
TRANSPUTER
DEVELOPMENT
SYSTEM
Second Edition

INMOS Lil11ited
INMOS is a member of the
SGS-THOMSON Microelectronics Group

Prentice Hall
New York London Toronto Sydney Tokyo Singapore

-t~ I
'I ,~
I t.,'

First edition published 1988

This second edition published 1990 by
Prentice Hall International (UK) Ltd

__ 66 Wood Lane End, Hemel Hempstead

-. Hertfordshire HP2 4RG
:=- A division of
=- Simon & Schuster International Group

© INMOS Limited, 1988, 1990

INMOS reserves the right to make changes in
specifications at any time and without notice. The
information furnished by INMOS in this publication is
believed to be accurate, however no responsibility is
assumed for its use, nor for any infringement of patents
or other rights of third parties resulting from its use. No
licence is granted under any patents, trademarks or
other rights of INMOS.

O,fu1rnos, IMS and occam are trademarks
of INMOS Limited. INMOS is a member of the
SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 011 01

All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without prior
permission, in writing, from the publisher.
For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain at the
University Press, Cambridge

ISBN 0-13-929068-0

CIP data are available from the publisher

1 2 3 4 5 94 93 92 91 90

2

3

4

Contents
Contents

Contents overview

Preface

How to use the manual
1.1 Introduction
1.2 User guide
1.3 Reference manual
1.4 Appendices
1.5 Delivery manual

Introduction
2.1 Overview

Transputers and occam
2.2 System design rationale

2.2.1 Programming
2.2.2 Hardware
2.2.3 Programmable components

2.3 occam model
2.4 A programmer's introduction to the transputer

2.4.1 Addresses and the memory
2.4.2 Registers and instructions
2.4.3 Processes and communications
2.4.4 Starting and stopping
2.4.5 Programs
2.4.6 MUlti-processor prog rams
2.4.7 Conventions for the code on each processor

2.5 Program development
2.5.1 Logical behaviour
2.5.2 Performance measurement
2.5.3 The transputer development system

The user guide

Directories

The editing environment
4.1 Introduction

4.1.1 Folding
4.1.2 Files as folds

4.2 Starting and finishing the system for the first time
4.2.1 Starting the system
4.2.2 The TDS3 command
4.2.3 Problems starting the system
4.2.4 Keyboard layout
4.2.5 Repainting the screen
4.2.6 Ending the session
4.2.7 Interrupting and rebooting the TDS
4.2.8 ~ Suspending the TDS

v

xvii

xix

3
3
3
4
4
4
4
4
6
6
7
8
9

10
10
10
11
11
12
12

13

15

17
17
17
19
20
20
20
20
21
21
21
21
21

vi Contents

4.3 Tutorial file 22
4.4 The editor interface 22

4.4.1 Editor's view of a document 22
4.4.2 The screen display 22
4.4.3 Line types 23

4.5 Editor functions 24
4.5.1 Overview of editor functions 24
4.5.2 Editor modes 25
4.5.3 Moving the cursor 25
4.5.4 Scrolling and panning the screen 25
4.5.5 Fold browsing operations 26

Opening and closing folds 26
Fold information 26
Browsing mode 26

4.5.6 Inserting and deleting characters 27
Insertion 27
Deletion 27

4.5.7 Fold creation and removal 27
4.5.8 Filed folds 28

Storage of files in memory 29
File extensions 29
Writing back files 29

4.5.9 Deleting lines 30
4.5.10 Moving and copying lines 30
4.5.11 Defining keystroke macros 31

4.6 Utilities and programs 31
4.6.1 The toolkit fold 32
4.6.2 Loading utilities and programs 33
4.6.3 Loading code from the toolkit fold 33
4.6.4 Running a utility 34
4.6.5 Supplying parameters to utilities 35
4.6.6 When a utility finishes 35
4.6.7 Running executable programs 36

4.7 File handling utilities 36
4.8 Searching and replacing 38
4.9 Listing programs 38

4.9.1 The lister and unlister programs 38
4.10 Transferring TDS files between computers 39

5 Compiling and linking occam programs 41
5.1 Introduction 41
5.2 The compiler utility set 41
5.3 Preparing a program for compilation 42

5.3.1 Creating a compilation fold 42
5.3.2 Comment folds 43

5.4 Using the compiler utilities A3
5.4.1 Compilation for different transputers 43

Transputer classes 43
5.4.2 Mixing code for different transputers 44
5.4.3 Error modes of compilation 45
5.4.4 Mixing code with different error modes 45
5.4.5 Checking occam programs 45
5.4.6 Compiling occam programs 46

Contents vii

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.4.7 Linking occam programs
Compiling a simple example program
5.5.1 Getting the compiler utilities
5.5.2 Making an EXE fold
5.5.3 Checking and compiling the example program
5.5.4 Running the example program
5.5.5 Compilation information
Separate compilation and libraries
5.6.1 Separate compilation
5.6.2 Libraries
5.6.3 Compiling and linking large programs
5.6.4 Changing and recompiling programs
5.6.5 The implementation of change control
Compiler parameters
5.7.1 The parameter fold
5.7.2 Error modes and range checking
5.7.3 Alias and usage checking
5.7.4 Using the separate vector space
Creating and using libraries
5.8.1 Creating libraries
5.8.2 Using libraries
5.8.3 Using protocols with separate compilation
5.8.4 How the library system works
5.8.5 The library logical names fold
5.8.6 Library compaction
Changing and recompiling libraries
5.9.1 Change control
5.9.2 Library dependencies
5.9.3 Recompiling mixed libraries
5.9.4 Compacting recompiled libraries
The pipeline sorter example
5.10.1 The 'header.tsr' library fold
5.10.2 The 'problem.tsr' library fold
5.10.3 The 'monitor.tsr' library fold

The keyboard handler
The screen handler

The implementation of occam
5.11.1 The transputer implementation of occam
5.11.2 Memory allocation by the compiler
5.11.3 Implementation of usage checking

Usage rules
Checking of non-array elements
Checking of arrays of variables and channels
Arrays as procedure parameters
Abbreviating variables and channels
Problems with replicators

46
47
48
48
49
49
50
50
50
51
52
52
53
53
53
54
54
55
56
56
57
58
59
59
60
61
61
61
62
62
62
64
65
65
66
67
67
68
69
71
71
71
71
72
72
73

6 Running programs within the TDS
6.1 Loading and running an executable program
6.2 The interface for user programs
6.3 The channel parameters and their protocols

6.3.1 The explicit iserver channels
6.3.2 The keyboard and screen

75
75
75
77
77
77

viii

6.3.3 Communicating with the user filer
6.3.4 The fold manager
6.3.5 Communicating with the filer
6.3.6 The kernel channels

Contents

77
78
78
78

6.4
6.5

6.6
6.7

Memory usage within the TDS
The occam input/output procedures
6.5.1 The input/output models
6.5.2 The hostio model
6.5.3 The streamio model
6.5.4 The folded file store model
6.5.5 Interface procedures
The pipeline sorter example
Example prog rams using the I/O libraries
6.7.1 Keyboard and screen example
6.7.2 Example showing input from file

78
80
81
81
81
82
82
82
83
84
85

7

8

9

Configuring programs and loading transputer networks
7.1 Introduction
7.2 The transputer configuration and loading utilities
7.3 The configuration description
7.4 Configuring a program
7.5 Connecting a network to the TDS
7.6 Loading a network
7.7 Using the transputer network tester
7.8 Running the pipeline sorter on a target transputer

7.8.1 Creating a PROGRAM fold
7.8.2 Monitoring the target with an EXE
7.8.3 Configuring and running the example

7.9 Running the pipeline ·sorter on a four transputer network
7.9.1 A PROGRAM for four transputers
7.9.2 The root transputer
7.9.3 The three other transputers
7.9.4 Configuration for four transputers

Standalone transputer programs
8.1 Introduction
8.2 Using the iserver
8.3 Creating a parameterless standalone prog ram
8.4 Creating a standard hosted PROC
8.5 The pipeline sorter

Debugging
9.1 Using the debugger
9.2 Debugger facilities

9.2.1 Symbolic facilities
9.2.2 Lower level facilities

9.3 Debugging a program running on a network of transputers
9.4 Debugging a program running within the TDS
9.5 Debugging a standalone program
9.6 A worked example

9.6.1 Running the example program
9.6.2 Creating a core dump
9.6.3 Using the debugger

89
89
89
89
92
92
93
93
94
94
95
96
97
97
98
99
99

101
101
101
102
102
102

107
107
107
108
108
109
109
109
110
112
112
112

Contents

9.6.4 Inspecting variables
9.6.5 Jumping down channels
9.6.6 Retrace and Backtrace
9.6.7 Process Queues
9.6.8 Display occam
9.6.9 Finish
9.6.10 Other functions
9.6.11 More information

ix

113
113
114
114
114
115
115
115

9.7 How the debugger works
9.7.1 How the debugger accesses the network
9.7.2 Debugging information generated by the compiler
9.7.3 How the symbolic facilities work
9.7.4 Backtracing
9.7.5 Inspecting variables
9.7.6 Jumping down channels
9.7.7 Analysis of deadlock
9.7.8 occam scope rules

116
116
116
117
117
117
117
117
119

10

11

12

EPROM programming
10.1 Introduction
10.2 How to create the fold bundle
10.3 Creating the ROM file
10.4 Burning the ROM
10.5 Execution from ROM instead of RAM
10.6 ROMs which load from a host computer
10.7 Adding a"memory configuration to the EPROM

Low level programming
11.1 Allocation
11.2 Code insertion

11.2.1 Using the code insertion mechanism
11.2.2 Labels and jumps

11.3 Dynamic code loading
11.3.1 The call
11.3.2 Loading parameters
11.3.3 Examples

11.4 Extraordinary use of links
11.4.1 Clarification of requirements
11.4.2 Programming concerns
11.4.3 Input and output procedures
11.4.4 Recovery from failure
11.4.5 Example: a development system

11.5 Setting the error flag

The reference manual

The development environment
12.1 Keys
12.2 Messages

12.2.1 Development environment messages
12.2.2 iserver termination messages

121
121
122
123
123
124
125
126

127
127
129
129
130
130
131
132
132
135
135
135
136
136
137
138

139

141
141
150
150
156

x

13

14

Utilities
13.1 occam program development package

13.1.1 ICHECKI

13.1.2 ICOMPILATION INFO I
Compilation information
Configuration information
Library information

13.1.3 ICOMPILE I
13.1.4 Compiler messages
13.1.5 Library logical name fold errors
13.1.6 Prog ram errors
13.1.7 Implementation limits
13.1.8 Compiler errors
13.1.9 Configurer error messages

13.1.10 EXTRACT I
13.1.11 LIST FOLD I
13.1.12 LOAD NETWORK I
13.1.13 MAKE FOLDSETI

13.1.14 RECOMPILE I
13.1.15 REPLACE I
13.1.16 SEARCH I

13.2 File handling package

13.2.1 ATTACH I
13.2.2 COMPACT LIBRARIES I
13.2.3 COpy ATTACH I
13.2.4 COpy IN I
13.2.5 COpy OUT I
13.2.6 DETACH I
13.2.7 READ HOSTI

13.2.8 RENAME FILE I
13.2.9 WRITE HOST ,

Libraries
14.1 Introduction to the libraries
14.2 Compiler and system libraries (comp1ibs)

14.2.1 Multiple length integer arithmetic functions
14.2.2 Floating point functions
14.2.3 IEEE arithmetic functions
14.2.4 2D block move library
14.2.5 Bit manipulation and CRC library
14.2.6 Code execution
14.2.7 Arithmetic instruction library
14.2.8 Extraordinary link handling library reinit
14.2.9 Block CRC library b10ckcrc

Contents

157
157
157
157
158
158
159
159
162
163
163
164
164
164
167
169
170

172
172

173
174
176
176

176

177

178

179

180

181

182
183

185
185
187
187
188
189
189
190
191
192
193
195

Contents

14.3

14.4
14.5

14.6
14.7
14.8

14.9

14.10
14.11
14.12

14.13

Mathematical libraries (math1ibs)
14.3.1 Single length and double length elementary function library

Introduction
Inputs
Outputs
Accuracy
Symmetry
The Function Specifications

14.3.2 IMS T414 elementary function library
Introduction to input/output libraries (host1ibs, io1ibs)
Tables of contents of the input/output libraries (host1ibs, io1ibs)
14.5.1 Basic type i/o conversion library ioconv
14.5.2 Extra type i/o conversion library extrio
14.5.3 String handling library strinqs
14.5.4 Host i/o basic procedure library sp1ib
14.5.5 Hostio general and screen output procedure library so1ib
14.5.6 Keyboard input library sk1ib
14.5.7 Host and stream i/o interface library spinterf
14.5.8 Protocol conversion library afsp
14.5.9 Keystream and screenstream library streamio
14.5.10 Screenstream interface procedure library s sinterf
14.5.11 General purpose i/o procedure library userio
14.5.12 Low level user filer interface support library ufi1er
14.5.13 Interface procedure library interf
14.5.14 Transputer board support libraries t 4board, t2board
14.5.15 Other libraries
Protocols and formal parameter conventions
Environment enquiries
Representation conversions and string handling

Time and date functions
Character handling functions
String comparison functions
String editing procedures
String searching functions
String add/append functions
Line parsing

Terminals and text streams
14.9.1 The simple input and output procedures (TDS stream models)
14.9.2 Procedures supporting screenstream output
14.9.3 Procedures supporting keystream input
14.9.4 Procedures supporting the standard input model of the keyboard
14.9.5 Procedures supporting the standard output model of the screen
Buffers, multiplexors and protocol converters
Access to host filing system
Access to the TDS's folded file store

Write folded stream
Read folded stream

Access to transputer board peripherals

xi

196
196
197
197
198
198
199
200
214
228
229
229
230
231
233
234
235
236
236
237
239
239
242
243
243
243
243
244
248
248
248
249
250
251
251
253
254
254
256
261
265
267
267
273
281
282
284
291

xii Contents

15 Tools 293
15.1 Debugger 293

15.1.1 Debugging a PROGRAM on a network which may include the host 293
What the debugger does 295

15.1.2 Debugging an EXE (or UTIL) 296
Start up procedure for an EXE 296

15.1.3 Debugging an SC 296
Start up procedure for an SC 296

15.1.4 Symbolic functions 297
Debugging an SC 300
Invalid Wdesc 300

15.1.5 Monitor page 301
15.1.6 Monitor page commands 303
15.1.7 Hints 311

Invalid pointers 311
Failure to communicate 311
Default addresses 311
IF and CASE 312
ALT 312
CASE input 312
Deadlocks 312

15.1.8 Creating a core dump file 314
15.1.9 occam run time errors 315

15.2 Transputer network tester - nettest 316
15.2.1 What the network tester does 316
15.2.2 Using the network test program 317

A note on matching 317
Limitations of use 318

15.2.3 Options available 318
15.2.4 Interpretation of loading data 319
15.2.5 Description of network 321
15.2.6 Error messages 322
15.2.7 Testing specifications 323
15.2.8 Stages of loading 325

15.3 Memory interface program - memint 326
15.3.1 Capabilities 326
15.3.2 Using the program 326
15.3.3 Input 327
15.3.4 Output 328

Numeric output 328
Waveform output 329

15.3.5 Storing and retrieving parameters and pages 329
15.3.6 Examples 330
15.3.7 Caveats 332
15.3.8 Error and warning messages 333

15.4 EPROM hex program - epromhex 333
15.4.1 Using the program 333
15.4.2 What the EPROM hex program does 334

Error messages 337
15.5 Hex to programmer program - hextoprq 338

15.5.1 Using the program 338
15.6 Write EPROM file program - promfi1e 339

Contents

15.7
15.6.1 Using the program
Preparing a bootstrap and adding it to a program - addboot, wocctab
15.7.1 The code to occam table converter wocctab
15.7.2 The bootstrap adder addboot
15.7.3 The example two-stage loader
15.7.4 Memory allocation

xiii

340
341
341
342
342
343

16 System interfaces 345
16.1 Use of host environment variables 345
16.2 The TOS loader and TOS start up process 345
16.3 The ITERM terminal configuration file 346

16.3.1 The structure of an ITERM file 347
16.3.2 The host definitions 347

ITERM version 347
Screen size 347

16.3.3 The screen definitions 347
Goto X Y processing 348

16.3.4 The keyboard definitions 348
16.3.5 Setting up the ITERM environment variable 349
16.3.6 An example ITERM 349

16.4 The INMOS file server - iserver - command line interface 351
16.4.1 iserver command line syntax 351

Loading programs 352
Terminating the server 352
Server termination codes 352
Specifying a link address - option SL 353
Terminating on error - option SE 353

16.4.2 Server functions 353
16.4.3 iserver error messages 354

16.5 The INMOS file server - iserver - program interface 356
16.5.1 The server protocol 356

Packet size 356
Protocol operation 356

16.5.2 The server libraries 356
-------1--:::-6---.5-.3~---P~0-rt---i-ng-th:--e-s-er-v-e-r-------------------~357

16.5.4 Oefined protocol 357
Reserved values 358
File commands 358

16.5.5 Host commands 364
16.5.6 Server commands 366
16.5.7 Extensions to iserver protocol supported within the TOS only 368

16.6 The TOS screen and keyboard channels 369
16.6.1 Input from the keyboard channel 369
16.6.2 Screen stream and SS protocols 370

Outputting characters to the screen 372
Cursor movement 372
Clearing the screen 372
Character operations 372
Line operations 373
Other operations 373
Initialising 373
Changing the way keyboard input is processed 374
Other commands 374

xiv Contents

16.7 The TDS user filer interface 374
16.7.1 User fi ler protocol 375
16.7.2 Selecting a fold for access 375
16.7.3 User filer channels 376
16.7.4 User fi ler modes 376
16.7.5 Commands in user filer command mode 377

Definitions of uf. commands 378
Example showing use of a uf. command 381
Opening a fold for reading 382
Opening a fold for writing 382

16.7.6 Communications in file stream modes 383
Introduction to file stream modes 383
Syntax of valid sequences of communications 383
Data stream modes 384
Folded stream modes 385
Reading a fold stream from the system sender 389
Writing a fold stream to the system receiver 390

16.8 Other TDS interfaces 391

Appendices 393

A Keyboard layouts 395
A.1 IBM PC function keys 395
A.2 IBM PC keyboard layout 396
A.3 NEC PC keyboard layout 398

B Summary of standard utilities 401

C Names defined by the software 403

0 System constant definitions 417
0.1 LINKADDR 417
0.2 MATHVALS 418
0.3 SPHDR 419
0.4 STRMHDR 422
0.5 USERHDR 423
0.6 FILERHDR 426

E Error numbers 431
E.1 File server errors 431
E.2 DOS errors 432
E.3 TDS internal errors 432
E.4 Filer errors 432
E.5 File streamer errors 433

F Fold attributes 435
F.1 Fold attributes in the TDS 435

F.1.1 Fold type 435
F.1.2 Fold contents 435
F.1.3 Fold indent 436

F.2 Attribute constant values 436
F.3 Attributes of common fold types 436

Contents xv

G File formats 437
G.1 Structure of folded files 437
G.2 DOS files produced by the TDS 440
G.3 CODE PROGRAM files 440
G.4 CODE SC, CODE EXE and CODE UTIL files 440
G.5 Other compiler outputs 442

H Transputer instruction support 443
H.1 Direct functions 443
H.2 Short indirect functions 443
H.3 Long indirect functions 443
H.4 Additional instructions for IMS T425 and IMS TBOO 444
H.5 Additional instructions for IMS TaOO only 444

Bibliography 447
1.1 INMOS publications 447
1.2 INMOS technical notes 448
1.3 References 449

J Glossary 451

Index 455

Contents overview

1
2

How to use the manual

Introduction

Describes the layout of the manual.

Introductory explanation of the transputer and the lDS.

The user guide

3
4
5

6

7

8

9
10
11

Directories

The editing environment

Compiling and linking
occam programs

Running programs
within the TDS

Configuring programs
and loading transputer

networks

Standalone transputer
programs
Debugging

EPROM programming

Low level programming

Describes the directories set up and used by the lDS.

Describes the editor and its facilities.

Describes how to use the compiler and its associated utilities.

Describes how to prepare and use programs on the lDS.

How to prepare programs for and run them on networks.

Describes how to prepare programs to run independently of the lDS.

An introduction, with a worked example, to the debugger.

Describes how to prepare programs for EPROMs.

Describes how to use low level programming facilities.

The reference manual

12

13
14
15
16

The development
environment

Utilities

Libraries
Tools

System interfaces

Lists and describes the keys and messages.

Describes in detail all the utilities.

Describes in detail the functions and procedures of all libraries.

Describes in detail all the software tools e.g. debugger.

Describes in detail the interfaces to the system.

The appendices

A
B

c

D

E
F
G
H

I
J

Keyboard layouts
Summary of standard

utilities

Names defined by the
software

System constant
definitions

Error numbers

Fold attributes
File formats

Transputer instruction
support

Bibliography

Glossary

THE INDEX

Shows how the keys are mapped to functions.

Shows how the utilities are grouped.

Lists all the names defined by the software.

Lists the constants used by the system.

Lists the error numbers.

Lists the values that the fold attributes can take.

Describes the various file formats.

List the transputer instructions that are supported.

Lists literature worth referring to.

A glossary of terms used to describe the features of the lDS.

A comprehensive index.

Preface
This manual describes the Transputer Development System, an integrated programming environment devel
oped by INMOS to support the programming of transputer networks in occam. The Transputer Development
System comprises an integrated editor, file manager, compiler and debugging system.

The Transputer Development System runs on a transputer board; for example it runs on an INMOS IMS B008
board with an IMS B404 TRAM (transputer module) containing an IMS T800 32-bit processor and 2 MBytes
of memory. This board is installed inside an IBM PCIAT or similar computer, which provides a means of
interfacing keyboard, screen and disks to the transputer.

The Transputer Development System allows occam programs to be written, compiled and then run from
within the development system. Programs may also be configured to run on a target network of transputers;
these may range from a single transputer on an evaluation board to networks of several hundred transputers.
The code for a transputer network may be loaded directly from the Transputer Development System, through
a link connecting the Transputer Development System transputer to the target network. Programs may also
be placed into a file separate from the Transputer Development System, or into a ROM (Read-Only Memory),
and used to load a network.

A post-mortem debugger allows programs running in the Transputer Development System environment or
on a transputer network to be examined after they have been interrupted or have stopped as a result of an
error. The line of source corresponding to a program error on one of the processors can be displayed, and
the values of variables may be examined. The state of other currently active processes on this processor,
and on other processors in the network, can also be examined.

The Transputer Development System software includes the interactive programming environment, the com
pilation utilities and other programming tools, a number of libraries to support program development (such as
mathematical functions and 1/0 libraries), and an extensive set of examples in source form.

This manual is divided into two major parts: the User Guide, which introduces the system and takes the reader
through the steps needed to write, compile and run programs, and the Reference Manual, which contains
detailed reference information on the editor, utilities, tools, libraries and system interfaces.

The instructions on installing the software and a detailed list of the components of the release are contained
in a separate Delivery manual, supplied with the software.

This manual corresponds to the IMS D700E (IBM PC) release of the Transputer Development System, which
supports new transputer targets and is supported by, and can generate programs supported by, the server
program iserver, used by all other INMOS hosted software products.

1 How to use the manual
The Transputer Development System Manual is broadly structured into four sections:

• Introduction

• User Guide

• Reference Manual

• Appendices

Each of the sections is briefly described below.

1.1 Introduction

This section gives a light, readable introduction to the transputer and the Transputer Development System
(referred to as TDS in the rest of this manual). The rest of the manual does not require this to have been
read and anyone reasonably familiar with the transputer can skip over this section. It does not require the
reader to be sitting at a terminal, in fact it can be read anywhere: in an armchair or on a train for example.

1.2 User guide

The user guide provides the essential information for someone to start using the TDS. It provides an intro
duction to the facilities of the TDS and contains examples where appropriate. Most, but not all, is essential
reading, depending upon one's individual interests.

Chapters 3 to 6, which introduce the development environment, should be carefully read by everyone.

Chapters 7 and 8 which deal with transputer networks and standalone programs need only to be read if they
satisfy a user's interest.

Chapter 9 on debugging should be read by everyone, but not necessarily the sections relating to networks.

Chapters 10 and 11 which deal with EPROM programming and low level programming are not essential
reading.

1.3 Reference manual

The reference manual gives the detailed, technical information that was not appropriate to the user guide.
This part of the manual is not intended to be read as such, merely referred to.

1.4 Appendices

The appendices are there to provide rapid reference. As such certain of the information may duplicate that
already found in the reference manual, but it is in a more accessible form.

1.5 Delivery manual

Additional information about installation and host-dependent aspects of the software will be found in a separate
delivery manual shipped with the software.

2 Introduction
2.1 Overview

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

System
services

On-chip
RAM

~+--_Input

Output

Application specific interface

Figure 2.1 The transputer architecture

The transputer architecture defines a family of programmable VLSI components. A typical member of the
transputer product family is a single chip containing processor, memory, and communication links which
provide point to point connection between transputers. In addition, each transputer product contains special
circuitry and interfaces adapting it to a particular use. For example, a peripheral control transputer, such as
a graphics or disk controller, has interfaces tailored to the requirements of a specific device.

A transputer can be used in a single processor system or in networks to build high performance concur
rent systems. A network of transputers and peripheral controllers is easily constructed using point-to-point
communication.

Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in occam. This
provides all the advantages of a high level language, the maximum program efficiency and the ability to use
the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logic gates. The system
designer's task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an occam process, so that a network of transputers
can be described directly as an occam program.

The occam language used in this product is occam 2, this is a successor to the untyped language occam 1
or proto-occam.

4

2.2 System design rationale

2 Introduction

The transputer architecture simplifies system design by the use of processes as standard software and
hardware building blocks.

An entire system can be designed and programmed in occam, from system configuration down to low level
I/O and real time interrupts.

2.2.1 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the designer is concerned only with a small and
manageable set of processes.

2.2.2 Hardware

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. Its internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement occam channels.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g. graphics). The required function (e.g. a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an occam implementation, which in turn can be used to test the
application on a development system.

2.2.3 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a 'black box' thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a single chip, can be built from a combination of software processes, pre
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

2.3 occam model

The programming model for transputers is defined by occam. The purpose of this section is to describe how
to access and control the resources of transputers using occam. A more detailed description is available in
the occam reference manual.

Where it is required to exploit concurrency, but still to use standard sequential languages such as C or
FORTRAN, occam can be used as a harness to link modules written in the selected languages.

2.3 occam model 5

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes - assignment, input and output.
An assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Three processes on
one transputer

The same processes distributed
over three transputers

Figure 2.2 Mapping processes onto one or several transputers

Every transputer implements the occam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When occam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same occam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

6 2 Introduction

The transputer and occam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of 110, interrupts and timing is standard on all transputers and conforms to ttfe occam model.

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The occam level interface will, however, remain
standard across all products.

2.4 A programmer's introduction to the transputer

This description is intended to introduce the transputer to readers whose background is in programming rather
than in hardware.

Most of the information here is taken from 'The Transputer Reference Manual'. Reference is also made to
other INMOS publications where particular matters are discussed at greater depth.

Transputers are members of a family of VLSI components. Many properties and features of transputers are
common to all members of the family, but some differ between members. This introduction concentrates on
the things which are common to all transputers.

A transputer is a VLSI device (a chip) consisting principally of a processor, memory and communications
links. Transputers can (but need not) have additional memory connected externally.

Transputers are designed to be connected to other transputers, through their communications links. Typically
there are four links on a transputer, but there is nothing fundamental about this number.

2.4.1 Addresses and the memory

Addresses in a transputer are signed binary integers whose range is determined by the word length of the
particular transputer. A word on the transputer may contain any integral number of 8-bit bytes. Existing
transputers have either 16-bit (2-byte) words or 32-bit (4-byte) words. Although data transfer to and from
memory is normally in multiples of words at the hardware level, the addressability is at the individual byte
level.

Each byte in address space has a distinct address. The lowest is the most negative number expressible
in the word size (-32768 on a 16-bit transputer). The highest address is the highest positive number so
expressible. Because negative numbers in decimal representation are not particularly easy to think about, it
is normal to use hexadecimal representation when talking about transputer addresses.

The address range of a 16-bit transputer is thus #8000 to #7FFF (64K bytes) and that of a 32-bit transputer
is #80000000 to #7FFFFFFF (4 Gigabytes).

Bytes within words are addressed with increasing addresses from the least significant end of the word. The
address of a word is always expressed as the byte address of its least significant byte. This 'little-endian'
convention is applied uniformly to all data representation and addressing on the transputer. It is therefore
conventional for programming language compilers to allocate arrays with the lowest subscripted element at
the lowest address. This extends naturally to arrays of arrays.

Whether or not a particular address actually refers to a memory cell which can be read andlor written depends
on the type of transputer and what connections have been made to its external memory interface pins.

For convenience we shall call the minimum address Minint. The addresses at and immediately above
Minint are used to address the communications links, and for some special· purposes which may be
considered equivalent to additional special purpose hardware registers.

2.4 A programmer's introduction to the transputer 7

These addresses, and a block of addresses above these, refer to memory in the on-chip RAM of the transputer.
The size of the on-chip RAM varies between transputer types (e.g. on the IMS T800 it is 4096 bytes). On-chip
RAM has a faster access time than off-chip memory; the way program design can take advantage of this is
mentioned below. The first address not used by the processor for special purposes is called MemStart.

Whether or not addresses further from Minint than the size of on-chip RAM identify actual memory locations
depends on the external hardware design. External memory is normally connected in such a way that its
addresses follow on directly from the on-chip RAM. Most compilers rely on this convention. Some of the
highest end of address space may be allocated to ROM on self-starting systems. Other addresses above the
rest of RAM may be allocated for special purposes such as memory-mapped peripherals, shared video-RAM
or whatever a particular hardware design needs to provide in such a way that a program may access it as if
it were memory.

2.4.2 Registers and instructions

For a more complete description of the instruction set of the transputer see the book 'Transputer instruction
set: a compiler writer's guide'.

Like the majority ,of processors for which programmers write programs the transputer has a small number
of registers and a repertoire of instructions, transferring bit patterns between registers and/or memory and
performing operations on these bit patterns.

The registers of the transputer are special purpose, and are not explicitly referenced by instructions. it is not
necessary for the beginning programmer to be aware of what registers there are, as high level programming
languages hide these from the programmer. As mentioned above some of these registers are actually
implemented in memory, the others are special purpose hardware.

Two registers, which are common to all transputers, are fundamental to the understanding of how programs on
the transputer are constructed. These are the instruction pointer register Iptr and the workspace descriptor
register Wdesc.

The instruction pointer register has the same size as the transputer word and so can hold a byte address
to a location anywhere in address space. It holds the address of the next instruction to be executed by the
processor.

The workspace descriptor register holds two items of information. fts least significant bit defines the processor
priority. The rest of the register holds the address of a word in memory. As word addresses always have
a zero in the least significant position, this word address is derived by forcing the priority bit to zero. The
word address, known as Wptr, points to a place in memory conventionally used for the local variables
of a procedure or other program unit. Any other information required to define the state of a process is
addressed, directly or indirectly, relative to Wptr. Absolute addressing is reserved solely for the locations
below Memstart and for addressing memory mapped peripherals, etc.

The design of the instruction set has two particularly important features. It is never necessary for absolute
addresses to be embedded in code, and so coqe can always be made position independent. All instructions
occupy one byte each and so the structure of the instruction set is independent of the word length of the
transputer.

Each one-byte instruction consists of two 4-bit fields. The most significant 4 bits define the operation and the
least significant 4 an operand. One of the 16 basic instructions is an 'operate code' whose operand extends
the instruction set. Two of the operands out of the other 15 possible are used as special purpose prefix
operations and allow either extended operation codes or operands up to the word length to be accumulated.
The remaining 13 instructions use the operand as an immediate literal value or address offset. Address
offsets are normally expressed in words, except for explicit byte accessing instructions and jumps and calls
which access program code addresses.

The set of instructions provided is especially tailored to the support of programs compiled from high level
languages, especially the occam language designed by INMOS for the transputer. occam is defined in the
'occam 2 reference manual'.

8 2 Introduction

The instructions cover the usual range of operatio~s including transfers between memory and registers,
arithmetic and logical operations on values in registers and the usual unconditional and conditional relative
jumps, etc. In addition there is a range of instructions which specifically support the occam process model.
These instructions assume that the compiler has organised the run-time memory into workspace areas which
can be pointed to by Wptr, and use the locations immediately surrounding the word identified by Wptr for
special purposes connected with the management of processes and the switching of contexts.

Instructions are implemented by microcode in the processor, but the user need never be concerned with this
level of processing. Some transputers have additional special purpose processing units for such operations
as floating point arithmetic. From the programmer's point of view these are treated as an extension to the
central processor with instructions encoded in a uniform manner.

2.4.3 Processes and communications

The transputer and occam model of computation is based on the concept of processes which communicate
solely by transferring messages to each other along channels. A communication is strictly point to point
with one sending process and one receiving process and is synchronised, insofar as either the sender or
the receiver may be ready to communicate before the other, and is then unable to proceed until the other
becomes ready and the transfer has taken place. A single communication may be any length from one byte
upwards, restricted only by the fact that the count (of bytes) must fit in one word, interpreted as an unsigned
integer.

The transputer instructions for communication and the hardware communication links have been designed so
that it is possible to compile identical code for commul')ications between processes sharing a single processor
and for communications across hardware links. This makes it possible to design, and to compile components
of, multi-process programs independently of the allocation of these components to distinct processorso This
is one of the reasons for outlawing communication between processes by means of shared access to memory
locations. The hardware does not protect against such shared access but the occam compiler does. Another
important check that the compiler will perform if possible is that the sending process and the receiving process
in a communication agree on the length of each message transmitted. When the lengths of messages are not
known at compile time, it is conventional for them to be sent in a previous message along the same channel.

The channels used for communication are represented directly in the occam language. Any word in memory
may be used as an internal (soft) channel. Such a word is named and allocated, in the same way as a program
variable, in the workspace of a process. The channel word holds a pointer to the workspace of a process
waiting for communication on that channel. This word will contain a unique null value except at the time when
one process is ready to communicate on that channel and another is not yet ready. This pointer will in turn
identify the instruction pointer value at which the other process may resume execution after the transfer is
complete.

In order to ensure that the process at the other end of a communication will have an opportunity to become
ready, the processes running concurrently on anyone processor are time sliced. Time slicing can only occur
after the execution of one of a limited set of instructions. These points are designed to be at positions in the
execution sequence where the quantity of state information in registers that needs to be saved at the switch
of context is minimised.

Processes awaiting communication are only identified in the channel word of that communication. Other
processes that have been started, but which are not actually being executed, are held on queues represented
by head and tail pointers in dedicated processor registers and the intermediate pointers in the workspaces of
the processes themselves. A similar queuing mechanism is used to handle the transputer's real time clock,
for which any process may wait using head and tail pointers in the reserved memory below MemStart. The
representation of queues by links in the workspaces of the processes themselves does not impose a limit
on the lengths of such queues, and so very large numbers of parallel processes, many of which may share
common code, can coexist within a transputer.

The implementation of communication is such that when long messages are being transferred between
external links and memory, the processor is not involved, and so other processes using other links or not
using any links may proceed strictly in parallel. This feature, accompanied by careful program design, may
be used to optimise the performance of distributed computations.

2.4 A programmer's introduction to the transputer 9

This brief introduction to the implementation of communications is intended only to give readers a general
idea of the way this is done. In practice the behaviour is complicated by the existence of two priorities, and
the need to be able to handle the occam concept of alternation, which allows a process to be ready to
receive an input from anyone of a number of channels at anyone time.

2.4.4 Starting and stopping

Some of the pins on a transputer chip are provided to handle the special requirements of starting and stopping
transputer programs. Starting is concerned with getting a transputer going when it is first switched on or when
it must be restarted after stopping. Stopping is normally accompanied by the assertion of an error signal on
an output pin.

The way these pins are made visible to the programmer is dependent on the design of the circuit board on
which the transputer is mounted. In general it may be possible for external processors to set some of the
input pins and read the state of some of the output pins, or their state may depend on microswitch settings
or other hardware devices.

The normal method of starting a transputer is to cause it to execute a bootstrap program, which may in turn
load and/or execute any other program in the memory.

The BootFromRom pin determines whether the bootstrap is assumed already to exist in ROM or must be
received as a communication on a link before being executed. These two ways of starting are called boot
from ROM and boot from link, respectively. A Reset signal initiates the bootstrap process.

When booting from ROM the necessary boot program must have been written into the ROM chip, and the
chip wired into address space, in such a way that the two bytes at the extreme top of address space are
a jump instruction to the bootstrap program itself. According to the system design the rest of the program
may then be read from a link or another peripheral, or may already be resident in the ROM. Code for other
processors connected by links may also reside in the ROM of a transputer acting as network master and may
be transmitted to these processors as part of the bootstrapping process.

When booting from link the transputer starts in a state in which it can respond to any input on anyone of its
links. The first byte received determines the next action. If this byte has any value greater than 1, it defines
the length of the bootstrap program which follows. Such a bootstrap program is read directly from the link into
memory starting at the address MemStart, and the Iptr and Wdesc are initialised so that the instruction
at MemStart is the first to be executed, and the Wdesc is set for low priority with a workspace starting at
the first word above the bootstrap program. The identity of the host link and the previous values of Iptr
and Wdesc are preserved in registers.

If the first byte received when a transputer is set to boot from link is a 0 or a 1, one of two special actions
occurs. These special actions consist of writing or reading the contents of anyone word in address space.
The read command (0) is expected to be followed by a single word which is interpreted as an address; the
transputer then sends the contents of that address out on the output link corresponding to the input link on
which the command was received. The write command (1) is expected to be followed by two words, the first
is interpreted as an address and the second as a value to be written there.

These commands, alternatively known as peek and poke, may be used by a program at the other end of such
a link to determine the state of a transputer which has been reset but not booted, or to perform any other
diagnostic actions. Any number of peek or poke commands may be received and obeyed before a bootstrap
program is received.

The transputer has an error flag which can be set on the occurrence of arithmetic overflow and similar
conditions. It can also be set explicitly. The state of this flag is represented by the Error pin whos·e state can
be detected externally. INMOS evaluation boards are designed so that after an error is detected an Analyse
signal may be sent to the network of transputers including the one which has set error.

The Analyse signal forces a clean close down on each transputer and leaves it in a state in which its memory
and register contents at the time of error may be recovered. This feature is used. by the debugger program.

10 2 Introduction

INMOS have established a set of conventions for the use of these signals for the loading and post-mortem
analysis of transputer programs. These are discussed in Technical Notes 33 and 34.

2.4.5 Programs

A transputer program, like any other, must be designed, written, compiled, linked, stored somewhere, loaded,
entered and run. A transputer program, unlike most others, may be a multi-processor program.

A transputer program may be constructed to be totally self-contained, handling all its communications with its
peripheral devices itself, or it may be designed to require support at run time from some other program (a run
time system). Communication between a program and its run time system should be designed to use occam
channels. If the run time system is on a processor also used by the program then it is conventional to build
the program as an occam procedure (PROC) and to pass these channels to it as procedure parameters.
Initial values of any kind may also be passed into such a program as parameters.

Otherwise the run time system may be any process connected to the program only by hard channels (links).
Such a run time system may be another transputer program, or any suitably designed program on other kinds
of processor connected in such a way that it can communicate using one or more INMOS links. INMOS
evaluation boards designed for mounting inside an IBM PC or compatible computer achieve this by using an
INMOS link adaptor which appears to the transputer as a pair of hard channels, but which appears to the
8086 (or similar) processor in the PC as a collection of addressable locations in memory.

2.4.6 Multi-processor programs

As it is possible for arbitrarily long messages to be communicated in a single transfer, the process of loading
a program into a transputer can be made very simple. A multi-processor program may be loaded into a
network of transputers from any point in the network, using any graph of link connections which spans the
network. Each processor in the network first receives a bootstrap program, which in turn performs its part in
the loading of more remote processors and finally itself. The code on each processor is then entered at its
entry point, and can perform an arbitrary amount of local initialisation or other computation before interacting
with one or more connected processors by attempting a link communication.

The stored form of a multi-processor program must be constructed using knowledge of the network connectivity
to be used for loading. The individual code blocks transmitted to the network have to have their destinations
identified. These destinations are defined solely by the path, in terms of link numbers at each precessor on
the path, to be taken by the code. There is no concept of processor naming in the stored form of a program.

The software tool which constructs the stored form of a multi-processor program from its components is called
a configurer.

2.4.7 Conventions for the code on each processor

Conventions adopted by INMOS software tools define the structure of the code area and the data area on
each transputer processor. The hardware architecture does not impose any such structure, beyond requiring
each process to have, at any time, a block of words in memory to which the workspace pointer Wptr points.
As addressing relative to Wptr is the most efficient method of memory access, and offsets up to 15 words
from wptr are the most efficiently accessed of these, compilers generate code which allocates these words
in blocks as stack frames to local variables, procedure parameters, etc.

It is a feature of occam 2 that the sizes of stack frames can be determined at compile time. This enables
a simple approach to be adopted to the allocation of stack frames for called procedures at addresses im
mediately below the frame for the calling procedure. Parameter locations are so positioned that they can be
equally readily accessed by the calling code and by the called code after Wptr has been adjusted appropri
ately. The size of each stack frame is called the workspace size of the procedure. This is handled internally
by the compiler for locally declared procedures, but must be kept in a compiled code descriptor for separately
compiled modules, such as those in a library of commonly used procedures.

2.5 Program development 11

Parallel processes, including those executing common code, are allocated their own disjoint workspaces within
which all locally declared variables will be allocated. In occam the sizes of these are also determinable at
compile time.

Languages with recursion and/or arrays whose sizes are determined at run time do not allow such a simple
approach. to the allocation of stack frames. There will inevitably be more overhead at run time associated
with procedure calling in such languages.

The variables of a program may be classified into the scalars, occupying up to 8 bytes each, and the arrays
or vectors, which are larger blocks normally accessed by indexing. Compilers may decide whether or not to
include the vectors in the workspace stack frame for a procedure. If a compiler allows vectors to be allocated
in a separate area, performance will probably be enhanced because of the more efficient access to scalars
with smaller offsets, but there will be added complexity at compile time as both scalar and vector workspace
sizes will need to be managed in compiled code descriptors.

The separate allocation of vectors has an additional benefit on the transputer where the lowest memory
addresses are those of the on-chip RAM which has the fastest access speed. By allocating scalar workspace
at the lowest addresses, followed by the code, followed in turn by the vector workspace, an optimum use of
on-chip RAM is likely to be achieved for the majority of programs.

When the user's program shares a single transputer with a run time system such as is provided by the
INMOS TDS, it is conventional for the run time system to be allocated at the high end of available memory.
When loading a user's program, the workspace requirement of that program, and the run time system's use
of memory for its own purposes can be taken into account before the called program is entered, and the
called program can be informed of the size of otherwise unused memory as a procedure parameter. This
technique is used by software tools within the TDS to create working arrays with sizes proportional to the size
of available memory.

2.5 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

2.5.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of 'logical behaviour'; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave 'correctly' regardless of input data and ALT selection.

12 2 Introduction

2.5.2 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an occam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the occam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an occam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
identified.

Because, in occam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

2.5.3 The transputer development system

The transputer development system is an integrated development system which can be used to develop
occam programs for a transputer network. It consists of a plug in board for an IBM PC with a transputer
module, such as an IMS B404, and all the appropriate development software, see figure 2.3.

IMS 8404
Taoo T212
2Mbyte DRAM C004
32Kbyte SRAM

o
o

I I 1-0 -1
~_----,..,,~__IIIIIIIIIIIIIBM XT/AT

~ ----=-I=.B.:...:.;M:....:b~U=S:......- D File server and
2-way byte protocol terminal handler

I

:.:.;.:.;.;-:.:-:.:-:.:.;.

··.~··••·.~.·.II!IJ:::~:-:-:- .

Figure 2.3 Transputer development system

Most of the development system runs on the transputer board; there is a program on the IBM PC called a
'server', which provides the development system with access to the terminal and filing system of the IBM PC.

Using the T08 a programmer can edit, compile and run occam programs entirely within the development
system. occam programs can be developed on the T08 and configured to run on a network of transputers,
with the code being loaded onto the network from the T08. Alternatively an operating system file can be
created which will boot a single transputer or network of transputers. As a final variation, the T08 can be
used to create programs for single transputer or networks of transputers that operate completely independently
of the T08; such code could be placed in EPROM for example. Programs that work independently of the
T08 are known as 'standalone' programs.

The TOS comes with all the necessary software tools and utilities to support this kind of development. There is
a variety of libraries to support mathematical functions and input/output for example. There is a sophisticated
debugging tool and software to analyse the state of a network.

The user guide

3 Directories
The software components of the Transputer Development System are supplied as compressed files. As part
of the installation procedure a directory \ARCD700E is created, where the compressed files are placed. The
directories required by the system are created and the appropriate files extracted from the compressed ones
and placed in the correct directories. The compressed files may then be deleted.

The main directory created is called \ TDS3 and all files are stored in subdirectories.

The actual subdirectories used are (some in turn have subsubdirectories):

\ TDS3 \SYSTEM System and utility files.
These files must be accessible from any working directory.
If the operating system on the computer is DOS
then a path must be set to this directory.

\ TDS3\COMPLIBS Compiler libraries.

\ TDS3\TOOLS Software tools supplied with the system e.g. debugger.

\ TDS3 \ IOLIBS Libraries of input/output procedures.

\ TDS3 \aOSTLIBS Libraries of procedures supporting the iserver interface.

\ TDS3 \MATHLIBS Libraries of additional mathematical functions.

\TDS3\TUTOR Tutorial material described in the user guide.

\TDS3\EXAMPLES Additional example programs that are supplied with the system.

\TDS3 \ SERVER

\TDS3\INMOS

Server files.

Libraries used by TDS tools and examples only.

Some of the terms used above will not be familiar to many people at this stage. They will become clearer
by carefully reading and working through the user guide. There is a glossary at the end of the book and the
reference manual describes the more technical aspects of the system in greater detail.

4 The editing environment
4.1 Introduction

The Transputer Development System (TDS) consists of a plug-in transputer board and development software
which runs on the transputer board. This combination provides a complete, self-contained development
environment in which programs can be developed, compiled and run. Programs can also be developed and
compiled on the TDS to run on a network of transputers, the code being loaded on to the network from the
TDS. In this case the combination of transputer board and PC is referred to as the 'host computer', and the
transputer network is known as the 'target system'. Finally, as is probably more realistic for most applications,
programs can be developed to run on transputers completely independently of the TDS; these are known as
'standalone' programs.

The principal interface to the system is an editor; as soon as the system starts up the user is placed in
an editing environment, and all program editing, compilation and running can be carried out within that
environment, by the use of a set of function keys. Instead of having a special command language to the
operating system to manage the filing system, file operations occur automatically as a result of certain editor
operations. There is also a set of 'utility' function keys which may be assigned to different functions during a
session. Throughout this manual the convention of referring to function keys (including utility function keys)
by name will be followed; for example: !CURSOR UP! or ICOMPILE!. In fact th.ese logical names may correspond
to a combination of physical keypresses at the terminal. The actual keys associated with these function key
names are given in the keyboard layout diagrams in appendix A.

The editor interface is based on a concept called 'folding'. The folding operations allow the text currently
being entered to be given a hierarchical structure ('fold structure') which reflects the structure of the program
under development.

Because of the importance of folding within the TDS, this chapter starts by explaining folding. It then describes
how to boot up the TDS. As with many systems, the best way to start learning about the TDS is to start using
it. For this reason a tutorial file is provided; this does not assume any knowledge about the TDS so it can be
worked through before reading the rest of the chapter. Section 4.3 describes how to find the tutorial file. The
rest of the chapter describes the editor interface in some detail, and then describes the facilities for loading
and running code within the editing environment.

4.1.1 Folding

Just as a sheet of paper may be folded so that portions of the sheet are hidden from view, the folding editor
provides the ability to hide blocks of lines in a document. A fold contains a block of lines which may be
displayed in two ways: open, in which case the lines of the fold are displayed between two marker lines
(called creases), or closed, in which case the lines are replaced by a single marker line called a fold line.

To create a fold the user inserts creases around the text to be folded; the fold is closed automatically when
the second crease is made. Any text may be placed on the fold line to indicate what the fold contains; this
text is called the 'fold header'.

A fold may be removed, so that its contents are once again placed in sequence with the surrounding lines.

Folds may contain text lines and also fold lines; therefore folds can be nested. Folds can be nested to a
maximum depth of 50.

An example of how folds are displayed by the editor follows. The fold line is marked with three dots (...).
A top crease is marked with the symbol {{ {. A bottom crease is marked with }}}. There are two folds in
this program: one marked Dec1arations, and one marked initia1ise. In the second example the
fold initia1ise has been opened.

18

Example: program with closed folds

. .. Decl.arations
SEQ

. .. initial.ise
WHILE qoinq

process (ch, qoinq)

Example: program with open fold

4 The editing environment

. .. Decl.arations
SEQ

{{{ initial.ise
qoinq := TRUE
input ? ch
} } }
WHILE qoinq

process (ch, qoinq)

A fold has an indentation associated with it; the fold and crease line markers begin at this indentation level.
No text may be inserted within the fold to the left of this indentation. In occam the indentation of a line is
significant; the folding features of the editor make it relatively easy to change the indentation of part of an
occam program.

Folding, in conjunction with the ability to nest folds, provides a way of organising a large document or program
as a hierarchy. The editor has functions to 'enter' a fold, which opens the fold and moves down into it, and
also to 'exit' the fold, which closes the fold and returns to the level from which the fold was entered. For
example, entering the fold marked Decl.arations in the example above would make the following lines
the only visible lines on the screen.

Example: entering a fold

{{{ Decl.arations
INT ch:
BOOL qoinq:
PROC process ()

body of process

} }}

Here the line marked body of process is a fold nested inside the fold Decl.arations.

Any document can be folded in such a way that most of the folds are shorter than the length of the screen.
Fold operations then become the principal method of traversing a document, with screen scrolling operations
used only for small local movement.

Because a closed fold is represented by a single line on the screen, some editor line operations may act
on fold lines as well as text lines. When such an operation is applied to a fold line it also applies to the
fold contents. For example, deleting a fold line deletes all its contents as well. This means that operations
to transform the fold structure, (such as moving, copying, and deleting folds) appear identical to the line
operations which are familiar to any user of a screen-oriented editor.

So far folds have been described as sequences of text lines; however, not all folds are text folds. There
are also data folds, which are created by certain utilities in the system to store data. For example, when the
occam compiler compiles a section of source code it places the resulting code in a data (fold. Data folds
appear as a single line on the screen, but cannot be opened and displayed by the editor.

In order to allow the system to distinguish the different types of folds, each fold has attributes to indicate the
nature of its contents.

4.1 Introduction

There are two attributes of interest:

19

1 The 'fold type' attribute which indicates to the editor the general nature of the contents of the fold
(e.g. text, data)

2 The 'fold contents' attribute which indicates in more detail the nature of the contents of the fold
(e.g. program text, comment text, compiled code, compiled and linked code).

The possible values of these fold attributes are listed in appendix F. Attributes remain with a fold until it is
removed.

4.1.2 Files as folds

The folding editor allows a fold to be designated a 'filed fold'. The effect of this is to indicate that the fold
contents are to be stored in a separate file. When the fold is first opened, the contents of the file are read in,
and the fold may then be edited. When a filed fold is closed the system will write out the contents of all the
files which have changed since they were last writtefl out.

Many of the data folds produced by the utilities are in fact filed folds. The attributes of a filed fold are stored
with the fold header, in the enclosing file, not in the file containing the fold's contents.

A large document or program consists of many files, organised in a nested structure. For example, consider
the following program:

Example: use of filed folds

{{ {F "filename" Exampl.e program

.•• F "filename" Decl.aration of PROC pl
•.. F "filename" Decl.aration of PROC p2
PAR

pl ()
p2 ()

} } }

top crease of a fil.ed fol.d

fil.ed fol.d

The filed fold marked Exampl.e program contains filed folds which contain the declarations of PROC pl
and PROC p2. Opening the filed fold marked Decl.aration of PROC pl causes the appropriate file
to be read in and inserted at that point in the text.

The file containing the declaration of pl might also contain other filed folds. This shows how nested filed
folds can be used to make up a large document. The document can be navigated in the same way as a
small document, with only the explicitly opened sections of the document being read in by the editor. Most
operations which can be carried out on fold lines may also be applied to filed fold lines, including those that
contain nested files. So, for example, copying a filed fold line will make a copy of the file and all its nested
files.

A directory used by the TDS contains a small number of root or 'top level' files, within which all other files are
contained.

20

4.2 Starting and finishing the system for the first time

4 The editing environment

4.2.1 Starting the system

This section describes how to start the transputer development system from DOS command level, and how
to start using the system.

To start the system for the first time move to an empty directory, ensure that there is a DOS path to the
directory \ TDS3 \SYSTEM and type:

tds3

In response to the tds3 command the system will display a welcome message followed by:

TDS system fi1e : file path name
Board memory size : x Bytes

Once the TDS is loaded from disk, the system clears the screen and displays the top level view, which
consists of all the files in the current directory with the extension •TOP. In the case of a new directory, there
will be only one top level file: TOPLEVEL. TOP. The screen will appear as follows:

Press [ENTER FOLD] to start session
••. F "TOPLEVEL.TOP"

The principal operations available on these top level filed fold lines are IENTER FOLDI, which enables a fold
to be entered and edited, and IFINISHI, which ends the session. Most of the normal editing operations and
utilities are disallowed here.

To enter one of the folds the cursor should be placed on the appropriate fold and the IENTER FOLDI key pressed.
The contents of the fold will be read in and displayed.

4.2.2 The TDS3 command

The TDS3 command has the form:

tds3

This calls a command file TDS3 . BAT in the directory \ TDS3 \SYSTEM. This normally contains the following
command:

\tds3\system\iserver Isb \tds3\system\tds1oad.b4
-f \tds3\system\tds3.xsc

This runs the server program ISERVER.EXE on the host, and the TDS loader program TDSLOAD .B4 on
the transputer. The TDS loader program loads the file given by the -f parameter. See chapter 16 for full
details of the iserver command line.

4.2.3 Problems starting the system

If no transputer board is connected the system may hang, or it may display one of the messages:

Unab1e to access a tranputer

or another message as listed in section 16.4.3

This will also happen if the transputer board does not have its reset link connected correctly or if the system
is being run from an IBM PC which is neither a PC-XT nor a PC-AT. See the appropriate board manual for
details on these matters.

The system may hang if the wrong link adaptor addresses are used. This may occur if a TDS configured for

4.2 Starting and finishing the system for the first time 21

a different machine is used, or if the /sl command line option is incorrectly specified. See chapter 16 on
System interfaces, which describes the server.

4.2.4 Keyboard layout

To display a map of the keyboard layout, press the IHELPI function key, which is assigned to the [EI] key on the
keyboard in the standard IBM PC layout. A keyboard map will appear; you can return to the normal editor
display by pressing any key. Keyboard layouts are also shown in appendix A.

4.2.5 Repainting the screen

The function key IREFRESHI repaints the entire screen. This may be useful to check that the editor is driving
the screen correctly, or if the terminal is accidentally switched off.

4.2.6 Ending the session

It is only possible to end the session from the outermost level (Le. where the top level filed folds appear).
Pressing IFINISHI here returns to the operating system. If any of the folds have been entered they must be
exited back to this level before IFINISHI can be used.

4.2.7 Interrupting and rebooting the TDS

The server supporting the TDS can be interrupted by pressing the interrupt key. This is 'control-break' on IBM
machines, but is 'control-c' on some others. The system will offer the option of exiting, calling an operating
system shell or continuing. The user can press 'x' which returns to DOS command level, after giving the user
an option to reboot the TDS in analyse mode for debugging.

The only time it should be necessary to press the interrupt key is when a user program fails to terminate and
the system needs to be restarted. Subscript range and similar errors in a user program will cause the server
to terminate automatically.

The interrupt key can also be used to prevent the TDS from writing out any more files, if a catastrophic edit
has been done. This should not be done, however, if the system is actually in the process of writing out files.

If the TDS is called from a suitable command file, it may be re-entered automatically after the server is
interrupted so that the debugger may be used to determine the cause of failure or state of the program at
interruption.

4.2.8 Suspending the TDS

The key ISUSPEND rosl can be used to suspend the TDS temporarily and return the user to the host oper
ating system, so that operating system commands can be issued (for example, getting directory listings, or
formatting floppy disks). In DOS typing the command exit returns to the TDS, which is in the same state
as it was when ISUSPEND rDsl was pressed.

Before resuming the TDS, the current directory must be the same as it was when the TDS was suspended.

This facility works, in DOS, by making the server call the command file associated with the environment
variable COMSPEC. The file associated with this variable can be changed by putting a set command of the
following form into the AOTOEXEC . BAT:

set COMSPEC=fflename

DOS commands which reset the transputer board (for example, running a server with another transputer boot
file) will cause the state of the suspended session to be lost, and typing exit will then cause the system to
hang up. The interrupt key can be used to release the system from this state.

22

4.3 Tutorial file

4 The editing environment

There is a file included with the system which provides an introduction for those starting to use the system.
The file is in \ TDS3 \ TUTOR and is called TUTORIAL. TOP. This file contains a detailed practical example
on using the TDS and anyone new to this system is strongly advised to work through it.

To use the tutorial move to the directory \TDS3\TUTOR, then type:

tds3

to start the system.

It is advisable to have nearby the appropriate keyboard layout. Keyboard layouts appear in appendix A.

When the system starts up ensure the cursor is on the line TUTORIAL. TOP, and then press IENTER FOLDI to
read in and display the file.

The contents of the file will then give you detailed instructions on how to proceed.

4.4 The editor interface

This section defines some terms which are used to describe the behaviour of the editor keys. Figure 4.1
shows a graphical representation of these terms.

4.4.1 Editor's view of a document

At any time during the session, the editor has a view of the document, consisting of a sequence of text lines,
closed folds and open folds. This is called the current view.

The current view of the document at any time is principally determined by the fold operations which have
been carried out. At the start of the session the current view contains a sequence of lines which correspond
to the set of toplevel files in the current directory. When IENTER FOLDI is pressed on one of these lines, the
contents of the filed fold, surrounded by top crease and bottom crease lines, become the current view.

Whenever IENTER FOLDI is pressed on a fold line, the current view is stacked up, and the contents of the fold
become the current view. After editing the contents of the fold it is possible to return to the previous view
using IEXIT FOLD~

4.4.2 The screen display

The screen is divided into two parts. The top line of the screen is used to display messages. The rest of the
screen displays a 'window' into the current view (that is, it displays as many lines of the current view as will
fit on to the screen).

The editor provides functions to move the screen window up and down the current view, thus providing a
scrolling facility. These functions do not change the editor's view of the document, merely what is visible in
the screen window.

The cursor is used to point to a position in the screen window; functions are provided to move the cursor
around the screen. The cursor cannot be moved below the end of the current view.

The current column is the column which the cursor is on. The current line is the line which the cursor is on.
The current enclosing fold is the fold which contains the current line, or, if the current line is a crease line,
the fold formed by that crease and its partner.

4.4 The editor interface

Previous views
...F "EXAMPLE. TOP" {{ {F "EXAMPLE. TOP"

23

{{{ EXE example

. .. EXE example

}}}

Current view

· .. F example. tsr
· ..F example. dcd
· ..F example. dds
· ..F example. dlk
}}}

Last entered
fold

{{{F "example.tar" example
-- This fold contains a simple
-- occam 2 program
-- which says hello
{{{ program in here
#USE streamio
PROC hello (CHAN OF KS keyboard,

CHAN OF SS acreen)

..-Start of current
enclosing fold

~~~V~~~m-e-s-s-a-g-e~I~s~"~H~e~ll~o~w~o-r~ld~!'~':~~~~~~~Windowd~~ayed
BOOL going: on screen

SEQ
aa.write.text.line (scrgen,message)

!going := TRUE ~Current line and
~~~W=H=I~LE~g-o~i-n-g~~~~~~~~~~~~~ Curre~chaffict~

INT ch:
SEQ

ka.read.char (keyboard, ch)
IF

(ch >= (INT '» AND
(ch <= (INT '-'»

ss.write.char (screen, BYTE ch)
TRUE

going := F~SE

hello (keyboard, screen)
} } }

}}}

Figure 4.1 Editor's view of a document

End of current
~ enclosing fold
f-E-- End of current view

4.4.3 Line types

Four general types of line may be displayed; they are text lines, top creases, bottom creases, and fold lines.
Top creases and fold lines also have filed fold versions.

24 4 The editing environment

Fold lines and crease lines start with a marker symbol. The different types of marker symbols are:

Fold line

Filed fold line .•. F "filename"

Top crease { { {

Filed fold top crease { {{F "filename"

Bottom crease } } }

All marker symbols consist of the textual symbol above, plus one or two following spaces to give the symbol
a width of five characters plus any filename. The marker, including the filename when present, is protected
from change by the editor.

4.5 Editor functions

This section introduces and describes the functions provided by the editor. A detailed listing of the keys used
and messages given by the editor is available in chapter 12. The mapping of key names to keys on the
keyboard is given in appendix A.

4.5.1 Overview of editor functions

The editor accepts and acts on sequences of keystrokes from the user. If any of the sequences are not
recognised the terminal bell rings. The table below provides an overview of the available editor functions,
which are described in detail in the following sections. In addition there are function keys for loading and
running code within the TDS, which are described in section 4.6.

Moving the cursor ICURSOR upl ICURSOR DOWNI IWORD LEFTI ITOP OF FOLDI

ICURSOR LEFTI ICURSOR RIGHTI IWORD RIGHTI IBonOM OF FOLDI

ISTART OF L1NEI lEND OF L1NEI

Scrolling the screen ILlNE upl ILlNE DOWNI

IPAGE upl IPAGE DOWNI

Fold browsing IENTER FOLDI IEXIT FOLDI IBROWSEI

IOPEN FOLDI ICLOSE FOLDI IFOLD INFOI

Inserting and Character keys IRETURNI IDELETE WORD LEFTI

deleting characters IDELETEI IDELETE RIGHTI IDELETE WORD RIGHTI

IDELETE TO END OF L1NEI

Fold creation !CREATE FOLD! !REMOVE FOLDI IMAKE COMMENTI

and removal

Storing text in files !FILE/UNFILE FOLDI

Deleting lines IDELETE LI NEl IRESTORE L1NEI

Moving and IMOVE LINE! IcoPY L1NEI !COPY PICKI

copying lines ~
IPICK L1NEI

Defining and using IDEFINE MACRO/ ICALL MACRO! ISAVE MACRO/ IGET MACRO/

a keystroke macro

4.5 Editor functions

4.5.2 Editor modes

25

At certain times when using the editor, only a limited subset of the editor functions may be available. For
example, a fold is created by two presses of a key called ICREATE FOLDI; one to mark the top of the fold and
one to mark the bottom of the fold. Between these two presses normal editing operations are not allowed;
the only keys which the editor will accept are those needed to change the cursor position and the help key.
All other keys cause the terminal bell to ring. When the editor is only accepting a restricted subset of keys,
this is known as an editor 'mode'. It is indicated by a message on the top line of the screen which persists
until the operation requiring the mode has been completed.

In the rest of this chapter, where a function results in an editor mode, this is indicated in the appropriate
section.

4.5.3 Moving the cursor

The normal cursor positioning functions are used to move the cursor around the screen window. The cursor
may be moved into any part of the screen, except the message line. In addition there are functions to move
the cursor to the start or the end of the current line, and one word to the right or left on the line.

The cursor keys cause the screen to scroll when used at the top and bottom of the screen. Separate screen
scrolling functions can be used to scroll the screen up and down the current view; these are described in the
next section.

ICURSOR upl moves the cursor up one line.

ICURSOR DOWNI moves the cursor down one line.

ICURSOR LEFTI moves the cursor left one column.

ICURSOR RIGHTI moves the cursor right one column.

lEND OF L1NEI places the cursor after the last significant character on the current line (which is normally the
last non-blank character).

ISTART OF L1NEI places the cursor on the first significant character of the current line (normally the first non-blank
character) .

Two keys, IWORD LEFTI and IWORD RIGHTI, are provided to move the cursor one word at a time. A word consists
of a sequence of alphanumeric characters or a single non-alphanumeric character. More precise definitions
of the word move operations are given in chapter 12 under the definitions of the relevant keys.

IWORD LEFTI moves the cursor one word to the left of the current cursor position.

IWORD RIGHTI moves the cursor one word to the right of the current cursor position.

ITOP OF FOLDI moves the cursor to the top crease line of the current enclosing fold. If the top crease line is
not within the screen window the screen will be scrolled.

IsonOM OF FOLDI moves the cursor to the bottom crease line of the current enclosing fold. If the bottom
crease line is not within the screen window the screen will be scrolled.

4.5.4 Scrolling and panning the screen

These functions scroll the screen up and down the current view by a line or a page at a time. A page is the
number of lines in the screen window.

ILlNE upl moves the screen one line up the current view, if there are lines in the current view above the screen.

26 4 The editing environment

ILlNE DOWNI moves the screen one line down the current view, if there are lines in the current view below the
screen.

IPAGE upl moves the screen one page up the current view, or to the top of the current view, whichever is the
nearest.

IPAGE DOWNI moves the screen one page down the current view, or to the bottom of the current view, whichever
is the nearest.

None of the above functions affect the position of the cursor on the screen

There are no keys which explicitly control panning, but if actions are taken which drive the cursor off the sides
of the screen the whole screen will be repainted with the cursor position on the screen and an indication of
how many columns are missing at the left in the message line at the top of the screen. There is an absolute
maximum line length of 255 characters which can never be exceeded and it is recommended that the need
to pan is minimised by keeping lines within the capacity of the screen.

4.5.5 Fold browsing operations

Opening and closing folds

This section describes the keys which are used, along with the cursor positioning keys, to move around a
document. There are two pairs of fold browsing operations, one pair being IENTER FOLDI and IEXIT FOLDI, and
the other pair being IOPEN FOLDI and ICLOSE FOLDI.

The folding features of the editor give a document a hierarchical structure. The keys IENTER FOLDI and
IEXIT FOLDI are used to move around the hierarchy. When IENTER FOLDI is pressed on a fold the screen is
cleared and the contents of the fold become the current view. The previous view is stacked up, and can be
returned to using IEXIT FOLDI

IENTER FOLDI is appropriate when the fold contains a reasonably self-contained piece of text. However, it may
often be more desirable to view a piece of text in its surroundings; for example the body of a WHILE loop
may be folded up, and it may be best viewed with the WHILE condition displayed above it. IOPEN FOLDI and
ICLOSE FOLDI are provided for this purpose.

OPEN FOLD inserts the contents of a fold between the surrounding lines, bracketted with top and bottom
creases. CLOSE FOLD may be used to close an opened fold, and replace the displayed contents with a single
fold line.

IENTER FOLDI is useful where a quick return up to a particular position is required; doing an IENTER FOLDI at that
position will allow, at some future time, an IEXIT FOLDI to cause a return back up to that position.

At the outermost level, only IENTER FOLDI may be used. Once the outermost level has been left by entering a
fold, this starts the normal editing mode. All the editor functions are available in this editor mode, as well as
the utilities.

Fold information

The key IFOLD INFOI, used on a fold or a crease line, displays the attributes of the fold on the message line.
On a filed fold line, the message also includes the name of the file in which the contents of the fold are stored.

Browsing mode

Sometimes when viewing an existing document it is useful to set the editor into a mode so that you can not
accidentally change the document. The key IBROWSEI can be used to get into and out of this mode. While
in this mode a message is displayed continually on the message line of the screen, and all editor functions
which could change the document are disallowed.

4.5 Editor functions 27

4.5.6 Inserting and deleting characters

In general characters may be inserted or deleted at the cursor position, but there are some exceptions, as
follows:

1 Text may not be be inserted when the cursor is on the top crease of the view, a fold or crease
marker, or when the cursor is to the left of the leftmost column of an open fold.

2 The indentation of a closed fold may be changed by inserting or deleting spaces to the left of a fold
marker symbol. No other text may be inserted there.

Insertion

A character or space can be inserted in the current column position and the cursor, the character underneath
the cursor and all subsequent characters on the line are moved right by one place.

IRETURN! is used to split lines and insert blank lines. It has no effect on a fold line if used between the first
and last significant characters of the line.

Deletion

IDELETEI is used to delete the character to the left of the cursor. This causes the character underneath the
cursor and the rest of the line to the right to be moved one place to the left. If IDELETEI is used at the extreme
left of a line it concatenates the line with the preceding line, if that line is not a long line. It has no effect if
used at the extreme left of a fold or crease line.

IDELETE RIGHTI deletes the character under the cursor. All the characters to the right of the cursor are moved
left by one place. The cursor remains in the same position.

Character deletion has no effect on the top crease of a view, when the cursor is on part of a marker symbol,
or is to the left of the leftmost column of an open fold.

Spaces may be deleted to the left of a closed fold to change the indentation of the fold.

IDELETE TO END OF LINE! deletes all text from the character under the cursor, to the last significant character
on the line, inclusive. The cursor remains in the same position.

J

Deletion can take place a word at a time. A word can be considered to be a sequence of alphanumeric
characters or a single non-alphanumeric character, as for cursor movement.

IDELETE WORD LEFT! deletes the word to the left of the cursor.

IDELETE WORD RIGHTI deletes the word to the right of the cursor.

4.5.7 Fold creation and removal

Fold creation is achieved by marking the top and bottom of the sequence of lines required to form the contents
of a fold. Two presses of ICREATE FOLDI are needed to do this. Firstly the cursor should be placed at the
start of the top line and ICREATE FOLDI pressed. The column of the cursor at this point (Le. how far it is from
the left hand side of the screen) determines the indentation of the created fold. The cursor should then be
moved to the line below the bottom line to be folded, and ICREATE FOLDI pressed again. For this to work, all
lines between the top and bottom lines must be indented at least as far as the indentation of the fold to be
created; if this is not the case an error message is displayed.

After ICREATE FOLDI has been pressed once the editor changes its mode and all normal editing functions are
suspended until this key has been pressed again to complete the process of fold creation.

28 4 The editing environment

Once a fold has been created, it is good practice to -add a comment by inserting text after the fold marker.
This text is known as the fold header.

The created fold has an indentation associated with it, given by the indentation of the fold line marker when
it is closed, and the indentation of the creases when it is open. It is not possible to insert text to the left of
this indentation.

When a fold is newly created it is given default attributes: 'text' for the fold type attribute, and 'source' for the
fold contents attribute. Other fold types are made using appropriate utilities.

An empty fold can be created above the current line by pressing ICREATE FOLDI twice in succession.

A fold may be 'commented out' by pressing IMAKE COMMENTI. This encloses the fold in another fold with the
attribute 'comment text'. The word COMMENT is inserted on the new fold line before a copy of the previous
fold header.

A fold can be removed by placing the cursor on a fold line and pressing IREMOVE FOLDI. The fold contents are
inserted between the lines above and below the fold. This key should also be used for removing a comment
fold.

If ICREATE FOLDI is pressed accidentally the fold must be completed by pressing ICREATE FOLDI again. The
resulting empty fold may then be removed.

4.5.8 Filed folds

The editor provides the ability to store sections of a document in separate files. This can be done by creating
a fold around the text and making the fold a filed fold. As described earlier, a filed fold is similar to an ordinary
fold, but it has its contents stored in a separate file. When a filed fold is first opened, the contents of the file
are read in and displayed. When a filed fold is closed, a new version of the file is automatically written out if
the contents have changed since they were last written out.

When a fold is made into a filed fold the file must be given a name. In order to supply a name to the editor,
the fold header may be edited before the fold is filed. The name given to the file will then be derived from
the sequence of characters at the start of the fold header. It is not necessary to include an extension with
the name; that is provided by the editor. The system checks that the file name generated is different from
that of any existing files; if necessary, it adds numeric characters to the name to ensure this.

Filed folds may be treated in exactly the same way as ordinary folds, and most of the same operations apply.
Filed folds may be copied, in which case a copy is made of all of the contents of the fold, including any nested
files. New unique names are generated for copies of files, in the same manner as described above. Filed
folds may also be deleted, in which case the corresponding file, and any nested files, are deleted.

The use of filed folds in the system allows the user to make up a document consisting of multiple files and
browse through it in exactly the same way as browsing of a single folded file is done. No explicit commands
to read or write files need be given. A file is always written back if it has changed. The new version of the
file replaces the old version.

If it is necessary to back up a copy of a file before editing it, this may be done by duplicating the filed fold
using the IcoPY L1NEI function key (see section 4.5.10). The duplicate may then be moved elsewhere in the
fold structure.

One function key, IFILE/UNFILE FOLDI, is provided to convert ordinary folds to filed folds, and vice versa. Before
a fold is filed the fold header should be edited so that the name intended for the file is written at the start of
the fold header, as previously discussed in this section. The name of the file associated with a filed fold will
be displayed in double quotes on the fold line.

4.5 Editor functions

Storage of files in memory

29

The editor reclaims storage room from data copied out to files. This reclamation is done when extra room is
needed, and so a filed fold may be repeatedly opened and closed without constant re-reading of the file.

The following message may appear:

Warning : running out of room

This indicates that the editor's storage room is getting low. Any open filed folds not currently in use should be
closed to make some more room; alternatively some new filed folds may have to be made. If this message
is persistently ignored then the editor may run out of room and refuse to allow any more insertions until more
room has been made.

The use of a TDS loader option to change the amount of room available in the fold manager buffer is discussed
in section 16.2

File extensions

When a filed fold is made the file name is given an extension corresponding to the attributes of the fold. The
first character corresponds to the fold type attribute, and the second and third characters correspond to the
fold contents attribute. The most common extension for files made using the IFILE/UNFILE FOLDI function key
is •TSR, which is a 'text' and 'source' fold; the standard type of fold made by @EATE FOLDI.

See appendix F for a description of the fold attributes and their correspondence with file extensions.

The following extensions are generated for files created by the system:

· TOP top level files
•TCM comment text files (ignored by compilers)
• TSR program source
· TCI configuration information
•DDS compiler descriptor
•DLK compiler linkage information
•DDB debugging information
•DCD object code
•DMP coredump file
· CUT utility packages
· CEX user programs
· CPR program code fold
•CSC code SC file

In addition, the system creates the files TOPLEVEL. NOV, TOPLEVEL. TKT and TOPLEVEL. PCK. These
are used to store, respectively, the current contents of the buffer associated with IMOVE L1NEI, the contents of
the toolkit fold and the contents of the pick buffer (all of which are discussed later). All these are preserved
between sessions. There is also a TOPLEVEL. DEL file which is not preserved between sessions; this
contains the line associated with the last line deletion (see later).

Writing back files

The system takes some trouble to ensure that the versions of the files on disk at anyone time are consistent.
Operations on the filing system cause the system to write back all files which are open and which have
changed since they were last written back to the disk. This operation is called a 'flush'.

A flush is performed whenever one of the following filing system operations occurs:

1 Closing a filed fold

30

2 Creating a filed fold

3 Copying a filed fold

4 The editing environment

A flush is also performed before a running utility or user program reads or writes a file, before suspending
the TDS, and when entering the toolkit or code information folds (these are discussed in section 4.6).

An error can occur on writing back a filed fold if the file with the name given on the filed fold cannot be
opened, or if a filing system error occurs in the process of writing. If this happens, the editor converts the
filed fold into an ordinary fold. The main circumstance under which this can occur is when attempting to write
back to a file or directory which is write-protected.

If it is possible to write the file back to another directory, then the name on the fold header can be edited to
give a suitable file name, and the 'FILE FOLDI function applied to the fold line. The file can then be retrieved
from the other directory later.

Several nested filed folds may be written in a single flush, but normally no information will be lost as a result
of one or more write failures; all open filed folds which fail to write are simply converted into ordinary folds.
However, an outermost level filed fold will not be automatically converted into an ordinary fold in this way.
Instead, the fold is closed, and all changes to the information in the fold since the last flush will be lost.

4.5.9 Deleting lines

'DELETE L1NEI deletes the current line from the document. If this is a fold line, the fold and all its contents are
deleted. If it is a filed fold line, or contains a filed fold line, the associated file (or files, if there are nested
files) will be deleted from the directory. Since this makes IDELETE L1NEI a very powerful operation, it should be
used with care.

On a filed fold line, or a fold line containing a filed fold, the editor asks for the 'DELETE L1NEI key to be repeated
before deleting the line, as a precaution against accidental deletion.

There is a function IRESTORE L1NEI to undo a deletion, restoring the last deleted line at the current position
in the document. However, 'RESTORE L1NEI only works until the next flush takes place (as described in the
previous section). At the next flush, any required file deletions are carried out, and the delete buffer is cleared.

Only one deletion can be restored, so a deletion cannot be recovered if another subsequent deletion has
been done. If a catastrophic deletion has been done, then the TDS interrupt key (see section 4.2.7) can be
used to leave the TDS immediately without writing any more files.

4.5.10 Moving and copying lines

Often when using an editor it is necessary to make structural changes to the text, moving lines and blocks
of lines around. In the TDS editor, the representation of folds as lines on the screen means that substantial
structural changes can be made to a document in the same manner as reorganisation of lines. An individual
line can be picked up, or a block of lines can be folded and then picked up.

The functions IcoPY L1NEI and 'MOVE L1NEI are used to copy and move sections of the document from one place
to another. A text line or fold can be duplicated with the 'copy L1NEI function, or moved to another position in
the document using IMOVE L1NEI.

IcoPY L1NEI duplicates the current line, inserting the copy in the text. If the current line is a filed fold, or a fold
containing a filed fold, then copies of the files contained within the fold are made. Before starting the copy
operation on a filed fold, the editor asks for the 'COpy L1NEI key to be repeated to confirm the operation, as
the copying may take some time. The new files are given names derived from the names of the files in the
original fold.

Two presses of 'MOVE L1NEI are needed to move a line from one part of the document to another; one to pick
up the line, and one to put it down. If a sequence of lines is to be moved, the lines should be folded up first.

4.6 Utilities and programs 31

A buffer (the 'move buffer') is used to store the line between the two operations. There is no need to go and
put the line down immediately; the buffer will be retained until the next press of 'MOVE L1NEI. even if that is not
done until a later session using the TOS.

Using the above keys. it is difficult to collect a number of different parts of a document before putting them
down together. Here IPICK L1NEI and 'copy PlcKI are more appropriate. These make use of a different buffer
(the 'pick buffer') that is accumulative. This enables the user to gather together, in the buffer, various pieces
of text that can be put down in one place. [EQ!J is used to put down the text in the buffer, which is emptied at
the same time. As with the move buffer, the pick buffer is also preserved between sessions using the TOS.

'PICK L1NEI is used to pick up a line, which may be a fold line, so that it may be moved to another place in the
document. It removes the current line from the document and appends it to the end of the pick buffer.

'copy PlcKI is used to copy a line, which may be a fold line, so that it may be moved to another place in the
document. It makes a copy of the current line and appends it to the end of the pick buffer. If the line is a filed
fold, or is a fold containing a filed fold, 'COpy PlcKI must be pressed again for confirmation, as the copying
may take some time.

IpUTI puts down the contents of the pick buffer at the current position in the document. It inserts a fold line
at the current line, containing the sequence of lines placed in the pick buffer using IPICK L1NEI and IcoPY PlcKI.
The pick buffer is cleared. If there are no lines in the pick buffer [EQ!J has no effect on the document.

Lines and folds moved by these operations may come from, or be put into, the toolkit fold or other display
folds created by the actions of utilities.

4.5.11 Defining keystroke macros

The key 'DEFINE MACROI can be used to define a sequence of keys (which are commonly going to be used
together during a session) and assign the sequence to a single keystroke. Two presses of IDEFINE MACROI are
needed to define a key sequence; the required keys (which may not include IDEFINE MACROI or ICALL MACRO!)
should be pressed between the two presses of IDEFINE MACROI. The sequence may contain up to 64 keys. Any
previously defined macro is forgotten. The defined macro sequence may be invoked using the ICALL MACROI
key. The currently defined macro may be saved in a new fold above the current line by pressing 'SAVE MACROI.
A saved macro may be recovered from a fold by pressing 'GET MACROI.

4.6 Utilities and programs

In order to be an integrated programming environment rather than just an editor, the TOS needs two things:
the ability to load and run a programming utility, such as an occam compiler, and the ability to load and
run programs written by the user. This section describes the aspects of the TOS which concern loading and
running code.

The TOS provides the facility to read a transputer code file into memory. where it may be run without leaving
the TOS environment. The code file, which appears as a filed fold within the TOS fold structure, may be a
file provided with the system, or it may result from the compilation of a user's program. A function key called
IGET CODEI is used to load a code file into memory.

There are two kinds of code files suitable for loading and running within the TOS: utility sets, which are usually
marked with the text UTIL, and executable programs, which are usually marked with the text EXE. These
two kinds of code files are introduced below; their use is described in more detail in the following sections.

A utility set provides a number of different functions (up to 10) within a single code file. When a utility set
is loaded, the functions it provides are mapped onto a set of ten function keys on the terminal. The utility
function keys are shown in the keyboard maps in appendix A, or can be found by using the ICODE INFOI key
at the terminal. Pressing one of these function keys will invoke one of the functions in the utility set.

32 4 The editing environment

Utility sets provide a group of commonly needed functions for developing programs within the editing envi
ronment. There are two sets of utilities supplied with the standard release of the TDS: the compiler package
and the file handling package. The compiler package is introduced in the next chapter, while the file handling
package is described later in this chapter. Other utility sets may be provided by INMOS from time to time to
extend the functionality of the development system.

An executable program is a single unit of code. Once loaded it can be run by pressing a function key called
IRUN EXEI. It is also known as a 'user program', as it is normally a program being developed by the user of
the TDS, although a number of the tools supplied by INMOS with the system (such as the debugger) are
executable programs.

More than one set of utilities can be resident in memory. Of these sets only one, known as the current utility
set, is immediately accessible by means of the utility function keys, but it is possible to switch between the
resident utility sets, using a function key called INEXT UTILI. Similarly, more than one executable program can
be in memory at the same time. It is possible to select any of the resident programs as the current one, using
a function key called INEXT EXEI.

The available memory within the TDS is shared between the code for the currently loaded utilities, the code
for the currently loaded user program, and the data space needed for the utilities and program to run. Special
function keys, called ICLEAR EXEI, ICLEAR UTILI, and ICLEAR ALLI can be used to clear the memory associated
with loaded code, in order to make more space available.

4.6.1 The toolkit fold

In addition to the normal fold structure, which contains user data and programs under development, there is
an additional fold called the toolkit fold. This may be accessed from the editing environment, except when
browsing. The contents of this fold (which may include nested filed folds) are stored in between sessions
using the TDS.

At any point in a session, the toolkit fold can be entered using the IENTER TOOLKITI function and then edited.
Once IENTER TOOLKITI has been pressed, the fold can be viewed and edited until a complementary IEXIT FOLDI
causes a return to the place where IENTER TOOLKITI was pressed. While in the toolkit fold, most editor functions
are allowed; the principal exceptions are those which have to make use of the toolkit fold, for example it is
not possible to run utilities or programs.

The toolkit fold contains a sequence of folds, each fold normally containing one of the following:

• Utilities and programs for loading.

• A selection of utilities and programs contained in a fold marked Autoload.

• Default values of parameters for use by utilities.

• Logical names for libraries.

The Autoload fold and the parameters for utilities are described later in this chapter. The use of libraries
and logical names is described in chapter 5.

The existence of utilities and programs in the toolkit fold means that at any time it is possible to switch to the
toolkit fold and load any code needed to carry on with the task at hand.

Since text and fold lines can be moved in or out of the toolkit fold, the toolkit fold can also be used to store
data temporarily while moving around the fold structure. In addition, since the toolkit fold may be entered
and viewed at any time, it may be useful for storing information which has to be referred to frequently while
working.

4.6 Utilities and programs

The standard toolkit fold supplied with the TDS release appears as follows:

{{{F "\tds3\system\top1eve1.tkt" Too1kit fo1d
Auto1oad
Too1s
L1brary 1oqica1 names

}}}

33

The Auto1oad fold contains the two standard utility sets, plus the source-level debugger. The Too1s fold
contains a number of useful tools, supplied as EXE programs.

The contents of the toolkit fold are stored in a file called TOPLEVEL. TKT. The TDS searches for this file
first in the current directory and then in any directories specified in the path variables TDSSEARCH (see
section 16.1). The standard toolkit fold is shipped in the directory \TDS3\SYSTEM. This may be used from
any directory or may be copied from the TDS system directory to any other directory where it is needed. The
filename of the current toolkit fold is included in its top crease line.

4.6.2 Loading utilities and programs

When the TDS starts up, there are no utilities associated with the function keys, and no resident programs.
The code for these may be loaded by using the 'GET CODEI key applied to a filed fold containing the code.
More than one code item may be resident in memory at the same time; in fact up to 32 code items may be
resident. The workspace available for running the current code is the memory remaining within the system.

One utility set is 'current', which means that the utility function keys are bound to the functions of that particular
utility. The identity of the current set is indicated on the message line; the text on the filed fold line from which
the code was loaded is remembered and displayed when that set is current.

When IGET CODEI is used to get a utility set, that set is made the current one. Any of the resident utility sets
can be made the current one; a key called 'NEXT UTILI can be used to cycle through the available utility sets.
There is also a 'CLEAR UTILI key which clears the current utility out of memory and makes the next resident
utility set current (if there is one).

There is also a current EXE, which is the program which is run when 'RUN EXEI is pressed. When IGET CODE\
is used to get a program, that program is made the current one. Any of the resident EXEs can be made
the current one; a key called 'NEXT EXEI can be used to cycle through the available programs. There is also
a ICLEAR EXE\ key which clears the current program out of the memory and makes the next resident program
current (if there is one).

The key 'CLEAR ALL! clears all loaded code items, both OTILs and EXEs.

It is often necessary to know which utility sets and programs are currently loaded, and which functions are
currently bound to the utility keys. For this purpose, there is a function 'CODE INFORMATIONI, which creates and
displays the resident code information fold. The user can view this fold, but cannot edit it; pressing IEXIT FOLDI
returns to the normal editing environment.

At the top of the code information display fold is some help information for the current utility set; this lists the
utilities in the set and indicates which function key they are mapped onto. The rest of the fold lists the utility
sets and executable programs currently loaded and, for each utility set, there is a fold containing the utility
help information. The current utility set and program are marked with >. The help information for the other
utility sets can be obtained by moving to and opening the appropriate fold. In addition to the help information,
the code size and data space requirement for each of the code items is given.

4.6.3 Loading code from the toolkit fold

The toolkit fold contains references to the standard utilities and programs provided with the system. These
references are in the form of filed fold lines referring to the files in the appropriate TDS directory. So the
tool kit file contains only references to the utilities and programs, not'the actual code.

34 4 The editing environment

The fold marked Autoload in the toolkit fold contains the selection of utilities and programs for normal use.
After the TDS has been started, pressing the key IAUTOLoADlloads all of the code contained in the autoload
fold, as if IGET CODEI had been applied to each line individually. The last utility set loaded is made the current
set, and similarly for the last program. Therefore the most frequently required utility set should be the last
one in the autoload fold.

Thus, to set up the standard utilities, the user can either:

• enter the toolkit fold, using IENTER TOOLKITI and then load the required set of utilities from the autoload
fold using IGET CODEI, or

• use IAUTOLOADI to load the two sets of utilities, subsequently using INEXT UTILI, if appropriate, to change
the current set.

The fold marked Tools in the toolkit fold contains a number of useful programs, described in this chapter
or later in the manual. The tools can be selected when required, by going into the toolkit fold, and using
IGET CODEI on the appropriate line. If a particular tool is needed frequently it can be moved into the autoload
fold.

The space available for loading utilities and tools is limited by the size of memory on the transputer board
on which the TDS is running. If running on a small (e.g. 1Mbyte) board, it will not be possible to load other
utilities or tools at the same time as the compilation utilities, and to be able to compile non-trivial programs.
In such circumstances IAUTOLOADI is of limited value and the contents of the Autoload fold should be carefully
chosen.

4.6.4 Running a utility

A utility in the current utility set is run by pressing the appropriate utility function key.

Before invoking a utility, it is often necessary to place the cursor in a particular position to indicate an object on
which the utility is to operate. For example, when the occam syntax checker is invoked it needs a sequence
of text lines containing the program to be checked. In a normal command environment this would be done
by storing the text in a file and then giving the name of the file as a parameter. In the TDS the cursor is
placed on a fold line and the ICHECKI key is pressed. This indicates that the checker should take the contents
of the fold as the text to be processed. This operation is normally termed 'applying' the utility to the fold.
Because of the representation of files as folds, the same utility can sometimes be applied to a few lines of
text, a complete program in a file, or a large program made up of many files.

When a utility is running, it may read and write data in the fold to which it is applied. In addition it may display
messages on the message line to indicate what it is doing; the rest of the screen appears as it was when the
function key was pressed.

Certain utilities need to be supplied with parameters to determine selected options. This is done by making
use of a 'parameter fold', and is described in the next section.

The key ISET ABORT FLAGI can be used to abort a utility when it is running. This sets a flag to indicate that the
abort key has been pressed. Utilities and programs can periodically test the value of this flag and terminate
when it is found to have been set.

Before finishing, a utility may clear the screen and display a fold of information to the user. The user can
browse this fold and edit it. Items in this fold may be picked or moved to the normal editing enironment if
they are required for permanent use. Pressing IEXIT FOLDlleaves the fold and returns control to the utility.

When both a utility package and a user program have been loaded, it is possible that there is not enough
memory available for the data space of the utilities. If this condition occurs, when a utility function key is
pressed the following message appears:

Data requirement too large

4.6 Utilities and prog rams 35

The condition is also indicated by the removal of the utility package help lines from the code information fold.
They are replaced by the text

Uti1ity workspace is 1arger than free storage

If this occurs it is necessary to use the code clearing function keys to make more memory available.

4.6.5 Supplying parameters to utilities

A utility which requires a set of parameters in order to run obtains them from a 'parameter fold'. When the
utility is first run it creates a parameter fold containing the default values for the utility's parameters and
displays it to the user, as if the user had chosen to enter the fold. The fold will contain a sequence of lines
of text appearing as occam constant definitions.

For example, the parameter fold for the search utility (containing two string parameters and four boolean
parameters) appears as follows:

{{{ Search and rep1ace
VAL search. string IS nn •

VAL rep1ace.string IS nn •

VAL case. sensitive IS TRUE
VAL g1oba1.rep1ace IS FALSE :
VAL forward. search IS TRUE
VAL forward.rep1ace IS TRUE:
} }}

The displayed fold may be edited to set the parameter values, before the utility is allowed to continue. Pressing
IEXIT FOLDI supplies the parameters to the utility and allows it to continue.

A function ISELECT PARAMETERI is provided to facilitate the editing of parameters. It moves the cursor to the
parameter value section, and allows the user to toggle between a number of possible values of the parameter.
For example, it could be used on a boolean parameter to toggle between TRUE and FALSE. On a line of the
form:

VAL parameter IS va1uel : -- va1uel I va1ue2 I va1ue3

the ISELECT PARAMETERI key will cycle the parameter between the three allowable values. The empty strings
after the -- in the search and replace example above are provided to simplify the changing of these parameter
values.

Once a parameter fold has been used by a utility, it is stored in the toolkit fold. To change the parameters
before the next run of the utility, IENTER TOOLKITI can be used. Once inside the toolkit fold the individual
parameter folds can be entered and the parameters edited as required. The next run of a utility will take its
default values from the toolkit; if this is not required the parameter fold should be deleted from the toolkit.
Each parameter fold is recognised by the text of its fold comment. A fold may be made invisible to a utility
by changing this text. A parameter fold must contain definitions of all the parameters required by a utility that
uses it. It may also contain additional definitions not so used.

4.6.6 When a utility finishes

When a utility finishes running, it normally outputs a message indicating either successful completion or a
condition which it wishes to bring to the user's attention.

On successful completion of a utility the current editing position normally remains as it was when the utility
was started. Sometimes the utility will need to identify a line in the fold structure (e.g. where a syntax error
was found, or the occurrence of a string being searched for). It does this by 'locating' the line; that is, moving
the current editor position to that line, opening folds as necessary to reach it, and positioning the screen so

36 4 The editing environment

that the line appears in the middle of the screen (or as near it as possible). The utility then finishes, and
control is returned to the user.

If the utility is of the type which is 'applied' to a fold (Le. the fold line on which it is placed determines the
portion of the fold structure upon which it operates) then, before locating, the fold is entered. This means
that the user may easily return to the position before the location was done by using IEXIT FOLDI.

4.6.7 Running executable programs

The current executable program may be run by using the IRUN EXEI function key.

In a similar manner to utilities, an executable program may be given a portion of the fold structure on which
to operate by means of cursor positioning before the program is run. Unlike utilities, executable programs
do not make use of the message line or parameter folds, but can access the whole screen for interactive
communication with the user. The screen is cleared when the program starts, and the fold structure is
repainted when the program terminates.

The preparation of user programs for running within the TDS is covered in the next two chapters of this manual.
A program suitable for loading and running within the TDS must be an occam process, the environment to
which is supplied by a number of channels. The environment allows the program to read from the keyboard,
write to the screen, and read and write data within the fold structure. The channels available, and the protocols
which should be used on these channels, are introduced in chapter 6.

An executable program may either terminate naturally, or may set the transputer's error flag to denote a run
time exception, or may deadlock. The way to proceed in either of the latter cases is described in chapter 9
on the debugger.

4.7 File handling utilities

One of the two standard utility sets provided with the system is the file handling package. This is a set of
utilities for the manipulation of TDS files. The help information for the set appears as follows:

1 [ATTACH/DETACH] - attaches or detaches a fi1e
2 [COpy ATTACH] - copies fi1es and attaches copy to current fo1d
3 [COMPACT LIBRARIES]- copies fi1es out, compacting 1Lbraries
4 [RENAME FILE] - rename a fi1ed fo1d
7 [COpy IN] - copy fi1es from another directory
8 [COpy OOT] - copy fi1es to another directory
9 [READ HOST] - read host file into fo1d structure
o [WRITE HOST] - write TDS fi1e to host fi1e

All of these utilities are introduced below and discussed in more detail in chapter 13.

The utilities fall into four groups:

• Attaching to and detaching from existing TDS format files.

• Changing file characteristics, such as DOS file names.

• Copying TDS format files between directories (including between devices) from within the TDS.

• Reading and writing host operating system format files to and from TDS format files from within the
TDS.

Attaching and detaching files

Occasionally it is necessary to take an existing file, which could be in a separate directory or on a separate
drive, and make it part of a larger document. This operation is done by 'attaching' a file to a fold.

4.7 File handling utilities 37

To attach a file an empty fold should be made and the header edited to include the name of a file which already
exists. The name should include the extension, which must be one of the standard extensions supported by
the system (see appendix F). The attributes of the fold will be set to reflect the attributes associated with that
extension. When the utility IATIACH/DETACHI is applied to this empty fold, the file specified is then 'attached'
to that fold so that future opens of the fold will cause the file to be read in at that position.

Correspondingly, files can be detached from the fold structure using IATIACH/DETACHI. Applying the utility to a
filed fold converts it into an empty fold, losing the reference to the file. The detached file is not deleted from
the directory.

When the file is attached using the IATIACH/DETACHI utility a reference is set up to the file. This means that a
file could be attached to more than one place in more than one document. A consequence of this is that any
editing of the file in one document will be reflected in all other places to which the file is attached. It may be
more appropriate to make a copy of the file before it is attached; this maintains the integrity of any existing
document structures. The utility IcoPY ATIACHI should be used when a copy of the file is to be made. The
IcoPY ATTACHI function will cause the file whose name is given on the fold line, along with any nested files it
may contain, to be copied, and the resulting file attached to the fold structure. Unique names are generated
for any new files created, as described previously.

Changing file characteristics

The name of a file associated with a filed fold can be changed. The name is altered by placing the cursor
on the filed fold and editing the fold header so that the contiguous sequence of characters after the current
filename in quotes up to the first space or dot is the required new name of the file. Then the IRENAME FILEI
utility key should be pressed. The underlying file will be renamed and the local filename reference updated
to the new name.

In order to prevent files from being altered or deleted they can be write protected. To do this suspend the
TDS, using ISUSPEND TDSI, and use the appropriate host operating system command. Protection is particularly
useful for files that are multiply attached, such as the standard utility sets. However, care should be taken,
if write-protecting ordinary TDS text files, not subsequently to attempt to edit the files while they are write
protected, as the TDS will be unable to write back the changes.

Copying TDS files

TDS files in other directories, including any nested files, can be copied into a filed fold in the current 'directory
by using IcoPY 1Nl. The full name of the source file must be given, including the directory name and drive if
necessary. The name of the new file will be the same as that of the source file unless there is a name clash
with an existing file in the local directory, in which case the TDS will modify the name to make it unique. In
a similar manner the contents of a filed fold, including all nested files, can be copied to another directory by
using IcoPY OUT].

The ICOMPACT L1BRARIESI utility also copies files between directories, but is only intended for use with library
files. Library compaction is discussed in chapter 5.

Reading and writing host files

Although the TDS is a self-contained development environment, there are times when it can be useful to
read and write host operating system files. IREAD HOSTI copies a host operating system file into a filed fold,
converting the format of the file to TDS format. The reverse process is performed by IWRITE HOSTI which
copies a filed fold, including all nested files, to a host operating system file, converting from TDS format to
the host operating system file format, stripping off the folded structure.

38

4.8 Searching and replacing

4 The editing environment

ISEARCHI and IREPLACEI are two of the utilities in the compiler utility set. They are used in conjunction; ISEARCHI
searches for a text string specified by the user and IREPLACEI replaces one text string with another that has
been specified by the user. They are introduced here, but described in more detail in chapter 13.

The string to be searched for, and the string to replace it, are contained in a parameter fold (mentioned in
section 4.6.5). If the parameter fold does not exist when ISEARCHI and IREPLACEI are invoked, a new one is
created and is popped up onto the screen so that the strings can be entered. Thereafter the strings remain in
the parameter fold and are used whenever these utilities are invoked. The values of the strings are maintained
in the toolkit fold between sessions. To change the strings it is necessary to enter the toolkit fold and edit the
parameters.

According to a boolean parameter the search takes place in a forward or backward direction from the current
cursor position and continues to the end (or start) of the current view or until a match has been found,
whichever comes first. All nested folds are searched. When a match has been found the utility may be
invoked again to continue searching.

It is also possible to set a parameter that causes repeated replacements of all matching strings to the end
(or start) of the current view.

4.9 Listing programs

There are three ways to list programs and other folded text: the ILlSTI utility in the compiler utilities, the
IWRITE HOSTI utility in the filer utilities, and the Iister program which can be found in the Too1s fold in the
toolkit.

The ILlSTI utility has one particularly valuable feature which enables open fold structures with some nested
folds left closed to be sent to a printer or file. This may be used for producing documentation fragments
including program text with selectively opened folds.

The IWRITE HOSTI utility may be used for producing hard copy listings of programs. This can be used to write
a program as a DOS file, which can be printed out later, or printed immediately if DOS supports a predefined
filename for the printer or by using ISUSPENO losl to temporarily leave the TDS, print the file and then return
to the TDS.

Both these utilities are fully described in chapter 13

4.9.1 The lister and unlister programs

Alternative listing facilities are given by the Iister and unlister programs, which are contained in the Too1s
fold. This pair of programs facilitates the conversion of occam source from TDS files to and from DOS text
files. The Iister gives its user the opportunity to select lines from the source file on a variety of criteria and so
is useful for many program documentation and maintenance tasks.

The lister is an EXE which may be applied to any fold containing occam source. If the fold is a bundle of
folds then the input is the first fold in the bundle and the user has the option of storing the output as a new
last fold in the bundle or to a DOS file (which may be a printer). Otherwise the whole fold is processed and
the output is always to a DOS file. If the input contains nested filed folds any of these which contain occam
source are included in the output in a single large file, including sufficient information to enable the unlister
to reproduce the original folded file structure.

The following options are presented to the user in an interactive menu:

• Output to screen and/or printer, DOS file, or filed fold .

• Option to exclude folds of one or more of these kinds: comment folds, foldsets, folds whose comment
includes the words 'NO LIST'.

4.10 Transferring TDS files between computers 39

• Representation of fold creases as braces ({ {{ and }}}), occam comments or as commented
braces.

• Option to include full analysis of fold attributes.

• Selection of: all lines or file names only, file headers, fold headers, procedure and function headers,
procedure and function calls, lines containing strings matching a search string provided (including
alternative strings, wild cards, etc.).

The unlister can take any DOS text file (or occam fold) and convert it into a folded file structure. If the input
includes creases and other fold information in the form generated by the lister then the fold structure will be
regenerated. Alternatively a large 'flat' file may be split into chunks small enough to be handled by the TDS
fold manager by creating folds each containing a number of text lines requested by the user.

The source code for the programs described above is provided with the system, in the directory
\TDS3\TOOLS\SRC. As the use of these programs is straightforward, they are not documented in the
reference section of this manual.

4.10 Transferring TDS files between computers

TDS files may be transferred between host computers using the operating system facilities available on the
host. In addition the TDS provides a program to send or receive a folded file structure on a transputer link.
This is often the most convenient way to transfer files between TDS systems running on different machines
(particularly if the disk formats are incompatible).

The link transfer program can be loaded from the Tools fold in the toolkit. The cursor should then be placed
on the fold to be sent, or on an empty fold to receive the data. When the program is run it will prompt for the
link number to be used, and whether data is to be sent or received. If it is the sending program it also offers
the option of sending text folds only, text and descriptor folds (see chapter 5 for a definition of descriptor
folds), or all folds.

Once a sending program has been run on one TDS, and a receiving program on another TDS, with the
appropriate links connected, the programs will make contact and start to transfer the data. The link transfer
can be interrupted using the ISET ABORT FLAGI key, on either the sending TDS or the receiving TDS.

The source code for the link transfer program is provided with the system, in the directory
\TDS3\TOOLS\SRC. As with the lister program above, it is not documented in the reference section of this
manual.

5 Compiling and linking occam
programs

5.1 Introduction

Throughout this chapter and the rest of the manual frequent use is made of occam concepts and example
occam program text. Any reader not familiar with occam at this stage should read the occam tutorial to
gain an introduction to the language. It will also be useful for all readers to have a copy of the occam 2
Reference Manual available.

This chapter discusses in some detail how to compile and link occam programs using the Transputer Devel
opment System. Early on, a simple example is introduced, which is compiled, linked and then shown running
within the TDS. Later in the chapter a larger example is introduced and discussed. This example is used to
show how large programs might be structured and developed. The following three chapters make use of the
same example where it is shown:

• Running within the TDS

• Running on a network

• Running as a standalone program

At the end of the chapter there are some technically more detailed sections, describing the implementation
of occam by the compiler, which may be omitted when first reading the manual.

5.2 The compiler utility set

As discussed in chapter 4 the TDS editing environment is not just an editor but a complete development
environment. occam programs can be compiled, linked and run without leaving this environment. To do
this, the compiler utility set must be loaded into the development system. This is one of the standard utility
sets in the toolkit fold and it provides the facilities to compile and link occam programs. It also enables
programs to be configured to run on transputer networks, and loaded onto a target network from the TDS.

The loading of utility sets from the toolkit fold was discussed in chapter 4. Pressing the IAUTOLOADI key loads
the standard utility sets from the autoload fold; since the compiler utility set is normally the last in the fold,
this leaves the compiler utilities as the current set after autoloading is complete.

The utilities in the set are as follows:

1 ~
2 ICOMPILEI

3 IEXTRACTI

4 ILOAD NETWORKI

5 IRECOMPILEI

6 ICOMPILATION INFOI

7 IMAKE FOLDSETI

8~
9 IREPLACEI

o ILlST FOLDI

Syntax check an occam program
Compile an occam program
Link and extract code
Load a compiled program onto network
Recompile a program with old parameters
Display information about the compiled program
Make a 'foldset' suitable for compilation
Search for a string
Replace the string at current cursor postion
List current fold on printer

The ISEARCHI and IREPLACEI utilities were discussed in chapter 4. The other utilities are discussed in this
chapter, except the use of the utilities to prepare a program for a transputer network, which is discussed in
chapter 7.

All of the utilities are described in more detail in chapter 13.

42 Compiling and linking occam programs

5.3 Preparing a program for compilation

5.3.1 Creating a compilation fold

Before an occam program can be compiled two conditions must have been met. Firstly, the fold containing
the source must be filed, and secondly, this source fold must be enclosed by a 'compilation fold', to which
the compiler will be applied. The type of the 'compilation fold' indicates what type of compilation unit the fold
contains. There are five types of compilation unit as described below:

EXE - an 'executable' program designed to run within the TDS. It is an occam process that can access
channels which communicate with the screen, keyboard, fold system and server. Most programs
written to run within the TDS are EXE programs. A full description of EXE programs is given in
chapter 6.

UTIL - a program to be run as a utility set within the TDS. A utility program consists of a process which
has a more complex environment than an EXE. The utility interfaces are currently not available to
normal TDS users.

PROGRAM - a program intended to run on a network of one or more transputers. The PROGRAM contains
configuration information that enables the development system to load the program into a transputer
network. A PROGRAM cannot run within the TDS. Chapter 7 describes PROGRAM creation and
compilation in detail.

SC - a 'Separate Compilation' unit. This is not a complete program in itself and is normally contained within
another compilation unit or library. An SC unit contains one or more occam procedure or function
declarations. Separate compilation is described later in this chapter, in section 5.6.

LIB - a library compilation unit. It contains a number of constant, protocol, procedure and function declara
tions that may be shared between parts of a program or between different programs. Libraries are
described later in this chapter, in section 5.6.

To create a compilation fold, the cursor is placed on the filed fold containing the source of an occam program,
and the IMAKE FOLDSETI utility invoked. This will prompt for a parameter of the form:

VAL make.fo1dset.type IS SC: -- SC I EXE I UTIL I PROGRAM I LIB

The value of the parameter selected by the user determines the type of fold created by the utility. For example,
to make a program to run as an executable program within the TDS, the user selects the value EXE. The
IMAKE FOLDSETI utility creates a compilation fold of the selected type around the source fold. The new fold has
its attributes set to indicate that it is suitable for compilation and the fold header is marked with some text to
indicate the type of compilation unit that is enclosed within the fold.

For example, in order to compile a section of code as a program to be run within the TDS, the following two
folds might be created around it:

{{{ EXE myprog -- compi1ation fo1d
{{{F "prog.tsr" -- fi1ed fo1d

Program text
}}}
}}}

The EXE fold is the compilation fold produced by IMAKE FOLDSETI. The compilation fold, together with the filed
fold or folds inside it, is known as a 'foldset'. A foldset is a compilation fold with one or more subsidiary filed
folds. When a compiler is applied to the compilation fold, it takes the first subsidiary filed fold as the source
text to be compiled, and creates other subsidiary filed folds containing (for example) code produced as a
result of the compilation.

5.4 Using the compiler utilities

5.3.2 Comment folds

43

When developing programs it is often desirable to comment out part of a program so that it is ignored by the
compiler. This can be done by placing the program text in a fold and then applying IMAKE COMMENTI to the
fold. This produces a new fold which encloses the original fold. The header of the new fold contains the
original fold header prefixed by the letters COMMENT.

A comment fold can be removed by applying the IREMOVE FOLDI key to it.

The contents of a comment fold will be ignored by the ICHECKI and ICOMPILEI utilities, but not by ISEARCHI or the
file handling utilities. The lister program described in chapter 4 includes an option to include or omit comment
folds from a listing.

5.4 Using the compiler utilities

Once a program has been placed within a compilation fold, the compilation utilities can be used to compile
the program. This section gives a simple introduction to using the compiler utilities, and provides enough
information to allow the reader to work through the example program in the next section.

The steps to compile an occam program are as follows:

1 Check the syntax of the program.

2 Compile the program, producing some data folds as a result of the compilation.

3 Link the program together with any libraries it uses, creating a self-contained code file.

These are described in more detail below.

5.4.1 Compilation for different transputers

The compiler produces code targetted at a particular transputer type or class. All compilations for a single
processor must be for the same or a compatible transputer type.

Transputer classes

The compiler can produce code that will run on different transputers by taking advantage of commonality in
their instruction sets. Provided that no code is written which compiles into instructions which are not shared
between different processors, the code will run normally.

The commonalities that exist between different processors are as follows:

• All T2 and M2 series 16-bit transputers have compatible instruction sets; this class is called T2.

• T414 and T425 transputers share the same instruction set except for CRC and 2D block move
operations; this class is called TB.

• T425 and T800 transputers share the same set except for floating point operations; this class is
called TC.

• T414, T425, and T800 transputers share the same set except for CRC, 2D block move, and floating
point operations. Programs which use none of these instructions may be compiled for class TA.

• T801 and T805 transputers are instruction compatible with T800 transputers; this class is called T8.

Code compiled for a transputer class must be able to run on any member of that class. If the source code
would compile into transputer code that is not common for all members of the class then an error is reported.

44 Compiling and linking occam programs

For example, code compiled for class TC cannot contain floating point and extended arithmetic because oper
ations on REAL numbers are implemented differently on the two machines. On the T425 the implementation
is in software whereas on the T800 it uses the on-chip floating point processor. Similarly, code compiled for
class TB can contain no CRC or 2D block move operations because the respective transputer instructions
are not implemented on the T414. Code compiled for class TA can contain no floating-point, CRC, or 2D
block move operations. Code compiled for TA cannot call real arithmetic procedures in the compiler libraries.

The restrictions on floating point arithmetic apply only to operations on the variables, or the returning of a
REAL result from a function, because these cause dissimilar instructions to be used. The declaration of
REAL variables and the passing of REAL parameters into procedures or functions is not prohibited. Library
procedures for conversion between REAL values and strings do not use floating point arithmetic.

5.4.2 Mixing code for different transputers

By using transputer classes for compilations it is possible to produce code that may be mixed with code for
other transputer types and classes. It should be noted that this not possible for all compilations, but only
where instruction sets overlap.

The rule for mixing code is as follows:

Code may be called provided it is compiled for a class which is the same or is a superset of the
calling code.

The code that can be run on different processor types is listed below.

Processor Compatible code
T2 series T212
T800 T800, TC, TA
T425 T425, TC, TB,TA
T414 T414, TB, TA
TC TC, TA
TB TB, TA
TA TA

1
Direction of
permitted

calls

When compiling for a transputer class the compiler will report an error if the source is such that it cannot be
compiled for that class. This will often take the form of an undeclared procedure or function from the compiler
libraries.

Wherever possible libraries supplied with the TDS are compiled for T2 and TA and so may be called from
code compiled for any target. If a program uses any of the instructions which are not common to a class of
transputers it will be necessary to target the compilation to a particular transputer type.

5.4 Using the compiler utilities 45

5.4.3 Error modes of compilation

For systems that require maximum security and reliability, the error behaviour is of great concern. occam 2
specifies that run-time errors are to be handled in one of three ways, each suitable for different programs.
The error mode to be used is supplied as a parameter to the occam 2 compiler.

The first mode, called HALT system mode, causes all run-time errors to bring the whole system to a halt
promptly, ensuring that any errant part of the system is prevented from corrupting any other part of the system.
This mode is extremely useful for program debugging and is suitable for any system where an error is to be
handled externally. HALT system mode is the default for the compiler, and you should use this mode when
you may want to use the debugger.

The second mode, called STOP mode, allows more control and containment of errors than HALT mode. This
maps all errant processes into the process STOP, again ensuring that no errant process corrupts any other
part of the system. This has the effect of gradually propagating the STOP process throughout the system.
This makes it possible for parts of the system to detect that another part has failed, for example, by the use
of 'watchdog' timers. It allows multiply-redundant, or gracefully degrading systems, to be constructed.

The third mode, called REDUCED or UNDEFINED mode, is to ignore all run-time errors. This is potentially
dangerous, but there are occasions when it is useful to avoid the run-time overhead of error checking, for
example, where a program has already been proven correct. A second example is where results are being
checked elsewhere.

See also section 5.7.2. If there is doubt as to which mode to use, HALT mode should be chosen.

5.4.4 Mixing code with different error modes

In some circumstances it may be desirable to omit the run time error checking in one part of a program
for example, in a time-critical section of code, while retaining error checks in other parts of a program, for
debugging purposes. The compiler allows the mixing of unchecked code (REDUCED) with code of other
error modes, in a restricted manner.

To prevent accidental mixing of UNDEFINED code, an extra mode has been added, called UNIVERSAL
mode. UNIVERSAL code is the same as REDUCED, but has the property that it may be called from any
other error mode. Code compiled in UNIVERSAL mode can only call code which is also in UNIVERSAL
mode.

Note: UNIVERSAL mode is not intended as a general purpose facility and should be used with great caution,
because it disables the security associated with error checking. It should only be used when error checking
is not required and would be undesirable, such as with time critical code that is already proven.

Although the code produced in UNIVERSAL mode is the same as REDUCED mode it is important to dis
tinguish between them. The behaviour of a system when an error occurs is not necessarily the same for
both modes. This is because UNIVERSAL mode may be mixed with other modes, so an error occurring in
UNIVERSAL code could halt the processor if it is mixed with HALT code. However, for the same code in
REDUCED mode the behaviour at an error is not predictable.

Because the compiler libraries are only available in the HALT, STOP and REDUCED error modes you
cannot use UNIVERSAL mode for any occam which requires the compiler libraries. When you compile
any source in UNIVERSAL mode you should always disable the compiler libraries by setting the parameter
"use. standard.1ibs" to FALSE.

5.4.5 Checking occam programs

The ICHECKI utility can be used to check the syntax of occam programs. When a program is compiled, the
program syntax is checked, so the use of ICHECKI is optional; however, it is often faster to use the checker
to eliminate syntax errors before running the compiler. The checker can be applied to any filed fold, or to a
compilation unit fold.

46 Compiling and linking occam programs

When it is first run, the checker creates a parameter fold and puts it up on the screen for editing. The occam
checker shares the same parameter fold as the occam compiler, but only uses a few of the parameters in
the fold. The compiler parameters are described below.

If an error in the occam source is discovered, a message is displayed, and the editor moves to the line in
the fold containing the error. The located line is placed as near to the centre of the screen as possible and
the cursor is positioned on the located line. The effect is the same as entering the checked fold, followed by
screen moves and IOPEN FOLDI operations to find the correct line. Thus it is possible to return to the fold line
on which the checker was started by typing IEXIT FOLDI.

5.4.6 Compiling occam programs

To compile a compilation unit, the cursor should be placed on the compilation fold and the ICOMPILEI utility
key pressed.

When it is first run, the compiler creates a parameter fold and puts it up on the screen for editing (unless such
a fold already exists in the toolkit fold). The parameters are required to set a number of compiler options,
such as the checks done on the program source, some characteristics of the compiled code, and whether a
debug data fold is produced. See section 5.7 later in this chapter for a full description of these parameters.

A collection of compilation units may be compiled by a single use of the ICOMPILEI utility if they are enclosed
within an outer text fold.

If the compiler detects an error it reports it in the same way as the checker. Compilation is not continued
after an error has been found.

If the compilation succeeds, the compiler creates several new folds within the compilation fold to contain
the results of the compilation (code, debug information and so on). The new folds created as part of the
compilation process are automatically filed. The filenames for these folds are derived from the name of the
source fold's file with the appropriate extensions added.

An example of a compiled foldset is given below:

{{{ se mysc
... F "prog.tsr" mysc
... F "mysc.dcd" code BT8
... F "mysc.dds" descriptor
... F "mysc.cUk" ~ink

... F "mysc.ddb" debug
} } }

The data folds, marked code, descriptor, ~ink and debug, are subsidiary data folds produced by the
compiler. The code fold contains the compiled code for this compilation unit, but does not include the code
for any libraries used. The error mode and compilation target are shown on the fold line. The descriptor
fold contains some information about the compiled code. The contents of the descriptor fold depend upon
the type of compilation unit, but give details of things such as data space size, code size, libraries used etc.
The ~ink fold contains relocation information .. The debug fold contains information to allow the debugger
to relate the state of a stopped program to the original source code.

There is a utility ICOMPILATION INFOI which reads the information in a descriptor fold and displays it as user
readable text. It is possible to move this text into the fold structure so that it may be printed or kept for future
reference.

5.4.7 Linking occam programs

A compiled occam program needs to be linked before it can be run, In the case of an EXE the program is
automatically linked when it has been successfully compiled. The linking process involves including with the
code any library routines that are required. Libraries may be those known about by the compiler, or may be
product libraries or user-written libraries referenced explicitly by the user.

5.5 Compiling a simple example program

An example of a compiled and linked foldset is given below:

{{{ EXE proq
· .. F "proq.tsr" proq
... F "proq.dcd" code HT8
... F "proq.dds" descriptor
... F "proq.d1k" link
· .. F "proq.ddb" debuq
· .. F "proq. cex" CODE EXE myproq time and date of compilation
} } }

47

The linked compilation unit has an extra filed fold created at the end of the foldset, here marked CODE EXE
myproq. This fold, referred to as a 'CODE EXE', contains the linked code in a format suitable for loading
into memory using IGET CODEI. This fold can be left within the foldset, or it can be moved to another part of
the fold structure, and used on its own with IGET CODEI.

The CODE EXE file normally has the same name as the source file, but with the extension . CEX. The only
exception to this is if a previous version of the CODE EXE file has been kept, in which case the file name
will be modified to avoid a clash with the existing file.

An SC compilation unit will be linked when a PROGRAM using it is configured. The CODE SC file so
generated will have the same name as the source file but with the extension . CSC

The IEXTRACT/ utility may be used to link an SC compilation unit which is to be dynamically loaded (see
section 11.3).

