both “local” and “global”, are stored in external variables, where
they can be accessed by other subroutines. In addition to setting the number of rows and
columns of cells, processors, etc., an array is set up, row_partners, which stores the
procnum’s of all the other processors in the given processor’s row. This information is
obtained with the exgridproc function, just as in Program 12..

The update_rows routine uses the external variables set up in decompose to collect
entire rows, one row at a time, into each and every processor. With this data, the subroutine

69

exconcat is
another of the
“global”
communication
routines

Other Express
tools: NDB, PM,
etc.

update_cell from_row is expected to perform any necessary modifications to the
values in spread_sheet. The communication subroutine used in this program is
exconcat, which concatenates data sent by a collection of nodes. The collection is
specified by the array row_partners which was filled by Program 13..

struct cell whole row([N_COLS_PROC];

update_rows ()
{
int row, col;
int type = 100;
struct cell *this_row;

for (row=0; row<nrows_local; row++) {

this_row = &spread_sheet[row*ncols_locall;

exconcat (this_row,
ncols_local * sizeof (struct cell),
whole_row, sizeof (whole_row),
NULLPTR, N_COLS_PROC, row_partners,
&type) ;

for(col=0; col<ncols local; col++){

update _cell from row(spread_sheet,
row, col, whole row);

Program 14. A subroutine to perform all intra-row updates.

5 For more information.

" This tutorial has only scratched the surface of parallel computing and the features of the

Express system. To begin with, there is no substitute for learning-by-doing. With the
information in this tutorial, you should be able to write some simple programs of your own.

Unless you are a very rare and special individual, your first few attempts at writing your
own parallel programs will contain bugs. Along with writing your first parallel program,
you should read the chapter describing “ndb: A Source Level Debugger for Parallel
Computers”, and use ndb to help you find the bugs.

Once your program is running, you may wish to measure its performance. ParaSoft’s
profiling system allows you to measure execution times, communication and “system”
overheads and to trace detailed “events” within a running program. It is equipped with a
graphical interface to facilitate interpretation of the large amount of data that is generated
when profiling a parallel system. For complete documentation on the system, refer to “PM:
A Profiling System for Parallel Computers.”

70

To find out more about ParaSoff’s general purpose I/O system, refer to “Cubix:
Programming Parallel Computers Without Programming Hosts.”

To find out about the extensive parallel graphics package, Plotix, refer to “Plotix: A
Graphical System for Parallel Computers.” Plotixis a 2-D graphics system containing input
as well as output primitives.

The extensive communication library in Express is described in “Express: A
Communication Environment for Parallel Computers”. This includes information on how
to write your own host program (only necessary if Cubix does not satisfy your needs),
mechanisms for loading different programs into different processors, asynchronous
programming styles and many other topics.

Considerable work has taken place in the last five years identifying problems in science and
engineering that are amenable to parallel computation. The book “Solving Problems on
Concurrent Processors” by G. Fox, et. al., published by Prentice-Hall surveys some of this
work. It is an excellent place to look for analysis of a wide variety of problems and
decompositions.

71

72

73

Express

A portable, efficient communication sys-
tem for parallel computers ... and much
more

p 1 Introduction

L, When coding an application on a conventional sequential computer one is often faced with
a choice between several different implementation techniques based on the wide range of
tools available. In typical parallel environments this has not been the case since the
facilities offered to the application developer have either been limited in scope or
completely non-existent. Express is a communication environment or Operating System
designed to offer a wide range of implementation strategies to both system and application
designers. In particular it has been motivated by application requirements rather than any
intrinsic operating system concepts which is one of the reasons it is usually referred to as
an “environment” rather than an operating system.

As already stated a goal of Express is to meet the needs of application codes by offering
utilities at all levels of complexity from low level message passing primitives to automatic
data-level decomposers and a corresponding communication interface that is totally
independent of the underlying hardware connectivity. Which system is appropriate for a
particular application can only be decided by considering the needs of that application.

Among the questions.that might be important are

* Do Ineed completely non-blocking message passing or do my problems exhibit
some sort of synchronization that can usefully be oriented to the communication
structure?

* Does my application require totally asynchronous message processing, e.g. an
interrupt handling capability?

* Can I usefully use techniques such as “double-buffering” to enhance my I/O
bandwidth?

« What are the 1/O requirements of my algorithms?

* Do Ineed to write a program for the host computer or can I just have a program
running in the parallel machine?

Note that most of these questions contain references to applications. This is an obvious
point - the nature of the application should determine the software model to be used. Until
fairly recently, however, the answers to many of these questions were decided by the
hardware - different implementations weren’t flexible enough to support the different
possibilities. The more recent machines, coupled with advancing software systems have
allowed developers to once again relate these fundamental decisions to their algorithms
rather than someone else’s idea of an “operating system”.

Express is a software package designed to meet the needs of applications. Its fundamental
design is rather different from more conventional “operating systems”. Rather than starting
from the hardware and building a communication system etc. Express began with
applications, considered their requirements and built up a system to fulfill them.

Express is conceptually a multi-layered system. At the lowest level is support for
allocating processors, loading programs and asynchronous message passing. These
facilities are available to the user, or can be ignored totally as befits a particular application.
At a higher level, and logically distinct, are the utilities designed to automatically

75

Sequential
computing tools

Helping develop
commercial
applications

Issues in deciding
on parallelization
strategies

DON'T PANIC!

decompose problems with regular structure. These routines form the basis for an extremely
elegant model of computation in which the underlying topology of the hardware can be
completely ignored. Along with this level are routines that interface programs running on
the host computer, if any, to the programs running in parallel. At the highest level is a
complete I/O system allowing parallel programs uniform access to the operating system
facilities of the host. This level makes for the easiest computing - the user simply adds
communication calls to a working sequential program in order to parallelize it and writes
no program for the host computer. The I/O system operates in several modes allowing
either synchronous or asynchronous operation according to the needs of the application.

Each of the levels described above is logically distinct building only on those below it. As
aresult we are able to port the system to a wide variety of hardware/software systems taking
a “top-down” approach in which the higher levels are built upon existing lower layers
whether they be implemented in hardware, software, within Express or some other native
operating system.

The structure of this chapter is as follows. Section 2 describes some fundamental issues
including booting the Express kemel, programming models and initializing software in
various high level languages. Section 3 describes the fundamental processes of allocating
nodes and downloading programs from the host system. Section 4 describes the message
passing support provided by the Express kernel and is divided into sections discussing the
blocking and non-blocking subsystems separately. Also discussed in this section are the
concepts and restrictions which surround the “processor number” and “type” concepts
which are central to Express. Section 5 introduces the concepts of automatic
decomposition and the utilities that take advantage of them and section 6 describes the /O
subsystem for file/terminal I/O and other operating system functions. Section 7 contains
details of a hardware specific set of communication functions which may be of interest to
users with heavy communication needs. Section 8 presents a complete example Express
program and discusses the other example codes supplied with the system.

This chapter is arranged such that low level concepts are introduced first building to more
sophisticated systems. This has the advantage of being quite logical but the disadvantage
of perhaps giving too much information. One of the advantages of the multi-layered nature
of Express is that one can use the upper layers with no knowledge of the lower ones. As a
result programmers may choose to adopt a programming style in which certain sections of
this chapter are completely irrelevant. Good examples include most scientific programs.
These codes can usually be developed using only the techniques described in sections 2, 5
and 6 - the material of sections 3 and 4 is unnecessary. Since one typically needs to
understand the whole picture before deciding which programming style to adopt we
suggest that the reader at least skim through sections 2 and 3 even if the decision has been
made to program at a higher level.

This document may seem a little daunting at first. There are many routines and lots of
arguments. However users with particular problems may need to use only a small portion
of the system described here. In particular we have found that many scientific applications
can be parallelized with only a couple of the calls described in Section 5 and the I/O system
of Section 6. Furthermore, the I/O system is essentially self-explanatory in most cases
making the manual rather superfluous. One of the services that ParaSoft is happy to offer

76

its customers is consultation in the needs of various applications. Please feel free to call us
with any enquiries about the facilities contained within Express. We would also like to
hear your suggestions/comments about the system. In particular, we would like to enhance
the system at the user application level by providing whatever tools for automatic
parallelization can be invented. Please send us your suggestions!

2 Fundamentals

" Before you can make any progress with Express there are certain fundamental tasks which
must be performed; system configuration and software initialization. The former task can
be quite tricky so most of the details are left to another document. The latter process
depends rather heavily on the language in which your application is being written.

2.1 System Configuration; Booting Express

We can divide parallel processing systems up into two types; configurable and non-
configurable. In the latter category are included machines with fixed hardware
interconnects such as hypercubes and mesh machines. These systems need no
configuration by the user - Express can be booted as described in the next paragraph and
all is done. Among configurable systems, on the other hand, are the various Transputer
networks. In these systems the actual hardware connectivity can be changed by either
programming electrical switches or by moving ribbon cables. In these cases Express has
to be configured for the underlying hardware topology.

Fortunately this is not as daunting a prospect as it sounds; Express contains a graphical
configuration tool cnftool which guides you through the configuration procedure in a
fairly simple manner. This tool is actually rather sophisticated allowing many different
combinations of host computers and transputer nodes. For further information consult the
companion document “Configuring Express”.

Once your system is correctly configured for Express it is necessary to start it running.
This procedure is actually simplicity itself - the single command
exinit

serves to download the kernel and start it operating. Hopefully the self contained
diagnostics will suffice to enable corrective action to be taken if problems are found. The
most common sources of error with Transputer systems are incorrectly placed hardware
links - i.e., those which do not correspond to the information supplied to cnftool. If you
consistently have trouble booting the system give us a call. Note that you may have to use
the exreset call as well as exinit if you have multiple transputer boards or are
connecting several machines together. The cnft ool manual contains the details.

One other program that will probably get heavy use is exstat which simply provides a
summary of current system usage. The simple command

exstat
prints out a simple statement such as
4 nodes in use out of a total of 16

The two numbers indicated here show how many nodes are currently in use and the total

71

Before you read
this...

Starting Express

Using cnftool to
configure the
hardware...

...and exinit to boot
Express

Finding out what
other programs are
running

The Cubix
programming
model

The “Host-Node”
programming
model

Deciding which
programming
model to use

number that the kernel believes to exist. The former is useful - before resetting the system
with exinit it is probably prudent to check that nobody else is running jobs. The latter
number should reflect the total number of nodes available in your hardware configuration.
Note that since the exstat command sends messages to the Express kemel running on
the nodes it can only function if the system has been booted and is still running. If,
therefore, you obtain no response from exstat this indicates that the nodes should be
reset with the exinit command.

In certain circumstances Express may claim to be unable to allocate, say, 8 processors
even when there seem to be eight available. In this case one might use the command
“exstat -1" to obtain more information about the allocated processors - it will usually
be the case that the allocated nodes fall in positions which block the allocation of the
remaining processors in a single block.

2.2 Programming models

Express actually contains two completely disjoint programming models tailored to the
needs of application developers. While these are discussed at some length in the companion
document: “Express: An Overview” it seems wise to repeat some of that discussion here
since it is extremely important that one understands the relative merits of the two systems
and understands how to switch between them.

The Cubix model is conceptually the simplest. One takes a piece of code and executes it on
the parallel computer nodes by invoking the cubix command. In this model of
computation the parallel program may call on most operating system services as though it
were running on the host computer itself - an obvious example is I/O. In C one is able to
call the various functions to be found in the runtime library - print £, scanf, fopen,
etc.... while Fortran support is provided for READ, WRITE, OPEN, etc. Graphics is also
available through the Plotix subroutine library which offers a simple but fully functional
device independent graphics capability to parallel programs.

The alternative model, called “Host-Node” in these manuals, entails writing a program to
run on the native host computer which communicates with the parallel computer nodes
using basic Express system calls. In this model the host program can use any of the host
services that were previously available to it plus the additional ones provided by Express
to communicate and control the parallel computer. On the other hand the programs running
in the nodes may only make use of the facilities naturally available to the nodes processors
- this usually means that any I/O must be handled by the host program and then sent in
messages to the nodes.

The two models have their own advantages and disadvantages and it is important to decide
which is more appropriate for your application. While in many cases it is possible to switch
back and forth between the two styles as development progresses it is usually a good idea
to have in mind one style for any finished project.

Among the features to be considered are the following:

» How large is my application? In the Cubix model EVERYTHING must go into
the parallel computer, I/O, graphics, user interface, etc... This requirement may
necessitate more memory than is available on the nodes of the parallel

78

computer. In the “Host-Node” model some parts of the code may be kept on the
host.

How much machine specific code do I have? If many man-years have been
spent developing a complex graphical user interface, for example, it may be
wasteful to attempt porting it to the parallel computer environment under Cubix
and Plotix when it may run intact on the host machine.

What I/O bandwidth do I need? This is a much more complicated issue. Some
vendors supply hardware which directly connects the parallel computer to I/O
services such as disks. In this case the Cubix model is able to take advantage of
such hardware and provide fast, parallel, 1/O directly to the nodes. If such
hardware is not available one must consider the relative merits of having the
host do I/O and send data to the nodes in messages (Host-Node) or having the
nodes do it themselves (Cubix). In this case the appropriate issues include the
availability of overlapped or non-blocking I/O facilities on the host. If available
the “Host-Node” approach is probably faster. Otherwise both are about the
same.

Debugging. In the “Host-Node” model the nodes are unable to perform their
own I/O without coordination with the host. If, therefore, one wishes to debug
in the old style with print statements one has to change both host and node
codes, recompile both and hope that the communication calls were inserted in
the correct places. This is actually harder to do than it sounds and can be an
annoying source of minor bugs - it can take as long to get the output to work as
it does to find the bug itself! In the Cubix model one simply inserts the print
statements into the node code and recompiles. (Of course one could also use
ParaSoft's source level debugger, ndb.)

Prototyping. Trying out new pieces of code in the “Host-Node” model can be
quite time consuming for essentially the same reasons as mentioned in the last
point - compiling, coordinating and debugging two pieces of code for the host
and nodes can take time. Under Cubix, on the other hand, one can take
sequential codes and run them intact on a single node of the parallel machine.
In many cases this is sufficient to evaluate development strategies.

Portability and maintenance. Under Cubix one only has a single piece of code
that runs in the parallel computer nodes. It can often be maintained in the same
source files as the sequential version of the code - especially since dummy
Express libraries can be supplied for most machines. If the “Host-Node”
approach is adopted the source code, at the very least, has to be divided between
that which runs on the host and that which runs on the nodes. In most cases a
certain amount of common interface between the two has also to be maintained.
A further problem arises when the host and node machines are different CPU
types - e.g. Motorola host and INTEL nodes. In this case the byte orderings of
the two machines are different as can be their word lengths. This makes the
interface between nodes fairly complex - byte swapping and casting all over the
place!

79

What languages
are supported by
Express?

The nature of
Express-a
subroutine library

Writing C
programs

express.h

Skeleton C
program

KXINIT and the
XPRESS common
block

» Redevelopment cost. Many large applications have their origins in the dim and
distant past - their may be few people who actually understand the whole codes.
In this case it might make sense to adopt the “Host-Node” model and attempt to
parallelize only a small portion of the code while leaving the rest untouched.

As can be seen there are many issues involved in making the decision as to which
programming model is bet suited to your application. One of the virtues of Express is that
both are available to the user within a single package.

In this and other manuals many references will be made to either the “Host-Node” or Cubix
programming models since the Express interfaces to the two systems are often subtly
different. It is important to bear in mind which system you will be using when reading this
documentation.

23

Before the programs you write can use Express functions certain important data structures
have to be initialized. This brings up the question of the different high level software
languages that support, or are supported by, Express.

Software Initialization; Languages

Express is a subroutine library. This means that it can be added to ANY existing high level
language for which your parallel machine has a compiler. In particular, this means that
Express is available to both C and FORTRAN programmers. As other languages gain
support and their compilers become available Express will be supported in these too.

Each different language, however, has its own characteristics which affect the
implementation of Express.

C, for example, already requires a fair amount of system support and as a result the user is
presented with a fairly simple interface. Most constants/variables needed by the user are
defined in the header file express . h which should be included in all Express programs.
On most systems you can use the standard angle bracket notation for this file and the
compiler will know how to find it. Similarly Express is initialized before the user main
routine is called so that no extra system calls are necessary to setup Express. A typical
Express program written in C, therefore, has the skeletal form

#include "express.h"
/* Define system constants/macros */

main (argc,
int argc;
char *argv{];

argv)

............. /* User Program */

FORTRAN, on the other hand, is less oriented to system support and as a result more is
required of the user. The “include” mechanism is very non-standard in FORTRAN
which precludes making system variables available in a header file. Instead Express has a
named common block which contains the FORTRAN equivalents of the C include file.

80

This common block has the following structure

COMMON/XPRESS/NOCARE, NORDER, NONODE, THOST, IALNOD, TALPRC
INTEGER NOCARE, NORDER, NONODE, THOST, IALNOD, TALPRC

where all parameters are of type INTEGER. Each of these system parameters has a
corresponding value in the C implementation which is explained more fully in the manual
page for the KXINIT function. (See the reference manuals for more details.) This latter
function is the one which serves to setup Express and initialize the above common block.
It must be called in every program that uses Express on both host and nodes. The prototype
FORTRAN Express program has the following form

PROGRAM MYPROG Skeleton

c FORTRAN
COMMON/XPRESS/NOCARE, NORDER, NONODE, program
S IHOST, IALNOD, IALPRC

C

C Start up EXPRESS

c
CALL KXINIT

o

C Proceed with user program

C

Note that the user is not restricted to one or the other language. It is quite possible, for
example, to write a FORTRAN “host” program which interfaces with a C “node” program,
or vice versa. Similarly one can mix languages within the same program although Express
has no explicit mechanism for this purpose - standard compiler implemented techniques
must be used.

3 Processor Allocation and Program Loading

" The most fundamental operation required before running a parallel application is to allocate
a bunch of processors and somehow load a program into them. There are several levels at Allocating nodes
which this can be achieved and/or is necessary depending on the programming model you and loading
have adopted. In the Cubix style all of these processes are managed by the cubix program ﬁ’ "dg’ ams can any
and so you should have no interest in this section. If you have adopted the “Host-Node” hz Stonef rom the

model there are several important variations on a theme which might be considered and
which are discussed in this section.

1. Complete ignorance; The user application has no interest in the details of
this procedure and has no interest running on the host processor.

2. Host control; The application, for whatever reason, needs to have a process
or processes running on the host computer which controls the allocation of
processing elements and the flow of data to/from them.

3. Full control; The application wishes to control all aspects of the allocation

81

Different loading
configurations

Basic allocation
routines

Loading programs

and loading of the parallel program including which physical processors to
use and what to use them for.

The first level will not be described in this section - since the user requested no information
none will be given. The mechanisms required to run parallel applications in this fashion are
described in section 5. The other two categories will be described in this section. Not all the
routines available to perform loading will be described here. For more details the reader is
urged to peruse the reference manual Also, no information is supplied as to the method of
actually generating a program to run on the parallel machine. These details are provided in
the introductory guide to your particular version of Express.

31 Processor Allocation

Express provides a large set of tools for loading applications into groups of processors. As
well as sending a single application to all processors one can also load individual nodes
with their own applications, pass arguments to all nodes, or individual argument lists to
separate nodes. These utilities are provided independently for each user of the parallel
machine - it is quite possible to have two users simultaneously access two independent sets
of nodes although this is not the only model supported. In particular we allow for the
possibility of single host programs accessing multiple groups of nodes in the parallel
computer, as well as the possibility of multiple host processes sharing access to a single
group of nodes.

The central concept in discussing low-level processor allocation etc. is that of the processor
group and the associated processor group index. A processor group is a collection of nodes
allocated with a single call to the routine exopen. The processor group index is the value
returned by a successful call to exopen and which is used to subsequently indicate the
particular set of nodes to which an operation should be applied.

The routine which allocates processor groups is invoked as
pgindex = exopen (device, Nnodes, where);

where the first argument indicates the fundamental device from which nodes are to be
allocated, the second is the number of processors required and the last optionally indicates
exactly which processors are required. The purpose of the last argument is so that
applications built around custom networks can physically place certain applications on
certain nodes. The macro value DONTCARE may also be given in the last position to
indicate no interest in the physical placement of the program.

exopen returns a value which, if negative, indicates an error. Obvious sources of error
include specifying an illegal device or asking for more nodes than are currently available
through use by other users. Otherwise the value returned is the processor group index by
which this particular set of nodes should be identified in future calls to Express control
utilities.

Having allocated a set of processors one must load an application. The simplest way to do
this is with the exload and expload system calls. The former loads the same program
into all nodes of the processor group while the latter loads a single node with an application
and is used in cases where different programs must be loaded into different nodes within
the same processor group. As an example consider the following code segment

82

#include <stdio.h>
#include "express.h"/* Defines DONTCARE */

main ()

{
int pgindex;

if ((pgindex=exopen ("/dev/transputer", 4,
DONTCARE)) < 0) {
fprintf (stderr,
"Failed to allocate processors\n");
exit (1) ;
}
if (exload(pgindex, "noddy") < 0) {
fprintf (stderr,
"Failed to load application\n");
exit (1);
}

The single application “noddy” will be loaded into all 4 processors and will immediately
begin execution. Sometimes this isn’t exactly what we wanted. An important case occurs
when we use the debugger, ndb. In this case we want to load the application “stopped” so
that we have time to leisurely fire up the debugger and take control of things. We do not
want the node program to go screaming off into the wild blue yonder before we get a change
to debug it! This behavior can be achieved with the expause function call. If we call this
function before loading program then they will be loaded with a breakpoint set at the
normal entry point. It is often convenient to make this behavior conditional upon some
variable so that the program can be run in either mode without recompiling; while things
are going well one just loads the node program and blasts away but when problems arise
one can immediately switch back to debugging mode without time consuming
recompilation. Simple code which makes use of this feature is shown below.

#include <stdio.h>
#include "express.h" /* Defines DONTCARE */

main(argc, argv)
int argc;
char *argv(];
{
int pgindex;

if ((pgindex=exopen ("/dev/transputer", 4,
DONTCARE)) < 0) {
fprintf (stderr,
"Failed to allocate processors\n"):;

83

Debugging

exit (1)
}

if (argc > 1) expause();

if (exload (pgindex, "noddy") < 0) {
fprintf (stderr,
"Failed to load application\n");
exit (1);
}

Note that the call to expause is made conditional upon the number of runtime arguments
passed to the user program.

Loading different I we needed to load different applications into different nodes this could be accomplished
programs into by changing exload to expload. The following code segment loads “noddy” into
different nodes nodes 0, 1 and 2 but “big_ears” into node 3.

#include <stdio.h>
#include "express.h"/* Defines DONTCARE */

main ()

{
int pgindex, s0, sl, s2, s3;

if ((pgindex=exopen ("/dev/transputer", 4,
DONTCARE)) < 0) {
fprintf (stderr,
"Failed to allocate processors\n");
exit (1) ;
}
s0 = expload(pgindex, "noddy", 0);
sl expload(pgindex, "noddy", 1):;
s2 expload(pgindex, "noddy", 2):;
s3 = expload(pgindex, "big_ears", 3);
if(s0 < 0 |} s1 <0 || 82 <0 |}l 83 < 0) {
fprintf (stderr,
"Failed to load applications\n");
exit (1) ;

i

}
exstart (pgindex, ALLNODES);
exmain (pgindex, ALLNODES) ;

This code contains several new features. Each call to expload loads an application into
the indicated node. After checking for failures there is a call to exstart. The first
argument here is the processor group index as before and the second is a processor number.

84

This routine serves to tell the nodes that program loading is complete and we should get
ready to load arguments. The special value ALLNODES means “everybody”. Since, in this
example, we don’t want to go off and load any more arguments or environment we can
immediately start up the user program. This is done with the call to exmain whose
arguments are similar to exstart. At this point the loading process is complete and the
node programs will begin to execute unless, of course, a call to expause has been made.

The extra complication involved in this last example (i.e., the exstart and exmain calls)
is necessitated by the fact that the loading primitives provided by Express are very general.
You can load different programs into each node, different arguments into each node and
also download different environment variables into each node. Discussion of the means by
which this is achieved is postponed to the appropriate manual pages.

In order to confirm that everything is going well the system keeps you informed of the
loading status of the machine. In response to the ex1 oad command, for example, a display
such as that of Figure 1 will appear. (In windowing systems such as MicroSoft Windows
or the Macintosh an oscillating cursor is used during the loading process in place of the text
display.)

Generalized
loading primitives

Number of nodes allocated, po-

/ sition in machine and process
ID. ‘

Size of program - not including

Allocated 4 nodes starting at 8, pro‘cgs D3 _}—
Loading 34522 bytes
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbE <}
Loaded, starting

uninitialized data

A single ‘b’ character for each
1024 byte block loaded, and an
‘E’ for the last one,

\ Message confirming successful
load and indicating the start of

the user code.

Figure 1. Downloading a user application

If this information appears incorrect, no ‘b’ characters appear, or no ‘E’ then the kernel is
probably out of action and one might consider resetting everything with exinit.

Having gone through the loading and initialization calls on the host processor several
copies of the application have sprung from the vacuum on the nodes and are running. One
way to proceed would be to dive right into the message passing systems and “go for it” with
the various tools to pass information to the node programs. Another way, however, takes
advantage of the fact that C programs are usually created, not in a vacuum, but with a ready
made environment, usually known as argc, argv and environ. Just as in a regular
sequential program these variables can also be made available to the parallel programs

85

Passing arguments
to node programs

through alternate loading procedures.

For simplicity, consider the case where you want to pass three arguments to your node
programs; the three strings “go”, “very” and “fast”. Furthermore you want each
processor to receive the same arguments. (Many other possibilities are available including
NULL terminated vectors of arguments and different arguments in different nodes, see the
reference manuals.) Then the simple modification to make is to change the call to ex1load

to
exloadl (pgindex, "noddy", "go", "very", "fast", NULLPTR);

where the first two arguments are the same as before and the following list of strings will
be passed to the node programs. Note that the list is completed with a NULL pointer. This
is important - if you omit this last item then your node programs will probably get very long
and strange argument lists!. The effect of this function call is best demonstrated by
considering the following hypothetical node program

/*

* Hypothetical node program showing argument passing.
*/

main (arge, argv)

int argc;

char *argv([];

{

int i;

printf ("We were given %d arguments\n", argc):
for(i=0; i<argc; i++) printf(" %$s\n", argv([i]);
exit (0);

If we load with the exload call then the output from the above code would be
We were given 0 arguments
whereas the second call, to exloadl, would give

We were given 3 arguments
go
very
fast

In this way we are able to create node programs that have some knowledge of what we want
them to do - even without invoking the communication system.

As we alluded previously there are many other high level allocation and loading
procedures. For example we can supply arguments as a NULL terminated vector, or
optionally load different arguments into different nodes. We can also load different
programs into different nodes and alter the setting of their environment variables, or any
combination of these techniques. The details are left for the reference manual and several
useful examples are described in section 7.

86

Finally, among the loading and allocation options, we must discuss another possibility;
processor group sharing. Occasionally it will be convenient for multiple host processes to
share access to the same group of nodes. A simple example might be a host file server and
a graphical interface, or a regular application and the debugger. This facility is available
through the exshare function. To share a processor group with another process it is
sufficient to know its process-ID number and make the call

pgindex = exshare("/dev/transputer", pid, &Nnodes);

The first argument is the name of the device containing the nodes and is used in the same
manner as in the exopen call. The second argument is the process-ID and the last is a
pointer under which will be returned the number of processors in the shared group. The
returned value is treated identically to that returned by exopen. If negative it indicates that
the attempt to share nodes failed for some reason. A positive value returned fromexshare
is the processor group index to be used in subsequent references to the shared nodes.

A tricky point in this regard is the specification of the process ID with which you wish to
share nodes. The only totally reliable way to find this is to remember what exopen told
you when the processors were originally allocated. This number is always valid. A second,
less reliable mechanism on UNIX-like machines is the expid system call. The single
argument to this function is the UNIX process ID of the process which originally allocated
the nodes. The returned value if that which exshare will understand. On non-UNIX
systems the same information may be available by using the exstat -1 command which
also indicates the necessary process-ID.

An important point to make in connection with sharing processors is that the user is
responsible for avoiding potential clashes between requests. When reading messages, for
example, the user must be aware of the fact that the two, or more, host processes are
“racing’ against one another and that the order in which their requests are satisfied cannot
be guaranteed unless some precautions are taken at the user level. The next section
discusses this problem in some detail and offers routines to manage these difficulties.

Many routines have been introduced in this section. Fortunately most applications need
only two of them; exopen and ex1oad. Itis even easy to write a simple subroutine which
combines both! The extra sophistication available in Express is provided for those
applications which do not fit simply into a “homogeneous” mold and where it is crucial to
be able to do “different things” in “different nodes”. After all, this is merely another way
of expressing parallelism.

[4 Node Addressed Interprocessor Communication

" The lowest level of the Express system is based on an asynchronous, point-to-point

message passing system. This means that messages may be sent from any node in the
system to any other node (including any attached host processor) at any time and the kernel
is responsible for intermediate buffering and routing of the messages. This level of
operation is available to user applications as well as the kernel and may be freely
interchanged with the system described in the section 5.

A system such as this is typically termed “asynchronous”. This is rather a misnomer - in
most implementations the “read” function call blocks until a message has arrived and been

87

Sharing groups of
nodes between
multiple host
processes

Express process
IDs

Race conditions
between multiple
host programs

The underlying
model of
communication

Terminology:
“asynchronous” or
“blocking”

What is a message?

Contrast with
UNIX pipes

Message “types”

Differentiating
between incoming
messages

Ignoring message
types

read; not very asynchronous behavior. A better term would probably be “long range”
describing the fact that messages may be sent to arbitrary destinations with the intermediate
routing being handled by the Express kernel.

In fact Express does offer both synchronous and asynchronous functionality and several
intermediate flavors too. For simplicity we will divide this section and describe the two
modes separately since they typically occur in different types of applications. Before diving
into specific details of the message passing primitives a few basic principles which hold
throughout these discussions will be discussed.

The communication system is built around the concept of a “message”. Of the several
interpretations of this term the one adopted by Express is that a message is the result of a
single call to one of the “write” functions. It contains a number of bytes but is otherwise
without structure. Each message will be consumed by a single call to one of the “read”
functions - if the receiving node wanted fewer bytes than were sent the extra are discarded
and if less were sent than were required then the read function takes what it sees and returns
a status value to its caller indicating that not enough data were sent.

This picture is rather different from a “pipe” style where any extra bytes in a message would
remain to be picked up by a subsequent read operation and if too few bytes were sent a
“read” would wait for more to arrive before returning. This approach is quite tricky to
program - the message approach makes bookkeeping easy since a single “read” should go
with each “write”.

As well as the obvious attributes of a message (length, data, source and destination)
Express also associates a “type” with each. This value is used to allow various types of
decision to be made on the receiving node about exactly which message is to be read. In a
multi-tasking environment, for example, different message types can be used to specify that
certain messages are intended for one task rather than another. Alternatively in a real-time
environment one might set aside certain message types for immediate processing while
assigning the others somewhat lower priority.

In order to select between messages when executing a “read” function one has an
“acceptance criterion”. Each send operation associates a positive type value with the
message. When a message is to be read the receiver specifies which node to read from and
which type of message to read. If several messages satisfy the acceptance criterion then the
one which arrived first is read. Varying degrees of DONTCARE or “wildcard” behavior can
be specified to allow great flexibility in selecting between possible messages. It is also
possible to specify that certain message types should be processed by a second process
rather than being delivered to the user application.

While the “type” concept is central to the Express communication system it is always an
“option”. In fact many applications don’t ever need to deal with these features - all
messages can be of a single type and every read operation has a well defined source to read
from. Again, however, the extra functionality is required by some applications.

4.1 Messages, Nodes and Types

Before describing the functions used for interprocessor communication a few basics
concerning the Express implementation should be explained.

88

A message is a stream of bytes with no structure. The user is free to send any data to any
node at any time. Express does not attempt to interpret the message in any manner. As a
result you are free to send integers, floating point values, strings, structures, whatever you
like as long as your code supplies all the necessary knowledge about the data. If the receiver
needs to know what sort of data is coming then it can either be encoded in some user-level
protocol or the message type.

Every Express message is addressed to a “node” - a specific processor either within the
parallel processor network itself or attached as a “host”. This latter category is somewhat
vague; a “host” is a processor, attached to the parallel processor network which is
conceptually capable of providing system services such as graphics, disks or just
downloading user applications. One particular host is distinguished for every application
that is loaded into the machine. It has the special node number HOST and is the machine
which actually started up your application. Since this machine is the obvious target for your
I/O and operating system service requests it has a special identifier. (In all respect it is just
like another node in the network - you send and receive messages to it in the same way.)

Express also supports the idea of multiple hosts. This means that your parallel processing
system may have several different types of host providing the sort of system services
described in the previous paragraph. To send a message to one of these hosts (other than
THE HOST, of course) you need to know its Express processor number. To find this it is
probably simplest to consult the information provided by the system configuration tool,
cnftool. It can provide you with a picture of the interconnections between nodes and
hosts and also with a small integer for each host. To translate this number into a processor
number for Express you merely “turn on bit 15”1 While this sounds at first like the worst
kind of black magic it is actually quite simple in practice; the value 0 becomes 08000
(hex) or 32768 decimal, the value 1 becomes 028001 or 32769 ete.

The use of 16 bit values is of some concern here. One must always be aware of the
differences between host and node processors. It is most common in the current parallel
computer systems for the nodes to be 32 bit machines while the hosts are only 16 bit. This
has several consequences for Express.

Firstly the host cannot read as long messages as the nodes. For simplicity the argument to
the Express functions which describes the message length is an int (Except for the
exreadfd and exwritefd functions which use long integers.) which means that
biggest message the host can read is of length 32767 bytes - much shorter than the nodes.
Secondly “host” processor numbers are distinguished by setting bit 15 in both host and
nodes even though this restricts the number of processors in the network to 32768!

The final restriction is in the message type argument. Certain types of messages are treated
specially by Express and cannot be used in applications. As a result user message types
must lie in the range 0 - 16383 - i.e., they cannot have either of the two highest bits set.

While it is generally true that one can ignore the questions discussed in this section it is
probably wise to keep these points somewhere to hand since they are an irritating source of
minor problems. The minor differences between host and nodes is often unnecessarily
unpleasant - in the worst case one might find that a perfectly acceptable value in one place
is total garbage in the other because the byte ordering of the two machines is different. This

89

The structure of a
message

Message
destinations

Sending messages
to hosts

16 vs. 32 bits - a
potential problem

Restrictions on
message types

The basic
communication
system

Argument types
and ordering

The “acceptance
criterion” allows
readers to pick
between incoming
messages

is one of the major strengths of the Cubix programming model - since you only write a
program for the nodes it never has to deal directly with any hosts. This system is discussed
briefly in section 6 and at greater length in the document “Programming Parallel Computers
Without Programming Hosts”.

42 Blocking Communication Functions

In this section we discuss the simple “blocking” primitives. Once again this adjective is
rather a misnomer - the write function, for example, never blocks. However the concept
implies something at the level of the application programming model and so it remains.

The basis of the system are the three routines exread, exwrite and extest which are
available both on the host computer and within the nodes themselves. Messages are sent
with the system call

exwrite (buffer, length, &destination, &type):;

in which buffer is a pointer to the data to be sent and length is the number of bytes
of data. No restrictions are placed on the message length - any length from zero to the
maximum integer are allowed. It is often the case, for example, that zero length messages
can be used to some effect - interprocessor synchronization, for example. The
destination argument specifies the processor to which the message is to be sent and
the type argument specifies a “message type” for the data. These “types” provide the
mechanism used by readers to differentiate between various messages and also to allow
multiple readers on a processor to access different message streams. Notice that both
destination and type are specified by pointer values which may seem rather
unnatural. This is done for uniformity - the “read” functions specify the source node and
type with pointers so Express adopts this policy uniformly. This prevents later confusion
- especially in the functions which combine the send and receive functionality!

A slightly less obvious point concerns the use of the wildcard system for processor numbers
and message types. As we will see shortly a program may request a message to be read from
any processor or with any type by using the special values DONTCARE in its calls to
exread. Analogously one might expect to be able to send a message whose type is
irrelevant. Sadly this is not so. If you attempt to send a message whose type or destination
is DONTCARE Express will return an error.

Messages are received with the system call exread which has the calling sequence
status = exread(buffer, length, &src, &type):;

The important fact about this function is that it blocks until an acceptable message has been
read - i.e. the process making the exread call stops executing until it has received a
message.

Furthermore the src and type fields potentially make the exread call very particular
about which messages can be read. The method of operation is as follows: all messages that
have arrived at this processor are examined in tumn and the first one that meets the
requirements specified in the src and type fields is selected for reading. Then a
maximum of 1ength bytes are transferred to the user supplied buf fer and any extra are
discarded. The number of bytes read is returned to the user as the st atus - if the message

90

read is actually shorter than 1ength then this smaller value will be returned. If any type
of hard error occurs st atus will have the special value -1. If more than one message on
this node meets the selection criterion then the one that arrived first is accepted.

The method for choosing acceptable messages is to examine the src and type variables.
Both are considered, in turn, and both must match for a message to be accepted. The
matching procedure is the same for both src and t ype fields (The type field is actually
subject to one extra level of processing - see the calls exinctype and exexctype.) and
depends upon the values initially supplied in the call to exread

» If the NULLPTR pointer is supplied as an argument then ANY value is
considered a match.

« If the supplied value is DONTCARE (Defined in the header file express.h
then any value is considered a match AND the accepted value is written over
the supplied parameter. It is for this reason that the src and type parameters
are supplied as pointers rather than explicit values.

» If the supplied value is any positive (or zero) value then only an exact match is
allowed.

A couple of example program fragments should make this process clearer. We assume that
two integer variables msg_src and msg_type have been declared elsewhere and that
buffer is a region of memory sufficient to hold up to 512 bytes.

/* Read ANY type from ANY node */
#include "express.h" /* Defines NULLPTR */

exread (buffer, 512, NULLPTR, NULLPTR):;

Since both source and type fields are NULLP TR pointers then any message on this node will
be accepted for reading. Up to 512 bytes of the first message to arrive at this processor will
be read into the user buffer.

#include "express.h"™ /* Defines DONTCARE macro */

msg_src = DONTCARE;
msg_type = 3;
exread (buffer, 512, &msg src, &msg_type);

In this example the source field has the wildcard value DONTCARE so a message will be
accepted from any node. The type field is explicitly set to 3 so that only messages of this
type will be read. Upon the completion of this call the msg_src variable will contain the
processor identification of the node which sent the message that was read.

Using combinations of these parameters it is possible to control exactly the messages that
will be read by any process executing the exread call. Note that the special value HOST
is available in the header file express.h to indicate the host computer as either a
message source or destination.

91

Using the
NULLPTR value

Using the
DONTCARE value

Testing for an
incoming message

Possible “bugs”
when using
wildcards

Restricting the
range of
acceptable
message types

As stated earlier the call exread blocks until a suitable message has been read. This
behavior is not suited to all applications so an extra call extest is available to facilitate
non-blocking read processes. The syntax is

status = extest (&src, &type):;

where the src and type are interpreted exactly as in the exread system call - i.e., they
are used to distinguish between various messages on a node. The difference between this
function and exread is that ext e st returns immediately. The returned value, status,
indicates whether or not a message was found that matches the supplied src and type
parameters. A negative value indicates that no suitable message is currently available (and
hence that a corresponding call to exread would block) while any other value is the length
of the message that would be read with an immediate call to exread with the same
parameters. Note that the wildcard value DONTCARE is interpreted in just the same way as
in exread and that it will be replaced with the actual source or type in the call to extest.

While the wildcard values offer useful possibilities to programmers a problem exists when
one considers multiple processes on a node both attempting to read messages. This is
exemplified by he following piece of code

Process 1.
msg_src = DONTCARE;
msg_type = DONTCARE;
status = exread(buffer, 512, &msg_src, &msg_type);

Process 2.
msg_src = 3;
msg _type = 145;
status = exread(buffer, 512, &msg_src, &msg_type);

Note that the programmer has been quite careful - only one of the processes uses the
DONTCARE value while the other specifies exactly what source/type combination is
acceptable - and yet the code still fails intermittently. The problem is that the way this code
works is time dependent. When the message from node 3 with type 145 arrives it can still
go to either process because it is acceptable to both. Obviously if a message of type 144
arrives first then all is well because process 1 will read it allowing process 2 the second
message. However, if the two messages arrive in the wrong order then process 1 will
happily read the type 145 message leaving process 2 high and dry waiting for its message
and ignoring the message of type 144.

The problem here is that the wildcard mechanism is TOO wild! In order to correct this
situation Express offers two functions to alter the functionality offered by the wildcard
values in the “type” field; exinctype and exexctype. Both functions have the same
format

exinctype (lotype, hitype):;
exexctype (lotype, hitype):;

The arguments to this function specify an inclusive range of message types to be either

92

considered or rejected in matching wildcard values.

The way these functions work is slightly different. After a call to exinctype only the
given type range will be considered in matching DONTCARE arguments in exread and
extest calls. All other types will be ignored. On the other hand exexctype specifies a
range of types that will be ignored when matching wildcards - all other types will remain
acceptable.

Using these functions it is possible to set up multiple processes on a single node both

reading with wildcards but without interfering with each other. In particular the previous
code segment can be fixed in several ways, for example

Process 1.
exexctype (145, 145);
msg_src = DONTCARE;
msg_type = DONTCARE;
status = exread(buffer, 512, &msg_src, &msg_type):;

Process 2.
msg_src = 3;
msg_type = 145;
status = exread(buffer, 512, &msg_src, &msg_type):;

One might note that if process 1 were to later on want to read a message of type 145 then
the call

exexctype (DONTCARE, DONTCARE) ;

would indicate to the kernel that it should henceforth consider all types in matching
wildcard arguments.

Obviously this mechanism requires some sort of coordination between the processes
executing on a processor. Typically, however, this is not difficult to arrange and the benefit
to be accrued from the continued availability of the wildcard values is a very useful feature.

The function calls described so far in this section provide the basis for all interprocessor
communication facilities. However, whereas most systems stop at this point Express
continues to add extra functionality to the system designed to meet the requirements of
typical user applications. It is obviously true that the routines described can already form
the basis for almost arbitrary communication strategies but these often require some care in
their implementation so Express offers several additional functions.

exbroadcast Perform a broadcast operation to some or all the nodes.
exchange Combine the send and receive operations into a single function.

excombine Gather messages from some or all the nodes and apply some
“combining” function to the data - useful for calculating global
averages, maximum and minimum etc.

exconcat Gather messages from some or all nodes into a single buffer.

93

“Global”
communication
functions

“Deadlock”

The advantage of
“blocking”
communication

Real-time systems
and double
buffering

exreadfd Similar to exread but write the message to a file.

exsync Synchronize all processors.

exvchange

exvread

exvwrite Similar to exchange, exread and exwrite but non-continuous

memory blocks can be sent in a single message - useful for dealing
with rows and columns of matrices.

exwritefd Similar to exwrite but take the message to be sent from a file.

Together these functions provide a user interface which should be sufficient for the vast
majority of user applications. The exchange routines are particularly powerful - in
section 5 we develop an example program in its entirety using this function and the
automatic decomposition tools.

Due to our choice of introducing the exread and exwrite functions first the reader may
well be assuming that these should form the basis for all interprocessor communication in
Express. In our view, however, the higher level functions provide a much simpler interface
between the user and the parallel computer and their use should be encouraged wherever
possible. In particular these functions are designed for use with the automatic domain
decomposition system to be described in a later section which allows the user to program
in a manner totally independent of the underlying hardware architecture. It is hard to
overemphasize the power of this programming style and we strongly recommend users to
study its application to their own problems since it provides a level of portability and
abstraction which can actually make parallel processing easy.

These functions provide the basis for the communication system under Express. As
mentioned earlier the Express kernel is responsible for routing messages between any pair
of processors and also for optimizing broadcast operations. A crucial issue in this regard is
“deadlock”. This occurs whenever the internal kemnel buffers overflow or whenever some
particularly strange combination of read and write requests leads to a situation where no
single processor can proceed. In this case there is usually no recourse but to reset the
machine with exinit and try to figure out the problem area. Fortunately there are known,
deadlock-free, routing strategies for certain processor interconnects: the hypercube and
two-dimensional mesh. Both of these options are supported within the Express kernel.
Correct, problem free, routing cannot be guaranteed on other topologies.

The routines described in this section form the basis of all inter processor communication
facilities. The strategy they implement, however, is “blocking” in the sense that a “read”
function will hang if there has been no “write” function to send it data. This programming
style is actually very powerful - bugs appear repeatably and without time-dependencies
leading to simple diagnosis, especially with a debugger such as ParaSoft's ndb.

4.3 Non-blocking Communication Functions

Occasionally an application will arise that has particular requirements not easily met by the
functions described in the previous section. Important examples are the fields of real-time
control, in which it is important to react quickly and flexibly to input data and “pipelined”
operations in which one may wish to process one set of data while waiting for another to

94

arrive. Both of these applications are characterized by the requirement of a non-blocking
read function.

In real-time systems one would like to set up a service, or services, which will accept
messages and process them without program intervention while another part of the
application continues to process data from other sources.

In the pipeline case one wants to set up a read request that does not block the calling
program which is free to continue processing currently available data. Eventually new data
will have arrived and can be processed while possibly waiting for still more messages.

Express provides functions for both these applications.

exhandle provides a mechanism for “handling” messages as soon as they arrive at a
processor. The calling sequence

type = 123;
src = DONTCARE;
exhandle (proc_msg, &src, &type);

indicates that every message of type 123 is to be processed by the user specified function
proc_msg. From this point on Express will respond to any message of type 123 with a
call such as the following

kernel src = 12;
kernel type = 123;
proc_msg(kernel ptr,length, &ékernel_src, ékernel_type);

Notice that this has the same calling sequence as the exread function described in the
previous section with some important differences. The pointer supplied as the first
argument is the address in Express memory where the message is to be found - no time
has been spent copying the data to a user memory area. The kernel src and
kernel type fields denote the source and type of the message respectively and
lengthisits size.

Note that the user “sees” the message with the absolute minimum of delay - it is essentially
passed to a user level routine for processing as soon as it has arrived, interrupting normal
program flow. Notice that this means that the user routine must take special precautions if
it wishes to retain the message - otherwise the kernel will discard it after the application-
level call completes.

This style of processing is often referred to as “interrupt time” since many implementations
generate a “hardware interrupt” when a message arrives that causes some action to be
taken. Usually the action taken is for the kemnel to arrange to buffer or forward the message
but exhandle allows the user the first “crack’ at the data.

This function actually forms the basis of an extremely elegant multi-tasking programming
style under Express. In an abstract sense it can be said to provide a mapping from the space
of message types into the set of functions/subroutines within a program. This mapping

95

exhandle and
interrupt
processing

Speed of
processing
messages

Communication
“interrupts”

The problems with
asynchronous
programs

Load balancing

essentially allows us the freedom to execute, from another processor, any function in the
program and to simultaneously pass it the data it needs.

In connection with this style of programming one should mention that asynchronous
programming is rather tricky. One has to indulge in protection of critical code sections with
semaphores and the like and must be careful with global variables, etc. Bugs tend to occur
in a haphazard and unreproducible fashion which makes debugging much harder than it
might otherwise be.

A simple example of this sort of processing is the construction of a “load balancing”
supervisor. Consider a parallel system in which work is being generated by some
phenomenon - for example, turbulence is developing over some body necessitating extra
processing. This additional workload is to be distributed among the parallel processors by
some “task creation” scheme. In order to load-balance such a strategy one might wish to
provide some means of gathering statistics. The following code segment treats all messages
of type 99 as requests for load information and returns a message to the inquiring node
about the total workload in this node.

#include "express.h"
#define LOAD REQ(99)
#define LOAD _ACK(100)

extern float loadvector[18]:
/* Data about processor loading */

main ()
{
int type:
int src;
int load_avg();

/* Set up message handler to service requests for
* load information
*/
type = LOAD REQ;
src = DONTCARE;
exhandle (load_avg, &src, &type);

/* A good idea is to "sync" the processors after
* installing a handler so that no-one sends off
* messages to a node that isn’t ready yet.

*/
exsync();

/* Proceed with simulation

}

96

load_avg(ptr, length, psrc, ptype)
char *ptr;
int length, *psrc, *ptype;
{
int rtype = LOAD_ ACK;

exwrite (loadvector, sizeof (loadvector),
psrc, &rtype);
return 0;

Notice that the handler is very simple in this case - it merely returns the loadvector
parameter to the requesting node in a message of a different type as the request. Obviously
much more complicated structures could be constructed. It is very important that the
returned message be of a different type to that received. If we returned the results in a
message of type LOAD REQ it would get picked up by the message handler on the
requesting node which would, in turn, bounce it back to the other node and so on, ad
infinitum. This is typical of the strange bugs one can generate with asynchronous message
handlers.

Invoking the message handler is similarly simple

get_load(node, data)

int node;

float *data;

{
int stype = LOAD REQ;
int rtype LOAD ACK;

exwrite (NULLPTR, 0, &node, &stype):
exread (data, 18*sizeof(float), &node, &rtype):;

Notice that we send a zero length message to the node whose load data we wish to get -
after all the data in the message is going to be ignored on receipt anyway. We then read the
results back from the same node into a local buffer. Notice that there are no constraints on
the use of this function - we can even use it to enquire about our own loading. (Some
precautions may have to be taken to ensure that a message is not sent to a node before it has
started up its handling routine - hence the call to exsync in the previous example).

A final note in connection with the exhandle routine is that the connection between
messages and the handler need not be permanent - in fact it is terminated whenever the
handling routine returns a negative value to the kernel. This facility can be used to install
once only handlers or those that function only until some specific condition applies.

The second style of asynchronous processing is that of a non-blocking read. This is

97

An tricky “bug” in
writing exhandle
routines

Zero length
messages are OK

Using exhandle to

exreceive - a “non-
blocking” read
function

“Double-
buffering”

Signal processing

implemented with the call
exreceive (buffer, length, &src, &type, &status);

The first four arguments to this call are treated exactly as in the corresponding call to
exread. The difference, however, is that this function returns immediately to its caller
irrespective of whether or not a message has been read allowing processing to continue. If
no message is available at the time of the call then the value -1 is written under the status
variable and the src and type arguments are left unchanged. When a message finally
arrives the st at us value is updated to reflect the length of the message read and src and
type fields are also modified to denote the actual message parameters.

This function is of use in many types of application. Since I/O bandwidth is often low on
parallel processors, especially when compared to brute CPU power, “double-buffering” is
a good strategy - one buffer is written to disk while another is being read through the
communication system. Similarly graphics applications benefit from such treatment.

In the following example we assume that the parallel machine is being used in a signal
processing “pipeline” - each node performs a particular processing phase and passes its
result on to the next “black box™ in the chain. In this case it is important to keep data
flowing smoothly through the pipe. For simplicity we assume that incoming data buffers
are of length 1024 bytes and must be processed by the sig proc function before being
passed on to the next node. We use two message types: PROCESS for most buffers and
FINISHED for the last buffer. This is again rather artificial but serves to illustrate one of
the trickier points of the “double-buffering” technique - stopping it when it’s done!.

#include "express.h"

#define PROCESS (0x7001) /* Type for grinding on */
#define FINISHED (0x7002) /* Type for "done" */

char buffer(2][1024]1;/* For buffering data */

process (innode, tonode)
int innode; /* Source of data for processing */
int tonode; /* Destination for next processing phase.*/
{
int done, typel2], this, next;
int stat(2];

done = 0;/* Not done yet */
this 0;/* Start using "slot"™ 0 */
next 1;

/* Get first buffer, blocking read this time */

typelthis] = DONTCARE;
stat [this] exread (buffer((this], 1024,

98

&innode, type+this):;

do {
if (typelthis] != FINISHED) ({
/* Read next block */
typel[next] = DONTCARE;
exreceive (buffer([next], 1024, &innode,
type+next, stat+next);
}
else done

TRUE;/* Finish after processing
this block */

/* Process the oldest buffer and send the result to
* the next node with the same type as we received. */

sig proc(buffer(this], stat([this]);
exwrite (buffer[this], stat[this],
&tonode, type+this);

/* If we’re not done wait for next buffer */

if (!done) {
while (stat [next] < 0);
next = (next + 1) % 2;
this = (this + 1) % 2;

}

}
while (done != TRUE);

Notice that we have saved the incoming message length for passing to the processing
function. This is superfluous in cases such as signal processing where all buffers are
(presumably) of the same length but again serves to illustrate a more general case. Also
important is the duplication of all status and type information. This has to be preserved
since the value of the st at and type variables get overwritten whenever a new message
arrives - an asynchronous event.

In common with the exhandle call all the standard interpretations for the src and type
arguments are valid as is processing by the exinctype and exexctype functions.

The previous paragraphs describe and motivate two non-blocking read functions that have
particular applications in application areas. These functions are part of the Express library
because they supply necessary programming paradigms. One additional non-blocking
function is supplied solely for reasons of speed, exsend. This function is analogous to the
exwrite function in that it sends a message to another processor. The difference is that
whereas exwrite waits until the message has been sent before returning to its caller
exsend returns immediately. The calling sequence for this function

99

Another potential
bug with
asynchronous
processing

The relation
between hardware
and software
topologies

Topology
independent
communication

How many
Processors are we
using?

exsend (buffer, length, &dest, &type, &status):;

can be seen to directly match that of the exreceive routine and, in fact, the use of the
additional st atus argument is identical - its value is initialized to -1 by the system and is
changed to the length of the transmitted message as soon as the data has been sent.

This function is actually very useful and while its motivation appears to be solely on
grounds of speed it can be used in most cases where exwrite would normally be used.
The only real difference between the two routines is that since the data has not necessarily
been sent when the call to exsend returns one should be careful not to modify the data
contained in the message buf fer until the st atus variable indicates that it is safe to do
so. It may, of course, be possible to imagine applications in which it is safe to modify the
data even before it has been sent, but we have been unable to do so!

As a final note we might point out that a call to the standard exwrite function is
functionally equivalent to the sequence

exsend (buffer, length, &dest, &type, &status);
while (status < 0) exsleep(l);

5 Topology Independent Communication

The previous sections described a communication system that directly addresses the
processors in the parallel computer by sending and receiving messages addressed according
to their processor numbers. This strategy typically involves a certain degree of user
intervention in the placement and distribution of data to make best use of the parallel
machine - for instance it makes sense to have data decomposed in such a way that
processors that need to communicate frequently are neighbors in the hardware topology.

While this layer is useful (and in fact necessary) for some applications another level can be
provided in which no knowledge of the underlying topology is required. We have found
this level to be extremely important in the regular problems common in scientific
applications since some degree of automatic decomposition is possible which hides most
details of the parallel machine from the user. Hiding machine dependencies in this way also
enhances the portability of the resulting code - since it is independent of the underlying
processor topology the code can be implemented on a wide variety of architectures
including both shared and distributed memory machines and also sequential computers.
(This latter point is often unreasonably neglected. Since software development is typically
extremely expensive it is very unfortunate if a program that has been successfully
parallelized cannot be run (and maintained) on a regular sequential computer.)

5.1 Automatic Decomposition and Run-Time Configuration

One of the most important features of parallel processors is reconfigurability. When
running on a sequential machine one has limited options - the program runs and that’s it. A
parallel processor has many more dynamic features; particularly the availability of different
numbers of nodes. It is particularly important for a parallel program to know the details of
its run-time environment; how many processors are available, how to communicate with
the host computer, etc. Within Express this information is made available with the call

100

exparam. The header file express . h defines the following C structure.

struct nodenv {
int procnum; /* Processor number */

int nprocs; /* Number of processors in group */
int groupid; /* Identifier for processor group */
int taskid; /* Identifier of calling task */

The elements in this structure are used to specify the runtime environment within which a
process finds itself. The procnum and nprocs fields specify how many processors are
currently active and uniquely identify each processor within a processor group.

