TRANSPUTER
DEVELOPMENT SYSTEM

INMOS Limited

Prentice Hall
New York London Toronto Sydney Tokyo

First published 1988 by

Prentice Hall International (UK) Ltd,

66 Wood Lane End, Hemel Hempstead,
Hertfordshire, HP2 4RG

A division of

Simon & Schuster International Group

© 1988 INMOS Limited

INMOS reserves the right to make changes in
specifications at any time and without notice. The
information furnished by INMOS in this publication is
believed to be accurate, however no responsibility is
assumed for its use, nor for any infringement of patents
or other rights of third parties resulting from its use. No
licence is granted under any patents, trademarks or
other rights of INMOS.

@,inmos, IMS and OCCam are trademarks
of the INMOS Group of Companies.

INMOS document number: 72 TRN 011 00

Allrights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical,
photocopying, recording or otherwise, without the
prior permission, in writing, from the publisher.

For permission within the United States of America
contact Prentice Hall Inc., Englewood Cliffs, NJ 07632.

Printed and bound in Great Britain
at the University Press, Cambridge

CIP data are available

12345 9291 90 89 88

ISBN 0-13-928995-X

Contents

Contents v
Contents overview Xvii
Preface Xix
How to use the manual 1
1.1 Introduction 1
1.2 User guide 1
1.3 Reference manual 1
1.4 Appendices 1
Introduction 3
2.1 Overview 3
Transputers and occam 3

2.2 System design rationale 4
2.2.1 Programming 5

222 Hardware 5

2.2.3 Programmable components 5

2.3 occam model 5
2.4 Program development 7
24.1 Logical behaviour 7

2.4.2 Performance measurement 7

2.4.3 The transputer development system 7

The user guide 9
Directories 11
The editing environment 13
4.1 Introduction 13
4.1.1 Folding 13

4.1.2 Files as folds 15

4.2 Starting and finishing the system for the first time 15
4.2.1 Starting the system 15

422 The TDS2 command 16

4.2.3 Problems starting the system 16

42.4 Keyboard layout 17

4.2.5 Repainting the screen 17

42,6 Ending the session 17

4.2.,7 Interrupting and rebooting the TDS 17

4.2.8 Suspending the TDS 17

4.3 Tutorial file 18
4.4 The editor interface 18
4.4.1 Editor’s view of a document 18

4.4.2 The screen display 18

4.4.3 Line types 19

4.5 Editor functions 20
4.5.1 Overview of editor functions 20

4.5.2 Editor modes 21

4.5.3 Moving the cursor 21

Contents

Vi
4.5.4 Scrolling the screen 21
4.5.5 Fold browsing operations 22
Opening and closing folds 22
Fold information 22
Browsing mode 22
4.5.6 Inserting and deleting characters 23
Insertion 23
Deletion 23
4.5.7 Fold creation and removal 23
4.5.8 Filed folds 24
Storage of files in memory 25
File extensions 25
Writing back files 25
4.5.9 Deleting lines 26
4.5.10 Moving and copying lines 26
4.5.11 Defining a keystroke macro 27
4.6 Utilities and programs 27
4.6.1 The toolkit fold 28
4.6.2 Loading utilities and programs 29
4.6.3 Loading code from the toolkit fold 29
4.6.4 Running a utility 30
4.6.5 Supplying parameters to utilities 30
4.6.6 When a utility finishes 31
4.6.7 Running executable programs 31
4.7 File handling utilities 32
4.8 Searching and replacing 33
4.9 Listing programs 33
4.9.1 The lister and unlister programs 34
4.10 Transferring TDS files between computers 34
5 Compiling and linking occam programs 35
5.1 Introduction 35
5.2 The compiler utility set 35
5.3 Preparing a program for compilation 36
5.3.1 Creating a compilation fold 36
53.2 Comment folds 37
5.4 Using the compiler utilities 37
5.4.1 Checking 0CCam programs 37
5.4.2 Compiling occam programs 37
5.4.3 Linking occam programs 38
5.5 Compiling a simple example program 39
5.5.1 Getting the compiler utilities 39
5.5.2 Making an EXE fold 40
5.5.3 Checking and compiling the example program 40
5.5.4 Running the example program 41
5.5.5 Compilation information 41
5.6 Separate compilation and libraries 42
5.6.1 Separate compilation 42
5.6.2 Libraries 43
5.6.3 Compiling and linking large programs 43
5.6.4 Changing and recompiling programs 44
5.6.5 The implementation of change control 44
5.7 Compiler parameters 45

Contents vil
5.7.1 The parameter fold 45

5.7.2 Error modes of compilation 45

5.7.3 Alias and usage checking 46

5.7.4 Using the separate vector space 47

5.8 Creating and using libraries 48
5.8.1 Creating libraries 48

5.8.2 Using libraries 49

5.8.3 Using protocols with separate compilation 50

5.8.4 How the library system works 50

5.8.5 The library logical names fold 51

5.8.6 Library compaction 52

5.9 Changing and recompiling libraries 53
5.9.1 Change control 53

5.9.2 Library dependencies 53

5.9.3 Recompiling mixed libraries 53

5.9.4 Compacting recompiled libraries 54

5.10 The pipeline sorter example 54
5.10.1 The ‘header.tsr’ library fold 56

5.10.2 The ‘problem.tsr’ library fold 57

5.10.3 The ‘monitor.tsr’ library fold 57

The keyboard handler 58

The screen handier 59

5.11 The implementation of occam 59
5.11.1 The transputer implementation of occam 60

5.11.2 Memory allocation by the compiler 61

5.11.3 Implementation of usage checking 62

Usage rules 62

Checking of non-array elements 62

Checking of arrays of variables and channels 62

Arrays as procedure parameters 63

Abbreviating variables and channels 63

Problems with replicators 64

6 Running programs within the TDS 65
6.1 Loading and running an executable program 65
6.2 The interface for user programs 65
6.3 The channel parameters and their protocols 67
6.3.1 The keyboard and screen 67

6.3.2 Communicating with the user filer 67

6.3.3 The fold manager 68

6.3.4 Communicating with the filer 68

6.3.5 The kernel channels 68

6.4 Memory usage within the TDS 69
6.5 The occam input/output procedures 70
6.5.1 The input/output models 71

6.5.2 TDS terminal and file /O 71

6.5.3 Reading and writing a DOS file 71

6.6 The pipeline sorter example 72
6.7 Example programs using the /O libraries 73
6.7.1 Keyboard and screen example 74

6.7.2 Example showing input from file 75

Contents

viii
7 Configuring programs and loading transputer networks 79
7.1 Introduction 79
7.2 The transputer configuration and loading utilities 79
7.3 The configuration description 79
7.4 Configuring a program 82
7.5 Connecting a network to the TDS 82
7.6 Loading a network 83
7.7 Using the transputer network tester 83
7.8 Running the pipeline sorter on a target transputer - 84
7.8.1 Creating a PROGRAM fold 84
7.8.2 Monitoring the target with an EXE 85
7.8.3 Configuring and running the example 86
7.9 Running the pipeline sorter on a four transputer network 87
7.9.1 A PROGRAM for four transputers 87
7.9.2 The root transputer 88
7.9.3 The three other transputers 89
7.9.4 Configuration for four transputers 89
8 Standalone transputer programs 91
8.1 Introduction 91
8.2 Using the host file server 91
8.3 Creating a standalone program 92
8.4 The pipeline sorter 92
9 Debugging 97
9.1 Using the debugger 97
9.2 Debugger facilities 97
9.2.1 Symbolic facilities 98
9.2.2 Lower level facilities - 98
9.3 Debugging a program running on a network of transputers 99
9.4 Debugging a program running within the TDS 99
9.5 Debugging a standalone program 99
9.6 A worked example 100
9.6.1 Running the example program 102
9.6.2 Creating a core dump 102
9.6.3 Using the debugger 102
9.6.4 Inspecting variables) 103
9.6.5 Jumping down channels 103
) 9.6.6 Retrace and Backtrace 104
9.6.7 Process Queues 104
9.6.8 Display occam 104
9.6.9 Read/Write and Finish 105
9.6.10 Other options 105
9.6.11 More information 105
9.7 How the debugger works 106
9.7.1 How the debugger accesses the network 106
9.7.2 Debugging information generated by the compiler 106
9.7.3 How the symbolic facilities work 107
9.7.4 Backtracing 107
9.7.5 Inspecting variables 107
9.7.6 _ Jumping down channels 107

9.7.7 Analysis of deadlock 107

Contents ix
9.7.8 occam scope rules 109

10 EPROM programming 111
10.1 Introduction 111

10.2 How to create the fold bundle 112

10.3 Creating the ROM file 113

10.4 Burning the ROM 113

10.5 Execution from ROM instead of RAM 114

10.6 ROMs which load from a host computer 115

10.7 Adding a memory configuration to the EPROM 116

11 Low level programming 117
11.1 Allocation 117

11.2 Code insertion 119

11.2.1 Using the code insertion mechanism 119

11.2.2 Labels and jumps 120

11.3 Dynamic code loading 120

11.3.1 The call 121

11.3.2 Loading parameters 122

11.3.3 Examples 122

11.3.4 Code format 124

Extracted code format 124

114 Extraordinary use of links 125

11.4.1 Clarification of requirements 125

11.4.2 Programming concerns 125

11.4.3 Input and output procedures 126

11.4.4 Recovery from failure 126

11.4.5 Example: a development system 127

The reference manual 129

12 The development environment 131
121 Keys 131

12.2 Messages 140

12.2.1 Development environment messages 140

12.2.2 TDS server termination messages 144

13 Utilities 147
13.1 occam program development package 147

13.1.1 [CHECK] 147

13.1.2 |COMPILATION INFO 147

Compilation information 148

Configuration information 148

Library information 149

13.1.3 |COMPILE | 149

13.1.4 Compiler messages 152

13.1.5 Library logical name fold errors 152

13.1.6 Program errors 153

13.1.7 Implementation limits 153

13.1.8 Compiler errors 154

13.1.9 Configurer error messages 154

13.1.10 |EXTRACT] 156

Contents

13.1.11 |LOAD NETWORK | 159

13.1.12 |MAKE COMMENT | 160

13.1.13 |MAKE FOLDSET | 161

13.1.14 |RECOMPILE | 161

13.1.15 |REPLACE | 162

13.1.16 |SEARCH | 163

13.2 File handling package 165
13.2.1 |ATTACH| 165

13.2.2 [COMPACT LIBRARIES| 166

13.2.3 |COPY ATTACH| 166

13.24 [COPY IN| 167

13.2.5 |COPY OUT| 168

13.2.6 |[DETACH] 169

13.2.7 |READ HOST| 170

13.2.8 |RENAME FILE| 171

13.2.9 |WRITE ENABLE| 172

13.2.10 [WRITE HOST| 172

13.2.11 |WRITE PROTECT| 173

14 Libraries 175
14.1 Multiple length integer arithmetic functions 177
14.2 Floating point functions 178
14.3 IEEE arithmetic functions 179
14.4 2D block move library 179
MOVE2D 179

DRAW2D 180

CLIP2D 180

14.5 Bit manipulation and CRC library 180
BITCOUNT 180

CRCWORD 180

CRCBYTE 181

BITREVNBITS 181

BITREVWORD 181

14.6 Code execution 181
14.7 Arithmetic instruction library 183
14.8 Single length and double length elementary function library 184
14.8.1 Introduction 186

14.8.2 Inputs and Outputs 186

14.8.3 Accuracy 187

Range Reduction 187

Generated Error 187

Propagated Error 188

Test Procedures 188

14.8.4 Symmetry 188

14.8.5 The Function Specifications 189

Terms used in the Specifications 189

Specification of Ranges 190

Abbreviations 190

14.8.6 ALOG 190

Contents

Xi

14.8.7 ALOG10 191

148.8 EXP 192

1489 POWER 193

14.8.10 SIN 194

14.8.11 COS 195

14.8.12 TAN 197

14.8.13 ASIN 198

14.8.14 ACOS 199

14.8.15 ATAN 199

14.8.16 ATAN2 200

14.8.17 SINH 201

14.8.18 COSH 202

14.8.19 TANH 203

14.8.20 RAN 203

14.9 IMS T414 elementary function library 204
149.1 ALOG 205

14.9.2 ALOG10 206

149.3 EXP 207

149.4 POWER 208

149.5 SIN 209

149.6 COS 210

14.9.7 TAN 212

14.9.8 ASIN 213

149.9 ACOS 214

14.9.10 ATAN 214

14.9.11 ATAN2 215

14.9.12 SINH 216

14.9.13 COSH 217

14.9.14 TANH 218

14.9.15 RAN 218

14.10 Basic type i/o conversion library ioconv 219
14.11 Extra type i/o conversion library extrio 220
14.12 String handling library strings 222
14.12.1 Character handling functions 223

14.12.2 String comparison functions 224

14.12.3 String editing procedures 225

14.12.4 String searching functions 226

14.12.5 String append functions 226

14.13 General purpose i/o procedure library userio 228
14.13.1 The simple input and output procedures 232

Simple output procedures 233

Simple input procedures 233

Output to and input from the folded file store 234

14.13.2 Simple output 235

14.13.3 Control codes to the terminal screen 237

14.13.4 Simple input 238

14.13.5 Long integers and reals 240

14.13.6 Write folded stream 242

14.13.7 Read folded stream 243

14.14 Interface procedure library interf 249
14.15 Block transfer procedure library slice 254
14.16 Low level user filer interface support library ufiler 255
14.17 TDS server channel support library msdos 258

Xii

Contents

14.18 Byte stream i/o library dexrivio 260
14.19 Afserver low level protocol library afio 264
14.20 Afserver command library afiler 265
14.21 Afserver protocol interface and multiplexor afinterf 268
14.22 Transputer board support library t4board 269
14.23 IMS B006 support library t2board 271
14.24 Extraordinary link handling library reinit 271
14.25 Block CRC library blockcrc 273
15 Tools 275
15.1 Debugger 275
15.1.1 Debugging a PROGRAM 275

What the debugger does 277

15.1.2 Debugging an EXE 277

Start up procedure for an EXE 277

15.1.3 Debugging an SC 278

Start up procedure for an SC 278

15.1.4 Symbolic facilities 278
Debugging an SC 282

Invalid Wdesc 282

15.1.5 Monitor page 282

15.1.6 Monitor page options 284

15.1.7 Hints 292

Invalid pointers 292

Failure to communicate 292

Default addresses 292

IF and CASE 292

ALT 292

CASE input 293

Deadlocks 293

15.1.8 Creating a core dump file 294

15.1.9 O0ccam run time errors 295

15.2 Transputer network tester 297
15.2.1 What the network tester does 297

15.2.2 Using the network test program 298

A note on matching 298

Limitations of use 298

15.2.3 Options available 299

15.2.4 Interpretation of loading data 300

15.2.5 Description of network 301

15.2.6 Error messages 302

15.2.7 Testing specifications 304

15.2.8 Stages of loading 306

15.3 Memory interface program 307
15.3.1 Capabilities 307

15.3.2 Using the program 307

15.3.3 Input 308

15.3.4 Output 309
Numeric output 309

Waveform output 310

15.3.5 Storing and retrieving parameters and pages 310

15.3.6 Examples 311

15.3.7 Caveats 313

Contents Xiii
15.3.8 Error and warning messages 314

15.4 EPROM hex program 314
15.4.1 Using the program 314

15.4.2 What the EPROM hex program does 315

Error messages 318

15.5 Hex to programmer program 319
15.5.1 Using the program 319

15.5.2 Adapting the Hex to programmer program 320

16 System interfaces 323
16.1 Terminal interfaces 323
16.1.1 Input from the keyboard channel 323

16.1.2 Screen stream protocol 324
Outputting characters to the screen 326

Cursor movement 326

Clearing the screen 326

Character operations 326

Line operations 327

Other operations 327

Initialising 327

Changing the way keyboard input is processed 328

Termination, claim and release 328

16.2 User filer interfaces 329
16.2.1 User filer protocol 329

16.2.2 Selecting a fold for access 330

16.2.3 User filer channels 330

16.2.4 User filer modes 331

16.2.5 Commands in user filer command mode 332
Definitions of uf. commands 332

Example showing use of a uf. command 336

Opening a fold for reading 336

Opening a fold for writing 337

16.2.6 Communications in file stream modes 338
Introduction to file stream modes 338

Syntax of valid sequences of communications 338

Data stream modes 339

Folded stream modes 340

Reading a fold stream from the system sender 344

Writing a fold stream to the system receiver 345

16.3 Host file server 347
16.3.1 Afserver command syntax 347

16.3.2 Afserver command line options 348

16.3.3 Afserver protocol 349
Introduction to the afserver protocol 349

Overview of afserver operations 351

Server termination operations 352

Stream opening operations 353

Server information operations 355

Operating system support operations 358

Stream information operations 361

Stream reading and writing operations 363

Low level DOS operations 365

16.3.4 Afserver error messages 369

Contents

Xiv
16.3.5 Summary of afserver protocol 371
Basic protocol 371
Parameter and result types 371
Operations protocol 372
16.4 TDS file server 375
16.4.1 Server description 375
| 16.4.2 The SERVER command 376
| 16.4.3 Server overview 377
i 16.4.4 Communicating with the server 378
Channel multiplexing 378
Sequence of communications 381
16.4.5 The terminal channels 382
Protocol to the terminal 382
Protocol from the terminal 385
Differences in the server and TDS terminals 387
16.4.6 The filer channels 387
16.4.7 The kernel channels 415
16.4.8 The serial channels 417
16.4.9 Summary of TDS server protocol 418
Appendices 425
A Keyboard layouts 427
A.1 IBM PC function keys 427
A2 IBM PC keyboard layout 428
A3 NEC PC keyboard layout 430
B Summary of standard utilities 433
C Names defined by the software . 435
D System constant definitions 447
D.1 MATHVALS 447
D.2 USERHDR 448
D.3 FILERHDR 450
D.4 KRNLHDR 454
D.5 USERVALS 458
D.6 AFHDR 458
E Error numbers 461
E.1 File server errors 461
E.2 DOS errors 462
E.3 Filer errors 462
E.4 File streamer errors 463
F Fold attributes 465
F.1 Fold attributes in the TDS 465
F.1.1 Fold type 465
F.1.2 Fold contents 465
F.1.3 Fold indent 466
F.2 Attribute constant values 466

F.3 Attributes of common fold types

467

Contents XV

G File formats 469
G.1 Structure of folded files 469
G.2 DOS files produced by the TDS 472
H Transputer instruction support 473
H.1 Direct functions 473
H.2 Short indirect functions 473
H.3 Long indirect functions 473
H.4 Additional instructions for IMS T800 474
] Bibliography . 477
1.1 INMOS publications 477
1.2 INMOS technical notes 478
1.3 References 480
J Glossary 481

Index 485

Contents

Contents overview

1
2

How to use the manual

Introduction

Describes the layout of the manual.
Introductory explanation of the transputer and the TDS.

The user guide

W

9
10
11

Directories

The editing environment

Compiling and linking
occam programs

Running programs
within the TDS

Configuring programs
and loading transputer
networks

Standalone transputer
programs

Debugging
EPROM programming
Low level programming

Describes the directories set up and used by the TDS.
Describes the editor and its facilities.
Describes how to use the compiler and its associated utilities.

Describes how to prepare and use programs on the TDS.

How to prepare programs for and run them on networks.

Describes how to prepare programs to run independently of the TDS.

An introduction, with a worked example, to the debugger.
Describes how to prepare programs for EPROMs.
Describes how to use low level programming facilities.

The reference manual

12

13
14
15
16

The development
environment

Utilities
Libraries
Tools
System interfaces

Lists and describes the keys and messages.

Describes in detail all the utilities.

Describes in detail the functions and procedures of all libraries.
Describes in detail all the software tools e.g. debugger.
Describes in detail the interfaces to the system.

The appendices

A
B

IIomm o O

[

Keyboard layouts
Summary of standard
utilities
Names defined by the
software

System constant
definitions

Error numbers
Fold attributes
File formats

Transputer instruction
support

Bibliography
Glossary
THE INDEX

Shows how the keys are mapped to functions.
Shows how the utilities are grouped.

Lists all the names defined by the software.
Lists the constants used by the system.

Lists the error numbers.

Lists the values that the fold attributes can take.
Describes the various file formats.

List the transputer instructions that are supported.

Lists literature worth referring to.
A glossary of terms used to describe the features of the TDS.
A comprehensive index.

xviii Contents overview

Preface

This manual describes the Transputer Development System, an integrated programming environment devel-
oped by INMOS to support the programming of transputer networks in occam. The Transputer Development
System comprises an integrated editor, file manager, compiler and debugging system.

The Transputer Development System runs on a transputer board; for example it runs on an INMOS IMS B004
board containing an IMS T414 32-bit processor and 2 MBytes of memory. This board is installed inside an
IBM PC/AT or similar computer, which provides a means of interfacing keyboard, screen and disks to the
transputer.

The Transputer Development System allows occam programs to be written, compiled and then run from
within the development system. Programs may also be configured to run on a target network of transputers;
these may range from a single transputer on an evaluation board to networks of several hundred transputers.
The code for a transputer network may be loaded directly from the Transputer Development System, through
a link connecting the Transputer Development System transputer to the target network. Programs may also
be placed into a file separate from the Transputer Development System, or into a ROM (Read-Only Memory),
and used to load a network.

A post-mortem debugger allows programs running in the Transputer Development System environment or
on a transputer network to be examined after they have been interrupted or have stopped as a result of an
error. The line of source corresponding to a program error on one of the processors can be displayed, and
the values of variables may be examined. The state of other currently active processes on this processor,
and on other processors in the network, can also be examined.

The Transputer Development System software includes the interactive programming environment, the com-
pilation utilities and other programming tools, a number of libraries to support program development (such as
mathematical functions and I/O libraries), and an extensive set of examples in source form.

This manual is divided into two majdr parts: the User Guide, which introduces the system and takes the reader
through the steps needed to write, compile and run programs, and the Reference Manual, which contains
detailed reference information on the editor, utilities, tools, libraries and system interfaces.

The instructions on installing the softwa
in a separate Delivery manug

s 'ndad

etaile

d list of the components of the release are contained

This manual correspondg
Development System.

to the TMS D700D (IBM PC) and |

D800D (NEC PC) releases of the Transputer

XX

Preface

1 How to use the manual

The Transputer Development System Manual is broadly structured into four sections:
o Introduction
o User Guide
o Reference Manual
e Appendices

Each of the sections is briefly described below.

1.1 Introduction
This section gives a light, readable introduction to the transputer and the Transputer Development System
(referred to as TDS in the rest of this manual). The rest of the manual does not require this to have been

read and anyone reasonably familiar with the transputer can skip over this section. It does not require the
reader to be sitting at a terminal, in fact it can be read anywhere: in an armchair or on a train for example.

1.2 User guide

The user guide provides the essential information for someone to start using the TDS. It provides an intro-
duction to the facilities of the TDS and contains examples where appropriate. Most, but not all, is essential
reading, depending upon one’s individual interests.

Chapters 3 to 6, which introduce the development environment, should be carefully read by everyone.

Chapters 7 and 8 which deal with transputer networks and standalone programs need only to be read if they
satisfy a user’s interest.

Chapter 9 on debugging should be read by everyone, but not necessarily the sections relating to networks.

Chapters 10 and 11 which deal with EPROM programming and low level programming are not essential
reading.

13 Reference manual

The reference manual gives the detailed, technical information that was not appropriate to the user guide.
This part of the manual is not intended to be read as such, merely referred to.

14 Appendices

The appendices are there to provide rapid reference. As such certain of the information may duplicate that
already found in the reference manual, but it is in a more accessible form.

1 How to use the manual

2 Introduction

21 Overview

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

System [N N

services Processor

Input

Interface — Qutput

On-chip [—N
RAM K—/

G

]!

Application specific interface

Figure 2.1 The transputer architecture

The transputer architecture defines a family of programmable VLS! components. A typical member of the
transputer product family is a single chip containing processor, memory, and communication links which
provide point to point connection between transputers. In addition, each transputer product contains special
circuitry and interfaces adapting it to a particular use. For example, a peripheral control transputer, such as
a graphics or disk controller, has interfaces tailored to the requirements of a specific device.

A transputer can be used in a single processor system or in networks to build high performance concur-
rent systems. A network of transputers and peripheral controliers is easily constructed using point-to-point
communication.

Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in 0ccam. This
provides all the advantages of a high level language, the maximum program efficiency and the ability to use
the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logic gates. The system
designer’s task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an 0Ccam process, so that a network of transputers
can be described directly as an occam program.

2

Introduction

Transputer

Transputer|

Transputer

Transputer

Figure 2.3 A node of four transputers

2.2 System design rationale

The transputer architecture simplifies system design by the use of processes as standard software and

hardware building blocks.

An entire system can be designed and programmed in 0occam, from system configuration down to low level

/O and real time interrupts.

2.3 occam model 5

2.241 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the designer is concerned only with a small and
manageable set of processes.

222 Hardware

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. Its internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement occam channels.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g. graphics). The required function (e.g. a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an 0occam implementation, which in turn can be used to test the
application on a development system.

2.23 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a ‘black box’ thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a single chip, can be built from a combination of software processes, pre-
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

2.3 occam model

The programming model for transputers is defined by occam. The purpose of this section is to describe how
to access and control the resources of transputers using occam. A more detailed description is available in
the occam reference manual.

Where it is required to exploit concurrency, but still to use standard sequential languages such as C or
FORTRAN, occam can be used as a harness to link modules written in the selected languages.

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming

6 2 Introduction

language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes — assignment, input and output.
An assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Every transputer implements the 0occam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When occam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same occam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

-] po

(2] |
6 - p1 >
(] j I
\
t -] p2 -
Three processes on
one transputer t

The same processes distributed
over three transputers

Figure 2.4 Mapping processes onto one or several transputers

The transputer and occam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of I/O, interrupts and timing is standard on all transputers and conforms to the 0ccam model.

2.4 Program development 7

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The occam level interface will, however, remain
standard across all products.

24 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

2.4.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of ‘logical behaviour’; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave ‘correctly’ regardiess of input data and ALT selection.

242 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an 0ccam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the 0ccam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an 0ccam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
identified.

Because, in 0OCCam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

2.43 The transputer development system

The transputer development system is an integrated development system which can be used to develop
occam programs for a transputer network. It consists of a plug in board for an IBM PC, such as an IMS
T414 transputer with 2Mbytes of RAM and all the appropriate development software, see figure 2.5.

8 2 Introduction

IMS B004
2 Mbytes
& | :
— 1] =
LEVETTTTTT
TDS
Editor IBM XT/AT
Compiler {T
Utilties IBM bus_ File server and
2-way byte protocol terminal handler

Figure 2.5 Transputer development system

Most of the development system runs on the transputer board; there is a program on the IBM PC called a
‘server’, which provides the development system with access to the terminal and filing system of the IBM PC.

Using the TDS a programmer can edit, compile and run 0ccam programs entirely within the development
system. occam programs can be developed on the TDS and configured to run on a network of transputers,
with the code being loaded onto the network from the TDS. Alternatively an operating system file can be
created which will boot a single transputer or network of transputers. As a final variation, the TDS can be
used to create programs for single transputer or networks of transputers that operate completely independently
of the TDS; such code could be placed in EPROM for example. Programs that work independently of the
TDS are known as ‘standalone’ programs.

The TDS comes with all the necessary software tools and utilities to support this kind of development. There is
a variety of libraries to support mathematical functions and input/output for example. There is a sophisticated
debugging tool and software to analyse the state of a network.

The user guide

10

The user guide

3 Directories

The software components of the Transputer Development System are supplied as compressed files. As part
of the installation procedure a directory \ARCD700D is created, where the compressed files are placed. The
directories required by the system are created and the appropriate files extracted from the compressed ones
and placed in the correct directories.

The main directory created is called \TDS2 and all files are stored in subdirectories.

The actual subdirectories used are:

\TDS2\SYSTEM

\TDS2\COMPLIBS
\TDS2\TOOLS
\TDS2\IOLIBS
\TDS2\MATHLIBS
\TDS2\TUTOR
\TDS2\EXAMPLES

\TDS2\ SERVER

System and utility files.

These files must be accessible from any working directory.
If the operating system on the computer is DOS

then a path must be set to this directory.

Compiler libraries.

Software tools supplied with the system e.g. debugger.
Libraries of input/output functions.

Libraries of additional mathematical functions.

Tutorial material described in the user guide.

Additional example programs that are supplied with the system.

Server files.

Some of the terms used above will not be familiar to many people at this stage. They will become clearer
by carefully reading and working through the user guide. There is a glossary at the end of the book and the
reference manual describes the more technical aspects of the system in greater detail.

12

3 Directories

4 The editing environment

4.1 introduction

The Transputer Development System (TDS) consists of a plug-in transputer board and development software
which runs on the transputer board. This combination provides a complete, self-contained development
environment in which programs can be developed, compiled and run. Programs can also be developed and
compiled on the TDS to run on a network of transputers, the code being loaded on to the network from the
TDS. In this case the combination of transputer board and PC is referred to as the ‘host computer’, and the
transputer network is known as the ‘target system’. Finally, as is probably more realistic for most applications,
programs can be developed to run on transputers completely independently of the TDS; these are known as
‘standalone’ programs.

The principal interface to the system is an editor; as soon as the system starts up the user is placed in
an editing environment, and all program editing, compilation and running can be carried out within that
environment, by the use of a set of function keys. Instead of having a special command language to the
operating system to manage the filing system, file operations occur automatically as a result of certain editor
operations. There is also a set of ‘utility’ function keys which may be assigned to different functions during a
session. Throughout this manual the convention of referring to function keys (including utility function keys)
by name will be followed; for example: [CURSOR UP] or [COMPILE]. In fact these logical names may correspond
to a combination of physical keypresses at the terminal. The actual keys associated with these function key
names are given in the keyboard layout diagrams in appendix A.

The editor interface is based on a concept called ‘folding’. The folding operations allow the text currently
being entered to be given a hierarchical structure (‘fold structure’) which reflects the structure of the program
under development.

Because of the importance of folding within the TDS, this chapter starts by explaining folding. It then describes
how to boot up the TDS. As with many systems, the best way to start learning about the TDS is to start using
it. For this reason a tutorial file is provided; this does not assume any knowledge about the TDS so it can be
worked through before reading the rest of the chapter. Section 4.3 describes how to find the tutorial file. The
rest of the chapter describes the editor interface in some detail, and then describes the facilities for loading
and running code within the editing environment.

411 Folding

Just as a sheet of paper may be folded so that portions of the sheet are hidden from view, the folding editor
provides the ability to hide blocks of lines in a document. A fold contains a block of lines which may be
displayed in two ways: open, in which case the lines of the fold are displayed between two marker lines
(called creases), or closed, in which case the lines are replaced by a single marker line called a fold line.

To create a fold the user inserts creases around the text to be folded; the fold is closed automatically when
the second crease is made. Any text may be placed on the fold line to indicate what the fold contains; this
text is called the ‘fold header’.

A fold may be removed, so that its contents are once again placed in sequence with the surrounding lines.

Folds may contain text lines and also fold lines; therefore folds can be nested. Folds can be nested to a
maximum depth of 50.

An example of how folds are displayed by the editor follows. The fold line is marked with three dots (. . .).
A top crease is marked with the symbol { { {. A bottom crease is marked with } }}. There are two folds in
this program: one marked Declarations, and one marked initialise. In the second example the
fold initialise has been opened.

14 4 The editing environment

Example: program with closed folds

... Declarations
SEQ
... initialise
WHILE going
process (ch, going)

Example: program with open fold

... Declarations
SEQ
{{{ 4initialise
going := TRUE
input ? ch
}}}
WHILE going
process (ch, going)

A fold has an indentation associated with it; the fold and crease line markers begin at this indentation level.
No text may be inserted within the fold to the left of this indentation. In occam the indentation of a line is
significant; the folding features of the editor make it relatively easy to change the indentation of part of an
occam program.

Folding, in conjunction with the ability to nest folds, provides a way of organising a large document or program
as a hierarchy. The editor has functions to ‘enter’ a fold, which opens the fold and moves down into it, and
also to ‘exit’ the fold, which closes the fold and returns to the level from which the fold was entered. For
example, entering the fold marked Declarations in the example above would make the following lines
the only visible lines on the screen.

Example: entering a fold

{{{ Declarations

INT ch:

BOOL going:

PROC process (INT ch, BOOL going)
... body of process

11
Here the line marked body of process is a fold nested inside the fold Declarations.

Any document can be folded in such a way that most of the folds are shorter than the length of the screen.
Fold operations then become the principal method of traversing a document, with screen scrolling operations
used only for small local movement.

Because a closed fold is represented by a single line on the screen, some editor line operations may act
on fold lines as well as text lines. When such an operation is applied to a fold line it also applies to the
fold contents. For example, deleting a fold line deletes all its contents as well. This means that operations
to transform the fold structure, (such as moving, copying, and deleting folds) appear identical to the line
operations which are familiar to any user of a screen-oriented editor.

So far folds have been described as sequences of text lines; however, not all folds are text folds. There
are also data folds, which are created by certain utilities in the system to store data. For example, when the
occam compiler compiles a section of source code it places the resulting code in a data fold. Data folds
appear as a single line on the screen, but cannot be opened and displayed by the editor.

In order to allow the system to distinguish the different types of folds, each fold has attributes to indicate the
nature of its contents.

4.2 Starting and finishing the system for the first time 15

There are two attributes of interest:

1 The ‘fold type’ attribute which indicates to the editor the general nature of the contents of the fold
(e.g. text, data)

2 The *fold contents’ attribute which indicates in more detail the nature of the contents of the fold
(e.g. program text, comment text, compiled code, compiled and linked code).

The possible values of these fold attributes are listed in appendix F. Attributes remain with a fold until it is
removed.

412 Files as folds

The folding editor allows a fold to be designated a ‘filed fold’. The effect of this is to indicate that the fold
contents are to be stored in a separate file. When the fold is first opened, the contents of the file are read in,
and the fold may then be edited. When a filed fold is closed the system will write out the contents of all the
files which have changed since they were last written out.

Many of the data folds produced by the utilities are in fact filed folds. The attributes of a filed fold are stored
with the fold header, in the enclosing file, not in the file containing the fold’s contents.

A large document or program consists of many files, organised in a nested structure. For example, consider
the following program:

Example: use of filed folds

{{{F Example program -- top crease of a filed fold
...F Declaration of PROC pl -- filed fold
...F Declaration of PROC p2
PAR
P1()
P2()
11}

The filed fold marked Example program contains filed folds which contain the declarations of PROC p1
and PROC p2. Opening the filed fold marked Declaration of PROC p1l causes the appropriate file
to be read in and inserted at that point in the text.

The file containing the declaration of p1 might also contain other filed folds This shows how nested filed
folds can be used to make up a large document. The document can be navigated in the same way as a
small document, with only the explicitly opened sections of the document being read in by the editor. Most
operations which can be carried out on fold lines may also be applied to filed fold lines, including those that
contain nested files. So, for example, copying a filed fold line will make a copy of the file and all its nested
files.

A directory used by the TDS contains a small number of root or ‘top level’ files, within which all other files are
contained.

4.2 Starting and finishing the system for the first time
4.2.1 Starting the system

This section describes how to start the transputer development system from DOS command level, and how
to start using the system.

To start the system for the first time move to an empty directory, ensure that there is a DOS path to the

16 4 The editing environment

directory \TDS2\SYSTEM and type:

copy \tds2\system\toplevel.tkt
tds2 -t toplevel.top

toplevel.tkt is a special file called the ‘toolkit fold’. It contains the utilities and is described later in the
chapter.

To start the system in a directory already containing TDS files, just type

tds2
In response to the tds2 command the system will display a welcome message followed by:

TDS system file : file path name
Board memory size : xBytes

Once the TDS is loaded from disk, the system clears the screen and displays the top level view, which
consists of all the files in the current directory with the extension . TOP. In the case of a new directory, there
will be only one top level file: TOPLEVEL. TOP. The screen will appear as follows:

Press [ENTER FOLD] to start session
...F TOPLEVEL. TOP

The principal operations available on these top level filed fold lines are which enables a fold
to be entered and edited, and which ends the session. Most of the normal editing operations and
utilities are disallowed here.

To enter one of the folds the cursor should be placed on the appropriate fold and the key pressed.
The contents of the fold will be read in and displayed.

422 The TDS2 command
The TDS2 command has the form:

tds2 [-t newiop.top]

The optional —t parameter is used to create a file which is the root of the nested fold structure. Notice that
the .top extension must be present.

This calls a command file TDS2 . BAT in the directory \TDS2\SYSTEM This normally contains the following
command:

\tds2\system\serverld4 -b \tds2\system\tdsload.bd -s #200000
-£f \tds2\system\tds2.xsc

This runs the server program SERVER14.EXE on the host, and the TDS loader program TDSLOAD .B4
on the transputer. The TDS loader program loads the file given by the —£ parameter. The -s parameter
specifies the memory size of the board in bytes (the value above, #200000, is a hexadecimal number

indicating 2 Mbytes). This value should be changed to run the TDS on a different board size. In addition, if
the TDS is to run on an IMS T800, the additional parameter -p T800 should be supplied.