5.5 Compiling a simple example program

This section is a tutorial section, giving explicit instructions to compile, link and run a simple example progr.am.
It requires some program text to be entered. The interactive tutorial, described in section 4.3, is an alternative
way of learning how to compile and run a simple program.

It is a good idea to have a keyboard layout with you when you are working through this tutorial. Keyboard
layouts are given in appendix A. Start by running the TDS in the directory \ TDS3 \ TUTOR. In the top level
file EXAMPLES. TOP is a fold called 'Simple example'. Enter this fold, which is empty. Make a new fold (put
the cursor on the bottom line and press ICREATE FOLDI twice) and label it hello. Enter this fold and type in
the following program, adhering strictly to the indentation. The first line of the program should start at the left
hand side of the screen. Indentations are two character spaces.

fUSE streamio
VAL messaqe IS "Hello World !" :
INT key.char :

SEQ
ss.write.strinq (screen, messaqe)
ks.read.char (keyboard, key. char)

Exit the fold hello and file it by placing the cursor on the fold and pressing IFILE/UNFILE FOLDI. The following
message will appear:

Filed OK as hello.tsr

When it is run this program writes the simple message Hello World ! to the screen.

The first line of the program references the general purpose I/O library streamio; see chapter 14 for
more details of this and other libraries. streamio contains the two procedures ss . write. string and
ks . read. char which are used to write to the screen and read from the keyboard.

48 Compiling and linking occam programs

At the start of the program, the constant message is declared, along with an integer variable key. char.

The executable code begins with a SEQ, indicating that the statements following are to be executed sequen
tially. The first statement outputs the HeJ.J.o WorJ.d ! message to the screen handler.

The last statement inputs a value from the keyboard to the variable key. char.The program waits at this
point until the input can proceed; Le. until a key is pressed. This allows the HeJ.J.o WorJ.d ! message to
be read before returning to the TDS.

5.5.1 Getting the compiler utilities

Before the example program can be compiled it is necessary to load the compiler utilities.

Press IAUTOLOADI to load the standard utilities. The IAUTOLOADI function loads the following code items

• The file handling utility set.

• The compiler utility set.

• The debugger.

As it loads each of these a message is displayed on the message line:

Getting text ...

Once all the loading has been done, the message line of the editor displays:

CODE OTIL occam 2 compiJ.er utiJ.ities.

This indicates that the current utility set is the compiler utility set described at the beginning of this chapter.
The utilities are called by pressing the utility function keys. If necessary, use the IHELPI key to find out which
these are.

Once the utilities have been loaded, pressing ICODE INFORMATIONI shows the following on the screen:

1 [CHECK]
2 [COMPILE]
3 [EXTRACT]
4 [LOAD NETWORK]
5 [RECOMPlLE]
6 [COMPILATION INFO]
7 [MARE FOLDSET]
8 [SEARCH]
9 [REPLACE]
o [LIST FOLD]

- check current foJ.d
- compiJ.e current and nested foJ.dsets
- extract code and put into foJ.dset
- export code to transputer network
- use descriptor foJ.d for parameters
- dispJ.ay compiJ.ation information
- make compiJ.ation foJ.d
- search for text string
- repJ.ace found text string
- J.ist current foJ.d .

There will also be other text on the screen relating to memory usage and loaded utilities. The above display
states which utilities are associated with which utility keys. To return to normal editing, press IEXIT FOLDI.

5.5.2 Making an EXE fold

Before the hello program can be compiled an EXE fold must be created around heJ.J.o. tsr. Place the
cursor on the fold heJ.J.o . tsr and press IMAKE FOLDSETI. The parameter fold for the utility IMAKE FOLDSETI
is then displayed. It contains the following text:

VAL make.foJ.dset.type IS SC : -- SC I EXE I UTIL I PROGRAM I LIB

The text shows the current value of the parameter, which is SC, and on the right the five possible values that
the parameter can take. As the current value of the parameter is SC, the fold needs to be edited. The editing

5.5 Compiling a simple example program 49

can be carried out using ISELECT PARAMETERI. Press ISELECT PARAMETERI once; this moves the cursor to the
first occurrence of SC. Press it again; the second press replaces se with the next parameter in the list on
the right, which is BXE, the required one. Now leave the parameter fold by pressing IEXIT FOLDI. An EXE fold,
labelled EXE he110 is created around he110 . tsr.

5.5.3 Checking and compiling the example program

The program can now be checked and compiled. Place the cursor on the fold EXE he110 and press ICHECKI;
the parameter fold for the checker and compiler is displayed, as shown below:

-- REDUCED I STOP I HALTVAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL

error.checkinq
a1ias.checkinq
usaqe.checkinq
separate. vector. space
create.debuqqinq.info
ranqe.checkinq
compi1e.a11
force.pop.up
use.standard.1ibs
tarqet.processor
code.inserts
rinq.be11
tds2.sty1e.exe

IS HALT
IS TRUE
IS TRUE
IS TRUE
IS TRUE
IS TRUE
IS FALSE :
IS FALSE :
IS TRUE :
IS TB :
IS NONE :
IS NEVER:
IS FALSE :

T21T41TBIT4251TAITBITC
-- NONE I RESTRICTED I ALL
-- NEVER I ERROR I ALWAYS

None of the parameters need to be changed to compile this example. The parameters are described in
section 5.7.

Press IEXIT FOLDI; the parameter fold will disappear and the checker will run. If it finds no errors it will respond
with the message:

Checked (TB - HALT) EXE he110 OK

If an error is found, the checker indicates it by displaying an error message and placing the cursor on the
line in error. If you have mis-typed part of the program, this will happen. Correct the error and then press
IEXIT FOLDI: this will return you to the compilation fold so that the checker can be run again.

If no errors are found the program can be compiled. Place the cursor on EXE he110 and press~.
The compiler creates new folds within EXE he110. tsr to hold the compiled code, and then links the
program. When compilation and linking is complete, the compiler responds with the message:

Linked EXE he110 OK

5.5.4 Running the example program

The program is now ready to be run within the TDS. Place the cursor on EXE he110 and press IGET CODEI
to place the code in the user program buffer. The TDS responds with:

Got code ok

Pressing IRUN EXEI runs the program, which displays the message:

Be110 Wor1d !

and then waits for a key to be pressed before returning to the TDS.

50 Compiling and linking occam programs

5.5.5 Compilation information

It is sometimes necessary to check how much code has been generated by a compilation, and how much
workspace (data space) will be required to run the code. This information is stored in the descriptor fold, and
can be displayed using the utility ICOMPILATION INFOI utility.

This can be used on the example that has just been compiled and run. With the cursor on the line EXE
he1J.o press the key ICOMPILATION INFOI. The following information is displayed:

• Target processor (e.g. T4 for IMS T414 or TA for any 32-bit transputer).

• occam compatibility (Le. which versions of the compiler this compilation is compatible with).

• Compiler version (Le. which particular version of the compiler was used for this compilation).

• Compiler options used in this compilation.

• Whether the program contains any nested SC (separate compilation) units or alien language pro-
grams (programs written in a language other than occam).

• Code size of this compilation unit.

• Entry points (just one in the case of an EXE) and channel usage information.

• Data space required to run the program. Workspace Slots are words holding scalar data and Vector
Slots are words holding vector or array data.

• Library usage (Le. names and version numbers of libraries which may be needed by the program).

• Total linked code size.

To view all of the information provided it is necessary to scroll the screen. Once you have finished viewing
this, press IEXIT FOLDI to return to the normal editing environment.

This concludes the tutorial section.

5.6 Separate compilation and libraries

. The TDS supplies two mechanisms to support the development of large programs:

• Separate compilation (SC) units

• Libraries

These are introduced in this section, along with a description of how to compile and link programs made up
of more than one compilation unit. Section 5.8.1 describes how to make user-defined libraries.

5.6.1 Separate compilation

Separate compilation allows a program to be split up into parts which may be compiled individually. Using sep
arately compilable units reduces the time taken to recompile a complete occam program because only those
units that have been changed since the last compilation need to be recompiled. The separate compilation
system is useful for 'top-down' decomposition of programs into major sequential and parallel sections.

A program compilation unit, such as an EXE, can contain one or more SC compilation units. Separate
compilation units may be nested, in a hierarchical fashion, so a large program may consist of a nested
structure of separately compilable units.

5.6 Separate compilation and libraries 51

An SC unit consists of one or more occam procedure or function declarations. A procedure or function
can call any other procedure or function defined before it in the SC unit. The SC may also contain constant
and protocol declarations, and library usage directives, before the procedures; these may be used by the
procedures, but are not visible outside the SC. The text of an SC must be self-contained; it must not refer to
anything declared outside of it (except declarations imported by library directives).

To make a section of source text into an SC unit put it into a filed fold and apply the IMAKE FOLDSETI utility with
its parameter set to SC. This creates an SC foldset around the filed fold. The results of compiling this SC will
be stored in the foldset, as for an EXE.

For example, a program might have the form:

({{ source
SC PROCs Pl and p2
SC PROC P3

CBAN OF INT cl, c2, c3:
PAR

Pl(cl, c2)
P2(c2, c3)
P3(c3, cl)

} }}

In the example above, the folds marked with the letters SC are compilation folds including separately compiled
procedures. The first fold contains -the procedures Pl and P2; the second contains the procedure P3.

5.6.2 Libraries

Libraries provide a means of sharing common declarations and code between separately compiled parts of a
program, and between different programs. They are used by the compiler for pre-compiled procedures such
as those which implement some of the extended types in occam.

There are two types of libraries in normal use:

• 'Header libraries' containing declarations of constants and PROTOCOLs.

• 'Code libraries' containing collections of compiled procedures and functions.

In fact there is no real distinction between these - libraries may be made containing both header text and
code - but in practice it is useful to separate them out.

A header library comprises a sequence of text folds, containing constant and PROTOCOL definitions.

A code library comprises a sequence of SC folds, each containing compiled procedures and/or functions.
The SC folds in the library must not include any nested SCs.

A combined library includes both text folds containing constant and PROTOCOL definitions, and SC folds.

Libraries may not contain text lines or blank lines, but may contain COMMENT folds.

A library is used within a compilation unit by means of a IUSE directive. When the unit is compiled any
constant and PROTOCOL definitions in the library come into scope as do any appropriate procedures or
functions declared ~n SCs within the library. When the program is linked the linker will include the code for
those SCs containing procedures which have been used by the program.

There are a variety of libraries provided with the TDS to perform, for example, many of the mathematical
functions and the inpuVoutput facilities that a programmer might require.

An example of the use of these libraries has been shown in the example in the previous section of this
chapter; the directive IUSE streamio in the program caused the compiler to use the library streamio
when compiling the program.

52 Compiling and linking occam programs

The code libraries provided with the TDS are described in detail in chapter 14 of the manual. The headers
for use with these libraries are listed in appendix D.

5.6.3 Compiling and linking large programs

Compiling a program which includes separate compilation units and library references is very straightforward.
Separate compilation units in the program can be compiled individually by applying the compiler to them.
Alternatively, the compiler can be applied to the whole program, and it will search within the program for any
separate compilation units requiring compilation. These nested compilation units are compiled, in a bottom-up
order, and then the top level of the program is compiled; finally the whole program is linked together. This
can all be done with a single press of the~ utility.

For an SC unit the descriptor fold contains all the information about the procedures in that unit (names, formal
parameters, workspace and code size etc.) needed to compile calls to the procedures.

When the program is linked the code folds for all the separate compilation units in the program are copied into
a linked code file. In addition, code for any libraries used is included in the file. Where libraries contain more
than one compilation unit, only those compilation units containing routines actually required in a program are
linked into the final code. This helps to minimise the size of the linked code.

When using the ICHECKI utility on a program containing nested separate compilation units, it should be noted
that this utility also needs the information in the descriptor fold to check the calls to procedures in an SC.
So when using ICHECKI, all nested compilation units within the text being checked must already have been
compiled.

5.6.4 Changing and recompiling programs

When a change is made to part of a compiled program, it is necessary to recompile the program to create a
new code file reflecting the change. The purpose of the separate compilation system is to split up a program
so that only those parts of the program which have changed need to be recompiled, rather than needing to
recompile the whole program. However, it would be tedious for the user to have to remember which portions
of a program had been edited in an editing session. For this reason, the TDS remembers which compilation
units have been edited since they were last compiled. This ensures that SC folds will always be recompiled
where necessary, and the compiler is able to tell automatically which SC units require compilation.

When editing a program, if a change is made to the source of a compilation unit, then an attribute on its
compilation fold is set to indicate that it is now invalid. As folds are closed, the invalid attribute is propagated up
to any compilation units above it in the fold structure. All of these invalid compilation units will be recompiled
when the compiler is next applied to this program. The actual implementation details of this are described in
the next section.

An SC to be shared between more than one section of code should be placed in a library. Libraries have a
version number associated with them, as described later in section 5.8. When a program is recompiled, the
compiler will ensure that all compilation units have been compiled with the latest versions of the libraries; any
compilation units previously compiled, but with an old version of a library, are automatically recompiled. This
ensures that when the latest version of the library is linked in to a program, all compilation units requiring the
library have been compiled with that version.

The compiler also recompiles any compilation units it finds which are not compiled in a manner compatible
with the current program being compiled.

To summarise, the compilation system within the TDS ensures that when the compiler is applied to a program:

• If a compilation unit has been changed, it is recompiled .

• If a new version of a library has been made, then any parts of the program dependent en the library
are recompiled.

5.7 Compiler parameters 53

• Any units compiled for a different processor type; or with a different error mode (see section 5.7.2)
are recompiled .

• Any units which have been compiled with an old, incompatible, version of the compiler are recompiled.
This is the purpose of the 'compiler compatibility string' stored in a descriptor.

5.6.5 The implementation of change control

The change control of compilation units is implemented using the 'fold type' attribute of a compilation fold.
The type is set to ft. fol.dset when the program is compiled. Following any change to the contents of
the fold, the type is set to ft •voidset when the compilation fold is closed, or when it is next written to the
filing system.

The fold attribute value can be found by using the IFOLD INFOI key. This displays compil.ed fol.d set after
the program has been compiled. Following a change to the contents of the fold, it will display uncompil.ed
fol.d set.

When a compilation unit is compiled, the names and version numbers of any libraries it uses are recorded
in the descriptor. When the compiler next examines the compilation unit to see whether recompilation is
needed, it compares the current version number of each of the libraries against the values recorded in the
descriptor. If any of these differ, the compilation unit is recompiled.

5.7 Compiler parameters

This section explains the meaning of the compiler parameters and how they are used during compilation.
The parameters are found in a fold labelled Occam 2 compil.ation parameters which is created in
the toolkit fold when the first compilation is attempted. The values set up by the user will remain unchanged
for future use unless explicitly edited.

5.7.1 The parameter fold

The compiler makes use of the following parameters:

error. checking Default is HALT. This selects the type of error checking. The options are REDUCED,
STOP, HALT and UNIVERSAL. See section 5.7.2.

al.ias. checking Default is TRUE. When this parameter is TRUE, the compiler does full alias checking.
See section 5.7.3.

usage. checking Default is TRUE. When this parameter and the al.ias. checking parameter are
TRUE, the compiler does full usage checking. See section 5.7.3.

separate. vector. space Default is TRUE. When this parameter is TRUE, the compiler creates separate
workspaces for scalars and vectors within the programs being compiled. See section 5.7.4.

create. debugging. info Default is TRUE. This allows the debugger to be used with a program when
it is run. See chapter 9 for information on the debugger.

range. checking Default is TRUE. Setting this to FALSE causes the compiler to omit certain checking
code (e.g. array bounds checking). It has no effect when the error. checking parameter is set
to REDUCED, as no checks at all will be inserted in REDUCED mode. See section 5.7.2.

compil.e . al.l. Default is FALSE. This parameter forces the compiler to recompile all nested compilation
units encountered. This is useful if it is necessary to ensure that a program has been compiled
uniformly: for example, to ensure that a whole program or set of programs is compiled with the latest
version of the compiler, or if changing a program compiled with vector space off to be compiled with
vector space on.

54 Compiling and linking occam programs

force. pop. up Default is FALSE. This parameter forces the parameter fold to be displayed whenever the
checker or compiler is invoked. This is useful if it is necessary for the user to check and alter the
compiler parameters each time the compiler is run.

use. standard .l.ibs Default is TRUE. This parameter causes the compiler to use its standard arithmetic
libraries within this compilation. For normal compilation the value should be TRUE. Setting it to
FALSE will prevent the compiler from compiling any programs with extended arithmetic, and the
compiler will not recognise certain implicit library procedures. Must be FALSE when compiling
general purpose tools for TA transputer class.

tarqet . processor Default is TB. This parameter is used to set the target processor when compiling
for transputer networks. The following target processors and processor classes are supported:

TB the IMS T800, IMS T801 and IMS T805 transputers.

T425 the IMS T425 transputer

T4 the IMS T414 transputer.

T2 the IMS T212, IMS M212, IMS T222 and IMS T225 transputers.

TA all 32-bit transputers.

TB all 32··bit transputers without hardware floating point.

TC all 32-bit transputers with 2D block move and CRC instructions.

code. inserts This parameter determines whether assembly-code insertions are allowed within the pro
gram. Values are NONE, RESTRICTED or ALL. The default is NONE. See chapter 10 for a descrip
tion of code insertion.

rinq .bel.l. Default is NEVER. Determines whether the bell is sounded on completion of compilation. The
options are ALWAYS, ERROR or NEVER.

tds2. sty1e. exe Default is FALSE. Forces the compiler to restrict the parameters of an EXE or UTIL
to those provided in the obsolete TDS2.

5.7.2 Error modes and range checking

The occam compiler in the TDS implements all four error modes; the mode is specified by the
error. checkinq parameter to the compiler. All SCs for a single processor must be compiled in the same
error mode except that any code can call code compiled with UNIVERSAL error checking. Where a library
reference is used, the SCs of the appropriate error mode will be selected from the library.

On the IMS T414, HALT mode does not work for processes running at high priority, as the HaltOnErrorflag
is cleared when going to high priority.

In some circumstances it may be desirable to omit the runtime error checking in one part of a program
(e.g. in a time-critical section of code), while retaining error checks in other parts of a program, for debugging
purposes. The ranqe. checkinq parameter to the compiler has been included to control these checks.
Normally when compiling in HALT or STOP mode, the range. checking parameter should be set to TRUE.
Setting it to FALSE allows part of a program to be compiled with certain error checking code omitted. This
should be done with great caution; it loses the security associated with error checking. It should only be done
if the program is believed to be correct, and there are good reasons for wanting that part of the program to
omit error checks.

5.7.3 Alias and usage checking

The compiler implements the alias and usage checking rules described in the occam 2 reference manual.
Alias checking prevents an element from being referred to by more than one name within a section of code.
Usage checking ensures that channels are used correctly for unidirectional point-to-point communication, and

5.7 Compiler parameters

that variables are not altered while being shared between parallel processes. For a further discussion of the
motivation behind these rules, see INMOS technical note 32 'Security aspects of occam 2'.

The checking of the alias and usage rules during a compilation is controlled by the alias. check and
usage. check parameters to the compiler. It is possible to turn off alias and usage checking by setting
these parameters to FALSE. It is also possible to carry out alias checking without usage checking. However,
it is not possible to do usage checking without alias checking, as the usage checker relies on the absence of
aliasing in the program.

If a program is compiled with alias. checking on, the compiler may insert extra code for checking array
accesses which cannot be checked until runtime. However, alias checking can also improve the quality of
code produced, since the compiler may be able to make some extra optimisations if it knows that names in
the program are not aliased.

The usage checker detects illegal usage of variables and channels, for example, assigning to the same
variable in parallel. The checker performs most of its checks correctly, but with certain limitations. Normally,
if the checker is unable to implement a check exactly, it will perform a stricter check. For example, if an
array element is assigned to, and its subscript cannot be evaluated at compile time, then the usage checker
will assume that all elements of the array are assigned to. No illegal programs, other than certain programs
which use subscripted arrays with replicated PARs will be accepted by the checker. If a correct program is
rejected because the usage checker is imposing too strict a rule, it is possible to switch off the checker. A
more detailed discussion of the implementation of usage checking is given in section 5.11.3.

5.7.4 Using the separate vector space

The compiler has a parameter called separate. vector. space. With this option set to TRUE the vectors
(arrays) declared within a compilation unit are allocated into a separate 'vector space' area of memory, rather
than into workspace. This decreases the amount of stack required, which has two benefits: firstly, the offsets
of variables are smaller (therefore access to them is faster), and secondly, the total amount of stack used
is smaller, allowing better use to be made of on-chip RAM. If this parameter is FALSE, the implementation
places vectors in the workspace.

When a program is run within the TDS or loaded onto a transputer in a network, memory is allocated in the
following order:

• workspace

• code

• separate vector space

This allows the workspace (and possibly some of the code) to be given priority usage of the on-chip RAM.
Generally, the best performance will be obtained with the separate vector space switched on.

The default allocation of a vector can be overridden by an allocation immediately after the declaration of an
array. This allocation has one of the forms:

PLACE name IN VECSPACE :

or

PLACE name IN WORKSPACE :

For example, in a program which is normally using the separate vector space, it may be advantageous to put
a crucial buffer into internal RAM. The program would be compiled with separate. vector. space set
to TRUE, but would include something like:

[buff.size]BYTE crucial.buffer :
PLACE crucial.buffer IN WORKSPACE

56 Compiling and linking occam programs

For a program where it is required to put all of the data into the workspace, apart from one large array, the
program would be compiled with separate vector space off, but with a PLACE IN VECSPACE allocation
after the declaration of the large array.

Within a program it is possible to mix code compiled with separate vector space on and code compiled with
separate vector space off. The parts of the program which have been compiled with separate vector space
on will be given use of the vector space.

5.8 Creating and using libraries

Libraries were introduced in section 5.6. This section describes how to create a library, and gives more
information on the use of libraries. In particular, it describes how to use 'library logical names' which map
library names onto file names in the directory.

Normally, when developing a library, the code will be developed and tested as a set of separately compiled
procedures within a test program. The library system has been designed to make it easy to move a set of
procedures developed in a test program into a library which can be shared between programs. The work
involves collecting together the set of compiled procedures, putting them into a particular kind of fold, and
storing them in a file from which they can be accessed. These steps are described in more detail in section
5.8.1.

A library created as above can be shared between parts of a program or between different programs in a
single directory. This may be sufficient for a single user. However, if a number of users are working together
on a project, or if a user is working on a number of different projects, it will be necessary to share libraries by
placing them in a directory shared between users. To make a set of libraries to be shared between directories,
an operation called 'library compaction' is required. This collects all the data in the library into a single file.
Normally this does not include the source code, but it can include a copy of the source code if required (e.g.
for debugging). Library compaction is useful for producing a staged 'release' of a library while development
work continues on the sources. In addition, it improves the speed of access to a library as only one file has
to be read. Library compaction is described in section 5.8.6.

5.8.1 Creating libraries

This section describes how to create a library, as a series of steps. It assumes that a number of separately
compiled procedures have been developed and tested, and it is now required to make these into a library.
These separately compiled procedures should not include nested SCs; this is a restriction of the library
system.

Step 1

Create an empty fold by pressing the ICREATE FOLDI key twice. Type something on the fold line, if required.
For example:

myJ.ib

Step 2

Apply the IMAKE FOLDSETI utility to the empty fold, with the parameter set to LIB. The utility will pop up
its parameter fold; cycle through the available values using IsELECT PARAMETERI until LIB is selected, and
then press IEXIT FOLDI. This creates a library fold (marked LIB) containing a single fold marked as Library
version. The library version fold is used to ensure that when a library changes, any programs subsequently
linked which refer to that library are first recompiled; see section 5.9.

The fold will now look like:

LIB myJ.ib

5.8 Creating and using libraries

with the contents:

{{{ LIB myJ.ib
Library version date of validation

}}}

Step 3

57

A sequence of text folds containing constant and PROTOCOL definitions, and compiled SC folds may be
placed after the Library version fold. For example:

{{{ LIB myJ.ib
Library version date of validation
text foJ.d containinq constant definitions
text foJ.d containinq PROTOCOL definitions
SC PROC pi
SC PROC p2

}}}

The text folds may not be filed (but may contain filed folds). The SC folds in a library must appear directly
under the version fold; they may not be contained in another fold. There should be no text or blank lines in
the fold.

The se folds in a library need not all be compiled for the same target processor type or in the same error
mode; they may be 'mixed'. When using the library, the compiler will select the procedures compiled with
parameters suitable for the program using the library. -

Step 4

Now the library fold should be closed and the lQQME!b§ utility applied to the closed library fold. If the library
contains mixed SCs, use IRECOMPILEI. All compilation units in the library will be inspected, and, if necessary,
recompiled. Then the library is made valid; the fold attribute will be set to compiJ.ed foJ.d set. An error
message will occur at this stage if any of the items in the fold is not correct. The syntax of constant and
PROTOCOL definitions is not checked.

Step 5

To be able to use the library it is necessary to place the library within another, filed, fold. The host filename
of that fold is used to identify the library. For example, make a fold which when open looks like this:

{{{F "myJ.ib.tst" myJ.ib
LIB myJ.ib

} } }

Then the library may be used, by quoting its filename, or by using a logical name, as described in the next
section.

5.8.2 Using libraries

A library is normally referenced from a compilation unit by a 'logical library name'. A reference to a library in
a fUSE directive takes the form:

fUSE logical. name

The logical name is associated with a real host file name by means of a line in a Library J.oqicaJ.
names fold used by the compilation utilities. This fold is stored in the toolkit fold. A standard version of
this is supplied with the TDS system, containing the logical names for the compiler libraries and the libraries
supplied with the TDS. This can be added to for user-defined libraries. Libraries that are never used may be
deleted.

58 Compiling and linking occam programs

The form of the lines in the logical names fold is described in detail in section 5.8.5. For now it is only
necessary to know that there is one line in the fold for each library. The information on the line includes
the directory in which the library file is placed, the error modes and transputer target types supported in the
library, and the logical name by which the library will be referenced.

As an alternative to using a logical name, a directive of the form:

fUSE "host.file.name"

may be placed in a compilation unit which wishes to use the library. Using logical names is recommended as
it makes it easier to move libraries around the directory structure, or to replace one version of a library with
another one.

If the directory in which the library is filed is \l.ibdir, then to use the library created in the previous section,
either of the following lines may be used:

fUSE "\l.ibdir\myl.i.b.tsr"

fUSE myl.ib

For the second directive to be valid, the programmer must include a line in the logical names fold as follows:

{\l.i.bdir\} "myl.i.b,. tsr" BT8 myl.i.b

The first item on the line is the directory, surrounded by curly braces. The second item is the name of the
file containing the library, surrounded by double quotes. The third item BT8, implies that the library contains
code compiled in HALT mode for T8 transputers. The final item is the logical name for the library.

5.8.3 Using protocols with separate compilation

A PROTOCOL may be declared and used within a compilation unit according to the rules of the language.
Where a protocol is to be used across separate compilation boundaries, the protocol should always be placed
in a library; the library should be referenced in any SC where the protocol is needed, and in any enclosing
compilation unit. For example, suppose we have a protocol p defined in a library my.protocol.s. We
might then use it as follows:

PROC main ()
fUSE my.protocol.s

{{{ SC do.it
{{{F "doit.tsr" PROC do.it
fUSE my.protocol.s
PROC do.it(CHAN OF p channel.)

} } }
} } }
CHAN OF P actual..channel.
PAR

do.it(actual..channel.)

Since the protocol name p occurs in the parameter list of the separately compiled procedure do. it, the
enclosing compilation unit must include a fUSE statement, above the declaration of do . it, to introduce the
name p.

5.8 Creating and using libraries 59

5.8.4 How the library system works

It may be useful to know something of how the library system works, in order to resolve problems that may
occur when using libraries.

A library contains program text and compiled compilation units. When the compiler encounters a usage of a
library it reads in the text and the descriptors of the compilation units, as if they had appeared in the program
text. However, if the compiler finds an error in the library header text it cannot report the line in error. So all
declarations in a library should be checked before being placed in the library.

The compiler selects compilation units from a library on the basis of their error mode and transputer target
type. Only those units with the same error mode and target type, or a transputer class including the target
type, as the current compilation will be selected. This may lead to unexpected effects; for example, if a library
only contains procedures compiled in HALT mode, and the current program is being compiled in STOP mode,
then the use of the library will not bring any of the procedures into scope and error messages will merely
report the use of an undeclared name.

Having made use of a library to compile a compilation unit, the compiler records in the descriptor which
libraries have been used. When the program is linked, the linker reads these libraries, and extracts from
them any code which is required to link into the program. The SCa within a library may themselves refer
to other libraries, in which case these are also read. If an SC in a library contains one or more procedures
which have been used in the program, then the code for that SC is linked in. The Iinker only includes code
from those SCs containing procedures which have been actually been used in the program. So the only
extra code linked into the program, beyond the code actually needed, is the code of unused procedures in
library SC folds containing at least one used procedure.

The list of libraries used by a compilation unit can be found by using ICOMPILATION INFOI. Note that the list
also includes libraries used by nested SC units within the compilation unit being viewed. The list shows all
the libraries used (by means of #USE directives) within this compilation unit; if none of the procedures in a
library are actually called, then the code for the library will not be included.

Some restrictions of the library system which the user needs to be be aware of are as follows:

• SCs within libraries may not contain nested SCs .

• A procedure or function name must be unique within a program; the linker will complain if, when
linking a system, it finds two library entries of the same name.

The latter condition is flagged at link time by a message of the form:

Symbo1 name mu1tip1y defined in 1ibrary

It is up to the user to identify the libraries involved. This message can also appear unexpectedly when using
host file names instead of logical names to identify libraries. This can usually be traced to two uses of the
same library, using different strings to identify the file (e.g. upper case in one, and lower case in another).

5.8.5 The library logical names fold

The Library 1ogica1 names fo1d should be provided in the tool kit fold. It defines the mapping from
library file names to library logical names. It includes the mappings for the libraries used by the compiler
(such as those to support long arithmetic), and the mappings for the library files provided with the TDS.

The library logical names fold is a text fold. It may contain nested text folds. Any comment folds, occam
comments on text lines in the fold, or blank lines in the fold, are ignored. Each non-comment text line in the
fold either introduces a directory path name, or describes a particular library, and is known as a 'library text
line'.

Each library text line corresponds to one library file and describes for that library the error mode and target
processor types supported in the library, and the logical name by which the library is to be known. The same
logical name may appear in a number of library text lines. When compiling a program, the compiler reads

60 Compiling and linking occam programs

a logical name from a #USE statement in the program and uses the logical names fold to find the library
file corresponding to the particular combination of the logical name with the target processor and error mode
values being used in the compilation.

A library text line consists of a sequence of items. The items are:

• a directory.name in braces (e.g. {c: \tds2\compl.ib\}) - this may appear on a separate line,

• a file.name in quotes (e.g. "userio. tsr"),

• one or more keywords defining error mode and target processor,

• a logical.name.

A logical.name may be any contiguous sequence of characters. Filenames or logical names may not contain
quotes or spaces. Directory names may not contain braces or spaces.

The keywords defining stopping mode and target in the present implementation" are: HT2 HT4 HTS HT8
HTA HTB HTC ST2 ST4 STS ST8 STA STB STC RT2 RT4 RTS RT8 RTA RTB RTC XT2
XT4 XTS XT8 XTA XTB and XTC. The first character is an upper case letter defining the error mode
(HALT, STOP, REDUCED or X for UNDEFINED) and the other characters define the target processor (5 for
the IMS T425) or processor class.

When a group of libraries in one directory is being specified, it is not necessary to repeat the directory name
on every line. The first library text line for that directory must include the directory name. The following lines
need not include the directory name; the directory name from the line above is used. A directory name may
appear on a line of its own, in which case it applies to the following lines, up to the next line including a
directory name. When opening a file the directory name text is simply concatenated with the filename text;
note that for this reason the directory name must include the closing backslash (\).

A typical library text line is thus:

{c:\userl.ibs\}"mylib.tsr" HTA RTA STA XTA BT2 RT2 ST2 XT2 mylib

indicating that the library file c: \userlibs\myl.ib. tsr contains library code for all modes and targets
and may be referenced by the logical name mylib.

The complete library logical names fold is read by the compiler when it is started; it is checked for validity
and to ensure that any particular combination of logical name, error mode and target processor only maps
onto one possible filename.

5.8.6 Library compaction

Library compaction is required whenever a library is to be used in a directory other than the one it was
developed in. The compiler is unable to read filed folds nested within a file in another directory, so to make
a library available from another directory, all the information in the library has to be placed into a single file.
When doing this, it is normal practice to remove the source text from the compacted copy of the library, as it
is not needed to use the library, and including it increases the size of the library and the time taken to read
it. The source text can be included in the compacted version if required; the main reason for this is to allow
the source-level debugger to be able to display the source of a library in which an error occurs.

A utility to compact libraries, COMPACT LIBRARIES, is provided in the file handling utility set. It behaves in a
similar manner to the COpy OUT utility in the same set, but compacts any library files encountered. on the
way. It can thus be used to compact a group of libraries. It is suggested that users adopt the practice
of compacting libraries to a different directory from that containing the source, to avoid file name clashes
between the original and the compacted versions.

ICOMPACT L1BRARIESI copies the contents of a filed fold, including nested files, to another directory. Any valid
library folds encountered are compacted, that is, all information in the library is wri~ten into a single file. A
parameter Del.eteSource allows source to be removed from the library as it is compacted. The name of
a file being written is normally the same as that of the file being read. A parameter OverwriteFiles
determines whether existing files are overwritten.

5.9 Changing and recompiling libraries 61

To compact a single library place the cursor on the filed fold containing the library fold, and run the utility
ICOMPACT L1BRARIESI. Supply as DestinationFi1eName the intended name of the compacted library. This
must include a directory name (which may be the current directory).

To compact a group of libraries, make a fold around the libraries, place the cursor on the fold, and run
ICOMPACT L1BRARIESI. Supply as DestinationFi1eName a file name to contain the compacted libraries.
This may be a . TOP file to allow the files in the other directory to be accessed using the TDS. The destination
file name should normally include a directory name; this should be a different directory than the current one,
as compacting a set of libraries to the current directory will either overwrite existing library files, or will produce
unpredictable file names (depending on the value of the OverwriteFi1es parameter).

5.9 Changing and recompiling libraries

A previous section (section 5.6) described how the compiler behaves when recompiling a program after a
new version of a library has been made. This section discusses the topic in more detail, and describes how
to ensure that libraries are recompiled correctly.

5.9.1 Change control

When the text of a library fold is edited, its compilation fold is made invalid, just as for other kinds of compilation
unit. The library may not be used again until it has been recompiled.

When all or part of a library is recompiled, its version number is incremented. This is the purpose of the
Library version fold contained within a library. This fold, which is not openable by the editor, contains
a version number for the library, which is incremented every time the library is made valid.

The compiler will refuse to use any libraries which are invalid, and will stop compilation to report an error. If
this happens the user should go to the source of the library and recompile it before attempting compilation
again.

The compiler records, within the descriptor, the version numbers at compile-time of all the libraries used by
a compilation unit. These are checked by the linker against the versions available to it at link time.

The version number of a library can be found by using ICOMPILATION INFOI on the library fold. The version
numbers of libraries used at compilation time can be found for any compilation unit using ICOMPILATION INFOI
on the foldset.

5.9.2 Library dependencies

As discussed in section 5.6, when compiling a program, the TDS will automatically cope with changes in
libraries used by the program. However, there are still some problems of library dependency which may
occur. Suppose that library a is used by a separately compiled procedure p in a program, and that library a
in turn uses library b. If library a has changed, then, when compiling the program, this will be noticed and p
will be recompiled. However, if library b is changed, but library a has not been recompiled, then the program
will compile, but an error will be reported when the whole system is linked together.

Tracking library dependencies of this kind can be aided by a suitable organisation of libraries in a fold structure.
The ICOMPILEI utility can not only be applied to a compilation fold, but in fact can be applied to any source
fold, in which case all compilation units within the fold will be examined, and recompiled if necessary. A
collection of libraries involving compilation dependencies may be placed together in a fold, with the 'lowest
level' libraries earliest in the fold. If one of the low-level libraries changes, then the ICOMPILEI function can be
applied to the collection, to ensure that any dependent libraries are also recompiled.

62 Compiling and linking occam programs

5.9.3 Recompiling mixed libraries

When using the ICOMPILEI function, parameters are supplied at the time of starting up the compiler, and these
parameters apply to all compilation units compiled during that run. For example, the error mode to be used,
and the target transputer type are normally the same for all compilation units in a program. To ensure this
the compiler also recompiles any units it finds which have been compiled with a different error mode or target
type.

This is inconvenient when compiling libraries containing SCs compiled for different targets, or in different error
modes. For this reason the IRECOMPILEI function has been provided. When applied to a previously-compiled
program, IRECOMPILEI does the same job as ICOMPILEI, recompiling compilation units as necessary, but for
each unit compiled it uses the parameters from the descriptor fold left from the last compilation. So when
building a library containing SCs for a range of targets or error modes, the compiler parameters for each SC
unit need only be supplied once, at the time of first compilation, and thereafter the IRECOMPILEI utility can be
used.

The IRECOMPILEI utility can also be used for recompiling transputer network programs which include code for
more than one processor type. It is also useful for other compiler parameters; for example, if one compilation
unit in a system needs to be compiled with usage checking off, while the rest are compiled with usage
checking on.

5.9.4 Compacting recompiled libraries

Since the compilet~an compile all units in any fold it is run on, and the library compacter can compact multiple
libraries, it is possible to recompile a set of libraries and then compact them to another ('release') directory
using two keystrokes. Note that if libraries in this set depend on libraries earlier in the compilation sequence,
then the logical name system should be used as follows:

• Within the building directory, the logical names should refer to the local files, so that the latest
compiled version of the library is picked up.

• Within any other directory from which the libraries are being used, the logical names should refer to
the files in the release directory.

5.10 The pipeline sorter example

This section introduces a more substantial example which serves to show how a larger program might be
structured, in terms of SC units and libraries.

Although introduced in this section, the example is also used in the following three chapters, where it is shown
running:

• within the TDS

• on a transputer network

• as a standalone program

The application used for this example sorts a sequence of characters into alphabetical order. The basic
algorithm, which is discussed in the occam tutorial, uses a number of similar parallel processes. The code
for one of these processes is listed opposite.

Since this example does not use real arithmetic or any other transputer operations implemented by different
instructions on different target processor types all example compilations are done for the TA transputer class
in HALT error mode.

5.10 The pipeline sorter example

PROC e1ement (CBAN OF 1etters input, output)
INT highest, next:
BOOL going, in1ine:
SEQ

going := TRUE
WHILE going

input ? CASE
terminate

going := FALSE
1etter; highest

SEQ
in1ine : = TRUE
WHILE in1ine

input ? CASE
1etter; next

IF
next > highest

SEQ
output ! 1etter; highest
highest := next

TRUE
output ! 1etter; next

end. of. 1etters
SEQ

in1ine := FALSE
output ! 1etter; highest

output ! end.of.1etters
output ! terminate

63

The occam tutorial example has been adapted to have a WHILE loop instead of a replicated sequence in
order to sort variable length strings of characters. An outer WHILE loop separates global program termination
from terminating the end of character sequences. Other differences involve using a variant protocol for
communicating letters between sorting elements. The PROTOCOL is as follows:

PROTOCOL 1etters
CASE

1etter; INT
end.of.1etters
terminate

The example is contained in the directory \TDS3\TUTOR, in the top level file EXAMPLES. TOP, and in the
fold marked Pipe1ine sorter examp1e.

It uses three user-defined libraries:

"header. tsr" contains all the constants and protocol definitions for procedure declarations to come.

"prob1em. t sr" contains the three separately compiled procedures that make up the body of the
application itself.

"monitor. t sr" encloses a procedure used to interface between the application program and the TDS.

The code in these libraries has been put into libraries to facilitate the development of a group of related
programs. For anyone version of the example a simpler program would result by incorporating this code
in-line in a single source file, optionally using one or more separate compilation units.

64 Compiling and linking occam programs

The three libraries are contained in separate folds in a fold called Libraries. Entering this fold shows the
three user defined libraries as filed folds:

{ { { Libraries

... F "header.tsr" header

... F "probl.em.tsr" probl.em

... F "monitor.tsr" monitor

}}}

In order to allow these libraries to be used, the Library l.ogical. names fol.d in the toolkit fold
contains a fold setting up logical names for these libraries. This appears as follows:

{{{ pipel.ine sorter
{\tds3\tutor\}
"header.tsr" BTA header
"probl.em.tsr" BTA probl.em
"monitor. tar" BTA monitor
} } }

The following subsections look at the contents of these folds and their structures.

5.10.1 The 'header.tsr' library fold

The header. tsr filed fold contains constants and protocols used in the rest of this example. The most
important parts of this library are the protocol definitions for string and l.etter.

{{{F "header.tsrn header
{{{ LIB

Library version date of validation
{{{ protocol.s
PROTOCOL string IS INT:: []BYTE:

PROTOCOL l.etters
CASE

l.etter; INT
end. of. l.etters
terminate

} } }

} } }
} } }

program constants

The string protocol is used for communications between the monitor interface and the application program.
As these programs are running in parallel with each other they will be referred to as parallel processes.

The application is made up of many parallel el.ement processes, all of which communicate using the
l.etters protocol. The l.etters protocol is a variant protocol. This is the method by which differing types
of data may be communicated using the same occam channel. With a variant protocol every communication
is preceded by a tag to identify the type of the data to follow. These tag names are defined by the programmer.
When the tag name itself conveys the desired message no further communication is required. The application
reads a stream of letters followed by an end. of .l.etters tag. This is followed by either another stream
of letters or a terminate tag.

The program constants are selected values from those availabfe for interfacing with the TDS.

5.10 The pipeline sorter example

5.10.2 The 'problem.tsr' library fold

65

There are two procedures called inputter and outputter, which have been put together into an SC
fold and then placed inside a library fold.

{{{F "prob1em.tsr" prob1em
LIB

}}}

The fold LIB shows the following two folds:

{{{ LIB
Library version date of validation
SC app1ication PROCs, inputter, e1ement and outputter }}}

The contents of the SC f o1d are:

{{{ SC app1ication PROCs, inputter, e1ement and outputter
... F "app1.tsr" app1ication PROCs, inputter, e1ement and outputter
· .. F "app1.dcd" code
· .. F "app1. dds" descriptor
· .. F "app1.ddb" debug
}}}

The first of these folds contain the PROCs:

{{{F "app1.tsr" app1ication PROCs, inputter, e1ement and outputter
IUSE header

PROC inputter (CHAN OF string input, CHAN OF 1etters output)
PROC e1ement (CHAN OF 1etters input, output)
PROC outputter(CHAN OF 1etters input, CHAN OF string output)

}}}

The operation of inputter is to input a string and then supply it as a sequence of 1etters to a pipeline
of e1ement processes. The outputter procedure reads the resultant stream of letters and packs the letters
back into a string for communication onwards. The string communication is far more efficient for link
communication as the link can communicate all the data before attempting to gain more processing time.

The design of these three procedures is such that they should all be instanced as parallel processes, com
municating with one another using occam channels.

5.10.3 The 'monitor.tsr' library fold

The final library involved in this example is one that contains the interface with the TDS. This is a procedure
called monitor that supplies the values of keystrokes on the host keyboard to the application while in parallel
conveying data and result outputs to the host screen.

This procedure is also contained in a library fold:

{{{ LIB
Library version date of validation
se monitor.tsr

} } }

66 Compiling and linking occam programs

The SC fold contains the filed fold monsrce. tsr, which contains the screen and keyboard handler.

{{{F "monsrce.tsr" monsrce
lOSE header
lOSE strmhdr
lOSE streamio

PROC monitor (CBAN OF KS keyboard,
CBAN OF SS screen,
CBAN OF string app.in, app.out,
VAL BOOL using. subsystem)

PROC keyboard.hand1er
PROC screen.hand1er

CHAN OF INT echo:
PAR

keyboard.hand1er (keyboard, echo, app.in)
screen.hand1er (app.out, echo, screen)'

} } }

The procedure monitor converts the keyboard and screen I/O from the TDS into simple strings of bytes for
the application. By using this monitor one can edit text strings in advance of sending them to the application.
This means that the application program itself need not concern itself with erroneous strings, multiple carriage
returns or case sensitivity. All these functions can be filtered out by the keyboard handler. The keystrokes
made at the keyboard are sent down the channel echo. The screen. hand1er can distinguish between
keys typed by the user and strings supplied by the application.

The use of the screen handler process enables it to be the only parallel process that needs to communicate
using the TDS protocol. This makes the application more portable. If it becomes necessary to mount the
application in a different system environment then it is only the monitor that needs to be changed.

The keyboard handler

PROC keyboard. handler (CHAN OF KS in,
CHAN OF INT out,
CHAN OF string data)

variab1es
SEQ

going := TRUE
1enqth := 0
WHILE going

SEQ
in ? char
CASE char

stopch
te~inate monitor and app1ication if appropriate

return
pass string to app1ication if non zero in 1enqth

ft.de1.ch1
user has typed the backspace key

ELSE
buffer char, a11 1etters map to 10wer case

This is a good opportunity to note how folds may be used to show the structure of the occam text. As can
be seen the keyboard handler procedure is a CASE construct repeated many times within a WHILE.

Termination of parallel programs is the duty of the programmer. The termin~tion of the monitor process is
achieved by the user entering the stopch at the keyboard. The keyboard handler must then pass this

5.11 The implementation of occam 67

character to the screen handler so that it will also terminate. This is done because an occam program can
only terminate when all of its constituent parallel processes have terminated and in the monitor process the
keyboard and screen handlers are running in parallel. This termination request will normally be passed on to
the application process as well.

The screen handler

The screen handler is contained in a separate fold:

{{{ PROC screen.hand1er
PROC screen.hand1er (CHAN OF string data,

CHAN OF :INT in,
CHAN OF SS out)

constants, procedures and variab1es
SEQ

initia1ise
body
finish

} } }

The main part of the screen handler is contained in the fold body:

{{{ body
WH:ILE going.in OR «NOT using.subsystem) AND going.data)

SEQ
c10ck ? waketime
waketime := waketime PLUS one.hundredth.of.a.second
ALT

going.in , in ? char
print keyboard character on screen

going. data , data? 1ength::string
print data from app1ication on screen

monitoring , c10ck ? AFTER waketime
if monitoring is TRUE, po11 subsystem error pin

draw.cursor (kb.window)
} } }

The screen handler is repeatedly searching for one of three alternatives. Either keyboard characters are
echoed, a string of data comes from the application or a timeout happens if neither of the other two have
occurred in one hundredth of a second. The timeout is relevant if the monitor is monitoring an application
running on another transputer. This is discussed in more detail in chapter 7, where the monitor will be used
in this way.

This section has shown the structure of the libraries required by the pipeline sorter example. These are used
in chapters 6,7 and 8, where the program is run in the three different environments.

5.11 The implementation of occam

This section describes some details of the implementation of occam by the compiler in the TDS. It can be
omitted in a first reading of the manual.

It discusses three aspects of the implementation:

• Implementation decisions, such as data representation, for occam on the transputer.

• The layout of code and data in memory.

• Some restrictions of the usage checker.

68 Compiling and linking occam programs

5.11.1 The transputer implementation of occam

This section defines the implementation of occam for the transputer, supported by the compiler in the TDS.
It describes the way certain implementation dependent decisions have been made in the compiler.

Data representation

• The size of an INT (word) on an IMS T414, IMS T425, IMS T800, IMS T801 or an IMS T805 is 32
bits.

• The size of an INT (word) on an IMS T212, IMS M212, IMS T222 or IMS T225 is 16 bits.

• Scalar variables are always allocated on a word (INT) boundary and occupy an integral number of
words.

• BOOL and BYTE variables in arrays occupy 8 bits each. A declared array is aligned on a word
boundary, and occupies space rounded up to the next word boundary. Note that an abbreviation of
part of such an array might not begin on a word boundary.

• Protocol tags are represented by 8-bit values. The compiler allocates such values from 0 (BYTE)
upwards in order of declaration.

• A RETYPES specification is invalid unless the alignment and size of the right-hand side is the same
as for the left-hand side. Note especially that an array of BOOL or BYTE variables specified by an
abbreviation (e.g. passed as a parameter) may have any alignment and so can not in general be
retyped.

Channel communication

The strict rules of occam protocol require the two processes involved in a communication to agree
on the lengths of the blocks communicated and use of strict channel protocols will ensure this. It
is also possible to use anarchic protocols (CHAN OF ANY) to avoid these compiler checks. The
behaviour of communications where the sender and receiver have different expectations of the block
length differs on the transputer between hard channel (transputer links) and soft (internal) channels.
On hard channels each byte is acknowledged individually and so it is only necessary for the total
number of bytes received to match the number sent. On soft channels each block is an acknowledged
unit of communication and the size actually communicated will be that required by the second of the
two processes to become ready. In occam the lengths of blocks are determined by the types of
the expressions sent and variables used as destinations. Users of anarchic protocols need to be
aware of these differences if a program is adapted from hard to soft channels or vice-versa. Anarchic
protocols should be avoided whenever possible.

An input from the event channel may be of any type. An indeterminate value will be received.

Hardware dependencies and configuration

• The number of priorities supported by the transputer is 2, so a PRI PAR may have two component
processes. Nested PRI PARs are invalid; the compiler checks this within a procedure, but does not
check across procedure boundaries. A runtime check is done to compensate for this; if the program
attempts a PRI PAR while at high priority, the error flag is set. Future releases of the compiler may
check for nested PRI PARs properly.

• The low priority clock increments at a rate of 15625 ticks per second, or one tick = 64 microseconds.

• The high priority clock increments at a rate of 1 000000 ticks per second, or one tick = 1 microsecond.

• The numbers used as PLACE. addresses are word offsets from the bottom of address space (see
chapter 11).

• The syntax of the PROCESSOR statement is extended so that one of the keywords T8, T4, T425,
T2, T414, T800 or T212 must follow the processor number (see chapter 7).

5.11 The implementation of occam 69

• On the transputer, TIMERs cannot be PLACEd.

Language extensions accepted by the TDS compiler

• Statements beginning 'USE are library references (as described in section 5.8) and introduce dec
larations from a library at the point in the source code where they appear.

• PLACE name IN VECSPACE and PLACE name IN WORKSPACE. These were described earlier
in section 5.7.4.

• The keyword GUY introduces a section of transputer assembly code (see chapter 11).

• For each transputer target type there is a set of predefined procedures and functions which may be
used without declaration.

• Statements beginning 'COMMENT or 'OPTION are ignored.

See appendix C for a complete list of reserved keywords which the compiler will not allow programs to
redeclare.

The compiler's use of folds

• The compiler reads the text contained within the source fold of a compilation unit being compiled.

• The heading (comment) on a fold line is not passed to the compiler.

• The contents of a comment fold (see section 5.3.2) are not passed to the compiler.

Any further differences between the language defined in the occam 2 Reference Manual and the language
accepted by the compiler are described in the Delivery Manual accompanying the TDS release. That manual
also describes any other restrictions imposed by the implementation.

5.11.2 Memory allocation by the compiler

Code

The compiler generates code so that any nested procedures are placed at lower addresses (Le. nearer
MOSTNEG INT on a transputer) than the code for the enclosing procedure. Nested procedures are placed
at increasingly higher addresses in the order in which their definitions are completed. If a unit contains a
nested SC then the code for this SC is loaded at a lower address. If a unit contains more than one nested
SC then the code for the last textually declared SC is loaded at the lowest address. Libraries are linked in at
a higher address than the code within the program, except for the compiler's real arithmetic handling library,
which (if used) is linked in at the low end of the code.The code for the whole system occupies a contiguous
section of memory.

Workspace

Workspace is allocated from higher to lower address (Le. the workspace for a called procedure is nearer
MOSTNEG INT than the workspace for the caller). In a PAR or PRI PAR construct the last textually defined
process is allocated the lowest addressed workspace. In a replicated PAR construct the instance with the
highest replication count is allocated the lowest workspace address.

When the separate. vector. space option is enabled, arrays (apart from those explicitly placed in the
workspace) are allocated in a separate data space. The allocation is done in a similar way to the allocation
of workspace, except that in vector space the data space for a called procedure is at a higher address than
the data space of its caller.

When a program is run within the TDS or loaded onto a transputer in a network, memory is allocated in the
following order, with the workspace nearest MOSTNEG INT.

• workspace

70

• code

• separate vector space

Compiling and linking occam programs

This allows the workspace (and possibly some of the code, starting with the real arithmetic handling library)
to be given priority usage of the on-chip RAM.

The variables within a single process (or procedure) are allocated so that the textually first variable is given
the highest address in the current workspace.

From within a called procedure the parameters appear immediately above the local variables. When an
unsized vector is declared as a formal procedure parameter (e.g. [] INT) an extra VAL INT parameter is
also allocated to store the size of the array passed as the actual parameter. This size is in the units of the
array, not in bytes (unless it is a byte array). One extra parameter is supplied for each dimension of the array
unsized in the call, in the order in which they appear in the declaration. See section 11 .3.1.

If a procedure requires separate vector space, it is supplied by the calling procedure. A pointer to the vector
space supplied is given as an additional parameter after all the actual parameters of the call.

A
: Separate vector space

array 2 . (optional)
array 1

Libraries

Main procedure code

Nested procedures
Proc.2
Proc.1
SC1
SC2

I

I

Y
Nested SCs

Real arithmetic libraries
(optional)

variable 1
variable 2

variable 1
variable 2

I
I

~
Workspace

~a!~f1!e!eis_fQr_cill.led procedure
variable 1 (called procedure)
variable 2

t---------------t-.--.--.--...a....-------

"'--'- ~MOSTNEG INT

Figure 5.1 Memory' allocation

5.11 The implementation of occam

5.11.3 Implementation of usage checking

This section describes some restrictions in the implementation of usage checking.

71

Usage rules

The usage checker is attempting to check the following rules of occam 2:

• No variable assigned to, or input to, in any component of a parallel may be used in any other
component.

• No channel may be used for input in more than one component process of a parallel. No channel
may be used for output in more than one component of a parallel.

Checking of non-array elements

Checking of variables and channels which are not elements of arrays is performed correctly.

The usage checker insists that a channel parameter or free channel of a procedure is not used for both input
and output.

Checking of arrays of variables and chann~ls

When an array of variables or channels is used in a program the usage checker, where possible, treats each
element of the array as a separate variable or channel. This makes it possible, for example, to assign to the
first and second elements of an array in parallel.

For the usage checker to operate in this way, it must be possible for the compiler to evaluate all possible
subscript values when an array is used. The compiler is capable of evaluating expressions consisting entirely
of constant values and operators (but not function calls). Where a replicator index is used in an expression
the compiler can evaluate the expression for each possible value of the index provided that the replicator's
base and count can be evaluated. However, there are certain problems with parallel replicators which are
described later.

Where an array subscript contains variables, a function call or the index of a replicator where the compiler
cannot evaluate the base or the count, then the usage checker will assume that all possible subscripts of
the array may be used. This may cause the usage checker to give an error message where there is no real
problem. For example, consider the following program fragment:

x := 1
PAR

a[O] := 1
a[x] := 2

The usage checker will report the assignment to a [xl as a usage error. However, the fragment could be
changed to:

VAL x IS 1:
PAR

a[O] := 1
a[x] := 2

Here the checker would accept it because x can be evaluated at compile time.

72 Compiling and linking occam programs

-- c free in p

The checker handles segments of arrays similarly to simple subscripts. Where the base and count of a
segment can be evaluated by the checker, the checker behaves as if each segment has been used individually.
Where the base or count cannot be evaluated by the checker, the checker behaves as if the whole array has
been used. For example, the checker will accept

PAR
[a FROM 4 FOR 4] := x
a[8] := 2
[a FROM 9 FOR 3] := y

without generating an error.

Arrays as procedure parameters

Any variable array which is the parameter of a procedure is treated as a single entity. That is, if any element
of the array is referenced, the checker treats the whole array as being referenced. Similarly, if any variable
array, or element of a variable array is used free in a procedure then the checker treats it as if every element
were used. For example, the usage checker will generate an error on the following program

PROC p ([] INT a)
a[l] .- 2

PAR
P (a)
a[O] := 2

because it considers every element of ato have been used when p (a) occurred.

Similarly, where one element of an array of channels has been used for input within a procedure, the checker
treats the array as if all elements had been used for input, and, where one element has been used for output
within a procedure, the checker treats the array as if all elements had been used for output. For example,
the usage checker will generate an error on the following program

PROC p ()
c [1] ! 2

PAR
P ()
c [0] ! 1

because it considers an output to have been performed on every element of c when p () occurred.

Abbreviating variables and channels

The usage checker treats an element which is abbreviated in an element abbreviation as if it had been
assigned to, whether or not it is actually updated. If this causes the checker to reject an apparently correct
program the program should be altered to use a VAL abbreviation. For example, the following program will
cause a usage error

PAR
a IS b
x .- a
y .- b

because the first component of the PAR is assumed to assign to b. This could be changed to:

PAR
VAL a IS b :
x .- a
y := b

5.11 The implementation of occam 73

Where a channel is used which is an abbreviation of a channel array element, the checker behaves as if the
whole of the channel array had been used unless the element is an array element with a single, constant
subscript, a constant segment of an array (Le. with constant base and count) or a constant segment with a
single, constant subscript. For example:

PAR
c IS a[l] [2]
c ! 1
a[O] [1] ! 2

is rejected by the usage checker, as it considers the whele of the array a to have been used for output when
c! 1 occurred since a [1] [2] contains two subscripts.

However,

PAR
c.s1ice IS a[l] :
c IS c.s1ice[2]
c ! 1

a[O] [1] ! 2

is accepted, since each abbreviation has just one, constant subscript.

Problems with replicators

The usage checker has the following problems in its handling of replicators:

Parallel accesses to an array inside a replicator loop may be incorrectly checked against each other
and flagged as errors. For example, in

SEQ i = 0 FOR 10
PAR

a[i] := 1
a[i + 1] := 2

the checker will flag the seond assignment as an error even though this program does not break
the usage rules. (The reason for this is that the array elements which will be assigned to by the
first assignment during the execution of the SEQ replicator will overlap those assigned to by the
second assignment). The only way to avoid this problem in the current compiler is to switch off
usage checking.

2 Replicated PAR loops are not checked properly.

The checker permits any usage of an array element within a replicated PAR provided the replicator
index occurs within the subscript expression.

The following two programs are examples of incorrect programs accepted by the checker:

PAR i = 0 FOR 10
a[i - i] := 1

PAR i = 0 FOR 4
SEQ

a[i] := 1
a[i + 1] := 1

6 Running programs within the TDS
Chapters 4 and 5 have described how to load code into the TDS, and how to create, compile and run a simple
program. This chapter reviews the steps in running a program, and then describes the interfaces available to
user programs. These interfaces are presented over channels connecting the running program to the TDS.
This chapter introduces these channels, their protocols, and a number of procedures from the inpUt/output
libraries supporting communications on these channels.

This chapter concludes by showing the pipeline sorter (discussed in the previous chapter) adapted to run in
the TDS, and some simple examples using the inpUt/output procedures.

6.1 Loading and running an executable program

A user program is contained in an EXE compilation fold. Once this has been compiled and linked, the
compilation fold includes a fold, called a CODE EXE fold, containing binary code suitable for loading and
running by the system. This fold can ~e moved from the compilation fold and used directly for loading.

To load a program, the cursor should be placed on a compiled and linked EXE fold, or on a CODE EXE
fold removed from such a compilation fold. The IGET CODEI key should then be pressed, and the code will be
loaded ready for execution.

Once it has been loaded, an EXE user program may be run by pressing the IRUN EXEI key. The program
remains in memory until it is cleared using the ICLEAR EXEI or ICLEAR ALLI key.

A program will either run to completion, fail to terminate (by deadlocking or livelocking), or set the transputer
error flag as a result of a runtime error. A program may be interrupted by means of the TDS interrupt key
('control-break' on the IBM PC).

If a program sets the error flag the server will detect this and terminate with an appropriate message.

If the server is interrupted from the keyboard it may also be terminated.

In either of these situations neither the user program nor the TDS are able to proceed.

The user may then restart the TDS, or may have a command file which does this automatically.

Before the TDS is rebooted the user may be given the option of preserving the state of the workspace of the
EXE in a core dump file. The TDS is then restarted and the Debugger program may be run (see chapter 9)
to locate the cause of the error, or to examine the interrupted program.

6.2 The interface for user programs

EXE programs have the form of an occam process. For example:

{ {{ EXE myproq
{{{F "myproq.tsr" myproq

Dec1arations
SEQ

Proqram
} }}
} }}

An EXE is called by the TDS as if it was an occam procedure with a number of channel parameters
connecting it to other components of the TDS. The channel parameters are used for communication between
the EXE and the processes of the TDS which provide access to the folded data structure, the host terminal
and the host filing system. The names of these channels are pre-declared by the compiler, and do not have
to be explicitly declared by the programmer.

76 6 Running programs within the TDS

The parameters implicitly provided by the compiler to an EXE are as follows:

Type

CHAN OF ANY

CHAN OF ANY

[max.fi1es]CHAN OF ANY
[max.fi1es]CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF ANY
CHAN OF SP
CHAN OF SP
[] INT

The value of max . fi1es is 4.

Name

keyboard

screen

from.user.fi1er
to.user.fi1er
from.fo1d.manager
to.fo1d.manager
from.fi1er
to.fi1er
from.kerne1
to.kerne1
from.isv
to.isv
freespace

Comments

Keyboard channel supplying ASCII
values and TDS keys.
Screen channel expecting tt tags and
values.
Array of channels from the user filer.
Array of channels to the user filer.
INMOS internal use only.
INMOS internal use only.
Channel from filer for DOS file access.
Channel to filer for DOS file access.
Used to test ISET ABORT FLAG/.

Used to test ISET ABORT FLAGI.

Channel from iserver.
Channel to iserver.
Remaining free memory within the TDS.

The keyboard and screen parameters passed to an executable procedure by the TDS are channels to
and from the terminal. By using these channels a program is able to communicate data to and from these
devices. The user filer channels provide access to files which are part of the folded data structure visible
through the editor. The. isv channels provide access to the host filing system and other services by way of
iserver. The protocol used on •isv channels is declared in the library strmhdr, for which an implicit
fUSE is supplied when an EXE is compiled.

When an EXE program runs it may communicate with the TDS on the channels listed above. Communication
using these channels must obey a set of protocols set out in chapter 16 (in sections 16.6 and 16.7). Some
channels have been declared as CHAN OF ANY, rather than with proper occam protocols, to maintain
compatibility with previous releases of the TDS and to allow existing programs to continue to run unchanged.
Normally, users can make use of procedures from the 1/0 libraries to handle communications on these
channels, and so should not need to use the protocols directly. However, if writing programs to use the
channel protocols directly, it is possible to create an occam PROTOCOL description matching the protocol
on the channel (see section 6.3.2 for an example of this). The channel declared CHAN OF ANY may then be
passed as an actual parameter to a procedure with a formal parameter declared with an occam PROTOCOL.

In order to help programmers to use the channels a number of 1/0 libraries are provided. By calling procedures
from these libraries, it is possible to write programs which perform input and output in a way that is familiar
to most programmers using other high level programming languages. Procedures are also provided for
conversions between text strings and the numeric types of occam. The 1/0 libraries are discussed in full in
chapter 14.

According to the occam communications model, one end of a channel may not be shared between processes
running in parallel. This has implications for 1/0 in user programs. For example, only one concurrent process
in a system may access the screen channel. If it is necessary for more than one process to output to the
screen, then the programmer must build in explicit multiplexing processes. Some support is provided in the
1/0 libraries for multiplexing communications on the system interface channels.

Users of INMOS occam toolset products will notice that the last three parameters of an EXE match those of
a typical stand-alone occam program supported by iserver. By restricting channel usage to the server
channels it is possible to write EXE programs which are trivially portable to the occam toolsets, both at
source code level and as bootable programs.

6.3 The channel parameters and their protocols

6.3 The channel parameters and their protocols

77

When a program is run within the TDS, it is run in parallel with, and connected to, certain components of the
TDS. These are:

• The 'terminal handler' process, connected via the channels screen and keyboard

• The 'user filer' process, connected by four pairs of from. user. fil.er and to. user. fil.er
channels.

• The 'fold manager' process, connected via the channels from. fol.d.manager
and to. fol.d.manager.

• The 'filer' process, connected via the channels from. fil.er and to. fil.er.

• The 'kernel' process, connected via the channels from. kernel. and to. kernel..

These processes within the TDS run in parallel with the EXE and communicate both with the EXE and with
the TDS server running on the host computer. When communicating with the server, the TDS multiplexes
these channels, and the explicit iserver channels, onto the pair of channels supported by the INMOS link
connection.

6.3.1 The explicit iserver channels

The channels from. isv and to. isv provide an interface between the EXE and the iserver program
running on the host. All communications are buffered within the TDS, and the following commands are
intercepted by the TDS: GetKey, Pol/Key, CommandLine and Exit, (see chapter 16). In programs intended to
be supported by a server independently of the TDS and whose requests for service are channelled through
a single process it is desirable to use these channels both for communications with the host terminal's
keyboard and screen and with the host filing system. The filing system interface resembles that provided
in most conventional sequential operating systems and can support an arbitrary number of simultaneously
active files.

The protocol used on these channels is called SP and is defined in appendix D. This protocol is common to
all implementations of the INMOS server iserver.

6.3.2 The keyboard and screen

The keyboard channel produces a sequence of integer values corresponding to keys pressed at the termi
nal. Values are normally either ASCII values for simple keys, or special values for TDS function keys. These
values are discussed in more detail in section 16.6. User programs will normally use the input procedures
from the library streamio, introduced in section 6.5.

The screen channel accepts a sequence of screen control commands. Each command consists of a BYTE
tag identifying the command, followed by the data for the command. These commands are discussed in more
detail in section 16.6. User programs will normally use the output procedures from the library streamio,
introduced in section 6.5. These procedures specify the screen channel to have the protocol SS whose
declaration is in the library strmhdr, which is automatically referenced when an EXE is compiled.

6.3.3 Communicating with the user filer

The user filer allows a program to read filed folds produced within the TDS, and to write to filed folds so that
the output of the program may be read from within the TDS. The user filer has a view of the filing system
similar to that already introduced for utilities (see section 4.6.4); data may be read and written at the position
in the fold structure given by the current line when IRUN EXEI is pressed.

For example, the cursor may be on a filed fold, in which case the user program may read that file, or write
to it (if it is empty). Alternatively, the cursor may be on a fold 'bundle' consisting of a fold with a number of

78 6 Running programs within the TDS

filed folds inside it. As a specific example, the folJowing might be the view on opening up a fold bundle after
running a user program that reads two data files, and outputs two data fil-es.

{{{ f01d bund1e
... F "ifl.tsr" input fi1e 1
... F "if2.tsr" input fi1e 2
... F "ofl.tsr" output fi1e 1
... F "of2.tsr" output fi1e 2
} } }

Communication with the user filer by a user program has two main stages. Firstly the program issues one or
more user filer commands to identify the filed fold to be read or written. Folds are identified by their number
in the fold bundle. Secondly, once a filed fold has been opened, the program enters a stage where it reads
or writes a data stream (possibly including folds) by communicating with the user filer.

The user filer commands, and the data stream communications are described in detail in section 16.7. There
is also a library ufi1er to support user filer communications. However, for most purposes, the most
convenient way of using the user filer facilities are to input data as if from a keyboard, and output data
as if to a screen, and use interface processes from the library interf to convert the data into user filer
communications. These are introduced later in this chapter, in section 6.5.

6.3.4 The fold manager

The fold manager channels, from. f01d. manager and to. f01d. manager, communicate with the com
ponent of the TDS which stores the folded document being edited using the TDS. The protocols on these
channels are not documented, and the channels should not be used by user programs.

6.3.5 Communicating with the filer

The channels to. fi1er and from. fi1er and the associated msdos library are provided for compatibility
with earlier versions of the TDS only. They are supported by protocol conversion code within the TDS which
maps the obsolete . tkf commands on to appropriate communications with iserver using SP protocol.

New programs requiring access to host files and other services should use the explicit iserver channels.

6.3.6 The kernel channels

The channels to. kerne1 and from. kerne1 have only one useful function to user programs running
within the TDS; they allow a user program to test whether the ISET ABORT FLAGI key has been pressed (see
section 12.1 for a description of this key). The code to do this is as follows:

IUSE krn1hdr
INT resu1t:
SEQ

to.kerne1 ! k.get.abort.state
from.kerne1 ? resu1t
IF

resu1t = 0
not pressed

resu1t <> 0
pressed, so abort

6.4 Memory usage within the TDS

The memory on the host transputer is shared between the TDS itself and any currently loaded EXEs and
UTILs. The code of the TDS and its own workspace occupy a fixed space at the top end of memory. The
remaining memory is divided in a constant proportion between areas known as the fold manager buffer and

6.4 Memory usage within the TDS 79

the user area. The fold manager buffer is used by the TDS to hold filed folds as they are required by the
editor and some other tools. The user area holds the code of all the currently loaded EXEs and UTILs and
is used for the workspace of anyone EXE or UTIL when it is run.

In order to optimise the use of on-chip RAM, which is at the lowest end of transputer address space, the TDS
moves the code of an EXE or UTIL, when it is about to be run, to an address that is as low as possible,
allowing room for its workspace below it. If the program has been compiled with separate vector space, then
this is allocated above the code. Above that, and below any other currently loaded programs, is an area
of memory which the program may address as the array freespace. The size of this array is therefore
dependent on how many other programs are currently loaded. See figure 6.1

End of available

User

RAM"-
TDS vectorspace

TDS code

TDS workspace

Fold Manager
buffer store

loaded code items
& code control data

freespace

area
current code item

vectorspace

current code item
code

current code item
, workspace

reserved

~
towards MOSTPOS INT

MEMSTART

MOSTNEG INT

Figure 6.1 Memory usage within the TDS

The size of available RAM and the size of the Fold Manager buffer store are determined by parameters
supplied to the TDS when it is loaded. See section 16.2

80 6 Running programs within the TDS

Programs may themselves subdivide the freespace array by abbreviation or retyping (taking appropriate
precautions to avoid alignment errors), for example:

VAL freesize IS SIZE freespace:
VAL one.fifth.free IS freesize / 5:
VAL one.quarter.free IS freesize / 4:

-- a110cate a fifth of freespace for integers
[]INT int.store IS

[freespace FROM 0 FOR one. fifth. free] :

-- a110cate a quarter of freespace for bytes
[]BYTE byte. store RETYPES [freespace FROM

one. fifth. free FOR one.quarter.free]:

-- a110cate anything e1se for 10ng rea1s
VAL rest. start IS one.fifth.free + one.quarter.free:
VAL rest. free IS freesize - rest.start:
VAL doub1e.rest IS rest. free /\ #FFFFFFFE: -- round down to

-- mu1tip1e of 2 words
[]REAL64 1ong.rea1.store RETYPES [freespace FROM

rest.start FOR doub1e.rest]:

This proportional allocation technique is used by the occam compilation utilities and so the size and com
plexity of program unit that may be compiled is dependent both on the size of memory available and the other
programs that are loaded at the time it is run.

6.5 The occam input/output procedures

This section describes some I/O procedures which are in libraries provided with the TDS software. These are
procedures which are either called in sequence within the user program to carry out a set of communications
on a channel, or in parallel with part of a user program to convert a stream of communications in one format
to a stream of communications in another format.

When using these procedures the distributed nature of the occam model of communication must be kept
in mind. The I/O procedures require access to a channel accepting the appropriate protocol. It is the
responsibility of the programmer to ensure that channels of the right protocol are supplied. Any multiplexing
of communication streams must be done explicitly within a program. Procedures are available in the libraries
to assist in this.

Some of the I/O procedures are based on lower-level procedures for number conversions and similar opera
tions. These lower-level procedures are an essential part of the language implementation and are described
in the occam 2 reference manual.

The inpUt/output procedures may be used to facilitate the coding of simple sequential inputs and outputs
from and to the external world. The external world is typically a keyboard and a screen and a filing system,
but some of these procedures are applicable to arbitrary devices. The procedures hide many of the detailed
features of the protocols on the channels to the run-time environment. Programmers whose requirements are
less straightforward may use the full facilities of the programming interface described in chapter 16: 'System
Interfaces'.

If a program using the I/O procedures is to be run on a transputer network, it is necessary to supply the
program with a set of channels accepting the appropriate protocols, and routing messages within the network
as required. Some interface procedures are provided in the libraries interf, ssinterf and spinterf
to aid in the multiplexing and routing of these protocols.

When a program has been loaded onto a network from the TDS. an EXE can be run within the TDS to com
municate with the program in the netNork and supply a run-time environment consisting of screen, keyboard
and filing system.

6.5 The occam input/output procedures 81

6.5.1 The Input/output models

Three models of input/output are supported by appropriate sets of procedures.

The first model, the hostio model, is based on the conventional use of a filing system on a host computer
within which multiple files may be opened and then accessed using a stream number to identify them. In this
model the keyboard and screen are considered as special cases of files.

The second model, the streamio model, is a simple model of input and output which is applicable both
to an interactive terminal and to sequential text files, is based on a sequence of lines of text separated by
carriage return characters. The input from the terminal is called a 'key stream'. Output to the terminal is
called a 'screen stream'. This model is also appropriate for communication between the processes of an
occam program, if the information being sent is essentially a sequential text stream.

The third model is the 'folded stream' model, which allows files in the hierarchical fold structure within the
TDS to be read or written.

The three models are not mutually exclusive, and in some programs an appropriate mixture of library proce
dures from the three groups may be used. The TDS itself provides an EXE with channels for all the models.
Programs designed to run eventually without run-time support from the TDS should use hostio calls for
their external 1/0 requirements as these can be supported by any version of the host server, iserver.

6.5.2 The hostio model

This model is supported by procedures in the hostio library group. It assumes the existence of a server
process, usually on a separate host processor, which provides the terminal access and filing system of
a typical operating system, in a way familiar to users of sequential languages such as C or Pascal. All
communications with this server are initiated by the program and use a pair of channels. Each transaction
consists of a message to the server, followed by a reply from the server. These messages use a simple
counted array protocol SP, the details of which are given in section 16.3. Each message to the server
includes an identifying tag defining the action required, and supplementary data depending on the tag.

Each possible command across this interface is supported by a library procedure, and there are also higher
level procedures performing useful sequences of low level transactions.

An important set of procedures is that which provides access to the host filing system. This includes the
concept of a stream identifier returned by the server when a file is opened, and passed back to the server
to identify the file in each subsequent transaction involving that file. Although the protocol does not limit the
number of files that may be accessed simultaneously, the particular implementation of iserver to be used
may do so.

The library includes procedures for buffering and multiplexing SP protocol channels. By use of these it is
possible to use the protocol in many processes in parallel, optionally on many processors. Protocol conversion
interface procedures are also provided so that occam processes using the streamio model can cooperate
with those using the hostio model.

6.5.3 The streamio model

This model is supported by procedures in the libraries streamio, ssinterf, userio and interf.

For historical reasons the procedures in these libraries are coded in two ways. The old way, used in libraries
userio and interf represents keystream protocol as CHAN OF INT and screenstream protocol as
CHAN OF ANY. This is because variant protocols had not been introduced to the occam2 language when
these libraries were first included in the TDS. The new way, used in libraries streamio and ssinterf
uses protocols KS for keystream, and SS for screenstream.

\
Channels declared as CHAN OF ANY may be passed as parameters to procedures whose formals have
explicit protocols, and so should be used if for any reason the old style library procedures are used. The
preferred set of procedures is those using the strict protocols.

82 6 Running programs within the TDS

Communications using the streamio model use a single channel. When characters are being handled
one at a time the keystream protocol is appropriate which handles each character as an integer. The TDS
provides a mechanism whereby the multiple codes generated by keyboards are mapped onto a set of special
integer values known as 'cooked keys'. The details of this mapping are determined, in the TDS itself, by
the contents of the ITERM file (see section 16.3). In the absence of the TDS the user is resposible for
performing any such mapping. When characters are being handled in bigger groups, such as lines of text,
screenstream protocol may be used. This also provides abstractions of commonly available screen control
operations such as cursor control. It therefore allows the body of programs to be written without knowledge
of the sequences required by a particular terminal. In the TDS a mapping defined in the ITERM file may
be used, or an explicit conversion into the sequences required by particular terminals may be performed by
using appropriate interface procedures.

6.5.4 The folded file store model

Procedures for accessing the TDS fold structure are included in the libraries userio, interf, ssinterf
and ufiJ.er.

This model uses a pair of channels, called user filer channels, coded as CHAN OF ANY. Such a pair is
provided to an EXE by the TDS.

The user filer allows an EXE to perform operations on a fold on which the cursor is positioned when it is run.
Access may be made to any fold or immediately embedded sub-fold which may be filed. New sub-folds may
be created and written into.

6.5.5 Interface procedures

Procedures designed to be called as processes in parallel with other processes, for purposes of buffering,
multiplexing and protocol conversion, are collectively known as interface procedures.

The use of these, which may be unfami~iar to users of purely sequential languages, is demonstrated in several
examples supplied with the TDS. See for example section 6.7.2.

6.6 The pipeline sorter example

This section continues with the pipeline sorter example, introduced in section 5.10, and prepares it to run
within the TDS. More complete instructions are provided with the version of this example included in the
software. The three libraries are referenced from inside an EXE fold. The parameters keyboard and
screen of the monitor process are connected to the channels which communicate with the appropriate
components of the TDS.

{{{ EXE harness
{{{F "harness.tsr" harness
#USE header program constants
#USE monitor EXE interface to TDS
#USE probJ.em PROCs used in appJ.ication

CHAN OF string app.in, app.out:
PAR

monitor (keyboard, screen, app.in, app.out, FALSE)
appJ.ication

} } }
} }}

6.7 Example programs using the I/O libraries

The application contained in the fold is:

{{{ app1ication
[string.1ength+l]CHAN OF 1etters pipe:
PAR

inputter (app.in, pipe[O])
PAR i = 0 FOR string.1ength

e1ement (pipe[i], pipe[i+l])
outputter (pipe[string.1ength], app.out)

} }}

83

The program runs the monitor in parallel with the application. The application itself is made up of inputter,
outputter and a replicated instance of the e1ement procedure. See figure 6.2.

System connection through
the INMOS serial link

to the IBM XT/AT

Transputer
Development

System
(TDS)

keyboard

Figure 6.2 Pipeline sorter running in the Transputer Development System

After compiling the program it can be loaded using IGET CODEI and run using RUN EXE. The screen will clear
and the user should enter a string of alphabetic characters followed by RETURN. The string of characters
is sorted into alphabetical order and displayed on the next line. The program is terminated by entering the
character 1

%
'.

In chapter 7 it is shown how to distribute this application onto a network of transputers.

6.7 Example programs using the I/O libraries

This section presents two example programs using the procedures in the I/O libraries. These example
programs are also included with the software, in the directory \ TDS3 \EXAMPLES.

The examples directory contains a number of examples showing how to use the I/O libraries; of these,
examples 2 and 4 are listed here. Example 2 shows an example of using the library streamio to read from
the keyboard and write to the screen. Example 4 shows the same program adapted to take its input from
a filed fold, using the interface procedure ks . keystream. from. fo1d. Other examples in this directory
show further use of the I/O libraries, such as writing to a file, and reading and writing a folded file.

84 6 Running programs within the TDS

6.7.1 Keyboard and screen example

This example shows the building up of a table of real numbers using echoed input, followed by a simple
output tabulation.

{{{ EXE ex2 read a 1ist of rea1 numbers and disp1ay it
{{{F "ex2.tsr" ex2
#USE userva1s
#USE streamio
SEQ

This examp1e uses keyboard and screen,
with echoed input of rea1 numbers.

ss.write.n1(screen)
ss.write.text.1ine(screen,

"Type a sequence of rea1 numbers (optiona11y in hex) *
*terminated by 0.0")

ss.write.n1(screen)

REAL32 x:
INT kchar:
[1000]REAL32 ax:
INT j:
SEQ

x .- 1.0(REAL32)
j .- 0
WHILE (NOTFINITE(x) OR (x<> 0.0(REAL32»)

SEQ
ss.write. char (screen, '>')
ks.read.echo.char (keyboard, screen, kchar)
IF

kchar = (INT'#')
INT hexx RETYPES x:
ks.read.echo.hex.int (keyboard, screen, hexx, kchar)

TRUE
ks.read.echo.rea132 (keyboard, screen, x, kchar)

IF
kchar = ft.number.error

ss.beep (screen)
TRUE

SKIP
ax[j] := x
j := j + 1

ss.write.n1 (screen)
ss.write.text.1ine (screen, "These are the numbers you typed")
ss.write.n1 (screen)
SEQ i = 0 FOR j

SEQ
ss.write.rea132 (screen, ax[i], 10, 10)
ss.write.n1 (screen)

ss.write.strinq(screen, "Type ANY to return to TDS")
INT any:
ks.read.char(keyboard, any)
ss.write.n1 (screen)

} } }
} }}

Note the use of the property of number input procedures which allows the first character to be read before
calling an appropriate input procedure.

Note also the need to perform some action (here ringing the terminal bell) if an invalid number is encountered.

6.7 Example programs using the I/O libraries 85

6.7.2 Example showing input from file

This example, which is an adaptation of the previous example, shows how a program originally written to use
the echoed input procedures may be adapted to take its input from a file in the fold structure and to throw
away the echo.

{{{ EXE ex4 rea1 numbers from a fi1e
{{{F "ex4.tsr" ex4
lOSE userva1s
lOSE streamio
lOSE ssinterf
SEQ

This examp1e is derived from examp1e 2
It takes its input from a fi1e and throws away the echo

[1000]REAL32 ax:
INT j:
INT input.error:
SEQ

ss.write.text.1ine(screen,"Takes from a file a sequence*
* of real numbers terminated by 0.0")

ss.write.nl (screen)

CBAN OF KS filekeys:
CBAN OF KS keyboard IS filekeys:

channel from simulated keyboard
CBAN OF SS echo:
CBAN OF SS screen IS echo:

-- echo channel with scope local to this PAR only
PAR

SEQ
ks.keystream.from.fold (from.user.filer[2],

to.user.filer[2],
keyboard, 1, input.error)

-- check input.error when real screen accessible aqain

ss.scrstream.sink (screen) -- consume everythinq echoed

REAL32 x:
INT kchar:
SEQ

j := 0
read a sequence of real numbers

ss.write.nl (screen)
consume rest of file if any

ss.write.endstream (screen) -- terminate scrstream.sink

test input.error, if OK tabulate

ss.write.strinq(screen, "Type ANY to return to TDS")
INT any:
ks.read.char (keyboard, any)
ss.write.nl (screen)

} }}
} } }

86

The contents of the three folds in the program are as follows:

6 Running programs within the TDS

The fold headed read a sequence of real numbers:

{{{ read a sequence of real numbers
kchar := 0
x := 1.0(REAL32)
WH:ILE (NOTF:IN:ITE (x) OR (x <> O. 0 (REAL32) » AND

(kchar <> ft.terminated)
SEQ

ss.write.char(screen, '>')
ks.read.echo.char (keyboard, screen, kchar)
:IF

kchar < 0
SK:IP

kchar = (:INT'#')
:INT hexx RETYPES x:
ks.read.echo.hex.int (keyboard, screen, hexx, kchar)

TRUE
ks.read.echo.rea132 (keyboard, screen, x, kchar)

:IF
kchar = ft.terminated

SK:IP
TRUE

SEQ
:IF

kchar = ft.number.error
ss.beep (screen)

TRUE
SK:IP

ax[j] := x
j := j + 1

}}}

The fold headed consume rest of file if any:

{{{ consume rest of file if any
:IF

(kchar >= 0) OR (kchar = ft.number.error)
ks.keystream.sink (keyboard)

-- consume the rest of the keyboard file
TRUE

SK:IP -- keyboard file has terminated or failed
} }}

6.7 Example programs using the 1/0 libraries

The fold headed test input.error, if OK tabul.ate:

{{{ test input.error, if OK tabul.ate
IF

{{{ input error
input.error <> 0

SEQ
ss.write.ful.l..string (screen, "Fil.e reading error: ")
ss.write.int (screen, input.error, 0)
ss.write.nl. (screen)

} } }
TRUE

SEQ
ss.write.text.l.ine (screen,

"These are the numbers you typed")
{{{ write the tabl.e of j real. numbers
ss.write.nl. (screen)
SEQ i = 0 FOR j

SEQ
ss.write.real.32 (screen, ax[i], 10, 10)
ss.write.nl. (screen)

}}}
} } }

Note that as a file can only be read to its end (using these simple procedures) J the interface procedure
keystream. sink is called after the application code to ensure that the procedure
keystream. from. fil.e will terminate.

87

This example avoids the need to systematically change the names of the parameter channels keyboard and
screen by means of channel abbreviations renaming locally declared channels with these same names.

7 Configuring programs and loading
transputer networks

7.1 Introduction

To make effective use of transputer networks, an application must be expressed as a number of parallel
processes. Once this has been done, performance requirements can be achieved by adapting the application
to run on a number of transputers. To do this the programmer adds information describing the link topology
and describes the association of code to individual transputers. This is called 'configuration'. This chapter
describes how to configure a program and how to load it onto a transputer network.

7.2 The transputer configuration and loading utilities

This section describes the utilities which enable the user to configure an occam program for a network of
transputers, and then load the code into the network for execution.

A section of occam to be allocated onto a processor must be contained within one or more se folds. The
initial step in creating a configuration is separate compilation of each procedure which is to be loaded as
the code for a transputer. The resulting SCa and code calling them must then be collected together into a
filed fold, to which the IMAKE FOLDSETI utility is applied with the parameter set to PROGRAM. This makes a
PROGRAM foldset.

This PROGRAM then requires the necessary configuration statements to be added to describe the inter
connections and to call the required procedures on the desired processors. The configuration language is
described in the next section.

These steps must be followed, even if the network contains only a single processor. In the case of a single
processor, the procedure loaded may have no formal parameters; in all other cases, the procedure loaded
on any processor must have at least one channel parameter which corresponds to a transputer link to enable
code to reach that processor. Alternative methods of building single processor applications are given in
chapter 8.

The utilities used for configuring and loading transputer networks are as follows:

ICOMPILEI checks that an occam PROGRAM is a valid configuration and produces the necessary code to call
the individual procedures to be loaded on each processor.

ICOMPILATION INFOL when applied to a configured PROGRAM fold, creates a fold containing a list of the inter
processor link connections of the target transputer network, the boot order of the processors in the network
and the memory map on each processor.

IEXTRACTI extracts and links all the code in an occam PROGRAM or SC into a single fold.

ILOAD NETWoRKlloads a transputer network with a previously configured program.

7.3 The configuration description

The allocation of code to processors in a transputer network is achieved using two occam language exten
sions:

PLACED PAR

PROCESSOR number transputer.type

These configuration constructs, and the mapping of inter-process channels onto transputer links, enable the
configuration utility, the configurer, to identify the code destined for a specific processor and to check that the
network described can be loaded.

90 7 Configuring programs and loading transputer networks

The code for any processor consists of one or more procedures, each contained within an SC fold, and the
code which calls those procedures. Code outside an SC should be kept to a minimum and cannot include
references to libraries containing code. Such code becomes a process running in parallel with other similar
processes on other processors in the network. The inter-processor channels are mapped onto transputer
links. One of the processors in the network is connected to the TDS, to allow the system to be loaded. This
is known as the 'root processor'. There must be a route, via transputer links, from the root processor to all
other processors, to allow the network to be loaded.

The processor number is the logical identifier of that processor and may be any value in the integer range.
These numbers just identify the processor in messages from the TDS software; they serve no purpose in the
allocation.

The root processor of any network must always be the first processor declared in the configuration.

The transputer.type part of the PROCESSOR statement specifies which type of transputer is placed at this node
in the network. This information is used by the configurer to check that the process allocated to processor
has been compiled for the correct target transputer. Valid transputer types are T8 or T800 (IMS T800, T801,
T805), T4 or T414 (IMS T414), T425 (IMS T425) and T2 or T212 (IMS T212, T222, T225 or IMS M212).
Transputer classes are not permitted. .

An SC procedure may be allocated to any number of processors in the network. A procedure is exported
from the host to the network once, each recipient processor taking a copy of the code. Only those procedures
in the PROGRAM which are actually allocated to a processor are exported to the network.

The PLACE statement is used to tie occam channels to processor links. A channel which is placed at a link
twice must be placed at an input link address on one processor and at an output link address on a different
processor. A channel placed only once is a 'dangling' link to the environment outside the configuration being
described. The configuration utility produces a warning message if a dangling link is detected. For example,
the link connecting the TDS to the network program may be specified as a dangling link to allow the program to
communicate with an EXE running within the TDS. Link addresses are held in the system library l.inkaddr.

If there is a requirement to connect a processor to itself via formal channel parameters of the process allocated
to it, a 'soft' channel must be used. A soft channel is a declared channel, which is not placed at a link address,
it may only be used by a single processor. Soft channels are useful for providing loop back termination of a
pipeline or for filling unused link parameters.

A configuration has the form:

Configuration-level declarations
Placed PAR

A Placed PAR has the form described in the occam 2 reference manual, with the extension that the
PROCESSOR part has the form:

PROCESSOR number transputer.type
Processor-level declarations
instance

where: transputer type T2 I .T4 T5 I T8 I T212 I T414 I T425 I T800

Configuration-level declarations may include:

• SC folds containing one or more procedures.

• Constant definitions using VAL.

• PROTOCOL definitions.

• fUSE lines referring to libraries containing only constant and protocol definitions. Any logical name
referring to such a library must be valid for a T4 target.

• Channel declarations for placement as links between processors.

7.3 The configuration description

Processor-level declarations may include:

• Placement of configuration-level channels at link addresses.

• Constant definitions.

• Variable declarations.

• Placement of variables.

91

• Abbreviations and retypes of variables.

• Channel declarations for use as 'soft channels' on this processor.

• Any other occam code that does not, explicitly or implicitly, reference library code.

Note that procedures to be used at configuration level may not be taken from a library; libraries used at
configuration level may only contain constant and protocol definitions.

Configuration examples

The structure required for loading a single processor system is:

{{{ PROGRAM sinq1e processor
{{{F "source.tsr" source

SC examp1e.sc

PROCESSOR 0 T800
examp1e . sc ()

} } }
} } }

The structure required for loading a system consisting of eight processors in a pipeline, seven of which contain
the same program is:

{ { { PROGRAM pipe1ine
{{{F "source.tsr" source

SC e1ement (CHAN OF INT32 in, out, VAL INT board. no)
SC pipe. end (CHAN OF INT32 in, out, VAL INT board. no)

VAL 1ast IS 7 :
VAL input.1inks IS [5, 7, 6, 7, 5, 7, 6, 7]
VAL output.1inks IS [0, 2, 1, 1, 0, 2, 1, 1]
[1ast + l]CHAN OF INT32 1inks

PLACED PAR
PROCESSOR 0 T800

PLACE 1inks[1ast]
PLACE 1inks[0]

AT
AT

input.1inks[0] :
output.1inks[0]

input.1inks[i] :
output.1inks[i]

pipe.end (1inks[1ast], 1inks[0], 0)

PLACED PAR i = 1 FOR 1ast
VAL in IS i - 1
VAL out IS i :
PROCESSOR i T800

PLACE 1inks[in] AT
PLACE 1inks[out] AT

e1ement (1inks[in], 1inks[out], i)
} } }
} } }

92

7.4 Configuring a program

7 Configuring programs and loading transputer networks

A program is configured using the ICOMPILEI or IRECOMPILEI utility applied to a PROGRAM fold describing the
configuration. The utility will compile any nested compilation units which need to be compiled, and link the
SC for each processor. It will then check the configuration statements to ensure that they are consistent, and
will generate the loading and running information for each processor.

The utility ICOMPILATION INFO\ can be used to see the results of configuration. Applied to a configured PROGRAM
fold, it creates another fold in the foldset which can be opened and viewed, listing the processors and their
connections, and giving a memory map for each processor.

After configuration has been completed, the network can be loaded. There is an additional utility IEXTRACTI,
which will collect together all the code within a program into a single filed fold, called a CODE PROGRAM fold.
It is not necessary to use this utility before loading; it is provided so that the user can make a self-contained
code file and separate it from the program source (when, for example, developing the source code further
while keeping a backup copy of the last loadable code file produced). It is also used for creating a Istandalone
program' (see chapter 8).

For configurations containing different processor types, the ICOMPILEI utility should be applied to each processor
SC, supplying the appropriate processor type as a parameter. Then IRECOMPILE\ should then be applied to
the· PROGRAM fold to configure the network.

7.5 Connecting a network to the TDS

Before an application can be loaded onto a transputer network from the TDS, the network must be connected
to the TDS. This section outlines how to do this; for a detailed description of the connections from the board
running the TDS, see the appropriate board manual.

The transputer network is connected together by transputer links; the topology of the network must match
that described in the configuration description, otherwise the loading will fail. The network is loaded via a link
out of the host transputer (the transputer running the TDS) to one of the transputers in the network: the Iroot
transputer'. The TDS need only be connected to this one transputer; it will boot this transputer over the link,
and send loading information to it. The root transputer will boot the transputers connected to it, and route
loading information to them; these will in turn boot and load other transputers in the network, until the whole
network has been booted and loaded.

Any of the links out of the host transputer may be used to load the network, apart from the link connecting
the host transputer to the host computer. The use of such links to provide run-time support for a network
program is discussed in section 7.8.2.

As well as the link connection, INMOS boards also provide system control functions to monitor and control
the state of the transputer network. The system control connections on boards are chained together to allow
the whole of the network to be controlled from the host. The control connection consists of three signals:

Reset This is a signal from the host transputer to the network, which will reset all the transputers in the
network, ready for loading.

Analyse This is a signal from the host transputer to the network, which will bring all of the transputers in the
network to a controlled halt, so that their state can be examined.

Error This is a signal from the network to the host transputer, indicating that one of the transputers in the
network has set its error flag.

For a more detailed description of system control connections, see the appropriate board manual. For a
detailed description of the effect of the Reset, Analyse and Error signals on the transputer, and a description
of how a transputer boots, see the Transputer Reference Manual.

7.6 Loading a network

7.6 Loading a network

93

A network is loaded using the ILOAD NETWORKI utility. The utility may be used on a PROGRAM fold, or on a
CODE PROGRAM fold which has been extracted. Among the parameters for the ILOAD NETWORKI utility are
the link out of the host transputer that should be used for loading, and what type of board the TDS is running
on (to tell the utility where the subsystem is). As the network is loaded, messages are displayed to indicate
the loading stage.

A detailed description of the loading mechanism is given in INMOS technical note 34 'Loading Transputer
Networks'. An outline of the mechanism is included here, for information.

A communication protocol exists between the host transputer and a target transputer network to direct the
loading of code to the desired place in each transputer. The communication consists of bootstrap packets,
routing information, address information, load information, code packets and execute items.

The bootstrap code for each transputer in the network is sent first. The bootstrap code is loaded at the
lowest available address (nearest to MOSTNEG INT). The bootstrap loads the distributing loader at the first
available addresses above itself. After all the transputers in the network are booted, the code of each of the
procedures allocated to processors in the configuration description is exported to the network preceded by
the necessary routing and loading information. Following this, the code which calls the procedures (the main
body) generated by the configurer is sent to each processor in turn and then each processor is told to start
executing the loaded program.

7.7 Using the transputer network tester

When configuring an application, and loading it onto a transputer network, it is important that the network is
connected in the configuration expected by the loader, otherwise the loading will fail. It is equally important
to be sure that the hardware in the network is all working properly, and that there are no communication
problems due to (for example) poor connections, electrical noise, or links set to the wrong speed.

Even with the messages produced while the network is being loaded, it may still be hard to track down the
cause of the error.

A program called nettest is provided to aid in investigating problems of this kind. It is described in detail
in section 15.2. Some of the facilities provided by this program are as follows:

• Explore a network of transputers and establish its topology, displaying the type of each transputer
in the network.

• Check the actual connected topology of the network against the topology specified by the configu
ration description in a PROGRAM fold, and report any differences between the two.

• Test the memory of each transputer in the network.

• Reset or analyse all the transputers in the network.

The transputer network tester can be used to establish that the transputer network is functioning correctly,
and that it matches the configuration expected by the programmer. This allows the programmer to reduce or
eliminate the possibility of hardware faults when investigating problems in loading and running an application
on a network.

The transputer network tester uses a program called a 'worm' which distributes itself through all transputers
in the network. For an introduction to how worms work, see INMOS technical note 24 'Exploring Multiple
Transputer Arrays'.

94 7 Configuring programs and loading transputer networks

7.8 Running the pipeline sorter on a target transputer

Returning to the pipeline sorter example described in the previous two chapters, this section describes how
to run the example on a second transputer, loaded from the host transputer running the TDS. The host
transputer will be used to monitor the behaviour of the target system.

The occam code for the application must be separated from the code used for monitoring. This has already
been planned for by defining the code modules in separate procedure declarations.

This example is contained in the directory \ TDS3 \ TUTOR, in EXAMPLES. TOP, so while reading this section
it will be useful to start up the TDS in this directory and follow the instructions given.

A later section of this chapter shows how to configure the application to run on multiple transputers.

7.8.1 Creating a PROGRAM fold

A PROGRAM fold describes the configuration of a system and the placement of occam procedures onto
distinct processors.

For a single target transputer the PROGRAM fold contains the filed fold proq2 . tsr which in turn contains
one SC, and configuration information about the target hardware.

{ { { PROGRAM proq2
{{{F "proq2.tsr" proq2
fUSE header

SC app.tsr
confiquration

} } }
}}}

The SC contains the application code described in the previous discussion of this example. Note that the
application code had to be executed in parallel with other processes in order to be able to move the code to
another processor.

{ { { PROGRAM proq2
{{{F "proq2.tsr" proq2
'USE header
{{{ SC app.tsr
{{{F "app.tsr" app
fUSE header
fUSE problem

PROC application (CHAN OF strinq in, out)

[strinq.lenqth+l]CHAN OF letters pipe:
PAR

inputter (in, pipe[O])
PAR i = 0 FOR strinq.lenqth

element (pipe[i], pipe[i+l])
outputter (pipe[strinq.lenqth], out)

} } }
}}}

} } }
} }}

confiquration

The application code is the same as the TDS version (see chapter 6) although there is now a procedure
declaration around it. The procedure is needed to provide a name, implementation detail and parameters for
placing this section of code on a processor.

7.8 Running the pipeline sorter on a target transputer 95

Notice that all the information needed for the application code must be contained inside the SC fold, including
the library references. The library header is used at the start of the PROGRAM fold so that the compiler can
understand the protocol string used in the SC procedure's parameter list.

The configuration fold looks like:

{{{ PROGRAM prog2
{{{F "prog2.tsr" prog2

SC app.tsr
{{{ configuration

l.ink constants
CBAN OF ANY app.in, app.out:

PROCESSOR 0 T4
PLACE app.in AT l.inkOin:
PLACE app.out AT l.inkOout:
appl.ication (app.in, app.out)

} } }
} }}
} } }

The configuration places the SC procedure appl.ication onto a transputer which has been given the
logical number O. The transputer type is T4, denoting an IMS T414. The type of the transputer is needed for
the system to know how to initialise it at boot time. The system also checks to make sure that appl.ication
was compiled with the compiler parameter target .processor set to T4.

The instance of appl.ication has two actual channel parameters, app. in and app. out. These corre
spond to the formal channel parameters in and out. The PLACE statement is used to map these occam
channels onto the transputer's serial link hardware. The addresses l.inkOin and l.inkOout are contained
in the fold l.ink constants. The communication on app. in and app. out has been directed onto
transputer link zero (the link supports two occam channels, one input channel and one output channel).

In this configuration, link 0 is a 'dangling link'. Once the PROGRAM has been loaded into the target transputer,
it will run until the first communication made on app. in or app. out. It is up to the programmer to connect
a system to this link which will communicate with appl.ication in order for it to continue; otherwise it will
wait forever. In this example the monitor process will be run within the TDS to communicate with the target
system.

7.8.2 Monitoring the target with an EXE

To monitor the target system a monitor program must be run as an EXE. This may be as follows:

{{{ EXE interface
{{{F "interfac.tsr" interface
IUSE header
IUSE monitor
#USE l.inkaddr
CHAN OF string app.in, app.out:
PLACE app.in AT l.ink2.in:
PLACE app.out AT l.ink2.out:

monitor (keyboard, screen, app.in, app.out, TRUE)
} } }
} } }

The EXE consists of an instance of the library procedure monitor with its keyboard and screen pa
rameters connected to the TDS keyboard and screen channels, and the other channels connected to the
application, over link 2 of the host transputer.

The monitor procedure has its parameter using. subsystem set to TRUE. This enables monitor to
give the programmer an error message should, for any reason, the target transputer set its error flag.

96 7 Configuring programs and loading transputer networks

PROGRAM proq2. This will also compile

To show how this is done, it is necessary to look in more detail at the body of the screen handling process,
in the monitor procedure. The monitor procedure was described earlier, in Chapter 5, but there the details
of what happens when using. subsystem is TRUE were not discussed.

The main part of the screen handler looks like this:

{{{ body
WHILE going.in OR «NOT using.subsystem) AND going.data)

SEQ
c10ck ? waket~e

waketime := waketime PLUS one.hundredth.of.a.second
ALT

going.in , in ? char
print keyboard character on screen

going. data , data? 1enqth::string
print data from app1ication on screen

monitoring , c10ck ? AFTER waketime
if monitoring is TRUE, po11 subsystem error pin

draw. cursor (kb.window)
} } }

The screen handler is repeatedly waiting for one of three alternatives. Either keyboard characters are echoed,
a string of data comes from the application or a timeout happens should neither of the other two have occurred
in one hundredth of a second. If the timeout occurs then the program tests the subsystem error pin. If this
indicates an error then a message is sent to the user, after which the user can terminate the monitor and use
the TDS for subsequent analysis (e.g. running the debugger).

If the TDS is executing on an IMS 8004 or IMS B008 board then the subsystem logic is decoded through
a PAL that can be accessed by software. The subsystem reset and error are at machine address zero (in
the middle of the transputer's address space). occam addresses start from zero and are word aligned so a
program can access the subsystem by placing a port at #20000000.

This can be done by the following declarations:

VAL subsys.error.1ocn IS #20000000:
PORT OF BYTE subsys.error:
PLACE subsys.error AT subsys.error.1ocn:

Reading from this port, and finding bit zero set, detects the assertion of the subsystem error pin. This can
be done with the following occam code:

BYTE error:
SEQ

subsys.error ? error
IF

(error /\ 1) = 1 (BYTE)
Error f1aq set!

TRUE
SKIP

7.8.3 Configuring and running the example

The following steps are now required, in the following order, to run the application as described on a two
transputer network.

1 Run ICOMPILEI on . .• EXE interface.

2 Configure the PROGRAM by running ICOMPILEI on
and link the se app1ication.

3 Connect link two on the host transputer to link zero on the target transputer.

7.9 Running the pipeline sorter on a four transputer network 97

4 Connect the 'Up' port from the target transputer board to the subsystem connection on the host
transputer board.

5 Load the PROGRAM. To do this invoke the !LOAD NETWORK! utility on the PROGRAM fold. This will
extract the code from the PROGRAM fold and transmit it to the network. It will prompt for a parameter
indicating which host transputer link to use for the loading. The required value is link two, which is
also used by the moni.tor program to monitor the target from the host.

6 Get the BXE moni.tor, using IGET CODEI and run it, using !RUN EXEI. This establishes communication
between the two transputers, so that the user can now supply data to the running application. Note
that the synchronisation on link communication holds up the PROGRAM until the BXE outputs some
data.

The next section shows how to distribute the application over multiple transputers.

7.9 Running the pipeline sorter on a four transputer network

This section shows how the code for the pipeline sorter example can be distributed over four transputers in
a network. The assumption made here is that the four transputer target network is an IMS B003 transputer
evaluation board. In the IMS B003, the system control lines are preconnected so that the host board can
automatically reset all the transputers simultaneously. Every transputer on the IMS B003 has two links
available on the edge connector (links 0 and 1) while the other two are preconnected in a square array (links
2 and 3).

7.9.1 A PROGRAM for four transputers

The PROGRAM fold appears as follows:

{{{ PROGRAM proq3
{{{F "proq3.tsr" proq3
#USE header

se PRoe i.nterface
se PRoe worker
l.i.nk constants

-- number of transputers must match val.ue used i.nsi.de ses
VAL number.of.transputers IS 4:

confi.gurati.on
} } }
} }}

This example has two separately compiled procedures: i.nterface and worker.

The procedure i.nterface connects to the monitor as well as doing stri.nq to J.etter protocol conver
sions and some el.ement processes.

The procedure worker is a number of el.ement processes running in a pipeline.

The number of el.ement processes on each transputer depends on the number of transputers available,
hence the constant number. of. transputers. This constant is needed at configuration level, as will
be seen later, and in both se folds. The constant could have been put into a header library. The element
processes are divided into four equal sets, and one set is run on each processor. Any processes remaining
(in the case where the number of elements is not divisible by four) are run on the root processsor.

See figure 7.1 for a picture of how the pipeline sorter can be split up over four transputers.

98 7 Configuring programs and loading transputer networks

element

element
processes

Figure 7.1 Pipeline sorter running on four transputer networker

{{{F
fUSE
fUSE
{ { {
VAL
VAL
VAL

7.9.2 The root transputer

The procedure interface runs on the root transputer in the network. This is as follows:

"interface.tsr" interface
header
prob1em
extra constants for confiquring for 4 transputers

number.of.transputers IS 4:
number. of. e1ements IS string.1ength:
e1ements.per.transputer IS number.of.e1ements/

number.of.transputers:
VAL remaining.e1ements IS number.of.e1ements

(e1ements.per.transputer * number.of.transputers):
} } }
PROC interface (CHAN OF string from. host, to. host,

CHAN OF 1etters to.pipe, from.pipe)
VAL e1ements IS e1ements.per.transputer + remaining.e1ements:
[e1ements]CHAN OF 1etters pipe:
PRI PAR

PAR -- prioritise processes using 1inks
inputter (from.host, pipe[O])
e1ement (pipe[e1ements - 1], to.pipe)
outputter (from.pipe, to.host)

PAR i = 0 FOR e1ements - 1
e1ement (pipe[i], pipe[i+1])

}}}

7.9 Running the pipeline sorter on a four transputer network 99

-- prioritise qettinq the 1inks started
(in, pipe[O])
(pipe[e1ements-2], out)

FOR e1ements - 2
(pipe[i], pipe[i+l])

The procedure interface has three processes at high priority and a number at low priority. The high
priority processes are those which communicate with the transputer links whereas the others only use internal
channels. This prioritisation of link communication can enhance the throughput of distributed systems. All
the above processes, regardless of priority, are running in parallel with each other.

The number of e1ement processes in interface depends on number. of . transputers and how
many e1ement processes all the other transputers have. The total number of e1ement processes in the
target system must add up to number. of. e1ements. If the value of strinq .1enqth is divisible by 4
then interface will include a quarter of the required e1ement processes.

7.9.3 The three other transputers

The three other transputers in the network run copies of the procedure worker. This procedure is as follows:

{{{F "worker.tsr" worker
#USE header
#USE prob1em

extra constants for confiqurinq for 4 transputers
PROC worker (CHAN OF 1etters in, out)

VAL e1ements IS e1ements.per.transputer:
[e1ements]CHAN OF 1etters pipe:
PRI PAR

PAR
e1ement
e1ement

PAR i = 0
e1ement

} } }

The separately compiled procedure worker contains a quarter of the required e1ement processes in a
pipeline. The two element processes that have channels mapped onto links run at high priority.

7.9.4 Configuration for four transputers

The configuration for the IMS 8003 maps interface onto the root transputer (it is the first mentioned in
the program) and maps worker onto all three remaining transputers.

Figure 7.2 shows how the processes are mapped onto the IMS 8003.

100 7 Configuring programs and loading transputer networks

link1 link1 linkO

PROCESSOR 1 T4
5"
~

€)fU!I €)fu!I ~)fu!I

IMS 8003
link2 link3

5°
5

~
~

PROCESSOR 3 T4 PROCESSOR 2 T4
O)fU!I ~)fU!I

HOST

Figure 7.2 Pipeline sorter running on one IMS 8003

Tile configuration is as follows:

{{{ configuration
CHAN OF string app.in, app.out:
[number.of.transputers]CHAN OF 1etters 1ink:

PLACED PAR
PROCESSOR 0 T4

PLACE app.in AT 1inkO.in:
PLACE app.out AT 1inkO.out:
PLACE 1ink[O] AT 1ink2.out:
PLACE 1ink[number.of.transputers - 1] AT 1ink3in:
interface(app.in,app.out,1ink[O],

1ink[number.of.transputers -1])

PLACED PAR i = 1 FOR (number.of.transputers - 1)
PROCESSOR i T4

PLACE 1ink[i - 1] AT 1ink3.in:
PLACE 1ink[i] AT 1ink2.out:
worker (1ink[i - 1], 1ink[i])

} } }

For the three worker processes a replicator has been used with index i having the values 1, 2 and 3. All
the transputers are of type T4.

The interface is connected to the host through app. in and app. out on link 0 whilst the workers are
connected to each other and to interface through the link 2 to link 3 connections provided with the IMS 8003
board.

The steps to configure and run the example are the same as in the previous example, where the program
was running on one transputer.

8 Standalone transputer programs
8.1 Introduction

The last two chapters have discussed running programs within the TDS, and running programs on a network
loaded from the TDS. However, most applications will, once they have been developed, run separately from
the TDS. This chapter describes how to export a program from the TDS so that it can be run in a standalone
manner.

Programs running on a transputer network separate from the TDS need to be booted onto the network. This
can be done in two main ways: either the network is booted from a ROM, contained in one of the transputers
in the network, or the network is booted from a host computer connected to the network. Booting from a ROM
is discussed in chapter 10; in this chapter we will concentrate on programs booted from a host computer, via
a link.

Where a host computer (such as the IBM PC) is used to boot a network, it may also be convenient for the host
computer to provide some facilities (such as terminal I/O and filing system support) to the program running
in the network. A program which boots a network and provides host support is called a server.

The two servers provided with previous versions of the Transputer Development System have been replaced
with a single server iserver, which is also used by INMOS toolset products.

iserver can boot a program from a host file into an arbitary transputer network, and then provide support
using a special protocol called SP. It can also detect the setting of the error flag if the necessary connections
exist. In principle iserver can be re-implemented on any host computer for which add-on transputer boards
have been designed and can be optimised to take full advantage of all hardware features of the interface
between the host and the transputer.

A stand-alone program which communicates at run-time with a version of iserver on a host may be coded
in one of two ways. It may be coded as a PROGRAM within which the link(s) connecting the program to the
server are coded as channels PLACEDd at suitable hardware addresses. Alternatively it may be coded as
a procedure in an se compilation unit with a particular conventional parameter list including server channels
and free space vector, and called by a bootstrap procedure from code added to the compiled se using the
tool addboot. Such a procedure is called a standard hosted procedure.

Either of these methods leads to a pure binary file which may be ported to any host on which there is an
implementation of iserver for a transputer board. In this way programs developed on a PC can be run
from a SUN3, MicroVax or other suitable host.

The advantages of the second method, making a standard hosted PROC, include the ability to use whatever
memory space is available, and to communicate with the host via whatever link the program was loaded
down. It is for these reasons that INMOS stand-alone tools are coded in this way. Such tools may also be
made by using INMOS occam toolset products.

The C sources of iserver are provided with the TDS. For details of where to find them, and how they can
be recompiled, see the 'Delivery Manual'.

8.2 Using the iserver

Once iserver has booted a file into a network, it supports SP protocol over the link to the root transputer
(the first transputer in the network). This protocol is described in detail in section 16.5, of the 'System
interfaces' chapter.

Libraries are provided which support the use of SP protocol. These are sphdr, splib, solib, sklib
and spinterf.

These libraries are described in chapter 14.

102 8 Standalone transputer programs

8.3 Creating a parameterless standalone program

The steps in creating a parameterless standalone program are as follows:

Firstly write the program as a PROGRAM configured for the required transputer network. Even if the program
is to be run on a single processor it must be described as a configuration. Use ICOMPILEI or IRECOMPILEI to
compile and configure the program for the network.

Secondly, use IEXTRACTI to extract all the code and loading information for the network into a single file. It is
important that IEXTRACTI is used with the parameter output. foJ.d set to BOOTABLE (not DIAGNOSTIC)
and the parameter first. processor. is .boot. from. J.ink set to TRUE. If either of these are wrong,
the host file server will fail to boot the program into the network.

Thirdly, the extracted file needs to be exported from the TDS into a standard host operating system file. The
IEXTRACTI utility will leave a CODE PROGRAM fold as the last item in the PROGRAM foldset. Use IWRITE HOSTI
from the file handling utilities to write this out to a DOS file. The resulting file may be used by the host file
server. The format of such a code file is defined in appendix G.

8.4 Creating a standard hosted PROC

The steps in creating a standard hosted procedure are as follows:

Write the program as a procedure with the heading:

fUSE strmhdr
PROC program (CBAN OF SP from. iserver,

to.iserver, [lINT free. space)

Put this procedure in an SC foldset using IMAKE FOLDSET\. Use ICOMPILE\ to compile the foldset.

2 Use IEXTRACT\ to extract the code into a CODE SC fold.

3 Use IGET CODE\ to get the addboot tool from the toolkit fold. Apply this tool to the SC. A new host
file will be created with a name supplied by the user.

4 This file may then be loaded and run using iserver:

iserver / se / sb filename

8.5 The pipeline sorter

This section describes how to configure the sorting application described in chapter 5 so that it can be run
as a standalone program from DOS.

The source of this program is contained in the'tutorial fold structure, in the fold marked:

Running the exampJ.e as a standaJ.one program

The contents of this fold are as follows:

{{{ PROGRAM progS
{{{F "progS.tsr" progS
fUSE header

SC app.tsr
configuration

} } }
} } }

8.5 The pipeline sorter

The source of the se application is as follows:

103

lOSE strmhdr
lOSE sphdr
lOSE userio
lOSE interf
lOSE sp1ib
lOSE spinterf
lOSE header
lOSE prob1em
lOSE monitor

SP, SS and KS protoco1s
SP constants (sps.success)
user io procedures (write.endstream)
user io interface procedures (keystream.sink)
hostio procedures (so.mu1tip1exor, so. exit)
SP interface procedures
app1ication constants
app1ication procedures
app1ication environment

PROC app1ication (CHAN OF ANY from. host, to.host)

[strinq.1ength+1] CHAN OF 1etters pipe:
CHAN OF strinq app.in, app.out:
CHAN OF INT keyboard:
CHAN OF ANY screen:
[2]CBAN OF -SP from.isv, to.isv:
CHAN OF BOOL stopper:
CHAN OF BOOL mstopper:
VAL dont.use.subsystem IS FALSE:
VAL one.hundredth.of.a.second IS 156:
PAR

--=================
SEQ

PAR -- these processes shou1d terminate in the order written

inputter (app.in, pipe[O])

PAR i = 0 FOR strinq.1ength
e1ement (pipe[i], pipe[i+1])

outputter (pipe[strinq.1enqth], app.out)

SEQ
so.scrstream.to.ANSI(from.isv[O], to.isv[O], screen)
stopper ! TRUE

so.keystream.from.kbd(from.isv[l], to.isv[l], keyboard,
stopper, one.hundredth.of. a. second)

SEQ
monitor (keyboard, screen, app.in, app.out,

dont.use.subsystem)
write.endstream (screen)
ks.keystream.sink (keyboard)

mstopper ! TRUE
--================================
SEQ

so.mu1tip1exor(from.host, to.host,
to.isv, from.isv,
mstopper)

so.exit(from.host, to.host, sps.success)
--===================================

This program makes use of the standard library spinterf, which provides a number of processes which
may be run in parallel with an application to convert its input and output into communications with iserver.

104 8 Standalone transputer programs

As before (in chapter 6), where this example was run as an EXE within the TDS, the monitor pro
cess is connected to the application, and communicates over channels conforming to the TDS screen
and keyboard protocols. Since the program is not going to run within the TDS, but with a server, the
keyboard and screen channels need to be connected to the terminal facilities provided by the server.
This is done by the process so.mu1tip1exor (available in the library sp1ib) and the processes
so. scrstream. to. ANSI and so. keystream. from. kbd (available in the library spinterf). The
process so. scrstream. to. ANSI converts the TDS screen protocol into a iserver commands which
will drive the terminal of the host computer. The process so. mu1tip1exor communicates with the server
over a pair of channels, supplying keys from the keyboard and sending the stream of characters to the screen.

The code for the configuration is as follows:

fUSE 1inkaddr
CHAR OF ANY from.host, to.host:

PROCESSOR 0 T800
PLACE from.host AT 1inkO.in:
PLACE to.host AT 1inkO.out:
app1ication (from. host, to.host)

The steps in creating the standalone program are as follows:

Both the compiler utility set and the file handling utilities will be needed. If necessary, get them now
by pressing the IAUTOLOADI key. If using the standard toolkit fold, this should finish with the compiler
utilities as the current utility set.

2 Move to the PROGRAM fold contained in the fold marked
Running the app1ication as a standa10ne program in the tutorial fold structure.
Look at the contents of this fold to check that it corresponds to the program text given earlier.

3 Check that the processor type in the configuration matches the processor you are using. Close the
PROGRAM fold and press the~ key. The standard compiler parameters are needed, so if it
prompts for the parameters, just press IEXIT FOLDI.