This information is obtained at run time by executing the exparam system call whose
argument is a pointer to a nodenv structure that will be filled in by Express. The
following is a sketch of the appropriate code

#include "express.h"
/* Defines nodenv structure */
struct nodenv nodedata;

exparam(&nodedata) ;
/* Get runtime parameters */

The automatic decomposition mentioned in the heading of this section is implemented in a
set of function calls collectively known as exgrid. Their purpose is to take a user
specification of a problem domain and perform a mapping to the underlying processor
topology. The system then makes available any “node numbers” that may be required for
use in communication calls. In this way the user never has to understand the exact location
of the processes in the application or which nodes they have to communicate with - all this
is handled transparently.

The “incantation” that makes this magic happen is for the user to specify the way that data
is to be distributed over the processors. Extracting parallelism this way is often known as
“data parallelism” and is very common in a wide range of application areas. Basically the
user informs the system of the way that the application level data is distributed and
Express contrives to hand back the parameters that cause the correct communication to be
performed. Note that this is just the opposite of the conventional approach in which the user
is presented with a given topology by the system and has to make the best possible use of it.

To expand these ideas a little consider the following example; a model of road traffic in a
major city. For simplicity we shall assume that the net of roads is evenly spaced in both
directions and that we will ignore load balancing concerns or other abstruse properties of
parallel machines.

101

Automatic
decomposition
routines - exgrid

Protecting the user
from the hardware

“Data
parallelism”

Automatic
decomposition - an
example

A traffic-flow

problem

The
“dimensionality”
of the physical
system

Assigning
processors to the
physical domain

Our problem is shown diagrammatically in the upper part of Figure 2.

The road network is shown by the solid lines and a set of eight processors are delineated by
the dashed lines. The basic idea is that each processor in the system will be responsible for
a subregion of the total road network, moving cars around and generally controlling things.
An example subregion is shown in the center of the same figure. As any car reaches the
edge of the area controlled by a particular processor we assume that it has to get sent to the
processor who controls the neighboring roads.

Essentially the question becomes one of assigning the subregions to the processors and
working out how to communicate with neighboring areas; this is the purpose of “exgrid”.

To set up the problem we have to inform the system of the dimensionality of the user
problem and how many processors should be assigned to each of these dimensions. Note
that these quantities are specified in the space in which the users problem lies rather than
the abstract space defined by the topology of the parallel processor network. In the case of
road traffic the problem has dimension two - at least if we don’t have overpasses, tunnels
etc.! In order to assign the number of processors in each direction we can either hard code
some values or else use the exparam and exgridsplit system calls to distribute the
number of available processors at runtime. For the sake of simplicity we adopt the
convention that dimension 0 will denote North-South and dimension 1 East-West. Then we
initialize the system by making a call to exgridinit as follows

#define North_South 0 /* For convenience */
#define East West 1
{

int nprocs[2], dimension;

dimension = 2;

/* N-S and E~-W ==> 2 dimensions */
nprocs [North South] = 2;

/* Two processors to N-S direction */
nprocs[East_West] = 4;

/* Four processors to E-W direction */

if (exgridinit (dimension, nprocs) < 0) abort(-1);

Notice that we took the easy way out here and just hardwired the fact that there will be eight
processors working on the problem decomposed as a two by four mesh. We could do better
by making a call to exparam and dividing up the nprocs field to make the mesh as
nearly square as possible. The code to do this has the form

#include "express.h"/* Define nodenv structure */
#define North South 0
#define East West 1
{
struct nodenv nodedata;

102

Street Map

Distributed among eight processors

A single processor

Intersection ij i=2,j=0

Figure 2. Decomposition of road network problem for eight nodes

103

Express and the
real physical
problem

Finding out which
processor is where

int dimension, nprocs[2];
exparam(&nodedata) ; /* Get runtime parameters */

dimension = 2;
exgridsplit (nodedata.nprocs, dimension, nprocs);

The exgridsplit function takes as arguments the total number of processors and the
number of dimensions to decompose over and returns, in the array pointed to by the last
argument, a *“square” decomposition of this many processors. For example a two
dimensional decomposition of 8 processors would yield a 4 x 2 decomposition while 9
nodes would give 3 x 3. No account is made for “silly” input values - eleven processors
would yield an 11 x 1 decomposition which is probably less efficient than only using ten
processors!

Express now understands that we are modeling a two dimensional real-world situation and
that we have some number of processors in each direction. Next we can go ahead and find
other parameters of our decomposition. One we might need to know is the coordinates of a
particular processor in the physical grid. For instance we might know that several roads are
closed in the most South-Westerly region and the processor controlling that area has to be
able to make decisions relating to this fact. To do this we use the exgridcoord function
which takes as arguments a processor number and returns the coordinates of that node in
the grid. So, for example, the following code might be used to pick out the processor with
all the closed roads. (Assume the same macros and headers are defined as before)

int recpnum{2];/* For the processor coordinates */
/* Code to setup and call exgridinit and exparam as
* before.
*/
/* Find global coordinates and treat closed streets */
exgridcoord(nodedata.procnum, recpnum);
if (recpnum[North South] == 0 &&
recpnum[East West] == 0) {

... /* Code to deal with traffic congestion */

}

else {

... /* Code to deal with easy case */

104

Note that the user determined coordinate system has intersection (0,0) at the South-Western
corner of the mesh and hence the code in the above if statement.

As well as allowing access to this sort of information defined totally within the user
problem domain a fundamental purpose of the exgrid tools is to facilitate
communication between processors. The utility which allows this is exgridnode which
calculates the “destination” parameters associated with communication to any of the
neighboring processors in the physical domain. The use of this routine is easily explained
by example. Suppose that a processor needs to communicate with its neighbor to the East.
Then the following call calculates the appropriate destination.

#define North_ South 0
#define East West 1
{
struct nodenv nodedata;
int dest;

exparam (&nodedata) ;
dest = exgridnode (nodedata.procnum, East West, 1);

The first argument specifies which processor to start from and the next two give the
direction in which we wish to go; the second argument names the basic direction - North/
South or East/West and the last says how many “hops” we want to make - positive values
indicate motion along the positive axis and negative values along the negative axis. In our
case we wanted the next processor along to the “East” which is along the positive direction.
To find the node for the “West” direction we simply change the final argument to -1.

Notice that we have skipped over the question of “boundary conditions” in this discussion
- i.e., what processor is directly to the East of the most Easterly and so on. We will return
to such matters in the next section where we will also discuss what is actually done with
values calculated by exgrid. Before doing so it must be emphasized that the exgrid
utility is actually very general. You can adopt ring type structures in which the physical
decomposition is basically one dimensional (An example might be freeway traffic) or
multi-dimensional decompositions such as might be suited to modeling other real-world
phenomena. In each case the procedure is basically the same. Also one is not restricted to
inquiring about conditions and neighbors of your own processor - one can discover the
environment of any processor in the decomposition.

Notice also that we have yet to make any statements about the nature of the parallel
processing system on which we intend to execute this program. We will not, in fact, make
any such statement throughout the entire development sequence. One of the beauties of the
exgrid decomposition system is that it lets us express the parallelism of the program in
“physical” terms - i.e., in terms related to the inherent parallelism of the problem we are
trying to solve. In some sense we can make the claim that we are really still writing

105

Communication
without processor
numbers

Boundary
conditions

The traffic flow
model

Updating the
traffic flow in a
sequential program

Fictitious
boundary
conditions

Running the code
on a parallel
computer

sequential programs but planning to execute them in parallel.

5.2 Using the Automated Decomposition Tools

In the previous section we discussed how the exgrid utility can be used to generate
“topology independent decompositions” - i.e., ones in which the decomposition is carried
out in the domain of the application rather than the underlying connectivity of the parallel
computer. In this section we will show how these tools are used in conjunction with the
communication primitives discussed in section 4.

In order to do so we will add a little more detail to the previous example. We will make a
drastic simplification and assume that traffic is only allowed to proceed from West to East
and from South to North - i.e. in the positive direction along each axis. Furthermore
vehicles are not allowed to make turns. We can now represent the state of the traffic flow
by having two dimensional arrays whose elements are the number of cars at a particular
intersection in each processors area of responsibility. For example StoN{[0] [0] will
contain the number of cars traveling North from the South-West intersection of each
processors region, StoN[1] [0] denotes the number of cars in the next block to the East
and so on. A second array (called Wt oE) represents the flow in the West-East direction. The
naming conventions for these arrays is shown in the lower part of Figure 2.

Now our basic problem is to update the traffic flows as time progresses. We will make
further sweeping assumptions that all vehicles travel at the same speed and all blocks are
the same length. Thus the update cycle merely consists of moving each element in the
Wt oE array one element to the “East” and each element in the St oN array one element to
the “North”. Schematically this code looks like the following, for the cars moving West-
East, on a sequential computer.

/* Do cars moving W->E: SEQUENTIAL */

for (j=0; Jj<BLOCKS[North South]; j++) {
for (i=BLOCKS [East_West]-1; i>0; i--)
WtoE[i]l [Jj] = WtoE[i-1]1[3]1:
WtoE[0]{j1 = random{();

where BLOCKS 1is an array containing the number of street blocks in the two directions.

Note that we have introduced another fictitious object - cars appear randomly “out of the
West” at each step, and disappear forever off the “East” edge of our city. These conditions
are the so-called “boundary conditions” which should be familiar to most scientists and
engineers. The proper specification of these effects is crucial to the model being
constructed.

Now let us attempt to run this code on a parallel computer. For a first attempt consider
running the above piece of code in each processor. We make the substitution blocks for
BLOCKS. As in the sequential case BLOCKS is an array saying how many street “blocks”
there are in each direction of the city, in total. The new array blocks will denote the
number in each processor after partitioning the data across the nodes.

106

The code which is correct for a sequential computer is wrong for a parallel machine because
of the “boundary conditions” at the junctions between the processors. If we run the above
code in multiple parallel processing nodes new cars are generated randomly along the West
edge of each processor’s sub-region while cars going off the Eastern edge disappear
forever rather than appearing in the next area to the East. Not very realistic.

The problem can be solved in parallel by adding some simple communication calls to the
above example. Essentially what we have to do is to have each processor send to its
Easterly neighbor the number of cars in each of its Eastmost blocks. This data is then read
by the adjacent processor and used to fill in its data for the Westmost blocks. A suitably
modified version is the following (Assume all arrays/variables are suitably declared
elsewhere)

/* Do cars moving W->E with boundaries:
* FIRST EFFORT -- WRONG
*x/

Enode = exgridnode (nodedata.procnum, East_West, 1);
Wnode exgridnode (nodedata.procnum, East _West, -1);
exgridsize (nodedata.procnum, BLOCKS, blocks, starting);

type = TRAFFIC_FLOW;

for (j=0; j<blocks[East_West]; j++) {
exread (&temp, sizeof (int), &Wnode, &type):;
exwrite (&WtoE[blocks[East_West]-1]1[3j],

sizeof (int), &Enode, &type):
for(i=blocks[East_West]-1; i>0; i--)
WtoE[1i] [j] = WtoE[i-11[3j];

WtoE[O] [J] = temp;

In this piece of code we assume that the nodedata structure is defined and setup
elsewhere with a call to exparam. Notice that we use exgridnode to give us the magic
“nodes” for the processors to our East and West, and exgridsize to actually tell us how
many blocks lie in our processor. Further we use a temporary variable, temp, to store the
information coming from our neighbors.

So where is the bug in the above code?

The problem is with the order of the exread and exwrite functions. Since we are using
the blocking “read” function each processor will come to its exread and stop waiting for
a suitable message to arrive. Since every processor is now waiting and none of them are
writing data the machine is now “hung”.

A trivial fix is to reverse the order of the exread and exwrite calls. Now each processor
sends its boundary value and then looks for an incoming message with new data. This
method works - we have parallelized our program!

107

The parallel
computer

“boundary

conditions”

Interprocessor
communication

A common bug

Optimizing the
traffic flow

program

However, the best solution is not yet found. Three questions can be asked about the current
solution

+ CanIavoid having to remember to write before reading - especially when there
may be real cases in which the other order is appropriate?

 Is this solution the most efficient?
» Is this method guaranteed - even when the messages being sent are very large?

The first question may seem trivial but is actually quite important. With the proper tools
errors such as this are easy to find but they still require a fair amount of recoding and
rethinking which is wasted effort. The second question is the central topic of parallel
processing and obviously important. The last point is rather subtle and concerns the internal
buffering which is happening inside the Express kernel.

Fortunately there is a solution which satisfies all three questions - exchange. The
problem at hand required one processor to both send and receive data. Instead of having
separate “read” and “write” operations the exchange function combines them both into
a single function call. Conceptually the read and write operations are made simultaneously
(which is really what we need in our example) and the implementation allows us to take
advantage of hardware capabilities for maximum speed. Further we can take precautions
internally to avoid possible buffering problems completely.

A better version of the above algorithm is, therefore

/* Do cars moving W->E with boundaries:
* CORRECT and BETTER
*/

Enode = exgridnode (nodedata.procnum, East West,1l);
Wnode = exgridnode (nodedata.procnum, East_West, -

exgridsize (nodedata.procnum,
BLOCKS, blocks, starting);

for (j=0; j<blocks[East West]; j++) {

exchange (&temp, sizeof(int), &Wnode, &type,
&WtoE [blocks[East West]-1]1[3j],
sizeof (int), &Enode, &type);

for(i=blocks[East West]-1; i>0; i--)
WtoE[i] [j] = WtoE[i-1](3];
WtoE([0]1[J] = temp;

One point to note is that we have apparently lost touch with the “boundary conditions” that
made up part of the specification of the original (sequential) problem. Cars are supposedly

108

generated randomly on the West edge of the system and disappear off the Eastern edge. The
first condition can be easily fixed with a call to exgridcoord which will tell us if we are
on the Western edge of the city and hence need to generate random cars. The other part of
the problem is a little trickier.

By default exgridnode assumes that the user domain is “periodic”. This means that the
left and right hand edges are connected as are the top and bottom. The simple consequence
of this fact is that when the Eastmost processors ask for a node to the East they are given
the node number of the Westmost processor. This is actually very useful in typical scientific
applications where the “periodic” assumption is often encountered but is obviously
incorrect in our example. What we would like to happen is for no data to get sent off the
Eastmost edge of the city and, likewise, no data to get read on the Westmost edge.

Fortunately this is very easily achieved with the exgridbc call which overrides the
defaults and makes exgridnode behave the way we want it to. When we ask for a
processor number which is “off the edge of the city” exgridnode will return the magic
value NONODE which, when passed to exchange, will denote that no communication
should actually be attempted. This mechanism is very general - all the Express functions
understand the NONODE argument and use it to indicate that no attempt should be made to
communicate. We use this feature to run codes on sequential computers. In this case
exgridnode will only ever return NONODE values since there is only one processor -
there are no other nodes to send messages to.

With the addition of a suitable call to exgridbc the code becomes

/* Do cars moving W->E with CORRECT boundaries:
* CORRECT and SMART
*/

int perbc(2];

perbc[North South] = perbc[East West] = 0;
exgridbc (perbc) ;/* Override periodic boundaries */

Enode = exgridnode (nodedata.procnum, East_West, 1);
Wnode = exgridnode (nodedata.procnum, East West, -1);
exgridsize (nodedata.procnum, BLOCKS, blocks, starting);
exgridcoord(nodedata.procnum, recpnum);
for(j=0; Jj<blocks[East West]; j++) {

exchange (&temp, sizeof (int), &Wnode, &type,

&WtoE [blocks [East West]-1][j], sizeof(int),
&Enode, &type):;

109

Periodic and non-
periodic boundary
conditions

Running Express
programs on
sequential
computers

Parallel
programming with
exgrid is just like
sequential
programming

Reducing Express
overheads

for(i=blocks[East_West]-1; i>0; i--)
WtoE([i] [j] = WtoE[i-11([3];

if (recpnum[East_West] != 0) WtoE[0][]j] = temp;
else WtoE([0][]j] = random();
}

This piece of code now deals correctly with all the cases and is fully parallel. We can
duplicate it trivially for the case of cars traveling N-S and everything is done. Note that the
structure is still quite like the original program and the user had to have no knowledge of
the underlying topology of the parallel machine - exgrid and Express did all the work.

Note that there are no strange looking parallel processing “incantations” of any kind in this
code - it consists of a set of standard C statements and calls to a runtime library. In this sense
it is still a sequential program and can be thought of, developed and debugged in that way.
Everything that happens in the program is fully deterministic and totally under the control
of the programmer. As a result it is easy to understand every factor while both designing
and analyzing the algorithm. This is the reason that we advocate this programming style so
strongly - one can use ones normal intuition about programming sequential computers to
understand how this parallel program works!

One might at this point worry about the efficiency of the above approach. Inside the loop
over j we are making a call to the communication system and hence the kernel with all the
overhead that this entails. A much more efficient method would be to do all the
communication in one swoop. We can do this by making the temp variable into an array
and trivially modifying the program

/* Do cars moving W->E with CORRECT boundaries:
* CORRECT and SMARTEST
*/

int perbc([2];

perbc [North South] = perbc[East West] = 0;
exgridbc (perbc);/* Override periodic boundaries*/

Enode = exgridnode (nodedata.procnum, East West, 1);
Wnode = exgridnode (nodedata.procnum, East_West, -1);
exgridsize (nodedata.procnum, BLOCKS, blocks, starting);

exgridcoord (nodedata.procnum, recpnum);

exchange (temp, 4*blocks[East_West], &Wnode, &type,
&WtoE [blocks[East_West]-1]([0],
4*blocks[East West], &Enode, &type):

for (j=0; j<blocks[East_West]; Jj++) {

110

for (i=blocks[East_West]-1; i>0; i--)

WtoE[i] [J] = WtoE[i-1]1[31;
if (recpnum[East_West] != 0) WtoE[O0][j] = temp[]];
else WtoE([0][j] = random();

Note that we’ve used an important property of the C language here which is that arrays are
stored in the order which makes the last index increase fastest. So, when we use
exchange with the data pointer set to §WtoE [blocks [East_West]-1][0] and
withlength 4*blocks [East_West] we will actually transmit the data along the correct
column of the array.

Having made this important optimization one might wonder what happens to the traffic in
the South-North direction. If we make the same optimization there then the data that we
want to send off the Northern edge doesn’t lie in adjacent memory locations, at least in C.
Even in languages where the South-North array works right the West-East one wouldn’t -
you can’t have it both ways! This is the reason for the existence of the “v” routines:
exvread, exvwrite, and exvchange. These routines, as well as the conventional
pointer, length, node and type arguments have two extra: item size and skip distance. So,

for instance, the actual syntax of the exvwrite call is
exvwrite(data, size, skip, nitems, &node, &type):;

The data, node and type arguments are exactly as before. However the actual data sent
consists of nitems of size bytes, each separated by skip bytes. Note that we do not
specify the total length of the data to be sent in bytes as with exwrite but rather give the
number of items and the size of each.

As an example of this call suppose that we wish to send every third element of a simple
array of 32 bit integers. In total there will be 23 items to be sent and the array they come
from is called mybuf fer. Then the appropriate call to exvwrite is

exvwrite (mybuffer, 4, 12, 23, &node, &type);

The variations exvread and exvchange are implemented in a similar way. To see how
one might use these calls in our traffic flow problem it is easiest to just present the code that
deals with the South-North flow. Note that we only have to call exgridbc once to set up
the boundary conditions properly for both West-East and South-North flow.

/* Do cars moving S->N with CORRECT boundaries:
* CORRECT and SMARTEST
*/

Nnode = exgridnode (nodedata.procnum, North South, 1);
Snode = exgridnode (nodedata.procnum, North South, -1);
exgridsize (nodedata.procnum, BLOCKS, blocks, starting);

exgridcoord (nodedata.procnum, recpnum);
blks = blocks([North South];

111

Communicating
arrays: exvread,
exvwrite,
exvchange

When you don’t
need to use
message types

Don’t send
messages with type
DONTCARE

A real case of

traffic flow -

cellular automata

exvchange (temp, 4, 4*blks, blks, &Snode, &type,
&StoN[0] [blks-1], 4, 4*blks, blks, &Nnode, &type);

for(j=0; j<blks; j++) {
for (i=blks-1; i>0; i--)
StoN[jl[i] = StoN[j][i-1};
if (recpnum{North South] != 0)
StoN{j]1[0] = temp[jl;
else StoN[j]([0] = random();
}

This code now has exactly the same form as that for the West-East flow but with a call to
exvchange replacing the call to exchange. Obviously the call to exchange could
actually be replaced with a suitably “hacked” call to exvchange making the codes look
even more alike.

A final point to note is that the variable t ype shows up a lot but doesn’t get much attention.
Very early on we set its value to the macro TRAFFIC_FLOW and have since ignored it.
This is typical of these “synchronous” simulations - the type parameter is superfluous since
every node knows who to send data to and when - no extra level of classification is
necessary.

WARNING: It is tempting to try to the use macro value DONTCARE for
the message type in this type of problem since you really don’t care!
Unfortunately there is no way for Express to send a message with this
type and attempting it will cause weird and mysterious problems

While trivial in principal this example has hopefully served to show how the exgrid
system and its associated function calls can be used to generate codes that look extremely
similar to their sequential counterparts and which require no knowledge on the part of the
programmer of the underlying topology of the parallel computer. Obviously this system
will not be appropriate in certain circumstances where algorithms have complicated
constraints - for example it is not always possible to make do with the synchronized
communication system used here. Even in cases less synchronous than that considered here
the use of the exgrid mechanism is not precluded and is still a very powerful tool.
Another point to note is that the problem and solution presented here form most of the code
needed to model fluid mechanics via the “cellular automata” approach - it is not such a
trivial model after all.

At present the exgrid system is designed for dealing with regular meshes and their many
dimensional derivatives. We are interested in extending this model to other common types
of data structure such as trees and would encourage users to make their requirements known
to us.

5.3 Utility Functions and global communication

As well as providing the basic node to node communication facilities described in the

112

previous sections Express offers other “utility” functions that are commonly used:
excombine, exbroadcast and exconcat.

The word utility in the previous sentence is in quotes because it probably represents
something of a misnomer in this case. While the functions described here do indeed
perform functions that might be considered less obvious in parallel processing terms they
themselves represent an extremely powerful method of writing complete parallel programs.
Just as exchange and exvchange were the only two functions required to parallelize
the traffic example in the previous section (with exgrid too, of course!), we have
developed complete commercial parallel applications using only functions from this
section.

The basic difference between these routines and exchange/exvchange is that whereas
the latter were hooks into interprocessor communication facilitated by the exgrid system
these routines perform “global” or “collective” actions on several processors. Again since
no hardware specific details are required these routine are guaranteed to be portable across
all types of parallel (and sequential) computers and yet they provide interfaces to a rich set
of parallel processing primitives which still let us apply conventional sequential intuition
to our programs.

The excombine function is used to apply a user specified function to data distributed among
the processors of the machine. The basic calling sequence is

excombine (data, function, size,
nitems, Nnodes, Nlist, ptype):

where the combining function is applied to nitems data items, each of size bytes. The
function provided must satisfy certain constraints in order to be effective; namely
associativity and Commutativity. (Basically this means that the result of applying the
function to items A and B is the same irrespective of the order of application. Addition and
multiplication are good examples and subtraction is not.) The last arguments specify which
set of nodes to apply the function to; Nnodes is the number of nodes listed in the array
Nlist.If Nnodes takes the special value ALLNODES then the excombine will be done
on all processors. Finally the pt ype argument serves to assign a “type” to the combine
function in the same manner as exread and exwrite.

As an example of the use of this function consider another extension to the traffic problem
discussed previously. Assume that after each iteration we want to find out how many
vehicles are left in the system. A simple way to achieve this in a sequential program is the
following code

/* Count total number of cars: SEQUENTIAL */

total = 0;

for (i=0; i<BLOCKS[East_West]; i++) {

for (j=0; J<BLOCKS[North South]; j++)
total += WtoE[i][j] + StoN[il(3l:

}

113

Global
communication
functions carry out
common
operations
automatically

Counting the cars -
a global sum over
all processors

Counting the cars
sequentially..

.. and in parallel

Converting
distributed data to
global data

To modify this code for a parallel processor we just add a call to excombine as follows

/* Count total number of cars: PARALLEL */
#include "express.h" /* Defines ALLNODES */

int add function(), type=123;
total = 0;
exgridsize (nodedata.procnum, BLOCKS, blocks):;

for(i=0; i<blocks[East_West]; i++) {
for(j=0; j<blocks[North South]; j++)
total += WtoE[i][j] + StoN{il[3]:
}
excombine (&total, add_function, sizeof(total), 1,
ALLNODES, NULLPTR, &type):

where the add_function is defined elsewhere as

int add function(pl, p2, size)
int *pl, *p2, size;
{

*pl += *p2;

return 0;

This code is actually quite straightforward. For each of the nitems mentioned in the call
to excombine the combining function is called with, as arguments, pointers to two items
of the length given by the user. The combining function should then overwrite the first
argument with the result of combining the two elements and return a zero value to its caller.
(Returning other values cause excombine to fail and/or perform other tasks - see the
Express reference text for details). The final result of the call to excombine is just what
was wanted - the value total is now the total number of cars summed over all the
processors in the system. Furthermore, every processor that participated in the call to
excombine has this result.

An important extension of the abilities of excombine not shown here regards the
nitems argument. In our case we wished to combine only a single value, the total number
of cars in each node. In general, however, we may have a vector of values to combine in
some manner. Rather than repeatedly calling excombine for each element we can,
instead, increase the nitems argument and combine the entire vector in one call. This
obviously leads to significantly reduced overheads.

The other two “utility” functions, exconcat and exbroadcast serve similarly useful
purposes.

exconcat takes data items from each processor and makes a single long buffer in each

114

node by concatenating the individual contributions from each node. A feature of the way
this is done guarantees that each node ends up with the same result. The exbroadcast
function, as its name implies, performs a broadcast operation to a set of nodes in the system.
Any node may be the originator of the broadcast and the message may be restricted to a
subset of the processors. (See the Express reference for details).

Notice that these functions also have “type” parameters. This is so that one can distinguish
between several overlapping function calls. Without such a parameter, for example, the
following course of actions would be illegal and probably cause the machine to “hang”
since the excombine in node 1 will pick up the message sent with the exwrite in
node 0.

Processor 0.
exwrite to processor 1.
excombine.

Processor 1.
excombine .
exread from processor 0.

Even if the machine doesn’t “deadlock’ the results will be gibberish. With the “type” field,
however, it can be arranged that the “excombine” and “exread/exwrite” operations
have different types. In this case Express will sort out which message goes with what and
all will be well. Of course, if you give the same t ype argument to both then chaos will still
result.

Fortunately errors such as this are extremely easily detected using an interactive debugger
such as ParaSoft's ndb.

6 1/0 and Cubix

~ Up to this point all the high level communication primitives described have been intended
primarily for node-to-node communication within the parallel machine. No reference has
been made to the host computer.

One of the major decisions which must be taken by an application developer is whether or
not any of the code must run on the host processor or whether the entire application can run
in the distributed machine. Several factors influence this decision;

» Is there enough memory in the parallel machine for the application?
* Can satisfy my I/O requirements entirely within the parallel machine?

» How difficult will it be to maintain a code which is divided into host and parallel
parts, in particular since this configuration will almost certainly not run on a
purely sequential computer?

* Does my application have real-time constraints or similar which require a
tightly coupled interface to the host processor - perhaps at the device driver
level?

115

Broadcasting a
single processor's
data to others

Avoiding
“deadlock” by
using the message
types

Deciding whether
to use the host
processor

Parallel file 110
under Cubix

110 modes

The answers to these and other questions can only be decided on a per-application basis.
Experience shows, however, that programs that run entirely within the parallel computer
are significantly easier to write and maintain than those which are divided into
inhomogeneous pieces. In particular we have found applications which, when written to
operate in this mode, can be supported WITHOUT CHANGES upon a wide variety of
BOTH sequential and parallel machines. Porting code to new machines is often merely a
question of recompiling - no other changes need to be made.

Having advertised some reasons for using this model of computation its basis is in an
Express subsystem known as Cubix. Cubix is a full-function I/O and operating system
server that enables distributed applications full access to the operating system resources
available on the host computer. Multiple host processors can be supported and also
distributed “disk farms” for file access. The interface to the host operating system is
sufficiently sophisticated that one of the functions you can perform is to start up and run a
host program to which you can communicate in a natural way. This allows you to actually
run a user written host program from within the Cubix programming model. Essentially
you can have the best of both worlds - full file system access from within the nodes and all
the advantages of a sequential host program.

At the lowest level file access is available through the standard UNIX functions read,
write, open, 1seek etc. At a higher level it involves a complete model of distributed I/
O involving three totally distinct modes.

Synchronous mode:
All processors make requests together and each receives the same response.
This situation occurs a lot in interactions with the user - for example, issuing
prompts and reading values for global variables. It allows us, for example,
to input single data items and have Express broadcast the values to all
nodes automatically.

Multiple mode:
All processors make requests together and each receives a different
response. This mode is used most often for reading and writing the bulk of
data generated or required by a parallel code. It’s feature is that it is possible
to construct a solid model for the various I/O functions allowing
deterministic and repeatable behavior.

Asynchronous mode:
Any processor may make a request at any time and each is serviced
independently. This mode is rather hard to control since asynchronous and
unrepeatable behavior results but is central to certain applications and
situations.

The coexistence of these three distinct I/O modes and the ability to switch between them
makes Cubix an extremely versatile system. In principle any function that the host could
perform is available to the node processors - including such things as spawning new
processes on the host and controlling external devices. The details of programming in this
style are to be found in the accompanying document “Programming Parallel Computers
Without Programming Hosts” which is the major reference for this system. Meanwhile a

116

couple of examples might serve to illustrate some of the functionality

One’s first piece of code in C is supposed to be The “Hello world”
program

#include <stdio.h> /* Day 1: SEQUENTIAL */

main ()

{
printf ("Hello world\n");

}

which generates the immortal line
Hello world

Actually writing the program that does this in the nodes is quite hard if a user written host
program has to be used since messages must be coordinated between host and nodes. If,
however, one uses the Cubix model then the above code, when executed with the command

cubix -n 1 noddy

would also generate the same output. (Note that we assumed that the program resulting
from compiling the previous code fragment has been called noddy. Details of the
compilation procedures are given in the introductory guide for your version of Express.)
Even if run on more than a single processor the output would appear the same because by
default all files appear in “single” mode in which only a single node actually generates any

output. The trivial modification of the program to “Hello world” in
parallel.

Multi mode 11O

#include <stdio.h> /* Day 1: PARALLEL. Multi mode */
#include "express.h"
struct nodenv nodedata

main{)
{
exparam(&nodedata) ;
fmulti (stdout);
printf ("Hello world from processor %d\n",
nodedata.procnum) ;
exit (0);

produces the output

Hello world from processor
Hello world from processor
Hello world from processor
Hello world from processor

w NN PO

117

AsynchronousliO -
the advantages and
disadvantages

Optimizing
performance
instead of
portability

Hardware
dependent
communication is
faster but un-
standardized

Communication
between hardware
connected
“neighbors”

when executed on four processors. The trivial addition of the fmulti call switches the I/
O mode for stdout so that output appears in order of increasing processor number. Note
that no other files are affected - the I/O mode is specified for each stream independently.
Additional function calls are available to fully specify the order in which input or output
are performed while a file is in multi mode. This facility is extremely useful in conjunction
with the exgrid system allowing users to perform I/O specification on the basis of the
application data domain rather than the underlying processor topology.

Taking the previous program and switching the fmulti call to fasync enables the
asynchronous mode. In this case the output from the various processors will appear in
arbitrary order and may even change from one trial to the next.

This is one of the penalties of using the asynchronous I/O mode - especially with the
buffered functions like print £, scanf, fread etc. Use of the lower level functions such
as open, close, read, write, 1seek is recommended when using the asynchronous
mode - further details are presented in the companion document describing Cubix.

The Cubix model - of parallel computation is extremely powerful and yet very
straightforward. Many applications can either run intact or require very minor
modifications to use this system and its use is strongly recommended in all cases that can
take advantage of it.

[7 Hardware Dependent Communication

" Much of this chapter has been devoted to a discussion of the issues which make parallel

programs portable and/or easy to develop. One significant point which has seemingly gone
overlooked, however, is performance.

The issues of parallel program performance is extremely complex. Not least of the
problems is the fact that parallel processing hardware is developing quite quickly and so
what are “good” techniques this year may be hopelessly old fashioned a couple of years
hence. It is for this reason that we have concentrated so heavily on portability and
standardization since this automatically leads to a situation where an application can take
advantage of developing technology.

There are many applications, however, which can make good use of current technology if
only its performance could be improved a little. For this reason Express supports a layer
of communication primitives that directly address the hardware present in the parallel
computer in use. These routines are optimized for one thing only - speed. The interface that
they present to the user is extremely simple and cannot be guaranteed to exist, or even
function in the same manner from one machine to the next. The decision on whether or not
to use these routines must lie with the developer and should be based on a reasonably
detailed study of the issues at hand. The use of the profiling system to be described in a later
chapter is strongly advised before embarking on a revision of the code to use these routines.

The basic idea embodied in this system is that of “nearest neighbor communication” - i.e.,
communication only between processors which are directly connected by the underlying
hardware. To describe such a connection Express uses the terminology of a “channel”.
This is an integer quantity that describes the connections between one node and some set

118

of other nodes. In a hypercube topology, for example, the concept of a communication
channel is well defined by the bits that make up the processor numbers. Similarly a
transputer machine has nodes that each have four “links” which again can be mapped onto
the integers 0, 1, 2 and 3.

Given this mapping from the hardware description to a set of small positive integers
Express provides four routines to implement communication: exchanon, exchanoff,
exchanrd and exchanwt.

exchanon and exchanoff are the functions that control the use to which a particular
channel is put. exchanoff disables the normal processing of a hardware channel by
Express and sets it in a mode where the low level communication functions can operate.
exchanon performs the complementary task, re-enabling Express on a previously
disabled channel.

Neither of these routines performs any checking on the validity of a particular operation.
As such it is the responsibility of the user to ensure that no messages are still in the system
which will need to be forwarded on a particular channel which is to be disabled. Typically
this means that some sort of synchronization is required before disabling channels.
Similarly it is the responsibility of the user to make sure that no regular Express
communication is attempted which uses a channel which is still disabled.

Once a channel has been successfully disabled the exchanrd and exchanwt functions
can be used to pass data along a channel. The calling sequences are extremely simple:

exchanrd (chan, buffer, nbytes)
exchanwt (chan, buffer, nbytes)

As can be seen no node or type arguments are present in these lists - the functionality is
merely to transmit nbytes bytes of data from the indicated buf fer into or out of the
named channel. The actual node with which these routines communicate depends solely on
the hardware interpretation of the chan parameter. For the two simplest types of hardware
this association is as follows

Hypercube Channel chan connects the processor whose node number is nd
with that whose processor number is given by

nd *~ (1 << chan)
i.e., by switching bit “chan” of the processor number.

Transputers Channel O corresponds to hardware link O - i.e., LinkOIn in acall
to exchanrd or Link0Out in a call to exchanwt.

These routines are completely “blocking” in the strong sense that the call to exchanwt in
one node will not return until a corresponding call to exchanrd has been made in the
receiving node. Furthermore the message lengths, indicated by the respective nbytes
arguments must match exactly.

Note that this means that the following sequence of calls, which would be valid if made
with exread and exwrite will lead to “deadlock” when made with the lower level
functions.

119

The Express
interface

“Wild and
dangerous”
routines - no
checking

Mapping Express
channels to the
hardware concepts

Blocking
communication - in
the strongest sense

A “deadlock”
situation

Avoiding
“deadlock” by
assigning parities

Successful
applications of a
“nearest
neighbor”
programming
model

(We assume that nodes A and B are connected on channel 0.)

/* /*

* Node A * Node B

*x/ x/

exchanwt (0, buf, 12); exchanwt (0, buf, 12);
exchanrd (0, buf, 12); exchanrd (0, buf, 12);

The problem in this case is that both nodes call exchanwt together. As a result both wait
for a call to exchanrd to consume their data. As a result neither can proceed and the
outcome is “deadlock”. To alleviate this problem one commonly introduces the concept of
“parity” in which nodes on opposite ends of a communication channel are assigned
opposite values. The code above could then be re-written as follows:

/*
* Nodes A and B
*/

extern int parity; /* Initialized elsewhere */

if (parity == 0) {
exchanwt (0, buf, 12);
exchanrd (0, buf, 12);

}

else {
exchanrd (0, buf, 12);
exchanwt (0, buf, 12);

Note, however, that the assignment of parity to processors is not necessarily trivial. For a
hypercube connected machine one can always assign parity to the processors based on the
number of “bits” set in their processor numbers. For a more general interconnection
strategy such as is possible with a transputer system, however, it may be impossible to
perform this assignment. Consider, for example, the simple net shown in Figure 3.

If we assign parity 0 to node O then node 1 will need to have parity 1. But since node 2 is
connected to both nodes 0 and 1 it cannot have either parity assignment. Programming with
the low level channel communication primitives is still possible in such a case but extreme
care must be taken to ensure that the calls to exchanrd and exchanwt match correctly.

Having gone, at great length, into the difficulties present in using these routines it should
be stated that they can significantly improve the performance of a great many parallel
processing algorithms. A good reference for the types of problem which can be successfully
tackled in this way is the book “Solving Problems on Concurrent Processors” by G.C.Fox
et al. published by Prentice-Hall (1988). This book deals with a broad range of scientific
problems solved by the research group at Caltech using a communication system based
exclusively on nearest neighbor interactions.

120

HOST «<— O 2 3

Figure 3. Processor interconnect with no possible parity assignment

An important feature of £Express in connection with these routines is that can be gradually
merged into a working code when performance analysis indicates that some gain can be
made. We strongly advocate the use of the profiling systems to be described in a later
chapter before embarking on a major code revision which takes advantage of these routines
- it is important to understand just how much one stands to gain from such labor.
Furthermore the step to using these calls should not be taken too early in the development
of a parallel project since their use inhibits the functioning of such powerful development
tools as the debugger and performance monitor - while a channel is disabled it cannot be
used to forward system messages such as those used by the debugging tools.

Several strategies are available to lessen this barrier

e Construct a working program, fully benchmarked and debugged and then turn
on the fast communication. Hope that nothing bad happens.

» Since most applications go through cycles in which the faster performance of
the exchan routines is sometimes unnecessary one can restrict ones debugging
attention to the phases where Express has been re-enabled.

» Use a communication strategy in which Express can be left enabled on a set of
channels that “spans” the hardware topology. In this case the debugging tools
can be used at all times.

The first method is basically sound but suffers from the defect that certain program bugs
may only manifest when the faster communication is used since this affects the relative
timing of different activities on different nodes. One cannot be sure, therefore, that enabling
the faster communication will not engender new bugs of its own.

The middle option is reasonably workable. Most applications, particularly those in
scientific and technical domains have periodic structures in which Express can be
alternately off and on. With care one can then use the development tools during the times
that Express is enabled.

The last strategy is probably the easiest to use but requires some preparation in setting up
and also more connectivity from the underlying hardware than may be available. The basic

121

Before proceeding,
make sure that it
will be worth while

Minimizing the
pain associaied
with the fast
routines

Using cnftool to
build “hybrid”
networks

idea is to reserve a set of channels for use by the fast communication routines and then use
the full Express system on the others. The simplest way to achieve this is to simply delete
the corresponding channels using the system configuration tool, cnftool. (This is only
available if the system in use supports such reconfiguration.) Links which do not appear in
the network description generated by cnftool will,, by default, have Express disabled
just as though a call to exchanof £ had been made at the beginning of the program. These
links can then be used for fast communication.

Note that it is not necessarily sufficient to merely disable certain channels at the beginning
of the user application.since Express may have already decided to use these channels for
its own message routing. Deleting channels with cnftool avoids this problem since the
internal routing is built upon the information supplied by cnftool.

K Complete Example Programs

" This section contains complete examples of the use of Express in both Cubix and Host-
Node applications.

8.1 The “RING” Program
A one-dimensional The program is shown schematically in Figure 4.

exgrid makes the The exgrid tools are used to set up a one-dimensional processor decomposition - i.e. a

decomposition ring and then we use exgridnode to obtain the processor numbers to be used in

straighfforward communicating with the next and previous node around the ring. Each processor then sends
data to it successor using the fwdnode and reads from its predecessor using bcknode as
shown in the figure. Repeating this operation as many times as there are nodes in the ring
has the result of sending each processor’s message to every other node.

At the end of each cycle we use the excombine function to gather up some data either to
be printed (in the Cubix version) or sent to the host. This latter operation has nothing to do
with sending messages around a ring but is added to give a little more variety to the
program.

While this program looks just as silly as some of the other examples used it is actually quite
A “model” a common programming model - many parallel applications take the form where an inner
program loop performs calculations and internode communication which ends with some data being
gathered together for later analysis or display.

The two Two distinct versions of this program are presented: a Cubix version and another split into

programming host and node programs. We present the latter last since it is more complex and will serve

models to advertise the Cubix model. It may be surprising to readers that the Cubix
implementation is actually a parallel program - it looks just like a sequential program.

8.1.1 Cubix Program

This program would be compiled with the Cubix libraries by specifying some machine
dependent compiler options - see the introductory guide to your version of Express for
more details. Once compiled we can execute it on four processors with a command similar
to

122

mmmesemmeed®> Messages sent to fwdnode.
———f Messages sent to bcknode.

Figure 4. Communication around a ring of processors

cubix -n 4 cubix_demo

where we have assumed that the program has been called “cubix_demo”.

/*****'k************************************‘k**********

* EXPRESS Demonstration program. *
K e — *
* Parasoft Corporation, 1988. CUBIX program *
* *

***/

#include <stdio.h>
#include "express.h"

short indata[256], outdata[256]:

main(argc, argv)
int argc;

123

char *argvl]:;

{
int chksum{2], check, numtimes, k, type = 123;
int nprocs(l], nshift, fwdnode, bcknode, f_add();
struct nodenv env;

/* Get system parameters and construct a checksum. */

exparam({&env) ; /* Get system parameters */
check = 0;

for(k=0 ; k<env.nproc ; k++) check += k;

/* Now set up the channels to use in the ring. Map a
* one dimensional chain of processors onto the nodes.
*x/

nprocs{0] = env.nprocs;
exgridinit (1, nprocs);

fwdnode = exgridnode (env.procnum, 0, 1);

/* Forward route */
exgridnode (env.procnum, 0, -1);
/* Reverse path */

bcknode

i

/* Now prompt for the number of times to pass the
* message around a ring
*/

printf ("How many times around the ring ? : ");
scanf ("%d", &énumtimes) ;

/* Now let’s go !!!!! Send a 512 byte message around
* the processor ring. For each successful round trip
* put out a ’'#’ character and issue diagnostics if
*

something seems wrong.
*/
for (k=0 ; k<numtimes ; k++) {

/* Shift data around the ring we just set up --

* note that we have to do "nprocs" shifts to get it
* round the ring once.

*/
for (nshift=0; nshift < env.nproc; nshift++)
exchange (indata, 512, &bcknode, &type,
outdata, 512, &fwdnode, &type):
/* Now do the checksum business -- with excombine */

124

chksum[0] = 1;

chksum{l] = env.procnum;

excombine (chksum, f add, sizeof(int), 2,
ALLNODES, (int *)0, &type);

if (chksum{0] != env.nproc ||
chksum([1l] != check) {
fprintf (stderr,
"\nError in node communication\n");
fprintf (stderr,
"\tExpecting %d, %d\n",
env.nproc, check):;
fprintf (stderr,
"\tReceived %d, %d\n",
chksum[0], chksum[1]) ;
exit (0);
}
else {
putchar(’'#’);
if(((k+1) % 64) == 0) putchar(’'\n’);
fflush(stdout);

}

printf ("\nDone\n") ;
exit (0);
}

f add(i,]j, size)
short *i, *3j;
int size;
{
*i = *j;
return 1;

8.1.2 Host-Node Program, “Host” code.

This version of the “RING” program is in two pieces, one which would execute on the host
processor of your machine and another for the nodes of the attached parallel computer. The
former is presented first and raises several important issues which are noted at the end of
the program text.

To run this code one would compile it with some C compiler for the host processor in use

but with the addition of the Express library. More information about this process can be
obtained from the introductory guide to Express on your system.

125

Dividing the
“RING" program
into two pieces for
“host-node”
execution

Debugging “host-
node” programs

To run the program on four nodes we would execute a command similar to
host 4

where we have assumed that the program resulting from the compilation of this code has
been called “host”. If you have named it something else, or your machine requires a
different syntax to execute programs then the above command line will have to be modified
accordingly.

Note that make provision in this code for debugging by the specification of any second
argument. This forces the host program to execute a call to the expause routine which
loads the node program at a breakpoint so that the debugger can be invoked. To take
advantage of this feature one might use the command line

host 4 dummy_ for debugging

with suitable modification for your own operating system.

/**’k***********

* EXPRESS Demonstration program. *
|, SN *
* ParaSoft Corporation, 1988. HOST program. *

********************’k*******************************/

#include <stdio.h>
#include "express.h"

main (argc, argv)
int argc;
char *argv([];
{
long fromnodes(2], numtimes;
/* For communicating with nodes */
int check, k;
int pgind, nodes;
int src, type = 123;
struct nodenv env;

/* Read number of nodes from command line, or set
* default. If we give a second argument then stop the
* node program at its entry point so that we can use
* the debugger
*/

nodes = (argc > 1) ? atoi(argvI[l]) : 4;

if (pgind=exopen (" /dev/ncube", nodes,

DONTCARE) < 0) exit(l):
if (argc > 2) expause();
exload(pgind, "node");

126

/*

*

*/

/*

*

*/

Get system parameters and construct a checksum to
compare with the values returned from the cube.

exparam(&env) ;/* Get system parameters */
check = 0;
for (k=0 ; k<env.nprocs ; k++) check += k;

Now prompt for the number of times to pass the
message around a ring

printf ("How many times around the ring 2 : ");
fflush(stdout) ;
scanf ("%$1d", snumtimes) ;

Send the count to the nodes and then read back a
message for each cycle. Note that this is rather
tricky on machines with reversed byte orders. We

have to swap the bytes, send them to the nodes, and

then swap them back again to use on the host.

*/
fifdef SWAP

_ex swaw(&numtimes, &numtimes, 4);
#endif

exbroadcast (&numtimes, HOST, 4, ALLNODES,
(int *)0, &type);

#ifdef SWAP

_ex_swaw (&numtimes, &numtimes, 4);

$endif

for (k=0;k<numtimes;k++) {
src = 0;
exread(fromnodes, 8, &src, &type):;

#endif

$ifdef SWAP
_ex swaw(fromnodes, fromnodes, 8);
if (fromnodes{0] != env.nprocs ||
fromnodes[1l] != check) {

fprintf (stderr,
"\nError in node communication\n");

fprintf (stderr, "\tExpecting %d, %d\n",
env.nprocs, check):;

fprintf (stderr, "\tReceived %d, %d\n",
fromnodes[0], fromnodes{1l]);

exit (0);

}

else {

127

Problem 1: Data

types not
compatible
between host and
node processors

Problem 2: Data
format not
compatible
between host and
node processors

Building “node”
programs from
sequential code

The name of the
node program

putchar (" #');
if(((k+1l) % 64) == 0) putchar(’\n’);
ffiush (stdout);

}

printf ("\nDone\n") ;
exit (0);

NOTE 1. Note that we use the “long” data type for all parameters which must be
communicated between host and node programs and that the excombine
function has the size parameter explicitly set to 4 for the size of a 1ong.
While ugly this is the only way to make this program portable between
machines with potentially different word sizes - the more natural int type
is often of length 16 bits on the host and 32 bits on the nodes making it
unsuitable for our purpose. Compare the Cubix version which has no
equivalent problems.

NOTE 2. We use a preprocessor directive SWAP to control byte swapping of data
which must be communicated between host and nodes. This is a particularly
nasty feature of the “host-node” programming model. Occasionally systems
are built in which the data format used by the CPU on the *“host” processor
is different from that of the nodes. In these cases one or the other processor
must take care to transform the data to a format that the other can use
whenever communication between them must occur. In this example we
elect the “host” for this task and control the behavior with a preprocessor
macro. This latter allows us to use the program on either type of machine
and select at compile-time the appropriate option.

8.1.3 Host-Node Program, “Node” code.

The following code makes up the “node” half of the “Host-Node” version of the “RING”
program. The most interesting things to note is its similarity to the entire Cubix version of
the code. This is often the case - in practice one obtains node programs by copying the
entire sequential version of the code and deleting the initial and final I/O relating to
parameter input and result output. In many cases where structured programming practices
have been adopted the node program can often be made up quite simply by calling the main
processing routines of the original sequential program.

The compilation of this code is quite straightforward but one must be careful NOT to use
the switches that invoke the Cubix libraries. While this would apparently succeed, at the
compile/link stage, the resulting program would not run properly because it would contain
Cubix-specific code which requires that the host be executing the cubix program rather
than the one we showed in the previous section.

A final important issue involves the naming of this program. While any name can, in
principle, be chosen it must match that used in the call to ex1oad in the host program. In

128

this case we should name the resulting program: node.

/**************************’k**************************

* EXPRESS Demonstration program. *
K e - *
* ParaSoft Corporation, 1988. NODE program *

***/

#include "express.h"
struct nodenv env;

short indata(256], outdatal[256]:;
long tohost[2], numtimes;

main ()

{
int k, nshift;
int fwdnode, bcknode;
-int type = 123, dest;
int nprocs(l], f_add();

/* Read system parameters, number of nodes etC...... */
exparam(&env) ;

/* Now set up the channels to use in the ring. Map a
* one dimensional chain of processors onto the nodes
* that we have.

*/
nprocs([0] = env.nprocs;
exgridinit (1, nprocs):;

fwdnode = exgridnode(env.procnum, 0, +1);
/* Forward route */
bcknode = exgridnode (env.procnum, 0, -1);

/* Reverse path */

/* Now read the number of iterations from the host -
* note that the number of forwarding operations is
* this parameters times the length of the ring.

*/
exbroadcast (&numtimes, HOST, 4, ALLNODES,
(int *)0, &type);

for (k=0;k<numtimes;k++) {

129

/* Shift data around the ring we just set up */

for(nshift=0; nshift < env.nprocs; nshift++)
exchange (indata, 512, &bcknode, &type,
outdata, 512, &fwdnode, &type):;

/* Now send a silly message to the host. Add up a bunch
* of ones and also our processor numbers.
*/
tohost [0] i;
tohost[1l] = env.procnum;
excombine (tohost, f_add, 4, 2,
ALLNODES, (int *)0, &type):;
if (env.procnum == 0) {
dest = HOST;
exwrite (tohost, 8, &dest, &type):

}

f add(i,], size)
long *i, *3j;
int size;
{
*i{ += *j;
return 1;

8.2

Other Examples

All versions of Express are shipped with an extensive set of example programs. The exact
location of these files depends on the particular system but most often they can be found in
a subdirectory called “examples” of the main Express installation. This directory will
itself contain several other subdirectories, each exhibiting a particular feature of the system.
Of particular interest are the express and cubix directories which contain further
examples of the two programming models and the elementary use of the basic Express
functions.

130

131

Cubix

Programming parallel computers without
programming hosts

p 1 Introduction

b Historically, application programs for parallel computers consist of two parts, a master
process running on the host and a server running in the parallel machine

Cubix adopts a different viewpoint. Once a program is loaded into the nodes, that program
assumes control of the machine. The host process only serves requests for operating system
services. Since it is no more than a file server, the host program is universal, it is unchanged
from one application to the next.

This programming model has some important advantages.

* Program development is easier because it is not necessary to write a separate
program for the host.

« Parallel programs are easier to develop and debug because they can use standard
I/O routines, rather than machine dependent system calls.

» Parallel programs can often be run on sequential machines with minimal
modification.

» The programming model extends in a natural way to distributed I/O, systems
such as disk farms, attached directly to the parallel machine.

The currently implemented versions of Cubix supports both synchronous and
asynchronous I/O modes for maximum flexibility and portability of the resulting parallel
codes. In addition certain versions of the system incorporate support for distributed disk
systems and multiple host computers.

Cubix was created to make programming parallel computers easier. Its goal is to eliminate
significant duplication of effort on the part of programmers, and to make the environment
in the parallel machine appear much more familiar to application programmers. It is also
intended to make programs more easily portable to sequential machines as well as between
different brands of parallel computers.

The motivation for Cubix can probably best be understood by sitting down with one’s
favorite distributed machine and trying to get each of the nodes to perform a trivial task
involving input and output to the terminal. For example, have each processor identify itself,
and multiply its processor number by a number entered on the console, printing an
informative message like:

I am processor 17 and 3 times 17 is 51

in response to the number 3 being entered. This is an extraordinarily difficult exercise
because the nodes of the parallel machine do not have direct access to the operating system
facilities available on the host. One can not, for instance, execute a scanf in the nodes to
obtain data from the console. Instead, the host must allocate a buffer, read data from the
console into it, pass the contents of the buffer to the nodes, read a message for each node
containing the results of that node’s calculation, format those messages and print the
results. Programming this exercise requires two programs, one for the host and one for the
nodes of the machine; often compiled with different compilers and different compiler
options. One must also worry about the sizes of the various data types on the host and in
the nodes and, in extreme cases, the byte ordering within the types.

133

Which processor is
in charge?

110 modes, disk
farms

The “hello world”
problem

Important issues -
debugging and
maintenance

Keeping a
sequential version

The Cubix
programming
model

This example is obviously frivolous, but it illustrates an important shortcoming in parallel
programming environments. Maintaining and debugging *“real” programs is unnecessarily
difficult for exactly the same reason as in the exercise: it is too hard to use the host’s
operating system. Debugging is extremely difficult because programs cannot be easily
modified to produce output tracing the flow of control. Additionally, when a program is
modified, it often requires separate but coordinated changes to both the node program and
the host program. The necessary coordination is a rich source of minor bugs.

A further deficiency in parallel computing environments is the duplication of effort
involved in this programming style. Each programmer is forced to re-invent a host-node
protocol which resembles, functionally at least, the protocols that have been written
hundreds, if not thousands, of times already. After writing a few protocols, each
programmer tends to develop a characteristic signature. Programmers quickly learn to
reuse their ‘main’ routines, but by then, their time has already been wasted.

Finally, after expending the effort to develop a parallel application, the programmer finds
that the program will not run on a sequential machine. The I/O protocol designed for the
host-node link is completely foreign to the sequential machine. Even though the bulk of the
application would operate correctly by linking with a very simple library of dummy
communication routines, the host program and node program must be “glued” back
together. Maintaining an evolving code intended to run on both sequential and parallel
machines is quite difficult for this reason. (Note that the program, once glued, no longer
runs in parallel!).

All these deficiencies can be traced to a single source. Parallel computers are often viewed
as high-speed peripherals attached to a host computer which controls their operation. As
peripherals go, they are extremely flexible and programmable, but control, nevertheless,
resides in the host. The host loads programs and data into the nodes which then compute
and eventually return results which are expected, in number and length, by the host. In more
sophisticated applications, the nodes analyze various tokens passed by the host and may
perform different computations based on their values.