423 Problems starting the system
If no transputer board is connected the system may hang, or it may display one of the messages:

Timeout on loading boot file

Message received on illegal channel

4.2 Starting and finishing the system for the first time 17

This will also happen if the transputer board does not have its reset link connected correctly or if the system
is being run from an IBM PC which is neither a PC-XT nor a PC-AT. See the appropriate board manual for
details on these matters.

The system may hang if the wrong link adaptor addresses are used. This may occur if a TDS configured
for a different machine is used, or if the -L command line option is incorrectly specified. See chapter 16 on
System interfaces, which describes the TDS file server.

4.24 Keyboard layout

To display a map of the keyboard layout, press the function key, which is assigned to the [F1] key on the
keyboard in the standard IBM PC layout. A keyboard map will appear; you can return to the normal editor
display by pressing any key. Keyboard layouts are also shown in appendix A.

425 Repainting the screen

The function key repaints the entire screen. This may be useful to check that the editor is driving
the screen correctly, or if the terminal is accidentally switched off.

4.2.6 Ending the session

It is only possible to end the session from the outermost level (i.e. where the top level filed folds appear).
Pressing here returns to the operating system. If any of the folds have been entered they must be
exited back to this level before can be used.

4.2.7 Interrupting and rebooting the TDS

The TDS can be interrupted by pressing the interrupt key. This is ‘control-break’ on IBM machines, but
is ‘control-c’ on some others. The system will then prompt for either a space, which reboots the TDS, or
‘escape’, which returns to DOS command level.

The only time it should be necessary to press the interrupt key is when a user program fails to terminate and
the system needs to be restarted. Subscript range and similar errors in a user program will cause the prompt
for space or escape to be issued automatically.

The interrupt key can also be used to prevent the TDS from writing out any more files, if a catastrophic edit
has been done. This should not be done, however, if the system is actually in the process of writing out files.

4.28 Suspending the TDS

The key can be used to suspend the TDS temporarily and return the user to the host oper-
ating system, so that operating system commands can be issued (for example, getting directory listings, or
formatting floppy disks). In DOS typing the command exit returns to the TDS, which is in the same state
as it was when was pressed.

Before resuming the TDS, the current directory must be the same as it was when the TDS was suspended.
This facility works, in DOS, by making the server call the command file associated with the logical name
COMSPEC. The file associated with this logical name can be changed by putting a set command of the
following form into the AUTOEXEC . BAT:

set COMSPEC=filename

DOS commands which reset the transputer board (for example, running a server with another transputer boot
file) will cause the state of the suspended session to be lost, and typing exit will then cause the system to

18 4 The editing environment

hang up. The interrupt key can be used to release the system from this state.

4.3 Tutorial file

There is a file included with the system which provides an introduction for those starting to use the system.
The file is in \TDS2\TUTOR and is called TUTORIAL. TOP. This file contains a detailed practical example
on using the TDS and anyone new to this system is strongly advised to work through it.

To use the tutorial move to the directory \TDS2\ TUTOR, then type:

tds2
to start the system.
It is advisable to have nearby the appropriate keyboard layout. Keyboard layouts appear in appendix A.

When the system starts up ensure the cursor is on the line TUTORIAL . TOP, and then press [ENTER FOLD] to
read in and display the file.

The contents of the file will then give you detailed instructions on how to proceed.

44 The editor interface

This section defines some terms which are used to describe the behaviour of the editor keys. Figure 4.1
shows a graphical representation of these terms.

4.41 Editor’s view of a document

At any time during the session, the editor has a view of the document, consisting of a sequence of text lines,
closed folds and open folds. This is called the current view.

The current view of the document at any time is principally determined by the fold operations which have
been carried out. At the start of the session the current view contains a sequence of lines which correspond
to the set of toplevel files in the current directory. When is pressed on one of these lines, the
contents of the filed fold, surrounded by top crease and bottom crease lines, become the current view.

Whenever is pressed on a fold line, the current view is stacked up, and the contents of the fold
become the current view. After editing the contents of the fold it is possible to return to the previous view

using [EXIT FOLD

442 The screen display

The screen is divided into two parts. The top line of the screen is used to display messages. The rest of the
screen displays a ‘window’ into the current view (that is, it displays as many lines of the current view as will
fit on to the screen).

The editor provides functions to move the screen window up and down the current view, thus providing a
scrolling facility . These functions do not change the editor’s view of the document, merely what is visible in
the screen window.

The cursor is used to point to a position in the screen window; functions are provided to move the cursor
around the screen. The cursor cannot be moved below the end of the current view.

The current column is the column which the cursor is on. The current line is the line which the cursor is on.
The current enclosing fold is the fold which contains the current line, or, if the current line is a crease line,

4.4 The editor interface

19

the fold formed by that crease and its partner.

Previous views

. ..F EXAMPLE.TOP

{{{F EXAMPLE.TOP
... EXE example

11}

Current view

{{{ EXEB example

...F example.tsr |laSt entered
TT.F example.dcd fold
...F example.dds
...F example.dlk
13}

{{{F example.tsr

-- This fold contains a simple

-- occam 2 program

-- which says hello

{{{ program in here

PROC hello (CHAN OF INT keyboard,

CHAN OF ANY screen)

VAL tt.out.str IS BYTE 8:
VAL tt.out.int IS BYTE 19:

Start of current
enclosing fold

<« Window displayed

VAL message IS "Hello World!":
BOOL going:
SEQ
screen ! tt.out.str;
SIZE message;
message

on screen

Jgoing := TRUE

|« Current line and

WHILE going
INT ch:
SEQ
keyboard ? ch
IF
(ch >= (INT ' ‘)) AND

Current character

(ch <= (INT '~’))

screen ! tt.out.int;ch

TRUE
going := FALSE

iollo (keyboard, screen)
133

h

End of current
enclosing fold

l«—— End of current view

443 Line types

Figure 4.1 Editor's view of a document

Four general types of line may be displayed; they are text lines, top creases, bottom creases, and fold lines.
Top creases and fold lines also have filed fold versions.

20 4 The editing environment

Fold lines and crease lines start with a marker symbol. The different types of marker symbols are:
Fold line .

Filed fold line ...F
Top crease {{{
Filed fold top crease {{{F
Bottom crease }}}

All marker symbols consist of the textual symbol above, plus one or two following spaces to give the symbol
a width of five characters.

4.5 Editor functions

This section introduces and describes the functions provided by the editor. A detailed listing of the keys used
and messages given by the editor is available in chapter 12. The mapping of key names to keys on the
keyboard is given in appendix A.

45.1 Overview of editor functions

The editor accepts and acts on sequences of keystrokes from the user. If any of the sequences are not
recognised the terminal bell rings. The table below provides an overview of the available editor functions,
which are described in detail in the following sections. In addition there are function keys for loading and
running code within the TDS, which are described in section 4.6.

Moving the cursor [CURSORUP CURSOR DOWN] [WORD LEFT] [TOP OF FOLD
CURSOR LEFT] CURSOR RIGHT] [WORD RIGHT] BOTTOM OF FOLD
START OF LINE] [END OF LINE]
Scrolling the screen [LINE UP LINE DOWN
PAGE DOWN
Fold browsing ENTER FOLD] EXIT FOLD] BROWSE]
[OPEN FOLD] [CLOSE FoLD] [FOLD INFOJ
Inserting and Character keys RETURN [DELETE WORD LEFT]
deleting characters DELETE DELETE RIGHT] [DELETE WORD RIGHT]
[DELETE TO END OF LINE]
Fold creation [CREATE FOLD] [REMOVE FoLD]
and removal

Storing text in files FILE/UNFILE FOLD]

Deleting lines [DELETE LINE] [RESTORE LINE]
Moving and MOVE LINE COPY LINE COPY PICK
copying lines PUT

PICK LINE]

Defining a keystroke [DEFINE MACRO) CALL MACRO
macro

4.5 Editor functions 21

45.2 Editor modes

At certain times when using the editor, only a limited subset of the editor functions may be available. For
example, a fold is created by two presses of a key called [CREATE FOLD]: one to mark the top of the fold and
one to mark the bottom of the fold. Between these two presses normal editing operations are not allowed;
the only keys which the editor will accept are those needed to change the cursor position. All other keys
cause the terminal bell to ring. When the editor is only accepting a restricted subset of keys, this is known as
an editor ‘mode’. It is indicated by a message on the top line of the screen which persists until the operation
requiring the mode has been completed.

In the rest of this chapter, where a function results in an editor mode, this is indicated in the appropriate
section.

453 Moving the cursor

The normal cursor positioning functions are used to move the cursor around the screen window. The cursor
may be moved into any part of the screen, except the message line. In addition there are functions to move
the cursor to the start or the end of the current line, and one word to the right or left on the line.

The cursor keys cause the screen to scroll when used at the top and bottom of the screen. Separate screen
scrolling functions can be used to scroll the screen up and down the current view; these are described in the
next section.

moves the cursor up one line.

moves the cursor down one line.

moves the cursor left one column.

moves the cursor right one column.

places the cursor after the last significant character on the current line (i.e. the last non-blank
ggﬁ]r;%ter). If the line is too long for the width of the screen the cursor is placed in the rightmost screen

places the cursor on the first significant character of the current line. (i.e. the first non-blank
character).

Two keys, [WORD LEFT] and [WORD RIGHT], are provided to move the cursor one word at a time. A word consists
of a sequence of alphanumeric characters or a single non-alphanumeric character. More precise definitions
of the word move operations are given in chapter 12 under the definitions of the relevant keys.

WORD LEFT] moves the cursor one word to the left of the current cursor position.
WORD RIGHT] moves the cursor one word to the right of the current cursor position.

moves the cursor to the top crease line of the current enclosing fold. If the top crease line is
not within the screen window the screen will be scrolled.

moves the cursor to the bottom crease line of the current enclosing fold. If the bottom
crease line is not within the screen window the screen will be scrolled.
4.54 Scrolling the screen

These functions scroll the screen up and down the current view by a line or a page at a time. A page is the
number of lines in the screen window.

LINE UP] moves the screen one line up the current view, if there are lines in the current view above the screen.

22 4 The editing environment

moves the screen one line down the current view, if there are lines in the current view below the
screen.

moves the screen one page up the current view, or to the top of the current view, whichever is the
nearest.

PAGE DOWN] moves the screen one page down the current view, or to the bottom of the current view, whichever
is the nearest.

None of the above functions affect the position of the cursor on the screen

455 Fold browsing operations
Opening and closing folds

This section describes the keys which are used, along with the cursor positioning keys, to move around a
document. There are two pairs of fold browsing operations, one pair being and [EXIT FoLD), and
the other pair being and

The folding features of the editor give a document a hierarchical structure. The keys and
are used to move around the hierarchy. When is pressed on a fold the screen is
cleared and the contents of the fold become the current view. The previous view is stacked up, and can be
returned to using

ENTER FOLD) is appropriate when the fold contains a reasonably self-contained piece of text. However, it may
often be more desirable to view a piece of text in its surroundings; for example the body of a WHILE loop
may be folded up, and it may be best viewed with the WHILE condition displayed above it. and
CLOSE FOLD] are provided for this purpose.

inserts the contents of a fold between the surrounding lines, bracketted with top and bottom
creases. [CLOSE FOLD] may be used to close an opened fold, and replace the displayed contents with a single
fold line.

is useful where a quick return up to a particular position is required; doing an at that
position will allow, at some future time, an to cause a return back up to that position.

At the outermost level, only may be used. Once the outermost level has been left by entering a
fold, tl'llis starts the normal editing mode. All the editor functions are available in this editor mode, as well as
the utilities.

Fold information

The key used on a fold or a crease line, displays the attributes of the fold on the message line.
On a filed fold line, the message also includes the name of the file in which the contents of the fold are stored.

Browsing mode

Sometimes when viewing an existing document it is useful to set the editor into a mode so that you can not
accidentally change the document. The key can be used to get into and out of this mode. While
in this mode a message is displayed continually on the message line of the screen, and all editor functions
which could change the document are disallowed.

4.5 Editor functions 23

45.6 Inserting and deleting characters

In general characters may be inserted or deleted at the cursor position, but there are some exceptions, as
follows:

1 Text may not be be inserted when the cursor is on a fold or crease marker, or when the cursor is to
the left of the leftmost column of an open fold.

2 The indentation of a closed fold may be changed by inserting or deleting spaces to the left of a fold
marker symbol. No other text may be inserted there, however.

A line which extends into the rightmost column of the screen, or extends off the right hand side of the screen

altogether, is called a ‘long line’. Such a line may be created as a result of line concatenation or changes in
fold indentation. When the cursor is on a long line, the following message is displayed:

Long line

Insertion

A character or space can be inserted in the current column position and the cursor, the character underneath
the cursor and all subsequent characters on the line are moved right by one place.

Insertion has no effect when the cursor is on a marker symbol, or to the left of the leftmost column of a fold.
Spaces may be inserted before a fold marker symbol to change the indentation of the fold.

is used to split lines and insert blank lines. It has no effect on a fold line or crease line if used
between the first and last significant character of the line.

Deletion

is used to delete the character to the left of the cursor. This causes the character underneath the
cursor and the rest of the line to the right to be moved one place to the left. If [DELETE] is used at the extreme
left of a line it concatenates the line with the preceding line, if that line is not a long line. It has no effect if
used at the extreme left of a fold or crease line.

deletes the character under the cursor. All the characters to the right of the cursor are moved
left by one place. The cursor remains in the same position.

Character deletion has no effect when the character to be deleted is part of a marker symbol, or is to the left
of the leftmost column of an open fold.

Spaces may be deleted before a fold marker symbol to change the indentation of the fold.

[DELETE TO END OF LINE] deletes all text from the character under the cursor, to the last significant character
on the line, inclusive. The cursor remains in the same position.

Deletion can take place a word at a time. A word can be considered to be a sequence of alphanumeric
characters or a single non-alphanumeric character, as for cursor movement.

deletes the word to the left of the cursor.
[DELETE WORD RIGHT] deletes the word to the right of the cursor.

457 Fold creation and removal

Fold creation is achieved by marking the top and bottom of the sequence of lines required to form the contents
of a fold. Two presses of are needed to do this. Firstly the cursor should be placed at the start

24 4 The editing environment

of the top line and pressed. The indentation of the cursor at this point (i.e. how far it is from
the left hand side of the screen) determines the indentation of the created fold. The cursor should then be
moved to the line below the bottom line, and pressed again. For this to work, all lines between
the top and bottom lines must be indented at least as far as the indentation of the fold to be created; if this
is not the case an error message is displayed.

After has been pressed once the editor changes its mode and all normal editing functions are
suspended until this key has been pressed again to complete the process of fold creation.

Once a fold has been created, it should be commented by inserting text after the fold marker. This text is
known as the fold header.

The created fold has an indentation associated with it, given by the indentation of the fold line marker when
it is closed, and the indentation of the creases when it is open. It is not possible to insert text to the left of
this indentation.

When a fold is newly created it is given default attributes: ‘text’ for the fold type attribute, and ‘source’ for the
fold contents attribute. Other fold types are made using the appropriate utilities.

An empty fold can be created above the current line by pressing [CREATE FOLD] twice in succession.

A fold can be removed by placing the cursor on a fold line and pressing [REMOVE FOLD]. The fold contents are
inserted between the lines above and below the fold.

If is pressed accidentally the fold must be completed by pressing again. The
resulting empty fold may then be removed.

458 Filed folds

The editor provides the ability to store sections of a document in separate files. This can be done by creating
a fold around the text and making the fold a filed fold. As described earlier, a filed fold is similar to an ordinary
fold, but it has its contents stored in a separate file. When a filed fold is first opened, the contents of the file
are read in and displayed. When a filed fold is closed, a new version of the file is automatically written out if
the contents have changed since they were last written out.

When a fold is made into a filed fold the file must be given a name. In order to supply a name to the editor,
the fold header needs to be edited before the fold is filed. The name given to the file will then be derived
from the sequence of characters at the start of the fold header. It is not necessary to include an extension
with the name; that is provided by the editor. The system checks that the file name generated is different
from that of any existing files; if necessary, it adds numeric characters to the name to ensure this.

Filed folds may be treated in exactly the same way as ordinary folds, and most of the same operations apply.
Filed folds may be copied, in which case a copy is made of all of the contents of the fold, including any nested
files. New unique names are generated for copies of files, in the same manner as described above. Filed
folds may also be deleted, in which case the corresponding file, and any nested files, are deleted.

The use of filed folds in the system allows the user to make up a document consisting of multiple files and
browse through it in exactly the same way as browsing of a single folded file is done. No explicit commands
to read or write files need be given. A file is always written back if it has changed. The new version of the
file replaces the old version.

If it is necessary to back up a copy of a file before editing it, this may be done by duplicating the filed fold
using the function key (see section 4.5.10). The duplicate may then be moved elsewhere in the
fold structure.

One function key, [FILE/UNFILE FOLD), is provided to convert ordinary folds to filed folds, and vice versa. Before
a fold is filed the fold header should be edited so that the name intended for the file is written at the start of
the fold header, as previously discussed in this section. The name of the file associated with a filed fold can
be checked using [FOLD INFO}.

4.5 Editor functions 25

Storage of files in memory

The editor reclaims storage room from data copied out to files. This reclamation is done when extra room is
needed, and so a filed fold may be repeatedly opened and closed without constant re-reading of the file.

The following message may appear:

Warning : running out of room

This indicates that the editor’s storage room is getting low. Any open filed folds not currently in use should be
closed to make some more room,; alternatively some new filed folds may have to be made. If this message
is persistently ignored then the editor may run out of room and refuse to allow any more insertions until more
room has been made.

File extensions

When a filed fold is made the file name is given an extension corresponding to the attributes of the fold. The
first character corresponds to the fold type attribute, and the second and third characters correspond to the
fold contents attribute. The most common extension for files made using the [FILE/UNFILE FOLD] function key
is .'TSR, which is a ‘text’ and ‘source’ fold: the standard type of fold made by [CREATE FOLD].

See appendix F for a description of the fold attributes and their correspondence with file extensions.
The following extensions are generated for files created by the system:

.TOP top level files

.TCM comment text files (ignored by compilers)
.TSR program source

.TCI configuration information
.TAI analyse information

.DDS compiler descriptor

.DLK compiler linkage information
.DDB debugging information
.DCD object code

.DMP coredump file

.CUT utility packages

.CEX user programs

.CPR program code fold

In addition, the system creates the files TOPLEVEL .MOV, TOPLEVEL. TKT and TOPLEVEL .PCK. These
are used to store, respectively, the current contents of the buffer associated with the contents of
the toolkit fold and the contents of the pick buffer (all of which are discussed later). All these are preserved
between sessions. There is also a TOPLEVEL.DEL file which is not preserved between sessions; this
contains the line associated with the last line deletion (see later).

Writing back files

The system takes some trouble to ensure that the versions of the files on disk at any one time are consistent.
Operations on the filing system cause the system to write back all files which are open and which have
changed since they were last written back to the disk. This operation is called a ‘flush’.
A flush is performed whenever one of the following filing system operations occurs:

1 Closing a filed fold

2 Creating a filed fold

3 Copying a filed fold

26 4 The editing environment

A flush is also performed before a running utility or user program reads or writes a file, before suspending
the TDS, and when entering the toolkit or code information folds (these are discussed in section 4.6).

An error can occur on writing back a filed fold if the file with the name given on the filed fold cannot be
opened, or if a filing system error occurs in the process of writing. If this happens, the editor converts the
filed fold into an ordinary fold. The main circumstance under which this can occur is when attempting to write
back to a file or directory which is write-protected.

If it is possible to write the file back to another directory, then the name on the fold header can be edited to
give a suitable file name, and the function applied to the fold line. The file can then be retrieved
from the other directory later.

Several nested filed folds may be written in a single fiush, but normally no information will be lost as a resuit
of one or more write failures; all open filed folds which fail to write are simply converted into ordinary folds.
However, an outermost level filed fold will not be automatically converted into an ordinary fold in this way.
Instead, the fold is closed, and all changes to the information in the fold since the last flush will be lost.

459 Deleting lines

deletes the current line from the document. If this is a fold line, the fold and all its contents are
deleted. If it is a filed fold line, or contains a filed fold line, the associated file (or files, if there are nested
files) will be deleted from the directory. Since this makes a very powerful operation, it should be
used with care.

On a filed fold line, or a fold line containing a filed fold, the editor asks for the key to be repeated
before deleting the line, as a precaution against accidental deletion.

There is a function to undo a deletion, restoring the last deleted line at the current position
in the document. However, only works until the next flush takes place (as described in the
previous section). At the next flush, any required file deletions are carried out, and the delete buffer is cleared.

Only one deletion can be restored, so a deletion cannot be recovered if another subsequent deletion has
been done. If a catastrophic deletion has been done, then the TDS interrupt key (see section 4.2.7) can be
used to leave the TDS immediately without writing any more files.

4.5.10 Moving and copying lines

Often when using an editor it is necessary to make structural changes to the text, moving lines and blocks
of lines around. In the TDS editor, the representation of folds as lines on the screen means that substantial
structural changes can be made to a document in the same manner as reorganisation of lines. An individual
line can be picked up, or a block of lines can be folded and then picked up.

The functions [COPY LINE] and [MOVE LINE] are used to copy and move sections of the document from one place
to another. A text line or fold can be duplicated with the function, or moved to another position in
the document using [MOVE LINE].

duplicates the current line, inserting the copy in the text. If the current line is a filed fold, or a fold
containing a filed fold, then copies of the files contained within the fold are made. Before starting the copy
operation on a filed fold, the editor asks for the key to be repeated to confirm the operation, as
the copying may take some time. The new files are given names derived from the names of the files in the
original fold.

Two presses of are needed to move a line from one part of the document to another; one to pick
up the line, and one to put it down. If a sequence of lines is to be moved, the lines should be folded up first.
A buffer (the ‘move buffer’) is used to store the line between the two operations. There is no need to go and
put the line down immediately; the buffer will be retained until the next press of even if that is not
done until a later session using the TDS.

4.6 Utilities and programs 27

Using the above keys, it is difficult to collect a number of different parts of a document before putting them
down together. Here and are more appropriate. These make use of a different buffer
(the ‘pick buffer’) that is accumulative. This enables the user to gather together, in the buffer, various pieces
of text that can be put down in one place. is used to put down the text in the buffer, which is emptied at
the same time. As with the move buffer, the pick buffer is also preserved between sessions using the TDS.

is used to pick up a line, which may be a fold line, so that it may be moved to another place in the
document. It removes the current line from the document and appends it to the end of the pick buffer.

is used to copy a line, which may be a fold line, so that it may be moved to another place in the
document. It makes a copy of the current line and appends it to the end of the pick buffer. If the line is a filed
fold, or is a fold containing a filed fold, must be pressed again for confirmation, as the copying
may take some time.

puts down the contents of the pick buffer at the current position in the document. It inserts a fold line
at the current line, containing the sequence of lines placed in the pick buffer using [PICK LINE] and [COPY PICK].
The pick buffer is cleared. If there are no lines in the pick buffer has no effect on the document.

4.5.11 Defining a keystroke macro

The key can be used to define a sequence of keys (which are commonly going to be used
together during a session) and assign the sequence to a single keystroke. Two presses of [DEFINE MACRO] are
needed to define a key sequence; the required keys (which may not include or [CALL MACRQ])
should be pressed between the two presses of [DEFINE MACRO]. The sequence may contain up to 64 keys. Any

previously defined macro is forgotten. The defined macro sequence may be invoked using the
key.

4.6 Utilities and programs

In order to be an integrated programming environment rather than just an editor, the TDS needs two things:
the ability to load and run a programming utility, such as an occam compiler, and the ability to load and
run programs written by the user. This section describes the aspects of the TDS which concern loading and
running code. :

The TDS provides the facility to read a transputer code file into memory, where it may be run without leaving
the TDS environment. The code file, which appears as a filed fold within the TDS fold structure, may be a
file provided with the system, or it may result from the compilation of a user’s program. A function key called
is used to load a code file into memory.)

There are two kinds of code files suitable for loading and running within the TDS: utility sets, which are usually
marked with the text UTIL, and executable programs, which are usually marked with the text EXE. These
two kinds of code files are introduced below; their use is described in more detail in the following sections.

A utility set provides a number of different functions (up to 10) within a single code file. When a utility set
is loaded, the functions it provides are mapped onto a set of ten function keys on the terminal. The utility
function keys are shown in the keyboard maps in appendix A, or can be found by using the key at the
terminal. Pressing one of these function keys will invoke one of the functions in the utility set.

Utility sets provide a group of commonly needed functions for developing programs within the editing envi-
ronment. There are two sets of utilities supplied with the standard release of the TDS: the compiler package
and the file handling package. The compiler package is introduced in the next chapter, while the file handling
package is described later in this chapter. Other utility sets may be provided by INMOS from time to time to
extend the functionality of the development system.

An executable program is a single unit of code. Once loaded it can be run by pressing a function key called
It is also known as a ‘user program’, as it is normally a program being developed by the user of
the TDS, although a number of the tools supplied by INMOS with the system (such as the debugger) are
executable programs.

28 4 The editing environment

More than one set of utilities can be resident in memory. Of these sets only one, known as the current utility
set, is immediately accessible by means of the utility function keys, but it is possible to switch between the
resident utility sets, using a function key called [NEXT UTiL]. Similarly, more than one executable program can
be in memory at the same time. It is possible to select any of the resident programs as the current one, using
a function key called

The available memory within the TDS is shared between the code for the currently loaded utilities, the code
for the currently loaded user program, and the data space needed for the utilities and program to run. Special
function keys, called [CLEAR EXE], [CLEAR UTiL], and [CLEAR ALL] can be used to clear the memory associated
with loaded code, in order to make more space available.

4.6.1 The toolkit fold

In addition to the normal fold structure, which contains user data and programs under development, there is
an additional fold called the toolkit fold. This may be accessed from the editing environment, except when
browsing. The contents of this fold (which may include nested filed folds) are stored in between sessions
using the TDS.

At any point in a session, the toolkit fold can be entered using the function and then edited.
Once has been pressed, the fold can be viewed and edited until a complementary
causes a return to the place where was pressed. While in the toolkit fold, most editor functions
are allowed; the principal exceptions are those which have to make use of the toolkit fold, for example it is
not possible to run utilities or programs.

The toolkit fold contains a sequence of folds, each fold normally containing one of the following:
o Utilities and programs for loading.
« A selection of utilities and programs contained in a fold marked Autoload.
o Default values of parameters for use by utilities.
o Logical names for libraries.

The Autoload fold and the parameters for utilities are described later in this chapter. The use of libraries
and logical names is described in chapter 5.

The existence of utilities and programs in the toolkit fold means that at any time it is possible to switch to the
toolkit fold and load any code needed to carry on with the task at hand.

Since text and fold lines can be moved in or out of the toolkit fold, the toolkit fold can also be used to store
data temporarily while moving around the fold structure. In addition, since the toolkit fold may be entered
and viewed at any time, it may be useful for storing information which has to be referred to frequently while
working.

The standard toolkit fold supplied with the TDS release appears as follows:

{{{F Toolkit fold

... Autoload

... Tools

... Library logical names
11}

The Autoload fold contains the two standard utility sets, plus the source-level debugger. The Tools fold
contains a number of useful tools, supplied as EXE programs.

The contents of the toolkit fold are stored in the file TOPLEVEL . TKT in the current directory. This must be
copied from the TDS system directory to any other directory where it is needed.

4.6 Utilities and programs 29

4.6.2 Loading utilities and programs

When the TDS starts up, there are no utilities associated with the function keys, and no resident programs.
The code for these may be loaded by using the key applied to a filed fold containing the code.
More than one code item may be resident in memory at the same time; in fact up to 32 code items may be
resident. The workspace available for running the current code is the memory remaining within the system.

One utility set is ‘current’, which means that the utility function keys are bound to the functions of that particular
utility. The identity of the current set is indicated on the message line; the text on the filed fold line from which
the code was loaded is remembered and displayed when that set is current.

When is used to get a utility set, that set is made the current one. Any of the resident utility sets
can be made the current one; a key called can be used to cycle through the available utility sets.
There is also a key which clears the current utility out of memory and makes the next resident
utility set current (if there is one).

There is also a’current EXE, which is the program which is run when is pressed. When
is used to get a program, that program is made the current one. Any of the resident EXEs can be made
the current one; a key called can be used to cycle through the available programs. There is also
a key which clears the current program out of the memory and makes the next resident program
current (if there is one).

The key clears all loaded code items, both UTILs and EXEs.

It is often necessary to know which utility sets and programs are currently loaded, and which functions are
currently bound to the utility keys. For this purpose, there is a function which creates and
displays the resident code information fold. The user can view this fold, but cannot edit it; pressing
returns to the normal editing environment.

At the top of the code information display fold is some help information for the current utility set; this lists the
utilities in the set and indicates which function key they are mapped onto. The rest of the fold lists the utility
sets and executable programs currently loaded and, for each utility set, there is a fold containing the utility
help information. The current utility set and program are marked with >. The help information for the other
utility sets can be obtained by moving to and opening the appropriate fold. In addition to the help information,
the code size and data space requirement for each of the code items is given.

4.6.3 Loading code from the toolkit fold

The toolkit fold contains references to the standard utilities and programs provided with the system. These
references are in the form of filed fold lines referring to the files in the appropriate TDS directory. So the
toolkit file contains only references to the utilities and programs, not the actual code.

The fold marked Autoload in the toolkit fold contains the selection of utilities and programs for normal use.
After the TDS has been started, and one of the top level folds has been entered, pressing the key
loads all of the code contained in the autoload fold, as if had been applied to each line individually.
The last utility set loaded is made the current set, and similarly for the last program. Therefore the most
frequently required utility set should be the last one in the autoload fold.

Thus, to set up the standard utilities, the user can either:

« enter the toolkit fold, using [ENTER TOOLKIT] and then load the required set of utilities from the autoload
fold using [GET CODE], or

e use to load the two sets of utilities, subsequently using [NEXT UTIL], if appropriate, to change
the current set.

The fold marked Tools in the toolkit fold contains a number of useful programs, described in this chapter
or later in the manual. The tools can be selected when required, by going into the toolkit fold, and using
on the appropriate line. If a particular tool is needed frequently it can be moved into the autoload
fold.

30 4 The editing environment

4.6.4 Running a utility
A utility in the current utility set is run by pressing the appropriate utility function key.

Before invoking a utility, it is often necessary to place the cursor in a particular position to indicate an object on
which the utility is to operate. For example, when the 0ccam syntax checker is invoked it needs a sequence
of text lines containing the program to be checked. In a normal command environment this would be done
by storing the text in a file and then giving the name of the file as a parameter. In the TDS the cursor is
placed on a fold line and the key is pressed. This indicates that the checker should take the contents
of the fold as the text to be processed. This operation is normally termed ‘applying’ the utility to the fold.
Because of the representation of files as folds, the same utility can sometimes be applied to a few lines of
text, a complete program in a file, or a large program made up of many files.

When a utility is running, it may read and write data in the fold to which it is applied. In addition it may display
messages on the message line to indicate what it is doing; the rest of the screen appears as it was when the
function key was pressed.

Certain utilities need to be supplied with parameters to determine selected options. This is done by making
use of a ‘parameter fold’, and is described in the next section.

The key can be used to abort a utility when it is running. This sets a flag in the server to
indicate that the abort key has been pressed. Utilities and programs can periodically test the value of this
flag and terminate when it is found to have been set.

Before finishing, a utility may clear the screen and display a fold of information to the user. The user can
browse this fold and edit it. Pressing leaves the fold and returns control to the utility.

When both a utility package and a user program have been loaded, it is possible that there is not enough
memory available for the data space of the utilities. If this condition occurs, when a utility function key is
pressed the message

Data requirement too large

appears. The condition is also indicated by the removal of the utility package help lines from the code
information fold. They are replaced by the text

Otility workspace is larger than free storage

If this occurs it is necessary to use the code clearing function keys to make more memory available.

4.6.5 Supplying parameters to utilities

A utility which requires a set of parameters in order to run obtains them from a ‘parameter fold’. When the
utility is first run it creates a parameter fold containing the default values for the utility’'s parameters and
displays it to the user, as if the user had chosen to enter the fold. The fold will contain a sequence of lines
of text appearing as occam constant definitions.

For example, the parameter fold for the search utility (containing two string parameters and two boolean
parameters) appears as follows:

{{{ Search and replace

VAL search.string Is "
VAL replace.string IS ""
VAL case.sensitive IS TRUE
VAL forward.replace IS TRUE

1h

The displayed fold may be edited to set the parameter values, before the utility is allowed to continue. Pressing
supplies the parameters to the utility and allows it to continue.

4.6 Utilities and programs 31

A function is provided to facilitate the editing of parameters. It moves the cursor to the
parameter value section, and allows the user to toggle between a number of possible values of the parameter.
For example, it could be used on a boolean parameter to toggle between TRUE and FALSE. On a line of the
form:

VAL parameter IS valuel : -- valuel | value2 | value3
the key will cycle the parameter between the three allowable values.

The key can be used when a utility has popped up its parameter to cancel the utility before
it runs. still needs to be pressed to exit from the parameter fold.

Once a parameter fold has been used by a utility, it is stored in the toolkit fold. To change the parameters
before the next run of the utility, can be used. Once inside the toolkit fold the individual
parameter folds can be entered and the parameters edited as required. The next run of a utility will take its
default values from the toolkit; if this is not required the parameter fold should be deleted from the toolkit.

4.6.6 When a utility finishes

When a utility finishes running, it normally outputs a message indicating either successful completion or a
condition which it wishes to bring to the user’s attention.

On successful completion of a utility the current editing position normally remains as it was when the utility
was started. Sometimes the utility will need to identify a line in the fold structure (e.g. where a syntax error
was found, or the occurrence of a string being searched for). It does this by ‘locating’ the line; that is, moving
the current editor position to that line, opening folds as necessary to reach it, and positioning the screen so
that the line appears in the middle of the screen (or as near it as possible). The utility then finishes, and
control is returned to the user.

If the utility is of the type which is ‘applied’ to a fold (i.e. the fold line on which it is placed determines the
portion of the fold structure upon which it operates) then, before locating, the fold is entered. This means
that the user may easily return to the position before the location was done by using [EXIT FOLD].

4.6.7 Running executable programs
The current executable program may be run by using the function key.

In a similar manner to utilities, an executable program may be given a portion of the fold structure on which
to operate by means of cursor positioning before the program is run. Unlike utilities, executable programs
do not make use of the message line or parameter folds, but can access the whole screen for interactive
communication with the user.

The preparation of user programs for running within the TDS is covered in the next two chapters of this manual.
A program suitable for loading and running within the TDS must be an occam process, the environment to
which is supplied by a number of channels. The environment allows the program to read from the keyboard,
write to the screen, and read and write data within the fold structure. The channels available, and the protocols
which should be used on these channels, are introduced in chapter 6.

32 4 The editing environment

4.7 File handling utilities

One of the two standard utility sets provided with the system is the file handling package. This is a set of
utilities for the manipulation of TDS files. The help information for the set appears as follows:

1 [ATTACH/DETACH] - attaches or detaches a file

2 [COPY ATTACH] - copies files and attaches copy to current fold
3 [COMPACT LIBRARIES]- copies files out, compacting libraries

4 [RENAME FILE] - rename a filed fold

5 [WRITE PROTECT] - make file read only

6 [WRITE ENABLE] - make file read and writable

7 [COPY IN] - copy files from another directory

8 [COPY OUT] - copy files to another directory

9 [READ HOST] - read host file into fold structure

0 [WRITE HOST] - write TDS file to host file

All of these utilities are introduced below and discussed in more detail in chapter 13.
The utilities fall into four groups:
e Attaching to and detaching from existing TDS format files.
e Changing file characteristics, such as write only protection and DOS file names.
o Copying TDS format files between directories (including between devices) from within the TDS.

o Reading and writing host operating system format files to and from TDS format files from within the
TDS

Attaching and detaching files

Occasionally it is necessary to take an existing file, which could be in a separate directory or on a separate
drive, and make it part of a larger document. This operation is done by ‘attaching’ a file to a fold.

To attach a file an empty fold should be made and the header edited to include the name of a file which already
exists. The name should include the extension, which must be one of the standard extensions supported by
the system (see appendix F). The attributes of the fold will be set to reflect the attributes associated with that
extension. When the utility is applied to this empty fold, the file specified is then ‘attached’
to that fold so that future opens of the fold will cause the file to be read in at that position.

Correspondingly, files can be detached from the fold structure using [ATTACR/DETACH]. Applying the utility to a
filed fold converts it into an empty fold, losing the reference to the file. The detached file is not deleted from

the directory.