4 When the compiler has finished, press IEXTRACTI to extract all of the code for the configured program
into a single file. IEXTRACTI requires two parameters, in parameter folds Transputer extractor
parameters and First processor in network parameters, within the To01kit
fold. Make sure that these are the values given:

VAL output.f01d IS BOOTABLE:

VAL first.processor.is.boot.from.1ink IS TRUE

If these are not the supplied values use ISELECT PARAMETERI to change them, then press IEXIT FOLDI
after selecting each parameter. The extractor will then run.

5 Now open the PROGRAM fold; it should look something like this:

{ {{ PROGRAM prog5
... F "prog5. tsr" prog5
... F "proq5.dcd" code
... F "proq5.dds" desc
... F "prog5.cex" CODE PROGRAM prog
} } }

The last line is the CODE PROGRAM fold containing all of the code. Move the cursor down on.to
this line.

6 Now the file handling utilities are needed; switch to these using INEXT UTILI. It may be appropriate to
use the ICODE INFOI key to check that the right utility set is current.

8.5 The pipeline sorter 105

7 The last utility in the set, IWRITE HOSTI, will be used to write a TDS fold out into a standard DOS file.
With the cursor on the CODE PROGRAM fold, press IWRITE HOST~ It will prompt for one parameter
with the line:

VAL BostFi1eName IS "":

Set the string in this parameter line to be the file name required, for example:

VAL BostFi1eName IS "sorter.b4":

Now press IEXIT FOLDI to let the utility continue. When it has finished it will have written the file
sorter. b4, into the current directory.

8 Now exit the TDS (Press IEXIT FOLDI until reaching the top level and then press IFINISH!).

9 To run the program, invoke the server as follows, ensuring that the following line, including spaces,
is typed exactly as shown:

iserver lab sorter.b4

The I ab flag instructs the host file server to use the file sorter. b4 as the file with which to boot
the transputer.

The sorter application should now run. As before, type strings of letters followed by IRETURNI to run
the sorter, type % to terminate the program.

Another version of the pipeline sorter coded as a standard hosted procedure is also supplied. The main pro
cedure app1ication is unchanged from example progS with the exception of the dummy third parameter
free. space. This example may be compiled and run according to the steps enumerated in section 8.4.

9 Debugging
This chapter describes the source-level debugger provided with the TDS. The TDS debugger provides an
interactive environment for the post-mortem debugging of occam programs running on transputer networks.
It allows a user to inspect the processes which were running on each transputer, both at the occam source
level, and at the transputer instruction level. It can also display the contents of variables, channels, and other
data items, for any process running on any transputer. The mechanisms which the debugger uses are also
described. See section 15.1 for a full description of the debugger.

9.1 Using the debugger

The debugger is provided in the standard Auto1oad fold in the toolkit fold, so it may be loaded using the
IAUTOLOAOI key. It is an EXE, so can be run using the IRUN EXEI key. Before running the debugger, the cursor
should be placed on the foldset containing the source of the program to be debugged.

A program to be debugged should be compiled with the compiler parameter create. debugging. info
set to TRUE. It should also be compiled with error. checking set to HALT. This ensures that if any errors
occur while the program is executing, the transputer will halt immediately. The other error modes (STOP and
REDUCED) will not have this effect, and so in these modes the debugger can only be used after a running
program has been externally halted; the program will not halt itself when an error occurs.

A running occam program may halt for a number of reasons. Examples of these are:

• A STOP process, or a process which behaves like STOP (such as an IF with no true guards) has
been executed.

• An array access is outside the range of the array.

• An arithmetic error, such as overflow or divide-by-zero has occurred.

• An array element is being aliased at runtime.

See section 15.1.9 for a full list of possible causes of run time errors.

When one of these errors occurs, the debugger can be used to pinpoint the line of occam causing the error,
and investigate the state of that process and other processes in the system.

The debugger is not guaranteed to find all current processes; it may not be possible to find processes which
have deadlocked waiting for communication. This is discussed in more detail later in the chapter.

9.2 Debugger facilities

The debugger's facilities divide roughly into two sets. The first set is concerned with the occam source code,
and allows the user to view the transputer network from the occam high level language level. This requires
that the occam program has been compiled with the create. debugging. info compiler option set to
TRUE. The second set of facilities views the transputer network from the assembly code level, and does
not require the debugging information produced by the compiler. Either set of facilities may be used on any
transputer in the network.

108

9.2.1 Symbolic facilities

9 Debugging

Given any transputer instruction address, the debugger can 'locate' to the corresponding occam source line
(Le. it can find the line in the source fold and display it). In particular, this means that it can display the
occam source line corresponding to any of the following:

• The last transputer instruction executed.

• Any process running in parallel.

• A process waiting for a timer.

• A process waiting for communication on a transputer link.

Processes waiting for communication on internal channels may be found by inspecting the contents of that
channel, as explained later.

The ability to locate to any occam source line requires the source to be available. When the location is in a
library the source code may not be available. However, if the library was compiled with the debugging option
enabled, the debugger can discover the line containing the call to the library routine, and will display that line
instead.

After 'locating' the source line, the TDS editing environment is available within the debugger, so that the
occam source of the program can be browsed, and if required, modified ready to recompile. The extra
debugging features are accessed by pressing special function keys, such as IBACKTRACEI or !lNSPECTI within this
environment. The values of constants, variables, parameters, abbreviations, array elements, and channels,
which are in scope at the located line, may be inspected. Non-local variables and channels may also be
accessed. Values are displayed in hexadecimal, and in any other normal representation for their type.

From any occam location the user can 'backtrace', or discover where its enclosing procedure or function was
called from. This works even if the source of a library is not present because the library has been compacted.
This can be repeated for each nested procedure or function call, to form a complete stack trace. The values
of variables, etc., may be examined at any stage.

The user can also discover the type of any symbol currently in scope, and the address and workspace
requirements of any procedure or function.

By inspecting a channel, the debugger can discover the instruction pointer and workspace pointer of any
process waiting for communication on that channel. It can also use these values to 'jump' directly to the
process which is waiting (Le. locate the currently active position in that process), and then continue debugging
that process.

9.2.2 Lower level facilities

The debugger can display the transputer's state after being analysed: the instruction pointer (program
counter), workspace descriptor, process queue pointers, error, and halt-on-error flags. It can read the process
and timer queues, to display a list of the instruction and workspace pointers of the processes on the queues.
It can also display any processes waiting for communication on the transputer links, or for a signal on the
Event pin.

Memory can be displayed in ASCII, hexadecimal, or as any other occam type. It can also be displayed as a
simple disassembly of transputer instructions. This disassembly simply translates m,emory contents directly
into transputer instructions; it does not insert labels, nor provide symbolic operands. The debugger can also
provide a 'memory map' of each transputer in the network, showing the positions of code and workspace. By
displaying memory as CHAN type, channels waiting for communication may be located.

9.3 Debugging a program running on a network of transputers

9.3 Debugging a program running on a network of transputers

109

When a program has been loaded onto a network of transputers and run, an error may occur in one of the
transputers in the network. This may be indicated to the TDS by the Error signal on the transputer subsystem.
The example program in chapter 7 shows how a monitor process can be run as an EXE within the TDS to
monitor the state of the network. After an error has been detected, the monitor program can finish and the
debugger program may be run to analyse and examine the state of the network.

The monitor process running within the TDS could also be used to assert Analyse on the subsystem, to bring
the network to a halt even if no error has occurred. In this case the debugger may be used to examine the
network, but it should be told not to assert Analyse when it starts up.

The debugger is an executable procedure, or EXE, which should be run while the cursor is positioned on the
compilation fold of an occam PROGRAM which has halted, either because an error has occurred, or because
of user intervention. It is not possible to restart the occam program once it has been stopped.

The debugger will start by locating to the source line on which the error occurred, or (if no error has occurred)
by showing the state of the first processor in the network. The session using the debugger can then proceed.

A network program which does not terminate may be interrupted by asserting Reset or Analyse on its up
port. This may be done by running the debugger or by rebooting the TOS.

9.4 Debugging a program running within the TDS

If an error occurs while running an EXE program within the TOS, then the error will be detected by the TDS
server, which will display the message:

Error - iserver - transputer error f1aq set

This condition can also be forced by interrupting the TDS; this is done using 'control-break' on the standard
IBM PC keyboard. The procedure for restarting the TOS is described in the Delivery Manual.

In order to debug the program which has crashed, the data of the program must be saved before the TDS is
restarted. When rebooting the TOS, the TDS will offer the user the option of doing a 'core dump'. This saves
the memory contents and state of the host transputer as a file on the host filing system.

Once the TDS has been restarted, the debugger can be loaded. If the debugger is then executed while
positioned on the compilation fold of the EXE that crashed, it can read the core dump file to determine the
state of the program when it crashed. The full range of debugging features are then available to debug the
EXE, as if the program were running on a single transputer in isolation.

9.5 Debugging a standalone program

The debugger can also be used to debug a program which has been developed under the TDS, but is being
run as a standalone program with its own server (such as the host file server). Here it is likely that the host
transputer, which is going to run the TDS, is also being used as the root transputer in the network, and
communicating with the server on the host. So, in order to be able to examine the state of the whole network,
the data space of the root transputer must be saved before the TDS is restarted. The rest of the network can
be examined over the link to the host transputer in the normal way.

If the standalone program crashes, the TDS should be restarted with the analyse signal asserted (see the
Delivery Manual). The TDS will give the option of producing a core dump before it starts. It is necessary to
tell it how much memory to dump, as the TDS does not know how much memory was used by the standalone
program. The coredump is only needed if the program includes the host transputer.

The debugger can then be run and used in the 'network including host' mode, which reads the core dump
file to determine the state of the root processor, and analyses the rest of the network in the normal way.

110

9.6 A worked example

9 Debugging

This section describes an example debugging session. The source of a program to be debugged is supplied
as part of the TDS release, in the directory \TDS3\TUTOR. Change to that directory and start the TDS
before starting this session.

The program should be compiled as a TDS EXE, with error. checking set to HALT, for a T4 (assuming
that you are not running the TDS on an IMS T800), and executed in the normal way.

The program is a (very inefficient) program to calculate the sum of the squares of the first n factorials. It has
been structured this way for clarity, and to demonstrate some debugging methods.

IUSE userio
VAL stop.rea1 IS -1.0(REAL64) :
VAL stop. integer IS -1 :

REAL64 FUNCTION factoria1 (VAL INT n)
REAL64 resu1t
VALOF

IF
n < 0

STOP
TRUE

SEQ
resu1t := 1.0(REAL64)
SEQ i = 0 FOR n

resu1t .- resu1t *. (REAL64 ROUND i)
RESULT resu1t

PROC feed (CHAN OF INT in, out)
INT n :
SEQ

in ? n

SEQ i = 0 FOR n
out i

out ! stop.integer

PROC facs (CHAN OF INT in, CHAN OF REAL64 out)
INT x:
REAL64 fac
SEQ

in ? x
WHILE x <> stop.integer

SEQ
fac := factoria1 (x)
out ! fac
in ? x

out ! stop.rea1

9.6 A worked example 111

PROC square (CHAN OF REAL64 in, out)
REAL64 x, sq :
SEQ

in ? x
WHILE x <> stop.rea1

SEQ
sq := x • x
out ! sq
in ? x

out ! stop.rea1

PROC sum (CBAN OF REAL64 in, out)
REAL64 tota1, x :
SEQ

tota1 := 0.0 (REAL64)
in ? x
WHILE x <> stop.rea1

SEQ
tota1 := tota1 + x
in ? x

out! tota1

new1ine
write. fu11. string
char := INT '·s'
read.echo.int (keyboard, screen, n, char)
new1ine (screen)
write.fu11.string (screen, "Ca1cu1ating factoria1s ... If)
n.out ! n
resu1t.in ? resu1t
new1ine (screen)
write.fu11.string (screen, "The resu1t was : If)
write.rea164 (screen, resu1t, 0, 0) -- free fo~at

new1ine (screen)
write.fu11.string (screen, "Press any key to exit : If)
keyboard ? key

REAL 64
INT
SEQ

write.fu11.string (screen,
"Sum of the first n squares of factoria1s")

(screen)
(screen, "P1ease type n : If)

PROC contro1 (CHAN OF INT keyboard, CHAN OF ANY screen,
CHAN OF REAL64 resu1t.in, CHAN OF INT n.out)

resu1t :
n, key, char

(contro1.to.feed, feed.to.facs)
(feed.to.facs, facs.to.square)
(facs.to.square, square.to.sum)
(square.to.sum, sum.to.contro1)
(keyboard, screen, sum.to.contro1, contro1.to.feed)

CHAN OF REAL64
CHAN OF INT
PAR

feed
facs
square
sum
contro1

facs.to.square, square.to.sum, sum.to.contro1
feed.to.facs, contro1.to.feed

112 9 Debugging

9.6.1 Running the example program

When you run this program, it will ask for a value for n. If you supply any number less than 100, it will execute
successfully.

Type 101 ; the TDS will fail with the message:

Error - iserver - transputer error f1ag set

The next action will depend on how the TDS is called from the host operating system. Please consult the
Delivery Manual.

9.6.2 Creating a core dump

Reboot the TDS in diagnostic mode. After a short delay, you will see a welcome message followed by:

Options :
c : norma1 core dump
f : norma1 core dump + freespace
a : standa10ne core dump - a11 of memory
s : standa10ne core dump - part of memory
<RETURN> to skip

Press 'C', to request a core dump. Option 'F' should only be used if you had used the 'freespace' buffer
in the program. The TDS will then ask:

Core dump fi1ename ("core.dmp") ?

Press IENTERI to accept the default filename

or enter another filename (any filename extension will be replaced by I • dmp')

You wi 11 then be told:

Writing core dump to fi1e "fi/ename.dmp" ...

Finally, the TDS will be restarted.

9.6.3 Using the debugger

Use IAUTOLOAOI to load the debugger.

Now you will be able to start debugging. Move the cursor to the source of the EXE. When positioned on the
EXE fold line, you should press IRUN EXEI to start the debugger.

The screen will show:

TDS occam 2 Debugger - version identifier

Debugging an EXE

Read Core dump fi1e, Ignore core dump, or Quit (C,I,Q) ?

You should type 'C' here, to indicate that you wish to read a core dump file. (If you type 'I', you can perform
a single locate to the error position, but because the debugger does not know the memory contents, it cannot
find the values of variables, etc., nor backtrace down the procedure stack). You will then be asked for the
filename:

Core dump fi1ename ("core.dmp", or "QUIT") ?

9.6 A worked example

Press IENTERI to accept the default filename
or enter another filename (any filename extension will be replaced by , . dmp')
or type 'QUIT' (uppercase) to abort the debugger.

113

The debugger will then read the file to find out where the error occurred, displaying the following messages
one at time:

Reading 1ogica1 name tab1e ...
Reading Core dump fi1e "fi1ename.dmp"
Locating ...
Backtracing ...
Location was in LIB drea1s, SC 1, offset 1433-Error exp1icit1y set

It will display the program source, and leave the editor on the line causing the error. The error was actually
caused within a library for REAL64 arithmetic, but the debugger will locate to the line which the library was
called from. In this case it is inside procedure 'square', on the line:

sq := x * x

9.6.4 Inspecting variables

Vou may move the cursor around the screen, and inspect any variable. If, for example, you move the cursor
over the 'x', and press UNSPECTI, you will be informed:

REAL64 'x' has va1ue ...
9.3326215443944096E+155 (#605166C698CF1838) (at #80000360)

The debugger can display the type of any occam symbol, and its contents. Here, 'x' is displayed first in its
decimal form, then hexadecimal. Finally its address in memory is displayed.

If you forget which tool key is UNSPECTI, you may press (CODE INFORMATIONL which will display a list of keys
along the top of the screen.

Vou will be able to inspect the values of 'sq', 'square', 'stop. integer', 'stop. rea1', etc. Any value
which is in scope at the error location will be accessible. Vou can 'inspect' the values of procedures and
functions, to find out their address and workspace requirements. Vou will also be able to enter other folds,
and browse through the source code, to determine the context of the error. If you forget where the error
actually was, press IRELOCATEI to return there. (Press ICODE INFORMATIONI again to tell you which tool key it
is!)

Instead of moving the cursor to each symbol in turn, you may also inspect a symbol by typing in its name. If
you move the cursor to a position where it is not over any symbol, and press nNsPEcTl, the debugger will ask
you to type in the name which you are interested in.

9.6.5 Jumping down channels

As well as finding the error location, the debugger can be used to find out which other processes were
executing at the same time. If you point at the channel 'out', for example, then press IINSPECTI it will display:

CHAN 'out' has Iptr:#80000611 and Wdesc:#80000285 (Lo) (at #800004BO)

This indicates that there is a process waiting for communication on that channel (the 'Iptr' and 'Wdesc'
identify it), and the debugger also informs you that it is a low priority process, and gives the address of the
channel word in memory.

To find out which occam process is waiting, press ICHANNEL! (again to find which tool key, press
ICODE INFORMATION!). The debugger will move the cursor to the line where the other process is waiting.

114

This will be inside the Isum' procedure, on the line

in? x

9 Debugging

As before, you may now point at any symbol and inspect it. You will find that channel lout' also has a
process waiting. Use the ICHANNEL! key to Ijump' to that process. This will be in the Icontrol.' procedure,
which is waiting for the final result. Again you may inspect any symbol. You can also discover that channel
Iscreen' has a process waiting, but note that there is a star (,*') on the message line. This indicates that
the process which is waiting is not part of your occam program - in this case it is the TDS itself, which is
listening for output to the screen. Therefore if you try to jump to that process, you will be told

Cannot jump - Channel. points to an inval.id l.ocation

9.6.6 Retrace and Backtrace

So far the debugger has helped to find three of the five processes which were running in parallel. What about
the other two? You can use the IRETRACEI key to retrace your steps (see ICODE INFORMATION!). This will take
you back to the Isum' procedure, then back to the Isquare' procedure. Now you can look in channel lin',
which you know is connected to the Ifacs' procedure. Unfortunately it is empty, which means that the other
process is not waiting to communicate.

The next function to try is ISACKTRACEI. This key makes the debugger backtrace down the procedure calling
stack for one procedure or function call; Le. it moves the cursor to the line from which the current procedure
or function was called. If you press ISACKTRACEI now, the cursor will move to the line where Isquare' was
called. Again, you can inspect any symbol which is in scope at this line. For example, you can look in the
channels 'feed. to. facs' and 'facs . to. square', but both will be empty. You have already looked in
the other channels, but you can do so again.

This means that the other two processes were actually executing in parallel at the time of the error, rather
than waiting to communicate. To find them, you need to look at the transputer's active process queues.

9.6.7 Process Queues

The lower level transputer information is accessed by using the IMONITORI key. This displays a screenfull
of information about that processor, and a list of available commands. The command which displays the
processor's active process queues is 'R' (for 'running' processes). Again you can use ICODE INFORMATIONI to
display a summary of what each command does, or type I?'.

'R' will display a list of the processes on the queue. There will be two processes, identified by two lines
containing an Iptr and Wdesc.

Other useful commands are IT' (Timer queues), which displays the processes waiting on the transputer's
timers; and 'L' (Links), which displays the processes waiting for communication on the transputer's links.

9.6.8 Display occam

Type 10' for occam, so that we can display the occam for these processes. You will be asked:

Iptr (#80000766) ?

Here you should type the Iptr value shown on the first line on the right hand side of the display produced
by command IR'. You can either type it in full, or use a special short-hand version where 1%' is used to replace
1#800 •• '. E.g. you could type either 1#8000055A', or '%55A'. Hexadecimal letters do not need to be in
uppercase.

You will then be asked for a Wdesc, but the debugger will give the associated Wdesc as the default, so you
can simply type IENTERI here. The debugger will then display the occam line where the process was running.

9.6 A worked example

You will be left with the cursor in procedure 'feed', on the line

out! i

115

Because this process is on the process queue, not waiting for communication, it has performed that commu
nication, and is just about to resume executing. You can examine variables, etc., as before.

To find the last process, press IMONITORI again, and use the '0' command to locate to the second process
listed on the queue. The debugger may discover that this process is actually executing code inside one of the
REAL64 arithmetic libraries. As INMOS does not supply the source code for these libraries, the debugger
cannot display the relevant line. Instead it will backtrace to the line where the arithmetic is being performed;
in this case the line inside the factorial function:

resu1t := resu1t * (REAL64 ROUND i)

Depending upon exactly how the program was executing when it failed, it may locate to the replicated SEQ
instead.

Again, you may inspect variables. By inspecting 'i', you find out how many times that loop has been executed.
You can ISACKTRACEI to find out where the function was called from.

9.6.9 Finish

To exit the debugger from symbolic mode use IEXIT FOLDI, then IFINISHI. Use command 'Q' to exit from the
Monitor page.

9.6.10 Other functions

While in the debugger, there are a few more tools available. The ITOpl key will return you to the error location,
or to the last location selected by an '0' command from the monitor page.

The [Q!i"@] key displays a summary of which other processors this transputer's links are connected to. This
is not useful when debugging an EXE, but is useful when debugging a PROGRAM.

The UNFOI key displays the Iptr, Wdesc, and priority, of the last position located to, together with the
processor type and number.

9.6.11 More information

This worked example should have given you an idea of how to use this post-mortem debugger. Chapter 15
contains a full description of how to use all of these debugging tools, including extensions not listed here,
such as inspecting arrays.

116

9.7 How the debugger works

9 Debugging

The following documents describe the way the transputer implements occam for those who are more inter
ested.

• Technical note 21: 'The transputer implementation of occam'

This note details how such features as PAR, ALT, TIMER, and channels, are implemented on the
transputer.

• 'The transputer instruction set - a compiler writer's guide'

This book describes the transputer's instruction set, but at a lower level, and is not particularly
relevant to occam programmers.

9.7.1 How the debugger accesses the network

The technical details of how the debugger analyses the network and examines its state are described in
INMOS technical note 33 'Analysing transputer networks'. The method used is outlined briefly here. It can
successfully analyse networks consisting of hundreds or thousands of transputers of mixed type.

First the debugger reads the program's configuration details, and uses these to build a picture of the transputer
network. It then reloads the network with a program known as an 'analyse worm'. This program allows the
debugger to access any transputer in the network, by setting up a message routing system. Obviously, this
program will itself corrupt each transputer's memory contents, so before it is loaded, the debugger 'peeks' the
portion of memory which will be overwritten into abuffer on the host, along with the saved register contents.
This works out to be approximately 700 bytes per processor, so, for example, a 10 processor network would
require 7 Kilobytes, or 10000 processors would require 7 Megabytes. Note that if each of these 10000
processors had 1 Mbyte of local store, this is minute compared with a total memory size of 10 Gigabytes!
When the debugger needs to read any memory contents which are not included in this buffer, it sets up
a communication path through the network and requests the required data. In this way it is not necessary
to buffer the complete memory contents of the network, so it is quite feasible to debug large networks of
transputers.

9.7.2 Debugging information generated by the compiler

An important aspect of this debugging system is that the create. debuggi.ng . i.nfo option of the compiler
merely forces the creation of the extra debugging information; it does not affect the compiled transputer
code which is produced. Thus a program compiled with debugging enabled will behave identically to the
same program compiled with debugging disabled. The option to disable debugging only exists to speed up
compilation, and to reduce file space requirements.

The debugging information generated by the occam 2 compiler now includes:

• Workspace offsets for all variables, procedure and function parameters, abbreviations, channels,
and arrays, together with their types.

• The types and values of all constants which have been declared.

• The names of all protocols and their variant tags, together with ports and timers.

• The workspace requirements and location of each procedure and function; at the transputer instruc
tion level, occam functions and procedures are identical.

Using this information, together with the configuration details of the program, the debugger can build a
complete map describing the locations of any variables currently in use on any processor in the network.

9.7 How the debugger works 117

9.7.3 How the symbolic facilities work

Any occam process running within the network can be identified by the transputer number within the network,
an instruction pointer, and a workspace descriptor. On anyone transputer, there may be many different
processes executing the same portion of code, but each will have a different workspace, where all local
variables and channels are stored. Of course, the same code may also be executing on other processors in
the network.

After analysing the network, the debugger can determine the last instruction executed and the workspace
descriptor of each processor in the network. It uses this last instruction pointer, and instruction pointers taken
from the active process and timer queues, and the processes waiting on the transputer links, to find occam
processes to be examined.

9.7.4 Backtracing

Included in the debug information are details of the workspace requirements and code layout of each pro
cedure or function. Therefore, given an instruction pointer, the debugger can discover which procedure is
currently being executed, and its workspace requirements. Using this information, together with that process'
workspace descriptor, it can read the return address of that procedure, and hence find the procedure call.
The workspace is then adjusted to allow for that used by the procedure, and the space used by the procedure
call, to give the workspace descriptor for the calling statement. This is then used, together with the return
address, to locate to the occam line containing the procedure or function call.

9.7.5 Inspecting variables

The compiler produces a map showing the workspace offset and type of each variable, parameter, or abbre
viation used within that procedure. Thus, given an instruction pointer to indicate which procedure is being
executed, and a workspace descriptor for that procedure's local data space, it can calculate the location of
any data item in the transputer's memory, and read the data to discover the variable's contents.

Non-local variables must be accessed differently. The debug information includes details of the lexical level
of each procedure, so that the lexical level of non-local variables can be found. The lexical level is the level
of procedure nesting within the occam source. This is then used to follow the chain of procedure calls to
the correct procedure's local data space, and hence to find the correct location of the data.

9.7.6 Jumping down channels

Channels which provide communication between two processes executing on the same transputer are im
plemented by means of a word in memory. This contains the workspace descriptor of a process waiting for
communication on that channel, or a special value to indicate that it is idle. The debugger can examine
a channel to see whether a process is waiting, and if so, it can read the process' instruction pointer and
workspace descriptor to jump directly to that process. .

9.7.7 Analysis of deadlock

If a set of occam processes is deadlocked, there may be no available path into the occam program, from
which to start debugging. Internal, or 'soft', channels can only be inspected by the debugger if they are in
the scope of an active occam process. This means that a deadlock may be difficult to debug. Note that a
deadlock waiting for a communication on a transputer link, or 'hard' channel, is easily debugged by inspecting
the process waiting on the link.

However, a simple source modification will allow easy detection of any of the deadlocked processes. Suppose
you believe that a certain channel, or a few channels, are causing the deadlock. Then all that need be done
is to add a small process in parallel, in such a position that this channel or channels are in scope. The added
process does not need to do anything, except be active in some way. For exar:nple, it could just wait on the
timer for a long time, or loop continuously. Note that on a transputer a process waiting on the timer consumes

118 9 Debugging

no cpu resource. However, the debugger can then find its way into the source, to inspect those channels,
and jump to the process which is waiting. Any variables which are in scope there may then be examined,
and debugging can continue as normal.

Consider this short procedure:

PROC dead10cks ()
CBAN OF INT c :
PAR

c ! 0
INT x
SEQ

c ? x
c ? x -- this procedure wi11 dead10ck here!

When executed, this procedure will deadlock on the internal channel'c', leaving no active process, and thus
prevent the debugger from accessing any variables, etc. It can be changed to:

PROC dead1ocks.but.debuqqab1e ()
CBAN OF INT c :
PAR

TIMER t :
INT n :
VAL one.second IS 15625 : -- T414B, 10w priority
VAL one.day IS one.second * «60 * 60) * 24)
SEQ

t ? n
t ? AFTER n PLUS one. day this process wi11 be

waitinq here!
c 0
INT x
SEQ

c ? x
c ? x -- The debuqqer wi11 jump to here

This procedure will still appear to deadlock, and will not set the transputer's error flag, but when it is interrupted
by analysing the network, there will be a process on the timer queue.

The debugger can read the timer queue to locate to the delayed timer input, and leave the cursor on that
line. The user can then move the cursor to the declaration of channel 'c', and press the ICHANNEL! function
key. The debugger will then move the cursor to show the deadlocked input statement; any variables which
are in scope can then be examined, to determine the cause of the deadlock.

Obviously, in this simple case it is easy to see what has caused the deadlock by inspecting the source code.
In more complicated programs this ability to find deadlocks can be very useful.

An alternative approach to the analysis of deadlock is to display all the workspace as CHAN variables and to
locate to any waiting channels so found. Only locations containing Wdesc values pointing to valid workspace
stack frames are included in such a display.

9.7 How the debugger works 119

9.7.8 occam scope rules

It is necessary to realise that the debugger can only supply the contents of variables which are in lexical
scope at the current occam context. This can best be illustrated by an example:

PROC p ()
INT a :
PROC q (VAL INT b)

INT c :
SEQ

C := b + a

PROC r (VAL INT d)
INT e :
SEQ

e .- 0
e .- d / e

INT x :
SEQ

x, a := 99, 57
INT Y :
SEQ

y := 42
q (y)

r (x)

The debugger will 10cate to here
after the error

-- And backtrace to here

In this example, the divide in procedure er' would cause an error, and the debugger can locate to that line.
Here the variables le', Id', and 'a' may be inspected, but not 'x', 'y', cc', or b', since these are not in scope.

After backtracing, when located at the call of er', only variables 'a' and 'x' may be inspected, since the others
are all no longer in scope.

10 EPROM programming
10.1 Introduction

The INMOS EPROM software is designed so that programs which have been developed and tested using
the TDS may be placed in a ROM without change. This has the advantages that an application need not be
committed to ROM until it is fully debugged and the actual production of the ROMs can be done relatively
late in the development cycle without the fear of introducing new problems.

Figure 10.1 shows how a network of five transputers would be loaded from the TDS.

Boot from link

flink

TDS ~ Root transputer~ Boot from link ~ Boot from linkboot from link

!link

Boot from link

Figure 10.1 Loading a network from TDS

Figure 10.2 shows how the same network of five transputers would be loaded from a ROM accessed by the
root transputer. The data being input by the root transputer from the ROM buffer is identical to the data being
input by the root transputer in figure 10.1 from the link to the TDS.

Boot from link

flink

from ROM-. Root transputer~ Boot from link ~ Boot from linkbuffer boot from ROM

!link

Boot from link

Figure 10.2 Loading a network from ROM

Creating a ROM from a debugged network program is a straightforward sequence of steps using standard
TDS utilities and tools. The two components to be put into the ROM are: firstly the debugged application

122 10 EPROM programming

program and secondly an INMOS supplied loader. These two components are placed together in a fold
bundle to which the make EPROM tool is applied. The result of applying the tool is a third fold in the bundle
which can then be burnt directly into an EPROM.

Details of how to create the fold bundle, how to burn the created output into the ROM and how to create
ROMs which have different loading and running requirements from the standard case are described in the
following sections.

This chapter introduces three programs which are used in creating ROMs.

EPROM hex program This is the program which is used to convert a working application program into a file
suitable for loading into an EPROM.

Hex to programmer program This program takes the output of the EPROM hex program, and sends it to
an EPROM programmer. The program interfaces to a GPXP640 EPROM Programmer using Intel
Hex format. The sources of the Hex to programmer program are provided so that they may be
modified for EPROM programmers expecting a different format.

Write EPROM file program This is similar to the Hex to programmer program but writes to a file.

This chapter also introduces a program which can be used in conjunction with the ROM software.

Memory interface program This is an interactive program which allows the user to explore the effects of
changes in the memory interface timing parameters of the IMS T414 and IMS T800 processors. It
can produce a memory configuration table which can be included by the EPROM hex program in
the file to be burned into the ROM.

Each of these programs is described in detail in chapter 15 of this manual. Section 15.3 describes the Memory
interface program in detail. Section 15.4 describes the EPROM hex program. Section 15.5 describes the
Hex to programmer program. Section 15.6 describes the Write EPROM file program.

10.2 How to create the fold bundle

An empty fold bundle is created by pressing ICREATE FOLDI twice anywhere in the fold structure. Two items
need to be placed in this fold bundle; the application program and the loader.

Once the application program has been tested on a target network it should be extracted by running the
IEXTRACTI utility of the occam compiler utilities on the compiled PROGRAM fold set to produce a CODE
PROGRAM fold. The CODE PROGRAM fold produced as a new last item in the PROGRAM foldset should be
moved into the fold bundle created earlier. When applied to a PROGRAM the IEXTRACTI utility prompts for two
parameters:

and

VAL output.fo1d IS BOOTABLE : BOOTABLE I DIAGNOSTIC

VAL first.processor.i~.boot.from.1ink IS FALSE:

The parameter output. fo1d determines whether the CODE PROGRAM fold is to contain load time diag
nostic information. BOOTABLE is slightly faster and would be used if the processor booting from ROM has
no channel to communicate any load failures to. DIAGNOSTIC could be used if a channel is available to
report failures to and the load is regarded as being unreliable in some way.

The parameter first. processor . is . boot. from. 1ink determines how much space in RAM on the
first processor should be avoided by code loaded into that processor. The network loader running from ROM
has a greater workspace requirement than the equivalent loader run as part of the bootstrap when booting a
processor from link. Because the first processor will ultimately be booted from ROM, this parameter should
be set to FALSE both when developing the application and when extracting the program for burning into
EPROM.

10.3 Creating the ROM file 123

The second item to be placed in the fold bundle is the loader. The loader is added to the fold bundle as a
CODE se fold. An example loader is provided in the TDS tools source directory \TDS3\TOOLS\SRC with
the fold comment:

SC mu1t1board eprom 10ader (no diagnostics) 17th March 1988

This should be compiled and extracted to create a CODE se fold, which can be moved and placed into the
fold bundle without modification.

The fold bundle is now complete and appears as follows:

{{{ fo1d bund1e for EPROM
... F CODE PROGRAM app1ication
... F CODE SC mu1t1board eprom 10ader (no diagnostics) 17th March
} } }

10.3 Creating the ROM file

Having created the fold bundle containing the application and the loader, the next step is to create from this a
file suitable for burning into an EPROM. The EPROM hex program epromhex (see section 15.4) performs
this function. The EPROM hex program must first be loaded from the Tool.s fold in the toolkit fold by using
IGET CODEI and then run on the fold bundle created as a result of the actions described in the previous section.
The result is a new last fold in the bundle with the fold comment EPROM hex so the fold bundle now appears
as follows:

{{{ fol.d bundl.e for EPROM
... F CODE PROGRAM app1ication
... F CODE se mul.t1board eprom l.oader (no diagnostics) 17th March
... F EPROM hex
} } }

The first line in the EPROM hex fold holds the start address of the ROM code in the processor's address
space and identifies the processor type. The remainder of the fold consists of a sequence of hexadecimal
bytes to be placed in ROM from the specified address onwards.

The EPROM hex program will prompt the question:

Insert copy for anal.yse (y/n)

This is described fully in section 10.6, 'ROMs which load from a host computer'. For the example considered
here, the answer should be n (no).

10.4 Burning the ROM

The fold created by the previous section is now ready for sending to an EPROM programmer for burning into
the ROM. The Hex to programmer program performs this function. The Hex to programmer program must
first be loaded from the Too1s fold in the toolkit fold by using IGET CODEI.

The Hex to programmer program hextoprg (see section 15.5) should be run with the cursor on the EPROM
hex fold produced by the EPROM hex program described in the previous section. It produces output in a
form suitable for controlling an EPROM programmer via COMl on the the IBM PC. The file COMl is treated
by DOS as a communications port. Therefore, to connect an EPROM programmer to an IBM PC requires a
serial card installed as COM1. It may be necessary to use the DOS MODE command to configure the serial
card to the correct baud rate, parity, etc., for the EPROM programmer.

The procedure used depends on the width of the memory interface on the board for which the EPROMs
are intended. The Hex to programmer program reads the first line of the EPROM hex fold to determine the
processor type and hence the number of ROMs required. The IMS T414, IMS T425, IMS T800, IMS T801

124 10 EPROM programming

-- standard parameter l.ist

and IMS T805 have a 4 byte wide memory interface and therefore require 4 byte-wide RaMs. The IMS T212,
IMS T222 and IMS T225 have a memory interface which can be configured dynamically to be 1 or 2 bytes
wide. If the code is intended for an IMS T212, IMS T222 or IMS T225 the program will ask whether the ROM
is being accessed in byte mode (1 ROM required) or word mode (2 RaMs required). If more than one ROM
is required they must be programmed separately and the user must identify which is being programmed. The
Hex to programmer program will select the appropriate bytes from the EPROM hex fold.

The start address of the code within the processor's address space is also read from the first line of the
EPROM hex fold. This, and the size of the ROM being programmed, are used to calculate the start address
of the code within the ROM. The ROM size is entered by the user.

An alternative program promfil.e may be used to send ROM images to host files (see section 15.6).

10.5 Execution from ROM instead of RAM

Earlier sections of this chapter described how to make an EPROM suitable for booting a network of transputers
with an application which is run in RAM on all processors in the network. In certain circumstances it may
be desirable to execute the application code while it is resident in ROM rather. than loaded into RAM. It
may be the case that the application running on the processor booted from ROM is the only processor in
the network or the processor booted from ROM may boot all the other processors as in the earlier example
before continuing with the application code executed from ROM.

Single transputer with application in ROM

In the first case, where the application program is running from ROM as a standalone embedded system on
a single transputer, the fold bundle is simplified to contain just a eODE se fold. The se implements the
required application.

The application should be developed under the TDS as an se compilation unit containing one procedure and
tested as the only processor in a network loaded by the TDS. The EPROM hex program sets up values for a
standard set of parameters for the se to be included in the ROM, the parameters are values required by the
loader described earlier.

PRoe EPROM.Se(INT entry.point,
[60]BYTE buffer,

VAL [600]BYTE memory.copy,
VAL []BYTE program. buffer)

appl.ication

The application needs to have this form. The best way to achieve this is to develop it under the TDS with
only those parameters necessary for loading from the TDS, and then move the developed se into an se of
the above form for final compilation and extraction, as follows:

{{{ se eprom source
{{{F eprom source
••• EPROM.se

se appl.ication
appl.ication ()

} }}
} } }

When running the EPROM hex program, the question Insert copy for anal.yse? should be an
swered n (no). The EPROM hex program may produce the warning message:

WARNING: total. RAM space requirement exceeds max~um

al.l.owedfor a l.oader (l~it = 560 bytes)

This message is significant only when the ROM is loading code into local RAM and so may be ignored in this
case.

10.6 ROMs which load from a host computer

Load network then continue in ROM

125

In the second case, the ROM processor will boot the rest of the network as in the original example, but will
then continue executing from ROM.

Two different options are again possible. For the first option, the application to be run on the processor
booted from ROM is developed independently from the network; for example as an EXE running within the
TDS interfacing to the network program. For the second option, the application to be run on the processor
booted from ROM is developed as the root processor in the network program.

In the first option, the code running from ROM must emulate the action of the TDS in booting the rest of the
network and then carry on with the developed application.

... EPROM.SC -- standard parameter 1ist
CHAN OF ANY boot.1ink:
PLACE boot.1ink AT 2:
SEQ

boot.1ink ! program.buffer -- 10ad network
SC app1ication

app1ication ()

In the second option, the code running from ROM on the root processor must load the rest of the network as
in the original example but ignore all code directed to be loaded into RAM on the root processor. After the
load is completed, control should continue within the SC rather than terminate in the manner of the network
loader.

... EPROM.SC -- standard parameter 1ist
SC modified network 10ader
SC app1ication

SEQ
1oad.network (program.buffer)
app1ication ()

When running the EPROM hex program, the question Insert copy for ana1yse? should be an
swered n (no) in both of the options described above. The EPROM hex program may produce the warning
message:

WARNING: tota1 RAM space requirement exceeds max~um

a110wed for a 10ader (1~it = 560 bytes)

This message is significant only when the ROM is loading code into local RAM and so may be ignored in
both of the above options.

10.6 ROMs which load from a host computer

For some applications it may be desirable to create a ROM which is capable of loading a network of transputers
from a host computer using a non-link interface (such as RS232). An example of this type of ROM is the
monitor program on INMOS evaluation boards which include serial RS232 ports.

This type of system is a variation of the single application running from ROM, in which the application is
a loader, and the ROM fold is created in a similar manner. The source of the INMOS monitor program is
provided in the TDS tools directory with the fold comment:

SC BOOx.monitor (24th February 1988)

for modification by users to match their particular hardware. The TDS uses additional handshaking sequences
and, if necessary, byte encoding, when loading a network via RS232.

126

An outline of the INMOS monitor is given below.

PROC BOOx.monitor (INT
[60]BYTE
VAL[600]BYTE
VAL[] BYTE

l.ink pl.acements
constants
l.oad
anal.yse

SEQ

10 EPROM programming

entry.point,
buffer,
memory. copy,
proqram.buffer)

respond to wake up character
read. char (l.ine, char) -- not encoded
IF

... 'B' : straiqht binary

... 'B' : encoded hex
otherwise bad protocol.

qet.char (l.ine, char) -- encoded
char := char /\ #7F
IF

char = (INT ' A')
anal.yse ()

char = (INT ' L')
l.oad ()

TRUE
bad protocol.

The INMOS monitor can also interface to the TDS for analysing networks. Analysing and debugging software
accessing a processor needs to examine the contents of workspace as it was when the previous execution
of a program was halted (probably through the error flag being set). The low addressed part of RAM, which
is likely to be of interest to a debugger, is the area which the ROM employs for workspace. If the response to
the prompt by the EPROM hex program Insert copy for anal.yse? is given as y (yes), the program
in ROM will copy this area to the high addressed part of the available RAM. If it is not necessary for the ROM
to be used to interface to host software analysing the network then a n (no) response is suitable.

The TDS loading and analysing protocols and the special requirements for using serial lines are described in
INMOS technical notes 33 and 34.

Workspace for this type of ROM must be kept small to make certain that the loader is not directed to load
code to an area occupied by ROM workspace. The EPROM hex program produces the warning message

WARNING: total. RAM space requirement exceeds maximum
al.l.owed for a l.oader (l.imit = 560 bytes)

if the workspace used by the ROM extends into areas to which the loader may be directed to load code.
Note that compiling the code without a separate vector space in general reduces the code's total workspace
requirement.

10.7 Adding a memory configuration to the EPROM

IMS T414, IMS T425, IMS T800 and IMS T805 transputers can configure their memory interface from a table
of words stored at the most positive addresses in their memory space. These addresses are within the area
occupied by an EPROM which can be used to boot a transputer. The EPROM hex program can include such
a configuration table into the output file at the correct configuration addresses. To cause this to occur it is
simply necessary to include the memory configuration table as an additional filed fold in the fold bundle on
which the EPROM hex program is run. The required fold is labelled . • . (confiquration) and must
be filed, using IFILE/UNFILEI The order of the folds is unimportant.

The configuration table expected by the EPROM hex program is in the format output as a result of running the
Memory Interface program memint (see section 15.3). Such a fold may be generated by hand, if desired,
the main requirement being that the fold is complete (Le. all address-value pairs are present).

11 Low level programming
This chapter describes a number of features of the occam 2 compiler in the TDS which support low-level
programming of transputers. These are as follows:

Allocation This allows a channel, a variable, an array or a port to be placed at an absolute location in
memory.

Code insertion This allows sections of transputer machine code to be inserted into occam programs.

Dynamic code loading A set of compiler library procedures allow an occam program to read in a section
of compiled code (from a file, for example) and execute it.

Extraordinary use of links A set of library procedures allow link communications which have not completed
to timeout or be aborted by another part of the program.

11.1 Allocation

allocation =PLACE name AT expression :

The PLACE statement in occam allows a channel, a variable, an array or a port to be placed at an absolute
location in memory. This feature may be used for a number of purposes; for example:

• Mapping occam channels onto the 'hard channels' implemented by transputer links, from within an
occam program.

• Mapping arrays onto particular hardware, such as video RAM.

• Accessing devices (such as UARTs or latches) mapped into the transputer's address space.

The PLACE statement may not be used to force critical arrays or variables onto on-chip RAM. The occam
compiler allocates memory according to the scheme outlined in chapter 6; it does not take account of data
placed at some arbitrary position in the memory it is trying to allocate. So placing data within the data space
allocated by the compiler will interfere with other data placed there by the compiler. To make the best use of
on-chip RAM, use the 'separate vector space' facility of the compiler described in chapter 6.

The address of a placed object is derived by treating the value of the expression as a subscript into an INT
array mapped onto memory. Thus PLACE n AT 1: would cause n to be allocated address #80000004
on a 32-bit transputer. Addresses are calculated in this way so that the transputer links can be accessed
using word length independent code (the links are addresses 0, 1 up to 7).

Translation from a machine address to the equivalent occam [] INT subscript value can be achieved by
the following declaration:

VAL occam.addr IS (machine.addrX(MOSTNEG INT» »w.1ength:

Where w. 1ength is 1 for a 16-bit transputer and 2 for a 32-bit transputer.

128 11 Low level programming

Some useful allocations are given below:

CBAN OF ANY in.1inkO, out.1inkO
CBAN OF ANY in.1ink1, out.1ink1
CBAN OF ANY in.1ink2, out.1ink2
CBAN OF ANY in.1ink3, out.1ink3
CBAN OF ANY in.event:

PLACE out.1inkO AT 0:
PLACE in.1inkO AT 4:

PLACE out.1ink1 AT 1:
PLACE in.1ink1 AT 5:

PLACE out.1ink2 AT 2 :
PLACE in.1ink2 AT 6:

PLACE out.1ink3 AT 3:
PLACE in.1ink3 AT 7:

PLACE in. event AT 8:

[4]CBAN OF ANY out.1inks, in.1inks

PLACE out.1inks AT 0:
PLACE in.1inks AT 4:

All placed objects must be word aligned. If it is necessary to access a BYTE object on an arbitrary boundary,
or an INT16 object on an arbitrary 16-bit boundary, the object must be an element of an array which is placed
on a word address below the required address. For example, to access a BYTE port called io ~ reqister
located at physical address #40000001 on a T4 the following must be used:

[4]PORT OF BYTE io.reqs.vec :
PLACE io.reqs.vec AT #30000000 :
io.reqister IS io.reqs.vec[l] :

h01d reset hiqh

set reset and initia1ise 10w

5 ms is amp1e
reset subsystem

! 0
o
1
time
AFTER time PLUS 78:
o

Placement may be used on transputer boards to access board control functions mapped into the transputer's
address space. For example, on the IMS B004, the subsystem control functions (Error, Reset and Analyse)
are mapped into the address space, and can be accessed from occam as placed ports. The following code
will reset subsystem on the IMS B004, an IMS B008 or compatible board:

PROC reset.b004.subsystem()
VAL subsys.reset IS (0 >< (MOSTNEG INT» » 2:
VAL subsys.ana1yse IS (4 >< (MOSTNEG INT» » 2:
VAL subsys.error IS (0 >< (MOSTNEG INT» » 2:
PORT OF INT reset, ana1yse, error:
PLACE reset AT subsys.reset:
PLACE ana1yse AT subsys.ana1yse:
PLACE error AT subsys.error:
TIMER c10ck:
INT time:
SEQ

ana1yse
reset !
reset !
c10ck ?
c10ck ?
reset !

The error and analyse functions can be controlled from occam in a similar way. The pipeline sorter exam
ple described in chapter 7 shows an example of monitoring the subsystem error flag from a program (the
monitor program) running on the IMS 8004.

11.2 Code insertion

11.2 Code insertion

129

This section describes the facilities provided by the occam 2 compiler code insertion mechanism.

The code insertion mechanism enables the user to access the instruction set of the transputer directly within
the framework of an occam program. Symbolic access to occam variable names is supported, as is
automatic jump sizing. More details on the instruction set may be found in the INMOS document 'The
transputer instruction set - a compiler writer's guide'.

Code insertion may be employed to perform tasks not possible from occam, or for particularly time-critical
sections of a program. There are several reasons, however, which should encourage the user to refrain
from using code insertion as a solution to problems which may, with some thought, be solved using occam.
Paramount among these is that the validity of a system consisting entirely of occam can be checked by
the compiler. A compiler can check usage of channels, access to variables, communication protocols and
range violations. A single code insert prevents the compiler from performing these checks adequately. A
second reason for not using code insertions is that the transputer instruction set is suited for use by a high
level language, particularly occam, and algorithms which are simple to code and easy to debug in occam
become difficult and obscure when coded in the transputer instruction set directly.

11.2.1 Using the code insertion mechanism

An occam 2 code insertion is introduced by the construct GUY. The context of the GUY construct is deter
mined, as with all occam constructs, by its indentation. The transputer instructions which follow the GUY
must be indented and there may only be one instruction per line. Lines may be terminated by a comment,
which is introduced by the -- symbol as in occam. The transputer instructions are upper case versions
of the standard mnemonics listed in INMOS documentation. The code insert is terminated by the matching
outdent.

A compiler parameter code. inserts determines which instructions may be used within sections of code
insertions, in the unit being compiled. If the value is NONE, no code insertions are allowed and the compiler
will flag the first such instruction as invalid. If the value is RESTRICTED, then the instructions allowed are
a restricted set of instructions which are sufficient for time-critical sections of sequential code. If the value is
ALL, then all transputer instructions are allowed including OPR for the creation of arbitrary instruction codes.
Since the inclusion of some instructions may have an unexpected effect on the occam program (for example,
instructions which move the workspace pointer), instructions outside of the restricted set must be used with
great care. A list of the restricted set of transputer instructions is given in appendix H.

For example, to perform a 1's complement addition we can write the following occam:

INT carry, temp:
SEQ

carry, temp := LONGSUM (a, b, 0)
c := carry PLUS temp

However, if this occurs in a time-critical section of the program we might replace it with:

GUY
LDC 0
LDLa
LDLb
LSUM
SUM
STL C

which would avoid the storing and reloading of carry and temp.

Values in the range MOSTNEG INT to MOSTPOS INT may be used as operands to all of the direct functions
without explicit use of prefix and negative prefix instructions. Access to non-local occam symbols is provided
automatically without explicit indirection.

130 11 Low level programming

A more complex example, which sets error if a value read from a channel is not in a particular range, takes
advantage of both these facilities:

(CBAN OF INT c)

push va1ue of free variab1e onto stack
push 512 onto stack
if NOT (0 < a <= 512) then set error

a
512

INT a :
other stuff

PROC qet.and.check.index
SEQ

c ? a
GUY

LDL
LDC
CCNT1

If there is a requirement for the code insertion to use some work space, then the work space may be declared
before the GUY construct, in which case, the work space locations are accessed just like any other occam
symbols.

a :INT
SEQ

INT
GUY

LDL
STL

b, c

a
b

more code

push va1ue in a onto stack
pop va1ue from stack into b

11.2.2 labels and jumps

To insert a label into the sequence of instructions, put the name of the label, preceded by a colon, on a line
of its own. Then when the label is used in an instruction, precede the name with a full stop. For example:

GUY
some instructions

:FRED
some more instructions

CJ .FRED

A restriction of the compiler is that the same label name may not be defined more than once within an occam
procedure.

11.3 Dynamic code loading

Introduction

The transputer development system permits the dynamic loading and execution of code, using the procedures
described in this section. The procedures are listed in section 14.2.6.

The procedures described allow the programmer to write an occam program that reads in a compiled occam
procedure and then calls it. The called procedure may be compiled and linked separately from the calling
program and may even be generated by a compiler outside the TDS. It may be read into an array of the
calling program from a transputer link or from a file in a host filing system. Alternatively it may be converted
into an occam table by using as source code the wocctab tool and included in the calling program. It is
possible to pass parameters to the procedure, which must have at least 3 formal parameters.

11.3 Dynamic code loading

11.3.1 The call

131

The occam compiler recognises calls of a procedure KERNEL. RUN with the following parameters:

PROC KERNEL. RUN (VAL [] BYTE code,
VAL INT entry.offset,

[]INT workspace,
VAL INT no.of.parameters)

The effect of a call of :KERNEL. RUN is to call the procedure in the code buffer, starting execution at the
location code [entry. offset] . The workspace buffer (see figure 11.1) is used by the called procedure
for its local scalar data. The required size of this buffer and the code buffer must be derived from information in
the code file. The parameters passed to the called procedure should be placed at the top of the workspace
buffer by the calling procedure before the call of KERNEL. RUN. The call to KERNEL. RUN returns when the
called procedure terminates. If the called procedure requires a separate vector space, then another buffer of
the required size must be declared, and its address placed as the last parameter at the top of workspace.
As calls of KERNEL. RUN are handled specially by the compiler it is necessary for no . of .parameters
to be a constant known at compile time. This imposes some restrictions on the way :KERNEL. RUN is used.

Note that as, in general, a compiled procedure will include word-aligned constant tables it is important to
ensure that the code buffer is word aligned.

workspace[(SIZE workspace) - 1]

vector space pointer
or last parameter

saved wptr saved by KERNEL. RUN

[no.of.parameters+2]INT

1st parameter

parameters

saved iptr

[ws.requirement]INT

workspace of
called procedure

loaded by caller (must be ~ 3)

saved by KERNEL. RUN

workspace [0] ~

Figure 11.1 workspace buffer

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + no.of.parameters + 2]INT

where ws . requirement is the size of workspace required, determined when the called procedure was
compiled, and stored in the code file and no. of . parameters includes the vector space pointer if it is
required. The parameters must be loaded before the call of KERNEL. RUN. The parameter corresponding
to the first formal parameter of the procedure should be in the word adjacent to the saved iptr word, and the
vector space pointer or last parameter should be adjacent to the top of workspace where the wptr will be
saved.

132 11 Low level programming

11.3.2 Loading parameters

There are a number of library procedures to set up parameters before the call. These are:

LOAD. INPUT. CHANNEL (INT here, CHAN OF ANY in)
LOAD.INPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY in.vec)
LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)
LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY out.vec)
LOAD.BYTE.VECTOR (INT here, []BYTE b.vec)

The variable here is assigned the address of the second parameter. Note that when passing vector param
eters, if the formal parameter of the PROC called is unsized then the vector address must be followed by the
number of elements in the vector, for example:

LOAD.BYTE.VECTOR(param[O], buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be in the units of the array (not
in bytes, unless it is a byte vector, as above). For multi-dimensional arrays, one parameter is needed for
each unsized dimension, in the order the dimensions were declared.

All variables and arrays should be retyped to byte vectors before using LOAD. BYTE. VECTOR to obtain their
addresses, using a retype of the form: [] BYTE b. vector RETYPES variable:.
LOAD. BYTE. VECTOR may also be used to set up the address of the separate vector space. The size of
separate vector space does not have to be supplied, but must be adequate for the called procedure.

11.3.3 Examples

Example 1: load from link and run

This is a simple procedure to load a code packet from a link and run it. The type of the packet is given by
the protocol PROTOCOL CODE. MESSAGE IS INT:: [] BYTE; INT; INT
The code is sent first, as a counted array, followed by the entry offset and workspace size. KERNEL. RUN
requires the called procedure to have at least 3 parameters, but if, as in this case, none of these are used,
then the declaration of the called procedure can have no formal parameters. If the called procedure uses
separate vector space then at least 2 other (possibly dummy) parameters must be specified.

? code.length::code.buffer;
entry. offset; work. space. size

total.work.space.size :=
(work.space.size + no.parameters) + 2

[]INT work. space IS
[run.vector FROM 0 FOR total.work.space.size]

KERNEL.RUN (code.buffer, entry. offset,
work. space, no.parameters)

VAL
INT
INT
SEQ

input

PROC run.code (CHAN OF CODE.MESSAGE input, []INT run.vector,
[]BYTE code.buffer)

no.parameters IS 3: -- smallest allowed
code. length, entry. offset, work.space.size
total.work.space.size :

Example 2: loading arbitrary compiled procedures

This extended example, which is included in full in the software, shows how a program may be written which
can load separately compiled procedures created by the TDS or by INMOS toolset products. A compiled
procedure produced by ICOMPILEI and IEXTRACTI in the TDS, is stored in a CODE SC filed fold. The structure of
such a fold is described in appendix G. Note that the representation of the fold structure is pairs of bracketting
bytes around the records containing the header information and the code. If a compiled procedure in a CODE

11.3 Dynamic code loading 133

SC fold is written out to a DOS file by IWRITE HOSTI, the bracketting bytes are removed, but the records within
them are unchanged. The resulting host code file has exactly the same structure as one produced by the
INMOS toolset products (conventionally in a . rxx file).

The procedures 1oad. tds and l.oad. rxx load the contents of the two kinds of code file respectively. The
procedure cal.l. .pqm may be used to call a procedure loaded from either kind of file. The additional support
for programs with stack space in addition to work space and vector space is for programs compiled with the
INMOS scientific language compiler toolsets. This example allocates stack space between code space and
vector space, it may be more efficient to allocate stack space with workspace. Use of KERNEL. RUN gives
the user freedom to take such decisions.

It is not in general possible to write code to load and enter procedures whose parameter lists are not known
at the time the loader is designed.

--{{{ l.oadpgm
lOSEs
other decl.arations
l.oad.tds
l.oad.rxx

--{{{ cal.l..pqm
PROC cal.l..pgm ([]BYTE work.area, VAL INT stack.l.en, ws.l.en,

params.l.en, code.l.en, vs.l.en, entry)
INT b.stack.l.en:
SEQ

FOR p.l.en]

compute stack l.ength in bytes
--{{{ abbreviations etc
VAL b.ws.l.en IS ws.l.en TIMES bpw:
VAL b.vs.l.en IS vs.l.en TIMES bpw:
VAL b.params.l.en IS params.l.en TIMES bpw:
VAL b.code.l.en IS (code.l.en + (bpw - 1» /\ (BITNOT(bpw-l»:
VAL stk.start IS 0:
VAL ws.start IS stk.start + b.stack.l.en:
VAL p.start IS ws.start + b.ws.l.en:
VAL c.start IS p.start + b.params.l.en:
VAL v.start IS c.start + b.code.l.en :
VAL f.start IS v.start + b.vs.l.en :
b.workspace IS [work.area FROM ws.start

FOR b.ws.l.en + b.params.l.en] :
IS [work.area FROM c.start FOR code.l.en] :
IS [work.area FROM stk.start FOR b.stack.l.en]
IS [work.area FROM v.start FOR b.vs.l.en]
IS (SIZE work .-area) - f. start:
IS [work.area FROM f.start FOR f.l.en] :

b.codespace
b.stackspace
b.vecspace
VAL f.l.en
b.freespace
--}}}
SEQ

--{{{ l.oad parameters and run the program
VAL p.l.en IS params.l.en TIMES bpw:
SEQ

[]INT pspace RETYPES [b.workspace FROM p.start
SEQ

LOAD.INPOT.CHANNEL (pspace [1], from.isv)
LOAD.OOTPOT.CHANNEL (pspace [2], to.isv)
LOAD.BYTE.VECTOR (pspace [3], b.freespace)
[]INT freespace RETYPES b.freespace
pspace [4] := SIZE freespace

134 11 Low level programming

CASE params. l.en
6 -- no stack, no vector space

SKIP
7 -- vector space but no stack

LOAD.BYTE.VECTOR (pspace [5], b.vecspace)
9 -- vector space and stack

SEQ
LOAD.BYTE.VECTOR (pspace [5], b.stackspace)
[]INT stackspace RETYPES b.stackspace:
pspace [6] := SIZE stackspace
LOAD.BYTE.VECTOR (pspace [7], b.vecspace)

[]INT workspace RETYPES b.workspace
CASE params.l.en

6
KERNEL.RUN (b.codespace, entry, workspace,

7
KERNEL. RUN (b. codespace, entry, workspace,

9
KERNEL. RUN (b. codespace, entry, workspace,

--}}}

4)

5)

7)

--}}}

--{{{ main
decl.arations

SEQ
determine code fil.e type

CASE code.fil.e.type
--{{{ CODE SC from current fol.d
code. fil.e.CODESC. fol.d

l.oad.tds (from.user.fil.er[O], to.user.fil.er[O],
code.l.en, bigspace, prog.l.oaded,
ws.l.en, ps.l.en, vs.l.en,
code.entry.offset, target.type, fresul.t)

--}}}
--{{{ bootabl.e or l.oadabl.e program fil.e
ELSE

l.oad.rxx (from.isv, to.isv, [progfil.e.name FROM 0
FOR pfn. l.en] ,

code.fil.e.type = code.fil.e.bootabl.e,
code.l.en, bigspace, prog.l.oaded,
ws.l.en, ps.l.en, vs.l.en, stack.l.en,
code.entry.offset, target.type, fresul.t)

--}}}
IF

not l.oaded - message
TRUE

cal.l..pgm (bigspace, $tack.l.en, ws.l.en, ps.l.en,
code.l.en, vs.l.en, code.entry.offset)

concl.ude
--}}}
--}}}

Other examples

There are other examples of the use of KERNEL. RUN in the loader programs whose source is included with
the software.

11.4 Extraordinary use of links

11.4 Extraordinary use of links

135

The transputer link architecture provides ease of use and compatibility across the range of transputer prod
ucts. It provides synchronised communication at the message level which matches the occam model of
communication.

In certain circumstances, such as communication between a development system and a target system, it is
desirable to use a transputer link even though the synchronised message passing of occam is not exactly
what is required. Such extraordinary use of transputer links is possible but requires careful programming and
the use of some special occam procedures.

The use of these procedures is described in this chapter. To use them in a compilation unit, the directive
fUSE reinit should be inserted at the top of the source for that unit. See section 14.2.8 for a list of the
procedures.

11.4.1 Clarification of requirements

As an example, consider a development system connected via a link to a target system. The development
system compiles and loads programs onto the target and also provides the program executing in the target
with access to facilities such as a file store. Suppose the target halts (due to a bug) whilst it is engaged
in communication with the development system. The development system then has to analyse the target
system.

A problem will arise if the development system is written in 'pure' occam. It is possible that when the target
system halts, the development system is in the middle of communicating on a link. As a result, the input or
output process will not terminate and the development system will be unable to continue. This problem can
occur even where an input occurs in an alternative construct together with a timeout (as illustrated below).
When the first byte of a message is received the process performing the alternative commits to inputting;
the timer guard cannot subsequently be selected. Hence, if insufficient data is transmitted the input will not
terminate.

ALT
TIME ? AFTER timeout

from.other.system ? message

It is important to note that the problem arises from the need to recover from the communication failure. It is
perfectly straightforward to detect the failure within 'pure' occam and this is quite sufficient for implementing
resilient systems with multiple redundancy.

11.4.2 Programming concerns

The first concern of a designer is to understand how to recognise the occurrence of a failure. This will depend
on the system; for example, in some cases a timeout may be appropriate.

The second concern is to ensure that even if a communication fails, all input processes and output processes
will terminate. As this cannot be achieved directly in occam, there are a number of library procedures which
perform the required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish communication on the link.
This involves reinitialising the link hardware; again there is a suitable library procedure to allow this to be
performed.

136 11 Low level programming

11.4.3 Input and output procedures

There are four library procedures which implement input and output processes which can be made to terminate
even when there is a communication failure. They will terminate either as the result of the communication
completing, or as the result of the failure of the communication being recognised. Two procedures provide
input and output where communication failure can be detected by a simple timeout, the other two procedures
provide input and output where the failure of the communication is signalled to the procedure via a channel.
The procedures have a boolean variable as a parameter which is set TRUE if the procedure terminated as a
result of communication failure being detected, and is set FALSE otherwise. If the procedure does terminate
as a result of communication failure having been detected then the link channel can be reset.

All four library procedures take as parameters a link channel c (on which the communication is to take place),
a byte vector mes s (which is the object of the communication) and the boolean variable aborted. The
choice of a byte vector as the parameter to these procedures allows an object of any type to be passed along
the channel provided it is retyped first.

The two procedures for communication where failure is detected by a timeout take a timer parameter TIME,
and an absolute time t. The procedures treat the communication as having failed when the time as measured
by the timer TIME is AFTER the specified time t. The names and the parameters of the procedures are:

InputOrFail.t(CHAN OF ANY c, []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

and

OutputOrFail.t(CHAN OF ANY c, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting or outputting procedure via a message on the channel
kil.l.. The message is of type INT. The names and parameters to the procedures are:

InputOrFail..c(CHAN OF ANY c, []BYTE mess,
CHAN OF INT kil.l., BOOL aborted)

and

OutputOrFail..c (CHAN OF ANY c, VAL []BYTE mess,
CHAN OF INT kil.l., BOOL aborted)

11.4.4 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to reinitialise the link hardware. This
involves reinitialising both ends of both channels implemented by the link. Furthermore,-the reinitialisation must
be done after all processes have stopped trying to communicate on the link. So, although the InputOrFail
and OutputOrFail. procedures do, themselves, reset the link channel when they abort a transfer, it is
necessary to use the fifth library procedure Reinitial.ise (CHAN OF ANY c), after it is known that all
activity on the link has ceased.

The Reinitialise procedure must only be used to reinitialise a link channel after communication has
finished. If the procedure is applied to a link channel which is being used for communication the transputer's
error flag will be set and subsequent behaviour is undefined.

11.4 Extraordinary use of links

11.4.5 Example: a development system

For our example consider the development system described in section 11 .4.1 .

Development - Target
System Link System

Figure 11.2 Development system

137

The first step in the solution is to recognise that the development system knows when a failure might occur,
and hence the development system knows when it might be necessary to abort a communication.

The process which interfaces to the target system can be sent a message when the development system
decides to reset the target causing the interface process to abort any transfers in progress. The development
system can then reset the target system (which resets the target end of the link) and reinitialise the link.

The example program below could be that part of the development system which runs once the target system
starts executing, until such time as the target is reset and the link is reinitialised.

SEQ
CBAN OF ANY terminate.input, terminate.output :
PAR

interface process
monitor process

reset target system
Reinitia1ise(1ink.in)
Reinitia1ise(1ink.out)

The monitor process will output on both terminate. input and terminate. output when it detects
an error in the target system.

The interface process consists of two processes running in parallel, one which outputs to the link, the other
which inputs from the link. As the structures of the two processes are similar only the process which outputs
to the link need be shown; the input process is very similar.

If there were no need to consider the possibility of communication failure the process might be

WHILE active
SEQ

ALT
terminate.output ? any

active := FALSE
from.dev.system ? message

1ink.out ! message

This process will loop, forwarding input from from. dev. system to 1ink . out, until it receives a message
on terminate. output. However, if after this process has attempted to forward a message, the target
system halts without inputting, the interface process will fail to terminate.

138

The following program overcomes this problem:

WHILE active
BOOL aborted
SEQ

11 Low level programming

ALT
terminate. output ? any

active := FALSE
from.dev.system ? messaqe

SEQ
OutputOrFai1.c(1ink.out, messaqe,

te~inate.output, aborted)
active := NOT aborted

This program is always prepared to input from te~inate . output, and is always terminated by an input
from terminate. output. There are two cases which can occur. The first is that the message is received
by the input which then sets active to FALSE. The second is that the output gets aborted. In this case the
whole process is terminated because the variable aborted would then be true.

11.5 Setting the error flag

The transputer error flag can be set using the predefined procedure CAOSEERROR (). This procedure is
recognised automatically by the compiler and does not need to be referenced by the lOSE directive.

CAOSEERROR always halts the program, whatever the mode of the compilation. This is distinct from the
occam primitive process STOP, which only halts the program if the compilation is in HALT mode.

The reference manual

12 The development environment
12.1 Keys

IAUTOLOAD I

May be pressed at any position in the program development environment. The toolkit fold is searched
for a fold marked:

Autol.oad (perhaps with other text here)

If this fold is found, all runnable code folds which are found in this fold are loaded as though IGET CODEI
had been applied to each fold in turn. If the cursor was on a closed top level fold it is entered.

IBOTTOM OF FOLD I

Places the cursor on the line displaying the bottom crease symbol of the current enclosing fold.

IBROWSE I
Used to set the editor into browse mode, in which no changes may be made to the document.
IBROWSEI is also used to end browse mode. It switches the set of allowable key functions in the
program development environment between the full set and a reduced set which does not allow any
form of data input. This function is not available in the toolkit fold or in the code information fold,
and it is not possible to enter the toolkit or code information fold when in browse mode.

ICALL MACRO I
Invokes sequence of keys defined using the IDEFINE MACROI key or recovered from a fold by using
IGET MACROI. If no, macro sequence has been defined, the key has no effect.

ICLEAR ALLI

If the cursor is on a closed top level fold it is entered. Clears all loaded code items, both utilities
and user programs.

ICLEAR EXEI

If the cursor is on a closed top level fold it is entered. Removes the current EXE from the set of
current EXEs and selects the next.

ICLEAR UTIL I
If the cursor is on a closed top level fold it is entered. Removes the current utility set from the set of
current utility sets and selects the next.

ICLOSE FOLD I
Closes the current enclosing fold, and all open folds contained within it. The closed fold line is
placed on the line of the screen where the top crease was, unless the top crease was off the top
of the screen, in which case the closed fold line appears at the top of the screen. The cursor is
positioned on the closed fold line, at the same column position as it was before CLOSE FOLD was
pressed. ICLOSE FOLDI has no effect if the current enclosing fold was opened with an ENTER FOLD
operation, but a message is given to remind the user that IEXIT FOLDI should be used to get out of
the current fold.

142

I CODE INFORMATION I

12 The development environment

May be pressed while in the normal editing 'environment (not when within the toolkit fold). It creates
a display (which appears as a fold structure) showing the following:

1 A 'help' display for the current utility set, which is a sequence of lines listing the utilities in
the set and giving a brief explanation of each.

2 A list of the currently loaded code items, both UTILs and EXEs. Each code item is
identified by the text on the fold line when the code was loaded. The current utility set and
user program are indicated by a > at the start of the line.

3 For each of the loaded code items, there is a fold line which may be opened and viewed.
This contains the code size and data requirement for the code, and the 'help' information
for a utility.

4 The size of the fold manager buffer and the proportion used.

5 The amount of data space available for running a utility or user program.

While viewing the code information fold the following message is displayed:

Press [EXIT FOLD] to resume editing

Pressing IEXIT FOLDI to exit the fold returns the editor to the position it was at when ICODE INFOI was
pressed.

Any part of this display may be folded up and saved for later use by means of the ICREATE FOLDI and
IMOVEI keys.

I COpy LINEI

Copies the current line and inserts the copy below the current line. If the line is a closed fold then
all the text lines and nested folds in the fold are copied. IcoPY L1NEI has no effect if the current line
is a top or bottom crease. The cursor is placed on the copy.

If the current line is a filed fold, or contains a filed fold, the user is prompted for confirmation, as the
operation may take some time. It can be confirmed by pressing IcoPY L1NEI again.

File names for files in the copied fold structure are derived from the names of files in the original
fold structure, adjusted to avoid clashing with any existing file names in the directory.

'COpy PICKI

Used to copy a line, which may be a fold line, so that it may be moved to another place in the
document. It makes a copy of the current line and appends it to the end of the pick buffer. If the line
is a filed fold, or is a fold containing a filed fold, IcoPY PlcKI must be pressed again for confirmation,
as the copying may take some time.

As IcoPY PICKI has no effect on the document, it may be used to copy portions of a program without
forcing the program to require recompilation. It may be used in browse mode.

I CREATE FOLD I
The first use of ICREATE FOLDI inserts a new top crease above the current line, at the current column.
The second use of ICREATE FOLDI creates a fold containing the lines between the new top crease and
the current line. The fold is closed and the cursor is placed at the end of the fold line marker, where
fold header text may be inserted.

Between the two presses of ICREATE FOLDI all editor functions except cursor movement and scrolling
are disallowed.

The indentation of the new fold is determined by the current column on the first use of ICREATE FOLDI.
The lines to be enclosed within the new fold should all be SUfficiently indented to fit into a fold at this
indentation (Le. they must not extend to the left of this column).

12.1 Keys

ICURSOR DOWN I

143

Moves the cursor down one line. On the bottom line of the screen it scrolls the screen one line down
the current view, if there are lines in the current view below the screen, and the cursor remains in
the same position on the screen.

ICURSOR LEFT I
Moves the cursor left one column, except in the leftmost column on the screen where it may cause
the view to pan.

ICURSOR RIGHT I
Moves the cursor right one column, except in the rightmost column on the screen where it may cause
the view to pan.

ICURSOR upl

Moves the cursor up one line. On the top line of the screen it scrolls the screen one line up the
current view, if there are lines in the current view above the screen, and the cursor remains in the
same position on the screen.

IDEFINE MACRO I
Used to define a sequence of keys (which are commonly going to be used together) and assign
the sequence to a single keystroke. Two presses of DEFINE MACRO are needed to define a key
sequence; the required keys (which may not include DEFINE MACRO or ICALL MACRO/) should be
pressed between the two presses of IDEFINE MACROI. N.B. the keys are obeyed when defining the
macro. The sequence may contain up to 64 keys. Any previously defined macro is forgotten. The
defined macro sequence may be invoked using the ICALL MACROI key, or may be saved in a fold by
using ISAVE MACROI.

/DELETE'

Deletes the character to the left of the cursor. The cursor, the character underneath the cursor and
all subsequent characters on the line are moved left by one place.

If the cursor is in the leftmost column of the current enclosing fold IDELETEI concatenates the current
line with the line above. The cursor is placed after the end of the first line.

IDELETEI in the leftmost column has no effect if the current line is a fold line, top crease or bottom
crease, or is a line following the top crease of a view, a fold line or bottom crease.

Spaces may be deleted before a closed fold marker symbol to change the indentation of the fold.

IDELETE LINE I
Removes the current line from the document, and places it in the delete buffer. Anything already
in the delete buffer is deleted. All the lines below the current line in the view are moved up by one
line. IDELETE L1NEI has no effect if the current line is a top crease or bottom crease.

IRESTORE L1NEI may be used to restore the delete buffer into the current view.

144

IDELETE RIGHT I

12 The development environment

Deletes the character under the cursor. All the characters to the right of the cursor are moved left
by one place. The cursor remains in the same position.

Character deletion has no effect when the character to be deleted is in the top line of the view, is
part of a marker symbol, or is to the left of the leftmost column of an open fold.

Spaces may be deleted before a closed fold marker symbol to change the indentation of the fold.

IDELETE TO END OF LINE I

Deletes all text from the character under the cursor, to the last significant character on the line,
inclusive. The cursor remains in the same position.

IDELETE WORD LEFT I
Deletes the word to the left of the cursor. The deletion is governed by the following rules:

• A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

• If the cursor is on or to the left of the first significant (non-space) character on the line, the
characters from the cursor position to the current indentation are deleted. The cursor will
move to the current indentation.

• If the cursor is to the right of the character following (immediately to the right of) the last
significant character on the line, the cursor will move to the character following the last
significant character on the line.

• In all other cases the cursor will move to the first symbol starting position to the left of the
current cursor position, deleting all intervening characters.

IDELETE WORD RIGHT I
Deletes the word to the right of the cursor. The deletion is governed by the following rules:

• A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

• If the cursor is to the left of the first significant (non-space) character on the line, all char
acters between the cursor the first significant character on the line will be deleted.

• If the cursor is on or between the last symbol starting position on the line, and the last sig
nifica'nt character on the line, all characters upto and including the last significant character
on the line will be deleted.

• If the cursor is to the right of the last significant character on the line, the cursor will not
move.

• In all other cases all characters between the cursor and the first symbol starting position to
the right of the current cursor position, will be deleted.

12.1 Keys

IEND OF LINE I

145

Places the cursor immediately to the right of the last significant character on the current line (Le.
the last non-blank character). If the line is too long for the width of the screen the view will pan if
necessary.

IENTER FOLD I
When used on a fold line clears the screen and displays the contents of the fold between the top
and bottom creases. The display is adjusted to the left so that the top and bottom marker symbols
start in the leftmost column. The cursor is positioned in the leftmost column of the second line on
the screen. This then becomes the current view and it is not possible to move outside the confines
of the fold until a corresponding IEXIT FOLDI has been done. When a fold has been entered its top
crease may no longer be edited.

IENTER TOOLKIT I
Clears the screen, and displays the contents of the toolkit fold.

The top crease of the fold will include the name of the file from which this fold has been read.This
may be a shared toolkit file located using the search path TDSSEARCB or a local one in the current
directory.

The editing functions available while the toolkit fold is being edited are the cursor move opera
tions, screen scrolling operations, fold browsing operations, line deletion/undeletion, line moving and
copying, code getting, character insertion and deletion.

While editing the toolkit fold the following message is displayed:

Press [EXIT FOLD] to resume editinq

Pressing IEXIT FOLDI to exit the toolkit fold returns the editor to the position it was at
when 'ENTER TOOLKITI was pressed.

IEXIT FOLD I
Reverses the effect of the most recent IENTER FOLDI, closing the fold, and any open folds contained
within it. The closed fold line is positioned on the same line of the screen as it was when the
'ENTER FOLDI was done. The cursor is positioned on the first significant (Le. the first non-blank)
character of the closed fold line. This key is also used to return from the toolkit fold, code information
fold, the help display, or parameter and output folds displayed by utilities.

IFILE/UNFILE FOLD I
When pressed on a fold, converts it to a filed fold, writing the contents out to a file. The file name
is taken from the fold header; it is the first contiguous alphanumeric sequence of characters in the
header. A comment describing the contents of the file may appear after the file name, separated
from it by one or more blanks. If a file of that name already exists in the directory, the file name
is adjusted to avoid a name clash (If the fold header is blank, a random name is made up). The
message Fil.ed as filename indicates the file name used. The filename is added to the crease
line between quotes.

The name may include directory information. The use of directory specifications in file names should
be avoided as much as possible, as it makes it difficult to move groups of files between directories.
Relative directory specifications using •• \ should be avoided.

The system stores the filename along with other information about the fold. All alphabetic characters
are forced to lower case.

'FILElUNFILE FOLDI acts as a toggle; when pressed on a filed fold, it reads in the contents of the file
and makes it into a (non-filed) fold. The file is deleted.

146 12 The development environment

IFINISH I
May only be used at the very outermost level. It finishes the session and returns to operating system
level.

IFOLDINFOI

Applied to a closed fold line or to a crease line, this function displays a message on the message
line giving the attributes of the fold.

These are:

Type:
Contents:

General format of fold.
What kind of information is in the fold.

See appendix F for a list of the fold attributes.

In addition, when pressed on a closed filed fold, IFOLD INFOI displays the name of the file corresponding
to the fold.

There is one error message associated with IFOLD INFOI:

Data item has no attributes

The fold information function has no result when applied to a text line.

IGET CODEI

Applied to a UTIL fold, Le. a closed fold line whose fold contents attribute is occam2 .util. or
occaml. util., IGET CODEI reads the code in the fold, and makes it the current utility package.
Used on a EXE fold, Le. a fold whose fold contents attribute is occam2. exe or occaml. exe, it
loads the code for the user program into memory, and makes it the current EXE.

Note that !GET CODEI can be applied either to a fold set which contains a CODE fold (UTIL or EXE)
produced as a result of compilation, or it can be applied to the CODE fold itself.

While code is being loaded the following message is displayed:

Getting text on fold comment

For a utility fold, once the code has been successfully loaded, the utility comment line is displayed.

If the UTIL or EXE has been compiled with the tds2. styl.e. exe parameter FALSE a check will
be made that its target processor type or class is compatible with the processor on which the TDS
is running. If it is not compatible the following message is displayed:

Code not compatibl.e with host processor

IGET MACRO I
Applied to a fold whose comment starts Key macro, copies the keystroke sequence constructed
from a sequence of up to 64 integer values in the fold as the current key macro. The sequence may
then be invoked using the !CALL MACRO! key.

Displays a map of the system function keys. It also displays a system version identity message.
See section 16.2 for more information on the file whose contents are displayed.

12.1 Keys

ILINE DOWN I

147

Moves the screen one line down the current view, if there are lines in the current view below the
screen.

This function does not affect the position of the cursor on the screen.

I LINE upl
Moves the screen one line up the current view, if there are lines in the current view above the screen.

This function does not affect the position of the cursor on the screen.

I MAKE COMMENT I

Used to 'comment out' a fold so that it will be ignored by the occam checker and complier. Place
the cursor on a fold containing some occam source text which is to be commented out.

IMAKE COMMENTI produces a fold which encloses the source fold. This new fold is given the fold
/content attribute of fs. comment. text. The fold header is prefixed with the letters COMMENT,
followed by text copied from the original fold header.

The action of IMAKE COMMENTI may be reversed using the editor function IREMOVE FOLDI on the fold
produced.

I MOVE LINEI

Used to move a line, which may be a fold line, to another place in the document. A buffer is
associated with IMOVE L1NEI. If the buffer is empty, IMOVE L1NEI removes the current line from the
document and puts it in the buffer. If there is a line in the buffer, IMOVE L1NEI removes the line from
the buffer, puts it into the document on the line above the current line and places the cursor on it.

The move line buffer is shared between all folded displays including the toolkit fold, the debugger
editor and compilation info displays and is preserved between sessions.

I NEXT EXEI

If the cursor is on a closed top level fold it is entered.
Changes the current EXE to the next member from the set of current EXEs.

I NEXT UTILI

If the cursor is on a closed top level fold it is entered.
Changes the current utility set to the next member from the set of current utility sets.

IOPEN FOLD I
On a fold line opens the fold and inserts the contents of the fold into the current view, surrounded
by top and bottom creases. The top crease appears on the line of the screen where the closed fold
line was before IOPEN FOLDI was pressed. The position of the cursor on the screen is unaffected.

IPAGE DOWN I
Moves the screen one page down the current view, or to the bottom of the current view, whichever
is the nearest.

This function does not affect the position of the cursor on the screen.

IPAGE upI
Moves the screen one page up the current view, or to the top of the current view, whichever is the
nearest.

This function does not affect the position of the cursor on the screen.

148 12 The development environment

IPICK LINEI

Used to pick up a line, which may be a fold line, so that it may be moved to another place in the
document. It removes the current line from the document and appends it to the end of the pick
buffer.

The pick buffer is shared between all folded displays including the toolkit fold, the debugger editor
and compilation info displays and is preserved between sessions.

Puts down the contents of the pick buffer at the current position in the document. It inserts a fold
line at the current line, containing the sequence of lines placed in the pick buffer using IPICK L1NEI
and IcoPY PlcKI. The pick buffer is cleared. If there are no lines in the pick buffer M has no effect
on the document, and the terminal beeps.

IREFRESH I
Repaints the entire screen from the stored representation of the current view.

IREMOVE FOLD I
On a fold line opens the fold and removes the top and bottom creases, inserting the contents of the
fold into the current view at an appropriate indentation. If it is a filed fold, the file associated with the
fold is deleted from the directory.

IRESTORE LINE I
Restores the last line placed in the delete buffer by IDELETE L1NEI, inserting it at the current position
in the document. The delete buffer is left empty.

IRETURN I
Splits a text line in two at the cursor position and creates a new line on which are placed the cursor,
the character underneath the cursor and any subsequent characters on the line. The new line is then
indented by inserting spaces until the cursor is in the same column as the first significant character
of the line above.

IRETURNI may be used within the text of a top crease line.

IRETURNI will insert a blank line above the current line when the cursor is before or on the first
significant character of a line.

IRETURNI will insert a blank line below the current line when the cursor is after the last significant
character of a line.

IRETURNI has no effect on a fold line, top crease, or bottom crease if used between the first and last
significant characters of the line.

IRUN EXEI

Runs the current user program.

If no user program has been loaded the following message appears:

No current EXE

The following message may appear when an attempt is made to run the current user program:

Onab1e to run code - data requirement too 1arge

12.1 Keys 149

This indicates that the memory available is not sufficient for the data space required by the program.
It is necessary to remove one or more of the loaded code items using the ICLEAR UTILI or ICLEAR EXEI
keys. Further steps that may be taken to increase space are described insection 16.2.

ISAVE MACRO I
The sequence of keys defined using 10EFINE MACROI is saved in a comment fold inserted above the
current line. The fold comment Key macro is written in this fold and the cursor is positioned so
that a name may be added to identify this particular saved macro sequence.

ISELECT PARAMETER I
Enables a user to toggle utility parameter values quickly. It has an effect only on lines of the form:

VAL parameter IS valuel : -- valuel I value2 I value3
VAL parameter IS TRUE :
VAL parameter IS FALSE :
VAL parameter IS "stringl" : -- "stringl" I "string2"

If the cursor is not on the first significant character after the I S the cursor will be placed on the
first significant character after the IS. Otherwise, another possible value of the parameter will be
substituted for the current value - either the value selected will be chosen in turn from the set given
in the comment or TRUE will alternate with FALSE.

ISET ABORT FLAG I
Sets a flag in the TDS to indicate that the user wishes the currently running utility or user program
to be aborted. Utilities and user programs which have been written to test the value of this flag (this
may be done using the kernel channels), will be interrupted.

ISTART OF LINE I
if the cursor is at or to the left of the indentation of the current enclosing fold, the cursor will move
to the extreme left of the line. If the cursor is on or to the left of the first non-space character on
the line it will move to the indentation of the current enclosing fold, otherwise places the cursor on
the first significant character of the current line. (Le. the first non-blank character). If necessary the
view will pan.

ISUSPEND TDS I
Can be used anywhere in the normal editing environment to suspend the TDS temporarily and
return the user to the host operating system, so that operating system commands can be issued
(for example, getting directory listings, or formatting floppy disks). In DOS typing command exit
returns to the TDS, in the state it was when ISUSPENO Tosl was pressed. The environment variable
COMSPEC must be defined.

Operating system commands which reset the transputer board (for e~ample, running a server with
another transputer boot file) will cause the state of the suspended session to be lost. When the ses
sion is resumed, the current directory must be the same as it was when the session was suspended.

ITOP OF FOLD I
Places the cursor on the line displaying the top crease symbol of the current enclosing fold.

'WORD lEFT I
Moves the cursor one symbol left. The move is governed by the following rules:

• A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

150 12 The development environment

• If the cursor is on or to the left of the first significant (non-space) character on the line, the
cursor will move to the current indentation.

• If the cursor is to the right of the character following (immediately to the right of) the last
significant character on the line, the cursor will move to the character following the last
significant character on the line.

• In all other cases the cursor will move to the first symbol starting position to the left of the
current cursor position.

IWORD RIGHT I
Moves the cursor one symbol right. The move is governed by the following rules:

• A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

• If the cursor is to the left of the first significant (non-space) character on the line, the cursor
will move to the first significant character on the line.

• If the cursor is on or between the last symbol starting position on the line, and the last
significant character on the line, the cursor will move to the character following (immediately
to the right of) the last significant character on the line.

• If the cursor is to the right of the last significant character on the line, the cursor will not
move.

• In all other cases the cursor will move to the first symbol starting position to the right of the
current cursor position.

12.2 Messages

12.2.1 Development environment messages

A complete list of the messages which may be produced by the development environment follows. Some
error messages may be followed by a result clause, of the form:

(Resu1t = number)

This indicates the result produced by the filing system when the error occurred. If the result is 0, no
filing system error has occurred. The explanations of the error numbers are listed in appendix E.

The result number should be quoted if reporting errors associated with the filing system.

A11 code c1eared

This message is displayed after a successfullcLEAR ALLI.

Auto1oadinq ...

This message will appear briefly during an IAUTOLOAOI operation.

Auto1oad finished

This message will appear briefly at the end of a successfullAUTOLOAOI operation.

Cannot copy: reason

The editor cannot copy the line for the reason indicated. Any open filed folds not currently in use
should be closed; alternatively some new filed folds may have to be made to increase the amount
of room available.

12.2 Messages 151

Cannot create: cursor must be be10w first 1ine

This message may appear on the second press of ICREATE FOLDI. It indicates that the cursor is on
or above the top crease inserted at the start of fold creation, and so the fold cannot be made.

Cannot create: fo1ds must not over1ap

This message may appear on the second press of ICREATE FOLDI. It indicates that the current en
closing fold is not the same as it was at the start of fold creation. Since folds cannot overlap, the
fold cannot be made.

Cannot create: 1ines in fo1d have incorrect indentation

This message may appear on the second press of ICREATE FOLDI. It indicates that some lines between
the top crease and the current line are less indented (more to the left) than the fold indentation given
by the top crease. Since all lines in the fold must be at the same or greater indentation than the fold
indentation, the fold cannot be made.

Cannot fi1e fo1d: fi1e cannot be written

This occurs on IFILE FOLDI. It indicates one of the following:

1 The editor could not open the file with the name given on the fold header for writing. The
most common cause of this is an illegal file name.

2 The editor could open the file with the name given on the fold header for writing, but could
not complete writing to it. The most common cause of this is running out of available disk
space.

Cannot qet not a va1id fo1d

In order to get a utility package, the cursor should be placed on a utility package fold, which has the
fold contents attribute of uti1ity. In order to get a user program, the cursor should be placed on
an appropriate fold which has the fold contents attribute of executab1e.

Cannot qet: f~i1ed qettinq code
~\

An error occurred while reading the file containing the code. This message is followed by a number
which is the error result produced by the filing system. The possible error values are listed in
appendix E.

Cannot qet: not a va1id fold

IGET CODEI can only be applied to a CODE EXE, a CODE UTIL or to a compiled fold set.

Cannot qet: not enouqh room to 10ad code

There is not enough memory to load this code. It may be necessary to use the ICLEAR UTILI or
ICLEAR EXEI functions to re-use the memory currently allocated.

Cannot qet: there is no va1id fo1d in this bundle

A CODE EXE or CODE UTIL has not been found while searching the current fold.

Cannot open: fi1e does not exist

The editor could not open the file associated with a filed fold in order to read it in.

152

Cannot open: fi1e has incorrect fo~at

12 The development environment

The file associated with this filed fold is not in the correct format. The system cannot read ordinary
text files; they must be converted first. using the IREAD HOSTI utility.

Cannot open: fo1d is not text

It is not possible to open or enter a fold which contains information in a format other than text.

Cannot open: not enough room

The editor could not read in the file associated with a filed fold because of lack of fold manager
space. Any open filed folds not currently in use should be closed; alternatively some new filed folds
may have to be made to increase the amount of space available.

This message may also appear if an attempt is made to read in a filed fold which exceeds the
maximum fold nesting depth (50).

Cannot open: too many open fo1ds

This message will appear if folds have been opened to give a total nesting depth of 50, or if more
than 50 folds have been opened above the current line. Some folds should be closed to allow this
one to be opened.

C1earinq: EXE or UTIL name

This message is displayed While a code item is being cleared.

C1osing ...

This message is displayed when a fold is being closed. Closing a filed fold may take some time as
the file may have to be written out.

Copied into pick buffer OK

This message appears after a successfullcoPY PlcKI operation.

Copying ...

This message is displayed when a fold is being copied.

Creating fo1d ...

This message is displayed between the first and second presses of ICREATE FOLDI.

Defining macro. Press [DEFINE MACRO] to resume editing.

This message appears between the two presses of IDEFINE MACROI, to indicate that the system is
currently storing key presses as part of a macro definition.

Entering...

This message is displayed when a filed fold is being entered. This may take some time as the file
may have to be read in.

Entering code info~ation fo1d ...

This message is displayed when the code information fold is being entered. This may take some
time as the file may have to be read in.

12.2 Messages 153

Entering too1kit fo1d ...

This message is displayed when the toolkit fold is being entered. This may take some time as the
file may have to be read in.

Error

Error

Error

Error

cannot open code fi1e

An error occurred while opening the file containing the code. This message is followed by a number
which is the error result produced by the filing system. The possible error values are listed in
appendix E.

cannot read fi1e

Failure to read file during IENTER FOLDI or IUNFILEI.

cannot write fi1e - fo1d has been unfi1ed

In this close operation, one or more filed folds were not closed successfully (Le. the contents of the
fold were not successfully written out to the file). The fold was closed, but converted into an ordinary
fold. Refer to the User guide section 4.5.8.

run out of room - no insertions are a110wed...

This message occurs if the room available to store text has run out. No insertions are allowed until
some deletions and file operations have been carried out to make some more room. The message
will persist, and then disappear when enough room has been made.

Exiting ...

This message is displayed when a fold is being exited. Exiting a filed fold may take some time as
the file may have to be written out.

Fi1ed OK as name

This indicates a successful IFILE FOLDI operation. The name may be different to that expected if a
file of that name already exists.

Fi1ing...

This message is displayed during a IFILE FOLDI operation.

Keystroke macro from f01d

The currently defined keystroke macro has been successfully read from a fold.

Keystroke macro saved

The currently defined keystroke macro has been saved as a sequence of integers in a new fold.

Line restored OK

This message indicates a successfullRESTORE L1NEI operation.

No Aut010ad f01d present in parameter buffer

There is no fold in the toolkit fold whose fold comment starts with the word Aut010ad.

154

No code to run for current utility

The current utility does not contain any code.

No current EXE

IRUN CODEI can only be used when there is a current EXE.

No current UTIL

12 The development environment

This message appears continuously on the top line if there is no currently loaded utility set. If a
utility set is current, its fold header comment is displayed instead.

No EXE code to clear

ICLEAR EXEI has been pressed when there is no current EXE.

No UTIL code to clear

ICLEAR UTILI has been pressed when there is no current UTIL.

Not permitted on top level folds

The operation requested is not allowed at the top level (Le. where only . TOP files can be seen).
For example, utilities and programs may not be run at this level.

Only folds can be COMMENTed out

IMAKE COMMENTI can only be used on fold lines, not on text lines.

Openinq ...

This message is displayed when a filed fold is being opened or entered. This may take some time
as the file may have to be read in.

Parameter parameter.name is missinq

This message, and the following ones, indicate an error in the parameter fold supplied to utility. This
indicates that the parameter identified could not be found in the parameter fold.

Parameter parameter.name is specified more than once

This indicates that the same parameter name occurs more than once in the parameter fold.

Parameter parameter.name is not a valid inteqer

This indicates that the parameter identified is not an integer, where one was expected.

Parameter parameter.name is not a valid strinq literal

This indicates that the selection parameter identified is not set to one of the expected selection
identifiers.

Parameter line parameter.name has a bad strinq format

This indicates that the line defining a string parameter was not in the expected format, and the string
could not be parsed. Note that to make the characters", ' or * appear in the string they must be
preceded by an asterisk (*).

12.2 Messages

Parameter 1ine pammeffi~nameis not of form VAL <name> IS <va1ue>:

This indicates that the line defining the parameter was not in the expected format.

Parameter parameter.name is not set to a va1id boo1ean

155

This indicates that the boolean parameter identified is not set to either TRUE or FALSE. Note that
these must be in upper case, and the whole word must be typed.

Press [BROWSE] to finish read on1y

This message appears continuously on the top line after IBROWSEI has been pressed, to remind the
user that any keys which could alter the document are currently disabled. To get out of this mode,
press IBROWSEI again.

Press [ENTER FOLD] to enter outermost fo1d

This message appears if IOPEN FOLDI is used on an outermost level filed fold as a reminder that
IENTER FOLDI must be used to access this fold. .

Press [ENTER FOLD] to start session

This message appears on starting up the system as a reminder that IENTER FOLDI must be used to
access an outermost fold.

Press [EXIT FOLD] to c10se and exit the enc10sing fo1d

This message appears if ICLOSE FOLDI is pressed when the current enclosing fold was opened with
an IENTER FOLDI, as a reminder that IEXIT FOLDI must be used.

Press [EXIT FOLD] to continue or [SET ABORT FLAG] [EXIT FOLD] to cance1

When in a parameter fold, indicates how to return parameters to the utility or to abort the utility.

Press [EXIT FOLD] to resume editing

Displayed in the toolkit fold, code information display, etc.

Removing fi1ed fo1d ...

This message is displayed when a IREMOVE FOLDI operation is done on a filed fold. This may take
some time as the file may have to be read in.

Suspend fai1ed (Unab1e to find 1ast process?)

ISUSPEND TDSI has failed to re-enter the host operating system, perhaps COMSPEC is undefined.

Unfi1ed OK

This message indicates a successfulluNFILE FOLDI operation.

Unfi1ing ...

This message is displayed when an IUNFILE FOLDI is being done. The contents of the file are being
read in.

156

Warning copying fi1ed fo1d - repeat to copy

12 The development environment

The IcoPY L1NEI key or IcoPY PICK/ key has been pressed on a filed fold, or a fold line containing a
filed fold. Since the copy operation will involve file copying, and may take some time, the key press
should be repeated to confirm it.

Warning: de1eting fi1ed fo1d - repeat to de1ete

The IDELETE LINE/ key has been pressed on a filed fold, or a fold line containing a filed fold. Since
the operation will cause files to be deleted, the key press should be repeated to confirm it.

Warning: running out of room

The editor is running out of space. Attempts to copy folds or to open filed folds will probably fail
through lack of space. Any open filed folds not currently in use should be closed; alternatively some
new filed folds may have to be made to increase the amount of space available.

12.2.2 iserver termination messages

The messages tabulated in section 16.4.3 may be produced by the server.

13 Utilities
13.1 occam program development package

13.1.1 ICHECK I
Used to check the syntax of occam source.

Parameters

The occam checker shares parameters with the compiler. Only the following parameters are relevant to the
checker:

error. checking
a1ias.checking
usage. checking
force.pop.up
target.processor
use. standard. 11bs
code.inserts
tds2.sty1e.exe
ring.be11

Description

Place the cursor on a closed and filed occam source fold or on a compilation fold. The occam source
inside this fold will be checked.

Occam 2 compi1er/confiqurer version start of run message.

Checking (target error.mode) fold. name . .. checker running message.

Checked (target error.mode) fold.name OK end of run message.

If an error is found during checking the checker reports the error in the same manner as ICOMPILEI.

The checker provides no further checking than that provided with ICOMPILEI using the same parameters.

The checker reports an error if it encounters an uncompiled unit within the fold, or if it encounters a unit
compiled with a different version of the compiler. The compilation fold is located to and can then be checked
and recompiled.

ICHECKI cannot be used on a LIB fold to check library text folds. Such folds within a LIB may be individually
checked if they are self-contained and are filed first..

Error messages

See the section on ICOMPILEL

13.1.2 ICOMPILATION INFO I
Provides a readable version of the information kept in a compiled compilation unit. Normally the information is
displayed immediately by the utility. When applied to a PROGRAM fold, it provides details of the code loading
position on each processor, the boot order of the processors and the inter-processor link connections of a
configured network. The information is provided as a fold inserted at the end of the PROGRAM fold. The
created fold is readable and contains folds nested within it.

158

Parameters

13 Utilities

first .processor. is .boot . from .1ink Only required when the utility is applied to a PROGRAM fold.
This parameter, if TROE, causes the load address of the code for the first processor to be calculated
assuming that it is booted from link. If FALSE, the load address is calculated assuming that the
processor is booted from ROM, as described in chapter 10.

Description

Place the cursor on a closed compilation fold: an occam 2 se fold, an EXE fold, a PROGRAM fold, or a LIB
fold.

The behaviour of this utility differs depending on whether it is applied to a fold which has been compiled (an
occam se or an EXE fold) or configured (a PROGRAM fold), or is a library (LIB) fold.

Compilation information

When ICOMPILATION INFOI is pressed on an occam se or EXE fold the utility reads information associated
with the compilation fold and displays it. A textual version of the descriptor fold is displayed. If the text is
longer than the screen it may be scrolled. When IEXIT FOLDI is pressed the previous context is restored to the
screen and the utility finishes.

The descriptor fold contains information used by the compiler and linker giving details of entry points, code
sizes, workspace sizes, compiler identity etc.

The first item is the occam 2 title. This is followed by a warning message if the compilation fold has been
modified since it was last compiled.

The next three lines give information about the the compiler used to compile the compilation unit. The target
processor is the processor the code was compiled for, for example T4. The compiler compatibility is used
to determine whether compilation units require recompilation because the compiler used to produce them is
in some way incompatible. The compiler version indicates the version string of the compiler which compiled
this fold.

This is followed by a list of some of the values of the compiler parameters that were used when compiling
this unit.

This is followed by a count of the number of nested separate compilation units present and the number
of nested non-Occam language programs present. These are followed by the code size in bytes of this
compilation unit alone and the total code size in bytes of the nested occam compilation units.

This is followed by a list of entry points in this compilation unit, (with parameters for procedures). For each
entry point the usage of channel parameters (whether they are used for input or output within this procedure)
is shown. Then there is a list of the entry point offsets in this compilation unit, and workspace and vector
space requirement in 'slots' (Le. machine words) for each procedure.

Then there is a list of the libraries used within this compilation unit, along with their version numbers.

Finally, if the compilation unit has been linked, the total linked code size is given.

Any part of this display may be folded up and saved for later use by means of the ICREATE FOLDI and IMOVEI
keys.

Configuration information

Applied to a valid PROGRAM fold the ICOMPILATION INFOI utility produces a special filed fold marked with the
comment eONFIG INFO. This fold contains three nested folds of information which can be displayed by the
editor.

13.1 occam program development package 159

The first fold contains the memory layout for each processor, to be used when the code is loaded into a
network. The format is:

{{{ Processor Load Map
Processor logical.number processor . type
Processorrog~ainumberprocessor.type

{{ { Processor logical. number processor . type
Memory 1ayout first byte 1ast byte

Work space
Main program
Rea1 Op
SC string
Libraries
Separate vector workspace

} } }

number
number
number
number
number
number

number
number
number
number
number
number

Processorrog~ainumberprocessor.type

} } }

The second fold contains the order in which processors will be booted when the network is loaded. The
format is:

processor number from processor number1ink number

The third fold contains a list of the link connections between processors as described in the configuration
detail of the PROGRAM fold:

Connect processor number 1ink number to processor number 1ink number

Library information

When pressed on a valid LIB fold the current library version number, the fold lines of each SC compilation
unit and a list of entry points and other libraries used for each is displayed. If the text is longer than the
screen it may be scrolled. Compacted libraries contain no nested filed folds and so may be too big to read
into the fold manager buffer. If this problem is encountered the fold manager buffer may be increased, see
section 16.2.

Messages

Creating config info... displayed when applied to a valid PROGRAM fold set.

Fo1d created OK end of run message.

13.1.3 ICOMPILE I
Used to compile occam compilation fold sets; it checks the syntax of the program as part of compilation.
When applied to a fold describing the configuration of an occam program for a processor network, it generates
the information necessary to control the distribution of processes to processors. When applied to a text fold
it searches the fold for uncompiled compilation fold sets and compiles them if necessary. This quick method
of compiling many units only works if all must be compiled for the same target and error mode.

Parameters

error. checking This selects the type of run time error checking compiled into an occam program.
The options are REDUCED, STOP, HALT and UNIVERSAL. HALT is the most useful for debugging
programs. HALT causes the entire processor to halt when an error occurs, STOP causes the process
in which an error occured to stop, and REDUCED has undefined behaviour should an error occur.
UNIVERSAL is the same as REDUCED except that units compiled in this mode may be called from
units compiled in other modes.

160 13 Utilities

a1ias . checkinq When this parameter is TRUE, the compiler does full alias checking.

usaqe. checkinq When this parameter, and the a1ias checkinq parameter are TRUE, the compiler
does full usage checking.

separate. vector. space When this parameter is TRUE, the compiler creates separate workspaces for
scalars and vectors within the programs being compiled.

create. debuqqinq. info When this parameter is TRUE the compiler will create an additional output
file. This file is required by the debugger to recognise occam names and the workspace layouts.
The parameter should be set to TRUE to obtain occam level debugging.

ranqe . checkinq Setting this to FALSE causes the compiler to omit certain run time checking code (for
example, array bounds checking). It has no effect when the error. checkinq parameter is set
to REDUCED, as no checks at all will be inserted in REDUCED mode.

compi1e . a11, Normally the compiler only recompiles nested compilation units which have changed, or
which are in some way incompatible with the current compilation. This parameter, when TRUE,
forces the compiler to recompile all nested compilation units encountered.

force. pop. up This parameter forces the parameter fold to be displayed whenever the checker or compiler
is invoked.

use. standard. 1ibs When this parameter is TRUE the compiler will use its standard arithmetic libraries
within this compilation. These are rea1s, drea1s, ints and rea1pds (all targets) and intpds
(not T8). Setting it to FALSE will prevent the compiler from compiling any programs with extended
arithmetic, and the compiler will also fail to recognise a number of the implicitly defined library
procedures.

tarqet .processor This parameter is used to set the target processor type or class when compiling for
transputer networks. The following target processors are supported:

Ta: IMS T800 and similar transputers.

T42S: IMS T425 transputer.

T4: IMS T414 transputer.

T2: IMS T212 and similar transputers.

TA: any 32 bit transputer.

TB: any 32 bit transputer without hardware floating point.

TC: any 32 bit transputer with 20 block move and CRC instructions.

code. inserts This selects whether transputer assembly-level code insertions are allowed. The options
are NONE, RESTRICTED and ALL.

When this parameter is NONE it prevents any code insertions in compilation units being compiled.
RESTRICTED allows a restricted set of instructions which are the instructions which may be used in
sequential code, without interfering with the occam process model (see appendix H). ALL allows
the full set of documented instructions to be used.

tds2. sty1e. exe This parameter determines whether on EXE or UTIL has the extra iserver chan
nel parameters from. isv and to. isv. Setting it TRUE will force EXEs to have the interface
supported in earlier versions of the TOS. Setting it FALSE (default) gives access to the iserver
channels and implicitly #USEs the strmhdr library. Both styles of EXE can be run within the TOS3
environment.

rinq .be11 this determines whether a bell code is sent to the screen at the end of a compilation, so the
programmer may leave the computer during a long compilation. The options are NEVER, ERROR
and ALWAYS.

13.1 occam program development package

Description

161

Place the cursor on a compilation fold (a fold which has been created using IMAKE FOLDsETI). This may be
an occam SC, an EXE,a LIB or a PROGRAM fold. Besides the source fold there may be data folds left over
from a previous compilation; these will be removed or overwritten when ICOMPILEI runs,

It is also possible to apply the ICOMPILEI function to any source fold. The utility will search the fold for any
compilation units contained within it, and compile each of them in turn, allowing a collection of libraries and
separate compilation units to be compiled as a batch.

Compilation

When ICOMPILEI is pressed on a compilation unit the contents of the source fold are compiled. The compiler
adds code and data folds to the contents of the compilation fold that hold the result of the compilation. Any
previous code and data folds are deleted.

When applied to a compilation unit the compiler will always recompile that unit. Normally the compiler will
not compile units within the fold which have already been compiled, and so are marked with a fold type of
ft. fo1dset. If, within the fold being compiled, the compiler encounters any of the following:

• a compilation unit whose fold type is ft. voidset,

• a compilation unit whose used libraries have been recompiled and given a new version number,

• a compilation unit compiled for a different processor type,

• a compilation unit compiled in a different error mode (other than UNIVERSAL),

• a compilation unit compiled with an incompatible version of the compiler

then the inner compilation unit is automatically recompiled.

If the compi1e. a11 option is enabled all nested units are recompiled.

Messages

Searchinq fo1d... start of run message, looking for any nested com
pilation units.

Compi1inq (target error.mode) fold. name . .. displayed if the compiler finds an SC that needs
recompiling. The fold is compiled.

Compi1ed (target error.mode) fold.name OK end of run message.

If an error is found then an error message is displayed on the screen and the compiler automatically locates
to the line on which the error was discovered. It does this by entering the outer level fold and opening any
folds necessary to reach the error line. This error line is displayed as close as possible to the middle of the
screen.

Only the first error in the program is found and reported.

A successfully compiled compilation fold is given the fold type ft. fo1dset. A compilation fold is 'Vali,d'
after compilation as its contents relate to the current version of the source fold. Any changes made to the
contents of the fold will make the fold invalid, requiring it to be recompiled.

fold.name not compi1ed (searchinq ...)

Displayed if the search for nested units finds a unit that needs recompiling. This unit is also searched
for constituent units. When this search has finished the nested unit is compiled. If an error is found
the error message is displayed and the error line located to.

162 13 Utilities

Compil.ed (target error.mode) fold.name (searchinq .••)

Displayed if the compilation is successful. The search for more uncompiled units continues until all
necessary units are recompiled. Only then is the enclosing unit compiled.

fold.name compil.ed for wronq tarqet (searchinq •.•)

Displayed if a unit compiled for a different target processor is met during the search.

Similar messages are produced for compilation units which are compiled for a different error mode, which
have been compiled with a different version of the compiler, or whose libraries have changed.

If the compiler encounters a library reference referring to a non-existent or invalid library, either in a #USE
line or in the descriptor of a compiled unit, it will stop compilation and locate to the position where the error
was found.

Once compilation is complete, if ICOMPILEI has been invoked on an EXE, the compilation unit is automatically
linked, into a CODE EXE fold which is marked with the time and date of compilation.

Linkinq code. .• start of link run message.

Code l.inked OK end of run message.

If ICOMPILEI is compiling a library, once all SCs in the library have been compiled, the library is made valid and
given a new version number. The time and date of validation are written on the version fold line.

Configuration

When run on a PROGRAM compilation fold, ICOMPILEI generates the information necessary to control the
distribution of processes to processors. It checks the syntax of the allowed constructs in a PROGRAM, and
also checks that channels and links are connected correctly and that all the processors are connected in the
network. If any SCs in the program are not yet compiled, they are compiled and linked before configuration
is done. If the PROGRAM contains SCs for different processor types, IRECOMPILEI should be used instead of
ICOMPILEI.

When configuring a PROGRAM fold, ICOMPILEI performs the following tasks:

• Builds a map of the target system in the descriptor fold.

• Generates code which initialises the workspace to the values of actual parameters corresponding to
the formal parameters of the SC procedures.

• Checks that the link connections are legal by making certain that all channels are connected to no
more than one input and one output link.

• Evaluates all constant expressions.

• Allocates work space for declared variables and channels.

• Checks that the system described is loadable from the root processor.

13.1.4 Compiler messages

The compiler produces a large number of messages indicating program errors. Most of these should be self
explanatory, when taken in conjunction with the language manual. Compiler error messages can be of four
forms: invalid use of library logical names, program errors, compiler dependent implementation restrictions
and catastrophic compiler failures.

There are two places within a compilation when errors attributable to the library logical name system may be
reported. They are on analysis of the library logical name fold when inconsistencies and inadequacies in this
fold will be reported, and when processing #USE lines, or logical names found in compilation descriptors,
when a desired translation may be found to be absent from the table.

13.1 occam program development package

13.1.5 Library logical name fold errors

Too many 11braries
Library name text buffer overflow

163

The capacity of an internal table has been exceeded. These capacities depend on the total free
workspace available to the utility. If this cannnot be increased then unused libraries should be
removed from the fold and/or the names reduced in length.

Library name not a va1id name

An item starting with an occam identifier character contains a character other than a letter, digit or
dot.

Braces not matched

A { is not matched by a } with no intervening space or ".

File name not terminated by "

A " is not matched by another " with no intervening space or }.

Library 1ine structure error

The sequence of items in a line is not [directory.name] file.name keywords logical names.

No library directory name

The present line and no previous lines contain no directory.name.

No library file name

There is no file.name on the line.

No stoppinq mode/tarqet

A logical name has been found before at least one keyword.

Two 1ibraries conflict

A previous line defines a translation for the same logical name and at least one mode/target as the
current line.

Each of the above messages will be followed in the error line by the text of the line on which the error was
detected, and the utility will be aborted.

13.1.6 Program errors

The error messages have the general form of:

Error number: qualifier message

The error message describes which error the compiler has discovered. The error number and qualifier pinpoint
exactly which part of the compiler has produced the message.

164

13.1.7 Implementation limits

13 Utilities

These errors produce a message in one of the following forms:

I:mpl.ementation l.imit : description
I:mpl.ementation restriction: description

These messages refer to limits (usally fixed buffer sizes) in the compiler. In some cases these limits can be
bypassed by restructuring the program. In general the following guidelines to writing programs will reduce
the possibility of encountering these limits.

• Declare variables and constants for the smallest amount of program that is possible. Variables and
constants that are left in scope unecessarily waste buffer space in the compiler.

• Write many small procedures rather than large pieces of in-line code.

• Nest procedure declarations wherever possible.

• Use SC procedures when practicable.

• Split complex expressions by use of abbreviations or temporary variables.

All implementation limits can be avoided by structuring a program so that it can be written as a number of
small separately compilable modules.

If the TDS is running on a 1 Mbyte transputer board, and more than one utility set is loaded, the compiler will
be unable to compile programs of any reasonable size without hitting one of these limits. On such boards
only one utility set should be loaded at anyone time.

13.1.8 Compiler errors

These errors produce the following message:

COMPILER ERROR - PLEASE REPORT

Any program that generates an error message of this form should be reported to INMOS.

13.1.9 Configurer error messages

This section describes the error messages which may appear when configuring a PROGRAM fold.

Note that in the following messages, when arrays of channels greater than one dimension are declared at
configuration level, the configurer has a problem when it tries to report an error involving a particular element
of the array. The problem is that the array has been flattened into a one dimensional array by multiplying the
appropriate subscripts by the sizes of the dimensions of the array.

e.g. ifcisdeclaredas [3] [5] CBAN OF ANY c : andtheusermakesanerrorinvolvingc [2] [4]
then the configurer will report that channel c subscript 14 has been illegally used.

Base val.ue for pl.aced par repl.icator not of type INT

The user has written something like PLACED PAR i = 2.0 (REAL32) FOR 10.

c is a configuration channel. and cannot be placed IN anything

The user has attempted to PLACE c IN VECSPACE : (or WORKSPACE)

13.1 occam program development package

Cannot p1ace a 2 d~ensiona1 array of configuration channe1s

165

The user has written something like PLACE c AT 0 : where c is a 2 dimensional array of
configuration level channels. Only single elements of configuration level channels may be placed.

Cannot p1ace an expression

The user has written something like PLACE x + Y AT 10

Cannot p1ace configuration channe1 at addressn

Configuration channels must be placed on hardware links (addresses 0 to 7 for T2, T4 and T8)

Channe1 c, subscript n has a1ready been p1aced

User has attempted to place the same subscript of the same channel array twice on one processor.

Channe1c1has a1ready been p1aced

User has attempted to place the same channel twice on one processor.

Confiq channe1 parameter n is p1aced for input, not output

The channel parameter n being passed to the procedure is used to pass messages in the opposite
direction to that allowed by the hardware.

Confiq channe1 parameter n is p1aced for output, not input

The channel parameter being passed to the procedure is used to pass messages in the opposite
direction to that allowed by the hardware.

Configuration channe1 must have a constant subscript

The user has written something like PLACE c [xl AT 0 : where x is not a constant expression.

Configuration 1eve1 SCs may not contain functions

A configuration level SC must contain a procedure.

Configuration 1eve1 SCs may on1y contain one proc.

A configuration level SC may only have one entry point.

Count va1ue for p1aced par rep1icator not of type INT

The user has written something like PLACED PAR i = 2 FOR 10. O.

Libraries at configuration 1eve1 may not contain SCs

Libraries at configuration level may only contain VAL definitions and PROTOCOLs.

Link pair a/b on processor n is connected to processors n1 and n2

The input and input parts of one hardware link have been connected to different processors. This is
not possible.

No 10ad path from root processor to processorn

There is no path connecting the root processor to processor n.

On1y VAL abbreviations / retypes a110wed at configuration 1eve1

The user has written something like x IS Y : at configuration level.

166 13 Utilities

On1y who1e arrays can be p1aced, not just part of them

The user has attempted to PLACE [x FROM 2 FOR 3] AT 10 : or something similar.

Para11e1 inputs on channe1 c

Usage error of channel c. Two processes are inputting from that channel.

Para11e1 inputs on channe1 c, subscript n

Usage error of channel array element. Two processes are inputting from that channel.

Para11e1 outputs on channe1 c

Usage error of channel c. Two processes are outputting from that channel.

Para11e1 outputs on channe1 c, subscript n

Usage error of channel array element. Two processes are outputting to that channel.

PLACE address is not constant

The user has written something like PLACE c [2] At x where x is not a constant expression.

PLACE address is not of type INT

The user has written something like PLACE c [2] AT 2. 0 :

PLACED PAR rep1icator must have a constant base va1ue

The user has written something like PLACED PAR i = x FOR 10 where x is not a constant.

PLACED PAR rep1icator counts must be > 0

The user has written something like PLACED PAR i = 2 FOR -2.

PLACED PAR rep1icator must pave a constant va1ue

The user has written something like PLACED PAR i = 10 FOR x where x is not a constant.

Processor n1, 1ink n2 is connected to itse1f

The output of the link has been wired back on itself.

Processor number cannot be eva1uated

The user has written something like PROCESSOR x T4 where x is not a constant.

Processor number must be of type INT

The user has written something like PROCESSOR 2. 0 T4.

Processor number n has been used before

The user has specified the same logical processor number twice in one program.

Processors n1 and n2may not be connected by a channe1
with INT in its protoco1

Processors n1 and n2 have different word length and so cannot exchange INTs properly on a link
between them.

13.1 occam program development package

proqram too biq to configure

Implementation limit.

SC PROC name is not compi1ed for processor type processor.type

The se is compiled for a different target.

Statement not a110wed at configuration 1eve1

User has attempted to use IF, WHILE, etc. at configuration level.

There is a1ready a channe1 p1aced at address n

The user has tried to place two different channels at the same address on one processor.

Variab1es of type type may not be dec1ared at configuration 1eve1

Only channels may be declared at configuration level.

13.1.10 IEXTRACT I

167

Extracts all the code from a fold set and puts it into a single additional fold placed as a new last item in the
fold set. If the fold set is a PROGRAM fold, the created fold contains all the necessary routing and bootstrap
information for loading the target network of transputers. If the fold set is an SC fold, the created fold contains
all of the linked code from that fold set as a single contiguous structure.

When applied to a valid PROGRAM fold the IEXTRACTI utility is used to produce a CODE PROGRAM fold which
may be loaded to a transputer network or included as part of an EPROM. In general loading a network from a
previously extracted CODE PROGRAM fold is quicker than loading from a PROGRAM fold which has not been
extracted. The time and date of extraction are written on the CODE PROGRAM fold line.

When applied to a valid SC fold the IEXTRACTI produces a linked CODE SC fold. The fold produced can be
included as part of an EPROM. Note that extraction is performed automatically on any enclosed SCs when a
PROGRAM is configured.