[2 A Different Perspective
" The basic idea behind Cubix is that the program running in parallel should control the

operation of the associated program running on the host. This is exactly opposite to the
common style of programming discussed above. In Cubix, tokens are passed from the
nodes to the host requesting activities like opening and closing files, reading the time-of-
day clock, reading and writing the file system, etc. The host program does nothing more
than read requests, act on them and return appropriate responses. All such requests are
generated by subroutine calls in the parallel processor. The host program which serves the
requests is universal; it is unchanged from one application to the next, and the programmer
need not be concerned with its internal operation.

Itis convenient to give the node subroutines the same names and calling conventions as the
system calls they generate on the host. This relieves the programmer of the task of learning
a new lexicon of system calls. Any operation he would have performed in a host program
can be encoded in a syntactically identical way in the cube. It is of no consequence that the
subroutine called in the cube might actually translate the request into Swahili before

134

sending it to the host. All the programmer sees isa call to, e.g. write (fd, ptr, cnt).

High level utilities are often written in terms of a set of standard system calls. Since the
Cubix system calls have the usual names and calling sequences, system utilities designed
for the sequential host computer can be readily ported to the parallel machine. For example,
the C Standard I/O Library can be compiled and linked with Cubix allowing various forms
of formatted and unformatted buffered I/O. (See the introductory section which describes
the Express subroutine library, to be found in the accompanying reference manual) Under
Cubix, the exercise of Section 1 would be programmed as:

#include <stdio.h>
#include <express.h>
/* Defines nodenv structure */

main ()
{
int entry, pnum;
struct nodenv nodedata;

exparam(&nodedata) ;

pnum = nodedata.procnum;

scanf ("%d", &entry):

fmulti (stdout); /* See section 3. */

printf ("I am proc %d, and %d times %d is %d\n",
pnum, entry, pnum, pnum*entry):;

exit (0);

3 The Catch - /O modes

" It is highly optimistic to think that a set of system calls designed for a sequential computer
can be sufficient for use in a parallel environment without modifications or additions. In
fact, the requirements of the parallel environment do force one to restrict the use of some
routines and also to add a few additional ones. The issue to be addressed is:

How does one resolve the problem that different processors
may need to do different things - maybe at different times?

To address this question we will classify applications into two types.

Synchronous programs are characterized by uniformity from processor to processor and
structured communication and calculation stages. In particular each node computes for a
while and then all processors communicate data among themselves before engaging in
another round of computation. The significant point in this model is that the interprocessor
communication channels are essentially free while computation is being done.

The second category might be termed asynchronous. They are characterized by having
completely individual behavior in each processor and no regular communication-

135

Two types of
program:
synchronous and
asynchronous

single and multi
modes

calculation cycles. In these applications there is no way of knowing when all
communication channels will be idle other than by explicitly synchronizing the processors.

These two styles are supported in different ways by both the Express communication
facilities and the Cubix 1/O model. The differences are explained in the next sections. Note
that the distinction may not be as clear cut as stated above. In particular asynchronous
programs often have internal points of synchronization and may well proceed in this
manner for lengthy periods of their operation. Similarly, synchronous programs may
occasionally benefit from the ability to use asynchronous function calls - a good example
is the processing of a run time error. Often these appear in data-dependent ways that mean
that an error condition in one processor might not be duplicated in all the others. Then it is
of benefit to the ailing processor to be able to take its own corrective or diagnostic action
independent of the other processors.

3.1 Synchronous I/O Modes

Since a large majority of applications in science and engineering fall into this category we
will discuss the synchronous I/O mode first. The sample code of the previous section is a
good example of this style. If we had run it on four processors the output would look like

I am processor 0, and 3 times 0 is 0
I am processor 1, and 3 times 1 is 3
I am processor 2, and 3 times 2 is 6
I am processor 3, and 3 times 3 is 9

in response to the number “3” being input. There are several points to notice in regard to
this example, simple as it is. Only a single value was entered at the console yet all
processors received the value 3 as input. On the other hand only a single print £ call was
made but four lines of output resulted. This is an example of the difference between the
“single” and “multi” modes of Cubix.

In single mode a single function call has the same effect in every processor whereas in multi
mode a single function call has a unique effect in every processor. The call that makes all
the difference in the example is fmulti (stdout) ; which switches the standard output
stream over from single to multi mode. Thereafter the call to print £ produces a unique
output string from each processor. To make this even more obvious consider the following
simple example

#include <stdio.h>
#include <express.h>/* Defines nodenv structure */

main ()

{
struct nodenv nodedata;

exparam(&nodedata) ;
printf ("Hello world\n");
fmulti (stdout);

136

printf ("I am processor %d\n",
nodedata.procnum) ;

fsingl (stdout) ;
printf("™ and that’s that !!\n");

exit (0);
}

If this were run on four nodes then the output would be

Hello world

I am processor
I am processor
I am processor
I am processor
.... and that’s that !!

wNEFOo

In this example we start off in single mode (The default for all I/O streams) and utter the
immortal phrase “Hello world” which appears once. We then switch over to multi mode
and print out a unique string from each processor. Finally we switch back to single mode

and print out another string that only appears once.

The singular and multiple modes are not restricted to output operations. Consider, for
example, the next code fragment, where we assume that a variable nproc has been set to the

number of processors we have allocated.

printf ("Please enter a number: ");
fflush (stdout);
scanf ("%d", &n);

printf ("Please enter %d numbers: ", nproc);

fflush(stdout);
fmulti(stdin);
scanf ("%d", &i):;

fmulti (stdout) ;
printf ("You gave %d and %d to proc %d\n",
n, i, procnum);

When run on eight processors with input

123
8 7654321

this will produce the output

You gave 123 and 8 to proc 0
You gave 123 and 7 to proc 1

137

singl and mulii
mode input

Changing the order
of multi mode 1/0

The interaction
with exgrid

You gave 123 and 6 to proc 2
You gave 123 and 5 to proc 3
You gave 123 and 4 to proc 4
You gave 123 and 3 to proc 5
You gave 123 and 2 to proc 6
You gave 123 and 1 to proc 7

Again the important point to notice is that while the stream stdin was in single mode a
single value typed at the console is sufficient to satisfy the call to scanf in all eight
processors while eight values must be input to satisfy a similar request when stdin has been
switched to multi-mode.

Also note that we can freely mix single and multi modes whenever convenient. The former
is obviously useful whenever entering values for global variables that are constant in each
processor while the latter allows for independent data in each node. Additionally we can
alter the order of the output from, or input to, a multi mode file through the forder system
call. By default all I/O is ordered by increasing processor number (as should be readily
apparent). The following code segment reverses this order for output;

#include “express.h"/* Defines nodenv structure */

{
struct nodenv nodedata;

exparam (&nodedata) ; /* Get runtime parameters */
forder (stdout, nodedata.nproc-nodedata.procnum-1) ;

fmulti (stdout) ;

printf ("Hello, this is processor %d\n",
nodedata.procnum) ;

fflush (stdout) ;

exit (0);

Run on four processors this produces the output

Hello, this is processor
Hello, this is processor
Hello, this is processor
Hello, this is processor

QO N W

This option is particularly useful in conjunction with the exgrid utilities. It is a simple
matter to reorder I/O so that processors read data blocks in an order determined by the
decomposition of the physical data rather than some arbitrary ordering according to the
underlying topology of the machine. As an example consider the following code fragment;

138

#include <stdio.h>
#include “express.h"

{
struct nodenv nodedata;

int my val, nprocs[l], recpnum(1];
exparam (&nodedata) ; /* Get runtime parameters */
/* Assign processors to a ring topology */

nprocs[0] = nodedata.nproc;
exgridinit (1, nprocs);

/* Now reorder the input stream to correspond to
* the processor location around the ring
*x/
exgridcoord (nodedata.procnum, recpnum);
forder (stdin, recpnum([0]):;

/* Now read in input parameters */

fmulti (stdin);
scanf ("%d", &my value);

The processors are assigned to a ring topology by the exgridinit call - i.e., they are
logically assigned to a one dimensional chain. Then the exgridcoord routine is used to
discover which slot in this decomposition is occupied by a processor and this value is used
to re-order the input stream st din. This has the end result that run on four processors and
presented with the input

100 101 102 103

the first value, 100, would be read by the processor first in the logical chain, 101 by the
second processor, 102 by the third and 103 by the fourth completely independent of the
underlying topology of the parallel computer. Such independence of the hardware
configuration is the key element in making programs portable between parallel computers.

Another example of the use of this technology is image processing - using exgrid
routines and the forder function it is possible to arrange to read the image data according
to rows and columns of the image. In more complex cases the mread2d and mwrite2d
functions are available to read an arbitrary portion of a two-dimensional data set into
individual nodes.

Finally note that the mode and ordering of files are totally independent - it is quite possible
to have stdin configured to read data in multi mode ordered according to a three
dimensional model of some structure while stdout remains in single mode to issue

139

Image processing -
two dimensional
problems

Applying common
sense principles to
parallel 110

Buffering modes
and flushing files

prompts to the user.

At this point the power and simplicity of the Cubix I/O picture should be apparent. In the
single and multi modes we have a system that actually makes sense - when the same value
is required in each node you only have to enter it once while different output can easily be
obtained from individual nodes. With the exception of the fmulti and £singl function
calls everything looks just as it would in a sequential program. Cubix is more than just a
file serving protocol, however. As well as allowing file I/O functions such as print £ and
scanf all other facilities usually available on the host are available to the programmer.
Files may be opened and closed (fopen, fclose, open, close), processes may be
executed on the host (system, popen), times may be accessed (ct ime, ft ime) and so
on. The node program can, to all intents and purposes, behave as though it were running on
the host computer.

Having extolled the virtues and simplicity of the Cubix model one should understand some
of the detailed ways that fmult i extends the sequential computer I/O model. Consider the
following code fragment.

fmulti (stdout);
printf("hello\n");
fflush(stdout);

printf ("good-bye\n") ;
fflush(stdout) ;
printf("CUBIX ");
printf("is flexible \n");
fflush(stdout);

If executed on a parallel machine this would produce the following output

hello

hello

hello

good-bye

good-bye
good-bye

CUBIX is flexible
CUBIX is flexible

CUBIX is flexible

The important point to notice is contained in the last block of output. Notice that the line
CUBIX is flexible appeared intact from each processor despite having been written
in two print f statements. This is, in fact, an often overlooked feature of any sequential
I/O library - output is “buffered”. Instead of each character appearing on your terminal
individually the system saves up some number and then spits them out at once - this
improves efficiency. The actual flushing of the data to the terminal can also be controlled

140

by the user via the £f1ush system call.

In the light of this discussion we can examine the previous example more carefully. Note
that the calls to ££1ush are each responsible for certain lines in the output. Furthermore
there is no such call between the two printf calls that make up the last line. What
happened in this last case is that the two calls merely stored up characters in an internal
buffer. After two calls had been made the buffer on each node contained the string CUBIX
is flexible which then appeared all at once when the £ £1ush call was made.

At this point the user may well be somewhat confused by the buffering that seems to be
going on all over the place and what they can and cannot expect to happen. Fortunately this
is rarely a problem given the fundamental rule:

Multi mode files never flush automatically. The only way to
get at the data in such a file is to call £f1ush explicitly.

If this rule is followed then everything will be as expected. In single mode output appears
on the terminal under well-defined conditions; whenever a carriage return in seen,
whenever the internal system buffer gets full, the user calls ££1ush or when input is
requested on any stream. In multi mode nothing ever appears until £f1lush is called.

One of the more common errors using Cubix is the failure to flush buffers when files are
inmultiple-mode. We list, in Section 7, some of the other common errors.

The previous discussion is actually a piece of a rather larger picture. The concept of
buffering is actually rather sophisticated and has many options and variants. Those that are
relevant to Cubix users are discussed in section 3.3. For regular use, however, the previous
simplified discussion is more than adequate.

At this point one has to address the “synchronous” nature of these calls. So far the examples
have been characterized by one thing - whenever one node made a system call the others
did so too. Admittedly, given the simple nature of our examples, it is actually quite tricky
to do otherwise. However, this is a fundamental requirement of the single and muld I/O
modes.

The central concept in this discussion is that of “loosely synchronous™ behavior. The
adjective “loosely” is applied here because no real program is ever completely synchronous
since this would have to imply that EVERY processor was executing the same instruction
as all the others ALL the time. This situation arises rarely - even in SIMD machines!

“Loose synchronization” is the concept behind the alternation of compute and
communicate cycles discussed earlier in this section. Essentially an action is loosely
synchronous if it occurs when all communication channels are known to be free. This need
not actually be restricted to the so-called compute phases - in between two communication
calls will also satisfy the constraint as long as all processors make the call together. To
(hopefully) clarify this picture a little consider the following example for two processors

Processor 0.
Send message to processor 1.
Call printf /* NOT loosely synchronous */

141

Line-buffering, the
default for terminal
devices

“Loose
synchronization”

Unbuffered 110

Receive message from processor 1.
Processor 1.
Call printf. /* NOT loosely synchronous */

Receive message from processor 0.
Send message to processor 0.

In this example the call to print £ is not loosely synchronous because the communication
channel between processors 0 and 1 is blocked by the message that node O has sent but node
1 has not read. If we modify the actions to the following

Processor 0.

Send message to processor 1.
Call printf. /* Loosely synchronous */
Receive message from processor 1.

Processor 1.
Receive message from processor 0.

Call printf. /* Loosely synchronous */
Send message to processor 0.

then the call to print £ is loosely synchronous. Note that we have assumed that the system
only contains these two processors. If there are actually eight in the system then the
behavior of the others is also important - the concept here is a global one in that all
processors must satisfy the conditions before an action can be said to be loosely
synchronous.

Having defined and (hopefully) explained what the term means we now make the statement
that “synchronous mode” Cubix requires that all system calls be made loosely
synchronously. This requirement is, in fact, an overstatement of the true facts which is what
makes the multi mode so useful. The requirement of “loose synchronicity” is actually only
required for system calls that interact with the host computer. Obviously commands that
merely buffer up data on a node do not interact with the host and so do not have the
requirement. A good example is printf in multi-mode. Since no flushing is ever done
until explicitly requested by the user, calls to printf may be made completely
asynchronously to multi-mode files. Only the eventual call to ££f1ush must be loosely
synchronous.

The details and restrictions on the various system calls interact in a fairly complex manner
with the “mode” of the associated stream. A list of which functions may be in what modes
may be found in the introduction to the Express subroutine library to be found in the
accompanying reference manual.

All the discussion so far has revolved around the buffered I/O functions; print £, scanf,

142

fopen, £f1lush, etc. An interface also exists to the low level read, write, open,
1seek style of system call. In these cases, however, the structure is slightly different.
Instead of having different modes settable with a call similar to fmulti and fsingl
there are distinct functions for implementing the two I/O types. Whereas read and write
deal with single mode files mread and mwrite deal with multi- mode files. Also of
interest are the mread2d and mwrite2d functions which deal with multi-mode files in a
manner especially tailored to those users with problems in two-dimensions such as image
analysis, partial differential equations, navigation, etc. A detailed discussion of these
functions, with examples, can be found in the accompanying reference manual.

3.2 Asynchronous Mode

Occasionally circumstances arise in otherwise synchronous programs that require
asynchronous behavior. A particularly good example which was mentioned earlier is error
detection and recovery. How many C programmers, for example, have had malloc failon
them and wished that at the very least some diagnostic message had been available.
Unfortunately the regular Cubix code segment that one might naively use is wrong

/* Asynchronous problem - incorrect version */

if ((ptr=malloc(big buffer size)) == (char *)0) {
fprintf (stderr,
"We have big problems ... no more memory!!\n");
exit (666) ;
}

because there is no guarantee that the error will occur in all nodes at the same time. A fix
along the lines of

/* Asynchronous problem - partial fix */

fmulti (stderr);

if ((ptr=malloc(big buffer size)) == (char *)0) {
fprintf (stderr,

"We have big problems ... no more memory!!\n");

fflush(stderr);
exit (666);

}

fflush (stderr);

is partially correct. Now you see an error message from any node that got the error.
However multi mode still has the loose synchronicity requirement for the £f1lush
operation so that the above piece of code won’t work unless all processors are actually
going to be doing this together. While this may often be the case one can easily foresee

cases where only some of the nodes are even in this piece of code. Then there is no chance
of the £f1ush being successful and even worse the machine will hang. An error that was

143

Catching run-time
errors - an easy
error to make

Asynchronous 110

Why not always use
async mode?

singl, multi and
async modes
operate
independently

caused by insufficient memory has now caused the program to “hang” and may be
misdiagnosed as a communication problem.

The solution to this problem is an asynchronous I/O mode. Code that can be guaranteed to
work is as follows

/* Asynchronous problem - working code */

fasync (stderr);
if ((ptr=malloc(big buffer size)) == (char *)0) {
fprintf (stderr,
"We have big problems ... no more memory!!\n");
fflush(stderr);
abort (666) ;
}

The call to fasync is the key. This switches on the asynchronous mode for the stream
stderr and allows any processor to individually make system calls and requests.

Having introduced this concept one might wonder why not make it the default in all cases
- indeed why bother having the synchronous modes at all? Several important reasons can
be distinguished
» Asynchronous output introduces a randomness to the behavior of a program.
Different runs will produce different output making it hard to reproduce bugs.

* Asynchronous input is very hard to maintain. Which data goes to which
processor is very hard to control since the requests to “read” data arrive in some
random order.

One approach commonly taken for the second point is to introduce a windowing
environment and allocate one window for each processor. You can now do more sensible
input by typing in each window. At least this ensures that you really can direct data to the
processor you wanted to get it. The downside of this scenario is that you have to continually
move from one window to the next - this is particularly bad if you really wanted to give the
same value to all the processors, or if there are 512 processors - the windows will be awfully
small. A scheme like this also has problems with concepts like redirecting standard I/O and
pipes.

In the light of these problems it makes sense to use the synchronous I/O modes described
in the previous section to perform most I/O functions. Some applications, however, are just
asynchronous by nature and for these Cubix does provide an asynchronous mode.

Note that this mode is orthogonal to the single and multi modes described in the
previous section - you can’t have asynchronous multi mode, for example.

It is important to note that the “async” mode is useful for actually doing ascynchronous
I/O but we still have the restriction that the call to fopen that opened the file must be made
synchronously - i.e., all nodes must open the same file with the same access mode at the
same time. In really asynchronous situations this can be a problem. Consider the following

144

code, for example,

Opening different
files in different
/* nodes
* Attempt to open files, asynchronously
* WRONG!
*/

#include <stdio.h>

open_wild (procnum)
int procnum;
{
char name{32};
sprintf (name, "/tmp/junk%d", procnum);
fp = fopen(name, "w"); /* ABORTS HERE!! */
fasync (fp);

This code aborts at the call to fopen because the “loosely synchronous” constraint has
been violated unless all values of “procnum” are the same. To get around this restriction
merely add the letter “A” to the access mode string passed to “fopen” - in this case the
code can be made to function by using the call '

fp = fopen(name, "wA");

Note that this call opens the file but does not automatically enable “async” mode. A
subsequent call to fasync must still be made as shown in the previous example.

In addition to the “standard I/O” interface, Cubix also provides an asynchronous version of
open which allows a node to open a file independent of all other nodes. Files opened in
asynchronous mode can be addressed at will with no synchronization constraints. All
operations such as 1seek, read, write and close will be applied asynchronously.
Further it is possible to switch a file that was opened in synchronous mode over to
asynchronous mode.

Opening a new file in this mode is achieved by adding the O_CBXASYNC flag to those Low-level
usually supplied. For example asynchronous 110

/*
* Open in asynchronous mode
*/

#include <fcntl.h>/* Defines O_ flags */

foo ()
{

int mode;

mode = O WRONLY | O CREAT | O _CBXASYNC;
if((fd = open("freddy.dat", mode, 0666)) < 0) {

145

Beware the
limitation on the
number of open
files

abort (12);

}

opens (and optionally creates) a file in asynchronous mode. Further references to the file
descriptor £d will occur totally asynchronously on a first-come first-served basis.
Nevertheless, the open call must be made synchronously in all nodes. If you intend to use
the file in only one processor, then the aopen system call may be used instead of open.
Unlike open, aopen may itself be called asynchronously, and returns a file descriptor that
is ready for asynchronous I/O. Beware of calling aopen from more than a handful of
nodes. Each processor obtains a completely distinct file descriptor and it is very easy to
reach the host operating system’s limitations on the maximum number of open files.

Often it is useful to switch a file from synchronous to asynchronous mode, and vice versa.
The function fcntl, may be used for this purpose. In general, fcnt 1 serves to modify
the status of a file descriptor which is just what we want to do. It’s use is typically a two
stage process - we first get the flags currently in use for that file and then add the flag for
asynchronous mode. Similarly we can restore a file to its normal behavior by taking away
the asynchronous flag. A schematic of how this is done is given in the following code
fragment

/*

* Switch stdout to asynchronous mode: fcntl

*/

#include <fcntl.h> /* Needed to define O_ flags */
foo ()

{ int fd = 1; /* refers to stdout */

flags = fentl(fd, F_GETFL);
/* Read current file settings */
flags |= O_CBXASYNC;
/* Add in the asynchronous "bit" */
fentl (fd, F_SETFL, flags);/* Set new flags */
}

To disable the asynchronous feature one would change the middle line of the above code to
flags &= ~O_CBXASYNC;
which merely zeros the “bit” corresponding to asynchronous behavior.

Having acquired asynchronous access to files in this way the user is pretty much free. The
functions read, write and lseek work together to maintain, on each processor, a
record of that processor’s location in the file. Each request that is sent to the host contains
with it information that repositions the file correctly before the appropriate operation, i.e.,
reading or writing.

Beware that each processor begins pointing at the beginning of the file. If different

146

processors simply begin writing into the file, they will write over one another’s data. Use
the system call 1seek to avoid this situation.

The other system calls (dup, £stat, ioctl, etc.) are also performed asynchronously. A
file must be closed the same way it was opened. Thus, if aopen was used to open the file,
then close should be called asynchronously, and if open was used, then close should
be called synchronously.

Asynchronous mode I/O is at best a rather hazardous exercise. Apart from any other
considerations it may introduce non-repeatability into your code. A program may be
running “correctly” in asynchronous mode and produce different looking output given
identical input. Despite these difficulties the asynchronous mode does provide useful
functionality to parallel programmers if used carefully.

This section has dealt exclusively with asynchronous I/O. Cubix, however is more than just
a file server - it is a complete interface to the operating system of the host computer. In order
to complete the set of synchronous/asynchronous modes a further function syncmode is
provided. Be default all system calls to the host are made loosely synchronously: if you
execute the sy st em command then all nodes must do so together and the command is only
executed once. Giving a zero-argument to the syncmode command, however, enables
system calls to be made totally asynchronously. The following code, for example, would
print out the date five times if executed on four processors.

syncmode (1) ; /* Ensure we start synchronously */
system("date"); /* Single date command on host */

syncmode (0) ; /* Enter asynchronous mode */
system("date"); /* One date command for each node */

Note that ordinary I/O operations are also affected by this switch so that files which were
originally opened in synchronous mode can be addressed asynchronously after this call.
There is, however, a significant difference between the two modes.

A file opened for asynchronous operation is read repeatedly on each node - i.e., each node’s
first read or £scanf from the file results in reading the first data.

A file opened for synchronous operations, but read with syncmode set to zero allows
“first come, first served” access - the first node to make its request will get the first data
from the file, the second will get the second etc.

While this may occasionally be just what you want it tends to introduce a time dependency
into your code which makes it hard to reproduce behavior and hence find bugs. In most
cases we have observed it to be better to use the “real” asynchronous mode and judicious
calls to f seek which introduce no timing dependencies.

3.3 Buffering Modes

When dealing with functions such as print f and fopen in sequential environments the
user is being carefully shielded from the internal workings of the operating system. Most
of the time this will not matter but occasionally most programmers find obscure cases

147

*Asynchronous
system calls

Malking everything
asynchronous with
syncmode

The difference
between
asynchronous
mode for a file and
asynchronous
mode for Gubix

ANSI standard file
buffering modes

where output doesn’t quite look right and which they eventually cure with a well placed call
to ££1ush. The Cubix implementation of the standard I/O library has similar features.

Typically users will not be aware of the problems and all should work as normal. In cases
where this is not the case, however, the following discussion should act as a guide for when
and where to putthe £flush calls and even when to use the mysterious set vbuf system
call.

In standard I/O implementations such as the proposed ANSI standard there are three basic
buffering modes for FILE * objects such as stdout and stdin. These are briefly
summarized as follows (where the strange looking object is the macro from stdio.h that
defines that particular mode)

_IOFBF Fully buffered I/O. Characters are stored up in the system buffers
until full when an automatic call to £ £1ush is generated to send the
characters to the output device.

_IOLBF Line buffered I/O. Characters are again stored in the system buffers,
but the buffers are now flushed automatically when a newline
character is written and when input is requested from any other
stream. This is the default for streams such as stdout which are
connected to an interactive device, and is the reason that prompts
which are immediately followed by an input request do not have to
be flushed explicitly.

_IONBF No buffering. Each character is sent to the output device as it is

generated.

Cubix additions to To these three modes Cubix adds two others:

the proposed
standard

Default buffering
attributes

Buffering modes
“stick” to the IlO
mode of a file

_I0CBF Circular buffering. When the buffer becomes full no data are written

to the output device but extra data overwrites that at the front of the buffer. f£1ush
calls are completely ignored. To flush data from a circular buffer
you must switch its mode to, for example, IOFBF and then call
ffiush.

_IOEBF Extensible buffering. When the buffer becomes full a new, larger,
one is obtained by the system and the current data placed in it
together with any additional bytes. This process can, in principle,
continue until the entire memory is full. £f1ush must be called
explicitly by the user.

By default singular mode streams are either line buffered or fully buffered, according to
whether they are connected to an interactive device, as in the ANSI standard, with the
exception that stderr is always line buffered. When switched over to multi mode,
streams default to the extensible mode and the user MUST call ££1ush in order to obtain
data. This is a common source of error in Cubix programs. Asynchronous streams are
buffered the same way as singular streams.

Note that the buffering mode is a property associated with the “multiplicity” of a file and
which therefore changes whenever that file’s mode changes. If you want to reset the

148

characteristics of stderr for use in multi mode then you have to call the setvbuf
function WHILE the stream is in multi mode. The detailed use of the setvbuf
command is documented in the reference manual.

Having described the way the system deals with the internal buffering mechanism explains
certain features of the Cubix modes. In particular mult i mode files have, as default, the
_IOEBF mode which has “infinite” buffers and never generates automatic calls to
fflush. This is the reason that fprint £ is allowed asynchronously for a file inmulti
mode - the data just keeps accumulating in the buffer on the node making the call. Only the
eventual call to ££1ush has to be synchronous.

3.4 Multiple hosts, Distributed filesystems, etc.

A particularly common feature of advanced workstations is the support for distributed
filesystems. In order to take advantage of such a system Cubix may be configured for
multiple hosts with their own attached file systems. By default all system calls, including
requests to open files are sent to the Cubix console - normally the terminal from which you
submitted the cubix job. You can, however, specify alternate destinations in two ways.

The system call console_node is provided to override the default choice for system
calls. This call may be made at any time and does not have to be the same in all nodes. In
particular, one might use the syncmode function described earlier in conjunction with
console_node to partition a system into sets of nodes which each, independently,
interacts with its own “host” finding files and making system requests to that particular
target. For more details consult the manuals “Using Express on systems with multiple
hosts”.

An alternate, and somewhat simpler, system is implemented just using the naming
convention for files. A request for the file 8001 : fred.dat will be sent to the host node
with the name “H1” in cnftool’s naming convention. All further references to this file
will also be sent to this node. Note that the exact mechanism required to indicate a special
“host” when looking for files is operating system dependent.

| 4 Debugging: A Last Resort

" Debugging is a problem dear to every programmer’s heart. One of the major successes of
Cubix is that it makes debugging on a parallel processor almost as straightforward as on a
conventional machine which lacks a source level debugger. The standard method of “print
it and see” is quite applicable now that we have made the I/O system transparent. Of course
you could also use the debugger ndb designed explicitly for debugging parallel
applications and described elsewhere for this sort of job. An advantage of the debugger is
that it still works in some cases where the “print” method fails - namely when there is a
communication problem that blocks some channel and hence the intended output. Of
course some people just like to use debuggers just as some people hate them. The choice is
yours.

There is one category of bug, however, that neither of the above methods can catch and that
is what would normally be classified as a “memory fault” on a conventional machine - the
code attempts to scribble on some piece of memory that doesn’t really belong to it. This is
especially easy to do in languages like C where pointers are everywhere - especially the

149

Distributed
filesystems

Redirecting Cubix
system calls

Debugging Cubix
programs

Overwriting
critical memory
regions

RAM files

RAM files require
no communication

Debugging
asynchronous
programs

NULL pointer! Unfortunately the consequence of doing this sort of thing on current parallel
computers is that you wipe out crucial kernel data leaving the machine completely dead in
the water. At this point no I/O is going to occur at all so one is wasting one’s time with
printf or its companions.

For this reason Cubix has an extra file type: RAM files. These are accessed in the same way
as all other standard streams (stdin, stdout and stderr) and files but nothing is ever
flushed when you fprintf. In fact, RAM files are, by default, in circular mode, so that
data is being accumulated in an internal buffer at a specific memory location. Since buffer
is circular, in the sense of section 3.3, it has a finite length and just keeps wrapping round
- if you write more data to it than its length then new data just starts overwriting old. In this
way the actual amount of memory dedicated to this stream is constant. This type of
construct is often called a RAM file -essentially it has the same characteristics as a file -
you can read it, write it, seek on it, even close it if you wish, but the data, rather than living
on a disk just sits in memory somewhere.

To open a RAM file one uses the ramfopen system call

FILE *ramfp;

ramfp = ramfopen (address, length);

where the address argument is the memory location at which the file should start and
length is the number of bytes to use. In normal circumstances one places the RAM files
in absolute memory locations by using some knowledge of the particular hardware on
which Express is running although an array would do just as well.

To use the new file one just makes calls like

fprintf (ramfp, "Oh boy, we blew it!, crucial=%d\n",
crucial);

which will deposit the value of the variable crucial in the RAM file, along with a helpful
message. This file is recognized by the various standard I/O routines and never requires
flushing. The data just stream in.

The trick to the RAM file, and the reason that it’s major use is in debugging when the kernel
crashes is that the data in the file can be retrieved, even after the machine has been reset by
acall to exinit, with the exdump utility. Also, since no communication is involved in
writing data to this stream it can be used totally asynchronously and will continue to
function even after all communication channels have ceased to function.

This system also has a significant advantage when debugging totally asynchronous codes.
These latter are characterized by an annoying habit of showing unrepeatable behavior -
what shows up as a bug in one place might appear somewhere else entirely on the next run.
In particular one is often unable to use conventional debuggers since they impose
synchronicity on the program by their very nature - even a good typist can’t type in
debugger commands at the speed of the underlying program. Often one can’t use the usual

150

“print” style of debugging alluded to earlier because the usual printing style on parallel
machines involves communication which, in turn, involves other processors due to
message routing. It is often the case that the insertion of a single printf call can
drastically change the appearance of a bug by interfering with the timing relationship
between two processors. The RAM file alleviates this problem somewhat - writing to it
involves no communication so no other processors are affected. The only effect is to slow
down somewhat the processor doing the writing. Even this effect is under the control of the
programmer - for instance putc runs a whole lot faster than fprint £ and thus might be
a better bet.

The use of the exdump utility is straightforward. If the program you want to dump data
from is still running then you can say

exdump -b 0x80069000 -p pid

where the process ID of the process has been specified in the ‘~p’ switch and the starting
address used in the ramfopen call has been given in the ‘b’ switch. (The number shown
here is NOT necessarily the one you should use on your machine - consult machine specific
manuals for information about the memory layout of executing programs.) The second case
is where the machine is completely hung and nothing seems to work anymore. In this case
one must use the sequence

exinit -m XXXXXX
exdump -n nodes -b 0x80069000

where we have specified the number of nodes from which we wish to display the RAM data
and the string “XXXXXX” should be replaced by a physical address in node memory which
will not clash with the data in the RAM file being retrieved. (See the Reference manual
page describing exinit for details.) Note that the data in the RAM file can be preserved
even across invocations of the reboot procedure, exinit, if we use the -m’ switch. This

can be invaluable. In passing one might note that many other options are available for use
with the exdump command to specify which nodes to read data from, whether to read
ASCII or binary data, where in memory to look etc. These are discussed in the attached
reference manual.

Having given out the good news, however, there are some idiosyncrasies to be aware of
when using RAM files. Basically, the file consumes memory and hence can engender new
bugs of its own. A common situation is to position the RAM file in high memory leaving a
predetermined space above for the program stack. However, since the program stack grows
downward, and the RAM file grows upward, this is not completely robust and it is possible
for the two to collide with dire and unpredictable results. This problem can be avoided with
some care. It is possible to arrange for the RAM file to live in low memory. This has the
attractive feature that if the stack grows down too far it will now be detected by the
hardware and you’ll get a more sensible diagnostic. On the other hand you have to tell the
linker, dumper and run-time environment exactly where the RAM file should be located.
Telling the compiler where to go is often as simple as creating an array for the RAM file to
work into and using its name and size in the call to ramfopen. Unfortunately we now have
to find the address of this object so that we can pass it to exdump when we wish to recover
the data. This can usually be achieved either from “map” files produced by the various

151

exdump

Preserving RAM
files even after
calling exinit

The problems with
RAM files

compiler/linker combinations or through the judicious use of the debugger, ndb.

5 Executing Cubix

" Having expounded at some length about the plentiful virtues of Cubix it remains only to
explain how one goes about using it. This section contains only the most elementary usage
of the system and more details are given in the accompanying reference manual.

The first task is to compile the parallel program that will be executed. The procedure for
doing this is shown in the introductory guide to using Express on your system. For the
present we will assume that a program called noddy has been successfully compiled and
linked and is ready to be run.

Executing the cubix ‘The next step is to execute the program. This is done by running the cubix utility, which

command-passing typically has a form like
arguments to the

nodes cubix -n 4 noddy test.dat 12 3.45

This executes the previously compiled program (noddy) on four processors and passes it
the arguments test.dat, 12 and 3.45 as character strings in the usual argc, argv format. That
is, argv [0] is the program name, “noddy”, argv [1] is “test.dat” and so on. In addition,
the shell environment is also passed on to the program so you can say
getenv ("TERM") ; to find out about your terminal.

The cubix utility has several other options to control its behavior including options to run
different programs in different processors, pass different arguments to different processors
and load programs in a stopped state suitable for use with the debugger. These options are
described more fully in the reference manuals.

6 Examples

" Cubixis supplied with four example programs in the examples/cubix subdirectory of
the main installation.

The first, hello, is the code discussed in Sections 2 and 3. It is a simple demonstration of
the primary I/O modes and is comparable in complexity to the conventional “hello world”
program.

The second, ring, is a Cubix version of the Express example program. If you aren’t

already convinced that Cubix is simpler than the conventional programming model
compare these examples for clarity, simplicity and ease of maintenance.

tstwild, is arather contrived program. It goes overboard in exercising the features of the
system but might prove instructive.

Finally, async introduces the asynchronous I/O mode and its interaction with the other
two I/O modes. A random number of random numbers is printed out in random order!

Included in this directory is a “README” file which contains instructions for executing
these programs and a makefile suitable for compiling and linking the programs.

Several less contrived examples can be found in the example directory for Plotix. As well
as showing off the graphical capabilities of Plotix, they also a demonstrate how simple

152

Cubix programs really are - after looking at the source code for these examples, the reader
might need reminding that they are really parallel programs - they look so much like
conventional C-code.

7 Common Errors

" In this short section we list a few of the more common errors encountered in using Cubix.
No doubt this list is not exhaustive and users are encouraged to complain about their
individual mishaps.

The most irritating occurrence when running Cubix programs is the “abort, status abort(-1)
~1” which occurs with annoying regularity. This basically means that you have either
placed a call to

abort (-1):;

in your program, or you have violated the “loosely synchronous” constraint. Since the latter
is by far the most common this section describes some of the most common problems.

Most simple errors are connected with the abuse of the concept of loose synchronicity. Abusing the
~ Probably the most common error is to attempt to print out different strings while in singular ~ “loosely

mode. For example synchronous
constraini

printf ("Hello there, this is processor %d\n",
procnum) ;

is an error in singular mode because the strings to be output are not identical.

A similar error is to try to detect catastrophes in programs with

if (error_condition) fprintf (stderr,"Death !!");

which fails unless it can be guaranteed that the error occurs in all nodes if it occurs in any.
A somewhat longer but better way to do the above example is

fmulti (stderr);
if (error_condition)

fprintf (stderr, "Death in node %d\n", procnum);
fflush (stderr);

which uses multiple mode. (Obviously asynchronous mode could also be used). Note the
explicit call to fflush which is necessary in multiple mode. This is actually another common
error - forgetting to flush multi- files. A somewhat obscure flavor of this is the failure to
call exit whenever the program is to stop. Without this files may not be closed properly or
flushed and data might appear to be getting lost.

Another pitfall associated with the code we’ve just seen is to try to write it as follows

fmulti (stderr);}
if (error_condition) {

153

Printing the
addresses of data
items in singl mode

Cubix is very
simple to use

The bad news
about Cubix
programs

fprintf (stderr, "Death in node %d\n", procnum);
fflush(stderr):
}

which may look more natural but has the above mentioned error: the call to ££1ush is not
made “loosely synchronously”.

A final very obscure flavor of this type of error occurs when printing the addresses of local
variables in a C program. (Not many people do this, but those that do may appreciate the
warning!). Code similar to the following can sometimes cause problems.

mysub (argl, arg2)
int argl, arg2;

{
printf ("argl is at 0x%081x\n", (long)&argl):
/*
* Normal processing
*/

The problem here is that this code will run on the vast majority of parallel computers whose
nodes are identical. On some machines, however, a few of the nodes may have special
properties such as more memory, for instance. In this case the addresses of local variables
may be different in different nodes because the user program has been loaded into a
different piece of memory and so the above code violates the “loosely synchronous” rule
to00.

8 Conclusions

" A version of Cubix has been running at Caltech since early 1986. Since its introduction,

Cubix has become quite popular, and the system has been implemented on a range of
parallel processors. The prevailing attitude among users is that use of Cubix is vastly

simpler than the old host-node protocols (even among persons not in the author’s
immediate family). Many programs have been written for which the same code can be
compiled and run on a sequential machine, as well as a parallel machine running Cubix/
Express.

Cubix’s most significant drawback seems to be the increased code size in node programs.
All computation that would have been done on the host is now done in the nodes. Although
it is not any slower to perform inherently sequential tasks simultaneously in many
processors, a copy of the code must reside in each processor. It is important to realize that
both Standard I/O routines like print £, which usually does not appear in non-Cubix
programs, and application dependent sequential code which would have appeared in the
host program must now be included in the code that runs in every node. The size of this
code can be significant, and reduces the amount of space available for data. The code and
data linked by a call to print £, for example, requires about 6 -10Kbytes on each node in
our implementation.

154

While Cubix offers the developer access to a wide variety of operating system functions it
cannot be all things to all men. In particular it has a fairly strong bent towards UNIX
supporting most of the elementary operating system calls. On the other hand as software
techniques evolve and diversify Cubix is unlikely to be able to support them all. A good
example is provided by the sophisticated windowing systems in use on modern systems.
Not only is each individual system huge, there are as many different “standards” as there
are implementations - far too many for Cubix to support. As a result we believe that there
comes a point in the development of a major software project when Cubix will be unable
to fulfill all of the software needs of the application.

One possibility is to use Cubix as an /O server and fire up alternate host processes with
calls such as popen. These host processes can then communicate with the node process
through a standard pipe mechanism. We have not found much need for this type of interface
although it is available. (This facility is only available on systems that support multiple host
processes. It is not supported under DOS, for example.)

An alternative strategy which uses the facilities of Express directly rather than UNIX
pipes is to have a second host process “share” access to the nodes allocated by the Cubix
program with the exshare system call. This method has the advantage that it imposes no
structure on the communication mechanism between the user interface in the second host
program and the nodes of the parallel computer - they are free to communicate at will
through the standard Express runtime library.

A third possibility is to “link” user functions directly into the Cubix server process. This
can be done with some care but represents a rather inflexible solution which has little room
for real growth. It can, however, serve the explicit demands of some custom applications.

Adopting the viewpoint that the program running in the nodes of the parallel machine
should control the behavior of the host has some extremely desirable consequences.

o It is possible to write a universal host program which accepts commands
generated by subroutine calls in the nodes.

+ Given a universal host program, programmers only write one program (the one
for the nodes) for any application, eliminating considerable labor and an
annoying source of bugs.

* All details of the host-node interface are hidden from the application
programmer. Operating system services are obtained by system calls identical
to those used on the host.

» Since applications require only one program to operate in parallel, it is usually
a simple matter to run them on a sequential machine as a special case or to port
them to new parallel machines which support the Cubix I/O model.

» Since operating system interaction is, for the most part, the same as in sequential
programs, there is considerably less to learn before one can begin writing
significant hypercube programs.

155

Deficiencies in the
Cubix model

Merging Cubix
programs with host
programs

Putting the nodes
in control of the
parallel computer

Multitasking

Executing multiple processes on individual
Processors

p 1 Introduction

L Conventional computer programs, like the conventional computers on which they execute,
are sequential. This means that they execute a single line of code at a time in a predefined
sequence. This programming style is very straightforward since everything is predictable
beforehand. Even the bugs are predictable since the same thing happens every time - with
sufficient willpower we could trace the execution of every line of code on a piece of paper
in order to find our problems. The successes of this programming method are quite obvious
- nearly all scientific calculations are done this way and most “canned” applications are like
this.

The most obvious example of a task which cannot be performed in this way is the operating
system of a large multi-user machine. The operating system has to be able to cope with
(more or less) random requests for services by its users and be able to satisfy one of these
while simultaneously processing many other programs. This is a classic example of a multi-
tasking environment. The users and the operating system together make up a “pool” of
tasks each of which makes as much progress as it can on its own and then requests and
optionally waits for services provided by other tasks. Systems like this are significantly
harder to debug since their behavior is extremely time-dependent. What may crash the
machine one time may be completely benign the next due to some user in a completely
disconnected part of the system doing something slightly different.

When we consider parallel processing similar distinctions can be drawn. Most scientific
and indeed many other algorithms have a regular structure based on the data being
manipulated. This often maps in a very straightforward manner to the nodes of the parallel
machine. Furthermore the structure of the algorithm is also regular with processors
regularly synchronizing by exchanging results necessary for further computation. This
programming model has been called “loosely synchronous” the processors proceed in an
ordered fashion. Each processor is free to execute its own code on its own data but the
overall picture is one of alternate periods of calculation and communication.

This style of programming is quite straightforward under Express. Tools are provided to
automatically compute the optimal distribution of data between nodes and also to facilitate
the communication necessary at each stage. Furthermore bugs are reasonably easy to find
since they occur repeatably - every time a program is run in this mode the same problem
should arise. Armed with a sophisticated debugger like ParaSoff's ndb programming in
this mode can be almost as simple as programming a sequential computer.

There exist, however, applications which do not fit into this “loosely synchronous” mode.
Several reasons may be advanced for this. Some have poor load balance when decomposed
in this way - it may be difficult to arrange for all the processors to work equally hard. If this
happens in the synchronous model the whole machine slows down to the speed of the
slowest node due to the synchronization points. A classic case of this is when the workload
cannot be evaluated ahead of time. One application we have seen in which this is true is
computer chess. The basic problem to arise in this application is tree-searching. Each move
must be evaluated and then the possible consequences of that move and then their
consequences and so on. Unfortunately, to evaluate all possible moves would be
prohibitive so clever methods are used to “prune” the search tree. As a result the load
resulting from the evaluation of a particular branch is difficult to predict leading to the load

157

The need for
multitasking
systems

The structure of
parallel programs

“Loosely
synchronous”
programs

Totally
asynchronous
programs

An example:
computer chess

“Master-Slave”
solutions

Data-base and
transaction
processing

Multitasking under
Express

Problems with
asynchronous
multitasking

imbalance problems described above.

A viable solution to this sort of problem is the “master-slave” approach. Various nodes in
the tree (and corresponding nodes in the parallel processor) are designated “masters” in that
they will be responsible for allocating work to the “slave” nodes. These slaves then process
whatever data they are supplied by their master until a given processing task is complete.
Typically the number of slaves is made smaller than the number of tasks to be performed
so that load-balance can be achieved in a statistical sense - if one node receives a large task
it will process it slowly but in the meantime the other slaves can be processing several
smaller tasks each. As a result the entire problem is sped up.

Note that we can implement this style of programming without multi-tasking on each node
of the parallel machine by allocating one piece of work to each slave node. On the other
hand it may be more natural to just distribute all the subtasks at once to the slave nodes
which in turn execute the various pieces in parallel on each node. This increases the amount
of parallelism at the expense of some complexity.

Other fields in which the “synchronous” style is not appropriate include data-base searches
and transaction processing. These cases are characterized by distributed data which needs
to be searched in an inhomogeneous manner. If we consider a large transaction processing
machine we can imagine many requests appearing at once. Each will be dispatched to the
part of the machine responsible for this sort of task which will, in turn, generate more
requests in other nodes. The particular pattern of requests to be made in each processor is
totally unpredictable in advance so a synchronous programming style is very poor - it
would be disastrous to have some key node waiting for a complex result to be calculated
holding up several other quite simple requests.

In these cases we wish to have some ability to asynchronously process events on a
particular node and create arbitrary tasks on different nodes. Express provides these
facilities.

The multitasking extensions of Express form a particularly elegant solution to the above
problems. In many other systems (The UNIX operating system is the classic example) the
multitasking and interprocess communication features seem to be part of disjoint systems
“tacked together” at the last minute to present a usable interface for programmers. Since
Express is basically a system designed around the inter-processor message passing system
we use these utilities in the implementation of the multitasking system. As a result the
overall picture for the application designer is extremely clean and simple.

The basic principle involved is that messages become tasks when they reach their
destination processor. As a result we can transparently create tasks locally, by sending
messages to our own node, or remotely by sending messages to other nodes. In either case
we can also send data to the created tasks in the message which created it.

Having said that the Express system provides an elegant solution to the multi-tasking
problem we must, however, make the caveat that this style of programming is significantly
more complex than the “loosely synchronous™ model described earlier. The behavior of the
system is extremely difficult to follow analytically if programmed in this way which makes
the detection of errors much more complex. In particular powerful source level debuggers
become a much reduced resource in many cases since they operate at interactive, human,

158

speeds rather than the computer clock rate. As a result, the time it takes to type in a
debugger command upsets the timing properties of the program being debugged so much
that often the bug does not appear. Real time debugging tools are a complex and little
developed issue. Express provides one utility which has proved useful but the problem
remains. (The RAM file, see the Cubix documentation for more details.)

We must also note that the availability of the Express multitasking features is extremely
hardware dependent. At present we are only able to offer the full system on transputer based
architectures. There is, however, a level at which the Express functions described in this
document can be used portably across all machines. The techniques involved are discussed
in Section 5.

This manual is structured as follows. In Section 2 we describe the function which
implements the majority of the multitasking interface under Express. Some simple
examples are shown to exhibit the features of the system. In Section 3 we discuss the central
issue of “semaphores” which are needed to prevent multiple tasks from corrupting one
another. In the absence of memory protection hardware this is a very important issue. We
then present a fairly sophisticated example of the use of the multi-tasking functions. In
Section 4 is discussed a simple mechanism similar to the UNIX exec in which a node
program can be swapped out of memory and replaced by another on demand. Finally we
describe the portable use of the Express multitasking functions.

2 Asynchronous Processing - exhandle

" The function which implements the heart of Express’ multitasking facility is exhandle.
If you consult the Express documentation you will find this function described among the
communication functions rather than in its own section for multiprocessing. This is because
multi-tasking under Express is a function of the communication system rather than a
separate set of function calls. This is what makes the interface so clean and simple - since
a user of Expressis already accustomed to the basic message passing principles we merely
extend them a little to provide multitasking support.

The syntax of the exhandle function call is

int exhandle (function, source, type)
int (*function) ();

int *source;

int *type:;

What is achieved by this call is to associate the named funct ion with messages from the
given source which have the specified type. Subsequent to this call every time a
message arrives at this node which matches the source/type combination results in
function being executed with the message parameters as arguments.

To clarify this procedure let us consider a trivial example. We assume that node 0 will
repeatedly make some request from node 1, at unpredictable intervals. Further, node 1 is
expected to respond to each request with a counter value which, for the sake of simplicity,
we will assume is being calculated by the normal, sequential program, executed on the
processor. The Express code to achieve this is

159

Hardware
dependencies

exhandle - a
communication
function

Associating a
message with a
function

A contrived
example

/*
* Node 0.
*/
#include "express.h"
#include <stdio.h
/*
* Types for counter ’'request’ and ’'responses’.
*/
#define READ VAL (123)
$define RESP_VAL (124)

main ()

{
int counter, dest, type:

fasync (stdout) ;

/* Allow independent -access to stdout */
exsync{();

/* Synchronize processors */

counter = 0; /* Prevents early termination */
dest = 1; /* Read data from node 1 */
while (counter != 0) {

type = READ VAL;
exwrite (&dummy, 0, &dest, &type):

type = RESP_VAL;
exread (&counter, sizeof (counter),
&dest, &type):;

printf("This time we got %d\n", counter);

}
printf ("Node 1 told us to quit\n");

exit (0);
}
/*
* Node 1.
*/

#include <stdio.h>
#include <express.h>
#define READ VAL (123)

160

#define RESP_VAL (124)

int counter = 534231; /* The value being requested */

main ()
{
int type, src;
int send_counter():;

/* Set up message handler */

type = READ VAL;

src = DONTCARE;

if (exhandle (send counter, &src, &type) < 0)
abort (1) ;

fasync (stdout) ;

exsync(); /* Synchronize with other nodes */

while (1) recalc(counter):;
}

/* This function will be called whenever the message
* of type READ VAL is sent to this node.
*/
int send_counter (buf, len, src, type)
char *buf;
int len, *src, *type;
{
int rtype = RESP_VAL;

exwrite (&counter, sizeof (counter), src, &rtype);
return 1;

Let us examine this code step by step.

The first action performed by node 0 is to execute fasync for the standard output stream
stdout. This enables node 0 to print things independently of the other nodes in the
machine.

At the same time node 1 is setting up its message handler with the call to exhandle. Note
that we specify a particular message type but the wildcard DONTCARE value for the
message source. This allows the processor to automatically respond to requests for the
counter value from any node including the hosts or the node itself. Note that we check
the return code from exhandle and abort cleanly if something bad has happened. This is
good practice since a limited number of message handlers may be registered.

161

Use asynchronous
0 is
asynchronous
programs

Avoiding race
conditions and
tricky bugs

Activating the
handler function

Important
properties of the
handling function

Avoiding infinite
chains of request/
ack messages .

Stopping
asynchronous
programs

The second action performed in both nodes is a call to exsync. This is very important.
Without this call we generate a potential bug because node 0 could send off its request for
data before node 1 is ready to receive it. In this case Express would be forced to treat the
message as normal interprocessor communication. In this case, node 1 makes no calls to
exread and so would never see the message. Finally node 0 would never get a response
to its request so it would hang forever in exread. By making the nodes synchronize after
the setting up of the message handler we guarantee that no node sends off a request that is
unexpected.

After setting up its message handler node 1 proceeds to calculate successive values of
counter via some procedure not shown here.

Node 0, however, sits in a loop sending requests to node 1 for the current value. Note that
these are merely dummy messages of zero length but with the correct type. When each of
these messages arrives in node 1 the send counter function is called with the
arguments shown. In our case the message buffer and length are superfluous since no
information was sent by node 0. The src field tells us which node sent the request for data
- in our case it is known to be node O but if more than two nodes were involved this field
would enable us to identify a node to which data should be sent. Finally the type field is
again superfluous in this example but we could have specified DONTCARE in the original
call to exhandle in which case the send_counter function would be invoked for
every message arriving on node 1. In this case the last field serves to discriminate between

types.

Two other important features of the send counter function are its return code and the
message type it uses for its response.

The return code is used to decide whether or not to terminate the association between
message handler and message types. If the send counter function had returned -1 then
Express would have treated all subsequent messages of type READ VAL as normal
interprocessor communication rather than calling the handler function. Returning 1
maintains the association.

The message type used in the response of the message handler must also be considered
carefully. The simplest solution is to merely return the results in a message of the same type
that we received. After all, it is supplied to us as one of the arguments. In the case shown
here this will work properly. In a more general case, however, each node would be
calculating values and would have its own message handler installed to trap messages of
type READ_VAL. If we now return the results in a message of this type the handler on the
originating node would treat it as a Vrequest for a value and would send something else
back. This would lead to an infinite sequence of requests and acknowledgments which
would grind the machine to a standstill.

Note that the code shown above might run forever - node 0 will repeatedly request the
counter value from node 1 stopping only when the value 0 is received. It is obviously up
to node 1, in this scenario, to decide when things have gone far enough and stop. This is
actually one of the trickier aspects of this style of processing - knowing when and how to
stop cleanly.

This example has shown the most basic usage of the message handling system. What may

162

have slipped by unnoticed, however, is that we have actually been multitasking here. While
the main loop in node 1 is repeatedly calculating new values of counter a second task
has been answering enquiries from node 0 about the current status.

We can extend this model more if we realize that each message which arrives on node 1 is
actually creating a new task there which runs in parallel with the other tasks on that node.
(This is only literally true on machines which actually support multitasking such as
transputers. An alternative (portable) interpretation is given in Section 5. To examine this
feature more consider a signal processing application.

Signal processing applications involve the interconnection of numerous “black boxes”
representing the individual system components. Each of these black boxes receives, as
input, a piece of the signal which it processes and then passes on to the next black box in
the chain. The feature of this system which most recommends a multi-tasking solution is
that the number of components is very variable as are their computational requirements.
Simple components may require small amounts of CPU power while FFT ‘s can themselves
benefit from additional parallelism. We might thus implement them as multiple processors.

An additional problem is that the prototyping process typically involves repeated minor
modifications of the circuit. This is most easily implemented by merely generating a new
task for each extra system component which we can then position on some underloaded
Processor.

The basic scenario is shown below. Each node sets up handlers for the various modules it
may be called upon to execute. Several shown include simple FFT’s, linear filters and
several varieties of other “black box”. Each of these handlers is set up to receive requests
from any node and is triggered by the receipt of a particular message type.

#include <express.h>
#include "msgtypes.h"
/* Types for various functions */

extern int FFT(), linear filt(),
black_boxl (), black_box2();

extern int stop():

int done = 0; /* For termination */

main ()
{
int src = DONTCARE, type:

type = FFT_REQ;
exhandle (FFT, &src, &type):;

type = LINFILT REQ;
exhandle (linear_ filt, &src, &type);

type = BBX1;

163

Extension to signal
processing

A solution to the

“stopping”
problem

}

exhandle (black_boxl, &src, &type);

type = BBX2;
exhandle (block boxl, &src, &type);

type = STOP;
exhandle (stop, &src, &type);

exsync () ;

while(!done);/* BUG see next section!! */
exit (0);

int stop(buf, len, src, type)

}

char *buf;
int len, *src, *type:

done = 1;
return 0;

There are several interesting features of this code. First each node sets up handlers for each
of the functions and then calls exsync to prevent race conditions as described in the
previous example. We also set up a fairly primitive but effective mechanism for stopping
the program - one of the message handlers is for the STOP message which sets a flag to let
us drop out of the main loop. The most striking thing about this code is the main loop itself
which is empty!

We assume that a master processor somewhere knows the details of the signal net to be
tested and will create processing units on processors by sending the appropriate message

types.