When the file is attached using the utility a reference is set up to the file. This means that a
file could be attached to-more than one place in more than one document. A consequence of this is that any
editing of the file in one document will be reflected in all other places to which the file is attached. It may be
more appropriate to make a copy of the file before it is attached; this maintains the integrity of any existing
document structures. The utility should be used when a copy of the file is to be made. The
function will cause the file whose name is given on the fold line, along with any nested files it
may contain, to be copied, and the resulting file attached to the fold structure. Unique names are generated
for any new files created, as described previously.

Changing file characteristics

The name of a file associated with a filed fold can be changed. The name is altered by placing the cursor on
the filed fold and editing the fold header so that the contiguous sequence of characters up to the first space
is the required new name of the file. Then the utility key should be pressed. The underlying file
will be renamed and the local filename reference updated to the new name.

4.8 Searching and replacing 33

In order to prevent files from being altered or deleted they can be write protected. Positioning the cursor
on a filed fold and pressing designates the file as write protected. reverses
this process and permits the file to be altered or deleted. is particularly useful for files that
are multiply attached, such as the standard utility sets. However, care should be taken, if write-protecting
ordinary TDS text files, not to subsequently edit the files while they are write-protected, as the TDS will be
unable to write back the changes.

Copying TDS files

TDS files in other directories, including any nested files, can be copied into a filed fold in the current directory
by using [COPY IN]. The full name of the source file must be given, including the directory name and drive if
necessary. The name of the new file will be the same as that of the source file unless there is a name clash
with an existing file in the local directory, in which case the TDS will modify the name to make it unique. In
a similar manner the contents of a filed fold, including all nested files, can be copied to another directory by

using [COPY OUT

The [COMPACT LIBRARIES] utility also copies files between directories, but is only intended for use with library
files. Library compaction is discussed in chapter 5.

Reading and writing host files

Although the TDS is a self-contained development environment, there are times when it can be useful to
read and write host operating system files. copies a host operating system file into a filed fold,
converting the format of the file to TDS format. The reverse process is performed by which
copies a filed fold, including all nested files, to a host operating system file, converting from TDS format to
the host operating system file format.

4.8 Searching and replacing

and are two of the utilities in the compiler utility set. They are used in conjunction;
searches for a text string specified by the user and replaces one text string with another that has
been specified by the user. They are introduced here, but described in more detail in chapter 13.

The string to be searched for, and the string to replace it, are contained in a parameter fold (mentioned in
section 4.6.5). If the parameter fold does not exist when [SEARCH] and [REPLACE] are invoked, a new one is
created and is popped up onto the screen so that the strings can be entered. Thereafter the strings remain in
the parameter fold and are used whenever these utilities are invoked. The values of the strings are maintained
in the toolkit fold between sessions. To change the strings it is necessary to enter the toolkit fold and edit the
parameters.

A search takes place in a forward direction from the current cursor position and continues to the end of the
current view or until a match has been found, whichever comes first. All nested folds are searched. When a
match has been found the utility may be invoked again to continue searching.

4.9 Listing programs

There are two ways to list programs: one is to use the facility to write files to the host operating system, the
other is to use the lister program which can be found in the Tools fold in the toolkit.

The utility is useful for producing hard copy listings of programs. This can be used to write
a program as a DOS file, which can be printed out later, or printed immediately by using to
temporarily leave the TDS, print the file and then return to the TDS.

34 4 The editing environment

4.9.1 The lister and unlister programs

Better listing facilities are given by the lister and unlister programs, which are contained in the Tools fold.
This pair of programs facilitates the conversion of occam source from TDS files to and from DOS text files.
The lister gives its user the opportunity to select lines from the source file on a variety of criteria and so is
useful for many program documentation and maintenance tasks.

The lister is an EXE which may be applied to any fold containing occam source. If the fold is a bundle of
folds then the input is the first fold in the bundle and the user has the option of storing the output as a new
last fold in the bundle or to a DOS file (which may be a printer). Otherwise the whole fold is processed and
the output is always to a DOS file. If the input contains nested filed folds any of these which contain occam
source are included in the output in a single large file, including sufficient information to enable the unlister
to reproduce the original folded file structure.

The following options are presented to the user in an interactive menu:

« Output to screen and/or printer, DOS file, or filed fold.

« Option to exclude folds of one or more of these kinds: comment folds, foldsets, folds whose comment
includes the words ‘NO LIST".

« Representation of fold creases as braces ({{{ and }}}), occam comments or as commented
braces.

o Option to include full analysis of fold attributes.

o Selection of: all lines or file names only, file headers, fold headers, procedure and function headers,
procedure and function calls, lines containing strings matching a search string provided (including
alternative strings, wild cards, etc.).

The unlister can take any DOS text file (or occam fold) and convert it into a folded file structure. If the input
includes creases and other fold information in the form generated by the lister then the fold structure will be
regenerated. Alternatively a large ‘flat’ file may be split into chunks small enough to be handled by the TDS
fold manager by creating folds each containing a number of text lines requested by the user.

The source code for the programs described above is provided with the system, in the directory
\TDS2\TOOLS\SRC. As the use of these programs is straightforward, they are not documented in the
reference section of this manual.

410 Transferring TDS files between computers

TDS files may be transferred between host computers using the operating system facilities available on the
host. In addition the TDS provides a program to send or receive a folded file structure on a transputer link.
This is often the most convenient way to transfer files between TDS systems running on different machines
(particularly if the disk formats are incompatible).

The link transfer program can be loaded from the Tools fold in the toolkit. The cursor should then be placed
on the fold to be sent, or on an empty fold to receive the data to be sent by the other end. When the program
is run it will prompt for the link number to be used, and whether data is to be sent or received. If it is the
sending program it also offers the option of sending text folds only, text and descriptor folds (see chapter 5
for a definition of descriptor folds), or all folds.

Once a sending program has been run on one TDS, and a receiving program on another TDS, with the
appropriate links connected, the programs will make contact and start to transfer the data. The link transfer
can be interrupted using the key, on either the sending TDS or the receiving TDS.

The source code for the link transfer program is provided with the system, in the directory
\TDS2\TOOLS\SRC. As with the lister program above, it is not documented in the reference section of this
manual.

5 Compiling and linking OCCam
programs

51 Introduction

Throughout this chapter and the rest of the manual frequent use is made of 0ccam concepts and example
occam program text. Any reader not familiar with occam at this stage should read the occam tutorial to
gain an introduction to the language. It will also be useful for all readers to have a copy of the occam 2
Reference Manual available.

This chapter discusses in some detail how to compile and link 0ccam programs using the Transputer Devel-
opment System. Early on, a simple example is introduced, which is compiled, linked and then shown running
within the TDS. Later in the chapter a larger example is introduced and discussed. This example is used to
show how large programs might be structured and developed. The following three chapters make use of the
same example where it is shown:

o Running within the TDS
e Running on a network
« Running as a standalone program

At the end of the chapter there are some technically more detailed sections, describing the implementation
of occam by the compiler, which may be omitted when first reading the manual.

5.2 The compiler utility set

As discussed in chapter 4 the TDS editing environment is not just an editor but a complete development
environment. 0CCam programs can be compiled, linked and run without leaving this environment. To do
this, the compiler utility set must be loaded into the development system. This is one of the standard utility
sets in the toolkit fold and it provides the facilities to compile and link 0ccam programs. It also enables
programs to be configured to run on transputer networks, and loaded onto a target network from the TDS.

The loading of utility sets from the toolkit fold was discussed in chapter 4. Pressing the key loads
the standard utility sets from the autoload fold; since the compiler utility set is normally the last in the fold,
this leaves the compiler utilities as the current set after autoloading is complete.

The utilities in the set are as follows:

Syntax check an occam program

Compile an occam program

Link and extract code

Load a compiled program onto network
RECOMPILE Recompile a program with old parameters
Display information about the compiled program
Make a ‘foldset’ suitable for compilation

Search for a string

REPLACE] Replace the string at current cursor postion

Make a ‘comment fold’

:
m)
O
[e]
S
|i|
m
<
5

The [SEARCH] and [REPLACE] utilities were discussed in chapter 4. The other utilities are discussed in this
chapter, except the use of the utilities to prepare a program for a transputer network, which is discussed in
chapter 7.

All of the utilities are described in more detail in chapter 13.

36 Compiling and linking occam programs

5.3 Preparing a program for compilation
5.3.1 Creating a compilation fold

Before an 0ccam program can be compiled two conditions must have been met. Firstly, the fold containing
the source must be filed, and secondly, this source fold must be enclosed by a ‘compilation fold’, to which
the compiler will be applied. The type of the ‘compilation fold’ indicates what type of compilation unit the fold
contains. There are five types of compilation unit as described below:

EXE — an ‘executable’ program designed to run within the TDS. It is an occam process that can access
channels which communicate with the screen, keyboard, and fold system. Most programs written to
run within the TDS are EXE programs. A full description of EXE programs is given in chapter 6.

UTIL — a program to be run as a utility set within the TDS. A utility program consists of a process which
has a more complex environment than an EXE. The utility interfaces are currently not available to
normal TDS users.

PROGRAM — a program intended to run on a network of transputers. The PROGRAM contains configuration
information that enables the development system to load the program into a transputer network. A
PROGRAM cannot run within the TDS. Chapter 7 describes PROGRAM creation and compilation in
detail.

SC — a ‘Separate Compilation’ unit. This is not a complete program in itself and is normally contained
within another compilation unit. An SC unit contains one or more 0CCam procedure or function
declarations. Separate compilation is described later in this chapter, in section 5.6.

LIB — a library compilation unit. It contains a number of constant, procedure and function declarations that
may be shared between parts of a program or between different programs. Libraries are described
later in this chapter, in section 5.6.

To create a compilation fold, the cursor is placed on the filed fold containing the source of an 0ccam program,
and the utility invoked. This will prompt for a parameter of the form:

VAL make.foldset.type IS SC: -—- SC | EXE | UTIL | PROGRAM | LIB

The value of the parameter selected by the user determines the type of fold created by the utility. For example,
to make a program to run as an executable program within the TDS, the user selects the value EXE. The
utility creates a compilation fold of the selected type around the source fold. The new fold has
its attributes set to indicate that it is suitable for compilation and the fold header is marked with some text to
indicate the type of compilation unit that is enclosed within the fold.

For example, in order to compile a section of code as a program to be run within the TDS, the following two
folds might be created around it:

{{{ EXE myprog -- compilation fold

{{{F prog.tsr -- filed fold
... Program text

11}

11}

The EXE fold is the compilation fold produced by The compilation fold, together with the filed
fold inside it, is known as a ‘foldset’. A foldset is a compilation fold with one or more subsidiary filed folds.
When a compiler is applied to the compilation fold, it takes the first subsidiary filed fold as the source text to
be compiled, and creates other subsidiary filed folds containing (for example) code produced as a result of
the compilation.

5.4 Using the compiler utilities 37

5.3.2 Comment folds

When developing programs it is often desirable to comment out part of a program so that it is ignored by the
compiler. This can be done by placing the program text in a fold and then applying the utility
to the fold. This produces a new fold which encloses the original fold. The header of the new fold contains
the original fold header prefixed by the letters COMMENT.

A comment fold can be removed by applying the key to it.
The contents of a comment fold will be ignored by the [CHECK] and [COMPILE] utilities, but not by or the

file handling utilities. The lister program described in chapter 4 includes an option to include or omit comment
folds from a listing.

5.4 Using the compiler utilities

Once a program has been placed within a compilation fold, the compilation utilities can be used to compile
the program. This section gives a simple introduction to using the compiler utilities, and provides enough
information to allow the reader to work through the example program in the next section.

The steps to compile an 0occam program are as follows:
1 Check the syntax of the program.
2 Compile the program, producing some data folds as a result of the compilation.
3 Link the program together with any libraries it uses, creating a self-contained code file.

These are described in more detail below.

5.41 Checking occam programs

The utility can be used to check the syntax of occam programs. When a program is compiled, the
program syntax is checked, so the use of is optional; however, it is often faster to use the checker
to eliminate syntax errors before running the compiler. The checker can be applied to any filed fold, or to a
compilation unit fold.

When it is first run, the checker creates a parameter fold and puts it up on the screen for editing. The occam
checker shares the same parameter fold as the 0ccam compiler, but only uses a few of the parameters in
the fold. The compiler parameters are described below.

If an error in the occam source is discovered, a message is displayed, and the editor moves to the line in
the fold containing the error. The located line is placed as near to the centre of the screen as possible and
the cursor is positioned on the located line. The effect is the same as entering the checked fold, followed by
screen moves and operations to find the correct line. Thus it is possible to return to the fold line
on which the checker was started by typing

5.4.2 Compiling occam programs

To compile a compilation unit, the cursor should be placed on the compilation fold and the utility
key pressed.

When it is first run, the compiler creates a parameter fold and puts it up on the screen for editing (unless such
a fold already exists in the toolkit fold). The parameters are required to set a number of compiler options,
such as the checks done on the program source, some characteristics of the compiled code, and whether a
debug data fold is produced. See section 5.7 later in this chapter for a full description of these parameters.

38 Compiling and linking 0ccam programs

If the compiler detects an error it reports it in the same way as the checker. Compilation is not continued
after an error has been found.

If the compilation succeeds, the compiler creates several new folds within the compilation fold to contain
the results of the compilation (code, debug information and so on). The new folds created as part of the
compilation process are automatically filed. The filenames for these folds are derived from the name of the
source fold’s file with the appropriate extensions added.

An example of a compiled foldset is given below:

{{{ EXE myprog
...F prog.tsr
...F code

...F descriptor
...F debug

11}

The data folds, marked code, descriptor and debug, are subsidiary data folds produced by the compiler.
The code fold contains the compiled code for this compilation unit, but does not include the code for any
libraries used. The descriptor fold contains some information about the compiled code. The contents of
the descriptor fold depend upon the type of compilation unit, but give details of things such as data space
size, code size, libraries used etc. The debug fold contains information to allow the debugger to relate the
state of a stopped program to the original source code.

There is a utility which reads the information in a descriptor fold and displays it as user-
readable text.

543 Linking 0oCcCam programs

A compiled 0ccam program needs to be linked before it can be run. In the case of an EXE the program
is automatically linked when it has been successfully compiled. The linking process involves including within
the code any library routines that are required. Libraries may be those known about by the compiler, or may
be user-defined libraries.

An example of a compiled and linked foldset is given below:

{{{ EXE myprog

...F prog.tsr

...F code

...F descriptor

...F debug

...F CODE EXE myprog

11}

The linked compilation unit has an extra filed fold created at the end of the foldset, here marked CODE EXE
myprog. This fold, referred to as a ‘CODE EXE’, contains the linked code in a format suitable for loading
into memory using [GET CODE). This fold can be left within the foldset, or it can be moved to another part of
the fold structure, and used on its own with [GET CODE].

The CODE EXE file normally has the same name as the source file, but with the extension .CEX. The only
exception to this is if a previous version of the CODE EXE file has been kept, in which case the file name
will be modified to avoid a clash with the existing file. can be used to check the name of any of
the files produced by compilation and linking.

5.5 Compiling a simple example brogram 39

5.5 Compiling a simple example program

This section is a tutorial section, giving explicit instructions to compile, link and run a simple example program.
It requires some program text to be entered. The interactive tutorial, described in section 4.3, is an alternative
way of learning how to compile and run a simple program.

It is a good idea to have a keyboard layout with you when you are working through this tutorial. Keyboard
layouts are given in appendix A. Start by running the TDS in the directory \TDS2\TUTOR. In the top level
file EXAMPLES . TOP is a fold called ‘Simple example’. Enter this fold, which is empty. Make a new fold (put
the cursor on the bottom line and press twice) and label it hello. Enter this fold and type in
the following program, adhering strictly to the indentation. The first line of the program should start at the left
hand side of the screen. Indentations are two character spaces.

#USE userio

VAL message IS "Hello World !
INT key.char :

SEQ
write.full.string (screen, message)
read.char (keyboard, key.char)

Exit the fold hello and file it by placing the cursor on the fold and pressing The following
message will appear:

Filed OK as hello.tsr
When it is run this program writes the simple message Hello Woxld ! to the screen.
The first line of the program references the general purpose I/O library userio; see chapter 14 for more
details of this and other libraries. userio contains the two procedures write.full.string and
read.char which are used to write to the screen and read from the keyboard.
At the start of the program, the constant message is declared, along with an integer variable key . chaz.

The executable code begins with a SEQ, indicating that the statements following are to be executed sequen-
tially. The first statement outputs the Hello World ! message to the screen handier.

The last statement inputs a value from the keyboard to the variable key .chaxr.The program waits at this
point until the input can proceed; i.e. until a key is pressed. This allows the Hello World ! message to
be read before returning to the TDS.
5.5.1 Getting the compiler utilities
Before the example program can be compiled it is necessary to load the compiler utilities.
Press to load the standard utilities. The function loads the following code items

o The file handling utility set.

« The compiler utility set.

o The debugger.
As it loads each of these a message is displayed on the message line:

Getting text...

Once all the loading has been done, the message line of the editor displays:

CODE UTIL occam 2 compiler utilities.

40 Compiling and linking 0ccam programs

This indicates that the current utility set is the compiler utility set described at the beginning of this chapter.
The utilities are called by pressing the utility function keys. If necessary, use the key to find out which
these are.

Once the utilities have been loaded, pressing shows the following on the screen:

[CBECK] check current fold

[COMPILE] compile current and nested foldsets
[EXTRACT] extract code and put into foldset
[LOAD NETWORK] export code to transputer network
[RECOMPILE] use descriptor fold for parameters

display compilation information

make compilation fold

search for text string

replace found text string

make comment fold around current fold

[COMPILATION INFO]
[MAKE FOLDSET]

[SEARCH]

[REPLACE]

[MAKE COMMENT]

There will also be other text on the screen relating to memory usage and loaded utilities. The above display
states which utilities are associated with which utility keys. To return to normal editing, press

CLVONAUAWNR

5.5.2 Making an EXE fold

Before the hello program can be compiled an EXE fold must be created around hello.tsr. Place the
cursor on the fold hello.tsxr and press . The parameter fold for the utility
is then displayed. It contains the following text: -

VAL make.foldset.type IS SC : —— SC | EXE | UTIL | PROGRAM | LIB

The text shows the current value of the parameter, which is SC, and on the right the five possible values that
the parameter can take. As the current value of the parameter is SC, the fold needs to be edited. The editing
can be carried out using [SELECT PARAMETER]. Press [SELECT PARAMETER] once; this moves the cursor to the
first occurrence of SC. Press it again; the second press replaces SC with the next parameter in the list on
the right, which is EXE, the required one. Now leave the parameter fold by pressing An EXE fold,
labelled EXE hello is created around hello.tsxr.

553 Checking and compiling the example program

The program can now be checked and compiled. Place the cursor on the fold EXE hello and press [CHECK];
the parameter fold for the checker and compiler is displayed, as shown below:

VAL error.checking IS HALT : -- REDUCED | STOP | HALT
VAL alias.checking IS TRUE :
VAL usage.checking IS TRUE

VAL separate.vector.space IS TRUE
VAL create.debugging.info IS TRUE

VAL range.checking IS TRUE

VAL compile.all IS FALSE :

VAL force.pop.up IS FALSE :

VAL use.standard.libs IS TRUE :

VAL target.processor IST4 : --T2 | T4 | T8

VAL code.inserts IS NONE : -- NONE | RESTRICTED | ALL

None of the parameters need to be changed, unless the system is running on an IMS T800. If this is the case,
use to move the cursor onto the target .processor line, and press
twice to change the value to T8. All of the other parameters are described in section 5.7.

5.5 Compiling a simple example program 41

Press [EXIT FOLD]; the parameter fold will disappear and the checker will run. If it finds no errors it will respond
with the message:

Checked (T4 - HALT) EXE hello OK .
If an error is found, the checker indicates it by displaying an error message and placing the cursor on the
line in error. If you have mis-typed part of the program, this will happen. Correct the error and then press
[EXIT FOLD); this will return you to the compilation fold so that the checker can be run again.
If no errors are found the program can be compiled. Place the cursor on EXE hello and press [COMPILE]

The compiler creates new folds within EXE hello.tsr to hold the compiled code, and then links the
program. When compilation and linking is complete, the compiler responds with the message:

Linked EXE hello OK

5.5.4 Running the example program

The program is now ready to be run within the TDS. Place the cursor on EXE hello and press
to place the code in the user program buffer. The TDS responds with:

Got code ok
Pressing runs the program, which displays the message:
Hello World !

and then waits for a key to be pressed before returning to the TDS.

5.5.5 Compilation information

It is sometimes necessary to check how much code has been generated by a compilation, and how much
workspace (data space) will be required to run the code. This information is stored in the descriptor fold, and
can be displayed using the utility utility.

This can be used on the example that has just been compiled and run. With the cursor on the line EXE
hello press the key The following information is displayed:

o Target processor (e.g. T4 for IMS T414).
e OCcam compatibility (i.e. which versions of the compiler this compilation is compatible with).
o Compiler version (i.e. which particular version of the compiler was used for this compilation).
o Compiler options used in this compilation.

o Whether the program contains any nested SC (separate compilation) units or alien language pro-
grams (programs written in a language other than occam).

o Code size of this compilation unit.

o Entry points (just one in the case of an EXE).

o Data space required to run the program.

o Library usage (i.e. libraries which may be needed by the program).

o Total linked code size.

42 Compiling and linking 0cCam programs

To view all of the information provided it is necessary to scroll the screen. Once you have finished viewing
this, press to return to the normal editing environment.

This concludes the tutorial section.

5.6 Separate compilation and libraries
The TDS supplies two mechanisms to support the development of large programs:
o Separate compilation (SC) units
e Libraries

These are introduced in this section, along with a description of how to compile and link programs made up
of more than one compilation unit. Section 5.8.1 describes how to make user-defined libraries.

5.6.1 Separate compilation

Separate compilation allows a program to be split up into parts which may be compiled individually. Using sep-
arately compilable units reduces the time taken to recompile a complete 0ccam program because only those
units that have been changed since the last compilation need to be recompiled. The separate compilation
system is useful for ‘top-down’ decomposition of programs into major sequential and parallel sections.

A program compilation unit, such as an EXE, can contain one or more SC compilation units. Separate
compilation units may be nested, in a hierarchical fashion, so a large program normally consists of a nested
structure of separately compilable units.

An SC unit consists of one or more occam procedure or function declarations. A procedure or function
can call any other procedure or function defined before it in the SC unit. The SC may also contain constant
and protocol declarations, and library usage directives, before the procedures; these may be used by the
procedures, but are not visible outside the SC. The text of an SC must be self-contained; it must not refer to
anything declared outside of it (except declarations imported by library directives).

To make a section of source text into an SC unit put it into a filed fold and apply the utility with
its parameter set to SC. This creates an SC foldset around the filed fold. The results of compiling this SC will
be stored in the foldset, as for an EXE.

For example, a program might have the form:

{{{ source
... SC PROCs Pl and p2

... SC PROC P3
CHAN OF INT cl, c2, c3:
PAR
Pl(cl, c2)
P2(c2, c3)
P3(c3, 1)
11}

In the example above, the folds marked with the letters SC are compilation folds including separately compiled
procedures. The first fold contains the procedures P1 and P2; the second contains the procedure P3.

5.6 Separate compilation and libraries 43

5.6.2 Libraries

Libraries provide a means of sharing common declarations and code between separately compiled parts of
a program, and between different programs. They are used by the compiler for the pre-compiled procedures
which implement some of the extended types in occam.

There are two types of libraries in normal use:
o ‘Header libraries’ containing declarations of constants and PROTOCOLS.
o ‘Code libraries’ containing collections of compiled procedures and functions.

In fact there is no real distinction between these — libraries may be made containing both header text and
code — but in practice it is useful to separate them out.

A header library comprises a sequence of text folds, containing VAL and PROTOCOL definitions.

A code library comprises a sequence of SC folds, each containing compiled procedures and/or functions.
The SC folds in the library must not include any nested SCs.

A combined library includes both text folds containing VAL and PROTOCOL definitions, and SC folds.

A library is used within a compilation unit by means of a #USE directive. When the unit is compiled any
VAL and PROTOCOL definitions in the library come into scope as do any appropriate procedures or functions
declared in SCs within the library. When the program is linked the linker will include the code for those SCs
containing procedures which have been used by the program.

There are a variety of libraries provided with the TDS to perform, for example, many of the mathematical
functions and the input/output facilities that a programmer might require.

An example of the use of these libraries has been shown in the example in the previous section of this
chapter; the directive #USE userio in the program caused the compiler to use the library usexrio when
compiling the program.

The code libraries provided with the TDS are described in detail in chapter 14 of the manual. The headers
for use with these libraries are listed in appendix D.

5.6.3 Compiling and linking large programs

Compiling a program which includes separate compilation units and library references is very straightforward.
Separate compilation units in the program can be compiled individually by applying the compiler to them.
Alternatively, the compiler can be applied to the whole program, and it will search within the program for any
separate compilation units requiring compilation. These nested compilation units are compiled, in a bottom-up
order, and then the top level of the program is compiled; finally the whole program is linked together. This
can all be done with a single press of the utility.

For an SC unit the descriptor fold contains all the information about the procedures in that unit (names, formal
parameters, workspace and code size etc.) needed to compile calls to the procedures.

When the program is linked the code folds for all the separate compilation units in the program are copied into
a linked code file. In addition, code for any libraries used is included in the file. Where libraries contain more
than one compilation unit, only those compilation units containing routines actually required in a program are
linked into the final code. This helps to minimise the size of the linked code.

If using the utility on a program containing nested separate compilation units, it should be noted that
this utility also needs the information in the descriptor fold to check the calls to procedures in an SC. So when
using all nested compilation units within the text being checked must aiready be compiled.

44 Compiling and linking 0CcCam programs

5.6.4 Changing and recompiling programs

When a change is made to part of a compiled program, it is necessary to recompile the program to create a
new code file reflecting the change. The purpose of the separate compilation system is to split up a program
so that only those parts of the program which have changed need to be recompiled, rather than needing to
recompile the whole program. However, it would be tedious for the user to have to remember which portions
of a program had been edited in an editing session. For this reason, the TDS remembers which compilation
units have been edited since they were last compiled. This ensures that SC folds will always be recompiled
where necessary, and the compiler is able to tell automatically which SC units require compilation.

When editing a program, if a change is made to the source of a compilation unit, then an attribute on its
compilation fold is set to indicate that it is now invalid. As folds are closed, the invalid attribute is propagated up
to any compilation units above it in the fold structure. All of these invalid compilation units will be recompiled
when the compiler is next applied to this program. The actual implementation details of this are described in
the next section.

An SC to be shared between more than one section of code should be placed in a library. Libraries have a
version number associated with them, as described later in section 5.8. When a program is recompiled, the
compiler will ensure that all compilation units have been compiled with the latest versions of the libraries; any
compilation units previously compiled, but with an old version of a library, are automatically recompiled. This
ensures that when the latest version of the library is linked in to a program, all compilation units requiring the
library have been compiled with that version.

The compiler also recompiles any compilation units it finds which are not compiled in a manner compatible
with the current program being compiled.

To summarise, the compilation system within the TDS ensures that when the compiler is applied to a program:

o If a compilation unit has been changed, it is recompiled.

o If a new version of a library has been made, then any parts of the program dependent on the library
are recompiled.

e Any units compiled for a different processor type, or with a different error mode (see section 5.7.2)
are recompiled.

o Any units which have been compiled with an old, incompatible, version of the compiler are recompiled.
This is the purpose of the ‘compiler compatibility string’ stored in a descriptor.

5.6.5 The implementation of change control

The change control of compilation units is implemented using the ‘fold type’ attribute of a compilation fold.
The type is set to £t.£foldset when the program is compiled. Following any change to the contents of
the fold, the type is set to £t .voidset when the compilation fold is closed, or when it is next written to the
filing system.

The fold attribute value can be found by using the key. This displays compiled fold set after
the program has been compiled. Following a change to the contents of the fold, it will display uncompiled
fold set.

When a compilation unit is compiled, the names and version numbers of any libraries it uses are recorded
in the descriptor. When the compiler next examines the compilation unit to see whether recompilation is
needed, it compares the current version number of each of the libraries against the values recorded in the
descriptor. If any of these differ, the compilation unit is recompiled.

5.7 Compiler parameters 45

5.7 Compiler parameters

This section explains the meaning of the compiler parameters and how they are used during compilation.

5.71 The parameter fold
The compiler makes use of the following parameters:

error.checking This selects the type of error checking. The options are REDUCED, STOP, and HALT.
See section 5.7.2.

alias.checking Default is TRUE. When this parameter is TRUE, the compiler does full alias checking.
See section 5.7.3.

usage.checking Default is TRUE. When this parameter and the alias.checking parameter are
TRUE, the compiler does full usage checking. See section 5.7.3.

separate.vector.space Defaultis TRUE. When this parameter is TRUE, the compiler creates separate
workspaces for scalars and vectors within the programs being compiled. See section 5.7.4.

create.debugging.info Default is TRUE. This allows the debugger to be used with a program when
it is run. See chapter 9 for information on the debugger.

range.checking Default is TRUE. Setting this to FALSE causes the compiler to omit certain checking
code (e.g. array bounds checking). It has no effect when the erzor . checking parameter is set
to REDUCED, as no checks at all will be inserted in REDUCED mode. See section 5.7.2.

compile.all Default is FALSE. This parameter forces the compiler to recompile all nested compilation
units encountered. This is useful if it is necessary to ensure that a program has been compiled
uniformly: for example, to ensure that a whole program or set of programs is compiled with the latest
version of the compiler, or if changing a program compiled with vector space off to be compiled with
vector space on.

force.pop.up Default is FALSE. This parameter forces the parameter fold to be displayed whenever the
checker or compiler is invoked. This is useful if it is necessary for the user to check and alter the
compiler parameters each time the compiler is run.

use.standard.libs Defaultis TRUE. This parameter causes the compiler to use its standard arithmetic
libraries within this compilation. For normal compilation the value should be TRUE. Setting it to
FALSE will prevent the compiler from compiling any programs with extended arithmetic, and the
compiler will not recognise certain implicit library procedures.

target.processor Default is T4. This parameter is used to set the target processor when compiling
for transputer networks. The following target processors are supported:

T8 the IMS T800 transputer.
T4 the IMS T414 transputer.
T2 the IMS T212 and IMS M212 transputers.

code.insexrts This parameter determines whether assembly-code insertions are allowed within the pro-
gram. Values are NONE, RESTRICTED or ALL. The default is NONE. See chapter 10 for a descrip-
tion of code insertion.

5.7.2 Error modes of compilation

When a language such as occam 2 is used to program secure or reliable systems, the behaviour of that
system when an error occurs is of great concern. There seems to be no single method of dealing with errors
which is universally applicable to all systems. For this reason, 0occam 2 specifies that run-time errors are to

46 Compiling and linking occam programs

be handled in one of three ways, each of which is suitable at different times. The error mode to be used is
supplied as a parameter to the occam 2 compiler.

The first mode, called HALT mode, causes all run-time errors to bring the whole system to a halt ‘quickly’;
ensuring that any errant part of the system is prevented from corrupting any other part of the system. This
mode is extremely useful for program debugging and is suitable for any system where an error is to be
handled externally.

The second mode, called STOP mode, allows more control and containment of errors than the first. This
maps all errant processes into the process STOP; again this ensures that no errant process corrupts any
other part of the system. This has the effect of gradually propagating the STOP process throughout the
system. Although, at first sight, this does not seem very useful, it is possible for other parts of the system to
detect that one part has gone wrong, for example, by use of ‘watchdog’ timers. This allows multiply redundant
systems, or gracefully degrading systems to be constructed.

The final mode, called REDUCED mode, is to ignore all run-time errors. This is, of course, potentially very
dangerous. However, there are occasions on which it is entirely reasonable to run a system in this mode and
in such cases, the system designer may wish to avoid the run-time overhead of error checking. One example
of such a system is where a program has been proven to be correct. A second example is where it does not
matter if the program goes wrong, such as may occur when the results are being checked by a ‘third party’.

The occam compiler in the TDS implements all three error modes; the mode is specified by the
error.checking parameter to the compiler. All SCs for a single processor must be compiled in the same
error mode. Where a library reference is used, the SCs of the appropriate error mode will be selected from
the library.

On the IMS T414, HALT mode does not work for processes running at high priority, as the HaltOnError flag
is cleared when going to high priority.

In some circumstances it may be desirable to omit the runtime error checking in one part of a program

(e.g. in a time-critical section of code), while retaining error checks in other parts of a program, for debugging
purposes. However, the compiler does not presently allow the mixing of REDUCED code within a program
compiled in BALT mode. For this reason, the range.checking parameter to the compiler has been
included. Normally when compiling in HALT or STOP mode, the range . checking parameter should be
set to TRUE. Setting it to FALSE allows part of a program to be compiled with certain error checking code
omitted. This should be done with great caution; it loses the security associated with error checking. It should
only be done if the program is believed to be correct, and there are good reasons for wanting that part of the
program to omit error checks. The range.checking option will be withdrawn from any future version of
the compiler which supports the mixing of REDUCED mode with other error modes.

573 Alias and usage checking

The compiler implements the alias and usage checking rules described in the occam 2 reference manual.
Alias checking prevents an element from being referred to by more than one name within a section of code.
Usage checking ensures that channels are used correctly for unidirectional point-to-point communication, and
that variables are not altered while being shared between parallel processes. For a further discussion of the
motivation behind these rules, see INMOS technical note 32 ‘Security aspects of occam 2'.

The checking of the alias and usage rules during a compilation is controlled by the alias.check and
usage.check parameters to the compiler. It is possible to turn off alias and usage checking by setting
these parameters to FALSE. |t is also possible to carry out alias checking without usage checking. However,
it is not possible to do usage checking without alias checking, as the usage checker relies on lack of aliasing
in the program.

If a program is compiled with alias.checking on, the compiler may insert extra code for checking array
accesses which cannot be checked until runtime. However, alias checking can also improve the quality of
code produced, since the compiler may be able to make some extra optimisations if it knows that names in
the program are not aliased.

5.7 Compiler parameters 47

The usage checker detects illegal usage of variables and channels, for example, assigning to the same
variable in parallel. The checker performs most of its checks correctly, but with certain limitations. Normally,
if the checker is unable to implement a check exactly, it will perform a stricter check. For example, if an
array element is assigned to, and its subscript cannot be evaluated at compile time, then the usage checker
will assume that all elements of the array are assigned to. No illegal programs, other than certain programs
which use subscripted arrays with replicated PARs will be accepted by the checker. If a correct program is
rejected because the usage checker is imposing too strict a rule, it is possible to switch off the checker. A
more detailed discussion of the implementation of usage checking is given in section 5.11.3.

5.74 Using the separate vector space

The compiler has a parameter called separate.vector. space. With this option set to TRUE the vectors
declared within a compilation unit are allocated into a separate ‘vector space’ area of memory, rather than
into workspace. This decreases the amount of stack required, which has two benefits: firstly, the offsets of
variables are smaller (therefore access to them is faster), and secondly, the total amount of stack used is
smaller, allowing better use to be made of on-chip RAM. If this parameter is FALSE, the implementation
places vectors in the workspace.

When a program is run within the TDS or loaded onto a transputer in a network, memory is allocated in the
following order:

e workspace
e code
e separate vector space

This allows the workspace (and possibly some of the code) to be given priority usage of the on-chip RAM.
Generally, the best performance will be obtained with the separate vector space switched on.

The default allocation of a vector can be overridden by an allocation immediately after the declaration of an
array. This allocation has one of the forms:

PLACE name IN VECSPACE :
or
PLACE name IN WORKSPACE :

For example, in a program which is normally using the separate vector space, it may be advantageous to put
a crucial buffer into internal RAM. The program would be compiled with separate.vector.space set
to TRUE, but would include something like:

[10] INT x :
[buff.size] BYTE crucial.buffer :
PLACE crucial.buffer IN WORKSPACE :

For a program where it is required to put all of the data into the workspace, apart from one large array, the
program would be compiled with separate vector space off, but with a PLACE IN VECSPACE allocation
after the declaration of the large array.

Within a program it is possible to mix code compiled with separate vector space on and code compiled with
separate vector space off. The parts of the program which have been compiled with separate vector space
on will be given use of the vector space.

48 Compiling and linking 0ccam programs

5.8 Creating and using libraries

Libraries were introduced in section 5.6. This section describes how to create a library, and gives more
information on the use of libraries. In particular, it describes how to use ‘library logical names’ which map
library names onto file names in the directory.

Normally, when developing a library, the code will be developed and tested as a set of separately compiled
procedures within a test program. The library system has been designed to make it easy to move a set of
procedures developed in a test program into a library which can be shared between programs. The work
involves collecting together the set of compiled procedures, putting them into a particular kind of fold, and
storing them in a file from which they can be accessed. These steps are described in more detail in section
5.8.1.

A library created as above can be shared between parts of a program or between different programs in a
single directory. This may be sufficient for a single user. However, if a number of users are working together
on a project, or if a user is working on a number of different projects, it will be necessary to share libraries by
placing them in a directory shared between users. To make a set of libraries to be shared between directories,
an operation called ‘library compaction’ is required. This collects all the data in the library into a single file.
Normally this does not include the source code, but it can include a copy of the source code if required (e.g.
for debugging). Library compaction is useful for producing a staged ‘release’ of a library while development
work continues on the sources. In addition, it improves the speed of access to a library as only one file has
to be read. Library compaction is described in section 5.8.6.