Parameters - PROGRAM fold

output. fo1d This parameter determines whether the fold produced by the EXTRACT utility should contain
load time diagnostic information or not. The option BOOTABLE will cause the utility to produce a fold
which contains only data which is needed to load a transputer network. The option DIAGNOSTIC
will cause the utility to produce a fold which contains additional information to keep track of the
progress of a load. A DIAGNOSTIC fold requires the tool which is going to be used to send the
contents to the network to understand the format of the fold and keep track of the progress of the
load. A BOOTABLE fold can be sent directly to a network with no interpretation.

first.processor.is.boot.from.1ink This parameter, if TRUE, causes the load address of the
code for the first processor to be calculated assuming that it is booted from link. If FALSE, the load
address is calculated assuming that the processor is booted from ROM.

Parameters - SC fold

None

Description

Place the cursor on a valid compilation fold set.

Applied to a valid PROGRAM fold, the IEXTRACTI utility produces a fold containing all of the routing information,
the bootstraps and the code necessary to load the network described by the PROGRAM. The fold produced
may also contain embedded messages, which can be used to keep track of the progress of a future load.

168 13 Utilities

While the fold is being produced various messages are displayed. The fold produced is marked with the
fold header string taken from the PROGRAM fold, prefixed with the string CODE. If the TDS is hosted by a
version of iserver which can get the date and time from the host operating system, this will be added to
the fold header.

Extracting network.. . start of run message.

Extracting Se.string displayed as a particular SC is extracted.The string is taken from the
fold header of the SC being extracted.

Extracting main bodies displayed after all the SCs have been extracted.

Network extracted OK end of run message.

Applied to a valid SC fold, the IEXTRACTI utility produces a fold containing all of the code from the SC and any
libraries referenced. The fold produced is marked with the fold header string taken from the SC fold, prefixed
with the string CODE. the time and date of extraction are added to the end of the header.

The initial message is

Extracting se.string

Where se.string is taken from the fold header of the SC being extracted. When extraction is successfully
completed the message is changed to:

se.string extracted OK

Error messages - PROGRAM fold

Error messages generated by the IEXTRACTI utility fall into two groups; errors during extraction of the code
from the fold and errors which are generated by filing the extracted CODE PROGRAM fold.

Messages in the first group have the form:

Extraction error: error.message

Messages in the second group have the form:

Fi1ing error error.number : error.message

The extraction error messages are:

Fai1ure whi1e entering fo1d

The extractor has been unable to enter a fold. This may often be overcome by making more of
the folds in the current environment into filed folds, and thereby, increasing the space available for
entering new folds.

Fai1ure whi1e exiting fo1d

This error is unlikely to occur. It normally signifies a problem with writing to the disk.

Incorrect compi1er identity string

The compiler identity of the compiled code does not match the identity of the current utility set. The
item referenced should be recompiled with a compatible compiler.

13.1 occam program development package

Load path max~um exceeded

169

This is an implementation limit. The load path necessary to enable code to reach a specific processor
exceeds the buffer size allocated. A processor network structure which branches does not require
as long a load path as a linear structure.

Not a compi1ed PROGRAM fold

The cursor is not currently placed on a PROGRAM fold which has the attribute fold set.

Saved code buffer overflow

This is an implementation limit. It indicates that the portion of procedure code held back for extraction
to the network with the main bodies has overflowed the buffer available for it. This message is very
unlikely to occur.

Stack overf1ow

This is an implementation limit. The stack is used during production of the load path. A processor
network structure which branches does not require as large a stack as a linear structure.

Too many PROCESSORs

This is an implementation limit.

Error messages - SC fold

Error messages generated by the IEXTRACTI utility when applied to an SC fold are similar to the filing error
messages produced for a PROGRAM fold.

13.1.11 ILIST FOLD I
This is the listing utility.

Parameters

DestinationFileName This parameter is the name of the DOS filename to which the listing will be sent.
It defaults to 'PRN' for an on-line printer. This default should be changed if this printer does not exist
as attempts to use it may then result in DOS failure.

Topcrease This string parameter determines the representation of top crease lines in the output. This
string will be followed by the fold header comment, if any. The default is '{ { { ,

Bottomcrease This string parameter determines the representation of bottom crease lines in the output.
The default is '}} }'.

Closedfold This string parameter determines the representation of closed folds in the output. This string
will be followed by the fold header comment, if any. The default is ' . . • '

Endofcreaseline This string parameter, which defaults to an empty string, determines a string to be
added to the end of each fold line or crease printed.

Description

Place the cursor on a fold line or a top crease line. If the fold is closed, all lines and text folds within the fold
will be sent to the printer or a listing file. If the fold is open only the lines within the fold which are accessible
by cursor move or scroll operations are listed. Any closed fold encountered is not entered but is listed as a
closed fold. In this way a listing may be constructed where lower levels of detail are hidden away in folds in
exactly the same way as in the current view on the screen.

170

l3.1.12 ILOAD NETWORK I
Used to send code to a transputer network.

Parameters

13 Utilities

l.ink This parameter selects the output link from the host transputer through which the network is to be
loaded. All transputers in the network must be set to boot from link.

first .processor. is .boot. from.l.ink This parameter, if TRUE, causes the load address of the
code for the first processor to be calculated assuming that it is booted from link. If FALSE, the load
address is calculated assuming that the processor is booted from ROM.

output. or. fail. This parameter, if TRUE, causes all output by the host to the network to be done using
the extraordinary link handling library. This means that the loader is able to recover if it at any point
it is unable to output to the network when attempting to load it. The link is reset before use, enabling
multiple attempts to load. This parameter, if FALSE, causes the loader to use normal channel output
instructions. If the loading fails then the loader and the TDS will deadlock and need to be rebooted.
The reason for using FALSE is that it will not time-out if communication is slowed down significantly.
For example, communication might be slowed down by inserting an extra processor into the network
to display on a terminal all bytes that pass through it while the network is being loaded for debugging
purposes.

host. subsystem This parameter may be set to B004. 8 (for either IMS 8004 or TRAM) or B002 and
causes the loader to use the reset subsystem hardware at the appropriate address. This enables
the loader to reset the network before loading it.

Description

Place the cursor on a configured PROGRAM fold, or on a CODE PROGRAM fold produced by IEXTRACTI.

The ILOAD NETWORKI utility exports code to the transputer network. It will link and extract that code from the
fold set only if it is necessary as described below.

Applied to a PROGRAM fold

Applied to a valid PROGRAM fold containing no CODE PROGRAM, the ILOAD NETWORKI utility extracts all the
allocated code and exports it along with all the necessary routing information to the transputer network. A map
is built of the target network from the configuration information in the fold. Using this map the bootstraps for
all the processors in the network are exported so that each processor is ready to receive loading information.
After this the utility traverses the source fold structure extracting all the procedure code and exporting it from
the selected line along with the necessary routing information to direct it to the correct place on the target
processors. Finally all the main program code is exported to the line in the reverse order to the order in which
the processors were booted.

Extractinq and l.oadinq network. .. start of run message.

Extractinq se.string displayed when a particularSC is being extracted,
where se.string is taken from the fold header of the
SC being extracted.

Extractinq main bodies displayed after all the SCs have been extracted.

Network extracted and l.oaded OK end of run message.

Applied to a CODE PROGRAM fold

Applied to a CODE PROGRAM fold, or a PROGRAM fold which contains a CODE PROGRAM fold the utility
ILOAD NETWORKI exports the contents to the transputer network. All of the bootstraps and routing information
are already contained within the CODE PROGRAM fold. If the CODE PROGRAM fold has been produced as

13.1 occam program development package 171

BOOTABLE by the IEXTRACTI utility, the ILOAD NETWORKI utility simply copies the fold to the selected output line.
If the CODE PROGRAM fold has been produced as DIAGNOSTIC by the IEXTRACTI utility, the ILOAD NETWORKI
utility interprets the contents of the fold, displaying messages on the screen and sending the actual loading
data to the selected output line.

Loading network... start of run message.
If the CODE PROGRAM fold has been produced as DIAGNOSTIC, this
message is replaced by the messages which were displayed at the time
the CODE PROGRAM fold was produced by the IEXTRACTI utility. If the
CODE PROGRAM fold has been produced as BOOTABLE, this message
will not be replaced.

Network 10aded OK end of run message.

Error messages

Error messages generated by the ILOAD NETWORKI utility fall into three groups; errors during extraction of the
code from the fold, filing errors during extraction of the code from the CODE PROGRAM fold and errors with
communication to the target transputer network. Messages in the first group have the form:

Extraction error: error.message

Messages in the second group have the form:

Fi1ing error error.number : error.message

Messages in the third group have the form:

Communication error: error.message

The extraction error messages are similar to the extraction error messages described for the IEXTRACT) utility.

The filing error messages report failures received from the TDS filer. The error.numberwill correspond to the
error numbers described in appendix E.

The communication error messages are:

Fai1ed to output boot code for processor number
Fai1ed to output boot terminator for processor number
Fai1ed to output main body code for processor number
Fai1ed to output s~smng

Fai1ed to output saved SC code
Fai1ed to output terminating nu11 message

These messages indicate that an output to the loading link has failed. This will occur for bootstraps if the links
are not physically connected correctly, the processor is not ready to boot from link, or some other hardware
fault has occurred.

As the code for any processor may pass through a large number of intermediate processors, the failing
processor can not be identified exactly in all cases. The bootstrap code consists of eight packets and, as
there will be a single code packet on each intermediate processor, the identity of the actual failing processor
can often be determined.

172

13.1.13 IMAKE FOLDSETI

Used to create a compilation fold around the current fold.

Parameters

13 Utilities

This utility uses the parameters fold make fo1dset parameters which has the single parameter
make. fo1dset. type. This parameter can be set to one of the following:

SC, EXE, UTIL, PROGRAM, or LIB which creates the corresponding compilation fold.

Description

Place the cursor on a filed fold containing some occam source text which is to become a compilation unit.

Pressing IMAKE FOLDSETI produces a compilation fold which encloses the source fold. This new fold is given
an attribute to indicate that it contains an uncompiled occam program. The fold header is prefixed with the
type of the compilation unit (SC, EXE, UTIL, LIB or PROGRAM) followed by text copied from the source fold
header. This text may be edited.

The action of IMAKE FOLDSETI may be reversed using the editor function IREMOVE FOLDI on the fold produced.

Error messages

Cannot make a fo1d round this item

The cursor must be on a closed fold line.

Error - fo1d is not empty

To make a library, the utility must be applied to an empty fold.

Error - 1ibrary cannot be fi1ed

To make a library, the utility must be applied to an empty (non-filed) fold.

13.1.14 IRECOMPILEI

IRECOMPILEI is used to recompile a fold structure containing compilation units which have already been com
piled. It must be used to compile libraries, PROGRAM folds, or text folds containing SCs for mixed processor
types or error modes.

Parameters

The recompilation function uses compi1e. a11, rinq .be11 and force .pop .up parameters from the
compiler parameter fold (other parameters may be displayed but are not used); for a PROGRAM fold it also
uses other compiler parameters.

Description

Place the cursor on a compilation fold (a fold which has been created using the IMAKE FOLDSET/ utility). This
may be an occam SC, an EXE,a LIB or a PROGRAM fold. Besides the source folds within this fold structure
there must also be descriptor folds left over from a previous compilation.

It is also possible to apply the IRECOMPILEI function to any source fold. The utility will search the fold for any
compilation units contained within it, and recompile each of them in turn, allowing a collection of libraries and
programs to be compiled as a batch.

13~1 occam program development package 173

The IRECOMPILEI function behaves like ICOMPILEI, but for each unit compiled it takes the compiler parameters
from the descriptor left by the previous compilation. Unlike ICOMPILEI, which recompiles any compilation unit
it finds which has been compiled for a different target or error mode than the current set of parameters (see
14.5.3), IRECOMPILEI may be applied to a fold structure containing compilation units compiled for different
targets or in different error modes. IRECOMPILEI will only recompile units with uncompiled foldsets or changed
libraries, unless compi1e. a11 is TRUE, in which case it will recompile everything. If any inner compilation
fold encountered is found not to have a descriptor fold, the compilation halts, and the compiler locates to the
compilation fold in error.

Error messages

The same messages as for ICOMPILEI are generated, plus

No descriptor fo1d present in fo1dset

This message indicates that there was no descriptor fold in the foldset for the compilation unit
indicated, so IRECOMPILEI could not proceed.

13.1.15 IREPLACE I
IREPLACEI replaces one string with another, once or repeatedly to the end of the current view.

Parameters

IREPLACEI shares a parameter fold with ISEARCH~ It contains the following parameters:

search. string This is a string parameter, and is the string to be matched. It may include spaces, as it
is delimited by double quote marks ("). occam rules for strings should be followed. In particular,
to make the characters quote ('), double quote (") or asterisk (*) appear in the string they should
be preceded by an asterisk.

rep1ace . string This string parameter is the string used to replace the search string if a match is found.

case. sensitive This boolean parameter determines whether the string matching is case-sensitive. If it
is TRUE, an exact match for the string, with all letters in the same case as the search string, must
be found for the match to succeed. If it is FALSE, a string which differs from the search string only
in the case of one or more letters will match. The default is TRUE.

forward. rep1ace This boolean parameter determines where the cursor ends up after the matched string
has been replaced. If forward. rep1ace is TRUE, the cursor is moved forward to the character
following the new replaced string. If forward. rep1ace is FALSE, the cursor remains in the
same column, on the first character of the new string. The default is TRUE.

g1oba1. rep1ace This boolean parameter determines whether only the current occurrence of the search
string is replaced by the replace string or all subsequent ones in the current view. If it is FALSE, the
cursor must be on a string matching the search string and this will be replaced. If it is TRUE, the
cursor may, or may not, be on a matching string and all subsequent matching strings in the current
view will be replaced.

Description

Place the cursor on the first character of the string to be replaced or anywhere for a global replace. If
ISEARCHI has been pressed this will have already been done. N.B. IREPLACEI does not do any searching if
g1oba1. rep1ace is FALSE.

IREPLACEI may be used on its own, with an empty search string, to insert a string of text at multiple positions
in the document.

IREPLACEI may be used anywhere it is legal to insert text using the editor, except for inserting spaces to the
left of a fold Iine marker.

174 13 Utilities

When IREPLACEI is pressed the utility attempts to match the string at the current position (starting with the
character under the cursor) with the search string.

Cannot rep1ace: no match for search string no match found.

Rep1aced OK If a match is found the characters of the matching string are replaced with the
replace string. If forward. rep1ace is TRUE, the cursor is moved forward to
the character following the new replaced string. This allows searching to continue
to the next occurrence without examining the newly inserted string. If forward.
rep1ace is FALSE, the cursor remains in the same column, on the first character
of the new string. This is useful if using IREPLACEI in conjunction with cursor keys.

Error messages

Cannot rep1ace on inva1id item

The replace utility may not be used to insert text to the left of the leftmost column of a fold, or on a
fold or crease marker symbol. Since text may not be inserted on a bottom crease, line replacement
may not be done anywhere on a bottom crease line.

13.1.16 ISEARCH I
ISEARCHI is the string searching utility. It can search anywhere in the current view for an exact match of a
string provided as a parameter.

Parameters

ISEARCHI shares a parameter fold with IREPLACE~ It contains the following parameters:

s.arch. string This is a string parameter, and is the string to be searched for. It may include spaces,
\ as it is delimited by double quote marks (n). occam rules for strings are followed. In particular, to

make the characters quote ('), double quote (n) or asterisk (*) appear in the string they should be
preceded by an asterisk.

rep1ace. string This string parameter may be supplied when ISEARCHI is pressed, but it is not used by
ISEARCHI. See the section on IREPLACEI.

case . sensitive This boolean parameter determines whether the string matching is case-sensitive. If it
is TRUE, an exact match for the string, with all letters in the same case as the search string, must
be found for the search to succeed. If it is FALSE, a string which differs from the search string only
in the case of one or more letters will match. The default is TRUE.

forward. rep1ace This boolean parameter may be supplied when ISEARCHI is pressed, but it is not used
by ISEARCHI. See the section on IREPLACEI.

forward. search This boolean parameter determines the direction of search. If it is TRUE the search
proceeds forwards (downwards) in the fold structure, entering the fold if the cursor starts on a fold
line. If it is FALSE the search proceeds backwards (upwards) in the fold structure. In this case the
search does not enter the fold if the cursor starts on a fold line.

g1oba1. rep1ace This boolean parameter may be supplied when ISEARCHI is pressed but is not used by
ISEARCHI. See the entry for IREPLACEI.

Description

Traverse the fold structure using IOPEN FOLDI and IENTER FOLDI until the current view (Le. the contents of the
last entered fold) is the context within which a search is to be done. Place the cursor anywhere on the screen
before pressing ISEARCHI. It will search from the current line forwards (or backwards), including the contents
of any folds and their creases.

13.1 occam program development package 175

The searcher looks for a match with the search string, starting with the character following (preceding) the
character under the cursor.

Searching up/down for "string"... is displayed.

The searcher will search from the cursor position up/down to and including the first/last line in the
current view, or until a match is found. Fold header strings and text lines are examined for a match
with the search string. Fold and crease markers, spaces inserted to the left of the leftmost column
of a fold, and spaces to the right of the rightmost significant character on a line are not matched.

All folds and filed folds which may be opened by the editor are opened and searched. Data and
code folds are not opened.

"string" not found is displayed if no match is found.
(The editor position remains as it
was before the searcher was run)

"string1" found ; rep1ace with "string2" is displayed if a match is found.

The found string is located. If the string is on the screen the cursor is moved to the first character of the string.
If a global replacement has been requested the word a11. will appear in this message after repl.ace.

If the string is not on the screen, the current position is moved from the position at which the searcher was
invoked (old position) to the position at which the string was found (new position). Any folds needed to reach
the new position are opened, and the line containing the string is placed as close as possible to the centre
of the screen. Any folds which contain the old position but which do not contain the new position are closed.
The cursor is placed on the first character of the found string. The view will be panned if necessary.

Error messages

No search string

An empty search string has been supplied and as a result no searching can be done.

The following error message may be generated by ISEARCHI, due to failure to read a filed fold:

Fai1ed to open fol.d

When one of these errors occurs, the current position remains as it was when the searcher was started.

This indicates one of the following conditions:

A filed fold was encountered, for which there was not enough room to read in the contents of the file
(possibly because other filed folds were still open elsewhere). This is quite a common occurrence,
since while a search is being done the filed folds containing the position at which the search was
started and the filed folds containing the position which the search has reached are both open.

If this occurs, it is necessary to move out a few levels to close some surrounding filed folds, and
start the search again on a filed fold further down the document.

2 A filed fold was encountered which could not be opened. This indicates that the file could not be
opened for reading, and should be treated as a system error, and the most likely cause is that the
file does not exist.

3 A filed fold was encountered for which the file does exist, but appears to be in an incorrect format
for reading by the system. This should be treated as a system error.

176 13 Utilities

13.2 File handling package

13.2.1 IATTACH I
Attaches a file to a fold. It may be used to attach to any type of TDS supported file, such as text, executable
code (OTIL or EXE) and so on but not. TOP files (see appendix F.3). The attributes (Le. type of fold) are
determined by the file name extension. For example, a •tsr extension will mean that the file contains text,
while a •cex extension indicates that the content is executable code.

Many folds may be attached to the same file, allowing the contents to be shared with other locations in the
fold structure. If a file is shared between different locations it can prevent the separate compilation version
control mechanism from functioning correctly. Also, by deleting one attached filed fold the contents of all
such attached files will be lost. It is strongly recomended to use DOS file protection facilities to prevent the
deletion of an attatched filed fold from inadvertently deleting the underlying file. If it is required to delete an
attached fold use IDETACHI, which removes an attached filed fold, without deleting the file.

IDETACHI is on the same key; the two utilities are toggled.

Parameters

None.

Description

IATTACHI should be invoked on an empty fold. The name of the file to be attached to the fold should be the
first word on the fold line. The filename may include a directory specification.

When IATTACHI is pressed, the TDS reads the file name from the fold line and checks to see if the file exists
and if it does the file is attached to the fold, making its contents accessible.

Attachinq fil.e... start of run message.

Attached fil.e OK end of run message.

Error messages

Cannot attach fil.e: must be on a fol.d

The cursor must be on a (non-filed) fold when IATTACHI is invoked.

Cannot attach fil.e: fo1d is not empty

A fold cannot be attached to a file unless the fold is empty.

Cannot attach fi1e: file does not exist

A fold cannot be attached to a non-existent file.

Error attachinq fil.e (Resu1t = n)

Where n is the filing system error code. The system failed to attach a file to the fold.
See appendix E for a list of the error numbers.

13.2.2 ICOMPACT LIBRARIES I
Copies the contents of a filed fold, including nested files, to another directory. Any library folds encountered
are compacted, that is, all information in the library is written into a single file. A parameter allows source to
be removed from the library as it is compacted. The name of a file being written is normally the same as that
of the file being read.

13.2 File handling package

Parameters

177

DestinationFil.eName gives the full name of the file to be written, including all necessary directory
specifications needed to locate it.

Del.eteSource is a boolean parameter. If it is set to TRUE then source text is removed from Dccam se
foldsets in the compacted libraries, and certain information is removed from the debug fold. If set to
FALSE then source text is copied across. The default is TRUE. (This parameter has no effect on
the original fold to which the utility has been applied).

OverwriteFil.es determines what happens when a file name clash occurs in the destination directory.
If OverwriteFil.es is FALSE then when a name clash occurs the name of the file being written
is modified to make it unique. If the value is TRUE, then the old file is overwritten with the new file.
The default is FALSE.

The parameters are always offered for editing when this utility is run.

Description

Place the cursor on the fold to be copied and compacted.

When /COMPACT LIBRARIES/ is pressed the fold under the cursor and all nested files are copied into the desti
nation file. Nested files are copied to new files nested within the destination file. Libraries encountered during
the copying are compacted, and the source text is removed (depending on the value of the Del.eteSource
parameter) .

Apart from its behaviour with libraries, /COMPACT L1BRARIESI behaves like IcoPY oUTI.

eopyinq out and compactinq l.ibraries... start of run message.

Copyinq out: "string" ...

Copied from this directory OK

Error messages

See the section on IcoPY OUTI.

13.2.3 ICOpy ATTACH I

shows fold header of file being copied.

end of run message.

Performs a similar action to IATTACHI, but before attaching a file a complete copy of the file and all nested files
is made. The copy is attached to the fold under the cursor. File name clashes which occur as a result of the
copy are prevented, by making up new names for files derived from the file names in the original.

Parameters

None.

Description

IcoPY ATTACHI should be invoked on an empty fold of a type that can be opened by the editor. The name of
the file to be copied and attached to the fold should be the first word on the fold line.

When IcoPY ATTACHI is pressed, the TDS reads the file name from the fold line and checks to see if the file
exists and if it does the file and all nested filed folds are copied and the copy is attached to the fold, so that
opening the (now) filed fold gives access to the copied file.

178

Attaching and copying fil.e... start of run message.

Attached fil.e OK end of run message.

Error messages

The error messages produced by IcoPY ATTACHI are the same as for IATTACHI.

13.2.4 ICOpy IN I

13 Utilities

Copies a TDS format file and any nested files from another directory to a fold (in the current directory). All
nested folds may be copied or only text folds. It can be used to copy from a floppy disk into the TDS. The
name of a file being written is the same as that of the file being read, except where a file name clash would
occur. If a name clash occurs the name of the file being written is modified to make it unique. If a file
being copied contains a filed fold whose file is located in a directory other than that specified by the IcoPY 1Nl
parameter (Le. the file name has a directory name prefix) then only the filed fold is copied, not its contents.

Parameters

SourceFil.eName gives the full name of the file to be copied, including all necessary directory specifica
tions needed to locate it.

TextOnl.y is a boolean parameter. If set to TRUE then only text folds are copied. If set to FALSE then
text, data and code folds are copied (all folds are copied). The default is FALSE.

The parameters are always offered for editing when this utility is run.

Description

The cursor should be pointing at an empty fold, or an empty filed fold.

When IcoPY 1Nl is pressed the named source file and all nested files are copied into the current fold.

Copying to this directory... start of run message.

Copying in: "string" ...

Copied in OK

Error messages

shows fold header of file being copied.

end of run message.

Copy aborted by user

The copying operation has been aborted by using IsET ABORT FLAG~

Copy in fail.ed (Resul.t = n) in "string"

The copy operation has failed while it was being carried out.
n is the filing system error result (if any), see appendix E.
string is the fold header of the file being read when the error occurred.

Cannot copy in: error message (Resul.t = n)

where n is a filing system error code (see appendix E), and error message is one of the following
messages:

cannot open destination fil.e

The system cannot open the file that is to be written.

13.2 File handling package

cannot open source fi1e

The system cannot open the file that is to be read.

fi1ed fo1d must be empty

The filed fold that the copy is to be made to must be empty.

179

must be on a text fo1d

The utility was invoked either on a text line or on a fold of a type that cannot be read by the editor.

cannot create fi1ed fo1d

The utility was invoked on a non-filed fold and the system could not file it.

fi1e name not qiven

No file name has been supplied in the parameters to the utility.

directory name not qiven

The file name supplied to the utility does not include a directory path.

13.2.5 ICOpy OUT I
Copies the contents of a fold, including nested files, to another directory. All nested folds may be copied or
only text folds. It can be used to copy to a floppy disk from within the TDS. The name of a file being written is
the same as that of the file being read, except where a file name clash would occur. If a name clash occurs
the name of the file being written is modified to make it unique. If a file being copied contains a filed fold
whose file is located in a directory other than that specified by the IcoPY oUTI parameter (Le. the file name
has a directory name prefix) then only the filed fold is copied, not its contents.

Parameters

DestinationFi1eName gives the full name of the file to be written, including all necessary directory
specifications needed to locate it.

TextOn1y is a boolean parameter. If set to TRUE then only text folds are copied. If set to FALSE then
text, data and code folds are copi~d (all folds are copied). The default is FALSE.

The parameters are always offered for editing when this utility is run.

Description

The cursor should be pointing at the fold to be copied.

When IcoPY oUTI is pressed the filed fold under the cursor and all nested files are copied into the destination
file. Nested files are copied to new files nested within the destination file.

Copyinq from this directory... start of run message

Copyinq out: "string" ...

Copied out to "filename" OK

shows fold header of file being copied

end of run message.

180

Error messages

Copy aborted by user

The copying operation has been aborted by using ISET ABORT FLAG~

Copy out fai1ed (Resu1t = n) in "string"

The copy operation has failed while it was being carried out.
n is the filing system error result (if any), see appendix E.
string is the fold header of the file being read when the error occurred.

13 Utilities

Cannot copy out: error message (Resu1t = n)

where n is a filing system error code and error message is one of the following messages:

cannot open destination fi1e

The system cannot open the file that is to be written.

cannot open source fi1e

The system cannot open the file that is to be read.

must be on a text fo1d

The utility was invoked either on a text line or on a fold of a type that cannot be read by the editor.

cannot create fi1ed fo1d

The utility was invoked on a non-filed fold and the system could not file it.

fi1e name not given

No file name has been supplied in the parameters to the utility.

directory name not given

The file name supplied to the utility does not include a directory path.

13.2.61 DETACH I
IDETACHI detaches a file from a filed fold, leaving the fold unfiled. All the contents of the fold are removed from
the fold structure, but are not deleted at the host (DOS) level.

/ATTACHI is on the same key; the two utilities are toggled.

Parameters

None.

Description

IDETACHI should be invoked on a filed fold, the contents of which are to be removed.

When IDETACHI is pressed the filed fold is unfiled and all its contents are removed from the TDS. The actual
file, and nested files (if any), are not deleted. To regain access to a detached file IATTACHI should be used.

13.2 File handling package

Detaching file... start of run message.

Detached file OK end of run message.

Error messages

Cannot detach file: must be on a filed fold

IDETACHI has been invoked an a line that is not a fold line.

13.2.7 IREAD HOST I

181

IREAD HOSTI copies the contents of a host (DOS) file into a fold, thus converting it to TDS file format. It is
normally used for importing text files to a TDS fold structure.

Parameters

BostFileName: This gives the full name of the file to be read.

The parameter is always offered for editing when this utility is run.

Description

Place the cursor on an empty fold, or an empty filed fold. When IREAD HOSTI is pressed the contents of the
named file are read by the system and written into the fold.

Reading host file "filename"... start of run message.

Read aborted by user abort message.

Read host file OK end of run message.

Error messages

Cannot read host file: must be on a text fold

The cursor is either not on a fold line or is on a fold of a type that cannot be opened by the editor.

Cannot read host file: fold must be empty

A host file cannot be read to a fold that already contains data.

Cannot read host file: cannot open filed fold

The filed fold pointed to by the cursor cannot be opened.

Cannot read host file: cannot create filed fold

The utility was invoked on a fold that was not filed and the utility failed to file that fold.

Cannot read host file: file name not given

The host file name parameter has been supplied without a file name.

182 13 Utilities

The following messages take the form:

Error error message (Result = n)

where n is a filing system error code and error message is one of the following messages.

opening file for writing

A file system error occurred opening the filed fold for writing.

writing file

A file system error occurred writing to the filed fold.

reading host file

A filing error occurred reading the DOS file.

13.2.8 IRENAME FILE I
IRENAME FILEI allows the name of the file belonging to a filed fold to be changed. It has no effect on the
contents of the filed fold, only on the host file name.

Parameters

None.

Description

IRENAME FILEI should be invoked on a filed fold. The new file name should be the first word, after the old
filename in quotes, on the filed fold line following the quoted current filename. When IRENAME FILEI is pressed,
the TDS reads the file name and changes the host file name to match it, provided it is a legal file name
and there is no file already existing with the same file name. If a file already exists with the new name the
system will alter the name so that it is unique. The file will then be renamed as the system derived name.
The revised name will be displayed by the editor in quotes at the beginning of the fold line.

Renaming file.. . start of run message.

Renamed file as filename OK end of run message.

Error messages

Cannot rename file: fold is not filed

IRENAME FILEI has been invoked on a fold that is not filed.

Cannot rename file: must be on a filed fold

IRENAME FILEI has been invoked on a line that is not a fold line.

Error renaming file (Result = n)

Where n is the filing system error code (see appendix E). IRENAME FILEI failed to rename the file.
The most likely cause of this is an illegal file name. If the error code is 0, the most likely cause is
using a TDS file extension that is not permitted for the contents of that file. For example, using a
. tsr file extension on a utility code file (the extension for these files is . cut).

13.2 File handling package

13.2.9 IWRITE HOST I

183

IWRITE HOSTI copies a fold and any nested folds into a DOS format file, with all fold information removed. This
is normally used to convert a TDS fold structure into a DOS text file. It may also be used on data and code
folds. When used on a CODE PROGRAM fold the DOS file is suitable for loading with iserver.

Parameters

BostFi1eName This gives the full name of the file to be written.

The parameter is always offered for editing when this utility is run.

Description

The cursor should be pointing at the fold to be written. When IWRITE HOSTI is pressed the contents of the fold
are copied to the named file. The file is written in DOS format. All nested text folds are expanded in line,
including COMMENT folds.

Writing host fi1e "filename"... start of run message.

Write aborted by user abort message.

Written host fi1e OK end of run message.

Error messages

Cannot write host file: must be on a text fold

The cursor is not on a fold line.

Cannot write host file: cannot create fi1ed fold

The utility was invoked on a fold that was not filed and the utility failed to file that fold.

Cannot write host file: fi1e name not given

The host file name parameter has been supplied without a file name.

The following messages take the form:

Error error message (Result = n)

where n is a filing system error code and error message is one of the following messages:

opening fi1e for reading

A file system error occurred opening the filed fold for reading.

reading file

A file system error occurred reading from the filed fold.

writing host file

A filing error occurred writing the DOS file.

[14 Libraries

14.1 Introduction to the libraries

Libraries are collections of source text and/or compiled procedures and functions which are suitable for use
in a variety of occam programs. Libraries are provided in the TDS for a variety of necessary and commonly
used operations. Users may create their own libraries and any such libraries may be handled in the same
way as those provided in the lDS.

The libraries provided in the TDS are grouped into four principal groups; This grouping has no fundamental
significance but is principally an aid to documentation and packaging for delivery. The lower level grouping
of procedures and functions into libraries is governed by a need to keep libraries reasonably small to aid
processing at compile time and is also influenced by the requirement that any procedure called from the code
of more than one separate compilation unit must itself be in a different library.

Procedures in the compiler libraries are provided compiled for all transputer targets and error modes except
universal. Other libraries are supplied compiled in HALT mode for T2 and appropriate 32-bit classes. Source
code for these is also provided so that users may recompile for other error modes.

When library code is linked into an occam program, the unit of linking is the individual separate compilation
unit (SC). Most libraries therefore contain many SCs. The grouping of procedures into SCs may be determined
by applying the ICOMPILATION INFOI utility to the libraries in the TOS.

The library groups are:

Compiler and system libraries (complibs) which are libraries containing supporting code for the code
generated by the compiler, and code for certain low level transputer operations which may sometimes
be required. These libraries include the so-called standard. libs whose use may be suppressed
by setting a compilation parameter.

2 Mathematical libraries (mathlibs) which are libraries providing a variety of mathematical functions.

3 Host input and output libraries (hostlibs) are designed particularly for use in programs which will be
run outside the TOS, but supported by the host file server iserver. Code for such programs can
be created and tested within the TOS and then with minimal alteration be recompiled for stand alone
use.

4 occam channel input and output libraries (iolibs) contain procedures tailored for use in commu
nication with the channel interfaces provided by the TOS to an EXE at run time. Many of these
procedures may also be used in other contexts where a simple stream oriented model of communi
cation of textual information using a single occam channel is appropriate. There are also a number
of general purpose representation conversion procedures which may be used in any program. The
procedures in this library are particularly suited for programs built from many concurrent processes
and include suitable protocol conversion and multiplexing procedures for use in such programs.

Library group Library name Description Processor
complibs Multiple length integer arithmetic functions T2 TA

Floating point functions T2 TB

32 bit IEEE arithmetic functions T2 TB

64 bit IEEE arithmetic functions T2 TB

20 block move library T2 T4

Bit manipulation and CRC library T2 T4

Code execution library T2 TA

Arithmetic instruction library T2 TA

186 14 Libraries

Library group Library name Description Processor
compl.ibs reinit Extraordinary link handling library T2 TA

bl.ockcrc CRC library T2 T4 TC

l.inkaddr Hard link addresses T2 TA
r64util. Long real arithmetic support TA
t2util.s Arithmetic support for T2 T2
real.s 32 bit real arithmetic support T2 TB

dreal.s 64 bit real arithmetic support T2 TB

ints Integer arithmetic support T2TA
real.pds Real predefined routines T2 TB T8
intpds Integer predefined routines T2 TB T8

mathl.ibs mathval.s Constants for mathematical algorithms T2 TA

snql.math Single length elementary function library T2 TB T8
dbl.math Double length elementary function library T2 TB T8
t4math T414 elementary function library TB

hostl.ibs sphdr Constants for hostl.ibs procedures T2 TA
spl.ib Low level SP operations T2 TA

sol.ib Higher level SP operations T2 TA

skl.ib Keyboard input library T2 TA
spinterf SP interface procedures T2 TA
afsp afserver to iserver convertor T2 TA

iol.ibs userhdr Constants for TDS terminal interface, etc. T2 TA

fil.erhdr Constants for TDS user filer interface, etc. TA
krnl.hdr Constants for TDS kernel and server interfaces TA
strmhdr Protocols for channels to the TDS T2 TA

userval.s Useful subset of userhdr and fil.erhdr T2 TA

* afhdr Constants for the afserver interface TA

ioconv Basic type i/o conversion library T2TA

extrio Extra type i/o conversion library T2TA
strinqs String handling library T2 TA

streamio Keystream and screenstream library T2 TA

ssinterf Keystream and screenstream interface procedures T2 TA

us-erio General purpose i/o procedure library T2 TA

interf Interface procedure library T2 TA

* sl.ice Block transfer procedure library T2 TA

ufil.er Low level user filer interface support library TA

* msdos TDS server channel support library TA

* derivio Byte stream i/o library T2 TA

* afio Afserver low level protocol library TA

* afil.er Afserver command library TA

* afinterf Afserver protocol interface and multiplexor TA

t4board Transputer board support library TA

t2board B006 support library T2

Libraries marked with an '*' in the above table are provided for compatibility with earlier versions of the TDS
only. Procedures from these libraries should not be called in new programs and th.ey are not documented in
this manual.

14.2 Compiler and system libraries (comp1ibs) 187

Libraries containing only constants and protocol declarations are tabulated in full in appendix D. The other
libraries and the functions and procedures declared in them are described in full in the remaining sections of
this chapter. The description of each library includes a table enumerating the procedures (and functions) in
the library and the parameters required for each. A description of each of these is also provided.

Libraries contain code compiled for a variety of transputer target types and/or classes and of error checking
modes. In the complibs library group where the sources of library procedures are not included in the product,
all targets and error checking modes except universal are supported by compiled libraries. In the other library
groups source code is included in the product and so users can compile the libraries for modes and targets
not supported by the compiled code supplied. Wherever possible library code is compiled for the broadest
possible class of transputer target (TA, or TB as appropriate) to avoid unnecessary replication of compiled
code.

14.2 Compiler and system libraries (complibs)

This group includes procedures and functions which are predefined by the compiler in the sense that calls
to them will be recognised by the compiler and specially handled. Some of these compile into in-line code
and so do not correspond to any code in a library file supplied in the TDS. From the point of view of the user
it is only necessary to know whether a 'USE line is required. This requirement is mentioned after the table
enumerating the contents of each library. All procedures and functions in this library group are fully supported
for all processor types and error checking modes except universal. The user need only be concerned with
which target group a procedure has been compiled for if the user code is being compiled for a transputer
class rather than an individual target type. For obvious reasons it is not possible, for example, to compile a
program doing real arithmetic for a group such as TA or Te whose members have different ways of achieving
this.

The standard libraries for which 'USE lines are provided by the system if the compilation parameter
use. standard .l.ibs is TRUE are real.s, dreal.s, ints, real.pds and intpds. It is alternatively
possible for these to be explicitly used.

14.2.1 Multiple length integer arithmetic functions

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations. Available for all targets.

Result Function Parameter specifiers
INT LONGADD VAL INT l.eft, right, carry. in
INT LONGSUB VAL INT l.eft, right, borrow. in
INT ASBIFTRIGBT VAL INT argument, pl.aces
INT ASBIFTLEFT VAL INT argument, pl.aces
INT ROTATERIGBT VAL INT argument, pl.aces
INT ROTATELEFT VAL INT argument, pl.aces
INT,INT LONGSOM VAL INT l.eft, right, carry. in
INT,INT LONDIFF VAL INT l.eft, right, borrow. in
INT,INT LONGPROD VAL INT l.eft, right, carry. in
INT,INT LONGDIV VAL INT dividend. hi, dividend.l.o, divisor
INT,INT SBIFTLEFT VAL INT hi. in, l.o.in, pl.aces
INT,INT SBIFTRIGHT VAL INT hi. in, l.o.in, pl.aces
INT,INT,INT NORMALISE VAL INT hi. in, l.o.in

This library does not have to be referred to by a 'USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code.

For further information on the functions provided by this library see the occam 2 Reference Manual.

188 14 Libraries

14.2.2 Floating point functions

The floating point functions include the list of facilities suggested by the ANSI-IEEE standard 754-1985.
Available for all targets.

Result Function Parameter specifiers

REAL32 ABS VAL REAL32 X

REAL 64 DABS VAL REAL64 X

REAL32 SCALEB VAL REAL32 X, VAL INT n

REAL 64 DSCALEB VAL REAL64 X, VAL INT n

REAL32 COPYSIGN VAL REAL32 X, Y

REAL 64 DCOPYSIGN VAL REAL64 X, Y

REAL32 SQRT VAL REAL32 X

REAL 64 DSQRT VAL REAL 64 X

REAL32 MINUSX VAL REAL32 X

REAL 64 DMINOSX VAL REAL 64 X

REAL32 NEXTAFTER VAL REAL32 X, Y

REAL 64 DNEXTAFTER VAL REAL 64 X, Y

REAL32 MOLBY2 VAL REAL32 X

REAL 64 DMOLBY2 VAL REAL 64 X

REAL32 DIVBY2 VAL REAL32 X

REAL 64 DDIVBY2 VAL REAL 64 X

REAL32 LOGB VAL REAL32 X

REAL 64 DLOGB VAL REAL 64 X

BOOL ISNAN VAL REAL32 X

BOOL DISNAN VAL REAL 64 X

BOOL NOTFINITE VAL REAL32 X

BOOL DNOTFINITE VAL REAL 64 X

BOOL ORDERED VAL REAL32 X, Y

BOOL DORDERED VAL REAL 64 X, Y

INT,REAL32 FLOATING. UNPACK VAL REAL32 X

INT,REAL64 DFLOATING.ONPACK VAL REAL 64 X

BOOL,INT32,REAL32 ARGUMENT. REDUCE VAL REAL32 X, Y, Y.err

BOOL,INT32,REAL64 DARGUMENT.REDUCE VAL REAL 64 X, Y, Y.err

REAL32 FPINT VAL REAL32 X

REAL 64 DFPINT VAL REAL 64 X

This library does not have to be referred to by a 'USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code, or into compiler library calls.

For further information on the functions provided by this library see the occam 2 Reference Manual.

14.2 Compiler and system libraries (comp1ibs)

14.2.3 IEEE arithmetic functions

189

Result Function Parameter specifiers

REAL32 REAL320P VAL REAL32 X, VAL INT Op, VAL REAL32 Y

REAL64 REAL 640P VAL REAL64 X, VAL INT Op, VAL REAL64 Y

BOOL, REAL32 IEEE320P VAL REAL32 X, VAL INT Rm, Op, VAL REAL32 Y

BOOL, REAL64 IEEE 640P VAL REAL64 X, VAL INT Rm, Op, VAL REAL64 Y

BOOL, REAL32 IEEE32REM VAL REAL32 X, Y

BOOL, REAL64 IEEE64REM VAL REAL64 X, Y

REAL32 REAL32REM VAL REAL32 X, Y

REAL64 REAL64REM VAL REAL64 X, Y

BOOL REAL32EQ VAL REAL32 X, Y

BOOL REAL 64EQ VAL REAL64 X, Y

BOOL REAL32GT VAL REAL32 X, Y

BOOL REAL 64GT VAL REAL64 X, Y

INT IEEECOMPARE VAL REAL32 X, Y

INT DIEEECOMPARE VAL REAL 64 X, Y

This library does not have to be referred to by a lOSE statement; the compiler will automatically recognise
calls to these routines for all targets and will compile them into in-line code, or into calls to appropriate
functions in the libraries rea1s or dreal.s.

For further information on the functions provided by this library see the occam 2 Reference Manual.

14.2.4 20 block move library

Procedure Parameter Specifiers

MOVE2D VAL [] []BYTE Source, VAL INT sx, ay, [] []BYTE Dest,
VAL INT dx, dy, width, 1enqth

DRAW2D VAL [] []BYTE Source, VAL INT sx, ay, [] []BYTE Dest,
VAL INT dx, dy, width, l.enqth

CLIP2D VAL [] []BYTE Source, VAL INT sx, ay, [] []BYTE Dest,
VAL INT dx, dy, width, l.enqth

This library does not have to be referred to by a lOSE statement; the compiler will automatically recognise
calls to these routines. They will be compiled into in-line code for the T8 or T425, or into a call to procedures
in the library intpds for the T4 or the T2.

MOVE2D

PROC MOVE2D(VAL [] []BYTE Source, VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, l.enqth)

Moves a block of size width by 1enqth which starts at byte Source [sy] [sx] to the block
starting at byte Dest [dy] [dx].

190

DRAW2D

14 Libraries

PROC DRAW2D (VAL [] []BYTE Source, VAL INT sx, sy, [] []BYTE Dest,
VAL INT dx, dy, width, length)

Moves a block of size width by length which starts at byte Source [sy] [sx] to the block
starting at byte Dest [dy] [dx]. Only non-zero bytes in the source are transferred to the desti
nation.

CLIP2D

PROC CLIP2D (VAL [] []BYTE Source, VAL INT sx, ay, [] []BYTE Dest,
VAL INT dx, dy, width, length)

Moves a block of size width by length which starts at byte Source [sy] [sx] to the block
starting at byte Dest [dy] [dx] . Only zero bytes in the source are transferred to the destination.

14.2.5 Bit manipulation and CRC library

Result Function Parameter Specifiers

INT BITCOONT VAL INT Word, CountIn

INT CRCWORD VAL INT data, CRCIn, generator

INT CRCBYTE VAL INT data, CRCIn, generator

INT BITREVNBITS VAL INT x, n

INT BITREVWORD VAL INT x

This library does not have to be referred to by a lOSE statement; the compiler will automatically recognise
calls to these routines. They will be compiled into in-line code for the TB or T425, or into a call to procedures
in the library intpds for the T4 or the T2.

See INMOS technical note 26 for a discussion of GRG generation.

BITCOONT

INT FUNCTION BITCOONT (VAL INT Word, CountIn)

This function counts the number of bits set in Word, and returns this number added to the value
CountIn.

CRCWORD

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

This function performs a cyclic redundancy check over 1 word. It is normally used iteratively on a
sequence of words to obtain the GRG.

CRCIn
data
generator

contains initial value or running GRG.

contains data on which the GRG is to be performed.
contains GRG polynomial generator..

14.2 Compiler and system libraries (comp1ibs)

CRCBYTE

191

:INT FUNCT:ION CRCBYTE (VAL :INT data, CRC:In, qenerator)

This function performs a cyclic redundancy check over 1 byte. It is normally used iteratively on a
sequence of bytes to obtain the GRG. The byte processed is contained in the most significant end
of the word data).

CRC:In
data
qenerator

contains initial value or running GRG.
contains data on which the GRG is to be performed.
contains GRG polynomial generator.

B:ITREVNB:ITS

:INT FUNCT:ION B:ITREVNB:ITS (VAL :INT x, n)

This function takes :INT parameters x and n and returns an :INT containing the n least significant
bits of x, in reverse order.

B:ITREVWORD

:INT FUNCT:ION B:ITREVWORD (VAL :INT x)

This function takes an :INT x and returns an :INT which is the bit reversal of x.

14.2.6 Code execution

Procedure Parameter Specifiers

KERNEL.RUN VAL [] BYTE code, VAL :INT entry.offset,
[] :INT workspace,

VAL :INT number.of.parameters

LOAD.:INPUT.CHANNEL :INT here, CHAN OF ANY in

LOAD. :INPUT. CHANNEL. VECTOR :INT here, [] CHAN OF ANY in.vec

LOAD.OUTPUT.CHANNEL :INT here, CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR :INT here, [] CHAN OF ANY out.vec

LOAD.BYTE.VECTOR :INT here, [] BYTE b.vec

This library does not have to be referred to by a fUSE statement; the compiler will automatically recognise
calls to these routines for all targets and will compile them into in-line code.

The procedures described allow an occam program to read in a compiled occam PROC and call it. The
called PROC may be compiled and linked separately from the calling program and read in from a file. The
calling program runs the called PROC with a normal sequential PROC call mechanism.

The facilities include provision for passing parameters to the called PROC before running it.

192 14 Libraries

KERNEL. RUN

PROC KERNEL. RUN (VAL [] BYTE code,
VAL INT entry. offset,

[]INT workspace,
VAL INT number.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer, starting execution
at the location code [entry. offset]. The workspace buffer is used to hold the local data
of the called procedure. The parameters passed to the called procedure should be placed at the
top of the workspace buffer by the calling process before the call of KERNEL. RUN. The call to
KERNEL. RUN returns when the called PROC terminates.

See section 11.3 for a full description of how to set up the workspace for KERNEL. RUN.

LOAD.INPUT.CHANNEL

PROC LOAD. INPUT. CHANNEL (INT here, CBAN OF ANY in)

The variable here is assigned the address of the second parameter.

LOAD. INPUT. CHANNEL. VECTOR

PROC LOAD.INPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY in.vec)

The variable here is assigned the address of the second parameter.

LOAD.OUTPUT.CHANNEL

PROC LOAD.OUTPUT.CHANNEL (INT here, CBAN OF ANY out)

The variable here is assigned the address of the second parameter.

LOAD.OUTPOT.CHANNEL.VECTOR

PROC LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []CBAN OF ANY out.vec)

The variable here is assigned the address of the second parameter.

LOAD.BYTE.VECTOR

PROC LOAD.BYTE.VECTOR (INT here, []BYTE b.vec)

The variable here is assigned the address of the second parameter.

14.2.7 Arithmetic instruction library

Result Function Parameter Specifiers

INT,INT,INT UNPACKSN VAL INT X

INT ROUNDSN VAL INT Yexp, Yfrac, Yquard

INT FRACMUL VAL INT X,Y

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines, when compiling for a T4, and will compile them into in-line code. The FRACMUL
function is available for the Ta. None of the functions are available for a T2.

This library provides access to some of the low-level arithmetic instructions on the transputer.

14.2 Compiler and system libraries (comp1ibs)

UNPACKSN and ROUNDSN support floating-point arithmetic on the T4.

FRACMOL supports fractional arithmetic on the T4 and the TB.

193

UNPACKSN

:INT, :INT, :INT FUNCTION UNPACKSN (VAL INT X)

ONPACKSN unpacks X, regarded as an IEEE single-length format binary floating-point quantity, into
Xexp, the (biased) exponent, and Xfrac, the fractional part. It also returns an integer defining the
Type of X. This is:

o if X is zero

1 if X is a normalised or denormalised number

2 if X is 1nl

3 if X is NaN

The sign of X is ignored.

The results are returned in the order: Xexp, Xfrac, Type.

ROONDSN

INT FUNCTION ROONDSN (VAL INT Yexp, Yfrac, Yguard)

ROONDSN takes a possibly unnormalised fraction, guard word and exponent and returns the rounded
IEEE floating point value it represents. To do this the fraction is normalised, if necessary, then post
normalised and finally rounded to the nearest IEEE value. The exponent should already be biased. If
overflow occurs, 1nl is returned. Its use is in processes that have operated on unpacked floating point
numbers to produce an unpacked result. It takes care of all the normalisation, postnormalisation,
rounding and packing ~f the result~ The round mode used is round to nearest.

The function normalises ,and postn~rmalises the number represented by Yexp, Yfrac and Yguard
into the local variables Xexp, Xfrac and Xguard. It then packs the (biased) exponent Xexp and
fraction Xfrac into the result, rounding using the extra bits in Xguard. The sign bit is set to O. If
there is overflow, the result is set to 1nl.

FRACMOL

INT FUNCTION FRACMOL (VAL INT X,Y)

FRACMOL takes two arguments representing real fractions in the range [-1,1) and returns their
product rounded to the nearest available representation. The value of the fractions represented by
the arguments and result can be obtained by multiplying their INT value by 2-31 •

14.2.8 Extraordinary link handling library reinit

Procedure Parameter Specifiers

InputOrFai1.t CHAN OF ANY c, []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted

OutputOrFai1.t C~ OF ANY c, VAL []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted

InputOrFai1.c CBAN OF ANY c, []BYTE mess, CHAN OF INT ki11,
BOOL aborted

I I

OutputOrFai1.c CHAN OF ANY c, VAL []BYTE mess, CHAN OF INT ki11,
BOQL ~orted

Reinitia1ise cHiN OF ANY c

194

To use this library a program header must include the line:

14 Libraries

JOSE reinit

There are four procedures which implement input and output processes which can be made to terminate
even when there is a communication failure. They will terminate either as a result of the communication
completing, or as a result of the failure of the communication being recognised. Two procedures provide
input and output where communication failure can be detected by a simple timeout, the other two procedures
provide input and output where the failure of the communication is signalled to the procedure via a channel.
The procedures have a boolean variable as a parameter which is set true if the procedure terminated as a
result of communication failure being detected, and is set false otherwise. If the procedure does terminate
as a result of communication failure having been detected then the link channel can be reset using a fifth
procedure.

InputOrFai1.t

PROC InputOrFai1.t (CHAN OF ANY c, []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted)

The procedure takes as parameters a link channel c (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

The procedure is used for communication where failure is detected by a timeout. It take a timer
parameter TIME, and an absolute time t. The procedure treats the communication as having failed
when the time as measured by the timer TIMER is AFTER the specified time t.

OutputOrFai1.t

PROC OutputOrFai1.t (CHAN OF ANY c, VAL []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted)

The procedure takes as parameter a link channel c (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean varia,ble aborted.
the choice of a byte vector as the parameter to these procedures allows an object of any type to be
passed along the channel provided it is retyped first.

This procedure is used for communication where failure is detected by a timeout. It takes a timer
parameter TIME, and an absolute time t. The procedure treats the communication as having failed
when the time as measured by the timer TIME is AFTER the specified time t.

InputOrFai1.c

PROC InputOrFai1.c (CHAN OF ANY c, []BYTE mess,
CHAN OF INT ki11, BOOL aborted)

The procedure takes as parameter a link channel c (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

This procedure provides communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting procedure via a message on the channel ki11.
The ki11 message is of type INT and can be any value.

14.2 Compiler and system libraries (comp1ibs) 195

OutputOrFai1.c

PROC OutputOrFai1 . c (CBAN OF ANY c, VAL [] BYTE mess,
CBAN OF INT ki11, BOOL aborted)

The procedure takes as parameters a link channel c (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

This procedure provides communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting or outputting procedure via a message on the
channel ki11. The ki11 message is of type INT and can be any value.

Reinitia1ise

PROC Reinitia1ise (CBAN OF ANY c)

This procedure may be used to reinitialise the link channel c after it is known that all activity on the
link has ceased.

Reinitia1ise must only be used to reinitialise a link channel after communication has finished.
If the procedure is applied to a link channel which is being used for communication the transputer's
error flag will be set and subsequent behaviour is undefined.

14.2.9 Block CRC library b10ckcrc

Result Function Parameter Specifiers

INT CRCFROMMSB VAL []BYTE InputStrinq, VAL INT
Po1ynomia1Generator,
INT 01dCRC

INT CRCFROMLSB VAL []BYTE InputStrinq, VAL INT
Po1ynomia1Generator,
INT 01dCRC

To use this library a program header must include the line:

fUSE b10ckcrc

CRCFROMMSB

FUNCTION CRCFROMMSB (VAL []BYTE InputStrinq,
VAL INT Po1ynomia1Generator, INT 01dCRC)

The string of bytes is polynomially divided by the generator starting from the most significant bit of
the most significant byte in decreasing bit order.

CRCFROMLSB

FUNCTION CRCFROMLSB (VAL []BYTE InputStrinq,
VAL INT Po1ynomia1Generator, INT 01dCRC)

The string of bytes is polynomially divided by the generator starting from the least significant bit of
the least significant byte in increasing bit order.

196

14.3 Mathematical libraries (mathlibs)

14.3.1 Single length and double length elementary function library

14 Libraries

The elementary functions for any processor are contained in two separate libraries: one for the single length
functions, the other for the double length functions. The TB specific version of these functions, which is
described in the next section, consists of one library only.

The version of the library described by this section has been written using only floating-point arithmetic and pre
defined functions supported in occam. Thus it can be compiled for any processor with a full implementation
of occam, and give identical results.

It will be efficient on processors with fast floating-point arithmetic and good support for the floating-point prede
fined functions such as MULBY2 and ARGUMENT. REDUCE. For 32-b!t processors without special hardware
for floating-point calculations the alternative version described in section 14.3.2 using fixed-point arithmetic
will be faster, but will not give identical results.

A special version has been produced for the IMS T212, which avoids the use of any double-precision arithmetic
in the single precision functions. This is distinguished in the notes by the annotation 'T212 special'; notes
relating to the version for T8 and TB are denoted by 'standard'.

Result Function Parameter specifiers

REAL32 ALOG VAL REAL32 X

REAL32 ALOG10 VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y

REAL32 SIN VAL REAL32 X

REAL32 COS VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y

REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32,INT32 RAN VAL INT32 X

To use the single length library a program header must include the line

IUSE sngl.math

14.3 Mathematical libraries (math1ibs)

Result Function Parameter specifiers

REAL64 DALOG VAL REAL64 X

REAL64 DALOG10 VAL REAL64 X

REAL64 DEXP VAL REAL64 X

REAL64 DPOWER VAL REAL64 X, VAL REAL64 Y

REAL64 DSIN VAL REAL64 X

REAL64 DCOS VAL REAL64 X

REAL64 DTAN VAL REAL64 X

REAL64 DASIN VAL REAL64 X

REAL64 DACOS VAL REAL64 X

REAL64 DATAN VAL REAL64 X

REAL64 DATAN2 VAL REAL64 X, VAL REAL64 Y

REAL64 DSINH VAL REAL64 X

REAL64 DCOSH VAL REAL64 X

REAL64 DTANH VAL REAL64 X

REAL64,INT64 DRAN VAL INT64 X

To use the double length library a program header must include the line

fUSE db1math

Introduction

197

This, and the following subsections, contain some notes on the presentation of the elementary function
libraries, including the TB version described in section 14.3.2.

These function subroutines have been written to be compatible with the ANSI standard for binary floating-point
arithmetic (ANSI-IEEE std 754-1985), as implemented in occam. They are based on the algorithms in:
Cody, W. J., and Waite, W. M. [1980). Software Manual for the Elementary Functions. Prentice-Hall, New
Jersey.
The only exceptions are the pseudo-random number generators, which are based on algorithms in:
Knuth, D. E. [1981). The Art of Computer Programming, 2nd. edition, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass.

Inputs

All the functions in the library (except RAN and DRAN) are called with one or two parameters which are binary
floating-point numbers in on~ of the IEEE standard formats, either 'single-length' (32 bits) or 'double-length'
(64 bits). The parameter(s) and the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including special values representing NaNs
('Not a Number') and Infs ('Infinity'). NaNs are copied to the result, whilst Infs mayor may not be in the
domain. The domain is the set of arguments for which the result is a normal (or denormalised) floating-point
number.

198

Outputs

Exceptions

14 Libraries

Arguments outside the domain (apart from NaNs which are simply copied through) give rise to exceptional
results, which may be NaN, +Inf, or -Inf. Infs mean that the result is mathematically well-defined but too
large to be represented in the floating-point format.

Error conditions are reported by means of three distinct NaNs:

undefined.NaN

This means that the function is mathematically undefined for this argument, for example the logarithm of a
negative number.

unstable.NaN

This means that a small change in the argument would cause a large change in the value of the function, so
any error in the input will render the output meaningless.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in range, and it is stable with
respect to input errors at this argument, the limitations of word-length (and reasonable cost of the algorithm)
make it impossible to compute the correct value.

Accuracy

Range Reduction

Since it is impractical to use rational approximations (Le. quotients of polynomials) which are accurate over
large domains, nearly all the subroutines use mathematical identities to relate the function value to one
computed from a smaller argument, taken from the 'primary domain', which is small enough for such an
approximation to be used. This process is called 'range reduction' and is performed for all arguments except
those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain, which represents the
basic accuracy of the approximation. For some functions the process of range reduction results in a higher
accuracy for arguments outside the primary domain, and for others it does the reverse. Refer to the notes
on each function for more details.

Generated Error

If the true value of the function is large the difference between it and the computed value (the 'absolute error')
is likely to be large also because of the limited accuracy of floating-point numbers. Conversely if the true
value is small, even a small absolute error represents a large proportional change. For this reasonthe error
relative to the true value is usually a better measure of the accuracy of a floating-point function, except when
the ouput range is strictly bounded.

If j is the mathematical function and F the subroutine approximation, then the relative error at the floating-point
number X (provided j(X) is not zero) is:

RE(X) = (F(X) - j(X))
j(X)

Obviously the relative error may become very large near a zero of j(X). If the zero is at an irrational argument
(which cannot be represented as a floating-point value), the absolute error is a better measure of the accuracy
of the function near the zero.

As it is impractical to find the relative error for every possible argument, statistical measures of the overall
error must be used. If the relative error is sampled at a number of points X n (n = 1 to N), then useful

14.3 Mathematical libraries (math1ibs)

statistics are the maximum relative error and the root-mean-square relative error.

N

RMSRE = L(RE(Xn))2
n=1

199

Corresponding statistics can be formed for the absolute error also, and are called M AE and RMSAE
respectively.

The M RE generally occurs near a zero of the function, especially if the true zero is irrational, or near
a singularity where the result is large, since the 'granularity' of the floating-point numbers then becomes
significant.

A useful unit of relative error is the relative magnitude of the least significant bit in the floating-point fraction,
which is called one 'unit in the last place' (ulp). This is the relative magnitude of the least significant bit of
the floating-point fraction (Le. the smallest € such that 1 + € :/ 1). Its magnitude depends on the floating-point
format: for single-length it is 2-23 =1.19 III 10-7 , and for double-length it is 2-52 =2.22 III 10-16 .

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any calculation usually differs from
the exact value. In effect, a small error has been added to the exact result, and any subsequent calculations
will inevitably involve this error term. Thus it is important to determine how each function responds to errors
in its argument. Provided the error is not too large, it is sufficient just to consider the first derivative of the
function (written f').

If the relative error in the argument X is d (typically a few ulp), then the absolute error (E) and relative error
(e) in f(X) are:

E = IXf'(X)dl == Ad

=IXf'(X)dl = Rd
e f(X) -

This defines the absolute and relative error magnification factors A and R. When both are large the function
is unstable, Le. even a small error in the argument, such as would be produced by evaluating a floating-point
expression, will cause a large error in the value of the function. The functions return an unstable.NaN in
such cases which are simple to detect.

The functional forms of both A and R are given in the specification of each function.

Test Procedures

For each function, the generated error was checked at a large number of arguments (typically 100000) drawn
at random from the appropriate domain. First the double-length functions were tested against a 'quadruple
length' implementation (constructed for accuracy rather than speed), and then the single-length functions
were tested against the double-length versions.

In both cases the higher-precision implementation was used to approximate the mathematical function (called
f above) in the computation of the error, which was evaluated in the higher precision to avoid rounding errors.
Error statistics were produced according to the formulae above.

Symmetry

The subroutines were designed to reflect the mathematical properties of the functions as much as possible.
For all the functions which are even, the sign is removed from the input at the beginning of the computation so
that the sign-symmetry of the function is always preserved. For odd functions, either the sign is removed at
the start and then the appropriate sign set at the end of the computation, or else the sign is simply propagated
through an odd degree polynomial. In many cases other symmetries are used in the range-reduction, with
the result that they will be satisfied automatically.

200

The Function Specifications

Names and Parameters

14 Libraries

All single length functions except RAN return a single result of type REAL32, and all except RAN, POWER
and ATAN2 have one parameter, a VAL REAL32 for the argument of the function.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two arguments of each function.

RAN returns two results of type REAL32, INT32, and has one parameter which is a VAL INT32.

In each case the double-length version of name is called Dname, returns a REAL64 (except DRAN, which
returns REAL64, INT64), and has parameters of type VAL REAL64 (VAL INT64 for DRAN). ,

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output to the relative error in the
argument.

Exceptions Outputs for invalid inputs (Le. those outside the domain), other than NaN (NaNs are copied
direcly to the output and are not listed as exceptions). These are all Infs or NaNs.

Generated Error The difference between the true and computed values of the function, when the argument
is error-free. This is measured statistically and displayed for one or two ranges of arguments, the
first of which is usually the primary domain (see below). The second range, if present, is chosen to
illustrate the typical behaviour of the function.

Domain The range of valid inputs, Le. those for which the output is a normal or denormal floating-point
number.

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square absolute error taken over a number
of arguments drawn at random from the indicated range.

MRE and RMSRE The Maximum Relative Error and Root-Mean-Square relative error taken over a number
of arguments drawn at random from the indicated range.

Range The range of outputs produced by all arguments in the Domain. The given endpoints are not 'ex
ceeded.

Primary Domain The range of arguments for which the result is computed using only a single rational
approximation to the function. There is no argument reduction in this range.

Propagated Error The absolute and relative error in the function value, given a small relative error in the
argument.

ulp The unit of relative error is the 'unit in the last place' (ulp). This is the relative magnitude of the least
significant bit of the floating-point fraction (Le. the smallest € such that 1 + € :/ 1).
N.B. this depends on the floating-point format!
For the standard single-length format it is 2-23 = 1.19 *10-7 .

For the double-length format it is 2-52 =2.22 * 10- 16•

This is also used as a measure of absolute error, since such errors can be considered 'relative' to
unity.

Specification of Ranges

Ranges are given as intervals, using the convention that a square bracket '[' or T means that the adjacent
endpoint is included in the range, whilst a round bracket '(' or ')' means that it is excluded. Endpoints
are given to a few significant figures only.

Where the range depends on the floating-point format, single-length is indicated with an S and double-length
with a D.

14.3 Mathematical libraries (math1ibs) 201

For functions with two arguments the complete range of both arguments is given. This means that for each
number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments is valid. Both ranges are shown, linked by an 'x'.

Abbreviations

In the specifications, X M AX is the largest representable floating-point number: in single-length it is approx
imately 3.4 * 1038 , and in double-length it is approximately 1.8 * 10308

•

Pi means the closest floating-point representation of the transcendental number 1r, In(2) the closest repre
sentation of loge(2), and so on.

In describing the algorithms, 'X' is used generically to designate the argument, and 'result' (or RESULT, in
the style of occam functions) to designate the output.

ALOG

REAL 32 FUNCTION ALOG (VAL REAL32 X)

REAL 64 FUNCTION DALOG (VAL REAL64 X)

These compute: 10ge(X)

Domain:
Range:
Primary Domain:

(O,XMAX]

[MinLog, MaxLog) (See Note 2)

[V2/2, \"2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A= 1, R = 1/loge (X)

MRE RMSRE
1.7 ulp 0.43 ulp
1.6 ulp 0.42 ulp
1.4 ulp 0.38 ulp

Generated Error

Primary Domain Error:

Single Length(Standard):
Single Length(T212 special):
Double Length:

The Algorithm

1 Split X into its exponent N and fraction F.

2 Find LnF, the natural log of F, with a floating-point rational approximation.

3 Compute In(2) * N with extended precision and add it to LnF to get the result.

Notes

1) The term In(2) * N is much easier to compute (and more accurate) than LnF, and it is larger
provided N is not 0 (Le. for arguments outside the primary domain). Thus the accuracy of the result
improves as the modulus of log (X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of the smallest denormalised
floating-point number. For single length Minlog is -103.28, and for double length it is -745.2.
The maximum value MaxLog is the logarithm of XMAX. For single-length it is 88.72, and for
double-length it is 709.78.

202 14 Libraries

3) Since 1nl is used to represent all values greater than XMAX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

ALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)

REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: log10(X)

Domain:
Range:
Primary Domain:

(O,XMAX]
[MinL10, MaxL10] (See Note 2)
[V2/2, V2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

Generated Error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 1.70 ulp 0.45 ulp
Single Length(T212 special): 1.71 ulp 0.46 ulp
Double Length: 1.84 ulp 0.45 ulp

The Algorithm

1 Set temp:= ALOG (X) .

2 If temp is a NaN, copy it to the output, otherwise set result = log(e) * temp

Notes

1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL10, is the base-10 logarithm of the smallest
denormalised floating-point number. For single length MinL 10 is -44.85, and for double length it
is -323.6. The maximum value M axL10 is the base-10 logarithm of X M AX. For single length
M axL10 is 38.53, and for double-length it is 308.26.

3) Since 1nl is used to represent all values greater than XMAX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

EXP

REAL32 FUNCTION EXP (VAL REAL32 X)

REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain:
Range:
Primary Domain:

[-1nl, MaxLog) = [-1nl, 88.72)S,
[0, Inf) (See note 4)
[-Ln2/2, Ln2/2) = [-0.3466, 0.3466)

[-1nl, 709.78)0

14.3 Mathematical libraries (mathJ.ibs)

Exceptions

All arguments outside the domain generate an Inf.

Propagated error

203

R=X

MRE RMSRE
0.99 ulp 0.25 ulp
1.0 ulp 0.25 ulp
1.0 ulp 0.25 ulp

Generated error

Primary Domain Error:
Single Length(Standard):
Single Length(T212 special):
Double Length:

The Algorithm

1 Set N = integer part of X/ln(2).

2 Compute the remainder of X by In(2), using extended precision arithmetic.

3 Compute the exponential of the remainder with a floating-point rational approximation.

4 Increase the exponent of the result by N. If N is sufficiently negative the result must be
denormalised.

Notes

1) MaxLog is 10ge(XMAX).

2) For sufficiently negative arguments (below -87.34 for single-length and below -708.4 for double
length) the output is denormalised, and so the floating-point number contains progressively fewer
significant digits, which degrades the accuracy. In such cases the error can theoretically be a factor
of two.

3) Although the true exponential function is never zero, for large negative arguments the true result
becomes too small to be represented as a floating-point number, and EXP underflows to zero. This
occurs for arguments below -103.9 for single-length, and below -745.2 for double-length.

4) The propagated error is considerably magnified for large positive arguments, but diminished for
large negative arguments.

POWER

REAL32 FUNCTION POWER (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DPOWER (VAL REAL64 X, VAL REAL64 Y)

These compute: XY

Domain:
Range:
Primary Domain:

[0, Inf] x [-Inf, Inf]
(-lnf,lnf)

See note 3.

Exceptions

If the first argument is outside its domain, undefined.NaN is returned. If the true value of X Y

exceeds XMAX, Inf is returned. In certain other cases other NaNs are produced: See note 2.

Propagated Error

A =Y X Y (1 ± 10ge(X», R =Y(1 ± 10ge(X» (See note 4)

204 14 Libraries

Generated error

Example Range Error: MRE RMSRE (See note 3)
Single Length(Standard): 1.0 ulp 0.25 ulp
Single Length(T212 special): 63.1 ulp 13.9 ulp
Double Length: 21.1 ulp 2.4 ulp

The Algorithm

Deal with special cases: either argument = 1, 0, +Inf or -Inf (see note 2). Otherwise:

(a) For the standard single precision:

1 Compute L = 10ge(X) in double precision, where X is the first argument.

2 Compute W =Y x L in double precision, where Y is the second argument.

3 Compute RESULT = eW in single precision.

(b) For double precision, and the single precision special version:

1 Compute L = log2(X) in extended precision, where X is the first argument.

2 Compute W = Y x L in extended precision, where Y is the second argument.

3 Compute RESULT = 2w in extended precision.

Notes

1) This subroutine implements the mathematical function xY to a much greater accuracy than can
be attained using the ALOG and EXP functions, by performing each step in higher precision. The
single-precision version is more efficient than using DALOG and EXP because redundant tests are
omitted.

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Result

<0 ANY undefined.NaN

0 ~O undefined.NaN
0 0< Y ~ XMAX 0

0 Inf unstable.NaN

0< X< 1 Inf 0

0< X< 1 -Inf Inf
1 -XMAX~ Y ~ XMAX 1

1 ± Inf unstable.NaN

1 <X~XMAX Inf Inf

1 <X~XMAX -Inf 0
Inf 1 ~ Y ~ Inf Inf
Inf -Inf~ Y ~ -1 0

Inf -1 < Y < 1 undefined.NaN
otherwise 0 1

otherwise 1 X

3) Performing all the calculations in extended precision makes the double-precision algorithm very
complex in detail, and having two arguments makes a primary domain difficult to specify. As an indi
cation of accuracy, the functions were evaluated at 100000 points logarithmically distributed over (0.1 ,
10.0), with the exponent linearly distributed over (-35.0, 35.0) (single-length), and (-300.0, 300.0)

14.3 Mathematical libraries (math1ibs) 205

(double-length), producing the errors given above. The errors are much smaller if the exponent
range is reduced.

4) The error amplification factors are calculated on the assumption that the relative error in Y is ±
that in X, otherwise there would be separate factors for both X and Y. It can be seen that the
propagated error will be greatly amplified whenever 10ge(X) or Y is large.

SIN

REAL32 FUNCTION SIN (VAL REAL32 X)

REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain:

Range:
Primary Domain:

[-Smax, Smax] = [-205887.4,205887.4]S (Standard),

[-4.2 * 106 ,4.2 * 106]S (T212 special)
= [-3.4 * 109 ,3.4 * 109]D

[-1.0,1.0]

[-Pif2,Pif2] = [-1.57,1.57]

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf, which generates an un
defined.NaN.

Propagated Error

A =Xcos(X), R =Xcot(X)

Generated error (See note 1)

Primary Domain [0,2Pi]
MRE RMSRE MAE RMSAE

Single Length(Standard): 0.94 ulp 0.23 ulp 0.96 ulp 0.19 ulp

Single Length(T212 special): 0.92 ulp 0.23 ulp 0.94 ulp 0.19 ulp
Double Length: 0.9 ulp 0.22 ulp 0.91 ulp 0.18 ulp

The Algorithm

1 Set N = integer part of IXlfPi.

2 Compute the remainder of IXI by Pi, using extended precision arithmetic (double precision
in the standard version).

3 Compute the sine of the remainder using a floating-point polynomial.

4 Adjust the sign of the result according to the sign of the argument and the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result depends crucially on step
2. The extra precision of step 2 is lost if N becomes too large, and the cut-off S max is chosen to
prevent this. In any case for large arguments the 'granularity' of floating-point numbers becomes a
significant factor. For arguments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is considered to be essentially
indeterminate.

2) The propagated error has a complex behaviour. The propagated relative error becomes large
near each zero of the function (outside the primary range), but the propagated absolute error only
becomes large for large arguments. In effect, the error is seriously amplified only in an interval about

206 14 Libraries

each irrational zero, and the width of this interval increases roughly in proportion to the size of the
argument.

3) Since only the remainder of X by Pi is used in step 3, the symmetry sin(x + n'1r) = ± sin(x) is
preserved, although there is a complication due to differing precision representations of '1r.

4) The output range is not exceeded. Thus the output of SIN is always a valid argument for ASIN.

cos
REAL32 FUNCTION COS (VAL REAL32 X)

REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine(X) (where X is in radians)

Domain: [-Cmax, Cmax] = [-205887.4,205887.4]S (Standard),
[-12868.0, 12868.0]S (T212 special)

= [-3.4 * 109 ,3.4 * 109]D
[-1.0,1.0]
See note 1.

Range:
Primary Domain:

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf, which generates an un
defined.NaN.

Propagated Error

A = -Xsin(X),

Generated error

R = -Xtan(X) (See note 4)

[O,Pi/4) [O,2Pi]
MRE RMSRE MAE RMSAE
0.93 ulp 0.25 ulp 0.88 ulp 0.18 ulp
1.1 ulp 0.3 ulp 0.94 ulp 0.19 ulp

1.0 ulp 0.28 ulp 0.9 ulp 0.19 ulp

Range:

Single Length(Standard):
Single Length(T212 special):
Double Length:

The Algorithm

1 Set N = integer part of (IXI + Pi/2)/Pi and compute the remainder of (IXI + Pi/2) by Pi,
using extended precision arithmetic (double precision in the standard version).

2 Compute the sine of the remainder using a floating-point polynomial.

3 Adjust the sign of the result according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always occurs, thus there is no 'primary
domain' for COS. So for all arguments the acuracy of the result depends crucially on step 2. The
standard single-precision version performs the argument. reduction in double-precision, so there is
effectively no loss of accuracy at this step. For the T212 special version and the double-precision
version there are effectively K extra bits in the representation of '1r(K = 8 for the former and 12 for
the latter). If the argument agrees with an odd integer multiple of '1r/2 to more than k bits there is a
loss of significant bits from the computed remainder equal to the number of extra bits of agreement,
and this causes a loss of accuracy in the result.

2) The difference between COS evaluated at sucessive floating-point numbers is given approximately
by the absolute error amplification factor, A. For arguments larger than Cmax this difference may

14.3 Mathematical libraries (mathlibs) 207

be more than half the significant bits of the result, and so the result is considered to be essentially
indeterminate and an inexact.NaN is returned. The extra precision of step 2 in the double-precision
and T212 special versions is lost if N becomes too large, and the cut-off at Cmax prevents this also.

3) For small arguments the errors are not evenly distributed. As the argument becomes smaller
there is an increasing bias towards negative errors (which is to be expected from the form of the
Taylor series). For the single-length version and X in [-0.1,0.1], 62% of the errors are negative,
whilst for X in [-0.01,0.01], 70% of them are.

4) The propagated error has a complex behaviour. The propagated relative error becomes large near
each zero of the function, but the propagated absolute error only becomes large for large arguments.
In effect, the error is seriously amplified only in an interval about each irrational zero, and the width
of this interval increases roughly in proportion to the size of the argument.

5) Since only the remainder of (/XI+Pi/2) by Pi is used in step 3, the symmetry COS(x+n1r) = ± cos(x)
is preserved. Moreover, since the same rational approximation is used as in SIN, the relation
cos(x) = sin(x + 1r/2) is also preserved. However, in each case there is a complication due to the
different precision representations of 1r.

6) The output range is not exceeded. Thus the output of COS is always a valid argument for ACOS.

TAN

REAL32 FUNCTION TAN (VAL REAL32 X)

REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X is in radians)

Domain:

Range:
Primary Domain:

[-Tmax,Tmax] = [-102943.7, 102943.7]S(Standard),

[-2. 1 * 106, 2.1 * 106]S(T212 special),

= [-1.7 * 109
, 1.7 * 109

] D
(-1nl, 1nl)
[-Pi/4,Pi/4] = [-0.785,0.785]

MRE RMSRE
1.44 ulp 0.39 ulp
1.37 ulp 0.39 ulp
1.27 ulp 0.35 ulp

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inl, which generate an unde
fined.NaN. Odd integer multiples of 1r/2 may produce unstable.NaN.

Propagated Error

A = X(1 + tan2(x)) , R = X(1 + tan2(X»/ tan(X) (See note 3)

Generated error

Primary Domain Error:
Single Length(Standard):
Single Length(T212 special):
Double Length:

The Algorithm

1 Set N = integer part of X/(Pi/2) , and compute the remainder of X by Pi/2, using extended
precision arithmetic.

2 Compute two floating-point rational functions of the remainder, X Num and X Den.

3 If N is odd, set RESULT = -XDen/XNum, otherwise set RESULT = XNum/XDen.

[-1.0,1.0]

[-Pi/2, Pi/2]
[-0.5,0.5]

208

ASIN

14 Libraries

Notes

1) R is large whenever X is near to an integer multiple of 'Jr/2, and so tan is very sensitive to
small errors near its zeros and singularities. Thus for arguments outside the primary domain the
accuracy of the result depends crucially on step 2, so this is performed with very high precision, using
double precision Pi /2 for the standard single-precision function and two double-precision floating
point numbers for the representation of 'Jr/2 for the double-precision function. The T212 special
version uses two single-precision floating-point numbers. The extra precision is lost if N becomes
too large, and the cut-off Tmax is chosen to prevent this.

2) The difference between TAN evaluated at sucessive floating-point numbers is given approximately
by the absolute error amplification factor, A. For arguments larger than Smax this difference could
be more than half the significant bits of the result, and so the result is considered to be essentially
indeterminate and an inexact.NaN is returned.

3) Tan is quite badly behaved with respect to errors in the argument. Near its zeros outside the
primary domain the relative error is greatly magnified, though the absolute error is only proportional
to the size of the argument. In effect, the error is seriously amplified in an interval about each
irrational zero, whose width increases roughly in proportion to the size of the argument. Near its
singularities both absolute and relative errors become large, so any large output from this function is
liable to be seriously contaminated with error, and the larger the argument, the smaller the maximum
output which can be trusted. If step 3 of the algorithm requires division by zero, an unstable.NaN
is produced instead.

4) Since only the remainder of X by Pi/2 is used in step 3, the symmetry tan(x + n'Jr) = tan(x)
is preserved, although there is a complication due to the differing precision representations of 'Jr.
Moreover, by step 3 the symmetry tan(x) = 1/tan('Jr/2 - x) is also preserved.

REAL32 FUNCTION ASIN (VAL REAL32 X)

REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sine- 1(X) (in radians)

Domain:
Range:
Primary Domain:

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A = X/"'/1 - X2, R = X/(sin- 1(X)v1 - X2)

Generated Error

Single Length:
Double Length:

Primary Domain

MRE RMSRE
0.58 ulp 0.21 ulp
0.59 ulp 0.21 ulp

[-1.0,1.0]
MAE RMSAE
1.35 ulp 0.33 ulp
1.26 ulp 0.27 ulp

The Algorithm

1 If IXI > 0.5, set Xwork := SQRT «(1 -IXI)/2). Compute Rwork = arcsine(-2. Xwork)
with a floating-point rational approximation, and set the result =Rwork + Pi/2.

2 Otherwise compute the result directly using the rational approximation.

3 In either case set the sign of the result according to the sign of the argument.

14.3 Mathematical libraries (mathl.ibs)

Notes

209

1) The error amplification factors are large only near the ends of the domain. Thus there is a small
interval at each end of the domain in which the result is liable to be contaminated with error: however
since both domain and range are bounded the absolute error in the result cannot be large.

2) By step 1, the identity sin- 1(x) =1r/2 - 2 sin-1(J(1 - x)/2)) is preserved.

ACOS

REAL32 FUNCTION ACOS (VAL REAL32 X)

REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine-1(X) (in radians)

Domain:
Range:
Primary Domain:

[-1.0,1.0]
[0, Pi]

[-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A = -X/-J1 - X2, R = -x/(sin-1 (X)-J1 - X 2)

Generated Error

Primary Domain [-1.0,1.0]
MRE RMSRE MAE RMSAE

Single Length: 1.06 ulp 0.38 ulp 2.37 ulp 0.61 ulp
Double Length: 0.96 ulp 0.32 ulp 2.25 ulp 0.53 ulp

The Algorithm

If IXI > 0.5, set Xwork:= SQRT «(1 -IX/)/2). Compute Rwork = arcsine(2 * Xwork)
with a floating-point rational approximation. If the argument was positive, this is the result,
otherwise set the result =Pi - Rwork.

2 Otherwise compute Rwork directly using the rational approximation. If the argument was
positive, set result =Pi/2 - Rwork, otherwise result =Pi/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the domain. Thus there is a small
interval at each end of the domain in which the result is liable to be contaminated with error, although
this interval is larger near 1 than near -1, since the function goes to zero with an infinite derivative
there. However since both the domain and range are bounded the absolute error in the result cannot
be large.

2) Since the rational approximation is the same as that in ASIN, the relation cos- 1(x) =1r/2-sin-1(x)
is preserved.

ATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)

REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan- 1 (X) (in radians)

210

Domain:
Range:
Primary Domain:

Exceptions

None.

[-1nl, 1nl]

[-Pi/2, Pi/2]
[-z,z], z = 2 - v'3 = 0.2679

14 Libraries

MRE RMSRE
0.56 ulp 0.21 ulp
0.52 ulp 0.21 ulp

ATAN2

Propagated Error

A = X/(1 + X 2), R = x/(tan- 1 (X)(1 + X 2))

Generated Error

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 If IXI > 1.0, set Xwork = 1/IXI, otherwise Xwork = IXI.
2 If Xwork > 2 - V3, set F = (Xwork * V3 - 1)/(Xwork +'V3), otherwise F =Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approximation.

4 If Xwork was reduced in (2), set R =Pi/6 + Rwork, otherwise R =Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise RESULT =R.

6 Set the sign of the RESULT according to the sign of the argument.

Notes

1) For IXI > ATmax, Itan- 1(X)1 is indistinguishable from 1r/2 in the floating-point format. For
single-length, ATmax = 1.68 * 107 , and for double-length ATmax = 9 * 1015 , approximately.

2) This function is numericall¥-very stable, despite the complicated argument reduction. The worst
errors occur just above 2 - y3, but are no more than 3.2 ulp.

3) It is also very well behaved with respect to errors in the argument, Le. the error amplification
factors are always small.

4) The argument reduction scheme ensures that the identities tan-1 (X) = 1r/2 - tan- 1 (1 / X), and
tan- 1(X) = 1r/6 + tan- 1 ((V3 *X - 1)/(V3 + X)) are preserved.

REAL32 FUNCTION ATAN2 (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, VAL REAL64 Y)

These compute the angular co-ordinate tan- 1(Y/ X) (in radians) of a point whose X and Y co
ordinates are given.

Domain:
Range:
Primary Domain:

[-1nl, Inf] x [-Inf, Inf]
(-Pi, Pi]
See note 2.

Exceptions

(0, 0) and (±lnf,±lnf) give undefined.NaN.

14.3 Mathematical libraries (math1ibs) 211

(See note 3)

Propagated Error

A =X(1 ± Y)/(X2 + y 2), R =X(1 ± Y)/(tan- 1(Y/X)(X2 + y 2
))

Generated Error (See note 2)

The Algorithm

1 If X, the first argument, is zero, set the result to ±1r/2, according to the sign of Y, the
second argument.

2 Otherwise set Rwork:= ATAN (Y/ X). Then if Y < 0 set RESULT = Rwork - Pi, other
wise set RESULT = Pi - Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the generated error.

3) The error amplification factors were derived on the assumption that the relative error in Y is ±
that in X, otherwise there would be separate factors for X and Y. They are small except near the
origin, where the polar co-ordinate system is singular.

SINH

REAL32 FUNCTION SINB (VAL REAL32 X)

REAL64 FUNCTION DSINB (VAL REAL64 X)

These compute: sinh(X)

Domain:
Range:
Primary Domain:

[-Hmax,Hmax]

(-1nl, 1nl)
(-1.0,1.0)

= [-89.4, 89.4]S, [-710.5,710.5]0

Exceptions

X < -Hmax gives -1nl, and X> Hmax gives 1nl.

Propagated Error

A = Xcosh(X), R = Xcoth(X) (See note 3)

Generated Error

Primary Domain [1.0, XBig] (See note 2)
MRE RMSRE MRE RMSRE

Single Length: 0.91 ulp 0.26 ulp 1.41 ulp 0.34 ulp
Double Length: 0.67 ulp 0.22 ulp 1.31 ulp 0.33 ulp

The Algorithm

1 If IXI > XBig, set Rwork:= EXP (IXI- In(2).

2 If XBig ~ IXI ~ 1.0, set temp:= EXP (IXI) , and set Rwork = (temp - 1/temp)/2.

3 Otherwise compute sinh(IXI) with a floating-point rational approximation.

4 In all cases, set RESULT = ±Rwork according to the sign of X.

212

COSH

14 Libraries

Notes

1) H max is the point at which sinh(X) becomes too large to be represented in the floating-point
format.

2) XBig is the point at which e- 1x1 becomes insignificant compared with e1x1 , (in floating-point). For
single-length it is 8.32, and for double-length it is 18.37.

3) This function is quite stable with respect to errors in the argument. Relative error is magnified near
zero, but the absolute error is a better measure near the zero of the function and it is diminished
there. For large arguments absolute errors are magnified, but since the function is itself large,
relative error is a better criterion, and relative errors are not magnified unduly for any argument in
the domain, although the output does become less reliable near the ends of the range.

REAL32 FUNCTION COSH (VAL REAL32 X)

REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain:
Range:
Primary Domain:

[-Hmax,Hmax] = [-89.4, 89.4]S,
[1.0,lnf)
[-XBig,XBig] = [-8.32,8.32]S

[-710.5, 710.5]0

[-18.37,18.37]0

Exceptions

IXI > Hmax gives Inf.

Propagated Error

A = Xsinh(X),

Generated Error

R = X tanh(X) (See note 3)

MRE RMS
1.24 ulp 0.32 ulp
1.24 ulp 0.33 ulp

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 If IXI > XBig, set result:= EXP (IXI- In(2)}.

2 Otherwise, set temp:= EXP <IXI}, and set result = (temp + 1/temp)/2.

Notes

1) H max is the point at which cosh(X) becomes too large to be represented in the floating-point
format.

2) XBig is the point at which e-1x1 becomes insignificant compared with e1x1 (in floating-point).

3) Errors in the argument are not seriously magnified by this function, although the output does
become less reliable near the ends of the range.

14.3 Mathematical libraries (math1ibs)

TANH

REAL32 FUNCTION TANS (VAL REAL32 X)

REAL64 FUNCTION DTANS (VAL REAL64 X)

These compute: tanh(X)

213

Domain:
Range:
Primary Domain:

Exceptions

None.

[-Inf, Inf]
[-1.0,1.0]

[-Log(3)/2, Log(3)/2] = [-0.549,0.549]

Propagated Error

A = XI cosh2(X), R = XI sinh(X) cosh(X)

Generated Error

Primary Domain Error:

Single Length:
Double Length:

MRE RMS
0.53 ulp 0.2 ulp
0.53 ulp 0.2 ulp

The Algorithm

1 If IXI > In(3)/2, set temp:= EXP (IXI/2). Then set Rwork =1 - 2/(1 + temp).

2 Otherwise compute Rwork = tanh(lX/) with a floating-point rational approximation.

3 In both cases, set RESULT = ±Rwork according to the sign of X.

Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its asymptotic values of ±1.0
for IXI > HTmax, where HTmax is 8.4 for single-length, and 19.06 for double-length. Thus the
output of TANS is equal to ±1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument are always diminished
by it.

RAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)

REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corresponding sequence of floating
point numbers between zero and one.

Domain:
Range:

Exceptions

None.

Integers (see note 1)
[0.0, 1.0] x Integers

The Algorithm

1 Produce the next integer in the sequence: N k+1 = (aNk + 1)modM

2 Treat Nk +1 as a fixed-point fraction in [0,1), and convert it to floating point.

3 Output the floating point result and the new integer.

214 14 Libraries

Notes

1) This function has two results, the first a real, and the second an integer (both 32 bits for single
length, and 64 bits for double-length). The integer is used as the argument for the next call to RAN,
Le. it 'carries' the pseudo-random linear congruential sequence N k , and it should be kept in scope
for as long as RAN is used. It should be initialised before the first call to RAN but not modified
thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same sequence (both floating-point
and integer) will be produced. If a different sequence is required for each run of a program it should
be initialised to some 'random' value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in expressions requiring random
integers. The topmost bits are the most random. A random integer in the range [0, L] can conve
niently be produced by taking the remainder by (L + 1) of the integer parameter shifted right by one
bit. If the shift is not done an integer in the range [-L, L] will be produced.

4) The modulus M is 232 for single-length and 264 for double-length, and the multipliers, a, have
been chosen so that all M integers will be produced before the sequence repeats. However several
different integers can produce the same floating-point value and so a floating-point output may be
repeated, although the sequence of such will not be repeated until M calls have been made.

5) The floating-point result is uniformly distributed over the output range, and the sequence passes
various tests of randomness, such as the 'run test', the 'maximum of 5 test' and the 'spectral test'.

6) The double-length version is slower to execute, but 'more random' than the single-length version. If
a highly-random sequence of single-length numbers is required, this could be produced by converting
the output of DRAN to single-length. Conversely if only a relatively crude sequence of double-length
numbers is required, RAN could be used for higher speed and its output converted to double-length.

14.3.2 IMS T414 elementary function library

The version of the library described by this section has been written for 32-bit processors without hardware
for floating-point arithmetic. Functions from it will give results very close, but not identical to, those produced
by the corresponding functions from the previous library.

This is the version specifically intended to derive maximum performance from the IMS T414. The single
precision functions make use of the FMUL instruction available on the B revision of that processor and
successor 32-bit processors without floating-point hardware. The library is compiled for transputer class TB.

The tables and notes at the beginning of the previous library section apply equally here. However all the
functions are contained in one library. To use this library a program header must include the line:

lOSE t4math

ALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)

REAL64 FUNCTION DALOG (VAL REAL64 X)

These compute: 10ge(X)

Domain:
Range:
Primary Domain:

(O,XMAX]
[MinLog, M axLog] (See Note 2)
(v'2/2, v'2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

14.3 Mathematical libraries (mathl.ibs)

Propagated Error

215

A= 1,

MRE RMSRE
1.19 ulp 0.36 ulp
2.4 ulp 1.0 ulp

Generated Error

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 Split X into its exponent N and fraction F.

2 Find the natural log of F with a fixed-point rational approximation, and convert it into a
floating-point number LnF.

3 Compute In(2) * N with extended precision and add it to LnF to get the result.

Notes

1) The term In(2) * N is much easier to compute (and more accurate) than LnF, and it is larger
provided N is not 0 (Le. for arguments outside the primary domain). Thus the accuracy of the result
improves as the modulus of log (X) increases.

2) The minimum value that can be produced, Mi.nLog, is the logarithm of the smallest denormalised
floating-point number. For single length Minlog is -103.28, and for double length it is -745.2.
The maximum value M axLog is the logarithm of XMAX. For single-length it is 88.72, and for
double-length it is 709.78.

3) Since Inf is used to represent all values greater than XMAX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

ALOG10

REAL32 FUNCTION ALOG10 (VAL REAL32 X)

REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: log10(X)

Domain:
Range:
Primary Domain:

(O,XMAX]

[MinL10, MaxL10] (See Note 2)

[v'2/2, v'2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

Generated Error

Primary Domain Error:
Single Length:
Double Length:

MRE RMSRE
1.43 ulp 0.39 ulp
2.64 ulp 0.96 ulp

216

EXP

14 Libraries

The Algorithm

1 Set temp:= ALOG (X) .

2 If temp is a NaN, copy it to the output, otherwise set result = log(e) * temp

Notes

1) See note 1 for ALOG.

2) The minimum value that can be produced, MinL10, is the base-10 logarithm of the smallest
denormalised floating-point number. For single length MinL 10 is -44.85, and for double length it
is -323.6. The maximum value MaxL10 is the base-10 logarithm of XMAX. For single length
M axL10 is 38.53, and for double-length it is 308.26.

3) Since Int is used to represent all values greater than XMAX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

REAL32 FUNCTION EXP (VAL REAL32 X)

REAL64 FUNCTION DEXP (VAL REAL64 X)

These compute: eX

Domain:
Range:
Primary Domain:

[-Int, MaxLog)

[O,lnt)
[-Ln2/2, Ln2/ 2)

= [-Int, 88.72)S,
(See note 4)

= [-0.3466,0.3466)

[-Int, 709.78)0

Exceptions

All arguments outside the domain generate an Int.

Propagated Error

R=X

MRE RMSRE

0.51 ulp 0.21 ulp

0.5 ulp 0.21 ulp

Generated Error

Primary Domain Error:

Single Length:
Double Length:

The Algorithm

1 Set N = integer part of XI In(2).

2 Compute the remainder of X by In(2), using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its exponential using a fixed-point rational
function, and convert the result back to floating point.

4 Increase the exponent of the result by N. If N is sufficiently negative the result must be
denormalised.

Notes

1) MaxLog is 10ge(XMAX).

2) The analytical properties of eX make the relative error of the result proport40nal to the absolute
error of the argument. Thus the accuracy of step 2, which prepares the argument for the rational

14.3 Mathematical libraries (math1ibs) 217

approximation, is crucial to the performance of the subroutine. It is completely accurate when N =
0, Le. in the primary domain, and becomes less accurate as the magnitude of N increases. Since
N can attain larger negative values than positive ones, EXP is least accurate for large, negative
arguments.

3) For sufficiently negative arguments (below -87.34 for single-length and below -708.4 for double
length) the output is denormalised, and so the floating-point number contains progressively fewer
significant digits, which degrades the accuracy. In such cases the error can theoretically be a factor
of two.

4) Although the true exponential function is never zero, for large negative arguments the true result
becomes too small to be represented as a floating-point number, and EXP underflows to zero. This
occurs for arguments below -103.9 for single-length, and below -745.2 for double-length.

5) The propagated error is considerably magnified for large positive arguments, but diminished for
large negative arguments.

POWER

REAL32 FUNCTION POWER (VAL REAL32 X, VAL REAL32 Y)

REAL32 FUNCTION DPOWER (VAL REAL64 X, VAL REAL64 Y)

These compute: XY

Domain:
Range:
Primary Domain:

[0, 1nl] x [-1nl, 1nl]
(-1nl, 1nl)
See note 3.

MRE RMSRE (See note 3)
1.0 ulp 0.24 ulp

13.2 ulp 1.73 ulp

Exceptions

If the first argument is outside its domain, undefined.NaN is returned. If the true value of X Y
exceeds XMAX, 1nl is returned. In certain other cases other NaNs are produced: See note 2.

Propagated Error

A =YXY(1 ± 10ge(X)), R =Y(1 ± 10ge(X)) (See note 4)

Generated Error

Example Range Error:
Single Length:
Double Length:

The Algorithm

Deal with special cases: either argument = 1, 0, +Inl or -1nl (see note 2). Otherwise:

(a) For single precision:

1 Compute L = log2(X) in fixed point, where X is the first argument.

2 Compute W = Y x L in double precision, where Y is the second argument.

3 Compute 2w in fixed point and convert to floating-point result.

(b) For double precision:

1 Compute L = log2(X) in extended precision, where X is the first argument.

2 Compute W = Y x L in extended precision, where Y is the second argument.

3 Compute RESULT = 2w in extended precision.

218

SIN

14 Libraries

Notes

1) This subroutine implements the mathematical function xY to a much greater accuracy than can
be attained using the ALOG and EXP functions, by performing each step in higher precision.

2) Results for special cases are as follows:

First Input (X) Second Input (V) Result

<0 ANY undefined.NaN
0 ~O undefined.NaN
0 O<Y~XMAX 0
0 Inf unstable.NaN

0< X< 1 Inf 0
0< X< 1 -Inf Inf

1 -XMAX ~ Y ~ XMAX 1
1 ± Inf unstable.NaN

1<X~XMAX Inf Inf
1<X~XMAX -Inf 0

Inf 1 ~ Y ~ Inf Inf
Inf -Inf~ Y ~-1 0
Inf -1 < Y < 1 undefined.NaN

otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-precision algorithm very
complex in detail, and having two arguments makes a primary domain difficult to specify. As an indi
cation of accuracy, the functions were evaluated at 100000 points logarithmically distributed over (0.1 ,
10.0), with the exponent linearly distributed over (-35.0,35.0) (single-length), and (-300.0,300.0)
(double-length), producing the errors given above. The errors are much smaller if the exponent
range is reduced.

4) The error amplification factors are calculated on the assumption that the relative error in Y is ±
that in X, otherwise there would be separate factors for both X and Y. It can be seen that the
propagated error will be greatly amplified whenever 10ge(X) or Y is large.

REAL32 FUNCTION SIN (VAL REAL32 X)

REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain:
Range:
Primary Domain:

[-Smax,Smax] = [-12868.0,12868.0]8, [-2.1 * 108 ,2.1 * 108]D
[-1.0,1.0]

[-Pi/2, Pi/2] = [-1.57,1.57]

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf, which generates an un
defined.NaN.

Propagated Error

A =Xcos(X), R =Xcot(X)

14.3 Mathematical libraries (mathlibs) 219

Generated Error (See note 3)

Range: Primary Domain [0,2Pi]
MRE RMSRE MAE RMSAE

Single Length: 0.65 ulp 0.22 ulp 0.74 ulp 0.18 ulp
Double Length: 0.56 ulp 0.21 ulp 0.64 ulp 0.16 ulp

The Algorithm

1 Set N = integer part of lXI/Pi.
2 Compute the remainder of IXI by Pi, using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its sine using a fixed-point rational function,
and convert the result back to floating point.

4 Adjust the sign of the result according to the sign of the argument and the evenness of N.

Notes

1) For arguments outside the primary domain the accuracy of the result depends crucially on step 2.
The extended precision corresponds to K extra bits in the representation of 'Ir (K = 8 for single-length
and 12 for double-length). If the argument agrees with an integer multiple of 'Ir to more than K bits
there is a loss of significant bits in the remainder, equal to the number of extra bits of agreement,
and this causes a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off Smax is chosen to
prevent this. In any case for large arguments the 'granularity' of floating-point numbers becomes a
significant factor. For arguments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is considered to be essentially
indeterminate.

3) The propagated error has a complex behaviour. The propagated relative error becomes large
near each zero of the function (outside the primary range), but the propagated absolute error only
becomes large for large arguments. In effect, the error is seriously amplified only in an interval about
each irrational zero, and the width of this interval increases roughly in proportion to the size of the
argument.

4) Since only the remainder of X by Pi is used in step 3, the symmetry sin(x + n'lr) = ± sin(x) is
preserved, although there is a complication due to differing precision representations of 'Ir.

5) The output range is not exceeded. Thus the output of SIN is always a valid argument for ASIN.

cos
REAL32 FUNCTION COS (VAL REAL32 X)

REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

Domain:
Range:
Primary Domain:

[-Smax,Smax] = [-12868.0, 12868.0]S, [-2.1 * 108 ,2.1 * 108]D
[-1.0,1.0]
See note 1.

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inf, which generates an un
defined.NaN.

220 14 Libraries

Propagated Error

A = -Xsin(X),

Generated Error

R = -Xtan(X) (See note 4)

TAN

Range: [0, Pi/4) [0,2Pi]
MRE RMSRE MAE RMSAE

Single Length: 1.0 ulp 0.28 ulp 0.81 ulp 0.17 ulp
Double Length: 0.93 ulp 0.26 ulp 0.76 ulp 0.18 ulp

The Algorithm

1 Set N = integer part of (IXI + Pi/2)/Pi.

2 Compute the remainder of (IXI + Pi/2) by Pi, using extended precision arithmetic.

3 Compute the remainder to fixed-point, compute its sine using a fixed-point rational function,
and convert the result back to floating point.

4 Adjust the sign of the result according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always occurs, thus there is no 'primary
domain' for cos. So for all arguments the acuracy of the result depends crucially on step 2. The
extended precision corresponds to K extra bits in the representation of 'Jr (K = 8 for single-length
and 12 for double length). If the argument agrees with an odd integer multiple of 'Jr/2 to more than K
bits there is a loss of significant bits in the remainder, equal to the number of extra bits of agreement,
and this causes a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off S.,nax is chosen to
prevent this. In any case for large arguments the 'granularity' of floating-point numbers becomes a
significant factor. For arguments larger than Smax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is considered to be essentially
indeterminate.

3) For small arguments the errors are not evenly distributed. As the argument becomes smaller
there is an increasing bias towards negative errors (which is to be expected from the form of the
Taylor series). For the single-length version and X in [-0.1,0.1], 62% of the errors are negative,
whilst for X in [-0.01,0.01], 70% of them are.

4) The propagated error has a complex behaviour. The propagated relative error becomes large near
each zero of the function, but the propagated absolute error only becomes large for large arguments.
In effect, the error is seriously amplified only in an interval about each irrational zero, and the width
of this interval increases roughly in proportion to the size of the argument.

5) Since only the remainder of (IXI+Pi/2) by Pi is used in step 3, the symmetry COS(x+n'Jr) = ± cos(x)
is preserved. Moreover, since the same rational approximation is used as in SIN, the relation
cos(x) = sin(x + 'Jr/2) is 'also preserved. However, in each case there is a complication due to the
different precision representations of 'Jr.

6) The output range is not exceeded. Thus the output of cos is always a valid argument for ACOS.

REAL32 FUNCTION TAN (VAL REAL32 X)

REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X is in radians)

14.3 Mathematical libraries (math1ibs) 221

Domain:
Range:
Primary Domain:

[-Tmax, Tmax] = [-6434.0,6434.0]S [-1.05 * 108 ,1.05 * 108]0
(-Inf, 1nl)
[-Pi/4,Pi/4] = [-0.785,0.785]

MRE RMSRE
3.5 ulp 0.23 ulp

0.69 ulp 0.23 ulp

Exceptions

All arguments outside the domain generate an inexact.NaN, except ±Inl, which generate an unde
fined.NaN. Odd integer multiples of 1r/2 may produce unstable.NaN.

Propagated Error

A =X(1 + tan2 (X)) , R =X(1 + tan2(X))/ tan(X) (See note 4)

Generated Error

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 Set N = integer part of X/(Pi/2).

2 Compute the remainder of X by Pi/2, using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its tangent using a fixed-point rational func
tion, and convert the result ba~k to floating point.

4 If N is odd, take the reciprocal.

5 Set the sign of the result according to the sign of the argument.

Notes

1) R is large whenever X is near to an integer multiple of 1r/2, and so tan is very sensitive to small
errors near its zeros and singularities. Thus for arguments outside the primary domain the acuracy
of the result depends crucially on step 2. The extended precision corresponds to K extra bits in
the representation of 1r/2 (K = 8 for single-length and 12 for double-length). If the argument agrees
with an integer multiple of 1r/2 to more than K bits there is a loss of significant bits in the remainder,
approximately equal to the number of extra bits of agreement, and this causes a loss of accuracy in
the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off Tmax is chosen to
prevent this. In any case for large arguments the 'granularity' of floating-point numbers becomes a
significant factor. For arguments larger than Tmax a change in the argument of 1 ulp would change
more than half of the significant bits of the result, and so the result is considered to be essentially
indeterminate.

3) Step 3 of the algorithm has been slightly modified in the double-precision version from that given
in Cody & Waite to avoid fixed-point underflow in the polynomial evaluation for small arguments.

4) Tan is quite badly behaved with respect to errors in the argument. Near its zeros outside the
primary domain the relative error is greatly magnified, though the absolute error is only proportional
to the size of the argument. In effect, the error is seriously amplified in an interval about each
irrational zero, whose width increases roughly in proportion to the size of the argument. Near its
singularities both absolute and relative errors become large, so any large ,output from this function is
liable to be seriously contaminated with error, and the larger the argument, the smaller the maximum
output which can be trusted. If step 4 of the algorithm requires division by zero, an unstable.NaN
is produced instead.

5) Since only the remainder of X by Pi/2 is used in step 3, the symmetry tan(x + n1r) = tan(x)
is preserved, although there is a complication due to the differing precision representations of 1r.

Moreover, by step 4 the symmetry tan(x) =1/ tan(1r/2 - x) is also preserved.

222

ASIN

14 Libraries

REAL32 FUNCTION ASIN (VAL REAL32 X)

REAL64 FUNCTION DASIN (VAL REAL64 X)

These compute: sine- 1(X) (in radians)

Domain:
Range:
Primary Domain:

[-1.0,1.0]
[-Pi/2, Pi/2]
[-0.5,0.5]

Aces

Exceptions

All arguments outside the domain generate an undefined.NaN.

Propagated Error

A =X/.../1 - X2, R =x/(sin- 1(X).../1 - X2)

Generated Error

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE

Single Length: 0.53 ulp 0.21 ulp 1.35 ulp 0.33 ulp
Double Length: 2.8 ulp 1.4 ulp 2.34 ulp 0.64 ulp

The Algorithm

If IXI > 0.5, set Xwork:= SQRT «(1 -IXI)/2) .
Compute Rwork = arcsine(-2 *X work) with a floating-point rational approximation, and set
the result = Rwork + Pi/2.

2 Otherwise compute the result directly using the rational approximation.

3 In either case set the sign of the result according to the sign of the argument.

Notes

1) The error amplification factors are large only near the ends of the domain. Thus there is a small
interval at each end of the domain in which the result is liable to be contaminated with error: however
since both domain and range are bounded the absolute error in the result cannot be large.

2) By step 1, the identity sin- 1(x) = 11"/2 - 2 sin-1(J(1 - x)/2)) is preserved.

REAL32 FUNCTION ACOS (VAL REAL32 X)

REAL64 FUNCTION DACOS (VAL REAL64 X)

These compute: cosine- 1 (X) (in radians)

Domain:
Range:
Primary Domain:

[-1.0,1.0]
[0, Pi]
[-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.

14.3 Mathematical libraries (math1ibs)

Propagated Error

A = -X/.J1 - X2, R = -X/(sin- 1 (X)V1 - X2)

Generated Error

223

Primary Domain [-1.0, 1.0]
MRE RMSRE MAE RMSAE
1.1 ulp 0.38 ulp 2.4 ulp 0.61 ulp
1.3 ulp 0.34 ulp 2.9 ulp 0.78 ulp

Single Length:
Double Length:

The Algorithm

If IXI > 0.5, set Xwork:= SQRT «(1 -IXI)/2) . Compute Rwork = arcsine (2. Xwork)
with a floating-point rational approximation. If the argument was positive, this is the result,
otherwise set the result = Pi - Rwork.

2 Otherwise compute Rwork directly using the rational approximation. If the argument was
positive, set result = Pi/2 - Rwork, otherwise result = Pi/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the domain. Thus there is a small
interval at each end of the domain in which the result is liable to be contaminated with error, although
this interval is larger near 1 than near -1, since the function goes to zero with an infinite derivative
there. However since both the domain and range are bounded the absolute error in the result cannot
be large.

2) Since the rational approximation is the same as that in ASIN, the relation cos- 1(x) = 1r/2-sin- 1(x)
is preserved.

ATAN

REAL32 FUNCTION ATAN (VAL REAL32 X)

REAL64 FUNCTION DATAN (VAL REAL64 X)

These compute: tan- 1 (X) (in radians)

Domain:
Range:
Primary Domain:

Exceptions

None.

[-1nl, 1nl]

[-Pi/2, Pi/2]
[-z,z], z = 2 - V3 = 0.2679

Propagated Error

A = X/(1 + X 2), R = x/(tan- 1 (X)(1 + X 2))

Generated Error

Primary Domain Error:
Single Length:
Double Length:

MRE RMSRE
0.53 ulp 0.21 ulp
1.27 ulp 0.52 ulp

224

ATAN2

14 Libraries

The Algorithm

1 If IXI > 1.0, set Xwork =1/IX/, otherwise Xwork = IXI.
2 If Xwork > 2 - v'3, set F = (Xwork *V3 - 1)/(Xwork + V3), otherwise F = Xwork.

3 Compute Rwork = arctan(F) with a floating-point rational approximation.

4 If Xwork was reduced in (2), set R = Pi/6 + Rwork, otherwise R = Rwork.

5 If X was reduced in (1), set RESULT = Pi/2 - R, otherwise RESULT = R.

6 Set the sign of the RESULT according to the sign of the argument.

Notes

1) For IXI > ATmax, Itan- 1(X)1 is indistinguishable from 1r/2 in the floating-point format. For
single-length, ATmax = 1.68 * 107 , and for double-length ATmax =9 * 1015

, approximately.

2) This function is numerica"~ very stable, despite the complicated argument reduction. The worst
errors occur just above 2 - J3, but are no more than 1.8 ulp.

3) It is also very well behaved with respect to errors in the argument, Le. the error amplification
factors are always small.

4) The argument reduction scheme ensures that the identities tan- 1(X) =1r/2 - tan- 1(1 / X), and
tan- 1(X) =1r/6 + tan-1 ((V3 * X - 1)/(\1"3 + X)) are preserved.

REAL32 FUNCTION ATAN2 (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, VAL REAL64 Y)

These compute the angular co-ordinate tan- 1(y/x) (in radians) of a point whose X and Y co
ordinates are given.

Domain:
Range:
Primary Domain:

[-Inf, Inf] x [-Inf, Inf]
(-Pi, Pi]
See note 2.

Exceptions

(0, 0) and (±lnf,±lnf) give undefined.NaN.

Propagated Error

A =X(1 ± Y)/(X2 + y 2
), R =X(1 ± Y)/(tan- 1(Y/X)(X2 + y 2

))

Generated Error

(See note 3)

See note 2.

The Algorithm

1 If X, the first argument, is zero, set the result to ±1r/2, according to the sign of Y, the
second argument.

2 Otherwise set Rwork:= ATAN(Y/X). Then if Y < 0 set RESULT = Rwork - Pi, other
wise set RESULT = Pi - Rwork.

14.3 Mathematical libraries (math1ibs)

Notes

225

1) This two-argument function is designed to perform rectangular-to-polar co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the generated error.

3) The error amplification factors were derived on the assumption that the relative error in Y is ±
that in X, otherwise there would be separate factors for X and Y. They are small except near the
origin, where the polar co-ordinate system is singular.

SINH

REAL32 FUNCTION SINS (VAL REAL32 X)

REAL64 FUNCTION DSINS (VAL REAL64 X)

These compute: sinh(X)

Domain:
Range:
Primary Domain:

[-Hmax,Hmax]. = [-89.4, 89.4]S, [-710.5,710.5]0
(-lnf,lnf)
(-1.0,1.0)

Primary Domain [1.0, X Big] (See note 2)
MRE RMSRE MRE RMSRE

0.89 ulp 0~3 ulp 0.98 ulp 0.31 ulp
1.3 ulp 0.51 ulp 1.0 ulp 0.3 ulp

Exceptions

X < -Hmax gives -Inf, and X> Hmax gives Inf.

Propagated Error

A =X cosh(X) , R =Xcoth(X) (See note 3)

Generated Error

Single Length:
Double Length:

The Algorithm

1 If IXI > XBig, set Rwork := EXP (IXI- In(2)) .

2 If XBig ~ IXI ~ 1.0, set temp := EXP (IXI), and set Rwork = (temp - 1/temp)/2.

3 Otherwise compute Rwork = sinh(IXI) with a fixed-point rational approximation.

4 In all cases, set RESULT = ±Rwork according to the sign of X.

Notes

1) H max is the point at which sinh(X) becomes too large to be represented in the floating-point
format.

2) XBig is the point at which e-1x1 becomes insignificant compared with e1x1 , (in floating-point). For
single-length it is 8.32, and for double-length it is 18.37.

3) This function is quite stable with respect to errors in the argument. Relative error is magnified near
zero, but the absolute error is a better measure near the zero of the function and it is diminished
there. For large arguments absolute errors are magnified, but since the function is itself large,
relative error is a better criterion, and relative errors are not magnified unduly for any argument in
the domain, although the output does become less reliable near the ends of the range. .

226

COSH

14 Libraries

REAL32 FUNCTION COSH (VAL REAL32 X)

REAL64 FUNCTION DCOSH (VAL REAL64 X)

These compute: cosh(X)

Domain:
Range:
Primary Domain:

[-Hmax,Hmax] = [-89.4,89.4]8, [-710.5,710.5]0
[1.0, 1nl)
[-XBig,XBig] = [-8.32,8.32]8 [-18.37,18.37]0

Exceptions

IXI > Hmax gives 1nl.

Propagated Error

A =Xsinh(X),

Generated Error

R = X tanh(X) (8ee note 3)

MRE RMS
0.99 ulp 0.3 ulp
1.23 ulp 0.3 ulp

TANH

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 If IXI > XBig, set result := EXP (IXI-ln(2) .

2 Otherwise, set temp := EXP (IXI) , and set result = (temp + 1Itemp)12.
Notes

1) Hmax is the point at which cosh(X) becomes too large to be represented in the floating-point
format.

2) XBig is the point at which e-1x1 becomes insignificant compared with e1x1 (in floating-point).

3) Errors in the argument are not seriously magnified by this function, although the output does
become less reliable near the ends of the range.

REAL32 FUNCTION TANH (VAL REAL32 X)

REAL64 FUNCTION DTANH (VAL REAL64 X)

These compute: tanh(X)

Domain:
Range:
Primary Domain:

Exceptions

None.

[-1nl, 1nl]
[-1.0,1.0]
[-£og(3)/2, £og(3)/2] = [-0.549,0.549]

Propagated Error

A =XI cosh2(X), R =XI sinh(X) cosh(X)

MRE RMS
0.52 ulp 0.2 ulp
4.6 ulp 2.6 ulp

14.3 Mathematical libraries (math1ibs)

Generated Error

Primary Domain Error:
Single Length:
Double Length:

The Algorithm

1 If IXI > In(3)/2, set temp:= EXP <IXI/2). Then set Rwork = 1 - 2/(1 + temp).

2 Otherwise compute Rwork = tanh(IXI) with a floating-point rational approximation.

3 In both cases, set RESULT =±Rwork according to the sign of X.

227

Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its asymptotic values of ±1.0
for IXI > HTmax, where HTmax is 8.4 for single-length, and 19.06 for double-length. Thus the
output of TANS is equal to ±1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument are always diminished
by it.

RAN

REAL32,INT32 FUNCTION RAN (VAL INT32 X)

REAL64,INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corresponding sequence of floating
point numbers between zero and one.

Domain:
Range:

Exceptions

None.

Integers (see note 1)
[0.0, 1.0) x Integers

The Algorithm

1 Produce the next integer in the sequence: Nk +1 = (aNk + 1)mod M

2 Treat Nk +1 as a fixed-point fraction in [0,1), and convert it to floating point.

3 Output the floating point result and the new integer.

Notes

1) This function has two results, the first a real, and the second an integer (both 32 bits for single
length, and 64 bits for double-length). The integer is used as the argument for the next call to RAN,
Le. it 'carries' the pseudo-random linear congruential sequence N k , and it should be kept in scope
for as long as RAN is used. It should be initialised before the first call to RAN but not modified
thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same sequence (both floating-point
and integer) will be produced. If a different sequence is required for each run of a program it should
be initialised to some 'random' value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in expressions requiring random
integers. The topmost bits are the most random. A random integer in the range [0, L) can conve
niently be produced by taking the remainder by (L + 1) of the integer parameter shifted right by one
bit. If the shift is not done an integer in the range [-L, L] will be produced.

228 14 Libraries

4) The modulus M is 232 for single-length and 264 for double-length, and the multipliers, a, have
been chosen so that all M integers will be produced before the sequence repeats. However several
different integers can produce the same floating-point value and so a floating-point output may be
repeated, although the sequence of such will not be repeated until M calls have been made.

5) The floating-point result is uniformly distributed over the output range, and the sequence passes
various tests of randomness, such as the 'run test', the 'maximum of 5 test' and the 'spectral test'.

6) The double-length version is slower to execute, but 'more random' than the single-length version. If
a highly-random sequence of single-length numbers is required, this could be produced by converting
the output of DRAN to single-length. Conversely if only a relatively crude sequence of double-length
numbers is required, RAN could be used for higher speed and its output converted to double-length.

14.4 Introduction to input/output libraries (hostlibs, iolibs)

These libraries support a wide variety of operations commonly classified as input/output. This includes
conversions of representation in both directions between occam types and text strings, general text string
manipulation and procedures for communicating values in various styles between processes using the occam
channel model of communication.

An occam program may use procedures drawn from any combination of these libraries if an appropriate
lOSE directive is inserted in place of a declaration for each library referenced. If a program uses named
constants used by the libraries it will be necessary also to include fUSE directives for the necessary constant
libraries.