This scenario has a number of important advantages.

Overall control is exercised from some central location which minimizes the
total amount of data which must be transmitted to the individual nodes.

Any node in the machine (including the hosts) can create a task by sending an
appropriately typed message to any node. This means that we can adopt some
sophisticated dynamic load balancing strategy - as nodes become too busy we
can create processes elsewhere.

Individual modules may themselves operate in parallel. The FFT routine, for
example, might use four or more nodes to perform the FFT in parallel. Within
this subset of the machine it can take advantage of a “loosely synchronous”
programming style with all its advantages.

Any necessary multitasking is completely transparent. If the number of modules

164

we need to create is requires fewer nodes than are available then each node can
be given one process. If more are required then we can create more simply by
sending messages.

« Each fundamental process can be debugged in isolation and then “plugged” into
the larger system.

» Prototyping is very straightforward since the master process merely has to order
the creation of extra modules by sending the necessary messages. Networks can
be created with a graphical interface and then implemented trivially through this
mechanism.

Having looked at the overall structure of the main routine each of the modules would
probably have the overall structure shown below.

black boxl(data, length, src, type)
char *data;
int length;
int *src, *type;
{
int next_ node, next type;

/* We got some data sent to us in the instantiating
* message. If this is not enough then we can read
* more from the node which started us up.

*/
exread (buffer, length, src, msg type):;
exread (buffer,)

/* Process the data. */

/* Find out who to pass the results on to and then
* send the message. We also have to decide exactly
* what message types to use since some will create
* tasks while others will merely interface to
* existing ones.

next node =
next _type =
exwrite (results, length, &next node, &next type):;

return 0;

165

Independent tasks
make for the easiest
processing

Avoid “busy”
waiting

Amodel of a
“banking”
operation

Semaphores

Some of the data to be transformed is sent within the triggering message itself. This is an
important optimization in simple cases but may not be sufficient. exhandle is only able
to deal with messages of lengths up to the Express buffer size (as set in the customization
procedure - see excustom for more details.). If the data to be transformed were larger
extra messages could be sent and read directly by the message handler as shown above.
These would be normal Express messages, sent with exread/exwrite.

So far all the examples have been quite straightforward. Tasks have been totally
independent. In this case few precautions have to be taken. In general, however, this will
not be the case - several tasks on a particular node must coordinate their actions so that
neither voids the operation of the other. We discuss this issue in the next section.

Also discussed in the next section are techniques for “waiting” in a multitasking
environment. When a normal sequential process cannot proceed any further it typically
“blocks” - i.e., waits in some sort of loop for an event to occur which will restart it. In a
multitasking system this is not good since a task which waits in this manner never yields
the CPU to another task which could potentially do useful work. In the worst case one task
might “busy wait” for another task on the same node which will result in deadlock since the
task that could potentially free up the situation will never get access to the CPU. For this
reason a task under Express should never wait in a loop. If it becomes necessary to wait
for some event then a “sleep” function is provided which will yield the CPU to any other
pending process. This is the bug mentioned in the source code of the above examples and

techniques for avoiding it are described in the next section.

'3 Mutual Exclusion - Semaphores

A “critical section” is a piece of code that can only be executed by one process at once. A
simple example is provided by the oft-quoted bank-teller model. Consider service at a bank.
We assume that two transactions need to be performed which both have to be recorded in
your account. If only one teller is available all is well since the two transactions will be
processed separately and recorded correctly. If two tellers happen to decide to help you
together, however, problems can arise. Let us assume that the first rushes ahead and gets
half way through recording your transaction when some interruption occurs which allows
the second teller to catch up. When it comes to recording the results chaos will result since
the second teller is modifying data that is only partially correct.

This is the classic case of a critical section. Some mechanism must be provided which
prevents one teller modifying data unless it is in a sensible state. Many mechanisms are
available for this of which Express adopts the semaphore technique.

A semaphore is a variable which controls access to certain pieces of code. A simplified case
is shown below

Simple semaphore code.
This code is illustrative but not sufficient for real
use.

* *

*/

166

int semaphore = 0;

modify accounts(account, credit)
int account;
int credit;
{
while (semaphore != 0);
semaphore = 1;

account += credit;

semaphore = 0;
return;

This example is a simple model of the teller’s problem. The routine modify accounts
has two arguments: the current account standing and an amount to credit to this account. In
order to prevent several tellers modifying things incorrectly we invent the extra variable,
semaphore. While the value of this flag is zero any teller is allowed to carry out the
transaction but whenever one of them does so the value is immediately changed to 1. This
prevents any other tellers inadvertently messing things up. Whenever a modification is
complete the semaphore is set back to zero allowing another teller to modify the balance.

This example is rather trivial and the code shown above is actually insufficient for correct
operation in the Express multitasking environment but it serves to illustrate the purpose of
the semaphores. This type of operation occurs whenever some data structure on a node will
be shared and modified by several tasks. If only one task is allowed to alter the balance and
the others only read it all will be well. We could, for example, make use of the two tellers
in the example by having one do the calculations and the other modify the balance. There
will then be no conflicts and no semaphore is necessary.

Where are the problems in the above solution?

The first problem is that tasks which get to the semaphore test while it is inaccessible
will “busy wait”. This phrase was introduced at the end of the previous section and refers
to the situation where one task continually uses the CPU. In this case the while loop could
execute forever preventing the task which is actually performing the transaction from
finishing - it may actually be just on the verge of resetting semaphore to zero and thus
freeing the waiting task. It may be unable to do so since it cannot get to the CPU.

The second problem is with the semaphore itself. The assignment
semaphore = 1

is not attached to the end of the while loop in any concrete fashion. We could thus be
pessimistic and consider the possibility that one task, having decided to modify the balance
wants to set the semaphore preventing others from doing the same. Unfortunately, just as
this decision is made another task comes along and makes the same decision since the first
hasn’t had chance to lock the semaphore. The result is that both tasks proceed equally

167

Problem 1: “Busy”
waiting

Problem 2: atomic
semaphore
operations

The Express
semaphore

functions

convinced that everything is OK. Both will eventually set the semaphore variable and
unset it correctly while the account that we set out to protect is vulnerable.

In order to prevent this from happening the semaphore modification process must be made
“atomic” - once the decision has been made to lock the gate it must be able to do so without
interference from other tasks which may potentially make the same decision.

To implement this strategy Express provides several semaphore functions:
exsemalloc, exsemwait, exsemsig, exsemfree and exsleep.

The basic variable type for these routines is EXSEM as defined in the standard header file
express.h. (In FORTRAN an array of integers will suffice - see the reference manual
for details.) exsemalloc returns a pointer to a new semaphore structure which can be
freed, if necessary, with exsemfree. The other two functions perform the two assignment
operations of the previous example. A correct Express version of the above code is

/*
* Simple semaphore code.
* Uses EXPRESS functions to lock records.
*/

#include <express.h>

EXSEM *account_sem;

/* Semaphore protecting accounts */
#define CREDIT ACCT (400)

/* Message type for task */

main ()
{

int type, src, credit account();

/* Create necessary structure for modify accounts
* tasks
*/

account_sem = exsemalloc();

if (account_sem == (EXSEM *)0) abort(l);
type = CREDIT_ ACCT;

src = DONTCARE;

exhandle (credit_account, &src, &type):;

oooooooooooo

struct acct_data {
int account; /* Account number for transaction */

168

int credit; /* Credit/debit amount */
int ssno; /* Social security number */

credit_account (acct_data, length, src, type)
struct transaction acct_data;
int length;
int *src, *type;
{
modify accounts(acct_data.account,
acct_data.credit);
return 1;

}

modify_accounts(account, credit)
int account;
int credit;

{
exsemwait (account_sem) ;

account += credit;

exsemsig(account_sem);
return;

There is quite a lot of code here since we actually built a working program.

The only changes to the modify accounts function, however, are trivial. We call
exsemwait before the critical section and exsemsig after it. The former call
encapsulates the waiting loop and semaphore assignment of the original example. It
arranges that any task which is prevented from proceeding by the lock semaphore waits in
such a way as to allow other tasks to use the CPU. It further arranges that the semaphore
locking procedure is atomic preventing more than one task from getting into the critical
section.

The exsemsig call releases the locked semaphore thus allowing any waiting processes to
proceed into the critical section.

The rest of this code is shown to illustrate how simply we can build a prototype transaction
processing engine from the Express functions. In the main routine we create a semaphore
for the account s procedures by calling exsemalloc. We then set up a handler so that
we can easily create tasks to modify accounts by simply sending the appropriate messages.
Together with the message that creates a task will be sent the data necessary for the
modification. For our convenience we define a structure for this information. The task then
calls the account_modify procedure which is now correctly protected by semaphores.

169

A simple
transaction
processing system

To complete the picture of this system let us assume that every node has executed the above
code to create the appropriate tasks. We can now have a transaction processing task which
decides which account to modify and then does so by sending a simple Express message
as follows

#include <express.h>

#define CREDIT_ACCT (400)
/* Message type for task */
struct transaction acct_data;
/* For passing to the remote node */

fix account (global_ account, credit)
int account;
int credit;
{
int node, local account;

/* Calculate which node the actual account data is
* stored on and which local account number
* corresponds to the global one we’ve been given.
*/

node =

local_account =

/* Now send the transaction request to the appropriate
* node. The invocation message contains all the data
* necessary for the operation to be completed.

*/
acct_data.account = local_account;
acct_data.credit = credit;

type = CREDIT_ACCT;

exwrite (&acct_data, sizeof (acct_data),
&node, &type);

return;

In this code we assume that we have been passed an account number which must be located
within the parallel machine. The code to deal with this could involve some “name-server”
or other technology easily constructed with the Express functions. Having decided where
the account is kept we can just send that node a simple message to have it update its records.
Note that this system is very robust - the semaphore protection prevents multiple
transactions from simultaneously modifying the accounts. Note also that the above system
works even if the account to be modified is on the same node as the task which sends the
message! This is nice since it provides neat modularity to the code. One might otherwise

170

be tempted to “cheat” by having the local node modify its accounts directly. This would be
an easy way to make a mistake since the semaphore would have to protect both the
modify accounts function for remote access and whatever code were used to deal
with local cases.

So far we have discussed all the semaphore function except exsleep. This function has
a rather messy use - it is required whenever a task needs to wait but will not be waiting on
a semaphore. One possible use would be at the end of our signal processing example from
the previous section. This code set up several potential tasks with the exhandle call and
then waited for a signal to terminate with the code

/*
* Wait for messages to start up multitasking system.
* INCORRECT
*/

main ()

{

° e ¢ e

exsync () ;

while (!done); /* BUG - see next section!! */
exit (0) ;

The problem here is that mentioned several times already - the node is “busy waiting”. This
. can potentially hang the system since no other process can gain access to the CPU. The fix
to this bug is quite simple

/*
* Wait for messages to start up multitasking system.
* CORRECT
*/

main ()

{

exsync () ;

while (!done) exsleep(100); /* Wait for messages */
exit (0);

Note that we now *“sleep” in the loop waiting for messages. This allows other tasks to use
the CPU and prevents deadlock. The argument to this function is a time in milliseconds for
which the process should sleep. In this particular application the actual value is rather

1m

Solving the “busy”
wait problem with
exsleep

An “exec” model of
multiprocessing

Passing arguments
to another node
program

unimportant - only the effect is crucial.

This section has described in detail the methods which can be used to “secure” a
multitasking environment. The example, though easily coded shows the simple manner in
which Express is able to cope with a typical multitasking problem. It has also pointed out
several common sources of error. We only wish that detecting errors in this type of code
were as simple as describing them!

[4 Executing alternate node programs under Cubix

" The previous sections have described a traditional multitasking system in which processes

are created, perform their actions and disappear. A simpler form of multitasking is to
simply replace one node program with another, in toto. While this is not a particularly
subtle or elegant solution it can occasionally have its uses. One might, for example, design
a system which is too big to fit into the memory of a single processing node. In this case it
might be useful to partition the application into large “phases” which are loaded one after
another to accomplish some processing task. ‘

The basic function which achieves this is execve. In its most basic form one node
program can call

execve ("phase2", (char **)0, (char **)0);

which replaces the current node program with one called phase?2. Notice that two other
arguments are passed to the function. These are analogous to the arguments used by the
exload system calls - arguments and an environment for the new program. In the above
example neither will be given to the new program.

A more general example might be the following code segment

extern char **environ;

do_exec()

{
char *args(5]:
args{0] = "This";
args[l] = "is";
args([2] = "a“;
args[3] = "test";
args([4] = (char *)0;

execve ("next phase", args, environ);

In this case we build an array of character string pointers (including the NULL at the end)
and then use execve to start up a new program. In this case we pass the vector of
arguments and also our current environment to the new program which will receive them
through the normal argc, argv mechanism.

172

The system call just described operates “loosely synchronously” in that it must be made in
all nodes and results in the replacement of all node programs. Single nodes may start up
new program with the aexecve system call which has identical arguments to that shown
above but operates independently in each node.

An important possibility with this function is that program can share data if done carefully.
When Express loads a new program into the machine it only zeros the memory explicitly
used by the new code. It is possible, therefore, by judicial use of physical memory addresses
to have successive phases of an application share data through the exec mechanism. This
practice must be used carefully since program sizes and memory allocation strategies are
rather machine dependent but might prove invaluable on occasion.

5 Portable use of exhandle

" The multitasking system described in Sections 2 and 3 provides significant flexibility in the
generation and manipulation of tasks. exhandle can, however, be used in two modes, one
portable between different Express implementations, the other not.

At its simplest exhandle can be considered to setup an “event” triggered by the arrival
of a message. This event executes the user supplied function and eventually terminates
returning control to the main user program. As we have seen, however, we can implement
systems using exhandle which have essentially no “main” program. They merely create
tasks at the request of the message system which then execute forever in parallel.

On machines such as the transputer which support multi-tasking all features of Express
will be implemented and either style of programming will be available. In the absence of
such facilities, however, exhandle events will be dealt with as normal hardware
interrupts would be - normal program execution is suspended while the interrupt handling
routine is serviced. As a result portable programs should not assume that two tasks can
necessarily interact simultaneously.

If used only in this mode Express programs will be portable between all machines that use
exhandle. Certain restrictions apply, however, due to the fact that the user supplied
function will essentially be invoked at interrupt time.

The most fundamental of these constraints is that the user routine must never “wait” for
anything. In particular it should never call exread, exsleep or exsemwait. It can,
however, call exwrite.

While this might seem a large restriction it turns out to be less so in practice. If we consider
the banking example of Section 3 we could modify the function which performs
transactions so that it merely failed whenever a conflict might arise between the interrupt
handler and the normal code. In this case a message would be sent back to the caller
indicating this and a retry could be issued. While not as efficient as the other solution it
offers enhanced portability.

173

Interpreting
exhandle as an
interrupt handler

Parallel Graphics

A simple, portable, parallel graphics
system: Plotix

P 1 Introduction

' Graphical presentation is rapidly becoming one of the major concerns of all types of

programmers. At one end of the scale are sophisticated menu-driven applications offering
an enormous degree of interaction and freedom while at the other end might be the simple
graph displaying the final result of many hours of CPU power. Both examples are really
questions of data-reduction; the menu interface reduces what might otherwise be an
extremely complex input syntax to a simple “point and click’ model while the graph takes
thousands of data points and presents them in a form that can be readily understood.

Parallel computers pose the same problems to a larger extent. If the sequential computer
could produce a thousand data points then the parallel machine might generate a hundred
thousand. Similarly, if one wishes to get any “feel” for what is happening inside a parallel
machine, one rapidly has to resort to graphical displays since the human mind cannot
comprehend what would otherwise be pages of randomly sorted data.

Plotix is a graphical system designed for parallel machines. In keeping with the rest of the
Express philosophy, an important goal is the portability of the resulting parallel program
and Plotix is thus implemented in both sequential and parallel forms. We have found that
quite complicated systems can easily be developed that really enhance parallel applications
- finite element systems that display, “on the fly”, images of bending plates as well as
documenting (and incidentally aiding the debugging of) the internal data structures of the
code. Menu-driven applications have also been developed - the ParaSoft performance
monitor is a good example.

Plotix programs produce device independent output in the sense that the same parallel
program can produce output on a variety of different devices merely by altering a run-time
switch in the cubix command that executes the program. This allows one, for example, to
generate hardcopy output without having to recompile a known working program.

Due to its inherent simplicity we have been able to port the system to a wide variety of
devices. Currently supported are the 4010 and 4105 series Tektronix terminals, the HP475
series of pen plotters from Hewlett-Packard, the IBM EGA under both XENIX and MS-
DOS, PostScript, CGI (on systems such as the SUN), Xwindows, QuickDraw and many
others.

While the simplest Plotix model involves a single output device, usually attached to the
system console alternative schemes are supported. It is possible, for example, to redirect
graphical output to special purpose devices attached to the parallel processing network in
fairly arbitrary ways. It is even possible for different nodes to send their output to distinct
displays. All of this support is provided at runtime through simple function calls.

The rest of this document is arranged as follows. In section 2 are notes concerning the
coordinate system used by Plotix. Section 3 discusses the calls required to initialize and
shutdown the plotting system and the output modes available in Plotix which actually put
images up on your display surface. Section 4 describes the input routines available under
Plotix, Section 5 the contouring package and Section 6 the interpretation of “color”
supported by Plotix. Section 7 describes the issue of device-dependency and introduces the
Plotix functions designed to deal with this issue. Section 8 describes the example programs
that are supplied with Plotix and also contains the complete C source code for a simple

175

Why graphical
presentation is so
important

The philosophy of
Plotix

Achieving device
independence at
runtime

Output models

program. Section 9 describes the inner workings of the contouring system which are
occasionally valuable when working on non-rectangular domains and Section 10 describes
the devices on which Plotix is available and lists the particular idiosyncrasies of each.

2 Coordinate systems

" In most systems the user is bombarded from the outset with a bewildering collection of
coordinate systems which must be understood before plotting can commence. Plotix can in
the simplest case have a single coordinate system covering the view-surface, or by
appropriate function calls build up to sets of ‘windows’ or ‘viewports’ each with its own
coordinates.

All problems have their own natural scale, for instance meters, kilograms, minutes or slug-
furlongs. Plotix provides the space function call that allows you to set things up so that
you can move around and draw lines in this coordinate system rather than having to
rescale to an internal coordinate system.

An extremely By default Plotix assumes that the values you want to plot lie in the range from zero to one
simple coordinate jn both x and y directions and it sets up its coordinate transformations so that this range
System covers the entire screen. To see the effect of this consider the following simple code extract

move (0.0, 0.0);
cont (1.0, 1.0);

which draws a diagonal line from one corner of the display to the other as shown in
Figure 1.

Figure 1. Default Coordinate Range

If your data happen to lie in the range from zero to one all is obviously well but experience
shows that this happens rarely. In this case you call space to set up your own coordinate
range. The arguments to this function are the lower left and upper right corner of the
rectangle that encloses your data, in your units. So, for example, if you have to plot salary
against month of the year you might want to have the x-scale range from 0 to 12 and the y-
scale from 10,000 to 100,000 (“Dream on?”); this would be accomplished with the call

176

space (0.0, 10000., 12., 100000.);

As a concrete example of the effect of this call modify the above example code segment by
the addition of a call to space.

space (0.0, 0.0, 2.0, 2.0);
move (0.0, 0.0);
cont (1.0, 1.0);

The effect of this is shown in Figure 2. As can be seen the space call has doubled the
scales of the axes so that the unit diagonal now stretches only half way across the screen.

Figure 2. User Supplied Coordinate Range - space

There is another flavor of the space function called ortho_space which ensures that
when a square is drawn it appears on the display as a square rather than a rectangle.

justify = 0;

ortho_space (0.0, 0.0, 2.0, 2.0, justify);
move (0.0, 0.0);

cont (1.0, 1.0);

The effect of this is shown in Figure 3. Now the diagonal line is actually at 45 degrees to
the horizontal. ortho_space finds the largest rectangular region of the display which
has the aspect ratio specified by its arguments and maps the first pair of user-coordinates to
the lower left corner of the rectangle and the second pair to the upper right corner. Notice
the last argument to ortho_space, which specifies where this largest rectangle should
be placed on the display surface. If justify is -1, the rectangle is placed as far left (or
down) as possible, if 1 it is as far right (or up) as possible, if 0 then it is centered in the left-
right (or up-down) direction.

Now that one is able to rescale the image to a particular set of units the next question is how
to place it on the display surface. Again, by default, Plotix fills up the entire view surface
with its output and makes available the vport call to override this choice. The arguments

177

Modifying the
default coordinate
system

Making “squares”
square

Positioning the
output on the
display - viewports

Figure 3. User Supplied Coordinate Range - ortho_space

to this function are again the lower left and upper right corners of the display surface upon
which you wish to draw your picture, expressed as fractions of the whole. This means that
the default situation corresponds to the call

vport (0.0, 0.0, 1.0, 1.0);
while the call
vport (0.5, 0.5, 1.0, 1.0);

places your image in the upper right quadrant of the screen. As a specific example consider
the code fragment

vport (0.5, 0.5, 1.0, 1.0);
move (0.0, 0.0);
cont (1.0, 1.0);

°

whose effect is shown in Figure 4. The call to vport places the entire image so that the
diagonal line is now in the upper right hand corner of the screen.

Independent calls
to space and vport
allow the nodes to
create special

effects Figure 4. Modifying the Display Area

Calls to space and vport may be combined. So, for instance, we can take the screen and

178

divide it up into regions controlled by individual processors of a multi-processor system
and then assign within each processor its own coordinate mapping system. An application
where this is of use, for example, is image processing where each processor has a sub-
image of the whole picture. It make sense to divide up the display surface so that each
processor has an area of the screen corresponding to its own sub-image. Then one can map
the individual subsections of the screen so that actual plotting commands can be made on
the basis of array indices within a processor.

There may be multiple viewports in Plotix, so that for example we can show a menu in one,
and plan and elevation views of an object in two other viewports. First we divide up the
screen into pieces:

int menuport, planport, elevport;
menuport vport (0.0, 0.0, 0.2, 1.0);
elevport = vport (0.2, 0.0, 1.0, 0.5);
planport = vport (0.2, 0.5, 1.0, 1.0);

which puts the menu in a strip at the left, and splits the rest of the screen horizontally for
the plan and elevation. Now we can set up coordinates for each of the viewports:

setvport (menuport) ;

space (0.0, 0.0, 10.0, 1.0);
setvport (elevport) ;

ortho_space (0.0, 0.0, 1.0, 1.0, 0);
setvport (planport) ;

ortho_space (0.0, 0.0, 1.0, 1.0, 0);

which makes the vertical coordinates in the menu viewport range from 0 to 10, and provides
a unit square for the coordinates in the plan and elevation viewports. Notice that these last
two will not be distorted. Finally we can draw:

setvport (elevport) ;
...draw elevation...

setvport (planport);
...draw plan...

Notice the order in which these functions were called. Several calls to vport preceded the
calls to space which were, in turn, each preceded by a call to set vport. The reason for
this sequence is that each call to space affects only the currently selected vport.
Furthermore a viewport is selected either by its creation with the vport function or its
explicit selection with setvport. Output which might be generated from this code is
shown in Figure 5.

In parallel, each processor may make a different (set of) viewport(s). As a final example of
this sort of procedure let’s consider a case of four processors arranged in a 2 x 2 square.
Furthermore, assume that each processor has already figured out it’s coordinates within this

179

Multiple viewports
are a substitute for
“windows”

Figure 5. Multiple viewports
square pattern and stored them in the variables xcoord and ycoord. (This is trivially
done through the exgrid system supplied as part of Express - a full example is given in
Section 8.) Then the following code segment

double xcoord, ycoord;
/* Code to calculate x and ycoord using exgrid */
vport (xcoord*.5, ycoord*.5,
(xcoord+l1l.)*.5, (ycoord+l.)*.5);

space (0.0, 0.0, 2.0, 2.0);

move (0.0, 0.0)
cont (1.0, 1.0)

~e “a

produces the output shown in Figure 6.

Figure 6. Combined vport and space transformations

180

The complete code showing the use of the exgr id software to perform the decomposition
calculations is shown in Section 8.

3 Starting, Stopping and Flushing

" One of the advantages of the simple graphical model provided by Plotix is that there is only
a single function call required to setup the system (openpl) and a single call (closepl)
to shut it down. There are, however, some complications due to the parallel nature of the
system.

The routine that starts plotting, openp1l, has two arguments, a buffer size and a file pointer. The arguments to
The first argument is used to allocate a buffer into which graphical commands are placed penp!
until flushed by the user application. This makes parallel graphics more efficient by
bundling up several calls and issuing them at once rather than sending many small
messages for each graphical command as it comes. On the other hand it introduces
“flushing” commands that are rather unfamiliar and unnatural in the sequential computing

world. These commands are described in some detail later in this section - for now it is

enough to know that a default buffer size is obtained by giving the DONTCARE value for

this argument. (DONTCARE is defined in the header file express.h) This results in a

buffer of a size determined by the operating system. If problems arise a more reasonable

value can be determined by the user - this is also covered later in this section.

The second argument is a file pointer (i.e., of type “FILE *”in Cnotation - e.g., stdout).
This argument is required for compatibility with future releases of Plotix which may
feature a limited “metafile” capability. At the present this argument should be the NULL
pointer value which directs the graphical output to go directly to the graphics device.
Specifying any non-NULL pointer directs the system to create a metafile on the specified
file - this will most likely blow away your terminal!

After processing the arguments given to it openpl returns a status value which indicates
how well the system has coped. Positive values mean that plotting can now continue while
negative values indicate some catastrophic error such as being unable to access a particular
device, or the inability to acquire a buffer of the specified size. It is a good idea to always
check the value returned and abort or exit if something is amiss.

After plotting is completed the single call closepl suffices to turn off any plotting
systems. Note that this command only turns off the graphics device - it makes no output
appear. The user is responsible for making sure that all graphical objects have been flushed
to the display surface before calling closepl.

The following two routines are shown in the following example. Note that the return status A skeleton Plotix
from openpl is checked and processing stops if something is wrong. This code is a good = Program
prototype for anything dealing with the Plotix devices.

/* Simple PLOTIX proto-code. */

#include "express.h" /* Defines DONTCARE macro */
#include <stdio.h>

181

Buffering modes
and graphical
output

Why is output
buffered?

The relation
between the
buffering modes of
Cubix and Plotix

main ()
{

/* Initialize graphics using default buffer size */

if (openpl (DONTCARE, (FILE *)NULL) < 0)
abort (101);

/* Application code using any graphics primitives
* and flushing data to display at appropriate
* times

*/

/* Application completed; call closepl to turn off
* device
*/
closepl():;
exit (0);
}

Having opened up the graphical system one may now use any of the Plotix functions. There
is, however, a significant departure from conventional graphics on a sequential computer
in that output is “buffered”. This means that as you draw objects nothing actually appears
on the display surface until one of the three “flush” commands is executed. This is done for
reasons of efficiency. Parallel computers typically have fairly low I/O rates - especially
when compared with their large computing power and so it is a waste to send out graphics
commands a few at a time - instead they are stored up in an internal buffer and then emitted
when the user decides.

" The three “flush” commands follow closely the I/O modes of Cubix about which details

are given in a previous chapter - “Programming Parallel Computers Without Programming
Hosts”. This document should be consulted as the major reference for the following
discussion.

The three modes correspond roughly to the following situations

1. Each node has been drawing the same image - either a menu or an outline
which is most easily done by all the nodes together. Only one copy of the
resulting picture should actually be drawn on the display.

2. Each processor has been working on its own piece of the image and some
natural synchronization point occurs at which it is convenient to update the
display surface.

3. Each processor is working completely independently and needs to update

182

the display at unpredictable times.

These three modes are called “single-mode”, “multi-mode” and “asynchronous mode”
respectively after the corresponding concepts in Cubix I/O and each has its own “flush”
command with its own constraints.

1. sendplot - Called in all processors at once this takes a single copy of the
output image and flushes it to the display surface.
2. usendplot - Called in all processors at once this takes the graphical

buffer from each node in turn and flushes it to the display surface. The
individual nodes’ images appear in order of increasing processor number.

3. asendplot - Called at any time in any processor this command flushes
the graphics buffer from a particular node to the output device.

Notice the correspondence between the three function calls and their usage as defined in
the previous paragraph. The first two calls must be made “loosely synchronously” (This
concept is discussed extensively in the Cubix documentation previously mentioned.) while
the last can occur whenever required.

The three routines just described empty the internal graphics buffer on the nodes and make
the display surface “current” in computer graphics jargon - i.e., it reflects exactly what you
told it to.

In addition to the asynchronous flushing command, asendplot, other commands are
available which have no synchronization constraints; aopenpl, aclosepl, aerase
and agin. The first three of these perform the same functions as their similarly named
counterparts - i.e., opening, closing and erasing the display system respectively. The last
performs graphical input and will be described in the next section.

A question that remains is the size of the graphics buffer. As mentioned above we have
found a system default of 8 Kbytes to be sufficient for most purposes. Occasionally this will
be insufficient in cases where it is either inconvenient or impossible to call one of the
flushing commands frequently enough. Alternatively the user may be able to call these
commands sufficiently often that an 8 Kbyte buffer is wasteful and the size should be
reduced. In order to diagnose these cases the function plothwm is provided. Called with
no arguments this function merely returns the “high water mark” from the graphics buffer
- i.e., the maximum usage to have occurred between any pair of flushing commands. Using
this function the user is able to “tune” the size of the graphics buffer to an appropriate size.

For compatibility with the parallel implementation the calls sendplot, usendplot,
asendplot and plothwm are available in the sequential Plotix libraries although they
are usually stubs; the three flushing functions are identical and plothwm returns O.
(NOTE: It is still recommended that users make periodic calls to the flushing functions
since this both simplifies the transition between sequential and parallel codes and also
ensures that flushing is carried out on devices which need it even at the sequential level -
X-Windows is a good example!)

While discussing the commands which actually draw things on the display one should
discuss the support provided for different output devices within the Plotix model. By
default all graphical data is sent to the “console” device for processing and display. This

183

Synchronization
constraints

Totally
asynchronous
operation

The size of the
graphics buffer

The need for
sendplot in
sequential
programs

Using alternate
display devices

The Plotix input
model - gin

Using the gin
function to identify
processors

device is normally the one at which you executed the original cubix command that loaded
and executed your program. In certain cases, however, is may be beneficial to have an
alternate scheme; special hardware systems or multiple output devices are good reasons.

In Plotix this is supported through the display_node function call. At any time one may
alter the destination of further graphical output by naming either a new processor number
in a call to display_node. Further output will be sent to this device which is assumed
to be running a suitable server process. This exact procedure to be followed is described in
the manual “Using Express on system with multiple hosts”.

Note that the means by which nodes are “named” depends upon the manner in which the
system was originally configured and is similar to the mechanism used by cubix to locate
files.

It is important to note that different nodes are quite at liberty to flush their output to
different places although they must do so with the asendplot function to prevent
deadlock. This enables a further degree of parallel processing useful when one considers
the typically small bandwidth of most machines in talking to the “real world”. It is quite
possible to build a system with multiple graphical devices to enhance throughput of

displayed data.
| 4 Graphical Input

" The area of graphical input is one of great complexity in most systems. Plotix circumvents

this difficulty by providing only two input functions gin an agin. Both correspond to
what most systems call locator input - i.e., you get a cross hair cursor to move around and
eventually you click on some button/key and the call completes, returning appropriate
information to you.

To see that the practice is as simple as the above description consider the following sample
code.

/* Sample code demonstrating the use of the "gin"
* function
*/
if ((status = gin(&key, &x, &y)) < 0) abort(-1);
else {
/* Process gin values */

}

The three parameters to gin are all pointers to values which are returned by the call. The
first is an indication of which key or mouse button was pressed to terminate the call. It’s
exact interpretation depends upon the particular device in use and details can be found in
Section 10. The second and third parameters will contain the x and y coordinates of the
selected point in the user coordinate system - i.e., the one set up by the most recent call to
space. The return value from gin is rather important. If the graphics device in use cannot
perform input functions (e.g., PostScript or other hardcopy devices) then -1 is returned.
Otherwise the return value is O or 1 depending on whether the selected point is within the
window of the processor making the call. Consider the situation depicted in Figure 5 where

184

each processor was responsible for a quarter of the screen and assume the user selects the
point shown in Figure 7.

Cursor
Position

Figure 7. Effect of Processor Decomposition on Input

Then the return value from the call to gin would be zero in all but the processor which has
the top left region which would find the value 1. This feature is extremely useful in highly
interactive situations where individual processors need to be indicated by the user.

A final point in connection with input is that the gin function must be called loosely
synchronously in all nodes. This is really a benefit rather than a restriction since
asynchronous calls to an input function are difficult to handle - it is tricky to keep track of
which processor wants you to do what, and when! (If the need for an asynchronous input
request really exists the agin function is available to satisfy it -called just the same way
as gin and returns the same results, but without any synchronization constraints.)

5 High Level Functionality - Contouring, Clipping, etc.

" One of the higher level packages that have currently been added to the Plotix system is a
contouring package. This system operates at two levels; a simple user interface that allows
contouring of arbitrary functions on rectangular regions and a low level interface that
allows contouring on arbitrary shaped regions. The latter interface is useful, for example,
in contouring functions on spheres is described in detail in Section 9.

The simple contouring package is accessed through the system call contour which has Contouring a

the calling sequence function on a
rectangular

domain

contour (func, gx, gy, levmin, levmax,
nlevels, panels)

double (*func) (), levmin, levmax;

int gx, gy, nlevels, panels;

The first argument is a pointer to a function that actually returns the values to be contoured.
It will be called for each pair of integers i, j in the region 0<i<gx and 0<j<gy -i.e.ona

185

Clipping

rectangular region of size gx by gy. This interface differs from others in common use in
that the user supplies a function to the contouring program rather than merely an array of
values. This option seems more flexible though at the cost of extra CPU time.

Overall nlevels contours will be drawn at equally spaced intervals. The arguments
levmin and levmax denote the minimum and maximum contouring levels to be used. (If
the user supplies both levmin and levmax as zero then sensible values will be selected
automatically.) Finally the flag panels indicates how to draw the actual contours. If a
non-zero value is chosen then the contour map will be in the form of filled regions of color.
Otherwise only the lines separating the contours will be drawn.

This package is extremely simple. In order to maintain flexibility in all cases it performs
NO internode communication. At the boundaries of the processor regions a simple linear
fit is performed to approximate the contours as they cross into another processor. Also, for
convenience and generality the contouring function assumes that the user coordinate range
is set to the system default region from zero to one. If this is not the case then the routines
described in Section 9 can be used instead.

Finally note that since this routine uses the multi-mode flushing commands (See section 3.)
it must be called loosely synchronously.

Also available is a two dimensional clipping system. The function setclip defines a
rectangular window relative to the user coordinate system against which all line, point,
marker and polygon primitives will be clipped. As an example of this system consider the
following code segment

space(0.,0.,4., 4.);/* Define coordinate system */
setclip(l., 1., 3., 3.);

box (0., 2., 4., 4., 1, 1):

sendplot () ;

Without the call to setclip this code would draw a diamond-shaped polygon across the
screen. After clipping is enabled the result is as shown in Figure 8. The cormers of the

SRR

Figure 8. Two dimensional clipping

186

diamond which lie outside the clipping window have been removed leaving an ‘octagonal’
shaped region.

Note that all clipping operations are performed in parallel resulting in a system which has
rather less overhead than traditional clipping systems.

Currently under development is a three-dimensional modeling package for parallel
applications. Hidden line removal is done by means of the Painter’s algorithm. We expect
to make this system available with a future release of Plotix.

6 Colors

" Plotixruns on many different devices with different capabilities, so difficult questions arise

when, for example, a monochrome device is asked to draw a red line. We have tried to

address this problem as follows. Each device is either color or monochrome. When Plotix Plotix and colors
is started a color map is in place which is different for lines and for filled polygons. For a

monochrome device there are two line colors, black and white, and 8 shades of grey, which

are implemented by half-toning. For a color device there are 8 line colors which are the

same as the 8 fill colors, these being white, black, red, green, blue, cyan, magenta and

yellow. Color numbers outside this range are interpreted modulo 8.

Two functions are supplied to modify this simple color map; greyscale and rainbow. Extending the basic
An example of their use is: color map

greyscale (9, 40);
rainbow (41, 104);

which has the following effect

Color Device Color indices from 0 to 8 are as before; the eight standard colors.
Indices from 9 to 40 now create a smoothly varying greyscale from
white (9) to black (40). Colors in the range from 41 to 104 produce
smoothly varying hue with full saturation and full value. The
rainbow effect is periodic, starting with red, through magenta,
blue, yellow, green, cyan, and back to red.

Mono Device Color indices from O to 8 are as before and the greyscale call
functions exactly as in the color case. The call to rainbow is
treated as another call to greyscale.

These functions change both the line colors and fill colors in the same way.

In addition to these ‘normal’ colors, Plotix provides several hatch patterns, which can be Cross-hatching
accessed by using negative color indices. These appear the same on both color and
monochrome devices.

The following code is part of that required to draw shaded three dimensional objects.

#define GREYSTART 9
#define GREYEND 40

187

Simple systems are
easy to implement

Hardware
dependent
"properties” can be
manipulated vt
Plotix commands

float shade;
int polygon, vertex;

greyscale (GREYSTART, GREYEND) ;
for (polygon=0; polygon<n_polygons; polygon++) {

/* Use shading model to calculate shade
* between 0 and 1
*/
shade = ...

/* Draw the polygon in the correct shade of grey. */

initpanel ((int) (shade* (GREYEND - GREYSTART)
+ GREYSTART), 0);

for (vertex=0; vertex<n vertices[polygon];
vertex++)
panelpoint (
x[vertex] [polygon],
y[vertex] {polygonl);

endpanel () ;

7 Hardware Dependencies

" No graphics package can offer truly “device independent” output because the capabilities

of output devices vary so much. The simple graphical model provided by Plotix is an
advantage in this regard since its capabilities can usually be implemented in full on most
devices. Despite this, however, there will be times when the programmer wishes to know
what sort of device is in use or wishes to take advantage of a known hardware feature in a
non-portable way.

To facillitate this kind of behavior Plotix provides two functions: getplxopt and
setplxopt whose behavior depends entirely on the hardware curently in use.

For each potential output device Plotix identifies a set of properties which can be
manipulated with these two routines. These properties are identified by name through a
character string passed to the routine. If the name is recongized for the particular device in
use a parameter is either set or returned to the user and the routine returns 0. If the name is
not one associated with the current output device nothing is changed and the the routine
returns -1.

To make this a little more definite let us consider the elementary problem of drawing
“distinct” lines. On a color display we might try to do this by using the color routine to

188

switch between one of several colors. On a monochrome display, or a color display with
too few colors for our purpose, we might instead use the 1inemod routine to display the
lines in a different linestyle. One solution to this problem would be to “hardwire” into the
application which devices are to be used and set some appropriate switches. An alternative
is shown below:

long ncols; /* Number of line colors supported */

start_graph()
{
if (openpl (8192, (FILE *)0) < 0) {
fprintf (stderr, "Failed to start graphics\n");
return -1;
}
if (getplxopt ("nlcolors", &ncols) < 0) {
fprintf (stderr, "No data, assume monochrome\n");
ncols = 2;
}
return 0;

}

This code might be used to start up Plotix. As well as calling the normal openpl function
it attempts to find the number of supported line colors using the n1colors property. Note
that we take care to deal correctly with the case when this property is not defined for our
current device by making the defensive assumption that we are dealing with a monochrome
device. If the property is defined the variable ncols will be set to the number of supported
line colors which can later be used to make a decision about calling color or linemod.

Itis important to note that the call to get plxopt comes after the call to openpl. This is
because many output devices must be initialized before determining the number of
supported colors.

In a similar way setplxopt may be used to set certain operational parameters. One
particularly important issue in modern “windowing” systems concerns the repainting of the
window when resized or uncovered by the user. These types of system typically require a
re-paint procedure. If your application can supply such a thing you can tell certain Plotix
implementations to use it by calling setplxopt with the redraw property as shown in
the next example.

extern int my repaint();

start_graph()
{
setplxopt ("redraw", my_repaint);
if (openpl (8192, (FILE *)0) < 0) {
fprintf (stderr, "Failed to start graphics\n");
return -1;

189

Drawing distinct
lines

Normally
getplxopt
follows openpl

Re-painting in
windowing
systems.

Normally
setplxzopt
precedes openpl

Variable types
passed to
getplxopt and
setplxopt

Using exgrid with
Plotix

}
return 0;

Note that this case differs from the previous one in that we call setplxopt before
openpl. This is again typical - the parameters we are setting may have some effect on the
way in which the Plotix device is initialized. This represents the only exception to the rule
which says that the first call to any Plotix function should be a call to openpl.

It is important to note that the type of the variable passed to the getplxopt and
setplxopt routines varies according to its use. In the first example we passed a pointer
toa long to getplxopt while the second passed a pointer to a function to setplxopt.
Other properties may require other combinations. The list of recognzied properties and the
types of the associated parameters are shown in Section 10 where device dependencies are
discussed for each output device in turn.

8 Examples
" 81 The Interaction between Plotix and the exgrid tools

As an example of code typically found in Plotix programs we present the source code
which generates the output shown in Figure 6. To make the code flexible we make use of
the exgrid tools from Express to automatically decompose the actual number of
processors to our two-dimensional display surface. This allows us to run the program on
any number of processors without the need to recompile.

/
ParaSoft Corporation: PLOTIX demonstration code.

* % % % %

Demonstrate simple usage of PLOTIX primitives and
the interaction with the data decomposition tools
available in EXPRESS.

*

*/
#include "stdio.h"
#include "express.h"

main{argc, argv)
int argc;
char *argvi];
{
struct nodenv cparm;
/* Run-time information about processors */
int nprocs(2];
/* Processors in X and Y directions */
int recpnumi{2];
/* Coordinates of this node in 2-D mesh */
double x0, vyO0;

190

/* Start of processor vport on screen */
/* Attempt to initialize the graphics system. */
if (openpl (8192, (FILE *)NULL) < 0) abort(101):

/* Get the run-time information about the number of
* processors that we’re using.
*/
exparam({&cparm) ;
/* Divide up the processors more or less evenly between
* the X and Y directions.
*/
exgridsplit (cparm.nprocs, 2, nprocs);

/* Now use the exgrid routines to decompose a two
* dimensional mesh of nprocs[0] by nprocs[l] nodes
* onto the underlying processor topology
*/
exgridinit (2, nprocs);
exgridcoord(cparm.procnum, recpnum);

/* Now we know which processor we are in the two-D
* decomposition get the corresponding region of the
* screen for ourselves.

*/
X0 = recpnum([0] / (double)nprocs([0];
y0 = recpnum[l] / (double)nprocs([l];
vport (x0, y0, x0+1.0/ (double)nprocs([0],
y0+1.0/ (double)nprocs(1l]);
space (0.0, 0.0, 2.0, 2.0);
/* Finally draw some lines on the page this
* picture is supposed to end up looking like figure 4.
*/
move (0.0, 0.0);
cont (1.0, 1.0);
usendplot () ;
/*
* NOTE: each node sends a different bit of picture
*/

closepl();
exit (0);

To run this code we select an output device and use the cubix command as follows

191

Contouring in
alternative
coordinate systems

cubix -n4 -Tbgi noddy

This command executes the program noddy on 4 nodes sending graphics to a monitor
supported by the Borland Graphics Interface. Changing the value given to the ‘-n’ switch
allows us to run on an arbitrary number of processors - one of the virtues of using the
exgrid decomposition system.

8.2 Other example programs.

Plotix is supplied with a set of example programs for which the C source is available. These
are distributed in the plot ix subdirectory of the main Express examples directory. In
this directory you should be able to find make£files or similar which will enable you to
compile and run these demonstrations. Each is designed to illustrate a particular feature of
the Plotix system and you are welcome to use them as the basis for your own software
systems. Instructions for running the programs can be found on-line in the README files in
the same directory.

The codes are

map Trivial program showing the color map supported by the output
device

coord Demonstrates the use of the vport, space and aspect
commands as well as the text and symbol drawing routines.

input Demonstrates the use of the cursor in a parallel program allowing
selection of particular nodes.

phases A large example which solves a partial differential equation
describing phase separation and then displays the result as a contour
plot. This example contains most of the plotting routines including
the clip and contour utilities. As well as demonstrating the
power of Plotix this program is a good example of Cubix. Phases
was written by Roy Williams of Caltech.

async An example of the “wild and dangerous” asynchronous mode. Each

node draws a random number of rectangles of random sizes and
randomly erases the screen!

9 The Low Level Contouring System

" The contouring package described in section 5 is actually a simple instance of a much more

sophisticated contouring subsystem. In general the high level function contour should be
sufficient for most applications. Occasionally, however, one wishes to contour functions
defined on other than rectangular regions - a good example is the contouring of a function
defined in polar coordinates; one might define an array, values{r] [theta], in which
the r and theta indices correspond to radius and angle. Then the standard function,
contour, would contour and display this function in a rectangular coordinate system
whereas we actually want to display it in the real polar coordinate system. This can be done
with the functions initlevel and getpoint.

The getpoint function is the heart of the contouring system. Called repeatedly it returns

192

the next point along the current contour. Note that this is not such a trivial operation -
various messy cases arise since, for example, the contour lines of a given height might not
be in one piece. There might be ten contour lines for height 150.0 which have to be drawn
independently.

Also important is the question of what should be done on the boundary of the region to be
contoured. In some cases it is sufficient to merely generate a line from the top of the display
to the bottom (for example) but this will not do if we are really interested in plotting in polar
coordinates since we should draw a circle instead.

In general, the method of use of these low level functions is to call initlevel to start off
a new contour and then call getpoint repeatedly, plotting the points returned, until an
indication is given that there are no more points to draw at this contour level.

The calls to get point all take the form
stat = getpoint (&x, &y):

in which x and y are returned as the (x, y) coordinates of the next point along the contour.
The return value is extremely important and indicates the following conditions

stat = 0 There are no more points to plot along this contour level. Ignore the
values of x and y.

stat = 1 Thepoint (x,y) isanew point on the current contour line.

stat = 2 The particular piece of the contour map for this level is finished. Ignore

the values (x, y) just found and call get point again. If the next call
returns 1 then it is the first point of another disjoint piece of the contour
for this level. Otherwise it will return 0 and there are no more points in
this contour level.

The initlevel function is responsible for initializing each level to be contoured
initlevel (fun¢, nx, ny, level, panels);

The arguments are similar to those of the contour function. The first is a pointer to a
function that returns a double. It is the function that will be contoured. The next two
arguments give the range of values for which the function will be called. The level
argument specifies the height at which this contour is to be calculated. The panels
argument is somewhat different from that used in contour because of the various types
of output which might be used. The three allowed values have the following meanings.

0 Designed for simple line plotting. All interior points are returned and
the surrounding box is treated as a real rectangle and only its corner
points are returned. :

panels

!
=

Designed for polygonal filling. The plot is cut into strips which are
contoured separately. The strips are calculated so that the resulting
polygonal regions are simply connected allowing hardware polygon
fill algorithms to be applied. The bounding box is still assumed to be
rectangular and only its vertices are returned.

panels

I
N

panels Designed for cases where the underlying surface is not rectangular.

193

Contouring in
polar coordinates

While basically the same as in case 1 the bounding box is also
discretized and points are returned all along its edge. This allows the
box surrounding the array (which is logically a rectangle) to be
mapped into a circle if we are dealing with polar coordinates.

In order to demonstrate the use of these routines we present a sketch of a code that would
actually contour an array of polar coordinates. We assume that the array
polars[10] [90] contains values of a function defined in the first quadrant of a polar
coordinate system. The first index refers to the radial coordinate and the second to the
angular variable - we define the function at every degree in this quadrant. For simplicity we

only show code to draw the contour corresponding to the function value 3. Other contours .

can be added to the image with a simple loop. Flnally we assume that we wish to contour
the function with filled polygons.

] *

* Example of use of low level contouring functions to
* display data defined in polar coordinates....

* sketch code only

*x/
#include <math.h> /* Needed for sin and cos */

radial_contour (color)
int color;
{
double zfunc():;
/* Function returning contour values */
double level = 3.0; '
/* Contour height to plot */
int panels = 2;
/* Return ALL points - even on boundary */
int Rrange = 10;
/* Number of radial coords available */
int Arange = 90;
/* Number of angular coords available */
int status;
/* Used for return value from getpoint () */
int start_afresh = 1;
/* Flag move or draw to next point ? */
double r, theta;
/* Coords returned by getpoint */
double x,y:;
/* Coords passed to panelpoint */

initlevel (zfunc, Rrange, Arange, level, panels);

while ((status=getpoint (&r, &theta)) != 0) {

194

if (status == 1) {
/* Another point on the current contour */
if(start _afresh) ({
initpanel (color, 1});
start_afresh = 0;

r*sin(3.14*theta/180.);
r*cos (3.14*theta/180.);
anelpoint (x,vy);

}
X
Y
P
}
else if (status == 2) {

/* Maybe start another contour line */

endpanel () ;
start_afresh = 1;

Note that the only part of this code relevant to polar coordinates is the place where the
“warping” takes place and we convert the value returned by getpoint, which actually
lies in the (r, 0) coordinate system into an (x,y) point suitable for use in panelpoint.

[10 Output Device Characteristics

This section describes the particular idiosyncracies of the various output devices supported

under Plotix as well as the appropriate switch to give in the cubix command line to send Specifying output
graphics to the requested device. These switches are all of the form “~Tname” where the ~devices at runtime
“name” is some mnemonic for the required device. Thus, for instance, if we have a program

that would normally be executed with the command line

cubix -n4 program
then one can have it perform graphics on an IBM EGA with the command
cubix -n4 -Tega program

Each section that follows includes an indication of the appropriate cubix switch to invoke
the necessary graphics server.

The following sections also indicate the various supported “properties” as described in Device dependent
Section 7 which are used to manipulate device dependent operations. The following Property lists and
sections also indicate which properties are supported on a particular device and what ‘heirformat.
variable types should be used to access them. In general this information is provided in

’ tabular form with entries of the following type

nlcolors @ pointerto long number of supported line colors

The meaning of the various columns is as follows

195

Problems with the
mouse

Using the gin
commandwithouta
mouse

Resetting the
screen after
plotting

e The text string used to identify the proprty.
» Whether the property can be specified to getplxopt (g) or setplxopt (S).
» The C variable type expected in the second argument to the call.
* A description of the property.
10.1 IBM PC and compatibles, Borland Graphics Interface - “-Tbgi”

This version of the system is built around the standard device drivers supplied in the
Borland graphics package supplied with the various Turbo languages. It supports a wide
variety of PC class systems and graphics cards in a reasonably device-independent manner.
All of the features of Plotix are supported although we have occasionally observed failures
to auto-detect non MicroSoft mouse systems. If you seem to be having problems in this area
unload the mouse driver and use the keyboard interface as explained in the previous section
on the EGA monitor.

Properties -Tbgi
Name get/set type Description
nlcolors g pointer to Long number of supported
line colors
nlstyles g pointer to long number of supported
linestyles

10.2 IBM Enhanced Graphics Adapter - “~Tega”

This device is supported under XENIX and is obtained by specifying ‘~Tega’ on the
cubix command line. Thus to execute the program t oy land on 4 nodes with graphical
output going to the EGA one might use

cubix -n4 -Tega toyland

After loading the node program the screen should be blanked and graphical output should
appear on the display. Terminal I/O to stdin, stdout and stderr (unless redirected
to files on the command line) will appear in a special four line window at the bottom of the
screen.

When input is requested with the gin command the cursor should appear in the upper left
corner of the screen. If you have a mouse then it can be used to move the cursor around.
Clicking on any of the mouse buttons terminates the gin operation. In the absence of a
mouse the cursor can be moved with the arrow keys on the right of the keyboard. Two
speeds are available and one toggles between fast and slow cursor motion by hitting the
“Home” key. Striking any key other than “Home” and the arrow keys terminates the input
request - the key used is returned as the first argument to the gin call.

When plotting is completed or the application finishes the screen should revert to its normal
appearance - if you called closepl. In certain circumstances, however, this may not be
the case. Under XENIX one types

196

norm

Notice that no characters will appear on the screen while you are typing these commands -
you have to keep on trying until you finally get it right and the screen goes back to its
normal state. The XENIX command has the unfortunate side effect of unsetting several
terminal characteristics - in particular the delete and CTRL-C keys. As a last resort logging
off and on again will clear all problems.

Properties -Tega
Name get/set type Description
nlcolors g pointer to long number of supported
line colors
nlstyles g pointer to long number of supported
linestyles

10.3 SUN system, suntools environment - “-Tsun”

This system is built upon the SUN windowing system, “sunview”. Each call to openpl
creates a new window under suntools in which graphical operations are performed.

On monochrome displays only two colors are supported by default although eight grey-
scales are available through the greyscale function. Eight hatch patterns are available
with indices -1 thru -8.

On color displays the basic eight colors are supported by default and the full range of colors
can be accessed with the greyscale and rainbow functions. Note that remapping the
higher color indices has a strange effects on the basic suntools background.

Properties -Tsun
Name get/set type Description

nlcolors g pointer to long number of supported
line colors

nlstyles g pointer to long number of supported
linestyles

redraw S pointer to function | Function called to re-
paint the window when
re-sized by user.

width S int Window width

height S int Window height

10.4 SUN system, Xwindows - “-TX”
This version of Plotix is built upon the SUN implementation of MIT’s XWindows. Each

197

call to openpl creates a new window in which graphical operations are performed.

On monochrome displays only two colors are supported by default although eight grey-
scales are available through the greyscale function. Eight hatch patterns are available
with indices -1 thru -8.

On color displays the basic eight colors are supported by default and the full range of colors
can be accessed with the greyscale and rainbow functions.

Properties -TX
Name get/set type Description
nlcolors g pointer to long number of supported
line colors
nlstyles g pointer to long number of supported
linestyles
redraw S pointer to function | Function called to re-

paint the window when
re-sized by user.

width S int Window width
height S int Window height

10.5 PostScript - “-Tps”

This option generates standard PostScript suitable for printing on laser printers and similar.
Each invocation of the program creates a single ASCII file called plot . ps which contains
the image. It is important to note that this means that you must be careful to rename files
between runs or successive programs will overwrite earlier files.

The color model used is similar to that described in the SUN sections above - 256 colors
are supported with the standard calls. On simple monochrome laser printers these will
appear in various shades of grey.

The input function “gin” returns -1 whenever invoked.

198

Properties -Tps
Name get/set type Description

nlcolors g pointer to long number of supported
line colors

nlstyles g pointer to long number of supported
linestyles

landscape s none Request “landscape”
paper orientation.

10.6 AXIS NCUBE systems - “~Trt”, and “~Tnat”

These systems are provided for NCUBE machines. —Trt selects the “Real Time Graphics”
device - the parallel graphics interface to the NCUBE/10 systems and -Tnat the PC-
NCUBE graphics system.

In each case the implementation of Plotix is complete and supports the full color model.
Only one text size is available, however, and it has the disadvantage of overwriting the
underlying graphics.

Properties -Trt,-Tnat
Name get/set type Description
nlcolors g pointer to long number of supported
line colors
nlstyles g pointer to long number of supported
linestyles

10.7 Macintosh systems - no switch

Since all Macintosh machines are equipped with graphical displays and “mice” no special
switches are required to use them under Plotix. All features are supported both
monochrome or black and white monitors except that the gin function can only be
triggered from the mouse - no keyboard triggers are enabled. As a result the value returned
in the “but ton” parameter is meaningless.