5.8.1 Creating libraries

This section describes how to create a library, as a series of steps. It assumes that a number of separately
compiled procedures have been developed and tested, and it is now required to make these into a library.
These separately compiled procedures should not include nested SCs; this is a current restriction of the
library system.

Step 1

Create an empty fold by pressing the key twice. Type something on the fold line, if required.
For example:

... mylib
Step 2
Apply the utility to the empty fold, with the parameter set to LIB. The utility will pop up
its parameter fold; cycle through the available values using until LIB is selected, and
then press This creates a library fold (marked LIB) containing a single fold marked as Library

version. The library version fold is used to ensure that when a library changes, any programs subsequently
linked which refer to that library are first recompiled; see section 5.9.

The fold will now look like:
... LIB mylib
with the contents:
{{{ LIB mylib

... Library version

11}

5.8 Creating and using libraries 49

Step 3

A sequence of text folds containing VAL and PROTOCOL definitions, and compiled SC folds may be placed
after the Library version fold. For example:

—

{{{ LIB mylib

... Library version

... text fold containing VAL definitions

... text fold containing PROTOCOL definitions
... SC PROC pl1

... SC PROC p2

11}

The text folds may not be filed (but may contain filed folds). The SC folds in a library must appear directly
under the version fold; they may not be contained in another fold. There should be no text or blank lines in
the fold.

The SC folds in a library need not all be compiled for the same target processor type or in the same error
mode; they may be ‘mixed’. When using the library, the compiler will select the procedures compiled in a
manner suitable for the program using the library.

Step 4

Now the library fold should be closed and the utility applied to the closed library fold. If the library
contains mixed SCs, use [RECOMPILE]. All compilation units in the library will be inspected, and, if necessary,
recompiled. Then the library is made valid; the fold attribute will be set to compiled fold set. An error
message will occur at this stage if any of the items in the fold is not correct.

Step 5

To be able to use the library it is necessary to place the library within another, filed, fold. The host filename
of that fold is used to identify the library. For example, make a fold which when open looks like this:

{{{F mylib
... LIB mylib
11}

The name of the file holding the library can be found by using the key. Say that the name of the
file is \1ibdir\mylib.tsz. Then the library may be used, by quoting its filename, or by using a logical
name, as described in the next section.

5.8.2 Using libraries

A library is normally referenced from a compilation unit by a ‘logical library name’. A reference to a library in
a #USE directive takes the form:

#USE logical.name

The logical name is associated with a real host file name by means of a line in a Library logical
names fold used by the compilation utilities. This fold is stored in the toolkit fold. A standard version of
this is supplied with the TDS system, containing the logical names for the compiler libraries and the libraries
supplied with the TDS. This can be added to for user-defined libraries.

The form of the lines in the logical names fold is described in detail in section 5.8.5. For now it is only
necessary to know that there is one line in the fold for each library. The information on the line includes
the directory in which the library file is placed, the error modes and transputer target types supported in the
library, and the logical name by which the library will be referenced.

50 Compiling and linking occam programs

As an alternative to using a logical name, a directive of the form:

#USE " host.file.name"

may be placed in a compilation unit which wishes to use the library. Using logical names is recommended as
it makes it easier to move libraries.around the directory structure, or to replace one version of a library with
another one.

To use the library created in the previous section, either of the following lines may be used:
#USE "\libdiz\mylib.tsz"
#USE mylib
For the second directive to be valid, the programmer must include a line in the logical names fold as follows:

{\1ibdir\} "mylib.tsz" HT4 mylib

The first item on the line is the directory, surrounded by curly braces. The second item is the name of the
file containing the library, surrounded by double quotes. The third item HT4, implies that the library contains
code compiled in BALT mode for the T4 (IMS T414). The final item is the logical name for the library.

5.8.3 Using protocols with separate compilation

A PROTOCOL may be declared and used within a compilation unit according to the rules of the language.
Where a protocol is to be used across separate compilation boundaries, the protocol should always be placed
in a library; the library should be referenced in any SC where the protocol is needed, and in any enclosing
compilation unit. For example, suppose we have a protocol p defined in a library my.protocols. We
might then use it as follows:

PROC main ()
#USE my.protocols

{{t sc

#USE my.protocols
PROC do.it (CHAN OF p channel)

11}
CHAN OF p actual.channel :

PAR
do.it (actual.channel)

DY

Since the protocol name p occurs in the parameter list of the separately compiled procedure do. it, the
enclosing compilation unit must include a #USE statement, above the declaration of do. it, to introduce the
name p.

5.8.4 How the library system works

It may be useful to know something of how the library system works, in order to resolve problems that may
occur when using libraries. ’

A library contains program text and compiled compilation units. When the compiler encounters a usage of a
library it reads in the text and the descriptors of the compilation units, as if they had appeared in the program
text. However, if the compiler finds an error in the library header text it cannot report the line in error. So all
declarations in a library should be checked before being placed in the library.

5.8 Creating and using libraries 51

The compiler selects compilation units from a library on the basis of their error mode and transputer target
type. Only those units with the same error mode and target type as the current compilation will be selected.
This may lead to unexpected effects; for example, if a library only contains procedures compiled in HALT
mode, and the current program is being compiled in STOP mode, then the use of the library will not bring
any of the procedures into scope.

Having made use of a library to compile a compilation unit, the compiler records in the descriptor which
libraries have been used. When the program is linked, the linker reads these libraries, and extracts from
them any code which is required to link into the program. The SCs within a library may themselves refer
to other libraries, in which case these are also read. If an SC in a library contains one or more procedures
which have been used in the program, then the code for that SC is linked in. The linker only includes code
from those SCs containing procedures which have been actually been used in the program. So the only
extra code linked into the program, beyond the code actually needed, is the code of unused procedures in
library SC folds containing at least one used procedure.

The list of libraries used by a compilation unit can be found by using Note that the list
also includes libraries used by nested SC units within the compilation unit being viewed. The list shows all
the libraries used (by means of #USE directives) within this compilation unit; if none of the procedures in a
library are actually called, then the code for the library will not be included.

Some restrictions of the library system which the user needs to be be aware of are as follows:

e SCs within libraries may not contain nested SCs.

e A procedure or function name must be unique within a program; the linker will complain if when
linking a system it finds two library entries of the same name.

The latter condition is flagged at link time by a message of the form:

Symbol name multiply defined in library

It is up to the user to identify the libraries involved. This message can also appear unexpectedly when using
host file names instead of logical names to identify libraries. This can usually be traced to two uses of the
same library, using different strings to identify the file (e.g. upper case in one, and lower case in another).

5.8.5 The library logical names fold

The Library logical names f£old should be provided in the toolkit fold. It defines the mapping from
library file names to library logical names. It includes the mappings for the libraries used by the compiler
(such as those to support long arithmetic), and the mappings for the library files provided with the TDS.

The library logical names fold is a text fold. It may contain nested text folds. Any comment folds, occam
comments on text lines in the fold, or blank lines in the fold, are ignored. Each non-comment text line in the
fold describes a particular library, and is known as a ‘library text line’.

Each library text line corresponds to one library file and describes for that library the error mode and target
processor types supported in the library, and the logical name by which the library is to be known. The same
logical name may appear in a number of library text lines. When compiling a program, the compiler reads
a logical name from a #USE statement in the program and uses the logical names fold to find the library
file corresponding to the particular combination of the logical name with the target processor and error mode
values being used in the compilation.

A library text line consists of a sequence of items. The items are:
 a directory.name in braces (e.g. {c:\tds2\complib\}),
e a file.name in quotes (e.g. "userio.tsx"),
e a keyword defining error mode and target processor,

e a logical.name.

52 Compiling and linking occam programs

A logical.name may be any contiguous sequence of characters. Filenames or logical names may not contain
quotes or spaces. Directory names may not contain braces or spaces.

The keywords defining stopping mode and target in the present implementation are: HT2 HT4 HT8 ST2
ST4 ST8 RT2 RT4 and RT8. The first character is an upper case letter defining the error mode (HALT,
STOP, REDUCED) and the other characters define the target processor.

When a group of libraries in one directory is being specified, it is not necessary to repeat the directory name
on every line. The first library text line for that directory must include the directory name. The following lines
need not include the directory name; the directory name from the line above is used. A directory name may
appear on a line of its own, in which case it applies to the following lines, up to the next line including a
directory name. When opening a file the directory name text is simply concatenated with the filename text;
note that for this reason the directory name must include the closing backslash (\).

A typical library text line is thus:
{c:\userlibs\}"mylib.tsr" HT8 RT8 ST8 HT4 RT4 ST4 HT2 RT2 ST2 mylib

indicating that the library file c: \userlibs\mylib.tsz contains library code for all modes and targets
and may be referenced by the logical name mylib.

The complete library logical names fold is read by the compiler when it is started; it is checked for validity
and to ensure that any particular combination of logical name, error mode and target processor only maps
onto one possible filename.

5.8.6 Library compaction

Library compaction is required whenever a library is to be used in a directory other than the one it was
developed in. The compiler is unable to read filed folds nested within a file in another directory, so to make
a library available from another directory, all the information in the library has to be placed into a single file.
When doing this, it is normal practice to remove the source text from the compacted copy of the library, as it
is not needed to use the library, and including it increases the size of the library and the time taken to read
it. The source text can be included in the compacted version if required; the main reason for this is to allow
the source-level debugger to be able to display the source of a library in which an error occurs.

A utility to compact libraries, [COMPACT LIBRARIES), is provided in the file handling utility set. It behaves in a
similar manner to the utility in the same set, but compacts any library files encountered on the
way. It can thus be used to compact a group of libraries. It is suggested that users adopt the practice

of compacting libraries to a different directory from that containing the source, to avoid file name clashes
between the original and the compacted versions.

copies the contents of a filed fold, including nested files, to another directory. Any valid
library folds encountered are compacted, that is, all information in the library is written into a single file. A
parameter DeleteSouzce allows source to be removed from the library as it is compacted. The name of
a file being written is normally the same as that of the file being read. A parameter OverwriteFiles
determines whether existing files are overwritten.

To compact a single library place the cursor on the filed fold containing the library fold, and run the utility
[COMPACT LIBRARIES]. Supply as DestinationFileName the intended name of the compacted library. This
must include a directory name (which may be the current directory).

To compact a group of libraries, make a fold around the libraries, place the cursor on the fold, and run
[COMPACT LIBRARIES]. Supply as DestinationFileName a file name to contain the compacted libraries.
This may be a . TOP file to aliow the files in the other directory to be accessed using the TDS. The destination
file name should normally include a directory name; this should be a different directory than the current one,
as compacting a set of libraries to the current directory will either overwrite existing library files, or will produce
unpredictable file names (depending on the value of the OverwriteFiles parameter).

5.9 Changing and recompiling libraries 53

5.9 Changing and recompiling libraries

A previous section (section 5.6) described how the compiler behaves when recompiling a program after a
new version of a library has been made. This section discusses the topic in more detail, and describes how
to ensure that libraries are recompiled correctly.

5.9.1 Change control

When the text of a library fold is edited, its compilation fold is made invalid, just as for other kinds of compilation
unit. The library may not be used again until it has been recompiled.

When all or part of a library is recompiled, its version number is incremented. This is the purpose of the
Library version fold contained within a library. This fold, which is not openable by the editor, contains
a version number for the library, which is incremented every time the library is made valid.

The compiler will refuse to use any libraries which are invalid, and will stop compilation to report an error. If
this happens the user should go to the source of the library and recompile it before attempting compilation
again.

The compiler records, within the descriptor, the version numbers at compile-time of all the libraries used by
a compilation unit. These are checked by the linker against the versions available to it at link time.

The version number of a library can be found by using on the library fold. The version
numbers of libraries used at compilation time can be found for any compilation unit using
on the foldset.

5.9.2 Library dependencies

As discussed in section 5.6, when compiling a program, the TDS will automatically cope with changes in
libraries used by the program. However, there are still some problems of library dependency which may
occur. Suppose that library a is used by a separately compiled procedure p in a program, and that library a
in turn uses library b. If library a has changed, then, when compiling the program, this will be noticed and p
will be recompiled. However, if library b is changed, but library a has not been recompiled, then the program
will compile, but an error will be reported when the whole system is linked together.

Tracking library dependencies of this kind can be aided by a suitable organisation of libraries in a fold structure.
The utility can not only be applied to a compilation fold, but in fact can be applied to any source
fold, in which case all compilation units within the fold will be examined, and recompiled if necessary. A
collection of libraries involving compilation dependencies may be placed together in a fold, with the ‘lowest
level’ libraries earliest in the fold. If one of the low-level libraries changes, then the function can be
applied to the collection, to ensure that any dependent libraries are also recompiled.

5.9.3 Recompiling mixed libraries

When using the function, parameters are supplied at the time of starting up the compiler, and these
parameters apply to all compilation units compiled during that run. For example, the error mode to be used,
and the target transputer type are normally the same for all compilation units in a program. To ensure this
the compiler also recompiles any units it finds which have been compiled with a different error mode or target

type.

This is inconvenient when compiling libraries containing SCs compiled for different targets, or in different error
modes. For this reason the function has been provided. When applied to a previously-compiled
program, does the same job as [COMPILE], recompiling compilation units as necessary, but for
each unit compiled it uses the parameters from the descriptor fold left from the last compilation. So when
building a library containing SCs for a range of targets or error modes, the compiler parameters for each SC
unit need only be supplied once, at the time of first compilation, and thereafter the utility can be
used.

54 Compiling and linking 0occam programs

The utility can also be used for recompiling transputer network programs which include code for
more than one processor type. It is also useful for other compiler parameters; for example, if one compilation
unit in a system needs to be compiled with usage checking off, while the rest are compiled with usage
checking on.

5.9.4 Compacting recompiled libraries

Since the compiler can compile all units in any fold it is run on, and the library compacter can compact multiple
libraries, it is possible to recompile a set of libraries and then compact them to another (‘release’) directory
using two keystrokes. Note that if libraries in this set depend on libraries earlier in the compilation sequence,
then the logical name system should be used as follows:

e Within the building directory, the logical names should refer to the local files, so that the latest
compiled version of the library is picked up.

o Within any other directory from which the libraries are being used, the logical names should refer to
the files in the release directory.

5.10 The pipeline sorter example

This section introduces a more substantial example which serves to show how a larger program might be
structured, in terms of SC units and libraries.

Although introduced in this section, the example is also used in the following three chapters, where it is shown
running: .

o within the TDS
e On a transputer network
e as a standalone program
The application used for this example sorts a sequence of characters into alphabetical order. The basic

algorithm, which is discussed in the occam tutorial, uses a number of similar parallel processes. The code
for one of these processes is listed opposite.

5.10 The pipeline sorter example 55

PROC element (CHAN OF letters input, output)
INT highest, next:
BOOL going, inline:
SEQ
going := TRUE
WHILE going
input ? CASE
terminate
going := FALSE
letter; highest
SEQ
inline := TRUE
WHILE inline
input ? CASE
letter; next
IF
next > highest
SEQ
output ! letter; highest
highest := next
TRUE
output ! letter; next
end.of.letters
SEQ
inline := FALSE
output ! letter; highest
output ! end.of.letters
output ! terminate

The occam tutorial example has been adapted to have a WHILE loop instead of a replicated sequence in
order to sort variable length strings of characters. An outer WHILE loop separates global program termination
from terminating the end of character sequences. Other differences involve using a variant protocol for
communicating letters between sorting elements. The PROTOCOL is as follows:

PROTOCOL letters
CASE
letter; INT
end.of.letters
terminate

The example is contained in the directory \TDS2\TUTOR, in the top level file EXAMPLES. TOP, and in the
fold marked Pipeline sorter. example.

It uses three user-defined libraries:

"header.tsx" contains all the constants and protocol definitions for procedure declarations to come.

"problem.tsx" contains the three separately compiled procedures that make up the body of the
application itself.

"monitozx.tsz" encloses a procedure used to interface between the application program and the TDS.

56 Compiling and linking 0occam programs

The three libraries are contained in separate folds in a fold called Libraries. Entering this fold shows the
three user defined libraries as filed folds:

{{{ Libraries
...F header.tsr
...F problem.tsr

...F monitor.tsr

}1}

In order to allow these libraries to be used, the Library logical names fold in the toolkit fold
contains a fold setting up logical names for these libraries. This appears as follows:

{{{ pipeline soxrter
{\tds2\tutor\}
"header.tsr" HT4 header
"problem.tsr" HT4 problem
"monitor.tsr" HT4 monitor

11}
The following subsections look at the contents of these folds and their structures.

5.10.1 The ‘header.tsr’ library fold

The header.tsrx filed fold contains constants and protocols used in the rest of this example. The most
important parts of this library are the protocol definitions for stzing and lettexr.

{{{F header.tsr
{{{ LIB
... Library version
protocols
PROTOCOL string IS INT::[]BYTE:

PROTOCOL letters
CASE
letter; INT
end.of.letters
terminate

}}}
program constants
. link numbers
}}}
}}}
The string protocol is used for communications between the monitor interface and the application program.
As these programs are running in parallel with each other they will be referred to as parallel processes.

The application is made up of many parallel element processes, all of which communicate using the
letters protocol. The lettexs protocol is a variant protocol. This is the method by which differing types
of data may be communicated using the same occam channel. With a variant protocol every communication
is preceded by a tag to identify the type of the data to follow. These tag names are defined by the programmer.
When the tag name itself conveys the desired message no further communication is required. The application
reads a stream of letters followed by an end.of.lettexrs tag. This is followed by either another stream
of letters or a terminate tag.

The program constants are selected values from the those available for interfacing with the TDS. The link

5.10 The pipeline sorter example 57

numbers are the 0ccam addresses of the INMOS serial links as defined in the relevant transputer datasheet
(these will only be needed when the program is adapted to run on a transputer network, in chapter 7).

5.10.2 The ‘problem.tsr’ library fold

There are two procedures called inputter and outputtexr, which have been put together into an SC
fold and then placed inside a library fold.

{{{F problem.tsr

... LIB
11}

The fold LIB shows the following two folds:
{{{ LIB

... Library version
... SC application PROCs, inputter, element and outputter

11}
The contents of the SC £old are:

{{{ SC application PROCs, inputter, element and outputter
...F application PROCs, inputter, element and outputter
...F code

...F descriptor

...F debug

11}

The first of these folds contain the PROCs:

{{{F application PROCs, inputter, element and outputter
#USE header

... PROC inputter (CHAN OF string input, CHAN OF letters output)
... PROC element (CHAN OF letters input, output)

... PROC outputter (CHAN OF letters input, CHAN OF string output)
11}

The operation of inputter is to input a string and then supply it as a sequence of lettexrs to a pipeline
of element processes. The outputter procedure reads the resultant stream of letters and packs the letters
back into a string for communication onwards. The string communication is far more efficient for link
communication as the link can communicate all the data before attempting to gain more processing time.

The design of these three procedures is such that they should all be instanced as parallel processes, com-
municating with one another using 0CccCam channels.

5.10.3 The ‘monitor.tsr’ library fold

The final library involved in this example is one that contains the interface with the TDS. This is a procedure
called monitox that supplies the values of keystrokes on the host keyboard to the application while in parallel
conveying data and result outputs to the host screen.

This procedure is also contained in a library fold:

{{{ 1LIB

... Library version
... SC monitor.tsr
11}

58 Compiling and linking 0ccam programs

The SC fold contains the filed fold monsouxce.tsz, which contains the screen and keyboard handler.

{ { (!‘ monsource.tsr
#USE header

PROC monitor (CHAN OF INT keyboard,
CHAN OF ANY screen,
CHAN OF string app.in, app.out,
VAL BOOL wusing.subsystem)

... PROC keyboard.handler
... PROC screen.handler

CHAN OF INT echo:

PAR
keyboard.handler (keyboard, echo, app.in)
screen.handler (app.out, echo, screen)

11}
The procedure monitoz converts the keyboard and screen I/O from the TDS into simple strings of bytes for
the application. By using this monitor one can edit text strings in advance of sending them to the application.
This means that the application program itself need not concern itself with erroneous strings, multiple carriage
returns or case sensitivity. All these functions can be filtered out by the keyboard handler. The keystrokes

made at the keyboard are sent down the channel echo. The screen. handJ.e: can distinguish between
keys typed by the user and strings supplied by the application.

The use of the screen handler process enables it to be the only parallel process that needs to communicate
using the TDS protocol. This makes the application more portable. If it becomes necessary to mount the
application in a different system environment then it is only the monitoxr that needs to be changed.

The keyboard handler

PROC keyboard.handler (CHAN OF INT in,
CHAN OF INT out,
CHAN OF string data)
... variables
SEQ
going := TRUE
length := 0
WHILE going
SEQ

in ? char
CASE char
stopch
... terminate monitor and application if appropriate
return
... Ppass string to application if non zero in length
ft.del.chl
... user has typed the backspace key
ELSE
... buffer char, all letters map to lower case

.
.

This is a good opportunity to note how folds should be used to show the structure of the 0occam text. As
can be seen the keyboard handler procedure is an IF construct repeated many times within a WHILE.

Termination of parallel programs is the duty of the programmer. The termination of the monitor process is
achieved by the user entering the stopch at the keyboard. The keyboard handler must then pass this
character to the screen handler so that it will also terminate. This is done because an occam program can
only terminate when all of its constituent parallel processes have terminated and in the monitor process the

5.11 The implementation of occam 59

keyboard and screen handlers are running in parallel. This termination request will normally be passed on to
the application process as well.

The screen handler

The screen handler is contained in a separate fold:

{{{ PROC screen.handler
PROC screen.handler (CHAN OF string data,
CHAN OF INT in,
CHAN OF ANY out)
... constants, procedures and variables
SEQ
... dinitialise
... body
... £finish

11}
The main part of the screen handler is contained in the fold body:

{{{ body
WHILE going.in OR ((NOT using.subsystem) AND going.data)
SEQ
clock ? waketime
waketime := waketime PLUS one.hundredth.of.a.second
ALT
going.in & in ? char
. print keyboard character on screen
going.data & data ? length::string
. print data from application on screen
monitoring & clock ? AFTER waketime
. if monitoring is TRUE, poll subsystem error pin
draw.cursor (kb.window)

11}

The screen handler is repeatedly searching for one of three alternatives. Either keyboard characters are
echoed, a string of data comes from the application or a timeout happens if neither of the other two have
occurred in one hundredth of a second. The timeout is relevant if the monitox is monitoring an application
running on another transputer. This is discussed in more detail in chapter 7, where the monitor will be used
in this way.

This section has shown the structure of the libraries required by the pipeline sorter example. These are used
in chapters 6,7 and 8, where the program is run in the three different environments.

5.11 The implementation of occam

This section describes some details of the implementation of occam by the compiler in the TDS. It can be
omitted in a first reading of the manual.

It discusses three aspects of the implementation:

« Implementation decisions, such as data representation, for o0ccam on the transputer.
e The layout of code and data in memory.

o Some restrictions of the usage checker.

60 Compiling and linking occam programs

5.11.1 The transputer implementation of occam

This section defines the implementation of occam for the transputer, supported by the compiler in the TDS.
It describes the way certain implementation dependent decisions have been made in the compiler.

Data representation
o The size of an INT (word) on an IMS T414 or an IMS T800 is 32 bits.
e The size of an INT (word) on an IMS T212 is 16 bits.

o Scalar variables are always allocated on a word (INT) boundary and occupy an integral number of
words.

e BOOL and BYTE variables in arrays occupy 8 bits each. A declared array is aligned on a word
boundary, and occupies space rounded up to the next word boundary. Note that an abbreviation of
part of such an array might not begin on a word boundary.

e Protocol tags are represented by 8-bit values. The compiler allocates such values from 0 (BYTE)
upwards in order of declaration.

o A RETYPES specification is invalid unless the alignment and size of the right-hand side is the same
as for the left-hand side. Note especially that an array of BOOL or BYTE variables specified by an
abbreviation (e.g. passed as a parameter) may have any alignment and so can not in general be
retyped.

Hardware dependencies and configuration :
s/

o The number of priorities supported by the transputer is 2, so-a PRI PAR may have two component
processes. Nested PRI PARs are invalid; the compiler checks this within a procedure, but does not
check across procedure boundaries. A runtime check is done to compensate for this; if the program
attempts a PRI PAR while at high priority, the error flag is set. Future releases of the compiler may
check for nested PRI PARs properly.

e The low priority clock increments at a rate of 15625 ticks per second, or one tick = 64 microseconds
(IMS T800, IMS T414B and IMS T212).

o The high priority clock increments at a rate of 1 000 000 ticks per second, or one tick = 1 microsecond
(IMS 7800, IMS T414B and IMS T212).

o The numbers used as PLACE addresses are word offsets from the bottom of address space (see
chapter 11).

e The syntax of the PROCESSOR statement is extended so that one of the keywords T8, T4 or T2
must follow the processor number (see chapter 7).

Language extensions accepted by the TDS compiler

« Statements beginning #USE are library references (as described in section 5.8) and introduce dec-
larations from a library at the point in the source code where they appear.

o PLACE name IN VECSPACE and PLACE name IN WORKSPACE. These were described earlier
in section 5.7.4.

o The keyword GUY introduces a section of transputer assembly code (see chapter 11).

See appendix C for a complete list of reserved keywords which the compiler will not allow programs to
redeclare.

5.11 The implementation of occam 61

The compiler’s use of folds
o The compiler reads the text contained within the source fold of a compilation unit being compiled.
o The heading (comment) on a fold line is not passed to the compiler.
« The contents of a comment fold (see section 5.3.2) are not passed to the compiler.

Any further differences between the language defined in the occam 2 Reference Manual and the language
accepted by the compiler are described in the Delivery Manual accompanying the TDS release. That manual
also describes any other restrictions imposed by the implementation.

5.11.2 Memory allocation by the compiler
Code

The compiler generates code so that any nested procedures are placed at lower addresses (i.e. nearer
MOSTNEG INT on a transputer) than the code for the enclosing procedure. Nested procedures are placed
at increasingly higher addresses in the order in which their definitions are completed. If a unit contains a
nested SC then the code for this SC is loaded at a lower address. If a unit contains more than one nested
SC then the code for the last textually declared SC is loaded at the lowest address. Libraries are linked in at
a higher address than the code within the program, except for the compiler’s real arithmetic handling library,
which (if used) is linked in at the low end of the code.The code for the whole system occupies a contiguous
section of memory.

Workspace

Workspace is allocated from higher to lower address (i.e. the workspace for a called procedure is nearer
MOSTNEG INT than the workspace for the caller). In a PAR or PRI PAR construct the last textually defined
process is allocated the lowest addressed workspace. In a replicated PAR construct the instance with the
highest replication count is allocated the lowest workspace address.

When the separate.vector.space option is enabled, arrays (apart from those explicitly placed in the
workspace) are allocated in a separate data space. The allocation is done in a similar way to the allocation
of workspace, except that in vector space the data space for a called procedure is at a higher address than
the data space of its caller.

When a program is run within the TDS or loaded onto a transputer in a network, memory is allocated in the
following order, with the workspace nearest MOSTNEG INT.

e workspace
e code
e separate vector space

This allows the workspace (and possibly some of the code, starting with the real arithmetic handling library)
to be given priority usage of the on-chip RAM.

The variables within a single process (or procedure) are allocated so that the textually first variable is given
the highest address in the current workspace.

From within a called procedure the parameters appear immediately above the local variables. When an
unsized vector is declared as a formal procedure parameter (e.g. []INT) an extra VAL INT parameter is
also allocated to store the size of the array passed as the actual parameter. This size is in the units of the
array, not in bytes (unless it is a byte array). One extra parameter is supplied for each dimension of the array
unsized in the call, in the order in which they appear in the declaration. See section 11.3.1.

If a procedure requires separate vector space, it is supplied by the calling procedure. A pointer to the vector
space supplied is given as an additional parameter after all the actual parameters of the call.

62 Compiling and linking 0cCam programs

5.11.3 Implementation of usage checking

This section describes some restrictions in the implementation of usage checking.

Usage rules
The usage checker is attempting to check the following rules of occam 2:

o No variable assigned to, or input to, in any component of a parallel may be used in any other
component.

o No channel may be used for input in more than one component process of a parallel. No channel
may be used for output in more than one component of a parallel.

Checking of non-array elements
Checking of variables and channels which are not elements of arrays is performed correctly.

The usage checker insists that a channel parameter or free channel of a procedure is not used for both input
and output.

Checking of arrays of variables and channels

When an array of variables or channels is used in a program the usage checker, where possible, treats each
element of the array as a separate variable or channel. This makes it possible, for example, to assign to the
first and second elements of an array in parallel.

For the usage checker to operate in this way, it must be possible for the compiler to evaluate all possible
subscript values when an array is used. The compiler is capable of evaluating expressions consisting entirely
of constant values and operators (but not function calls). Where a replicator index is used in an expression
the compiler can evaluate the expression for each possible value of the index provided that the replicator's
base and count can be evaluated. However, there are certain problems with parallel replicators which are
described later.

Where an array subscript contains variables, a function call or the index of a replicator where the compiler
cannot evaluate the base or the count, then the usage checker will assume that all possible subscripts of
the array may be used. This may cause the usage checker to give an error message where there is no real
problem. For example, consider the following program fragment:

x :=1

PAR
a[0] :=1
a[x] := 2

The usage checker will report the assignment to a[x] as a usage error. However, the fragment could be
changed to:

Here the checker would accept it because x can be evaluated at compile time.

The checker handles segments of arrays similarly to simple subscripts. Where the base and count of a
segment can be evaluated by the checker, the checker behaves as if each segment has been used individually.
Where the base or count cannot be evaluated by the checker, the checker behaves as if the whole array has

5.11 The implementation of occam 63

been used. For example, the checker will accept

PAR
[a FROM 4 FOR 4] := x
a[8] := 2
[a FROM 9 FOR 3] :=y

without generating an error.

Arrays as procedure parameters

Any variable array which is the parameter of a procedure is treated as a single entity. That is, if any element
of the array is referenced, the checker treats the whole array as being referenced. Similarly, if any variable
array, or element of a variable array is used free in a procedure then the checker treats it as if every element
were used. For example, the usage checker will generate an error on the following program

PROC p([]INT a)

a[1] := 2
PAR

p(a)

a[0] := 2

because it considers every element of a to have been used when p (a) occurred.

Similarly, where one element of an array of channels has been used for input within a procedure, the checker
treats the array as if all elements had been used for input, and, where one element has been used for output
within a procedure, the checker treats the array as if all elements had been used for output. For example,
the usage checker will generate an error on the following program

PROC p()

cl1] ' 2 -- ¢ free in p
PAR

Pl

c[o] ' 1

because it considers an output to have been performed on every element of ¢ when p () occurred.

Abbreviating variables and channels

The usage checker treats an element which is abbreviated in an element abbreviation as if it had been
assigned to, whether or not it is actually updated. If this causes the checker to reject an apparently correct
program the program should be altered to use a VAL abbreviation. For example, the following program will
cause a usage error

%%U;

oo

because the first component of the PAR is assumed to assign to b. This could be changed to:

PAR
VAL a IS b :
x = a
y :=b

Where a channel is used which is an abbreviation of a channel array element, the checker behaves as if the
whole of the channel array had been used uniess the element is an array element with a single, constant
subscript, a constant segment of an array (i.e. with constant base and count) or a constant segment with a

64

Compiling and linking 0occam programs

single, constant subscript. For example:

PAR
c IS a[1][2] :
c!1
a[o0][1] ! 2

is rejected by the usage checker, as it considers the whole of the array a to have been used for output when

c!

1 occurred since a[1] [2] contains two subscripts.

However,

PAR
c.slice IS a[l]
c IS c.slice[2] :
c!1

af[ol[1] !' 2

is accepted, since each abbreviation has just one, constant subscript.

Problems with replicators

The usage checker has the following problems in its handling of replicators:

1 Parallel accesses to an array inside a replicator loop may be incorrectly checked against each other
and flagged as errors. For example, in

SEQ i = 0 FOR 10
PAR

afi] :=1

afi + 1] :=2
the checker will flag the seond assignment as an error even though this program does not break
the usage rules. (The reason for this is that the array elements which will be assigned to by the
first assignment during the execution of the SEQ replicator will overlap those assigned to by the
second assignment). The only way to avoid this problem in the current compiler is to switch off
usage checking.

2 Replicated PAR loops are not checked properly.

The checker permits any usage of an array element within a replicated PAR provided the replicator
index occurs within the subscript expression.

The following two programs are examples of incorrect programs accepted by the checker:

PAR i 0 FOR 10
afi - i] =1

PAR i = 0 FOR 4
SEQ
af[i] :=1
afi + 1] :=1

6 Running programs within the TDS

Chapters 4 and 5 have described how to load code into the TDS, and how to create, compile and run a simple
program. This chapter reviews the steps in running a program, and then describes the interfaces available to
user programs. These interfaces are presented over channels connecting the running program to the TDS.
This chapter introduces these channels, their protocols, and a number of procedures from the input/output
libraries supporting communications on these channels.

This chapter concludes by showing the pipeline sorter (discussed in the previous chapter) adapted to run in
the TDS, and some simple examples using the input/output procedures.

6.1 Loading and running an executable program

A compiled user program is contained in an EXE compilation fold. Once this has been compiled and linked,
the compilation fold includes a fold, called a CODE EXE fold, containing binary code suitable for loading and
running by the system. This fold can be moved from the compilation fold and used directly for loading.

To load a program, the cursor should be placed on a compiled and linked EXE fold, or on a CODE EXE
fold removed from such a compilation fold. The key should then be pressed, and the code will be
loaded ready for execution.

Once it has been loaded, an EXE user program may be run by pressing the key. The program
remains in memory until it is cleared using the key.

A program will either run to oomple'tion, fail to terminate (by deadlocking or livelocking), or set the transputer
error flag as a result of a runtime error. A program may be interrupted by means of the TDS interrupt key
(‘control-break’ on the IBM PC).

If a program sets the error flag, or is interrupted, the TDS displays the message:

Press [SPACE] to reboot root transputer, [ESC] to terminate

In this situation neither the user program nor the TDS are able to proceed. Pressing ‘escape’ returns to the
operating system, pressing ‘space’ reboots the TDS. Before the TDS is rebooted the user is given the option
of preserving the state of the workspace of the EXE in a core dump file . The TDS is then restarted and the
Debugger program may be run (see chapter 9) to locate the cause of the error, or to examine the interrupted
program.

6.2 The interface for user programs

EXE programs have the form of an 0ccam process. For example:
{{{ EXE myprog
{{{F myprog.tsr

.. Declarations
SE

}
}

.. Program

-
e 0O

An EXE is called by the TDS as if it was an occam procedure with a number of channel parameters
connecting it to other components of the TDS. The channel parameters are used for communication between
the EXE and the processes of the TDS which provide access to the folded data structure, the host terminal
and the host filing system. The names of these channels are pre-declared by the compiler, and do not have
to be explicitly declared by the programmer.

66 6 Running programs within the TDS

The parameters implicitly provided by the compiler to an EXE are as follows:

Type Name Comments

CHAN OF INT keyboard Keyboard channel supplying ASCII
values and TDS keys.

CHAN OF ANY screen Screen channel expecting tt tags and
values.

[max.files]CHAN OF ANY from.user.filer Array of channels from the user filer.

[max.files]CHAN OF ANY to.user.filer Array of channels to the user filer.

CHAN OF ANY from.fold.manager INMOS internal use only.

CHAN OF ANY to.fold.manager INMOS internal use only.

CHAN OF ANY from.filer Channel from filer for DOS file access.

CHAN OF ANY to.filer Channel to filer for DOS file access.

CHAN OF ANY from.kernel Used to test [SET ABORT FLAG].

CHAN OF ANY to.kernel Used to test [SET ABORT FLAG] .

[]INT freespace Remaining free memory within the TDS.

The value of max . files is 4.

The keyboard and screen parameters passed to an executable procedure by the TDS are channels to
and from the terminal. By using these channels a program is able to communicate data to and from these
devices. The user filer channels provide access to files which are part of the folded data structure visible
through the editor.

When an EXE program runs it may communicate with the TDS on the channels listed above. Communication
using these channels must obey a set of protocols set out in chapter 16 (in sections 16.1 and 16.2). These
channels have been declared as CHAN OF ANY, rather than with proper occam protocols, to maintain
compatibility with previous releases of the TDS and to allow existing programs to continue to run unchanged.
Normally, users can make use of procedures from the I/O libraries to handle communications on these
channels, and so should not need to use the protocols directly. However, if writing programs to use the
channel protocols directly, it is possible to create an 0ccam PROTOCOL description matching the protocol
on the channel (see section 6.3.1 for an example of this). The channel declared CHAN OF ANY may then be
passed as an actual parameter to a procedure with a formal parameter declared with an occCam PROTOCOL.

It is likely that in some future release of the TDS the interface channels will be redesigned to be proper
occam protocols, so programs should be modularised to minimise alterations resulting from changes to
these channels.