If library procedures are used whose formal parameters include channels with named protocols, then the
library containing the declaration of these protocols must be fUSEd before the library declaring the proce
dures. For convenience all protocols used by libraries included in the TDS are declared in a single library
strmhdr. A fUSE for strmhdr is supplied automatically whenever an EXE or OTIL is compiled, but must
be supplied by the user if required in a PROGRAM or an se.

The structure of the remainder of this chapter is as follows:

This section continues with a general discussion of the models of input and output supported.

Tables of all the procedures in the libraries are then presented.

Then the individual procedures are grouped into 7 principal subject groups for each of which is given
a general introduction and then detailed specifications of all the procedures.

The groups are:

• Environment enquiries

• Representation conversions and string handling

• Terminals and text streams

• Buffers, multiplexors and protocol converters

• Access to host filing system

• Access to the TDS's folded file store

• Access to transputer board peripherals

The name of the library in which the procedure may be found appears at the top right hand side of
each specification.

The actions performed by hostl.ibs procedures corresponding directly to iserver commands are de
scribed in further detail in section 16.5.

14.5 Tables of contents of the input/output libraries (hostl.ibs, iol.ibs)

14.5 Tables of contents of the input/output libraries (hostlibs, iolibs)

229

The input output libraries are in two main groups hostl.ibs and iol.ibs which are held in separate
directories. These groupings are mainly historical but reflect in particular the addition of the iserver
interface using SP protocol in the current version of the TDS. Procedures in iol.ibs do not use SP protocol.
Procedures in hostl.ibs either use this protocol or are designed for use in conjunction with procedures
which do.

A compilation unit using any of the protocols SP, SS or KS must include (explicitly or implicitly) the line:

fUSE strmhdr

above the fUSE for any library which declares one or more procedures using one of the protocols.

This line is supplied implicitly by the compiler for EXEs and UTILs which are compiled with the parameter
tds2 . styl.e . exe FALSE. In such EXEs and UTILs the user must not include a fUSE for strmhdr.

The name of the group to which the library belongs appears at the top right hand side of each table.

14.5.1 Basic type i/o conversion library ioconv

Procedure Parameter Specifiers

STRINGTOINT BOOL Error, INT n, VAL []BYTE strinq

INTTOSTRING INT l.en, []BYTE strinq, VAL INT n

STRINGTOHEX BOOL Error, INT n, VAL []BYTE strinq

BEXTOSTRING INT l.en, []BYTE strinq, VAL INT n

STRINGTOBOOL BOOL Error, b, VAL []BYTE strinq

BOOLTOSTRING INT l.en, []BYTE strinq, VAL BOOL b

To use this library a program header (all targets) must include the line:

iol.ibs

fUSE ioconv

The number to string conversion procedures are defined in the occam 2 reference manual. Input conversion
procedures return two results, a boolean error indication and the converted value. Output conversions all
return an integer which is the number of significant characters written into the string.

230 14 Libraries

14.5.2 Extra type i/o conversion library extrio iol.ibs

Procedure Parameter Specifiers

STRINGTOINT16 BOOL Error, INT16 n, VAL [] BYTE string

INT16TOSTRING INT l.en, []BYTE string, VAL INT16 n

STRINGTOINT32 BOOL Error, INT32 n, VAL [] BYTE string

INT32 TOSTRING INT l.en, []BYTE string, VAL INT32 n

STRINGTOINT64 BOOL Error, INT64 n, VAL [] BYTE string

INT64TOSTRING INT l.en, []BYTE string, VAL INT64 n

STRINGTOBEX16 BOOL Error, INT16 n, VAL [] BYTE string

BEX16TOSTRlNG lNT l.en, []BYTE string, VAL lNT16 n

STRlNGTOBEX32 BOOL Error, lNT32 n, VAL [] BYTE string

BEX32 TOSTRlNG lNT l.en, []BYTE string, VAL lNT32 n

STRlNGTOBEX64 BOOL Error, lNT64 n, VAL [] BYTE string

BEX64TOSTRlNG lNT l.en, []BYTE string, VAL lNT64 n

STRlNGTOREAL32 BOOL Error, REAL32 X, VAL [] BYTE string

REAL32TOSTRlNG lNT l.en, [] BYTE string, VAL REAL32 X, VAL lNT lp, Dp

STRlNGTOREAL64 BOOL Error, REAL64 X, VAL [] BYTE string

REAL64TOSTRlNG lNT l.en, []BYTE string, VAL REAL64 X, VAL lNT lp, Dp

To use this library a program header (all targets) must include the line:

IUSE extrio

For further information on the procedures provided by this library see the occam 2 Reference Manual.

14.5 Tables of contents of the input/output libraries (host1ibs, io1ibs)

14.5.3 String handling library strings

231

io1ibs

Result Function Parameter Specifiers

BOOL is.in.range VAL BYTE char, bottom, top

BOOL is.upper VAL BYTE char

BOOL is.1ower VAL BYTE char

BOOL is.digit VAL BYTE char

BOOL is.hex.digit VAL BYTE char

BOOL is.id.char VAL BYTE char

to.upper.case []BYTE str

to. 1ower. case []BYTE str

INT compare. strings VAL []BYTE strl, str2

BOOL eqstr VAL []BYTE sl,s2

str.shift []BYTE str, VAL INT start, 1en, shift,
BOOL not.done

de1ete.string INT 1en, [] BYTE str, VAL INT start, size,
BOOL not.done

insert. string VAL [] BYTE new. str, INT 1en, [] BYTE str,
VAL INT start, BOOL not.done

INT string.pos VAL [] BYTE search, str

INT char.pos VAL BYTE search, VAL [] BYTE str

INT, BYTE search.match VAL []BYTE possib1es, str

INT, BYTE search.no.match VAL []BYTE possib1es, str

232 14 Libraries

Procedure Parameter Specifiers

ac:ld.char INT 1.en, []BYTE str, VAL BYTE char

append. char INT 1.en, []BYTE str, VAL BYTE char

ac:ld.text INT 1.en, []BYTE str, VAL []BYTE text

append. text INT 1.en, []BYTE str, VAL []BYTE text

ac:ld.int INT 1.en, []BYTE str, VAL INT number, width

append.int INT 1.en, []BYTE str, VAL INT number, wi.dth

ac:ld.hex.int INT 1.en, []BYTE str, VAL INT number, width

append.hex.int INT 1en, []BYTE str, VAL INT number, width

ac:ld.rea1.32 INT 1en, []BYTE str, VAL REAL32 number, VAL INT Ip,Dp

append.rea1.32 INT 1.en, []BYTE str, VAL REAL32 number, VAL INT Ip,Dp

ac:ld.rea1.64 INT 1.en, []BYTE str, VAL REAL 64 number, VAL INT Ip,Dp

append.rea1.64 INT 1.en, []BYTE str, VAL REAL 64 number, VAL INT Ip,Dp

add.int32 INT 1.en, []BYTE str, VAL INT32 number, VAL INT width

append.int32 INT 1.en, []BYTE str, VAL INT32 number, VAL INT width

add.int64 INT 1.en, []BYTE str, VAL INT64 number, VAL INT width

append.int64 INT 1.en, []BYTE str, VAL INT64 number, VAL INT width

add.hex.int32 INT 1.en, []BYTE str, VAL INT32 number, VAL INT width

append.hex.int32 INT 1.en, []BYTE str, VAL INT32 number, VAL INT width

ac:ld.hex.int64 INT 1.en, []BYTE str, VAL INT64 number, VAL INT width

append.hex.int64 INT 1.en, []BYTE str, VAL INT64 number, VAL INT width

next.word.from.1.ine VAL [] BYTE 1.ine, INT ptr,1.en, [] BYTE word, BOOL ok

next.int.from.1.ine VAL [] BYTE 1.ine, INT ptr, number, BOOL ok

To use this library a program header (all targets) must include the line:

#USE strinqs

The procedures and functions in this group provide the basis for string handling in occam. They are
consistent with the absence of dynamic space allocation, insofar as they work in terms of a declared array
and a used part of that array defined by an upper bound.

These functions and procedures facilitate simple manipulation of names, commands, replies, etc.

See section 14.8

14.5 Tables of contents of the input/output libraries (host1ibs, i01ibs)

14.5.4 Host i/o basic procedure library sp1ib

233

host1ibs

The SP protocol used on channels fs, ts of these procedures is independent of word length and is imple
mented for all transputer target types. These procedures correspond directly to iserver commands.

Procedure Parameter Specifiers

so. open CBAN OF SP fs, ts, VAL[]BYTE name, VAL BYTE type, mode
INT32 streamid, BYTE resu1t

so.c10se CHAN OF SP fs, ts, VAL INT32 streamid, BYTE resu1t

so. read CHAN OF SP fs, ts,
VAL INT32 streamid, INT bytes.read, []BYTE data

so. write CBAN OF SP fs, ts,
VAL INT32 streamid, VAL[] BYTE data, INT 1enqth

so.qets CHAN OF SP fs, ts, VAL INT32 streamid, INT bytes.read,
[]BYTE data, BYTE resu1t

so.puts CHAN OF SP fs, ts, VAL INT32 streamid, VAL[]BYTE data,
BYTE resu1t

so.f1ush CHAN OF SP fs, ts, VAL INT32 streamid, BYTE resu1t

so. seek CBAN OF SP fs, ts,
VAL INT32 streamid, offset, oriqin, BYTE resu1t

so.te11 CHAN OF SP fs, ts,
VAL INT32 streamid,INT32 position, BYTE resu1t

so.eof CHAN OF SP fs, ts, VAL INT32 streamid, BYTE resu1t

so.ferror CHAN OF SP fs, ts, VAL INT32 streamid,
INT32 error.no, INT 1enqth, []BYTE messaqe, BYTE resu1t

so. remove CHAN OF SP fs, ts, VAL[]BYTE name, BYTE resu1t

so. rename CHAN OF SP fs, ts, VAL[]BYTE 01dname, newname,
BYTE resu1t

so.qetkey CHAN OF SP fs, ts, BYTE key, resu1t

so.p011key CHAN OF SP fs, ts, BYTE key, resu1t

so.qetenv CHAN OF SP fs, ts, VAL[]BYTE name,
INT 1ength, []BYTE va1ue, BYTE resu1t

so. time CHAN OF SP fs, ts, INT32 10ca1t~e, UTCtime

so. system CHAN OF SP fs, ts, VAL[]BYTE command,
INT32 status, BYTE resu1t

so. exit CHAN OF SP fs, ts, VAL INT32 status

so.command1ine CBAN OF SP fs, ts, VAL BYTE a11,
INT 1enqth, []BYTE strinq, BYTE resu1t

so. core CHAN OF SP fs, ts, VAL INT32 offset,
INT bytes. read, []BYTE data, BYTE resu1t

so. version CBAN OF SP fs, ts, BYTE version, host, os, board

To use this library a program header (all targets) must include the line:

IUSE sp1ib

234 14 Libraries

14.5.5 Hostio general and screen output procedure library sol.ib hostl.ibs

Procedure

so.open.temp

so.test.exists

so.popen.read

so.parse.command.l.ine

so.write.strinq

so.fwrite.strinq

so.write.char

so.fwrite.char

so.write.strinq.nl.

so. fwrite. strinq.nl.

so.write.nl.

so.fwrite.nl.

so.write.int

so. fwrite. int

so.write.hex.int

so.fwrite.hex.int

so.write.int64

so. fwrite. int64

so.write.hex.int64

so.fwrite.hex.int64

Parameter Specifiers

CBAN OF SP fs, ts, VAL BYTE type,
[so.temp.fil.ename.l.enqth]BYTE fil.ename,
INT32 streamid, BYTE resul.t

CBAN OF SP fs, ts,
VAL[]BYTE fil.ename, BOOL exists

CBAN OF SP fs, ts,
VAL[]BYTE fil.ename, path.variabl.e.name,
VAL BYTE open.type, INT ful.l..l.en,
[]BYTE ful.l..name, INT32 stream. id, BYTE resul.t

CBAN OF SP fs, ts,
VAL[] []BYTE option.strinqs,
VAL[]INT option.parameters.required,
[]BOOL option.exists,
[] [2]INT option.parameters,
INT error.l.en, []BYTE l.ine

CBAN OF SP fs, ts, VAL[]BYTE strinq

CBAN OF SP fs, ts, VAL INT32 streamid
VAL[]BYTE strinq, BYTE resul.t

CBAN OF SP fs, ts, VAL BYTE char

CBAN OF SP fs, ts, VAL INT32 streamid,
VAl. BYTE char, BYTE resul.t

CBAN OF SP fs, ts, VAL[]BYTE strinq

CBAN OF SP fs, ts, VAL INT32 streamid,
VAL[]BYTE strinq, BYTE resul.t

CBAN OF SP fs, ts

CBAN OF SP fs, ts, VAL INT32 streamid,
BYTE resul.t

CBAN OF SP fs, ts, VAL INT n, width

CBAN OF SP fs, ts, VAL INT32 streamid,
VAL INT n, width, BYTE resul.t

CHAN OF SP fs, ts, VAL INT n, width

CHAN OF SP fs, ts, VAL INT32 ·streamid,
VAL INT n, width, BYTE resul.t

CBAN OF SP fs, ts, VAL INT64 n, VAL INT width

CHAN OF SP fs, ts, VAL INT32 streamid,
VAL INT64 n, VAL INT width, BYTE resul.t

CBAN OF SP fs, ts, VAL INT64 n, VAL INT width

CBAN OF SP fs, ts, VAL INT32 streamid,
VAL INT64 n, VAL INT width, BYTE resul.t

14.5 Tables of contents of the input/output libraries (hostlibs, iolibs) 235

Procedure Parameter Specifiers

so.write.real32

so.write.real64

so.fwrite.real64

so.fwrite.real32

CBAN OF SP fs, ta, VAL REAL32 r, VAL lNT lp, Op

CHAN OF SP fs, ts, VAL lNT32 streamid,
VAL real32 r, VAL lNT lp, Op, BYTE result

CBAN OF SP fs, ts, VAL REAL64 r, VAL lNT lp, Dp

CHAN OF SP fs, ts, VAL lNT32 streamid,
VAL real64 r, VAL lNT lp, Op, BYTE result

so. read. line CBAN OF SP fs, ts, lNT len, []BYTE line,
BYTE result

so.read.echo.line CHAN OF SP fs, ts, lNT len, []BYTE line,
BYTE result

so.time.to.date VAL lNT32 input.time, [so.date.len]lNT date

so.date.to.ascii VAL[so.date.len]lNT date, VAL BOOL lonq.years,
days. first, [so.time.strinq.len] BYTE strinq

so.t~e.to.ascii VAL lNT32 t~e, VAL BOOL lonq.years, days. first,
[so.t~e.strinq.len] BYTE strinq

so.today.date CBAN OF SP fs, ts, [so.date.len]lNT date

so.today.ascii CBAN OF SP fs,ts, VAL BOOL lonq.years, days. first,
[so.time.strinq.len] BYTE strinq

To use this library a program header (all targets) must include the line:

fUSE solib

14.5.6 Keyboard input library sklib hostlibs

Procedure Parameter Specifiers

so.ask CHAN OF SP fs,ts, VAL[]BYTE prompt, replies,
VAL BOOL display.possible.replies, echo. reply,
lNT reply.number

so.read.echo.int CHAN OF SP fs, ts, lNT n, BOOL error

so.read.echo.hex.int CHAN OF SP fs, ts, lNT n, BOOL error

so.read.echo.any.int CHAN OF SP fs, ts, lNT n, BOOL error

so.read.echo.int64 CHAN OF SP fs, ts, lNT64 n, BOOL error

so.read.echo.hex.int64 CBAN OF SP fs, ts, lNT64 n, BOOL error

so. read. echo. real32 CHAN OF SP fs, ts, REAL32 n, BOOL error

so. read. echo. real64 CBAN OF SP fs, ts, REAL64 n, BOOL error

To use this library a program header (all targets) must include the line:

fUSE sklib

236 14 Libraries

14.5.7 Host and stream ito interface library spinter~ host1ibs

Procedure Parameter Specifiers

so.bu~~er CBAN OF SP ~s, ts, ~rom.user, to. user,
CBAN OF BOOL stopper

so.mu1tip1exor CBAN OF SP ~s, ts,
[]CHAN OF SP ~rom.user, to.user,
CBAN OF BOOL stopper

so.over1apped.buf~er CBAN OF SP ~s, ts, from. user, to.user,
CBAN OF BOOL stopper

so.over1apped.mu1tip1exor CHAN OF SP fs, ts,
[]CHAN OF SP ~rom.user, to.user,
CHAN OF BOOL stopper, []INT queue

so.keystream.~rom.kbd CHAN OF SP ~s, ts, CHAN OF KS keys. out,
CHAN OF BOOL stopper, VAL INT tieks.per.po11

so.keystream.~rom.~i1e CHAN OF SP ~s, ts, CHAN OF KS keys.out,
VAL[]BYTE ~i1ename, BYTE resu1t

so.keystream. from. stdin CHAN OF SP fs, ts,
CHAN OF KS keys.out, BYTE resu1t

so.serstream.to.~i1e CHAN OF SP ~s, ts, CHAN OF SS sern,
VAL[]BYTE ~i1ename, BYTE resu1t

so.serstream.to.stdout CBAN OF SP ~s, ts,
CBAN OF SS sern, BYTE resu1t

so.serstream.to.ANSI CHAN OF SP fs, ts, CHAN OF SS sern

so.serstream.to.TVI920 CHAN OF SP fs, ts, CHAR OF SS sern

To use this library a program header must include the line:

fUSE spinterf

Note that although these procedures are supplied compiled for all targets the use of KS protocol which is
word-length dependent may require careful system building on T2 transputers.

14.5.8 Protocol conversion library a~sp host1ibs

Procedure Parameter Specifiers
af.to.sp CHAN OF SP fs, ts,

CBAN OF ANY from. user, to. user,
VAL,BOOL passthrouqh.Terminate.Cmd

To use this library a program header must include the line:

fUSE afsp

14.5 Tables of contents of the input/output libraries (hostl.ibs, iol.ibs)

14.5.9 Keystream and screenstream library streamio

237

iol.ibs

Procedure

ss.write.char

ss.write.string

ss.write.nl.

ss.write.int

ss.write.hex.int

ss.write.text.l.ine

ss.write.endstream

ss.goto.xy

ss.cl.ear.eol.

ss.cl.ear.eos

ss.beep

ss.up

ss.down

ss.l.eft

ss.right

ss.insert.char

ss.del.ete.chl.

ss.del.ete.chr

ss.ins.l.ine

ss.del..l.ine

ks.read.echo.char

Parameter Specifiers

CBAN OF SS sink, VAL BYTE char

CBAN OF SS sink, VAL []BYTE str

CBAN OF SS sink

CBAN OF SS sink, VAL INT number, fiel.d

CBAN OF SS sink, VAL INT number, fiel.d

CBAN OF SS sink, VAL []BYTE str

CBAN OF SS sink

CBAN OF SS sink, VAL INT x, Y

CHAN OF SS sink

CBAN OF SS sink

CHAN OF SS sink

CHAN OF SS sink

CBAN OF SS sink

CBAN OF SS sink

CBAN OF SS sink

CHAN OF SS sink, VAL BYTE char

CBAN OF SS sink

CHAN OF SS sink

CBAN OF SS sink

CBAN OF SS sink

CHAN OF KS source, CHAN OF SS echo, INT char

ks.read.echo.hex.int CBAN OF KS source, CHAR OF SS echo,
INT number, char

ks.read.echo.int CBAN OF KS source, CHAN OF SS echo,
INT number, char

ks.read.echo.text.l.ine CHAN OF KS source, CHAN OF SS echo, INT l.en,
[]BYTE l.ine, INT char

ks.read.char CHAN OF KS source, INT char

ks.read.hex.int

ks.read.int

ks.read.text.l.ine

ss.write.int64

ss.write.hex.int64

CHAN OF KS source, INT number, char

CBAN OF KS source, INT number, char

CHAN OF KS source, INT l.en,
[]BYTE l.ine, INT char

CHAN OF SS sink, VAL INT64 number,
VAL INT fiel.d

CBAN OF SS sink, VAL INT64 number,
VAL INT fiel.d

238

Procedure Parameter Specifiers

ks.read.echo.int64 CHAR OF KS source, CHAN OF SS echo,
lNT64 number, lNT char

ks.read.echo.hex.int64 CHAN OF KS source, CHAR OF SS echo,
lNT64 number, lNT char

14 Libraries

ks.read.int64

ks.read.hex.int64

ss.write.real.32

ss.write.real.64

ks.qet.real..with.del.

ks.read.echo.real.32

ks.read.echo.real.64

ks.qet.real..strinq

ks.read.real.32

ks.read.real.64

CHAR OF KS source, lNT64 number, lNT char

CBAN OF KS source, lNT64 nl~er, lNT char

CHAR OF SS sink, VAL REAL32 number,
VAL lNT lp, Dp

CHAR OF SS sink, VAL REAL64 number,
VAL lNT lp, Dp

CHAN OF KS in, CHAN OF SS echo, lNT l.en,
[]BYTE str, lNT char

CHAR OF KS source, CBAN OF SS echo,
REAL32 number, lNT char

CHAR OF KS source, CHAN OF SS echo,
REAL64 number, lNT char

CHAR OF KS in, lNT l.en, []BYTE str, lNT char

CHAR OF KS source, REAL32 number, lNT char

CHAR OF KS source, REAL64 number, lNT char

ss.write.int32 CBAN OF SS sink, VAL lNT32 number,
VAL lNT field

ss.write.hex.in~32 CHAR OF SS sink, VAL lNT32 number,
VAL lNT field

ks.read.echo.int32 CHAR OF KS source, CHAN OF SS echo,
lNT32 number, lNT char

ks.read.echo.hex.int32 CHAN OF KS source, CBAN OF SS echo,
lNT32 number, lNT char

ks.read.int32

ks.read.hex.int32

CBAN OF KS source, lNT32 number, lNT char

CHAN OF KS source, lNT32 number, lNT char

To use this library a program header must include the line:

fUSE streamio

The procedures in this library should be used in preference to the corresponding ones in userio in all new
occam programs.

14.5 Tables of contents of the input/output libraries (host1ibs, io1ibs)

14.5.10 Screenstream interface procedure library ssinterf

239

io1ibs

Procedure
ss.serstream.to.array
ss. serstream. from. array
ss. serstream. fan. out
ss.serstream.sink
ss.serstream.eopy
ss.serstream.to.ANSI.bytes
ss.serstream.to.TVI920.bytes
ss. serstream.to. fo1d

ks.keystream.sink
ks.keystream.to.sereen
ks.keystream.from.fo1d

Parameter Specifiers
CHAN OF SS sern, []BYTE buffer
CHAN OF SS sern, VAL[] BYTE buffer
CBAN OF SS sern, sereen.outl, sereen.out2
CHAN OF SS sern
CHAN OF SS sern, sern.out
CHAN OF SS sern, CHAN OF BYTE ansi
CHAN OF SS sern, CBAN OF BYTE ansi
CHAN OF SS sern, CHAN OF ANY
from.uf,to.uf
CHAN OF KS keys
CBAN OF KS keyboard, CBAN OF SS screen
CHAN OF ANY from.uf,to.uf,CHAN OF KS kbd,
VAL INT fo1d.number, INT resu1t

To use this library a program header must include the line:

#USE ssinterf

The procedures in this library should be used in preference to the corresponding ones in interf in all new
occam programs.

14.5.11 General purpose i/o procedure library userio io1ibs

Procedure Parameter Specifiers
write. char CHAN OF ANY sink, VAL BYTE char
write.1en.strinq CHAN OF ANY sink, VAL INT 1en, VAL []BYTE str
write.fu11.strinq CHAN OF ANY sink, VAL []BYTE str
new1ine CHAN OF ANY sink
write.int CHAN OF ANY sink, VAL INT number, fie1d
write.hex.int CHAN OF ANY sink, VAL INT number, fie1d
write.text.1ine CHAN OF ANY sink, VAL []BYTE str
write.endstream CHAN OF ANY sink

qoto.xy CHAN OF ANY sink, VAL INT x, y
e1ear.eo1 CHAN OF ANY sink
e1ear.eos CHAN OF ANY sink
beep CHAN OF ANY sink
up CHAN OF ANY sink
down CHAN OF ANY sink
1eft CHAN OF ANY sink
riqht CHAN OF ANY sink
insert. char CHAN OF ANY sink, VAL BYTE char
de1ete.eh1 CHAN OF ANY sink

de1ete.ehr CHAN OF ANY sink
ins.1ine CHAN OF ANY sink
de1.1ine CHAN OF ANY sink

240

Procedure

read. echo. char

read. echo. hex. int

read.echo.int

read.echo.text.1ine

read. char

read.hex.int

read.int

read.text.1ine

write.int64

write.hex.int64

read.echo.int64

read.echo.hex.int64

read.int64

read.hex.int64

write.rea132

write.rea164

get.rea1.with.de1

read.echo.rea132

read.echo.rea164

get.rea1.string

read.rea132

read.rea164

14 Libraries

Parameter Specifiers

CHAN OF lNT source, CBAN OF ANY echo, lNT char

CHAN OF lNT source, CBAN OF ANY echo,
lNT number, char

CBAN OF lNT source, CBAN OF ANY echo,
lNT number, char

CHAN OF lNT source, CHAN OF ANY echo, lNT 1en,
[]BYTE 1ine, lNT char

CHAN OF lNT source, lNT char

CHAN OF lNT source, lNT number, char

CHAN OF lNT source, lNT number, char

CHAN OF lNT source, lNT 1en, []BYTE 1ine, lNT char

CHAN OF ANY sink, VAL lNT64 number, VAL lNT fie1d

CHAN OF ANY sink, VAL lNT64 number, VAL lNT fie1d

CHAN OF lNT source, CHAN OF ANY echo,
lNT64 number, lNT char

CHAN OF lNT source, CHAN OF ANY echo,
lNT64 number, lNT char

CHAN OF lNT source, lNT64 number, lNT char

CHAN OF lNT source, lNT64 number, lNT char

CHAN OF ANY sink, VAL REAL32 number,
VAL lNT lp, Dp

CHAN OF ANY sink, VAL REAL64 number,
VAL lNT lp, Dp

CBAN OF lNT in, CHAN OF ANY echo, lNT 1en,
[]BYTE str, lNT char

CBAN OF lNT source, CHAN OF ANY echo,
REAL32 number, lNT char

CHAN OF lNT source, CBAN OF ANY echo,
REAL64 number, lNT char

CHAN OF lNT in, lNT 1en, []BYTE s.tr, lNT char

CHAN OF lNT source, REAL32 number, lNT char

CHAN OF lNT source, REAL64 number, lNT char

In all new occam programs the corresponding procedures in streamio should be used in preference to
those tabulated above.

14.5 Tables of contents of the input/output libraries (hostlibs, iolibs) 241

Procedure
create.new.fold

write. record. item

write.number.item

write.top.crease

write.fold.top.crease

write.filed.top.crease

write.bottom.crease
finish. new. fold

read. fold. heading

read. file. name

open. folded. stream

read. record. item

read. number. item

read. error. item

read.fold.top.crease

read. filed.top. crease

read.bottom.crease

input.record.item

input.number.item

input.error.item

input.top.crease

Parameter Specifiers
CBAN OF ANY from.ws, to.ws, INT fold. number,
VAL []BYTE comment, VAL [] INT attributes,
VAL []BYTE fileid, INT errornum
CBAN OF ANY from.ws, to.ws, VAL []BYTE record,
INT errornum
CBAN OF ANY from.ws, to.ws, VAL INT number,
INT errornum
CBAN OF ANY from.ws, to.ws, VAL []BYTE comment,
VAL []INT attributes, VAL BYTE file.or.fold,
VAL []BYTE fileid, INT errornum
CBAN OF ANY from.ws, to.ws, VAL []BYTE comment,
VAL []INT attributes, INT errornum
CBAN OF ANY from.ws, to.ws, VAL []BYTE comment,
VAL [] INT attributes, VAL [] BYTE fileid,
INT errornum
CRAN OF ANY from.ws, to.ws, INT errornum
CRAN OF ANY from.ws, to.ws,
VAL INT fold.number, VAL BOOL must.unfile,
INT errornum
CRAN OF ANY from.rs, to.rs,
VAL INT fold. number, INT len.comment,
[]BYTE comment, []INT attributes, INT errornum
CBAN OF ANY from.rs, t~.rs,

VAL INT fold.number, INT len.file.id,
[]BYTE file.id, INT errornum
CBAN OF ANY from.rs, to.rs,
VAL INT fold. number, BYTE first.item,
BOOL not.filed, INT errornum
CHAN OF ANY from.rs, to.rs, INT len,
[]BYTE record, BYTE next.item
CHAN OF ANY from.rs, to.rs, INT number,
BYTE next.item
CHAN OF ANY from.rs, to.rs, INT status,
BYTE next.item
CHAN OF ANY from.rs, to.rs, INT len.comment,
[]BYTE comment, []INT attributes,
BYTE next.item
CHAN OF ANY from.rs, to.rs, INT len.comment,
[]BYTE comment, []INT attributes,
INT len.fileid, []BYTE fileid, BYTE next.item
CHAN OF ANY from.rs, to.rs, []INT attributes,
BYTE next.item
CHAN OF ANY from.rs, INT len, []BYTE record,
VAL BYTE next.item
CHAN OF ANY from.rs, INT number,
VAL BYTE next.item
CHAN OF ANY from.rs, INT status,
VAL BYTE next.item
CHAN OF ANY from.rs, to.rs, INT len.comment,
[]BYTE comment, []INT attributes,
INT len.fileid, []BYTE fileid,
VAL BYTE next.item

242 14 Libraries

Procedure Parameter Specifiers

skip. item CHAN OF ANY from.rs, to.rs, BYTE next. item

enter.fol.d CHAN OF ANY from. rs, to.rs, BYTE next.item

exit.fol.d CHAN OF ANY from.rs, to.rs, BYTE next. item

repeat.fol.d CHAN OF ANY from.rs, to.rs, BYTE next.item

cl.ose.fol.ded.stream CHAN OF ANY from.rs, to.rs, VAL INT fol.d.number,
VAL BOOL must.unfil.e, INT errornum

To use this library a program header must include the line:

fUSE userio

14.5.12 Low level user filer interface support library ufil.er

Procedure Parameter Specifiers

iol.ibs

qet.stream.resul.t CHAN OF ANY fs, INT resul.t

cl.ean.strinq INT l.en, []BYTE str

truncate.fil.e.id INT l.en, VAL[]BYTE id

number.of.fol.ds CHAN OF ANY from.uf, to.uf, INT n, resul.t

write.fol.d.strinq CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT l.en, VAL []BYTE data, INT resul.t

create.fol.d CHAN OF ANY from.uf, to.uf, INT new.fol.d.number,
VAL []INT attributes, INT resul.t

send. command CHAN OF ANY from. uf , to. uf , VAL BYTE op,
VAL INT seq.no, INT resul.t

make.fil.ed CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT id.l.en, VAL []BYTE fil.e.id, INT resul.t

open. stream CHAN OF ANY fs, ts, VAL BYTE op, VAL INT fol.d.no,
INT resul.t

read.fol.d.strinq CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
INT l.en, []BYTE data, INT resul.t

read.fol.d.attr CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
[]INT attributes, INT resul.t

open.data.stream CHAN OF ANY from. ra, to.rs VAL INT fol.d.number,
BYTE first.item, BOOL not.fil.ed, INT errornum

cl.ose.uf.stream CHAN OF ANY from.rs, to.rs, VAL INT fol.d.number,
VAL BOOL must.unfil.e, INT errornum

read.data.record CHAN OF ANY from.rs, to.rs INT l.en, []BYTE record,
BYTE next.item

To use this library a program header must include the line:

fUSE ufil.er

All the procedures are contained in one se, which makes use of the library fil.erhdr.

14.6 Protocols and formal parameter conventions

14.5.13 Interface procedure library inter;f

243

iol.ibs

Procedure

8crstream.to.array
scrstream.from.array
scrstream.to.;fil.e

scrstream.mul.tipl.exor

scrstream.fan.out
scrstream.sink

scrstream.copy
keystream. from. fil.e

keystream.sink
keystream.to.screen

Parameter Specifiers

CBAN OF ANY sern, []BYTE buffer
VAL [] BYTE buffer, CHAN OF ANY scrn
CBAN OF ANY Bcrn, CHAN OF ANY ;from.uf,
to.uf, VAL[]BYTE fol.d.titl.e, INT fol.d.number,
INT resul.t
[]CHAN OF ANY screen. in, CHAN OF ANY
screen. out,
CBAN OF INT stopper
CBAN OF ANY scrn, screen.outl, screen.out2

CBAN OF ANY scrn

CBAN OF ANY scrn, scrn.out
CHAN OF ANY from. uf, to. uf , CBAN OF INT kbd,
VAL INT fol.d.number, INT resul.t

CBAN OF INT keys
CBAN OF INT keyboard, CHAN OF ANY screen

Additional procedures scrstream. to. server, keystream. from. server, scrstream. to. ANSI
and scrstream. to . TVI 92 0 are also included in this library for compatibility with earlier versions of the
TDS. Where possible new programs should use ssinterf in preference to this library.

To use this library a program header must include the line:

IUSE interf

14.5.14 Transputer board support libraries t4board, t2board iol.ibs

Procedure Parameter Specifiers
BOOx.te~.p.driver CHAN OF ANY from.user.scrn,

CBAN OF INT to. user. kbd, VAL INT board. type,
port, baud. rate, screen.type

To use this library a program header must include the line:

IUSE t4board or
IUSE t2board

14.5.15 Other libraries

The other libraries supplied are for compatibility with earlier versions of the TDS only and should not be used
in new programs. Their specifications remain unchanged.

14.6 Protocols and formal parameter conventions

Three named protocols are used in the inpUt/output libraries in the TDS. These are all declared in the library
strmhdr, see appendix D.

SP protocol is the protocol used on communications to the iserver, including those buffered inside the
TDS and passed to an EXE or UTIL. This protocol is discussed in full in section 16.5. The protocol assumes
bidirectional communication using a pair of channels.

244 14 Libraries

sp1ib

SS protocol is the so-called TDS screenstream protocol, which is used for unidirectional communication of
ASCII text, with optional inclusion of screen control operations in a terminal type independent representation.
Although originally designed for communication with the screen of the terminal on which the TDS is running,
this protocol is of general applicability and may be used in conjunction with multiplexors, protocol converters,
etc. for any communication of sequential text streams between occam processes on one or more processors.

KS protocol is an integer protocol used for communicating individual keystrokes from a real or simulated
keyboard. Various meanings have been given to values which can be derived by the TDS from sequences of
physical keystrokes. These are primarily for the internal purposes of the TDS editor, debugger, etc. In user
programs it is probably advisable to restrict use of this protocol to the usual ASCII character set.

SS and KS protocols are formalisations of anarchic CHAN OF ANY protocols used in earlier versions of the
TDS. To minimise disturbance to users who have used these earlier versions, two versions of procedures
using these protocols are now provided. The versions in the libraries userio and interf use the old
protocols and the old procedure names. The versions in the library streamio and ssinterf use the
new protocols and the corresponding new naming conventions discussed below. The streamio library
corresponds to a similarly named library in INMOS occam toolset products, and it is recommended that
procedures from this library be used in all new programs. With care it is possible to mix procedures from the
two groups of libraries but this is not recommended.

IMPORTANT NOTE: On 16-bit transputers the CHAN OF ANY version of screenstream protocol is not the
same as SS and they should not be mixed in T2 programs.

The following conventions have been adopted in naming procedures and constructing formal parameter lists:

Wherever a pair of channels are used together for bi-directional communication, the channels will appear as
adjacent formal parameters with the one on which inputs to the current process will occur first.

Any procedure which communicates using SP protocol will have as its first two formal parameters a pair of
channels from. isv and to. isv (not necesarily with these names) used respectively for communication
from the server to the program and from the program to the server. All procedures with names beginning
so. are of this kind.

Any procedure which only communicates outwards on a channel with TDS screenstream (SS) protocol will
have this channel as its first formal parameter. All procedures with names beginning ss. are of this kind.

Any procedure which only receives input on a channel with TDS keystream (KS) protocol will have this channel
as its first formal parameter. All procedures with names beginning ks. are of this kind.

14.7 Environment enquiries

The procedures in this group use the iserver interface to ask for information available on the host computer.
They are in the libraries sp1ib and s01ib. They are designed for use in hosted applications only. Some
details of the specifications of these procedures are host type dependent.

so.qetenv
PROC so.qetenv (CHAN OF SP fs, ts, VAL[]BYTE name,

. INT 1enqth, []BYTE va1ue, BYTE resu1t)

Returns the string defined for the host environment variable name. If name is not defined on the
system resu1t takes the value
spr.operation.fai1ed.

The result returned can take any of the following values:

spr.ok
spr.bad.name
spr.operation.fai1ed

The operation was successful.
The specified name is a null string.
Could not read environment string.

spl.ib

spl.ib

14.7 Environment enquiries 245

spr. bad. packet. size SIZE name is too large
(> sp. max . qetenvname . size).

spr . buffer. overfl.ow Environment string too large for val.ue.

If the buffer overflows l.enqth is set to the buffer size.

so.time
PROC so. time (CBAN OF SP fs, ts, INT32 l.ocal.time, UTCtime)

Returns the Coordinated Universal Time and local time if they are available on the system. Both
times are expressed as the number of seconds that have elapsed since midnight on 1st January,
1970. If either time is unavailable then it will have a value of zero.

so. system
PROC so. system (CHAN OF SP fa, ts, VAL[]BYTE command,

INT32 status, BYTE resul.t)

Passes the string command to the host command processor for execution. If the command string
is of zero length resul.t takes the value spr. ok if there is a host command processor, otherwise
an error is returned. If command is non-zero in length then status contains the host-specified
value of the command, otherwise it is undefined.

The result returned can take any of the following values:

spr.ok
spr.bad.packet.size

Host command processor exists.

The array command is too large
(> sp.max. systemcommand. size).

spl.ib

spl.ib

ao.commandl.ine
PROC ao.commandl.ine (CHAN OF SP fa, ta, VAL BYTE al.l.,

INT l.enqth, []BYTE strinq, BYTE resul.t

Returns the command line passed to the server when it was invoked.
If al.l. has the value sp. short. commandl.ine then all options are stripped from the command
line. If al.l. is sp. whol.e . commandl.ine then the command line is returned exactly as it was
invoked. See also section 16.5.7.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr. buffer. overfl.ow Command line too long for strinq.

If the buffer overflows l.enqth is set to the buffer size.

so.core
PROC so. core (CBAN OF SP fs, ts, VAL INT32 offset,

INT bytes.read, []BYTE data, BYTE resul.t)

Returns the contents of the root transputer's memory as peeked from the transputer when iserver
is invoked with the analyse ('SA') option. The start of the memory segment is given by offset,
and the number of bytes by the size of the data vector. An error is returned if offset is larger
than the total amount of peeked memory.

246 14 Libraries

The result returned can take any of the following values:

spr . ok The operation was successful.
spr. operation. fai1ed The operation failed.
spr. bad. packet. size The array data is too large

(> sp. max. corerequest . size).

This procedure can also be used to determine whether the memory was peeked (whether the server
was invoked with the 'SA' option), by specifying a size of zero for data and offset. If the routine
fails the memory was not peeked.

so.version
PROC so.version (CHAN OF SP fs, ts,

BYTE version, host, os, board)

sp1ib

Returns version information about the server and the host on which it is running. A value of zero for
any of the items indicates that the information is unavailable.

The version of the server is given by version. The value should be divided by ten to yield the true
version number. For example, a value of 15 means version 1.5.

The host machine type is given by host, and can take any of the following values:

sph.PC
sph.NECPC
sph.VAX
sph.SUN3
sph.SUN4

IBM PC
NEC PC
DEC VAX
SUN Microsystems Sun-3
SUN Microsystems Sun-4

Values up to 127 are reserved for use by INMOS.

The host operating system is given by os, and can take any of the following values:

spo.DOS DOS
spo. HELIOS HELlOS
spo.VMS VMS
spo.SunOS SunOS

Values up to 127 are reserved for use by INMOS.

The interface board type is given by board, and can take any of the following values:

spb.B004
spb.B008
spb.B010
spb.BOll
spb.B014
spb.DRXll
spb.QTO

IMS 8004
IMS 8008
IMS 8010
IMS 8011
IMS 8014
DRX-11
Caplin QTO

sp1ib

Values up to 127 are reserved for use by INMOS.

so.exit
PROC so.exit (CHAN OF SP fs, ts, VAL INT32 status)

Terminates the server, which returns the value of status to its caller. If status has the special
value sps . success then the server will terminate with a host specific 'success' result. If status
has the special value sps . failure then the server will terminate with a host specific 'failure'
result. See also section 16.5.7.

14.7 Environment enquiries 247

solib

so.parse. command. 1ine solib
PROC so.parse.command.line (CHAR OF SP fs, ts,

VAL[] []BYTE option. strings,
VAL[]INT option.parameters.required,
[]BOOL option. exists,
[] [2]INT option.parameters,
INT error.len, []BYTE line

This procedure reads the command line and parses it for specified options and associated parame
ters.

The parameter option. strings contains a list of all the possible options. Options may be any
length up to 255 bytes and are not case sensitive. To read a parameter that has no preceding
option (such as a file name) then the first option string should be empty (contain only spaces). The
optionstrings must be filled out with spaces so that they are all the same length. For example,
consider a program can be supplied with a file name, and any of three options 'A', 'B' and 'C'. The
array option. strings would look like this:

VAL option.strings IS [" ", "A", "B", "C"]:

The parameter option. parameters. required indicates if the corresponding option (in
option. strings) requires a parameter. The values it may take are:

spopt . never Never takes a parameter.
spopt . maybe Optionally takes a parameter.
spopt . a1ways Must take a parameter.

Continuing the above example, the file name must be supplied and none of the op
tions take parameters, except for 'C', which mayor may not have a parameter, then
option . parameters . required would look like this:

VAL option.parameters.required IS
[sopt.always, sopt.never,
sopt.never, sopt.maybe]:

If an option was present on the command line option. exists is set to TRUE, otherwise it is set
to FALSE.

If an option was followed by a parameter then the position in the array line where the parameter
starts and the length of the parameter are given by the first and second elements respectively of the
parameter element in option. parameters.

If an error occurs whilst the command line is being parsed then
error. len will be greater than zero and line will contain an error message of the given length.
If no error occurs then line will contain the command line as supplied by the host file server.

so.today.date solib
PROC so.today.date (CHAN OF SP fs, ts, [so.date.len]INT date)

Gives today's date as six integers, stored in the date array. The format of the array is the same as
for so. time. to . date. If the date is unavailable all elements in date are set to zero.

so.today.ascii
PROC so.today.ascii (CHAN OF SP fs,ts,

VAL BOOL long.years, days. first,
[so.time.string.len] BYTE string)

Gives today's date as an ASCII string, in the same format as procedure so. date. to. ascii. If
the date is unavailable string is filled with spaces.

248

14.8 Representation conversions and string handling

14 Libraries

solib

These procedures do not have channels as parameters and are potentially usable in any occam programs.
The set of procedures provided should not be considered as complete. In particular application environments
additional or alternative procedures may usefully be written to supersede or supplement these.

For further information on the procedures provided by the libraries ioconv and extrio see the occam 2
Reference Manual.

Time and date functions

so.time.to.date solib
PROC so.time.to.date (VAL INT32 input.time, [so.date.len]INT date)

Converts time (as supplied by so. time) to six integers, stored in the date array. The elements
of the array are as follows:

Element of array Data
0 Seconds
1 Minutes
2 Hour (24 hour clock)
3 Day
4 Month
5 Year

so.date.to.ascii
PROC so.date.to.ascii (VAL[so.date.len]INT date,

VAL BOOL long.years, days.first,
[so.time.string.len] BYTE string)

Converts an array of six integers containing the date (as supplied by so. time. to. date) into an
ASCII string of the form:

HH:MM:SS DD/MMIYYYY

If long. years is FALSE then year field is reduced to two characters, the last two characters being
padded with spaces. If days. first is FALSE then the ordering of day and month is changed (to
the U.S. standard).

strings

so.t~e.to.ascii

PROC so.time.to.ascii (VAL INT32 time,
VAL BOOL long.years, days. first,
[so.time.string.len] BYTE string)

Converts time (as supplied by so. time) into an ASCII string, as described for
so.date.to.ascii.

Character handling functions

is.in.range
BOOL FUNCTION is.in.range (VAL BYTE char, bottom, top)

Returns TRUE if the value of char is in the range defined by bottom and top inclusive.

solib

14.8 Representation conversions and string handling

is.upper
BOOL FUNCTION is. upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter.

is.1ower
BOOL FUNCTION is.1ower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter.

is.digit
BOOL FUNCTION is. digit (VAL BYTE char)

Returns TRUE if char is an ASCII decimal digit.

249

strings

strings

strings

stringsis.hex.digit
BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if char is an ASCII hexadecimal digit. Upper or lower case letters A-F are allowed.

is.id.char
BOOL FUNCTION is.id.char (VAL BYTE char)

Returns TRUE if char is an ASCII character which can be part of an occam name.

to.upper.case
PROC to.upper.case ([]BYTE str)

Converts all alphabetic characters in str to upper case.

to.1ower.case
PROC to.1ower.case ([]BYTE str)

Converts all alphabetic characters in str to lower case.

String comparison functions

Strings may be compared for order or for equality.

strings

strings

strings

stringscompare. strings
INT FUNCTION compare. strings (VAL []BYTE strl, str2)

This general purpose lexicographic ordering function compares two strings. (lexicographic ordering
is the ordering used in dictionaries etc., using the ASCII values of the bytes). It returns one of the 5
results 0, 1, -1, 2, -2 as follows.

o The strings are exactly the same in length and content.

1 str2 is a leading sub-string of strl

-1 strl is a leading sub-string of str2

2 strl is lexicographically later than str2

-2 str2 is lexicographically later than strl

250

eqstr

14 Libraries

So if s is "abed":

compare.strings ("abc", [sFROMOFOR3]) = 0
compare.strings ("abc", [s FROM 0 FOR 2]) 1
compare. strings ("abc", s) =- 1
compare. strings ("be", s) = 2

compare. strings ("a4", s) = -2

strings
BOOL FUNCTION eqstr (VAL []BYTE sl,s2)

This is an optimised test for string equality. It returns TRUE if the two strings are the same size and
have the same contents.

String editing procedures

A string to be edited will be stored in an array which may have some unused space at its end. The editing
operations supported are deletion of a number of charaters, with the closing up of the gap created, and
insertion of a new string starting at any position within a string, at which a gap of the necessary size is
created.

These two operations are supported by a lower level procedure for shifting a consecutive substring left or
right within the array. This lower level procedure does exhaustive tests against overflow.

str. shift
PROC str.shift ([]BYTE str, VAL INT start,

len, shift, BOOL not.done)

strings

Takes a substring [str FROM start FOR len] , and copies it to a position shift places to
the right. Any implied actions involving bytes outside the string are not performed and cause the
error flag not. done to be set TRUE.

delete. string
PROC delete.string (INT len, []BYTE str,

VAL INT start, size, BOOL not.done)

strings

Deletes size bytes from the string str starting an str [start] . There are initially len significant
characters in str and it is decremented appropriately. If start is outside the string, or size is
negative or greater than the string length, then no action occurs and not. done is set TRUE.

insert. string strings
PROC insert.string (VAL []BYTE new.str, INT len,

[]BYTE str, VAL INT start, BOOL not.done)

Creates a gap in str before str [start] and copies the string new. str into it. There are initially
len significant characters in str and len is incremented by the length of new. str inserted. Any
overflow of the declared SIZE of str results in truncation at the right and setting not. done to
TRUE. This procedure may be used for simple concatenation on the right by setting start = len
or on the left by setting start = O. This method of concatenation differs from that using the
append. procedures in that it can never cause the program to stop.

14.8 Representation conversions and string handling

String searching functions

251

strings

strings

These procedures allow a string to be searched for a match with a single byte or a string of bytes, or for
a byte which is one of a set of possible bytes, or for a byte which is not one of a set of bytes. Searches
insensitive to alphabetic case should use to. upper. case or to .l.ower . case on both operands before
using these procedures.

string.pos
INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in str of the first occurrence of a sub-string which exactly matches search.
Returns --1 if there is no such match.

char.pos
INT FUNCTION char.pos (VAL BYTE search, VAL []BYTE str)

Returns the position in str of the first occurrence of the byte search. Returns -1 if there is no
such byte.

search.match strings
INT, BYTE FUNCTION search.match (VAL []BYTE poss1bl.es, str)

Searches str for anyone of the bytes jn the array poss1bl.es. If one is found its index and
identity are returned as results. If none is found then -1, 255(BYTE) are returned.

search.no.match strings
INT, BYTE FUNCTION search.no.match (VAL []BYTE poss1bl.es, str)

Searches str for a byte which does not match anyone of the bytes in the array possibl.es. If
one is found its index and identity are returned as results. If none is found then -1, 255(BYTE) are
returned.

String add/append functions

The add and append procedures produce identical results provided that the array does not overflow. If the
array overflows add truncates the data and continues processing, append behaves like STOP.

add. char
append. char

PROC append. char (INT l.en, []BYTE str, VAL BYTE char)

Writes a byte char into the array str at str [l.en]. l.en is incremented by 1.

strings
strings

strings
strings

add. text
append. text

PROC append. text (INT l.en, []BYTE str, VAL []BYTE text)

Writes a string text into the array str, starting at str [l.en] and computing a new value for len.

252 14 Libraries

strinqs
strinqs

strinqs
strinqs

add.int strinqs
append.int strinqs

PROC append.int (lNT 1en, []BYTE str, VAL lNT number, width)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified width width if necessary. If the number cannot be represented in
width characters it is widened as necessary. A zero value for width will give minimum width.
The converted number is written into the array str starting at str [1en] and 1en is incremented.

add.hex.int strinqs
append.hex.int strinqs

PROC append.hex.int (lNT 1en, []BYTE str, VAL lNT number, width)

Converts number into a sequence of ASCII hexadecimal digits, using upper case letters, preceded
by t. The total number of characters sent is always width+l, padding out with 0 or F on the left
if necessary. The number is truncated at the left if the field is too narrow, thereby allowing the less
significant part of any number to be printed. The converted number is written into the array str
starting at str [1en] and 1en is incremented.

add.rea132
append.rea132

PROC append.rea132 (lNT 1en, []BYTE str,
VAL REAL32 number, VAL lNT lp, Dp)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and
an optional sign to the specified number of digits lp before and Dp after the decimal point. The
converted number is written into the array str starting at str [1en] and 1en is incremented.

The total added width will be lp + Dp + 2 except in the following special cases:

If the value will not fit, an exponential form is used.

If Ip is zero, an exponential form with Dp significant digits is used, giving a field width of Dp + 6.

If lp and Dp are zero, a minimum field width free format is used.

Numbers which correspond to the IEEE standard concepts of 'Infinity' and 'NotaNumber' produce
the texts lnf and NaN, respectively.

In exponential forms a number in the range [1.0, 10.0) is followed by E, a + or - sign, and a 2 digit
decimal exponent.

add.rea164
append.rea164

PROC append.rea164 (lNT 1en, []BYTE str,
VAL REAL64 number, VAL lNT lp, Dp)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified number of digits lp before and Dp after the decimal point.

Details as for REAL32 but allowing 3 digits for the exponent.

14.8 Representation conversions and string handling

add.int32
append.int32

PROC append.int32 (INT 1en, []BYTE str,
VAL INT32 number, VAL INT width)

As append. int but for 32-bit integers

add.int64
append.int64

PROC append.int64 (INT 1en, []BYTE str,
VAL INT64 number, VAL INT width)

As append. int but for 64-bit integers

add.hex.int32
append.hex.int32

PROC append.hex.int32 (INT 1en, []BYTE str,
VAL INT32 number, VAL INT width)

As append. hex. int but for 32-bit integers

add.hex.int64
append.hex.int64

PROC append.hex.int64 (INT 1en, []BYTE str,
VAL INT64 number, VAL INT width)

As append. hex. int but for 64-bit integers

Line parsing

253

strinqs
strinqs

strinqs
strings

strings
strings

strings
strings

strings

strings

next.word.from.1ine
PROC next.word.from.1ine (VAL []BYTE 1ine, INT ptr, 1en,

[]BYTE word, BOOL ok)

If ok is FALSE on entry then no action is taken.

Skips leading spaces and tabs and reads the next word from the string 1ine. The value of ptr is
the starting point for the search.

If the first non-space/non-tab character found is not a printable ASCII character, or if the end of the
string is reached, the boolean ok is set to FALSE. If the word is followed by a space, tab or the end
of the string, ok is set to TRUE, otherwise it is set to FALSE.

The pointer ptr is updated either to the position beyond the last character read or to the end of the
string.

next.int.from.1ine
PROC next.int.from.1ine (VAL []BYTE 1ine,

INT ptr, number, BOOL ok)

If ok is FALSE on entry then no action is taken.

Skips leading spaces and tabs and reads the next integer from the string 1ine. The value of ptr
is the starting point for the search.

254 14 Libraries

If the first non-space/non-tab character found is not a digit or sign (+ or -). or if the end of the string
is reached. the boolean ok is set to FALSE. If the integer is followed by a space. tab or the end of
the string. ok is set to TRUE and the integer is returned in number. otherwise ok is set to FALSE.

The pointer ptr is updated either to the position beyond the last character read or to the end of the
string.

14.9 Terminals and text streams

A terminal may be treated in one of two distict ways. supported by procedures in the library groups host1ibs
and io1ibs respectively.

The iserver model of the terminal is the set of standard streams. standard input. standard output and standard
error. The behaviour of these streams is defined to be that supplied by the C library in the implementation of C
used to compile the iserver. Such streams are sequences of ASCII characters and have no abstractions of
control operations. Such operations must be coded as appropriate escape sequences for the actual terminal
or low-level driving software being used.

The alternative model of the terminal is as a pair of occam channels. the input channel using TDS keystream
KS protocol. and the output channel using TDS screenstream SS protocol. Both these protocols include
abstractions: on the keystream certain combinations of values. generated by one or more physical key
depressions. may be treated as single 'cooked' keystrokes; on the screenstream the usual screen control
operations of cursor positioning and movement, deletion and insertion of lines and characters, clearing, etc
are encoded with their own special representation. Another important feature of the TDS keystream model is
that it is possible to perform an occam ALT operation on the keyboard channel of an EXE using this model,
and so to write interruptable programs. As the iserver is not capable of asynchronous keyboard handling,
the TDS polls the keyboard at intervals determined by the system or the user in an EXE. See section 16.6.2.

The library includes collections of procedures for communicating values along channels using either of these
models. It also includes protocol conversion procedures for conversion between the two.

Procedures in the libraries sp1ib, so1ib and sk1ib use the standard input/standard output model.

Procedures in the libraries streamio. ssinterf. userio and interf use the TDS stream models.

Whereas combinations of the models may be used for communications between the processes of an appli
cation. it is desirable that accesses to a particular terminal. such as that of the host in a hosted application
use either one approach or the other but not a mixture. The choice will be based on such matters as inter
ruptability. need for abstraction from terminal type dependencies. adequacy of the line-based standard input
view of the keyboard. etc.

14.9.1 The simple input and output procedures (TDS stream models)

Two TDS stream models of input/output are supported by appropriate sets of procedures.

A simple model of input and output which is applicable both to an interactive terminal and to sequential text
files is based on a sequence of lines of text, separated by carriage return characters. This model is also
appropriate for communication between the processes of an occam program. if the information being sent
is essentially a sequential text stream.

The second model is the folded stream model. which allows a hierarchical data structure to be traversed. with
the option to omit parts of the structure. to repeat parts of the traverse. etc.

The simple user procedures provide access to a stream of characters as input, and a stream of characters as
output. The characters are received from. or transmitted to. the environment as ASCII values. represented
as INT values on input and BYTE values on output. The procedures enable the programmer to think also.
if desirable. in terms of higher level concepts such as numbers and strings. The set of procedures provided
is not exhaustive. and users should feel free to add to the set for their own purposes.

14.9 Terminals and text streams 255

The user does not need, in the first instance, to be aware of the protocol used on the channels used by these
procedures. A simple program containing only sequential code, or doing screen output only from one branch
of its parallel structure can do all its terminal input and output through procedures using screenstream output.

The output procedures are of two kinds. On the one hand there are procedures to output characters, numbers
and strings at the current cursor position, and an explicit newline procedure. On the other hand there is a
procedure for outputting a complete line of text which the user has built up in an array of bytes. Procedures
are provided in the libraries ioconv, extrio and strinqs for converting numbers into strings.

The user may decide whether or not to echo keyboard input to the screen as it is input. Each procedure
has a version with and without the ability to echo. It is normally preferable to use the versions with echo, as
these are coded to respond to the delete key for simple corrections of keyboard errors. Note that the effect
of th~ delete key is restricted to the current procedure call and cannot influence the result of previous calls
of procedures on the same line of input.

Screenstream output procedures

These all have a first parameter sink which is the channel on which output commands are sent to cause
an appropriate sequence of text characters to be generated. The actual parameter corresponding to this
should be a channel using the screen stream (output) protocol. Such a channel is the screen channel of
an executable procedure (EXE). It may alternatively be an input channel to one of the interface procedures
described in section 14.10 on the libraries interf and ssinterf. The procedures are designed for
streams of ASCII characters and may not be appropriate for binary byte streams.

Each line of text may be terminated either by an explicit call of the procedure 8S. write. text .1ine
or ss. write. n1, or by including the character pair" *c*n" in a string. Both these characters should
normally be sent as one or other may be ignored in some circumstances, and both are usually required
on real terminals. The preferred convention is to terminate each line with a ss. write. n1 (rather than
preceding it with one).

Procedures for sending terminal control codes down a screen stream channel should only be used when
the receiving process is controlling a terminal or is forwarding commands to one which does. They can not
sensibly be used if the receiver is creating a file. The control codes are terminal-independent codes for a
number of common screen handling operations. They are described in detail in section 16.6.

Keystream input procedures

Values from a keyboard channel are expressed as integers. Positive integers are key codes, negative ones
are error numbers. Error numbers are only likely if the source is a filing system interface procedure. Key
codes may be either simple ASCII codes, or they may be encoded representations of function keys as used
by the TDS editor interface. These are discussed in detail in section 16.6. End of line is normally represented
by the value INT' *c' alone.

Each procedure is provided in two forms, with and without echo. Echo is the return of an ASCII code to an
output channel using screen protocol. A procedure with echo also allows characters to be deleted (as long
as a terminator has not yet been encountered).

The versions without echo perform input only and are otherwise identical to those which perform echo and
handle deletions.

The reading procedures for numeric values all obey the same conventions with respect to leading characters
and terminators. The first character which may be part of the number is assumed to have been already
read and must be provided by the caller as the initial value of the INT parameter char. This requires that
the actual parameter corresponding to char must be a variable and must be initialised before using any of
the read number procedures. The initial value may be obtained by a call of ks . read. char or may be a
dummy value such as INT' '.

The procedure then reads characters, ignoring everything before the first valid character (a digit, or for decimal
numbers, a + or - sign). A number in the appropriate syntax is then read, terminated by the first character
which cannot validly continue the number, which is returned in the parameter char. If an error occurs an

256

error number is returned in char.

14 Libraries

These conventions are adopted to facilitate the coding of input from text streams where numbers are embed
ded within text and may have arbitrary terminators.

Although, strictly, hexadecimal digits greater than 9 and the decimal exponent symbol E are defined to be
upper case characters these procedures will accept the corresponding lower case characters, but will echo
them in upper case. The character ' $' is NOT accepted as an alternative to ' #' .

There is one common error value which any of these procedures may generate if a number which is out of
range or otherwise invalid is encountered. This value has the name ft. number. error and is defined in
the library userva1s. If such a value is returned the value of the parameter number is undefined.

The procedures with echo copy the actual characters input to the echo channel, converting lower case
hexadecimal digits or e in a REAL number to upper case and acting on delete characters as they are received.
The first character (passed in as char) is assumed to have been already echoed, and an immediately
subsequent delete will delete it. The terminating character is echoed even when it is subsequently converted
into an error indication.

14.9.2 Procedures supporting screenstream output

ss.write.char
PROC ss.write.char (CHAN OF SS sink, VAL BYTE char)

write.char
PROC write. char (CHAN OF ANY sink, VAL BYTE char)

Sends the ASCII value char down sink to the current position in the output line.

streamio

userio

userio

streamio

userio

ss.write.string
PROC ss.write.string (CBAN OF SS sink, VAL []BYTE str)

write. fu11. string
PROC write.fu11.string (CHAR OF ANY sink, VAL []BYTE str)

str is any string all of whose characters are sent to sink. This procedure should be used for
constant text strings, and other strings of known length (probably expressed as an array segment).
The maximum length of str is st. max. string. size. Strings longer than this will cause a
STOP.

write.1en.string
PROC write.1en.string (CHAN OF ANY sink,

VAL INT 1en, VAL[]BYTE str)

str is any string with 1en or more characters, the first 1en of these are sent to sink. This
procedure should be used for text passed as an array segment whose size is computed at run-time.
The maximum length of str is st. max. string. size. Strings longer than this will cause a
STOP.

ss.write.n1
PROC ss.write.n1 (CBAN OF SS sink)

new1ine
PROC new1ine (CHAN OF ANY sink)

Sends "*c*n" to sink.

streamio

userio

14.9 Terminals and text streams 257

ss.write.int streamio
PROC ss.write.int (CHAN OF SS sink, VAL INT number, fie1d)

write.int userio
PROC write.int (CHAN OF ANY sink, VAL INT number, fie1d)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified fie1d width if necessary. If the number cannot be represented in
fie1d characters it is widened as necessary. A zero value for fie1d will give minimum width.
The converted number is sent to sink.

ss.write.hex.int streamio
PROC ss.write.hex.int (CHAN OF SS sink, VAL INT number, fie1d)

write.hex.int userio
PROC write.hex.int (CBAN OF ANY sink, VAL INT number, fie1d)

Converts number into a sequence of ASCII hexadecimal digits, using upper case letters, preceded
by t. The total number of characters sent is always fie1d + 1, padding out with 0 or F on the
left if necessary. The number is truncated at the left if the field is too narrow, thereby allowing the
less significant part of any number to be printed. The converted number is sent to sink.

ss.write.text.1ine streamio
PROC ss.write.text.1ine (CHAN OF SS sink, VAL []BYTE str)

write.text.1ine userio
PROC write.text.1ine (CHAN OF ANY sink, VAL []BYTE str)

A line of characters from str, optionally terminated by a ' *c' is sent to sink followed by a
newline. This procedure should be used for text which the programmer organises into complete
lines.

ss.write.int32
PROC ss.write.int32 (CHAN OF SS sink,

VAL INT32 number, VAL INT fie1d)

As ss. write. int but for 32-bit integer values.

streamio

ss.write.hex.int32 streamio
PROC ss.write.hex.int32 (CHAN OF SS sink,

VAL INT32 number, VAL INT fie1d)

As ss. write. hex. int but for 32-bit integer values.

ss.write.int64
PROC ss.write.int64 (CBAN OF SS sink,

VAL INT64 number, VAL INT fie1d)
write.int64

PROC write.int64 (CHAN OF ANY sink,
VAL INT64 number, VAL INT fie1d)

As write. int but for 64-bit integer values.

streamio

userio

258 14 Libraries

ss.write.hex.int64
PROC ss.write.hex.int64 (CBAN OF SS sink,

VAL lNT64 number, VAL lNT fie1d)
write.hex.int64

PROC write.hex.int64 (CBAN OF ANY sink,
VAL lNT64 number, VAL lNT fie1d)

As write. hex. int but for 54-bit integer values.

ss.write.rea132
PROC ss.write.rea132 (CBAN OF SS sink,

VAL REAL32 number, VAL lNT lp, Dp)

streamio

userio

streamio

useriowrite.rea132
PROC write.rea132 (CHAN OF ANY sink,

VAL REAL32 number, VAL lNT lp, Dp)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and
an optional sign to the specified number of digits lp before and Dp after the decimal point. The
converted number is sent to sink.

The total width will be lp + Dp + 2 except in the following special cases:

If the value will not fit, an exponential form is used.

If lp is zero, an exponential form with Dp significant digits is used, giving a field width of Dp + 6.

If lp and Dp are zero, a minimum field width free format is used.

Numbers which correspond to the IEEE standard concepts of 'Infinity' and 'NotaNumber' produce
the texts lnf and NaN, respectively.

In exponential forms a number in the range [1 .0, 10.0) is followed by E, a + or - sign, and a 2 digit
decimal exponent.

ss.write.rea164
PROC ss.write.rea164 (CBAN OF SS sink,

VAL REAL64 number, VAL lNT lp, Dp)

streamio

userio

userio

streamio

write.rea164
PROC write.rea164 (CHAN OF ANY sink,

VAL REAL64 number, VAL INTolp, Dp)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified number of digits lp before and Dp after the decimal point.

Details as for REAL32 but allowing 3 digits for the exponent.

ss.write.endstream
PROC ss.write.endstream (CBAN OF SS sink)

write.endstream
PROC write.endstream (CBAN OF ANY sink)

Sends a special stream terminator value to sink. A call of this is needed if sink is a file interface,
or other interface procedure without an explicit stoppping channel, but not if it is a real screen channel
(parameter of the EXE).

14.9 Terminals and text streams 259

userio

streamioss.goto.xy
PROC ss.goto.xy (CHAR OF SS sink, VAL INT x, y)

goto.xy
PROC goto.xy (CBAN OF ANY sink, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top left corner of the screen.

ss.c1ear.eo1
PROC ss.c1ear.eo1 (CBAN OF SS sink)

c1ear.eo1
PROC c1ear.eo1 (CBAN OF ANY sink)

Clears from the cursor position to the end of the current screen line.

ss.c1ear.eos
PROC ss.c1ear.eos (CHAN OF SS sink)

c1ear.eos
PROC c1ear.eos (CHAN OF ANY sink)

Clears from the cursor position to the end of the current line and all lines below.

ss.beep
PROC ss.beep (CHAN OF SS sink)

beep
PROC beep (CHAN OF ANY sink)

Sends a bell code to the terminal.

ss.up
PROC ss.up (CBAN OF SS sink)

up
PROC up (CBAN OF ANY sink)

Moves the cursor one line up the screen.

ss.down
PROC ss.down (CHAN OF SS sink)

down
PROC down (CHAN OF ANY sink)

Moves the cursor one line down the screen.

ss.1eft
PROC ss.1eft (CHAN OF SS sink)

1eft
PROC 1eft (CHAN OF ANY sink)

Moves the cursor one place left.

streamio

userio

streamio

userio

streamio

userio

streamio

userio

streamio

userio

streamio

userio

260

ss.right
PROC ss.right (CHAN OF SS sink)

right
PROC right (CHAN OF ANY sink)

Moves the cursor one place right.

14 Libraries

streamio

userio

userio

streamio

userio

streamio

userio

streamio

userio

streamio

The next five pairs procedures are not guaranteed to be fully implemented on all terminal types. They should
only be used when the terminal being used can perform the required effect.

ss.insert.char
PROC 8s.insert.char (CHAN OF SS sink, VAL BYTE char)

insert. char
PROC insert.char (CBAN OF ANY sink, VAL BYTE char)

The character at the cursor and those to the right of it are moved one place to the right and the
character char is inserted at the cursor. The cursor moves one place right.

ss.de1ete.ch1
PROC ss.de1ete.ch1 (CBAN OF SS sink)

de1ete.ch1
PROC de1ete.ch1 (CHAN OF ANY sink)

The character to the left of the cursor is deleted. The character at the cursor and those to the right
of it are moved one place left. The cursor moves one place left.

ss.de1ete.chr
PROC ss.de1ete.chr (CHAN OF SS sink)

de1ete.chr
PROC de1ete.chr (CHAN OF ANY sink)

The character at the cursor is deleted and all following characters on the line are moved one place
left. The cursor does not move.

ss.ins.1ine
PROC ss.ins.1ine (CHAN OF SS sink)

ins.1ine
PROC ins.1ine (CHAN OF ANY sink)

The current line and those lines below it are moved down one line on the screen, losing the bottom
line. The current line becomes blank.

ss.de1.1ine streamio
PROC de1.1ine (CHAN OF SS sink)

de1.1ine userio
PROC de1.1ine (CHAN OF ANY sink)

The current line is deleted and all lines below it are moved up one line. The bottom line becomes
blank.

14.9 Terminals and text streams 261

userio

streamio

userio

streamio

14.9.3 Procedures supporting keystream input
These are in two groups: those which only perform input and those which echo the input to the screen and
allow in-line deletion of characters input.

ks.read.char streamio
PROe ks.read.char (CBAN OF KS source, INT char)

read. char userio
PROC read. char (CHAN OF INT source, INT char)

Returns ASCII value of next char from source, (if input is from a file end of line is signified by the
value INT' *c').

ks.read.int
PROC ks.read.int (CHAN OF KS source, INT number, char)

read.int
PROC read.int (CBAN OF INT source, INT number, char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. char. Skips input up to a digit, #, + or -, then reads a sequence of digits
to the first non-digit and converts the digits to an integer which is returned in number. If the first
significant character is a ' #' then a hexadecimal number is input, thereby allowing the user the
option of which number base to use. -

If the input is invalid ft. number. error is returned in char; otherwise the terminating character
is returned in char.

ks.read.hex.int streamio
PRce ks.read.hex.int (CBAN OF KS source, INT number, char)

read.hex.int userio
PROe read.hex.int (CHAN OF INT source, INT number, char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. char. Skips input up to a valid hexadecimal digit, then reads a sequence of
hex digits to the first non-digit, returned as char, and converts the digits to an integer which is
returned in number.

If the input is invalid ft . number. error is returned in char; otherwise the terminating character
is returned in char.

ks.read.text.line
PROC ks.read.text.line (CHAN OF KS source, INT len,

[]BYTE line, INT char)
read.text.line

PROC read.text.line (CHAN OF INT source, INT len,
[]BYTE line, INT char)

Reads text into the array line up to and including , *c' , or up to and excluding any error code.
Any' *n' encountered is thrown away. len is the length of the line. A terminating' *c' is always
stored in the array. If there is an error its code is returned in char, otherwise the value of char
will be INT '*c'. If the array is filled before a '*c' is encountered all further characters are
ignored. Note that some TOS function codes have values which exceed 255 (see appendix 0), this
procedure will ignore such values completely.

262 14 Libraries

ks.read.int32 streamio
PROC ks.read.int32 (CBAN OF KS source, INT32 number, INT char)

As ks . read. int, but for 32-bit integers.

ks.read.hex.int32 streamio
PROC ks.read.hex.int32 (CHAN OF KS source, INT32 number, INT char)

As read. hex. int, but for 32-bit integers.

ks.read.int64 streamio
PROC read.int64 (CBAN OF KS source, INT64 number, INT char)

read.int64 userio
PROC read.int64 (CBAN OF INT source, INT64 number, INT char)

As read. int, but for 64-bit integers.

ks.read.hex.int64 streamio
PROC ks.read.hex.int64 (CHAN OF KS source, INT64 number, INT char)

read.hex.int64 userio
PROC read.hex.int64 (CHAN OF INT source, INT64 number, INT char)

As read. hex. int, but for 64-bit integers.

ks.qet.rea1.strinq
PROC ks.qet.rea1.strinq (CBAN OF KS in, INT 1en,

[]BYTE str, INT char)
qet.rea1.strinq

PROC qet.rea1.strinq (CBAN OF INT in, INT len,
[]BYTE str, INT char)

For internal use only by the following two procedures.

streamio

userio

ks.read.rea132 streamio
PROC ks.read.rea132 (CHAN OF KS source, REAL32 number, INT char)

read.rea132 userio
PROC read.rea132 (CHAN OF INT source, REAL32 number, INT char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. char. Skips input up to a digit, + or -, then reads a sequence of digits (with
decimal point and optional exponent) up to the first invalid character, returned as char. Converts
the digits to a floating point value in number.

If the input is invalid ft.number.error is returned in char, otherwise the terminating character is
returned in char.

Only numbers conforming to the syntax of occam REAL constants (without the type symbol), are
accepted as valid REAL numbers. This means in particular that there must be at least one digit
before the decimal point and there must be a sign before the optional exponent part. The only
relaxation of the rule is the allowing of e as an alternative to E to introduce the decimal exponent.

14.9 Terminals and text streams 263

userio

streamio

ks.read.rea164 streamio
PROC ks.read.rea164 (CHAR OF KS source, REAL64 number, INT char)

read.rea164 userio
PROC read.rea164 (CBAN OF INT source, REAL64 number, INT char)

As read. rea1. 32, but for 64-bit real numbers.

ks.read.echo.char
PROC read.echo.char (CHAR OF KS source,

CHAR OF SS echo, INT char)
read.echo.char

PROC read.echo.char (CHAR OF INT source,
CHAR OF ANY echo, INT char)

Returns ASCII value of next char from source, (if input is from a file interface procedure (see library
interf section 14.10) end of line is normally signified by the value INT' *c'). No deletions are
allowed. A ' *c' is echoed with the character pair "*c*n". All other ASCII control codes and TDS
function codes are not echoed.

ks.read.echo.int streamio
PROC ks.read.echo.int (CHAN OF KS source,

CHAN OF SS echo, INT number, char)
read.echo.int userio

PROC read.echo.int (CHAN OF INT source,
CBAN OF ANY echo, INT number, char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. echo. char. Skips input up to a digit, #, + or -, then reads a sequence of
digits to the first non-digit and converts the digits to an integer in number. If the first significant
character is a # then a hexadecimal number is input, thereby allowing the user the option of which
number base to use.

If the input is invalid ft . number. error is returned in char; otherwise the terminating character
is returned in char.

ks.read.echo.hex.int streamio
PROC ks.read.echo.hex.int (CHAN OF KS source,

CHAN OF SS echo, INT number, char)
read.echo.hex.int userio

PROC read.echo.hex.int (CHAN OF INT source,
CHAN OF ANY echo, INT number, char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. char. Skips input up to a valid hexadecimal digit, then reads a sequence of
hex digits to the first non-digit and converts the digits to an integer in number.

If the input is invalid ft. number. error is returned in char; otherwise the terminating character
is retu rned in char.

264 14 Libraries

ks.read.echo.text.1ine streamio
PROC ks.read.echo.text.1ine (CHAN OF KS source, CHAN OF SS echo,

INT 1en, []BYTE 1ine, INT char)
read.echo.text.1ine userio

PROC read.echo.text.1ine (CHAN OF INT source, CHAN OF ANY echo,
INT 1en, []BYTE 1ine, INT char)

Reads text into the array 1ine up to and including' *c' , or up to and excluding any error code. A
final' *c' is always stored in the array. Any' *n' encountered is thrown away. 1en is the length
of the line including the terminator. If there is an error its code is returned as char, otherwise
the value of char will be INT' *c'. If the array is filled before a ' *c' is encountered all further
characters are ignored. Note that some TDS function codes have values which exceed 255 (see
appendix D), this procedure will ignore such values completely.

ks . read. echo. int32 (T2 only)
PROC ks.read.echo.int32 (CHAN OF KS source,

CBAN OF SS echo,
INT32 number, INT char)

As ks . read. echo. int but reads 32-bit numbers.

ks . read. echo. hex. int32 (T2 only)
PROC ks.read.echo.hex.int32 (CHAN OF KS source,

CHAN OF SS echo,
INT32 number, INT char)

As ks . read. echo. hex. int but· reads 32-bit numbers.

streamio

streamio

ks.qet.rea1.with.de1 streamio
PROC ks.qet.rea1.with.de1 (CHAN OF KS in, CHAN OF SS echo,

INT 1en, []BYTE str, INT char)
qet.rea1.with.de1 userio

PROC qet.rea1.with.de1 (CBAN OF INT in, CHAN OF ANY echo,
INT 1en, []BYTE str, INT char)

For internal use only by the following two procedures.

ks.read.echo.rea132 streamio
PROC ks.read.echo.rea132 (CHAN OF KS source, CHAN OF SS echo,

REAL32 number, INT char)
read.echo.rea132 userio

PROC read.echo.rea132 (CHAN OF INT source, CHAN OF ANY echo,
REAL32 number, INT char)

char must be initialised to the first input character previously removed from the input stream with,
for example, read. char. Skips input up to a digit, + or -, then reads a sequence of digits (with
decimal point and optional exponent) up to the first invalid character, returned as char. Converts
the digits to a floating point value in number.

If the input is invalid ft. number. error is returned in char, otherwise the terminating character
is returned in char.

14.9 Terminals and text streams 265

sp1ib

sp1ib

ks.read.echo.rea164 streamio
PROC ks.read.echo.rea164 (CBAN OF KS source, CHAN OF SS echo,

REAL64 number, INT char)
read.echo.rea164 userio

PROC read.echo.rea164 (CHAN OF INT source, CHAN OF ANY echo,
REAL64 number, INT char)

As read. echo. rea132, but for 64-bit real numbers.

14.9.4 Procedures supporting the standard input model of the keyboard
so.qetkey

PROC so.qetkey (CHAN OF SP fs, ts, BYTE key, resu1t)

As so. p011key but waits for a key if none is available.

See also section 16.5.7. This is the preferred procedure for individual character input in EXEs and
hosted programs.

The key is not echoed on the screen.

The results can take the same values as so. p011key.

so.p011key
PROC so.p011key (CHAN OF SP fs, ts, BYTE key, resu1t)

Reads a single character from the keyboard. If no key is available then it returns immediately with
spr . operation. fai1ed. The key is not echoed on the screen.

See also section 16.5.7. This procedure is used by the TDS in its implementation of the keyboard
channel of an EXE.

The result returned can take any of the following values:

spr. ok The read was successful.
spr. operation. fai1ed The read failed.

so.ask sk1ib
PROC so. ask (CHAN OF SP fs,ts, VAL[]BYTE prompt, rep1ies,

VAL BOOL disp1ay.possib1e.rep1ies, echo.rep1y,
INT rep1y.number)

Prompts on the screen for a user response on the keyboard. The prompt is specified by the string
prompt, and the list of permitted replies by the string rep1ies. Only single character responses
are permitted, and alphabetic characters are not case sensitive. For example if the permitted re
sponses are IV', IN' and IQ' then the rep1ies string would contain the characters "YNQ", and
Iy ', In' and Iq' would also be accepted. rep1y. number indicates which response was typed,
numbered from zero.

If disp1ay .possib1e . rep1ies is TRUE the permitted replies are displayed on the screen. If
echo. rep1y is TRUE the user's response is displayed.

The procedure will not return until a valid response has been typed.

266 14 Libraries

The following procedures are based on a simple view of the keyboard as a device on which all input commu
nications consist of a whole line of input terminated by a IRETURNI. Application code may be easier to write,
but there is less flexibility of user interface design than in the TDS keystream approach.

so.read.1ine s011b
PROC so.read.1ine (CHAN OF SP fs, ts, INT 1en,

[]BYTE 1ine, BYTE resu1t)

Reads a line of text from the keyboard, without echoing it on the screen. The line is read until
IRETURNI is pressed at the keyboard.

The result returned can take any of the following values:

spr.ok
spr.operation.failed

The read was successful.
The read failed.

so.read.echo.1ine
PROC so.read.echo.line (CHAN OF SP fs, ts, INT len,

[]BYTE 1ine, BYTE result)

As so. read. 1ine, but user input is echoed on the screen.

sol1b

skl1bso.read.echo.int
PROC so.read.echo.int (CHAN OF SP fs, ts,

INT n, BOOL error)

Reads a decimal integer typed at the keyboard and displays it on the screen. The number must be
terminated by 'RETURN'. The boolean error is set to TRUE if an invalid integer is typed.

so.read.echo.hex.int skl1b
PROC so.read.echo.hex.int (CHAN OF SP fs, ts, INT n, BOOL error)

As so. read. echo. int but reads a number in hexadecimal format. The number must be prefixed
with either 'I', which directly indicates a hexadecimal number, or "', which assumes the prefix
#8000 •.•.

so.read.echo.any.int skl1b
PROC so.read.echo.any.int (CHAN OF SP fs, ts, INT n, BOOL error)

As so. read. echo. int but accepts numbers in either decimal or hexadecimal format. Hexadec
imal numbers must be prefixed with either 'I', which specifies the number directly, or "', which
assumes the prefix #800o...

so.read.echo.int64 skl1b
PROC so.read.echo.int64 (CBAN OF SP fs, ts, INT64 n, BOOL error)

As so. read. echo. int but reads 64-bit numbers.

so.read.echo.hex.int64
PROC so.read.echo.hex.int64 (CHAN OF SP fs, ts,

INT64 n, BOOL error)

As so. read. echo. hex. int but reads 64-bit numbers.

skl1b

14.10 Buffers, multiplexors and protocol converters 267

so.read.echo.rea132 sk11b
PROC so.read.echo.rea132 (CHAN OF SP fs, ts, REAL32 n, BOOL error)

Reads a real number typed at the keyboard and displays it on the screen. The number must be
terminated by 'RETURN'. The boolean variable error is set to TRUE if an invalid number is typed.

so.read.echo.rea164 sk11b
PROC so.read.echo.rea164 (CHAN OF SP fs, ts, REAL64 n, BOOL error)

As so. read. echo. rea132, but for 64-bit real numbers.

14.9.5 Procedures supporting the standard output model of the screen

These procedures are closely related to corresponding procedures which provide access to arbitrary output
files on the host and so for convenience of documentation are described in section 14.11.

14.10 Buffers, multiplexors and protocol converters

These interface procedures are designed to be called in parallel with an application process using the TDS
screenstream and keystream input output procedures. They enable such processes to be interfaced to the
TDS folded file system and host filing systems. An example of the use of interface procedures appears in
section 6.7.2 and further examples are included with the software.

The TDS provides a set of system channels as parameters to an executable program (EXE) which support
a versatile virtual terminal interface and access to a generalised filing system accessible through the idea of
filed folds. Direct access to host files is also provided.

One end of each of these channels is available to the user, and the other end is in the run-time system.
These channels have well-defined protocols, and communications must conform to these protocols.

The main body of a user's application may either be written to interface directly to the system channels or
may be written to run in parallel with interface procedures which use these channels.

The simple user procedures may be used to access files if suitable interface procedures are used.

Two distinct classes of file may be accessed. Folded files which are part of the fold structure of the devel
opment system, and host files which are not. Note that although in a hosted implementation all files are
accessible as host files, those which are folded files have a particular internal structure defined in appendix
G of this manual, and should be accessed through the TDS user filer interface, or through other software
which can decode the special TDS folded file representation.

Access to host files may be obtained by means of communications on the system channel pair from. fi1er
and to. fi1er using the obsolete tkf protocol, or preferably by the iserver channel pair from. isv
and to. isv using SP protocol.

A pair of interface procedures are described which allow an existing host text file to be read sequentially
as if from a keyboard, and a new host text file to be created and written to as if it were a screen. The
implementations of these procedures may be host-dependent because of the different ways of handling the
ends of text lines in different operating systems. The interface procedures hide these possible difficulties and
treat all text files as sequences of ASCII character strings separated by , *c' characters.

In chapter 16 further details of the communications across channels to the filing system are described. There
are several different ways in which such communication can be organised according to whether the program
is running inside the TDS, loaded directly by a server, either written by the user or, for example, the host file
server iserver supplied with the TDS.

268

iserver allows non-sequential access, read/write access, block access, etc.

14 Libraries

spinterf

spinterf

The interface to the server is defined in chapter 16, 'System interfaces'.

One or more filed folds which are themselves members of a single fold bundle may be accessed by an
executable program (EXE) called with the cursor on the fold line of the bundle. Each of these folds is
potentially the root of a nested tree structure.

Folded files to be read may be created as folds by the editor, or by another program using this library. New
filed folds may be created within the bundle and written into. Such files will be readable by the editor.

The principal limitation is that no more than four root folds may be simultaneously in use, either for input or
for output. All access to these filed folds is sequential, and the procedures below are designed to facilitate
the reading of existing files as if they were a source of characters like a keyboard, and the writing of new files
as if they were a simple screen or printer. Folds used for input may include nested folds, but such structure
will not be visible.

Access to a filed fold is obtained by a pair of channels which must be corresponding elements of the channel
arrays from. user. fi1er and to. user. fi1er passed to the EXE as parameters. Interface procedures
take parameters which represent these channels, terminal channels, fold numbers and fold comment text.
The members of the bundle of folds are identified by a fold number which starts at 1 for the top fold of the
bundle. The whole bundle, or just a simple fold, may be accessed as fold number o.

There are also some generally applicable multiplexing and channel consuming procedures which are useful
for organising the plumbing of the channels in a program. It is particularly important when building these
procedures into a program to ensure that the proper termination of each interface procedure is assured. If
this is not done it will not be possible to return cleanly to the development system after calling the program.

so.buffer
PROC so.buffer (CBAN OF SP fs, ts, from. user, to.user,

CHAN OF BOOL stopper)

This procedure buffers data between the user and the host or any other pair of processes using
SP protocol. It can be used by processes on a network to pass data to the host across intervening
processes. It is terminated by sending a FALSE value on the channel stopper.

so.mu1tip1exor
PROC so.mu1tip1exor (CRAN OF SP fs, ts,

[]CHAN OF SP from. user, to.user,
CHAN OF BOOL stopper)

This procedure multiplexes any number of pairs of SP protocol channels onto a single pair of SP
protocol channels, which may go to the file server or another SP protocol multiplexor (or buffer). It
is terminated by sending a FALSE value on the channel stopper.

so.over1apped.buffer spinterf
PROC so.over1apped.buffer (CHAN OF SP fs, ts, from. user, to. user,

CHAN OF BOOL stopper)

Similar to so.buffer, but contains built-in knowledge of host file server commands and allows
many host communications to occur simultaneously through a train of processes. This can improve
efficiency if the communications pass through many processes before reaching the server. It is
terminated by a FALSE value on the channel stopper.

14.10 Buffers, multiplexors and protocol converters 269

spinterf

so.over1apped.mu1tip1exor spinterf
PROC so.over1apped.mu1tip1exor (CHAN OF SP fs, ts,

[]CHAN OF SP from.user, to.user,
CHAN OF BOOL stopper, []INT queue)

Similar to so .mu1tip1exor, but can pipeline server requests. The number of requests that can
be pipelined is determined by the size of queue, which must provide one word for each request that
can be pipelined. Pipelining improves efficiency if the server requests have to pass through many
processes on the way to and from the server. It is terminated by a FALSE value on the channel
stopper.

so.keystream.from.kbd
PROC so.keystream.from.kbd (CBAN OF SP fs, ts,

CHAN OF KS keys.out,
CHAN OF BOOL stopper,
VAL INT ticks.per.p011)

Reads characters from the keyboard using so. p011key and outputs them one at a time as integers
on the channel keys. out. It is terminated by sending FALSE on the boolean channel stopper.
The procedure polls the keyboard at an interval determined by the value of ticks.per. p011, in
transputer clock cycles. ticks. per. p011 must not be zero.

After FALSE is sent on the channel stopper the procedure sends the negative value
ft . terminated on keys. out to mark the end of the file.

so.keystream. from. fi1e spinterf
PROC so.keystream.from.fi1e (CHAN OF SP fs, ts,

CHAN OF KS keys.out,
VAL[]BYTE fi1ename, BYTE resu1t)

As so. keystream. from. kbd, but reads characters from the specified file. Terminates auto
matically when it has reached the end of the file and all the characters have been read from the
keys. out channel. The negative value ft . terminated is sent on the channel keys. out to
mark the end of the file. The result value returned will be one of those returned by so. gets.

so.keystream.from.stdin spinterf
PROC so.keystream.from.stdin (CBAN OF SP fs, ts,

CHAN OF KS keys.out, BYTE resu1t)

As so. keystream . from. kbd, but reads from the standard input stream. The standard input
stream is normally assigned to the keyboard, but can be redirected by the host operating system.

so. scrstream.to. fi1e spinterf
PROC so.scrstream.to.fi1e (CHAN OF SP fs, ts, CHAN OF SS scrn,

VAL[]BYTE fi1ename, BYTE resu1t)

Creates a new file with the specified name and writes the data sent on channel sern to it. The scrn
channel uses the screen stream protocol which is used by all the stream output library routines.
It terminates on receipt of the stream terminator from ss. write. endstream, or on an error
condition. The error code returned by resul.t can be any result returned by so. puts, which is
called by this procedure.

If used in conjunction with ss. scrstream. fan. out it may be used to file a copy of everything
sent to the screen.

270 14 Libraries

so. scrstream. to. stdout spinterf
PROC so.scrstream.to.stdout (CHAN OF SP fs, ts,

CHAN OF SS scrn, BYTE resu1t)

Performs the same operation as so. scrstream. to. fi1e, but writes to the standard output
stream. The standard output stream goes to the screen, but can be redirected to a file by the host
operating system.

ss.scrstream.to.ANSI.bytes
PROC ss.scrstream.to.ANSI.bytes

scrstream.to.ANSI
PROC scrstream.to.ANSI (CBAN OF

so.scrstream.to.ANSI
PROC so.scrstream.to.ANSI (CHAN

ssinterf
(CBAN OF SS scrn, CBAN OF BYTE anai)

interf
ANY scrn, CHAN OF BYTE ansi)

spinterf
OF SP fs, ts, CHAN OF SS scrn)

Converts screen stream protocol into a stream of BYTEs according to the requirements of ANSI
terminal screen protocol. Not all of the screen stream commands are supported, as some are
not straightforward to implement. Refer to the source of the procedure to determine which
commands are supported. The procedure terminates on receipt of the stream terminator from
ss. write. endstream.

The spin.terf version of this procedure sends the bytes to the standard output host stream.
The other versions send the BYTE on the channel ansi.

ssinterf
OF SS scrn,CRAN OF BYTE tvi)

interf
CHAN OF BYTE tvi)

spinterf
ts, CHAN OF SS scrn)

ss.scrstream.to.TVI920.bytes
PROC ss.scrstream.to.TVI920.bytes(CHAN

scrstream~.to.TVI920

PROC scrstream.to.TVI920 (CHAN OF ANY scrn,
so.scrstream.to.TVI920

PROC so.scrstream.to.TVI920 (CHAN OF SP fs,

Converts screen stream protocol into a stream of BYTEs according to the requirements of TVI920
(and compatible) terminals. Not all of the screen stream commands are supported, as some
are not straightforward to implement. Refer to the source of the procedure to determine which
commands are supported. The procedure terminates on receipt of the stream terminator from
ss. write. endstream.

The spinterf version of this procedure sends the bytes to the standard output host stream.
The other versions send the BYTE on the channel tvi.

ss . scrstream. to. array ssinterf
PROC ss.scrstream.to.array (CBAN OF SS scrn, []BYTE buffer)

scrstream.to.array interf
PROC scrstream.to.array (CHAN OF ANY scrn, []BYTE buffer)

A screen stream whose total size does not exceed the capacity of buffer may be buffered by this
procedure, for subsequent onward transmission using scrstream. from. array.

14.10 Buffers, multiplexors and protocol converters 271

ss.scrstream.from.array ssinterf
PROC ss.scrstream.from.array (CHAN OF SS scrn, VAL[] BYTE buffer)

scrstream.from.array interf
PROC scrstream. from. array (VAL [] BYTE buffer, CHAN OF ANY scrn)

Regenerates a screen stream buffered in buffer by a previous call of scrstream. to . array.

ss.scrstream.to.fo1d
PROC ss.scrstream.to.fo1d (CHAN OF SS scrn,

CHAN OF ANY from.uf, to.uf
VAL[]BYTE fo1d.tit1e,
INT fo1d.number, INT resu1t)

ssinterf

interfscrstream.to.fi1e
PROC scrstream.to.fi1e (CHAN OF ANY scrn, from.uf, to.uf

VAL[]BYTE fo1d.tit1e,
INT fo1d.number, INT resu1t)

This procedure may be used to file a text stream, generated in screen stream protocol, in a new filed
fold. If used in conjunction with scrstream. fan. out it may be used to file a copy of everything
a program sends to the screen.

A new filed fold is created at the end of the current bundle, and its position is returned as
fo1d. number. The filed fold has attributes ft. opstext and fc. comment. text. The string
fo1d. tit1e is written as its fold comment, fo1d. tit1e is truncated at the first space or ' .'
to generate a file name. If it is empty a name will be created by the TDS.

Text to be filed is received on channel scrn in screen stream protocol as generated by simple user
output procedures. The procedure terminates on receipt of the code generated by
write. endstream. If any filing system error condition occurs the input screen stream is con
sumed as usual but an error is signalled in resu1t when the procedure terminates.

scrstream.mu1tip1exor interf
PROC scrstream.mu1tip1exor ([]CHAN OF ANY screen.in, screen. out,

CHAN OF INT stopper)

Multiplexes a collection of channels using screen protocol into a single such channel. The input
channels must be an array screen. in, and the output channel is screen. out. Each change
of input channel directs output to a new line on the screen, tagged by the channel index. Any
integer input on stopper terminates the multiplexor. The endstream command generated by
write. endstream is ignored.

ss.scrstream.fan.out ssinterf
PROC ss. scrstream. fan. out (CHAN OF SS scrn,screen.outl,screen.out2)

scrstream.fan.out interf
PROC scrstream.fan.out (CHAN OF ANY scrn, sereen.outl, screen.out2)

Sends copies of everything received on its input channel sern to both of the output channels. Uses
screen protocol. Terminated by calling write. endstream on the input channel.

272 14 Libraries

interf

ssinterf

interf

ssinterf

ss.serstream.sink
PROC ss.serstream.sink (CBAN OF SS sern)

serstream.sink
PROC 8erstream.sink (CBAN OF ANY 8ern)

Reads characters preceded by tt. out .byte and ignores them; also ignores all other tt. com
mands except tt. endstream (generated by write. endstream) which terminates the process.

ss.serstream.eopy
PROC ss.serstream.eopy (CBAN OF SS sern, sern.out)

serstream.eopy
PROC serstream.eopy (CBAN OF ANY sern, sern.out)

Sends a screen stream received on sern out again on sern. out. Terminates on receipt of
tt. endstream which is not sent on. This procedure is sometimes needed as a buffer (e.g.
between a link and a multiplexor whose inputs are specified as an array).

ss.keystream.from.fo1d ssinterf
PROC ss.keystream.from.fo1d (CHAN OF ANY from.uf, to.uf,

CHAN OF KS kbd, VAL INT fo1d. number,
INT resu1t)

keystream.from.fi1e interf
PROC keystream.from.fi1e (CHAN OF ANY from.uf, to.uf,

CHAN OF INT kbd, VAL INT fo1d.number,
INT resu1t)

This procedure may be used to generate a stream of characters from a fold. If the fold is not filed
then it will be filed for the duration of this procedure and then unfiled again.

The file in member fo1d. number of the current fold bundle (0 = whole bundle, 1 = first fold inside
it ...) is opened. Its contents are output on channel kbd as if from a keyboard, with *e as line
terminator between lines.

The file is closed on any error condition or when its last character has been read, followed by
outputting ft. terminated. The procedure then terminates with an error number in resu1t.

ks.keystream.sink
PROC ks.keystream.sink (CHAN OF KS keys)

keystream.sink
PROC keystream.sink (CHAN OF INT keys)

Reads integers until the value ft . terminated, then terminates.

ssinterf

interf

14.11 Access to host filing system 273

a~sp

ks.keystream.to.screen ssinter~

PROC ks.keystream.to.screen (CHAR OF KS keyboard,CBAN OF SS screen)
keystream.to.screen inter~

PROC keystream.to.screen (CHAN OF INT keyboard, CBAN OF ANY screen)

This procedure converts from key stream protocol to screen stream protocol. On its input channel
keyboard it receives a sequence of integers which may be ASCII values, or coded function keys.
ASCII values are passed through unchanged, except for' *c' which is followed by , *n' . Those
function keys which have a corresponding screen function (simple cursor moves, etc) are converted
into this screen function, others ring the bell.

The procedure may also be used in programs which were originally written for earlier implementations
of occam which required text for the screen to be output as a sequence of integer values. All
negative values received, other than ~t. terminated, are ignored.

The procedure terminates on receipt of ~t . terminated.

a~.to.sp

PROC a~.to.sp (CHAN OF SP ~s, ts,
CHAN OF ANY ~rom.user, to.user,
VAL BOOL passthrough.Terminate.Cmd)

Converts channels from the AFSERVER protocol to the SP protocol. ~s and ts are the SP channels
from and to the host file server, and ~rom. user and to. user are the channels between the
application program and the AFSERVER. The boolean passthrough. Terminate. Cmd controls
the action of the AFSERVER terminate command; if set to TRUE it will terminate the server, if set
to FALSE it will not.

14.11 Access to host filing system

Filing systems on the host computer are made accessible by way of the iserver and its associated SP
protocol channels. The protocols used on these channels are described in detail in section 16.5. The
library procedures which support this interface include low level procedures which exactly match each of the
alternatives of the protocol, and higher level procedures which call the lower level ones. The user need not
be concerned with which of the procedures described here are the low level ones.

The iserver can support an arbitrary number of simultaneously open files. Each iserver transaction
consists of a pair of communications, one from the program to the server, followed by one from the server to
the program. The server responds to each transaction in turn and does not support any kind of parallelism
on the host. The same applies to the use of the SP protocol channel pair in an EXE.

If an occam application requires access to the server from more than one concurrent process then the user
must provide any necessary multiplexing of access using one of the procedures described above. Use of
library procedures for server transactions will usually ensure adequate sequencing of communications.

The filing system interface supports the opening of files in a variety of modes, text/binary, input/output/update,
etc. It is the responsibility of the user to ensure that files are properly used. In some implementations the C
library used in iserver may return error codes in cases of misuse but this is not in general guaranteed.
When a file is opened a value called a stream identifier is returned. As this identifier must be quoted for all
subsequent operations on that file it is possible for many files to be simultaneously open.

The procedures described below include the so. write. procedures which allow output to be sent to the
standard output stream (terminal screen). These are closely related to the corresponding so. ~write.
procedures and are described here because of the similarity.

Output to a printer may be coded by opening a file with the appropriate reserved DOS name (e.g. PRN). The
contents of such a file should be written using the text line oriented procedure so. puts, allowing the server
to insert the appropriate line separators.

274 14 Libraries

The library procedures allow arbitrarily large arrays to be passed for output or for the receipt of input. Such
operations are broken down into an appropriate sequence of smaller transfers in the code of the library
procedures. The relatively small size of these lower level blocks enables general purpose multiplexors and
buffers to be written in occam which requires array sizes to be known at compile time.

so. open sp1ib
PROC so.open (CBAN OF SP fs, ts, VAL[]BYTE name,

VAL BYTE type, mode, INT32 streamid, BYTE resu1t)

Opens the file given by name and returns a stream identifier streami.d for all future operations on
the file until it is closed. File type is specified by type and the mode of opening by mode.

type can take the following values:

spt.binary
spt.text

File contains raw bytes only.
File contains text records separated by newline sequences.

mode can take the following values:

spm.input
spm.output
spm.append
spm.existinq.update

spm.new.update
spm.append.update

Open existing file for reading.

Open new file, or truncate an existing one, for writing.
Open a new file, or append to an existing one, for writing.
Open an existing file for update (reading and writing), starting
at beginning of the file.

Open new file, or truncate existing one, for update.
Open new file, or append to an existing one, for update.

resu1t can take the following values:

spr.ok
spr.operation.fai1ed
spr.bad.name
spr.bad.type
spr.bad.mode
spr.bad.packet.size

The open was successful.
The open failed.

Invalid file name.
Invalid file type.

Invalid open mode.

File name too large.

so.c1ose sp1ib
PROC so.c1ose (CRAN OF SP fa, ts, VAL INT32 streamid, BYTE resu1t)

Closes the stream identified by streami.d.

The result returned can take any of the following values:

spr.ok
spr.operation.fai1ed

The close was successful.

The close failed.

sp1ibso.read
PROC so. read (CBAN OF SP fs, ts, VAL INT32 streamid,

INT bytes.read, []BYTE data)

Reads a block of bytes from the specified stream up to a maximum given by the size of the array
data. If bytes. read returned is not the same as the size of data then the end of the file has
been reached or an error has occurred.

14.11 Access to host filing system 275

sp1ib

sp1ib

sp1ib

sp1ib

so.write
PROC so.write (CBAN OF SP fs, ts, VAL INT32 streamid,

VAL[] BYTE data, INT 1ength)

Writes a block of data to the specified stream. If 1ength is less than the size of data then an
error has occurred.

so.gets
PROC so.gets (CHAN OF SP fs, ts, VAL INT32 streamid,

INT bytes.read, []BYTE data, BYTE resu1t)

Reads a line from the specified input stream. Characters are read until a newline sequence is found,
the end of the file is reached, or all characters in data have been read. The newline sequence is
not included in the returned array. If the read fails then either the end of file has been reached or
an error has occurred.

The result returned can take any of the following values:

spr . ok The read was successfu I.
spr. operation. fai1ed The read failed.
spr.bad.packet. size data is too large (> sp.max. readbuffer. size).
spr .buffer. overf1ow The line was larger than the buffer data. bytes. read

contains the size of the buffer.

so.puts
PROC so.puts (CHAN OF SP fs, ts, VAL INT32 streamid,

VAL[]BYTE data, BYTE resu1t)

Writes a line to the specified output stream. A newline sequence is added to the end of the line. The
size of data must be less than or equal to the hostio constant sp. max. writebuffer . size.

The result returned can take any of the following values:

spr. ok The write was successful.
spr. operation. fai1ed The write failed.
spr.bad.packet. size SIZE data is too large (> sp.max. writebuffer. size).

so.f1ush
PROC so.f1ush (CBAN OF SP fs, ts,

VAL INT32 streamid, BYTE resu1t)

Flushes the specified output stream. All internally buffered data is written to the stream. Write and
put operations that are directed to standard output are flushed automatically.

The result returned can take any of the following values:

spr. ok The flush was successful.
spr. operation. fai1ed The flush failed.

so. seek sp1ib
PROC so. seek (CBAN OF SP fs, ts,

VAL INT32 streamid, offset, origin, BYTE resu1t)

Sets the file position for the specified stream. A subsequent read or write will access data at the
new position.

276 14 Libraries

For a binary file the new position will be offset bytes from the position defined by oriqin. For
a text file offset must be zero or a value returned by so. tel.l., in which case oriqin must be
spo.start.

oriqin may take the following values:

spo.start
spo.current
spo.end

The start of the file.
The current position in the file.
The end of the file.

The result returned can take any of the following values:

spr.ok
spr.operation.fail.ed
spr.bad.oriqin

The operation was successful.
The seek failed.
Invalid origin.

so.tel.l.
PROC so.tel.l. (CBAN OF SP fs, ts, VAL INT32 streamid,

INT32 position, BYTE resul.t)

Returns the current file position for the specified stream.

The result returned can take any of the following values:

spr. ok The operation was successful.
spr. operation. fail.ed The tell failed.

so.eof
PROC so.eof (CHAN OF SP fs, ts,

VAL INT32 streamid, BYTE resul.t)

Tests whether the specified stream has reached the end of a file.

The result returned can take any of the following values:

spl.ib

spl.ib

spr.ok
spr.operation.fail.ed

so.ferror

End of file has been reached.

The end of file has not been reached.

spl.ib

spr.ok
spr.operation.fail.ed
spr.buffer.overfl.ow

PROC so.ferror (CHAN OF SP fa, ts,
VAL INT32 streamid, INT32 error.no; INT l.enqth,
[]BYTE messaqe, BYTE resul.t)

Indicates whether an error has occurred on the specified stream. The integer error. no is a host
defined error number. The message will have l.enqth zero if no message can be provided.

The result returned can take any of the following values:

An error has occurred.
No error has occurred.
An error has occurred but the message is too
large for the buffer.

If the buffer overflows l.enqth is set to the buffer size.

14.11 Access to host filing system

so. remove
PROC so. remove (CBAN OF SP fs, ts,

VAL[]BYTE name, BYTE resu1t)

Deletes the specified file.

The result returned can take any of the following values:

277

sp1ib

spr.ok
spr.operation.fai1ed
spr.bad.name
spr.bad.packet.size

The delete was successful.

The delete failed.

Null name supplied.
SIZE name is too large
(> sp.max.removename.size).

so. rename
PROC so. rename (CBAN OF SP fs, ts,

VAL[]BYTE 01dname, newname, BYTE resu1t)

Renames the specified file.

The result returned can take any of the following values:

sp1ib

spr.ok
spr.operation.fai1ed
spr.bad.name
spr.bad.packet.size

The operation was successful.
The rename failed.

Null name supplied.

File names are too large
(SIZE namel + SIZE name2
> sp. max. renamename . size).

so1ib

so1ib

so.open.temp
PROC so. open. temp (CBAN OF SP fs, ts, VAL BYTE type,

[so.temp.fi1ename.1ength]BYTE fi1ename,
INT32 streamid, BYTE resu1t

Opens a temporary file in spm. update mode. Temporary files are created with names of the form
tempnn. The nn suffix on the name tempnn is incremented up to a maximum of 9999 until an
unused number is found. If the number exceeds 2 digits the last character of temp is overwritten.
For example: if the number exceeds 99 the p is overwritten , as in tem999; if the number exceeds
999, the m is overwriUen, as in te9999. File type can be spt .binary or spt. text, as with
so. open. The name of the file actually opened is returned in fi1ename.

The result returned can take any of the following values:

spr . ok The open was successful.

so.test.exists
PROC so.test.exists (CBAN OF SP fs, ts,

VAL[]BYTE fi1ename, BOOL exists)

Tests if the specified file exists. The value of exists is TRUE if the file exists, otherwise it is
FALSE.

278 14 Libraries

so.popen.read
PROC so.popen.read (CBAN OF SP fs, ts,

VAL[]BYTE fi1ename, path.variab1e.name,
VAL BYTE open. type, INT fu11.1en,
[]BYTE fu11.name, INT32 stream. id,
BYTE resu1t

s01ib

As so. open but if the file is not found in the current directory, and the filename does not include
a directory name, uses the directory path string associated with the environment variable given as
a string in path. variab1e . name and performs a search in each directory in the path in turn.
Directory names in this path string must include a terminating directory separator and be separated
by semicolons.

Example for a DOS system:

\tds3\;\tds3\system\

File type can be spt. binary or spt . text, as with so. open. The mode of opening is always
spm.input.

The name of the file opened is returned in fu11. name, and the length of the file name is returned
in fu11.1en. If no file is opened fu11 .1en is set to zero.

The result returned can take any of the following values:

spr.ok
spr.operation.fai1ed
spr.bad.name
spr.bad.type
spr.bad.packet.size

The open was successfu I.
The open failed.

Null name supplied.

Invalid file type specified.

File name too large.

so.write.strinq
PROC so.write.strinq (CBAN OF SP fs, ts, VAL[]BYTE strinq)

Writes the string strinq to the screen. The size of strinq must not exceed
sp. max. writebuffer. size (see appendix 0.3).

s01ib

so.fwrite.strinq s01ib
PROC so.fwrit~.strinq (CHAN OF SP fs, ts, VAL INT32 streamid

VAL[]BYTE strinq, BYTE resu1t)

Writes a string to the specified stream.

so.write.char
PROC so.write.char (CHAN OF SP fs, ts, VAL BYTE char)

Writes the single byte char to the screen.

so.fwrite.char
PROC so.fwrite.char (CHAN OF SP fa, ts, VAL INT32 streamid,

VAL BYTE char, BYTE resu1t)

Writes a single character to the specified stream.

s01ib

s01ib

14.11 Access to host filing system 279

so.write.strinq.n1 s011b
PROC so.write.strinq.n1 (CBAN OF SP fs, ts, VAL[]BYTE string)

As so. write. string, but appends a newline sequence to the end of the string. The size of
string must not exceed sp. max. writebuffer. size-2 (see appendix D.3).

so.fwrite.string.n1 s011b
PROC so.fwrite.string.n1 (CHAN OF SP fs, ts, VAL INT32 streamid,

VAL[]BYTE string, BYTE resu1t)

As so. fwrite . string, but appends a newline sequence to the end of the string.

so.write.n1
PROC so.write.n1 (CHAN OF SP fs, ts)

Writes a newline sequence to the screen.

so.fwrite.n1
PROC so.fwrite.n1 (CHAN OF SP fa, ta,

VAL INT32 streamid, BYTE resu1t)

Writes a newline sequence to the specified stream.

s011b

s011b

s01ib

s011b

s011b

so.write.int
PROC so.write.int (CHAN OF SP fa, ta, VAL INT n, width)

Writes the value n (of type INT) to the screen as decimal ASCII digits, padded out with leading
spaces and an optional sign to the specified width. If the width is too small for the number it is
widened as necessary; a zero value for width specifies minimum width.

so.fwrite.int
PROC so.fwrite.int (CHAN OF SP fs, ts, VAL INT32 streamid,

VAL INT n, width, BYTE reau1t)

Writes the value n (of type INT) to the specified stream as decimal ASCII digits, padded out with
leading spaces and an optional sign to the specified width. If the width is too small for the
number it is widened as necessary; a zero value for width will give minimum width.

so.write.hex.int
PROC so.write.hex.int (CHAN OF SP fs, ts, VAL INT n, width)

Writes the value n (of type INT) to the screen as hexadecimal ASCII digits, preceded by the '#'
character. The number of characters to be printed is specified by width. If width is larger than
the size of the number then the number is padded with leading 'O's or 'F's as appropriate. If width
is smaller than the size of the number, the number is truncated to width digits.

so.fwrite.hex.int s011b
PROC so.fwrite.hex.int (CHAN OF SP fa, ts, VAL INT32 streamid,

VAL INT n, width, BYTE resu1t)

Writes the value n (of type INT) to the specified stream as hexadecimal ASCII digits preceded by
the '#' character. The number of characters to be printed is specified by width. If width is larger
than the size of the number then the number is padded with leading 'O's or 'F's as appropriate. If
width is smaller than the size of the number, then the number is truncated to width digits.

280 14 Libraries

so.write.int64 s01ib
PROC so.write.int64 (CHAN OF SP fs, ts, VAL lNT64 n, VAL lNT width)

As so. write. int but for 64-bit integers. The fie1d parameter behaves as in so. write. into

so.fwrite.int64 s01ib
PROC so.fwrite.int64 (CHAN OF SP fa, ta, VAL lNT32 streamid,

VAL lNT64 n, VAL lNT width, BYTE resu1t)

As so. fwrite . int but for 64-bit integers.
The fie1d parameter behaves as in so. fwrite. into

so.write.hex.int64
PROC so.write.hex.int64 (CHAN OF SP fs, ts, VAL lNT64 n,

VAL lNT width)

As so. write. hex. int but for 64-bit integers.
The width parameter behaves as in so. write. hex. into

s01ib

s01ib

ao.fwrite.hex.int64 s01ib
PROC so.fwrite.hex.int64 (CHAN OF SP fa, ta, VAL lNT32 streamid,

VAL lNT64 n, VAL lNT width, BYTE resu1t)

As so. fwrite . hex. int but for 64-bit integers.
The width parameter behaves as in so. fwrite . hex. into

so.write.rea132
PROC so.write.rea132 (CHAN OF SP fs, ts, VAL REAL32 r,

VAL lNT lp, Dp)

Writes the value r (of type REAL32) to the screen as decimal ASCII digits. The number is padded
out with leading spaces and an optional sign bit to the number of digits specified by m before and n
after the decimal point. The total width of the number is m + n + 2, except in the cases described
under REAL32TOSTRlNG (see the 'Qccam 2 reference manual').

so.fwrite.rea132 s01ib
PROC so.fwrite.rea132 (CHAN OF SP fa, ts, VAL lNT32 streamid,

VAL rea132 r, VAL lNT lp, Dp, BYTE resu1t)

Writes the value r (of type REAL32) to the specified stream as decimal ASCII digits. The number
is padded out with leading spaces and an optional sign bit to the number of digits specified by m
before and n after the decimal point. The total width of the number is m + n + 2, except in the cases
described under REAL32TOSTRlNG (see the 'QCCam 2 reference manual').

so.write.rea164
PROC so.write.rea164 (CHAN OF SP fa, ts, VAL REAL64 r,

VAL lNT lp, Dp)

As so. write. rea132 but for 64-bit real numbers. Allows 3 digits for the exponent.

so1ib

14.12 Access to the TDS's folded file store 281

so. fwrite. rea164 s011b
PROC so.fwrite.rea164 (CHAN OF SP fs, ts, VAL INT32 streamid,

VAL rea164 r, VAL INT Ip, Dp, BYTE resu1t)

As so. fwrite . rea132 but for 64-bit real numbers. Allows 3 digits for the exponent.

14.12 Access to the TDS's folded file store

Output to and input from the folded file store

The folded stream access procedures are in the library userio, with subsidiary procedures in the library
ufi1er.

This group of procedures enable the user to write and read hierarchically structured data mapped on to the
folding system of the TDS. They are therefore only suitable for inclusion in executable procedures (EXES) or
in PROGRAMs which will run in communication with an EXE at run time. The process within the TDS which
handles these communications is called the user filer.

The procedures provided do not exercise all the facilities available across the folded stream interface, but
support a subset. Programmers may wish to extend the set of procedures provided (in a similar style if this is
appropriate) to give the facilities they require. The full facilities of the interface are described in section 16.7.

All these procedures have a pair of channels as their first two parameters, the first of these is a channel
from the environment into the current process and the second is a channel from the current process to the
environment.

Communications across these channels are of three kinds (from the point of view of a user program commu
nicating with the TDS):

• user filer control mode,

• file stream input modes (folded and data),

• file stream output modes (folded and data).

In anyone sequence of communications using a pair of these channels the channel pair is first used in user
filer control mode sending commands or queries on the output channel and receiving data or responses on
the input channel. Actual data transfers are then carried out either in a file stream input mode or in a file
stream output mode. These modes are defined to be data stream modes or folded stream modes according
to the particular open command used to switch from command mode.

Data stream modes are for reading operations where any internal fold structure is to be ignored or for writing
operations where no internal fold structure is to be created in the new fold. They are used in the interface pro
cedures ks. keystream. from. f01d, keystream. from. fi1e, ss. scrstream. to. f01d and
scrstream. to. fi1e described in section 14.10.

Folded stream modes give the user the potential to navigate the fold structure of an existing fold and to
create a nested fold structure in a new fold. The procedures described here support a significant subset of
the possible operations in these modes.

On exhaustion of a stream the channel pair reverts to user filer control mode.

The procedures are presented in two groups, those for writing new folded streams and those for reading
existing folded streams. They all make use of lower level procedures from the library ufi1er described at
the end of this section.

The descriptions of the procedures assume familiarity with the structure of folded data as described in
appendix G of this manual.

282

The following conventions apply to the parameters of the procedures:

14 Libraries

The first two parameters are channels; in a call where these procedures are being used to com
municate directly with the TOS, the first will be an element from the array from. user. filer
and the second must be the corresponding element (with the same subscript) from the array
to. user. filer.

2 A parameter called fold. number is an integer defining the position of the root fold being used in
the operation with respect to the closed fold bundle on which the cursor is positioned when the EXE
program is run. The following example shows how folds are numbered:

{{{ fold.number = 0 - cursor here
fold. number = 1

any text or blank line not counted
fold. number = 2

fold. number 3
and so on
}} }

Fold number 0 cannot be accessed concurrently with any other fold.

3 [] BYTE parameters are used to pass text as lines of data or as fold line comment and/or file
names. A terminating' *c' character is always permitted in strings passed to the environment.
This is removed when necessary by the procedure.

4 A [] BYTE parameter used to return a string read by the procedure is always preceded by an INT
parameter whose computed value defines the length of the string read. The array must be big
enough for the expected data (256 for text, 512 for arbitrary data).

5 A parameter called attributes is used to communicate an array of three integers defining what
kind of fold is being read or written. The values written as attributes must be chosen from those
defined in appendix 0.6

6 A parameter called errornum may at any time return an error code (see appendix E) to the caller.
If any of the folded stream output procedures returns errornum <> fi. ok then the stream
must be immediately closed or the program will deadlock trying to read the next command from the
receiver.

Write folded stream

This group of procedures gives sequential write access to a folded stream for output. They are designed
for use with a receiver process which obeys the folded stream protocol used by the user filer. This section
should be read in conjunction with section 16.7.6 describing the user filer communications.

As supplied the procedures are restricted to creating a new fold at the end of an existing bundle and writing
sequentially into this new fold. The sequential stream may include nested folds and filed folds created by
calls of procedures which create the creases around the nested folds.

A procedure similar to create. new. fold may be written for opening an existing empty filed fold for writing
in folded stream mode.

Similar procedures could be written for writing folds in data stream mode. As this mode is bet
ter supported by using screen protocol and the interface procedures so. scrstream . to . fold and
scrstream. to . file, these variants are left as exercises for the reader.

A user filer channel pair may be used to access one or more file streams in sequence. Procedures applicable
in file stream output modes must be called in sequence according to the kinds of items being output. These
calls must be bracketted between calls of create. new. fold and finish. folded. stream which
change the channel pair from user filer control mode to folded file stream output mode and vice versa,
respectively.

14.12 Access to the TDS's folded file store 283

userio

userio

The procedures which create new folds will return an error fi . not. on. a. valid. fold if called on a fold
bundle whose type attribute is ft. foldset. If a program really wishes to write into such a bundle this may
be done by converting it into a ft . voidset before attempting to write to it. This may be done by:

send. command (from.uf, to.uf,
uf.unmake. fold. set, 0, result)

create.new.fold userio
PROC create.new.fold (CHAN OF ANY from.ws, to.ws, INT fold.number,

VAL []BYTE comment, VAL [] INTattributes,
VAL []BYTE fileid, INT errornum)

This procedure may only be called when the user filer channel pair from. ws and to. W8 are in
user filer control mode. Creates a new fold at the end of the bundle at position fold. number.
(Counting from the first embedded fold as 1). Writes the comment and attributes provided. Makes
the fold filed and opens a stream for writing. If successful the channel pair are then in file stream
output mode. Any error is signalled in errornum.

write. record. item
PROC write. record. item (CHAN OF ANY from.ws, to.ws,

VAL []BYTE record, INT errornum)

A record item is a line of text to be written to the output stream.