199

Properties "Macintosh"
Name get/set type Description
nlcolors g pointer to long number of supported
line colors
nlstyles g pointer to long number of supported

linestyles

200

201

Debugging Parallel Programs

Using ndb, a source level debugger
for parallel programs

p 1 Introduction

L Debugging is probably the most time consuming part of any computing project. Although
overall system design and integration may seem more intellectually demanding it is often
accomplished much more quickly than the actual execution of the resulting specification -
even on conventional and well understood computing systems. When one turns to parallel
computers the problems are much worse. While the design phase may seem daunting at first
sight, experience shows that the major problems encountered are in debugging. Indeed it
has often been said that correcting even the simplest parallel program is as hard as
debugging an entire operating system.

This difficulty can, in the most part, be traced to an absence of real programming tools. For
many years computer experts have been dreaming up, and implementing, sophisticated
software packages to help software implementors on conventional machines. Most of these
facilities are not yet available for parallel architectures.

A significant step forward is ndb - an interactive, symbolic, source level debugger for a
distributed array of processors.

So what?
How will this help?

Source level debuggers provide an extremely simple interface between the code you
originally wrote and the nasty machine dependent things that were done to it by the
compilers, assembler, linkers and so on. Whereas one used to have to debug by staring hard
at a huge dump of hexadecimal numbers one can now perform such elegant operations as
“stop at line 23” and “print out the variable foobar”. You can step through your program
slowly and watch what happens to its variables. You can have the program stop whenever
a certain variable gets modified. You can examine the sequence of subroutine calls that led
to the current state and look at the arguments that were passed to each function.

ndb can do all of these things. Furthermore it can do them on arbitrary collections of
Processors.

This means that you no longer have to poke around in the dark when your parallel program
just sits there and stares at you whenever you run it. Now you can get in there and find out
why without going through the tedious “edit, compile, run” sequence. Also, ndb contains
important extensions that are designed specifically for debugging parallel programs -
facilities that let you look, for example, at the state of the communication between
processors as well as providing completely independent control over each node.

Having described what ndb can do there seems no alternative but to describe how you go
about it. What follows is an introduction to the various possibilities available. It is not an
exhaustive list - for that you should consult the reference manual. However we try to at least
demonstrate one flavor of all the commands in the hope that those similar which are left out
can be understood. The syntax of ndb is, hopefully, quite straightforward. Further, two
levels of operation are available. This manual describes what might be called the high level,
or source code, interface to the system intended for general use. The syntax in this area is
strongly patterned after that of the dbx system in use on Sun workstations. Also available,
however, is a complete version of the standard UNIX debugger adb. Those who find this

203

Debuggingparallel
computer codes - a
potential
nightmare

Why ndb?

dbx + adb in one
package

adequate for their needs should be able to dive right in without reading much of this
document.

In addition there is an extensive on-line “help” facility. This contains information at all
levels from generalities about the way ndb interprets the commands you type to the details
of the syntax of a particular command.

The system is implemented under several different operating systems, in conjunction with
various compilers and hardware configurations. However, there is only one manual, so in
some cases certain commands may be unavailable or may operate slightly differently from
the description in this manual. In general differences between various implementations are
indicated in the user guides accompanying each Express system.

" 2 ndb in action

~ This section is designed to give you a rather detailed picture of ndb in action as we debug
a “real” program. Since none of the commands have actually been introduced yet do not be
too surprised if this makes little sense - it is designed more to give you a picture of what
ndb can accomplish. Later, when you have learned the syntax of ndb’s commands this
section will serve as a useful reference on how you might go about debugging your own

programs.
A “master-slave” The basic idea our of program is that of a “master-slave” code in which node 0 distributes

programwithabug work to the other nodes and receives their responses when ready. The basic code to achieve
this is shown in Figure 1.

1 /* This code contains a "bug" which will be

2 * used to demonstrate the elementary use of
3 * the ParaSoft debugger, ndb.

4

5 * Copyright ParaSoft Corporation, May 1989.
6 */

7

8 #include <express.h>

9 #include <stdio.h>

10

11 float work[1024];
12 struct nodenv cparm;

13

14 main()

15 {

16 int procnum, nprocs;

17

18 exparam (&cparm) ;

19 procnum = c¢parm.procnum;
20 Nprocs = Cparm.nprocs;

21

22 printf ("Here we go!!!\n");

204

23
24
25
26
27
28
29
30
31
32
33

fflush (stdout);
async (stdout) ;

if (procnum == 0) {
master (nprocs) ;
}
else {
slave (procnum) ;

}
exit (123);

Figure 1. Sample code - main routine.

Each node calls exparam to find out its processor number and the number of nodes in use.
We then modify the status of the stdout file stream so that nodes can do I/O
independently. This technique is most profitable in this style of program since it allows the

“master” task complete freedom to print values irrespective of the behavior of the “slave

nodes.

9

The central piece of the code is contained in lines 25-30 where the routines that actually do
the (fictitious) work are called. Note that node O calls the master routine which the others

invoke slave.

34
35
36
37
38
39
40
41
42
43
44

45
46
47
48
49
50
51
52
53

54

master (nprocs)
int nprocs; /* How many nodes are going? */
{

int i, node, type:;

for (node=1; node<nprocs; node++) {
type = 123;
printf ("Sending work to node %d\n", node);
fflush(stdout) ;
exwrite (work, 100*node*sizeof (work([0]),
&node, &type):
}

/* Now we poll for results from the slave nodes. */

node = DONTCARE;
type = 124;
for(i=1; i<nprocs; i++) {
exread(work, sizeof (work), &node, &type):
printf ("Got result from node %d: %f\n",
node, work[0]);
fflush(stdout) ;

205

Using DONTCARE
arguments to read
messages in any
order

Special
compilation
requirements for
using ndb

55 }
56 }

Figure 2. Sample code - master routine.

The master task merely loops over processors sending a message to each in turn. It then
loops again asking for replies. Notice the trick here of using node = DONTCARE in
exread. This allows the “master’” to read the answers in any order - the first node to finish
its work has its reply read and, in principle, the master could then issue a second piece of
work. This is the principle of the “processor farm” in which dynamic load balancing is
achieved by sending the faster nodes more work than the slower ones.

The code for the slave routine is

58 slave (myproc)

59 int myproc; /* Which slave am I? */

60 {

61 int node, type, nread;

62

63 node = 0;

64 type = 123;

65 nread = exread(work, sizeof (work), &node,
stype) ;

66

67 /* Instead of processing the "work"
68 * we just send back a reply to the master.

69 *x/

70 type = 124;

71 work[0] = 3.14159;

72 exwrite (work, sizeof (work[0]), &node, &type):
73 1}

Figure 3. Sample code - slave routine,

This code runs opposite the master routine shown above. Each node reads its message
and then makes a simple reply. If this were a real code we could insert some processing
after line 65.

So, did you spot the error yet? This code has a deliberate and fairly common Express bug
in it which we’ll now find using the debugger. To convince yourself that the program is
indeed incorrect we should compile and run it with commands such as:

tce -0 code -g code.c -lcubix
cubix -n4 code

(Note that the compilation command may be different on your system - consult the
introductory guide to Express for more details.) We have assumed that the program is (not
very imaginatively) stored in a file called code. c and we compiled it into the program
code. Note the specification of the ‘-g’ switch at compile time which included

206

information about the source lines and local variables in the output file and associated
symbol table.

If you actually compiled the code and ran it as above the output would be something like
that shown below

Here we go!!!

Sending work to proc
Sending work to proc
Sending work to proc
Got result from node 1: 3.141590

w N -

As can be seen we only get a response from the first node. What can be wrong? Given the
simple nature of the program you may have enough data now to find the bug but we’ll
pretend ignorance and use the debugger to find it anyway.

The following is an example of the procedure that one might typically use to catch such a
problem. We proceed slowly at first to give a flavor of the commands that ndb understands
and how you might want to use them and then plunge on to the heart of the matter and the
bug itself.

We will assume for this discussion that you know how to load the code program in the
stopped state (i.e., cubix =P) and also how to start up the debugger. If not you should
consult the introductory guide to Express which discusses this issue.

Assuming that you have figured out how to start up the debugger you should see a message
similar to that below.

Reading symbol table: 100%

Symbol table: 248 public, 10 local

Sharing 4 nodes, origin at 0 process pid 2
Process has 4 nodes. (Origin at 0)

Node 0>

This display contains rather a lot of information. The first line is merely a mechanism for
holding your interest while the debugger reads the symbol table from your file - this can be
a fairly lengthy process. The second line tells you how many global and local variable
names were found. This tells you, for instance, if you forgot to include the ‘~g’ switch
when compiling some of the files since in that case the number of local variables will be
small or zero. The next two lines contain information about the node group allocated to the
process you are about to debug. In particular you are told how many and exactly which
nodes are in use. This can be useful in diagnosing hardware related problems. Finally the
last line is ndb’s prompt. It is especially important - it tells you which node or nodes are
the target of the commands you type. By default only node O is affected as indicated by this
prompt.

What now? The most elementary, and probably most important, piece of information you
can get from the debugger is the answer to the question “What is happening?”. To get this
type the command show state (During this discussion things you type will be highlighted
in the text with underlines and will then be shown again as the first line in the debuggers

207

Executing a
program with a bug

Loading programs
in the “stopped”
state

ndb’s start-up
messages

What is happening
on the nodes?

After the program
is loaded
“stopped” we see
the system start-up
code

Getting
information from
more than one node

Adding breakpoints

reply.) You will see the following display

Node 0> show state
Node 0: Proc state: Breakpoint PC = _ PS strt [?2,?]

Notice how the first line shows you what you have to type and subsequent lines are the
debugger’s response. From this display we can learn many things. Node 0 is currently
stopped at a breakpoint. This much we might have guessed since we specifically asked
Express to load the program stopped. Furthermore it is stopped at location __ PS_strt.
This doesn’t look quite so friendly but is actually quite harmless. All C programs have some
funny code that executes before your ma in routine which is responsible for passing argc
and argv to your code, setting up the environment variables, profiling etc. Expressis no
exception and the funny name for the funny start-up code is __PS _strt. The last piece
of information in this display is the [?, ?]. Not, you might say, very informative. In this
case you’d be correct but this entry is potentially very important too - it contains the source
file and line number of the location of your code. In the case of the system start-up code
ndb knows neither piece of information and hence the ‘2’ signs. In later examples we’ll
see more information in this field.

Now we know all about the activity on node 0. Big deal you might say - what about the
others? ndb has a fairly simple mechanism for extending the range of the commands you
type - try on all show st

Node 0> on all show st

Node 0: Proc state: Breakpoint PC = _ PS strt [?,?]
Node 1: Proc state: Breakpoint PC = _ PS_strt [?2,?]
Node 2: Proc state: Breakpoint PC = _ PS strt [?,?]
Node 3: Proc state: Breakpoint PC = _ PS strt [?,?]

Notice two things. We abbreviated the show state command to show st and prefixed
the whole thing with on all. The former is just a convenience - you’ll end up typing this
command so often that it’s convenient to have some shorthand for it. The latter is the
simplest example of ndb’s ability to specify commands on arbitrary sets of nodes. In this
case we wanted to see the program state on all nodes so we just asked for it. In the case in
question all nodes are in the same place so we haven’t learned anything new yet.

To get into more familiar territory we should try to skip over the start-up code and into our
own main routine. To do this we will set a breakpoint. The command

on all stop in main

will give you the following message

Node 0> on all stop in main
Inserting breakpoint at main+0x7 done

This command inserts a breakpoint in your program at the first source code line of the
named function. ndb’s response is rather more formal - it tells you the actual machine
address of the breakpoint. Notice that we used the “on all” construction to again override
the default target node - if we hadn’t used this prefix the breakpoint would only have been

208

inserted in node 0.
To proceed from the breakpoint issue the on all cont command.

Node 0> on all cont
Node 0>

Hm. No response from this one. What has actually happened is that ndb has started up the
nodes indicated which are now happily travelling towards the breakpoint in main. In
contrast to debuggers for sequential computers ndb doesn’t wait for the breakpoint to be
hit but returns immediately to you for more input. This may seem inconvenient at first but
we will see the reason a little later - in the meantime you can perhaps take comfort in the
fact that ndb will mimic the conventional behavior if you ask it to - see the manual section
about the ndbenv command for details.

In order to see that something really did happen when you typed the cont command we
should look at the program state again, yes? Correct. However you’re probably already
bored with typing on all in front of everything so its time to try something new. Type
pick all to see the following

Node 0> pick all
All>

As you’ve probably guess this command merely changes ndb’s internal idea of the current
set of target nodes. From now on all commands which are not prefixed by on will be
directed to all processors. Notice how the prompt changes to indicate this fact. Now we can
type merely Show st to get the information we need.

All> show st

Node 0: Proc state: Breakpoint PC = main+0x7 [code.c, 18]
Node 1: Proc state: Breakpoint PC = main+0x7 [code.c, 18]
Node 2: Proc state: Breakpoint PC = main+0x7 [code.c,18]
Node 3: Proc state: Breakpoint PC = main+0x7 [code.c, 18]

This display should be fairly familiar by now. From it we can see that all the nodes are now
at the breakpoint we inserted at the top of main. Furthermore the last two fields of each
line now contains useful information about the source file and line number of the current
position. To extract even more information try typing list to get the following

All> list
18: exparam(&cparm);
19: procnum = cparm.procnum;
20: nprocs = Cparm.nprocs;
21:
22: printf("Here we go!!!\n");
23: fflush(stdout);
24: fasync(stdout);

25:
26: if(procnum == 0) ({
27: master (nprocs) ;

This probably looks a little more familiar. Basically the “1ist” command, when issued

209

Restarting from a
breakpoint

An important
difference between
ndb and sequential
debuggers

Changing the
default processor
set

Listing the source
code

Single stepping

Displaying
variables

A common
confusion - parallel
debugging is
different from
sequential
debugging

with no arguments, prints out source code from the position that ndb thinks you've
reached. As you might guess this is actually a little less well defined on a parallel computer
than a sequential one since each of the nodes could be in a different place. ndb tries its best
to second guess you as you debug - you can easily fool it if you try but in the case we’re
looking at all the nodes are in the same place so it’s a piece of cake!

Before we really get going on the bug we could try a few more simple commands. Go back
to node 0 by typing pick 0

All> pick O
Node 0>

and then single step the program by typing next.

Node 0> next
19: procnum = cparm,procnum;
Node 0>

As you might guess the program has gone on through a single line of source code and has
printed out the line which would be executed next. An important point to notice is that the
line of source code executed actually contains a function call exparam. (Look in the
output from the previous 1ist command to check.) This is the powerful feature of the
“next” command - it actually steps over function calls. An alternative is provided to let
you enter each routine as it comes - step.

Let’s single step a few more times until the important variables procnum and nprocs
have been assigned and then check their values. Type next again

Node 0> next
20: nprocs = cparm.nprocs;
Node 0>

and next again

Node 0> next
22: printf ("Here we go!!!\n");
Node 0>

Now we can check that everything is going according to plan by typing out the values of
our variables with print procnum, nprocs

Node 0> print procnum, nprocs
Node O0: procnum = 0

nprocs = 4
Node 0>

So now we know that there are four processors and node O really thinks it’s node 0. It’s
good that this worked since it would otherwise mean that Express was confused.

To continue further try typing next again.

Node 0> next
At least one node has stepped into a routine which
contains no line number information. To step through

210

this code use "stepi" or "nexti" instructions
Node 0>

This is finally the explanation of our earlier remark about why the “cont” command
returns immediately rather than waiting for a breakpoint to appear. What happened is that
we tried to single step node O through a call to printf. However stdout is still in
“single-mode” (the default) which implies a synchronization between all processors. (If
this comment is gibberish you might want to investigate the Cubix documentation a little -
otherwise just take my word for it that this call to print £ requires synchronization.) Since
the other three processors are currently still at the first breakpoint in main they can hardly
synchronize with node 0 at this point and ndb eventually gives up waiting - hence the
message. ndb has found that node 0 is now executing code somewhere in the middle of
Express’ internals where there are no source line numbers. Furthermore node 0 cannot
make any progress until the other three nodes catch up with it to synchronize. As a result
the machine is temporarily “hung”. If ndb were to wait for the situation to resolve itself
you would now be staring at a dead computer. This is the same reason that ndb doesn’t
wait for breakpoints when you type “cont” - if there are many processors, each executing
code in different places, the machine could lock up in some internal wait state (looking for
a message, for example) before getting to another breakpoint.

To get everybody back in sync again let’s set a breakpoint in the other nodes at a place
where they could potentially get back together. Type pick 1-3 to select the other three
nodes.

Node 0> pick 1-3
Array>

The prompt is now a little less informative but represents the fact that the particular
collection of nodes 1, 2 and 3 is not one that ndb recognizes by name.

Having selected the correct group of nodes let’s look for a candidate for a breakpoint. Try
typing list main to see the appropriate source code.

Array> list main
10:
11: float work[1024];
12: struct nodenv cparm;

13:

14: main{()

15: {

16: int procnum, nprocs;

17:

18: exparam(&cparm) ;

19: procnum = cparm.procnum;

This lists out ten lines of code centered on the named function. Since we didn’t get far
enough to see anything interesting we can continue listing the source by merely typing list

Array> list
20: nprocs = Cparm.nprocs;
21:

211

Resynchronizing
the processors

Listing code by
name

Serious debugging

22: printf ("Here we go!!!\n");

23: fflush (stdout) ;

24: fasync (stdout) ;

25:

26: if (procnum == 0) {
27: master (nprocs) ;
28: }

29: else {

30: slave (procnum) ;

which now contains more likely code. Given the discussion above we believe that node 0
is now in limbo somewhere within the guts of the print £ call. We could try to stop the
other nodes just after it at line 23 with the command stop at 23

Array> stop at 23
Inserting breakpoint at main+0x22.... done
Array>

As before this code tells us where, in the machine code, the breakpoint has been set and we
can continue to it by typing cont.

Array> cont
Array>

Note that ndb again offers no response but immediately returns for more input. If we look
in the other window, however, where the program we’re debugging is running we would
now see the line

Here we go!!!

generated by the call to printf. (By “window” we mean the piece of the display where
output from the running application is directed. This may be another window or merely
another piece of the one the debugger is using.) This might lead us to suspect that all the
nodes have now reached line 23 - verify this by typing on all show st.

Array> on all show st

Node 0: Proc state: Single step PC = main+0x22
[code.c, 23]

Node 1: Proc state: Breakpoint PC = main+0x22 [code.c, 23]

Node 2: Proc state: Breakpoint PC = main+0x22 [code.c, 23]

Node 3: Proc state: Breakpoint PC = main+0x22 [code.c, 23]

Array>

This display confirms our thoughts except that node O is not in the “breakpoint” state
but rather “Single step”. This is a result of our earlier attempt to single step over the
printf call. At the time when ndb finally gave up the attempt to finish our single step
request node 0 was in the “Single step” state and since we’ve done nothing new to it
since it still is.

Now we’ve played around with some of ndb’s commands and have seen some of the ways
in which it differs from familiar debuggers on sequential computers it is time to get down
and find the bug we’ve been looking for all along. Since we know that the “master” task

212

gets a message from node 1 but none of the others we should get the program as near as
possible to that state and then look at some variables. To find a suitable place let’s look at
the code in master with the command list master

Array> list master
32 exit (123);
33: }
34:
35: master (nprocs)
36: int nprocs; /* How many nodes are participating */

37: {
38: int i, proc, type;
39:
40: for (proc=1; proc<nprocs; proc++) {
41: type = 123;
Array>

and then list again for a few more lines

Array> list

42 printf ("Sending work to proc %d\n", proc):;

43: fflush (stdout) ;

44; exwrite (work, 100*proc*sizeof (work([0]),
&proc, &type);

45: }

46:

47: /* Now we poll for results from the slaves. */

48:

49: type = 124;

50: proc = DONTCARE;

51: for (i=1; i<nprocs; i++) {

52: exread(work, sizeof (work), &proc, &type):

The second half of this listing contains the code where node 0 picks up the results from the
other nodes. If we put a breakpoint at line 52 we’ll be able to “watch” the messages arrive
and check that they are O.K. To do this type on 0 stop at 52 (Remember we have the
prompt “Array>” indicating that the default target would have been nodes 1 through 3.

Array> on 0 stop at 52
Inserting breakpoint at master+0x4b done
Array>

To find a good place to stop the “slave” tasks let’s look at their code with list slave

Array> list slave

55: }

56: }

57:

58: slave (myproc)

59: int myproc; /* Which slave am I? */

213

60: {

6l: int proc, type, nread;
62:
63: proc = 0;
64: type = 123;
Array>

and then Jist for more information.

Array> list
65: nread = exread(work, sizeof (work), &proc,
&type);
66:
67: /* Instead of processing the "work" buffer.
68: * we just send back a reply to the master.

69: */
70: type = 124;
71: work[0] = 3.14159;
72 exwrite (work, sizeof (work{0]), &proc, &type):
73: }
Array>

To match the breakpoint in node 0 that we just added try stopping the slave tasks at line 72
with the command Stop at 72. Notice that this time the default target set of nodes is correct
so we need no prefix.

Array> on 1-3 stop at 72
Inserting breakpoint at slave+0x32o.. done
Array>

Now that we’ve finally got the whole thing set up let’s let the nodes go to work by typing
on all cont.

Array> on all cont
Array>

Not a staggering response from ndb considering the work we put in to set it up but if we
look in the “window” where the program is actually running (Same comments apply as
before!) we’d now see the output

Sending work to proc 1
Sending work to proc 2
Sending work to proc 3

which is generated by node O through the print £ call at line 42.
To find out where we are now try on all show st again

Array> on all show st
Node 0: Proc state: Breakpoint PC = master+0x4b
[code.c,52]

214

slave+0x32

Node 1: Proc state: Breakpoint PC
[code.c, 72]

Node 2: Proc state: Breakpoint PC = slave+0x32
[code.c, 72]
Node 3: Proc state: Breakpoint PC = slave+0x32

[code.c,72]
Array>

Amazing - it’s all just as we thought it would be; node O is stopped at line 52 waiting for
the slaves to send it data and the other nodes are poised at line 72 on the verge of
responding. To check that things are about to go the way we want type dump to see

Array> dump
Node 1: slave+0x32 [code.c,72] (myproc= 1) at 0x800d8£28
myproc: 1
nread: 400
type: 124
proc: 0
Node 2: slave+0x32 [code.c,72] (myproc= 2) at 0x800d48f28
myproc: 2
nread: 800
type: 124
proc: 0
Node 3: slave+0x32 [code.c,72] (myproc= 3) at 0x800d8f28
myproc: 3
nread: 1200
type: 124
proc: 0
Array>

This display contains much information. The first line in each block shows the current
position (which we already knew) together with a list of the arguments passed to the current
function and the physical memory address at which the arguments are located. The next few
lines list the local variables of the named function, displayed according to their variable
types. For us the most important information is that proc and type really do have the
values we wanted them to have.

To actually send the messages back to node 0 the simplest method is to single step the slave
nodes over their calls to exwrite. Type next.

Array> next
Array>

Note that ndb hasn’t displayed the “next” line of source code as it did in the earlier cases.
This is because only one node was affected in the previous case making it easy for ndb to
figure out the appropriate line to print. In this case we are stepping three nodes and although
all actually go to the same place ndb doesn’t waste the time it takes to figure that out and
print anything.

So, did anything happen? What we actually wanted was to send three messages to node

215

Looking at local
variables

VI hae Al danca'’s
Displaying the
message queues

The magic value
DONTCARE

zero, one from each slave. To see if they actually went anywhere type on all show g.

Array> on all show g
Node O:
src 1 type 124 pack 1 length 4 (d0 0f 49 40) @0x800e453c
src 2 type 124 pack 1 length 4 (d0 Of 49 40) Q@0x800e4968
src 3 type 124 pack 1 length 4 (d0 0f 49 40) @0x800e4d94
Node 1: No messages
Node 2: No messages
Node 3: No messages

Array>

This all looks too good to be true. The display indicates that node 0 has received three
messages, one from each slave node, of type 124. Furthermore each message is 4 bytes long
just as we would expect. (If we get really picky we could use the address shown at the end
of each line to actually investigate the contents of each message. We’ll leave this as a
“exercise for the dedicated reader!)

So we now know that the bug isn’t on the slave nodes - they did everything we asked them
to do. Let’s switch back to node O with pick 0

Array> pick 0
Node 0>
and check out the variables in the master subroutine by typing dump master

Node 0> dump master
master+0x4b [code.c,52] (nprocs= 4) at 0x800d48f28

nprocs: 4
type: 124
proc: -1
i: 1

Does this look reasonable? We’re about to call exread with type set to 124 and proc
to -1. The type variable obviously matches properly and a little thought would remind us

that we asked to read from processor DONTCARE which probably has the magic value -1.
It’sall O.K.

Type cont to pick up the first message.

Node 0> cont
Node 0>

ndb is silent as usual when we continue or single step but a glance at the program’s output
shows the text

Got result from node 1: 3.141590

which shows us that we really did pick up the message from node 1. To confirm this we can
look at the message queues again with show q

Node 0> show g
src 2 type 124 pack 1 length 4 (d0 Of 49 40)@0x800e4968

216

src 3 type 124 pack 1 length 4 (d0 0f 49 40)@0x800e4d9%4
Node 0>

Again this all looks just as it should. The message from node 1 has gone and that from node
two is ready for delivery. Looking at the local variables again with dump shows us

Node 0> dump
master+0x4b [code.c,52] (nprocs= 4) at 0x800d48£f28

nprocs: 4

type: 124

proc: 1

i: 2

which looks O.K -type is still 124 and we’re about to read from proc = 1.
Pardon?

Why is proc equal to 1? We just read the message from node 1 and should now be reading

from another processor - in fact we should be reading from processor DONTCARE because

we really don’t care what order we get the replies in.

This is the bug. Be careful with

s . < qs . . DONTCARE
What we’ve forgotten is that the call to exread in line 52 overwrites the pointer t0 proc greuments

with the source of the message that was actually read, in this case node 1. Then on the
second iteration of the loop we omitted to reassign proc to DONTCARE and so it again
tried to read from node 1. Since node 1 isn’t talking to us anymore the program hangs
waiting! '

To fix the problem take line 49 where we assign node = DONTCARE and insert it before
the call to exread in line 52 and all will be well - sometimes there really is a happy
ending!

The correct version of the lower loop in the master routine is shown in Figure 4.

46

47 /* Now we poll for results from the slave nodes. */
48

49 type = 124;

50 for(i=1l,; i<nprocs; i++) {

51 node = DONTCARE;

52 exread (work, sizeof (work), &node, &type):;

53 printf ("Got result from node %d: %f\n",
node, work([0]);

54 fflush (stdout) ;

55 }

56 }

Figure 4. Sample code - corrected bug.

Getting Started

" By default compilers do not produce information about the local variables or line numbers

w

217

Compiler switches
and managing
without them

Two methods of
running ndb

Running programs
from within ndb

in your source code. This means that ndb doesn’t know about them either. In some cases
this doesn’t matter too much - for example you can still tell where your program crashed
and what sequence of subroutine calls led to the disaster. You can also inspect the values
of external variables. However, if you want to delve deeper into a mysterious bug then you
must recompile your code with special switches which force the compilers to generate the
relevant information; the introductory guide to using Express on your system has details
of the appropriate commands.

The next problem to be addressed is how to actually run ndb. Detailed discussion of this
is left to the individual introductory guides supplied with versions of Express but we may
observe some general points. Basically there are two scenarios. In the first the code has
crashed in mid-flight and you want to go and look around inside the nodes to see what
happened. In this case you need to know the process ID of the dead program. This is most
easily found out on UNIX systems with the ps command. Armed with this information you
type
ndb -p process id -n nodes program name

where process_id is the number obtained from ps, program_name is the name of
the node program to be debugged and nodes is the number of nodes on which the program
is running. ndb responds by reading in the symbol table from the node program and telling
you how many local and public names were found. The former are variables local to
subroutines while the latter include external variables, named common blocks and
subroutine/function names. If everything you typed on the command line was correct you
should now see the ndb prompt:

Node 0>

The prompt you get back from ndb is rather important since it tries to tell you which nodes
are currently being debugged. We will return to this topic later - all that you need to know
at this point is that the above prompt means that ndb found some nodes to debug.

The second scenario under which ndb is used is where the user wants to start the program
under ndb’s control and then run it with breakpoints set and so on. In this case you just type

ndb -n nodes program_name44

where the arguments mean the same as before. In this case ndb will read the symbol table
and then issue the prompt

ndb>

which means that no nodes are currently in use. Now in order to run the program you issue
a run command such as

run cubix -d 3 toyland <input

which is executed just as if you had typed it to the shell - as can be seen you can still redirect
I/O with the regular constructions. You will probably see some start-up messages and then
the ndb prompt will change to

Node 0>

showing that ndb now recognizes that your program has allocated some nodes.

218

p 4 Sets and Prompts

L In order to debug a parallel program it is necessary to execute commands on different nodes
- for example you might want to see the value of the variable ivalue on nodes 3 and 4.
In order to do this sort of thing ndb includes a “set” concept; a “set” is a collection of Paralleldebugging
processors to which ndb commands are directed. ndb keeps track of a “current set” and means being able
also supplies commands that let you change the current set. Every time ndb prompts for ‘;‘:ebr’;gc Z‘;; f Z:a:
more input it tries to show you its idea of the default. For sets containing single nodes this . ep
is just the processor number as seen in the previous section. Another simple set is that
containing all the processors which has the prompt

All>

Three commands are available for manipulating sets. The simplest is pick which changes
the current set. For example, you might type

pick 0-3, 6, 9-13

which changes the default set to that containing nodes 0, 1,2, 3, 6,9, 10, 11, 12 and 13. All
further commands will be executed in turn on each of these nodes. Having changed the
current set in this way the prompt changes to

Array>

which is ndb’s way of saying that it can’t figure out any logical reason for choosing such
a strange collection of nodes.

Having changed the current set in this way it is occasionally useful to execute commands
on different sets without changing the default. To do this one just uses the on command as
a prefix to the instruction you want executed. For example

on all show state

shows the current state of all processors without changing the default. Any legal set
specification can be used in any of these commands.

The final possibility is that of user defined sets. In the first example we picked a rather User defined node
bizarre collection of nodes to debug. If it turns out that such sets arise with any frequency e

it is rather inconvenient to have to type in all the node numbers every time. For this reason

you can define arbitrary sets of nodes by using the setdef command.

setdef 0, 1, nof 4, even

This command defines a complicated set containing nodes 0 and 1, the hypercube
connected neighbors of node 4 (indicated by the mysterious no £) and all processors whose
procnum’s have even parity (i.e., an even number of 1 bits in their processor numbers).
ndb remembers this set and responds with, for example

Defined set 23
which can be used in further set specifications; one could now type
pick set 23

to change the current set or even use set 23 in further setdef commands.

219

Directing terminal
1/0 to the parallel
computer

The most
elementary and
important ndb
command

The currently available user defined sets can be listed by executing the show sets
command.

5 Programs that need input

" Most sequential debuggers adopt the view that once the user program is running all further

terminal input should be sent directly to it. Thus, for instance, a program that reads in input
values will execute more or less normally. In a distributed environment the situation is not
quite so clear - it may be necessary to have some nodes progress while others are still at
breakpoints so that message traffic can be analyzed more carefully. For this reason ndb
does not pass on terminal input to the user process until you issue the command

io
to which ndb responds with the message
Redirecting terminal input to user process

From this point on everything you type on the keyboard is sent as input to your program
rather than the debugger. At any time it is possible to return control to ndb by using the
keyboard interrupt sequence - usually CTRL-C. Note that you can ALWAYS use this
sequence to stop whatever ndb is doing and return control to the prompt. In particular you
might want to curtail ndb’s rather prolific output when certain commands are given. If your
program later requires more input you can type io again.

If your system supports multiple windows the best way to use ndb is probably to start-up
the application “stopped” in one window and then attach ndb to it with the -p switch from
another window. In this way you will be able to satisfy I/O requests to the application by
merely typing in its window.

6 Examining the process state

" Often the first thing that users want to know about their program is where it is and what it

is doing. Several commands are available for doing this. The simplest is show state (or
equivalently show st). So, for example, the command

on all show st
might produce the output

Node 0: Proc state: Breakpoint PC = _start [start.c, ?]

Node 1: Proc state: Idle PC = main+0x12 [foo.c,10]

Node 2: Proc state: Idle PC = main+0x1l2 [foo.c,10]

Node 3: Proc state: Running PC = error+0x32
[catastrophe.c,128]

There is quite a lot of information in this display. The Proc state field shows what
condition the various nodes are in. This is where serious bugs and/or hardware errors can
be found. States such as Breakpoint, Single step and Running are self-
explanatory. An Idle processor is one which is waiting for a communication call to be
completed. (On some systems a node waiting for communication will appear to be

220

RUNNING.)

The next field describes, symbolically, the instruction currently being executed. If this
instruction lies within some user subroutine then that name should appear (modulo a
preceding underscore) together with some hex offset. In certain cases the operating system
will be active which should be obvious from the unusual subroutine name or from its
complete absence. In this latter case the PC will be indicated by some hexadecimal

constant.
The last field displays source code information. The format is
[Source file, line number]

where the first value is the name (as known to the compiler) of the source file which
contained the code. In most cases this will be a real file name but occasionally one might
see names without any suffix or translated to upper case. In any event it should be obvious
which source file is indicated. The second value is the line number which contains the
current instruction. If the object file were compiled with the appropriate compiler
debugging switches (see Appendix C) this value will be a line number in the source code.
Otherwise the value ‘2’ will appear meaning that ndb doesn’t know what line number is
involved. So, for example, the output

[contour, 123]

indicates line 123 in file cont our. c. Typically Fortran names end up converted to upper
case so that one might see

{CONTOQUR, 123]
to indicate the file contour. £ as the culprit.

Before discussing the other features of ndb which allow access to the user source code it
is interesting to note that the show state command is useful in detecting dead
processors. If no response is received from a node for 5 seconds the message DEAD NODE
is displayed and ndb moves on to the next. This is a useful feature since it allows one to
figure out which nodes have been trashed without interfering with, or having to restart,
ndb. One can then construct a user defined set (discussed in section 4) which doesn’t
include the non-functioning nodes and continue.

While you are issuing commands ndb attempts to “second guess” the source file and line
number that you might want to see next. In particular the show state command already
discussed and the stack backtracing features described in the next section determine ndb’s
idea of the current position. The command

list
then prints out this and the following 9 lines of source code. So if show state indicated
[contour, 19] then 1ist might, for example, come back with

19: for(i=0; i<MAX SIZE; i++) value[i] = 0;

20:
21: /* The following code section communicates results
22: between processors. The excombine function gets

221

Informationrelated
to the source code

Name conversions,
l_l and
capitalization

DEAD nodes

Tracking the
source code

23: a sum over all nodes.

24: */

25:

26: excombine(&total, gbl add, sizeof(total), 1,
27: ALLNODES, NULLPTR, &type):;

28: printf ("Global sum = %f\n", total);

29:

Listing source code Further 1ist commands print out consecutive lines of code.

String searching

As well as listing lines starting at the current point several other possibilities are available.
For example,

list 10, 30
lists lines 10 through 30 inclusive from the current file.
list -5

writes out 10 lines starting 5 before the current position, and
list contour
prints out the first ten lines of the function contour.

This last option shows one way of overriding ndb’s idea of the current position. You may
print out specific functions by name or merely change source file by saying

file catastrophe.c

in which case further 1ist commands start at the top of the newly named file. Similarly
one can switch to a new function by typing

func error
which makes further 11 st commands start at the function error.

A final option available on some systems is the ability to search for expressions within files.
Thus, if you can’t remember where in a file the string combine occurs you can just search
for it with the command

/combine

which starts at the current point and searches forward through the file for the given regular

expression. One can similarly search backward by replacing the / with ?

7 Tracing back through subroutine calls

" Having discovered where the program is currently executing it is usually wise to find out

how it got there. In order to do this ndb has a command that lets you trace the sequence of
subroutine calls which led to the current point. Thus one might type

on 1,2 where
to yield the output

Node 1:
contour+0xl12e {contour.c,12] (0x400,0x44230434)

222

@0x77434
main+0x94 [noddy.c, 8] (0xl1l, O0xACl1l0) @Q@0x77660
start+0x38 [START.c,?] ()

Node 2:
contour+0xl2e {[contour.c,12] (0x400,0x00000000)@
0x77434
main+0x94 [noddy.c, 8] (0x1l, O0xAC10) @ 0x77660
start+0x38 [START.c,?] ()

The information here consists of the names of all subroutine calls together with the
instruction which will be executed whenever the called routine return’s and the first five
arguments to the function displayed in hex. (If a function has more than five arguments the
first five are shown followed by periods, . . .) The final item is the memory address of the
arguments. This is useful if either more than five arguments were passed to a function or
some of them are floating point values. Note also that the second column of the above
display contains the same source code/line number information that was available in the
show state command.

Note that in certain cases it may be necessary to tell ndb whether the program you are
debugging was written in Fortran or C. This is due to incompatibilities between compilers
which may not be apparent to ndb. In this case use the commands

ndbenv C
and
ndbenv F

to switch between languages.

WARNING: The stack tracing commands work best when the node
under investigation is stopped - either at a breakpoint or with some
error. This is because these operations require several messages to
be sent to the node being traced. If the node is actually executing
code the stack will look different upon receipt of each message
leading to inconsistent and possibly misleading results from ndb. In
particular references may be made to out of memory locations.

By default the stack tracing commands “unpeel” the stack through eight levels of
subroutine calls or to the top level function, whichever comes soonest. This can sometimes
be a nuisance, especially when large numbers of nodes are in use when it might be better
to merely display the last level of calls in order to avoid being submerged beneath a vast
amount of data. To do this one uses the extended form of the “where” command which
has the form

where 3

which displays the last three levels of a program. One can use the same method to display
more than the default number of stack levels.

A particularly useful command in this context is 1sin which only displays the calling

223

The stack trace

Programming
languages

The isin command
simplifies some
requests

Overriding
variable type
information

Scope rules for
variable names

Local variables

sequence for a particular function. You can, for example, say
on all isin contour

to display the arguments given to the contour function in each node. This is a useful
command since it reduces the amount of data produced by the full where command and
also indicates which nodes have not actually called the named function.

| 8 Examining Data

" Having found out where the program is dying or hung one typically wishes to print out data

values. In ndb this is accomplished with the print command. To examine the variable
ultimate, for example, you type

on all print ultimate

to which the response might be

Node 0O:

_ultimate = 42
Node 1:

_ultimate = 42
Node 2:

_ultimate = 42
Node 3:

_ultimate = 42

showing the value to be 42. Each variable will be displayed in a format appropriate to its
type as determined from the program - you can print structures, arrays and so on. If you
wish to override the default type in which a variable is printed the lower level formatting
command are available and are described in the accompanying reference manual.

In discussing the use of variable names it is obviously necessary to be able to distinguish
between various variables of the same name. In order to resolve these conflicts ndb follows
the following procedure when translating variable names.

1. Look for a local variable in the current function; the one to which the
program counter register is pointing or that named in the most recent func
command.

2. Look for an external variable.

As can be seen no attempt is made to find a local variable in other than the present function.
This can be explicitly requested by specifying a full name in the form function ‘name.
Thus to display the variable i in the routine contour one might need to say

print contour‘i

Note that this construction will fail if the function contour cannot be found in the stack
backtrace - i.e., this function must have been called and not have returned.

Another useful command for displaying data is dump which displays all local variables of
the named function, or the current function if no argument is given. So, for example, the

224

command
dump contour

will display all the local variables of the function contour together with its arguments
and a description of the place from which it was called. The variables are all displayed in
hex, but can easily be redisplayed in other formats using the tricks discussed in section 10.

A final command useful in manipulating data is compare which allows you to discover
where two or more nodes have different values. Typing

on 0-2 compare array, 128

in turn compares 128 bytes of memory starting at array on the first three nodes. The
length argument can be omitted for a default of 64 bytes.

9 Running programs - Breakpoints

As well as diagnosing program failures in a post-mortem mode it is possible to use ndb to
trace the execution of a program and control it by setting breakpoints. As execution reaches
a breakpoint the node is stopped and its state is then available to be studied using the
commands already described. Execution can then be continued from the breakpoint either
a single instruction at a time or until another breakpoint is found (or else the program
terminates in some way).

Breakpoints are inserted into the code with the stop command of which there are three
varieties. The first simply names a function and the breakpomt is inserted before the first
instruction of that function. For example

on all stop in catastrophe

puts a breakpoint in every node at the first line of the function catastrophe. Secondly
one can say

stop at 23
in which case the breakpoint is placed at line 23 of the current source file.

The final type of breakpoint is rather different and is obtained by giving the name of a
program variable, such as

stop error_flag

in which case the program continues until the named variable is altered in which case
execution immediately stops. This form is especially useful when it is known that memory
is being corrupted and the affected memory location is known but not the instruction that
causes the problem. (This form of breakpoint may not be available in some
implementations of ndb. Further, certain versions have to perform the memory checks in
software so that programs may run extremely slowly with this feature enabled.)

Note that breakpoints are inserted on nodes in the current set just as for any other command
- it is quite legal to have a breakpoint in some nodes and not in others, or indeed to have
different breakpoints in different nodes.

The current list of breakpoints is obtained with the

225

Comparing node
memories

Three types of
breakpoint

Removing
breakpoints

Different behavior
of ndb and
sequential
debuggers

show breakpoints

show br

commands. The breakpoint locations are listed together with a string of ones and zeros in
which a 1 in position j indicates that the listed breakpoint is active in node j. An index
number is also associated with each breakpoint which can be used in deletions.

Breakpoints are deleted with the delete command in the obvious way, e.g.,
delete 2
deletes the breakpoint whose index number is 2.

Having stopped at a breakpoint all of the commands of ndb are available to inspect the state
of the node. Execution can be continued either one instruction at a time (with the step and
next commands) or continuously with the cont command. The difference between the
single stepping commands concerns their action when the next line contains a function call.
step enters the function, stopping at its first source line, while next steps over it and
stops at the next line of the current function.

Note that the cont command functions differently from that encountered in sequential
debuggers in that it, by default, leaves ndb in control of the terminal. Thus one can type

on even cont

to allow the even parity processors to continue and then still use the debugger to issue
commands to, for example, monitor the message queues on the odd parity processors. In a
sequential environment the debugger would halt until the program being debugged stopped
or hit another breakpoint when one could again enter commands. The default situation
seems more useful in a distributed environment but the sequential behavior can be made
the default with the ndbenv command by typing

ndbenv wait
or
ndbenv w

While in the “wait” mode ndb continuously polls the nodes in the set which have been
continued until all have stopped at which point the user is informed and can again enter
commands to ndb. While the polling is going on ndb displays a message indicating which
node it is currently examining which can often be used to detect “hung” nodes or those with
large workloads. In any case control can always be given back to ndb by typing the
interrupt command (usually CTRL-C).

10 Using ndb as a calculator - format modification

" Itis occasionally annoying that ndb chooses to display things in hex rather than, shall we

say, single precision floating point. It is, however, possible to make ndb perform the

226

necessary transformations by using the “calculator’” mode. Any command line of the form
expression = format_specifier

causes the translation of the expression on the left to the format specified on the right. (The
format specification characters are the same as those used in displaying data). The
expression can be almost any expression containing integer values and variable
addresses with operators given by their C symbols. (i.e., left shift is << and logical and is
&)

As an example of this mechanism consider the previously mentioned gripe. Having
displayed a function call traceback with the where command one finds that the value
specified as an argument was 0x44230434 where one was really expecting a 4 byte
floating point value. To translate this one types

0x44230434 = £
which yields

Constant: 652.06567
as the true value.

If you can’t put your hand on your calculator ndb is also capable of general arithmetic so
that, for example,

0x123 + 4*(1 << 3 =-5) ~ 0200 =D
is a perfectly legal expression and results in the value 419.

As well as the various arithmetic functions used in expressions ndb also recognizes several
other symbols. The period symbol *“.” denotes the value of the current address on each
node. The values contained in machine registers are available using the < syntax so that
<PC or <IP is the value of the program counter register.

Finally, symbol names evaluate to their addresses NOT their values. To access the latter
value use the * operator; the value of variable i is *i.

Note that expressions may be used in most places where ndb accepts an integer value. The
“only exception is in set specification. You can’t say

pick 1+3
to select node 4.

11 Assembly Level Debugging

" ndb is designed to allow debugging at the level of the original C or FORTRAN source
code. In certain circumstances, however, is may be necessary to “get one’s hands dirty” and
descend to the machine instruction level. For those people who relish such prospects ndb
actually contains a second complete debugging system - the conventional UNIX tool adb.
This has a complete syntax for debugging at the assembler level and is described in the
accompanying reference manual.

Many users, however, have no wish to get involved with the machine at this level so ndb
provides a handful of commands to “do” assembly level debugging without getting too

227

Forcing type
conversions

Looking at
machine registers

Machine level
debugging without
learning adb

involved.

listi Display the machine code from the “current location”. By default ten
lines of assembler are listed including symbolic references to
variables and subroutines which should give some indication of their
correspondence to the source code. Merely repeating this command
prints out successive blocks of lines.

listi address, count
Display count lines of machine code starting at the named
address. This is obviously just another variety of the previous
instruction. You may omit the count argument for a default of ten
so that

listi contour
prints out the first ten lines of the function contour.

stepi Single step one machine instruction. If the next instruction is a
function call then go to its first instruction and stop. Steps over
“traps” to the operating system. stepi 10 single steps 10 times
and so on.

nexti Single step one machine instruction but go over function calls rather
than stopping inside them.

show regs Display the machine registers. This can be useful in cases such as
“illegal operand” or “numeric overflow” since it may be possible to
figure out which operand is illegal from the disassembled
instruction.

Many other “assembly level” commands exist but they should only be necessary in dire
situations. For more details consult the reference manual.

12 Miscellaneous Commands

" The simplest of these commands is the blank line - just repeatedly hitting the return key
repeats the last command entered. This is useful for scrolling through source code for
instance. (If you find this “feature” annoying you can disable it with the ndbenv
command.)

The most important of the miscellaneous commands is “help” which invokes the on-line
manual for ndb. The initial display describes the options which are available for further
selection and which are obtained by typing help followed by a keyword. For example,

help source

produces a voluminous display of the various commands intended for source level
debugging together with their arguments, defaults etc. As well as having information about
various topics of general interest one can also type

help keyword

where “keyword” is any of the special identifying words known to ndb. Thus, for example,

228

if you can’t remember the exact syntax of the 1ist command you can type help list.

Any command line that begins with ! or sh is passed to a shell for execution. This is useful
for looking at source files with editors or taking a break and firing up hack for a while.

ndb has an alias command similar to that of the UNIX C-shell. This allows one to redefine
any sequence of keystrokes to replace a regular ndb command. For instance it can get quite
tiresome continuously typing 1ist so one can say

alias 1 list

which allows the single letter “1” to replace the word “1ist”. For convenience one can
place any ndb commands, including alias commands, in a file called .ndbinit in either
the current directory or the user’s home directory and this will be read in and processed
whenever ndb is started.

If ndb is unable to find source files for various subroutines it is possible that it is not
searching the correct directories. This can be corrected in two ways. When starting up ndb
directories can be given with the -I switch so that

ndb -p 4256 -I/usr/jwf/code -I/usr/sys/buggy -d 4 toyland

starts the debugger in the usual way but adds two extra directories to the path which is
searched whenever a source file is needed. To see the current path list enter

use

which is also the second means of modifying the list. If the use command contains any
arguments then the given list replaces the current one. So, for example, the command

use /usr/jwf/code /usr/sys/buggy
has the same effect as the invocation of ndb shown previously.

Finally, commands are available to examine the state of the machine with regard to inter-
processor communication. As well as being able to display whatever hardware information
is available concerning communication (with the command show pregs) it is possible
to obtain information about messages both in transit and upon arrival at their destinations.
The command

show g

displays the messages that have arrived on a node together with their source, type and
length and a brief summary of the message contents. A sample output might be

src = 1 type = 2748 len = 4 (12 00 00 00)@ 0x00079634
src = 2 type = 2748 len = 16 (23 e4 ff ff ...)@ 0x00079804

which indicates the information described above for each message intended for this
processor. The final item in each line is an indication of the memory location at which the
message can be examined. This is useful in conjunction with the data formatting commands
described in sections 8 and 10.

Another useful command in the context of communication is show buffers which
analyses the usage of operating system resources on a node. This command is useful in
detecting situations where too many messages have been sent overflowing some internal

229

Command aliasing

Searching for
source files

Analyzing the
message queues

buffering and causing node failure.

The last, and possibly most useful, command is quit which exits from ndb and returns to
the command prompt. If you originally started your program running from within ndb you
will be prompted as to whether it should be killed or not. If the program started outside of
ndb it will be left alone. This latter option allows the debugger to be used at will to examine
the internal state of the nodes without adversely affecting the running program.

230

231

Performance Analysis

PM: A profiling system for parallel programs

p 1 Introduction

The most obvious goal of parallel computing is the acceleration of algorithms that execute
too slowly on conventional machines. While other goals, such as fault tolerance, are also
important most applications are ported to parallel machines with one aim in mind - running
rings around expensive supercomputers.

Since this goal holds such a central position in the realm of parallel processing it is
important that users be able to rapidly and effectively analyze their algorithms’
performance. Even in cases where absolute speed is not the most important factor it is
crucial to a thorough understanding of an algorithm to see the strengths and weaknesses of
particular parallelization scheme. In this way it may be possible to see where bottlenecks
occur and to devise alternative algorithms to avoid such problems.

Profiling parallel programs is, however, not so straightforward as on sequential computers.
In the latter case the only really important piece of information is “How long am I spending
in routine XXX?” and “Which routines should I speed up in order to accelerate the code
most?”’. The style of profiling most often used in this context is a simple printout of elapsed
times in each routine and, possibly, the number of times each was called and by whom.
Armed with this information one can attempt to speed-up certain areas of the algorithm
which are known to be heavily used. Alternatively, of course, one might be able to see that
there are no real bottlenecks and that, therefore, the code is running as fast as it possibly
can on the given hardware.

Parallel programs are trickier because more factors arise which affect their performance.
The most obvious, for a message-passing architecture, is the amount of time spent sending
and receiving messages. One of the most quoted parameters of such machines is the
“Efficiency” or “Overhead” which basically expresses how many times faster N processors
are than 1. Once the parameter is known one might want to break it down further into times
during which I/O is occurring, times when intermediate results are being accumulated
globally and times when processors are communicating boundary values, for example.

A final factor which may be extremely important in parallel algorithm development is “load
balance”. This sort of problem can take many forms but is most clearly characterized by
differences in execution speed of the different nodes in the parallel machine. Sometimes
this can be caused because the workload is not evenly distributed between processors
resulting in one node working exceptionally hard and correspondingly slowly. Many times
this will slow down the other processors who are waiting to communicate with the slow
node degrading the performance of the machine as a whole. Other problems may be more
algorithmic in nature - a particular scheme for parallelizing a program may have some
inherent defects which make some processors run more slowly than others. Detecting and
correcting this sort of problem requires an ability to observe activities in several processors
simultaneously at many levels of detail.

The ParaSoft profiling utilities are designed with just these goals in mind. The three tools
each serve one of the categories described above.

* The “execution profiler” monitors time spent in individual routines.

» The “communication profiler” assesses time spent in communication and I/O.

233

The importance of
performance
analysisinparallel
processing

Sequential vs.
parallel profiling

Factors affeciing
parallel program
performance

The profiling tools

Problems with
profiling in real-
time

The effect of
programming
models on profiling
systems

» The “event profiler” shows the interactions between processors and allows user
specified “events” to be monitored.

Each is kept separate so that the user is free to concentrate on particular problems as they
arise and can be selective in the amount of information available - it is one thing to provide
detailed analysis tools but quite another to present the user with 200 Megabytes of data to
analyze in order to understand the problems. As a result the majority of the tools have
graphical interfaces. Menu driven utilities allow the presentation of accumulated data in
simple graphical form under the complete control of the user. Optionally data can be
presented in both hardcopy graphical and tabular form for more detailed analysis.

As mentioned in the previous paragraph one has to be rather selective in the data acquired
for analysis. One of the more pressing needs for this ability is the fact that performance
tools which significantly alter the execution of the target program are of little use.
Essentially one ends up analyzing the profiling system rather than the user application! For
this reason the tools described in this manual are of the “post mortem” type - that is, data is
accumulated during the execution of the user program and then analyzed off-line, after
execution has completed. This is done for two reasons

I/O in parallel computing systems in notoriously slow - especially when compared to the
high computing power of typical machines. Even worse, I/O in one processor causes other
processors to be affected in routing messages to the outside world. As a result even limited
amounts of real-time I/O can cause significant modifications in program execution which
completely invalidate the profiling procedure.

Displaying profiling data “real-time” looks quite attractive but rapidly overwhelms the
human mind - particularly when more than a handful of processors are involved. Due to the
constraints mentioned above it is difficult to present enough context to render a wildly
varying display meaningful. Furthermore, saving the data on some physical medium for
later use introduces a sequential bottleneck affecting all processors.

The profiler is built around ParaSoft’s interactive graphical system Plotix and hence
supports all the same devices as that system. Among those included are; Tektronix 4010
and 4105, IBM EGA/VGA, SunCGI and the various graphical systems offered by NCUBE.
Hardcopy is supported in either Postscript or Hewlett-Packard form.

Some mention is made of the Cubix I/O system. This is a feature of ParaSoff's Express
operating system which makes porting sequential codes to parallel computers particularly
easy. For the present purposes, however, the only important question is whether or not your
application is using Cubix. This should be straightforward but if you have any queries
please call us. Having resolved this question different sections of the text and manuals will
apply to your application - the profiler interface is subtly different in the two cases. In this
manual applications which do not use Cubix facilities will be denoted as “Host-Node”

programs.

The rest of this document is arranged as follows; Section 2 discusses the “Execution
Profiler” which performs the function of common profiling tools on sequential computer
systems - monitoring of subroutine usage. Section 3 describes the “Communication
Profiler”, a utility designed to analyze and quantify the time spent communicating,
calculating and performing I/O functions. Section 4 is concerned with the “Event Driven

234

Profiler”. This is a tool which allows the analysis of user specified “events” with particular
emphasis on the interactions between multiple processors and which provides the most
dynamic view of program execution. Each section is divided into several parts which
discuss the instrumentation of user programs, the control of the profiling systems and the
usage of the analysis tools. Section 5 contains complete example codes in C showing the
use of the profiling system.

2 Execution Profiling

" This section describes what might alternatively be called “sequential profiling” since the
utilities described are those most familiar in the context of sequential programming. The
goal is to analyze the time spent in the various subroutines and functions that make up an
application. This allows the user to immediately focus attention on the most time
consuming areas which would benefit most by improvement.

The data accumulated enable the user, on a node by node basis, to evaluate the time spent
in each function and also that spent “idle” waiting on some external condition such as
communication with another processor.

2.1 General Profiling Commands

This system works on a statistical principle. Every few milliseconds a system routine runs
which looks at the current instruction being executed in the user application and increments
a counter noting that this particular memory address was in use. In this way one builds up
a histogram of the frequencies of hits in various areas of the program and hence the amount
of time spent in particular routines.

Obviously the technique is not foolproof but if the application executes for a sufficiently
long time to collect a reasonable number of samples then one can be fairly confident that
the results are representative of the true behavior of the algorithm. (If the code only takes a
few milliseconds to run, who cares anyway?). Among the obvious defects in this approach
are possibly sick behavior if the program cycles at a similar rate to the routine which logs
events. In this case one might always catch the program in a routine that actually doesn’t
take very long leading to incorrect conclusions - not very likely but possible. A more
irritating problem is that it requires a lot of memory to make up the program histogram.