In order to help programmers to use the channels a number of I/O libraries are provided. By calling procedures
from these libraries, it is possible to write programs which perform input and output in a way that is familiar
to most programmers using other high level programming languages. Procedures are also provided for
conversions between text strings and the numeric types of occam. The I/O libraries are discussed in full in
chapter 14.

According to the occam communications model, one end of a channel may not be shared between processes
running in parallel. This has implications for I/O in user programs. For example, only one concurrent process
in a system may access the scxreen channel. If it is necessary for more than one process to output to the
screen, then the programmer must build in explicit multiplexing processes. Some support is provided in the
I/O libraries for multiplexing communications on the system interface channels.

6.3 The channel parameters and their protocols 67

6.3 The channel parameters and their protocols

When a program is run within the TDS, it is run in parallel with, and connected to, certain components of the
TDS. These are:

o The ‘terminal handler’ process, connected via the channels screen and keyboard

e The ‘user filer' process, connected by four pairs of £rom.user.filer and to.user.filer
channels.

o The ‘fold manager’ process, connected via the channels £rom. fold.manager
and to. fold.manager.

o The ‘filer’ process, connected via the channels £xrom. £filer and to. filex.
e The ‘kernel’ process, connected via the channels £rom.kernel and to.kernel.

These processes within the TDS run in parallel with the EXE and communicate both with the EXE and with
the TDS server running on the host computer. When communicating with the server, the TDS multiplexes
these channels onto the pair of channels supported by the INMOS link connection.

6.3.1 The keyboard and screen

The keyboard channel produces a sequence of integer values corresponding to keys pressed at the terminal.
Values are normally either ASCII values for simple keys, or special values for TDS function keys. These
values are discussed in more detail in section 16.1. User programs will normally use the input procedures
from the library userio, introduced in section 6.5.

The screen channel accepts a sequence of screen control commands. Each command consists of a BYTE
tag identifying the command, followed by the data for the command. These commands are discussed in
more detail in section 16.1. User programs will normally use the output procedures from the library userio,
introduced in section 6.5.

If a programmer is using the screen protocol directly, it is possible to declare an 0ccam PROTOCOL matching
the behaviour of the channel. Part of such a declaration is shown below:

PROTOCOL SCREENSTREAM
CASE

tt.reset
tt.up
tt.down
tt.left
tt.zright
tt.goto; INT; INT
tt.ins.char; BYTE
tt.del.char
tt.out.stxr; INT::[]BYTE
... and so on

6.3.2 Communicating with the user filer

The user filer allows a program to read filed folds produced within the TDS, and write to filed folds so that the
output of the program may be read from within the TDS. The user filer has a view of the filing system similar
to that already introduced for utilities (see section 4.6.4); data may be read and written at the position in the
fold structure given by the current line when is pressed.

For example, the cursor may be on a filed fold, in which case the user program may read that file, or write
to it (if it is empty). Alternatively, the cursor may be on a fold ‘bundle’ consisting of a fold with a number of
filed folds inside it. As a specific example, the following might be the view on opening up a fold bundie after

68 6 Running programs within the TDS

running a user program that reads two data files, and outputs two data files.

{{{ £fold bundle
...F input file 1
...F input file 2
...F output file 1
...F output file 2

11}
Communication with the user filer by a user program has two main stages. Firstly the program issues one or
more user filer commands to identify the filed fold to be read or written. Folds are identified by their number
in the fold bundle. Secondly, once a filed fold has been opened, the program enters a stage where it reads
or writes a data stream (possibly including folds) by communicating with the user filer.

The user filer commands, and the data stream communications are described in detail in section 16.2. There
is also a library ufilex to support user filer communications. However, for most purposes, the most
convenient way of using the user filer facilities are to input data as if from a keyboard, and output data
as if to a screen, and use interface processes from the library intex£ to convert the data into user filer
communications. These are introduced later in this chapter, in section 6.5.

6.3.3 The fold manager

The fold manager channels, £rom. fold.manager and to. £fold.managexr, communicate with the com-
ponent of the TDS which stores the folded document being edited using the TDS. The protocols on these
channels are not documented, and-the channels should not be used by user programs.

6.3.4 Communicating with the filer

The channels to.filer and £rom. £iler are connected directly to the filer channels of the TDS server.
The protocol on these channels is described in detail in section 16.4. The I/O library msdos may be used to
send and receive commands on the filer channels. It does not cover all the possible operations available on
these channels, and may be extended if required.

The principal need for these channels within a user program is to read or write a host operating system file
from within the TDS. Only one such file may be read or written at a time. The best way to do this is to use
the procedures from the I/O libraries userio and inter£ as shown in section 6.5.3, to take care of the
communications on the filer channels.

6.3.5 The kernel channels

The channels to.kernel and from.kernel are connected through to the kernel channels of the TDS
fileserver. The protocol on these channels is described in detail in section 16.4.

The kernel channels have only one useful function to user programs running within the TDS; they allow a
user program to test whether the key has been pressed (see section 12.1 for a description
of this key). The code to do this is as follows:

#USE krnlhdr
INT result:
SEQ
to.kernel ! k.get.abort.state
from.kernel ? result
IF
result = 0
... not pressed
result <> 0
pressed, so abort

6.4 Memory usage within the TDS 69

6.4 Memory usage within the TDS

The memory on the host transputer is shared between the TDS itself and any currently loaded EXEs and
UTILs. The code of the TDS and its own workspace occupy a fixed space at the top end of memory. The
remaining memory is divided in a constant proportion between areas known as the fold manager buffer and
the user area. The fold manager buffer is used by the TDS to hold filed folds as they are required by the
editor and some other tools. The user area holds the code of all the currently loaded EXEs and UTILs and
is used for the workspace of any one EXE or UTIL when it is run.

In order to optimise the use of on-chip RAM, which is at the lowest end of transputer address space, the TDS
moves the code of an EXE or UTIL, when it is about to be run, to an address that is as low as possible,
allowing room for its workspace below it. If the program has been compiled with separate vector space, then
this is allocated above the code. Above that, and below any other currently loaded programs, is an area
of memory which the program may address as the array £reespace. The size of this array is therefore
dependent on how many other programs are currently loaded. See figure 6.1

End of available RAM™ A
TDS vectorspace towards MOSTPOS
TDS code
TDS workspace

Fold Manager
buffer store

loaded code items
& code control data

freespace

current code item
vectorspace

current code item
code

current code item

workspace MEMSTART

reserved

MOSTNEG

Figure 6.1 Memory usage within the TDS

70 6 Running programs within the TDS

Programs may themselves subdivide the £xreespace array by abbreviation or retyping (taking appropriate
precautions to avoid alignment errors), for example:

VAL freesize IS SIZE freespace:
VAL one.fifth.free IS freesize / 5:
VAL one.quarter.free IS freesize / 4:

-- allocate a fifth of freespace for integers
[]INT int.store IS
[freespace FROM 0 FOR one.fifth.free]:

-- allocate a quarter of freespace for bytes
[1BYTE byte.store RETYPES [freespace FROM
one.fifth.free FOR one.quarter.free]:

-- allocate anything else for long reals
VAL rest.start IS one.fifth.free + one.quarter.free:
VAL rest.free IS freesize - rest.start:
VAL double.rest IS rest.free /\ #FFFFFFFE: -- round down to
-- multiple of 2 words
[IREAL64 long.real.store RETYPES [freespace FROM
rest.start FOR double.rest]:

This proportional allocation technique is used by the occam compilation utilities and so the size and com-
plexity of program unit that may be compiled is dependent both on the size of memory available and the other
programs that are loaded at the time it is run.

6.5 The occam input/output procedures

This section describes some 1/O procedures which are in libraries provided with the TDS software. These are
procedures which are either called in sequence within the user program to carry out a set of communications
on a channel, or in parallel with part of a user program to convert a stream of communications in one format
to a stream of communications in another format.

When using these procedures the distributed nature of the occam model of communication must be kept
in mind. The I/O procedures require access to a channel accepting the appropriate protocol. It is the
responsibility of the programmer to ensure that channels of the right protocol are supplied. Any multiplexing
of communication streams must be done explicitly within a program. Procedures are available in the libraries
to assist in this.

Some of the I/0 procedures are based on lower-level procedures for number conversions and similar opera-
tions. These lower-level procedures are an essential part of the language implementation and are described
in the occam 2 reference manual.

The input/output procedures may be used to facilitate the coding of simple sequential inputs and outputs
from and to the external world. The external world is typically a keyboard and a screen and a filing system,
but some of these procedures are applicable to arbitrary devices. The procedures hide many of the detailed
features of the protocols on the channels to the run-time environment. Programmers whose requirements are
less straightforward may use the full facilities of the programming interface described in chapter 16: ‘System
Interfaces’.

If a program using the I/O procedures is to be run on a transputer network, it is necessary to supply the
program with a set of channels accepting the appropriate protocols, and routing messages within the network
as required. Some interface procedures are provided in the libraries intex£ and afinter£ to aid in the
multiplexing and routing of these protocols.

When a program has been loaded onto a network from the TDS, an EXE can be run within the TDS to com-
municate with the program in the network and supply a run-time environment consisting of screen, keyboard
and filing system.

6.5 The occam input/output procedures 71

6.5.1 The input/output models
Two models of input/output are supported by appropriate sets of procedures. A simple model of input and
output which is applicable both to an interactive terminal and to sequential text files, is based on a sequence

of lines of text separated by carriage return characters. The input from the terminal is called a ‘key stream’.
Output to the terminal is called a ‘screen stream’.

This model is also appropriate for communication between the processes of an occam program, if the
information being sent is essentially a sequential text stream.

The second model is the ‘folded stream’ model, which allows a hierarchical fold structure in the TDS to be
read or written.

6.5.2 TDS terminal and file I/O

The I/O library userio contains procedures which are called to:
o input values of various types from a key stream
 output values of various types to a screen stream
o input data from a folded stream
o output data to a folded stream

If called with the keyboard and screen channels that are provided within an EXE, the keys tream and
screen stream procedures may be used directly within an EXE to do terminal 1/0.

These procedures may also be used for input from and output to a file within the TDS; in this case the user's
program must be run in parallel with one of the processes in the I/O library intex#£, which convert the
contents of a file into a key stream, or take a screen stream and write it to a TDS file.

These are:

keystream.from.file

and

scrstream.to.file

Full details of the I/O libraries are provided in chapter 14. In section 6.7 there are some examples showing
how these procedures can be used.

6.5.3 Reading and writing a DOS file

The channels to.filer and £rom. £iler available within an EXE may be used to read or write a DOS
file from within the TDS. Only one such file may be read or written at one time.

The easiest way to create a program to read or write a DOS file is to write a process which accepts a key
stream, or generates a screen stream, and then run it in parallel with one of the procedures from intexr£:

keystream. from. server

scrstream.to.serxver

This facility is available so that users can write programs (such as listers) which can access both TDS files
and DOS files at the same time. Users who want to write applications that make more extensive use of DOS
facilities should use a standalone server such as the host file server (see chapter 8).

72 6 Running programs within the TDS

6.6 The pipeline sorter example

This section continues with the pipeline sorter example, introduced in section 5.10, and prepares it to run
within the TDS. The three libraries are referenced from inside an EXE fold. The parameters keyboard
and screen of the monitor process are connected to the channels which communicate with the appropriate
components of the TDS.

{{{ EXE harness
{{{F harness.tsr

#USE header -- program constants
#USE monitor -- EXE interface to TDS
#USE problem -- PROCs used in application

CHAN OF string app.in, app.out:

PAR
monitor (keyboard, screen, app.in, app.out, FALSE)
... application

}}}
11}
The application contained in the fold is:

{{{ application
[string.length+1]CHAN OF letters pipe:
PAR

inputter (app.in, pipe[0])

PAR i = 0 FOR string.length

element (pipe[i], pipel[i+l])

outputter (pipe[string.length], app.out)

}}}

The program runs the monitor in parallel with the application. The application itself is made up of inputter,
outputter and a replicated instance of the element procedure. See figure 6.2.

/ EXE fold

’ \ app.in
d.handler

H keyboar

screen.handler)=
System connection through

the INMOS serial link K
to the IBM XT/AT

Transputer
Development
System
(TDS)

keyboard

app.out

Figure 6.2 Pipeline sorter running in the Transputer Development System

6.7 Example programs using the I/O libraries 73

After compiling the program it can be loaded using and run using [RUN EXE). The screen will clear
and the user should enter a string of alphabetic characters followed by [RETURN]. The string of characters
is sorted into alphabetical order and displayed on the next line. The program is terminated by entering the
character ‘%’

In chapter 7 it is shown how to distribute this application onto a network of transputers.

6.7 Example programs using the 1/O libraries

This section presents two example programs using the procedures in the I/O libraries. These example
programs are also included with the software, in the directory \TDS2\EXAMPLES.

The examples directory contains a number of examples showing how to use the /O libraries; of these,
examples 2 and 4 are listed here. Example 2 shows an example of using the library usexrio to read from
the keyboard and write to the screen. Example 4 shows the same program adapted to take its input from a
file, using the interface procedure keystream. from. £ile. Other examples in this directory show further
use of the I/O libraries, such as writing to a file, and reading and writing a folded file.

74 6 Running programs within the TDS

6.7.1 Keyboard and screen example

This example shows the building up of a table of real numbers using echoed input, followed by a simple
output tabulation.

{{{ EXE ex2 read a list of real numbers and display it
{{{F ex2
#USE uservals
#USE userio
SEQ
-- This example uses keyboard and screen,
-- with echoed input of real numbers.
newline (screen)
write.text.line(screen,
"Type a sequence of real numbers (optionally in hex) *
*terminated by 0.0")
newline (screen)

REAL32 x:
INT kchar:
[1000]REAL32 ax:
INT j:
SEQ .
x := 1.0 (REAL32)
j:=0
WHILE (NOTFINITE(x) OR x <> 0.0 (REAL32))
SEQ
write.char(screen, ’'>’)
read.echo.char (keyboard, screen, kchar)
IF
kchar = (INT'#’)
INT hexx RETYPES x:
read.echo.hex.int (keyboard, screen, hexx, kchar)
TRUE
read.echo.real32 (keyboard, screen, x, kchar)
IF
kchar = ft.number.error
beep (screen)
TRUE
SKIP
ax[j] :=x
J:=3j+1
newline (screen)
write.text.line (screen, "These are the numbers you typed")
newline (screen)
SEQ i = 0 FOR j
SEQ
write.real32 (screen, ax[i], 10, 10)
newline (screen)

write.full.string(screen, "Type ANY to return to TDS")
INT any:
read.char (keyboard, any)
newline (screen)
}}}
11}

Note the use of the property of number input procedures which allows the first character to be read before
calling an appropriate input procedure.

Note also the need to perform some action (here ringing the terminal bell) if an invalid number is encountered.

6.7 Example programs using the 1/O libraries 75

6.7.2 Example showing input from file

This example, which is an adaptation of the previous example, shows how a program originally written to use
the echoed input procedures may be adapted to take its input from a file in the fold structure and to throw
away the echo.

{{{

EXE ex4 real numbers from a file

{{{F exd4
#USE uservals
#USE userio
#USE interf

SEQ

This example is derived from example 2

-- It takes its input from a file and throws away the echo

[1000]REAL32 ax:
INT j:

INT input.error:
SEQ

write.text.line (screen, "Takes from a file a sequence*
* of real numbers terminated by 0.0")
newline (screen)

CHAN OF INT filekeys:
CHAN OF INT keyboard IS filekeys:
-- channel from simulated keyboard
CHAN OF ANY echo:
CHAN OF ANY screen IS echo:
-- echo channel with scope local to this PAR only

SEQ
keystream.from.file (from.user.filer[2], to.user.filer[2],
keyboard, 1, input.error)
-- check input.error when real screen accessible again

.. read a sequence of real numbers
newline (screen)
... consume rest of file if any
write.endstream (screen) -- terminate scrstream.sink

... test input.error, if OK tabulate

write.full.string(screen, "Type ANY to return to TDS")
INT any:

read.char (keyboard, any)

newline (screen)

}1}
11}

76 6 Running programs within the TDS

The contents of the three folds in the program are as follows:

The fold headed read a sequence of real numbers:

{{{ zxead a sequence of real numbers
kchar := 0
x := 1.0(REAL32)
WHILE (NOTFINITE(x) OR x <> 0.0 (REAL32))
AND (kchar <> ft.terminated)
SEQ
write.char (screen, ’'>’)
read.echo.char (keyboard, screen, kchar)
IF
kchar < 0
SKIP
kchar = (INT'#’)
INT hexx RETYPES x:
read.echo.hex.int (keyboard, screen, hexx, kchar)

TRUE
read.echo.real32 (keyboard, screen, x, kchar)
IF

kchar = ft.terminated
SKIP

TRUE
SEQ

IF
kchar = f£t.number.error

beep (screen)
TRUE
SKIP

ax[j] = x
j:=3+1
}}}

The fold headed consume rest of file if any:
{{{ consume rest of file if any
IF

(kchar >= 0) OR (kchar = ft.number.error)
keystream.sink (keyboard)
-- consume the rest of the keyboard file

TRUE
SKIP -- keyboard file has terminated or failed
11}

6.7 Example programs using the I/O libraries 77

The fold headed test input.error, if OK tabulate:
{{{ test input.error, if OK tabulate
IF

{{{ d4input erroi
input.error <> 0

SEQ
write.full.string (screen, "File reading error: ")

write.int (screen, input.errxor, 0)
newline (screen)

}1}
TRUE
SEQ
write.text.line (screen,
"These are the numbers you typed")
{{{ write the table of j real numbers
newline (screen)
SEQ i = 0 FOR j
SEQ
write.real32 (screen, ax[i], 10, 10)
newline (screen)
}}}
13}

Note that as a file can only be read to its end (using these simple procedures), the interface procedure
keystream. sink is called after the application code to ensure that the procedure
keystream. from. £file will terminate.

This example avoids the need to systematically change the names of the parameter channels keyboard and
screen by means of channel abbreviations renaming locally declared channels with these same names.

78

6 Running programs within the TDS

7 Configuring programs and loading
transputer networks

71 Introduction

To make effective use of transputer networks, an application must be expressed as a number of parallel
processes. Once this has been done, performance requirements can be achieved by adapting the application
to run on a number of transputers. To do this the programmer adds information describing the link topology
and describes the association of code to individual transputers. This is called ‘configuration’. This chapter
describes how to configure a program and how to load it onto a transputer network.

7.2 The transputer configuration and loading utilities

This section describes the utilities which enable the user to configure an occam program for a network of
transputers, and then load the code into the network for execution.

A section of occam to be allocated onto a processor must be contained within an SC fold. The initial step
in creating a configuration is separate compilation of each procedure which is to be loaded as the code for
a transputer. The resulting SCs must then be collected together into a filed fold, to which the
utility is applied with the parameter set to PROGRAM. This makes a PROGRAM foldset.

This PROGRAM then requires the necessary configuration statements to be added to describe the inter-
connections and to call the required procedures on the desired processors. The configuration language is
described in the next section.

These steps must be followed, even if the network contains a single processor. In the case of a single
processor, the procedure loaded may have no formal parameters; in all other cases, the procedure loaded

on any processor must have at least one channel parameter which corresponds to a transputer link to enable
code to reach that processor.

The utilities used for configuring and loading transputer networks are as follows:

checks that an occam PROGRAM is a valid configuration and produces the necessary code to call
the individual procedures to be loaded on each processor.

when applied to a configured PROGRAM fold, creates a fold containing a list of the inter-
processor link connections of the target transputer network, the boot order of the processors in the network
and the memory map on each processor.

extracts and links all the code in an 0ccam PROGRAM or SC into a single fold.

loads a transputer network with a previously configured program.

73 The configuration description

The allocation of code to processors in a transputer network is achieved using two occam language exten-
sions:

PLACED PAR
PROCESSOR number transputer.type

These configuration constructs, and the mapping of inter-process channels onto transputer links, enable the
configuration utility, the configurer, to identify the code destined for a specific processor and to check that the
network described can be loaded.

80 7 Configuring programs and loading transputer networks

The code for any processor consists of a single procedure, contained within an SC fold, and the code which
calls that procedure. Such a procedure becomes a process running in parallel with other similar processes
on other processors in the network. The inter-processor channels are mapped onto transputer links. One of
the processors in the network is connected to the TDS, to allow the system to be loaded. This is known as the
‘root processor’. There must be a route, via transputer links, from the root processor to all other processors,
to allow the network to be loaded.

The processor number is the logical identifier of that processor and may be any value in the integer range.
These numbers just identify the processor in messages from the TDS software; they serve no purpose in the
allocation.

n The root processor of any network must always be the first processor declared in the configuration.

The transputer.type part of the PROCES SOR statement specifies which type of transputer is placed at this node
in the network. This information is used by the configurer to check that the process allocated to processor has
been compiled for the correct target transputer. Valid transputer types are T8 (IMS T800), T4 (IMS T414)
and T2 (IMS T212 or IMS M212).

An SC procedure may be allocated to any number of processors in the network. A procedure is exported
from the host to the network once, each recipient processor taking a copy of the code. Only those procedures
in the PROGRAM which are actually allocated to a processor are exported to the network.

The PLACE statement is used to tie 0ccam channels to processor links. A channel which is placed at a link
twice must be placed at an input link address on one processor and at an output link address on a different
processor. A channel placed only once is a ‘dangling’ link to the environment outside the configuration being
described. The configuration utility produces a warning message if a dangling link is detected. For example,
the link connecting the TDS to the network program may be specified as a dangling link to allow the program
to communicate with an EXE running within the TDS.

If there is a requirement to connect a processor to itself via formal channel parameters of the process allocated
to it, a ‘soft’ channel must be used. A soft channel is a declared channel, which is not placed at a link address,
it may only be used by a single processor. Soft channels are useful for providing loop back termination of a
pipeline or for filling unused link parameters.

A configuration has the form:

Configuration-level declarations
Placed PAR

A Placed PAR has the form described in the occam 2 reference manual, with the extension that the
PROCESSOR part has the form:

PROCESSOR number transputer.type
Processor-level declarations
instance
where:
transputertype = T2 | T4 | T8
Configuration-level declarations may include:
e SC folds containing only one procedure.
« Constant definitions using VAL.
e PROTOCOL definitions.
o #USE lines referring to libraries containing only constant and protocol definitions.

o Channel declarations for placement as links between processors.

7.3 The configuration description 81

Processor-level declarations may include:
o Placement of configuration-level channels at link addresses.
o Constant definitions.
o Variable declarations.
o Placement of variables.
o Abbreviations and retypes of variables.
e Channel declarations for use as ‘soft channels’ on this processor.

Note that procedures to be used at configuration level may not be taken from a library; libraries used at
configuration level may only contain constant and protocol definitions.

Configuration examples
The structure required for loading a single processor system is:

{{{ PROGRAM single processor
{{{F souzce
... SC example.sc

PROCESSOR 0 T4
example.sc ()

11}

}}}

The structure required for loading a system consisting of eight processors in a pipeline, seven of which contain
the same program is:

{{{ PROGRAM pipeline

{{{F souzce
... SC element (CHAN OF INT32 in, out, VAL INT board.no)

... 8C pipe.end (CHAN OF INT32 in, out, VAL INT boazrd.no)
VAL last IS 7 :

VAL input.links 18 [5, 7, 6, 7, 5, 7, 6, 7] :

VAL output.links IS [0, 2, 1, 1, 0, 2, 1, 1] :

[last + 1]CHAN OF INT32 links :

PLACED PAR
PROCESSOR 0 T4
PLACE links[last] AT input.links[0] :
PLACE 1links[0] AT output.links[0]

pipe.end (links[last], links[0], O0)

PLACED PAR i = 1 FOR last
VAL in I8 i -1":
VAL out IS i :
PROCESSOR i T4
PLACE links[in] AT input.links[i] :
PLACE links[out] AT output.links[i] :

element (links([in], links[out], i)

-

-
D

82 7__ Configuring programs and loading transputer networks

7.4 Configuring a program

A program is configured using the utility applied to a PROGRAM fold describing the configuration. The
utility will compile any nested compilation units which need to be compiled, and link the SC for each processor.
It will then check the configuration statements to ensure that they are consistent, and will generate the loading
and running information for each processor.

The utility [COMPILATION INFOJ can be used to see the results of configuration. Applied to a configured PROGRAM
fold, it creates another fold in the foldset which can be opened and viewed, listing the processors and their
connections, and giving a memory map for each processor.

After configuration has been completed, the network can be loaded. There is an additional utility [EXTRACT),
which will collect together all the code within a program into a single filed fold, called a CODE PROGRAM fold.
It is not necessary to use this utility before loading; it is provided so that the user can make a self-contained
code file and separate it from the program source (when, for example, developing the source code further
while keeping a backup copy of the last loadable code file produced).lt is also used for creating a ‘standalone
program’ (see chapter 8).

For configurations containing different processor types, the utility should be applied to each processor
SC, supplying the processor type as a parameter. Then should be applied to the PROGRAM fold

to configure the network.

7.5 Connecting a network to the TDS

Before an application can be loaded onto a transputer network from the TDS, the network must be connected
to the TDS. This section outlines how to do this; for a detailed description of the connections from the board
running the TDS, see the appropriate board manual.

The transputer network is connected together by transputer links; the topology of the network must match
that described in the configuration description, otherwise the loading will fail. The network is loaded via a link
out of the host transputer (the transputer running the TDS) to one of the transputers in the network: the ‘root
transputer’. The TDS need only be connected to this one transputer; it will boot this transputer over the link,
and send loading information to it. The root transputer will boot the transputers connected to it, and route
loading information to them; these will in turn boot and load other transputers in the network, until the whole
network has been booted and loaded.

Any of the links out of the host transputer may be used to load the network, apart from the link connecting
the host transputer to the host computer.

As well as the link connection, INMOS boards also provide system control functions to monitor and control
the state of the transputer network. The system control connections on boards are chained together to allow
the whole of the network to be controlied from the host. The control connection consists of three signals:

Reset This is a signal from the host transputer to the network, which will reset all the transputers in the
network, ready for loading.

Analyse This is a signal from the host transputer to the network, which will bring all of the transputers in the
network to a controlled halt, so that their state can be examined.

Error This is a signal from the network to the host transputer, indicating that one of the transputers in the
network has set its error flag.

For a more detailed description of system control connections, see the appropriate board manual. For a
detailed description of the effect of the Reset, Analyse and Error signals on the transputer, and a description
of how a transputer boots, see the Transputer Reference Manual.

7.6 Loading a network 83

7.6 Loading a network

A network is loaded using the utility. The utility may be used on a PROGRAM fold, or on a
CODE PROGRAM fold which has been extracted. Among the parameters for the utility are
the link out of the host transputer that should be used for loading, and what type of board the TDS is running
on (to tell the utility where the subsystem is). As the network is loaded, messages are displayed to indicate
the loading stage.

A detailed description of the loading mechanism is described in INMOS technical note 34 ‘Loading Transputer
Networks’. An outline of the mechanism is included here, for information.

A communication protocol exists between the host transputer and a target transputer network to direct the
loading of code to the desired place in each transputer. The communication consists of bootstrap packets,
routing information, address information, load information, code packets and execute items.

The bootstrap code for each transputer in the network is sent first. The bootstrap code is loaded at the
lowest available address (nearest to MOSTNEG INT). The bootstrap loads the distributing loader at the first
available addresses above itself. After all the transputers in the network are booted, the code of each of the
procedures allocated to processors in the configuration description is exported to the network preceded by
the necessary routing and loading information. Following this, the code which calls the procedures (the main
body) generated by the configurer is sent to each processor in turn and then each processor is told to start
executing the loaded program.

7.7 Using the transputer network tester

When configuring an application, and loading it onto a transputer network, it is important that the network is
connected in the configuration expected by the loader, otherwise the loading will fail. It is equally important
to be sure that the hardware in the network is all working properly, and that there are no communication
problems due to (for example) poor connections, electrical noise, or links set to the wrong speed.

Even with the messages produced while the network is being loaded, ‘it may still be hard to track down the
cause of the error.

A program called the ‘Transputer network tester’ is provided to aid in investigating problems of this kind. It is
described in detail in section 15.2. Some of the facilities provided by this program are as follows:

o Explore a network of transputers and establish its topology, displaying the type of each transputer
in the network (M212, T212, T414, or T800).

o Check the actual connected topology of the network against the topology specified by the configu-
ration description in a PROGRAM fold, and report any differences between the two.

o Test the memory of each transputer in the network.
o Reset or analyse all the transputers in the network.

The transputer network tester can be used to establish that the transputer network is functioning correctly,
and that it matches the configuration expected by the programmer. This allows the programmer to reduce or
eliminate the possibility of hardware faults when investigating problems in loading and running an application
on a network.

The transputer network tester uses a program called a ‘worm’ which distributes itself through all transputers
in the network. For an introduction to how worms work, see INMOS technical note 24 ‘Exploring Multiple
Transputer Arrays'.

84 7 Configuring programs and loading transputer networks

7.8 Running the pipeline sorter on a target transputer

Returning to the pipeline sorter example described in the previous two chapters, this section describes how
to run the example on a second transputer, loaded from the host transputer running the TDS. The host
transputer will be used to monitor the behaviour of the target system.

The occam code for the application must be separated from the code used for monitoring. This has already
been planned for by defining the code modules in separate procedure declarations.

This example is contained in the directory \TDS2 \TUTOR, in EXAMPLES . TOP, so while reading this section
it will be useful to start up the TDS in this directory and follow the instructions given.

A later section of this chapter shows how to configure the application to run on multiple transputers.

7.8.1 Creating a PROGRAM fold

A PROGRAM fold describes the configuration of a system and the placement of occam procedures onto
distinct processors.

For a single target transputer the PROGRAM fold contains the filed fold progl .tsz which in turn contains
one SC, and configuration information about the target hardware.

{{{ PROGRAM progl
{{{F progl.tsr
#USE header

.. SC app.tsr
... configuration
11}

11}

The SC contains the application code described in the previous discussion of this example. Note that the
application code had to be executed in parallel with other processes in order to be able to move the code to
another processor.

{{{ PROGRAM progl
{{{F progl.tsr
#USE header

{{{ 8SC app.tsr

{{{F app.tsr
#USE header
#USE problem

PROC application (CHAN OF string in, out)
[string.length+1]CHAN OF letters pipe:
PAR

inputter (in, pipe[0])
PAR i = 0 FOR string.length

element (pipe[i], pipe[i+l])
outputter (pipe[string.length], out)

configuration

Sy 8 g gt a e
A od gt g

}
}
}
}}}

The application code is the same as the TDS version (see chapter 6) although there is now a procedure
declaration around it. The procedure is needed to provide a name, implementation detail and parameters for
placing this section of code on a processor.

7.8 Running the pipeline sorter on a target transputer 85

Notice that all the information needed for the application code must-be contained inside the SC fold, including
the library references. The library header is used at the start of the PROGRAM fold so that the compiler can
understand the protocol stzing used in the SC procedure’s parameter list.

The configuration fold looks like:

{{{ PROGRAM progl

{{{F progl.tsr

... SC app.tsr

{{{ configuration

... link constants

CHAN OF ANY app.in, app.out:

PROCESSOR 0 T4
PLACE app.in AT linkOin:
PLACE app.out AT linkOout:
application (app.in, app.out)

}}}

}}}

}}}

The configuration places the SC procedure application onto a transputer which has been given the
logical number 0. The transputer type is T4, denoting an IMS T414. The type of the transputer is needed for
the system to know how to initialise it at boot time. The system also checks to make sure that application
was compiled with the compiler parameter target .processoxr set to T4.

The instance of application has two actual channel parameters, app . in and app.out. These coore-
spond to the formal channel parameters in and out. The PLACE statement is used to map these occam
channels onto the transputer’s serial link hardware. The addresses 1ink0Oin and 1inkOout are contained
in the fold 1ink constants. The communication on app.in and app.out has been directed onto
transputer link zero (the link supports two occam channels, one input channel and one output channel).

In this configuration, link 0 is a ‘dangling link’. Once the PROGRAM has been loaded into the target transputer,
it will run until the first communication made on app.in or app.out. It is up to the programmer to connect
a system to this link which will communicate with application in order for it to continue; otherwise it will
wait forever. In this example the monitox process will be run within the TDS to communicate with the target

system.

7.8.2 Monitoring the target with an EXE
To monitor the target system a program must be run as an EXE. This is as follows:

{{{ EXE interface

{{{F interface

#USE header

#USE monitor

CBAN OF string app.in, app.out:
PLACE app.in AT linkout2:
PLACE app.out AT linkin2:

monitor (keyboard, screen, app.in, app.out, TRUE)

}}}
}}}

The EXE consists of an instance of the library procedure monitor with its keyboard and screen pa-
rameters connected to the TDS keyboard and screen channels, and the other channels connected to the
application, over link 2 of the host transputer.

The monitor procedure has its parameter using.subsystem set to TRUE. This enables monitor to
give the programmer an error message should, for any reason, the target transputer set its error flag.

86 7__ Configuring programs and loading transputer networks

To show how this is done, it is necessary to look in more detail at the body of the screen handling process,
in the monitozx procedure. The monitor procedure was described earlier, in Chapter 5, but there the details
of what happens when using.subsystem is TRUE were not discussed.

The main part of the screen handler looks like this:

{{{ body
WHILE going.in OR ((NOT using.subsystem) AND going.data)
SE!

clock ? waketime
waketime := waketime PLUS one.hundreth.of.a.second
ALT
going.in & in ? char
... print keyboard character on screen
going.data & data ? length::string
... print data from application on screen
monitoring & clock ? AFTER waketime
... Aif monitoring is TRUE, poll subsystem error pin
draw.cursor (kb.window)
11}

The screen handler is repeatedly waiting for one of three alternatives. Either keyboard characters are echoed,
a string of data comes from the application or a timeout happens should neither of the other two have occurred
in one hundredth of a second. If the timeout occurs then the program tests the subsystem error pin. If this
indicates an error then a message is sent to the user, after which the user can terminate the monitor and use
the TDS for subsequent analysis (e.g. running the debugger).

If the TDS is executing on an IMS B004 board then the subsystem logic is decoded through a PAL that can
be accessed by software. The subsystem reset and error are at machine address zero (in the middle of
the transputer’'s address space). 0ccam addresses start from zero and are word aligned so a program can
access the subsystem by placing a port at #20000000.

This can be done by the following declarations:

VAL subsys.error.locn IS #20000000:
PORT OF BYTE subsys.error:
PLACE subysys.error AT subsys.error.locn:

Reading from this port, and finding bit zero set, detects the assertion of the subsystem error pin. This can
be done with the following occam code:

BYTE error:

SEQ
subysys.erroxr ? error
IF

error = 1 (BYTE)
... Error flag set!
TRUE
SKIP
7.83 Configuring and running the example

The following steps are now required, in the following order, to run the application as described on a two
transputer network.

1 Run[COMPILEjon ... EXE interface.

2 Configure the PROGRAM by running on ... PROGRAM progl. This will also compile
and link the SC application.

3 Connect link two on the host transputer to link zero on the target transputer.

7.9 Running the pipeline sorter on a four transputer network 87

4 Connect the ‘Up’ port from the target transputer board to the subsystem connection on the host
transputer board.

5 Load the PROGRAM. To do this invoke the utility on the PROGRAM fold. This will
extract the code from the PROGRAM fold and transmit it to the network. It will prompt for a parameter
indicating which host transputer link to use for the loading. The required value is link two, which is
also used by the monitox program to monitor the target from the host.

6 Getthe EXE monitozr, using and run it, using This establishes communication
between the two transputers, so that the user can now supply data to the running application. Note
that the synchronisation on link communication holds up the PROGRAM until the EXE outputs some
data.

The next section shows how to distribute the application over multiple transputers.

7.9 Running the pipeline sorter on a four transputer network

This section shows how the code for the pipeline sorter example can be distributed over four transputers in
a network. The assumption made here is that the four transputer target network is an IMS B003 transputer
evaluation board. In the IMS B003, the system control lines are preconnected so that the host board can
automatically reset all the transputers simultaneously. Every transputer on the IMS B003 has two links
available on the edge connector (links 0 and 1) while the other two are preconnected in a square array (links
2 and 3).

7.9.1 A PROGRAM for four transputers

The PROGRAM fold appears as follows:

{{{ PROGRAM prog4

{{{F progd.tsx

#USE header

... SC PROC interface

... S8SC PROC worker
link constants

-- number of transputers must match value used inside SCs

VAL number.of.transputers IS 4:
configuration

}}}

11}

This example has two separately compiled procedures: interface and worker.

The procedure interface connects to the monitor as well as doing string to letter protocol conver-
sions and some element processes.

The procedure worker is a number of element processes running in a pipeline.

The number of element processes on each transputer depends on the number of transputers available,
hence the constant number .of.transputers. This constant is needed at configuration level, as will
be seen later, and in both SC folds. The constant could have been put into a header library. The element
processes are divided into four equal sets, and one set is run on each processor. Any processes remaining
(in the case where the number of elements is not divisible by four) are run on the root processsor.