This procedure may only be called when the user filer channel pair from. ws and to. ws are in
file stream output mode. Reads a command from the receiver and writes the record, if possible. If
the record includes a trailing '*c', this is removed.

write.number.item
PROC write. number. item (CHAN OF ANY from.ws, to.ws,

VAL INT number, INT errornum)

This procedure may only be called when the user filer channel pair from. ws and to. ws are in
folded file stream output mode. Reads command and writes the (non-negative) number, if possible.
See appendix G for the representation of numbers in folded files.

write.top.crease userio
PROC write.top.crease (CHAN OF ANY from.ws, to.ws,

VAL []BYTE comment, VAL []INT attributes,
VAL BYTE file. or. fold, VAL []BYTE fileid,
INT errornum)

For internal use by the following two procedures.

write. fold.top. crease userio
PROC write.fold.top.crease (CHAN OF ANY from.ws, to.ws,

VAL []BYTE comment,
VAL []INT attributes, INT errornum)

This procedure may only be called when the user filer channel pair from. ws and to. ws are in
folded file stream output mode (folded stream or data stream). Reads a command from the receiver
and writes an unfiled top crease if possible. The comment string may contain a trailing' *c' which
will be removed.

284 14 Libraries

write.~i1ed.top.crease userio
PROC write.fi1ed.top.crease (CHAR OF ANY from.vs, to.vs,

VAL [] BYTE comment,
VAL []INT attributes,
VAL []BYTE fi1eid, INT errornum)

This procedure may only be called when the user filer channel pair from. vs and to. vs are in
folded file stream output mode. Reads a command from the receiver and writes a filed top crease if
possible. The comment and fi1eid strings may contain a trailing , *c' which will be removed.

write.bottom.crease userio
PROC write.bottom.crease (CBAN OF ANY from.ws, to.ws, INT errornum)

This procedure may only be called when the user filer channel pair from. ws and to. vs are in
folded file stream output mode. Reads a command from the receiver and writes a bottom crease if
possible.

Note that it is not necessary to distinguish between a filed and an unfiled fold as the receiver keeps
track of this.

~inish.new.fo1d userio
PROC finish.nev.fo1d (CHAN OF ANY from.vs, to.vs,

VAL INT fo1d.number, VAL BOOL must.unfi1e,
INT errornum)

This procedure may only be called when the user filer channel pair from. vs and to. vs are in
file stream output mode (folded or data stream). This procedure closes the newly written stream,
unfiling it if must. unfi1e is TRUE. The channel pair will then be in user filer control mode.

Must be entered with errornum containing the result from the most recent write command, so
correct action can be taken if the file stream has been prematurely closed.

Read folded stream

This group of procedures gives read access to a folded stream. They can only be used in conjunction with
a source which obeys the folded stream protocol used by the user filer. They are thus principally applicable
in programs which will run as executable procedures (EXES) in the TDS, or which communicate with such a
system at run time across INMOS links.

The procedures have been designed to give the programmer a view of a folded data stream corresponding
to the displayed form of a fold structure presented by the editor.

A folded data stream may be opened, its contents may be read sequentially (with the option to skip folds
of certain kinds), and it may be closed. It may be a complete fold pointed at by the editor cursor when the
program is run, or it may be a fold immediately contained within such a fold.

In the simplest style of use, one procedure call corresponds to each line to be read into the program. These
lines are text lines or crease lines and there is a procedure for each type of line. Each procedure reads the
current line, and also determines the nature of the subsequent line so that the appropriate call may be made
to obtain it. The nature of the next line is returned by a BYTE parameter next. item which takes one of a
set of values conventionally associated with the names:

fsd.record
fsd.fo1d
fsd.fi1ed
fsd.endfo1d
fsd.endfi1ed
fsd.endstream

normal text line
top crease of an unfiled fold

top crease of a filed fold
bottom crease of an unfiled fold
bottom crease of a filed fold

end of folded stream - must now be closed

14.12 Access to the TDS's folded file store 285

userio

Two additional values are also in general possible. fsd. number and fsd. error.

All these values are supplied as a set of constant declarations in the library fil.erhdr or userval.s.

A user filer channel pair may be used to access one or more file streams in sequence. Procedures applicable
in file stream input mode must be called in sequence according to the value of next. item. These calls must
be bracketted between calls of open. fol.ded. stream and cl.ose . fol.ded. stream which change the
channel pair from user filer control mode to file stream input mode and vice versa. respectively.

The first group of procedures supports reading the heading and attributes of a fold. opening a stream. and
exhaustive sequential access to the stream. Such exhaustive access involves entering any embedded folds
or filed folds and reading all of their contents also.

If a decision not to proceed. or not to enter a fold. is to be taken after reading part of the stream. then the
second group of input. procedures should be used rather than the read. procedures.

read.fol.d.headinq userio
PROC read.fol.d.headinq (CBAN OF ANY from.rs, to.rs,

VAL INT fol.d.number, INT l.en.comment,
[]BYTE comment, []INT attr1butes,
INT errornum)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in user
filer control mode. Reads comment and attributes of the fold fol.d. number in the bundle pointed
to by the cursor. The number 0 refers to the whole bundle. 1 to the first fold embedded within it.
and so on. The attr1butes are an array of 3 integers defining the fold. type. fold.contents and
relative fold.indentof this fold. Values of these attributes and their meanings are defined in appendix
F. The effects of other attribute values are undefined. Any error is signalled in errornum. This
wi!1 be zero (fi . ok) for success or a value from the list in appendix D.

read.fil.e.name
PROC read.fil.e.name (CBAN OF ANY from.rs, to.rs,

VAL INT fol.d.number, INT l.en.fil.e.id,
[]BYTE fil.e.id, INT errornum)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
user filer control mode. According to which version of the TDS is in use. files may have names (as
in a conventional operating system directory structure) or not. This procedure reads the file name
of the indicated fold into [fil.e. id FROM 0 FOR l.en. fil.e. id]. If the development system
does not have a named file store l.en. fil.e. id will be zero. Any error is signalled in errornum.

open.fol.ded.stream userio
PROC open.fol.ded.stream (CHAN OF ANY from.rs, to.rs,

VAL INT fol.d.number, BYTE first.item,
BOOL not.fil.ed, INT errornum)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
user filer control mode. The procedure opens a fold for folded reading, and if successful the channel
pair are then in folded file stream input mode.

File stream modes require the fold being accessed to be filed and so if the fold identified by
fol.d. number is found not to be filed the parameter not. fil.ed is set TRUE and it is filed
by the procedure. (Note that this attempt will fail if the fold is of a kind which cannot be filed).
errornum is returned as 0 (fi . ok) if it is already filed, -1206 (fi. not. fil.ed) if it was unfiled
(and has not been successfully filed by this procedure); other negative values indicate other error
conditions.

first. item is one of fsd. record, fsd. number, fsd. fol.d or fsd. fil.ed according to
the identity of the first item in the fold.

286 14 Libraries

This value is used to choose the appropriate read procedure to call the first item in the folded
stream. In a similar way each subsequent read operation also defines the type of the following item.
Any failure to read an item will result in the value fsd. error being returned instead of a valid
item tag. At the end of the stream the next item will have the tag fsd. endstream. No further
read operations are allowed after fsd. endstream is returned. After fsd. error the procedure
read. error. item should be called to obtain the error number.

A similar procedure open. data. stream exists in the library ufi1er to open a fold for data
stream reading. In this case there is only one kind of item - fsd. record. This mode of reading
is used in the interface procedure keystream. from. fi1e.

userio

userio

read. record. item userio
PROC read.record.item (CBAN OF ANY from.rs, to.rs, INT 1en,

[]BYTE record, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
a file stream input mode (folded stream or data stream). Must be entered with next. item =
fsd. record. Reads the record into [record FROM 0 FOR 1en] and indicates the type of
the next item.

The record will contain the text of a line from the folded file. In folded stream mode the text will
contain leading spaces only if the line is indented relative to the immediately enclosing fold. In data
stream mode indentation spaces are provided relative to the indentation of the root fold.

If a previous call of a stream input procedure has indicated that the next item is a top crease I the fold
may be skipped by explicitly changing the variable corresponding to next. item to fsd. record
before calling this procedure. The record returned will then be the fold comment and next. item
will correspond to the item after the fold.

read. number. item
PROC read.number.item (CHAN OF ANY from.rs, to.rs,

INT number, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
folded file stream input mode. Must be entered with next. item = fsd. number. This procedure
is provided for completeness only as number items are rare in ordinary fold structures in the TDS.

Reads the number and indicates type of the next item.

read.error.item
PROC read.error.item (CHAN OF ANY from.rs, to.rs,

INT status, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in file
stream input mode. Must be entered with next . item = fsd. error. This procedure is provided
for completeness only as error items will not occur unless stream input procedures have been called
in the wrong context.

Reads the error status and indicates type of the next item.

read.fo1d.top.crease userio
PROC read.fo1d.top.crease (CHAN OF ANY from.rs, to.rs,

INT 1en.comment, []BYTE comment,
[]INT attr1butes, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
folded file stream input mode. Must be entered with next. item = fsd. fo1d. Reads comment
and attributes from fold line and returns the type of the first item within the fold.

userio

userio

userio

14.12 Access to the TDS's folded file store 287

read. fi1ed.top. crease userio
PROC read.fi1ed.top.crease (CHAN OF ANY from.rs, to.rs,

INT 1en.comment, []BYTE comment,
[]INT attributes, INT 1en.fi1eid,
[]BYTE fileid, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
folded file stream input mode. Must be entered with next. item =fsd. filed. Reads comment
and attributes from fold line and returns the type of the first item within the fold. On a named
file store also reads the file name into [fileid FROM 0 FOR len. fileid] , otherwise sets
len . fileid to zero.

read.bottom.crease
PROC read.bottom.crease (CBAN OF ANY from.rs, to.rs,

[]INT attr1butes, BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
folded file stream input mode. Must be entered with next. item fsd. endfold or
fsd. endfiled. Reads attributes of the enclosing fold (the one whose end has been encountered)
and returns the type of the next item within the fold outside that one.

The following procedures may be used instead of or in addition to the above procedures in programs where
more control is required over the sequence of read operations on the file stream.
The procedures whose name begins input. start to do the same as the corresponding procedure with a
name beginning read. , but do not ask what kind of item the next item will be.
The user then has the option to exit the current fold, repeat the current fold as well as to skip the current
item, and (when the current item is a fold) to enter the item. This option is exercised by calling one of
the procedures exit. fold, repeat. fold, skip. item or enter. fold. These all have a BYTE
next. item parameter and one of these must be called in sequence before the next call of an input.
procedure. The input stream may be closed by calling close. folded. stream after any of the input.
procedures.

input. record. item
PROC input.record.item (CHAN OF ANY from.rs, INT len,

[]BYTE record, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair are in file stream input mode.
It inputs a record item but does not advance to the next item, which should be done by a later
call of skip. item. Must be entered with next. item = fsd. record. Reads the record into
[record FROM 0 FOR len].

This procedure does not prepare for the next input (it does not set next. item). It may therefore be
used instead of read. record. item if it is necessary to inspect the record to determine whether
any further lines in the current fold need to be read.

Note that this procedure has only one channel parameter from. rs.

input.number.item
PROC input.number.item (CHAN OF ANY from.rs,

INT number, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair are in folded file stream input
mode. It inputs the number but does not advance to the next item, which should be done be as a
later call of skip. item. Must be entered with next. item = fsd. number. This procedure is
provided for completeness only as number items are rare in ordinary fold structures in the TDS.

Note that this procedure has only one channel parameter from. rs.

288 14 Libraries

userio

userio

input.error.item
PROC input.error.item (CBAN OF ANY from.rs,

INT status, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in file
stream input mode. Must be entered with next. item = fsd. error. This procedure is provided
for completeness only as error items will not occur unless stream input procedures have been called
in the wrong context. Reads the error status.

Note that this procedure has only one channel parameter from. rs.

input.top.crease
PROC input.top.crease (CHAN OF ANY from.rs, to.rs,

INT 1en.comment, []BYTE comment,
[]INT attributes, INT 1en.fi1eid,
[]BYTE fi1eid, VAL BYTE· next.item)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in
folded file stream input mode. Must be entered with next. item = fsd. fo1d or fsd. fi1ed.
Reads comment and attributes from fold line. An array of 3 integers is required for the attributes.
On a named file store also reads the fileid.

This procedure does not prepare for the next input (it does not set next. item). It may therefore
be used instead of read. fo1d. top. crease or read. fi1ed. top. crease if it is necessary
to inspect the comment and/or attributes to determine whether the fold should be entered or skipped.

skip. item userio
PROC skip.item (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input. procedures. It will
return the value of next. item corresponding to the following item. It may be used to skip any
item including a fold.

enter.fo1d userio
PROC enter.fo1d (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may only be called immediately after a call of input. top. crease. On entry the
value of next. item should be fsd. fo1d or fsd. fi1ed. It will return the value of next. item
corresponding to the first item within the fold.

exit.fo1d 'userio
PROC exit.fo1d (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input. procedures. It will
return the value of next. item corresponding to the item immediately after the bottom crease of
the current fold, thereby causing the remainder of the contents of the fold not to be read.

repeat.fo1d userio
PROC repeat.fo1d (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input. procedures. It will
return the value of next. item corresponding to the item immediately after the top crease of the
current fold, thereby causing the contents of the fold to be read again.

14.12 Access to the TDS's folded file store 289

c1ose.fo1ded.stream userio
PROC c1ose.fo1ded.stream (CHAN OF ANY from.rs, to.rs,

VAL INT fo1d.number,
VAL BOOL must.unfi1e, INT errornum)

This procedure may only be called when the user filer channel pair from. rs and to. rs are in file
stream input mode. This procedure should be called when next. item = fsd. endstream. If it
is desired to close a folded input stream at any other time, the current item must first be consumed
by calling the appropriate input. procedure, or if the current item is fsd. error, by reading an
integer error result from the channel from. rs.

The procedure closes the folded stream, returning the channel pair to user filer control mode. If
must. unfi1e is TRUE the fold is unfiled. Any error is returned in errornum.

For safe use of these procedures the procedure number. of . folds must be called first and must return
a positive number.

get. stream. result
PROC get.stream.result(CHAN OF ANY fs, INT result)

Internal procedure called by fold stream procedures.

ufiler

ufiler

ufiler

clean. string
PROC clean. string (INT len, []BYTE str)

Internal procedure called by fold stream procedures. Replaces any ASCII control characters in str
by I " and removes trailing ones.

truncate.fi1e.id
PROC truncate.file.id (INT len, VAL[]BYTE id)

Internal procedure called by fold stream procedures. Truncates id at the first space or . character.

number. of. folds ufiler
PROC number.of.folds(CBAN OF ANY from.uf, to.uf, INT n, result)

If result is non-zero on entry does nothing. Otherwise examines the item at the current cursor
position and returns n = -1, if not on a fold item, or returns n as the number of folds at the top level
within the current fold item. The value of result is not changed. If result is not fi. ok. the
value of n is undefined.

write. fold. string ufiler
PROC write.fold.string(CHAN OF ANY from.uf, to.uf, VAL INT seq.no,

VAL INT len, VAL []BYTE data, INT result)

If result is non-zero on entry does nothing. Otherwise writes [str FROM 0 FOR len] as
the fold comment of the fold identified by seq. no. Any error is returned as result.

290 14 Libraries

ufiler

ufiler

create. fold ufiler
PROC create.fold(CBAN OF ANY from.uf, to.uf,

INT new.fold.number, VAL []INT attributes,
INT result)

If result is non-zero on entry does nothing. Otherwise creates a new fold, with the specified
attributes, in the current bundle after all existing folds. The position of this new fold is returned
as new. fold. number. Any error is returned as result.

send. command
PROC send.command(CBAN OF ANY from.uf, to.uf,

VAL BYTE op, VAL INT seq.no, INT result)

If result is non-zero on entry does nothing. Otherwise sends a user filer command op to perform
an operation on the member seq. no of the fold bundle which is the current item. Any error is
returned as result.

make. filed ufiler
PROC make. filed (CBAN OF ANY from.uf, to.uf, VAL INT seq.no,

VAL INT id.len, VAL []BYTE file.id, INT result)

If result is non-zero on entry does nothing. Otherwise assumes the current item is an unfiled fold
and makes it filed with the name [file. id FROM 0 FOR id .len]. Any error is returned as
result.

open.stream
PROC open.stream(CBAN OF ANY fs, ts,

VAL BYTE op, VAL INT fold. no, INT result)

If result is non-zero on entry does nothing. Otherwise opens the indicated fold as a user filer
input or output stream. The value of op should be a uf . open command as defifled in the library
filerhdr. Any error is returned as result.

read. fold. string ufiler
PROC read.fold.string(CHAN OF ANY from.uf, to.uf,

VAL INT seq.no, INT len, []BYTE data,
INT result)

If result is non-zero on entry does nothing. Otherwise assumes the current item is a fold and
returns the fold comment string of the fold seq. no in the bundle as [data FROM 0 FOR len].
Any error is returned as result.

read. fold. attr ufiler
PROC read.fold.attr(CHAN OF ANY from.uf, to.uf,

VAL INT seq.no, []INT attributes, INT result)

If result is non-zero on entry does nothing. Otherwise assumes the current item is a fold and
returns the attributes of the fold seq. no in the bundle. Any error is returned as result.

14.13 Access to transputer board peripherals 291

open.data.stream ufiler
PROC open.data.stream (CHAR OF ANY from.rs, to.rs,

VAL INT fold.number, BYTE first.item,
BOOL not.filed, INT errornum)

Opens the indicated fold as a user filer data input stream. The boolean not. filed is set accord
ing as the fold was an ordinary or a filed fold. This procedure files the fold if it was not already
filed. first. item is returned as fsd. record if there is at least one text line in the fold,
fsd. endstream otherwise. Any error is returned as errornum.

close.uf.stream ufiler
PROC close.uf.stream (CBAN OF ANY from.rs, to.rs,

VAL INT fold.number, VAL BOOL must.unfile,
INT errornum)

Closes a user filer data or folded input stream, unfiling it if must. unfile is TRUE. Any error is
returned as errornum.

read. data. record ufiler
PROC read.data.record (CHAN OF ANY from.rs, to.rs,

INT len, []BYTE record, BYTE next. item)

Must be entered with next. item = fsd. record. Reads the record and indicates the type of
the next item.

14.13 Access to transputer board peripherals

The terminal driving hardware of IMS B002, IMS B006 or similar transputer boards may be accessed using
the procedures of this library which use TDS screenstream and keystream channels.

BOOx.te~.p.driver t4board,t2board
PROC BOOx.te~.p.driver (CBAN OF SS from.user.scrn,

CHAN OF KS to.user.kbd,
VAL INT board. type, port,

baud. rate, screen. type)

N.B. an additional parameter has been added to this procedure, therefore existing programs must
be modified before recompilation.

This interface procedure may be run in parallel with any application on an IMS 8001 or IMS B002
evaluation board. It takes input in screen stream protocol on the channel from. user. scrn and
sends it to an RS232 output, and sends the corresponding input in key stream protocol to the channel
to. user. kbd.

board. type should be 1 for B001 or 2 for B002 or 6 for B006. The uart port is defined by passing
O(terminal) or 1(host) as the parameter port. baud. rate if non-zero causes the UART to be
reset at startup, the value should be one of 38400, 19200, 9600, 7200, 4800, 2400, 2000, 1800,
1200, 1050, 600, 300, 200, 150, 134, 110, 75 or 50. If zero the reset is assumed to have been
already performed (e.g. by code in the ROM).

screen. type may be °for ANSI terminals or 1 for TVI920 terminals.

Other procedures that were in this library were directly dependent on the old TDS server and are not included
in TDS3.

15 Tools
The tools described in this chapter are all TDS executable programs (EXES). To run a tool place the cursor
on the line in the Too1s fold in the Too1kit fold to which the CODE EXE for the appropriate tool has been
attached, and press IGET CODEI. Then return to the editing environment and apply the tool using IRUN EXEI to
an appropriate fold as described in the specification of the tool below.

Any number of tools may be held in the TDS memory, and optionally included in the AUTOLOAD fold. The
only restrictions arise when there is insufficient memory left after loading tools for running one of them or one
of the utilities.

The tools provided with the TDS are:

1 debugger the post mortem occam debugger

2 nettest the network tester

3 1ist the selective Iister (see section 4.9.1)

4 un1ist the unlister (see section 4.9.1)

5 1inkcopy the tool for transferring files across transputer links

6 memint the memory interface table generator

7 epromhex the tool for preparing code for EPROM

8 hextoprg the tool for writing to a PROM programmer

9 promfi1e the tool for writing EPROM code to a file

10 addboot the bootstrap adder for a standard hosted PROe

11 wocctab the tool to convert an se into an occam table of bytes

Users are encouraged to add any tools they create for their own purposes to the same fold within the toolkit
fold. If tools are to be offered to other TDS users they should, if possible, be compiled for the TA transputer
class so they can run on TDSs running on any 32-bit transputer.

15.1 Debugger

Introduction

The Debugger can be used to debug any of the followi ng:

TDS style programs running on a network of transputers attached via a link,

Programs written under the TDS, but executing outside the TDS environment,

TDS style programs running on the host transputer (EXEs and UTILs),

occam se modules.

15.1.1 Debugging a PROGRAM on a network which may include the host

The Debugger can be used to debug a TDS PROGRAM which has been loaded and run on a transputer
network. The network may contain large numbers of transputers - the debugger has been tested on 1024
processors! If it is able to assert Analyse on the transputers in the network (e.g. by using a subsystem port
on the host) it will do so, otherwise the transputers which constitute the network must be in an analysed state.

294 15 Tools

If the TOS has been rebooted the analyse may have been performed by the server before rebooting.

The debugger reads the state of the network described in the PROGRAM fold, retrieving state information and
a copy of an area of memory, starting at the lowest memory address, from every processor in the network.
It then loads a program into this area, which sets up a communication path through the network, and allows
the debugger to retrieve the contents of memory from any transputer in the network.

Start up procedure for a PROGRAM

Place the cursor on the PROGRAM fold and press IRUN EXEI. The initial display is the title and version, and
the prompt:

Debuqqinq a PROGRAM

Transputer 1ink, Dummy, Analyse, Bost, Network dump
or Quit (T,D,A,B,N,Q) ?

[!] - Transputer link

This option is used for debugging transputer networks loaded from the TOS.

If you choose option 'T', you will then be prompted:

Link number, or Quit (0,1,2,3,Q) ?

Type in the link number through which the host is connected to the network. You do not need to press IENTERI.

Bow to analyse network? Is host a B004 or a B002,
Ignore analyse, or Quit (4,2,I,Q) ?

Type 4 if the host system is an IMS 8004 or TRAM,
2 if the host system is an IMS 8002 (or equivalent),
I if you do not wish to assert Analyse,

or Q to quit.

This information is required because the subsystem ports are different; the debugger must know which is
being used so that it can assert the network's Analyse signal.

While examining the network, the debugger displays:

Readinq loqica1 name table
Ana1ysinq network

@] - Dummy network

The response 'D' runs the debugger in parallel with a process which acts as a network of transputers. This
process simulates an arbitrary network in the analyse state providing artificial data for display. The user may
thus explore some of the options available without being connected to a target network. While initialising
itself, the debugger displays:

Readinq loqical name table
Analysinq network

lE] - Network including Host

This option is used to debug a standalone PROGRAM which has been developed in the TOS, but is executed
outside the TOS, and therefore includes the host transputer (Le. the transputer which is now running the
TOS) in the network. The TOS should be restarted with an appropriate option to analyse the network. See
section 15.1.8 for details of how to create a core dump file.

15.1 Debugger

In reply to the first prompt, you will then be asked:
Read Core dump fi1e, Ignore core dump, or Quit (C,I,Q) ?

If you reply IC', the debugger will then prompt for the name of the core dump file:

Core dump fi1ename ("core.dmp", or "QUIT") ?

Press IENTERI to use the default filename
or enter a filename (any filename extension will be replaced by I . dmp')
or type IQUIT' (uppercase) to exit the debugger.

295

If you type II',the debugger will not read a core dump file, and therefore provides no useful information about
the root processor.

You will be asked what type of board is being used, so that the debugger can assert Analyse on the network.
If you have a modified IMS B004 or a TRAM/BOOa which propagates the Reset and Analyse signals through
to the subsystem port, you should type II' so that the subsystem is not analysed twice.

While reading the core dump file, the debugger will display:

Reading 1ogica1 name tab1e •••
Reading Core dump fi1e "fi1ename.c:lmp"

~ - Assert analyse

This option allows you to assert the Analyse signal on the transputer network attached to the host's subsystem
port. You will be asked what type of board is being used, or given the option to quit.

After successfully asserting the analyse signal, you will see the message:

Subsystem has been ana1ysed
Press any key to return to the TDS

[[) - Network dump

This option allows you to read a previously created Inetwork dump' file. The debugger uses the information
in this file for its target information. This allows the complete state of a network to be dumped to a file, and
the debugging session to be suspended, so that debugging can be resumed at a later date, when the target
network may no longer even be present. How to create a network dump file is covered in section 15.1.6.

After pressing N' you will be prompted:

Network dump fi1ename ("network.dmp", or "QUIT") ?

Press IENTERI to use the default filename.
or enter the name of the network dump file (any filename extension is replaced by I. dmp')
or type IQUIT' (uppercase) to exit the debugger

While reading the network dump file, the debugger will display:

Reading 1ogica1 name tab1e •.•
Reading Network dump fi1e "fi1ename.dmp"

What the debugger does

After this initial interaction, the debugger uses the configuration description folds in the PROGRAM fold set
to build a data base for the network. The complete network is then analysed and some data retrieved from
every processor. If the IH' or N' options were selected, the information will be read from the appropriate file.

296 15 Tools

The debugger will then determine which processor (if any) had its error flag set, and will continue with that
processor selected as the current processor. If none is set, the 'root' processor will be selected. The debugger
will then display the occam source in the vicinity of the error, or the last instruction executed, as explained
later.

15.1.2 Debugging an EXE (or UTIL)

The Debugger can be used to debug EXE programs running on the host transputer. To do this it uses a
'core-dump' feature.

If the transputer error flag is set while executing an EXE, you should re-boot the TDS, and request the 'C'
option for a normal core dump. This will save the memory of the transputer in a core dump file, whose name
you may specify, rather than use the default 'core. dmp'. If the debugger is subsequently executed while
positioned over that EXE, it can read the core dump file, and you may then use all of the symbolic features
of the debugger. See section 15.1.8 for more details about creating a core dump file.

Start up procedure for an EXE

Place the cursor on the EXE fold, and press IRUN EXEI. The initial display is the title and version, and the
prompt:

Debugging an EXE
Read Core dump fi1e, or Quit (C,Q) ?

Type either 'Q' to quit, or 'c' to confirm that you wish to continue to debug the EXE. If you type 'C', you will
be asked for the core dump filename:

Core dump fi1ename ("core.dmp", or "QUIT") ?

Press IENTERI to accept the default filename
or enter a filename (any filename extension will be replaced by '. dmp')
or type 'QUIT' (uppercase) to exit the debugger.

If the core dump file does not exist, it will be treated as though you had typed 'I'.

The debugger will then display:

either Reading Core dump fi1e "fi1ename.dmp" .••
or Ana1ysing EXE •••

15.1.3 Debugging an se

The Debugger can also be used on SC modules, to find the occam source line corresponding to any
particular offset within this SC. The SC may contain nested SCs. No other facilities are available.

Start up procedure for an se

The cursor should be positioned on the SC fold, and the debugger executed by pressing IRUN EXEI. The initial
display is the title and version, and the prompt:

Disp1ay any offset within an SC
Disp1ay occam source, or Quit (O,Q) ?

Type either 'Q' to quit, or '0' to locate to an occam source line.

If you type '0', you will be prompted for the offset of the instruction you wish to find. You should type this in
in decimal, and the debugger will display the occam source line corresponding to that offset from the start
of the se. The se must have been compiled with the compiler's debugging option enabled. Press IMONITORI
to return to this prompt, or IEXIT FOLDI and IFINISHI to leave the debugger.

15.1 Debugger 297

15.1.4 Symbolic functions

Once you have started to debug a PROGRAM, or an EXE, the debugger will automatically display the occam
source corresponding to the error. If the program was still executing correctly when 'analyse' was asserted,
the debugger will display the last source line executed. However, if the transputer had stopped, rather than
halted upon finding an error, or was deadlocked, there will be no 'last instruction', so you will be left at the
main 'Monitor page' (see section 15.1.5).

While it is looking for the required source line, the debugger will display 'Locating ... ' at the top of the
screen.

If the location which is to be displayed is in a compacted library for which the source code is not present, but
which was compiled with the debugging option enabled, the debugger will instead locate the line corresponding
to the library call, and will repeat until it finds some source code to display. As this is done, the original
message will be changed to 'Backtracing ... '. When the debugger has successfully located some
source, it will display the name of the library which it first tried to display, which SC within that library (counting
from one), and the offset within that SC.

If the ultimate location is in a library containing source, the occam in the vicinity of that location is displayed,
and the cursor is left at the start of the correct source line. The debugger also displays the name of that
library, the se number, and the offset within that SC. You may scroll through the source, and the special
debugging features are available via the utility tool keys.

If the location is in a section of normal occam source, its context is displayed, and the user is left within the
TDS editor, providing read-only access to the source. You can use the IBROWSEI key to allow modification of
the source. In addition there is a set of debugging features available via the utility keys.

Note that in certain situations the location displayed may not correspond to the expected location. In particular,
if no valid branch of an IF or CASE has been found or all branches of an ALT have FALSE guards, the
debugger will locate to the following statement. See section 15.1.7

Note also that only the SCs which are to be inspected via this debugger need to have been compiled with
the debugging option enabled; the remainder need not. It should also be pointed out that compiling an SC
with debugging enabled does not affect the code which is produced in any way; it merely controls whether
the debug fold is produced, containing the information for the debugger to use. This means that no extra
bugs will be introduced (or hidden) by re-eompiling with a different debugging option.

Debugging utilities

The extra debugging utilities are available via the following utility keys (see appendix A):

~
ICHANNEL!

~
IRETRACEI

IRELOCATEI

IINFOI

~
IMONITORI

IBACKTRACEI

ICODE INFORMATIONI

Display the type and value of an occam symbol.
Locate to the process waiting on a channel.
Locate back to the error, or last occam location.
Retrace the last IBACKTRACEI etc.
Locate back to the last location line.
Display some extra information.
Display the link connections.
Change to the 'Monitor page'.
Locate to the procedure or function call.
Display a summary of utility key uses.

N.B. a number of editor function keys are disabled while using the debugger.

298

IINSPECTI

15 Tools

This function allows you to find the type and contents of any occam symbol. You should use the cursor
keys to position the cursor on the required symbol, then press !lNSPECTI.

If the cursor is not positioned over an occam symbol or keyword when you press IINSPECTI, you will instead
be prompted for the symbol name at the top of the screen. You may type IENTERI here to abort the !lNSPECTI
operation, or type a name, followed by IENTERI. The case of the letters of the name is significant, as are
spaces. If the name is an array, it may also be followed by constant integer subscripts in square brackets (T
and'l')·

It is then checked that the symbol is in scope at the line last 'located to'. Note that this is not necessarily the
same as the current cursor position, and this must be understood for this feature to be useful. If the symbol
is not in scope at that location, or not found at all, one of the following messages will be displayed:

Name 'symbo1' not in dynamic scope
or Name 'symbo1' not found

Inspecting arrays

If the symbol is an array name, and you have not already supplied subscripts, you will be prompted for them.
The debugger will display the size and type of the array, and ask for the subscripts. For example:

[5] [4]INT ARRAY 'a', Subscripts?

Press IENTERI to obtain the address of the array

or enter the required subscripts, which must be in the correct range

The subscripts should be typed either as decimal constant integer values within square brackets, or as integers
separated by commas (e.g. '[3] [2]', or '3, 2'). Spaces are ignored.

To simplify access to values such as 'a [i]' you may type 'a [!]'; the I!' is replaced by the value of the last
integer displayed.

Instead of supplying subscripts for an array element, the debugger allows you to scroll through the elements
of an array while in symbolic mode. It also allows you to see a short 'segment' of a BYTE array. You can
move this segment up and down like a window into the array.

When asked for a subscript, you may add '++' onto the end (or even type '++' on its own; this assumes
a subscript of zero). Then instead of just displaying that element of the array, the debugger also puts the
following message onto the second line on the screen:

Press [UP] or [DOWN] to scro11, any other to exit :

You may use the up and down arrow keys to scroll through the elements of that array. The debugger will not
allow you to scroll past the beginning or end of the array. Pressing any other key puts you back into normal
symbolic mode. You can then press IREFRESHI to re-draw the second screen line.

BYTE arrays have another feature. If you add a single '+' to the subscripts, the debugger displays a 'segment'
of 16 bytes starting at those subscripts. You may again scroll through the array by using the up and down
arrow cursor keys. Again you cannot scroll past the beginning or end of the array. If you use the single '+'
on a non-BYTE array, it is treated exactly like '++'.

If the UNSPECTI key is used on the name of a channel or variable which has been placed, the message shows
the PLACE address in occam terms and the absolute memory address, but not the contents of the iocation.

15.1 Debugger 299

Information displayed

If the name is in scope, its type and value will be displayed, together with its address in memory. If it is an
array, and subscripts were supplied, its type, value, and address will be displayed. If it is a short BYTE array,
it is displayed in ASCII. If it is any other type of array, its dimensions are displayed. If it is a channel, and is
not empty, the Iptr and Wdesc of the process waiting for communication, and its priority, are displayed. If
it is a PROC or FUNCTION name, its entry address, and nested workspace and vectorspace requirements
are displayed (no address is displayed for library names). Only the types of protocol names and tags, timers,
and ports are displayed.

If there is too much information to be displayed on one line, it will be displayed in two parts. Firstly the
symbol's name and type will be displayed, then, after a short pause, its value and address.

Inspecting memory

To inspect the contents of any location in memory, specify an address rather than a symbol name. Type the
address as a decimal number, a hexadecimal number (preceded by '#') , or the special short form %h...h,
which assumes the prefix #8000 •••. Any letters (A to F) in a hexadecimal number typed at this prompt
must be in upper case. The debugger displays the contents of the word of memory at that address, in both
decimal and hexadecimal. For more versatile displays of memory contents, use the options available from
the 'Monitor page' (see section 15.1.5).

ICHANNEL I
Use this function as you would UNSPECTI, but specify the name of the channel. Instead of displaying the
Iptr and Wdesc of the process waiting for communication on that channel, the debugger locates to the
corresponding line of occam source, from where you can continue debugging that process. This function is
invalid if the symbol specified is not a channel.

'Hard' channels

The ICHANNELI key also allows you to 'jump' from one processor to another along hard channels (channels
mapped onto transputer links). If a process waiting for communication from the processor at the other end
of the specified channel, the debugger will change to that processor. It will then display the new processor
number to inform you that it has changed processor. If there is no process waiting you are informed, and if
the debugger is already located at the waiting process the following message is displayed:

A1ready 10cated - No process is waitinq at the other end
of this 1ink

This function forces the debugger to locate back to the line containing the original error that crashed the
program, or to the line located to by the Monitor page 'G', '0' or 'X' commands (see section 15.1.6).

IRETRACE I
This function forces the debugger to retrace its steps. It will locate back to the previously displayed location.
Repeated use of IRETRACEI will reverse the effect of successive ISACKTRACEI, ICHANNELI, and ITOpl operations.

IRELOCATE I
This function relocates to the last location point. This allows you to return to the original source line after
examining a section of the source code.

300 15 Tools

This function displays the Iptr of the last location, the corresponding Wdesc, in hex, the process priority
and the current processor's number and type. For example:

Located to Iptr #80001564, and Wdesc #80000124,
(Hi pri), Processor 2 (T800)

or Located to Iptr #80001564, and Wdesc #80000124,
(Hi pri), EXE (T800)

If a Wdesc has not been supplied, it will be given as 'invalid'.

If this key is pressed when the debugger has been invoked on an SC, you will see a message of the form:

Located to offset 450 of this SC

ILINKS I
This function provides a quick means of determining the connections on the currently displayed processor. It
lists each link in turn, and the processor and link to which it is connected. For example:

Links: LO to host. Ll to P3 L2. L2 ---. L3 to P45 LO.

ICODE INFORMATION I
This function displays a summary of the debugger function keys.

IMONITOR I
This function transfers the user to the debugger 'Monitor page'.

IFINISH I
To leave the debugger use the IEXIT FOLDI and/or IFINISHI keys. You may also leave by using the 'Q' option
from the Monitor page.

IBACKTRACEI

This function locates to the line corresponding to the call of the currently displayed procedure or function. If
the current location is in the processor's top level procedure, the following message is displayed:

Error : Cannot backtrace from here

Debugging an SC

The operations ISACKTRACEI, !I NSPECTI, ICHANNELI, ITOpl, IUNKSI, and IRETRACEI have no meaning when the
debugger has been invoked on an SC. If you press any of these keys, you will be informed:

This key is inva~id on an SC

Invalid Wdesc

If you are debugging an EXE, without a core dump file, the debugger cannot read the contents of memory
at the time of the error. This means that it cannot read the contents of variables and channels, nor find
the return addresses of procedures. It flags this by leaving the Wdesc as an invalid value - that of the
transputer's most negative address. Also, if you do not supply a valid Wdesc when using the Monitor page
'0' (occam) option, you will not be able to access memory contents. However, you may still determine the
values of scalar constants, and some other symbols.

15.1 Debugger 301

Any attempt to inspect variables or channels, or to backtrace, will cause one of the following messages to be
displayed:

Wdesc is inva1id - Cannot backtrace
or Wdesc is inva1id Cannot inspect variab1es

Also, if the location to be displayed is in a compacted library, and the Wdesc is invalid, the debugger will not
be able to find the call of that library function or procedure. You will then be informed:

Wdesc is inva1id so cannot backtrace out of compacted 1ibrary

15.1.5 Monitor page

When you leave the symbolic mode to enter the low level mode, the debugger displays a 'Monitor page'
containing information about the current processor. The information displayed lists:

Iptr
Wdesc
IptrlntSave
WdesclntSave
Error
FPU Error
Ba1t On Error
Fptrl
Bptrl
FptrO
BptrO
TPtrl
TPtrO
C10ckl
C10ckO

Contents of instruction pointer (address of the last instruction executed)
Contents of workspace descriptor
Contents of saved low priority instruction pointer
Contents of saved low priority workspace descriptor
Whether the error flag was set
Whether the FPU error flag was set (if it exists)
Whether the halt on error flag was set
Pointer to the front of the low priority active process queue
Pointer to the back of the low priority active process queue
Pointer to the front of the high priority active process queue
Pointer to the back of the high priority active process queue
Pointer to the low priority timer queue
Pointer to the high priority timer queue
Value of the low priority clock
Value of the high priority clock

It also displays the current processor number and type, the cause of any error, and last instruction executed,
and the current transputer's memory map.

Iptr points to the last instruction executed. Low priority Iptr and Wdesc are only displayed if the processor
was running in high priority mode when it was halted.

If Wdesc contains the most negative address value, it will be described as 'invalid'. This normally means
that no process was executing on that processor when it was halted (e.g. it may have been deadlocked). Try
using the 'L' option to find processes waiting for communication on the links. The Wdesc is also flagged as
invalid when debugging an EXE with no core dump file.

If Wdesc contains the address of 'Memstart' it is displayed as such. This normally means that the network's
analyse signal has been asserted more than once. This may be because your host transputer board (e.g.
IMS 8004) has been modified to assert its subsystem signal when it is itself analysed. If this happens try
re-running your program, then when re-running the debugger type 'I' to ignore analyse, rather than '4' to
indicate that you wish to assert the IMS 8004's SUbsystem signal.

An asterisk displayed next to either Iptr or Wdesc indicates that they do not correspond to a valid code and
data pointer for the program. It may be possible to find the source of the problem by using the 'M' option to
display a memory map for each transputer. If debugging an EXE this is normally because the last instruction
executed was part of the TDS itself; your EXE may have deadlocked. See section 15.1.7.

302 15 Tools

Summary of commands

IDescription

A ASCII View a portion of memory in ASCII.

C Compare Compare the code on the network with the code that should be there,
to ensure that the code has not become corrupted.

D Disassemble Display the transputer instructions at a specified area of memory.

E Next Error Switch the current display to data from the next processor in the net-
work which has halted with its error flag set.

G Go to process Go to source level debugging at an address already visible on the
screen.

H Hex View a portion of memory in hexadecimal.

I Inspect View a portion of memory in any occam type (e.g. REAL32).

L Links Display the instruction pointers and workspace descriptors for the pro-
cesses currently waiting for input or output on a transputer link, or for
a signal on the Event pin.

M Memory map Display the memory map of that transputer.

N Network dump Copy the entire state of the transputer network into a 'network dump'
file, so that you can continue debugging later.

0 occam Resume the occam source level at an address to be typed in.
p Processor Switch the current display to data from a different processor.
Q Quit Leave the debugger, and return to the TDS.

R Run queue Display the instruction pointers and workspace descriptors of the pro-
cesses on either the high or low priority active process queue.

T Timer queue Display the instruction pointers, the workspace descriptors and the
wake-up times of the processes on either the high or low priority timer
queue.

X Exit Return to source level at the previous place.
IRETRACEI

IRELOCATEI

ICURSOR upl Scroll display Scroll the currently displayed memory, disassembly, or queue
!CURSOR DOWNI

!L1NE upl Scroll display Scroll the currently displayed memory, disassembly, or queue

ILlNE DOWNI (restricted to single line)

!CURSOR LEFTI Change Scroll the currently displayed processor.

ICURSOR RIGHTI processor

? Help Display a help screen.

ICODE INFOI

!REFRESH! Refresh Re-draw the screen.

!TOP! Locate to the last instruction executed on the current processor.

Key

15.1 Debugger 303

: 'n'

15.1.6 Monitor page commands

A full description of the Monitor page commands follows, with the options listed in alphabetical order. These
options are not available when the debugger has been invoked on an SC.

~-ASCII

The ASCII command gives the following prompt:

Start address (#hhhhhhhh) ?

Press IENTERI to accept the default address
or enter the desired address (a decimal number, a hexadecimal number preceeded by'#',

or the short form '%h ••. h', which assumes a prefix of #8000 ...).

The memory is displayed as sixteen rows of 32 ASCII bytes. The bytes are displayed in order, with a '.'
replacing any unprintable characters.

The address at the start of each line is an absolute address displayed as a hexadecimal number. The byte
containing the specified start address is the top leftmost byte of the display. ICURSOR upl and ICURSOR DOWNI
keys may be used to scroll the display.

@] - Compare memory

Selecting the Compare memory command allows you to check whether the code on the network agrees with
the code which was loaded, in case memory has been corrupted. It can also be used for an EXE. You will
be offered the following options:

Compare memory
Number of processors in network

A - Check who1e network for discrepancies
B - Check this processor for discrepancies
C - Compare memory on screen
D - Find first error on this processor
Q - Quit

or

Checkinq an EXE

A or B - Check this EXE for discrepancies
C - Compare memory on screen
D - Find first error on this processor
Q - Quit

Compare memory option (A,B,C,D,Q) ?

You should type one of the options A, B, C, D, or Q. Option 'Q' will return you back to the Monitor page.

Checking the whole network - option A

Option 'A' checks the whole network to ensure that the code in the network is the same as the code which
was originally loaded onto each processor. All the top level SCs in the occam PROGRAM must have been
extracted to CODE SC folds (this is performed automatically by the configurer).

304

As it is checking, the debugger will display the following messages for your information:

No of processors checked so far : 'n'
Checkinq processor 'p' ...
Bytes to test nnn
Checkinq memory #hhhhhhhh to #hhhhhhhh
Checkinq address #hhhhhhhh
Checked processor 'p' OK
Checked processor 'p', le' errors

When it has finished checking, it will display either

Checked wh01e network OK
or 'n' Errors, first at #hhhhhhhh on processor 'p'

15 Tools

Checking a single processor - option B

Option 'B' checks just the current processor. In all other respects it is similar to option 'A'.

Compare memory on screen - option C

Option 'c' allows you to display both the correct contents, and the actual contents, on screen side by side. It
displays each block of memory as sixteen lines of 8 bytes, with the contents of the network on the left, and
the correct code on the right. Any discrepancies are marked with an asterisk ('*'). At the end of each 128
byte block, type either 'Q' to quit, or ICURSOR DOWNI to read the next block. The display will look like:

#800001234
#80000123C
#800001244

#8000012AC

Network Code
0011223344556677
0011223344556677
0011223344556677

AABBCCDDEEFF0011

Correct Code
7766554433221100 *
0011223344556677
7766554433221100 *

AABBCCDDEEFF0011

Press [DOWN] to scr011 memory, [SPACE] for next error,
or Q to quit :

Find first error - option 0

Option '0' allows you to let the debugger look for any discrepancy itself, and then display it on the screen. It
will search this processor, as in option 'B', until it finds a discrepancy. If it does, it switches into option 'C',
and allows you to continue displaying the memory on screen.

@] - Disassemble

The Disassemble command gives the following prompt:

Start address (#hhhhhhhh) ?

Press IENTERI to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by It',
or the short form '%h ... h', which assumes a prefix of #8000 ...).

The memory is displayed in batches of sixteen transputer instructions, starting with the instruction at the
specified address. If the specified address is within an instruction, the disassembler begins at the start of
that instruction. Note that this may not work correctly if data precedes that instruction, rather than other
transputer instructions. This is because the data may end with a byte corresponding to a transputer 'pfix' or
'nfix' instruction, and therefore is indistinguishable from a real instruction.

Each instruction is displayed on a line preceeded by the address corresponding to the first byte of that
instruction. The disassembly is a direct translation of memory contents into instructions, it does not insert

15.1 Debugger 305

labels, nor provide symbolic operands. ICURSOR upl and ICURSOR DOWNI keys may be used to scroll the display
16 bytes at a time.

[[) - Next Error

Next Error searches forward through the network for the next processor which has both its error and halt-on
error flags set. Processors are searched in the order in which the processors are stored in the debugger's
internal data base, not in the order of processor number. If a processor is found with both flags set the
display is updated to the new processor as if the 'P' option had been used. Press ITOpl to display the occam
source line which caused the error.

If you press this key when debugging an EXE, or if there is only one processor in the network, you are
informed:

This is an EXE - There are no other processors
or There is on1y one processor in the network

~ - Go to process

This command locates to the source code for any process which is currently shown on the screen. The
cursor is positioned next to the Iptr, and permitted responses are listed on the screen as follows:

[CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o, or (Q)uit

Select the desired process with the cursor keys or '0' to 'F' keys then press IENTERI to select the
process

or enter 'I' to select the saved Iptr
or enter 'L' to select the interrupted low priority process when currently in high priority
or type 'Q' to abort th is choice.

[E]- Hex

The Hex command gives the following prompt:

Start address (ihhhhhhhh) ?

Press IENTERI to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ai',
or the short form '%h ... h', which assumes a prefix of #8000 ...).

The memory is displayed as rows of words in hexadecimal format. Each row contains four or eight words,
depending on the transputer word length. Words are displayed in hexadecimal (four or eight hexadecimal
digits depending on word length), most significant byte first. For a four byte per word processor the sequence
of bytes in a single row would be:

: 3 2 1 0 765 4 11 10 9 8 15 14 13 12

For a processor with two bytes per word the sequence would be:

: 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

The address at the start of each line is an- absolute address displayed as a hexadecimal number. The word
containing the specified start address is the top leftmost word of the display. The address will be aligned to
the start of that word. ICURSOR upl and ICURSOR DOWNI keys may be used to scroll the display.

306 15 Tools

DJ -Inspect

This command allows you to inspect the contents of an entire occam array. The Inspect command gives
the following prompt:

Start address (#hhhhhhhh) ?

Press IENTERI to accept the default address
or enter the desired address (a decimal number, a hexadecimal number preceeded by'#',

or the short form '%h ... h', which assumes a prefix of #8000 .•.).

The start address of an array can be found in the symbolic mode by pressing UNSPECTI while the cursor is
positioned over the array name, then simply pressing IENTERI when asked for a subscript.

When a start address has been given the following prompt is displayed:

Typed memory dump
o - ASCII
1 - INT
2 - BYTE
3 - BOOL
4 - INT16
5 - INT32
6 - INT64
7 - REAL32
8 - REAL64
9 - CHAN

Which occam type (1 - INT) ?

Type the number corresponding to the occam type you wish to display, or press IENTERI to accept the default
type.

The memory is displayed as sixteen rows of data. ASCII arrays are displayed in the format used by the
Monitor page ASCII command. Other occam types are displayed both in their normal representation and in
h~xadecimal format.

The address at the start of each line is an absolute address displayed as a hexadecimal number. The value
containing the specified start address is on the top row of the display. It will be aligned to the nearest valid
boundary: BYTE and BOOL to the nearest byte; INT16 to the nearest even byte; INT, INT32, INT64,
REAL32 , REAL 64, and CBAN to the nearest word. ICURSOR upl and ICURSOR DOWNI keys may be used to
scroll the display.

When displayed as CHAN words containing the special empty channel value or a valid Wdesc are displayed.
If a Wdesc is valid the value of the Iptr saved in that workspace is also shown.

[g- Links

Selecting the Links command displays the instruction pointer, workspace descriptor, and priority, of the pro
cesses waiting for communication on the links, or for a signal on the Event pin. If no process is waiting, it is
described as 'Empty'.

The link connections are also displayed; each link is described as 'unconnected', 'connected to host', or
'connected to processor ... , link .. .'. This information is taken from the software description and does not
necessarily reflect the actual hardware connections.

15.1 Debugger 307

Finally the link by which that processor was booted is also displayed. The display will look something like
this:

Link 0 out Empty
Link 1 out Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)
Event in Empty

Link 0 connected to Host
Link 1 not connected
Link 2 connected to Processor 88, Link 1
Link 3 connected to Processor 23, Link 3

Booted from 1ink 0

~ - Memory map

Selecting the Memory map command displays the memory map of the current processor. This is the same
as that provided by the utility ICOMPILATION INFORMATIONI, when applied to a PROGRAM.

It lists the start and finish addresses o'f the program's code, libraries, and real arithmetic library. It also
includes the configuration code, and the program's workspace and vectorspace. If any of these components
are not used, they will not be listed. The size of each component is then listed, in bytes, or rounded up to
the next K. The debugger also displays the total memory usage on this processor.

It also lists the size and address range of that processor's on-chip RAM, and 'MemStart', the first free location
after the RAM reserved for the processor's own use.

It then lists the maximum size network which can be accommodated by the debugger's buffer space. This
will depend on the memory size of the host system, and on the other code in memory at the same time.

The complete display looks like this:

Memory map
Workspace
Configuration code
Program body
Libraries
Vectorspace

Tota1 memory usage

On-chip memory (2K)
Mem Start

#80000064 - #800000F3
#800000F4 - #80000117
#80000234 - #80012373
#80012374 - #80012773
#80012774 - #80024643

149060 bytes (146K)

#80000000 - #800007FF
#80000048

144)
36)
73K)

1024)
72K)

Debugger has enough memory for 1271 processors

The value which is displayed for MemStart is the value actually found on the transputer in the network. If this
does not correspond to that expected by the configuration description, for example because a T414 and a
T800 have been mixed up, you will be informed:

MemStart shou1d be : #80000070 (T800) !!!!!

308 15 Tools

[E] - Network dump

This command allows you to save the state of the transputer network, so that you can continue debugging later.
If you leave the debugger without creating a network dump file, you will not be able to continue debugging
from the same point without re-running the application program. This is because the debugger itself corrupts
parts of the memory on each transputer in the network.

Once you have created a network dump file, you may continue debugging from the file instead of from the
target network. The debugger will take all relevant information from the network dump file, and from the
program's source code and descriptors, and it does not even need to be still connected to the target network.

You will be informed how much space a network dump file would take up, and asked whether to continue.
The space required depends on how much memory is actually used on each processor in the network.

Create network dump fi1e
Number of processors : 10
Fi1e size wi11 be : 89673 bytes

Continue with network dump (Y,N) ?

If you type 'N', no file will be created, and the operation is aborted. Otherwise you will be asked:

Fi1ename ("network.dmp", or "QUIT") ?

Press IENTERI to use the default filename

or enter a filename (any filename extension will be replaced by '. dmp')
or type 'QUIT' (uppercase) to exit the debugger.

If the file already exists, you will be warned:

Fi1e "network.dmp" a1ready exists
Overwrite it (Y,N) ?

If you type 'N', you will be prompted for the filename again.

While dumping the state and memory contents of each processor in the network, it will display:

Dumping network to fi1e "network.dmp"
Processor 99 (T800)
Memory to dump : 10456 bytes ...

This command can not be used while debugging an EXE; this is because you can use a TDS core dump file
instead.

@]-occam

Selecting the occam command allows you to resume symbolic debugging, either at the same occam line,
or at another location. You will be prompted:

Iptr (#hhhhhhhh) ?

The default suggested is the last occam line located to on this processor, or the address shown as the last
instruction executed.

Press IENTERI to accept the default address
or enter the desired address (a decimal number, a hexadecimal number preceeded by ri',

or the short form '%h ... h', which assumes a prefix of #8000 ...).

Useful values are displayed by the 'R', 'T', and 'L' commands from the Monitor page, or the value of the saved
low priority Iptr.

15.1 Debugger

If the supplied Iptr is not within the program body, one of the following errors is displayed:

Error : Cannot 10cate to configuration 1eve1 code
Error : Location is not in program or a 11brary

After pressing any key you are returned to the Monitor page.

Otherwise, you are then prompted:

309

Wdesc (#hhhhhhhh) ?

If you used any Iptr which was shown on screen at that time, its corresponding Wdesc will be offered as
a default. Otherwise you must supply it yourself, in the same format as the Iptr.

If no symbolic features other than a single 'locate' are required, the Wdesc is not needed, and any value
may be given, so you should accept the default by typing IENTERI on its own. Note that if an invalid Wdesc
is given, most of the symbolic features will not work, or will give incorrect answers.

Once the Iptr and Wdesc have been supplied, the debugger will display the occam source at the required
location, and the full range of symbolic features are then available.

[!] - Processor

This command is used to change the Monitor page to show details for a different processor in the network.
Specify the processor number after the prompt:

New processor number ?

Type a processor number (the number used to identify the processor in the configuration description of the
program). This is checked against the data base to make certain the processor exists. If that processor is
found, the display is changed to provide the same information for the new processor. If memory is being
displayed, but the new processor's word length is different to that most recently displayed, the start address
will be reset to the bottom of memory. If the processor is not in the configuration, the following message is
displayed:

Error : That processor number does not exist

If there is only one processor in the network, you are informed:

There is on1y one processor in the network

If you press this key when debugging an EXE you are informed:

This is an EXE - There are no other processors

@]-auit

This command leaves the debugger and returns to the TDS. Once quit, the debugger cannot be used to
debug the same program without reloading the program unless a 'network dump' file has been created. This
is because using the debugger overwrites much of the contents of the network.

~- Run queue

This command allows you to see a list of the processes waiting on the processor's active process queues. If
both high and low priority front process queue pointers are empty, the following message is displayed:

Both process queues are empty

310

If neither are empty, you will be prompted:

15 Tools

High or 10w priority process queue? (H,L)

You should then type 'H' or 'L' as required. Otherwise the debugger will assume the non-empty queue.

The instruction pointers and workspace descriptors of the first page full of processes on the queue will be
displayed. If there are more processes than can fit on the screen, the following message(s) will be displayed:

«< Scro11 up for more »>
and/or «< Scro11 down for more »>

The ICURSOR upl and ICURSOR DOWNI keys can be used to see the extra processes.

[!] - Timer queue

This command allows you to see a list of the processes waiting on the processor's timer queues. If both high
and low priority Front Timer queue pointers are empty, the following message will be displayed:

Both t~er queues are empty

If neither are empty, you will be prompted:

High or 10w priority t~er queue? (B,L)

You should then type 'B' or 'L' as required. Otherwise the debugger will assume the non-empty queue.

The instruction pointers, workspace descriptors, and wake-up times of the first page full of processes on the
queue will be displayed. If there are more processes than can fit on the screen, the following message(s) will
be displayed:

«< Scro11 up for more »>
and/or «< Scro11 down for more »>

The ICURSOR upl and ICURSOR DOWNI keys can be used to see the extra processes.

- Exita.....- ~

These commands return to the debugger's symbolic mode. They can not be used if you have changed
processor while in the Monitor page.

1CURSOR upl
1CURSOR DOWN 1- Scroll display

Typing ICURSOR upl or ICURSOR DOWNI scrolls the display of either the ASCII or hex memory dump, disassembly,
occam typed memory, or queue, whichever was last displayed. The memory dump is scrolled by eight lines
(256 bytes of ASCII data, 128 bytes of hex data) up or down, or sixteen lines for the typed memory dump.
The disassembly is scrolled by sixteen bytes, then aligned to the start of that instruction. The memory display
wraps round when the highest memory address is reached. The process and timer queues are scrolled by
fourteen lines.

ILINE upl
1LINE DOWN 1- Scroll display

As ICURSOR upl and ICURSOR DOWNI but with the scroll increment restricted to a single line.

15.1 Debugger

CURSOR LEFT

CURSOR RIGHT - Change processor

311

Typing ICURSOR LEFTI sets the current processor to the preceding processor in the data base and displays the
same information for the new processor. Typing ICURSOR RIGHTI sets the current processor to the succeeding
processor in the data base and displays the same information for the new processor.

This next processor may not correspond to the next processor number given in the configuration details, but
depends on the internal database in the debugger. The display shows the processor number, as given in the
configuration details.

If you press these keys when debugging an EXE, or if there is only one processor in the network, you will be
informed:

This is an EXE - There are no other processors
or There is on1y one processor in the network

1TOP 1- Display last instruction

The ITOpl key can be used from the Monitor page to display the occam source corresponding to the last
instruction to be executed on the current processor. Its use is as if you typed '0', then gave the Iptr and
Wdesc as displayed on the Monitor page.

1CODE INFORMATION 1- Help

These commands display a page of help information, which lists the commands available at the monitor page.

IREFRESH 1- Refresh

This command redisplays the screen.

15.1.7 Hints

Invalid pointers

Any time an instruction pointer and workspace descriptor are displayed, they are checked to be within correct
code and data limits, as defined by the memory map command. Any invalid Iptr and Wdesc pair is flagged
by an asterisk ('*').

This can occur when displaying: the Iptr and Wdesc; the saved low priority Iptr and Wdesc; the
processes waiting for communication on any of the links; processes waiting on any of the queues; a typed
memory dump as CBANs; or when you use nNSPECTI on a channel.

Failure to communicate

The debugger uses the extraordinary link handling library routines for communication with the target network.
This means that the debugger can recover if communication fails for any reason. This will normally be because
the debugger has failed to reset the network, or because it has been executed on the wrong PROGRAM fold.
This will be reported by the message:

Error : Cannot read processor 'n' (T414)

Default addresses

The debugger's 'Monitor page' maintains two default addresses. These are the address of the last disas
sembly, and the address of the last other memory display. This means that you can disassemble a portion

312 15 Tools

of memory, then look at its workspace as a hex dump, for example, then simply by typing '0' again, you will
still have the correct address to disassemble from.

IF, CASE and guarded ALT

The semantics of occam 2 state that an IF construct with no TRUE guards behaves like STOP. Similarly
a CASE construct with no matching selection also behaves like STOP. In both cases it is not necessary to
insert an explicit default case which simply STOPs. However, it can be a very good idea to do so, to aid
debugging. The way in which the debugging information is generated means that if either of these defaults
are taken, and there is no explicit default, the debugger can only locate to the line following the IF or CASE
construct.

However, if the default is explicitly stated, the debugger will locate to the STOP statement, which provides a
more immediate indication of the cause of the error. There is no object code size penalty in providing the
explicit case.

An ALT with all guards FALSE also behaves like STOP, and the debugger can only locate to the line following
the ALT construct.

ALT

Due to the way that ALT constructs are implemented on a transputer, all channels and timers waiting in a
single ALT will wait at the same location. The debugger will indicate this by locating to the first alternative of
the ALT, no matter which channel or timer is requested.

CASE input

In some circumstances a CASE input will stop due to an incorrect protocol tag being received, yet the sender
will appear to be sending a valid tag. Consider the following example executing on a single transputer:

PROTOCOL protoeo1
CASE

tagl
tag2 ; INT

CBAN OF protoeo1 e
PAR

INT x :
e ? CASE tag2 x

SEQ
e ! tagl
e ! tag2 ; 42

This will STOP on the CASE input, since 'tagl' has been sent. Suppose the inputting branch is executed
before the other branch of the PAR (Note that occam does not define which branch will be executed first).
It will then deschedule, waiting for communication on channel le'. The other branch of the PAR will then
proceed. It will communicate 'tagl', and return the waiting process to the active process queue. It will also
proceed to the next communication, where it will deschedule since there is now no process waiting to input.

The first process will then resume execution. It will test the value of the tag it received, namely Itag1',
and hence STOP. The debugger can then be used to locate to this CASE input. However, if you use the
debugger to look at the channel le' to determine which process was outputting on that channel, the debugger
will indicate that the second output ('tag2') is waiting.

This problem can only occur with communications involving variant protocols, when a tag with no data is
communicated.

15.1 Debugger

Deadlocks

313

now PLUS one.day -- wi11 10cate to here

IS 15625: -- Low priority
IS (60 * 60) * 24 :
IS one. second * secs.per.day

There is a simple method which can be used to help find the cause of a deadlock. Since the debugger can
inspect the transputer's links, it can be used to detect deadlocks which occur across more than one transputer
(use the Monitor page 'L' command). A problem only arises when a single processor has deadlocked. Then
there will be no active process from which the programmer can inspect channels, and hence jump to the
waiting process.

In practice, it is almost always known (or guessed) which channel or channels are causing deadlock. This
means that we can add a simple routine to help keep track of these channels. Consider the following simple
procedure:

PROC p ()
CBAN OF INT c
PAR

SEQ
c 99
c 101

INT x
c ? x

This procedure will deadlock, and the debugger will not be able to find out where the channel is stored in
memory.

The procedure can be transformed to:

PROC p ()
CBAN OF INT c :
CBAN OF INT stopper
PAR

VAL one.second
VAL secs.per.day
VAL one.day
TIMER time
INT now :
SEQ

time ? now
ALT

time? AFTER
SKIP

stopper ? now
SKIP

SEQ
PAR

SEQ
c
c

99
101 -- wi11 jump to here

INT x
c ? x

stopper 0

When this modified procedure is executed, it will appear to deadlock, as before. However, there is now a 'way
in' to the program. The debugger can be used to inspect the transputer's timer queue (using the Monitor page
'T' command), which will have a process waiting on it. You can then use the Monitor page '0' command, and
give it the Iptr and Wdesc of that waiting process. The debugger will then locate to the ALT statement.
You can then use the symbolic INSPECT key to inspect the channel 'c', which will be found to have a process
waiting inside it. Use the CHANNEL key to jump to the process waiting for communication, where the program
has deadlocked.

314 15 Tools

Note that the compiler does not insert these modifications automatically for many reasons. Firstly, one
philosophy behind this debugger is that the code being debugged is identical to that which is eventually
used. Note that the extra code portion inserted in the above example can be safely inserted permanently;
on a transputer, a process waiting on a timer consumes no CPU time. Secondly, in a typical program, there
would be many channels, and it would significantly increase the channel and PAR execution overhead, not to
mention the code size. Thirdly, if every channel had this type of extra debugging provided, there would be so
many processes waiting on the timer queues that it would be difficult to detect which was actually required.
Deadlocked channels can also be found using !lNSPECTI from the Monitor page.

15.1.8 Creating a core dump file

The debugger can read a file to find the contents of a transputer's memory. This is useful either when
debugging an EXE, or when debugging a PROGRAM which has used the host processor as part of the
network.

Debugging EXEs

The debugger can be used to debug EXEs which have been written within the TDS. When an EXE fails, the
server will detect that the transputer's error flag has been set, and allow you to re-boot the TDS. The TDS
loader will then allow you to create a core dump file. It will prompt you:

Options
c norma1 core dump
f : norma1 core dump + freespace
a : standa10ne core dump - a11 of memory
s : standa10ne core dump - part of memory
<RETURN> to skip

You should then select an option - when debugging an EXE you should use either 'C' or 'F'. If you type 'C',
the TDS will save all the relevant memory contents of a normal EXE. The length of the file will be the size
of the EXE's code, plus its workspace and vectorspace, plus about 25K bytes of extra information. If your
EXE uses the extra freespace parameter, as a dynamic buffer, you should type 'F', and the buffer will be
saved to the file too.

The TDS will then ask for the name of the core dump file:

Core dump fi1e name ("core.dmp") ?

Press IENTERI to accept the default name
or enter another filename (any filename extension will be replaced by , . dmp')

While writing the file, the TDS will display:

Writing core dump fi1e "core.dmp"

with further notes identifying the blocks of data written to the file.

Debugging standalone programs

The debugger can be used to debug PROGRAMs which have been written within the TDS, but are booted
directly by a server. These programs will use the host transputer (Le. the transputer which runs the TDS)
as part of their network. This means that simply re-booting the TDS will corrupt the contents of the first
transputer in the network. Instead, the debugger has the ability to read the first transputer's state from a file
held on the host filing system, and read the rest of the network directly as normal.

The TDS can be directed to save the state of the transputer as it starts up. This tells the server to analyse
the transputer, rather than reset it. The TDS will then allow you to create a 'standalone core dump' file in the
same way as for an EXE. You should use either the 'A' or'S' commands from the core dump menu.

15.1 Debugger 315

Use option lA' if your program uses all of the memory on the host transputer. If you type option IS', you will
be asked:

Memory size in ki10bytes :

You should type in the amount of memory which your program uses on the host transputer board. This must
include the code size, workspace, and vectorspace.

Next you will be asked for a filename, in exactly the same way as when creating an EXE's core dump file.

The TDS will then save that amount of memory in the core dump file, starting at the bottom of memory. The
file length will simply be the amount of memory saved, plus about 500 bytes for register contents, etcA

15.1.9 occam run time errors

This section lists the possible causes of run time errors. All the errors will have their effect defined by the
compi lation error mode:

• In HALT mode, they will halt the transputer.

• In STOP mode, they will stop that process, allowing other processes executing on the same trans
puter to continue.

• In REDUCED mode most of these errors will not be detected.

The compiler will perform as many of these checks as possible when compiling. For instance, if an array is
subscripted by a constant value, the range check is performed by the compiler and no extra code is inserted
to check at run time.

STOP The STOP process is implemented to behave as though an error has occurred. So too are occam
constructs defined to behave like STOP:

,IF An IF construct with no true guard will STOP.

CASE A CASE construct with no ELSE option will STOP if no option is matched.

ALT An ALT construct with none of the boolean guards of its alternatives true also
behaves like STOP.

Arithmetic errors Arithmetic overflow, divide by zero, etc., cause an error.

Also any Floating-point calculations will cause an error if any of their inputs are either infinity, or 'Not
a-Number'. This can be avoided by explicit use of the IEEEOP library routines. See the occam 2
reference manual for details.

Shifts Shifting an integer by more than the number of bits in its representation will cause an error.

Type conversions When converting a value from one type to another, the value must be able to be
represented in the target range, or an error will be caused (e.g. a BYTE must lie in the range 0-255).

Rep1icators Any replicated construct (SEQ, PAR, IF, or ALT) with a negative replicator count will cause
an error. A zero replicator is permitted.

Array accesses Any accesses to elements outside the range of an array will cause an error. This also
applies to segments of arrays.

If a segment of an array is assigned to another segment of the same array, the two segments must
not overlap.

316 15 Tools

The sizes of an array must correspond when an array is passed as a parameter to a procedure or
function, or when an array is assigned or abbreviated. Zero length segments are allowed.

The range. checking compiler option can be used to disable these forms of error checking.

Abbreviations If the same element of an array is abbreviated twice in the same scope, an error will be
caused. The a1ias •checking compiler option can be used to disable this form of error checking.

Communications Attempting to communicate a zero length array on a channel of type CHAN OF ANY
will cause an error. Howev~r, you may use a zero length counted array communication.

A CASE input process, where the communicated tag does not match any of those supplied, will
cause an error.

RETYPES Any RETYPES expression must be aligned to the correct word or byte boundary
(e.g. you may not RETYPE bytes 5, 6, 7 and 8 of a BYTE array as an lNT32, since lNT32s must
be aligned on a word boundary).

PRl PARs If a PRl PAR is executed from within a high priority process, an error will be caused.

15.2 Transputer network tester - nettest

Introduction

A number of 'worm' programs have been developed, for use in exploring, testing and debugging various
transputer hardware systems. Some of these have been put into a single program, nettest, for use as a
general purpose diagnostic tool. An algorithm for relating the physical network found to the one which the
user specifies is also included.

This section describes the transputer network test program, gives interpretations of the error messages, and
describes some of the more common problems encountered in running multiple transputer networks.

15.2.1 What the network tester does

This section describes the use of the transputer network test program, both for checking the configuration
in which a number of transputers have been connected, and for pinpointing any hardware problems. The
program is run as an EXE under the transputer development system. Any of the available links may be
connected into a network of transputers, with a reset cable from the subsystem socket of the master transputer
controlling the rest of the network. One of the links connects the master transputer to the host computer,
and this link should not be tested (If it is the program will crash). In the rest of this section, the term 'master
transputer' is used to describe the processor on which the network test program is run.

The network test program executes by sending a worm into a network of transputers. The worm explores the
network, reaching every single transputer that is connected, no matter what configuration, and reports back
the configuration which it finds. No initial assumption is made about the network. This should be contrasted
with the loading of a network of transputers with a program of fixed configuration, which is the normal approach
to developing programs using the transputer developrnent system.

Connections made via a C004 link switch are invisible to the worm, but a link connected to the control link of
a C004 can be identified as such.

The worm algorithm is described in INMOS technical note 24, 'Exploring multiple transputer arrays'. It is
important to realise that the worm numbers transputers in the order in which it finds them, which may bear
no relation to any conceptual order which the user has in mind.

For ease of use, however, the network test program can compare the network it has found against a user's
PROGRAM specification, and give results in terms of the user's numbering, together with a statement on
whether or not the two networks match.

15.2 Transputer network tester - nettest 317

The worm proceeds in two phases. Initially, each transputer in the network is loaded with a copy of the worm
program. As this happens, information about each new transputer found - the loading data - is relayed
back to the master and displayed. At the same time, the error flag is briefly set high on the newly found
transputer (halt on error has been set to falsel) which may light up an error light, and is detected by the
master in order to determine that error signals are being propagated back correctly. The error flag (and, in
the case of transputers with a floating point unit, the FPU error flag) is then left cleared.

Once the entire network has been explored, any further tests are performed on all transputers in the network
in parallel. The 'network test data' thus found, including a complete list of link connections, is reported.

Having completed testing, the program starts again by resetting or analysing the system and sending in a
fresh worm.

15.2.2 Using the network test program

The program is loaded and run as an EXE. If you want the results to be filed, then run the program while the
cursor is pointing at a fold bundle.

If you want to match results against your own network configuration, run the program with the cursor pointing
at your PROGRAM fold. If the matched results are to be filed, then pick the descriptor fold from your
PROGRAM fold, and put it inside a fold bundle.

You are then prompted for an option. These are listed in the next section. Different options are appropriate
to different circumstances, but for a quick check, try option cC'.

Atter selecting an option, you will be prompted for a link from which to send the worm. When the master
transputer controls a module motherboard, this will usually be link 2. The link connected back to the host
computer must not be selected; if it is the program will crash (this is usually link 0).

Some options allow both links 2 and 3 of the master to be tried. Usually only one connection is made from
the master into the rest of the system, but it is often useful to be able to explore a network from two different
directions, in order to pin-point an error.

Finally, you will be asked whether you want results displayed in brief or in full. Full mode presents all results
available, and is described in the following sections. Brief mode simply presents a summary of results
whether a hardware error has been found, and whether the network found will match the one specified by the
user (if, indeed, one was specified). This may be useful for long test runs, for example for a 24 hour burn-in.

Atter a 3 second delay, testing is repeated, until a key is pressed. If results are being filed, a new file will
appear for each run.

A note on matching

The problem of matching two networks is not trivial.

The worm uses its own numbering as it explores the network of transputers, and matches what it has found
against the description of the user's PROGRAM configuration (if given). So long as the two networks match,
the worm gives results using the user's numbering scheme. If, however, no match is found (which is always
the case if no PROGRAM configuration is given), the worm's own number will be given, suffixed by a·.

The master transputer is never included in a PROGRAM description, but is reported by the worm as MT·.

The matching algorithm is as follows. While the worm loads the network, each time it finds a new transputer it
consults the configuration specified in the descriptor fold to see whether it matches. However, if the physical
network contains more transputers, or more links, than the network specified, the matching may be incomplete;
consider for example the situation when an extra connection is present in the physical network, and the worm
loads through it onto a transputer which does have a counterpart in the PROGRAM descriptor. The matching
algorithm cannot know immediately that the worm has found a transputer which is described in the descriptor.

318 15 Tools

As the worm returns the network test data, together with a complete map of the link connections, results are
reported using the (possibly incomplete) numbering equivalence discovered above.

However, once all the results are returned, and a complete list of link connections established, the link map
is used to discover any new equivalences between the network found and the network specified. If new
equivalences are indeed found, then the network test data and link map is again displayed, using the user's
numbering scheme as far as possible.

While all transputer types share the same basic instruction set, there are some differences (wordlength, on
chip FPU, 2d block move, etc.) which affect compatibility. For the sake of matching the type of a transputer
found in the network against a PROGRAM descriptor, th~ following compatibility sets are distinguished:

{T212, T222, M212}, {T414}, {T800, T801}, {T225}, {T425}, {T805}.

Limitations of use

Different pre-programmed options are available to suit different classes of configurations. Systems with
memory mapped peripherals, IMS M212 disk controller chips, IMS T414 revision A transputers, and the
control links of IMS C004 link switches require careful selection of the right option in order that the state is
not corrupted.

The term T2 is used below to describe the IMS T212, IMS T222 and IMS T225 range of chips, similarly for
T4 and T8. Reference to the C004 means connections to the control link of the C004 - connections made
via a C004 are of course transparent to all options.

15.2.3 Options available

The following options are available:

~ - Check T4/T8/C004 network using internal RAM

The network is explored, but no testing is performed, by a program which only requires less than 2Kbytes
of memory on each transputer (except, of course, the master). The network may consist of any combination
of 32-bit transputers and C004's. This is the only option which can explore networks containing IMS T414's
of revision A and is used both to locate such devices (which should ideally be upgraded) and to check
configurations in which one or more transputer has no external memory.

~ - Check T2/C004 network using internal RAM

As option A, but for T2's and C004's. This option again requires only 2Kbytes of memory on each transputer
- it fits inside internal RAM and makes no access to external RAM.

@] - Check IMS M2121T21T41T8 networks

A network of mixed wordlength transputers is explored, but no testing is performed. The size and speed of
external memory is found. This is the only option which will explore networks of mixed wordlength (16 and
32-bit transputers), and it is also safe to use with IMS M212 disk controller chips.

~ - Test T41T8 networks

A network of 32-bit transputers is explored, and all devices found are tested. The parameters used for testing
can be varied, or certain suitable defaults used. These are outined below. Section 15.2.7 describes the
testing in more detail. The worm requires 8Kbytes of memory to operate. The following sections outline the
different modes of testing T41T8 networks.

[!] - Test T2 networks

A network of T2 transputers is explored, and all devices found are tested. The worm requires 8Kbytes of
memory to operate. The following sections outline the different modes of testing T2 networks.

15.2 Transputer network tester - nettest 319

[Q] - Development mode

This mode allows you to explicitly set certain testing values. These are described in section 15.2.7.

[§] - Error light testing

This mode proceeds slowly, flashing the error light on and off on each transputer as it is found. All modes
toggle error, but this one holds the light on for long enough for you to see it clearly. This is useful both for
testing the error LED and for following the progress of the worm.

[£] - Full testing

This mode tests links and all the memory it finds on each transputer, with pauses to test for data retention.
This means that it loads up the network very slowly, for it is testing the bottom 8Kbytes of memory (the area
to be occupied by the worm) thoroughly before loading each transputer.

An algorithm is used to determine the size of memory. The untested remainder of the memory, and the links,
are thoroughly tested once the whole network of transputers have been loaded. Since memory is not tested
on the master transputer, there may be a pause after results come back from the master transputer, before
data from the rest of the network is returned.

[g - Link test

This mode loads up the network, and then tests all the links in the network in parallel. Because the network
is loaded quickly, and a lot of power is drawn due to all links and the processor working flat out in parallel,
this mode is useful to 'warm up' a network if a temperature-dependent problem is suspected.

[[] - Memory test

As in mode F, 8Kbytes of memory is tested on each transputer before loading, and the remainder is tested
at the end. However, there is no pause to test for data retention. This makes this mode much faster but less
thorough than mode F. Links are not tested.

ffi]- Help

A comprehensive set of help windows are available to help the user.

[§] - Quit

The program terminates without exploring the network. However, it does reset all input links of the master
transputer, and also resets the subsystem.

15.2.4 Interpretation of loading data

This section covers the table of data which appears as the network is loaded.· Each new entry in the table
corresponds to a new transputer which has been found. The first entry is from the host transputer.

Typically, the table looks somtething like this:

Id
Boot
Link

Booted by
Id Link Type

Anal.ysed Error
Speed or Reset Line

Mem.
Speed

MT. T414b -15 Reset ok 5 cycl.e
o 1 MT. 2 T800d -20 ok ok 3 cycl.e
1 0 0 3 T801a -22.5 ok ok 2 cycl.e

A classic problem is that a network is found on the first run of the worm, but not on subsequent runs. This
indicates that the reset cable is not connected to the subsystem socket of the master transputer correctly.
The network of transputers always powers up in a reset state, ready to run a program, but if the reset cable
is not connected correctly, then the network cannot be reset for another run of the worm.

320

Id

15 Tools

As far as possible, the numbering scheme is as specified in the user's PROGRAM. However, if no PROGRAM
descriptor fold is found, or the networks don't match exactly (see the note on matching, above), then the
worm's own numbering will be given, suffixed by a·. In certain cases, such as a module motherboard or
IMS 8003, the worm's numbering will conveniently match the standard numbering of transputers. MT· is the
master transputer.

Link

Links are numbered 0, 1, 2, 3. The boot link is the link on which the transputer was booted by the worm.
(Note that this is not necessarily the same as the way a PROGRAM would be booted.)

Booted by id, link

These entries indicate which parent loaded the transputer. The master was loaded by no-one. So, in the
example given above, link 2 of the master transputer booted transputer 0 on link 1, and link 3 of transputer
obooted transputer 1 on link O.

Type

The type and revision of the transputer is given. The main reason for giving the revision number (a, b, etc)
is to identify early sample devices which the user may still be using. Note that, at this stage, the worm does
not distinguish an IMS M212 from an IMS T212 (see section 15.2.5).

Speed

The speed of the part (in MHz) is reported.

Processor analysed

Every transputer has an internal flag which indicates whether the transputer was most recently reset or
analysed. The worm reads this flag, and sends the results back. The purpose of this is to check that both
the reset and analyse control signals are correctly propagated through the system.

On alternate runs, the master will reset, then analyse the system. If the flag matches what was expected, then
the message ok is given. Otherwise, a message Reset not Anal.ysed or Anal.ysed not Reset is
given, and a fault in the reset/analyse chain should be suspected.

The flag on the master transputer, however, is either Reset or Anal.ysed, but should not change during
repeated testing.

Error Line

The error line is tested each time the worm finds a new transputer. If it is working, the message ok is
reported. If the line is broken, the message Not set will appear.

On the master transputer, however, it is expected that the error line is clear. If this is not so, then the message
Not cl.ear will appear. The same message may also appear the first time that the worm is run - this
is quite normal, and is due to the fact that error may have been set on one of the transputers (transputers
power up with the error flag in a random state).

Since the worm leaves the error flag low, option C is useful when a user wants to clear error (and, in the case
of transputers with floating point units, the FPU error flag) on all transputers in a network.

Memory Speed

The speed of external memory is given. Since it is possible to buy transputer modules with different banks of
memory operating at different speeds, it should be noted that it is the first word above 4kbytes that is used
for this test.

15.2 Transputer network tester - nettest 321

15.2.5 Description of network

Having completed loading the network, further tests may be performed, according to the option selected.
Sometimes, the program may appear to pause while returning results. This is because it is still testing some
transputers. Results are then returned, together with a complete list of link connections.

Here is an example of some results returned (using option F), from a particularly bad network:

Memory Link: 0 1 2 3
Id Type Found Tested Id Link Id Link Id Link Id Link

------- ------- ------- -------
MT* T414b 0 1

0 T800d 256 k ok 0000 MT 2 0000 1 0
1 T801a 64 k #80008014 0 3 Link Err 17 0000 #80000800

Memory is tested in two phases. Firstly, as the network is loaded, a transputer tests a section of its neighbour's
memory before loading the program. Then, once all the transputers have been loaded, each transputer tests
the remainder of its own memory. If a memory error is found at the first stage, it is reported under the link
which was doing the testing. At the second stage, the error is reported under Memory Error.

Type

IMS M212 is now distinguished from the IMS T212, otherwise the type of transputer is repeated.

Memory found

All options except A, B (which assume that no external memory is present) will find out how much memory
is available. In the example above, 256 Kbytes of memory have been found for transputer 0, 64 Kbytes for
transputer 1. The memory of the master transputer is never investigated.

Memory tested (applies to options D, F, M)

If an option is selected which tests memory, it will first find out how much memory is present, and then test that
amount of memory. A given memory size can be explicitly selected by using option D (see section 15.2.7).

Testing memory can take some time, (up to 30 seconds per megabyte), and the program will pause while
this is happening.

ok indicates that memory has been tested successfully, while -- indicates that memory was not tested. If an
error is found, it will be reported as a hexadecimal address. This address should give the actual byte which
is at fault. In the example given, there is a problem in the memory of transputer 1 at address #80008014.

Network connections

Each transputer has four entries, corresponding to its four links. Each entry may be

---- indicating that the link has not been tried (applies to master transputer);

0000 indicating that the link is unattached;

x y indicating that the link is attached to link y of transputer x;

or an error message. Such a message indicates either a problem on the link, or on a transputer attached to
that link. It does not necessarily imply a problem on the transputer being reported. Read section 15.2.7 for
a background to the error messages.

322 15 Tools

15.2.6 Error messages

The error messages are listed below. Some of the messages may refer to a particular 'stage', which is the
stage of testing at which the error occurred. Certain errors tend to be revealed at particular stages, but for
completeness the stages are listed in section 15.2.8.

#8000abcd - Options DJ FJM

Before a neighbouring transputer is loaded with code, part of its memory is tested using-the peek and poke
facility of the transputer. This error indicates that a neighbouring transputer has indeed been found, but
that its memory is faulty (or does not exist) at the address given. If the value is in the range #80000000
to #800007FF (IMS T414) or #80000FFF (otherwise), then the problem lies in internal RAM. Otherwise,
up to a highest tested address of #80001FFF (8K), the problem lies in external RAM. Don't forget that a
transputer must have 8Kbytes of RAM for this test to succeed.

In the example, the entry #80000800 indicates that the first byte of external RAM is faulty on the transputer
which is connected to transputer 1 link 3. The most likely explaination in this example is that it has no external
memoryl

Token error x - all options

When waiting for a reply on a link under test, an unknown token has been returned, at stage x. This may
indicate a problem on the links (e.g. they are communicating at different speeds, or noise) - this usually
appears as Token Err 1.

If an option is selected which doesn't check memory, a Token Error may indicate a memory problem on the
adjacent transputer; when a transputer is first booted, it returns a copy of the program code for confirmation,
which may have been corrupted. This usually occurs as Token Err 9.

Time out error x - all options

When waiting for a reply on a link under test, no reply has been received within a reasonable time, at stage
x. For some reason, the neighbour failed before it was properly loaded.

If an option is selected which doesn't check memory, Time Out 9 may indicate a memory problem on the
adjacent transputer; the transputer has been loaded, but does not run. This might happen, for example, if
option C is used on a network which includes a transputer with no external memory.

Time Out 18 indicates that a link, which was expecting to pass back results from further down the chain,
has not received anything. This error will usually be part of a line of results which is otherwise a repeat of a
previous line - the transputer has reported results, but now wishes to revise its report to indicate an error.
It means that, although the worm was successfully loaded, it has subsequently failed somewhere down the
chain from the link indicated.

Alt error y - all options

While waiting for a reply on link y, an unrecognised token was input on this link. This frequently occurs when
two links are communicating at different speeds. It can also occur if a link is unconnected and floating (Le.
is not pulled down using an appropriate resistor). Check link y on the same transputer, as well as the link
which reported th is error.

Link error x - options DJ FJL

When testing the links, corrupted data was transmitted at stage x (probably stage 17, which is when the links
are tested exhaustively). This may be due to noise on the line, because of insufficient decoupling, or strong
electical interference, for example. Or it might indicate a problem with the transputer link at either end, though
this is rare.

More often, this error indicates a fault in the section of memory where test data is prepared. This occurs
when the links but not the memory are being tested (Le. option L). Try again with option M or F.

15.2 Transputer network tester - nettest 323

In the example, the entry Link Err 17 indicates a problem on link 1 of transputer 2. Since option F was
used in the example, this implies that data was being corrupted during transmission between transputer 2
link 1 and the attached neighbour.

Output error x - all options except A, B

The worm has failed to output data on a link, despite the fact that it has already discovered the link to be
attached to another transputer. This implies that the neighbouring transputer has died, for some reason.

? #z

An unknown error message has been returned to this link. The hexadecimal error value, z, mayor may not
be useful. If an option has been used which performs no testing, then try again with, for example, option F.

15.2.7 Testing specifications

To understand how a worm works, it is essential that Technical Note 24 is read. The program explores the
network, using one of five worms, corresponding to options A, B, C, 2, and 4. These have been called the
'Skinny' (T2, T4), 'Mixed Network', and 'Fat' (T2, T4) worms. All five will exercise the reset, analyse and error
lines, but the first three do not have any means of testing memory or links.

The fat worm, on the other hand, performs tests on memory and links using parameters supplied to it. The
various options E, F, M, L, set defaults which have found to be suitable, while option 0 allows the user to
alter the defaults. The sections below which describe the testing of memory and links refer to the fat worm.

Order of loading

The worm explores the transputer links in the order 2, 3, 0, 1 (Le. from a particular transputer, it first tries
to explore any network off link 2, then off link 3, etc.). This contrasts with the order given in technical note
24. The order of exploration means that the numbering scheme which the worm uses matches the actual
numbering of transputers when module mother boards and IMS B003s are explored.

Size of system

The limit on the size of system (number of transputers) which can be explored is displayed by the program.

Speed of part

The speed of the processor is found by performing 1 « x for a suitable value of x. This is known to
take x cycles, and by using the transputer's internal clock, which ticks at a constant rate of once every 64
microseconds at low priority, the number of cycles performed per second can be deduced.

Memory size and speed

The speed of memory is found by timing repeated executions of Block Move of data onto itself. This is
performed at 4Kbytes up from the base of memory.

The memory size algorithm sweeps through memory, writing a marker, until either it encounters the top of
memory or finds its own marker, indicating a wrap around. Hence this algorithm violates parity. If parity
checking is in use, then use option 0 to specify the size of memory to be tested.

Type

Recent transputer versions now support the LDDEVID instruction which returns a value giving the type and
revision of the transputer. Early transputers do not have this, and for them the type is worked out from the
wordlength and location of MemStart. A 16-bit transputer is easily distinguished from a 32-bit transputer,
for example, by using the transputer BCNT instruction (see 'Transputer instruction set - a compiler writer's
guide').

324 15 Tools

Reset and analyse

On alternate runs, the master will either reset or analyse the sUbsystem. This makes no difference to the
function of this program, but a register exists on the transputer which is read to tell whether the transputer
was reset or analysed, and hence confirm that these signals have been propagated correctly.

Error line

As each transputer (except the master) is loaded, its error flag is set, the master reads the subsystem error
line, and the error flag is then cleared before the worm proceeds to the next transputer. Thus, the Error Line
should be TRUE for every transputer, except for the master, when it should be FALSE.

Note that, on the first run, the error line may be TRUE for the master transputer - error flags may have been
set by a previous program, and not yet cleared. Indeed, when transputers power up, the state of the error
flag is not initialised. If, however, the value is TRUE for the master transputer on subsequent runs, or FALSE
for any other transputer, then a fault on the error line should be suspected.

Memory

Before loading a transputer with code, the parent tests the lowest 8Kbytes of memory using peek and poke.
This allows it to verify that the space which will be occupied by the worm, when it is loaded onto that transputer,
is indeed safe. An error which occurs at this stage is reported in the network test data as an entry under the
link which was performing peek and poke. It is possible to increase this value using option D.

Once loaded, the program uses an algorithm to determine how much memory it has. This algorithm has an
8Kbytes resolution, and may violate parity. In development mode (D). the user may specify the amount of
memory to be tested on each transputer, in Kbytes, with no risk of violating parity.

The remainder of memory, up to the largest memory address found, is tested on all transputers in parallel,
once all the transputers in the network have been loaded. Any error will be reported in the network test data
under the memory error column.

In both cases, the memory is tested as follows:

1 The address is written, as a word, to each word in the block to be tested.

2 After a pause of 1000 milliseconds, each word is read back, and checked, in turn, being replaced
by the BITNOT conjugate word.

3 After a further pause, each word is checked, and replaced by the value #55555555
(#5555 for T2's).

4 After a further pause, the words are checked and replaced by #A.~~l1JL~U

(#AAAA for T2's).

5 Finally, after a pause, the words are read and checked.

Option M does not use any pause. A different pause may be specified using option D.
The memory of the master transputer is not tested. The program does not perform detailed tests on the
memory (e.g. march tests, etc.) except as described above.

Links

Each link is tested for the existence of a neighbour by attempting to output a probe sequence, and waiting 250
milliseconds for a reply. This default is more than ample. Communication takes place using a byte protocol,
and if at any stage incorrect data is returned, the link is assumed to be bad, and no further communication
takes place on that link. If a communication with incorrect protocol takes place on the link which is being
probed, the error is reported as a Token Error, the entry being made against the link which was doing the
probing. If some unrecognised data appears on a different link, it is reported as an Alt error.

When a transputer is loaded, it immediately returns the program for checking. If the program has been
corrupted in transmission, this will show up as Token Error 9.

15.2 Transputer network tester - nettest 325

After all transputers in the network have been loaded, on receipt of a synchronise token, all links in the whole
network are tested in both directions in parallel. A test block of data, which is 128 bytes long and consists
of a section of the orginal program, is transmitted in both directions on each link. The input is checked,
and the exchange is repeated 2000 times on each link, independently. As far as possible, the constructs
OutputOrFai1 . t and I:nputOrFai1. t are used, so that the program can recover from, and report the
communication of bad data. An error appears as the entry Link Error 17 against the link which discovered
that its input data was corrupted.

Any links of the master transputer which are found to be connected into the rest of the network are tested in
the same way as the other links in the network.

15.2.8 Stages of loading

In technical note 24, the worm algorithm is described with reference to a number of different stages. These
stages are also useful in telling when an error was detected. The following list of stages refers to the fat
worm. Other worms may use a subset of these stages. The meaning of the tokens is described in technical
note 24.

1 Send a probe sequence from a link, to determine whether there is another transputer connected.

2 Set the bottom 8K of memory of the neighbour to word addresses.
Pass back a GreenLight. t token to the master. Pause for one second.

3 - 6 Read back and check data, writing a new word as we go.
After each stage, pass back a GreenLight. t token, and pause for one second.

9 Having determined that there is an unbooted neighbour with at least 8K of good memory, boot that
transputer with a copy of the worm program. The neighbour will return the program for checking.

11 Send down a set of initalisation data to the newly booted transputer. The booted transputer will
return a set of l.oadingData. Pass this back to parent, and synchronise with the master.

12 The neighbour, or someone further down the chain, is now testing its links.
Pass back GreenLight . t tokens. Do not timeout the link at this stage.

12 Also be prepared to pass back 1oadingData, and forward a Synchronise. t token.

12 When the neighbour sends back ReturnContro1. t and the number of transputers found so far,
it is assumed that the branch off that link has been completly explored. Try another link.

14 Once all links have been explored, return control to parent.

15 Synchronise the whole network, prior to final testing.

17 Test all links and memory in parallel.

18 Send results of testing, networkData, back to parent. Forward networkData from each link
in turn, reading from a link until NoMoreData. t is encountered. When all links have been read,
return NoMoreData. t to parent.

The dots which appear while the worm is loading indicate the return of the token GreenLight . t.

326

15.3 Memory interface program - memint

Introduction

15 Tools

The External Memory Interface Program allows the designer of a system to get the best out of the configurable
external memory interface on the IMS T414, IMS T425 and IMS T800 transputers.

The program allows the system designer to modify the values of simulated timing parameters of the memory
interface and see what effect the changes have. The program's user interface has a number of pages, some
of which have inputs on them, some of which have outputs and some of which have both. It is possible to
switch between pages at the touch of a button, and therefore to be able to see the effect of the input values
very quickly and change them easily.

It is possible to store both the current input parameters and the contents of the pages in folds. The input
parameters may then be read in by the program allowing continued development of a system. The pages,
stored in folds, can for instance be sent to a printer and the configuration table can be used as input to the
EPROM programmer program for placing in ROM.

The configuration table can also be used to generate PAL equations.

15.3.1 Capabilities

Input to the program can be divided into three broad categories:

1 Values of the various parameters of the memory interface itself, such as the periods of the various
Tstates.

2 Parameters of the system, such as the processor type and speed.

3 Parameters of the program itself, such as the labels and names of signals and the name to be used
if the parameters and pages are written to folds.

Given the above input, the program displays on its various pages:

1 General timings useful for any memory.

2 Times specific for DRAMS.

3 The waveforms of the address/data pins, programmable strobes and other timings.

4 The table of bits that makes up the memory configuration data and the addresses that those bits
occupy in memory.

15.3.2 Using the program

This section explains how to get started with the program and lists the various commands that it will obey.

Getting started

The program is in the form of a CODE EXE fold. First it is necessary to get the program into memory by
pressing the IGET CODEI key. Place the cursor on an empty fold and press the IRUN EXEI key.

The program will initialise itself, then the title page will be displayed.

15.3 Memory Interface program - memint

Commands

Key IDescription

327

0..5 Move to and display the corresponding page.

ICURSOR UPI Use to select the current input; the cursor moves to the next or previous input on the
ICURSOR DOWNI page. If there is only one input on a page then nothing happens. If there are no inputs

on the page then the help window is displayed.

ICURSOR LEFTI Used to scroll the waveforms page (page 4) horizontally. If used on any other page or an
ICURSOR RIGHTI attempt is made to scroll off the edge of the screen then the help window is displayed.

C Change the value of a parameter. It's action depends upon the type of the parameter
(see section 15.3.3). If there are no input parameters on the current page then the help
menu is displayed.

R Reset all the parameters to their default values; these are the values that the program
uses immediately after starting unless the parameters were read from a fold.

F Store the current values of the parameters and the contents of all the pages, other than
the title page, in folds (see section 15.3.5).

Q Quit from the program. The program will ask for confirmation, press Q again to confirm
the command.

IHELPI Displays the help window. This key may be used at any time to get the help window
(e.g. half way through typing in a new label for a strobe).

other Pressing any other key will cause the help window to be displayed.

The commands may be typed in upper or lower case.

15.3.3 Input

There are three main types of input parameter, which can be changed using C:

Cycle - C is used to obtain the next value in the cycle, wrapping round at the end of the cycle.

Number - A number is expected, terminated by any character other than 0 to 9 al'1d IDELETEI.
IDELETEI may be used to delete the last digit entered. The program prevents too many digits being
typed in. The value is checked and if it is outside the range for the parameter an error is produced
and the number must then be re-entered.

String - A string is expected, terminated by IENTERI. IDELETEI may be used to delete the last character
entered. The string is displayed between a pair of ". Entry of strings too long to fit between the It's
is prevented, excess characters being ignored.

The durations of the Tstates, the strobes and the wait period are measured in periods Tm. One period Tm
is half of the processor cycle time.

Memory interface parameters

1 The length of each of the Tstates, T1 to T6, is entered as a number of Tm periods between 1 and 4.

2 The time periods of each of the programmable strobes, S1 to 84, is entered as a number between
oand 31. Note that 0 is a special case, if the period of 81 is set to 0 then notMemS1 stays high
throughout the memory cycle and if the period of 82, 83 or 84 is set to 0 then the corresponding
signal will stay low throughout the memory cycle.

3 The refresh period cycles between 0, 18,36,54 and 72 clockin periods. If the value is 0 then refresh
is disabled.

4 The write mode cycles between early and late.

328 15 Tools

5 The configuration cycles between 0 to 11 and 31 for the IMS T414 and 0 to 15 and 31 for the
IMS T800 and IMS T425. This indicates whether the current parameters match one of the preset
memory configurations of the transputer. These configurations may be chosen by cycling through the
values of this parameter. When modifying other parameters, it is possible for the resulting parameters
to match one of the preset configurations, if so the value will indicate which preset configuration this
is, if not then 1_' is displayed instead of a number.

System parameters

The type and speed cycles between IMS T414-15, T414-17, T414-20, T800-17, T800-20, T800-22,
T800-25, T800-30, T800-35, T425-17, T425-20, T425-22, T425-25. T425-30. and T425-35. For the
IMS T400 use IMS T425-20.

2 The clock frequency should not be changed; it should be left at 5000kHz.

3 The wait parameter may be set either to a number greater than or equal to O. or to one of the
programmable strobes, S2 to S4. simply by either typing in the number or 8 followed by a number 2
to 4. Note that connection to S1 is meaningless and therefore not allowed. Connection to a number
means that number of Tm periods of delay have been inserted by external hardware.

Program parameters

Each strobe has two labels each of which is a string. One is 9 characters long and is used on the
waveforms page to label each waveform. The other is only 1 character long and is used extensively
in the timing pages.

2 The file name is a 20 character string used as a label on the folds produced by F.

15.3.4 Output

There are two types of output:

• Numeric output

• Waveform output

Numeric output

Three pages consist entirely of numeric output; for basic times, DRAM times and configuration table.

Basic times

The basic times page contains general times useful for every type of memory:

TOLOL Cycle time (in both nanoseconds and processor cycles)
TAVQV Address access time
TOLQV Access time from notMemSO
TrLQV Access time from notMemRd
TAVOL Address setup time
TOLAX Address hold time
TrBQX Read data hold time
TrBQZ Read data turn off
TOLOB notMemSO pulse width low
TOBOL notMemSO pulse width high
TrLrB notMemRd pulse width low
TrLOB Effective notMemRd width
TOLwL notMemSO to notMemWrB delay
TDVwL Write data setup time
TwLDX Write data hold time 1
TwBDX Write data hold time 2
TwLwB Write pulse width
TwLOB Effective notMemWrB width

15.3 Memory interface program - memint

DRAM times

329

The DRAM times page contains information useful when using drams:

T1L1B notMemS1 pulse width
T1B1L notMemS1 precharge time
T3B3B notMemS3 pulse width
T3B3L notMemS3 precharge time
T1L2L notMemS1 to notMemS2 delay
T2L3L notMemS2 to notMemS3 delay
T1L3L notMemS1 to notMemS3 delay
T1LQV Access time from notMemS1
T2LQV Access time from notMemS2
T3LQV Access time from notMemS3
T3L1B notMemS1 hold (from notMemS3)
T1L3B notMemS3 hold (from notMemS1)
TwL3B notMemWrB to notMemS3 lead time
TwL1B notMemWrB to notMemS1 lead time
T1LwB notMemWRB hold (from notMemS1)
T1LDX Write data hold from notMemS1
T3BQZ Read data turn off
TRFSB Time for 256 refresh cycles (in microseconds)

Configuration table

The configuration table page contains a list of bits that make up the memory interface configuration
respresented by the input parameters together with the addresses that those bits occupy when
placed in ROM.

The basic and DRAM times pages each have a list of parameters. Each of these parameters consists of a
JEDEC symbol, a description of the parameter, and the minimum and/or maximum times for that parameter.

The number of wait states is displayed on the parameters page.

Waveform output

The waveforms page displays a diagram of the waveforms of each of the external memory interface pins.

At the top of the page is displayed the processor clock and the Tstates, a number indicating the Tstate, 'W'
indicating a wait state, and 'E' indicating a state that is inserted to ensure that T1 starts on a rising edge of
the processor clock.

Below this are displayed the waveforms of the programmable strobes, the read and write strobes and ad
dress/data pins. Each of these is labelled with the corresponding label parameter.

The point at which the read data is latched is indicated by a 'A' beneath the read cycle address/data waveform.

The MemWait waveform shows the input to the MemWait pin. If the wait input is a number then it goes low
n Tm periods after the end of T1 and high again at the end of T6, if the wait input is connected to a strobe it
goes low and then high when that strobe does so.

15.3.5 Storing and retrieving parameters and pages

The F command causes the program to write out two folds. These two folds are inserted as the last items in
the fold bundle on which the cursor was placed when the program was run. Repeated use of f results in a
pair of folds each time.

The first of the folds contains the current values of the input parameters. If the program is run with the cursor
pointing to a fold bundle with one of these folds as the first item in the bundle then the parameters will be read
from the fold and a message displayed. This enables continued development of a memory configuration. It

330 15 Tools

is strongly recommended that no changes be made to the contents of this fold directly as this may cause
problems should it later be used as input to the program.

The second of the folds contains a fold for each page apart from the title page. These folds contain the text
of the pages making, for example, printing the waveforms very easy. The fold containing the configuration
table can be used as part of the input to the EPROM hex program to make placing the configuration in ROM
easy. It is strongly recommended that no changes be made to the contents of the configuration fold directly
as this may cause problems should it later be used as input to the EPROM hex program.

EMI Configuration Parameters
============

Device se1ection - T414-20
Externa1 Memory Interface c10ck period (TIn) = 25 ns

Input c10ck frequency = 5000khz
Wait States = 0

Address setup time Tl = 1 periods TIn
Address ho1d time T2 = 1 periods TIn
Read cycle tristate / Write data setup T3 = 1 periods TIn
Extended for wait T4 = 1 periods TIn
Read or write data T5 = 1 periods TIn
End tristate / Data ho:Ld T6 = 1 periods TIn
Proqrammab1e strobe "notMemSl " "1" Si 30 periods TIn
Proqrammab1e strobe "notMemS2 " "2" S2 = 1 periods TIn
Proqrammab1e strobe "notMemS3 " "3" S3 = 3 periods TIn
Proqrammab1e strobe "notMemS4 " "4" S4 = 5 periods TIn

15.3.6 Examples

This is some sample output, taken directly from the folds produced by pressing F:

Paqe 1

Re~resh period 72 c10ckin periods
Write mode Late

Wait
Configuration

o
o

Non-Proqrammab1e strobe (SO)
Read cycle strobe
Write cyc1e strobe

"notMemSO " "0"
"notMemRd " "r"
"notMemWrB" "w"

15.3 Memory interface program - memint

Paqe 2 Basic Times

331

Symbol

TOLOL
TAVQV
TOLQV
TrLQV
TAVOL
TOLAX
TrBQX
TrBQZ
TOLOB
TOBOL
TrLrB
TrLOB
TOLwL
TDVwL
TwLDX
TwBDX
TwLwB
TwLOB

Parameter min(ns)

Cycle time 150
Address access time
Access time from 0
Access time from r
Address setup time 25
Address hol.d time 25
Read data hol.d time 0
Read data turn off
o pul.se width low 100
o pulse width hiqh 50
r pulse width low 50
Effective r width 50
o to w delay 50
Write data setup time 25
Write data hold time 1 75
Write data hol.d time 2 25
Write pul.se width 50
Effective w width 50

max(ns) notes

= 3 processor cycles
125
100

50

25

Paqe 3 Dram Times

Symbol Parameter min (ns) max (ns) notes

T1L1B 1 pul.se width 125
T1B1L 1 precharqe time 25
T3L3B 3 pulse width 25
T3B3L 3 precharqe time 125
T1L2L 1 to 2 del.ay 25
T2L3L 2 to 3 delay 50
T1L3L 1 to 3 delay 75 75
T1LQV Access time from 1 100
T2LQV Access time from 2 75
T3LQV Access time from 3 25
T3L1B 1 hol.d (from 3) 50
T1L3B 3 hol.d (from 1) 100
TwL3B w to 3 l.ead time 50
TwL1B w to 1 l.ead time 75
T1LwB w hol.d (from 1) 100
T1LDX Wr data hol.d from 1 125
T3BQZ Read data turn off 25
TRFSB 256 refresh cycl.es 3650 Time is in microseconds

332 15 Tools

Page 4 1 2 3 I 4 5 6

ProcCJ.ock / \ / \ / \ /

notMemSO (0) = \ /

notMemSl (1) = \

notMemS2 (2) = \ /

notMemS3 (3) = \ /

notMemS4 (4) =

MemWait \ /
READ CYCLE
MemAD X >--------------------< >--<

Read data J.atched here

notMemRd (r) = \ I
WRITE CYCLE
MemAD X X X

notMemWrB(w)= \ I

Page 5 Configuration Table
===========

15.3.7 Caveats

'7FFFFF6C
'7FFFFF70
'7FFFFF74
'7FFFFF78
#7FFFFF7C
#7FFFFF80
#7FFFFF84
#7FFFFF88
#7FFFFF8C
#7FFFFF90
#7FFFFF94
#7FFFFF98
#7FFFFF9C
#7FFFFFAO
#7FFFFFA4
#7FFFFFA8
#7FFFFFAC
#7FFFFFBO

o
o
o
o
o
o
o
o
o
o
o
o
o
1
1
1
1
1

'7FFFFFB4
'7FFFFFB8
#7FFFFFBC
#7FFFFFCO
#7FFFFFC4
#7FFFFFC8
#7FFFFFCC
#7FFFFFDO
#7FFFFFD4
#7FFFFFD8
#7FFFFFDC
#7FFFFFEO
#7FFFFFE4
#7FFFFFE8
#7FFFFFEC
#7FFFFFFO
#7FFFFFF4
#7FFFFFF8

o
o
o
o
1
1
o
o
o
1
o
1
o
o
1
1
1
1

Please note that the values supplied by the program are subject to alteration when IMS T414, IMS T425 and
IMS T800 characterisation data is added to the program.

15.4 EPROM hex program - epromhex

15.3.8 Error and warning messages

The following is a list of error and warning messages the program can produce:

Wait race

333

If one of the programmable strobes is used to extend the memory cycle then the strobe must be
taken low an even number of periods Tm after the start of the memory interface cycle. If the strobe
is taken low an odd number of periods after the start then a wait race warning will appear. Should
this warning appear, it will .remain on display on all pages apart from the title and waveforms page
until the race condition is removed. See the IMS T414 and/or IMS T800 data sheet for more details.

Input out of ranqe

If the value entered for a numeric parameter is outside the range valid for that parameter, an input
out of range warning is displayed, the value cleared from the screen and the program waits for a
new value.

Si to MemWait

If an attempt is made to connect S1 to the MemWait input an error is displayed because it is a
meaningless operation.

Unab1e to access fo1d

This can occur on startup and indicates that the program is unable to read and write folds, usually
because the program has not been run on a fold bundle. The program waits for a key press and
then terminates.

Fi1er unusab1e

This indicates that the program is unable to create the folds due to a previous error.

Fi1er error

This indicates that when trying to store the parameters and pages in folds an error occured. The
filer will be unusable for the rest of the program's execution.

15.4 EPROM hex program - epromhex

15.4.1 Using the program

The program must be run on a fold bundle. The fold bundle may contain up to three folds.

1 A CODE SC fold.

2 A CODE PROGRAM fold.

3 A memory configuration fold.

A CODE SC fold and a CODE PROGRAM fold are produced by the IEXTRACTI utility of the compiler, when
applied to an occam SC or occam PROGRAM fold set respectively. The memory configuration may be
produced as output from the 'Memory interface program' or may be generated by hand.

The only item which must be present in the bundle is the CODE SC fold. If no memory configuration fold is
present, no memory configuration will be loaded into the EPROM. Similarly, if no CODE PROGRAM fold is
present, no CODE PROGRAM fold will be loaded into the EPROM.

334 15 Tools

Two occam procedures are provided in source form as example loaders. One of these interfaces to a host
and loads a network from information received via a serial line and the other loads a network from information
obtained by scanning through a CODE PROGRAM held in the EPROM. These programs should be modified
for the environment in which they are to run, if the user wishes to create an EPROM which is to be used as
a loader.

15.4.2 What the EPROM hex program does

The EPROM hex program builds a buffer containing the future contents of the EPROM in the order:

1 Contents of the CODE PROGRAM fold (if present)

2 Contents of the CODE SC fold (the main procedure)

3 Transputer initialisation code

4 Memory configuration (if present)

5 Entry jump to the inititalisation code

These items, padded to word boundaries, are placed adjacent in the buffer. A transputer booting from ROM
starts executing with the instruction pointer set to location MOSTPOS INT - 1. The two bytes from this
address are loaded with a jump to the entry point of the initialisation code, or to a longer jump if the full
jump cannot be achieved using a two byte instruction. The position of this jump, therefore, governs the
actual address for all the other components of the EPROM. The size and start address of the contents of the
EPROM and how large an EPROM is required can then be calculated.

The buffer is built in the following way:

Stage 1
The fold bundle is checked to see if a CODE PROGRAM fold is present. If it is, the contents of this fold are
read directly into the buffer, which is then padded to a word boundary.

Stage 2
The contents of the CODE se fold are added to the buffer. At the same time the workspace requirement
and the entry point of the se are noted. The buffer is again padded to a word boundary.

Stage 3
The bundle is checked for a memory configuration fold. Note that this fold must be filed. A memory configu
ration is a list of pairs of numbers in the format:

configuration.address configuration. value

A configuration address may be in hex (preceded by 1#') or in decimal. A configuration value must be either
o or 1. A memory configuration fold must contain all of the configuration address value pairs, a fold which
contains some but not all of the values is treated as an error. A IConfiguration Table' page produced by the
memory interface program, which has been written to a fold, may be used without modification.

Stage 4
The code which initialises the transputer is added to the buffer directly after the CODE se. The initialisation
code does the following:

1 Copy 600 bytes from internal RAM to top of RAM if required.

2 Read and save the current state of the transputer if required.

3 Set up local workspace.

4 Initialise process queues.

15.4 EPROM hex program - epromhex

5 Clear Error and HaltOnError.

6 Clear FP.Error on a T800.

335

7 Initialise all link process words, the event process word and the high and low priority timer queues
to Empty.

8 Start the processor clock

9 Initialise the work space and parameters for the procedure in the SC.

10 Call the procedure.

The local workspace is initialised for the main procedure as though it had just been called from an outer level
process. The workspace is initialised for the following parameter list

PROC EPROM. SC (INT
[60]BYTE
VAL[600]BYTE
VAL[]BYTE

entry.point,
buffer,
memory. copy,
proqram.buffer)

The workspace initialisation depends on the presence of a CODE PROGRAM fold in the bundle and on the
response to prompts given by the EPROM interface program as it is constructing its internal buffer. All of the
parameters must be present to enable the EPROM Hex Proqram to supply a pointer to a separate vector
space if the SC has been compiled with a separate vector space. The use of the parameters in relation to
the actions of the initialisation code is described in more detail below.

entry. point is used when the main procedure is going to be used as a loader. This variable must then
be set by the procedure to the offset (from MOSTNEG INT) of the initial workspace pointer AND
entry point of the loaded code. This value is obtained from the loading information that the EPROM
loader interprets from the host, or from the included CODE PROGRAM. INMOS technical note 34,
'Loading transputer networks', describes the transputer development system loading protocol in
detail and shows how the entry point is sent to each processor in a network. On exit from the
loader procedure, the transputer's instruction pointer and workspace pointer will be set to the value
contained in entry. point.

buffer is used when the main procedure will load and analyse the transputer network. It has two uses. On
entry to the procedure, buffer contains the processor state information, retrieved by the initialisa
tion code, which enables the EPROM to emulate the actions of a processor which is analysing from
link. After any analyse function required has been completed, this buffer may then also be used as
an intermediate buffer for passing on code packets to processors later in the network, and passing
back data packets from processors later in the network.

memory. copy is used if the procedure analyses the transputer network. It contains a copy of the 600 bytes
of memory starting at MOSTNEG INT. This copy is the first action performed by the initialisation
code if the question in stage 5 'Insert copy for anal.yse (y In) ?' is answered yes.
The copy is performed, because the area of RAM copied contains information vital when analysing
a transputer, and the .EPROM uses the area as local workspace and thus destroys its contents.

proqram. buffer is used if the procedure loads a network from the contents of the EPROM. It is a
reference to the location of the contents of the CODE PROGRAM fold if there was one in the fold
bundle. If there was not a CODE PROGRAM fold in the fold bundle,
then (SIZE proqram.buffer) = O.

336 15 Tools

When the required components have been input and inserted into the buffer, the following information is
displayed:

• The total ROM requirement for code and data, in bytes.

• The workspace requirement of the main procedure, in words and bytes.

• The total RAM requirement of the code in the EPROM, in bytes.

The total RAM requirement of the EPROM is made up from:

• Transputer reserved locations from MOSTNEG INT.

• The (small) workspace of the initialisation code.

• The 60 bytes of buffer.

• The workspace of the main procedure.

• The separate vector space of the main procedure (if any).

If the EPROM is intended for use as a loader, the total RAM requirement must not exceed 560 bytes on a
T4 or TB and 464 bytes on a T2. The program produces a warning message if these values are exceeded.
If, however, the main procedure is not a loader the warning can be ignored.

Stage 5
The program will write the contents of the buffer into a new last fold of the bundle, labelled EPROM hex.
The first line of the new fold contains the start address for the code in the EPROM followed by the transputer
type. A typical example is:

.7FFFF22C T4

The rest of the fold consists of lines containing the EPROM contents as bytes written out in hexadecimal:

73 41 F7 72 30 AC 71 73 72 30 F7 72 30 71 F2 D1

00 00 66 02

Messages

The initial display is the title and version followed by the prompt:

Create Hex Tab1e For EPROM Program

Insert copy for ana1yse (y/n) ?

If n is typed then the initialisation code will not copy the bottom 600 bytes of RAM to the top of RAM and the
memory. copy parameter will not contain information for use by analyse.

If Y is typed then the initialisation code will copy the bottom 600 bytes of RAM up to the top of RAM; this
is the copy that is passed into the SC as the parameter memory. copy and contains information which is
needed when analysing the board. The program then prompts the question:

RAM size (in k-bytes) ?

The size may be entered in hex (preceded by 1#') or in decimal and is terminated by carriage return. The
initialisation code will copy to the 600 bytes immediately below the top of the RAM, calculated from this value
of the RAM size.

15.4 EPROM hex program - epromhex

The program will then display the message:

Bui1ding tab1e in buffer ...

and then either

Configuration tab1e read ok
or No configuration tab1e in buncUe

337

indicating whether or not a configuration table has been read and inserted into the buffer. This is followed by
the message

EPROM hex created OK

indicating that the EPROM code has been built. Information about the EPROM code is then displayed.

Tota1 ROM space requirement = number bytes
SC's work space requirement = numberwords, numberbytes
Tota1 RAM space requirement = number bytes

If the total RAM requirement is too large for the code to act as a loader, the program produces the following
warning message:

WARNING: total RAM space requirement exceeds maximum allowed for a
10ader (limit = number bytes)

If the main procedure is not a loader the warning can be ignored. The next message displayed is:

Writing hex to fo1d

This is followed by the termination message:

Press a key to exit

and waits for the user to press a key before terminating.

Error messages

Error messages produced by the program are:

Cannot open fold

Unreadable fold in buncUe

Cannot create file for write

Cannot open file for write

Code buffer overflow

Incorrect configuration value

A11 config values have not been filled

Fold bundle does not contain code file

Unknown transputer tarqet

338

15.5 Hex to programmer program - hextoprq

15 Tools

The Hex to Programmer program inputs a fold in the format output by the EPROM hex program, and outputs
it to the serial port (device name COMl:) in Intel Hex format. The program has been tested using the GP
XP640 EPROM programmer.

The program is provided in source form to illustrate how a fold prepared for EPROM may be transmitted to
a device or file. Many users will find that the program can be used without modification but if, for example
the EPROM programmer being used does not support Intex Hex format, then the program will need to be
modified. The program has been designed to make such modifications easy to make. The format specific
parts of the program are in PROC send. buffer and are also listed at the end of this section.

15.5.1 Using the program

The Hex to Programmer program should be applied to a fold containing data in the format output by the
EPROM hex program.

The first action of the program is to read in the data and check that the start address is correct for the amount
of data in the fold. The start address is checked by making certain that the code length read in, added to the
start address, places the last two bytes at the correct boot from ROM entry point for the specific transputer
type.

The startup title displayed by the program is:

Hex Tab1e To EPROM Proqrammer Proqram

This is followed by version and copyright messages, and then the message:

Readinq tab1e into buffer ...

When this is completed, information about the input data is displayed:

Transputer tarqet is T2/T4/T8
Start address = hex.number
Code size = hex.number bytes

If the transputer target is T2, this will be followed by the question:

Number of EPROMS on T2 board (1 (byte access) or 2 (word access» ?