Despite these deficiencies this style of profiling is standard in most sequential computing
environments and is part of the ParaSoft profiling system. It has the advantage that it’s
operation is mostly automatic - little or no change need be made to an existing program in
order to “profile” it. An alternative system, the event driven profiler, is discussed in section
4 which requires more of the user but is probably more reliable in delicate situations.

The two most elementary profiling functions are xprof on and xprof off which are
used to enable and disable the profiling system, respectively. This allows the user to
maintain fine control over the regions of the application that are actually analyzed - for
example it may be sensible to turn off the profiler if one section of code is known to be
much more heavily used than any other since one would otherwise be swamped by a vast
amount of information about something already understood.

The heart of the profiling system is provided by the profil function. This tool is based

235

Statistical profiling

Possible pitfalls in
statistical profiling

Setting up the
execution profiler

on the standard UNIX utility of the same name and shares the same arguments
profil (buffer, buflen, start_addr, scale);

The first argument is a pointer to a buffer into which the profiling data will be dumped; the
length of this buffer is the second argument. The start_addr argument specifies the
lowest address to be considered in profiling the program. This is most easily discovered by
searching through the “program map” files that are often produced by compilers.

The final argument, scale, has a rather obvious meaning but a rather bizarre
interpretation. It is used to specify how many memory addresses to “bin” together. In order
to conserve memory when profiling the system actually builds a histogram of memory
locations and this argument specifies how wide the histogram bins should be. The method
in which this is done, however, is quite obscure. The simplest way to explain this value is
just to demonstrate how various values work, and then let your imagination take over;

scale = 0x10000 Maps individual addresses into separate bins.

scale = 0x8000 Maps each pair of instructions together into the data buffer.
scale = 0x4000 Maps four instructions together into a single profiling bin.
and so on.

This function does not actually turn the profiling system on; to do this one must use the
xprof on function. A sample code to use this profiling subsystem, therefore, is

/*

* Sample program demonstrating the setup of the
* execution profiling system

*/

#define SCALE (0x2000)

int profbuf([2048];

extern int myfunc();

main ()
{

/* Enable profiling system, and turn it on. */

profil (profbuf, sizeof (profbuf), myfunc, SCALE):
xprof _on();

/* Algorithm phase 1., profiler running */
/* Algorithm phase 2., turn profiler off */

xprof off ()

236

In this example we choose to profile at a resolution of eight bytes, selected by the value of
the SCALE macro, with an 8 Kbyte buffer. Since the individual bins are 4 bytes this means
that we have a range of 16 Kbytes in total (2048 bins, each with a resolution of 8 memory
addresses). The starting point is selected as the beginning of the function myfunc. Since
16 Kbytes is not an awful lot of space for a large application we might expect some misses
- at times the profiler will detect that the program is executing at addresses outside the range
we have covered. These cases do not, however, crash the system but rather get logged into
a special histogram bin with the label “misses”. When analyzing the profile later the
number of “misses” will be reported allowing a good guide to how badly the profiling range
was selected. (For an example see Figure 1)

This interface is not especially clean since it requires either good guesswork in picking the
profiling range or else some time spent looking through a memory map generated by the
compiler or linker. At some future date the system will interact directly with the user
application and compilers to figure out a sensible range and call the profil routine
automatically.

2.2 Details for Cubix Programs

In addition to the general routines discussed in the previous section users of the Cubix
system have access to additional routines to facilitate the profiling process.

The xprof ing function may be called to inquire about the runtime status of the -m
switch on the Cubix command line. Consider an application which is normally executed
with the cubix command

cubix -n 4 noddy <app.in

In this case the function xprof _ing will return O indicating that no appropriate runtime
switch had been set. Modifying this command to

cubix -n 4 -mx noddy <app.in

causes xprof_inq to return 1. This allows one to have the node application turn the
profiling system on or off according to the setting of a runtime switch - no recompilation
or special input is required. Note that the -m switch comes in several flavors. The ‘x’
character in the above invocation is used to specify the “eXection profiler” - the values ‘c’
and ‘e’ are also allowed and perform similar functions for the other two profiling
subsystems. Note that the various options can be combined so that the switch ~mxec will
also generate a positive response from xprof ingq since it contains the ‘x’ character.

The second Cubix function is xprof end. Called with no arguments this function is
responsible for turning off the profiler, resetting its state and dumping out the profile data
that has been accumulated to a disk file on the host computer. It must be called
synchronously in all nodes and is typically used at the end of an application in code that
might take the following form

/*

* Interface to execution profiling system:
* CUBIX program.

*/

237

“Missing” the
profiling buffer

Enabling the
profiler at runtime

Dumping the
profiling data

#define SCALE (0x2000)/* Map memory in 8 byte bins */
int profbuf[2048];
extern int myfunc();

main ()
{
/* Enable profiling system, and turn it on IF -mx
* switch given
*/
profil (profbuf, sizeof(profbuf), myfunc, SCALE);
if(xprof_inqg()) =xprof on{();

/* Application code */
/* Application code done. Dump out profile if
* requested
*/
if(xprof_ing()) xprof_end():;
exit (0);

The xprof_end function creates a file called “xprof.out” in the current directory.
This name is chosen since it is the default for the profiling analysis tool discussed in section
2.4. Sometimes, however, a profile may be required more than once in the run of an
application. The code might, for example, consist of multiple disjoint *“phases™ which it
might be convenient to profile separately. In this case we can use the xprof _end function
multiple times but each use must be followed by a call to the rename function. Otherwise
the second call would simply overwrite the “xprof . out” file with another of the same

name. Sample code to achieve this effect is

/*

* Demonstrating the use of the "dump" functions to
* make multiple output files containing profiles of
* different phases of an application. CUBIX program.
*/

main ()

{

/* Application phase 1. */

profil(...);/* Initialize profiler */
xprof _on();/* ...and turn it on */

xprof_end();/* Write out prof data */
rename ("xprof.out", "phasel.out");

238

/* Application phase 2. (Don’t profile since xprof_ end
* turned system off.)
*/

/* Application phase 3., reset profiler, and turn on */

profil(...);
xprof on{();

xprof_end();/* Write out prof data again */
rename ("xprof.out", "phase3.out");

Since we wish to profile phases 1 and 3 of the application separately we use the
xprof_end function to write out the profile data. The rename function is used to keep
the data in files with names of our choosing rather than xprof.out in which case the
second call to xprof _end would overwrite the data file created by the first. Note the calls
to xprof_on and profil which restart the profiler for phase 3 of the application.

2.3 Details for Host-Node Programs

Applications which have user written programs running on the host computer have a
slightly different interface to the mechanics of dumping out data files to the host disk. In
this case two functions are provided; xprofcp for the host computer and xprofelt for
the nodes. The host routine has no arguments and merely serves to read in data from the
nodes and output them in a suitable format to a disk file for later analysis. The node routine,
xprofelt has a single argument which is the name of the file in which data should be
placed.

Typical code to use these routines has the following form.

1. Host Program

/*
* Dumping execution profile data to disk file.
* Host program.

*/
main ()

{
/* Allocate nodes, load programs */

239

Dumping the
profiling data for
analysis

/* Execute application */
/* Application finished, dump profile data */

xprofcp () ;
exit (0);

2. Node Program

/*
* Dumping execution profile data to disk.
* Node program.
*/
main ()
{ .
profil(...): /* Initialize profiler */
xprof_on(); /* Enable profiler */

/* Node application code */
/* Node application over, dump profile data */
xprofelt ("xprof.out");

exit (0);
}

Notice that the name chosen for the profile data is the same as in the Cubix case. This is
merely a convenience measure since it allows one to miss out an argument when using the
analysis tool - if the file containing the profile data is “xprof . out” then you don’t need
to give it’s name!

A final important point is that the xprofcp and xprofelt routines may be called
repeatedly in a single application. The only constraints are that for each call to xprofelt
in the nodes there must be a call to xprofcp in the host computer, and each call to
xprofelt must be made “loosely synchronously”. Also important is the fact that each
call to xprofelt resets the internal state of the execution profiler and turns it off.

24 Analyzing the Execution Profile - xtool

After a file containing profiling data has been collected it is analyzed with the xtool
command. Two arguments must be supplied; the name of the program which is to be

240

Node 0 <

Computation 5675 events (61283.82 milliseconds)
Idle : 134 events (1450.63 milliseconds)
Profiler misses : 459 events (4956.70 milliseconds)

Routine Events Fraction

AN

mult 1120 +/- 30 179

cg 790 +/- 12 126

qqonvec 603 +/- 30 .096

qonvec 526 +/- 6 084

sysloop 500 +/- 2 .080

**k¥ misses *¥* 459 +/- 12 073

cif 392 +/-2 .063

cfi 390 +/- 12 .062

pranf 330 +/-2 053

update 309 +/- 10 .049

measure 300 +/-2 .048

rotmeas 140 +/- 2 .022

*kk jdle *** 134 +/- 1 021

gqqmeas 102 +/- 5 016

Ipstrmak 40 +/-0 .006

rotstrmak 34 +/-0 .005

qqstrmak 33+/-0 .005

observ 25+/-0 .004

norm 23 +4/-0 .004

setpar 4+/-0 .001

matpass 4+/-0 001

C

Figure 1. Sample Output from the Execution Profiler

profiled and the name of the file containing the written data. If this latter is “xprof . out”
then, as advertized in the previous section, you can omit this last argument. A typical
invocation, therefore, is

xtool noddy
The output from this process will consist of several tables similar to that shown in Figure 1.

The information provided by this utility is described below. The index letters refer to the
figure.

A Node identifier. A separate table is presented for the data from each node

241

The
communication
profiler collects
data about
interprocessor
communication

and is identified by its processor number.

B Node Utilization. The information here indicates active and idle time in the
CPU and also the proportion of “misses” in the profiling histogram. “Idle”
time consists of periods when the CPU is actually idle - such events only
occur when a node is blocked waiting for communication to complete. The
misses quantity provides some means of assessing the success or failure
of the profiling range selected. If a large percentage of the profiling events
missed the selected range then the tabulated data may be a poor
representation of the application performance.

C Subroutine analysis. For each node a table is presented of the twenty
“busiest” routines based on the number of profiling “hits” in that function.
Together with the *** misses *** entry this information serves to
indicate routines which might benefit from fine-tuning operations.
Occasionally this information might also show up explicit defects in the
parallelization scheme selected.

Depending on compiler support there may also be a field indicating the number of calls to
each function and the mean time of execution for each. If present this data will also be
displayed in the area denoted C in the figure.

The statistical nature of the profiler can again be seen in the ‘+/-’ entries in the middle
column of the display. Because of the finite width of the histogram bins it is not always
possible to associate a number of “hits” with a single routine - the bin may overlap two (or
more) functions. In this case xt 001 assigns a portion of the hit count to each of the affected
routines and indicates by the ‘+/-" notation the possible error.

3 Communication Profiling

" The most obvious difference between a sequential program and its parallel counterpart is

in the interaction between the multiple processors. The most basic of these interactions is
the communication traffic between nodes. The “communication profiler” is a tool designed
to monitor internode message traffic and estimate overheads in various types of
communication.

On each node data is accumulated to measure

» Time spent calculating, communicating between processors and performing I/
O functions. Leads to an estimate of program overheads and “Efficiency”.

+ Number of errors encountered in communication systems. Various types of
common error conditions can cause programs to behave differently than
expected. This provides a quick and dirty check to see if such a fact might
explain mysterious bugs.

* Total number of calls to the communication system. Provides a simple estimate
of load imbalances.

As well as keeping track of the above statistics for each node the following data are
maintained in each node on a function-by-function basis for every entry point into the
communication system

242

+ Number of calls to each individual function.
* Number of errors incurred in each function.

+ Distribution of return values from each function. Each function in the
communication system returns a value indicative of the nature of the
communication performed; message length written, message length read,
number of objects broadcast etc. This allows the user to evaluate the
communication policy of an algorithm - in particular it may be more effective
to bundle up short messages into longer communication packets rather than
sending data piecemeal in short messages.

3.1 General Profiling Commands

The communication profiler is almost completely automated requiring little interaction
from the user. Two routines cprof on and cprof off are provided to control the
profiler. They turn the system on and off respectively. This allows complete selectivity as
to exactly what portions of the code are profiled. This can be very important - when using
the event-driven profiler of section 4 it may be important to suppress the recording of
communication events to conserve memory. More will be said about this point in the
appropriate section.

3.2 Details for Cubix Programs

Applications running under Cubix have a particularly clean interface to the communication
profiler. At run-time one can turn the system on or off using the —m switch on the cubix
command line. This switch is a general purpose facility for controlling the profiling systems
and the particular value of concern in this section is the ‘c’ subswitch. Consider, for
example, a typical Cubix application which is executed with the command

cubix -d 4 noddy 1.2 6 20 20
If this line is modified to
cubix -mc -d 4 noddy 1.2 6 20 20

then the communication profiler is enabled and collection of statistics will be performed.
Note that this switch is a simple variant of the ~mx switch introduced in the previous
section for “execution profiling”. In fact the two may be combined as -mcx to enable both
systems. If the application were executed in the above manner then a file cprof.out
would be written in the current directory at completion which contains the profile data.

The above construct is actually implemented in terms of two functions which are also
available to the user; cprof _inqgand cprof end. The former merely queries the host
file server to see if the ~mc switch were specified on the command line while the second is
used to write out the final communication profile to disk. Either function may be used at
any time from within an application with the caveat that each invocation of cprof end
writes a file with the name “cprof . out”. If it is to be executed multiple times then each
version of the output file should probably be saved under a different name with the
rename function. (See similar discussion in the context of xprof_end.) Note that
cprof_end also turns off the profiler and resets its internal state. This allows further data
collection to begin with a “clean slate”.

243

Enabling the
profiler at runiime

In the simplest case no modifications need to be made to an existing Cubix in order to use
the communication profiler. The only change is the addition of the -mc switch at runtime
which fires up the system and writes out the data; the other functions are merely provided
for extra control should it be needed.

3.3 Details for Host-Node programs

The interface to the communication profiler for applications that have programs to run on
the host computer is very simple. The only difference from the Cubix is that the user has
to coordinate the writing out of the profile to disk using the cprofcp and cprofelt
functions. At any point one can write out the current profile by calling cprofcp in the host
computer and cprofelt in the nodes. cprofcp has no arguments while cprofelt has
one: the name of the file to which data is to be dumped. Note that this is slightly different
from the Cubix which always used the same file name for the profile output. Also the
profiling system must be explicitly tumed on with a call to cprof on. Note that the
cprofelt function turns off the profiler and also resets its data so that further profiling
starts from zero. The prototype code for an application running with a user host-program is
as follows;

1. Host Program

/*

* Demonstration of host-node interface to routines
* which dump out communication profile data.

* Host program. ’

*/

#include "express.h"

main ()
{
/* Allocate nodes, load programs */

if (exopen ("/dev/transputer", 4, DONTCARE) < 0) {
fprintf (stderr, "Failed to allocate nodes\n");
exit (1) ;

}

/* Load and execute application */

ooooooo

/* Application finished, dump profile data. */

cprofcp():;
exit (0);

244

2, Node Program

/*
Demonstration of host-node interface to routines for
dumping out communication profile data.

Node program

* %

*

*x/
main ()

{
/* Turn on communication profiler */

cprof_on();

/* Node application code */

/* Node application over, dump profile data. */

cprofelt ("cprof.out")
exit (0);

Notice that the node code explicitly enables the profiler and has to dump out the final data.
We chose the name “cprof . out” for later convenience since this is the default name for
the analysis tools - any other name would be allowed. Also notice that one is completely at
liberty to call cprofelt many times within a node application to dump out profiles from
different parts of the code. The only constraint is that there must be a corresponding call to
cprofcp in the host program for each cprofelt in the nodes.

3.4 Analyzing the Communication Profile - ctool

After program execution has completed one or more files should be left containing the
communication profiles for the application. These are analyzed with the ct ool utility. For
the moment we will neglect the graphical interface and simply present a tabular version of
the profile. This is achieved with the command

ctool ~p

which expects to find the communication profile in a file called “cprof.out”. If the file
was renamed for some reason then one might instead use

ctool -p phasel.dat

to read profiling information from a file called “phasel.dat”. The result of this
command is a table of the form of Figure 2.

The various fields in this display are summarized as follows

A. A separate section of the table is provided for each node, and is identified

245

The
communication
profiler’s data file

Tabular output
with no graphics

Node 0 B
Internode Communication: 13855.00 milliseconds /
1/O communication : 1450.63 milliseconds

Calculation : 240356.04 milliseconds
Routine Calls Time Emrs |0 1 2 4 8 16 32 64
exbroadcast 45 37129 O 0 0 0 0 0 0 0 0
excombine 2 457 O 0 0 0 2 0 0 0 0
exconcat 2 1029 O 0 0 0 2 0 0 0 0
exread 19 554457 O 0 0 0 19 0 0 0 0
exchange 33 453 0 0 0 2 0 29 0 0 0
exwrite 421 21957 O 12 0 0 3 375 0 8 10
\ D
Figure 2. Sample Communication Profile C

by its processor number.

B. A brief summary of the total times spent calculating, performing I/O and
communicating between processors is provided with times in milliseconds.
Note that basic communication with the host using primitives such as
exread, exwrite, exreadfd etc. is counted as interprocessor
communication; only standard I/O functions such as read, write,
printf, fopen etc. are classed in the I/O category.

C. For each node there is a breakdown of the calls to each of the basic
communication functions. For each function that was called at least once the
number of calls, the total time in that function, and the number of errors
returned by that function are shown. Times are again in milliseconds.

D The final panel of the display shows a brief analysis of the way in which the
various functions were called. The tabulated values show the frequency of
return values from a function, binned in logarithmic steps. Thus, the first
column indicates the number of times that the given function returned 0 to
its caller, the first column the number of times 1 was returned etc. In figure
2, for example, we see that Node O called exwrite 421 times and the
return value was between 8 and 15 375 times. The exact interpretation of

246

this information obviously depends somewhat on the function being called
but, in almost all cases, is related to the message length being dealt with. The
number of bins displayed can be modified with the ‘-b’ switch.

The information tabulated by this command allows a rather detailed study of the
algorithmic communication patterns to be made. In particular we have found it invaluable
for finding program errors in which too much data is sent in some system call. This type of
error tends to show up very easily in the tabular output. Alternatively a graphical interface

Quit

Func. vs. time

Func. vs. calls

Time vs. node

Calls vs. node

Usage vs. node

Erase

Figure 3. Initial ctool Menu and Display

is available for displaying the data. This is accessed even more simply by omitting the -p Analyzing the
switch from the ct ool command - in most cases one simply executes communication
profile graphically
ctool
although occasionally one may have to give the name of the file containing the profile data.
After a couple of seconds of initialization a diagram similar to Figure 3 should appear.

247

Analyzing two
degrees of freedom
at a time

Dealing with large
numbers of
processors

Various pieces of the display are used for special functions

Menu Area One selects from the various options available by positioning the
cursor over one of the boxes in this area and “clicking”. The text
in each box should help you make the appropriate selection. (If
your system has a mouse you should be able to make selections in
the usual “point-and-click” manner. If not use the arrow keys on
the numeric keypad to move the cursor and strike any
alphanumeric key to make a selection. The “HOME” key toggles
between fast and slow cursor motion)

Display Area This area of the display is used to present graphical data. Various
types of graphs are available to show different aspects of the
communication profile.

Legend Area While data is being displayed graphically this box should contain
a “legend” indicating the meaning of the various items shown.

The selections in the main menu which should now be visible represent various ways of
showing profile data. There are essentially three variables involved in each case; the
particular function, a node and an “interesting” quantity which in this case is either “time”
or the number of “calls” to a particular function. Since graphs are really designed to show
only two variables - one on each axis, there are several ways of showing the data.

The first display to select should be Function vs. Calls. This presents a horizontal bar
chart showing the number of times each function has been called in each processor. An
example is shown in Figure 4

Notice that the various processors have been displayed by individual (color-coded, if you
have a color device) bars and that a key appears in the “Legend Area” showing which
processor is which. In the example shown we assumed that only four processors were being
profiled which fit quite nicely on the display. If you have 512 nodes then the bars are going
to be awfully thin! In this case ct 0ol leaves out all but the first 16 encountered. However,
you can control which bars you see by using the menu which should also have appeared
(See Figure 4). Two of the options should be Add Nodes and Remove Nodes which
allow you to either add or delete nodes from the display.

248

Legend[| Node0 N\Node1 EEf Node 2 Node 3

Back

nwrite
nread
vwrite
vchange
vread
exwrite
exrecv
exread
loadelt
dumpelt
exchange
cread
cwrite
concat
combine
broadcast

Calls to Communication Routines

e

Add Nodes

Remove Nodes

Add Funcs

Remove Funcs

Hardcopy

1 ! |]
100 200 300 400
Number of calls
Figure 4. “Function vs. Calls” display

249

Legend[| Node 0 [\YNode1 [Node2 Node 3 Done
0
Calls to Communication Routines 1
nwrite 2
nread
vwrite 3
vchange
vread
. pzooezezeczeseeal
exwrite —
eXrecv
exre ad .’!.’.’.’,’.’.’.’.’.’.’.’.’.’.’.’.’.’.’.’”””””"’l”"’l- l
loadelt All nodes
dumpelt
exchange Even parity
cread Odd parity
cwrite :
concat Neighbors of
combine -thru-
broadcast :@
I ! ! I next page
0 100 200 300 400 rev
Number of calls P page

Figure 5. Node Selection Menu

Selecting either of these options yields yet another menu which looks like Figure 5.

This menu is typical of the lower level menus. It has a Done entry at the top which takes
you back to the previous selection and then a whole bunch of other options. In order to

Selecting nodes for select some nodes for either addition or removal you can
displ
P * Select individual nodes by clicking on their numbers. As you do this they should
change pattern to let you know that they have been selected.
» Select all nodes by clicking on the All Nodes box.

» Page through the nodes, if there are too many to fit on the menu all at once.
Page Forward and Page Back move through the set of nodes.

» Select a range of nodes by clicking on the first number, then the Thru box and

250

then the second number. You can switch pages in the middle of this operation
if the range spans multiple pages.

» Select the neighbors of a particular node. One interesting property of parallel
machines is the way in which one node’s behavior can affect those connected to
it. To select this option click in the Neighbors of box and then the node whose
neighbors you want to pick.

¢ Select nodes according to their “parity”. This concept corresponds to the
familiar “red-black” coloring often used in parallel processing. Node 0 is
defined to have even parity and its neighbors to have odd parity. This then
extends naturally so that no even parity node is adjacent to another even parity
node, and similarly for the odd parity processors.

After selecting one (or more) of the options from this menu, clicking Done takes you back
to the previous menu level and you will see the consequence of your selection on the
“Display Area”. If, for instance, you decided to add all 512 nodes to the display you are
probably waiting quite a while for the very tiny graphs to get drawn!

This technique is one way of getting additional node .displays onto the screen. Another
method is to “lose interest” in particular functions. By default every function has a trace
even though it may never have been used. To remove some functions from the display
select the Remove Funcs option. The menu that appears looks a little like the node
selection menu - it has Done at the top and then a list of communication functions. You
click away at the names (which should change background when selected) until the
uninteresting ones have been deleted and then select Done. This returns to the previous
level and updates the “Display Area” with less functions, and correspondingly more space
for node displays. Another thing to notice is that the horizontal axis rescales whenever
functions are added/deleted so it is occasionally useful to remove functions whose usage
dwarfs the others to force a magnification of the horizontal axis showing more detail. The
deleted functions can always be restored later if required.

The final option on this, and the other display menus, is Hardcopy. Clicking on this box
saves a copy of the current display (Without the attached menus) in a form suitable for
printing. Either PostScript or Hewlett-Packard devices are supported.

Once all interesting information has been extracted from this display one can click on the
Back box to return to the main selection menu. The box Function vs. Time presents the
same style of graph but with the horizontal axis displaying the time spent in each function
rather than the number of times it was called as in the previous case. The two boxes Time
vs. Node and Calls vs. Node present alternative views of the profile data.

These options present typical graphs of either the time spent in a routine or the number of
calls to a routine against the processor number on the horizontal axis. Individual curves are
drawn for each function selected by the user. Clicking on the Time vs. Node box, for
example, should produce the display shown in Figure 6.

By default no curves are drawn on these graphs which makes them rather dull to look at.
However, the menu selection Add Funcs should display a list of functions for which
curves can be added to the “Display Area”. The selection technique is just as before - click
away until enough curves have been selected and then Done takes you back to the previous

251

Dropping functions
from the display

Looking at
program
“efficiencies”

Legend: Back

Time in Communication Routines Add Nodes

Remove Nodes

Add Funcs

Remove Funcs

Hardcopy

0 1 2 3
Processor Number

Figure 6. Basic display for “... vs. Node” Graphs

level and displays the results. Also notice that the “Legend Area” is updated to reflect the
new style of graph. Selecting exread, exwrite and exchange, for example, might
lead to a display like that of Figure 7.

This type of display is obviously better suited to showing data from a lot of processors.
Even so it occasionally becomes too crowded and the Add Nodes and Remove Nodes
menu selections are available as before. Note, however, that it doesn’t make too much sense
to pick out weird node combinations for this type of display and, in fact, ct 0ol will ignore
you if you try. While displaying data in this fashion only the highest and lowest processor
numbers are considered and everything in between is also plotted.

The final graphical tool available is obtained by selecting Back from this menu level and
Usage from the main menu. The result will look something like Figure 8.

252

Legend: ~ exread — exwrite exchange

Back

Time in Communication Routines
4000

3000

Time §
(millisec) ’

2 000 — ‘-n"unuuuunnnouuu"unnunn-. "‘

1000 S

Add Nodes

Remove Nodes

Add Funcs

Remove Funcs

Hardcopy

0 | | [

0 1 2 3
Processor Number

Figure 7. Time vs. Node” display for several functions

253

Contents of
“events"

Node-Node 255 Idle Back
10 <o Node Utilization Add Nodes
E - o Remove Nodes

Add Funcs

0.75
Remove Funcs
Hardcopy

0.5

0.25 —

0.0

I
1

! I
2 3

Processor Number

Figure 8. Node Usage Display

Along the horizontal axis are the processors just as in the previous displays. For each
processor a stacked bar chart is presented showing the division of time between the three

fundamental tasks; calculation, interprocessor communication and I/O.

Termination of the profiler is achieved by selecting Done from the main display menu.

4 Event Driven Profiling

" The two profiling techniques discussed so far have been tailored to examining the behavior

of nodes in isolation. The event driven profiler is provided to allow more detailed
examination of the interaction between various nodes as time progresses through the
application. An “event” is a user-specified point in the execution of an application which
will be recorded in an internal log for later analysis. Together with the fact of the event’s
occurrence one can also record

+ The time at which the event occurred.

254

¢ An “index” value indicating the nature of the event.

e A program variable whose value at the time of the event will be recorded. This
will help in later identifying events during analysis.

As well as the above data items which are recorded every time an event occurs the
following can optionally be supplied

« A “title” which identifies all events with a given “index” value.

e A printf-style format string which will be used when printing the value of
the program variable stored at the time of the event.

These last two items are intended to facilitate identification of program events in the
analysis phase. They may be omitted if desired.

It is important that a user program containing event specifications does not have to incur
the overhead of the profiling system. As with the communication profiler discussed in the
previous section one is free to turn the event profiler on or off at will, completely
independently of the other profiling systems.

Also in common with the communication profiler some of the details of the user interface
differ slightly depending on whether the application is running under the Cubix system or
with a user written host program. These details are discussed later in this section after a
discussion of the features which are common to all applications.

4.1 General Profiling Commands

The most obvious of the event profiling commands are eprof _on and eprof off.
Called with no arguments these functions serve to turn on and off (respectively) the event
profiling system. This allows fine control over the areas which will be profiled and also lets
completed applications run intact without removing the profiling commands.

The most important function in this section is eprof add which causes an “event” entry
to be added to the log-file. Its usage is

eprof_add(index, datum);

The first argument is an identifier for the “type” of event being recorded which allows one
level of identification when analyzing the trace. One example of its use might be to flag all
calls to a particular routine with index = 1 while calls to another routine might have
index = 2.The second value is another means of identifying events. It is a 32-bit integer
value. A good example might be a loop counter or the value returned by some function.

The following code illustrates one use of these functions

/*

* Sample program demonstrating the use of the event
* profiler.

*/

#include "express.h"

main ()

255

Techniques for
identifying events
during analysis

Registering user
events at runtime

Initializing the
event system

int iter;
float wvalue, crunch{():;

/* Initialize profiling system to defaults, and turn
* it on.
*/
eprof init (DONTCARE, DONTCARE) ;
eprof _on{();

/* Set up algorithm, loop several times - each time
* record an event of type 1 and also record the loop
* index.
*x/
for(iter=0; iter<100; iter++) {
eprof_add(1l, iter);

/* Now record a type 2 event for the completion of the
* CRUNCH function and also save the value it returned.
*/

value = crunch(iter);
eprof_add(2, (int)value);

enditer (value) ;

}
exit (0);

Notice the call to eprof init in the previous example. This is important. Each call to
eprof_add stores additional information in an internal log-file using up memory on each
node. The amount of memory set aside for event logging is determined by the call to
eprof _init which must occur before attempting to turn on the profiler, or use any of the
event profiler functions. This routine takes two arguments

eprof_init (numlogs, numlabs);

in which the first argument specifies how many event log entries should be allocated. If an
attempt is made to write more log-file entries than specified in this call the extra are
discarded and a warning is issued whenever the data is analyzed. The second argument
specifies how many “title” or “label” entries will be made to aid in identifying the program
state when an event occurs. Either argument may take the special value DONTCARE,
defined in express.h in which case a default is chosen. One important fact about this
routine is that it is used to synchronize the clocks on the various processors and must,
therefore, be called “loosely synchronously” in each processor. A strict definition of this
term can be found in the Cubix documentation but briefly it means that the call must be
made at a point where each node is free to communicate with all the others - i.e., there must
be no pending communication calls, unread messages etc.

256

Having described how the system is initialized and how events are entered into the log one
must consider the steps taken to aid in analyzing the profile data. The etool utility
presents “time-lines” for the individual processors upon which are superimposed the user-
specified events. Each event is identified in this display with its “index” argument from the
eprof_add call responsible for its existence. One problem with this style of display,
however, is that it is often quite tricky to figure out the correspondence between the time
lines and what the actual application is trying to do. This problem is somewhat alleviated
by intelligent choices of the “index” parameters. Since each event is labelled with this
value one gets a rough guide. '

The connection can be strengthened by specifying a title field for each “index” value with
the eprof label call. This is called with three arguments

eprof label (index, title, format);

We will return to the last argument later but the “t it 1e” is merely a character string that
will appear in a “legend” on the display of the time-lines. Each “index” can have a unique
“title” assigned to it in this manner allowing reasonable identification of the various event
types. In the previous example one might add the calls

eprof label (1, "Top of major iteration loop",
"Iteration %d");

eprof label (2, "After crunching”,
"crunch returns %d4d");

Note how the title strings identify the purpose of the two types of events. In addition to
displaying the user events on the time-lines et 001 also allows access to a second layer of
information - that supplied in the second argument to eprof_add. This information is
available upon request and interacts with the last argument to eprof_label. Whenever
the next layer of detail is requested the user datum corresponding to the selected event is
passed, together with the last argument to eprof label to be printed out. Thus, for
example, one might inquire about the details for a particular event and be told

1. T = 246.23 ms, "Iteration 39"

The information contained here is the “index” number, the time at which the event occurred
and the user data item formatted in conjunction with the format string given to
eprof_label. Notice how this information can be used to exactly locate a position on
the time line according to which iteration of the major loop it signifies. Even program bugs
might be detected this way since clicking on a type 2 event might yield

2. T = 253.60 ms, "crunch returns -2461"

which, in conjunction with the previous output, might be enough to detect that the program
is going crazy at iteration 39 since the value returned by the crunch function is negative.

Careful use of the labelling facility is the key to using the event profiler. Without it one
often has to resort to guesswork in order to relate the events shown on the time lines to the
program’s behavior. If the labelling is performed carefully, especially the specification of
the second piece of information, the “data item” argument to eprof add, the event
profiler will be a rich source of information about the performance (and maybe even bugs)
of an application.

257

Analyzing the event
data

Adding labels to
events makes them
easier (o find

Logging
interprocessor
communication as
“system” events

Measuring
statistics at the

level of groups of
source lines

The event profiling tools described here can also be used to record important “system”
events. A particularly important class of interesting events are communication calls
between processors. If the event-driven and communication profilers are both enabled (i.e.,
eprof_ on and cprof_on) then each communication call also makes entries in the log
file. As well as recording which function was called and the value it returned to its caller
one can also determine exactly how long each communication call takes. This is invaluable,
for instance, in determining the affects of poor load-balance - typically one processor will
wait for an excessive amount of time in communicating with an overworked node.

This latter is actually another method of performing communication profiling. Even if no
user events are specified the system can still be used to log “communication events”
allowing a detailed analysis of the internode communication patterns to be performed.

4.2 Measuring time intervals with “Toggles”

The event profiler also provides a mechanism for measuring important statistics in relation
to section of program code. While the “execution profiler” described in section 2 is useful
for collecting information at the level of individual subroutines it is often important to be

‘able to analyze code at a finer level, or to gather statistics about the frequency with which

a given program segment is being used.

To facilitate the gathering of such statistics the event profiler uses the “toggle” concept. A
“toggle” is a structure which gathers information about the time spent within a particular
program segment and the number of times this code is executed. A simple example of its
use is shown in the following code

#include "express.h"
ETOGGLE looptog, grindtog;
main ()
{
float Energy, grind_away();
int iter, 1i;

/* Initialize toggle data structures. */

eprof _toginit(&looptog, "Main iteration loop"):;
eprof toginit (&grindtog, "Calls to grind away");

/* Start application code, then go into main loop */

for(iter=0; iter<l100; iter++) {
eprof toggle(&looptog);

/* Other processing going on here.... */

258

for (i=0; i<4; i++) {
eprof toggle (&grindtog);
grind_away (Energy, 1i);
eprof toggle (&grindtog);

}

eprof_toggle (&looptog);

}
/*
* Dump data to host for later analysis.....
*/

exit (0);
}

We set up two “toggle” variables using the ETOGGLE type defined in the express.h
header file. We then surround interesting pieces of code with identical calls to the
eprof_toggle function which alternately starts and then stops recording information
about the code section. (This is why the tool is known as a “toggle” - successive calls
alternate between turning it on and off.)

The statistics gathered include the time taken to execute the enclosed call and the number
of calls to this code fragment.

Each toggle structure must be initialized with a call to eprof_toginit as shown at the
top of the previous example. This notifies the system of the use of the particular variable
and also allows the user to associate a title string with the indicated “toggle”. This makes it
easier to analyze the resulting data since the string will be displayed along with the
associated data.

4.3 Details for Cubix Programs

The Cubix interface to the profiling system is extremely simple. If one is happy to use all
defaults then the profiler can be enabled at runtime by using the -m switch on the cubix
command line. This is similar to the mechanism discussed in the communication profiling

3 2

section except that the magic character is ‘e’ (event-driven) rather than °‘c’
(communication). To turn on the event-profiler in a case where the usual cubix command
is

cubix -n 4 noddy 1.2 1024 1024
one just uses
cubix -n 4 -me noddy 1.2 1024 102

which automatically takes care of calling both eprof_init and eprof_on. It further

259

The ETOGGLE
data type

Initializing
“toggles”

Enabling the
profiler at runtime

Graphical analysis
of “events”

arranges that upon the completion of the user application a file called eprof. out will be
created containing the event-log information. Note that the various options of the —m switch
can be combined so that, for example, to enable both communication and event driven
profilers one uses the ~mec switch.

" Notice that, if the event profiling system is to be used to monitor communication only -i.e.,

no user events, then no modifications need be made to an existing node program. Merely
giving the —-mec switch upon execution creates the required profiling information!

If the system defaults are inadequate for a particular application then the eprof_init
call may still be used. The values specified merely override those chosen by the system. An
alternative scheme which is occasionally useful is to dump out the profile data manually
rather than having the system do it at program termination. This is achieved with the

eprof_end

function which dumps the current profile log into a file called “eprof . out”, turns off the
profiler and resets its state. Note that the same comments apply as in the discussion of
cprof_end in section 3.2 - the same filename is always used by this function so one has
to be careful to rename the output each time to avoid it being overwritten.

The eprof _on and eprof_ off functions may be used freely to control the periods
during which profile data is being accumulated.

4.4 Details for Host-Node programs

If a user application is being executed on the host processor then the times at which
profiling data are dumped must be specified by the user. In order to do this two functions
are provided; eprofcp for the host and eprofelt for the nodes. The former has no
arguments and merely serves to receive the data transmitted by the eprofelt call whose
single argument is the name of the file to which data is to be dumped. Note that these
functions must be called opposite one another - i.e. the host and nodes must execute their
respective functions together. The usage of these calls is identical to that of cprofcp/
cprofelt and the pseudo-code of section 3.3 can be used after suitable changing of
function and file names.

The user is responsible for ensuring that eprof _init is properly called before using the
event-profiler and that eprof_on is used to enable it.

4.5 Analyzing the Event Profile - et ool

As has already been alluded the event profile is analyzed with the etool utility. To
execute this command one types

etool log_file name

where the last argument is the name of the file containing the event log. If this has the
default name “eprof.out” then it can be omitted leaving the extremely simple command line

etool
This command should result in a display that looks rather like Figure 9.

The different areas of the display are used for various purposes in manipulating and

260

Legend: (Based on Information from node 0) Quit
1. Send dat lave.
2. Rzrcl:eivz 3;38;3:1 master. Add Nodes
3. Finished processing data. 7\ Remove Nodes
/’ Add Object
/ /’ Remove Object
Node 3 Scroll T forward
Scroll T back
Bigger T range

Smaller T range

Node 2
Select T range
Overview
/ Move trace

Node 1 Display type
Show detail
New legend

Find start
’/ | | |
1 2 3

Hardcopy
Elapsed time (milliseconds)

Figure 9. Basic Event Profile display

interpreting the event log:

Menu Area This is usually the area in which user selections are made which
cause various operations to be carried out in the event log display.

Display Area This region contains the “time-lines” for the various processors. A
simple horizontal line indicates “computing” activity while
various types of colored and shaded boxes indicate user and
system events.

Legend Area This area is used to indicate the meanings of the various objects
shown in the “Display Area”. It usually contains an index to the

261

Manipulating the
time lines

Dialog Area

various event types defined in a particular node, although it can
also be used to display a “key” to the encoding of system events.

This region is used to interact with the user. Prompts for user
actions are displayed here as well as information concerning
events displayed on the screen.

To manipulate and analyze the display one selects from the options in the “Menu Area” on
the right using the cursor. (The various types of mouse and their use is discussed in a
previous section.) Some of the more obvious selections concern the amount of “time”
displayed on the horizontal axis. By default et ool begins by showing approximately 3
milliseconds of elapsed time. Often there will be no interesting events in this range as
typified by the dull display of Figure 9. The most naive things to do to correct this situation
are the various “T-range” commands

Scroll T forward

Scroll T forward

Scroll T back
Bigger T range

Smaller T range

Select T range

Scrolls the time-lines forward by half the current width. Thus, if
the current display goes from 3 to 4 milliseconds then scrolling
would alter the range to 3.5

Scrolls the time-lines forward by half the current width. Thus, if
the current display goes from 3 to 4 milliseconds then scrolling
would alter the range to 3.5<T<4.5.

Scrolls the time-lines backward by half the current width.

Doubles the range along the horizontal axis while keeping the start
point fixed. If the originally display were from 3 to 4 milliseconds
then this command would yield the range 3<T<S5.

Zooms in on the time axis by halving the current range while
keeping the start point fixed.

This option allows you to pick out an interesting range from the
current display with the cursor. Immediately after selecting this
option the message

Select lower time limit

will appear in the Dialog Area. You should then move the cursor
into the Display Area and click when it is at the lower limit of
some interesting range. At this point the prompt in the dialog area
changes, asking you to select an upper limit and the process
is repeated for an upper limit. When this has been selected the
time-lines will be redrawn with the horizontal axis displaying the
selected range of time values. Note that the range selection takes
place inside the Display Area and not on the time axis itself. This
allows you to pick out interesting objects from the display as the
guide to an interesting time range rather than having to trace down
to the horizontal axis to make the selection.

These options may be used at any time and merely manipulate the data on the display. They
are useful when either too much or too little detail is being displayed and one needs to either

262

“zoom in” or “zoom out” a little in order to make sense of the events being shown.

Of course these options might not help much if your events are widely spread or start after
a lengthy period of program execution. To cover these possibilities two further options are

provided
Find Start As its name implies this option is used to “get going”. After
selecting it you will be prompted in the Dialog Area to

Select a node

To do this move the cursor into the Display Area and click over
one of the traces on the screen. This “selects” that node and, in the
current context, looks for the first enabled event in that processor
and resets the horizontal range so that this event is displayed.

Overview This option draws all the time-lines in the selected processors from
start to finish. User specified events are indicated by vertical bars
rather than their full symbols to conserve space. (See Figure 10 for
an example of the output produced by this command). This is often
a useful option to select first followed by Select T Range to pick
out interesting areas for finer scrutiny.

These commands are provided to display various regions of interest. Another necessary
ability is that of adding more processor time-lines to the display and possibly removing
ones already present. By default etool displays the traces of the first eight processors
encountered in the log-file. This situation can be altered with the Add Nodes and
Remove Nodes commands. Both present a node selection menu which has the same form
as that discussed in connection with the ctool system. One can select nodes either
individually, in ranges, according to their neighbors, according to their “parity”, or all at
once. Having selected some nodes the Done option takes you back to the main display
menu and performs the requested action with the selected nodes. If this was Add Nodes
then additional time-lines will be added to the display for each selected node, while the
opposite Remove Nodes option will remove traces for selected nodes.

The option Move Trace is available to re-order the time-lines along the vertical axis. By
default this ordering is in order of increasing processor number or selection. Occasionally,
however, it is convenient to put together certain traces to better understand the relationships
between processors. To do this select the Move Trace option when you will be prompted
in the Dialog Area to

Select a trace to move

To do this move the cursor into the Display Area and click over a processor time-line. The
prompt then changes to

Select a position to move it to

at which point you should click in the gap between two processor traces. The display area
will be updated with the selected node trace positioned between the two indicated
Processors.

As well as altering the various quantities displayed along the axes of the Display Area one

263

Getting the whole
picture

Dealing with large
numbers of
processors

Selecting objects to
watch

Legend: (Based on Information from node 0) Quit
; gigglsgtgggsgl'?; master. Add NOdeS
3. Finished processing data. Remove Nodes
Add Object
Remove Obiject
Node 3 { { Scroll T forward
Scroll T back
Bigger T range
Node 2 } l Smaller T range
Select T range
Overview
Move trace
Node 1 | | Display type
Show detail
New legend
Node 0 l } l Find start
Hardcopy
l T |
0 1500 3000 4500

Elapsed time (milliseconds)
Figure 10. Sample output from the “OverView”’ command

can also modity the appearance of the time-lines themselves with the following options

Remove Object This option allows one to selectively disable various types of
“events”. To disable an object click on Remove Object and you
will be asked to click over the object you wish to delete. Move the
cursor into the Display Area and click over any displayed object.
Henceforth objects of this type will no longer be displayed or
eligible for “detailing”. When you have finished removing objects
click on Done to return to the main menu.

Add Object This option reverses the effect of the previous choice. Upon

264

selection a menu will be displayed containing the objects which
have been disabled. Click over the items you wish to enable and
then on Done to return to the main menu and update the display.

These options allow piecemeal addition and deletion of specific events from the display.
The Display Type option, however, allows sweeping alterations to be made to the time-
line display. By default only user defined events are shown - i.e., those which were
explicitly logged with the eprof_add system call in the application code. These events
are represented by numbered boxes on the display lines, the numbers indicating the event
“index” as given in the eprof_add call. However, the system is also potentially logging
events, particularly communication calls. This option allows the “display type’ to be
modified to one of three styles

User Only This is the default and shows only explicitly defined user events.

Comm. Only This option disables all display of user events and instead shows
communication calls in each processor.

Everything This choice enables all events.

The effect of choosing the Everything option is shown in Figure 11. As can be seen the
communication events are indicated by long narrow bars which are coded according to the
particular function called.

Having added extra data to the Display Area one might be interested in figuring out what
they represent. To do this one invokes the New Legend option. By default the Legend
Area shows the “titles” that were assigned to user events in node O with the eprof_label
system call. This information is often enough to understand all user events - their index
numbers appear in the boxes on the time-lines and the associated titles appear in the Legend
Area. Sometimes, however, the same event number might mean different things in different
processors. While this might be classed as bad coding practice it may be unavoidable in real
applications and so the New Legend option allows you to switch to a different node’s set
of titles. To do this click on New Legend and at the prompt

Select a node or click outside the Display Area

move the cursor into the Display Area and click over a processor’s time-line. This will
immediately switch the Legend Area over to that taken from the indicated node. An
alternative possibility is to click outside the Display Area completely. In this case a legend
is drawn indicating the coding of the system defined communication events. A sample of
the “system legend” is shown in Figure 12.

265

Adding system
events 10 the
display

Legend: (Based on Information from node 0)

1. Send data to slave.
2. Receive data from master.
3. Finished processing data.

Quit

Add Nodes

Remove Nodes

Add Object

Remove Obiject

Node 3 A AN AN AR AN AANNNNNNN -_2] 3 #
Node 2 —mz @—

Node1 [—&]2}——— 3=

Node O

Scroll T forward

Scroll T back

Bigger T range

Smaller T range

Select T range

Overview

Move trace

Display type

Show detail

New legend

Find start

Hardcopy

0 1500 3000
Elapsed time (milliseconds)

4500

Figure 11. Sample display showing both system and user events

266

Legend: (Express) Quit
crwi combine C=1 cwrie B vwie Add Nodes
il — il W W Remove Nodes
Add Object
Remove Object
Node3 |—ST 2 | [3]m Scroll T forward
Scroll T back
Bigger T range
Node 2 E @_ Smaller T range
Select T range
Overview
Move trace
Node 1 =t 2 El Display type
Show detail
New legend
Node 0 WESSS Find start
| l | Hardcopy
0 1500 3000 4500

Elapsed time (milliseconds)

Figure 12. Legend identifying system communication events

This last command allowed more information to be displayed about the events shown in the
Display Area. Usually this will be enough to get a reasonable feel for the part of the
application being shown. In order to access the next level of information one uses the
Show Detail option. Having selected this the menu changes to a single Done entry and
one is free to poke around in the display area with the cursor. Every time that one clicks on
an event in the Display Area extra detail concerning that event appears in the Dialog Area.

For user defined events the information shown includes the index number, the exact time
at which the event occurred and the user data value which was supplied to the eprof_add
call. The index number is provided to give confirmation that the correct event was actually

267

Displaying the

second level of
information

Using the event
profiler effectively

selected with the cursor - this can get quite tricky in a crowded display although the
commands to modify the horizontal axis can, in principle, be used to alleviate a dense time-
line. The time of the event is shown to allow monitoring of execution times - for example
if you have an event both at the beginning and end of a function then you can use this option
to find out how long it took to execute. The final value is presented to either correlate the
displayed data with a point in the application or to understand the way the program is
behaving. The supplied data item is processed with the format string optionally supplied in
acallto eprof_label and the result appears in the Dialog Area. In the first example of
this section, for example, we defined labels containing "Iteration %d" and "crunch
returns %f". If we click on an event of the first type for which the supplied data value
is 39 then the following might appear in the Dialog Area

1. T = 246.23 ms, "Iteration 39"

Note that it is not essential to supply a label for an event type in order for this option to
succeed. If no format string has been associated with an event then the result of the Show
Detail click will just be

2. T = 57.23 ms, value = -357832

in which the first two fields indicate the same information as previously and the last is the
value of the user-supplied data item interpreted as an integer. Obviously this is not quite as
informative as would be the case if a label were supplied, especially if the user data value
is not an integer but a floating point value, but occasionally the space saving might be
relevant.

Using the Show Detail function it becomes a simple matter to relate the events displayed
on the time-lines to the underlying application algorithm which is the key to successful use
of the event profiler. This type of information might also be used to understand the times
indicated in the event profile. For example, one might supply a data item which represented
the work-load in a processor. This might then be related to the event display by passing it
to eprof _add and later picking it out with the Show Detail command.

While in this mode one can also click on system events. This should produce a message in
the Dialog Area which looks like

exread, T = 357.68ms, elapsed 127.54 ms, returned 580

The information supplied here is; the name of the communication function invoked (which
should correspond to the system event legend if that is displayed), the time at which the
communication began, the time taken for the communication to complete and the value
returned to the caller. The interpretation of this last piece of information depends upon the
particular communication routine invoked but is typically related to the length of the
message being transmitted.

The last two options available on the main menu are, hopefully, self-explanatory. Quit
terminates the et ool program and returns you to the command line prompt. Hardcopy
makes a file which, when suitably processed, will show the current state of the graphics
screen, less the menus.

Having now discussed all the options available to users of et ool the question remains:
“What can I do with it?”, Among the various possibilities are

268

» Analysis of time taken in particular routines or pieces of code. Logging “events”
around important code sections and subroutine calls allows one to evaluate the
time spent in various portions of code.

» Relation of time spent to data conditions. Careful specification of crucial data
items as the auxiliary value in eprof _add calls allows the connection to be
made between program performance and data dependencies that arise on the
nodes.

* Analysis of complex communication patterns and their effect on performance.
Enabling the communication profiler while the event profiler is running logs
extra information about internode communication.

« Analysis of interprocessor effects such as load imbalance and communication
“skewing”. It becomes immediately apparent if one node is working much
harder than the others, or if a particularly crucial communication cycle is being
delayed by another processor.

* Analysis of algorithms. In non-deterministic algorithms it may be useful to
understand exactly: what functions are called and in what order. This can be
achieved with suitable event placement. This type of information may be
important in understanding the advantages or deficiencies of a particular
parallel algorithm.

e Analysis of algorithmic behavior. In certain algorithms it may be important to
understand the sequence of events leading to some strange behavior. A good
example might be an ill-conditioned matrix problem in which the time taken for
an algorithm to operate might depend on some parameter which can be logged
and later related to the algorithm performance.

4.6 Analyzing the “Toggle” data - etool -t

The event profiling analysis tool, eprof, is also used to examine the data collected by the Looking at the

“toggle” system. To do this we execute the command toggle data without
graphics

etool -p -t
in which the switches indicate that no graphics should be used (‘-p’) and that toggle data
should be analyzed (‘-t’). The resulting display will appear similar to that shown in
Figure 13
For each “toggle” is presented the total time spent within that section of code, the number

of times executed and mean and variance data. Also shown is the title given to the “toggle”
inthe call to eprof toginit.

Using this system it is possible to build up extremely accurate pictures of program
execution.

5 Example programs

" The profiling system is supplied with an extensive collection of complete examples whose
source code can be found on the distribution disk(s) in the PM subdirectory of the main
Express examples directory. All the examples are based around the same piece of code

269

Node 0

Description I Total I #Calls I Avge. l Var. l
Main iteration loop 478.32 100 4.78 .28
Calls to grind away 363.96 400 0.91 .03
Node 1
Description I Total I #Calls I Avge. | Var. |
Main iteration loop 478.32 100 4,78 .28
Calls to grind _away | 363.96 400 0.91 .03

Figure 13. Sample output from the “toggle” utilities

which implements a basic “master-slave” approach to parallel processing, shown
schematically in Figure 14.

MASTER MASTER:

Assigns tasks, prepares
data, receives and collates

N

SLAVE:
SLAVE | |SLAVE! ... SLAVE | Reads work description

from master, processes
and returns results.

Figure 14. Master-slave computation in parallel

“Master-Slave” In this programming style we nominate one processor as the “master” who is responsible
programmingona for distributing work to a group of “slave” nodes. Each in turn receives a message
parallel computer geccribing a particular operation or operations to be performed from the master. It then
performs all necessary calculations and returns the results to the master task. In the example
program to be demonstrated here the specific details are quite trivial; the master creates a
buffer containing a random number of random numbers and sends it to a slave node. The
slave then computes the sum of the exponentials of the values in the buffer and returns this

270

total to the master.

While this program is rather trivial it is actually quite a common programming model -
many parallel applications take this form. Obviously an efficient implementation of this
strategy would necessitate a larger workload per message; for example the current program
could be sped up by having the slave nodes generate the random numbers themselves.
However, it serves to illustrate several important areas where the profiling tools can be of
help in detecting load imbalance and communication overheads.

To this simple program we add the following profiling constructs:
» Enable the execution profiler.
* Enable the communication profiler for the entire course of the program.
» Initialize the event profiler with the default settings and turn it on.

e Add an event in the “master” task just before sending data to each slave. The
additional data value indicates the node number of the slave to which data is
being transmitted.

* Addaneventineach “slave” to indicate the receipt of data from the master. The
subsidiary data value indicates the amount of work received.

e Add an event in each “slave” to indicate that its work has been completed. The
subsidiary item indicates the value returned to the master.

e Assign labels for the three events just described so that we will be able to find
out just what was happening when the profile data is later analyzed.

Two distinct versions of this program are presented: a Cubix version and another split into
host and node programs. We present the Cubix version first since it is simpler. It may be
surprising to readers that the Cubix code is actually a fully parallel program since it looks
so much like sequential code.

5.1 Cubix program

/*********

* master * ParaSoft Corporation. 1988
* Kk Kk k Kk Kk Kk k k k

Master/slave program showing off the profiler. Should
exhibit some good "skewing" behavior.

*/

#include <stdio.h>

#include <express.h>

#include <math.h>

/* The next buffer is for the execution profiler. */
char pbuffer[8192];

extern float pranf();

271

Adding profiling
constructs to an
existing program

#define NMAX (2048)
float msg_buf [NMAX];

main(argc, argv)
int argc;
char *argvl];

{

/*

/*

/*

/*
*
%*

*/

long seed; /* Random number seed */
struct nodenv nodedata;/* Runtime parameters */
int node, N, 1i; /* Various counters */
float total; /* Cumulative exp total */

int dattype = 2, acktype = 3;
/* Message types */

Set up the event profiler */

eprof_init(DONTCARE, DONTCARE) ;
eprof label (1, "Sending data to node", "Node %d"):;
eprof label (2, "Received data from master",
"%d items");
eprof label (3, "Finished processing", "Result %d");

Set up the execution profiler */

if(xprof_ing()) {
profil (pbuffer, sizeof (pbuffer), main, 0xi000);
xprof on();

}

Get runtime parameters, processor number etc.... */
exparam(&nodedata) ;
Start up the random number generator */

seed = (argc > 1) ? atoil(argv([l]) : 12345;
pranset ((long) seed) ;

Node zero will send up to NMAX floating point
numbers to each other node and then process them by
calculating their exponentials.

fasync{stdout) ;
if (nodedata.procnum == 0) {
for (node=1; node<nodedata.nprocs; node++) {
eprof_add(l, node);

272

N = (int) (pranf () *NMAX) ;
printf ("Sending %d values to node %d\n",

N, node);
fflush(stdout) ;
for(i=0; i<N; i++) msg buf[i] = 2.*pranf();
exwrite(msg_buf, N*sizeof(float),

&node, &dattype):

}

/* Wait for the acknowledgment to come back from the
* nodes that have finished.