See figure 7.1 for a picture of how the pipeline sorter can be split up over four transputers.

88 7 Configuring programs and loading transputer networks

n
T

-

keyboard.haridler

interface

screen.handier

outputter

element

element
processes
element

Figure 7.1 Pipeline sorter running on four transputer networker

element

element
processes

element

link{2]

7.9.2 The root transputer
The procedure intexrface runs on the root transputer in the network. This is as follows:

{{{F PROC interface

#USE header

#USE problem

{{{ extra constants for configuring for 4 transputers

VAL number.of.transputers IS 4:

VAL number.of.elements IS string.length:

VAL elements.per.transputer IS number.of.elements/
number.of.transputers:

VAL remaining.elements IS number.of.elements -

(elements.per.transputer * number.of.transputers):
}}}

PROC interface (CHAN OF string from.host, to.host,
CHAN OF letters to.pipe, from.pipe)
VAL elements IS elements.per.transputer + remaining.elements:
[elements]CHAN OF letters pipe:
PRI PAR
PAR -- prioritise processes using links
inputter (from.host, pipe[0])
element (pipe[elements - 1], to.pipe)
outputter (from.pipe, to.host)
PAR i = 0 FOR elements - 1
element (pipe[i], pipel[i+l])

11
The procedure intexface has three processes at high priority and a number at low priority. The high

7.9 Running the pipeline sorter on a four transputer network 89

priority processes are those which communicate with the transputer links whereas the others only use internal
channels. This prioritisation of link communication can enhance the throughput of distributed systems. All
the above processes, regardless of priority, are running in parallel with each other.

The number of element processes in interface depends on number.of.transputers and how
many element processes all the other transputers have. The total number of element processes in the
target system must add up to number.of.elements. If the value of string.length is divisible by 4
then interface will include a quarter of the required element processes.

7.9.3 The three other transputers

The three other transputers in the network run copies of the procedure workex. This procedure is as follows:

{{{F PROC worker
#USE header
#USE problem
... extra constants for configuring for 4 transputers
PROC worker (CHAN OF letters in, out)
VAL elements IS elements.per.transputer:
[elements]CHAN OF letters pipe:
PRI PAR
PAR -- prioritise getting the links started
element (in, pipe[0])
element (pipe[elements-2], out)
PAR i = 0 FOR elements - 2
element (pipe[i], pipe[i+l])

h

The separately compiled procedure workex contains a quarter of the required element processes in a
pipeline. The two element processes that have channels mapped onto links run at high priority.

7.9.4 Configuration for four transputers

The configuration for the IMS B003 maps intexrface onto the root transputer (it is the first mentioned in
the program) and maps workex onto all three remaining transputers.

Figure 7.2 shows how the processes are mapped onto the IMS B003.

90 7 Configuring programs and loading transputer networks

tinkt | | tink1 | | linko | |
HOST PROCESSOR 0 T4 X PROCESSOR 1 T4

EXE) l/éc\ sC
monitor Qterface Wer

o

i
| [Pl

link0 I |
link0
link3

|]exun] Uy
IMS B003
link2 link3
Z g
o B e B
worker worker —

tink1 | |

link2

PROCESSOR 3 T4 PROCESSOR 2 T4
|]oxuu | | B

Figure 7.2 Pipeline sorter running on one IMS B003

The configuration is as follows:

{{{ configuration
CHAN OF string app.in, app.out:
[number.of.transputers]CHAN OF letters link:

PLACED PAR
PROCESSOR 0 T4
PLACE app.in AT linkOin:
PLACE app.out AT linkOout:
PLACE link[0] AT link2out:
PLACE link[number.of.transputers - 1] AT link3in:

interface (app.in,app.out,link[0],
link [number.of.transputers -1])

PLACED PAR i = 1 FOR (number.of.transputers - 1)
PROCESSOR i T4

PLACE link[i - 1] AT link3in:

PLACE link[i] AT link2out:

worker (link[i - 1], link[i])

11}

For the three workex processes a replicator has been used with index i having the values 1, 2 and 3. All
the transputers are of type T4.

The interface is connected to the host through app.in and app.out on link 0 whilst the workexrs are
connected to each other and to interface through the link 2 to link 3 connections provided with the IMS B003
board.

The steps to configure and run the example are the same as in the previous example, where the program
was running on one transputer.

8 Standalone transputer programs

8.1 Introduction

The last two chapters have discussed running programs within the TDS, and running programs on a network
loaded from the TDS. However, most applications will, once they have been developed, run separately from
the TDS. This chapter describes how to export a program from the TDS so that it can be run in a standalone
manner.

Programs running on a transputer network separate from the TDS need to be booted onto the network. This
can be done in two main ways: either the network is booted from a ROM, contained in one of the transputers
in the network, or the network is booted from a host computer connected to the network. Booting from a ROM
is discussed in chapter 10; in this chapter we will concentrate on programs booted from a host computer, via
a link.

Where a host computer (such as the IBM PC) is used to boot a network, it may also be convenient for the host
computer to provide some facilities (such as terminal I/O and filing system support) to the program running
in the network. A program which boots a network and provides host support is called a server.

Two servers are provided with the Transputer Development System release.

The host file server boots up a transputer network with a program in a DOS file, and then supports a
protocol which allows the program to open, read and write files and use the standard streams for
terminal input and output. This server is intended as a starting point for users who want to write a
server for their application.

The TDS file server boots a program into a transputer network and then supports a more complicated pro-
tocol designed to provide the TDS with a terminal and filing system. This server is intended primarily
for users wishing to port the TDS onto a different host; however it also contains facilities which may
be useful as a starting point to users writing servers for their own applications.

The simple file server is written in C, with a small (optional) section of assembler. It is the same as the server
provided by INMOS with the compilers for the non-occam (‘alien’) languages, and is also referred to as the
‘alien file server’.

Versions of the TDS file server are provided in 8086 assembler and in C. The 8086 assembler version is
the version actually used to support the TDS on the IBM PC and NEC PC. The version in C contains all
the facilities required to support the TDS, and is intended for porting the TDS to a non-8086 host. It is not
identical to the 8086 version in functionality, as it lacks certain operating system specific features, such as
the interrogation of the directory file to retrieve . TOP files.

Interface procedures can be written to be run in parallel with user programs using the simple input/output
procedures and either of these servers. By developing programs within the TDS, with the addition and/or
substitution of interface procedures in mind, the transition to standalone programs can be greatly simplified.

The sources of these servers are provided with the TDS. For details of where to find them, and how they can
be recompiled, see the ‘Delivery Manual'.

8.2 Using the host file server

Once the host file server has booted a file into a network, it supports a protocol over the link to the root
transputer (the first transputer in the network). This protocol is described in detail in section 16.3, of the
‘System interfaces’ chapter.

There are two I/O libraries provided which support the use of the host file server protocol. These are afiler
and afinterf.

The library afilex contains a set of procedures corresponding to the operations supported by the host file
server, such as opening files, reading and writing blocks of data. These procedures may be used by the

92 8 Standalone transputer programs

process in the root transputer which is connected to the channels to and from the host.

If the structure of the application requires that more than one process in the application needs to access the
services of the host file server, then the procedure a£.multiplexoxr from the library afintex£ may be
given control of the channels to and from the host. This process fans out the file server protocol to a number
of channel pairs. Each process connected to these channel pairs may then make use of the procedures in
afiler to request host file server operations.

Two other procedures in afintexf should be mentioned: these are
e keystream.from.afserver
e scrstream.to.afserver

These procedures allow processes written to read from a ‘key stream’ or write to a ‘screen stream’ (see
chapter 6) to be run in a standalone fashion with the host file server. This is the recommended way to write
programs which have to run both within the TDS, and as standalone programs.

The library afilex is described in section 14.20. The library afintexrf is described in section 14.21.

8.3 Creating a standalone program
The steps in creating a standalone program are as follows:

Firstly write the program as a PROGRAM configured for the required transputer network. Even if the program
is to be run on a single processor it must be described as a configuration. Use to compile and
configure the program for the network.

Secondly, use to extract all the code and loading information for the network into a single file. It is
important that is used with the parameter output . fold set to BOOTABLE (not DIAGNOSTIC)
and the parameter £irst .processor.is.boot.link set to TRUE. If either of these are wrong, the
host file server will fail to boot the program into the network.

Thirdly, the extracted file needs to be exported from the TDS into a standard host operating system file. The
utility will leave a CODE PROGRAM fold as the last item in the PROGRAM foldset. Use
from the file handling utilities to write this out to a DOS file. The resulting file may be used by the host file
server.

8.4 The pipeline sorter

This section describes how to configure the sorting application described in chapter 5§ so that it can be run
as a standalone program from DOS.

The source of this program is contained in the fold marked

Running the example as a standalone program
in the tutorial fold structure. The contents of this fold are as follows:

{{{ PROGRAM prog
{{{F pzog
#USE header
... SC app.tsr

.. configuration
11}
11}

8.4 The pipeline sorter 93

The source of the SC application is as follows:

#USE header

#USE problem

#USE monitor

#USE interf

#USE afinterf

PROC application (CHAN OF ANY from.host, to.host)

[string.length+l] CHAN OF letters pipe:
CHAN OF string app.in, app.out:
CHAN OF INT keyboard:
CHAN OF ANY screen:
CHAN OF BYTE bytestream:
CHAN OF BOOL stopper:
CHAN OF BYTE error.not.used:
[1]CHAN OF ANY to.af.not.used, from.af.not.used:
VAL dont.use.subsystem IS FALSE:
VAL one.hundredth.of.a.second IS 150:
PAR
SEQ
PAR
monitor (keyboard, screen, app.in,app.out, dont.use.subsystem)
scrstream.to.ANSI (screen, bytestream)
inputter (app.in, pipe[0])
PAR i = 0 FOR string.length
element (pipe[i], pipel[i+l])
outputter (pipel[string.length], app.out)
stopper ! TRUE -- close down multiplexor
af.multiplexor (bytestream, keyboard, error.not.used,
to.af.not.used, from.af.not.used,
from.host, to.host, stopper,
one.hundredth.of.a.second)

This program makes use of the standard library afintexr£, which provides a number of processes which
may be run in parallel with an application to convert its input and output into communications with the host
file server.

As before (in chapter 6), where this example was run as an EXE within the TDS, the monitor process is con-
nected to the application, and communicates over channels conforming to the TDS screen and keyboard proto-
cols. Since the program is not going to run within the TDS, but with a host file server, the keyboard and screen
channels need to be connected to the terminal facilities provided by the host file server. This is done by the
process af .multiplexoxz (available in the library afintexr£) and the process scrstream.to.ANSI
(available in the library intex£). The process scxstream.to.ANSI converts the TDS screen protocol
into a stream of bytes which will drive the terminal of the host computer. The process af .multiplexor
communicates with the host file server over a pair of channels, supplying keys from the keyboard and sending
the stream of characters to the screen.

There are some extra parameters to af .multiplexoz. Firstly there are some unused channels. These
correspond to features of the af.multiplexoxr which are not used in this example, and the reader need
not be concerned with them. Secondly, there is the stoppex channel parameter. This is used to indicate
to the af .multiplexor that the rest of the application has terminated, so the multiplexor can terminate
(in doing this it will also terminate the host file server, and return the user to the DOS command level).

94 8 Standalone transputer programs

The code for the configuration is as follows:

VAL 1linkOin IS 4:
VAL linkOout IS O:

CHAN OF ANY from.host, to.host:

PROCESSOR 0 T4
PLACE from.host AT linkOin:
PLACE to.host AT linkOout:
application (from.host, to.host)

* The steps in creating the standalone program are as follows:

1 Both the compiler utility set and the file handling utilities will be needed. If necessary, get them now
by pressing the key. If using the standard toolkit fold, this should finish with the compiler
utilities as the current utility set.

2 Move to the PROGRAM fold contained in the fold marked
Running the application as a standalone program in the tutorial fold structure.
Look at the contents of this fold to check that it corresponds to the program text given earlier.

3 Close the PROGRAM fold and press the key. The standard compiler parameters are needed,
so if it prompts for the parameters, just press [EXIT FOLD].

4 When the compiler has finished, press to extract all of the code for the configured program
into a single file. requires two parameters, in separate parameter folds. Make sure that
these are the values given:

VAL output.fold IS BOOTABLE:

VAL first.processor.is.boot.from.link IS TRUE

If these are not the supplied values use to change them, then press
after selecting each parameter. The extractor will then run.

5 Now open the PROGRAM fold; it should look something like this:

{{{ PROGRAM prog

...F source

...F desc

...F code

...F CODE PROGRAM prog

}1}

The last line is the CODE PROGRAM fold containing all of the code. Move the cursor down onto
this line.

6 Now the file handling utilities are needed; switch to these using It may be appropriate to
use the key to check that the right utility set is current.

7 The last utility in the set, [WRITE HOST), will be used to write a TDS fold out into a standard DOS file.
With the cursor on the CODE PROGRAM fold, press It will prompt for one parameter
with the line:

VAL HostFileName IS "":
Set the string in this parameter line to be the file name required, for example:
VAL HostFileName IS "sorter.bd":

Now press to let the utility continue. When it has finished it will have written the file
sorter.bd, into the current directory.

8.4 The pipeline sorter 95

8 Now exit the TDS (Press until reaching the top level and then press [FINISH]).

9 To run the program, invoke the host file server as follows, ensuring that the following line, including
spaces, is typed exactly as shown:

afserver -:b sorter.bd

The -:Db flag instructs the host file server to use the file sorter .b4 as the file with which to boot
the transputer.

The sorter application should now run. As before, type strings of letters followed by to run
the sorter, type % to terminate the program.

96

8 Standalone transputer programs

9 Debugging

This chapter describes the source-level debugger provided with the TDS. The TDS debugger provides an
interactive environment for the post-mortem debugging of 0CCam programs running on transputer networks.
It allows a user to inspect the processes which were running on each transputer, both at the occam source
level, and at the transputer instruction level. It can also display the contents of variables, channels, and other
data items, for any process running on any transputer. The mechanisms which the debugger uses are also
described. See section 15.1 for a full description of the debugger.

9.1 Using the debugger

The debugger is provided in the standard Autoload fold in the toolkit fold, so it may be loaded using the
key. It is an EXE, so can be run using the key. Before running the debugger, the cursor
should be placed on the foldset containing the source of the program to be debugged.

A program to be debugged should be compiled with the compiler parameter create.debugging.info
set to TRUE. It should also be compiled with erroz . checking set to HALT. This ensures that if any errors
occur while the program is executing, the transputer will halt immediately. The other error modes (STOP and
REDUCED) will not have this effect, and so in these modes the debugger can only be used after a running
program has been externally halted; the program will not halt itself when an error occurs.

A running occam program may halt for a number of reasons. Examples of these are:

e A STOP process, or a process which behaves like STOP (such as an IF with no true guards) has
been executed.

e An array access is outside the range of the array.
e An arithmetic error, such as overflow or divide-by-zero has occurred.
e An array element is being aliased at runtime.

See section 15.1.9 for a full list of possible causes of run time errors.

When one of these errors occurs, the debugger can be used to pinpoint the line of 0ccam causing the error,
and investigate the state of that process and other processes in the system.

The debugger is not guaranteed to find all current processes; it may not be possible to find processes which
have deadlocked waiting for communication. This is discussed in more detail later in the chapter.

9.2 Debugger facilities

The debugger’s facilities divide roughly into two sets. The first set is concerned with the 0ccam source code,
and allows the user to view the transputer network from the occam high level language level. This requires
that the occam program has been compiled with the create .debugging.info compiler option set to
TRUE. The second set of facilities views the transputer network from the assembly code level, and does
not require the debugging information produced by the compiler. Either set of facilities may be used on any
transputer in the network.

98 9 Debugging

9.2.1 Symbolic facilities

Given any transputer instruction address, the debugger can ‘locate’ to the corresponding 0ccam source line
(i.e. it can find the line in the source fold and display it). In particular, this means that it can display the
occam source line corresponding to any of the following:

o The last transputer instruction executed.

e Any process running in parallel.

e A process waiting for a timer.

e A process waiting for communication on a transputer link.

Processes waiting for communication on internal channels may be found by inspecting the contents of that
channel, as explained later.

The ability to locate to any occam source line requires the source to be available. When the location is in a
library the source code may not be available. However, if the library was compiled with the debugging option
enabled, the debugger can discover the line containing the call to the library routine, and will display that line
instead.

After ‘locating’ the source line, the TDS editing environment is available within the debugger, so that the
occam source of the program can be browsed, and if required, modified ready to recompile. The extra
debugging features are accessed by pressing special function keys, such as or [INSPECT] within this
environment. The values of constants, variables, parameters, abbreviations, array elements, and channels,
which are in scope at the located line, may be inspected. Non-local variables and channels may also be
accessed. Values are displayed in hexadecimal, and in any other normal representation for their type.

From any occam location the user can ‘backtrace’, or discover where its enclosing procedure or function was
called from. This works even if the source of a library is not present because the library has been compacted.
This can be repeated for each nested procedure or function call, to form a complete stack trace. The values
of variables, etc., may be examined at any stage.

The user can also discover the type of any symbol currently in scope, and the address and workspace
requirements of any procedure or function.

By inspecting a channel, the debugger can discover the instruction pointer and workspace pointer of any
process waiting for communication on that channel. It can also use these values to ‘jump’ directly to the
process which is waiting (i.e. locate the currently active position in that process), and then continue debugging
that process.

9.2.2 Lower level facilities

The debugger can display the transputer’s state after being analysed: the instruction pointer (program
counter), workspace descriptor, process queue pointers, error, and halt-on-error flags. It can read the process
and timer queues, to display a list of the instruction and workspace pointers of the processes on the queues.
It can also display any processes waiting for communication on the transputer links, or for a signal on the
Event pin.

Memory can be displayed in ASCII, hexadecimal, or as any other occam type. It can also be displayed as a
simple disassembly of transputer instructions. This disassembly simply translates memory contents directly
into transputer instructions; it does not insert labels, nor provide symbolic operands. The debugger can also
provide a ‘memory map’ of each transputer in the network, showing the positions of code and workspace.

9.3 Debugging a program running on a network of transputers 99

9.3 Debugging a program running on a network of transputers

When a program has been loaded onto a network of transputers and run, an error may occur in one of the
transputers in the network. This may be indicated to the TDS by the Error signal on the transputer subsystem.
The example program in chapter 7 shows how a monitor process can be run as an EXE within the TDS to
monitor the state of the network. After an error has been detected, the monitor program can finish and the
debugger program may be run to analyse and examine the state of the network.

The monitor process running within the TDS could also be used to assert Analyse on the subsystem, to bring
the network to a halt even if no error has occurred. In this case the debugger may be used to examine the
network, but it should be told not to assert Analyse when it starts up.

The debugger is an executable procedure, or EXE, which should be run while the cursor is positioned on the
compilation fold of an occam PROGRAM which has halted, either because an error has occurred, or because
of user intervention. It is not possible to restart the 0ccam program once it has been stopped.

The debugger will start by locating to the source line on which the error occurred, or (if no error has occurred)
by showing the state of the first processor in the network. The session using the debugger can then proceed.

9.4 Debugging a program running within the TDS

If an error occurs while running an EXE program within the TDS, then the error will be detected by the TDS
server, which will display the message:

Transputer error flag set
Press [SPACE] to reboot root transputer, [ESC] to terminate.

This condition can also be forced by interrupting the TDS; this is done using ‘control-break’ on the standard
IBM PC keyboard.

Pressing the space bar will cause the TDS to be rebooted on the host transputer.. However, in order to debug
the program which has crashed, the data of the program must be saved before the TDS is restarted. When
rebooting the TDS, the TDS will offer the user the option of doing a ‘core dump’. This saves the memory
contents and state of the host transputer as a file on the host filing system. -

Once the TDS has been restarted, the debugger can be loaded. If the debugger is then executed while
positioned on the compilation fold of the EXE that crashed, it can read the core dump file to determine the
state of the program when it crashed. The full range of debugging features are then available to debug the
EXE, as if the program were running on a single transputer in isolation.

9.5 Debugging a standalone program

The debugger can also be used to debug a program which has been developed under the TDS, but is being
run as a standalone program with its own server (such as the host file server). Here it is likely that the host
transputer, which is going to run the TDS, is also being used as the root transputer in the network, and
communicating with the server on the host. So, in order to be able to examine the state of the whole network,
the data space of the root transputer must be saved before the TDS is restarted. The rest of the network can
be examined over the link to the host transputer in the normal way.

If the standalone program crashes, the TDS should be restarted with the —x option. This boots the TDS with
the analyse signal asserted. The TDS will give the option of producing a core dump before it starts. It is
necessary to tell it how much memory to dump, as the TDS does not know how much memory was used by
the standalone program.

The debugger can then be run and used in the ‘network including host’ mode, which reads the core dump
file to determine the state of the root processor, and analyses the rest of the network in the normal way.

100 9 Debugging

9.6 A worked example

This section describes an example debugging session. The source of a program to be debugged is supplied
as part of the TDS release, in the directory \TDS2\TUTOR. Change to that directory and start the TDS
before starting this session.

The program should be compiled as a TDS EXE, with errox .checking set to HALT, for a T4 (assuming
that you are not running the TDS on an IMS T800), and executed in the normal way.

The program is a (very inefficient) program to calculate the sum of the squares of the first n factorials. It has
been structured this way for clarity, and to demonstrate some debugging methods.

#USE userio
VAL stop.real IS -1.0(REAL64)
VAL stop.integer IS -1 :

REAL64 FUNCTION factorial (VAL INT n)
REAL64 result :

VALOF
IF
n<2o0
STOP
TRUE
SEQ
result := 1. O(REAL64)
SEQ i = 0 FO
result := esult * (REAL64 ROUND i)

RESULT result

PROC feed (CHAN OF INT in, out)
INT n :
SEQ
in ? n

SEQ i = 0 FOR n
out ! i

out ! stop.integer

PROC facs (CHAN OF INT in, CHAN OF REAL64 out)
INT x :
REAL64 fac :
SEQ
in ? x
WHILE x <> stop.integer
SEQ
fac := factorial (x)
out ! fac
in ? x
out ! stop.real

9.6 A worked example

101

PROC square (CHAN OF REAL64 in, out)

REAL64 x, s8q :
SEQ

in ? x
WHILE x <> stop.real
SEQ
8q :=x * x
out ! sq
in ? x

out ! stép. eal

PROC sum (CHAN OF REAL64 in, out)

REAL64 total, x :
SEQ

total := 0.0 (REAL64)
in ? x
WHILE x <> stop.real
SEQ
total := total + x
in ? x
out ! ‘total

PROC control (CHAN OF INT keyboard, CHAN OF ANY screen,

CHAN OF REALG64 facs.to.square, square.to.sum, sum.to.control :

CHAN OF REAL64 result.in, CHAN OF INT n.out)

REAL64 result
INT n, key, char :
SEQ

wtiée.full.string_(screen,
"Sum of the first n squares of factorials")

newline (screen)

write.full.string (screen, "Please type n : ")

char := INT ’'*g’

read.echo.int (keyboard, screen, n, char)

newline (screen)

write.full.string (screen, "Calculating factorials ... ")
n.out 'n

result.in ? result

newline (screen)

write.full.string (screen, "The result was : ")
write.realé6d (screen, result, 0, 0) -- free format
newline (screen)

write.full.string (screen, "Press any key to exit : ")

keyboard ? key

—

CHAN OF INT feed.to.facs, control.to.feed :

PAR
feed (control.to.feed, feed.to.facs)
facs (feed.to. facs, facs.to.square)
square (facs.to.square, square.to.sum)
sum (square.to.sun, sum.to.control)

control (keyboard, screen, sum.to.control, control.to.feed)

)

102 9 Debugging

9.6.1 Running the example program

When you run this program, it will ask for a value for n. If you supply any number less than 100, it will execute
successfully.

Type 101; the program will fail with the message:

Transputer error flag set
Press [SPACE] to reboot root transputer, [ESC] to terminate

9.6.2 Creating a core dump
Press the space bar. After a short delay, you will see a welcome message followed by:
Options :
¢ : normal core dump
£ : normal core dump + freespace
a : standalone core dump - all of memory

8 : standalone core dump - part of memory
any other key to skip

Press ‘C’, to request a core dump. Option ‘F’ should only be used if you had used the ‘freespace’ buffer
in the program. The TDS will then ask :

Core dump filename ("core.dmp") ?

Press to accept the default filename
or enter another filename (any filename extension will be replaced by ‘. dmp’)

You will then be told:

Writing core dump to file "filename.dmp" ...

Finally, the TDS will be restarted.

9.6.3 Using the debugger
Use to load the debugger.

Now you will be able to start debugging. Move the cursor to the source of the EXE. When positioned on the
EXE fold line, you should press to start the debugger.

The screen will show:

TDS occam 2 Debuggexr - version identifier

Debugging an EXE

Read Core dump file, Ignore core dump, or Quit (C,I,Q) ?
You should type ‘C’ here, to indicate that you wish to read a core dump file. (If you type ‘I’, you can perform
a single locate to the error position, but because the debugger does not know the memory contents, it cannot

find the values of variables, etc., nor backtrace down the procedure stack). You will then be asked for the
filename:

Core dump filename ("core.dmp", or "QUIT") ?

9.6 A worked example 103

Press to accept the default filename
or enter another filename (any filename extension will be replaced by ‘. dmp’)
or type ‘QUIT (uppercase) to abort the debugger.

The debugger will then read the file to find out where the error occurred, displaying the following messages
one at time:

Reading logical name table ...

Reading Core dump file "filename.dmp" ...

Locating ...

Backtracing ...

Location was in LIB dreals, SC 1, offset 1433-Error explicitly set

It will display the program source, and leave the editor on the line causing the error. The error was actually
caused within a library for REAL64 arithmetic, but the debugger will locate to the line which the library was
called from. In this case it is inside procedure ‘squaxe’, on the line:

8q :=x * x

9.6.4 Inspecting variables

You may move the cursor around the screen, and inspect any variable. If, for example, you move the cursor
over the ‘x’, and press INSPECT], you will be informed:

REAL64 ‘x’ has value ...
9.3326215443944096E+155 (#605166C698CF1838) (at #80000360)

The debugger can display the type of any occam symbol, and its contents. Here, ‘x’ is displayed first in its
decimal form, then hexadecimal. Finally its address in memory is displayed.

If you forget which tool key is INSPECT], you may press which will display a list of keys
along the top of the screen.

You will be able to inspect the values of ‘sq’, ‘square’, ‘stop.integer’, ‘stop.real’, eic. Any value
which is in scope at the error location will be accessible. You can ‘inspect’ the values of procedures and
functions, to find out their address and workspace requirements. You will also be able to enter other folds,
and browse through the source code, to determine the context of the error. If you forget where the error
actually was, press to return there. (Press again to tell you which tool key it
is!)

Instead of moving the cursor to each symbol in turn, you may also inspect a symbol by typing in its name. If
you move the cursor to a position where it is not over any symbol, and press [INSPECT], the debugger will ask
you to type in the name which you are interested in.

9.6.5 Jumping down channels

As well as finding the error location, the debugger can be used to find out which other processes were
executing at the same time. If you point at the channel ‘out’, for example, then press it will display:
I

CHAN ‘out’ has Iptr:#80000611 and Wdesc:#80000285 (Lo) " (at #800004B0)
This indicates that there is a process waiting for communication on that channel (the ‘Iptr’ and ‘Wdesc'
identify it), and the debugger also informs you that it is a low priority process, and gives the address of the
channel word in memory.

To find out which 0ccam process is waiting, press (again to find which tool key, press
[CODE INFORMATION]). The debugger will move the cursor to the line where the other process is waiting. This

104 9 Debugging

will be inside the ‘sum’ procedure, on the line

in ? x

As before, you may now point at any symbol and inspect it. You will find that channel ‘out’ also has a
process waiting. Use the key to ‘jump’ to that process. This will be in the ‘contxrol’ procedure,
which is waiting for the final result. Again you may inspect any symbol. You can also discover that channel
‘screen’ has a process waiting, but note that there is a star (‘*’) on the message line. This indicates that
the process which is waiting is not part of your occam program — in this case it is the TDS itself, which is
listening for output to the screen. Therefore if you try to jump to that process, you will be told

Cannot jump - Channel points to an invalid location

9.6.6 Retrace and Backtrace

So far the debugger has helped to find three of the five processes which were running in parallel. What about
the other two? You can use the key to retrace your steps (see [CODE INFORMATION]). This will take
you back to the ‘sum’ procedure, then back to the ‘square’ procedure. Now you can look in channel ‘in’,
which you know is connected to the ‘€acs’ procedure. Unfortunately it is empty, which means that the other
process is not waiting to communicate.

The next option to try is This key makes the debugger backtrace down the procedure calling
stack for one procedure or function call; i.e. it moves the cursor to the line from which the current procedure
or function was called. If you press now, the cursor will move to the line where ‘square’ was
called. Again, you can inspect any symbol which is in scope at this line. For example, you can look in the
channels ‘feed.to. facs’ and ‘facs.to.square’, but both will be empty. You have already looked in
the other channels, but you can do so again.

This means that the other two processes were actually executing in parallel at the time of the error, rather
than waiting to communicate. To find them, you need to look at the transputer’s active process queues.

9.6.7 Process Queues

The lower level transputer information is accessed by using the key. This displays a screenfull of
information about that processor, and a list of available options. The option which displays the processor's
active process queues is option ‘R’ (for ‘running’ processes). Again you can use to display
a summary of what each option does, or type ‘?".

Option ‘R’ will display a list of the processes on the queue. There will be two processes, identified by two
lines containing an Iptr and Wdesc.

Other useful options are ‘T’ (Timer queues), which displays the processes waiting on the transputer’s timers;
and ‘L’ (Links), which displays the processes waiting for communication on the transputer’s links.

9.6.8 Display occam

Type ‘O’ for 0ccam, so that we can display the occam for these processes. You will be asked:

Iptr (#80000766) ?

Here you should type the Iptz value shown on the first line on the right hand side of the display produced
by option ‘R’. You can either type it in full, or use a special short-hand version where ‘%’ is used to replace
‘#800..". E.g. you could type either ‘#8000055A", or ‘655A’. Hexadecimal letters do not need to be in
uppercase.

You will then be asked for a Wdesc, but the debugger will give the associated Wdesc as the default, so you
can simply type here. The debugger will then display the 0occam line where the process was running.

9.6 A worked example 105

You will be left with the cursor in procedure ‘feed’, on the line

out ! 1

Because this process is on the process queue, not waiting for communication, it has performed that commu-
nication, and is just about to resume executing. You can examine variables, etc., as before.

To find the last process, press again, and use the ‘O’ option to locate to the second process listed
on the queue. The debugger may discover that this process is actually executing code inside one of the
REAL64 arithmetic libraries. As INMOS does not supply the source code for these libraries, the debugger
cannot display the relevant line. Instead it will backtrace to the line where the arithmetic is being performed;
in this case the line inside the factorial function:

result := result * (REAL64 ROUND i)

Depending upon exactly how the program was executing when it failed, it may locate to the replicated SEQ
instead. :

Again, you may inspect variables. By inspecting ‘4’, you find out how many times that loop has been executed.
You can to find out where the function was called from.

9.6.9 Read/Write and Finish

While debugging a program, the editor is in a read-only mode. It will not allow you to make changes to the
source. However, there is a key which will toggle the ‘write-ability’. Pressing [R’W] or the editor key
allows you to modify the program, so that you can re-compile it. Note that once it has been modified, the
debugger may not be able to re-locate other positions in the source, so you should exit the debugger after
modifying the source code. This is done by using [EXIT FOLD], then [FINISH], or by option ‘Q’ from the Monitor

page.

9.6.10 Other options

While in the debugger, there are a few more tools available. The key will return you to the error location,
or to the last location selected by an ‘O’ option from the monitor page.

The key displays a summary of which other processors this transputer’s links are connected to. This
is not useful when debugging an EXE, but is useful when debugging a PROGRAM.

The key displays the Iptr, Wdesc, and priority, of the last position located to, together with the
processor type and number.

9.6.11 More information

This worked example should have given you an idea of how to use this post-mortem debugger. Chapter 15
contains a full description of how to use all of these debugging tools, including extensions not listed here,
such as inspecting arrays.

106 9 Debugging

9.7 How the debugger works

The following documents describe the way the transputer implements occam for those who are more inter-
ested.

o Technical note 21: ‘The transputer implementation of occam’

This note details how such features as PAR, ALT, TIMER, and channels, are implemented on the
transputer.

o ‘The transputer instruction set — a compiler writer's guide’

This book describes the transputer's instruction set, but at a lower level, and is not particularly
relevant to 0ccam programmers.

9.7.1 How the debugger accesses the network

The technical details of how the debugger analyses the network and examines its state are described in
INMOS technical note 33 ‘Analysing transputer networks’. The method used is outlined briefly here. It can
successfully analyse networks consisting of hundreds or thousands of transputers of mixed type.

First the debugger reads the program’s configuration details, and uses these to build a picture of the transputer
network. It then reloads the network with a program known as an ‘analyse worm'. This program allows the
debugger to access any transputer in the network, by setting up a message routing system. Obviously, this
program will itself corrupt each transputer’s memory contents, so before it is loaded, the debugger ‘peeks’ the
portion of memory which will be overwritten into a buffer on the host, along with the saved register contents.
This works out to be approximately 700 bytes per processor, so, for example, a 10 processor network would
require 7 Kilobytes, or 10000 processors would require 7 Megabytes. Note that if each of these 10000
processors had 1 Mbyte of local store, this is minute compared with a total memory size of 10 Gigabytes!
When the debugger needs to read any memory contents which are not included in this buffer, it sets up
a communication path through the network and requests the required data. In this way it is not necessary
to buffer the complete memory contents of the network, so it is quite feasible to debug large networks of
transputers.

9.7.2 Debugging information generated by the compiler

An important aspect of this debugging system is that the create . debugging. info option of the compiler
merely forces the creation of the extra debugging information; it does not affect the compiled transputer
code which is produced. Thus a program compiled with debugging enabled will behave identically to the

same program compiled with debugging disabled. The option to disable debugging only exists to speed up
compilation, and to reduce file space requirements.

The debugging information generated by the 0ccam 2 compiler now includes:

o Workspace offsets for all variables, procedure and function parameters, abbreviations, channels,
and arrays, together with their types.

o The types and values of all constants which have been declared.
e The names of all protocols and their variant tags, together with ports and timers.

o The workspace requirements and location of each procedure and function; at the transputer instruc-
tion level, occam functions and procedures are identical.

Using this information, together with the configuration details of the program, the debugger can build a
complete map describing the locations of any variables currently in use on any processor in the network.

9.7 How the debugger works 107

9.7.3 How the symbolic facilities work

Any occam process running within the network can be identified by the transputer number within the network,
an instruction pointer, and a workspace descriptor. On any one transputer, there may be many different
processes executing the same portion of code, but each will have a different workspace, where all local
variables and channels are stored. Of course, the same code may also be executing on other processors in
the network.

After analysing the network, the debugger can determine the last instruction executed and the workspace
descriptor of each processor in the network. It uses this last instruction pointer, and instruction pointers taken
from the active process and timer queues, and the processes waiting on the transputer links, to find occam
processes to be examined.

9.74 Backtracing

Included in the debug information are details of the workspace requirements and code layout of each pro-
cedure or function. Therefore, given an instruction pointer, the debugger can discover which procedure is
currently being executed, and its workspace requirements. Using this information, together with that process’
workspace descriptor, it can read the return address of that procedure, and hence find the procedure call.
The workspace is then adjusted to allow for that used by the procedure, and the space used by the procedure
call, to give the workspace descriptor for the calling statement. This is then used, together with the return
address, to locate to the occam line containing the procedure or function call.

9.7.5 Inspecting variables

The compiler produces a map showing the workspace offset and type of each variable, parameter, or abbre-
viation used within that procedure. Thus, given an instruction pointer to indicate which procedure is being
executed, and a workspace descriptor for that procedure’s local data space, it can calculate the location of
any data item in the transputer’s memory, and read the data to discover the variable’s contents.

Non-local variables must be accessed differently. The debug information includes details of the lexical level
of each procedure, so that the lexical level of non-local variables can be found. The lexical level is the level
of procedure nesting within the 0ccam source. This is then used to follow the chain of procedure calls to
the correct procedure’s local data space, and hence to find the correct location of the data.

9.7.6 Jumping down channels

Channels which provide communication between two processes executing on the same transputer are im-
plemented by means of a word in memory. This contains the workspace descriptor of a process waiting for
communication on that channel, or a special value to indicate that it is idle. The debugger can examine
a channel to see whether a process is waiting, and if so, it can read the process’ instruction pointer and
workspace descriptor to jump directly to that process.

9.7.7 Analysis of deadlock

If a set of 0ccam processes is deadlocked, there may be no available path into the 0ccam program, from
which to start debugging. Internal, or ‘soft’, channels can only be inspected by the debugger if they are in
the scope of an active occam process. This means that a deadlock may be difficult to debug. Note that a
deadlock waiting for a communication on a transputer link, or ‘hard’ channel, is easily debugged by inspecting
the process waiting on the link.