This question is to determine whether consecutive bytes are to be written to a single EPROM (byte access),
or alternate bytes are to be written to two EPROMs (word access). Only word access is allowed for T4 and
T8 and so four EPROMs are assumed.

Depending on the response to the previous question, one of the following messages is displayed:

In word access mode
or In byte access mode

This is followed by the prompt:

EPROM size (in It bytes): (2, 4, 8, 16, 32, 64) (0 quits) ?

The EPROM size is used by the program to determine the start offset within the EPROM which corresponds
with the start address of the code read in. Only EPROM sizes large enough to hold the data are offered to
the user.

15~6 Write EPROM file program - promfile 339

The next message displayed is the help message for communicating with the EPROM programmer. The
contents of this message will depend on the interface provided to the programmer.

XP640 EPROM programmer
Connect XP640 to IBM's seria1 port (COM1)
Set XP640 to :

9600 baud
Inte1 Hex
8 data bits, 1 stop bit, no parity, handshake on

Commands are
?
D
W
{byte.no}
Q
S{byte.no}

type this information
disp1ay DEFine area (part of EPROM to be written to)
send fu11 words (only in byte access mode)
send selected byte (only in word access mode)
terminate session
display se1ected byte on screen

The program then prompts for a command:

Ready for command:

Before use the serial port (COM1 :) must be set up using the DOS command:

mode coml:9600,n,8,1

For other baud rates etc. the parameters to the mode command will need to be changed, see the DOS
manual for more information.

This is a more detailed version of the help information:

? displays the help information that has been listed above.

D displays the range of address in the EPROM that are to be programmed. This makes it easy to only
program the area of the EPROM that needs to be programmed thus saving time.

W sends every byte to be programmed out to the programmer. It is only usable in byte access mode
as it sends out both bytes of the word (remember this is only possible on a T2) one after the other.

byte.no sends only the selected byte from each word to the programmer (0 or 1 for a T2, 0 to 3 for a T4 or
TB) to enable each one of the EPROMs to be programmed individually with a single byte from each
word.

Q terminate the programming session (Le. exit from the program).

Sbyte.no displays the selected byte from each word on the screen.

15.6 Write EPROM file program - promfile

The Write EPROM File program inputs a fold in the format output by the EPROM hex program, and creates
up to four files containing the Intel hex of the EPROMS to be created. These files are compatible with the
input requirements of many EPROM programmers.

The files created are ROMBYTEO. HEX and ROMBYTE1. HEX for a T2 in word access mode,
FOLLROM. HEX for a T2 in byte access mode and ROMBYTEO . HEX, ROMBYTEl . HEX, ROMBYTE2 . HEX
and ROMBYTE3 . HEX for a T4 or T8. Note that word/byte access mode refers to the way the ROMs are
accessed on the target board and thus in word access mode the bytes in the word are placed into separate
ROMs and in byte access mode the bytes are placed contiguously in a single ROM.

340 15 Tools

15.6.1 Using the program

The Write EPROM File program should be applied to a fold containing data in the format output by the EPROM
hex program.

The first action of the program is to read in the data and check that the start address is correct for the amount
of data in the fold. The start address is checked by making certain that the code length read in, added to the
start address, places the last two bytes at the correct boot from ROM entry point for the specific transputer
type. J

The startup title displayed by the program is:

WRITE EPROM FILE PROGRAM

This is followed by version and copyright messages, and then the message:

Reading eprom contents fo1d

When this is completed, information about the input data is displayed:

Transputer target is T2/T4/T8
Start address = hex.number
Code size = hex.number bytes

If the transputer target is T2, this will be followed by the question:

Number of EPROMS on T2 board (1 (byte access) or 2 (word access» ?

This question is to determine whether consecutive bytes are to be written to a single EPROM (byte access),
or alternate bytes are to be written to two EPROMs (word access). Word access is assumed for T4 and T8
and so four EPROMs are assumed.

Depending on the response to the previous question, one of the following messages is displayed:

In word access mode
or In byte access mode

This is followed by the prompt:

EPROM size (in It bytes): (2, 4, 8, 16, 32, 64) (0 quits) ?

The EPROM size is used by the program to determine the start offset within the EPROM which corresponds
with the start address of the code read in. Only EPROM sizes large enough to hold the data are offered to
the user.

type this information
disp1ay DEFine area (part of EPROM to be written to)
write buffer as bpw fi1es (on1y in word access mode)
write buffer as sing1e fi1e

(on1y in byte access mode)
terminate session
disp1ay se1ected byte on screen

Q
S{byte.no}

D
B
W

The next message displayed is the help page for examining the potential EPROM contents or writing the files:

Commands are
?

The program then prompts for a command:

Ready for command:

15.7 Preparing a bootstrap and adding it to a program - addboot, wocctab

This is a more detailed version of the help information:

341

? displays the help information that has been listed above.

D displays the range of address in the EPROM that are to be programmed. This makes it easy to
only program the area of the EPROM that needs to be programmed thus saving time.

B writes the bytes to be programmed as either two or four files, depending on the word length
of the target processor. The files are named ROMBYTEO.HEX, ROMBYTE1.HEX (and ROM
BYTE2.HEX and ROMBYTE3.HEX for a 32-bit processor). The files are written using INTEL
HEX format and so can be used as input directly by many EPROM programmers. The bytes in
cluded in a file are only the bytes at a particular offset in each word in the EPROM. For example
ROMBYTE1.HEX contains all the Byte 1's for the whole EPROM. This is the way the EPROMS
must be written when they will be accessed as the individual bytes in word-wide memory.

W writes the complete program to a single file named FULLROM.HEX. It is only usable when the
EPROM will be accessed as a single bank of byte-wide memory by a 16-bit processor. This
option is not available when the program is intended for a 32-bit processor. The file is written
using INTEL HEX format.

Q terminate the programming session (Le. exit from the program).

Sbyte.no displays the selected byte from each word on the screen.

15.7 Preparing a bootstrap and adding it to a program - addboot, wocctab

A pair of tools is provided to support the conversion of a compiled separate compilation unit (a CODE SC)
into a bootable program file for a hosted single processor application. An example bootstrap loader is also
supplied for use with these tools, which enables a program coded as an SC with a particular formal parameter
list, to be bootstrapped on a transputer attached by any link to a host running iserver and supporting a
mechanism for determining the memory size at run time.

The tools and example loader are supplied as source and may be used as the basis for developing alternative
bootstrapping schemes.

15.7.1 The code to occam table converter wocctab

This tool may be applied to any SC foldset, in which there is a CODE SC fold created by means of the IEXTRACTI
utility. A new text fold will be added to the bundle, containing the contents of the CODE SC expressed as an
occam VAL [] BYTE declaration, with the name Tab1e.

The principal purpose of this tool is to enable the code of a procedure to be treated as constant data in a
program which intends to call it by means of the predefined procedure KERNEL. RUN (see section 11.3) An
example of the use of this tool is given in section 8.4

The user will be asked the following questions:

Inc1ude CODE SC header? (Y,N)

Y causes the header (see appendix G.4) to be included in the table.
Any other answer will cause the table to contain only the code itself.

Tab1e of BYTE or Strinq or Quit? (B,S,Q)

B causes the table to be expressed as hexadecimal bytes.
S causes the table to be expressed as an occam string, where characters are hexadecimal escape
sequences.
Any other response abandons the tool.

342 15 Tools

15.7.2 The bootstrap adder addboot

This tool may be applied to a CODE SC fold, or to an SC foldset containing a CODE SC fold called the
application program. It creates a bootable program in a host file, outside the TDS folded file store, by
prepending to the code a bootstrap composed of two parts. The first part is the primary bootstrap which
initialises the transputer timer, queue pointers, etc and calls the secondary bootstrap which it expects to read
on the same channel down which it was itself booted. The secondary bootstrap is read from another host
file which was created by applying IWRITE HOSTI to a CODE SC fold. The application program must have the
form of a standard hosted PROC (see section 8.1).

The user is given the option of making the primary bootstrap set or clear the HaltOnError flag. Otherwise the
primary bootstrap is fixed. The user is then asked for the name of the secondary bootstrap. Two precompiled
example secondary bootstrap loaders are provided, compiled for T2 and for TA transputers respectively. They
are used by pressing IRETURNI.

It is possible to create a customised secondary bootstrap from a CODESC using IWRITE HOSTI. The formal
parameter list of the secondary bootstrap must have a particular form:

PROC procname (CBAN OF ANY from.1ink,
CHAN OF ANY to.1ink,
VAL INT bytes.per.word,
VAL INT word.mem.start,
VAL INT word.free.mem.offset)

where: from .1ink and to .1ink are the input and output channels respectively of the transputer link
down which the transputer was booted.

bytes .per. word is the number of bytes per word on which the process is to run (4 for the T414,
T425 and T8DD and 2 for the T212, T222 and M212).

word.mem. start is the word offset of MemStart from MOSTNEG INT (18 for the T414, T212
and T222, 28 for the T425 and T8DD).

word. free .mem. offset is the word offset from MOSTNEG INT of the start of free memory,
that is, memory unused by the primary and secondary bootstrap code and workspaces.

The third and fourth parameters are determined by the transputer type.

15.7.3 The example two-stage loader

The secondary bootstrap supplied as an example for use with addboot works as follows:

It reads the header of the CODE SC which is to be made into a bootable file, to determine its workspace
requirements etc. This header must have the form described in appendix G.4 and must correspond to a
standard hosted procedure whose formal parameter list has one of the forms:

For occam code:

PROC program (CHAN OF ANY from.1ink, to.1ink,
[lINT user.buffer)

For non-Occam code:

PROC program (CHAN OF ANY from.1ink, to.1ink,
[lINT user.buffer, stack.buffer)

where: from .1ink and to .1ink are the input and output channels respectively of the transputer link
down which the transputer will have been booted.

user. buffer is the free memory buffer.

stack. buffer is the stack buffer for non-OCCam code. This is not relevant for TDS occam
programs.

15.7 Preparing a bootstrap and adding it to a program - addboot, wocctab 343

The parameter user. buffer is a vector that represents the amount of free memory that is still available
on the board for use by the program, that is, memory not already used by the program for its code and
workspace.

To calculate the actual memory available, the loader first reads the total memory size from the host environ
ment variable IBOARDSIZE. This communication with the host is performed after the program has been
loaded onto the transputer and before the program is started. The size of the free memory vector passed to
the program is given by IBOARDSIZE minus the combined program code and workspace allocation.

It then copies a relocatable loader from a table within itself (made by means of wocctab) to a place in memory
which will not be occupied by code of the application program. The memory is allocated according to the
following scheme and the application program is read from the boot channel and entered.

15.7.4 Memory allocation

The default bootstrap loader attempts to optimise placement of the programs, and its own code and workspace.
The rules it uses are as follows:

1 Application program code is placed as low as possible in memory, taking into account the scalar
work space requirement of the program and the requirements of the non-occam stack if present.

2 Application program code is placed above the memory required for the program's scalar work space
and the C, FORTRAN and Pascal stack if specified. The memory reserved by the bootstrap for the
program's code and scalar workspace will overlap the bootstrap's own work and code space.

3 If the program uses a separate vector workspace, the bootstrap reserves a portion of the program's
memory as vector workspace. From the size of this workspace, the size of the program code, and
the size of its scalar workspace, the bootstrap determines the offset, from the start of memory of free
(unused) memory. This offset is used in conjunction with the environment variable IBOARDSIZE
to determine the amount of memory available to the application program, which is then passed as a
vector parameter for the program to use.

4 If the program uses a separate stack for C, FORTRAN or Pascal code, the stack is placed at the
base of memory, beginning at MemStart.

Figure 15.1 shows the memory map of the loaded code as created by the default bootstrap.

~

Free memory

Vector workspace
(only if needed)

Code

Scalar workspace

Non-OCCam workspace
(if requested)

-

Top of memory

Base of memory (MemStart)

Figure 15.1 Memory map

16 System interfaces
This chapter describes a number of system interfaces associated with components of the transputer devel
opment system. These are provided for reference; it is expected that users will normally use the command
files and I/O procedures provided to carry out sequences of operations on these interfaces.

The interfaces described are:

1 Host environment variables.

2 The TDS loader.

3 The ITERM configuration file used by the TDS editor and debugger.

4 The host file server interface available across the link to the host when a standalone program is
booted up by the host file server.

5 The terminal interfaces provided over the channels keyboard and screen available to an EXE
running within the TDS.

6 The user filer interface provided over the channel array pairs to. user. fi1er and
from. user. fi1er available to an EXE running within the TDS.

7 Other interfaces between an EXE and the TDS.

16.1 Use of host environment variables

The TDS assumes five environment variables on the host system. These are listed below.

Variable Description
COMSPEC DOS command shell spawner.
IBOARDSIZE The memory size of the transputer board.
I TERM The file containing terminal keyboard and screen codes.
TDSSEARCB The list of directories on which the TDS will search for certain files if the

full pathname is not specified.
TRANSPUTER The address at which the transputer board is connected to the host if not

at the default address. Only used by the server.

On the IBM PC running DOS these are defined as environment variables using the set command. Host
commands defining these variables are included in the TDS3 command file.

16.2 The TDS loader and TDS start up process

The TDS loader is loaded by the iserver and in turn loads the code of the TDS itself. It is a bootable
program created by adding a specially crafted bootstrap to a CODE SC. The source of the loader and the
tool for adding the bootstrap are included in the software for information only. It is not expected that users
will need to modify these.

The loader can operate in reset or analyse mode. Analyse mode is required when a program running in
the TDS has stopped by setting the error flag, or when execution has been interrupted by user action at the
keyboard. When the loader is started in analyse mode it gives the user the opportunity to save the contents
of the root transputer in a core dump file for possible subsequent use by the debugger.

346

The DOS command file for calling the TDS contains commands such as:

iserver /se /sb \tds3\system\tds310ad.b4
-f \tds3\system\tds3.xsc %1 %2 %3 %4

:ana1yse
if ERRORLEVEL 0 goto exit
iserver /sa /sp 16 /se/si/ss/sc \tds3\system\tds310ad.b4

-f \tds3\system\tds3.xsc
goto ana1yse
:exit

16 System interfaces

The first call of iserver resets the root transputer, whose address is determined by the environment variable
TRANSPOTER or an additional server parameter / s1 number which may be added.

The second call of iserver analyses the root transputer and peeks 16k bytes of its memory into its own
workspace. This memory may then be used to load the loader which in turn gives the user the option of
saving this and other aspects of the state of the root transputer in a core dump file. An alternative command
file including only the second type of call is provided for use after a standalone program has failed and needs
debugging.

The loader must be told how much memory is available on the root transputer if this differs from the default
(2 megabytes). This may be done by setting the host variable IBOARDSIZE.

The TDS loader loads the TDS code at the top of available memory, see the table in section 6.4. It then
allocates an array for use as fold manager buffer immediately below the TDS workspace. By default this
buffer is allocated (for historical reasons) as 10/57 of the total free space available. However a larger or
smaller size can be allocated by adding a command line parameter pair -m number, where number is the
buffer size in bytes. The size of the fold manager buffer may be seen by using the ICODE INFOI key.

The command line parameter pair -f filename defines the file where the TDS code itself is found. This is a
CODE SC file which has been written out as a host file by IWRITE HOSTI.

The TDS loader detects what transputer type it has been loaded on, and displays this and other useful data on
the screen during its starting sequence. By testing the analyse state of the root transputer it decides whether
to give the user the option of creating a core dump file. This option is fully described in the description of the
debugger in section 15.1.

When the TDS starts up it searches the current directory for all files whose names end with. top and presents
these to the user as closed folds. If there are no such files in the directory a new empty file top1eve1 . top
is created. Any existing TDS text file may be used as a top level file by changing its name to end . top. The
environment variable ITERM is used to locate the terminal configuration file that will be used for translation of
keyboard and screen codes. A keyboard help file is also located either in a file whose name is derived from
the ITERM file by forcing the suffix to •h1p or in a file found by using the environment variable TDSSEARCB
as a search path and a filename top1eve1. h1p. (for details of the path searching mechanism see the
description of the procedure so. popen . read in section 14.11) The search path defined by TDSSEARCH
is also used to locate the toolkit fold top1eve1. tkt. If this is not found a new empty toolkit fold is created
in the current directory.

16.3 The ITERM terminal configuration file

This section describes the format of ITERM files; it is included for people who need to write their own ITERM
because they wish to change keyboard mappings or are using terminals that are not supported by the standard
ITERM file supplied with the TDS.

ITERMs are ASCII text files that describe the control sequences required to drive terminals. Screen oriented
applications that use ITERM files are terminal independent.

ITERM files are similar in function to the UNIX termcap database and describe input from, as well as output
to, the terminal. They allow applications that use function keys to be terminal independent and configurable.

16.3 The ITERM terminal configuration file 347

Within the TDS, the ITERM file is used by the editor, by the debugger, for the keyboard and screen
channels of an EXE, and by the procedures so. pol.l.key and so. qetkey.

16.3.1 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and keyboard sections. Sections are
introduced by a line beginning with the section letters IB', IS' or 'K'. Case is unimportant and the rest of the
line is ignored. Sections consist of a number of lines beginning with a digit. A section is terminated by a line
beginning with the letter 'E'. The host section must appear first; other sections may appear in any order in
the file. Sections must be separated by at least one blank line.

The syntax of the lines that make up the body of a section is best described in an example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers separated by commas.
Each line is terminated by a full stop (' • ') and anything following it is treated as a comment. Spaces are not
allowed in the data string and an entry cannot be split across more than one line.

Comment lines, beginning with the character 'I', may be placed anywhere in an ITERM file. Extra blank lines
in the file are ignored.

The index numbers in each section correspond to an agreed meaning for the data. In the following sections
the meaning of the data in each of the three sections is described in detail.

16.3.2 The host definitions

ITERM version

This item identifies an ITERM file by version. It provides some protection against incompatible future upgrades.

e.g. 1:2.

Screen size

This item allows applications to find out the size of the terminal at startup time. The data items are the number
of columns and rows, in that order, available on the current terminal.

e.g. 2:80,25.

Screen locations should be numbered from 0, 0 by the application. Terminals which use addressing from
1, 1 can be compensated for in the definition of goto X, Y.

16.3.3 The screen definitions

The lists of values in the screen section represent control codes that perform certain operations; the data
values are ASCII codes to send to the display device.

ITERM version 2 defines the indices given in table 16.1. These definitions are used in the example ITERM
file; for a complete listing of the file see section 16.3.6.

For example, an entry like: 18: 27 , 91, 75 .' indicates that an application should output the ASCII sequence
IESC [K' to the terminal output stream to clear to end of line.

348 16 System interfaces

Index Screen operation Index Screen operation
1 cursor up 10 insert line
2 cursor down 11 delete line
3 cursor left 12 ring bell
4 cursor right 13 home and clear screen
5 goto x y 20 enhance on (not used by TDS)
8 clear to end of line 21 enhance off (not used by TDS)
9 clear to end of screen

Table 16.1 ITERM screen operations

Goto X Y processing

The entry for 5, 'goto X V', requires further interpretation by the application.
A typical entry for 'goto X V' might be:

5:27,-11,32,-21,32

The negative numbers relate to the arguments required for X and V.

... , -ab, nn, ...

where: a is the argument number (Le. 1 for X, 2 for V).

b controls the data output format.
If b=1 output is an ASCII byte (e.g. 33 is output as !).
If b=2 output is an ASCII number (e.g. 33 is output as 3 3).

nn is added to the argument before output.

As a complete example, consider the following ITERM entry in the screen section:

5:27,91,-22,1,59,-12,1,72. ansi cursor contro1

This would instruct an application wishing to move the terminal cursor to X=14, V=8 (relative to 0,0) to output
the following bytes to the screen:

Bytes in decima1: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 1 5 B

16.3.4 The keyboard definitions

Each index represents a single 'cooked' keystroke. The values are in the same sequence as the ft. codes
tabulated in appendix D.5 The data ~pecified after each. index defines the sequence of key values associated
with that keystroke. Multiple entries for the same index indicate alternative keystrokes for the operation.

The meanings of the keystrokes are defined in the specification of the editing interface and the debugger.

The layout of typical physical keyboards is shown in appendix A. Sequences of key values which do not
correspond to any of these cooked keystrokes are passed to programs as individual values.

In TDS3 the ISET ABORT FLAGI key is always ICTRLI~ and is not affected by the ITERM file.

16.3 The ITERM terminal configuration file 349

16.3.5 Setting up the ITERM environment variable

To use an ITERM the application has to find and read the file. An environment variable called ':ITERM' should
be set up with the pathname and filename of the file as its value. For example. under MS-DOS the command
would be:

set :ITERM=C:\TDS3\SYSTEM\TDS3.:ITM

For more details see the Delivery Manual.

16.3.6 An example ITERM

This is the TOS3 ITERM file for the IBM PC using an enhanced ANSI screen driver. which supports character
and line insert and delete.

IBM PC (ANSI) ITERM data file
Assumes full support of insert/delete char/line and clear.to.eos

#
#
#
#
host
1:2.
2:80,25.
end host

screen control characters

screen
1:27,91,49,65.
2:27,91,49,66.
3:27,91,49,68.
4:27,91,49,67.
5:27,91,-22,1,59,-12,1,72.
6:27,91,64.
7:27,91,80.
8:27,91,75.
9:27,91,74.
10:27,91,76.
11:27,91,77.
12:7.
13:27,91,50,74.
end of screen stuff

up
down
left
right
goto x y
insert char
delete char
clear to end of line
clear to end of screen
insert line
delete line
beep
clear screen

keyboard
6:0,72.
7:0,80.
8:0,75.
9:0,77.
10:8.
11:0,83.
12:0,110.
12:25.
13:0,111.
14:0,65.
15:0,66.
16:0,61.
17:0,62.
18:0,67.
19:0,68.
20:0,112.
21:0,113.
22:0,82.
23:0,132.
24:0,79.

up
down
left
right
del.chl
del.chr
del.line
del.line
undel.line
sol
eol
move
copy
line. up
line. down
page.up
page. down
create. fold
remove. fold
open. fold

ALT F7
CTRL Y -- this works too
ALT F8
F7
F8
F3
F4
F9
FI0
ALT F9
ALT FI0
NUMERIC 0
CTRL NUMERIC 9
NUMERIC 1

350 16 System interfaces

25:0,81. close. fold NUMERIC 3
26:0,71. enter. fold NUMERIC 7
27:0,73. exit. fold NUMERIC 9
28:27. refresh ESC
29:0,85. file. fold SHIFT F2
#30 unfile
31:0,117. finish CTRL NUMERIC 1
31:24. finish CTRL X
32:0,104. edit.params ALT F1
33:0,60. fold.info F2
34:0,59. help F1
#35 locate
36:0,63. get. code F5
37:0,97. save.macro CTRL F4
38:0,96. get.macro CTRL F3
39:0,64. run F6
40:0,129. tool ° ALT °41:0,120. tool 1 ALT 1
42:0,121. tool 2 ALT 2
43:0,122. tool 3 ALT 3
44:0,123. tool 4 ALT 4
45:0,124. tool 5 ALT 5
46:0,125. tool 6 ALT 6
47:0,126. tool 7 ALT 7
48:0,127. tool 8 ALT 8
49:0,128. tool 9 ALT 9
50:0,90. word. left SHIFT F7
51:0,91. word. right SHIFT F8
52:0,100. del.wordl CTRL F7
53:0,101. del.wordr CTRL F8
54:0,110. delto.eol CTRL NUMERIC 7
55:0,92. topof.fold SHIFT F9
56:0,93. endof.fold SHIFT F10
57:9. select.param TAB
58:0,105. code.info ALT F2
59:0,106. pick ALT F3
60:0,107. copy. pick ALT F4
61:0,86. put SHIFT F3
62:0,108. next.util ALT F5
63:0,98. clear.util CTRL F5
64:0,88. autoload SHIFT F5
65:0,109. next.exe ALT F6
66:0,99. clear.exe CTRL F6
67:0,89. clear. all SHIFT F6
68:0,84. browse SHIFT F1
69:0,118. suspend.tds CTRL 3
69:26. CTRL Z
70:0,102. define.macro CTRL F9
71:0,103. call.macro CTRL F10
72:0,130. make comment ALT -
#73 bad

end of keyboard stuff

1# eof

The actual file TDS3 . ITM in the software includes some additional alternative keyboard code sequences.

A similar file for the NEC PC is also supplied.

The screen section above assumes that the host screen driver accepts the ANSI escape sequences shown.
The standard Microsoft ANSI.SYS in DOS does not implement line/character insert/delete sequences. Either
a special screen driver must be installed which does implement these codes or an appropriately modified
ISERVER must be used. See delivery manual for further information.

16.4 The INMOS file server - iserver - command line interface

16.4 The INMOS file server - iserver - command line interface

351

The host file server iserver loads programs onto transputers and transputer networks and provides a
run-time environment through which programs may communicate with the host.

iserver is designed to be easily portable to all host computer types to which transputer boards may be
attached.

The host file server iserver provides two functions:

• Loading programs and controlling transputer networks

• Runtime access to host services for application programs.

At the application program level, all communications with the host file server are through the libraries in the
hostio group. These are described in chapter 14 and the underlying protocol is described in section 16.5.

16.4.1 iserver command line syntax

The syntax for the command line of iserver is as follows:

iserver [command.line] [program.parameter]

Where command. line is defined as follows:

command. line

program.parameter

option

options

filename

link. address

option
program.parameter
option command. line
program.parameter
program.parameter,command. line

any argument that is not an option

-options
/options

SA Analyses the root transputer and peeks 8K of its memory.
SB filename Boots the program contained in the named file.
se filename Copies the named file to the root transputer link.
SE Terminates the server if the transputer error flag is set.
SI Displays progress information as the program is loaded.
SL link.address Specifies link address or device name.
SR Resets the root transputer and subsystem on the link.
SP number Changes the quantity of bytes peeked to number
kilobytes.
SS Serves the link, that is, provides host system support to
programs communicating on the host link.

standard host file name

number

program.parameter is supplied to resident programs on request by the program issuing a command.line
command.

If iserver is invoked with no options, brief help information is displayed.

352 16 System interfaces

Loading programs

Before a program can be loaded onto a transputer network it must be compiled, linked and made beotable
(see chapter 8).

The name of the file containing the program to be loaded is specified using the 'SB' option. If the file cannot
be found an error is reported. This resets the board prior to loading the program. When the program has
been loaded the server then provides host services to the program.

Note: Using the 'SB' option is equivalent to using the SR, SS, S:I and SC options together.

To load a program onto a board without resetting the root transputer, use the 'SC' option. This should only
be done if the transputer has already been reset, or has a resident program that can interpret the file. To
reset the transputer subsystem use the 'SR' option.

To terminate the server immediately after loading the program use the 'SR' and 'SC' options together. This
combination of options resets the transputer, loads the program onto the board, and terminates.

To load a board in analyse mode, for example when you wish to use the debugger to examine the program's
state after execution, use the 'SA' option to dump the transputer's memory (starting from MOSTNEG :INT).
The data is stored in an internal buffer which is read by the TDS loader when programs that use the root
transputer are to be debugged. The size of the memory read from the transputer may be changed from the
default 8K by using an SP option with the number of kilobytes as a parameter.

Terminating the server

To terminate the server press the host system break key. When the key is pressed the following prompt is
displayed:

(x) exit, (s) hell, or (c) ontinue?

To terminate the server type 'x' or press IRETURNI.

To suspend the server and resume the program later, type's'. On DOS-based systems this option may
require a host environment variable. For further information see the Delivery Manual that accompanies the
release.

To abort the interrupt and continue running the program, type 'c'.

Server termination codes

The server will return one of five status codes to the host operating system.

These codes distinguish:

i User break

ii Transfer error flag observed

iii Failure to perform actions requested

iv Termination at request of TDS (or other program on transputer)

a with sps. success exit code

b with sps. failure exit code

c with other exit code

The values returned to DOS are listed in the delivery manual.

16.4 The INMOS file server - iserver - command line interface 353

Specifying a link address - option SL

The server contains a default address or device name for communicating with boot from link boards. The
address or name can be changed by specifying the 'SL' option followed by the new value. Addresses can
be given in decimal format, or in hexadecimal format by prefixing the number with 'I'.

The default address (#150 on DOS machines) is overridden by the value of host environment variable
TRANSPUTER, if this variable has been set. This variable is itself overridden by the address or name
specified by the 'SL' option.

Terminating on error - option SE

When debugging standalone programs it is useful to force the server to terminate when the subsystem's error
flag is set. To do this use the 'SE' option. This option should only be used for programs written entirely in
occam and compiled in HALT system mode. If the program is not written entirely in occam then the error
flag may be set even though no error has occurred.

16.4.2 Server functions

This section describes the basic set of server functions. All versions of the iserver will support these
functions, enabling standalone programs to be used with any host computer on which iserver is available.

These functions are not intended for direct use by application programmers who should use hostio library
procedures. They are briefly described here for those who wish to implement a server on a new host, or to
add new facilities to the existing server.

The functions are divided into three groups:

1 File system commands

2 Host environment commands

3 Server control commands

Commands in each group are summarised below. Formal definitions can be found in section 16.5.

File system commands

Command Description
Fopen Opens a file, and returns a stream identifier.

Fclose Closes a file.

Fread Reads a data block, in bytes.

Fwrite Writes a data block, in bytes.
Fgets Reads a line from an open stream.

Fputs Writes a line to an open stream.

Fflush Flushes an open stream to the destination device.

Fseek Resets the file position.

Ftell Returns the current file position.

Feof Tests for end-of-file.

Ferror Returns error status of a given stream.

Remove Deletes a file.
Rename Renames a file.

354

Host environment commands

16 System interfaces

Command Description
Getkey Reads a character from the keyboard.
Pollkey Polls the keyboard.
Getenv Retrieves a host environment variable.

Time Returns local and universal time.
System Runs a command on the host system.

Server control commands

Command Description
Exit Terminates the server.
CommandLine Retrieves the server invocation command line.

Core Retrieves the contents of a peeked transputer's memory.

Version Retrieves revision data about the server.

16.4.3 iserver error messages

A list of error messages which iserver may produce follows. In many cases, the messages listed may be
followed by an extra message which gives additional information. This information is host specific.

Aborted by user

The user interrupted the server, by pressing @!ill [Q] or @!illIBreakl.

Bad 1ink specification

The link name specified is not valid.

Boot fi1ename is too lonq, maximum size is number characters

The specified filename was too long. number is the maximum size for filenames.

Cannot find boot file fflename

The server cannot open the specified file.

Command 1ine too lonq (at string)

The maximum permissible command line length has been exceeded. The overflow occurred at
string.

Copy filename is too lonq, maximum size is number characters

The specified filename was too long. number is the maximum size for filenames.

Error flaq raised by transputer

The program has set the error flag. Debug the program.

Expected a filename after -SB option

The 'SB' option requires the name of a file to load.

Expected a filename after -SC option

The 'sc' option requires the name of a file to load.

Expected a name after -SL option

The 'SL' option requires a link name or address.

16.4 The INMOS file server - iserver - command line interface

Expected a number after -SP option

The 'SP' option must specify the number of Kbytes to peek.

355

Fai1ed to a110cate CoreDump buffer

The 'SP' option was used and the server was unable to allocate enough memory to allow the
transputer's memory to be copied.

Fai1ed to ana1yse root transputer

The link driver could not analyse the transputer.

Fai1ed to reset root transputer

The link driver could not reset the transputer.

Link name is too 1onq, maximum size is number characters

The specified name was too long. number is the maximum length.

Protoco1 error, message

Incorrect protocol on the link. This can happen if there is a hardware fault, or if an incorrect version
of the server is used.

message can be any of the following:

qot number bytes at start of a transaction
packet size is too 1arqe
read nonsense from the 1ink
timed out qettinq a further damname
timed out sendinq rep1y messaqe

For more information about server protocols see section16.5.

Reset and ana1yse are incompatib1e

Reset and analyse options cannot be used together.

Timed out peekinq word number

The server was unable to analyse the transputer.

Transputer error f1aq has been set

The program has set the error flag. Debug the program.

Unab1e to access a transputer

The server was unable to gain access to a link. This occurs when the link address or device name,
specified either with the SL option or the TRANSPUTER environment variable, is incorrect.

Unab1e to free transputer 1ink

The server was unable to free the link resource because of a host error. The reason for the error
will be host dependent.

Unab1e to qet request from 1ink

The server failed to get a packet from the transputer because of some general failure.

Unab1e to write byte number to the boot 1ink

The transputer did not accept the file for loading. This can occur if the transputer was not reset or
because the file was corrupted or in incorrect format.

356

16.5 The INMOS file server - iserver - program interface

16 System interfaces

The host file server iserver is implemented in C using ANSI standard run-time libraries to facilitate porting
to other machines. This provides an easy method of porting hosted transputer software.

The source of the server and of the libraries used to communicate with the server is supplied with the toolset.

16.5.1 The server protocol

Every communication to and from the server is a packet consisting of a counted array of bytes. The count
gives the length of the message and is sent in the first two bytes of the packet as a signed 16 bit number.
The structure of a server packet is illustrated in figure 16.1.

bO b1 message of length bO + (256 * b1)

Figure 16.1 SP protocol packet

This protocol has been given the name SP, and is defined in occam as follows:

PROTOCOL SP IS INT16::[]BYTE :

Packet size

There is a maximum packet size of 512 bytes and a minimum packet size of 8 bytes in the to-server direction
(Le. a minimum message length of 6 bytes). The server may take advantage of this knowledge.

The packet size must always be an even number of bytes. If the number of bytes is odd a dummy byte is
added to the end of the packet and the packet byte count rounded up by one.

The hostio library contains routines that ensure that the size restrictions are met when sending a packet to
the server (see section 16.5.2).

Protocol operation

Every request sent to the server receives a reply of the same protocol, in strict sequence, and no further
requests are accepted until the reply has been sent.

All integer types used by the protocol are signed and are little endian. Numbers are transmitted as sequences
of bytes (2 bytes for 16 bit numbers, 4 bytes for 32 bit numbers) with the least significant byte first. Negative
integers are represented in 2s complement. Strings and other variable length blocks are introduced by a 16
bit signed count.

All server calls return a result byte as the first item in the return packet. If the operation succeeds the result
byte is zero and if the operation fails the result byte is non-zero. The result is one (1) in the special case
where the operation fails because the function is not implemented1 • If the result is non-zero, some or all of
the return values may not be present, resulting in a smaller return packet than if the call was successful.

16.5.2 The server libraries

The libraries sp1ib, so1ib, sk1ib and spinterf contain all the routines provided in INMQS toolset
products for communicating with the server. They also contain a set of basic routines, hidden from the user,
from which the more complex user visible routines are built.

1Result values between 2 and 127 are defined to have particular meanings by occam server libraries. Result values of 128 or above
are specific to the implementation of a server.

16.5 The INMOS file server - iaerver - program Interface 357

A naming convention has been adopted for the server libraries. The basic library routines use the server
protocol_directly and map directly to server functions. These have the prefix 'sp. I. Routines which use the
basic routines and are visible to the user have the prefix 'so. I. The 'so.' routines documented in this
manual use underlying 'sp.' routines, and in some cases the mapping is one to one.

The source of the hostio library is provided and serves as an example of how to use the SP protocol.

If you add your own libraries for server functions you are recommended to keep to the naming convention.

There are two 'sp.' library routines included in sp1ib to help you extend the set of available routines.
These are sp.send.packet and sp.receive.packet. These are described below.

sp.send.packet

PRce sp.send.packet (CBAN OF SP ta,
VAL [] BYTE packet,
BOOL error)

This procedure sends a packet on the channel t s, provided that it meets the requirements for a SP
protocol packet. If the requirements are not met then the packet is not sent and error is set to
FALSE.

sp.receive.packet

PROC sp.receive.packet (CBAN OF SP fs,
INT16 1ength,
[] BYTE packet,
BOOL error)

This procedure receives a packet on the channel fs. The value error is set to FALSE if the
packet exceeds the maximum packet size.

16.5.3 Porting the server

In order to port the iserver to a new machine you must have a C compiler for that machine with ANSI
standard libraries.

The hostio library expects all the functions described below to be provided by iserver.

16.5.4 Defined protocol

The functions provided by the iserver are split into three groups:

1 File commands, for interacting with files

2 Host commands, for interacting with the host

3 Server commands, for interacting with the server.

In the descriptions that follow, the arguments and results of server calls are listed in the order that they appear
in the data part of the packet. The size of a packet is the aggregated size of all the items in the packet,
rounded up to an even number of bytes. occam types are used to define data items within the packet.

Input to the server consists of a named tag (see appendix 0.3) to define the function required followed by
data as given in the individual protocol definitions.

358

Reserved values

INMOS reserves the following values for its own use:

• Function tags in the range 0 to 127 inclusive.

• Result values in the range 0 to 127 inclusive.

• Stream identifiers 0, 1 and 2.

16 System interfaces

! to.Fopen ? from.Fopen
sp. open. tag filename type mode
result stream.id

Some commands may return particular values, which may be reserved. The range of reserved values is given
with each command as appropriate. The actual values of tags, etc. are held in the constant library sphdr,
see appendix D.3

File commands

Open files are identified with 32 bit descriptors called stream.ids. There are three predefined open files:

o - standard input
1 - standard output
2 - standard error

If one of these is closed then it may not be reopened.

Fopen

Open a file.

Protocol

Fopen
to.Fopen
from. Fopen

Description

Open a named file and, if successful, return a stream identifier. This stream identifier will be used
in all subsequent operations on the file, until it is closed.

The number of streams that may be open at one time is host-specified, but will not be less than
eight (including the three predefines).

Parameters

To server: INT16: : [] BYTE
BYTE
BYTE

From server: BYTE
INT32

filename
type
mode

result
stream. id

type can take one of two possible values:

spt .binary The file will contain raw binary bytes.
spt . text The file will be stored as text records. Text files are host-specified.

16.5 The INMOS file server - iserver - program interface 359

spm.new.update
spm.append.update

Fclose

mode can have 6 possible values:

spm. input Open an existing file for input.
spm. output Create a new file, or truncate an existing one, for output.
spm. append Create a new file, or append to an existing one, for output.
.pm. existinq. update Open an existing file for update (both reading and writing), starting

at the beginning of the file.
Create a new file, or truncate an existing one, for update.
Create a new file, of append to an existing one, for update.

When a file is opened for update (one of the last three modes above) then the resulting stream may
be used for input or output. There are restrictions, however. An output operation may not follow an
input operation without an intervening Fseek, Ftell or Fflush operation.

The result returned can take any of the following values:

spr. ok Open was successful.
spr. not. imp1emented Operation not implemented by this version of file server.
spr. operation. fai1ed The open failed.
spr.bad.name Null name supplied.
spr.bad.type Invalid file type specified.
spr .bad. mode Invalid open mode specified.
spr. bad. packet. size File name was too big.

Close a file.

Protocol

FcJose
to.Fclose
from. Fclose

I to.Fclose ? from.Fclose
sp. c1ose. taq stream.id
result

Fread

Description

Fclose closes a stream stream.id which should be open for input or output. Fclose flushes any
unwritten data and discards any unread buffered input before closing the stream.

Parameters

To server: INT32 stream.id

From server: BYTE result

Read a block of data.

Protocol

Fread
to. Fread
from. Fread

I to. Fread ? from. Fread
sp. read. taq stream.id count
result data

Description

Fread reads count bytes of binary data from the specified stream. Input stops when the specified
number of bytes are read, or the end of file is reached, or an error occurs. If count is less than one
then no input is performed. The stream is left positioned immediately after the data read. If an error
occurs the stream position is undefined.

360 16 System interfaces

Parameters

To server: INT32
INT16

stream. id
count

From server: BYTE
INT16: : [] BYTE

result
data

result is always zero. The actual number of bytes returned may be less than requested and Feof
and Ferror should be used to check for status.

Fwrite

Write a block of data.

Protocol

Fwrite
to.Fwrite
from. Fwrite

I to. Fwrite ? from. Fwrite
sp. write. tag stream.id data
result written

stream.id
data

INT32
INT16: : []BYTE

Description

Fwrite writes a given number of bytes of binary data to the specified stream, which should be open
for output. If the length of data is less than zero then no output is performed. The position of the
stream is advanced by the number of bytes actually written. If an error occurs then the resulting
position is undefined.

Parameters

To server:

From server: BYTE
INT16

result
written

Fwrite returns the number of bytes actually output in written. result is always zero. The actual
number of bytes returned may be less than requested and Feof and Ferror should be used to check
for status.

If stream.id is 1 (standard output) or 2 (standard error) then the write is automatically flushed.

Fgets

Read a line.

I to.Fgets ? from.Fgets
sp. get s . tag stream.id count
result data

Protocol

Fgets
to.Fgets
from.fgets

Description

Fgets reads a line from a stream which must be open for input. Characters are read until end of file
is reached, a newline character is seen or the number of characters read is not less than count.

16.5 The INMOS file server - iserver - program interface 361

Parameters

To server: INT32
INT16

From server: BYTE
INT16: : [] BYTE

stream. id
count

eesult
data

! to.Fputs ? from.Fputs
sp. puts. taq stream.id string
result

If the input is terminated because a newline is seen then the newline sequence is not included in
the returned array.

If end of file is encountered and nothing has been read from the stream then Fgets fails.

Fputs

Write a line.

Protocol

Fputs
to.Fputs
from. Fputs

Description

Fputs writes a line of text to a stream which must be open for output. The host-specified convention
for newline will be appended to the line and output to the file. The maximum line length is host
specified.

Fflush

Parameters

To server: INT32
INT16: : []BYTE

From server: BYTE

stream. id
string

result

Flush a stream.

Protocol

Fflush
to.Fflush
from. Fflush

! to.Fflush ? from.Fflush
sp. f1ush . taq stream.id
result

Description

Fflush flushes the specified stream, which should be open for output. Any internally buffered data
is written to the destination device. The stream remains open.

Parameters

To server: INT32 stream.id

From server: BYTE result

362

Fseek

16 System interfaces

Set position in a file.

Protocol

Fseek
to.Fseek
from. Fseek

! to. Fseek ? from. Fseek
sp. seek. tag stream.id offset origin
result

Ftell

Description

Fseek sets the file position for the specified stream. A subsequent read or write will access data at
the new position.

Parameters

To server: INT32 stream. id
INT32 offset
INT32 origin

From server: BYTE result

For a binary file the new position will be offset characters from origin which may take one of three
values:

spe. start, the beginning of the file

spe . current, the current position in the file

spe . end, the end of the file.

For a text stream, offset must be zero or a value returned by Ftell. If the latter is used then origin
must be set to 1.

Find out position in a file.

Protocol

Ftell
to.Ftell
from. Ftell

! to.Ftell ? from.Ftell
sp . tell. tag stream.id
result position

Description

Ftell returns the current file position for stream.id.

Parameters

To server: INT32

From server: BYTE
INT32

stream.id

result
position

16.5 The INMOS file server - iserver - program interface

Feof

Test for end of file.

Protocol

363

Feot
to. Feot
trom.Feot

! to.Feot ? trom.Feot
sp. eof . taq stream.id
result

Description

Feof succeeds if the end of file indicator for stream.id is set.

Parameters

To server: INT32 stream.id

From server: BYTE result

Ferror

Get file error status.

Protocol

Ferror
to.Ferror
trom. Ferror

! to.Ferror ? trom.Ferror
sp. ferror. taq stream.id
result error.no message

Description

Ferror succeeds if the error indicator for stream.id is set. If it is, Ferror returns a host-defined error
number and a (possibly null) message corresponding to the last file error on the specified stream.

Parameters

Remove

To server: INT32

From server: BYTE
INT32
INT16: : []BYTE

Delete a file.

stream. id

result
error.no
message

Protocol

Remove
to.Remove
trom.remove

! to.Remove ? trom.Remove
sp. remove. taq name
result

Description

Remove deletes the named file.

Parameters

To server: INT16: : []BYTE name

From server: BYTE result

364

Rename

Rename a file

16 System interfaces

Protocol

Rename
to.Rename
from. Rename

! to.Rename ? from.Rename
sp. rename. taq oldname newname
result

Description

Rename changes the name of an existing file oldname to newname.

Parameters

To server: INT16: : []NAME
INT16: : []NAME

From server: BYTE

16.5.5 Host commands

Getkey

oldname
newname

result

! to.GetKey ? from.GetKey
sp.qetkey.taq
result key

! to.Pol/Key ? from Pol/Key
sp.po11key.taq
result key

Pollkey

Get a keystroke.

Protocol

GetKey
to.GetKey
from. GetKey

Description

GetKey gets a single character from the keyboard. The keystroke is waited on indefinitely and will
not be echoed. The effect on any buffered data in the standard input stream is host-qefined.

Parameters

To server:

From server: BYTE result
BYTE key

Test for a key.

Protocol

Pol/Key
to.Pol/Key
from.Pol/Key

Description

PoIIKey gets a single character from the keyboard. If a keystroke is not available then PoIIKey returns
immediately with a non-zero result. If a keystroke is available it will not be echoed. The effect on
any buffered data in the standard input stream is host-defined.

16.5 The INMOS file server - iserver - program interface

Parameters

To server:

From server: BYTE result
BYTE key

Getenv

Get environment variable.

365

Protocol

Getenv
to.Getenv
from. Getenv

I to. Getenv ? from. Getenv
sp.qetenv.taq name
result value

I to. Time ? from. Time
8p. time. taq
result LocalTime UTCTime

Time

Description

Getenv returns a host-defined environment string for name.

Parameters

To server: INT16: : []BYTE name

From server: BYTE result
INT16: : []BYTE value

If name is undefined then result will be non-zero.

Get the time of day.

Protocol

Time
to. Time
from. time

Description

Time returns the local time and Coordinated Universal Time if it is available. Both times are expressed
as the number of seconds that have elapsed since midnight on 1st January, 1970. If UTC time is
unavailable then it will have a value of zero.

Parameters

To server:

System

From server: BYTE
INT32

,INT32

Run a command

result
LocalTime
UTCTime

Protocol

System
to.System
from. System

I to.System ? from. System
sp. system. taq command
result status

366 16 System interfaces

Description

System passes the string command to the host command processor for execution.

Parameters

To server: INT16: : [] BYTE

From server: BYTE
INT32

command

result
status

If command is zero length then System will succeed if there is a command processor. If command
is not null then status is the return value of the command, which is host-defined.

16.5.6 Server commands

Exit

Terminate the server.

Protocol

Exit
to.Exit
from. Exit

! to. Exit ? from.Exit
sp . exit. tag status
result

Description

Exit terminates the server, which exits returning status to its caller.

Parameters

To server: INT32 status

From server: BYTE result

If status has the special value sps. success then the server will terminate with a host-specific
'success' result.

If status has the special value sps. fai1ure then the server will terminate with a host-specific
'failure' result.

CommandLine

Retrieve the server command line.

Protocol

CommandLine
to.CommandLine
from. CommandLine

! to.CommandLine ? from.CommandLine
sp. commancUine . tag all
result string

Description

CommandLine returns the command line passed to the server on invocation.

16.5 The INMOS file server - iserver - program interface 367

Parameters

To server: BYTE

From server: BYTE
INT16: : [] BYTE

all

result
string

If all is zero the returned string is the command line, with arguments that the server recognised at
startup removed.

If all is non-zero then the string returned is the entire command vector as passed to the server on
startup, including the name of the server command itself.

Core

Read peeked memory.

Protocol

Core
to.Core
from. Core

I to.Core ? from.Core
sp . core. taq offset length
result data

Description

Core returns the contents of the root transputer's memory, as peeked from the transputer when the
server was invoked with the analyse option.

Parameters

To server: INT32
INT16

From server: BYTE
INT16: : [] BYTE

offset
length

result
data

Core fails if offset is larger than the amount of memory peeked from the transputer or if the transputer
was not analysed.

If offset + length is larger than the total amount of memory that was peeked then as many bytes as
are available from the given offset are returned.

Version

Find out about the server.

Protocol

Version
to. Version
from. Version

I to. Version ? from. Version
sp.version.taq
result version host OS board

Description

Version returns four bytes containing identification information about the server and the host it is
running on.

368 16 System interfaces

Parameters

To server:

From server: BYTE
BYTE
BYTE
BYTE
BYTE

result
version
host
OS
board

If any of the bytes has the value 0 then that information is not available.

version identifies the server version. The byte value should be divided by ten to yield the version
number.

host identifies the host machine and can be any of the following:

sph.PC
sph.NECPC
sph.VAX
sph.SUN3
sph.SUN4

OS identifies the host environment and can be any of the following:

spo.DOS
spo.HELlOS
spo.VMS
spo.SUNOS

board identifies the interface board and can be any of the following:

spb.B004
spb.B008
spb.B010
spb.BOll
spb.B014
spb.DRX-ll
spb.QTO

Values of host, OS and board from 0 to 127, inclusive, are reserved for use by INMOS.

16.5.7 Extensions to iserver protocol supported within the TDS only

Getkey, Pollkey

Unless key cooking has been switched off by sending tt. key. raw on the screen channel (see
section 16.6.2) the key values returned by GetKey in the TDS are cooked values. As these values
can exceed 255 the special result value ft . taq (200) may be returned and this value should then
be added to the key value returned.

Exit

This command is trapped by the TDS and not passed to the iserver. A message is sent to the
screen and the TDS waits for any key to continue.

CommandLine

This is trapped by the TDS and returns the command line stored by the most recent
TDS/commandl.ine command.

16.6 The TDS screen and keyboard channels

TDS/commandline

Remember a command line.

369

Protocol

TDS
to.TDS
from.TDS

! to. TDS ? from. TDS
8p. TOS. tag sp. commancUine . tag string
result

Description

Stores a string to be remembered by the TDS for subsequent CommandLine commands.

Parameters

To server: BYTE
INT16: : [] BYTE

From server: BYTE

sp.commancUine.tag
string

result

16.6 The TDS screen and keyboard channels

The channels keyboard and screen, available within an executable procedure (EXE), communicate with
the terminal used by the host. They are not connected directly to the devices of the terminal but to a terminal
driver process called term. p. Various commands may be sent to term. p which implements a virtual
screen and keyboard interface so that it is possible to write terminal-type independent code. The protocol
also allows the user to drive the terminal directly and exploit features of a particular terminal which are not
accessible using the simple virtual terminal interface.

The process term. p is actually two processes, running in parallel, one driving the screen and the other the
keyboard. There are three occasions when these two processes have to communicate with each other; these
are initialisation, release and termination. These operations cause software generated values to be passed to
the program on the keyboard channel. Apart from this the two processes are completely independent and
asynchronous, (Le. it is possible to output to screen in parallel with waiting for input from keyboard without
either process being aware of the behaviour of the other). These interfaces are used by the procedures in
the library userio.

16.6.1 Input from the keyboard channel

The keyboard channel returns integers. These are one of the following:

• ASCII values for simple keys

• positive values greater than ASCII values for special 'function keys' required by the folding editor

• negative values (sometimes followed by positive parameters) as responses to initialisation com
mands, error codes, etc.

• the special negative value ft . terminated generated at end of file by interface procedures pro-
ducing a simulated keyboard stream from a file

The simple keys returned as ASCII values are the visible ASCII range from' , (32) to ' -' (126), plus
, *c' (13) and 'delete' (127). Programs reading from the keyboard should treat 127 as equivalent to the
code ft. de1 . ch1.

Special function keys result from the keyboard process recognising either multiple key strokes or terminal
specific keys that generate multiple character sequences.

370 16 System interfaces

The coded values for function keys are given in the library userhdr and tabulated in appendix 0.5. They
are all given names beginning ft.. By sending the command key. raw to screen the recognition of mul
tiple keystrokes and terminal-specific keys is disabled. This will be acknowledged by a value ft. raw on
keyboard, preceded by any cooked keys that may be in a hardware or software type-ahead buffer. The
character values that make up function key values are now passed direct to the user.

The recognition of function keys is re-enabled by sending key.cooked to screen. This will be acknowledged
by a value ft. cooked on keyboard, preceded by any raw keys that may be in a hardware or software
type-ahead buffer.

Negative values are used in responses from the software and also to convey errors in the hardware.

16.6.2 Screen stream and SS protocols

The protocol used by the screen output channel is an explicitly tagged protocol. A communication using
such a protocol always starts with one of a limited set of constant values, coded as BYTEs. The rest of the
communication depends on the particular value of the tag and may consist of zero or more further values of
particular types. Arrays of up to 256 bytes may be communicated, if they are preceded by a count defining
their size.

Note that an explicitly tagged protocol is not identical to the implicitly tagged protocols supported by the
language. Hence for language purposes this protocol is coded as CHAN OF ANY.

The protocol of the parameter channel screen allows single characters (as bytes), strings (as arrays of
bytes), cursor movement, absolute cursor addressing, insert and delete operations, etc., to be coded.

The channels called sink in all the simple output procedures use this protocol. It is defined below, but the
meanings of all the tag values are not explained in detail until a later section. In this definition the values of
the tags are represented by the names used in programs. These are given in the library userhdr and are
listed in appendix D. Subsequent values are represented in the style of a variable declaration using a type
and a name. Each of the lines of the table represents a command to the process at the other end of the
channel. The use of the channel consists of a sequence of such commands.

The commands on the screen channel are as follows:

tt.reset
tt.up
tt.down
tt.1eft
tt.right
tt.goto; INT x; INT y
tt.ins.char; BYTE ch
tt.de1.char
tt.out.byte; BYTE ch
tt.out.int; INT n
tt.out.string; INT::[]BYTE string
tt.c1ear.eo1
tt.c1ear.eos
tt.ins.1ine
tt.de1.1ine
tt.beep
tt.key.raw
tt.key.cooked
tt.initia1ise
tt.endstream
tt.set.po11; INT po11.gap

A corresponding occam protocol SS is declared in the library strmhdr. Library procedures are provided
in the library streamio which specify screen stream channels as CHAN OF SS. The TDS implementation
of occam allows a CBAN OF ANY to be passed as an actual parameter to a call of such a procedure. The

16.6 The TDS screen and keyboard channels 371

protocol SS. listed in appendix 0.4 includes some additional tags which are for internal use within the TDS
only.

Screen stream protocol may be used for communicating text. in a form suitable for subsequent display.
between arbitrary user processes. It is used as the input protocol in interface procedures which send text to
the filing system. It is conventional to separate lines of text in screen stream protocol by the pair of characters
n*c*n".

In particular it allows text to be communicated as a mixture of single characters and arrays of characters
communicated by block transfer. When the ultimate destination is a real terminal. screen commands for
cursor movement. character and line deletion. etc.• may be included. File interface procedures. however.
while accepting the full protocol. are not able to perform all the control operations.

This section describes the behaviour of the TDS when the various commands available are sent to it via the
channel screen of an EXE.

Any process written by the user to receive inputs in the same protocol should at least accept all possible
commands. but may choose to perform modified or null actions where appropriate.

Each output to the screen channel must match one of the alternatives of the screen protocol. A command
and its data is represented in this section by a command name in italics. For example out.byte represents a
command that would be coded as screen! tt. out .byte; ch where ch is a BYTE value.

Commands may have one or more of the following kinds of effect:

1 text is displayed at the current cursor position.

2 the cursor is moved relatively or absolutely to a new position.

3 characters or ·Iines are deleted

4 blank characters or lines are 'created

5 miscellaneous other actions.

Sending any screen commands that would result in moving the cursor or characters beyond the bounds
of the screen has unspecified consequences. Subsequent commands also have unspecified consequences
until a goto command or reset command is sent.

Some of the commands cause characters to be sent to the screen. They affect the terminal as described
below.

Normal visible characters are ASCII characters with codes in the range' , - , -' (32 -126). ' *c' (carriage
return = 13) and ' *n' (new line = 10).

Other characters are sent directly to the device just as normal visible characters are. but the consequences
are terminal dependent. Subsequent commands have unspecified consequences until a reset command is
sent.

The effects of sending these characters are as follows:

1 Characters in the range (' ') to (' -') appear on the screen at the current position. moving the
cursor one place to the right. The behaviour at the end of a line is undefined.

2 ' *c' moves the cursor to the first character of the current line.

3 ' *n' moves the cursor to the line beneath the current line. remaining at the same character position
within the line. If the cursor position was the last line on the screen. then the contents of the screen
are moved up a line, (the contents of the top line being lost) and the cursor is left on the last line.
which is now blank.

372

Outputting characters to the screen

16 System interfaces

out.byte

The command out.byte contains a byte value. The ASCII character with that value is output at the current
cursor position. The cursor position is moved one character position to the right.

out.string

The command out.string contains an integer length and then a byte array of that many bytes. ASCII characters
with values of these bytes are output starting at the current cursor position. The maximum size of the array is
max. string. size (currently 256). After each byte is output the cursor position is moved one character
position to the right.

Any byte value sent to screen (using the out.byte and out.string commands) is sent to the screen hardware.
If the byte values are normal visible characters, then term. p can track the cursor position and support
commands such as ins.char, ins. line, etc. Values outside this range are also sent and allow the user to
access more exotic features of the terminal hardware; however, term. p will probably not have tracked the
screen state correctly and issuing commands that depend on the current cursor position after sending special
control chars is not likely to have the desired effect.

Cursor movement

up, down, left, right

The commands up, down, left and right move the cursor one character position in the direction indicated.

goto

The command goto contains a column and row co-ordinate (x, y) and the cursor is moved to this position on
the screen. The screen is addressed with the upper leftmost character position having the co-ordinates (0,0),
with x going across and y going down the screen.

reset

The command reset causes term. p to reset the screen and the keyboard. This will perform any standard
initialisations necessary to enable function keys for the particular type of terminal in use and will move the
cursor to (0,0). It should be used after sending non-standard character codes to the screen if it is required
to ensure that the user and system have the same idea as to where the cursor is.

Clearing the screen

clear.eol, clear.eos

The commands clear.eol and clear.eos clear the screen from the current cursor position to the end of the line
or screen respectively. The cursor position remains unchanged.

Character operations

The commands ins.char and del.chat can only be used if the terminal initialisation returns 0 after
ft .nocharops .prefix. (see tt .initia1ise).

del.char

If supported del.char deletes the character at the current cursor position, shifting the characters to the right
of the current position one place to the left and leaving the cursor unmoved.

16.6 The TDS screen and keyboard channels

ins.char

373

IS -1:
IS -2:
IS -3:
IS -4:
IS -5:
IS -6:
IS -7:

If supported ins.char inserts a character before the character at the current position, shifting the characters
at and to the right of the current position one place to the right and moving the cursor one place to the right.

Line operations

The commands ins.line and del.line can only be used if the terminal initialisation returns 0 after
ft . noops .prefix. (see tt . initialise).

del. line

If supported del.line deletes the contents of the current line, shifting the contents of all the lines below it up
a line and making the last line on the screen blank.

ins.line

If supported ins.line shifts the contents of the current line and all lines below it down a line, losing the contents
of the last line on the screen and making the current line blank.

In both cases the current cursor position remains unchanged.

Other operations

beep

The command beep makes a noise at the terminal without affecting the screen.

Initialising

Resetting the screen causes the driver to output codes to set the terminal modes to those required (e.g.
setting the keypad to application mode) and sends the cursor to (0, 0). It can be used after non-standard
values have been sent to the terminal to allow the virtual screen driver commands to be used again.

initialise

Initialising the the screen and keyboard is performed by sending initialise to screen and reading the initial
isation information from keyboard. Initialising also causes the screen to be reset.

The initialisation information is returned as series of special values terminated by the value ft . end. init.
The special values are:

VAL ft.1ines.prefix
VAL ft.columns.prefix
VAL ft.nolineops.prefix
VAL ft.end.init
VAL ft.table.error
VAL ft.noncom.table
VAL ft.nocharops.prefix

The ft . lines.prefix and ft . co1umns .prefix values are followed by another non-negative integer
that is the number of lines or columns on the screen.

The ft . no1ineops .prefix and ft. nocharops .prefix value is followed by an integer that is 0 if
the term. p process supports line insert/delete or character insert/delete respectively, otherwise it is 1.

All the above four values should be returned, along with their following values, terminated by ft. end. init.

The ft. tab1e . error and ft. noncom. table values indicate that an error has occured on a table
driven term. p, either the table cannot be read (ft. table. error) or the table has an invalid format
(ft. nocom. tab1e).

374 16 System interfaces

If there are characters read by the keyboard process into a typeahead buffer but not yet read by the user,
they may have to be read by the user before the initialisation information is seen, as shown in the following
example:

:INT key :
SEQ

screen ! tt.initia1ise
keyboard ? key
WHILE key >= 0

keyboard ? key
... read initia1isation

Changing the way keyboard input is processed

key. raw

The command key.raw causes future input from the keyboard to be passed exactly as received. Any char
acters already in the type-ahead buffer will still be read followed by the special value ft. raw. Subsequent
characters will be passed raw.

key.cooked

The command key.cooked causes the input from the keyboard to be processed to recognise and 'bundle
up' multi-eharacter keys as single values. Any characters already in the type~ahead buffer will still be read
followed by the special value ft. cooked. Subsequent characters will be passed cooked.

Other commands

set.poll

The integer sent to the TDS after this command is the maximum time interval (in transputer clock ticks) after
which the TDS will poll the host keyboard during the execution of an EXE or UTIL. Keyboard polling may be
suspended by sending the value (-1) and resumed by sending the value (-2).

endstream

This command has no effect.

16.7 The TDS user filer interface

This section describes in detail the user filer protocol and how it may be used to provide access to the folded
filing system from an occam program running in the transputer development system.

The channel arrays from. user. fi1er and to. user. fi1er which are available within an executable
procedure (EXE) allow user processes to communicate with a process called 'the user filer'. Through com
munication with this process, user processes may read and write data in the fold structure of the development
system.

A running program accesses the fold structure in a similar manner to the TDS utilities. Just as a utility is
given a portion of the fold structure on which it can operate by placing the cursor on a fold before running
the utility, a user program may also be given some data by placing the cursor on a fold containing the data
before the program is run. Any of these folds may be filed and these filed folds will correspond te;> files in the
host operating system. Utility programs IREAD HOSTI and IWRITE HOSTI are provided to convert files between the
representation used by the fold system and the usual types of text files used by the host operating system.

The structure and representation of folds and files in the TDS is described fully in appendix G.

16.7 The TDS user filer interface

16.7.1 User filer protocol

375

The protocol used by all the folded filing system access channels from. user. fi1er [i] and to. user.
fi1er [i] , i=O..3 is similar in style to screen stream protocol but more complicated. Each of the lines of
the list below represents a command, a question, or a unit of data transfer to the process at the other end of
the channel. The tag values are given in the library fi1erhdr listed in appendix D.

uf.number.of.fo1ds
uf.test.fi1ed; INT fo1d.number
uf.read.fo1d.strinq; INT fo1d.number
uf. read. fo1d.attr; INT fo1d.number
uf.read.fi1e.id; INT fi1e.number
uf.write.fo1d.strinq; INT fo1d.number; INT::[]BYTE record
uf.make.~o1d.set; INT fo1d.number
uf.unmake.fo1d.set; INT fo1d.number
uf.create.fo1d; [attr.size]INT attr
uf.de1ete.fo1d; INT fo1d.number
uf.make.fi1ed; INT fo1d.number; INT:: []BYTE fi1e.id
uf.unfi1e; INT fi1e.number
uf.attach.fi1e; INT fo1d.number; INT::[]BYTE fi1e.id
uf.derive.fi1e; INT fo1d.number
uf. de1ete. contents; INT fo1d.number
uf.open.data.read; INT fi1e.number
uf. open. fo1d. read; INT fi1e.number
uf.open.text.read; INT fi1e.number
uf.open.data.write; INT fi1e.number
uf.open.fo1d.write; INT fi1e.number
uf.open.text.write; INT fi1e.number

fsd.record; INT:: []BYTE record
fsd.attr; [attr.size]INT attr
fsd.fi1e.id; INT::[]BYTE fi1e.id
fsd.resu1t; INT status
fsd.error; INT status
fsd.number.of.fo1ds; INT fo1d.count
fsd.fo1d; INT::[]BYTE record
fsd.fi1ed; INT::[]BYTE record
fsd.endfo1d
fsd.endfi1ed
fsd.endstream

fsc.read
fsc.c1ose; INT status
fsc.read.fi1e.id
fsc.read.attr
fsc.read.enc.attr
fsc.enter.fo1d
fsc.exit.fo1d
fsc.repeat.fo1d

16.7.2 Selecting a fold for access

Once the cursor has been placed on a fold (referred to as the top-level fold or fold bundle), and a user
program has been started by pressing the IRUN EXEI key, the program may then do a number of things:

1 It may open the top-level fold and read its contents.

2 If the top-level fold is empty, it may open the fold and write data into it.

3 It may concurrently read and write a number of the folds directly nested inside the top-level fold.

376 16 System interfaces

4 It may read the attributes and the fold header of the top-level fold or any of the folds directly nested
inside it.

S It may write new fold headers and delete the contents of the top-level fold or any of the folds directly
nested inside it.

6 It may delete folds or create new folds within the top-level fold.

If the top-level fold contains a sequence of fold lines and data lines, then the folds in the bundle are numbered
from 1. Data lines (including blank lines) are ignored in the numbering.

The top-level fold is referred to as number O.

For example, consider the following fold:

{{{ A bund1e of fo1ds
... F First member

... F Second member
any text
... F Third member
}}}

If the cursor were placed on the closed fold A bund1e of fo1ds before running a user program, then
the program could open and read the top-level fold by referring to it as number 0, or it could concurrently
open and read the member folds by referring to them as numbers 1, 2 and 3.

A program may access either the top-level fold or the folds directly contained within it; these two modes of
access cannot be mixed. The user filer will return an error if the top-level fold is accessed while the inner
folds are being accessed or vice versa.

16.7.3 User filer channels

A program may perform a number of independent sequences of communication with the user filer, possibly in
parallel. Each sequence uses a pair of channels which must be corresponding elements (that is, the element~

with the same subscript) from the arrays from. user. fi1er and to. user. fi1er. As their names
indicate the to. user. fi1er channel is used for communications from the program to the environment,
and the from. user. fi1er channel is used for communications in the other direction.

16.7.4 User filer modes

User filer channel pairs are used for two purposes:

1 They are used to communicate questions or commands to the user filer, and to receive answers or
results corresponding to these questions or commands.

2 They are used to communicate a stream of data associated with reading or writing a file. A stream
of data is communicated as a sequence of data items, with an acknowledgment on the other channel
following each item.

When a user program is started by the TDS, the user filer is started in parallel with it. All the channel pairs are
initially in user filer command mode. This means that valid communications consist of questions or commands
to the user filer, followed immediately by the corresponding answer or result.

Once a successful open command has been issued on a particular pair of channels, that channel pair is then
used to read or write a stream of data. The mode of the channel pair is then file stream input or file stream
output according to the kind of open command which was used. Once a close operation has occurred on the
stream, then the channel pair is once again available for commands.

16.7 The TDS user filer interface

There are two variants of the file stream modes:

1 data stream modes,

2 folded file stream modes.

377

In data stream modes only text lines within the fold structure are visible. In folded file stream modes the
internal structure including embedded text and non-text folds is fully visible.

In the present implementation the user filer channel arrays each have 4 elements, numbered from 0 to 3.
This is reflected by the system constant max • fi1es. There are therefore four channel pairs, allowing up to
four files to be open at the same time. The pairs may be used in parallel with each other or sequentially.

In user filer command mode the channel pairs are all connected to the one command-handling process in the
TDS. This process only services one channel pair at a time; the process ALTs on all the to. user. fi1er
channels until a command is received on one of them. The process then reads all the parameters associated
with the command received, performs the required action and sends back the results on the corresponding
from. user. fi1er channel. Only after these have been sent does the user filer return to the ALT and
service commands on other to. user. fi1er channels.

However, once a file has been opened and the channel pair is being used to read or write a file stream, then
the channel pair is in the appropriate file stream mode and is connected to a file streamer process started by
the TDS for this purpose. The command handler and the file stream process can then proceed in parallel.
Other channel pairs may be used to issue commands to the user filer, and become connected to further file
stream processes, in parallel with and unaffected by the communications between the first channel pair and
their file stream process.

16.7.5 Commands in user filer command mode

Commands for the following operations may be used in user filer command mode. All except the open
commands leave the channel pair in user filer command mode, and so they may be issued in any order.
Some commands require the relevant fold to be filed; in the case that it is not, an error result will be returned.

Count folds
Read fold string
Read fold attributes
Test if filed
Read file identifier
Write fold string
Create fold
Delete fold
Delete contents
Make filed
Unfile
Attach file

Derive file
Make set valid
Make set invalid
Open to read
Open to write

Find out the number of folds in the bundle.
Read the fold header of any numbered fold.

Read the attributes of any numbered fold.
Test any numbered fold to see if it is filed.
Read the file identifier of any numbered fold that is filed.
Write the fold header of any numbered fold.
Create an empty fold in the bundle.
Delete an empty fold.
Delete the contents of a fold.
Make a fold into a filed fold using a user supplied identifier.
Make a filed fold into an unfiled fold.
Make an empty fold into a filed fold containing a copy of a file already existing
in the filing system. (Not available in unnamed filestore implementations.)
Make a fold into a filed fold using the identifier of the first file in the bundle.
Change an invalid fold set to valid.
Change a valid fold set to invalid.
Open any numbered filed fold for reading.
Open any empty numbered filed fold for writing.

Any numbered fold which is opened for reading or writing must be filed before opening (if it is not already
filed).

378

Definitions of uf. commands

16 System interfaces

Questions and commands in user filer command mode are tagged by byte values conventionally associated
with names beginning uf .. In the following definitions the pair of communications is first displayed as an
occam fragment showing the error-free behaviour of the user filer. Procedures incorporating these fragments,
and allowing for errors, are provided with the software.

In cases where possible errors are described the tag returned will have the value fsd. error and will be
followed by an integer error status number. Filing system or hardware errors are possible for all commands
which may involve disk hardware access. These numbers are all listed in appendix E.

The following variables are assumed to have been declared:

- - for commands
INT fo1d.number:--fo1d number within the bund1e
INT fi1e.number:--fo1d number within bund1e

--(must be fi1ed)
INT 1en :--1enqth of a record or string

-- for answers
INT fo1d.count
INT status
INT number

count of fo1ds
error number
other number

-- for both
VAL attr.size IS 3:
[attr.size]INT attr:--array of fo1d attributes
VAL max.record.size IS 512:
[max.record.size]BYTE record: data array

VAL max.string.size IS 256:
[max.string.size]BYTE fi1e.id: fi1e name

number.of. folds

-- question
to.uf ! uf.number.of.fo1ds

-- rep1y
from.uf ? tag -- tag = fsd.number.of.fo1ds
from.uf ? fo1d.count

The user filer responds to the question number.of.folds with a count of the number of folds within the bundle
at the cursor position. If the command is issued when the cursor is not on such a bundle, a count of -1 will
be returned.

read. fold.string

to.uf ! uf.read.fo1d.string; fo1d.number
from.uf ? tag -- tag = fsd.record
from.uf? 1en:: record

The user filer responds to the question read.fold.string with the text of the comment on the top crease line
of the fold indicated. An error will be signalled if the command is issued when the cursor is not on a fold or
bundle of folds or the indicated fold does not exist.

This command, used to read the comment text on a root fold, must be distinguished from the command to
read the crease comment of embedded folds, which can only be given when the channel pair is in folded
stream input mode.

16.7 The TDS user filer interface

read. fold. attr

to.uf ! uf.read.fo1d.attr; fo1d.number
from.uf ? tag -- tag = fsd.attr
from.uf ? attr

379

The user filer responds to the question read.fold.attrwith the array of attributes of the fold indicated. An error
will be signalled if the command is issued when the cursor is not on a fold or bundle of folds or the indicated
fold does not exist.

This command, used to read the attributes of a root fold, must be distinguished from the command to read
the attributes of embedded folds, which can only be given when the channel pair is in folded stream input
mode.

test. filed

to.uf ! uf.test.fi1ed; fi1e.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok or fi.not.fi1ed

The user filer responds to the question test.filed with a result showing whether the indicated fold is filed or
not. An error will be signalled if the command is issued when the cursor is not on a fold or bundle of folds or
the indicated fold does not exist.

read. file. id

to.uf ! uf.read.fi1e.id; fi1e.number
from.uf ? tag -- tag = fsd.fi1e.id
from.uf? 1en:: file.id

The user filer responds to the question read.file.idwith the name of the file corresponding to the fold indicated.
On a system which does not support named files a zero length will be returned. An error will be signalled if
the command is issued when the cursor is not on a filed fold or bundle of folds or the indicated fold does not
exist.

This command, used to read the file id of a root fold, must be distinguished from the command to read the
file id of embedded filed folds, which can only be given when the channel pair is in folded stream input mode.

write. fold.string

to.uf uf.write. fo1d. string; fo1d.number;
1en:: record

from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

The command write.fold.string causes the user filer to replace the fold comment on the indicated fold by the
string given. An error will be signalled if the command is issued when the cursor is not on a fold or bundle
of folds or the indicated fold does not exist.

create. fold

to.uf ! uf.create.fo1d; attr
from.uf ? tag -- tag = fsd.number.of.folds
from.uf ? fold. count

The command create.fold causes the user filer to create a new fold at the end of the bundle.
The fo1d. count returned includes the new fold and is therefore the number of the new fold. An error will
be signalled if the command is issued when the cursor is not on a bundle of folds.

380

delete. fold

to.uf ! uf.de1ete.fo1d; fo1d.number
from.uf ? taq -- taq = fsd.resu1t
from.uf ? status -- status = fi.ok

16 System interfaces

The command delete. fold causes the user filer to delete the indicated fold in the bundle, which must be empty.
The numbers used to access all subsequent folds are thereby decreased by 1. An error will be signalled if
the command is issued when the cursor is not on a bundle of folds, or the indicated fold is not empty or does
not exist.

delete.contents

to.uf ! uf.de1ete.contents; fo1d.number
from.uf ? taq -- taq = fsd.resu1t
from.uf ? status -- status = fi.ok

The command delete.contents causes the user filer to delete the contents of the indicated fold in the bundle.
An error will be signalled if the command is issued when the cursor is not on a bundle of folds, or the indicated
fold does not exist.

WARNING! This operation could, if used without care, cause loss of significant quantities of data. Programs
including this command should provide adequate protection against being run with the cursor in an arbitrary
position.

make.filed

to.uf uf.make.fi1ed; fo1d.number;
1en:: fi1e.id

from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

The command make.filed causes the user filer to file an unfiled fold. The fi1e. id provided should be
valid in the particular host system being used. For maximum portability it should consist of no more than
6 alphanumeric characters and should not include a filename extension which may be generated by the
software from the fold attributes. An error will be signalled if the command is issued when the cursor is not
on a bundle of folds, or the indicated fold does not exist. The server may create a random filename if an
empty string is provided.

unfile

to.uf ! uf.unfi1e; fo1d.number
from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

The command unfile causes the user filer to unfile a filed fold. An error will be signalled if the command is
issued when the cursor is not on a bundle of folds, or the indicated fold does not exist. An error will also be
signalled if there is insufficient room in the system's fold manager buffer to read the contents of the file.

attach. file

to.uf uf.attach.fi1e; fo1d.number;
1en:: fi1e.id

from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

The command attach.file causes the user filer to create a filed fold from an existing empty fold by causing it
to point to a copy of an existing file with the name fi1e . id. The copy will have a name derived by a simple
disambiguating algorithm from that of the previously existing file. An error will be signalled if the command is
issued when the cursor is not on a bundle of folds, or the indicated fold or file does not exist.

16.7 The TDS user filer interface

derive. file

to.uf ! uf.derive.file; fold. number;
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

381

The command derive.file causes the user filer to file an unfiled fold, giving it a name derived from the name
of the first fold in the bundle and the attributes of the fold indicated. An error will be signalled if the command
is issued when the cursor is not on a bundle of folds, the indicated fold does not exist, or the first fold in the
bundle is not filed.

make.fold.set

to.uf ! uf.make. fold. set; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command make.fold.set is intended for use by compilers which need to keep control of the integrity of
folds. It causes the user filer to change the fold. type attribute of the fold indicated to ft. foldset,
implying that it contains corresponding source text and compiled code. An error will be signalled if the
command is issued when the cursor is not on a bundle of folds, or the indicated fold does not exist or does
not have appropriate attributes.

unmake.fold.set

to.uf ! uf.unmake. fold. set; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command unmake.fold.set is intended for use by compilers which need to keep control of the integrity
of folds. It causes the user filer to change the fold. type attribute of the fold indicated to ft. voidset,
implying that it requires recompilation. An error will be signalled if the command is issued when the cursor is
not on a bundle of folds, or the indicated fold does not exist or does not have appropriate attributes.

Example showing use of a uf. command

PROC read.fold.attr(CBAN OF ANY from.uf, to.uf,
VAL INT seq.no,
[attr.size]INT attr,
INT result)

BYTE tag
SEQ

IF
result = fi.ok

SEQ
to.uf ! uf.read.fold.attr; seq.no
from.uf ? tag
IF

tag = fsd.error
from.uf ? result

tag = fsd.attr
from.uf ? attr

TRUE
SKIP

Procedures in this style which test the value of result on entry and only perform the operation if
result = fi. ok may be written for ~II the user filer control commands. They have the advantage that
a sequence of different commands may be programmed without the need to test the value of the result
parameter after each call. A collection of such procedures is supplied in the library ufiler and user level
procedures calling these are supplied in the library userio.

382 16 System interfaces

Opening a fold for reading

A numbered fold, if it is already filed, may be opened for reading. If fold 0, the top-level fold, is opened
either for reading or for writing then no other fold may be opened until it has been closed. Fold °may not be
opened if any other fold is open.

Before being opened a fold must be filed, and so in subsequent discussion the terms fold and file are used
interchangably. A file may be opened either as a data stream or as a folded stream.

When a file is opened as a folded stream, all the information in the fold is sent, including where folds begin
and end, and the header and attributes of each fold.

When a file is opened as a data stream the user filer outputs a sequence of data records which are the data
stored in the file. The contents of internal text folds are sent, but the information associated with the internal
fold itself (the fold attributes and the header) is not.

From the point of view of the protocol which must be used for channel communications, data stream operations
are a subset of folded stream operations, but they do differ in their handling of indentation (implicit leading
spaces in text within folds).

open.fold.read, open.data.read

The uf. commands for opening a fold for reading are:

to.uf ! uf.open.fo1d.read; fo1d.number
from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

to.uf ! uf.open.data.read; fo1d.number
from.uf ? tag -- tag = fsd.resu1t
from.uf ? status -- status = fi.ok

If the status value returned is fi. ok then the open was successful.

The channel pair used to open the file is then in file stream input mode and must then be used to read the
resulting stream. If the open fails, one of the error results listed later is returned as the status value and the
channel pair is still in user filer command mode.

The operations needed to read a fold or data stream are described in the next section.

Opening a fold for writing

A numbered fold, if it is filed, may be opened for writing. If fold 0, the top-level fold, is opened then no other
fold may be opened until it has been closed.

Only an empty filed fold may be opened for writing.

A file may be opened as a data stream or as a file stream. Data stream mode allows the user program
to write a sequence of text or data records into the file. Folded stream mode allows the user to write an
arbitrarily complex nested folded structure into the file.

16.7 The TDS user filer interface

open.fold. write, open.data. write

The uf. commands for opening a fold for writing are:

to.uf ! uf.open.fo1d.write; fo1d.number
from.uf ? taq -- taq = fsd.resu1t
from.uf ? status -- status = fi.ok

to.uf ! uf.open.data.write; fo1d.number
from.uf ? taq -- taq = fsd.resu1t
from.uf ? status -- status = fi.ok

383

If the status value is fi. ok then the open was successful.

The channel pair used to open the file is then in file stream output mode and must then be used to output
data to the file.

If the open fails, one of the error results listed later is returned as the status integer value following the result
and the channel pair is then still in user filer command mode.

The operations needed to write a fold or data stream are described in the next section.

16.7.6 Communications in file stream modes

Introduction to file stream modes

The way the channel pair is used in file stream modes is strictly symmetrical. One channel of the pair sends
requests from a receiver process to a sender process, the other returns data, results, or errors from the
sender process to the receiver. This symmetry has been provided to allow user processes to use the same
protocol when transferring folded data streams amongst themselves as they do when communicating with
the user filer in the TDS.

Communications in file stream input mode are between a system sender process in the user filer and the
user program acting as a receiver.

Communications in file stream output mode are between the user program acting as a sender and a system
receiver process in the user filer.

The sequence of communications in file stream modes is strictly determined by a sequential pass (possibly
with skips and/or repeats of parts of the structure) through a properly nested fold structure by the sender
process.

In folded file stream modes, this sequential pass includes the option to enter, or not to enter any embedded
folds, and to provide additional information before entering folds. These options are exercised by the receiver
process.

The valid communications by a sender process depend on the mode of opening and the current position in
the folded data structure. A receiver process must base its actions on the tags and data it receives from the
sender.

It is important to note that all the facilities provided in the· protocol for file stream communication are not
necessarily applicable in all programs. In particular it is important for user programs to know what the system
sender and receiver processes do when they are in a state where the protocol allows options. This is
described in detail below.

Syntax of valid sequences of communications

In order to define the permitted sequences of operations in a syntactic notation it is necessary to define the
tagged commands and their data as 'terminal symbols' for the syntax. Tags output by a sending process
all have names beginning fad., those output by a receiving process all have names beginning fse .. The
values of these tags are defined in the library fi1erhdr and are listed in appendix D.

384 16 System interfaces

In subsequent discussion in this chapter one of these words in italics always means the communication of
the appropriate tag followed, if necessary, by its data in the form indicated.

Communications from the sender to the receiver:

record fsd.record;
INT: : []BYTE record

number fsd.number;
INT vaJ.ue

attr fsd.attr;
[attr.size]INT attr

file.id fsd.fiJ.e.id;
INT:: []BYTE fiJ.e.id

result fsd.resuJ.t;
INT status

error fsd.error;
INT status

fold fsd.foJ.d;
INT: : []BYTE record

filed fsd.fiJ.ed;
INT:: []BYTE record

endfold fsd.endfoJ.d
endfiled fsd.endfiJ.ed
endstream fsd.endstream

Communications from the receiver to the sender:

read
close

read.file.id
read.attr
read.enc.attr
enter. fold
exit. fold
repeat. fold

fsc.read
fsc.cJ.ose;
INT status
fsc.read.fiJ.e.id
fsc.read.attr
fsc.read.enc.attr
fsc.enter.foJ.d
fsc.exit.foJ.d
fsc.repeat.foJ.d

The syntax defining permitted sequences of communications is displayed in two columns representing the
sender and receiver respectively. Time advances downwards and the syntactic metasymbols {, } and I have
their normal meanings. Ordinary parentheses are used for bracketting.

Data stream modes

Data stream syntax

Sender

(record I number)

(record I numberl endstream)

result

Receiver

read

read

close

This syntax represents a sequence of data transfers from the sender to the receiver. Each transfer is of a
record item (an array of up to 512 bytes) or of a number it~m (a single non-negative integer) and is sent as a
response to a read from the receiver. At any time the receiver may terminate the stream transfer by sending
a close instead of a read. If the sender has no more data to send it will send an endstream in response to
each subsequent read. Note that a close includes a status value which should normally be fi. ok.

16.7 The TDS user filer interface 385

At any time (not shown in the syntax) the sender may send an error instead of a data item or endstream. If
an error is sent the receiver may then send another request.

The syntax shows the permissible temporal sequences of communications using a user filer channel pair.
From the point of view of a sender process the left hand cplumn defines outputs and the right hand column
inputs. From the point of view of a receiver process the left hand column defines inputs and the right hand
column outputs.

The system sender process, which communicates with a user program as receiver, using a user filer channel
pair in input file stream mode, produces a stream of records from the fold specified in the open.data.read
operation which defined the stream. Any embedded fold creases are ignored and the records within folds are
communicated in sequence.

In a text fold a record corresponds to a text line as seen by the editor. Each record is preceded by a number
of ASCII space characters corresponding to the cumulated sum of the indent attributes of the folds entered
within the stream. The system sender sends endstream at the bottom of the fold structure. It may send an
error at any time if a hardware or low-level software problem arises. The user may send a close at any time,
and must then read the corresponding result.

The system receiver process, which communicates with a user program as sender, using a user filer channel
pair in file stream output mode, receives record or number items from the user program and inserts them
sequentially into an initially empty file. After opening and after each item it will normally return a read but
may return a close (including an error number) if there are hardware or low-level software problems inhibiting
progress. Normal termination is by the user program sending an endstream to the system receiver. This will
be acknowledged by a close, after which the user program must send the final result (in which the status
value should be fi. ok).

After a stream has been transferred in either direction and a close sequence has been completed the user
filer channel pair returns to user filer command mode, and is available for reuse.

Examples of the user filer being used in data stream mode may be found in the implementation of the interface
procedures keystream. from. fi1e and scrstream. to. fi1e (described in section 14.5.13, interface
procedure library interf), which are provided as occam source with the software.

Folded stream modes

The structure and representation of folded data is described in full in appendix G. For the purpose of the
present description it is only necessary to think in terms of folds as displayed on the terminal screen by the
TDS editor.

A fold is a structure consisting of a sequence of items. An item may be a data item or a fold item, where a
fold item in turn consists of a top crease item, a sequence of items and a bottom crease item. A data item
is either a record item or a number item. A fold item (or top crease item) has associated with it a record
item which is the text displayed on the fold line by the editor, and an array of three attributes, defining certain
properties of the contents of the fold.

Some values of attributes define folds whose contents are not suitable for display on the screen by the editor.
This is not a property that concerns access to folds across the user filer interface. The principal constraint
imposed by the implementation of folded files is a maximum size for records stored in the folds. This is 512
bytes. Each byte may contain arbitrary data and is not restricted to displayable ASCII characters.

As a fold structure is traversed there is always an item which is deemed to be the 'current item'. Immediately
after opening a fold stream the current item is undefined. Thereafter the current item is that item which was
most recently transmitted from the sending process to the receiving process. The fold most closely enclosing
the current item is called 'the current enclosing fold'. The identities of the current fold and the current enclosing
fold constitute the state of the sending process.

Folded stream protocol makes the folds and their attributes visible to the user program and gives the program
mer the ability to control his navigation of an existing fold structure by deciding at each top crease whether
or not to enter the fold. It is also possible to abandon the sequential traverse of the current enclosing fold or

386 16 System interfaces

to return to its first item for a repeated traverse. The table below defines the general form of the syntax of a
valid sequence of communications between two processes using folded stream protocol.

Note that the alternative read commands allowed at certain points imply that full implementations must allow
the receiver process to send anyone of these. According to the way the sender is creating its stream it is
not always possible to perform all of the possible operations that may be requested.

It may sometimes be desirable for user programs communicating with a system receiver process to take
advantage of knowledge of the particular options which will be taken at various points.

Specialised syntaxes for communicating with the system sender and system receiver are given later.

Folded stream syntax

To save space in the tabulation we define:

read.command

data.item

top.crease

bottom.crease

item

Sender

item

attr

file.id

read I enter.fold I exit.fold I repeat.fold

record I number

fold I filed

endfold I endfiled

data.item I top.crease I bottom.crease

Receiver

read

(read.attrl read.enc.attt)

read.file.id

read.command
(item I endstream)

close
result

As in the case of data stream mode communications (which are a strict subset of these) the sender may at
any time send an error as an alternative to what the syntax shows. If an error is sent the receiver may then
send another request.

fsc commands

The fsc. commands used by a receiver process are defined as follows:

close

to. sender ! fsc.c10se; status
from. sender ? tag; status

-- tag = fsd.resu1t or fsd.error

The close command requests the sender to stop sending data and to terminate. Before doing so the sender
should (and the system sender will) return a result or an error. .

16.7 The TDS user filer interface

read

to. sender ! fsc.read
from.sender ? taq --taq = fsd.record,fsd.number,

fsd.fo1d, fsd.fi1ed,
-- fsd.endfo1d, fsd.endfi1ed,
-- fsd.endstream or fsd.error

act accordinq to taq va1ue
(in data stream mode on1y the first and 1ast
three are possib1e, in fo1ded stream mode
&1.1 are)

IF
taq = fsd.record data record

from.sender ? 1en:: record
taq = fsd.number v number item

from. sender ? number
(taq = fsd.fo1d) OR (taq = fsd.fi1ed)

-- crease comment
from.sender? 1en:: record

(taq = fsd.endfo1d) OR (taq = fsd.endfi1ed) OR
(taq = fsd.endstream)
SKIP ,

taq = fsd.error
from. sender ? status

381

The read command requests the sender to return the next item. This is the item immediately following the
current item in the fold stream. When the current item is a fold or filed item, the next item is the item after
the fold, not the first item within it.

If a read command is issued when the current item is an endfold or an endfiled the sender should (and the
system sender will) return that item again. The receiver should use exit. fold in this situation.

The sender should (and in the absence of errors or a premature close the system sender will) ensure that
the sequence of items represents a properly nested fold structure.

The system receiver will accept either an endfold or an endfiled at the bottom of any fold, and so a user
program when sending to it does not need to keep track of whether or not its folds are filed.

enter. fold

to. sender ! fsc.enter.fo1d
from. sender ? taq taq = fsd.record,

fsd.number,
fsd.fo1d, fsd.fi1ed,

fsd.endfo1d, fsd.endfi1ed,
fsd.endstream or fsd.error

act accordinq to taq va1ue

The enter.fold command should only be used it" folded stream input mode when the current item is a fold or
a filed. It requests the sender to return the first item within the fold, which becomes the current item.

The system receiver will always send an enter.fold after receiving a fold or a filed from a user program and
requesting and receiving the attributes (and possibly the file name) of the fold (see read.attr and read.file.id).

388

exit. fold

16 System interfaces

to. sender ! fsc.exit.fo1d
from. sender ? tag tag = fsd.record,

fsd.number,
fsd.fo1d, fsd.fi1ed,

fsd.endfo1d, fsd.endfi1ed,
fsd.endstream or fsd.error

act according to tag va1ue

The exit. fold command, applicable in folded stream input mode only, requests the sender to cease sending
the items of the current enclosing fold and to return the first item after this fold, which becomes the current
item.

The system sender will accept exit. fold commands at any time, thereby allowing a user to skip the remaining
items in any fold.

The system receiver will only send an exit.fold after it has received an endfold or an endfiled.

repeat. fold

to. sender ! fsc.repeat.fo1d
from. sender ? tag tag = fsd.record,

fsd.number,
fsd.fo1d, fsd.fi1ed,

fsd.endfo1d, fsd.endfi1ed,
fsd.endstream or fsd.error

act according to tag va1ue

The repeat. fold command, applicable only in folded stream input mode, requests the sender to cease sending
the items following the current item and to return again the first item within the current enclosing fold, which
becomes the current item.

The system sender will accept repeat.fold commands at any time, thereby allowing a user to repeat the
reading of any fold.

The system receiver will never send a' repeat.fold.

read.anr

to. sender ! fsc.read.attr
from. sender ? tag -- tag = fsd.attr or fsd.error
from. sender ? attr -- assuming tag = fsd.attr

The read.attr command, applicable only in folded stream input mode, should only be used when the current
item is a fold or a filed. The sender should (and the system sender will) respond by returning an array of
attributes for the fold which is the current item. The current item does not change.

The system receiver will always send a read.attr after receiving a fold or a filed, and before sending an
enter. fold.

read.enc.attr

to. sender ! fsc.read.enc.attr
from.sender ? tag -- tag = fsd.attr or fsd.error
from. sender ? attr -- assuming tag = fsd.attr

The read.enc.attr command, applicable only in folded stream input mode, requests the sender to return the
attributes of the current enclosing fold.

The system sender will respond to this command independently of the nature of the current item which does
not change. User programs may wish to use this command before leaving a fold to determine its relative
indentation, or after doing so to reestablish knowledge about the type or contents of the enclosing fold.

16.7 The TDS user filer interface

The system receiver will never send read.enc.attr.

read. file.id

to. sender ! fsc.read.file.id
from. sender ? tag

-- tag = fsd.file.id or fsd.error
from.sender ? len:: file.id

-- assuming no error

389

The read.file.id command, applicable only in folded stream input mode, should only be used in an environment
where named files are being used, and should only be used when the current item is a filed. It requests the
sender to return the name of the file in which the contents of the current item, a filed fold, are stored.

The system sender in named filestore implementations will respond to this command at any time when the
current item is a filed. This may be before or after supplying the attributes but before entering the fold.

The system receiver in named filestore implementations will always send this command after requesting the
attributes of a filed fold.

Reading a fold stream from the system sender

This section summarises the application of the details of the protocol already defined to the specific task of
writing a program which reads a folded file from the filing system of the transputer development system host.

Wherever possible such communications should be coded using the procedures described in the section on
the i/o library userio.

If the folds in the file are irrelevant then the simple user procedures may be used and access to the file
obtained by running the interface procedure keystream. from. file in parallel with the application.

If the fold structure is to be traversed sequentially with the folds having significance then the fold access
procedures may be used.

Examples of both these styles are provided with the software and the uSer may extend them as appropriate
to support additional features of the interface as necessary.

Any sequence of communications with the files of the development system must use the channels to and
from the user filer provided as parameters of the executable procedure (EXE).

A channel pair will start in user filer command mode. Any sequence of commands meaningful in that mode
may then be used. An open command may then be used to put the 'Channel pair into data stream input
mode or folded stream input mode. In this mode the channel pair connect a system sender process to a user
process as a receiver. Operations in data stream modes are a subset of those in the corresponding folded
stream modes.

In these modes communications must obey the bidirectional syntax presented above. That syntax is repeated
below:

Data stream input mode

Sender (system)

(record I numbel)

(recordlnumberlendsueam)

result

Receiver (user)

read

read

close

390

Folded stream input mode

Sender

item

attr

file.id

(item I endstream)

result

Where:

Receiver

read

(read.attrl read.enc.attt)

read. file. id

read.command

close

16 System interfaces

read.command

data.item

top.crease

bottom.crease

item

read I enter.fold I exit.fold I repeat.fold

record I number

fold I filed

endfold I endfiled

data. item I top.crease I bottom.crease

The type of each item received determines the valid commands which may be sent back. An enter.fold or a
read.attr may only be sent after receiving a fold or a filed. A read.file.id may only be sent after receiving a
filed.

Writing a fold stream to the system receiver

This section summarises the application of the details of the protocol already defined to the specific task of
writing a program which writes a folded file into the filing system of the transputer development system host.

Wherever possible such communications should be coded using the procedures described in the section on
the i/o library userio. If the folds in the file are irrelevant then the simple user procedures may be used
and access to the file obtained by running the interface procedure scrstream. to. fi1e in parallel with
the application.

If it is required to generate a fold structure with nested folds then the fold access procedures may be used.

Examples of both these styles are provided and the user may extend them as appropriate to support additional
features of the interface as necessary.

Any sequence of communications with the files of the development system must use the channels to and
from the user filer provided as parameters of the executable procedure (EXE).

A channel pair will start in user filer command mode. Any sequence of commands meaningful in that mode
may then be used. An open command may then be used to put the channel pair into data stream output
mode or folded stream output mode. In this mode the channel pair connect a user process as sender to a
system receiver process. Operations in data stream modes are a subset of those in the corresponding folded
stream modes.

In these modes communications must obey the bidirectional syntax presented above. An alternative pre
sentation of this syntax applicable when the sender is a user process and the receiver is a system receiver
process whose particular behaviour is defined, is as follows:

16.8 Other TDS interfaces

Data stream output mode

Sender (user)

(recordl numbel)

(recordl numberl endstream)

result

Folded stream output mode

Sender

(record

(number

(fold

attr

(filed

attr

file.id

((endfold I endfiled)

endstream

result

Receiver (system)

reat:!

read

close

Receiver

read

read)

read)

read.aftr

enter. fold)

read.aftr

read.file.id

enter. fold)

exit. fold)

close

391

The user process may send an error at any time which will cause the file to be terminated with no contents.

16.8 Other TDS interfaces

In earlier versions of the TDS there was an additional documented interface known as the kernel filer interface,
using tkf. commands. Whereas this interface is still implemented in TDS3 so that old programs may run
unchanged, it has been reduced to the level of an undocumented and unsupported interface as its limitation
to one file open at anyone time has made it unattractive to the writers of EXEs. Most of its facilities are
available across the iserver channels (see section 16.5) which do not impose such a limitation.

The undocumented and unsupported fold manager interface is also implemented.

The kernel channel interface is only implemented to the extent needed by TDS tools. Any user programs
which used undocumented additional features of this interface may no longer work.

The k. qet . abort. state command is used to implement the ISET ABORT FLAGI feature of the TDS. It
returns a result indicating whether the Control-A key has been pressed on the keyboard, since the last time
the flag was tested.

392

Usage is:

XNT resu1t:
SEQ

to.kerne1 ! k.qet.abort.state
from.kerne1 ? resu1t

If result is non-zero, Control-A has been pressed, if zero it has not.

16 System interfaces

Appendices

A Keyboard layouts
A.1 IBM PC function keys

F1 F2

Ctrl

Shift Browse File/Unfile

Alt Toolkit Code Info
- Help - - - Fold-Into -

CtrI Get Macro Save Macro
Shift - -Put - - - - - - -

Alt -Pick Line - -Copy pick

Mo~e-Line - -COpy Line

Ctrl Clear UTIL Clear EXE
Shift - Autok>ad - - Ciear 1'11

Alt -NextUnL- - N~xtEXE
-G~ Code - -R~n-EXE-

Ctrl Del Word Del Word ~
Shift + Word - - Word --....

Alt DeiSt;Llne- Restore Line
:+-- Une - - une -.....

Ctrl Define Macro Call Macro

Shift Top ot f~d - Bottom otf~d
Alt y~g~U£ =!~e!>~w~

Line Up Line Down

F9 F10

396

A.2 IBM PC keyboard layout

A Keyboard layouts

Get Macro SaveMacrc

Browse File/Until; - -Put--

- Toolklt- Co~l;;f; P~k-Lin;Copy Pick
- -Help- -FoldInfo Move Line CopyLine

Ctrl Clear UTIL Clear EXE~ Del Word Del Word ~
Shift -A~tOio"7id - cTe;r All~ -Word - - - - Word- ~

Alt Next-UTIL Next EXE D~ete-L~e- R~tore Un~

Get Code -Run-EXE" r; - Une - - - - Line- ~

Esc

E]
CtrI

Shift
Refresh Alt

Alt 1

F1

2

F2

3

F3

4

F4

5

F5

6

F6

7

F7

a

Fa

9

File Handle

Debugger

Compiler

r Attach! Copy Compact Rename Write Write Copy In Copy Read

Detatch Attach Libs File Protect Enable Out Host
-Inspeet- -Cha-;'nel - -Top-- -R~t;a~- -Reloeate- - - ~fo -- ------ ,... Links- -Monitor-
- - - -- - - - -- - - - -- - - - -- - - - -- ------ ------ ~---- - - - --

Check Compile Extract Load Recompile Compile Info Make Foldset Search Replace

a W E R T y* U I 0
Select Delete
Parameter Une

A* S D F G H J K L

Set abort

flag

Z X C V B N M

If< Ctrl + key

Note that additional keys or combinations may be defined by modifying the ITERM file (see section 16.3).

A.2 IBM PC keyboard layout 397

F9 F10 F11 F12

Define Macro Call Macro
To-p ~{foTd- Bono-m-off~d

-Page-Up - -Pag~ Dow;;
- Line Up- -Line Do;';

CtrI

Shift

Alt

o Alt

Write

Host
- - - - Make Comment

Backtrace
liSt-FOld

P

Delete

Return

Enter Ctr

Ctr

Ctr

Enter Fold • Exit Fold
- - -- - - -- - - --

I Delete Remove
to EOl Fold

~ --..
- - -- - - -- - - --

I~ Word Word ~

Open Fold t Close Fold
- - -- - - -- - - --

I Finish Suspend
TDS

Create Fold Delete
--..

398

A.3 NEC PC keyboard layout

A Keyboard layouts

Toolkit Code Info Pick Line Copy Pick Next UTll

- - - -- - - - -- - - - -- - - - -- - - - --
Help Fold Info Move Line Copy Line Get CodeDD

Esc 1

Shift

2

F1

3 4

F2

5

F3

6

F4

7

F5

8

F6

Next EXE

Run EXE

9

File Handler

Debugger

Compiler

Attach! Copy Compact Rename Write Write Copy In Copy Read

Detatch Attach Libs File Protect Enable Out Host
Esc ------ ------

- Links-Inspect Channel Top Retrace Relocate Info Monitor- - - -- - - - -- - - - -- - - - -- - - - -- ------ ------ ... ---- - - - --
Check Compile Extract load Recompile Compile Info Make Foldset Search Replace

a W. E. R. T. Y. U. I O.
Select Save Delete Remove Top of Delete Put Browse
Parameter Macro to EOl Fold Fold Line

A. S D. F. G. H J. K. l.

Set abort Define Word Word Call Del Word Del Word

flag Macro ~ -.. Macro ~ -..
z. X. C v. B. N M

Suspend Finish Get Bottom

TDS Macro of fold

• Ctrl + key

Autoload = Esc IGET CODEI

Refresh = Esc Esc

Clear UTI l = Esc INEXT UTILI
Clear EXE =Esc IN EXT EXEI

Clear ALL = Esc IRUN EXEI

A.3 NEC PC keyboard layout 399

Delete Une Restore Une Page Up Page Down

~E~~-- - - -- - - - --
Start of

Line Up Line Down..-
Une Line

~

F7 Fa F9 F10

Shift D
EnterFold 0

I t I

BB
I • I

Esc 0

Write

Host Delete----- Make-Backtrace

List-FOld
Comment

P

Return

Enter

I::l
L:J

Close
Fold

Shift File/Unfile

- - - -- Delete
Create --...

Fold

B Summary of standard utilities
These are the standard utility packages supplied with the TDS:

occam program development package

1 ~
2 ICOMPILEI

3 IEXTRACTI

4 ILOAD NETWORKI

5 IRECOMPILE!

6 !COMPILATION INFO!

7 IMAKE FOLDSETI

8~

9 IREPLACEI

o ILlST FOLD!

File handling package

1 IATIACH/DETACH!

2 !COpy ATIACHI

3 'COMPACT LIBRARIES!

4 'RENAME FILE!

7~

8 'COpy OUTI

9 'READ HOST!

o !WRITE HOST!

Check program syntax

Compile and/or configure program
Extract and link code for network
Load program onto network

Recompile program with old parameters
Show compilation or configuration info
Make foldset around the current line

Search for string
Replace string at current cursor position

List utility

Attach or detach a file in the fold structure
Copy TDS file(s) into the fold structure

Compact libraries into another directory

Change the name of the file for a fold
Copy a TDS file structure from another directory

Copy a TDS file structure to another directory
Read a host format file into a fold

Write a fold out into a host format file

C Names defined by the software
All names which may appear in occam source text and which are defined ,either by the language, the
compiler, the libraries or the TDS are given below in alphabetical order. Library constants are not included,
but see Appendix D for tables of these.

The names in this table are classified into the following different classes:

1 language keyword. Keyword defined in the language reference manual.

2 compiler keyword. Keyword defined by the current compiler implementation.

3 compiler predefine. A procedure or function which is predeclared by the compiler and implemented
by in line code.

4 compiler library. A library procedure or function which is used by compiler generated code. On some
processors these are implemented by a function in a library with the name indicated, on others they
are implemented as in line code.

S system library. A library procedure for special transputer system operations.

6 maths library. A function in the elementary function library. Logical library name depends on version
required.

7 maths utility library. Supporting function for maths library.

8 io library. A procedure or function in the input/output library. The library logical name which must be
used to access it is also shown.

9 host io library. A procedure in the host input/output library. The library logical name which must be
used to access it is also shown.

10 compiler input directive. Word in occam source code recognised by compilation system for special
action at compile time.

11 TDS foldtype name. Name written by TDS editor or compilation utility on certain fold lines.

Any name which is not a language keyword or a compiler keyword may be redeclared as ·an identifier in
an occam program. However, redefining a name of a compiler library procedure or function can have
unexpected consequences; it is strongly recommended that all the names below are reserved for the use
specified in this table.

404 C Names defined by the software

Name Class Library Notes
ABS compiler library realpds
ACOS maths library
add. char io library strings
add.hex.int32 io library strings
add.hex.int64 io library strings
add.hex.int io library strings
add.int32 io library strings
add.int64 io library strings
add.int io library strings
add.rea1.32 io library strings
add.rea1.64 io library strings
add. text io library strings
af.buffer io library afinterf
af.mul.tipl.exor io library afinterf
af. read. integer io library afio
af.read.record io library afio
af .to.sp host io library afsp
af.write.integer io library afio
af.write.record io library afio
AFTER language keyword
ALOG maths library
ALOG10 maths library
ALT language keyword
AND language keyword
ANY language keyword
append. char io library strings
append.hex.int32 io library strings
append.hex.int64 io library strings
append.hex.int io library strings
append.int32 io library strings
append.int64 io library strings
append.int io library strings
append.rea1.32 io library strings
append.rea1.64 io library strings
append. text io library strings
ARGUMENT. REDUCE compiler library realpds
ASBIFTLEFT compiler predefine
ASBIFTRIGBT compiler predefine
ASIN maths library
assign.bsl.ice io library slice
AT language keyword
ATAN maths library
ATAN2 maths library
BOOx.term.p.driver io library t2board
BOOx.term.p.driver io library t4board
beep io library userio
BITAND language keyword
BITCOONT compiler library intpds
BITNOT language keyword
BITOR language keyword
BITREVNBITS compiler library intpds

Names defined by the software C

Name Class Library Notes
BITREVWORD compiler library intpds
BOOL language keyword
BOOLREAD io library derivio
BOOLTOSTRING io library ioconv
BOOLWRlTE io library derivio
BYTE language keyword
ca11.interrupt io library afiler
CASE language keyword
CAUSEERROR compiler predefine
CBAN language keyword
char.pos io library strings
c1ean.string io library ufiler
cl.ear.eol. io library userio
c1ear.eos io library userio
CLIP2D compiler library intpds
c1ose.fo1ded.stream io library userio
c1ose.stream io library afiler
c1ose.uf.stream io library ufiler
c1ose.tkf.fi1e io library msdos
CODE EXE TDS foldtype name
CODE PROGRAM TDS foldtype name
CODE SC TDS foldtype name
CODE UTIL TDS foldtype name
COMMENT TDS foldtype name
compare. strings io library strings
CONFIG INFO TDS foldtype name
COPYSIGN compiler library realpds
COS maths library
COSH maths library
CRCBYTE compiler library intpds
CRCFROMLSB system library blockcrc
CRCFROMMSB system library blockcrc
CRCWORD compiler library intpds
create.fo1d io library ufiler
create.new.fo1d io library userio
DABS compiler library realpds
DACOS maths library
DALOG maths library
DALOG10 maths library
DARGUMENT.REDUCE compiler library realpds
DASIN maths library
DATAN maths library
DATAN2 maths library
DCOPYSIGN compiler library realpds
DCOS maths library
DCOSH maths library
DDIVBY2 compiler library realpds
de1.1ine io library userio
de1ete.ch1 io library userio
de1ete.chr io library userio
de1ete.string io library strings

405

406 C Names defined by the software

Name Class Library Notes
DEXP maths library
Dexp maths library
DFLOATING.UNPACK compiler library realpds
DFPINT compiler library realpds
DIEEECOMPARE complier library realpds
DISNAN compiler library realpds
DIVBY2 compiler library realpds
DLOGB compiler library realpds
DMINUSX compiler library realpds
DMOLBY2 compiler library realpds
DNEXTAFTER compiler library realpds
DNOTFINITE compiler library realpds
DORDERED compiler library realpds
down io library userio
DPOWER maths library
DRAN maths library
DRAW2D compiler library intpds
DSCALEB compiler library realpds
DSIN maths library
DSINB maths library
DSQRT compiler library realpds
DTAN maths.library
DTANB maths library
ELSE language keyword
enter.fo1d io library userio
eqstr io library strings
EXE TDS foldtype name
exit.fo1d io library userio
EXP maths library
exp maths library
FALSE language keyword
fi1e.1ock io library msdos
fi1e.re1ease io library msdos
finish.new.fo1d io library userio
FIX maths utility library
FIX64 maths utility library
FLOATING. UNPACK compiler library realpds
FOR language keyword
FPINT compiler library realpds
FracDiv maths utility library
FracDiv64 maths utility library
FRACMOL compiler predefine T4, TB only
FracMu1t64 maths utility library
FROM language keyword
FUNCTION language keyword
qet.rea1.strinq io library userio
qet.rea1.with.de1 io library userio
qet.stream.resu1t io library utiler
GETSTRING io library derivio
qoto.xy io library userio
GOY compiler keyword

Names defined by the software C

Name Class Library Notes
han~e.af.transaction io library afiler
BEX16READ io library derivio
BEX16TOSTRING io library extrio
BEX16WRITE io library derivio
BEX32READ io library derivio
BEX32 TOSTRING io library extrio
BEX32WRITE io library derivio
BEX64READ io library derivio
BEX64TOSTRING io library extrio
BEX64WRITE io library derivio
BEXREAD io library derivio
BEXTOSTRING io library ioconv
BEXWRITE io library derivio
IEEE320P compiler library reals
IEEE32REM compiler library reals
IEEE640P compiler library dreals
IEEE64REM compiler library dreals
IEEECOMPARE compiler library realpds
IF language keyword
IN compiler keyword
IncExp maths utility library
IncExp64 maths utility library
input.error.item io library userio
input.1en.bs1ice io library slice
input.number.item io library userio
input.record.item io library userio
input.top.crease io library userio
InputOrFail.c system library reinit
InputOrFai1.t system library reinit
ins.line io library userio
insert. char io library userio
insert.strinq io library strings
INT language keyword
INT16 language keyword
INT16ADD compiler library ints
INT16BITAND compiler library ints·
INT16BITNOT compiler library ints
INT16BITOR compiler library ints
INT16DIV compiler library ints
INT16EQ compiler library ints
INT16GT compiler library ints
INT16LSBIFT compiler library ints
INT16MINUS compiler library ints
INT16MOL compiler library ints
INT16PLUS compiler library ints
INT16READ io library derivio
INT16REM compiler library ints
INT16RSBIFT compiler library ints
INT16SUB compiler library ints
INT16TIMES compiler library ints
INT16TOINT32 compiler library ints

407

408 C Names defined by the softWare

Name Class Library Notes
INT16TOINT64 compiler library ints
INT16TOREAL32 compiler library reals
INT16TOREAL64 compiler library dreals
INT16TOSTRING io library extrio
INT16WRITE io library derivio
INT16XOR compiler library ints
INT32 language keyword
INT32ADD compiler library ints
INT32BITAND compiler library ints
INT32BITNOT compiler library ints
INT32BITOR compiler library ints
INT32DIV compiler library ints
INT32DIVREM compiler library ints
INT32EQ compiler library ints
INT32GT compiler library ints
INT32LSBIFT compiler library ints
INT32MINUS compiler library ints
INT32MOL compiler library ints
INT32PLOS compiler library ints
INT32READ io library derivio
INT32REM compiler library ints
INT32RSBIFT compiler library ints
INT32SOB compiler library ints
INT32 TIMES compiler library ints
INT32TOINT16 compiler library ints
INT32TOINT64 compiler library ints
INT32TOINT64 compiler library ints
INT32TOREAL32 compiler library reals
INT32TOREAL64 compiler library dreals
INT32TOSTRING io library extrio
INT32WRITE io library derivio
INT32XOR compiler library ints
INT64 language keyword
INT64ADD compiler library ints
INT64BITAND compiler library ints
INT64BITNOT compiler library ints
INT64BITOR compiler library ints
INT64DIV compiler library ints
INT64DIVREM compiler library ints
INT64EQ compiler library ints
INT64GT compiler library ints
INT64LSBIFT compiler library ints
INT64MINUS compiler library ints
INT64MOL compiler library ints
INT64PLOS compiler library ints
INT64READ io library derivio
INT64REM compiler library ints
INT64RSBIFT compiler library ints
INT64SOB compiler library ints
INT64TIMES compiler library ints
INT64TOINT16 compiler library ints

Names defined by the software C

Name Class Library Notes
INT64TOINT32 compiler library ints
INT64TOREAL32 compiler library reals
INT64TOREAL64 compiler library dreals
INT64TOSTR:ING io library extrio
INT64WRlTE io library derivio
INT64XOR compiler library ints
INTREAD io library derivio
:INTTOSTRING io library ioconv
INTWRITE io library derivio
IS language keyword
is.diqit io library strings
is.hex.diqit io library strings
is.id.char io library strings
is.in.ranqe io library strings
is.1ower io library strings
is.upper io library strings
ISNAN compiler library realpds
KERNEL. RUN compiler predefine
keystream.from.afserver io library afinterf
keystream.from.BOO4.1ink io library t4board
keystream.from.fi1e io library interf
keystream. from. server io library interf
keystream.sink io library interf
keystream.to.screen io library interf
ks.qet.rea1.strinq io library streamio
ks.qet.rea1.with.de1 io library streamio
kS.keystream.sink io library streamio
ks.keystream.to.screen io library streamio
ks.read.char io library streamio
ks.read.echo.char io library streamio
ks.read.echo.hex.int io library streamio
ks.read.echo.hex.int32 io library streamio
ks.read.echo.hex.int64 io library streamio
ks.read.echo.int io Ii~rary streamio
ks.read.echo.int32 io library streamio
ks.read.echo.int64 io library streamio
ks.read.echo.rea132 io library streamio
ks.read.echo.rea164 io library streamio
ks.read.echo.text.1ine io library streamio
ks.read.hex.int io library streamio
ks.read.hex.int32 io library streamio
ks.read.hex.int64 io library streamio
ks.read.int io library streamio
ks.read.int32 io library streamio
ks.read.int64 io library streamio
ks.read.rea132 io library streamio
ks.read.rea164 io library streamio
ks.read.text.1ine io library streamio
1eft io library userio
LIB TDS foldtype name
LOAD.BYTE.VECTOR compiler predefine

409

410 C Names defined by the software

Name Class Library Notes
LOAD.INPUT.CHANNEL compiler predefine
LOAD. INPUT. CHANNEL. VECTOR compiler predefine
LOAD. OUTPUT. CHANNEL compi/er predefine
LOAD. OUTPUT. CHANNEL. VECTOR compiler predefine
LOGS compiler library realpds
LONGADD compiler predefine
LONGDIFF compiler predefine
LONGDIV compiler predefine
LONGPROD compiler predefine
LONGSOB compiler predefine
LONGSUM compiler predefine
make.fi1ed io library ufiler
make. id io library msdos
IaNUS language keyword
Ml:NUSX compiler library realpds
MOSTNEG language keyword
MOSTPOS language keyword
MOVE2D compiler library intpds
MOLBY2 compi/er library realpds
new1ine io library userio
next.int.from.1ine io library strings
next.word.from.1ine io library strings
NEXTAFTER compiler library realpds
NORMALISE compiler predefine
NORMALI SE64 maths utility library
NOT language keyword
NOTFINITE compiler library realpds
number. of. fo1ds io library ufi/er
OF language keyword
open. data. stream to library ufi/er
open.fi1e io library afiler
open.fo1ded.stream io library userio
open.input.stream io library afi/er
open.output.stream io library afiler
open. stream io library ufi/er
open.temp.fi1e io library afiler
open.tkf.fi1e io library msdos
OR language keyword
ORDERED compiler library realpds
output.1en.bs1ice io library slice
OutputOrFai1.c system library reinit
OutputOrFai1.t system library reinit
PAR language keyword
PLACE language keyword
PLACED language keyword
PLUS language keyword
PORT language keyword
port.read io library afiler
port.write io library afiler
POWER maths library
PRI language keyword

Names defined by the software C

Name Class Library Notes
PROC language keyword
PROCESSOR language keyword
PROGRAM TDS foldtype name
PROTOCOL language keyword
QReal.IDiv compiler library t2utils
QReal.IMul. compiler library t2utils
QUADNORMALISE compiler library t2utils
QUADSBIFTLEFT compiler library t2utils
QUADSBIFTRIGBT compiler library t2utils
RAN maths library
read.bl.ock io library afiler
read. bottom. crease io library userio
read. char io library userio
read.core.dump io library afiler
read. data. record io library ufiler
read. echo. char io library userio
read.echo.hex.int64 io library userio
read. echo. hex. int io library userio
read.echo.int64 io library userio
read.echo.int io library userio
read.echo.rea1.32 io library userio
read.echo.rea1.64 io library userio
read.echo.text.l.ine io library userio
read. environment io library afiler
read. error. item io library userio
read.fil.e.name io library userio
read.fil.ed.top.crease io library userio
read.fol.d.attr io library ufiler
read.fol.d.headinq io library userio
read.fol.d.strinq io library ufiler
read.fol.d.top.crease io library userio
read.hex.int64 io library userio
read.hex.int io library userio
read.int64 io library userio
read.int io library userio
read.key.wait io library afiler
read. key io library afiler
read. number. item io library userio
read.rea1.32 io library userio
read.rea1.64 io library userio
read. record. item io library userio
read.reqs io library afiler
read.text.l.ine io library userio
read. time io library afiler
read.tkf.bl.ock io library msdos
read.tkf.l.ine io library msdos
REAL32 language keyword
REAL32EQ compiler library reals
REAL32EQERR compiler library reals
REAL32GT compile~ library reals
REAL32GTERR compiler library reals

411

412 C Names defined by the software

Name Class Library Notes
REAL320P compiler library reals
REAL320PERR compiler library reals
REAL32READ io library derivio
REAL32REM compiler library reals
REAL32REMERR compiler library reals
REAL32TOINT16 compiler library reals
REAL32TOINT32 compiler library reals
REAL32TOINT64 compiler library reals
REAL32TOREAL64 compiler library reals
REAL32TOSTRING io library extrio
REAL32WRITE io library derivio
REAL64 language keyword
REAL64EQ compiler library dreals
REAL64EQERR compiler library dreals
REAL64GT compiler library dreals
REAL64GTERR compiler library dreals
REAL640P compiler library dreals
REAL640PERR compiler library dreals
REAL64READ io library derivio
REAL64REM compiler library dreals
REAL64REMERR compiler library dreals
REAL64TOINT16 compiler library dreals
REAL64TOINT32 compiler library dreals
REAL64TOINT64 compiler library dreals
REAL64TOREAL32 compiler library reals
REAL64TOSTRING io library extrio
REAL64WRITE io library derivio
Rea1IDiv compiler library t2utils,r64util
Rea1IMu1 compiler library t2utils,r64util
receive.b1ock io library afiler
ReF10at maths utility library
ReF1oat64 maths utility library
Reinitia1ise system library reinit
REM language keyword
rename.fi1e io library afiler
repeat.fo1d io library userio
RESULT language keyword
RETYPES language keyword
right io library

~

userio
ROTATELEFT compiler predefine
ROTATERIGHT compiler predefine
ROUND language keyword
ROUNDSN compiler predefine T4 only
run. command io library afiler
runtime.data io library afiler
se lDS foldtype name
SCALEB compiler library realpds
scrstream.copy io library interf
scrstream.fan.out io library interf
scrstream.from.array io library interf
scrstream.mu1tip1exor io library interf

Names defined by the software C

Name Class Library Notes
scrstream.sink io library interf
scrstream.to.afserver io library afinterf
scrstream.to.ANSI io library interf
scrstream.to.array io library interf
scrstream.to.BOO4.1ink io library t4board
scrstream.to.fi1e io library interf
scrstream.to.server io library interf
scrstream.to.TVI920 io library interf
search.match io library strings
search.no.match io library strings
seek io library afiler
send.b10ck io library afiler
send. command io library ufiler
SEQ language keyword
server. version io library afiler
set.return.resu1t io library afiler
SBIFTLEFT compiler predefine
SBIFTRIGBT compiler predefine
SBIFTRIGBT64 maths utility library
SIN maths library
SINB maths library
SIZE language keyword
SKIP language keyword
skip. item io library userio
so.ask host io library sklib
so.buffer host io library spinterf
so.c10se host io library splib
so.command1ine host io library splib
so.core host io library splib
so.date.to.ascii host io library solib
so.eof host io library splib
so.exit host io library splib
so.ferror host io library splib
so.f1ush host io library splib
so. fwrite. char host io library solib
so.fwrite.n1 host io library solib
so.fwrite.hex.int host io library so lib
so.fwrite.hex.int64 host io library solib
so. fwrite. int host io library solib
so. fwrite. int64 host io library solib
so. fwrite. rea132 host io library solib
so. fwrite. rea164 host io library solib
so.fwrite.string host io library .solib
so.fwrite.string.n1 host io library solib
so.getenv host io library splib
so.getkey host io library splib
so.gets host io library splib
so.keystream.from.fi1e host io library spinterf
so.keystream.from.kbd host io library spinterf
so.keystream.from.stdin host io library spinterf
so.mu1tip1exor host io library spinterf

413

414 C Names defined by the software

Name Class Library Notes
so.open host io library splib
so.open.temp host io library solib
so.over1apped.buffer host io library spinterf
so.over1apped.mu1tiplexor host io library spinterf
so.parse.command.line host io library solib
so.po11key host io library splib
so.popen.read host io library solib
so.puts host io library splib
so.read host io library splib
so.read.echo.any.int host io library sklib
so.read.echo.hex.int host io library sklib
so.read.echo.hex.int64 host io library sklib
so.read.echo.int host io library sklib
so.read.echo.int64 host io library sklib
so.read.echo.1ine host io library solib
so.read.echo.real32 host io library sklib
so.read.echo.rea164 host io library sklib
so. read. line host io library solib
so. remove host io library splib
so. rename host'io library splib
so.scrstream.to.ANSI host io library spinterf
so.scrstream.to.file host io library spinterf
so.scrstream.to.stdout host io library spinterf
so.keystream.to.TVI920 host io library spinterf
so. seek host io library splib
so. system host io library splib
so.te11 host io library splib
so.test.exists host io library solib
so.time host io library splib
so.time.to.ascii host io library solib
so.time.to.date host io library solib
so.today.ascii host io library solib
so.today.date host io library solib
so.version host io library splib
so.write host io library splib
so.write.char host io library solib
so.write.hex.int host io library solib
so.write.hex.int64 host io library solib
so.write.int host io library solib
so.write.int64 host io library solib
so.write.n1 host io library solib
so.write.real32 host io library solib
so.write.real.64 host io library solib
so.write.string host io library solib
so.write.string.nl host io library solib
SQRT compiler library realpds
ss.beep io library streamio
ss.clear.eol. io library streamio
ss.clear.eos io library streamio
ss.de1ete.chl io library streamio
ss.delete.chr io library streamio

Names defined by the software C 415

Name Class Library Notes
ss.de1.1ine io library streamio
ss.down io library streamio
ss.goto.xy io library streamio
ss.insert.char io library streamio
ss.ins.1ine io library streamio
ss.1eft io library streamio
ss.right io library streamio
ss.scrstream.copy io library streamio
ss.scrstream.fan.out io library streamio
ss.scrstream.from.array io library streamio
ss.scrstream. from. fo1d io library ssinterf
ss.scrstream.sink io library streamio
ss.scrstream.to.ANSI.bytes io library ssinterf
ss.scrstream.to.array io library streamio
ss.scrstream.to.fo1d io library ssinterf
ss.scrstream.to.TVI920.bytes io library ssinterf
ss.up io library streamio
ss.write.char io library streamio
ss.write.endstream io library streamio
ss.write.hex.int io library streamio
ss.write.hex.int32 io library streamio
ss.write.hex.int64 io library streamio
ss.write.int io library streamio
ss.write.int32 io library streamio
ss.write.int64 io library streamio
ss.write.n1 io library streamio
ss.write.rea132 io library streamio
ss.write.rea164 io library streamio
ss.write.string io library streamio
ss.write.text.1ine io library streamio
STOP language keyword
str.shift io library strings
stream.access io library afiler
stream. connect io library afiler
stream.fi1e io library afiler
stream~enqth io library afiler
stream. status io library afiler
string.pos io library strings
STRINGTOBOOL io library ioconv
STRINGTOHEX16 io library extrio
STRINGTOHEX32 io library extrio
STRINGTOHEX64 io library extrio
STRINGTOHEX io library ioconv
STRINGTOINT16 io library extrio
STRINGTOINT32 io library extrio
STRINGTOINT64 io library extrio
STRINGTOINT io library ioconv
STRINGTOREAL32 io library extrio
STRINGTOREAL64 io library extrio
T2 compiler keyword

416 C Names defined by the software

Name Class Library Notes
T4 compiler keyword
T8 compiler keyword
TAN maths library
TANS maths library
terminate.:til.er io library afiler
terminate. server io library t4board
test.exists io library msdos
TIMER language keyword
TIMES language keyword
to. l.ower. case io library strings
to.upper.case io library strings
TRUE language keyword
TRUNC language keyword
truncate.fil.e.id io library ufiler
UNPACKSN compiler predefine T4 only
up io library userio
USE compiler input directive
UTIL TDS foldtype name
VAL language keyword
VALOF language keyword
VECSPACE compiler keyword
WHILE language keyword
WORKSPACE compiler keyword
write.bl.ock io library afiler
write.bottom.crease io library userio
write.char io library userio
write.endstream io Iibra;y userio
write.fil.ed.top.crease io library userio
write.fol.d.strinq io library ufiler
write.fol.d.top.crease io library userio
write.ful.l..strinq io library userio
write.hex.int64 io library userio
write.hex.int io library userio
write.int64 io library userio
write.int io library userio
write.l.en.strinq io library userio
write.number.item io library userio
write.rea1.32 io library userio
write.rea1.64 io library userio
write. record. item io library userio
write.text.l.ine io library userio
write.tkf.bl.ock io library msdos
write.top.crease io library userio

D System constant definitions
The TDS libraries include several groups of constants as indicated in the table in chapter 14. Some of these
libraries are provided for compatibility with earlier releases only and are not tabulated here. The libraries
tabulated here are:

complibs:
mathlibs
hostlibs
iolibs

0.1 LINKAOOR

Iinkaddr transputer link addresses
mathvals important REAL numbers

sphdr constants used in the iserver interface
strmhdr protocols SP, SS and KS
userhdr constants used with KS and SS protocol
filerhdr constants used in the user filer interface

To declare these addresses, used in PLACE allocations for channels on hard transputer links, insert the
following line in a compilation unit:

lOSE 1inkaddr

{{{ 1ink addresses
-- Transputer 1ink addresses

VAL 1inkO.in IS 4:
VAL 1inkO.out IS 0:

VAL 1ink1.in IS 5:
VAL 1ink1.out IS 1:

VAL 1ink2.in IS 6:
VAL 1ink2.out IS 2 :

VAL 1ink3.in IS 7 :
VAL 1ink3.out IS 3:

VAL event. in IS 8:

}}}

418

0.2 MATHVALS

D System constant definitions

This library includes specifications of a variety of general purpose real constants.