*/

for (node=1; node<nodedata.nprocs; node++) {
exread (&total, sizeof(float),
&node, &acktype);
printf ("Node %d done with result: %f\n",
node, total):;
}

else { /* Slave nodes. Get buffer and calc.

exponentials */
node = 0;
N = exread(msg buf, NMAX*sizeof (float),
&node, &dattype):
N /= sizeof (float);
eprof_add(2, N);
total = 0.;
for (i=0; i<N; i++) {
total += exp(msg buf(i]):
}
eprof_add(3, (int)total):
exwrite (&total, sizeof (float),
&node, &acktype):

exit (123);

NOTE 1.

NOTE 2.

The node program does not explicitly initialize or enable the
profilers. This is taken care of by the Express kemel interpreting
the runtime flags on the cubix command line.

No calls are required to dump out profiling data. This action is
performed automatically by the system. Note that no dumps will
be produced if the profiling systems are not enabled - this is a
much more flexible situation than in the host-node case since the

273

user is free to choose at runtime between having and not having a

We assign node 0 the master role and relegate the others to slave

positions. Note that we expect to find events of type 1 only in node

profile produced.
NOTE 3.
0.
NOTE 4.
is not shown.
5.2 Host-Node Program, “Host” code

The code for the random number generator pranset and pranf

/*******

* host *
* %k %k %k k Kk k %k

Master/slave program showing off the profiler.

ParaSoft Corporation.

1988

Should

exhibit some good “skewing" behavior.

HOST program.

*/
#include <stdio.h>
#include <express.h>
#include <math.h>

extern float pranf();
#define NMAX (2048)
float msg_buf [NMAX];

main (argc,
int argc;
char *argv([]:

{

argv)

long seed;
struct nodenv nodedata;
int Nnodes, node, N, i;

int node_fd; /*
float total; /*
int dattype = 2, acktype
Nnodes = (argc > 1)

if (node_fd=

exopen ("/dev/ncube", Nnodes,

fprintf (stderr,

"Failed to allocated %d nodes\n",

exit (~1);
}

exload(node fd, "node");

/* Random number seed */
/* Runtime parameters */
/* Various counters */
Process group index */
Cumulative exp total */

= 3; /* Message types */

? atoi(argvi{ll) : 4;

DONTCARE) < Q) {

Nnodes) ;

274

/* Get runtime parameters, processor number etc.... */

exparam (&nodedata) ;
/* Start up the random number generator */

seed = (argc > 1) ? atoi(argv(l]) : 12345;
pranset ((long) seed) ;

/* The host will send up to NMAX floating point
* numbers to each node and then process them by
* calculating their exponentials
*/

for (node=0; node<nodedata.nprocs; node++) {
N = (int) (pranf () *NMAX) ;
printf ("Sending %d values to node %d\n",
N, node);

fflush (stdout) ;

for(i=0; i<N; i++) msg_buf(i] = 2.*pranf();
$ifdef SWAP
_ex_swaw (msg_buf, msg_buf, sizeof (msg buf));
$endif
exwrite(msg buf, N*sizeof (float),
&node, &dattype):

}

/* Wait for the acknowledgment to come back from the
* nodes that have finished.
*x/
for (ncde=0; node<nodedata.nprocs; node++) {
exread(msg buf, sizeof(float),
&node, &acktype):;

#ifdef SWAP
_ex swaw(msg _buf, msg buf, sizeof(float)):;

#endif
printf ("Node %d finished with result: %$f\n",
node, msg buf(0]);
}
cprofcp () ;
eprofcp () ;
exit (123);
}
NOTE 1. The host program is only slightly modified for profiling. At the

o

275

NOTE 2.

NOTE 3.

NOTE 4.

NOTES.

NOTE 6.

NOTE 7.

end are added calls to the eprofcp and cprofcp functions
which will read the profile data dumped by the node program. We
have not instrumented this program for the execution profiler
although that would be quite straightforward.

The node program explicitly initializes the event profiler
(eprof_init) and enables the event and communication
profilers (eprof_on and cprof_on).

The node program ends with calls to eprofelt and cprofelt
which dump out data to the host. Notice that they must be in the
same order in both host and node programs to avoid deadlock.

The profiler is always enabled when this code runs. An extra
feature which could probably be usefully added is to prompt the
user for a value indicating whether or not the profiling systems
should be enabled. These flags could then be passed down to the
node program and used in “1 £” statements.

The host processor plays the “master” role and the nodes are
“slaves”. This is a natural division of labor and avoids the long i £
loop in the Cubix implementation.

The code for the random number generator pranset and pranf
is not shown.

Notice that the host potentially has to swap byte ordering when
sending data to the nodes; a problem not encountered in the Cubix
version of the code. Another related problem which might arise is
the difference in length between data types on the host and in the
nodes. In this case the latter problem does not arise and we control
the byte ordering code with a preprocessor macro SWAP.

53 Host-Node Program, “Node” code

/*******

* node *
* k Kk kkkkk

ParaSoft Corporation. 1988

Master/slave program showing off the profiler. Should
exhibit some good "skewing" behavior.

Node code.
*/

#include <stdio.h>
#include <express.h>
#include <math.h>

extern float pranf();
#define NMAX (2048)

276

float msg_buf [NMAX];

main (argc, argv)
int argc;
char *argv([]:

{

/*

/*
*
*

*/

struct nodenv nodedata; /* Runtime parameters */
int node, N, 1i; /* Various counters */
float total; /* Cumulative exp total */

int dattype = 2, acktype = 3; /* Message types */
Set up the event profiler */

eprof_init(DONTCARE, DONTCARE) ;
eprof label(l,"Sending data to node", "Node %d");
eprof_label(Z,"Received data from master",
"%d items");
eprof label (3, "Finished processing"”, "Result %d4d");

Get runtime parameters, processor number etc.... */
exparam (&nodedata) ;

The host will send up to NMAX floating point
numbers to each node and then process them by
calculating their exponentials

node = HOST;
N = exread(msg_buf, NMAX*sizeof (float),
&node, &dattype);
N /= sizeof (float);
eprof_add (2, N);
total = 0.;
for (i=0; i<N; i++) total += exp(msg buf[i]);
eprof add (3, (int)total);
exwrite(&total, sizeof (float), &node, &acktype):;

cprofelt ("cprof.out");
eprofelt ("eprof.out");
exit (123);

277

Network Configuration

Using Cnftool to build multi- transputer
networks for Express

p 1 Introduction

L A significant feature of transputer based systems is the reconfigurability of the transputer
links. Hardware systems may be “hooked up” in a variety of different ways and optimized
for a particular problem. Express, by providing automatic message forwarding hides most
of the details of the hardware interconnect from the user. On the other hand Express needs
to know about the underlying hardware topology in order to perform correctly.

There are typically two times when the hardware configuration issues need to be addressed:
setting up an initial system and optimizing a configuration for a particular application.
cnftool is a ParaSoft utility designed to help in these areas.

We can divide transputer hardware into two disjoint classes. In some systems (Definicon,
Inmos, Microway, etc.) the links are implemented with mechanical cables which must be
attached by the user. In this case cnftool provides tools to automatically explore a
network and display the interconnections. It then allows you to modify parameters of the
network at the software level. Any alterations made must be accompanied by similar
reconnection of the link cables. The second type of hardware has electrically configured
link switches which can be programmed to link the network in various ways. In this case
cnftool provides a “graphical editor” for the network. You can indicate configuration
changes which are then carried out by subsequent system initialization commands.

A second important use of cnftool is in conjunction with the ParaSoft performance
analysis tools. The basic procedure would be to develop and debug an algorithm on some
general topology and then to analyze its performance. On the basis of information gained
one can reconfigure the underlying hardware network to minimize communication
overheads. This procedure is completely transparent to the user since Express
automatically takes care of message forwarding whatever the underlying machine
connectivity.

This manual is structured as follows: In section 2 we describe the issue of “topologies” and
their effect on the overall routing behavior. Section 3 is an extended example of the use of
cnftool in the construction of a typical network with a single host computer. Section 4
builds this example into a multi-host system suitable for use as a multi-user resource.
Section 5 describes some cosmetic touches which may be useful if extensive use of
cnftool is planned. Section 6 describes some of the additional utilities which are
included within cnft ool and Section 7 presents a line-oriented interface to cnftool for
those users without graphics. Finally, Section 8 describes the construction of standard
networks from transputers and the underlying restrictions due to the limited number of links
on each.

2 Topologies and Routing Strategies

- While Express will run applications of any topology there are certain issues which should
be considered when building transputer networks. The most important of these is the issue
of “deadlock-free” routing. A simple example of “deadlock” is created when every
processor sends out messages and no-one reads them. This will continue until all the
“buffer” memory on the transputer is used up and then the network will “hang” - no more
messages will be able to get in or out.

279

Topology changes

When to use cnftool

Two types of
transputer
hardware

Performance
enhancement

“Deadlock”

This is obviously a rather extreme case. “User errors” of this type are unavoidable -no
system can hope to continue indefinitely under such circumstances. The problem to be
avoided, however, is that in which the network “hangs” in regular use due to inadequacies
of the underlying forwarding strategy. In this regard there are “good” and “bad” network
topologies. Certain networks have well-known deadlock-free routing strategies which
guarantee that only user errors can cause problems. Express understands three such
topologies: hypercubes, two-dimensional meshes (torus), and trees.

Choosing The choice of topology is still a matter of taste. Certain algorithms may be able to take

topologies advantage of particular configurations. We have found that, even in the most obscure
configurations, deadlock occurs infrequently. On the other hand it is quite difficult to detect
and one can often waste considerable development time while searching for a non-existent
bug.

For small size machines which will be used by single users the choice of topology is not
very important. Most applications will run under Express without any problems. For
bigger machines the choice of topology becomes critical since excessive forwarding can
degrade algorithm performance significantly. It is even more important for machines which
will be shared between several simultaneous users. In this case safe routing is necessary so
that problems in one users’ code do not affect other users.

A simple goal which enhances performance is to maximize network interconnectivity.

HOST <=

Figure 1. Dimension 4 hypercube with 17 transputers

From this point of view the most satisfactory network for small numbers of transputers is

280

the hypercube. Since current transputers have only four links it is impossible to build large
hypercubes - the maximum is the 17-node “hypercube” of dimension four shown in Figure
1. Note that we have to have an extra node so that the hypercube proper can communicate
with the outside world. This topology provides extremely good connectivity and significant
algorithm development has been performed on such machines.

0 1_ _2— —3’{“——_4——7

HOST — |l =
| 6 7 8—-/

9"‘“ ““”“““10““ ""“““'“‘"“11‘““ 12 L/
O e e

Figure 2. Torus Configuration

The second guaranteed safe topology is the two-dimensional mesh. A simple example is
shown in Figure 2. Note that again we have a spare transputer to connect the mesh to the
host. This network has the advantage of being completely extensible. Whereas the largest
hypercube we can construct has 17 nodes a mesh can be constructed with an unlimited
number of transputers.

The tree topology, shown in Figure 3, does not provide particularly high connectivity. It is,
however, suited to certain applications and shares with the mesh the property of
extensibility.

These are the networks on which Express is able to guarantee safe routing. If one of these
can be tailored to your problem then all is well. cnftool will construct the necessary

281

HOST «— O 2 3

Figure 3. Tree Topology

configuration information quite simply. If, on the other hand, your network does not fit into
any of these categories then cnftool will still be able to deal with it and Express will
run applications but with the proviso that the underlying routing is not secure: programs
which are logically correct may still exhibit “deadlock”.

3 Configuring Simple Networks

" As described previously cnftool is a graphical utility that allows the user to build or

Mechanical vs. make modifications to a transputer network. For systems with mechanical link connectors
e‘;_c” ical cnftool will be able to figure out the hardware connections in place and present them to
cofiguration

you in an editable form. You can assign processor numbers, add extra host machines etc. If
your system is electrically configured you can describe any network with cnft ool which
will perform the appropriate actions to initialize the hardware.

In this section we will discuss, in turn, the two types of hardware. To simplify the
discussion we will consider the network shown in Figure 4. In this figure we have shown
the processor numbers and also the links which should be attached. Note that no link
number is given for the host - we assume that only one connection is available.

31 Machines with mechanical links.

Certain hardware manufacturers (e.g., Inmos, Microway, Definicon etc.) implement the
transputer links with mechanical cables. In this case the first step in using cnftool is to
attach the cables in some configuration. It doesn’t matter at this stage if the configuration
is optimal for your needs since Express will be able to use it anyway but you might want
to connect up one of the topologies that guarantee safe routing.

Resetting any After this is done we must use cnftool to build the information necessary to Express.
;aadj”w"al Before starting cnftool, however, it is necessary that all transputers, other than those on
raware

the first processor board be in the reset state.

To make this more solid consider again the network shown in Figure 4. If the hardware is
a single Definicon or Microway board then nothing needs to be done prior to the execution
of cnftool. The “worm” program will reset the entire network and detect all the nodes.
If, however, the network is composed of, say, an Inmos B004 board in one machine and a
Definicon or some other board in another then you will have to execute the single command

282

Figure 4. Sample Transputer Network

exreset

on each host other than the first. This procedure sounds somewhat complex but is quite

simple in practice. Failing to reset some part of the system prior to executing cnftool is
not fatal but will result in only part of the network being detected.

In connection with this point we note that with some hardware (Definicon, Microway) it is
possible to chain the reset connections between boards so that each resets the next. If this
has been done then no special commands have to be executed before cnftool

When started, the first thing that cnftool does is to check for the existence of certain
system files. The names and locations of these files depend on both your hardware/
operating system and also the way in which Express was installed on your system. The full
pathnames of the relevant files can be discovered by looking up the values of the following
customization variables:

NIFFILE This file contains a description of the interconnection between
nodes. Information is also given about the way in which the various
“reset” lines are connected.

CONFILE File containing the forwarding information that Express will use to
send messages between nodes.

PLOTFIL Describes the most recent image of the network as displayed by
cnftool.

Note that ParaSoft reserves the right to alter the contents or names of these files in any
future release of Express.

If these are detected the user will be asked whether to continue with the existing
configuration or start again from scratch. If you are merely adding features to an existing

283

Running cnftool

network then you should elect to continue with the existing configuration.

The “worm” If you elect to start again from scratch cnft ool starts up its “worm” program which will

program explore the transputer links and report, on the screen, a picture of all the nodes and links
found. The first thing to do is to check that all nodes and links have been discovered. If this
is not the case it probably indicates some problems with the associated hardware. If an
entire board is missing it is probably because it wasn’t reset - you should either reread the
earlier paragraph about chaining reset signals together or else check cabling. Note one very
important point in this respect; if you elect to chain together several reset lines you should
ensure that all boards share a common earth. Otherwise the signal may not be recognized
as a proper “reset” by some nodes. At this point the screen should contain an image such as
that shown in Figure 5. (Note that we omit the transputer network from this figure for
clarity.)

Channel 0

Channel 1

Quit
Channel 2 Channel 3 m—————— Scroll Up

f Scroll Down
// /‘ Scroll Left
Scroll Right

Plot Old Config.

Create Config.
Show Detail
Modify

Show System

Save

Erase

Figure §. Basic cnftool display

Usi l
wf;;fuf?,izuse The top part of the display contains a legend which describes the color coding of the

different links. We adopt the convention that the links are numbered from 0 to 3. The right
hand side of the display has a menu containing commands which are executed by
“clicking”. If you do not have a mouse then the cursor can be moved with the keypad arrow

284

keys; two speeds of motion can be toggled with the “home” key. In the main display area
the transputers are represented by squares with color coded edges. (On monochrome
monitors it may be impossible to distinguish the various links - in this case one can observe
that the “bottom” line corresponds to link 0 and the numbers increase in a clockwise
direction.) Each edge represents one of the transputer links. “Hosts” are represented as red
square with processor numbers which begin with the letter ‘H’. Connections between
processors are shown as white lines. The “Dialogue Area” shown in the Figure is used to
indicate instructions and other informative details to the user. While manipulating networks
with cnft ool this area will contains details of how to perform certain operations.

After checking that all nodes and links are correctly shown it is necessary to create a
“forwarding table” for Express. To do this select Show System in the main menu. (On
a machine with a mouse move the cursor to the box marked Show System and press any
button on the mouse. If you have no mouse move the cursor to the same box and press any
key on the keyboard.) The screen should change to that shown in Figure 6. Selecting
Forwarding Table in the system menu will produce the menu of Figure 7.

Channel 0 =

Channel 1

Back

Channel 2 SONNNTHNUESSSY Channel 3 s Make Reset Tree

Show Reset Tree

Forwarding Table

Show Message

Redraw

| ENNNNNNN

Erase

1
gé\\\\\\\

Figure 6. System Function Menu

At this point you have to decide whether or not your machine has one of the topologies that
Express will be able to route safely. If so you indicate this fact by selecting the appropriate

285

Selecting a
topology

Channel 0 Channel 1 Back

Channel 2 Channel 3 —————— Make Hypercube
Make Torus
Make General

“NNNNNNV

g\\\\\\\"

NN éé\\\\\\\

Figure 7. Hardware topology menu

item from the menu. (The tree topology is included in the General case.) As you do this
the word WORKING should appear in the “Dialogue area” just below the legend. When the
system has completed its configuration WORKING will change to DONE. At this point
selecting Back from the menu will return to the previous level. Notice that you can always
select the Make General topology. This will cause Express to use a minimum distance
path when communicating between processors. Careful examination of Figure 7 shows that
our demonstration network is actually connected as an 4-node hypercube so we could select
Make Hypercube in order to guarantee safe routing.

The next thing which needs to be created is the “reset tree” - a path through the nodes over
which the reset signal will propagate. cnft ool can create this automatically by selecting
Make Reset Tree from the menu. Again you should see DOING and DONE messages in
the dialogue area.

The reset tree which has been generated will always be correct for both Definicon and
Microway hardware but may not be correct for Inmos systems. The best solution in this
case is to defer the connection of the hardware resets until after cnft ool has created its
path. At this point you can complete the connections according to the image generated by

286

selecting the Show Reset Tree item from the menu. In this display the red lines indicate
the path followed by the system reset while the blue lines show the subsystem reset. (Note
that you can safely connect the reset lines while the machine is operating: cnftool will
not attempt to interact with the transputers.)

After generating the reset tree and connecting the reset connections, the configuration
information should be saved. To do this click on the Back icon and go to main menu. In
this menu select on Save. cnftool will save relevant information in system files such
that further invocations of cnft ool will be able to begin with everything set up correctly.

If your machine has only one host you may quit at this point by clicking on Quit and
initialize Express with the command

exinit
Even if you eventually intend to connect multiple hosts to your system it is a good idea at

this point to check that everything is working correctly and that the machine can be
initialized. When you are happy with the current configuration proceed to Section 4.

3.2 Electrically Configured Machines

If your hardware has electrically configured links (Levco, Meiko, etc.) then a worm
program should not be used to detect the current hardware configuration. Instead we can
use cnftool as a graphical editor to construct custom hardware configurations. Even if
your hardware has mechanical links it might be wise to read the description of this section
since it covers several of the manipulations that occur frequently while using cnftool.

Having started up cnftool you may be asked whether to continue from some previously
saved configuration or start afresh. In this section we will assume that we are starting from
scratch.

The network description we will create consists of three elements: transputers, hosts and
channels or links. The transputers represent the nodes of your machine and each has a
unique processor number. Hosts represent computers like MS-DOS or UNIX PCs, SUN
workstations, VMS machines, Macintoshes, disk servers and graphics servers, A/D
converters etc. Links or channels represent the physical connections between transputers
and hosts. Our convention is that a transputer is presented as a green square with colored
edges and an identifying processor number. Hosts are represented by red squares
containing the letter ‘H’ followed by the number identifying the host. Links are represented
by white lines. The colored edges of the transputers represent the different links as shown
in the legend. A host can have a link connected to any edge, but it can have only one link
connected to it.

To begin creating your new configuration select the Modify icon which will display the
menu shown in Figure 8. There are three primary entries: Modify Hosts allows you to
add, delete and move host processors in the configuration while Modify Transputers
allows similar operations to be performed on transputer nodes. Modify Channels allows
you to create and edit links between transputers and hosts.

To create the topology shown in Figure 4 we will begin by creating the host. Click on
Modify Hosts and then Add Host on the subsequent menu. In the dialogue box will

287

Saving the
configuration data

Loading Express

Designing
topologies on
machines with
electrical
connectors - C004s

Creating a new
configuration

Channel 0

Channel 1

Back

Channel 2 Channel 3 m———— Modify Transputer

Modify Host

Modify Channel

Grid On/Off

Redraw

Erase

Figure 8. “Modify’’ menu for network creation and editing

appear the instruction to
Indicate where the host should be placed

If we select, by clicking, a position such as that used in Figure 4 then the display should
look like that shown in Figure 9.

Now we select Back to return us to the main menu.

The next operation should be the creation of the individual transputer nodes. Select Modify
Transputers and then Add Transputer. The dialogue box will instruct you to position
the first transputer which will be assigned the processor number 0. By default this node will
be reset by “Host 0”. To add successive nodes repeatedly select Add Transputer, placing
them as shown in Figure 10.

While adding the transputers a new feature will become evident. After positioning each
node on the display you will be asked to

Please click on the transputer which resets this one

In most cases this can safely be ignored and any processor can be indicated. In certain cases,
however, where the reset tree is explicitly connected at the hardware level you must be
certain to indicate the correct node in the reset tree.

288

Figure 9. Adding a host to a transputer network

~NANNNNN | SNNNNNNN- |

- NANNNNW NNNNNNN

Figure 10. Adding transputers to a network

After creating all four transputers you should select Back to return to the main modify
menu, Figure 8.

To complete our description of the system we need to connect the transputer links. To add
links select Modify Links and then Add Channel. The first channel we will add is that
between the host and transputer 0. After selecting Add channel the dialogue area will
instruct you to

289

Accuracy with the
mouse

cnftool’s
numbering
algorithm

Click on transputer or host to start link

You may choose to click on either the host or transputer 0 to create this link. If you select
the host the instructions will change to

Please click on channel to start link
. Click on the right edge of the host square. Next you will be asked to
Click on transputer to end link
Click on transputer 0. Finally you will be asked to
Click on channel where to end link

Click on channel zero of transputer 0; the red edge. If you did everything correctly the
picture will appear as in Figure 11.

SNNNNNN - NN

NN\ ANNNNNN |

Figure 11. Adding a Host-Node link to a network

If for any reason the phrase
Please press right button to exit

should appear in the dialogue area it indicates that you did not click near enough to
something; try again.

Having made a link between the host and the first node we can proceed similarly to make
the other connections. If we continue to add the link between nodes 0 and 1, however, a
slightly strange things happens. Notice that we have to be very careful in selecting the
correct links according to the color coded legend at the top of the screen. After connecting
link O of node O to link 0 of node 1 we see the display of Figure 12.

We notice that this doesn’t look quite like the corresponding link in Figure 4 because the
two nodes appear to be oriented incorrectly - link O is at the bottom of both transputers

290

“NANNNNN NNNNNNNW

NNNNNNW NANNNNN

Figure 12. Adding a Node-Node link to a network

rather than on the “inside” where we want it to be. This is a fairly common problem -
nothing is actually wrong with Figure 12 as it stands, but it looks messy. To tidy things up
select Switch Channels from the menu. You will be prompted to indicate the transputer
on which you wish to operate and then on the pair of channels that you wish to exchange.
Swapping channels 0 and 3 on node 0 will make the picture shown in Figure 13.

NNNNNNNY = NN

Figure 13. Swapping channels on a single transputer

291

The minimal
cnftool procedure

Notice that we are now partway to Figure 4. Swapping links 3 and 1 on node 0 and links O
and 1 on node 1 will produce the “nicer” picture.

Repeating the previous steps for the other links in the network should finally lead to a
picture similar to that of Figure 4. We have now finished creating network components and
can now construct various system structures such as the “forwarding table” and “reset tree”.
To do this keep selecting Back until you reach the main menu and then select Show
System. The instructions of Section 3.1 should guide you through the relevant operations
up to, and including, the exinit command which should start up Express in your newly
configured hardware.

3.3 Minimal use of cnftool

Since using cnftool is rather important and the effects of mistakes are sometimes quite
difficult to understand this section lists the minimal set of operations which are necessary
for the successful operation of the system.

The easiest use of the system is obtained by giving the command
cnftool -p

which avoids the mouse interface entirely. You are still prompted as to whether you should

_ start afresh or continue with the existing data but the “worm” program should find all the

nodes and the only remaining question will concern the overall network topology.

If you wish to make use of the graphical interface the problems you may find will be
connected with omitting some part of the cnftool procedure. The following list of
commands should, therefore, be executed whenever you wish to terminate a session with
the tool to ensure that the correct disk files are created and that all system information
actually reflects the system you have been modifying on the screen.

Show System

Create Reset Tree
Create Forwarding Table
Make General

Back

Back

Save

If you follow this procedure whenever leaving cnftool you should never leave
inconsistent system files. Occasionally, however, problems may arise which do leave the
system in an inconsistent state. The most common problem concerns the “worm” which
may not work properly on all types of hardware. In this case the image on the display may
not be correct because the plotting file has not been created properly. (This file has the name
given by the PLOTIL customization variable - see the documentation for excustom for
more details.) A simple solution in this case is to merely delete the plotting file and restart
cnftool. This forces the recreation of an image which corresponds directly to the
information currently stored in the other system configuration files.

292

P 4 Configuring a Multi Host System

L Express has a very general definition of a “host”. Essentially any machine or board that is
capable of talking to the main transputer array can be a host. In most cases this will be a
workstation or personal computer running one of a variety of operating systems: MS-DOS,
UNIX, XENIX, VMS, Macintosh, etc. This type of host provides fundamental operating
system resources to the transputers such as terminal access, editing, printing, file systems
and others. A second type of host is a “server’” connected to the transputer network. These
machines typically offer either disk or graphical services or external data streams such as
from signal processing or A/D convertors and may, again, be almost any type of computer,
including transputer based systems themselves.

In the case of a multi-host machine one must be selected as the “master console”. This will
be the place from which the whole network will be initialized. The sole restriction on this
choice is that it must be running a native operating system rather than a “server” process -
it must be capable of executing the command which resets and reloads Express. By default
this host will have the number O as indicated in the previous figures.

As an example of as multi-host system consider that shown in Figure 14. We assume that
we have two MS-DOS PCs each with a four node transputer system. While the two systems
could be used independently Express offers the capability to connect the systems together
and share the parallel computing resource. To do this we have to add two additional
connections as shown: a common ground and an additional transputer link. If there is no
common ground the reset signal cannot be guaranteed to propagate from one machine to
the other. The extra transputer link is the medium which will be used to communicate
between the two halves of the system. Note that we could connect more than one additional
link between the transputer boards thus increasing the communication bandwidth.

Before connecting links on transputer products from different vendors it is important to be
sure that the same link standards are being used. Most transputer manufacturers use
standard TTL links. A few, such as LEVCO, for example, use RS434 links which cannot
be connected directly to TTL types. Before connecting different vendor’s hardware,
therefore, it is a good idea to check that similar standards are in use and whether or not
suitable converters are available.

For the sake of the next discussion we will assume that PC-1 has been nominated “master
console”.

To set up this system we can use cnftool to detect the hardware configuration with its
“worm” program. Before doing this however we must consider the “reset problem” alluded
to several times. In the simplest scenario we make no attempt to connect the reset lines on
the two boards. We have to execute the

exreset

command on PC-2 toreset its nodes. We then start up cnft ool from PC-1. If, on the other
hand, the reset signals have been linked together we need not do anything on PC-2 and can
go ahead with cnftool on PC-1.

As usual cnftool will look for an old configuration and, if found, ask you whether to
proceed with it or start afresh. To make use of the “worm” you should choose to start again.

293

The client-server
model of
processing

Hardware issuesin
connecting
multiple
transputer boards

—]

Transputer
Common Link

Ground Q

O

Figure 14. System with multiple hosts

After a couple of seconds your screen should display something similar to Figure 15.

NANNNNNNY SNNNNNN "NANNANNS

NANNNNNY

Figure 15. Multi-Host system as described by the “worm”

Troubleshooting If you do not see all the transputers connected to your network this may mean one of several
systems with things:
multiple

transputer boards * Boards from different vendors may have incompatible link standards.

+ The link connecting the two (or more) boards together is not connected
correctly. In this case several transputers may be missing.

» The reset signal did not make it to some board. In this case an entire part of the

294

network will be missing.

» Some of the transputers are defective. Sometimes individual nodes are missing
which probably indicates defective hardware. Occasionally mismatched link
speeds also cause this problem. (We nearly always generate configurations with
all links set to 10 Mbit/sec. When the network is working correctly the speeds
are carefully upgraded.)

You should make sure that all links are correctly connected and that the above mentioned
precautions have been taken with the “reset” lines.

Note that Figure 15 does not contain the second host, PC-2. We have to add this manually
by the procedure described in the previous section: select Modify, Modify Hosts and
Add Host and then follow the instructions from the Dialogue Area. Be careful that you
connect the host to the correct transputer and link! It is quite easy to make mistakes in this
area since the “worm” program may not have numbered the processors in the same manner
as you expect - particularly if you are connecting two systems that used to be used
separately.

After adding all necessary heost/links/nodes by hand you must construct forwarding tables
and a reset tree in the manner described in Section 3.1 It is probable that your network
topology selection is now Make General - even if you began with two four node
hypercubes it is unlikely that the combined system has the correct configuration for an 8-
node hypercube. (You can, of course, construct this network by hand if you need safe
routing.) One thing which may be useful is the Show Reset Tree option. If you began
working by manually resetting the various boards with the exreset command then you
can have cnftool build and show you a “reset tree” that you can then hook up with the
appropriate cables. Then you will be able to reset the system from the “master console”
without having to exreset the other hosts.

After completing all the necessary book-keeping tasks you should return to the main menu
and Save the current configuration. Now you can exit from cnft ool and try to initialize
your machine from the console by typing

exinit
If your network refuses to load Express properly the most common source of error, we

have found, is with the reset signals. This is, unfortunately, a rather tricky area and varies
quite a lot with the particular hardware you are using. If your problems persist give us a call.

The last step of the configuration procedure is to check that the second host understands the
network. To check this try typing

exstat

from the console of PC-2. It will report the number of nodes and hosts in the system. In our
case we should see

Total nodes: 8, Allocated 0,
Number of hosts in the system: 2.

If all is well your system is now running Express on all 8 nodes with two hosts. The
benefits for user programs include:

295

Adding and
debugging the
connection of a
second host

Making cnftool
clean up its image

Examining routing
data

» Twice as many nodes to pick from: we can run on up to 8 nodes at once or
merely share space with another user on the other console. If 6 nodes are already
allocated, for example, we can use the other 2.

e Transparent access to the file systems on either host through the cubix
commands and servers. We can redirect operating system requests to either host
- even if it is executing an entirely different operating system!

» Use of either machine as a graphics server. We can run from one PC and redirect
our graphical output to the other.

« Debugging from either console. If we have an application that, for example,
makes use of the Plotix system for graphics it will be difficult to debug with
ndb on one PC since it will overwrite the display with pictures. We could,
however, run the debugger from the other host leaving the graphics alone.

5 Cosmetic Improvements

" While logically correct the network shown in Figure 15 is quite hard to understand - several

links track horizontally across the picture and it is not clear where one finishes and the other’
begins. cnftool contains facilities for improving the legibility of the image. Each of the
individual “Modify” menus has already been used to create new network components. You
may have noticed, however, that each also contains commands to “move” or “delete”
objects. The former command ask you to select an object to move and then lets you select
new positions for it in the Display Area. No configuration changes are made. The “delete”
options, however, do cause configuration changes in that links to removed nodes/hosts are
discarded.

As well as moving hosts and nodes around there is another facility for altering the
appearance of the links. The most common problem has already been addressed - you can
“swap links” as shown in Figures 12 and 13 to improve the display. Another common
problem which is not as easily solved is that shown in Figure 15 - some of the links lie
across the nodes making it unclear who is connected to what. To alleviate this problem you
can make “nodes” in the links - i.e., bends in the lines. You can then make the links move
away from their straight line paths allowing easier understanding of the network. Simple
combinations of these two procedures yielded Figure 16 from which the underlying
network is much clearer.

Note that you should Save the enhanced picture in the main menu before exiting
cnftool so that you can add more features to the network by starting from the cleaner
image.

6 Displaying Routing Information

" Since cnftool knows all the details of the routing strategy on a particular network it can

be used to show the paths taken by messages through the machine. This can be both a useful
debugging tool and also a guide to enhancing performance by alleviating obvious message
bottlenecks. The normal procedure in such a case would be to develop an algorithm on
some simple network and then use the ParaSoft profiling tools to examine possible sources
of inefficiency. If the network topology is considered inadequate then cnftool can be

296

A\\\\\\g

Figure 16. Multi-Host network after cosmetic improvement

used to display the message forwarding strategy as tollows:

L. Start up cnftool. Choose to work with the current configuration files
rather than beginning anew.

2. Select Show System from the main menu and then Show _Message
from the subsequent menu.

3. In response to the prompt in the Dialogue Area indicate two nodes between

which you wish to communicate. cnftool will indicate the forwarding
path from the sender to the receiver.

Notice that the path is shown assuming that the first node selected originates the message
which is to be received by the second. This is potentially important on networks where
different paths are used between two nodes depending on which of them sends the message.

Another potentially important structure is the “tree” through which messages are broadcast
by the exbroadcast system call. The path taken by a broadcast originating at any node
can also be examined from the Show System menu by selecting the Show Broadcast
option. Again the user is asked to indicate the node which originates the broadcast and the
corresponding path is indicated.

7 cnftool without graphics

" The simplest use of cnftool is obtained through the graphical interface described in the
previous sections. If, however, you do not have a supported graphics device or are unable
to use it for some reason a simple line interface is available - essentially one types in
manually the required information about processors and links. This procedure is,
unfortunately, somewhat tedious but may be necessary in some cases.

In order to present a concrete example of the configuration procedure let us consider the
“tree” configuration shown in Figure 17.

In this diagram the transputers themselves are indicated by the numbered boxes with the
interprocessor links shown by the solid lines. At each end of a “link” is indicated the
channel number to which it will be connected on the appropriate transputer. Notice that

297

Designing a
network without
pictures

Constraints on
what you can build

HOST « 0 0 2 0 2 1 0 3

Figure 17. Sample configuration for manual entry

there is no requirement tor this number to be identical at both ends of a link. Also note that
we have indicated a link which is connected to the “HOST”. This is the machine which will
be responsible for loading the Express system and your applications and which will be the
default system for resolving file names and producing graphical output. You will find it
much easier to configure the system if you have such a picture of the network you wish to
design in front of you. We will only connect this single host in this example - more can
easily be added. Also notice that the transputers are numbered consecutively, from 0. This
is one of the constraints implicit in the system - more details are contained in Section 8.

To configure Express for this topology and execute the command
cnftool -p

As in the graphical case you may be asked whether you want to proceed from an existing
configuration or begin again. It is normally simplest, in the absence of graphics, to start
afresh.

Initially you will be asked to indicate the number of transputers in your network. Respond
with a number and a Return, e.g.,

4 Return
for the example shown in Figure 17. Note that we do not count the host.
Next you will be prompted to enter specific information for each transputer in the network.

The first question for each node is its “logical number”. This is the number indicated in the
boxes of Figure 17. Again, for the sake of argument we will begin entering the data for node
0 so we would enter

0 Return

The next question requests both the number of the parent node (that which resets and
“boots” the current transputer), and an indication about whether the “system” or “sub-
system” output of the parent controls the reset for this transputer. This is the trickiest part

298

of the configuration process because of the “system” and *“sub-system” concept and the
rules governing the actual loading process. Basically the rules can be summarized by saying
that we have to be able to draw a binary tree through the transputer network - i.e., there can
be at most two legs coming out of any node. One leg represents the “system” reset and the
other the “subsystem”. If only one leg comes out of any node it must be the “system” reset.
A sample tree which we will use in our example is shown in Figure 18.

PEETRIRTREIRLD
LR RS

vvvvvvvv 0
PO IO
SRR System Reset

Subsystem reset

Figure 18. Network with superimposed reset tree

On some types of hardware the “reset” controls being described here are actually part of the
hardware itself while in others all the reset signals are connected together with cables. In
the former case the reset network being described must match that of the hardware while in
the second the information is only required to load the network with the operating system.

cnftool asks two questions about the reset system at each node. The first requests the
identity of the parent node and the second whether we are connected to its “system” or
“subsystem” reset. In our example we would enter

-2 Return
1 Return

in which the first answer indicates that node 0 is to be reset by the host processor (with the
“magical” node number -2) through its “system” reset. (In this case we have little choice The “host” as

since the host has only one link to the transputer net.) processor number -
2, in cnftool ONLY

The last information requested about the transputer concerns (surprise, surprise) the nodes
to which it is to be connected. Since each node must have a direct link with the node which
boots it one link entry must have the same node number as the parent field given earlier.

cnftool asks, in turn, about each of the transputer links. If that link is connected to
another node we enter the node number of the connected processor. If no transputer is

299

“Deadlock” free
routing

The transputer
“torus” topology

connected enter “~1", The answers we would give for node 1 of our network, therefore, are

-2 Return (Link 0)
1 Return (Link 1)
2 Return (Link 2)

-1 Return (Link 3)

i.e., link O goes to the host, link 1 to node 1, link 2 to node 2 and link 3 is unconnected.

We have now described everything necessary about node 1. Other parameters, such as the
particular transputer type or the size of its local memory will be determined automatically
by the system.

cnftool will now prompt you to enter similar data about the other transputers in the
network. Rather than go through the laborious details of explaining the various responses
we merely present the correct answers. Hopefully their meaning will be clear.

Node 2: 1 01 0 -1 -1 -1
Node 3: 2 01 0 3 -1 -1
Node 4: 3 21 2 -1 -1 -1

After finishing the final transputer entry cnftool asks for a suggestion as to what type of
topology you have described. The allowed possibilities are: torus, hypercube and
general. Obviously the last alternative is the “fall-through” - any network which doesn’t
fall into the first two categories fits here. In order to answer this question correctly one has
to be slightly flexible about ones definition of terms since the transputer has a limited
number of links. The details are given in Section 8.

If your network conforms to one of the two special configurations then you should indicate
so in your response to cnftool. If not then indicate a general topology. The important
difference between the classes is that Express GUARANTEES deadlock free routing on
both torus and hypercube meshes - your program can send messages to whatever nodes it
wishes (up to the limit on kernel buffer space) with no possibility of “hanging” the machine.
The general topologies, however, cannot be guaranteed in this manner. (One common
exception to this are the “tree” structures like that of Figure 17 which also have safe
routing.)

This completes the configuration procedure. From the information just entered Express
generates two files called run.nif and confile which describe the network and
forwarding strategy to be used on it. At this point you can go ahead and re-load the system
with the exinit command and proceed as before.

' 8 Transputer Variants of Standard Topologies

" The transputer has only four links. As a consequence certain common computer networks

have to be modified slightly before they can be implemented on transputers. In this section
we will discuss the construction and restrictions on the “hypercube” and “torus” topologies
on which Express guarantees safe routing.

The transputer variant of the ‘torus’ topology has already been shown in Figure 2. Itis a
generalization of the usual torus; edges are connected periodically with the exception of the

300

“spare” transputer between the host and the ‘torus’ proper. This extra node is required to
overcome the problems inherent in having only four links. This topology is very good for
simulations in two physical dimensions or for general use.

The second special network is the hypercube such as that shown in Figure 1. Again notice
that we have inserted a “spare” node between nodes 0 and 1 so that the outside world can
communicate with the main array. Note that we can actually construct lower dimension
hypercubes without cheating in this way: dimension 0, 1, 2 and 3 hypercubes will have their
usual elements and numbering schemes - only the dimension four case causes problems.
Dimension 5 and higher hypercubes cannot be built from current transputers. (Unless, of
course, you consider a “node” to have more than one transputer.)

For reasons too hideous to discuss in this document there are certain restrictions on the
numbering scheme you may use in describing your transputer network. One which may
already be apparent is that the numbers you specify in describing the network are not
simply related to the node numbers you use in conjunction with the Express system calls
exread, exwrite etc. The most obvious reason for this discrepancy is that Express
allows several users to share the nodes in the array. Each user gets an independent set of
nodes which are numbered logically from zero. In this case there is no relationship between
the numbers given cnftool and those used by the user, nor should there be. In the more
elementary case where one user has all the nodes the mapping is simple; the number given
cnftool is the same as that used in exread. (The exception to this rule is the host which
has the magic value HOST).

As well as these oddities the individual topologies themselves also have certain numbering
restrictions associated with the “bootstrapping” procedure. These are as follows:

Torus The node connected to the host is numbered O and then processor numbers
increase row-wise as indicated in Figure 2. There must be an equal number
of nodes in each row and in each column (although, of course, the overall
network need not be square). The exception to this rule is the first row which
contains the “spare’ node. Link 3 of the spare node should be connected to
the host.

Hypercube The node numbers of the actual hypercube nodes must satisfy the usual
numbering pattern. The “spare” node on the four dimensional hypercube
will be numbered 16 and must be connected between nodes 0 and 1. On low
dimensional systems link 3 of node 0 should be connected to the “master
console”. On the four dimensional system link 3 of node 16 should be
connected to the host.

General Node 0 must be connected to the host.

301

The transputer
“hypercube”

topology

Numbering
problems with the
“standard”
topologies

Multiple Hosts

Building networks with multiple host
processors and using Express with it

p 1 Introduction

L One of the most powerful features of the Express system is its ability to support multiple

simultaneous users on a parallel processing network. Typically such systems still have only = Multiple

a single host to which any number of users may connect, shown in Fig. 1. These users may Simultaneous users
then allocate their own groups of nodes in the attached parallel processor and can, in effect,

work independently.

User 1

User 2

User 3

Host

Figure 1. Multiple users sharing nodes from a single host.

In addition to this scenario Express also supports systems in which multiple hosts are Multiple hosts
connected to a single parallel computing resource. In this case it is possible for several users.

working on separate hosts to share access to the parallel computer as shown in Fig. 2. Again

the users may operate independently, each using whatever resources are available on the

host from which they are running.

User 1

User 2

| User 3
—
Host 0 Host 1

Figure 2. Multiple users sharing nodes from separate hosts.

Note that the hosts in the previous paragraph need not be the same. It is quite possible to Heterogeneous
use an MS-DOS PC as one host and a Sun Workstation as the other, or a Macintosh and a networks
MicroVax, etc. The only requirement is that the host be connected to the parallel processing

system through a supported interface - either a transputer board in the host or a link adapter.

One is also not restricted to two hosts - as many hosts may be connected as the transputers

have links to connect them. The hosts need not be real computers either - Express would

treat an attached disk server for a data base as another host.

The scenarios described so far entail each user accessing only the utilities of the host from

303

Express servers

Using Cubixin
non-Cubix
programs

which they allocated the nodes being used. In addition to this picture Express allows the
user access to the facilities of other hosts through various server mechanisms. Using the
Cubix programming model, for example, one may download a program from one host and
use its console for formatted I/O but simultaneously direct other I/O requests to another
machine and graphical output to a third device, Fig. 3. Using such techniques it is obviously
possible to build complex, custom tailored systems, for such applications as CAD/CAM,
Data Base, etc.

Host 1

User 1

Host 2.

Host

Figure 3. A Single user using mulitiple host facilities.

If you are not using the Cubix programming model you may still take advantage of the
multiple host features. A program loaded from one host may communicate with any other
node in the parallel processing network, or any attached host using the basic Express
message functions. Similarly a host program may ask to share an existing group of nodes
allocated by another host program, possibly running on a completely different host. In this
way the two host programs may simultaneously communicate with a single node program.
In addition the two host programs may even talk to each other through the transputer
network.

Note that the facility of multiple hosts naturally brings together the Cubix and host-node
programming models. You may load a program with Cubix onto a group of nodes and then
have a host program share access to the processors. This gives you the best of both worlds.

This document is designed to lead you through the procedures necessary to setup and use a
system with multiple hosts. It assumes that you are already familiar with the Express
system on a single host and you should consult the standard Express manual for a thorough
description of the system calls described in this document. Sections 2 and 3 address the
problems associated with connecting multiple transputer boards in different machines
which is often necessary to connect systems with multiple hosts. Much of this material is
repeated from the similar discussion in the cnftool documentation but is repeated here to
make this chapter self-contained. Section 4 describes the procedures necessary to configure
and boot Express onto a system with multiple hosts. Section 5 describes the Cubix server
process which is used to provide I/O and operating system services on a second host.
Section 6 describes the mechanism which allows several host programs to share access to

304

the group of nodes and section 7 explains how Cubix programs may be built with their own
host programs attached, combining the information from sections 5 and 6.

2 The “RESET” problem - mechanical connectors

" In this section we consider only those types of hardware in which the transputer links are
connected with physical wires. Systems which use Inmos’ electronic switch, the C004, are
dealt with in section 3.

In building a system with multiple hosts there are basically two ways to proceed depending
on how the second host will be attached to the existing nodes.

In the simplest case the second host will be supplied with a link adapter (only) which can
be connected to one of the links on the existing network. If you are content to always
initialize the system and load Express (with exinit) from the original host there is no
“RESET” problem and you should skip to Section 3 for a description of the configuration
steps needed to put Express in contact with the second host. If, on the other hand you wish
to be able to reset the system from either host, read on.

If your system will contain multiple transputer boards you must address the question of how
to make the “RESET"” signals work. Before Express can be loaded onto the system every
transputer node must be in the reset state. On a single board this is usually simple since
manufacturers take care to provide a path through each of the nodes. When connecting
multiple boards, however, you must do some work yourself. The simplest way to check on
your progress as you attempt this task is to use the “worm” program supplied with
cnftool. This program resets as many nodes as it can reach and then draws an image of
everything found, see Fig. 4.

Channel 0 E Channel 1 Quit
Channel 2 Channel 3 TEE———— Scroll Up

Scroll Down
Scroll Left
|__Scroll Right
Plot Old Config. |
Create Config. |
Show Detail
Modify

Show System

Save

Erase

Figure 4. cnftool’s display of a single host system

305

Connecting a
second host via a
link adaptor

Connecting a
second host
through a second
transputer board

Debugging multi-
host systems; an
example

Resetting stubborn
hardware

The problems with
off-board links

The simplest procedure for connecting up multiple boards, therefore, is to hook up
whatever wires seem appropriate, fire up cnftool’s worm and count the nodes on the
display. When this number reaches the expected value you are home. Unfortunately life is
not quite this straightforward on most systems.

To make this discussion more concrete let us assume that we have two transputer boards in
separate hosts, each with four nodes. If you find that only the four nodes on your first board
are being detected by cnftool it means that you are not managing to reset any nodes on
the second board. You should probably consider the following steps:

1) Are the reset signals really connected up?

ii) Have I understood the “Up/Down” and system/subsystem business
correctly?

iii) Do the machines share a common ground? (This is not usually necessary but

we have seen it help in a least a couple of cases.)

iv) Were all the boards supplied by the same manufacturer? If not am I sure that
the links all conform to the same, TTL or RS434, standard?

If everything seems to be well you should either consult with your hardware supplier or
consider using exreset.

exreset is a program whose sole aim is to reset any nodes which refuse to be “done” by
your system. In the present situation, even if all else has failed, you should be able to go to
the second host’s console and type

exreset

This will reset any of the nodes on the second board which are still connected to the second
host - hopefully this includes all the ones that were missed before. Now you can go to the
first host and execute cnft 0o1’s worm. Since the second set were reset by exreset and
the first set of nodes are reset by cnftool you should now be able to detect all eight
nodes. If not check out your link connections.

Hopefully this process has resulted in cnft ool describing all the nodes in your system. It
will, however, only show one host - the one from which it was executed, see Fig. 5. One
should also notice that the numbering of the nodes may not correspond to your idea of
which node is in which host. cnft ool numbers the nodes in increasing order of detection
which may not correspond to your own numbering at all - it is not even guaranteed that the
lowest numbered nodes will all lie on one board!

Having built a description of the transputer nodes in your system it remains to add the
second host.

3 The “RESET” problem - Electrical connections

~ Machines which have the electronic link switch pose tricky problems during configuration,

mostly connected with the fact that while the on-board links are hooked up electronically
the off-board and inter-board connections must be manipulated by hand. A further
difficulty is that no “worm” program can help you diagnose problems with your
connections since by their very nature there is no network to explore until it has been

306

Channel 0 Channel 1 Quit
Channel 2 Channel 3 NEG———— Scroll Up

Scroll Down
Scroll Left
| Scroll Right
Plot Old Config. |
Create Config.
|__Show Detail
Modify

Show System

Save

Erase

Figure 5. cnftool’s display of multiple node boards.

configured! (Note, however, that systems with mixed electrical and mechanical links can
be explored with the “worm” once the electrical part of the network has been configured.)

To perform this task we again use the cnft ool program.

Basically we start off by using cnftool to describe the entire network as we wish to set
it up. In this sense we can ignore the fact that some wires may be missing and should
proceed as though cnftool were somehow able to transcend this problem. Include the
extra hosts that you will be adding to the system. Once the network has been described and
its forwarding table created and safely stored away with the Save command we must
decide which links need to be added to the system.

To make this discussion more straightforward let us consider a system which will
ultimately contain 12 transputers, four on each of three boards. For simplicity we will
assume that each board has a C004 which can look after the on-board links but which
requires mechanical cabling of the off-board links. Also, for simplicity let us assume that
all boards are currently located in a single host - the transition to multiple hosts is quite
straightforward.

We will assume that the nodes labeled 0-3 are to be found on the first board while 4-7 are
on the second and 8-11 on the third. Also let us decide to make the following inter-board
connections:

* Node 2, link 2 -> Node 4, link 3
« Node 6, link 3 -> Node 9, link 1
To implement this strategy we have to know how Express assigns off-board links to the

307

Configuring a
second transputer
board
electronically; an
example

connectors which are used for cabling the inter-board links. This is best seen by looking at

The algorithmfor the following piece of “pseudo-code” which contains the algorithm.
determining off-
board connections

for each board in system ({
off board slot := 0
for each node on board {
for each link on node {
if 1link goes off board {
assign link to next free off board slot
increment next free off board slot

This algorithm is actually just what you might assume - for every link that goes off the
board assign the next available slot in the edge connector.

Using this algorithm on the links shown above yields the following assignments:
* Node 2, link 2 assigned to slot O on first board.
¢ Node 4, link 3 assigned to slot 0 on second board.
* Node 6, link 3 assigned to slot 1 on second board.
¢ Node 9, link 1 assigned to slot 0 on third board.
As a result of this assignment we need to add the following physical connections
1) First board, slot O to second board, slot 0.
ii) Second board, slot 1 to third board, slot O.

This completes the process required to configure multiple boards in a single host. To use
the facilities of several hosts we merely move the run.nif file created by cnftool and
the hardware to the second machine. The connections remain in place.

The “exreset” To boot this system for Express we must now reset the network and configure its links. On
command on all but the first host this is achieved with the exreset command. When executed two
multiple boards

questions will be asked:

* What node number, as given to cnftool, is has the lowest number of this
board? In our exampie we might answer 4 is the second and third boards had
been moved to a second host.

¢ Which node, if any, in this machine should be connected to the host and which
link should be used for the connection?

After asking these questions exreset configures the C004’s on the boards in this host and
leaves the transputers in the reset state.

On the host containing the first board you can now execute the exreset command. Since

308

all the links in the other hosts’ boards have been configured by the exreset command

exinit can now load the Express kernel into the entire network. While doing this

exinit will realize that insufficient nodes are present in the first machine to build the

entire network and it will say so before proceeding to the other machines and completing
the loading.

Configuring Hosts and Booting Express.

" At this point you are probably sitting in cnft ool with an image similar to that of Fig. 5
on the display - it shows your original host, with the legend “H0”, and whatever new
transputer nodes you have added to the machine but no second host. (If you skipped to this
section from Section 2 because your second host has only a link adapter and no nodes then
you should fire up cnftool to get to an image similar to that of Fig. 5.)

i

If you have not yet added the second host to the display you should do it now.

To add a second host select the Modify option to bring up the second level menu and then
Modify Hosts to bring up a set of options connected with hosts. In this menu select Add
Host to create a second host. cnftool will prompt you to position the new host
somewhere on the display. Use the arrow keys or mouse to locate the position at which you
wish to display the new host’s icon - the position on the screen is irrelevant. When you click
to select a new position a second host icon will appear with the legend “H1”. This number
is important - you need it whenever you wish to specify that some action is to be performed
on a host other than the one which loaded your program.

To connect the second host to the network you must now add a “link”. This is,
unfortunately, rather tricky since the “worm” program numbered the nodes in a random
pattern rather than that engraved on the side of your new hardware! You need to figure out
which node in cnftool’s image corresponds to the one to which your second host is
attached. This is usually possible by tracing the existing links on the display - cnftool
may renumber the nodes but the link numbers stay correct.

Once you have decided which node in the network needs to be connected to the new host
the procedure Modify, Modify Links, Add Link should be enough to take you from the
top level menu through adding a new channel.

Having completed the description of the enhanced network you need to create a reset tree
and forwarding table in the Show System menu and then Save the configuration before
exiting, in exactly the same way as for a system with a single host.

Once back at command level you should try booting Express onto the new network.
Before rushing off and typing exinit you need to once again consider the “RESET”
issue. If you brought the system up by typing exreset on one or more hosts you’ll need
to do this again before trying exinit (and, in fact, any time you type exinit).

Assuming all nodes are either reset or in a position to be reset by exinit you should go
ahead and try to load Express. If all is going well you should see a message saying that
Express has been loaded and a subsequent message allocating all the nodes for topology
initialization. Any errors connected with incorrect links should be diagnosed by the loading

program.

309

Adding the second
host

Booting Express
onto multiple
boards

Diagnosing
problems - exstat

System
configuration files

Graphics and 1/0
servers

Once Express has been loaded into the network the simplest way to check that everything
is now connected correctly is the exstat command which lists the allocated nodes and
the running processes. While the output from this command will not be very interesting
until user programs are executed it is useful to detect misplaced connections - if, for
example, this program fails to respond when executed on the second host it probably means
that the connection you indicated to cnftool as being between the second host and the
network is either misplaced or not working.

Once both your hosts have passed the “exstat” test you can confidently proceed to use
the newly enhanced system.

The information so far presented should allow you to build a system that can, at worst, be
rebooted by typing exreset on some of the hosts and then exinit on one machine. If
you wish to have the option of downloading Express from more than one of the hosts
several system configuration files must be copied from the host normally performing the
exinit function. At present the list of files and their approximate contents are:

NIFFILE Describes overall system configuration, which links are attached to
which nodes, etc.

CONFILE Routing table built by cnftool and loaded during topinit, the
second phase of exinit.

PLOTFIL Graphical display last printed by cnftool.

Note that the names shown here are the customization variables which are created by the
excustom command. The exact filenames can be found from the system customization
file - see the excust om description for more details.

In passing we might note that the above listed files currently contain all system
configuration information. If you wish to keep track of a particular hardware configuration
and later return to it without going through the cnft ool process you can save these files
and later restore them. ParaSoft cannot guarantee that later versions of Express will
maintain all its information in the same files.

} 5 Using Cubix in a multi-host environment

One of the most common uses of a network with multiple host machines is to take
advantage of the file systems or graphics capabilities of the extra machines. In order to do
this we introduce the concept of the Cubix server process.

If you have programmed in the standard Cubix environment you are probably familiar with
the cubix program as the means to download an application to a group of transputers and
then serve its I/O requests on the system console. Commands such as

cubix -n 4 myprog dog cat horse <input.dat

are used to load a program called myprog into 4 nodes, passing it arguments dog, cat
and horse and connecting its input stream to the file input .dat on the host computer.
Using this programming model we are able to take advantage of a number of standard
operating system services which are typically unavailable to programs running on
transputer networks.