However, a simple source modification will allow easy detection of any of the deadlocked processes. Suppose
you believe that a certain channel, or a few channels, are causing the deadlock. Then dll that need be done
is to add a small process in parallel, in such a position that this channel or channels are in scope. The added
process does not need to do anything, except be active in some way. For example, it could just wait on the
timer for a long time, or loop continuously. Note that on a transputer a process waiting on the timer consumes

108 9 Debugging

no cpu resource. However, the debugger can then find its way into the source, to inspect those channels,
and jump to the process which is waiting. Any variables which are in scope there may then be examined,
and debugging can continue as normal.

Consider this short procedure:

PROC deadlocks ()
CHAN OF INT c :
PAR

c! O
x

V9 v

x
x -- this procedure will deadlock here!

When executed, this procedure will deadlock on the internal channel ‘c’, leaving no active process, and thus
prevent the debugger from accessing any variables, etc. It can be changed to:

PROC deadlocks.but.debuggable ()
CHAN OF INT c :

PAR
TIMER t :
INT n :
VAL one.second IS 15625 : -- T414B, low priority
VAL one.day IS one.second * ((60 * 60) * 24) :
SEQ
t?n
t ? AFTER n PLUS one.day -- this process will be
-— waiting here!
c! O
INT x :
SEQ
c?x
c?x ~- The debugger will jump to here

This procedure will still appear to deadlock, and will not set the transputer’s error flag, but when it is interrupted
by analysing the network, there will be a process on the timer queue.

The debugger can read the timer queue to locate to the delayed timer input, and leave the cursor on that
line. The user can then move the cursor to the declaration of channel ‘c’, and press the function
key. The debugger will then move the cursor to show the deadlocked input statement; any variables which
are in scope can then be examined, to determine the cause of the deadlock.

Obviously, in this simple case it is easy to see what has caused the deadlock by inspecting the source code.
In more complicated programs this ability to find deadlocks can be very useful.

9.7 How the debugger works 109

9.7.8 occam scope rules

It is necessary to realise that the debugger can only supply the contents of variables which are in lexical
scope at the current 0ccam context. This can best be illustrated by an example:

PROC p ()
INT a :
PROC q (VAL INT Db)
INT c :
SEQ
c :=b + a

PROC r (VAL INT d)
INT e :

SEQ

e

e

0
d/ e -- The debugger will locate to here
-- after the error

INT x :
SEQ
x, a := 99, 57
INT y :
SEQ
y := 42
q (y)
r (x) -- And backtrace to here

In this example, the divide in procedure ‘e’ would cause an error, and the debugger can locate to that line.
Here the variables ‘e’, ‘d’, and ‘a’ may be inspected, but not ‘x’, ‘y’, ‘c’, or 'b’, since these are not in scope.

After backtracing, when located at the call of ‘z’, only variables ‘a’ and ‘x’ may be inspected, since the others
are all no longer in scope.

110 9 Debugging

10 EPROM programming

10.1 Introduction

The INMOS EPROM software is designed so that programs which have been developed and tested using
the TDS may be placed in a ROM without change. This has the advantages that an application need not be
committed to ROM until it is fully debugged and the actual production of the ROMs can be done relatively
late in the development cycle without the fear of introducing new problems.

Figure 10.1 shows how a network of five transputers would be loaded from the TDS.

Boot from link

link

link_| Root transputer | link) link_|
hl boot from link Boot from link

Boot from link

link

Boot from link

Figure 10.1 Loading a network from TDS

Figure 10.2 shows how the same network of five transputers would be loaded from a ROM accessed by the
root transputer. The data being input by the root transputer from the ROM buffer is identical to the data being
input by the root transputer in figure 10.1 from the link to the TDS.

Boot from link

\
link

frog:jfl;te(r)M bRg&tftrrggs%ﬂ fink,. Boot from link link,_ Boot from link
link

Boot from link

Figure 10.2 Loading a network from ROM

Creating a ROM from a debugged network program is a straightforward sequence of steps using standard
TDS utilities and tools. The two components to be put into the ROM are: firstly the debugged application

112 10 EPROM programming

program and secondly an INMOS supplied loader. These two components are placed together in a fold
bundle to which the make EPROM tool is applied. The result of applying the tool is a third fold in the bundle
which can then be burnt directly into an EPROM.

Details of how to create the fold bundle, how to burn the created output into the ROM and how to create
ROMs which have different loading and running requirements from the standard case are described in the
following sections.

This chapter introduces two programs which are used in creating ROMs. .

EPROM hex program This is the program which is used to convert a working application program into a file
suitable for loading into an EPROM.

Hex to programmer program This program takes the output of the EPROM hex program, and sends it to
an EPROM programmer. The program interfaces to a GPXP640 EPROM Programmer using Intel
Hex format. The sources of the Hex to programmer program are provided so that they may be
modified for EPROM programmers expecting a different format.

This chapter also introduces a program which can be used in conjunction with the ROM software.

Memory interface program This is an interactive program which allows the user to explore the effects of
changes in the memory interface timing parameters of the IMS T414 and IMS T800 processors. It
can produce a memory configuration table which can be included by the EPROM hex program in
the file to be burned into the ROM.

Each of these programs is described in detail in chapter 15 of this manual. Section 15.3 describes the Memory
interface program in detail. Section 15.4 describes the EPROM hex program. Section 15.5 describes the
Hex to programmer program.

10.2 How to create the fold bundle

An empty fold bundie is created by pressing twice anywhere in the fold structure. Two items
need to be placed in this fold bundle; the application program and the loader.

Once the application program has been tested on a target network it should be extracted by running the
utility of the occam compiler utilities on the compiled PROGRAM fold set to produce a CODE
PROGRAM fold. The CODE PROGRAM fold produced as a new last item in the PROGRAM foldset should be
moved into the fold bundle created earlier. When applied to a PROGRAM the utility prompts for two
parameters:

VAL output.fold IS BOOTABLE : -- BOOTABLE | DIAGNOSTIC
and
VAL first.processor.is.boot.from.link IS FALSE :

The parameter output . f£old determines whether the CODE PROGRAM fold is to contain load time diag-
nostic information. BOOTABLE is slightly faster and would be used if the processor booting from ROM has
no channel to communicate any load failures to. DIAGNOSTIC could be used if a channel is available to
report failures to and the load is regarded as being unreliable in some way.

The parameter £irst .processor.is.boot . from.link determines how much space in RAM on the
first processor should be avoided by code loaded into that processor. The network loader running from ROM
has a greater workspace requirement than the equivalent loader run as part of the bootstrap when booting a
processor from link. Because the first processor will ultimately be booted from ROM, this parameter should
be set to FALSE both when developing the application and when extracting the program for burning into
EPROM.

10.3 Creating the ROM file 113

The second item to be placed in the fold bundle is the loader. The loader is added to the fold bundle as a
CODE Sc fold. The example program is provided in the TDS tools directory \TDS2\TOOLS\SRC with the
fold comment:

SC multiboard eprom loader (no diagnostics) 17th March 1988

This contains a CODE SC fold which can be moved and placed into the fold bundle without modification.

The fold bundle is now complete and appears as follows:

{{{ fold bundle for EPROM
...F CODE PROGRAM application
...F CODE SC multiboard eprom loader (no diagnostics) 17th March

11}

10.3 Creating the ROM file

Having created the fold bundle containing the application and the loader, the next step is to create from this
a file suitable for burning into an EPROM. The EPROM hex program performs this function. The EPROM
hex program must first be loaded from the Tools fold in the toolkit fold by using and then run on
the fold bundle created as a resuilt of the actions described in the previous section. The result is a new last
fold in the bundle with the fold comment EPROM hex so the fold bundle now appears as follows:

{{{ fold bundle for EPROM

...F CODE PROGRAM application

...F CODE SC multiboard eprom loader (no diagnostics) 17th March
.. .F EPROM hex

11}

The first line in the EPROM hex fold holds the start address of the ROM code in the processor’s address
space and identifies the processor type. The remainder of the fold consists of a sequence of hexadecimal
bytes to be placed in ROM from the specified address onwards.

The EPROM hex program will prompt the question:

Insert copy for analyse (y/n)

This is described fully in section 10.6, ‘ROMs which load from a host computer’. For the example considered
here, the answer should be n (no).

10.4 Burning the ROM

The fold created by the previous section is now ready for sending to an EPROM programmer for burning into
the ROM. The Hex to programmer program performs this function. The Hex to programmer program must
first be loaded from the Tools fold in the toolkit fold by using

The Hex to programmer program should be run with the cursor on the EPROM hex fold produced by the
EPROM hex program described in the previous section. It produces output in a form suitable for controlling
an EPROM programmer via COM1 on the the IBM PC. The file COM1 is treated by DOS as a communications
port. Therefore, to connect an EPROM programmer to an IBM PC requires a serial card installed as COM1.
It may be necessary to use the DOS MODE command to configure the serial card to the correct baud rate,
parity, etc., for the EPROM programmer.

The procedure used depends on the width of the memory interface on the board for which the EPROMs
are intended. The Hex to programmer program reads the first line of the EPROM hex fold to determine the
processor type and hence the number of ROMs required. The IMS T414 and IMS T800 have a 4 byte wide
memory interface and therefore require 4 byte-wide ROMs. The IMS T212 has a memory interface which can
be configured dynamically to be 1 or 2 bytes wide. If the code is intended for an IMS T212, the program will

114 10 EPROM programming

ask whether the ROM is being accessed in byte mode (1 ROM required) or word mode (2 ROMs required).
If more than one ROM is required they must be programmed separately and the user must identify which is
being programmed. The Hex to programmer program will select the appropriate bytes from the EPROM hex
fold.

The start address of the code within the processor's address space is also read from the first line of the
EPROM hex fold. This, and the size of the ROM being programmed, are used to calculate the start address
of the code within the ROM. The ROM size is entered by the user.

10.5 Execution from ROM instead of RAM

Earlier sections of this chapter described how to make an EPROM suitable for booting a network of transputers
with an application which is run in RAM on all processors in the network. In certain circumstances it may
be desirable to execute the application code while it is resident in ROM rather than loaded into RAM. It
may be the case that the application running on the processor booted from ROM is the only processor in
the network or the processor booted from ROM may boot all the other processors as in the earlier example
before continuing with the application code executed from ROM.

Single transputer with application in ROM

In the first case, where the application program is running from ROM as a standalone embedded system on
a single transputer, the fold bundle is simplified to contain just a CODE SC fold. The SC implements the
required application.

The application should be developed under the TDS as an SC compilation unit containing one procedure and
tested as the only processor in a network loaded by the TDS. The EPROM hex program sets up values for a
standard set of parameters for the SC to be included in the ROM, the parameters are values required by the
loader described earlier.

PROC EPROM.SC(INT entry.point,
[60]BYTE buffer,
VAL [600]BYTE memory.copy,
VAL []BYTE program.buffer)
... application

The application needs to have this form. The best way to achieve this is to develop it under the TDS with
only those parameters necessary for loading from the TDS, and then move the developed SC into an SC of
the above form for final compilation and extraction, as follows:

{{{ SC eprom source

{{{F eprom source

... EPROM.SC -- standard parameter list
... SC application
application ()

}}
}}}

When running the EPROM hex program, the question Insext copy for analyse? should be an-
swered n (no). The EPROM hex program may produce the warning message:

b oe

WARNING: total RAM space requirement exceeds maximum
allowed for a loader (limit = 560 bytes)

This message is significant only when the ROM is loading code into local RAM and so may be ignored in this
case.

10.6 ROMSs which load from a host computer 115

Load network then continue in ROM

In the second case, the ROM processor will boot the rest of the network as in the original example, but will
then continue executing from ROM.

Two different options are again possible. For the first option, the application to be run on the processor
booted from ROM is developed independently from the network; for example as an EXE running within the
TDS interfacing to the network program. For the second option, the application to be run on the processor
booted from ROM is developed as the root processor in the network program.

In the first option, the code running from ROM must emulate the action of the TDS in booting the rest of the
network and then carry on with the developed application.

... EPROM.SC -- standard parameter list
CHAN OF ANY boot.link:
PLACE boot.link AT 2:
SEQ
boot.link ! program.buffer -- load network
... S8C application
application()

In the second option, the code running from ROM on the root processor must load the rest of the network as
in the original example but ignore all code directed to be loaded into RAM on the root processor. After the
load is completed, control should continue within the SC rather than terminate in the manner of the network
loader.

... EPROM.SC -- standard parameter list
... SC modified network loader
... SC application
SEQ
load.network (program.buffer)
application()

When running the EPROM hex program, the question Insert copy for analyse? should be an-
swered n (no) in both of the options described above. The EPROM hex program may produce the warning
message:

WARNING: total RAM space requirement exceeds maximum
allowed for a loader (limit = 560 bytes)

This message is significant only when the ROM is loading code into local RAM and so may be ignored in
both of the above options.

10.6 ROMs which load from a host computer

For some applications it may be desirable to create a ROM which is capable of loading a network of transputers
from a host computer using a non-link interface (such as RS232). An example of this type of ROM is the
monitor program on INMOS evaluation boards which include serial R§232 ports.

This type of system is a variation of the single application running from ROM, in which the application is

a loader, and the ROM fold is created in a similar manner. The source of the INMOS monitor program is
provided in the TDS tools directory with the fold comment:

SC BO0Ox.monitox (24th February 1988)

for modification by users to match their particular hardware. The TDS uses additional handshaking sequences
and, if necessary, byte encoding, when loading a network via RS232. An outline of the INMOS monitor is

116 10 EPROM programming

given below.
PROC B0Ox.monitor (INT entry.point,
[60]BYTE buffer,
VAL[600]BYTE memorxy.copy,
VAL[]BYTE program.buffer)
... 1link placements
... constants
... load
... analyse
SEQ
... respond to wake up character
read.char (line, char) -- not encoded
IF

.. "B’ : straight binary
... "B’ : encoded hex
... otherwise bad protocol
get.char (line, char) -- encoded
char := char /\ #7F
IF
char = (INT ‘A’)
analyse ()
char = (INT 'L’)
load ()
TRUE
... bad protocol

The INMOS monitor can also interface to the TDS for analysing networks. Analysing and debugging software
accessing a processor needs to examine the contents of workspace as it was when the previous execution
of a program was halted (probably through the error flag being set). The low addressed part of RAM, which
is likely to be of interest to a debugger, is the area which the ROM employs for workspace. If the response to
the prompt by the EPROM hex program Insext copy for analyse? is given as y (yes), the program
in ROM will copy this area to the high addressed part of the available RAM. If it is not necessary for the ROM
to be used to interface to host software analysing the network then a n (no) response is suitable.

The TDS loading and analysing protocols and the special requirements for using serial lines are described in
INMOS technical notes 33 and 34.

Workspace for this type of ROM must be kept small to make certain that the loader is not directed to load
code to an area occupied by ROM workspace. The EPROM hex program produces the warning message

WARNING: total RAM space requirement exceeds maximum
allowed for a loader (limit = 560 bytes)

if the workspace used by the ROM extends into areas to which the loader may be directed to load code.
Note that compiling the code without a separate vector space in general reduces the code’s total workspace
requirement.

10.7 Adding a memory configuration to the EPROM

IMS T414 and IMS T800 transputers can configure their memory interface from a table of words stored at
the most positive addresses in their memory space. These addresses are within the area occupied by an
EPROM which can be used to boot a transputer. The EPROM hex program can include such a configuration
table into the output file at the correct configuration addresses. To cause this to occur it is simply necessary
to include the memory configuration table as an addition filed fold in the fold bundle on which the EPROM
hex program is run. The order of the folds is unimportant.

The configuration table expected by the EPROM hex program is in the format output as a result of running
the Memory Interface program. Such a fold may be generated by hand, if desired, the main requirement
being that the fold is complete (i.e. all address-value pairs are present).

11 Low level programming

This chapter describes a number of features of the 0occam 2 compiler in the TDS which support low-level
programming of transputers. These are as follows:

Allocation This allows a channel, a variable, an array or a port to be placed at an absolute location in
memory.

Code insertion This allows sections of transputer machine code to be inserted into 0CCam programs.

Dynamic code loading A set of compiler library procedures allow an 0occam program to read in a section
of compiled code (from a file, for example) and execute it.

Extraordinary use of links A set of library procedures allow link communications which have not completed
to timeout or be aborted by another part of the program.

111 Allocation
allocation = PLACE name AT expression :

The PLACE statement in 0occam allows a channel, a variable, an array or a port to be placed at an absolute
location in memory. This feature may be used for a number of purposes; for example:

e Mapping 0ccam channels onto the ‘hard channels’ implemented by transputer links, from within an
occam program.

o Mapping arrays onto particular hardware, such as video RAM.

e Accessing devices (such as UARTS or latches) mapped into the transputer's address space.

The PLACE statement may not be used to force critical arrays or variables onto on-chip RAM. The occam
compiler allocates memory according to the scheme outlined in chapter 6; it does not take account of data
placed at some arbitrary position in the memory it is trying to allocate. So placing data within the data space
allocated by the compiler will interfere with other data placed there by the compiler. To make the best use of
on-chip RAM, use the ‘separate vector space’ facility of the compiler described in chapter 6.

The address of a placed object is derived by treating the value of the expression as a subscript into an INT
array mapped onto memory. Thus PLACE n AT 1: would cause n to be allocated address #80000004
on a 32-bit transputer. Addresses are calculated in this way so that the transputer links can be accessed
using word length independent code (the links are addresses 0, 1 up to 7).

Translation from a machine address to the equivalent 0ccam []INT subscript value can be achieved by
the following declaration:

VAL occam.addr IS (machine.addr><(MOSTNEG INT)) >> w.length:

Where w. length is 1 for a 16-bit transputer and 2 for a 32-bit transputer.

118 11 Low level programming

Some useful allocations are given below:

CHAN OF ANY in.link0, out.linkO :
CHAN OF ANY in.linkl, out.linkl :
CHAN OF ANY in.link2, out.link2 :
CHAN OF ANY in.link3, out.link3 :
CHAN OF ANY in.event :

PLACE out.link0 AT
PLACE in.link0 AT

PLACE out.linkl AT
PLACE in.linkl AT

PLACE out.link2 AT
PLACE in.link2 AT

W oNh UK a0

PLACE out.link3 AT
PLACE in.1link3 AT 7:
PLACE in.event AT 8:

[4]CHAN OF ANY out.links, in.links :

PLACE out.links AT 0:
PLACE in.links AT 4:

All placed objects must be word aligned. If it is necessary to access a BYTE object on an arbitrary boundary,
or an INT1 6 object on an arbitrary 16-bit boundary, the object must be an element of an array which is placed
on a word address below the required address. For example, to access a BYTE port called io.register
located at physical address #40000001 on a T414 the following must be used:

[4]PORT OF BYTE io.regs.vec :
PLACE io.regs.vec AT #30000000 :
io.register IS io.regs.vec[l] :

Placement may be used on transputer boards to access board contro! functions mapped into the transputer’s
address space. For example, on the IMS B004, the subsystem control functions (Error, Reset and Analyse)
are mapped into the address space, and can be accessed from occam as placed ports. The following code
will reset subsystem on the IMS B004:

PROC reset.b004.subsystem()

VAL subsys.reset IS (0 >< (MOSTNEG INT)) >> 2:

VAL subsys.analyse IS (4 >< (MOSTNEG INT)) >> 2:

VAL subsys.error IS (0 >< (MOSTNEG INT)) >> 2:

PORT OF INT reset, analyse, error:

PLACE reset AT subsys.reset:

PLACE analyse AT subsys.analyse:

PLACE error AT subsys.error:

TIMER clock:

INT time:

SEQ
analys
reset
reset
clock
clock
reset

0 -- set reset and initialise low

!
0
1 -- hold reset high
time

AFTER time PLUS 78: -- 5 ms is ample

0 -- reset subsystem

=) o) cm e D

The error and analyse functions can be controlled from occam in a similar way. The pipeline sorter exam-

ple described in chapter 7 shows an example of monitoring the subsystem error flag from a program (the
monitox program) running on the IMS B004.

11.2 Code insertion 119

11.2 Code insertion
Introduction
This section describes the facilities provided by the occam 2 compiler code insertion mechanism.

The code insertion mechanism enables the user to access the instruction set of the transputer directly within
the framework of an occam program. Symbolic access to occam variable names is supported, as is
automatic jump sizing. More details on the instruction set may be found in the INMOS document ‘The
transputer instruction set — a compiler writer's guide’.

Code insertion may be employed to perform tasks not possible from occam, or for particularly time-critical
sections of a program. There are several reasons, however, which should encourage the user to refrain
from using code insertion as a solution to problems which may, with some thought, be solved using occam.
Paramount among these is that the validity of a system consisting entirely of occam can be checked by
the compiler. A compiler can check usage of channels, access to variables, communication protocols and
range violations. A single code insert prevents the compiler from performing these checks adequately. A
second reason for not using code insertions is that the transputer instruction set is suited for use by a high
level language, particularly occam, and algorithms which are simple to code and easy to debug in occam
become difficult and obscure when coded in the transputer instruction set directly.

11.2.1 Using the code insertion mechanism

An occam 2 code insertion is introduced by the construct GUY. The context of the GUY construct is deter-
mined, as with all 0ccam constructs, by its indentation. The transputer instructions which follow the GUY
must be indented and there may only be one instruction per line. Lines may be terminated by a comment,
which is introduced by the —— symbol as in 0ccam. The transputer instructions are upper case versions
of the standard mnemonics listed in INMOS documentation. The code insert is terminated by the matching
outdent.

A compiler parameter code . insexts determines which instructions may be used within sections of code
insertions, in the unit being compiled. If the value is NONE, no code insertions are allowed. If the value is
RESTRICTED, then the instructions allowed are a restricted set of instructions which are sufficient for time-
critical sections of sequential code. If the value is ALL, then all transputer instructions are allowed. Since
the inclusion of some instructions may have an unexpected effect on the occam program (for example,
instructions which move the workspace pointer), instructions outside of the restricted set must be used with
great care. A list of the restricted set of transputer instructions is given in appendix H.

For example, to perform a 1’s complement addition we can write the following occam:

INT carry, temp:

SEQ
carry, temp := LONGSUM (a, b, 0)
c := carry PLUS temp

However, if this occurs in a time-critical section of the program we might replace it with:

GUY
ILDC 0
IDL a
IDL b
LSUM
SUM
STL C

which would avoid the storing and reloading of carry and temp.

Values in the range MOSTNEG INT to MOSTPOS INT may be used as Aoperands to all of the direct functions
without explicit use of prefix and negative prefix instructions. Access to non-local 0ccam symbols is provided
automatically without explicit indirection.

120 11 Low level programming

A more complex example, which sets error if a value read from a channel is not in a particular range, takes
advantage of both these facilities:

INT a:
... other stuff
PROC get.and.check.index (CHAN OF INT c)

SEQ
c?a
GUY
LDL a -- push value of free variable onto stack
LDC 512 -- push 512 onto stack
CCNT1 -- if NOT (0 < a <= 512) then set error

If there is a requirement for the code insertion to use some work space, then the work space may be declared
before the GUY construct, in which case, the work space locations are accessed just like any other occam
symbols.

INT a
SEQ
INT b, ¢
GUY
LDL a -- push value in a onto stack
STL b -- pop value from stack into b

more code

11.22 Labels and jumps

To insert a label into the sequence of instructions, put the name of the label, preceded by a colon, on a line
of its own. Then when the label is used in an instruction, precede the name with a full stop. For example:

GUY
... some instructions
:FRED
... some more instructions
CJ .FRED

A restriction of the compiler is that the same label name may not be defined more than once within an occam
procedure.

11.3 Dynamic code loading
Introduction

The transputer development system permits the dynamic loading and execution of code, using the procedures
described in this section. The procedures are listed in section 14.6.

The procedures described allow the programmer to write an 0ccam program that reads in a compiled occam
procedure and then calls it. The called procedure may be compiled and linked separately from the calling
program and read in from a file. It is possible to pass parameters to the procedure.

11.3 Dynamic code loading 121

11.3.1 The call

The occam 2 compiler recognises a procedure KERNEL . RUN with the following parameters:

PROC KERNEL.RUN([]BYTE code,
VAL INT entry.offset,
[]1INT workspace,
VAL INT number.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer, starting execution at the
location code [entry.offset]. The workspace buffer (see figure 11.1) is used to hold the local data
of the called procedure. The parameters passed to the called procedure should be placed at the top of the
workspace buffer by the calling procedure before the call of KERNEL.RUN. The call to KERNEL . RUN
returns when the called procedure terminates. If the called procedure requires a separate vector space, then
another buffer of the required size must be declared, and its address placed at the end of the parameter list
in workspace.

workspace[size.of.workspace - 1][INT
saved wptr saved by KERNEL . RUN

(only if separate vector space

address of vector space required by procedure)

last parameter | [no.of.parameters] INT

parameters loaded by caller
1st parameter
INT
saved iptr saved by KERNEL . RUN
[ws.requirement] INT

local workspace

workspace[0]

Figure 11.1 workspace buffer

The workspace passed to KERNEL.RUN must be at least:
[ws.requirement + no.of.parameters + 3]INT

or (if the program does not require separate vector space):
[ws.requirement + no.of.parameters + 2]INT

The parameters must be loaded before the call of KERNEL .RUN. The parameter corresponding to the first
formal parameter of the procedure should be in the word adjacent to the saved iptr word, and the last
parameter should be adjacent to the saved wptr word.

The most common way of preparing a code file for use by the code execution procedures is to write the code
as an SC, and apply the utility from the compiler utility set to the the SC compilation fold. This will
produce a CODE SC fold containing the extracted code. The format of code files produced by the TDS is
given later in this chapter.

122 11 Low level programming

11.3.2 Loading parameters

There are a number of library procedures to set up parameters before the call. These are:

LOAD . INPUT.CHANNEL (INT here, CHAN OF ANY in)
LOAD.INPUT.CHANNEL.VECTOR (INT here, []JCHAN OF ANY in.vec)
LOAD.OUTPUT . CHANNEL (INT here, CHAN OF ANY out)

LOAD .OUTPUT .CHANNEL.VECTOR (INT here, []JCHAN OF ANY out.vec)
LOAD.BYTE.VECTOR (INT here, []BYTE b.vec)

The variable here is assigned the address of the second parameter. Note that when passing vector param-
eters, if the formal parameter of the PROC called is unsized then the vector address must be followed by the
number of elements in the vector, for example:

LOAD.BYTE.VECTOR (param[0] , buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be in the units of the array (not
in bytes, unless it is a byte vector, as above). For multi-dimensional arrays, one parameter is needed for
each unsized dimension, in the order the dimensions were declared.

All variables and arrays should be retyped to byte vectors before using LOAD . BYTE . VECTOR to obtain their
addresses, using a retype of the form: []BYTE b.vector RETYPES variable:.
LOAD .BYTE . VECTOR may also be used to set up the address of the separate vector space.

—

11.3.3 Examples
Example 1: load from link and run

This is a simple procedure to load a (parameterless) code packet from a link and run it. The type of the
packet is given by the protocol PROTOCOL CODE.MESSAGE IS INT::[]BYTE; INT; INT
The code is sent first, as a counted array, followed by the entry offset and workspace size.

PROC run.code (CHAN OF CODE.MESSAGE input, []INT run.vector,
[IBYTE code.buffer)
VAL no.parameters IS 3 : -- smallest allowed
INT code.length, entry.offset, work.space.size :
INT total.work.space.size :
SEQ
input ? code.length::code.buffer;
entry.offset; work.space.size
total.work.space.size :=
(work.space.size + no.parameters) + 2
[1INT work.space IS
[run.vector FROM 0 FOR total.work.space.size]
KERNEL.RUN (code.buffer, entry.offset,
work.space, no.parameters)

Example 2: system loader

This example shows a slightly simplified version of the TDS system loader, which is available in source form
with the product. The TDS has an entry of the form:

PROC TDS2.0 (CHAN OF ANY from.link,
CHAN OF ANY to.link,
[1INT program.buffer,
VAL INT old.i.offset,
VAL BOOL analysing,
VAL BOOL old.error,
VAL INT old.iptr)

11.3 Dynamic code loading 123

The example shows the allocation of memory to code and workspace, and the running of the TDS with these
parameters. Note the hidden parameter after program.buf£fezr, giving its size.

PROC system.loader (CHAN OF ANY from.boot, to.boot,
VAL BOOL analysing, old.error,

VAL INT base.offset, old.I.offset,
VAL INT old.Iptr, old.Wptr,
VAL INT low. front, low.back,
VAL INT high.front, high.back,
VAL BOOL old.halt.error,
VAL INT memstart,
VAL INT addr.from.boot, addr.to.boot)
... Declarations
{{{ body
SEQ

... Get timer values & start clock
CHAN OF ANY stopper :
PAR
Link multiplexor
... Local declarations
SEQ
ok := TRUE
SEQ
read parameters from command line
IF
{{{ ok, so load and run tds
ok AND (file.name.length > 0)
SEQ
read tds from file
IF
{{{ ok, so run tds
ok AND ((result = fi.ok) OR (result = fi.eof))
{{{ retypes and abbreviations
[]INT free.space RETYPES
[memory FROM base.offset FOR total.space]
[1INT work.space IS [free.space FROM
(SIZE free.space) MINUS total.work.space FOR
total.work.space] :
[]INT parameters IS [work.space FROM
work.space.size FOR
no.parameters PLUS 2] :
[]INT program.buffer IS [free.space FROM
0 FOR
(SIZE free.space) MINUS total.work.space]
[IBYTE b.program.buffer
RETYPES program.buffer :

TDS2.0 IS [memory FROM code.base
FOR code.length] :

11}

124 11 Low level programming

SEQ
stopper ! 0 -- shut down link multiplexor
LOAD . INPUT.CHANNEL (parameters[l], from.boot)
LOAD .OUTPUT.CHANNEL (parameters[2], to.boot)
LOAD .BYTE.VECTOR (parameters[3],
b.program.buffer)
SIZE program.buffer
old.I.offset
MINUS base.offset
parameters|[6] INT analysing
parameters([7] INT old.error
parameters[8] := old.Iptr
KERNEL.RUN (TDS2.0, entry.offset, work.space,
no.parameters)

parameters[4] :
parameters[5] :

1h

... e@else error

}1}
... else skip

}}}

11.34 Code format

Extracted code is stored in conventional TDS format files; the files contain no folds, but are simply a sequence
of records. They may be read using the user filer interface. The formats of CODE UTIL, CODE EXE, and

CODE SC files produced by the extractor are as follows:

Extracted code format

The linked and extracted files have the following format:
(start of file)

[INT32]BYTE code interface description
[INT32]BYTE compiler id string

INT32 target machine

INT32 interface version number

INT32 workspace requirement, in words

INT32 vector space requirement, in words

INT32 entry point offset from start of code, in bytes
[INT32]BYTE code

(end of file)

The notation ‘INT32’ means four bytes in the file containing an occam INT32 value, with the least significant
byte first. The notation ‘[INT32] BYTE' means four bytes containing an oCCam INT32 value (as above),
followed by the number of bytes given by the value.

If all parts of the program were compiled with separate vector space off, then the vector space requirement
will be 0.

Although an EXE is written as an 0ccam process, it is called by the TDS as a procedure, with a fixed set
of parameters. The parameters for an EXE were listed in chapter 6; they appear as parameters in the order
they were listed there. They can also be found by using on an EXE foldset.

The interface version number value will be 10 for an SC, 11 for an EXE or UTIL produced with this release
of the TDS.

11.4 Extraordinary use of links 125

11.4 Extraordinary use of links
Introduction

The transputer link architecture provides ease of use and compatibility across the range of transputer prod-
ucts. It provides synchronised communication at the message level which matches the occam model of
communication.

In certain circumstances, such as communication between a development system and a target system, it is
desirable to use a transputer link even though the synchronised message passing of 0ccam is not exactly
what is required. Such extraordinary use of transputer links is possible but requires careful programming and
the use of some special 0cCam procedures.

The use of these procedures is described in this chapter. To use them in a compilation unit, the directive
#USE reinit should be inserted at the top of the source for that unit. See section 14.24 for a list of the
procedures.

11.4.1 Clarification of requirements

As an example, consider a development system connected via a link to a target system. The development
system compiles and loads programs onto the target and also provides the program executing in the target
with access to facilities such as a file store. Suppose the target halts (due to a bug) whilst it is engaged
in communication with the development system. The development system then has to analyse the target
system.

A problem will arise if the development system is written in ‘pure’ 0ccam. It is possible that when the target
system halts, the development system is in the middle of communicating on a link. As a result, the input or
output process will not terminate and the development system will be unable to continue. This problem can
occur even where an input occurs in an alternative construct together with a timeout (as illustrated below).
When the first byte of a message is received the process performing the alternative commits to inputting;
the timer guard cannot subsequently be selected. Hence, if insufficient data is transmitted the input will not
terminate.

ALT
TIME ? AFTER timeout
from.other.system ? message

It is important to note that the problem arises from the need to recover from the communication failure. It is
perfectly straightforward to detect the failure within ‘pure’ 0cCam and this is quite sufficient for implementing
resilient systems with multiple redundancy.

11.4.2 Programming concerns

The first concern of a designer is to understand how to recognise the occurrence of a failure. This will depend
on the system; for example, in some cases a timeout may be appropriate.

The second concern is to ensure that even if a communication fails, all input processes and output processes
will terminate. As this cannot be achieved directly in occam, there are a number of library procedures which
perform the required function. These are described below.

The final concern is to be able to recover from the failure and to re-establish communication on the link.
This involves reinitialising the link hardware; again there is a suitable library procedure to allow this to be
performed.

126 11 Low level programming

11.4.3 Input and output procedures

There are four library procedures which implement input and output processes which can be made to terminate
even when there is a communication failure. They will terminate either as the result of the communication
completing, or as the result of the failure of the communication being recognised. Two procedures provide
input and output where communication failure can be detected by a simple timeout, the other two procedures
provide input and output where the failure of the communication is signalled to the procedure via a channel.
The procedures have a boolean variable as a parameter which is set TRUE if the procedure terminated as a
result of communication failure being detected, and is set FALSE otherwise. If the procedure does terminate
as a result of communication failure having been detected then the link channel can be reset.

All four library procedures take as parameters a link channel ¢ (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted. The
choice of a byte vector as the parameter to these procedures allows an object of any type to be passed along
the channel provided it is retyped first.

The two procedures for communication where failure is detected by a timeout take a timer parameter TIME,
and an absolute time t. The procedures treat the communication as having failed when the time as measured
by the timer TIME is AFTER the specified time €. The names and the parameters of the procedures are:

InputOrFail.t (CHAN OF ANY c, []BYTE mess,
TIMER TIME, :
VAL INT t, BOOL aborted

and

OutputOrFail.t (CHAN OF ANY c, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting or outputting procedure via a message on the channel
kill. The message is of type INT. The names and parameters to the procedures are:

InputOrFail.c(CHAN OF ANY c, []BYTE mess, -

CHAN OF INT kill, BOOL aborted)
and

OutputOrFail.c (CHAN OF ANY ¢, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

11.44 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to reinitialise the link hardware. This
involves reinitialising both ends of both channels implemented by the link. Furthermore, the reinitialisation must
be done after all processes have stopped trying to communicate on the link. So, although the InputOzFail
and OutputOzFail procedures.do, themselves, reset the link channel when they abort a transfer, it is
necessary to use the fifth library procedure Reinitialise (CHAN OF ANY c), after it is known that all
activity on the link has ceased.

The Reinitialise procedure must only be used to reinitialise a link channel after communication has
finished. If the procedure is applied to a link channel which is being used for communication the transputer’s
error flag will be set and subsequent behaviour is undefined.

11.4 Extraordinary use of links 127

11.45 Example: a development system

For our example consider the development system described in section 11.4.1.

Development Target
System Link System

|

Figure 11.2 Development system

The first step in the solution is to recognise that the development system knows when a failure might occur,
and hence the development system knows when it might be necessary to abort a communication.

The process which interfaces to the target system can be sent a message when the development system
decides to reset the target causing the interface process to abort any transfers in progress. The development
system can then reset the target system (which resets the target end of the link) and reinitialise the link.

The example program below could be that part of the development system which runs once the target system
starts executing, until such time as the target is reset and the link is reinitialised.

SEQ
CHAN OF ANY terminate.input, terminate.output
PAR
... dinterface process
... monitor process
... reset target system
Reinitialise(link.in)
Reinitialise (1link.out)

The monitor process will output on both terminate. input and terminate.output when it detects
an error in the target system.

The interface process consists of two processes running in parallel, one which outputs to the link, the other
which inputs from the link. As the structures of the two processes are similar only the process which outputs
to the link need be shown; the input process is very similar.

If there were no need to consider the possibility of communication failure the process might be

WHILE active
SEQ
ALT
terminate.output ? any
active := FALSE
from.dev.system ? message
link.out ! message

This process will loop, forwarding input from £xom.dev.system to 1ink. out, until it receives a message
on terminate.output. However, if after this process has attempted to forward a message, the target
system halts without inputting, the interface process will fail to terminate.