To declare these values, insert the following line in a compilation unit:

fUSE mathval.s

#7FFOOOOOOOOOOOOO(INT64) :
#0000000000000001 (INT64) :
#7FEFFFFFFFFFFFFF(INT64):
-- 1.7976931348623157E+308
#4005BFOA8B145769 (INT64) :
-- 2.7182818284590451E+000
#400921FB54442D18 (INT64) :
-- 3.1415926535897931E+000
#3FE62E42FEFA39EF(INT64) :
-- 6.9314718055994529E-001
#3FDBCB7B1526E50E(INT64) :
--4.3429448190325182E-001
#3FF6A09E667F3BCD(INT64) :
-- 1.4142135623730951E+000
1.1447298858494001741 (REAL64)

57.295779513082320877 (REAL64) :
1.7453292519943295769E-2(REAL64)
0.57721566490153286061 (REAL64) :

#7F800000(INT32)
#00000001 (INT32)
#7F7FFFFF(INT32)
#402DF854 (INT32)
#40490FDB(INT32)
#3F317218 (INT32)
#3EDE5BD9(INT32)
#3FB504F3(INT32)
1.1447298858 (REAL32)
57.295779513 (REAL32)
1.74532925199E-2(REAL32)
0.5772156649 (REAL32) :

{{{ REAL32 Constants
VAL REAL32 INFINITY RETYPES
VAL REAL32 MINREAL RETYPES
VAL REAL32 MAXREAL RETYPES
VAL REAL32 E RETYPES
VAL REAL32 PI RETYPES
VAL REAL32 LOGE2 RETYPES
VAL REAL32 LOG10E RETYPES
VAL REAL32 ROOT2 RETYPES
VAL LOGEPI IS
VAL RADIAN IS
VAL DEGREE IS
VAL GAMMA IS
}} }
{{{ REAL64 Constants
VAL REAL64 DINFINITY RETYPES
VAL REAL64 DMINREAL RETYPES
VAL REAL64 DMAXREAL RETYPES

VAL REAL64 DE RETYPES

VAL REAL64 DPI RETYPES

VAL REAL64 DLOGE2 RETYPES

VAL REAL64 DLOG10E RETYPES

VAL REAL64 DROOT2 RETYPES

VAL DLOGEPI IS
VAL DRADIAN IS
VAL DDEGREE IS
VAL DGAMMA IS
}}}

3.40282347 E+38
2.71828174 E+OO
3.14159274 E+OO
6.93147182 E-01
4.34294492 E-01
1.41421354 E+OO

0.3 SPHOR

0.3 SPHDR

419

host command tags
sp.getkey.tag IS 30(BYTE)
sp.po11key.tag IS 31(BYTE)
sp.getenv.tag IS 32 (BYTE)
sp.time.tag IS 33(BYTE)
sp.system.tag IS 34(BYTE)
sp.exit.tag IS 35(BYTE)

The constants in this library are reserved for use in communications between a program and the iserver
or any other process which communicates using SP protocol. Similar declarations are included in all INMOS
occam implementations which allow the creation of prog rams supported by iserver.

To declare these constants include the following line in a compilation unit:

'USE sphclr

{{{ command tags
-- va1ues up to 127 are reserved for use by INMOS
{{{ fi1e command tags
VAL sp.open.tag IS 10(BYTE)
VAL sp.c1ose.tag IS 11(BYTE)
VAL sp.read.tag IS 12(BYTE)
VAL sp.write.tag IS 13(BYTE)
VAL sp.gets.tag IS 14(BYTE)
VAL sp.puts.tag IS 15(BYTE)
VAL sp.f1ush.tag IS 16(BYTE)
VAL sp.seek.tag IS 17(BYTE)
VAL sp.te11.tag IS 18(BYTE)
VAL sp.eof.tag IS 19(BYTE)
VAL sp.ferror.tag IS 20(BYTE)
VAL sp.remove.tag IS 21(BYTE)
VAL sp.rename.tag IS 22 (BYTE)
} } }
{{{
VAL
VAL
VAL
VAL
VAL
VAL
}}}
{{ { server command tags
VAL sp.command1ine.tag IS 40(BYTE)
VAL sp.core.tag IS 41(BYTE)
VAL sp.version.tag IS 42(BYTE)
} } }
{{{ OS specific command tags
-- These OS specific tags wi11 be fo11owed by another tag indicating
-- which OS specific function is required

VAL sp.DOS.tag IS 50(BYTE)
VAL sp.BELIOS.tag IS 51(BYTE)
VAL sp.VMS.tag IS 52(BYTE)
VAL sp.SUNOS.tag IS 53(BYTE)
VAL sp.TDS.tag IS 65(BYTE)
} } }
}} }

420 o System constant definitions

{{{
packet and bu~fer Sizes
VAL sp.max.packet.size IS 512

VAL sp.min.packet.size IS 8
bytes transferred, inc1udes 1ength , data

bytes transferred, inc1udes 1ength , data

VAL sp.max.packet.data.size IS sp.max.packet.size - 2
VAL sp.min.packet.data.size IS sp.min.packet.size - 2

INT16 1enqth
INT16 1enqth

{{ { Individua1 command maxima
VAL sp.max.openname.size IS sp.max.packet.data.size - 5 :

-- 5 bytes extra
VAL sp.max.readbuffer.size IS sp.max.packet.data.size - 3 :

-- 3 bytes extra

VAL sp.max.systemcommand.size IS

IS sp.max.packet.data.size - 7 :
-- 7 bytes extra

-- ditto for gets
VAL sp.max.writebuffer.size

-- ditto for puts
~ sp.max.removename.size

VAL sp.max.renamename.size

VAL sp.max.getenvname.size

VAL sp.max.corerequest.size

IS sp.max.packet.data.size
-- 3 bytes

IS sp.max.packet.data.size
-- 5 bytes

IS sp.max.packet.data.size
-- 3 bytes

sp.max.packet.data.size
-- 3 bytes

IS sp.max.packet.data.size
-- 3 bytes

- 3 :
extra
- 5 :
extra
- 3 :
extra
- 3 :
extra
- 3 :
extra

VAL sp.max.buffer.size IS sp.max.writebuffer.size :
-- sma11er of read , write

} } }
}}}
{{{ resu1t va1ues
VAL spr.ok

(spr.)
IS o(BYTE)

VAL spr.not.imp1emented IS
VAL spr.bad.name IS
VAL spr.bad.type IS
VAL spr.bad.mode IS
VAL $pr.inva1id.streamid IS
VAL spr.bad.stream.use IS

fi1ename is nu11
open fi1e type is incorrect
open fi1e mode is incorrect
never opened that streamid

IS

IS

1 (BYTE)
2 (BYTE)
3 (BYTE)
4 (BYTE)
5 (BYTE)
6 (BYTE)
-- reading an output fi1e, or vice versa

7 (BYTE) :
-- buffer too sma11 for required data

8 (BYTE) :
-- data too bi~ ?r ~ma11 for packet

IS 9 (BYTE) : -- seek or1q1n 1S incorrect
IS 127(BYTE) : -- a qenera1 fai1 resu1t

VAL spr.bad.origin
VAL spr.notok

VAL spr.bad.packet.size

VAL sp~.buffer.overf1ow

-- anything 128 or above is a server dependent 'fai1ure' resu1t
VAL spr.operation.fai1ed IS 128(BYTE)
}}}
{{{ predefined streams (spid.)
VAL spid.stdin IS O(INT32)
VAL spid.stdout IS 1(INT32)
VAL spid.stderr IS 2 (INT32)
}}}

(spo.)

(spt.)

open modes (spm.)
spm.input IS l(BYTE)
spm.output IS 2(BYTE)
spm.append IS 3(BYTE)
spm.existinq.update IS 4(BYTE)
spm.new.update IS 5(BYTE)
spm.append.update IS 6 (BYTE)

0.3 SPHOR

{{ (open types
VAL spt.binary XS l(BYTE)
VAL spt. text XS 2 (BYTE)
}}}
{{{
VAL
VAL
VAL
VAL
VAL
VAL
}}}
({{ status va1ues (sps.)
VAL sps.success IS 999999999 (INT32)
VAL sps.~ai1ure IS -999999999(INT32)
}}}
({{ seek oriqins (spo.)
VAL spo.start IS 1(INT32)
VAL spo.current IS 2(INT32) :
VAL spo.end IS 3(INT32) :
}}}
{{{ version info~tion (sph., spo., spb.)
({{ host types (sph.)
-- va1ues up to 127 are reserved for use by INMOS
VAL sph.PC IS l(BYTE)
VAL sph.NECPC IS 2 (BYTE)
VAL sph.VAX IS 3(BYTE)
VAL sph.SON3 XS 4(BYTE)
VAL sph.SON4 XS 5(BYTE)
}} }
({{ OS types
VAL spo.DOS IS l(BYTE)
VAL spo.BELXOS XS 2(BYTE)
VAL spo.VMS IS 3(BYTE)
VAL spo.SONOS IS 4(BYTE)
-- va1ues up to 127 are reserved for use by INMOS
}}}
({{ interface Board types (spb.)
-- This determines the interface between the 1ink and the host
VAL spb.B004 IS l(BYTE)
VAL spb.B008 IS 2 (BYTE)
VAL spb.B010 IS 3 (BYTE)
VAL spb.B011 IS 4(BYTE)
VAL spb.B014 IS 5 (BYTE)
VAL spb.DRXll IS 6(BYTE)
VAL spb.QTO IS 7(BYTE)
-- va1ues up to 127 are reserved for use by INMOS
}}}
}}}
{{{ command line
VAL sp.short.commandline IS BYTE 0: -- remove server's own arguments
VAL sp.who1e.commandline IS BYTE 1: -- include server's own arguments

421

VAL spopt.never IS 0
VAL spopt.maybe IS 1
VAL spopt.a1ways IS 2
} } }

values for so.parse.command1ine
indicate whether an option requires
a followinq parameter

422

{{{ time string and date lengths
VAL so.t~e.string.len IS 19
VAL so.date.len IS 6:
}}}
{ { { temp filename length
VAL so.temp.filename.length IS 6
}}}

0.4 STRMHOR

D System constant definitions

enough for "BB:MM:SS DD/MM/YYYY"
enough for DDMMYY (as integers)

six chars will work on anything!

The occam protocols, and supporting constants, in this library are used for communication with the channels
from. isv, to. isv, keyboard and screen in an EXE in TDS3.

To declare these protocols include the following line in a compilation unit:

lOSE strmhdr

{{{ SP protocol
PROTOCOL SP IS INT16::[]BYTE
}}}
{{{ streamio constants and protocols
VAL st.max.string.size IS 256 :
VAL ft.terminated IS -8 -- used to terminate a keystream
VAL ft.number.error IS -11 :
PROTOCOL KS IS INT:
PROTOCOL SS

CASE
st.reset
st.up
st.down
st.1eft
st. right
st.goto; INT32; INT32
st.ins.char; BYTE
st.de1.char
st.out.string; INT32::[]BYTE
st.clear.eo1
st.c1ear.eos
st.ins.1ine
st.de1.line
st.beep
st. spare
st.terminate
st.help
st. initialise
st.out.byte; BYTE
st.out.int; INT32
st.key.raw
st.key.cooked
st.release
st.claim
st.endstream
st.set.po11; INT32

}}}

0.5 USERHDR 423

0.5 USERHDR

In this library are the specifications of names for constants whose values are defined by the TDS or underlying
hardware. Note that the user may change the names but not the values. A further set of constants for filing
system access, etc are given elsewhere

To declare these constants include the following line in a compilation unit:

IUSE userhdr

specifications of all the system defined constants
common array sizes

max.record.size IS 512
max.string.size IS 256
abs.id.size IS 63: -- used by obsolete msdos library

{{{
{{{
VAL
VAL
VAL
} } }
{{{
VAL
VAL
VAL
} } }

clock ticks
tptr.h.ticks.per.second IS 1000000(INT32) :
tptr.l.ticks.per.second IS 15625(INT32) :
tptr.a.ticks.per.second IS 625000(INT32)

high priority process
low priority process
rev A silicon

IS 10
IS 10

ITERM table sizes and values
max.entries.per.screen.line
max.entries.per.keyboard.line

ITERM screen codes
ite~.up.code IS 1
ite~.down.code IS 2
ite~.left.code IS 3
ite~.right.code IS 4
ite~.goto.code IS 5
ite~.ins.char.code IS 6
ite~.del.char.code IS 7
ite~.clear.eol.code IS 8
ite~.clear.eos.code IS 9
ite~.ins.line.code IS 10
ite~.del.line.code IS 11
iterm.beep.code IS 12
iterm.cls.code IS 13

te~.p protocol (keyboard and screen)
{{{ terminal definitions
VAL VT220 IS 1:
VAL VT100 IS 2:
VAL TVi920 XS 3:
VAL WYSSO IS 4:
VAL UNKNOWN IS 5
}}}
{ { {
VAL
VAL
{ { {
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
} } }
} } }
{{{ screen cursor addressing
VAL first.screen.col IS 0 :
VAL first.screen.line IS 0 :
VAL first.text.col IS first.screen.col
{{{ screen size dependent non-constants (debugger assumes constant width)
-- avoid these by using tt.initialise
VAL last.screen.col IS 79 :
VAL last.screen.line IS 23 :
VAL last.text.col IS last.screen.col
}} }
} } }

424 D System constant definitions

-- space
-- '-'

may also receive tt.del.chl

not for general use
not for general use

used inside TDS only

"cooked" keys
IS ' *t' :
IS INT '*c'
IS 127 :
IS 200 :
IS ~t.tag + 0
IS ft.tag + 1
IS ft.tag + 2
IS ~t.tag + 3
IS ft.tag + 4
IS ft.tag + 5
IS ~t.tag + 6
IS ~t.tag + 7
IS ft.tag + 8
IS ft.tag + 9
IS ft.tag + 10
IS ft.tag + 11
IS ft.tag + 12
IS ft.tag + 13
IS ft.tag + 14
IS ft.tag + 15
IS ft.tag + 16
IS ft.tag + 17
IS ft.tag + 18
IS ft.tag + 19
IS ft.tag + 20
IS ft.tag + 21
IS ft.tag + 22

{{{ ascii visible characters
VAL min.visible.char IS 32 :
VAL max.visible.char IS 126 :
}} }
{{{ message tags ~or screen protocol (to.te~.p)

-- these correspond to the tags o~ the SS protocol declared in strmhdr
VAL tt.reset IS BYTE 0
VAL tt. up IS BYTE 1
VAL tt.down IS BYTE 2
VAL tt.le~t IS BYTE 3
VAL tt.right IS BYTE 4
VAL tt.goto IS BYTE 5
VAL tt.ins.char IS BYTE 6
VAL tt.del.char IS BYTE 7
VAL tt.out.string IS BYTE 8
VAL tt.clear.eol IS BYTE 9
VAL tt.clear.eos IS BYTE 10
VAL tt.ins.line IS BYTE 11
VAL tt.del.line IS BYTE 12
VAL tt.beep IS BYTE 13
VAL tt. terminate IS BYTE 15
VAL tt.help IS BYTE 16
VAL tt.initialise IS BYTE 17
VAL tt.out.byte IS BYTE 18
VAL tt.out.int IS BYTE 19
VAL tt.key.raw IS BYTE 20
VAL tt.key.cooked IS BYTE 21
VAL tt.release IS BYTE 22
VAL tt. claim IS BYTE 23
VAL tt.endstream IS BYTE 24
VAL tt.set.poll IS BYTE 25
}} }
{{{ values ~or

VAL tab
VAL return
VAL delete
VAL ~t.tag

VAL ~t.return

VAL ~t.up

VAL ~t.down

VAL ~t.le~t

VAL ~t.right

VAL ~t.del.chl

VAL ~t.del.chr

VAL ~t.del.1ine

VAL ~t.undel.1ine

VAL ~t.sol

VAL ~t.eol

VAL ~t.move

VAL ~t.copy

VAL ~t.line.up

VAL ~t.line.down

VAL ~t.page.up

VAL ~t.page.down

VAL ft.create.fold
VAL ft. remove. fold
VAL ~t.open.~old

VAL ft.close.fold
VAL ft.enter.fold
VAL ft.exit.fold

0.5 USERHDR 425

VAL ft. refresh IS ft.tag + 23
VAL ft.fi1e.fo1d IS ft.tag + 24
VAL ft. finish IS ft.tag + 26
VAL ft.edit.parms IS ft.tag + 27 -- enter too1kit
VAL ft.fo1d.info IS ft.tag + 28
VAL ft.he1p IS ft.tag + 29
VAL ft.get.code IS ft.tag + 31
VAL ft.save.macro IS ft.tag + 32
VAL ft.get.macro IS ft.tag + 33
VAL ft. run IS ft.tag + 34
VAL ft.too10 IS ft.tag + 35
VAL ft.too11 IS ft.tag + 36
VAL ft.too12 IS ft.tag + 37
VAL ft.too13 IS ft.tag + 38
VAL ft.too14 IS ft.tag + 39
VAL ft.too15 IS ft.tag + 40
VAL ft.too16 IS ft.tag + 41
VAL ft.too17 IS ft.tag + 42
VAL ft.too18 IS ft.tag + 43
VAL ft.too19 IS ft.tag + 44
VAL ft.word.1eft IS ft.tag + 45
VAL ft.word.right IS ft.tag + 46
VAL ft.de1.word1 IS ft.tag + 47
VAL ft.de1.wordr IS ft.tag + 48
VAL ft.de1to.eo1 IS ft.tag + 49
VAL ft.top.of.fo1d IS ft.tag + 50
VAL ft.bottom.of.fo1d IS ft.tag + 51
VAL ft.se1ect.param IS ft.tag + 52 :
VAL ft.code.info IS ft.tag + 53
VAL ft.pick IS ft.tag + 54
VAL ft.copy.pick IS ft.tag + 55
VAL ft.put IS ft.tag + 56
VAL ft.next.uti1 IS ft.tag + 57
VAL ft.c1ear.uti1 IS ft.tag + 58
VAL ft.auto1oad IS ft.tag + 59
VAL ft. next. exe IS ft.tag + 60
VAL ft.c1ear.exe IS ft.tag + 61
VAL ft.c1ear.a11 IS ft.tag + 62
VAL ft.browse IS ft.tag + 63
VAL ft.suspend.tds IS ft.tag + 64
VAL ft.define.macro IS ft.tag + 65 :
VAL ft.ca11.macro IS ft.tag + 66 :
VAL ft.make.comment IS ft.tag + 67 :
VAL ft.bad IS ft.tag + 70 :
} } }
{ { { specia1 codes from the keyboard channe1 (from.termo.p)
VAL ft.1ines.prefix IS -1
VAL ft.co1umns.prefix IS -2
VAL ft.no1ineops.prefix IS -3 TRUE if no 1ine insert/de1ete ops
VAL ft.end.init IS -4
VAL ft.tab1e.error IS -5 read error
VAL ft.noncom.tab1e IS -6 non-compatab1e tab1e
VAL ft.nocharops.prefix IS -7 TRUE if no char insert/de1ete ops
VAL ft.terminated IS -8
VAL ft.re1eased IS -9
VAL ft.c1aimed IS -10
VAL ft.number.error IS -11
VAL ft.cooked IS -12
VAL ft.raw :IS -13
} } }

426

0.6 FILERHOR

D System constant definitions

These constants are provided for communications between an EXE and the user filer, using the channels
:trom. user. fi1er and to. user. :ti1er. These channels provide an interface between a running EXE
and the folded file store.

To declare these constants include the following line in a compilation unit:

'USE :ti1erhdr

{{{ user :ti1er interface constants (named fi1estore)
--VAL fi1e.store.is.named IS FALSE:
-- unnamed fi1estores not supported by TDS3
VAL fi1e.store.is.named IS TRUE: for named fi1estores
VAL fi.unnamed IS 1
VAL fi.named IS 0 :

{{{ :ti1ing system interface array sizes
VAL max.fi1es IS 4
VAL max.record.size IS 512 : a1so in userhdr, userva1s
VAL max.string.size IS 256: -- a1so in userhdr, userva1s
VAL max.:ti1e.id.size IS 256
VAL max.:to1d.depth IS 50 :
VAL max.fi1e.depth IS 20 :
} } }
{{{ fo1d attribute va1ues 27-1-88
-- Va1ues for type
VAL ft.opstext IS 0
VAL ft.opsdata IS 1
VAL ft.opscode IS 2
VAL ft.fo1dset IS 3
VAL ft.voidset IS 4

-- Va1ues for content
VAL fc.camment.text IS 0
VAL fc.source.text IS 1
VAL fc.code.data IS 2
VAL fc.occaml.sc IS 3
VAL fc.desc.data IS 4
VAL fc.debug.data IS 5
VAL fc.occaml.proq IS 6
VAL fc.occaml.uti1 IS 7
VAL fc.occaml.exe IS 8
VAL fc.1ink.data IS 9

VAL fc.occam2.sc IS 10
VAL fc.occam2.proq IS 11
VAL fc.occam2.uti1 IS 12
VAL fc.occam2.exe IS 13
VAL fc.occam2.1ib IS 14

VAL fc.imp.proc IS 15
VAL fc.imp.sc IS 16
VAL fc.imp.1ib IS 17

VAL fc.c.proc IS 18
VAL fc.c.sc IS 19
VAL fc.c.1ib IS 20

VAL fc.pasca1.proc IS 21

0.6 FILERHOR

VAL fc.pasca1.sc
VAL fc.pasca1.11b

IS 22
IS 23

427

VAL fc.fortran.proc XS 24
VAL fc.fortran.sc IS 25
VAL fc. fortran. 11b XS 26

VAL fc.check.data
VAL fc.image.data
VAL fc.map.data

XS 27
XS 28
IS 29

VAL fc.config.info XS 31
VAL fc.anal.yse.info IS 32
} } }

User fi1er protocol.
{{ { attribute indexes
VAL attr.size IS 3
VAL attr.fol.d.type XS 0
VAL attr.fol.d.content XS 1
VAL attr.fol.d.indent XS 2
} } }
{{{ uf. commands to user fil.er control.
VAL uf.open.data.read IS BYTE 1
VAL uf.open.data.write XS BYTE 2
VAL uf.open.fol.d.read IS BYTE 3
VAL uf.open.fol.d.write XS BYTE 4
VAL uf.open.text.read XS BYTE 5
VAL uf.open.text.write XS BYTE 6

VAL uf.number.of.fol.ds IS BYTE 7
VAL uf.test.fil.ed XS BYTE 8
VAL uf.read.fol.d.string IS BYTE 9
VAL uf.read.fol.d.attr XS BYTE 10
VAL uf.read.fil.e.id XS BYTE 11

VAL uf.write.fol.d.string IS BYTE 12
VAL uf.make.fol.d.set IS BYTE 13
VAL uf.unmake.fol.d.set XS BYTE 14

VAL uf.create.fol.d XS BYTE 15
VAL uf.del.ete.fol.d IS BYTE 16
VAL uf.make.fil.ed IS BYTE 17
VAL uf.derive.fil.e IS BYTE 18
VAL uf.unfil.e IS BYTE 19
VAL uf. del.ete. contents IS BYTE 20
VAL uf. attach. fil.e IS BYTE 33
I}}
{{{ fsd. tags from fil.e stream and from user fil.er control.
VAL fsd.record IS BYTE 60
VAL fsd.number IS BYTE 61
VAL fsd.fol.d IS BYTE 62
VAL fsd.fil.ed IS BYTE 63
VAL fsd.endfol.d IS BYTE 64
VAL fsd.endstream IS BYTE 65
VAL fsd.attr IS BYTE 66
VAL fsd.fil.e.id IS BYTE 67
VAL fsd.error IS BYTE 68
VAL fsd.resul.t IS BYTE 69
VAL fsd.number.of.fol.ds IS BYTE 70
VAL fsd.startstream IS BYTE 71 :

428 D System constant definitions

IS BYTE 72 :

file stream
IS BYTE 40
IS BYTE 41
IS BYTE 42
IS BYTE 43
IS BYTE 44
IS BYTE 45
IS BYTE 46
IS BYTE 47
IS BYTE 48

fsd.endfiled

fsc. taqs to
fsc.read
fsc.enter.fold
fsc.exit.fold
fsc.repeat.fold
fsc.read.attr
fsc.read.enc.attr
fsc.read. file. id
fsc.close
fsc.write

VAL
}}}
{{{
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL

IS 0
IS 1

IS -302
IS -303
IS -304
IS -305
IS -306
IS -307
IS -308
IS -309
IS -310
IS -311
IS -312
IS -313
IS -314
IS -315
IS -316
IS -317
IS -318
IS -319

IS -1101
IS -1102
IS -1103
IS -1104
IS -1105
IS -1106
IS -1107
IS -1108
IS -1109

is not f1aqqed as c10sed on disk:
IS -1110

but

-302 to -319
fi.name.too.lonq
fi.too.many.locks
fi.cannot.lock.write.top
fi.too.many.releases
fi.too.many.suspends
fi.too.many.resumes
fi.illeqal.chrc
fi.cannot.chanqe.chrc
fi.filer.error
fi.cannot.copy
fi.not.all.data.written
fi.illeqal.extension
fi.illeqal.attr
fi.cannot.seek
fi.not.all.data.read
fi.unknown.record.length
fi. illeqal. record. length
fi.cannot.create

-- these not used by the user filer:
VAL fsc.seek IS BYTE 49
VAL fsc.truncate IS BYTE 50
VAL fsc.file.length IS BYTE 51
}}} .
{{{ filer error numbers
VAL fi.ok
VAL fi.eof

{{{
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
}}}
{{{ -1101 to -1143
VAL fi.file.not.open
VAL fi.file.already.open
VAL fi.file.does.not.exist
VAL fi.invalid.file.number
VAL fi.invalid.operation
VAL fi.wronq.page
VAL fi.bad.page
VAL fi.no.random.access
VAL fi.invalid.page.number
-- file not currently open,
VAL fi.file.not.closed

-- internal errors
VAL fi.bad.max.c1a~ed.paqe

VAL fi.page.out.of.range
VAL fi.file.map.error
VAL fi.device.error

IS -1111
IS -1112
IS -1113
IS -1120

0.6 FILERHOR 429

VAL fi.volume.write.protected IS -1121
VAL fi.volume.full IS -1122
VAL fi.incorrect.volume.number IS -1123

no volume mounted on device
VAL fi.volume.must.be.dismounted IS -1124 :

a volume is already mounted
VAL fi.volume.not.mounted IS -1125 :

the volume asked for not mounted
VAL fi.invalid.volume.number IS -1126 vo1ume.number = no. volume
VAL fi.invalid.device.number IS -1127
VAL fi.volume.already.mounted IS -1128
VAL fi.bad.format IS -1129
VAL fi.too.many.files IS -1130
VAL fi.fold.too.deep IS -1131
VAL fi.file.too.deep IS -1132
VAL fi.unmatched.release IS -1133
VAL fi.unmatched.resume IS -1134
VAL fi. invalid. lock IS -1135
VAL fi. invalid. chrc.number IS -1136
VAL fi.invalid.command IS -1140
VAL fi.filehandler.full IS -1141
VAL fi.foldmanager.full IS -1142
VAL fi.file.too.big IS -1143
} }}
{{{ -1201 to -1210
VAL fi.invalid.command IS -1201
VAL fi.fold.not.empty IS -1202
VAL fi.operation.failed IS -1203
VAL fi.no. such. fold IS -1204
VAL fi.fold.in.use IS -1205
VAL fi.not.filed IS -1206
VAL fi.invalid.fold IS -1207
VAL fi.failed.to.open.fold IS -1208
VAL fi.file.already.exists IS -1209
VAL fi.not.on.a.valid.fold IS -1210
} } }

} } }

E Error numbers
These error numbers may sometimes be presented to the user in error messages when things. have gone
wrong. They may also appear across the software interface as status results. Some numbers are generated
only if an internal consistency check in a system process fails. These latter errors are marked '(*)' and should
never occur.

The system is built out of a number of processes, structured hierarchically. Each process may detect an
error, and is designed to pass on errors that occur at lower levels.

If a process detects an error but has not received an appropriate number from another process it may report
an error resu1t = O.

The server may return result codes whose values are given in appendix D.3 or error codes defined by the C
library with which it was compiled. The undefined result code 129 may be returned in the absence of further
information.

E.1 File server errors

These errors may be generated by the TDS.

-204 Write protect error; a write has been attempted on a disk that is marked for write protect.

-302 Name too long; a file name was received which exceeded the maximum length (63 characters).

-303 Too many locks; an attempt was made to lock a file when the number of files currently locked on this
channel is already the maximum allowed (twenty). (*)

-304 Cannot lock-write top level; a lock-write command was issued with a null parent identifier, and a null
file identifier. This is interpreted to be the top level file, which is read-only.

-305 Too many releases; a release command was issued when there was no file locked on the file channel.
(*)

-306 Too many suspends; an attempt was made to suspend a file when the number of files currently
suspended on this file channel is already the maximum allowed (twenty). (*)

-307 Too many resumes; a resume command has been issued when there is no file suspended on the file
channel.(*)

-308 Illegal characteristic; an attempt was made to access an undefined file characteristic. (*)

-309 Cannot change characteristic; an attempt was made to write a read-only characteristic. (*)

-310 Filer error; this is an internal error and should be reported. (*)

-311 Cannot copy; the server has not been able to create a new file name for the copy command.

-312 Not all data written; some of the characters in a write command were not sent to the device. In the case
of a disk file, this indicates that the volume is full. For a device, it indicates that some characters
were not recognised (e.g. unprintable characters for a printer).

-313 Illegal filename extension; a command supplying a filename did not have a legal TDS filename exten
sion.

-314 Illegal attribute; one or both of the attributes passed to the file server was not a TDS attribute suitable
for making a file. The most common reason for this is attempting to file a foldset. Foldsets may not
be filed folds; their components must be filed folds.

-315 Cannot seek; could not seek to the desired record in variable length record file mode.

432 E Error numbers

-316 Not all data read; for alien file modes, a complete record was not read in.

-317 Unknown record length; a variable record length file could not be read as t.he record length is unknown.

-318 Illegal record length; an incorrect record length was specified in an alien file mode.

-319 Cannot create; the file server failed to create a unique name for a filed fold.

E.2 DOS errors

These errors -are generated by the DOS operating system.

-401 DOS error; invalid DOS function number. This is an internal error and should be reported.
For an explanation of this and other DOS errors (those in the range 400-499) see the DOS manual.

The DOS error number is given by making the TDS error number positive and subtracting 400
(e.g. -409 = DOS error 9). (*)

-405 DOS error; Access denied.

-406 DOS error; Invalid file handle. This is an internal error and should be reported. (*)

-407 DOS error; Memory control blocks destroyed.

-408 DOS error; Insufficient memory.

-409 DOS error; Invalid memory block address.

-410 DOS error; Invalid environment.

-411 DOS error; Invalid format.

-412 DOS error; Invalid access code.

-413 DOS error; Invalid data.

-416 DOS error; Remove current directory.

-417 DOS error; Not same device.

E.3 TDS internal errors

-501 Fold with invalid type encountered.

-502 Fold with invalid contents encountered.

E.4 Filer errors

These errors may be generated by the TDS, in response to operations on the filer channels.

-1103 File does not exist; the file that contains the data of a a filed fold cannot be found.

-1104 Invalid file identifier; a file identifier has been used which is not valid.

-1105 Invalid operation; a read, write, seek or close command has been issued on a file that is not open or
has been opened with the wrong access type, e.g. a write to a file opened for reading.

-1126 Unknown unit.

E.5 File streamer errors 433

-1127 Invalid drive name.

-1129 Bad format; a file's contents do not correspond to TDS format.

-1130 Too many files; a multi file operation (e.g. copy a fold and all it's contents) finds the fold it is operating
on overflows it's 'nested file' stack.

-1131 Fold too deep; a fold has been encountered at too great a fold depth.

-1132 File too deep; a file has been encountered at too great a filed fold depth.

-1140 Invalid command; a command outside the range of valid commands has been issued.

-1141 Too many open files.

-1142 Fold manager full; the fold manager has run out of storage space.

-1143 File too big; a file is too big to be read in and stored in the fold structure.

E.5 File streamer errors

These errors are generated by the file streamer, either because some operation has failed or the file streamer
has been driven incorrectly.

-1201 Invalid command; a command has been issued that is not permitted for a particular file or a command
has been issued which is outside the range of valid commands for this process. E.g. a write stream
command when a file is opened for reading. -

-1202 Fold not empty; a command has been issued which requires an empty fold has been applied to a
non-empty fold.

-1203 Operation has failed; caused by filing system error when trying to obey a command. E.g. failing to
delete a filed fold.

-1204 Fold does not exist; either fold specified in a command does not exist or the top fold of a bundle has
been opened, rendering those folds inside it inaccessable.

-1205 Fold is already in use; fold is already opened for reading or writing and a new attempt to open it has
been made.

-1206 Fold is not filed; a fold must be filed before it can be opened for reading or writing. Also may be
returned in reponse to is fold filed test, if fold is not filed.

-1207 Invalid fold; a command has been issued which is not permitted on this fold.

-1208 Failed to open fold; filing error opening a filed fold for reading or writing.

-1209 File already exists; copy command has been issued for a filed fold on a system where the copying of
filed folds is not permitted.

-1210 Only generated by library procedures. The program has been called with the cursor not on a line
appropriate for the current operation.

F Fold attributes
F.1 Fold attributes in the TDS

The three attributes of a fold are the fold type, the fold contents, and the fold indent. These attributes are com
municated in an array of three integers, indexed by the values attr. fo1d. type, attr. fo1d. content
and attr. fo1d. indent defined in appendix 0.6. The meaning of each attribute is described in the fol
lowing sections.

F.1.1 Fold type

The foldtype attribute tells the editor what operations it may carry out on the fold.

Fold types defined are:

ft.opstext Indicates that the fold can be opened and displayed by the system editor.

ft.opsdata Indicates that the fold contains non-ASCII data, or data unsuitable for display by the editor.

ft.opscode Indicates that the fold contains executable code which may be loaded and run by the system;
this is non-ASCII data and is hence unsuitable for display by the editor.

ft. fo1dset Indicates a compilation fold that has been compiled and the source has not subsequently
been changed.

ft . voidset Indicates a compilation fold that has not been compiled or in which the source has been
changed since compilation.

F.1.2 Fold contents

The contents type attribute indicates what the fold contains, for the benefit of any utilities or programs which
may have to operate on the fold.

Fold contents values defined include:

fc . comment. text Comment text can be edited, but is ignored by all compilers. May be created by the
editor or as output from various TDS tools.

fc. source. text occam source text can be edited and input to a compiler.

fc. code. data A data fold containing the unlinked output from a compilation.

fc . desc . data A data fold containing descriptor information from a compilation.

fc . debuq . data A data fold produced by a compiler containing information required to help diagnosis of
run time errors.

fc .1ink. data A data fold produced by the compiler containing information needed by the Iinker.

fc . occam2 . se An occam 2 SC compilation fold containing separately compilable procedures. May be a
foldset or a voidset or a corresponding CODE fold.

fc . occam2 . proq An occam 2 PROGRAM compilation fold containing a program for a transputer network.
May be a foldset or a voidset or the corresponding CODE fold.

fc . occam2 . uti1 An occam 2 UTIL compilation fold containing a utility package. May be a foldset or
a voidset or the corresponding CODE fold.

fc . occam2 . exe An occam 2 EXE compilation fold containing a procedure executable within the TDS.
May be a foldset or a voidset or the corresponding CODE fold.

436 F Fold attributes

~c . occam2 . lib A LIB library fold containing a library identifier and a sequence of text folds, containing
constant or protocol defin~tions, or separate compilation units, containing library procedures. May
be a foldset or a voidset.

Other values have been allocated and are either used for obsolete purposes or are reserved for future use
in connection with support for other programming languages, etc.

F.1.3 Fold indent

The fold indent attribute is a number indicating the indentation of this fold, relative to the enclosing fold.

Text lines contained within a fold are stored relative to the indentation of their enclosing fold. Before displaying
a line, the editor calculates the indentation of the line from the sum of the indent attributes of its enclosing
folds. It then inserts that number of spaces before the text of the line. When reading a file in data stream
mode, the user filer performs a similar task.

By writing bad or misleading attribute values into the fold structure it is possible to create a fold structure that
crashes the system. Therefore system conventions should be followed.

Attribute values not listed here are reserved by INMOS for possible future expansion.

F.2 Attribute constant values

These are defined in the tables Values for type and Va1ues for content in appendix 0.6.

F.3 Attributes of common fold types

This table shows what attributes are used for the fold types commonly found in the TDS fold structure.

Type of fold fold. type fold.contents Key word(s) Filename ext
occam source opstext source text .tsr
comment opstext comment text COMMENT .tcm
executable program opscode occam2 exe CODE EXE .cex
utility package opscode occam2 util CODE OTIL . cut
network program opscode occam2 prog CODE PROGRAM .cpr
linked separate comp opscode occam2 se CODE SC .csc
object code opsdata code data code .dcd
descriptor opsdata desc data descriptor .dds
linkage information opsdata link data 1ink .d1k
debug information opsdata debug data debug .ddb
configuration information opstext config info CONFIG INFO .tci
separate compilation unit foldset occam2 sc SC
executable program bundle foldset occam2 exe EXE
utility package bundle foldset occam2 uti! UTIL
network program bundle foldset occam2 program PROGRAM
library fold foldset occam2 library LIB
library version opsdata source text Library version

In the above table the type and contents attributes are descrbed by their names, see appendix 0.6. Those
fold types shown with type foldset have type attribute ft. fo1dset or ft. voidset according as they
have been compiled (and linked, etc) or not since the contents were most recently changed.

Those fold types for which no filename extension is given cannot be filed.

A source text fold in a foldset must be filed if it is to be checked or compiled.

The opsdata folds can only be created inside a foldset, by applying the compiler to it.

G File formats
This appendix discusses exactly how folded files and code files are mapped onto disk files.

G.1 Structure of folded files

In this section the structure of folded files is described. It is not necessary to understand this in order to use
the TDS. It is of use if the user wishes to inspect the contents of folded files other than through the TDS user
filer interface.

The stored version of a folded file consists of a sequence of bytes. This can be viewed as a list structure
containing numbers and records. A record is a sequence of bytes, of any length up to 512. The stored
elements, which are data elements (principally lines of text), fold elements and filed fold elements. are then
constructed as lists from these elements.

File elements

A file is made up of a sequence of elements. The following types of elements may occur:

• A number.element. This element includes a (non-negative) value.

• A record. element. This element includes a record length value, followed by a sequence of bytes.

• Startlist.element and endlist.element. These elements are used to group a sequence of elements
together.

• Startfold.element and endfold.element. These elements are used to bracket the elements of a fold.

• Startfiled.element and endfiled.element. These elements are used to bracket the elements of a filed
fold.

Element encoding

The representation used for elements is designed to be totally independent of the word length or order of
significance of bytes within words on the computer on which it is implemented.

Elements are identified by their first byte, the tag byte. The tag byte is made up of two bit fields, the 6-bit
data field occupying the 6 least significant bits of the byte, and a 2-bit tag field.

tag.byte = tag. field data.field

Bit 7 6' 5 4 3 2 1 0

Taq Data

Figure G.1 Element tag byte

The following tag bytes identify elements:

record.byte A tag.byte with tag 0 (byte value 0 - #3F)
number.byte A tag.byte with tag 1 (byte value #40-#7F)
function.byte A tag.byte with tag 2 (byte value #80-#BF)

438 G File formats

The data field is used to give the (non-negative) value of a number element or a function element and the
length of the record element. A record element is concluded by the number of bytes as given by the value of
its tag byte.

As 6-bits is insufficient to represent the full range of values we will be required to store in files, there is a
fourth tag byte, the prefix byte:

prefix.byte A tag.byte with tag 3 (byte value #CO -#FF)

The data field of a prefix byte is used to extend the data field of the succeeding tag bytes, the data field of
the earlier prefix bytes being for the more significant bit positions of the resulting value. A full algorithm is
given below.

The elements of a file can be defined as follows:

number.element
record. element
function. element

{ prefix.byte } number.byte
{ prefix.byte } record.byte { byte}
{ prefix.byte } function.byte

The following function values are defined:

startlist.element A function whose data value is O. (#80)
endlist.element A function whose data value is 1. (#81)
startfold.element A function whose data value is 2. (#82)
endfold.element A function whose data value is 3. (#83)'
startfiled.element A function whose data value is 4. (#84)
endfiled.element A function whose data value is 5. (#85)

VAL data.fie1d IS #3F :
VAL data.fie1d.size IS 6 :
VAL tag.fie1d IS #CO :
VAL record.byte IS 0 « data.fie1d.size
VAL number.byte IS 1 « data.fie1d.size
VAL function.byte IS 2 « data.fie1d.size
VAL prefix.byte IS 3 « data.fie1d.size

PROC read. tag reads tag bytes unti1 a non prefix byte is found.
INT tag is the non prefix tag encountered.
INT va1ue is va1ue bui1t up from the data fie1ds of the prefix byte

and the terminating tag byte.
NOTE that if a record byte tag is encountered, we need to read

the data bytes of the record before 100king for the next
e1ement.

PROC read.tag(INT tag, va1ue)
INT b, data :
SEQ

va1ue := 0
read.byte(b) -- read byte takes an INT parameter
tag := (b /\ tag.fie1d)
data : = (b /\ data. ·fie1d)
WHILE tag = prefix.byte

SEQ
va1ue := (va1ue + data) « data.fie1d.size
read.byte(b)
tag := (b /\ tag.fie1d)
data := (b /\ data.fie1d)

va1ue := va1ue + data

G.1 Structure of folded files

Structure of a file

A file is made up of a sequence of elements, bracketted by startlist and endlist.

439

file = startlist.element { element} endlist.element

where an element may be one of a data element, a fold element, or a filed fold element.

element =

A data element

data.element
fold. element
filed. element

A data element is stored as a record, or as a number.

data.element =

A fold element

record.element
number.element

A fold element is stored as a pair: a list of attributes (of which the first is the header string) and the bracketted
contents.

fold. element =

A filed fold element

startfold
startlist header { attribute } endlist
startlist { element} endlist
endfold

A filed fold is stored as a pair: the attribute list and a file pointer.

filed. element = startfiled.element
startlist.element header.element
{ attribute.element } endlist.element
file.pointer.element
endfiled.element

The file.pointer.element is a record.element giving the file id of the file where the contents are to be found.

Note that this means that the header and attributes of a filed fold are contained in the enclosing file, not in
the file with the contents.

file.pointer. element
header.element
attribute.element

record.element
record. element
number.element

440

G.2 DOS files produced by the TDS

G File formats

TDS format files and host text files produced by the TDS file server are flat, binary DOS files. They contain
no structural information. The server enforces 512-byte block boundaries upon reads from block files, by
maintaining its own idea of position within a block.

Host text format files are written as:

text. file = {record er 1.£ }
record = {ch}

where record is the byte slice parameter to the tk£ . write command. No control-Z is appended to the end
of a text file as this will generate a 'not all data written' error.

Host text format files are read as:

{{ record} er [1.£ J } [etr1.-Z]

(Le. a line feed after carriage return and a control-Z after the end of the file are optional.) er, er 1.£, and
er 1.£ etr1.-Z combinations are stripped from the record before sending it to the transputer.

G.3 CODE PROGRAM files

A CODE PROGRAM file created by EXTRACT is a folded file whose contents is a sequence of records. If such
a file is exported to DOS by means of WRITE HOST the contents of these records are written contiguously
into a host binary bootable file.

The contents of these records are such that if they are communicated sequentially into a transputer network
through its boot link, as by the ILOAD NETWORKI operation, then the whole network will receive its code and
start executing. This implies that all necessary bootstrapping and loading code is included in the CODE
PROGRAM file. The conventions for this code are described in Technical Note 34.

A particular kind of bootable file is made by the addboot tool from a compiled standard hosted procedure.
This is not a folded file. It starts with a primary and a secondary loader and then a block of header information
and the rest of the code. The primary loader is restricted to less than 256 bytes and is preceded by its length
in a byte. The secondary loader starts with an integer, whose size is the word length of the processor type,
which is its length in bytes. The contents of the header block are defined in the description of a CODE SC
below.

Type Value Unit

BYTE Primary loader code size bytes
[]BYTE Primary loader code block

INT32 Secondary loader code size bytes
orINT16 (for 16 bit transputers) J

[]BYTE Secondary loader code block

G.4 CODE SC, CODE EXE and CODE UTIL files

A CODE SC may be created explicitly by applying IEXTRACTI to a compiled SC fold, or will be created auto
matically if such a fold is within a configured PROGRAM fold. A CODE EXE or CODE UTIL will be generated
automatically when an EXE or UTIL fold is compiled.

Any of these forms of code file is suitable for loading and execution by a controlling program. The TDS
itself is an example of such a controlling program. As created such a code file is a folded file consisting
of a sequence of data records. Optionally the record brackets may be removed from such a file by using

G.4 CODE SC, CODE EXE and CODE UTIL files 441

IWRITE HOSTI. The file format so produced is then identical to loadable code files produced by INMOS toolset
products. The records consist of a header block, a size block and code records.

The components of this structure and their meanings are:

Type Value Unit
INT32 Interface descriptor size bytes
[]BYTE Interface descriptor
INT32 Compiler id size bytes
[]BYTE Compiler id

INT32 Target processor type
INT32 Fi le format version
INT32 Program scalar workspace requirement words
INT32 Program vector workspace requirement words
INT32 non-OCCam stack requirement words
INT32 Program entry point offset bytes
INT32 Program code size bytes
[] BYTE Program code block

When writing a program to interpret this format it important to note that in general the integers will not be
word-aligned.

The interface descriptor defines the language implementation version. For TDS3 programs it is occam
2 product compi1er (10th March 1988) This is unchanged from the previous TDS. In INMOS
toolset products this string is empty.

The compiler id is a string defining exa~tly which compiler version was used to compile this code.

The target processor type is derived from the compilation parameters:

Possible values are:

2 T2 series
4 T414
8 T8 series
9 T425 series
10 TA transputer class
11 TB transputer class
12 TC transputer class

Version number is an integer defining the presence or absence of the vector workspace and non-occam stack
space fields in this header.

Vector Space
<10 No
10 Yes
~11 Yes

Stack Space
No
No
Yes

In TDS3 CODE SCs are generated with version 10, EXEs and UTILs with version 12. In TDS2 EXEs and
UTILs had version 11. This distinction is used by the TDS to call old EXEs and UTILs with the appropriate
old parameter list.

Scalar workspace is the number of words required for the program's run-time stack.

Vector space is the number of words required for separate vector space for arrays so declared.

442 G File formats

Non-occam stack size is the number of words required by some compilers for an additional run-time stack.
The TDS cannot generate code files with this requirement.

In TDS format CODE files the next two integers (8 bytes) are held as a separate record.

The entry point offset is the offset from the base of the code of the first instruction within the code that is to
be executed.

The code size is the total size of the block of code which follows. This will normally be rounded up by the
compiler which generated it to a whole number of words on the target processor. The code in the file may
not be word aligned as it is preceded by strings of arbitrary length. Care must be taken when loading code
from a code file of this kind, to ensure that it is word aligned in memory. This is because it may contain word
aligned constant tables.

G.5 Other compiler outputs

The structures of other compiler outputs are not documented. However, examples of programs which convert
descriptor folds and debug information folds into readable form are included as examples with the software.

H Transputer instruction support
This appendix contains the list of transputer instructions supported by the RESTRICTED code insertion
facility, and indicates the mnemonics for each instruction. These instructions are available when the compiler
is targetted to a T2, a T4, a T42S, or a TB, unless otherwise indicated. Instructions supported only by the
TB are given in the final section. For the full instruction set the reader is referred to the book 'Transputer
instruction set: a compiler writer's guide'.

H.1

ADC
CJ
ECC
J
LDC
LDL
LDLP
LDNL
LDNLP
STL
STNL

Direct functions

Add constant
Conditional jump
Equals constant
Jump relative
Load constant
Load local
Load local pointer
Load non local
Load non local pointer
Store local
Store non local

H.2

ADD
BSUB
DIFF
GT
LB
PROD
REV
SUB
WSUB

Short indirect functions

Add
Byte subscript
Difference
Greater than
Load byte
Product
Reverse
Subtractr

Word subscript

Long indirect functions

And
Byte count
Check count from 1
Check single length floating point infinity or NaN (T4 only)
Check single
Check subscript from 0
Check word
Divide
Fractional multiply (T4 and TB only)
Long add
Load device identity
Long difference
Load single length infinity (T4 only)
Long divide
Load pointer to instruction
Load current priority
Load timer

AND
BCNT
CCNT1
CFLERR
CSNGL
CSUBO
CWORD
DIV
FMUL
LADD
LDDEVID
LDIFF
LDINF
LDIV
LDPI
LDPRI
LDTIMER

H.3

444

LMUL
LSHL
LSHR
LSUB
LSUM
MINT
MOVE
MUL
NORM
NOT
OR
REM
ROUNDSN
SB
SETERR
SHL
SHR
STTIMER
SUM
TESTERR
TESTHALTERR
TESTPRANAL
UNPACKSN
WCNT
XDBLE
XOR
XWORD

H Transputer instruction support

Long multiply
Long shift left
Long shift right
Long subtract
Long sum
Minimum integer
Move message
Multiply
Normalise
Not
Or
Remainder
Round single length floating point number (T4 only)
Store byte
Set error
Shift left
Shift right
Store timer
Sum
Test error false and clear
Test halt-on-error
Test processor analysing
Unpack single length floating point number (T4 only)
Word count
Extend to double
Exclusive or
Extend to word

H.4 Additional instructions for IMS T425 and IMS T800

The following IMS T425 and IMS T800 instructions are supported by the RESTRICTED code insertion facility.

BITCNT
BITREVNBITS
BITREVWORD
CRCBYTE
CRCWORD
DUP
MOVE2DALL
MOVE2DINIT
MOVE2DNONZERO
MOVE2DZERO
WSUBDB

Count bits set in word
Reverse n bits in word (where 1 ~ n ~ 32)
Reverse all bits in word
Calculate CRC on byte
Calculate CRC on word
Duplicate top of stack
Two-dimensional block copy
Initialise data for two-dimensional block move
Two-dimensional block copy non zero bytes
Two-dimensional block copy zero bytes
Form double word subscript

H.5 Additional instructions for IMS T800 only

The following IMS T800 instructions are supported by the RESTRICTED code insertion facility.

FPADD
FPB32TOR64
FPCHKERR
FPDIV
FPDUP

Floating point add
Bit32 to real64
Check floating error
Floating point divide
Floating duplicate

H.5 Additional instructions for IMS T800 only 445

FPEQ
FPGT
FPI32TOR32
FPI32TOR64
FPINT
FPLDNLADDDB
FPLDNLADDSN
FPLDNLDB
FPLDNLDBI
FPLDNLMULDB
FPLDNLMULSN
FPLDNLSN
FPLDNLSNI
FPLDZERODB
FPLDZEROSN
FPMUL
FPNAN
FPNOTFINITE
FPORDERED
FPREMFIRST
FPREMSTEP
FPREV
FPRTOl32
FPSTNLDB
FPSTNLI32
FPSTNLSN
FPSUB
FPTESTERR
FPUABS
FPUCHKI32
FPUCHKI64
FPUCLRERR
FPUDIVBY2
FPUEXPDEC32
FPUEXPINC32
FPUMULBY2
FPUNOROUND
FPUR32TOR64
FPUR64ROR32
FPURM
FPURN
FPURP
FPURZ
FPUSETERR
FPUSORTFIRST
FPUSORTLAST
FPUSORTSTEP
LDMEMSTARTVAL
POP

Floating point equality
Floating point greater than
Int32 to real32
Int32 to real64
Round to floating integer
Floating load non local and add double
Floating load non local and add single
Floating load non local double
Floating load non local indexed double
Floating load non local and multiply double
Floating load non local and multiply single
Floating load non local single
Floating load non local indexed single
Load zero double
Load zero single
Floating point multiply
Floating point NaN
Floating point finite
Floating point orderability
Floating point remainder first step
Floating point remainder iteration step
Floating reverse
Real to int32
Floating store non local double
Store non local int32
Floating store non local single
Floating point subtract
Test floating error false and clear
Floating point absolute
Check in range of type int32
Check in range of type int64
Clear floating point error
Divide by 2.0
Divide by 2**32
Multiply by 2**32
Multiply by 2.0
Real64 to real32 without rounding
Real32 to real64
Real64 to real3-2
Set rounding mode to round minus
Set rounding mode to 'nearest'
Set rounding mode to round positive
Set rounding mode to round zero
Set floating point error
Floating point square root first step
Floating point square root end
Floating point square root step
Load value of MEMSTART (not TB)
Pop operand stack (not TB)

Bibliography
This appendix contains a list of some transputer-related publications which may be of interest to the reader.
The References section details publications referred to in this manual, other than the standard INMOS
documents detailed below.

1.1 INMOS publications

D Pountain and D May
A tutorial introduction to occam programming
Blackwell Scientific 1987

INMOS
occam 2 Reference Manual
Prentice Hall 1988

INMOS
occam
Keigaku Shuppan Publishing Company 1984
(In Japanese)

INMOS
Transputer reference manual
Prentice Hall 1988

INMOS
Transputer instruction set: a compiler writer's guide
Prentice Hall 1988

INMOS
Transputer technical notes
Prentice Hall 1989
Contains technical notes 0, 1, 2, 5, 9, 10, 17, 18, 19, 24, 27, 29, 46 and 49.

INMOS
Communicating process architecture
Prentice Hall 1988
Contains technical notes 6, 7, 20, 21, 22, 23, 32, 36, 37, 47 and 51.

INMOS
Digital signal processing
Prentice Hall 1989

INMOS
'The graphics databook
INMOS 1989

INMOS
The transputer development and iq systems databook
INMOS 1989

INMOS
The transputer applications notebook - systems and performance
INMOS 1989
Contains technical notes 0, 1, 2, 5, 9, 10, 17, 18, 19, 24, 27, 29, 33, 34, 46, 49 and 58.

448 Bibliography

1.2 INMOS technical notes

R Shepherd
Extraordinary use of transputer links
Technical note 1
72 TCH 001

P Moore
IMS B010 NEC add-in board
Technical note 8
72 TCH 008

S Ghee
IMS B004 IBM PC add-in board
Technical note 11
72 TCH 011

M Poole
occam program development using the IMS 07000 transputer development system
Technical note 16
72 TCH 016

P Atkin
Performance maximisation
Technical note 17
72TCH017

D May and R Shepherd
The transputer implementation of occam
Technical note 21
72 TCH 021

N Miller
Exploring Multiple Transputer Arrays
Technical note 24
72 TCH 024

G Harriman
Notes on graphics support and performance improvements on the IMS TBOO
Technical note 26
72 TCH 026

R Shepherd and P Thompson
Lies, damned lies, and benchmarks
Technical note 27
72 TCH 027

M Poole
occam input and output procedures for the TDS
Technical note 28
72 TCH 028

L Pegrum
Configuring occam programs
Technical note 31
72 TCH 031

R Shepherd
Security aspects of occam 2
Technical note 32
72 TCH 032

1.3 References

J M Wilson
Analysing transputer networks
Technical note 33
72 TCH 033

J M Wilson
Loading transputer networks
Technical note 34
72 TCH 034

S Redfern
Implementing data structures and recursion in occam
Technical note 38
72 TCH 038

T Watson
Module motherboard architecture
Technical note 49
72 TCH 049

M Poole
Example programs in the TDS
Technical note 56
72 TCH 056

1.3 References

W J Cody and W M Waite
Software Manual for the Elementary Functions
Prentice Hall 1980

o E Knuth
The Art of Computer Programming
2nd edition, Volume 2: Seminumerical Algorithms
Addison-Wesley 1981 ..

IEEE
IEEE Standard for Binary Floating-Point Arithmetic
ANSI-IEEE Std 754-1985

449

J Glossary
Alias check Ensure all elements are identified by a single name within a given scope.

Alien file server See Host file server.

Alien language Sometimes used to refer to programs written in a language other than occam (such as C
or FORTRAN), when these programs are embedded as processes in an occam program.

Analyse Assert a signal to a transputer to tell it to halt at the next descheduling point, and allow the state
of the processor to be read. In the context of 'analysing a network', analyse all processors in the
network. One of the system control functions on transputer boards.

Attach Make a filed fold which refers to a file already existing in the filing system. The opposite of Detach.

Autoload Load the standard working set of utilities and user programs in the Autoload fold using the
IAUTOLOAOI key.

Backtrace Using the debugger, move from a position within a procedure or function body to the call of that
procedure or function.

Bootstrap A transputer program, loaded from a ROM or over a link after the transputer has been reset or
analysed, which initialises the processor and loads a program for execution (which may be another
loader).

Bootable file A file whose contents is a sequence of bytes which may be sent down a transputer link with
a reset transputer, which will then bootstrap itself, and optionally other transputers attached to it by
other links, to a state where a complete network program is loaded and running.

Configuration The association of components of an occam program with a set of physical resources.
Usually used in this manual to refer to the specific case of allocating occam processes to processors
in a network, and channels to links in the network. The term is used, depending on the context, to
describe the act of deciding on these allocations for a program, the occam code which describes
such a set of allocations, or the act of applying the ICOMPILEI function to the occam description.

Configurer A program which will place and execute processes on a specified configuration.

Core dump Memory dump.

Deadlock A state in which two or more concurrent processes can no longer proceed due to a communication
interdependency.

Detach Make a filed fold into an empty fold without deleting the underlying file in the filing system. The
opposite of Attach.

Element A syntactic structure (a name, subscripted name or segment) which selects variables, channels,
timers or arrays.

Error modes The error mode of a compilation determines what happens when a program error (such as an
array bounds violation) occurs. A program may be compiled in one of three error modes: HALT,
STOP, or REDUCED.

Error signal In the transputer, an external signal used to indicate that an error has occurred in a running
program. One of the system control functions in transputer boards, in which error signals are OR-ed
together to indicate an error has occurred in one of the transputers in the network.

452

Extract Synonym for Link, used in the context of se and PROGRAM folds.

J Glossary

Filed fold A fold whose contents are stored in a separate file in the filing system.

Fold The basic unit of data storage within the TDS programming environment. When used for the storage
of text, it consists of a sequence of text lines which may be displayed on the screen (when the fold
is open), or hidden away and replaced by a single line (when the fold is closed). When used for
the storage of data, the fold contains a sequence of data records; it appears within the editor as a
single line. A text fold may contain nested folds within it, and these may be data folds.

Fold bundle A fold which contains a sequence of nested folds. When running a user program with the cursor
on the fold bundle, the user filer interface allows separate access to each of the nested folds in the
bundle.

Foldset A special kind of fold bundle used for compilation folds. It has the property that its fold type attribute
is either fol.dset or voidset. If the fold type attribute value is set to fol.dset (which happens
after a program has been compiled) then if any changes are made to the contents of the fold the
attribute value is set to voidset. The latter is also known as an 'uncompiled foldset'.

Folded file stream In the context of the user filer interface, the sequence of communications required to
read or write a file, including all the fold information stored with it.

Free variables The variables which are referred to in a procedure, but declared outside of it.

Hard channels Channels which are mapped onto links between processors in a transputer network (used
in contrast to Soft channels).

Host Depending on the context, this term is used either to describe the computer which is running the server
to the TDS, and providing the filing system and terminal I/O, or (when used in contrast to target
system) is used to describe the combination of the computer and the transputer which is running
the TDS.

Host file server A file server which provides access to the filing system and terminal I/O of a host operating
system, which may be used when running standalone programs. Sometimes known, for historical
reasons, as the 'alien file server'. A different file server is used to support the TDS.

Library A collection of text folds (containing constant and PROTOCOL definitions), and se folds (containing
procedure and function definitions) which may be shared between parts of a program or between
different programs.

Library logical names Names which may be looked up in a fold in the Toolkit fold to provide host file names
for libraries for particular targets and error modes.

Link In the context of transputer hardware, a noun referring to a serial communication link between proces
sors. Used as a verb, in the context of program compilation, to collect together all the code for a
compilation unit (which may involve making copies of code stored in subsidiary compilation units or
in libraries which are used), and put the collected code into a single file.

Linker The program (part of the compiler) which links a compilation unit.

Loader Depending on the context, refers to the part of the TDS which loads a transputer network or, more
commonly, refers to a small program which is loaded into a transputer, and which may then distribute
code to other transputers, and load a larger program on top of itself.

Locate Change the current cursor position in the fold structure to the line which caused an error.

Glossary J 453

Network A set of transputers connected together using links, as a connected graph (Le. in such a way that
there is a path, via links and other transputers, from one transputer to every other transputer in the
set).

Peek and poke Read and write locations in a transputer's memory, by communication over a link, while the
transputer is waiting for a bootstrap.

Preamble Part of a transputer loader program; this part initialises the state of the processor.

Priority In the transputer, the priority level at which the currently executing process is being run. The IMS
T800, IMS T414 and the IMS T212 all support two levels of priority, known as 'high priority' and 'Iow
priority'.

Protocol The pattern of communications between two processes, often including communications on more
than one channel. When appearing as PROTOCOL, refers to the occam meaning of the term (see
the occam 2 Reference Manual).

Reset Transputer system initialisation control signal.

Root processor (or Root transputer) The processor in a transputer network which is immediately connected
to the host, and through which the network is loaded or analysed.

Separate compilation A self-contained part of a program may be separately compiled, so that only those
parts of a program which have changed since the last compilation need to be recompiled.

Server A program running in a host computer attached to a transputer network which provides access to
the filing system and terminal I/O of the host computer. The server is normally used to boot up the
network as well.

Soft channels Channels declared and used within a process running on a single transputer. (used in contrast
to Hard channels).

Standalone program A program running outside of the TDS, and without being connected to the TDS;
usually booted onto a transputer network from a host computer, and supported, while it is executing,
by a server running on the host.

Subsystem In a transputer board architecture, the combination of the Reset, Analyse and Error signals which
allows the board to control another board on its subsystem port.

Target processors Processor types or classes determining the details of the code generated in a compila
tion.

Toolkit fold A special fold maintained by the TDS which is always accessible using the IENTER TOOLKITI key.
It is used to hold pointers to tools and utilities, the library logical names fold and parameter folds.

Tools fold A fold within the toolkit fold containing pointers to tools.

Transputer classes Sets of transputer types for which identical target code may be compiled.

Usage check Check a program to ensure that it obeys the occam rules preventing the sharing of variables
between parallel processes, and the rules about the use of channels as unidirectional point-ta-point
connections.

454 J Glossary

User filer A component of the TDS which may be communicated with by a program running within the TDS,
to allow the program to read and write data within the fold structure.

Valid fold set A fold set is marked valid by the system when it is known that the data contained in the fold
set is consistent with the current version of the source file.

Validate In the context of 'validating a library' check the components placed into the library fold, and give the
library a new version number.

Vector space The data space required for the storage of vectors (arrays) within an occam program.

Worm A program that will distribute itself through a network of transputers (perhaps with an unknown
topology) and allow all the processors in the network to be loaded, tested or analysed.

Workspace The data space required by an occam process; when used in contrast to Vector space, it means
the data space required for scalars within the process.

Index

#COMMENT 69
#OPTION 69

Abbreviation checking 72
Abbreviations 316
Aborting programs 78
Aborting utilities and programs 34, 149
Accuracy of floating point arithmetic 198
ACOS 209,222
add. char 251
add. hex. int 252
add.hex.int32 253
add.hex.int64 253
add. int 252
add. int32 253
add. int64 253
add. rea132 252
add. rea164 252
add. text 251
addboot 101, 341, 440
Address range 6
Addresses 6
af.to.sp 273
afhdr 186
AFSERVER 273
afsp 236
Alias check 54
alias. checkinq 53, 55, 159
Alien language 158
Alignment 68, 128, 131
Allocation 127
ALOG 201, 214
ALOG10 202,215
ALT 312
Analyse 9
Analyse 92, 116, 123, 128,295,324
ANSI C library 356
ANSI screen protocol 270, 349
ANSI-IEEE standard 754 188, 197
ANSI.SYS 350
append. char 251
append.hex.int 252
append.hex.int32 253
append.hex.int64 253
append. int 252
append. int32 253
append. int64 253
append.rea132 252
append.rea164 252
append. text 251
Argument reduction 198
Arithmetic error 107, 315
Array accesses 315
ASIN 208, 222
Assembly code 69, 129, 443
ATAN 209, 223

B002 170
B004.8 170
BOOx.term.p.driver 291
IBACKTRACEI 108,114,300
beep 259
Binary byte stream 274
Bit manipulation 190
BITCOUNT 190
BITREVNBITS 191
BITREVWORD 191
Block transfer

2D 189
blockcrc 195
Boot file 102
Boot from link 121
Boot from ROM 121
BOOTABLE 167
Bootable code file 102, 122, 167
Bootable program 341
Bootable programs 352
BootFromRom 9
Bootstrap 9, 93, 122, 342
Bottom crease 17, 24
IBOTTOM OF FOLDI 25, 141
Bottomcrease 169
IBROWSEI 26, 141
Buffers 267
Bundle of folds 376

C 4,356
C library 254, 273
ICALL MACROI 31, 141
Caplin QTO 246
CASE 312
CASE input 312
case. sensitive 174
CAUSEERROR 138
Change control 53, 61
ICHANNELI 299
Channel 8
Channel usage 55, 158
char.pos 251
Character handling 248
Character operations 372
ICHECKI 45, 157

456

Check
network topology 304
occam source 45, 129, 157

Class
transputer 43

clean. string 289
CLEAR ALL 33, 75, 141
CLEAR EXE 33,75, 141
CLEAR UTIL 33, 141
clear. eol 259
clear. eos 259
CLIP2D 190
Clock rate 68, 423
ICLOSE FOLDI 26, 141
close. folded. stream 289
close.uf.stream 291
Closedfold 169
Code descriptor 10
CODE EXE 46, 75, 162, 440
Code execution 191
ICODE INFORMATION! 33, 114, 142, 300
Code insertion 127, 129,443
Code libraries 51
CODE PROGRAM 92, 102, 122, 167,334,440
CODE SC 124,167,334,440
Code size 441
CODE UTIL 440
code. inserts 54, 129, 160
Command line 245, 247, 351
CommandLine 366, 368
Comment

fold 43,69
text (attribute) 435, 436

Comment fold 147
Communications 8
Communications 316
ICOMPACT L1BRARIESI 60, 176
compare. strings 249
Compatibility 53, 158, 161
Compilation error modes 45
Compilation fold 42, 161
ICOMPILATION INFOI 46, 50, 59, 89, 92, 157, 185
Compilation targets 43
Compilation unit 42, 50
ICOMPILE! 46, 52, 57, 89, 92, 159
compile.all 53,160,172
Compiler

C 357
Compiler errors 164
Compiler keyword 68, 403
Compiler outputs 442
Compiler parameters 53, 159
Compiler predefine 187,403
Compiler utility set 401
Compiler version 50, 158
Compiling and linking occam programs 41
complibs 185, 187
COMSPEC 21, 149,345
CONFIG INFO 158
Configuration 89, 162

Index

Configuration table (memory) 122, 329
Configurer 10, 164
Connecting a network 92
Constants 186, 417
Control-break 21
Cooked key 348
Cooked keys 370
COpy ATTACHI 37, 177
COpy IN] 37, 178
COpy L1NEI 30, 142
COPYOUTI 37,179
COpy PICKI 31, 142
Core 367
Core dump 75, 112

file 314
COS 206,219
COSH 212,226
CRC

library 190, 195
predefines 190

CRCBYTE 191
CRCFROMLSB 195
CRCFROMMSB 195
CRCWORD 190
Creases 17,283,284,286,288
!CREATE FOLDI 27, 142
create.debugging.info 53,107,116,

160
create. fold 290
create. new. fold 283
Current view 22
CURSOR DOWN 25, 143, 310
CURSOR LEFT 25, 143, 311
Cursor moves 25, 372
Cursor positioning 348
CURSOR RIGHT 25, 143, 311
CURSOR UP 25, 143, 310

Data element 439
Data representation 67
Data stream

input 389
modes 384
output 391
syntax 384

Date 168, 248
Date of compilation 162
dblmath 197
Deadlock 117,313
Debug fold 116
Debug information 442
Debugger 75, 107,293

how it works 116
Debugging 107,293

a PROGRAM 109, 293
a UTIL 296
an EXE 109, 296
an SC 296
low level 108
standalone program 109, 294

Index

DEC VAX 246
IDEFINE MACROI 31, 143
de1 . 1ine 260
~ 27,143
DELETE L1NEI 30, 143
DELETE RIGHTI 27, 144
DELETE TO END OF L1NEI 27, 144
DELETE WORD LEFTI 27, 144
DELETE WORD RIGHTI 27, 144
de1ete. ch1 260
de1ete . chr 260
de1ete.string 250
De1eteSource 177
Deleting characters 27
Deleting lines 30
Descriptor fold 158
Descriptor folds 442
DestinationFi1eName 169

library compaction 177
writing host files 179

IDETACHI 37, 180
DIAGNOSTIC 167
Diagnostic extracted code fold 167
Direct functions 443
Directives 403
Directories 15
Directory path searching 278
Disassembly 108, 304
DOS 15, 38, 123, 149, 181, 183, 246, 345, 350,

432, 440
down 259
Down port 92
DRAW2D 190
drea1s 186
DRX-11 246
Dummy network 294
Dynamic code loading 127, 130

Echoing keyboard input 255
Editing environment 17
Editor functions 24

filing folds 28
fold browsing 26
fold creation and removal 27

Editor interface 22
line types 23
screen display 22
view of a document 22

Editor modes 25
Element encoding 437
Elementary function library 196

T414 214
lEND OF L1NEI 25, 145
Endofcrease1ine 169
ENTER FOLD 26, 145
ENTER TOOLKIT 32, 145
enter. fo1d 288
Entry point 50, 158, 441
Entry point offsets 158
Environment enquiries 244

457

Environment variables 345, 349
EPROM hex program 122, 123, 333
EPROM programming 121
epromhex 123,333
eqstr 250
Error 92,96, 128
Error code 282
Error flag 9, 109, 324
Error light 319
Error messages

iserver 156,354
Error modes 45,54, 161

mixing 45
Error numbers 431
Error signal 109
error. checking 53, 159
Event 68, 128,306
Examples

configuration 91
debugging deadlocks 118
hello world 47
inpuVoutput library 83
load from link 132
pipeline sorter 62, 82, 94, 97, 102
using the debugger 11 0

EXE 42, 48, 75, 109, 172, 435
Executable

program 75
Execution modes 45
Exit 366,368
IEXIT FOLDI 26, 32, 145
exit.fo1d 288
EXP 202,216
IEXTRACTI 89,92,102,167,440
Extract 167
Extraordinary use of links 127, 135, 170, 193
extrio 230

fc. tags 435
Fc10se 359
Feof 363
Ferror 363
Ff1ush 361
Fgets 360
File elements 437
File extensions 29, 436
File formats 437
File handling utilities 36, 176, 401
File reading errors 431
File stream modes 383
IFILE/UNFILE FOLDI 28, 145
Filed fold 19, 28, 145, 146, 268, 284, 290
Filed fold element 439
Filed fold line 24
Filed folds

writing back files 29
Filenames created by the system 29
fi1erhdr 186,426
Filing system 17
IFINISHI 21, 146, 300

458

finish.new.fo1d 284
Finishing the system 20
first.processor.is.boot.from.1ink

167,170
Floating point representation 192

double length 197
single length 197

Flush 29
FMUL 214
Fold attributes 19. 29. 435. 436
Fold bundle 77.268.375
Fold comment 28.69.283.285
Fold contents 435
Fold depth 17
Fold element 439
Fold header 17
Fold indent 436
IFOLD INFOI 26. 146
Fold line 24
Fold manager 29. 77, 78. 346. 391
Fold marker 24
Fold number 282, 376
Fold structure 17
Fold type 435
Folded file store 281
Folded stream 81

input 284, 390
modes 385
output 282, 391
syntax 386

Folding 17
Foldset 161, 381. 435.436
Foldtype name 403
Fopen 358
force.pop.up 53.160,172
FORTRAN 4
forward.rep1ace 174
forward. search 174
Fputs 361
FRACMOL 193
Fread 359
Free memory buffer 342
freespace 79
from. fi1er 78. 267
from.fo1d.manaqer 78
from. kerne1 78
from. user. fi1er 268. 345
fsc . tags 383
fsd. tags 284.383
Fseek 362
ft. tags 435
Fte11 362
Fwrite 360

Index

Getenv 365
Getkey 364. 368
q1oba1.rep1ace 173,174
Goto X Y processing 348
qoto.xy 259
GP XP640 EPROM programmer 122.338
GUY code 69. 129. 443

HALT 107
HALT mode 45
Halt system error mode 353
Halt-on-error flag 54. 108
HaltOnError 342
Hard channels 128
Hard copy 38
Header libraries 51
HELlOS 246
IHELPI 21. 146
Hex to programmer program 122. 123. 338
hextoprq 123.338
Host computer 17. 92
Host file server 351

file commands 358
host commands 364
interrupting 352
protocol 356
server commands 366

Host filing system 273
Host io library 403
Host transputer 92
Host variables 345
host. subsystem 170
hostio 81.351
host1ibs 185.228.254

IBM PC 10. 12, 246, 349, 395. 396
communications port 123

IBOARDSIZE 343.345
calculating free memory 343

IEEE standard 754 189
IF 312
Implementation limits 164
IMS B001 291
IMS B002 291
IMS B003 97
IMS B004 96, 128.246
IMS B006 291
IMS B008 96. 246
IMS B010 246
IMS B011 246
IMS B014 246
IMS M212 54
IMS T212 54. 160. 196
IMS T414 54.160.214
IMS T425 444
IMS T800 54. 160. 444
Indirect functions 443
Inexact.NaN 198
Infinity 197
IINFOI 115.300

Index

Input 254
input.error.item 288
input.number.item 287
input.record.item 287
input.tap.crease 288
Input/output 228
Input/output procedures 80
InputOrFail.c 194
InputOrFail.t 194
ins. line 260
insert. char 260
Inserting characters 27
UNSPECT\ 108,113,298
Instance 90
Instruction pointer 108
Instruction set 7
interf 78, 104, 243, 254
Interface for user programs 75
Interface procedures 267
Interface processes 78
Interrupt 6

~ Interrupting the TDS 21
intpds 186
ints 186
Invalid pointers 311
ioconv 229
iolibs 185,228,254
Iptr 114, 301
Iptr 7, 9, 306
is . digit 249
is . hex. digit 249
is . id. char 249
is . in. range 248
is . lower 249
is . upper 249
iserver 101, 156, 233, 254, 351, 356
ITERM 345,346
ITERM file 346

version 347

Jump
code insertion 130

Kernel 77
Kernel channels 78
Kernel filer 391
KERNEL.RUN 131,192
Key macro 146, 149
Key stream 81

protocol 267, 369
Keyboard 77
keyboard 76, 345, 369
Keyboard definitions 348
Keyboard layout 21,395

IBM PC 395,396
NEC PC 398

Keyboard polling 254,374
Keystream 254,255
Keystream input 261
keystream.from.file 272

keystream. sink 272
keystream.to.screen 273
Keystroke macro 31, 141, 143
Keyword 69, 403
krnlhdr 186
KS 244,254
ks.get.real.string 262
ks.get.real.with.del 264
ks.keystream.sink 272
ks.keystream.to.screen 273
ks . read. char 261
ks.read.echo.char 263
ks.read.echo.hex.int 263
ks.read.echo.hex.int32 264
ks.read.echo.int 263
ks.read.echo.int32 264
ks.read.echo.~ea132 264
ks.read.echo.rea164 265
ks.read.echo.text.line 264
ks . read. hex. int 261
ks.read.hex.int32 262
ks.read.hex.int64 262
ks . read. int 261
ks.read.int32 262
ks.read.int64 262
ks.read.rea132 262
ks.read.rea164 263
ks . read. text . line 261

Labels
code insertion 130

Language keyword 403
left 259
LIB 42, 157, 172,436
Libraries 51, 185

compiler support 403
constants 51
functions and procedures 51
selective inclusion of code 59
usage 51
val idation 57

Library compaction 60, 176
Library creation 56
Library fold 56 .
Library logical name 56, 59, 62
Library version 61, 161
LINE DOWN 26, 147,310
LINE UP 25, 147, 310
Link 162

dangling 90
software 46, 162
transputer 5

link 170
Link address 353, 417
Link transfer program 39
linkaddr 417
Linking programs 46, 162
ILlNKS\ 115, 300
Links 8, 306, 324
ILlST FOLD\ 169

459

460

Lister program 38
Little-endian 6
Load from link and run 132
!LOAD NETWORK! 89, 93, 170, 440
LOAD. BYTE. VECTOR 192
LOAD. INPUT. CHANNEL 192
LOAD. INPUT. CHANNEL. VECTOR 192
LOAD. OUTPUT. CHANNEL 192
LOAD. OUTPUT. CHANNEL. VECTOR 192
Loader 122,126,134,334
Loading 89
Loading programs 351
Loading worms 325
Locate 108
Logical behaviour 11
Long integers 187, 230
Long reals 197
Lower case 174,249

MAKE COMMENT 28,43, 147
MAKE FOLDSET 42, 48, 56, 89, 161, 172
make. fil.ed 290
make.fol.dset.type 172
Master transputer 31 6
mathl.ibs 185, 196
Maths library 403
Maths utility library 403
mathval.s 186,418
memint 126, 326
Memoryallocation 343
Memory configuration 326, 334
Memory interface program 122, 126, 326
Memory map 108, 307

of TDS 79
Memory mapped peripherals 128
Memory test 319
MEMSTART 79, 323
MemStart 7,9,343
Messages

attaching files 176
communication errors 171
compilation errors 163
configurer errors 164
development environment 150
extraction errors 171
filing errors 171
iserver 156
logical name fold errors 163

Microcode 8
MicroVax 101
Minint 6
Mixing error modes 45
Mixing transputer types 44
!MONITORI 114, 300
Monitor page 301, 303
Monitoring a PROGRAM 95
MOSTNEG INT 69, 79, 93, 127
Move buffer 31
IMOVE L1NEI 30, 147
MOVE2D 189

Moving the cursor
from a program 259

Multi-processor 10
Multiplexing

screen stream 271
Multiplexors 267
Mutiple length integer arithmetic 187

NEC PC 246,398
nettest 93, 316
Network 10, 89, 92, 121
Network dump 295,308
Network loader 122
Network matching 317
Network tester 93,316
Network topology 93
newl.ine 256
!NEXT EXEI 33, 147
[NEXT UTILI 33, 147
next.int.from.l.ine 253
next.word.from.l.ine 253
Non-occam stack 343, 441
NotaNumber 197
Number element 437
Number error 256
number.of.fol.ds 289

occam 3, 4, 5, 41
communication 5
compatibility 50
concurrency 5
implementation 67
model 4
protocol 76
scope rules 119

occam process model 8
On-chip RAM 7, 55
!OPEN FOLDI 26, 147
open. data. stream 291
open.fol.ded.stream 285
open. stream 290
Opscode 435, 436
Opsdata 435,436
Opstext 435,436
Output 254
output.fol.d 102,167
output.or.fail. 170
OutputOrFail..c 195
OutputOrFail..t 194
OverwriteFil.es 177

Index

Index

Peek 9,116
Peripheral devices 10
Pick buffer 31
'PICK L1NEI 31, 148
Pipeline sorter 62, 82, 94, 97, 102
PLACE addresses 68, 90, 127
PLACED PAR 89
Poke 9
Po11key 364, 368
Port 96,128
POWER 203,217
Predefined names 403
Prefix byte 438
PRI PARs 316
Primary bootstrap 342
Primary loader 440
Print 38
Printer 169, 273
Priority 68,309
PRN 169,273
Procedure parameters 70, 124, 131
Process queue 108, 114, 309
Processes 8
PROCESSOR 68, 89
Processor boot path 159
Processor load map 159
Processor number 90

logical 159
PROGRAM 42, 89, 102, 172, 435
promfi1e 124, 339
Propagated error 199, 200
Protocol

definitions 58, 90
key stream 369
occam 76
screen stream 370
user filer 242, 282, 375

Protocol converters 267
M 31,148

Queues
process 114, 309
timer 114, 310

Quit 309

r64uti1 186
RAN 213,227
Range checking 54
Range reduction 198
ranqe.checkinq 53,160
Raw keys 370
IREAD HOSTI 37, 181
read.bottom.crease 287
read. char 261
read.data.record 291
read.echo.char 263
read.echo.hex.int 263
read.echo.int 263
read.echo.rea132 264
read.echo.rea164 265

read.echo.text.1ine 264
read.error.item 286
read.fi1e.name 285
read.fi1ed.top.crease 287
read.fo1d.attr 290
read.fo1d.headinq 285
read.fo1d.strinq 290
read.fo1d.top.crease 286
read.hex.int 261
read.hex.int64 262
read. int 261
read. int64 262
read. number. item 286
read. rea132 262
read. rea164 263
read.record.item 286
read. text. 1ine 261
RealOp 159
REAL32 constants 418
REAL64 constants 418
rea1pds 186
rea1s 186
Rebooting the TDS 21
IRECOMPILEI 57, 92, 172
Record element 437
Recovery from failure 136
REDUCED 45
IREFRESHI 21,148,302
reinit 194
Reinitia1ise 195
IRELOCATEI 299,310
Remove 363
IREMOVE FOLDI 28, 148
Rename 364
'RENAME FILEI 37, 182
re eat. fo1d 288
REPLACE 38, 173
rep1ace.strinq 174
Replicators

checking problems 73
Rep1icators 315
Representation conversions 248
Reset 9
Reset 92,96,128,324

cable 92
'RESTORE L1NEI 30, 148
Restricted code insertion 443
Result 431
RETRACE 114,299,310
RETURN 27, 148
RETYPES 68, 316
riqht 260
rinq. be11 54, 160, 172
ROM 101,124
Room 29
Root processor 90, 162
Root transputer 92
ROUNDSN 193
RS232 125, 291
'RUN EXEI 33, 36, 75, 148

461

462

Run queue 309
Run time errors 315
Run time system 10
Running programs

dynamically loaded 130
within the TDS 75

ISAVE MACROI 149
se 42. 59. 172. 435
Scalar workspace 441
Screen 77
8creen 76. 345. 369
Screen control commands 372
Screen definitions 347
Screen multiplexor 76
Screen size 347
Screen stream 81
Screen stream protocol 267. 370
Screenstream 254. 255
Screenstream output 256
Scrolling 25
8crstream.copy 272
scrstream. fan. out 271
8crstream.from.array 271
scrstream.mu1tip1exor 271
scrstream.sink 272
scrstream.to.ANSI 270
scrstream.to.array 270
8crstream. to . fi1e 271
scrstream.to.TVI920 270
ISEARCHI 38. 174
search.match 251
search.no.match 251
search.strinq 174
Secondary bootstrap 342
Secondary~ader 440
ISELECT PARAMETERI 35. 49. 149
send. command 290
Separate compilation 42. 50. 158
Separate stack 343
Separate vector space 55. 79. 131. 343
separate.vector.space 53.160
Server 101

libraries 356
porting 357
protocol 356
TDS server 12

Server functions 357
summary 353

ISET ABORT FLAGI 34. 78. 149. 348. 391
set.p011 374
Shared variables

restrictions 71
Shifts 315
SIN 205.218
SINS 211.225
skip. item 288
sk1ib 101.235.254.356
snq1math 196
so. ask 265

80 .bu~~er 268
80. c10se 274
so.command1ine 245
so.core 245
so.date.to.ascii 248
so.eof 276
so.exit 246
so. ferror 276
so. f1ush 275
so.fwrite.char -278
so.fwrite.hex.int 279
so.fwrite.hex.int64 280
so. fwrite. int 279
so.fwrite.int64 280
so. fwrite. n1 279
so.fwrite.rea132 280
so.fwrite.rea164 281
so.fwrite.strinq 278
so.fwrite.strinq.n1 279
so .qetenv 244
so. qetkey 265
so.qets 275
so.keystream.from.fi1e 269
so.keystream.from.kbd 269
so.keystream.from.stdin 269
so.mu1tip1exor 268
so.open 274
so . open. temp 277
so.over1apped.buffer 268
so.over1apped.mu1tip1exor 269
so.parse.command.1ine 247
so .p011key 265
so.popen.read 278.346
so.puts 275
so.read 274
so.read.echo.any.int 266
so.read.echo.hex.int 266
so.read.echo.hex.int64 266
so.read.echo.int 266
so.read.echo.int64 266
so.read.echo.1ine 266
so.read.echo.rea132 267
so.read.echo.rea164 267
so. read. 1ine 266
so . remove 277
so . rename 277
so.scrstream.to.ANSI 270
so.scrstream.to.fi1e 269
so.scrstream.to.stdout 270
so.scrstream.to.TVI920 270
so. seek 275
so. system 245
so.te11 276
so.test.exists 277
so.time 245
so.time.to.ascii 248
so.time.to.date 248
so.today.ascii 247
so.today.date 247
so. version 246

Index

Index

so. write 275
so.write.char 278
so.write.hex.int 279
so.write.hex.int64 280
so. write. int 279
so.write.int64 280
so. write. n1 279
so.write.rea132 280
so.write.rea164 280
so.write.string 278
so.write.string.n1 279
Soft channel 8, 90
s01ib 101, 234, 254, 356
Source text (attribute) 435, 436
SourceFi1eName 178
SP 81,243,267,273,356
sp.receive.packet 357
sp.send.packet 357
sphdr 101,358,419
spinterf 101, 103, 236, 356
sp1ib 101, 233, 254, 356
SS 77, 244, 254, 371
ss .beep 259
ss . c1ear. e01 259
ss . c1ear. eos 259
ss . de1. 1ine 260
ss.de1ete.ch1 260
ss.de1ete.chr 260
ss . down 259
ss .goto.xy 259
ss . ins. 1ine 260
ss.insert.char 260
ss.keystream.from.f01d 272
ss .1eft 259
ss . right 260
ss.scrstream.copy 272
ss . scrstream. fan. out 271
ss.scrstream.from.array 271
ss.scrstream.sink 272
ss.scrstream.to.ANSI.bytes 270
ss.scrstream.to.array 270
ss.scrstream.to.f01d 271
ss.scrstream.to.TVI920.bytes 270
ss .up 259
ss.write.char 256
ss.write.endstream 258
ss.write.hex.int 257
ss.write.hex.int32 257
ss.write.hex.int64 258
ss .write. int 257
ss.write.int32 257
ss.write.int64 257
ss.write.n1 256
ss.write.rea132 258
ss.write.rea164 258
ss.write.string 256
ss.write.text.1ine 257
ssinterf 239, 254
Stack buffer 342
Stack frames 10

Standalone program 17, 92, 101, 109
Standard error 254, 358
Standard hosted PROC 102, 342
Standard hosted procedure 101
Standard input 254, 358
Standard output 254, 273, 358
ISTART OF L1NEI 25, 149
Starting 9
Starting the system 20

problems 20
STOP mode 45
STOP process 315
Stopping 9
Stopping modes 159, 163
str. shift 250
Stream

data 377
folded 282, 284, 377

Stream identifier 273
Stream.id 358
streamio 81, 237, 254
String handling 231, 248

add 251
append 251
comparison 249
editing 250
searching 174, 251

string. pos 251
strings 232
strmhdr 228, 243, 422
Subscript error 107
Subsystem 96, 128
Subsystem reset 352
Sun-3 101, 246
Sun-4 246
SunOS 246
ISUSPEND TDSI 21, 149
Suspending the TDS 21
Symbolic debugging 108, 297
Syntax checking 45, 157
Syntax errors 45, 163
System 365
System control connections 92
System interfaces 345
System receiver 390
System sender 389

T2 90,160
T212 90
t2board 243
t2uti1s 186
T4 90,160
T414 90
T425 90
t4board 243
t4math 214
T8 90, 160, 196
T800 90
TA 43
Tag byte 437

463

464

TAN 207,220
TANS 213, 226
Target 161, 163
Target processor 50, 158
Target system 17
Target transputer 94
target.processor 54,160
TB 43
TB 214
TC 43
TOS loader 345
TOS start up process 345
TDS/commancUine 369
tds2.sty1e.exe 54,146,160,229
TOS3

directory name 15
DOS command 20

TOS3 command 345
TDS3.BAT 20
TDSSEARCS 145,345,346
term.p 369
Terminal configuration 346
Terminal handler 77
Terminal interface 369
Terminals 254
Termination 156
Text file 181, 183
Text stream 254,274
TextOn1y

copy in 178
copy out 179

Time 248
transputer clock 68

Time 365
Time sliced 8
Timeout 20,96,135,322

channel input 194
channelou~ut 194

Timer queue 114, 310
tkf. 267, 391
to. fi1er 78, 267
to.fo1d.manager 78
to . kerne1 78
to.1ower.case 249
to.upper.case 249
to. user. fi1er 268, 345
toolkit 346
Too1kit 293
Toolkit fold 32, 145

autoload fold 33
tools fold 34

Tools 293
ITOpl 115, 299, 311
Top crease 17,24
ITOP OF FOLDI 25, 149
Topcrease 169
Toplevel files 29
top1eve1 .h1p 346
top1eve1 . tkt 346
top1eve1. top 346

TRANSPUTER 345
Transputer classes 43
Transputer error flag 109, 305
Transputer instructions 6, 443
Transputer network tester 93, 316
Transputer type 89
Transputer types

mixing 44
truncate.fi1e.id 289
Tstates 327
Tutorial 22
TVI920 270
Type conversions 315

UART 127,291
uf. tags 378
ufi1er 242
UNDEFINED mode 45
Undefined.NaN 198
UNIVERSAL 45
Unlister program 38
UNPACKSN 193
Unstable.NaN 198
up 259
Up port 92
Uppercase 129,174,249
Usage check 54
Usage checking 71
usage.checking 53,160
USE 51,90
use. standard. 1ibs 45, 54, 160
User filer 77, 374

channels 376
command mode 377
control mode 281
modes 376
protocol 375

User program 32
userhdr 186, 423
userio 239, 254, 281
userva1s 186
UTIL 42, 172, 435
Utilities and programs 31

VAL definitions 90,418
Vector slots 158
Vector space 159

VECSPACE 55, 69
Vector workspace 11, 441
Version 367
Version number 162
Video-RAM 7
View 22
Virtual terminal 369
VMS 246
Voidset 161, 435, 436

Waveform 329
Wdesc 114, 300
Wdesc 7, 9, 118, 306

Index

Index

Wiring diagram 159
wocctab 341
IWORD LEFTI 25, 149
Word length

IMS M212 68
IMS T212 68
IMS T222 68
IMS T225 68
IMS T414 68
IMS T425 68
IMS T800 68
IMS T801 68
IMS T805 68
independence 127

IWORD RIGHTI 25, 150
Workspace 69,158, 159

WORKSPACE 55, 69
workspace 131
Workspace pointer 10, 108
Workspace slots 158
Worm 93, 316, 323
Write EPROM file program 122, 339
IWRITE HOSTI 37,38, 102, 183,440
write.bottom.crease 284
write. char 256
write.endstream 258
write.fi1ed.top.crease 284
write.fo1d.strinq 289
write.fo1d.top.crease 283
write.fu11.strinq 256
write.hex.int 257
write.hex.int64 258
write.int 257
write.int64 257
write.1en.strinq 256
write.number.item 283
write.rea132 258
write. rea164 258
write.record.item 283
write.text.1ine 257
write.top.crease 283

465

	Contents
	Contents overview
	Preface
	1 How to use the manual
	1.1 Introduction
	1.2 User guide
	1.3 Reference manual
	1.4 Appendices
	1.5 Delivery manual

	2 Introduction
	2.1 Overview
	Transputers and occam

	2.2 System design rationale
	2.2.1 Programming
	2.2.2 Hardware
	2.2.3 Programmable components

	2.3 occam model
	2.4 A programmer's introduction to the transputer
	2.4.1 Addresses and the memory
	2.4.2 Registers and instructions
	2.4.3 Processes and communications
	2.4.4 Starting and stopping
	2.4.5 Programs
	2.4.6 Multi-processor programs
	2.4.7 Conventions for the code on each processor

	2.5 Program development
	2.5.1 Logical behaviour
	2.5.2 Performance measurement
	2.5.3 The transputer development system

	The user guide
	3 Directories
	4 The editing environment
	4.1 Introduction
	4.1.1 Folding
	4.1.2 Files as folds

	4.2 Starting and finishing the system for the first time
	4.2.1 Starting the system
	4.2.2 The TDS3 command
	4.2.3 Problems starting the system
	4.2.4 Keyboard layout
	4.2.5 Repainting the screen
	4.2.6 Ending the session
	4.2.7 Interrupting and rebooting the TDS
	4.2.8 Suspending the TDS

	4.3 Tutorial file
	4.4 The editor interface
	4.4.1 Editor's view of a document
	4.4.2 The screen display
	4.4.3 Line types

	4.5 Editor functions
	4.5.1 Overview of editor functions
	4.5.2 Editor modes
	4.5.3 Moving the cursor
	4.5.4 Scrolling and panning the screen
	4.5.5 Fold browsing operations
	Opening and closing folds
	Fold information
	Browsing mode

	4.5.6 Inserting and deleting characters
	Insertion
	Deletion

	4.5.7 Fold creation and removal
	4.5.8 Filed folds
	Storage of files in memory
	File extensions
	Writing back files

	4.5.9 Deleting lines
	4.5.10 Moving and copying lines
	4.5.11 Defining keystroke macros

	4.6 Utilities and programs
	4.6.1 The toolkit fold
	4.6.2 Loading utilities and programs
	4.6.3 Loading code from the toolkit fold
	4.6.4 Running a utility
	4.6.5 Supplying parameters to utilities
	4.6.6 When a utility finishes
	4.6.7 Running executable programs

	4.7 File handling utilities
	4.8 Searching and replacing
	4.9 Listing programs
	4.9.1 The lister and unlister programs

	4.10 Transferring TDS files between computers

	5 Compiling and linking occam programs
	5.1 Introduction
	5.2 The compiler utility set
	5.3 Preparing a program for compilation
	5.3.1 Creating a compilation fold
	5.3.2 Comment folds

	5.4 Using the compiler utilities
	5.4.1 Compilation for different transputers
	Transputer classes

	5.4.2 Mixing code for different transputers
	5.4.3 Error modes of compilation
	5.4.4 Mixing code with different error modes
	5.4.5 Checking occam programs
	5.4.6 Compiling occam programs
	5.4.7 Linking occam programs

	5.5 Compiling a simple example program
	5.5.1 Getting the compiler utilities
	5.5.2 Making an EXE fold
	5.5.3 Checking and compiling the example program
	5.5.4 Running the example program
	5.5.5 Compilation information

	5.6 Separate compilation and libraries
	5.6.1 Separate compilation
	5.6.2 Libraries
	5.6.3 Compiling and linking large programs
	5.6.4 Changing and recompiling programs
	5.6.5 The implementation of change control

	5.7 Compiler parameters
	5.7.1 The parameter fold
	5.7.2 Error modes and range checking
	5.7.3 Alias and usage checking
	5.7.4 Using the separate vector space

	5.8 Creating and using libraries
	5.8.1 Creating libraries
	5.8.2 Using libraries
	5.8.3 Using protocols with separate compilation
	5.8.4 How the library system works
	5.8.5 The library logical names fold
	5.8.6 Library compaction

	5.9 Changing and recompiling libraries
	5.9.1 Change control
	5.9.2 Library dependencies
	5.9.3 Recompiling mixed libraries
	5.9.4 Compacting recompiled libraries

	5.10 The pipeline sorter example
	5.10.1 The 'header.tsr' library fold
	5.10.2 The 'problem.tsr' library fold
	5.10.3 The 'monitor.tsr' library fold
	The keyboard handler
	The screen handler

	5.11 The implementation of occam
	5.11.1 The transputer implementation of occam
	5.11.2 Memory allocation by the compiler
	5.11.3 Implementation of usage checking
	Usage rules
	Checking of non-array elements
	Checking of arrays of variables and channels
	Arrays as procedure parameters
	Abbreviating variables and channels
	Problems with replicators

	6 Running programs within the TDS
	6.1 Loading and running an executable program
	6.2 The interface for user programs
	6.3 The channel parameters and their protocols
	6.3.1 The explicit iserver channels
	6.3.2 The keyboard and screen
	6.3.3 Communicating with the user filer
	6.3.4 The fold manager
	6.3.5 Communicating with the filer
	6.3.6 The kernel channels

	6.4 Memory usage within the TDS
	6.5 The occam input/output procedures
	6.5.1 The input/output models
	6.5.2 The hostio model
	6.5.3 The streamio model
	6.5.4 The folded file store model
	6.5.5 Interface procedures

	6.6 The pipeline sorter example
	6.7 Example programs using the I/O libraries
	6.7.1 Keyboard and screen example
	6.7.2 Example showing input from file

	7 Configuring programs and loading transputer networks
	7.1 Introduction
	7.2 The transputer configuration and loading utilities
	7.3 The configuration description
	7.4 Configuring a program
	7.5 Connecting a network to the TDS
	7.6 Loading a network
	7.7 Using the transputer network tester
	7.8 Running the pipeline sorter on a target transputer
	7.8.1 Creating a PROGRAM fold
	7.8.2 Monitoring the target with an EXE
	7.8.3 Configuring and running the example

	7.9 Running the pipeline sorter on a four transputer network
	7.9.1 A PROGRAM for four transputers
	7.9.2 The root transputer
	7.9.3 The three other transputers
	7.9.4 Configuration for four transputers

	8 Standalone transputer programs
	8.1 Introduction
	8.2 Using the iserver
	8.3 Creating a parameterless standalone program
	8.4 Creating a standard hosted PROC
	8.5 The pipeline sorter

	9 Debugging
	9.1 Using the debugger
	9.2 Debugger facilities
	9.2.1 Symbolic facilities
	9.2.2 Lower level facilities

	9.3 Debugging a program running on a network of transputers
	9.4 Debugging a program running within the TDS
	9.5 Debugging a standalone program
	9.6 A worked example
	9.6.1 Running the example program
	9.6.2 Creating a core dump
	9.6.3 Using the debugger
	9.6.4 Inspecting variables
	9.6.5 Jumping down channels
	9.6.6 Retrace and Backtrace
	9.6.7 Process Queues
	9.6.8 Display occam
	9.6.9 Finish
	9.6.10 Other functions
	9.6.11 More information

	9.7 How the debugger works
	9.7.1 How the debugger accesses the network
	9.7.2 Debugging information generated by the compiler
	9.7.3 How the symbolic facilities work
	9.7.4 Backtracing
	9.7.5 Inspecting variables
	9.7.6 Jumping down channels
	9.7.7 Analysis of deadlock
	9.7.8 occam scope rules

	10 EPROM programming
	10.1 Introduction
	10.2 How to create the fold bundle
	10.3 Creating the ROM file
	10.4 Burning the ROM
	10.5 Execution from ROM instead of RAM
	10.6 ROMs which load from a host computer
	10.7 Adding a memory configuration to the EPROM

	11 Low level programming
	11.1 Allocation
	11.2 Code insertion
	11.2.1 Using the code insertion mechanism
	11.2.2 Labels and jumps

	11.3 Dynamic code loading
	11.3.1 The call
	11.3.2 Loading parameters
	11.3.3 Examples

	11.4 Extraordinary use of links
	11.4.1 Clarification of requirements
	11.4.2 Programming concerns
	11.4.3 Input and output procedures
	11.4.4 Recovery from failure
	11.4.5 Example: a development system

	11.5 Setting the error flag

	The reference manual
	12 The development environment
	12.1 Keys
	12.2 Messages
	12.2.1 Development environment messages
	12.2.2 iserver termination messages

	13 Utilities
	13.2 File handling package
	13.2.1 ATTACH
	13.2.2 COMPACT LIBRARIES
	13.2.3 COPY ATTACH
	13.2.4 COPY IN
	13.2.5 COPY OUT
	13.2.6 DETACH
	13.2.7 READ HOST
	13.2.8 RENAME FILE
	13.2.9 WRITE HOST

	13.1 occam program development package
	13.1.1 CHECK
	13.1.2 COMPILATION INFO
	Compilation information
	Configuration information
	Library information

	13.1.3 COMPILE
	13.1.4 Compiler messages
	13.1.5 Library logical name fold errors
	13.1.6 Program errors
	13.1.7 Implementation limits
	13.1.8 Compiler errors
	13.1.9 Configurer error messages
	13.1.10 EXTRACT
	13.1.11 LIST FOLD
	13.1.12 LOAD NETWORK
	13.1.13 MAKE FOLDSET
	13.1.14 RECOMPILE
	13.1.15 REPLACE
	13.1.16 SEARCH

	14 Libraries
	14.1 Introduction to the libraries
	14.2 Compiler and system libraries (complibs)
	14.2.1 Multiple length integer arithmetic functions
	14.2.2 Floating point functions
	14.2.3 IEEE arithmetic functions
	14.2.4 2D block move library
	14.2.5 Bit manipulation and CRC library
	14.2.6 Code execution
	14.2.7 Arithmetic instruction library
	14.2.8 Extraordinary link handling library reinit
	14.2.9 Block CRC library blockcrc

	14.3 Mathematical libraries (mathlibs)
	14.3.1 Single length and double length elementary function library
	Introduction
	Inputs
	NaNs and Infs
	Outputs
	Accuracy
	Symmetry
	The Function Specifications
	ALOG
	ALOG10
	EXP
	POWER
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	ATAN2
	SINH
	COSH
	TANH
	RAN

	14.3.2 IMS T414 elementary function library
	ALOG
	ALOG10
	EXP
	POWER
	SIN
	COS
	TAN
	ASIN
	ACOS
	ATAN
	ATAN2
	SINH
	COSH
	TANH
	RAN

	14.4 Introduction to input/output libraries (hostlibs, iolibs)
	14.5 Tables of contents of the input/output libraries (hostlibs, iolibs)
	14.5.1 Basic type i/o conversion library ioconv
	14.5.2 Extra type i/o conversion library extrio
	14.5.3 String handling library strings
	14.5.4 Host i/o basic procedure library splib
	14.5.5 Hostio general and screen output procedure library sollib
	14.5.6 Keyboard input library sklib
	14.5.7 Host and stream i/o interface library spinterf
	14.5.8 Protocol conversion library afsp
	14.5.9 Keystream and screenstream library streamio
	14.5.10 Screenstream interface procedure library ssinterf
	14.5.11 General purpose i/o procedure library userio
	14.5.12 Low level user filer interface support library ufiler
	14.5.13 Interface procedure library interf
	14.5.14 Transputer board support libraries t4board, t2board
	14.5.15 Other libraries

	14.6 Protocols and formal parameter conventions
	14.7 Environment enquiries
	14.8 Representation conversions and string handling
	Time and date functions
	Character handling functions
	String comparison functions
	String editing procedures
	String searching functions
	String add/append functions
	Line parsing

	14.9 Terminals and text streams
	14.9.1 The simple input and output procedures (TDS stream models)
	14.9.2 Procedures supporting screenstream output
	14.9.3 Procedures supporting keystream input
	14.9.4 Procedures supporting the standard input model of the keyboard
	14.9.5 Procedures supporting the standard output model of the screen

	14.10 Buffers, multiplexors and protocol converters
	14.11 Access to host filing system
	14.12 Access to the TDS's folded file store
	Write folded stream
	Read folded stream

	14.13 Access to transputer board peripherals

	15 Tools
	15.1 Debugger
	15.1.1 Debugging a PROGRAM on a network which may include the host
	What the debugger does

	15.1.2 Debugging an EXE (or UTIL)
	Start up procedure for an EXE

	15.1.3 Debugging an SC
	Start up procedure for an SC

	15.1.4 Symbolic functions
	Debugging an SC
	Invalid Wdesc

	15.1.6 Monitor page commands
	15.1.7 Hints
	Invalid pointers
	Failure to communicate
	Default addresses
	IF, CASE and guarded ALT
	ALT
	CASE input
	Deadlocks

	15.1.8 Creating a core dump file
	15.1.9 occam run time errors

	15.2 Transputer network tester - nettest
	15.2.1 What the network tester does
	15.2.2 Using the network test program
	A note on matching
	Limitations of use

	15.2.3 Options available
	15.2.4 Interpretation of loading data
	15.2.5 Description of network
	15.2.6 Error messages
	15.2.7 Testing specifications
	15.2.8 Stages of loading

	15.3 Memory interface program - memint
	15.3.1 Capabilities
	15.3.2 Using the program
	15.3.3 Input
	15.3.4 Output
	Numeric output
	Waveform output

	15.3.5 Storing and retrieving parameters and pages
	15.3.6 Examples
	15.3.7 Caveats
	15.3.8 Error and warning messages

	15.4 EPROM hex program - epromhex
	15.4.1 Using the program
	15.4.2 What the EPROM hex program does
	Error messages

	15.5 Hex to programmer program - hextoprq
	15.5.1 Using the program

	15.6 Write EPROM file program - promfile
	15.6.1 Using the program

	15.7 Preparing a bootstrap and adding it to a program - addboot, wocctab
	15.7.1 The code to occam table converter wocctab
	15.7.2 The bootstrap adder addboot
	15.7.3 The example two-stage loader
	15.7.4 Memory allocation

	16 System interfaces
	16.1 Use of host environment variables
	16.2 The TDS loader and TDS start up process
	16.3 The ITERM terminal configuration file
	16.3.1 The structure of an ITERM file
	16.3.2 The host definitions
	ITERM version
	Screen size

	16.3.3 The screen definitions
	Goto X Y processing

	16.3.4 The keyboard definitions
	16.3.5 Setting up the ITERM environment variable
	16.3.6 An example ITERM

	16.4 The INMOS file server - iserver - command line interface
	16.4.1 iserver command line syntax
	Loading programs
	Terminating the server
	Server termination codes
	Specifying a link address - option SL
	Terminating on error - option SE

	16.4.2 Server functions
	16.4.3 iserver error messages

	16.5 The INMOS file server - iserver - program interface
	16.5.1 The server protocol
	Packet size
	Protocol operation

	16.5.2 The server libraries
	16.5.3 Porting the server
	16.5.4 Defined protocol
	Reserved values
	File commands
	Fopen
	Fclose
	Fread
	Fwrite
	Fgets
	Fputs
	Fflush
	Fseek
	Ftell
	Feof
	Ferror
	Remove
	Rename

	16.5.5 Host commands
	Getkey
	Pollkey
	Getenv
	Time
	System

	16.5.6 Server commands
	Exit
	CommandLine
	Core
	Version

	16.5.7 Extensions to iserver protocol supported within the TDS only

	16.6 The TDS screen and keyboard channels
	16.6.1 Input from the keyboard channel
	16.6.2 Screen stream and SS protocols
	Outputting characters to the screen
	Cursor movement
	Clearing the screen
	Character operations
	Line operations
	Other operations
	Initialising
	Changing the way keyboard input is processed
	Other commands

	16.7 The TDS user filer interface
	16.7.1 User filer protocol
	16.7.2 Selecting a fold for access
	16.7.3 User filer channels
	16.7.4 User filer modes
	16.7.5 Commands in user filer command mode
	Definitions of uf. commands
	Example showing use of a uf. command
	Opening a fold for reading
	Opening a fold for writing

	16.7.6 Communications in file stream modes
	Introduction to file stream modes
	Syntax of valid sequences of communications
	Data stream modes
	Folded stream modes
	Reading a fold stream from the system sender
	Writing a fold stream to the system receiver

	16.8 Other TDS interfaces

	Appendices
	A Keyboard layouts
	A.1 IBM PC function keys
	A.2 IBM PC keyboard layout
	A.3 NEC PC keyboard layout

	B Summary of standard utilities
	C Names defined by the software
	D System constant definitions
	D.1 LINKADDR
	D.2 MATHVALS
	D.3 SPHDR
	D.4 STRMHDR
	D.5 USERHDR
	D.6 FILERHDR

	E Error numbers
	E.1 File server errors
	E.2 DOS errors
	E.3 TDS internal errors
	E.4 Filer errors
	E.5 File streamer errors

	F Fold attributes
	F.1 Fold attributes in the TDS
	F.1.1 Fold type
	F.1.2 Fold contents
	F.1.3 Fold indent

	F.2 Attribute constant values
	F.3 Attributes of common fold types

	G File formats
	G.1 Structure of folded files
	G.2 DOS files produced by the TDS
	G.3 CODE PROGRAM files
	G.4 CODE SC, CODE EXE and CODE UTIL files
	G.5 Other compiler outputs

	H Transputer instruction support
	H.1 Direct functions
	H.2 Short indirect functions
	H.3 Long indirect functions
	H.4 Additional instructions for IMS T425 and IMS T800
	H.5 Additional instructions for IMS T800 only

	I Bibliography
	I.1 INMOS publications
	I.2 INMOS technical notes
	I.3 References

	J Glossary
	Index