310

To take advantage of a second host we must execute the single command
cubix -S

on the second host. This command starts up Cubix in its server mode. It begins by arranging
to access all of the nodes in the transputer network to which it has access and then sits and
waits for your node programs to ask it for services.

The simplest mechanism by which a Cubix program can take advantage of multiple hosts
is shown in the following program extract

system("date") ;

console_node (0x8001);
system("date");

console_node (0x8000);

" The first “system” call should result in the date being displayed on the normal system
console. The following function call, console_node, is then used to redirect Cubix’
attention to an alternative host. Note that the “magic” number given to the function is
merely the host number displayed by cnftool OR’ed with the hexadecimal value
0x8000 which sets the highest bit in the number. This is one of the reasons you need to
remember the magic numbers generated by cnftool.

After making this call the second “system” call will display the date on the monitor of the
second host.

The console_node call is extremely powerful. Once this call has been made ALL
operating system requests, with the exception of file I/O, will be directed to the indicated
host. File I/O, on the other hand, remains bound to the host which has the appropriate data
- Cubix keeps track of which file resides on which host and uses this information
irrespective of any calls to console_node.

In discussing the question of which file lives where we have to address the open question.
Basically a file is located by Cubix according to whatever host was controlling the system
when the open or fopen system call was made.

For the three standard files streams, stdin, stdout and stderr this will always be the
host from which you loaded your program. (Note that you can play clever games with
close and dup to override this constraint.)

To access files on other machines we can modify the name of the file as given to the open
or fopen commands by prefixing a magic number such as that given to console_node.
The following example shows the general mechanism.

fdl = open("filel", O_RDONLY);

console_node (0x8001) ;
fd2 = open("file2", O_RDONLY);

31

Starting the Cubix
server process

Multi-host
programming
example

Redirecting
operating system
requests

Locating files on
alternative file
systems

The role of the host

Addressing
multiple host
processors from
“host-node”
programs

Sharing groups of
nodes

fd3 = open("8000:file3"™, O_RDONLY);

console_node (0x8000) ;
fd4 = open("filed4", O_RDONLY);

The first file, “filel”, will be opened on the normal host - the one which loaded the
original program. The call to console_node then redirects attention to host 1 and opens
“file2” there. The third call to open specifies a prefix to the file name overriding the
current default and resulting in “file3” being opened on host 0. Finally we switch
consoles again to host 0 and “£ile4” is opened there.

Note that while the above description concentrated exclusively on the open system call the
same remarks apply to fopen calls. Furthermore any digits may appear before the ‘:’
character in the override portion of the file name string. They are interpreted as a
hexadecimal constant and interpreted in the same manner as in console_node.

The mechanisms described so far allow us to take advantage of the file systems and
operating system utilities on any host connected to our system. A particularly common use
of these techniques, however, is the use of additional graphical output. By analogy with the
console_ node routine which redirects Cubix’ operating system requests, the Plotix
system has a call display node which redirects graphical output. Its use is identical to
the Cubix routine and it applies to all subsequent calls to the sendplot utilities.

6 Writing host programs in a multihost environment

" The previous section explained how to use the facilities of Cubix on a network with

multiple hosts and how various system calls were available to gain access to the facilities
of the various machines. The complementary information, about host programs, is given
here.

Express’ philosophy is that host computers play a role entirely analogous to the nodes of
the parallel computer. Most of the system calls which are used to communicate data
between node processors can also be used to talk to the host machine - the magic value
HOST is used as the “node” parameter.

In a system with multiple hosts the situation is necessarily more complex - one HOST value
is clearly insufficient to differentiate between several possible hosts.

On the node side the solution is quite simple. To communicate with a host that cnftool
denotes H3, for example, we use the magic value 0x8003 obtained by setting the highest
bit of that used in configuration. You may, in fact, already have seen this in action if you
ever printed out the value of HOST in your code. Express actually does this calculation for
you when your program begins so that the value of HOST is always set to the machine from
which you loaded your code.

The host side is trickier because of the process of node allocation. A simple host program
calls exopen to gain access to a set of nodes in the parallel computer. If the second host
program were to make the same call Express would take this as a request for another,
different, set of nodes and would attempt to allocate a different set of processors. For this
reason the second host program should call either exshare or exaccess.

312

exshare is the most common system call used when two programs must share access to
the same set of nodes. ndb, the source level debugger uses this system call internally to
communicate with the nodes allocated to your node program. The three arguments to this

function are:

device

process_ID

pnodes

The same argument as supplied to the exopen call in the first host
program, with the same meaning. If the two programs attempting to
share the nodes are executing on hosts with different operating
systems these arguments might differ slightly according to local
naming conventions but they should indicate the same parallel
computing device.

This argument is used to differentiate between the programs
currently executing on the nodes. Use of the exstat command is
the recommended method for determining this value.

This value is returned to the caller containing the number of nodes
in the group being shared.

The value returned by exshare is a node group identifier to be used in the same way as
the return value from exopen. Note that calling exclose in one host program does not
deallocate the nodes - both programs must call exclose before the nodes are free for

someone else.

A simple piece of code which attaches a second host program to a set of nodes and sends
messages is shown below

/*

* A host program to share access to the group of nodes
* specified by the process ID given on the command

* line.
x/

#include
#include

Sends a simple message to each and then quits.

<express.h>
<stdio.h>

main (argc, argv)

int argc;

char *argvl[];

{
int
int

dummy, type, 1, Nnodes;
pid, node fd;

if(argc < 2) {

}

fprintf (stderr,
"Usage: %s process_ID\n", argv(0]);
exit (0);

/* Get process ID to share from command line. */

313

exshare

exshare example

exaccess

pid = atoi(argv(l]):
/* Attempt to share nodes with this process. */

if ((node_fd = exshare("/dev/transputer",
pid, &Nnodes)) < 0) {
fprintf (stderr,
"Failed to share nodes with process %d\n",
pid) ;
exit (0);
}
else printf("Sharing %d nodes\n", Nnodes);

/* Send each node a simple message and quit */

type = 123;
dummy = O0;
for (i=0; i<Nnodes; i++) {
exwrite (&dummy, sizeof (dummy), &i, &type):;
}

exclose (node_fd);
exit (0);

The second method for sharing access to a set of nodes is exaccess, a rather “brute-
force” approach. This routine has no process-ID argument but rather obtains access to every
node in the machine irrespective of its current operation. Note that this is a rather desperate
action to take but has the advantage that even the first host program can use it - no node
program needs to be executing for this call to work. The arguments are, therefore:

device The same argument with the same meaning as in the exshare
system call.
pnodes This value is returned to the user and contains the number of nodes

in the entire system.

A subtle difference arises in the numbering of the nodes when using this system call. Note
that when we used exshare in the previous example we could still address the nodes in
the machine with the numbers 0, 1,.. ., Nnodes-1 irrespective of their physical position
in the array. If, for example, two users were simultaneously using four nodes in the system
then the first might be allocated the “first” four nodes in the machine and the second four
higher numbered nodes. Both users, however, can communicate with their respective nodes
using the numbers 0, 1, 2 and 3. Express performs the necessary mapping between the
hardware node numbers (such as those known to cnftool) and the logical node numbers
used in programs.

314

The use of exaccess, however, short-circuits this problem. As a result the arguments
used in calls to exread, exwrite, etc. must be physical node numbers. This means that
in the example just quoted the user of exaccess would have to know the physical node
number at which the group of allocated nodes starts and add to this a logical node number
to arrive at a value to pass to Express. Note that Express always allocates node in blocks
with contiguous physical node numbers so the mapping is determined by a single number.
Further note that in the case where only one program is to run on the system the logical and
physical node numbers will be the same (since the origin of any allocated group will be
physical node 0) and the problem evaporates.

While exaccess is usually unnecessary it does have one useful feature in that it returns
the number of nodes in the entire machine. One can, therefore, create the following routine
to return the number of nodes in any system controlled by Express.

/*
* Count_nodes.
*

* Returns number of nodes in array.
*/
int count_nodes ()

{
int Nnodes, node fd;

if ((node_fd =
exaccess ("/dev/transputer”, &Nnodes)) < 0) {
return -1;

}

exclose (node_fd);

return Nnodes:;

Notice that we call exclose to terminate the connection to the processor group before
returning the number of allocated nodes.

Having now addressed the issue of how the nodes communicate with multiple hosts and
how the hosts attach themselves to a set of nodes without calling exopen the final question
is the obvious one: “Can one host talk to another without the nodes intervening?”

The answer to this question is a qualified “yes”. If the two host programs have used the
standard mechanisms to share access to a set of nodes: exopen in one host and exshare
or exaccess in the other then host “H0” can send a message to host “H1” by using the
magic node value 0x8001, just as a node would communicate with another host. At
present there is no way for two host programs to communicate without first allocating at
least one node.

[7 Combining Cubix with a host program

— Havin g now discussed the possibilities for a node-based Cubix program to use the facilities

315

Processor
numbering after a
call to exaccess

*Finding the
number of nodes in
the machine

Inter-host
communication

Hybrid Cubix and
“host-node”
programs

of many hosts and also the mechanism by which multiple hosts might communicate with a
single group of nodes a final possibility exists: a Cubix program using the I/O facilities of
one or more hosts and simultaneously interfacing with a host program.

This option is actually quite straightforward using the constructs of the previous two
sections. We create a standard Cubix program on one host and load it with the cubix
program. We already understand from section 5 how this program can utilize its own and
possibly other hosts through the Cubix-server. While this program is executing, however,
we can also have a host program use the exshare and exaccess to gain access to the
nodes.

The result of this is a means for programs to have the best of both worlds - I/O facilities and
a native host interface. The sole strange feature of this process is that the loading process is
inverted from that which one might naively expect - it is probably more natural for the host
program to allocate the nodes and load the application which then communicates with a
background Cubix server. This option may become available in a future version of
Express if the present solution proves unworkable.

316

317

Customizing Express

Modifying the installation, size and per-
formance of Express with Excustom

P 1 Customizing Express

L When Express systems are shipped they contain default information which has been found
to be appropriate for a wide variety of applications. This information relates to the setup of
the Express system on the target host, the operation of the “tools™ used while creating and
evaluating Express programs, and the runtime behavior of Express applications.

The customization system allows for explicit modification of most important Express
system parameters with the explicit goal in mind of gaining maximum performance from a
given parallel processing system. A secondary goal of this system is to allow users the
ability to install Express in any place on their machines and for third-party software
developers to build Express into their applications without the need for a complete
Express installation.

This chapter is divided as follows. Section 2 describes the customization file which is the
central component of the customization system. Section 3 discusses the excustom tool
which is used to modify the information contained in the customization file. Section 4
describes the Express buffer management policy and the impact of changing the buffer
sizes/allocations. Section 5 discusses the important issue of Express’ usage of the
transputer’s memory. This information is crucial to anyone wishing to gain a better
understanding of their program’s performance or trying to use the advanced debugging
tools present in Express. Section 6 lists the various customization parameters and their
exact meaning. This is the major reference for those users whose needs are not adequately
served by the simple excustom tool provided to modify high level system parameters.
Finally, Section 7 describes the mechanisms used to locate the default system configuration
under various operating systems.

2 The Express “Customization” file

@ An Express system is characterized by a set of variables which describe how the various

tools, subroutines and even the Express kernel operate. These values are maintained in a
database known as the Express customization file. Every installation of Express must
have one of these files whose contents vary widely with the type of the underlying system.

The customization file is a line oriented ASCII file which contains definitions of important
system variables, one to a line. Lines beginning with either ‘; ’ or ‘#’ characters are treated
as comments. Other lines take either of the symbolic forms

NAME=text
MACRO:=text

As is suggested by the above notation the former type are merely assignments to Express
system parameters while the second define macros that may be further used in the
customization file to simplify definitions of multiple related objects. A good example might
be the default start-up information required by the debugger, ndb. As part of its
configuration information it needs to know the location of the on-line help facility and also
the system start-up file which contains the definitions of system commands. Since these are
often in the same or related directories one might imagine two entries in the customization
file of the type

319

Obtaining
maximum
performance

The operation of
Express

The customization

file

Macros make
installation
changes easy

NDB_HELPDIR=c:\parasoft\help
NDB_STARTUP=c:\parasoft\lib

These entries could, however, be replaced by the lines

PARASOFT:=c:\parasoft
NDB_HELPDIR={PARASQFT}\help
NDB_STARTUP={PARASOFT}\lib

While three lines may seem more complex than the original two the use of the PARASOFT
macro means that the Express system can be moved from one directory to another by
simply changing the macro rather than each line of the customization file.

Modifying As has been implied by the above discussion the operating parameters of Express can be
Express simply modified with a text-editor or word processor by locating the system default
parameters

configuration file, modifying the appropriate parameters and reloading Express. This
process is indeed all that is required although it mandates an explicit knowledge of the
meanings of the variable names. These are discussed in Section 6.

Finding the The most tricky aspect of this entire discussion is the location of the customization file

customizationfile jtself, While Express provides a simple function call that programs can use to direct
attention to a particular file every system contains a default configuration whose name must
either be known in advance to Express or which can be indicated at runtime. The exact
mechanism is somewhat complex and is discussed in detail in Section 7.

K Modifying System Parameters with excustom

" As was previously indicated a simple, though inelegant, method for modifying the
configuration information of Express is to use Section 7 to locate the default configuration
file and then the definitions of Section 6 to find out which values are used for which
purposes. One can then edit the configuration file with some text-editor or word processor,
reload Express and continue.

Since this process is somewhat tedious, especially for those users who do not need to
configure individual entries, an Express tool is available which automates this process:
excustom. '

The exact operation of this tool is dependent upon the exact hardware in your system and
the operating system running on the host so it is possible that some of the details discussed
here will be irrelevant on your system. The accompanying discussion should, however, be
enough to indicate the general principles.

excustom The basic idea of excustom is to offer you the chance to modify the most important of
the Express variables along with defaults based either on the current system values or
some “sensible” defaults. If you are operating Express from a simple terminal with a
conventional “line oriented” interface you can invoke the system with the command

excustom

You will be prompted to modify the values of the various system parameters individually.
If you don’t wish to change any particular value just use the “Return” or “Enter” keys at the
prompt without entering any text.

320

An example dialog, taken from MS-DOS, might be as follows:

What kind of machine are you using? [STD_LINK] :
Where is your compiler located? [c:\logc] :
Where is ParaSoft’s home directory? [c:\parasoft] :
How many buffers per transputer node? [{100] :
How many buffers on the host? [20] :
What size buffers? [1024] :
Where is the Express kernel be loaded? [f£EfELEF]
Do you want to modify link adaptor parameters? [y,n] :
Do you wish to use DMA? [y,n] :
Do you wish to use a "block move™ interface? [y,n] :
Do you wish to enable accounting? [y,n] :

In each case we can see that the user input, which would normally follow the *:’ character
is empty indicating that the default action should be taken. In most cases this is indicated
by the value in brackets although it defaults to “no” for the simple questions.

Notice that the number of questions asked is somewhat less than the number of entries in
the customization file. This is because of the macro facility described in Section 2. Instead
of asking questions related to every one of the file related Express options we merely ask
about the root of the Express and compiler installations and derive the other information
with macros. If you wish to change individual file entries the customization file must be
edited by hand.

The default values offered in the above customization example would be obtained by
reading the current customization file. This allows incremental modification of a
developing system. If you wish to restore your system to its “factory settings” then you can
invoke the tool with the command

excustom -r

which tells the system to *“reset” its default values when prompting you. Finally you can
modify files other than the default system configuration by naming them on the command
line

excustom mycustom

would modify the contents of the customization file called mycustom. In this way
applications or individual users can maintain their own customization files independent of
all others.

In windowing environments such as MicroSoft Windows, SunView or the Macintosh
excustom presents a “dialog box” interface in which the various customization options
are offered simultaneously for editing. Various buttons are provided to maintain the
functionality of the line-oriented interface - a “reset” button is usually available which
makes all parameters assume their default values.

[4 Express buffers

" Three of the most important questions asked in the customization process are related to the
manner in which Express uses buffers.

321

An example:
MS_DOS

Default values

Expressis
“packet switched”

Overheads and
how to avoid them

Controlling buffer
allocation

Running out of
memory

“Deadlock’

Express is a packet oriented communication system. What this means is that when you
send a message between processors Express breaks it up into fixed size pieces and
transmits each individually. While the exact reasons for this are somewhat complex it can
be shown that such “packetizing” systems are more reliable under heavy message traffic
than those which send all messages as single blocks.

Obviously the process of breaking up a message into, for example, 1024-byte chunks,
sending each full block and then sending any remaining bytes takes some time. (Note that
a 1025 byte message, in this example, would be sent as a 1024-byte packet followed by a
single byte, not as two 1024-byte packets.) In order to optimize the behavior of your
applications the buffer size to be used can be changed through the customization system.
If, for example, you know that the maximum sized message that your code will ever send
is 3000 bytes then it makes some sense to tell Express to use buffers at least this big.
Notice, however, that you can go too far. If you tell Express to use 64 Kbyte buffers all
the time you are getting close to the position of telling it to ALWAYS send messages in one
chunk, however large. This technique can fail in heavy traffic if insufficient memory is
available to send/receive messages.

In connection with this buffer size parameter one can also indicate the number of buffers to
be allocated in both the transputer nodes and the host processor. The former is to allow you
the freedom to use the node’s memory as effectively as possible. By default, for example,
Express allocates 100 buffers of size 1024 bytes. 100 Kbytes of memory is therefore used
on each transputer node for the Express communication system. If your program is short
of node memory you might want to reduce the number of buffers in each node. In particular,
if you wish to increase the size of the individual buffers you might want to make fewer of
them in order to not use up too much node memory.

IMPORTANT: The size and number of Express buffers
does not affect the ability of the system to send large
messages since every message larger than a single packet
will be automatically broken down into smaller ones.

An important issue connected with buffer management is the question of what happens
when Express runs out of buffers.

In the most senseless case one can imagine a configuration in which there are, for example
20 node buffers each of size 1024 bytes for a total of 20 Kbytes. Now let us assume that
every node attempts to send a 10 Kbytes message to node 0, and no attempt is made by node
0 to read any of the messages. If we have four nodes then this will result in 30 Kbytes of
data arriving at node 0 which has capacity to handle only 20 Kbytes. At this point the
machine will almost certainly “hang” - no further communication is possible. What has
happened in this case is that each node starts sending out 1024 byte packets to node 0.
Eventually node 0 will run out of space to store these packets and so the nodes attempting
to transmit and/or forward messages to node 0 will have to stop. At this point no further
message traffic is possible which has to be routed through node 0. This “deadlock” situation
will then backtrack out towards the other nodes in the system and each in turn will have to
stop and wait for the blockage at node 0 to disappear.

If we modify this scenario slightly by having node O try to read the incoming messages

322

with, for example, the wildcard DONTCARE value for the message source, then things will
(probably) work out much better. Now the nodes dispose of their data by sending it out
towards node 0 which is actually consuming packets as they arrive. Now there will be
enough space to buffer the incoming messages and the machine will not “deadlock”. Notice
that everything works out correctly even though the capacity of node 0 to handle its
incoming data is still smaller than the amount of data being transmitted. If the buffers
temporarily become full in node 0 some other node may have to suspend its operation while
space is made available on node O but it will then continue automatically.

Notice that it is still possible to create impossible situations. Let us suppose that node 0
decides to read the incoming messages in some specific order: node 3, node 2 and then node
1. Furthermore let us assume that due to some timing situation inherent in the program all
ten buffers from node 1 arrive before all ten from node 2 which, in turn, arrive before any
from node 3. Again we have a “deadlock” situation since the capacity of node 0 is
exhausted by the messages from nodes 1 and 2 but the message requested for reading is
from node 3. Since node 3 cannot find space on node 0 to store any of its packets it will stop
and wait, forever. In this case we can trivially remove the deadlock by allocating 21 buffers
on node 0. In this case we are guaranteed that node 0 will have at least one space available
for the incoming message from node 3 and so the system can proceed.

If this discussion has only persuaded you that buffer allocation is too difficult a problem for
the human mind you may be correct. The question of exactly how many buffers to allocate
is an extremely complex one depending on the algorithmic demands of the application the
operating characteristics of the hardware in use and the topology in which the network is
connected. Simply because of this difficulty Express provides the user with the ability to
choose the various operating parameters because they do play a role in optimizing program
performance but cannot be predicted beforehand.

One area of central importance in this field concerns the host interface. On most current
transputer systems the host-node link is much slower than the node-node links. As a result
the host reads messages much more slowly than the nodes. While this would probably
suggest that a large number of buffers should be allocated on the host one is often limited
by the amount of memory available. To attempt to allocate 100 Kbytes on a DOS machine,
for example, would meet with certain failure. To cope with this situation, on the host
processor only, Express writes extraneous messages to disk if they cannot be processed
immediately. This is an extremely slow process which can slow down the program to a
crawl. (One way of seeing this happen is if your program slows to a virtual halt and the disk
activity light starts flashing continuously.)

A simple way to optimize in this case is to make sure that the messages arriving at the host
can be processed immediately. While this requires some discipline on the part of the user
program it is often quite easy to achieve. Note that it is not enough to simply read all
messages on the host with the wildcard DONTCARE value for the message source and type.
To see this consider the case where the Express packet size has been set to 512 bytes and
the incoming messages are of length 1024 bytes - i.e., two packets each. Since it is not
possible to guarantee the order that packets arrive from different nodes we can now make
the worst case assumption that the first packet of the message from node 0 is immediately
followed by all the other packets being sent from the other nodes, and then finally by the

323

The “host” and its
special problems

Optimizing the host
interface

Optimal use of the
hardware; fast
on-chip memory

The default
memory map

Why use faster
memory?

Taking advantage
of faster memory

second packet from node 0. On receipt of the first packet from node 0 the host becomes
committed to reading the rest of that message before accepting any others so the next few
packets will be buffered in host memory and then will begin spilling over to the disk.
Finally the host will see the last packet from node 0 which will complete its message but it
will now be forced to examine the disk overflow area for subsequent messages with the
resulting loss in speed.

Note that the scenario in which the host always reads with wildcard values AND the packet
size is set to be greater or equal to the length of the largest message to be sent DOES

guarantee that no disk activity will occur.

[5 Express and the Transputer Memory Map

* Because of the nature of the transputer’s hardware a particularly important optimization is

the use of the node’s fast on-chip memory. In order to understand the mechanisms which
are useful in this respect we must first examine the way that Express is positioned in
memory and how it loads user programs.

On the left of Figure 1 is shown the default location of the important system components
when Express has been loaded and a user program is running. At the top of memory lie
the Express buffers, occupying the space required by the parameters set in the
customization file. Just below this lies the Express kernel itself. At the bottom of memory
lie the crucial parts of the transputer hardware, the link registers, the scheduling queues, etc.
Immediately above this region (at a location which depends upon the exact type of
transputer in use) is the fast on-chip memory. This extends either 2 or 4 Kbytes up from the
bottom of the memory space, again depending upon the type of transputer in use. The upper
limit is indicated by the solid grey line in the figure.

When the user requests that a program be loaded into the machine it is, by default,
positioned directly above the break between fast on-chip memory and the slower memory
which makes up the bulk of the system. Furthermore the program’s stack, which contains
all “local” variables and is used to pass arguments to functions and subroutines, is
positioned immediately below the Express kernel. Finally the space between the top of the
user program and the bottom of the stack is used for dynamic memory allocation.

No on-chip memory is used at all.

To make use of the faster memory we first note that it is really only effective for stack based
variables. Due to the nature of the transputer it requires a single instruction to access a stack
based variable but at least two to access a global variable. As a result the memory speed has
most impact on local variables where the faster memory makes the instruction two or three
times quicker than the same instruction accessing the slow memory. In the global variable
case the best we can expect is to speed up one of the two (or more) instructions needed to
access the data resulting in a smaller overall improvement.

What we can deduce from this is that the best use of the hardware is made by having lots
of local variables and then placing them in the fast on-chip memory. If we must use global
variables such as large arrays they are best accessed through a locally declared pointer
variable.

With this picture in mind we can then take advantage of the faster memory by using the

324

Depends on trans-
puter type:

T800: 0x80001000
T400: 0x80000800

0x80000000

Program stack

Program heap

[

User program
and data

Default loading pattern

Express message
buffers

Express kernel

New load el

Boundary of on--
chip RAM

Hardware regis-
ters, links

Program heap

I

User program
and data

Program stack

Loading pattern modified by
compiler switches

Figure 1. Transputer memory map with Express loaded

325

Code caching

Placement of the
Express kernel

‘~B’ option of the various compiler commands; t cc and t £c. This switch requires a single
argument which specifies the base of the user program AND the top of the stack. To see
the effect let us consider the case where a value has been given which is slightly above the
break between fast and slow memory. The resulting program layout is shown on the right
side of Figure 1.

As indicated, the user program has been moved slightly upward and, the important feature,
the stack now grows down from the bottom of the user program, toward the faster memory.

The effects of this are two-fold. Firstly the stack will eventually enter the fast memory
making local variable accesses faster and secondly the program is more prone to crash
catastrophically. While the former is just what we wanted the latter is rather nasty. The
basic problem concerns the use of the lowest memory locations for crucial transputer
registers. If your program uses enough stack space to overwrite the low memory addresses
the system will die... dramatically. This is the reason that the exact positioning of the stack
is allowed with the ‘~B’ option. The game to play here is to “guess’ how much stack space
you might need and then position the base of your program far enough above the transputer
critical region so that disasters never occur. This is typically quite straightforward. If you
are using the debugger, ndb, you should be able to read the value of the workspace register
at various places in your code - this tells you the current base of the stack. In other cases
you might try printing out the address of a local variable.

In the worst case you can find out the correct place by trial and error - the symptoms of the
disease are so easy to recognize that one can quite quickly tell where the correct location
might be, although this method requires multiple compilations.

In many cases programs do not have great stack requirements and they can be positioned
immediately below the break between fast and slow memory. In this case the entire
program stack will be placed in the fast memory. (Note that you can’t assign the exact
address of the break between slow and fast memory since that is used to indicate the
alternative configuration in which the stack is placed in high memory. Also, the address
given should be word-aligned for best performance - i.e., a multiple of four.)

A question often asked is whether or not it is beneficial to place code in the fast memory.
(With the ‘~B’ switch you could obtain this effect by giving an address below the break
between fast and slow memory and then linking the program’s object files in some special
order.) The transputer’s CPU includes a small instruction cache which supposedly means
that normal sequential instruction operation is unaffected by the speed of the memory in
use. If your program branches a lot, however, the CPU will miss the instruction cache a lot.
In this latter case some improvement could be expected by running with the code
“on-chip”. In practice, however, we have seen little benefit from such a strategy.

A last point to note in connection with the memory layout is concerned with another of the
system configuration variables: the kemnel load address. Nommally this takes the default
value -1 (OX£E£E£E£££F hex) which indicates that Express should attempt to figure out
the amount of memory in each node and then position the kernel as high as possible. This
is the scenario shown on the left of Figure 1. The exact mechanism by which Express
achieves this is to write and then read the entire contents of the node’s memory. (That this
is sometimes quite time consuming is indicated by the delay during exinit.) During this

326

process each memory location is initialized to its address.

While this is perfectly good for most problems it necessarily destroys the contents of the
node’s memory. Upon occasion, especially when using the RAM files and the exdump
debugging tool one would wish that the contents of the node memory were preserved across
calls to exinit. To achieve this merely change the default kernel load address in the
customization file to some physical address. In this case Express will place the kernel
exactly where indicated without checking the node memory or destroying any of its
contents, other than those overwritten by the kernel itself. Note that a small part of the node
memory is destroyed in this manner but since you can control explicitly which portions are
lost it is easy to avoid locations containing RAM files.(You can also achieve this effect by
using the ‘—m’ option to exinit, see the Reference manual page for more details.)

K Express on UNIX machines

" One of the significant benefits of complex operating systems such as UNIX is the
protection afforded individual users by the separation of operating system or “kernel”
activities from those of applications. The price one pays for this, however, is that every
system call has to pass through the protection layer into the kernel - a time consuming
operation. For parallel computer systems the most obvious effect of this is to slow down
communication between the host and the nodes. Unfortunately this link is usually the
slowest even before adding the price of UNIX system calls and, as such, may be too heavy
a burden for real applications to bear.

Because of this Express allows the hardware to be used without any protection from the
UNIX kernel. This option is selected when executing the excustom program by
answering ‘y’ to the question

Do you wish to run without the kernel? [y/n] :

While running without the UNIX kernel Express programs will communicate more
quickly with the host. Certain restrictions do, however, apply.

The most significant of these restrictions is that the machine can no longer be used in
multi-user mode. Since the UNIX kemnel is no longer available to make decisions regarding
the destinations of the various messages that come from the nodes we must restrict access
to a single user at any one time. While this may be too stringent a restriction for
development purposes it is eminently reasonable for “canned” applications which use the
parallel computer only for its speed.

The second problem when running without the kernel is that one has to take care when
using the debugger, ndb. The reasons behind this are essentially the same as in the previous
paragraph - the debugger is a second process which must run and share access with another
program. As a result there is potentially conflict between messages coming from the nodes
for the debugger and the user program. While one would normally, therefore, advise that
debugging be done with the UNIX kernel enabled one can, with some care, debug without
it by ensuring that no conflicts arise. In practice this means that one should only query the
node program with the debugger when it is “stopped” at a breakpoint. While in this state
the user program will not try to read messages destined for the debugger and all should be
well.

327

Interaction with
RAM files

Preventingmemory
initialization

The overheads of

‘using UNIX

Using Express
without the UNIX
kernel

Restrictions on
multi-user access
when running
without the kernel

Difficulties
debugging without
the kernel’s
protection

Supported
transputer
hardware

p 7 Listing of Express customization variables

4 The following is an exhaustive list of the various customization variables which are

normally to be found in a default customization file. Not all variables are present on all
systems.

In each case we show the name of the variable together with any default which would
normally be present. In most cases this will be a derivation of a file name from some macro.

Note that the following list shows pathnames derived from their respective ROOT’s with
the syntax used under MS-DOS. Other operating system use different syntax for their
directory hierarchies which should be easy to derive from those shown here.

MACHINE
The type of hardware in use. The currently recognized transputer systems are

B004 Inmos B004 and compatibles.
DEFINICON Definicon systems Inc.

MICROWAY Microway.

QUN Quintek.

SUN_BO11 Inmos BO11 with Sun Microsystems host.
SUN_BO14 Inmos B014 with Sun Microsystems host.
SUN_KOBE Kobe Steel board with Sun host.
SUN_TOPO Topologix Inc.

LEVCO Levco Inc.

SUN_MEIKO Meiko Ltd.

SUN_MK200 Meiko “In-Sun” computing surface.

It should be noted that this list is growing all the time. The most complete source of
information regarding the currently supported list of machines can be obtained by running
the excustom tool.

PARASOFT:

This macro is used as the basis for finding the various subdirectories of the Express
installation. It is usually assigned through excustom.

KERNEL {PARASOFT}\bin\express.tld
The name of the Express kemel.
NIFFILE {PARASOFT}\bin\run.nif

The name of the network information file which describes the interconnection between
transputers. Usually built by cnftool.

CONFILE {PARASOFT}\bin\confile

The name of the file which describes the routing for messages. Usually set up by
cnftool.

PLOTFILE {PARASOFT}\bin\plotfil

The name of the file containing the most recent pictorial representation of the transputer
network. Used and created by cnftool.

328

WORMLD {PARASOFT}\bin\worm.exe

The name of the program responsible for executing the “worm” which figures out the
interconnection of the hardware. Used by cnftool.

WORM {PARASOFT}\bin\worm.run

The name of the program loaded into the nodes to detect their interconnection. Used in
conjunction with the WORMLD value by cnftool.

TMPNIF {PARASOFT}\bin_run.nif
A temporary configuration file built by the “worm” utilities and used by cnftool.
PARABIN {PARASOFT}\bin
The location of the Express executables. Used by many of the tools.

TMP {PARASOFT} \tmp

A temporary directory used to hold various intermediate files and the overflow area for
messages coming to the host which cannot be buffered in the host’s memory.

PARAINC {PARASOFT}\include

The location of the “include” files used by C programs compiled to run on the transputers.
Used by the compilers.

PARALIB {PARASOFT}\1lib

A general repository for program libraries and other binary files which are essential to the
system but which are not executable. Used by most of the tools.

NODE_DEV

The default device for all calls to exopen, exshare and exaccess made by the
system.

RESETFILE

The name of the file containing information used by the exreset program when
initializing multiple transputer boards in multi-host systems.

T212
This is the name of a special program loaded into T212 transputers controlling link
switches.

NNBUF 100
The number of Express message buffers to be allocated in each transputer node.
NHBUF 20

The number of Express message buffers to be allocated in the host. After this number is
exceeded all further messages will be placed in an overflow area on the disk. No messages
will be lost by choosing a small number although performance will be significantly
degraded.

NBSIZE 1024
The size of each Express message buffer, in bytes. Messages longer that this will be cut

329

The “worm”
program

Controlling buffer
sizes and their
allocation

Kernel start
address

Link adaptors

Host interfaces

System accounting

Logical Systems C
compiler

into smaller pieces (by Express) and sent in packets.

LOADSTART OxXfEffffeff

The address in transputer memory at which the Express kernel should be loaded. The
default value indicates that the transputer memory should be scanned to find the amount on
each node and then the Express kernel is placed as high in memory as possible. Since the
scanning process destroys the contents of memory it should not be used in cases where, for
example, RAM files need to be preserved. In these cases a non-default value of
LOADSTART should be used.

PROCNUM 10

The maximum number of simultaneous processes on any given node. If you do not use the
exhandle system calls this value is irrelevant.

RESET 0x160
ANAL 0x161
LINK_RD 0x150
LINK RD_STAT 0x152
LINK_WT 0x151
LINK_WT STAT 0x152

These six I/O addresses are used to specify the standard “B004” style link adapter interface
to the board. Any number may be individually modified for special hardware.

DMA 0

Use to indicate the type of interface available between the host and the transputer board.
The following values are recognized

0 Standard ‘‘B004’’ style link-adaptor.

1 DMA style interface as on MicroWay hardware or INMOS B0OS.
2 ‘‘Block move’’ interface on advanced Definicon boards.

3 Memory mapped interface on Sun, runs without UNIX kernel.

ACDIR

The name of the directory into which accounting information is to be logged. A NULL
value (i.e., ACDIR=) disables the accounting system.

LOGC:

This macro is used as the “root” of the tree containing the Logical Systems C compiler.
LOGCINC {LOGC}\include
The directory containing the Logical C include files. Used by tcc.

LOGCLIB {LOGC}\library
The directory containing the Logical C standard libraries. Used by tcc.

LOGCPP {LOGC}\bin\pp

The name of the Logical Systems C preprocessor. Used by tcc.

330

LOGCTCX {LOGC}\bin\tcx
The name of the Logical Systems C compiler. Used by tcc.

LOGCTASM {LOGC}\bin\tasm
The name of the Logical Systems transputer assembler. Used by tcc.

LOGCTLNK {LOGC}\bin\tlnk
The name of the Logical Systems linker. Used by tcc.

PS_HEADERS {PARASOFT}\1lib

The location of the header files used by the Express PostScript libraries and the ~Tps
option to cubix.

BGI_DRIVERS {PARASOFT}\1ib

The location of the Borland Graphics Interface device drivers used to perform graphical
output on a variety of DOS-based systems. Used by all tools and the ~Tbgi option to

cubix.

3LC c:\tc2v0
The installation directory for the 3L C compiler. Used by tcc.

3LFORTRAN c:\tf2vo
The installation directory for the 3L FORTRAN compiler. Used by t fc.

3LINCLUDE c:\tc2v0

The directory containing the 3L C include files. Used by tcc.

AFSERVER

The path name of the directory containing the “afserver” program used to download and
communicate with such things as the 3L C and Fortran compilers. Used by tcc and tfc
on non MS-DOS systems.

CUBIX PLOTS

Supported graphics options under cubix. These are the values allowed in the ‘~T’ switch.
MONITOR 0
Specifies whether the default graphics device is color (MONITOR=0) or monochrome
(MONITOR=1).

DVDIR c:\dv

The directory containing the DesqView system used for with the debugger under DOS.
Used by ndb.

NDB LINEFILE ndbXXXXXX

The name of the file used to store source code line numbers by ndb. This template is used
in conjunction with the TMP variable in a call to mktemp.

NDB_HELPDIR {PARASOFT}\help
The directory containing the debugger’s on-line help.

331

3L C compiler

3L Fortran
compilers

ndb’s start-up file

Default
customization files

NDB_STARTFILE

The name of the start-up file read by ndb. Any file with this name in the current directory
(i.e., the one in which ndb starts) will be processed before ndb begins. This name is also
used in conjunction with the NDB_STARTDIR variable to locate the system startup file
which is almost crucial to the useful use of the debugger.

NDB_STARTDIR {PARASOFT}\1ib

The directory containing the ndb system startup file. The actual filename to be used is
contained in the NDB_ STARTFILE variable.

WINBIN

The directory containing the “window” versions of the Express tools. Used to setup the
“server” program for easy access to the Express toolset.

E Default locations for Express customization files

" One of the trickier aspects of the Express configuration system is actually finding the

default system customization file. While this is not usually necessary (excustom should
know how to do it automatically) it is occasionally necessary for detailed modifications.

The simplest method for determining the name of the default file is to execute the command
excustom =?

If you wish to override this name or otherwise specify a default the following sections
indicate the appropriate mechanisms under the various host operating system supported by
Express.

81 MS-DOS

Upon starting the environment variable EXPRESS is consulted for the name of a
customization file. If none is found the default

c:\parasoft\bin\express.cst

is used. Note that this is sufficient if you have installed Express in the default location on
your hard disk. If you have installed Express in some other directory then the default
system configuration file will be found in the parasoft \bin subdirectory with the name
express.cst.

8.2 Unix and look-alikes

Upon starting the environment variable EXPRESS is consulted for the name of a
customization file. If none is found the default

/express.cst

is used. A standard configuration file is typically to be found in the bin subdirectory of the
Express installation with the name express.cst.

8.3 Macintosh

The default location of the Express customization file is in the System folder on the
default boot disk. It should have the name Express . cst. While the Express system can

332

itself be loaded anywhere on your system the configuration file must be placed in the
system folder.

84 VMS

Upon starting the logical name translation tables are consulted for a variable with the name
EXPRESS which should be set to the name of a customization file. There is no default and
the system will abort if no such variable is found.

333

Index

General index to Express and the ex-
amples from the text

General Index

General Index

This index is the general reference for all the topics discussed in this manual. It lists not only the
various functions/routines but also the examples and other points of note.

A

accounting 330
allocating nodes 81
architectures
distributed memory 20
shared memory 20
argc, argv39-42, 86, 151
arguments, command line 39-42
arguments, node program 86
aspect ratio, correcting the 177
asynchronous I/O 118, 146
async-mode 143-147, 183
automatic decomposition 100-115
automatic network detection 287

B

binary I/O 44
booting
Express 77
multi-host systems 309
boundary conditions 105, 108
breakpoints 225
broadcast 114
buffer management 321
host interface 323
parameters 329
running out of buffers 279
buffer sizes
optimizing 322
buffer, size of graphics 183

buffering 140

graphics 181, 182-183
buffering mode extensions 147
buffering modes 147
busy waiting, avoiding 171
byte swapping 44, 48, 128

C

CAD 304
Caltech, research at 120
cellular automata 112
clipping 186
color 187
color vs. monochrome 188
communication
“raw” channel 119
basic 24
between data domains 55
between hosts 315
blocking 94, 119
collective 112-115
counting errors 242
hardware dependent 118
high level 93
in the problem domain 105
nearest neighbor 118
non-blocking 94
parity 120
topology independent 100
vectors, arrays 111

335

General Index

compiling

switches for debugging 217
concatenation 114
configuration

files 310, 328
configurations

saving 310
connecting off-board links 307
contouring 185

in polar coordinates 194

in strange domains 192
coordinate systems 176
counting nodes in a network 315
critical sections 96

semaphores 166
customization 319

variables 310, 319, 328-332
customization file

finding the 320, 332

format 319

D

data distribution 93, 114
data types 128
data-base processing 158, 304
“Deadlock-free” routing 279
“Deadlock™ 94, 119, 322
debugging
already running programs 218
assembly language level 227
asynchronous programs 96
basic status 207, 220
breakpoints 208, 225
differences between languages 223
displaying data 210, 224
displaying messages 216
dumping local variables 215
during “deadlock” 210
in system code 208
input to running programs 220
listing source code 209, 221
mimicking sequential behavior 226

multiple processors simultaneously 208,

219
on-line help 228
scope rules for data 224

single stepping 210
stack tracing 222
watch points 225
with multiple consoles 296
decomposition 33
algorithm structure 9
by data 106-115
I/O 118
in one dimension 49
in two dimensions 56
defining events 255
device dependencies 188
device independent graphics 175
diagnosing
asynchronous I/O 118
communication “deadlock” 207
compilation problems 128
Cubix errors 152
domain decompositions 107
double-buffering 99
graphics destroying terminals 181
hardware level communication 121
heterogeneous networks 293
incomplete networks 284
message handlers 97
missing messages 217
multi-host systems 295, 306, 310
program loading 85
real-time errors 149-151
runtime errors 143
disabling Express 119
display devices 195
EGA, under XENIX 196
Macintosh 199
NCUBE 199
PC compatible 196
PostScript 198
Sun workstations 197
X-windows 197
displaying
broadcast trees 297
routing information 296
displaying data 224
distributed filesystems 148, 310
distributed graphics 310
distributed I/O 116

336

General Index

distributing processors 102

domain decomposition 9, 26, 50-59, 69, 101-
112, 122, 157, 190

DONTCARE 91, 92, 112, 181, 206, 217

double-buffering 98

E

editing configurations 287-292
adding hosts 309
enabling Express 119
errors in execution profile 242
event profiling 254
examples
“busy” waiting 171
“Hello world”, parallel 135
“host” program 46
“loose synchronization” 141
“node” program 45
asynchronous bugs 143
asynchronous I/O 144
byte swapping 46
clipping 186
communication profiling in “host-node”
programs 244
contouring in polar coordinates 194
counting nodes 315
Cubix errors 152
customization macros 319
customization variables 319
domain decomposition 54, 68, 102-112,
122
domain decomposition and Plotix 190
domain decomposition in two dimensions
57
double-buffering 98
exchange 108, 109, 110
excombine 37,40, 114
execution profiling in “host-node” code
239
execution profiling under Cubix 237
exgrid 54, 102
exgridcoord 104
exgridnode 105
exgridsplit 102
exhandle 96, 159
exparam 101

exvchange 111
file buffering modes 140
file I/O modes 136
finding processor numbers 105
global sum 37, 40
global summation 114
graphical input 184
graphics 57
hardware dependent communication 120
I/O modes 28, 31, 34
incoming message selection 91-93
load balancing 96
loading non-identical programs 84
loading programs 82
loading programs at breakpoints 83
Mandelbrot, parallel 63
Mandelbrot, sequential 61
master-slave program 204, 270
matrix operations 34, 67
message types 115
multi-mode 117, 135, 136, 139, 140
multi-mode input 137
multiple hosts 311
multiple viewports 179
node sharing 313
one dimensional decomposition 122
open file asynchronously 145
parallel I/O 117, 137, 138, 139
rendering 187
semaphores 168
signal processing 163
skeleton event profiling code 255
skeleton execution profiler code 236
skeleton Express C program 80
skeleton Express FORTRAN program 81
skeleton Plotix program 181
spread-sheet 70
synchronization modes 146
timing with “toggles” 258
transaction processing 168
exchanging data 108
excombine 36-39, 113, 122
exconcat 70
excustom 320
executable files 329
exgrid 52-59, 63

337

General Index

exhandle 159-166
exinit 27
exread43
exwrite 43

F

fluid mechanics 112
forwarding tables 285, 295
full-duplex channels 107

G

global averaging 113

graphics
buffering 181, 182-183
clipping 186
color 187
contouring 185, 192
coordinate systems 57, 176
device independent 175
initialization 181
interaction with decomposition toocls 190
locator input 184
monitor type 331
multiple output devices 175
output devices 195
termination 181
viewports 177

H

half-duplex channels 107
hardware
resetting 77
supported types 328
hardware dependent
communication 118
multitasking features 159
hardware independence 14
“Hello world”
parallel 30, 117
sequential 28, 117
heterogeneous networks 303
histogram, bin size 236
HOST 312
host interface 323, 330
host programs

running with Cubix programs 154, 315
host-node program 4249
hypercubes 281

I

/O 135
asynchronous 143
buffering 140
file modes 29-36, 135
server 116
identifying “events” 257
idle time, measuring 242
image processing 179
initialization
debugger 207
event profiler 256
execution profiler 235
FORTRAN programs 80
graphics 181
installation 319
installation directory 328
interrupt handling 95

K

kemnels 327

L

languages 80
parallel 6
libraries 329
link adaptor parameters 330
links
electrically switched 279, 287-292
mechanical 279, 282-287 '
load balancing 96
loading programs 82
different in each node 84
stopped at breakpoints 83, 207
logical topologies 50
loosely synchronous 141-142, 157

M

Mandelbrot 61
mapping, problem 102
master-slave programming 158, 204, 270

338

General Index

matrix operations 33
matrix transposition 66
measuring execution times 258
memory checking 326
memory usage 324
memory, dumping 150
menus 250
message passing 23
between hosts 315
blocking 90, 94
non-blocking 92, 94, 99
point to point 87
topology independent 100
message types 88
ignoring 112
inclusion and exclusion 92
restrictions 89, 112
used for exhandle 162
messages 88-90
attributes 88
displaying in the debugger 216
distinguishing incoming 91
incoming message selection 91
length restrictions 89, 166
monitoring with ct ool 242
non-blocking read 97
parameters 88
routing 279
selecting between incoming 88
zero length 97
messages, physical structure 24
MIMD architectures 21
misses, execution profiler 237
multi-mode 136-141, 183
buffering 140
multiple graphics devices 183
multiple hosts 116, 148, 287, 293, 303-316
adding 295
file /O 311
naming conventions 148
processor numbers 311
resetting boards 293
multiple users 303
multiple viewports 179
multitasking 95, 158-172
without hardware dependencies 173

- .

N

network
automatic detection 282
configuration without graphics 297-300
networks
accessing entire 314
editing 287-292
heterogeneous 16
parallel processing 14
node allocation 81
node numbers
multiple hosts 311
node process ID 87
node sharing 87
NONODE 109

0

off-board links 307 PR
on-chip memory 324 :
open file, asynchronously 144
operating system server 116
operating system services 146
operating systems 3-9, 27
optimization

reducing overheads 110
optimizing

communication latencies 1138

I/O bandwidth 98, 182
overheads 24

assessing 252

P

packets, message 322
parallel I/O 29, 116, 135
parallel languages 6
parallel processing hardware 20
parallel processing software 22
parallelizing sequential code 63
parity 120
PC display devices 196
performance

optimization by reconfiguratlon 279
performance analysis

subroutine usage 235
peripherals 15

7

kS

339

Genéral index

picking nodes graphically 184
Plotix 56
problems

byte swapping 128

data types 128
process ID 87
processor allocation 81
processor numbers, assigning 50
prof 235
profil 235
profiling an existing program 271
programming languages 80
programming models 9-14, 25,75, 78-80, 115,

133-135

prompt, from ndb 218
properties

of graphics devices 188

R

RAM files 149-151
preserving 327

real-time performance analysis 234

real-time systems 95

reconfiguration 100, 279

recording execution paths 254

remote procedure calls 159

remote task creation 163

repaint procedures 189

resetting
boards in separate hosts 308
electrically switched hardware 306
heterogeneous hardware 306
mechanically connected boards 305

resetting heterogeneous hardware 282

routing 279

runtime profiling switches 237, 243, 259

S

scalability 14
selecting nodes
in ctool 250
sequential code, running in parallel 134
server mode, Cubix 311
setvbuf 147
sharing

g

asynchronous file pointers 146
nodes 304, 312
nodes between programs 87
signal processing 98, 163
SIMD architectures 21
simultaneous data transfers 108
singl-mode 136-140, 183
spread-sheets 68
stack placement 324
stack tracing 222
statistical analysis of calls 259
statistical profiling 235
structure alignment 44
subroutine usage 235
switching between node programs 172
synchronization 141 ‘
after exhandle 162
rules, violation of 152
system
“events” 258
configuration files 310
include files 329
libraries 329
variables 319
system libraries 329

T

time-lines, analyzing 262
topologies 21, 50-59, 280
channel assignment 119
general 286
hypercube 281
selecting 285
torus 281
transputer variants of standard 300
tree 281
topology independence 14
torus 281
traffic flow 101
transaction processing 158, 166

U

user interface 10

340

Genegial Igdex

o

v
: v s -~
B .

B 5 AT

viewports 177 w
multiple 179 i
visualization, algorithm 175 B

waiting i ‘
in multitasking programs 166 =
wildcards 91, 92
restrictions 90 . _
windowing systems 189 _ ,
word lengths 43 . o # 2
worm 282, 287 " ' i

s f,
e
P
7B,
B
L3
3
5
%.
» ¥ s
« 3 i Lt &
- —* <
s
EN g i
~ :
5 %
4 3
3
-
o
¥
:, i
H »
i .
~
— -

M1

	Table of Contents
	Chapter 1: Overview - What is Express and what kind of systemscan be built with it?
	1 Overview
	2 What Express is NOT
	2.1 An Operating System
	2.2 A Language
	2.3 The Ultimate Solution

	3 What is Express?
	3.1 An "Operating System"
	3.2 A Parallel Processing Toolkit

	4 How to Run Parallel Programs
	5 Where can I use Express?
	6 Conclusions

	Chapter 2: An Express tutorial - An introduction to parallel processing with Express
	1 Introduction
	2 Overview
	2.1 Hardvvare
	2.2 Software
	2.3 Message Passing
	2.4 Express Programming Models

	3 An Introduction to Express
	3.1 The Exercises
	Exercise 1. Hello World
	Exercise 2. A Parallel Hello World
	Exercise 3. Matrix by Vector Multiplication
	Exercise 4. A Parallel Sum
	Exercise 5. Averaging the contents of a file
	Exercise 6. A Host - Node Program
	Exercise 7. The "Ring" program. Automatic decomposing tools
	Exercise 8. Two dimensional decomposition with graphics

	3.2 Summary

	4 Advanced Applications
	Exercise 9. Porting existing codes: A Mandelbrot program
	Exercise 10. Matrix transposition
	Exercise 11. A Spread-sheet Program

	5 For more information

	Chapter 3: Express - A portable, efficient communication system for parallel computers ... and much more
	1 Introduction
	2 Fundamentals
	2.1 System Configuration; Booting Express
	2.2 Programming models
	2.3 Software Initialization; Languages

	3 Processor Allocation and Program Loading
	3.1 Processor Allocation

	4 Node Addressed Interprocessor Communication
	4.1 Messages, Nodes and Types
	4.2 Blocking Communication Functions
	4.3 Non-blocking Communication Functions

	5 Topology Independent Communication
	5.1 Automatic Decomposition and Run-Time Configuration
	5.2 Using the Automated Decomposition Tools
	5.3 Utility Functions and global communication

	6 I/O and Cubix
	7 Hardware Dependent Communication
	8 Complete Example Programs
	8.1 The "RING" Program
	8.1.1 Cubix Program
	8.1.2 Host-Node Program, "Host" code
	8.1.3 Host-Node Program, "Node" code

	8.2 Other Examples

	Chapter 4: Cubix - Programming parallel computers without programming hosts
	1 Introduction
	2 A Different Perspective
	3 The Catch - I/O modes
	3.1 Synchronous I/O Modes
	3.2 Asynchronous Mode
	3.3 Buffering Modes
	3.4 Multiple hosts, Distributed filesystems, etc.

	4 Debugging: A Last Resort
	5 Executing Cubix
	6 Examples
	7 Common Errors
	8 Conclusions

	Chapter 5: Multitasking - Executing multiple processes on individual processors
	1 Introduction
	2 Asynchronous Processing - exhandle
	3 Mutual Exclusion - Semaphores
	4 Executing alternate node programs under Cubix
	5 Portable use of exhandle

	Chapter 6: Parallel Graphics - A simple, portable, parallel graphics system: Plotix
	1 Introduction
	2 Coordinate systems
	3 Starting, Stopping and Flushing
	4 Graphical Input
	5 High Level Functionality - Contouring, Clipping, etc.
	6 Colors
	7 Hardware Dependencies
	8 Examples
	8.1 The Interaction between Plotix and the exgrid tools
	8.2 Other example programs

	9 The Low Level Contouring System
	10 Output Device Characteristics
	10.1 IBM PC and compatibles, Borland Graphics Interface - "-Tbgi"
	10.2 IBM Enhanced Graphics Adapter - "-Tega"
	10.3 SUN system, suntools environment - "-Tsun"
	10.4 SUN system, Xwindows - "-TX"
	10.5 PostScript - "-Tps"
	10.6 AXIS NCUBE systems - "-Trt", and "-Tnat"
	10.7 Macintosh systems - no switch

	Chapter 7: Debugging Parallel Programs - Using ndb, a source level debugger for parallel programs
	1 Introduction
	2 ndb in action
	3 Getting Started
	4 Sets and Prompts
	5 Programs that need input
	6 Examining the process state
	7 Tracing back through subroutine calls
	8 Examining Data
	9 Running programs - Breakpoints
	10 Using ndb as a calculator - format modification
	11 Assembly Level Debugging
	12 Miscellaneous Commands

	Chapter 8: Performance Analysis - PM: A profiling system for parallel programs
	1 Introduction
	2 Execution Profiling
	2.1 General Profiling Commands
	2.2 Details for Cubix Programs
	2.3 Details for Host-Node Programs
	2.4 Analyzing the Execution Profile - xtool

	3 Communication Profiling
	3.1 General Profiling Commands
	3.2 Details for Cubix Programs
	3.3 Details for Host-Node programs
	3.4 Analyzing the Communication Profile - ctool

	4 Event Driven Profiling
	4.1 General Profiling Commands
	4.2 Measuring time intervals with "Toggles"
	4.3 Details for Cubix Programs
	4.4 Details for Host-Node programs
	4.5 Analyzing the Event Profile - etool
	4.6 Analyzing the "Toggle" data - etool -t

	5 Example programs
	5.1 Cubix program
	5.2 Host-Node Program, "Host" code
	5.3 Host-Node Program, "Node" code

	Chapter 9: Network Configuration - Using Cnftool to build multi- transputer networks for Express
	1 Introduction
	2 Topologies and Routing Strategies
	3 Configuring Simple Networks
	3.1 Machines with mechanical links
	3.2 Electrically Configured Machines
	3.3 Minimal use of cnftool

	4 Configuring a Multi Host System
	5 Cosmetic Improvements
	6 Displaying Routing Information
	7 cnftool without graphics
	8 Transputer Variants of Standard Topologies

	Chapter 10: Multiple Hosts - Building networks with multiple host processors and using Express with it
	1 Introduction
	2 The "RESET" problem - mechanical connectors
	3 The "RESET" problem - Electrical connections
	4 Configuring Hosts and Booting Express
	5 Using Cubix in a multi-host environment
	6 Writing host programs in a multihost environment
	7 Combining Cubix with a host program

	Chapter 11: Customizing Express - Modifying the installation, size and performance of Express with Excustom
	1 Customizing Express
	2 The Express ''Customization'' file
	3 Modifying System Parameters with excustom
	4 Express buffers
	5 Express and the Transputer Memory Map
	6 Express on UNIX machines
	7 Listing of Express customization variables
	8 Default locations for Express customization files
	8.1 MS-DOS
	8.2 Unix and look-alikes
	8.3 Macintosh
	8.4 VMS

	Appendix A: Index - General index to Express and the examples from the text