128 11

Low level programming

The following program overcomes this problem:

WHILE active
BOOL aborted :
SEQ
ALT .
terminate.output ? any
active := FALSE
from.dev.system ? word
SEQ
OutputOzFail.c(link.out, message,

terminate.output, aborted)

active := NOT aborted.

This program is always prepared to input from texrminate.output, and is always terminated by an input
from terminate.output. There are two cases which can occur. The first is that the message is received
by the input which then sets active to FALSE. The second is that the output gets aborted. In this case the

whole process is terminated because the variable aboxrted would then be true.

The reference manual

130 The reference manual

12 The development environment

12.1 Keys

May be pressed at any position in the program development environment. The toolkit fold is searched
for a fold marked:

... Autoload (perhaps with other text here)

If this fold is found, all runnable code folds which are found in this fold are loaded as though
had been applied to each fold in turn.

[BOTTOM OF FOLD |

Places the cursor on the line displaying the bottom crease symbol of the current enclosing fold.

Used to set the editor into browse mode, in which no changes may be made to the document.
is also used to end browse mode. It switches the set of allowable key functions in the
program development environment between the full set and a reduced set which does not allow any
form of data input. This function is not available in the toolkit fold or in the code information fold,
and it is not possible to enter the toolkit or code information fold when in browse mode.

CALL MACRO

Invokes the sequence of keys defined using the key. If no macro sequence has been
defined, the key has no effect.

CLEAR ALL

Clears all loaded code items, both utilities and user programs.

Removes the current EXE from the set of current EXEs and selects the next.

CLEAR UTIL

Removes the current utility set from the set of current utility sets and selects the next.

CLOSE FOLD

Closes the current enclosing fold, and all open folds contained within it. The closed fold line is
placed on the line of the screen where the top crease was, unless the top crease was off the top
of the screen, in which case the closed fold line appears at the top of the screen. The cursor is
positioned on the closed fold line, at the same column position as it was before was
pressed. has no effect if the current enclosing fold was opened with an [ENTER FOLD]
operation, but a message is given to remind the user that should be used to get out of
the current fold.

132 12 The development environment

[CODE INFORMATION |

May be pressed while in the normal editing environment (not when within the toolkit fold). It creates
a display (which appears as a fold structure) showing the following:

1 A ‘help’ display for the current utility set, which is a sequence of lines listing the utilities in
the set and giving a brief explanation of each.

2 A list of the currently loaded code items, both UTILs and EXEs. Each code item is
identified by the text on the fold line when the code was loaded. The current utility set and
user program are indicated by a > at the start of the line.

3 For each of the loaded code items, there is a fold line which may be opened and viewed.
This contains the code size and data requirement for the code, and the ‘help’ information
for a utility.

4 The amount of data space available for running a utility or user program.

While viewing the code information fold the following message is displayed:

Press [EXIT FOLD] to resume editing

Pressing to exit the fold returns the editor to the position it was at when was
pressed.

Copies the current line and inserts the copy below the current line. If the line is a closed fold then
all the text lines and nested folds in the fold are copied. has no effect if the current line
is a top or bottom crease. The cursor is placed on the copy.

If the current line is a filed fold, or contains a filed fold, the user is prompted for confirmation, as the
operation may take some time. It can be confirmed by pressing again.

File names for files in the copied fold structure are derived from the names of files in the original
fold structure, adjusted to avoid clashing with any existing file names in the directory.

Used to copy a line, which may be a fold line, so that it may be moved to another place in the
document. It makes a copy of the current line and appends it to the end of the pick buffer. If the line
is a filed fold, or is a fold containing a filed fold, must be pressed again for confirmation,
as the copying may take some time.

As has no effect on the document, it may be used to copy portions of a program without
forcing the program to require recompilation. It may be used in browse mode.

CREATE FOLD

The first use of inserts a new top crease above the current line, at the current column.
The second use of creates a fold containing the lines between the new top crease and
the current line. The fold is closed and the cursor is placed at the end of the fold line marker, where
fold header text may be inserted.

Between the two presses of [CREATE FOLD] all editor functions except cursor movement and scrolling
are disallowed.

The indentation of the new fold is determined by the current column on the first use of
The lines to be enclosed within the new fold should all be sufficiently indented to fit into a fold at this
indentation (i.e. they must not extend to the left of this column).

12.1 Keys 133

CURSOR DOWN

Moves the cursor down one line. On the bottom line of the screen it scrolls the screen one line down
the current view, if there are lines in the current view below the screen, and the cursor remains in
the same position on the screen.

CURSOR LEFT

Moves the cursor left one column, except in the leftmost column on the screen where it has no effect.

CURSOR RIGHT

Moves the cursor right one column, except in the rightmost column on the screen where it has no
effect.

CURSOR UP

Moves the cursor up one line. On the top line of the screen it scrolls the screen one line up the
current view, if there are lines in the current view above the screen, and the cursor remains in the
same position on the screen.

DEFINE MACRO

Used to define a sequence of keys (which are commonly going to be used together during a session)
and assign the sequence to a single keystroke. Two presses of are needed to define
a key sequence; the required keys (which may not include [DEFINE MACRO| or [CALL MACRO]) should
be pressed between the two presses of [DEFINE MACRO] N.B. the keys are obeyed when defining the
macro. The sequence may contain up to 64 keys. Any previously defined macro is forgotten. The
defined macro sequence may be invoked using the key.

DELETE

Deletes the character to the left of the cursor. The cursor, the character underneath the cursor and
all subsequent characters on the line are moved left by one place.

If the cursor is in the leftmost column of the current enclosing fold concatenates the current
line with the line above. The cursor is placed after the end of the first line. A long line is created if
the concatenated line extends into the rightmost column of the screen.

DELETE] in the leftmost column has no effect if the current line is a fold line, top crease or bottom
crease, is a line following any of these lines, or is a line following a long line.

Spaces may be deleted before a closed fold marker symbol to change the indentation of the fold.

DELETE LINE

Removes the current line from the document, and places it in the delete buffer. Anything already
in the delete buffer is deleted. All the lines below the current line in the view are moved up by one
line. has no effect if the current line is a top crease or bottom crease.

may be used to restore the deleted line.

134 12 The development environment

DELETE RIGHT

Deletes the character under the cursor. All the characters to the right of the cursor are moved left
by one place. The cursor remains in the same position.

Character deletion has no effect when the character to be deleted is part of a marker symbol, or is
to the left of the leftmost column of an open fold.

Spaces may be deleted before a closed fold marker symbol to change the indentation of the fold.
[DELETE TO END OF LINE|

Deletes all text from the character under the cursor, to the last significant character on the line,
inclusive. The cursor remains in the same position.

[DELETE WORD LEFT|

Deletes the word to the left of the cursor. The deletion is governed by the following rules:

e A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

o If the cursor is on or to the left of the first significant (non-space) character on the line, the
characters from the cursor position to the current indentation are deleted. The cursor will
move to the current indentation.

o If the cursor is to the right of the character following (immediately to the right of) the last
significant character on the line, the cursor will move to the character following the last
significant character on the line.

« In all other cases the cursor will move to the first symbol starting position to the left of the
current cursor position, deleting all intervening characters.

| DELETE WORD RIGHT|

Deletes the word to the right of the cursor. The deletion is governed by the following rules:

e A symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

o If the cursor is to the left of the first significant (non-space) character on the line, all char-
acters between the cursor the first significant character on the line will be deleted.

If the cursor is on or between the last symbol starting position on the line, and the last sig-
nificant character on the line, all characters upto and including the last significant character
on the line will be deleted.

o If the cursor is to the right of the last significant character on the line, the cursor will not
move.

o In all other cases all characters between the cursor and the first symbol starting position to
the right of the current cursor position, will be deleted.

12.1 Keys 135

END OF LINE

Places the cursor immediately to the right of the last significant character on the current line (i.e. the
last non-blank character). If the line is too long for the width of the screen the cursor is placed in
the rightmost screen column.

When used on a fold line clears the screen and displays the contents of the fold between the top
and bottom creases. The display is adjusted to the left so that the top and bottom marker symbols
start in the leftmost column. The cursor is positioned in the leftmost column of the second line on
the screen. This then becomes the current view and it is not possible to move outside the confines
of the fold until a corresponding has been done.

[ENTER TOOLKIT|

Clears the screen, and displays the contents of the toolkit fold.

The editing functions available while the toolkit fold is being edited are the cursor move opera-
tions, screen scrolling operations, fold browsing operations, line deletion/undeletion, line moving and
copying, code getting, character insertion and deletion.

While editing the toolkit fold the following message is displayed:
Press [EXIT FOLD] to resume editing

Pressing to exit the toolkit fold returns the editor to the position it was at
when [ENTER TOOLKIT] was pressed.

Reverses the effect of the most recent closing the fold, and any open folds contained
within it. The closed fold line is positioned on the same line of the screen as it was when the
was done. The cursor is positioned on the first significant (i.e. the first non-blank)
character of the closed fold line.

[FILE/UNFILE FOLD|

When pressed on a fold, converts it to a filed fold, writing the contents out to a file. The file name
is taken from the fold header; it is the first contiguous alphanumeric sequence of characters in the
header. A comment describing the contents of the file may appear after the file name, separated
from it by one or more blanks. If a file of that name already exists in the directory, the file name is
adjusted to avoid a name clash. The message Filed as filename indicates the file name used.
On a blank line, a ‘random’ name is made up.

The name may include directory information. The use of directory specifications in file names should
be avoided as much as possible, as it makes it difficult to move groups of files between directories.

The system stores the filename along with other information about the fold; the filename may be
viewed using the key.

acts as a toggle; when pressed on a filed fold, it reads in the contents of the file
and makes it into a (non-filed) fold. The file is deleted.

May only be used at the very outermost level. It finishes the session and returns to operating system
level.

136 12 The development environment

Applied to a closed fold line or to a crease line, this function displays a message on the message
line giving the attributes of the fold.

These are:

Type: General format of fold.
Contents: What kind of information is in the fold.

See appendix F for a list of the fold attributes.

In addition, when pressed on a closed filed fold, [FOLD INFO] displays the name of the file corresponding
to the fold.

There is one error message associated with [FOLD INFOJ:
Data item has no attributes

The fold information function has no result when applied to a text line.

Applied to a UTIL fold, i.e. a closed fold line whose fold contents attribute is occam2 .util or
occaml.util, reads the code in the fold, and makes it the current utility package.
Used on a EXE fold, i.e. a fold whose fold contents attribute is occam2 . exe or occaml . exe, it
loads the code for the user program into memory, and makes it the current EXE.

Note that can be applied either to a fold set which contains a CODE fold (UTIL or EXE)
produced as a result of compilation, or it can be applied to the CODE fold itself.

While code is being loaded the following message is displayed:

Getting text on fold comment
For a utility fold, once the code has been successfully loaded, the utility comment line is displayed.

Displays a map of the system function keys. It also displays a system version identity message.

Moves the screen one line down the current view, if there are lines in the current view below the
screen.

This function does not affect the position of the cursor on the screen.

Moves the screen one line up the current view, if there are lines in the current view above the screen.

This function does not affect the position of the cursor on the screen.

-t

2.1

Keys . 137

MOVE LINE

Used to move a line, which may be a fold line, to another place in the document. A buffer is
associated with If the buffer is empty, removes the current line from the
document and puts it in the buffer. If there is a line in the buffer, removes the line from
the buffer, puts it into the document on the line above the current line and places the cursor on it.

The move line buffer is preserved between sessions.

NEXT EXE

Changes the current'EXE to the next member from the set of current EXEs.

NEXT UTIL

Changes the current utility set to the next member from the set of current utility sets.

OPEN FOLD

On a fold line opens the fold and inserts the contents of the fold into the current view, surrounded
by top and bottom creases. The top crease appears on the line of the screen where the closed fold
line was before was pressed. The position of the cursor on the screen is unaffected.

PAGE DOWN

Moves the screen one page down the current view, or to the bottom of the current view, whichever
is the nearest.

This function does not affect the position of the cursor on the screen.

=
a

Moves the screen one page up the current view, or to the top of the current view, whichever ic
nearest.

This function does not affect the position of the cursor on the screen.

PICK LINE

PUT

Used to pick up a line, which may be a fold line, so that it may be moved to another place in the
document. It removes the current line from the document and appends it to the end of the pick
buffer.

The pick buffer is preserved between sessions.

Puts down the contents of the pick buffer at the current position in the document. It inserts a fold
line at the current line, containing the sequence of lines placed in the pick buffer using
and [COPY PICK]. The pick buffer is cleared. If there are no lines in the pick buffer has no effect
on the document, and the terminal beeps.

E

Repaints the entire screen.

REMOVE FOLD

On a fold line opens the fold and removes the top and bottom creases, inserting the contents of the
fold into the current view at an appropriate indentation. If it is a filed fold, the file associated with the
fold is deleted from the directory.

138 12 The development environment

RESTORE LINE

Restores the last line placed in the delete buffer by [DELETE LINE], inserting it at the current position
in the document. The delete buffer is left empty.

Splits a text line in two at the cursor position and creates a new line on which are placed the cursor,
the character underneath the cursor and any subsequent characters on the line. The new line is then
indented by inserting spaces until the cursor is in the same column as the first significant character
of the line above.

will insert a blank line above the current line when the cursor is before or on the first
significant character of a line.

will insert a blank line below the current line when the cursor is after the last significant
character of a line.

has no effect on a fold line, top crease, or bottom crease if used between the first and last
significant characters of the line.

Runs the current user program.

If no user program has been loaded the following message appears:
No current EXE

The following message may appear when an attempt is made to run the current user program:
Unable to run code - data requirement too large

This indicates that the memory available is not sufficient for the data space required b{ th% féggnrg(ré.

It is necessary to remove one or more of the loaded code items using the [CLEAR UTIL] or
keys.

| SELECT PARAMETER |

Enables a user to toggle utility parameter values quickly. It has an effect only on lines of the form:

VAL parameter IS valuel : -- valuel | value2 | value3
VAL parameter IS TRUE :
VAL parameter IS FALSE :
VAL parameter IS "stringl" : -- "stringl" | "string2"

If the cursor is not on the first significant character after the IS the cursor will be placed on the
first significant character after the IS. Otherwise, another possible value of the parameter will be
substituted for the current value - either the value selected will be chosen in turn from the set given
in the comment or TRUE will alternate with FALSE.

[SET ABORT FLAG|

Sets a flag in the TDS to indicate that the user wishes the currently running utility or user program
to be aborted. Utilities and user programs which have been written to test the value of this flag (this
may be done using the kexnel channels), will be interrupted.

12.1 Keys 139

START OF LINE

Places the cursor on the first significant character of the current line. (i.e. the first non-blank
character).

SUSPEND TDS

Can be used anywhere in the normal editing environment to suspend the TDS temporarily and
return the user to the host operating system, so that operating system commands can be issued
(for example, getting directory listings, or formatting floppy disks). In DOS typing command exit
returns to the TDS, in the state it was when was pressed.

Operating system commands which reset the transputer board (for example, running a server with
another transputer boot file) will cause the state of the suspended session to be lost. When the ses-
sion is resumed, the current directory must be the same as it was when the session was suspended.

TOP OF FOLD

Places the cursor on the line displaying the top crease symbol of the current enclosing fold.

WORD LEFT

Moves the cursor one symbol left. The move is governed by the following rules:

e A symbol is a non-space non-alphanumeric bharacter, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

o If the cursor is on or to the left of the first significant (non-space) character on the line, the
cursor will move to the current indentation.

o If the cursor is to the right of the character following (immediately to the right of) the last
significant character on the line, the cursor will move to the character following the last
significant character on the line.

o In all other cases the cursor will move to the first symbol starting position to the left of the

current cursor position.
WORD RIGHT

Moves the cursor one symbol right. The move is governed by the following rules:

. A‘symbol is a non-space non-alphanumeric character, or a sequence of alphanumeric
characters. A line contains a sequence of symbols, separated by zero or more spaces. A
symbol starting position is the position of the first character in a symbol.

o If the cursor is to the left of the first significant (non-space) character on the line, the cursor
will move to the first significant character on the line.

o If the cursor is on or between the last symbol starting position on the line, and the last
significant character on the line, the cursor will move to the character following (immediately
to the right of) the last significant character on the line.

o If the cursor is to the right of the last significant character on the line, the cursor will not
move.

o In all other cases the cursor will move to the first symbol starting position to the right of the
current cursor position.

140 12 The development environment

12.2 Messages
12.2.1 Development environment messages

A complete list of the messages which may be produced by the development environment follows. Some
error messages may be followed by a result clause, of the form:

(Result = number)

This indicates the result produced by the filing system when the error occurred. If the result is 0, no
filing system error has occurred. The explanations of the error numbers are listed in appendix E.

The result number should be quoted if reporting errors associated with the filing system.
Cannot copy : not enough room

The editor cannot copy thé line because there is not enough room in the fold manager buffer to store
a copy. Any open filed folds not currently in use should be closed; alternatively some new filed folds
may have to be made to increase the amount of room available.

Cannot create : cursor must be below first line

This message may appear on the second press of It indicates that the cursor is on
or above the top crease inserted at the start of fold creation, and so the fold cannot be made.

Cannot create : folds must not overlap

This message may appear on the second press of It indicates that the current en-
closing fold is not the same as it was at the start of fold creation. Since folds cannot overlap, the
fold cannot be made. _

Cannot create : lines in fold have incorrect indentation

This message may appear on the second press of It indicates that some lines between
the top crease and the current line are less indented (more to the left) than the fold indentation given
by the top crease. Since all lines in the fold must be at the same or greater indentation than the fold
indentation, the fold cannot be made.

Cannot file fold : file cannot be written

This occurs on It indicates one of the following:

1 The editor could not open the file with the name given on the fold header for writing. The
most common cause of this is an iliegal file name.

2 The editor could open the file with the name given on the fold header for writing, but could
not complete writing to it. The most common cause of this is running out of available disk
space.

Cannot get : not a valid fold
In order to get a utility package, the cursor should be placed on a utility package fold, which has the
fold contents attribute of utility. In order to get a user program, the cursor should be placed on
an appropriate fold which has the fold contents attribute of executable.

Cannot get : not enough room to load code

There is not enough memory to load this code. It may be necessary to use the or
functions to re-use the memory currently allocated.

12.2 Messages 141

Cannot open : file does not exist
The editor could not open the file associated with a filed fold in order to read it in.
Cannot open : file has incorrect format

The file associated with this filed fold is not in the correct format. The system cannot read ordinary
text files; they must be converted first, using the [READ HOST] m utility.

Cannot open : fold is not text
It is not possible to open or enter a fold which contains information in a format other than text.
Cannot open : not enough room
The editor could not read in the file associated with a filed fold because of lack of fold manager
space. Any open filed folds not currently in use should be closed; alternatively some new filed folds
may have to be made to increase the amount of space available.

This message may also appear if an attempt is made to read in a filed fold which exceeds the
maximum fold nesting depth (50).

Cannot open : too many open folds
This message will appear if folds have been opened to give a total nesting depth of 50, or if more
than 50 folds have been opened above the current line. Some folds should be closed to allow this
one to be opened.

Closing...

This message is displayed when a fold is being closed. Closing a filed fold may take some time as
the file may have to be written out.

Copied into pick buffer OK
This message appears after a successful operation.
Copying...
This message is displayed when a fold is being copied.
Creating fold...
This message is displayed between the first and second presses of
Defining macro. Press [DEFINE MACRO] to resume editing.

This message appears between the two presses of to indicate that the system is
currently storing key presses as part of a macro definition.

Entering...

This message is displayed when a filed fold is being entered. This may take some time as the file
may have to be read in.

Entering code information fold...

This message is displayed when the code information fold is being entered. This may take some
time as the file may have to be read in.

142 12 The development environment

Entering toolkit fold...

This message is displayed when the toolkit fold is being entered. This may take some time as the
file may have to be read in.

Error : cannot open code file
An error occurred while opening the file containing the code. This message is followed by a number
which is the error result produced by the filing system. The possible error values are listed in
appendix E. .

Error : cannot write file - fold has been unfiled
In this close operation, one or more filed folds were not closed successfully (i.e. the contents of the
fold were not successfully written out to the file). The fold was closed, but converted into an ordinary
fold. Refer to the User guide section 4.5.8.

Error : failed to get code
An error occurred while reading the file containing the code. This message is followed by a number
which is the error result produced by the filing system. The possible error values are listed in
appendix E.

Error : run out of room - no insertions are allowed...
This message occurs if the room available to store text has run out. No insertions are allowed until
some deletions and file operations have been carried out to make some more room. The message
will persist, and then disappear when enough room has been made.

Exiting...

This message is displayed when a fold is being exited. Exiting a filed fold may take some time as
the file may have to be written out.

Filed OK as name

This indicates a successful operation. The name may be different to that expected if a
file of that name already exists.

Filing...
This message is displayed during a operation.
Long line

This message is displayed when the cursor is on a long line (i.e. a line which extends into the
rightmost column of the screen).

No current UTIL

This message appears continuously on the top line if there is no currently loaded utility set. If a
utility set is current, its fold header comment is displayed instead.

Not permitted on top level folds

The operation requested is not allowed at the top level (i.e. where only . TOP files can be seen).
For example, utilities and programs may not be run at this level.

12.2 Messages 143

Opening...

This message is displayed when a filed fold is being opened or entered. This may take some time
as the file may have to be read in.

Parameter parameter.name is missing

This message, and the following ones, indicate an error in the parameter fold supplied to utility. This
indicates that the parameter identified could not be found in the parameter fold.

Parameter parameter.name is specified more than once
This indicates that the same parameter name occurs more than once in the parameter fold.
Parameter line parameter.name has a bad string format
This indicates that the line defining a string parameter was not in the expected format, and the string
could not be parsed. Note that to make the characters ", ’ or * appear in the string they must be
preceded by an asterisk (*).
Parameter parameter.name is not a valid integer
This indicates that the parameter identified is not an integer, where one was expected.

Parametexr parameter.name is not a valid string literal

This indicates that the selection parameter identified is not set to one of the expected selection
identifiers. :

Parameter line parameter.name is not of form VAL <name> IS <value>:
This indicates that the line defining the parameter was not in the expected format.
Parameter parameter.name is not set to a valid boolean

This indicates that the boolean parameter identified is not set to either TRUE or FALSE. Note that
these must be in upper case, and the whole word must be typed.

Press [BROWSE] to finish read only
This message appears continuously on the top line after has been pressed, to remind the
user that any keys which could alter the document are currently disabled. To get out of this mode,
press again.

Press [ENTER FOLD] to enter outermost fold

This message appears if is used on an outermost level filed fold as a reminder that
must be used to access this fold.

Press [ENTER FOLD] to start session

This message appears on starting up the system as a reminder that must be used to
access an outermost fold.

Press [EXIT FOLD] to close and exit the enclosing fold

This message appears if is pressed when the current enclosing fold was opened with
an [ENTER FOLDJ, as a reminder that must be used.

144 12 The development environment

Removing filed fold...

This message is displayed when a operation is done on a filed fold. This may take
some time as the file may have to be read in.

Unfiled OK
This message indicates a successful operation.
Unfiling...

This message is displayed when an is being done. The contents of the file are being
read in.

Warning : copying filed fold - repeat to copy
The key or key has been pressed on a filed fold, or a fold line containing a
filed fold. Since the copy operation will involve file copying, and may take some time, the key press
should be repeated to confirm it.

Warning : deleting filed fold - repeat to delete

The key has been pressed on a filed fold, or a fold line containing a filed fold. Since
the operation will cause files to be deleted, the key press should be repeated to confirm it.

Warning : running out of room
The editor is running out of space. Attempts to copy folds or to open filed folds will probably fail

through lack of space. Any open filed folds not currently in use should be closed; alternatively some
new filed folds may have to be made to increase the amount of space available.

12.2.2 TDS server termination messag?s
The following termination messages may be produced by the server:
Bad command line option
A parameter to the server has been incorrectly specified.
Bad top level file
A top level file specified on the command line already exists, or does not have a . top extension.
Cannot close boot file
The server could not close the transputer boot file, after opening it successfully.

Cannot find root transputer

The root transputer did not respond to a server peek command - either the root transputer is not
connected correctly or it is not present.

Cannot open boot file

The boot file specified on the server command line (or the default boot file, boot .b4, if none
specified) could not be opened for reading.

12.2 Messages 145

Cannot read boot file
The server could not read from the transputer boot file, after opening it successfully.

Filer command received after filer termination
A command has been sent to one of the filer channels after the command tkf.terminate has
been sent to one of the filer channels. The tk£.terminate command sent on any filer causes
all the filers to terminate.

Illegal command received on kernel channel
The root transputer sent an undefined command on the kernel channel.

Illegal filer command, server terminated
An undefined command was sent on one of the to. £ilexr channels.

Illegal protocol whilst reading top level file
The special protocol enforced for reading the top level file was violated.

Message received on illegal channel
The transputer sent a message to the link upon an undefined logical channel.
This command usually appears after some incorrect channel protocol by the transputer has caused
the server and the transputer to lose synchronisation. This command will also appear if the link is
not connected to the PC, or is not connected in the specified position.

term.p command received after term.p termination

A command has been sent on the to.terminal channel after the tt.terminate command
was sent on the to.terminal channel.

term.p received undefined command

An undefined command was sent on the to.terminal channel.
Timeout on downloading boot file

The boot file data written to the link was not received by the transputer within a given time.
Transputer system error flag set

The subsystem error line has been asserted. The assertion may have come from any circuitry
connected to this line, not necessarily the root transputer.

146 12 The development environment

13 Utilities

13.1 occam program development package

13.1.1

Used to check the syntax of 0ccam source.

Parameters

The 0ccam checker shares parameters with the compiler. Only the following parameters are relevant to the
checker:

error.checking

alias.checking

usage.checking

force.pop.up

target .processor

use.standard.libs

code.inserts
Description

Place the cursor on a closed and filed occani source fold or on a compilation fold. The occam source
inside this fold will be checked.

Occam 2 compiler/configurer version start of run message.

Checking (target error.mode) fold.name... checker running message.

Checked (target error.mode) fold.name OK end of run message.
If an error is found during checking the checker reports the error in the same manner as
The checker provides no further checking than that provided with using the same parameters.
The checker reports an error if it encounters an uncompiled unit within the fold, or if it encounters a unit
compiled with a different version of the compiler. The compilation fold is located to and can then be checked
and recompiled.
cannot be used on a LIB fold to check library text folds.

Error messages

See the section on [COMPILE

13.12 [COMPILATION INFO|

Provides a readable version of the information kept in a compiled compilation unit. Normally the information is
displayed immediately by the utility. When applied to a PROGRAM fold, it provides details of the code loading
position on each processor, the boot order of the processors and the inter-processor link connections of a
configured network. The information is provided as a fold inserted at the end of the PROGRAM fold. The
created fold is readable and contains folds nested within it.

148 13 Utilities

Parameters

f£irst.processor.is.boot.from.link Only required when the utility is applied to a PROGRAM fold.
This parameter, if TRUE, causes the load address of the code for the first processor to be calculated
assuming that it is booted from link. If FALSE, the load address is calculated assuming that the
processor is booted from ROM, as described in chapter 10.

Description

Place the cursor on a closed compilation fold: an 0ccam 2 SC fold, an EXE fold, a PROGRAM fold, or a LIB
fold.

The behaviour of this utility differs depending on whether it is applied to a fold which has been compiled (an
occam ScC or an EXE fold) or configured (a PROGRAM fold), or is a library (LIB) fold.

Compilation information

When is pressed on an 0ccam SC or EXE fold the utility reads information associated
with the compilation fold and displays it. A textual version of the descriptor fold is displayed. If the text is
longer than a screenful it may be scrolled. When is pressed the previous context is restored to the
screen and the utility finishes.

The descriptor fold contains information used by the compiler and linker giving details of entry points, code
sizes, workspace sizes, compiler identity etc.

The first item is the occam 2 title. This is followed by a warning message if the compilation fold has been
modified since it was last compiled.

The next three lines give information about the the compiler used to compile the compilation unit. The target
processor is the processor the code was compiled for, for example T4. The compiler compatibility is used
to determine whether compilation units require recompilation because the compiler used to produce them is
in some way incompatible. The compiler version indicates the version string of the compiler which compiled
this fold.

This is followed by a list of some of the values of the compiler parameters that were used when compiling
this unit.

This is followed by a count of the number of nested separate compilation units present and the number of
nested alien language programs present. These are followed by the code size in bytes of this compilation
unit alone and the total code size in bytes of the nested 0ccam compilation units.

This is followed by a list of entry points in this compilation unit, (with parameters for procedures). For each
entry point the usage of channel parameters (whether they are used for input or output within this procedure)
is shown. Then there is a list of the entry point offsets in this compilation unit, and workspace and vector
space requirement in ‘slots’ (i.e. machine words) for procedure.

Then there is a list of the libraries used within this compilation unit, along with their version numbers.

Finally, if the compilation unit has been linked, the total linked code size is given.

Configuration information

Applied to a valid PROGRAM fold the utility produces a special filed fold marked with the
comment CONFIG INFO. This fold contains three nested folds of information which can be displayed by the
editor.

The first fold contains the memory layout for each processor, to be used when the code is loaded into a

13.1 occam program development package 149

network. The format is:

{{{ Processor Load Map

... Processor logical.number processor.type
... Processor logical.number processor.type
{{{ Processor logical.number processor.type

Memory layout first byte last byte

Work space number number
Main program number number
Real Op number number

SC string number number
Libraries number number
Separate vector workspace number number

11}

... Processor logical.number processor.type

11}

The second fold contains the order in which processors will be booted when the network is loaded. The
format is:

processor number £rom processor number link number

The third fold contains a list of the link connections between processors as described in the configuration
detail of the PROGRAM fold:

Connect processor number 1ink number to processor number link number

Library information
When pressed on a valid LIB fold the current library version number is displayed on the message line.

Messages

Creating config info... displayed when applied to a valid PROGRAM fold set.

Fold created OK end of run message.

13.1.3 |COMPILE

Used to compile occam compilation fold sets; it checks the syntax of the program as part of compilation.
When applied to a fold describing the configuration of an 0ccam program for a processor network, it generates
the information necessary to control the distribution of processes to processors.

Parameters

error.checking This selects the type of run time error checking compiled into an occam program. The
options are REDUCED, STOP, and BALT. HALT is the most useful for debugging programs. HALT
causes the entire processor to halt when an error occurs, STOP causes the process in which an
error occured to stop, and REDUCED has undefined behaviour should an error occur.

alias.checking When this parameter is TRUE, the compiler does full alias checking.

usage.checking When this parameter, and the alias checking parameter are TRUE, the compiler
does full usage checking.

separate.vector.space When this parameter is TRUE, the compiler creates separate workspaces for
scalars and vectors within the programs being compiled.

150 13 Utilities

create.debugging.info When this parameter is TRUE the compiler will create an additional output
file. This file is required by the debugger to recognise 0ccam names and the workspace layouts.
The parameter should be set to TRUE to obtain occam level debugging.

range.checking Setting this to FALSE causes the compiler to omit certain run time checking code (for
example, array bounds checking). It has no effect when the erzror.checking parameter is set
to REDUCED, as no checks at all will be inserted in REDUCED mode.

compile.all Normally the compiler only recompiles nested compilation units which have changed, or
which are in some way incompatible with the current compilation. This parameter, when TRUE,
forces the compiler to recompile all nested compilation units encountered.

force.pop.up This parameter forces the parameter fold to be displayed whenever the checker or compiler
is invoked.

use.standard.libs When this parameter is TRUE the compiler will use its standard arithmetic libraries
within this compilation. Setting it to FALSE will prevent the compiler from compiling any programs
with extended arithmetic, and the compiler will also fail to recognise a number of the implicitly defined
library procedures.

target.processor This parameter is used to set the target processor type when compiling for transputer
networks. The following target processors are supported:

T8: IMS T800 transputer.
T4: IMS T414 transputer.
T2: IMS T212 transputer.

code.inserxrts This selects whether transputer assembly-level code insertions are allowed. The options
are NONE, RESTRICTED and ALL.

When this parameter is NONE it prevents any code insertions in compilation units being compiled.
RESTRICTED allows a restricted set of instructions which are the instructions which may be used
in sequential code, without interfering with the occam process model. ALL allows a full set of
documented instructions to be used.

Description
Place the cursor on a compilation fold (a fold which has been created using [MAKE FOLDSET]). This may be

an occam SC, an EXE,a LIB or a PROGRAM fold. Besides the source fold there may be data folds left over
from a previous compilation; these will be removed or overwritten when runs.

It is also possible to apply the function to any source fold. The utility will search the fold for any
compilation units contained within it, and compile each of them in turn, allowing a collection of libraries and
separate compilation units to be compiled as a batch.

Compilation

When is pressed on a compilation unit the contents of the source fold are compiled. The compiler
adds code and data folds to the contents of the compilation fold that hold the result of the compilation. Any
previous code and data folds are deleted.

When applied to a compilation unit the compiler will always recompile that unit. Normally the compiler will
not compile units within the fold which have already been compiled, and so are marked with a fold type of
compiled foldset. If, within the fold being compiled, the compiler encounters any of the following:

e a compilation unit whose fold type is uncompiled foldset,

e a compilation unit whose used libraries have been recompiled and given a new version number,

« a compilation unit compiled for a different processor type,

13.1 occam program development package 151

o a compilation unit compiled in a different error mode,

e a compilation unit compiled with an incompatible version of the compiler
then the inner compilation unit is automatically recompiled.
If the compile. all option is enabled all nested units are recompiled.

Searching fold... start of run message, looking for any nested com-
pilation units.

Compiling (farget error.mode) fold.name... displayed if the compiler finds an SC that needs
recompiling. The fold is compiled.

Compiled (target error.mode) fold.name OK end of run message.
If an error is found then an error message is displayed on the screen and the compiler automatically locates
to the line on which the error was discovered. It does this by entering the outer level fold and opening any
folds necessary to reach the error line. This error line is displayed as close as possible to the middle of the
screen.
Only the first error in the program is found and reported.
A successfully compiled compilation fold is given the fold type compiled foldset. A compilation fold is
‘valid’ after compilation as its contents relate to the current version of the source fold. Any changes made to
the contents of the fold will make the fold invalid, requiring it to be recompiled.
fold.name not compiled (searching...)
Displayed if the search for nested units finds a unit that needs recompiling. This unit is also searched
for constituent units. When this search has finished the nested unit is compiled. If an error is found
the error message is displayed and the error line located to.
Compiled (larget error.mode) fold.name (seaxrching...)

Displayed if the compilation is successful. The search for more uncompiled units continues until all
necessary units are recompiled. Only then is the enclosing unit compiled.

fold.name compiled for wrong target (searching...)
Displayed if a unit compiled for a different target processor is met during the search.

Similar messages are produced for compilation units which are compiled for a different error mode, which
have been compiled with a different version of the compiler, or whose libraries have changed.

If the compiler encounters a library reference referring to a non-existent or invalid library, either in a #USE
line or in the descriptor of a compiled unit, it will stop compilation and locate to the position where the error
was found.

Once compilation is complete, if has been invoked on an EXE, the compilation unit is automatically
linked, into a CODE EXE fold.

Linking code... start of link run message.
Code linked OK end of run message.

If is compiling a library, once all SCs in the library have been compiled, the library is made valid and
given a new version number.

152 13 Utilities

Configuration

When run on a PROGRAM compilation fold, generates the information necessary to control the
distribution of processes to processors. It checks the syntax of the allowed constructs in a PROGRAM, and
also checks that channels and links are connected correctly and that all the processors are connected in the
network. If any SCs in the program are not yet compiled, they are compiled and linked before configuration
is done. If the PROGRAM contains SCs for different processor types, should be used instead of
COMPILE

When configuring a PROGRAM fold, performs the following tasks:

o Builds a map of the target system in the descriptor fold.

o Generates code which initialises the workspace to the values of actual parameters corresponding to
the formal parameters of the SC procedures.

e Checks that the link connections are legal by making certain that all channels are connected to no
more than one input and one output link.

o Evaluates all constant expressions.
o Allocates work space for declared variables and channels.
o Checks that the system described is loadable from the root processor.

13.1.4 Compiler messages

The compiler produces a large number of messages indicating program errors. Most of these should be self-
explanatory, when taken in conjunction with the language manual. Compiler error messages can be of four
forms: invalid use of library logical names, program errors, compiler dependent implementation restrictions
and catastrophic compiler failures. There are two places within a compilation when errors attributable to the
library logical name system may be reported. They are on analysis of the library logical name fold when

inconsistencies and inadequacies in this fold will be reported, and when processing #USE lines, or logical
names found in compilation descriptors, when a desired translation may be found to be absent from the table.

13.1.5 Library logical name fold errors

Too many libraries
Library name text buffer overflow

The capacity of an internal table has been exceeded. These capacities depend on the total free
workspace available to the utility. If this cannnot be increased then unused libraries should be
removed from the fold and/or the names reduced in length.

Library name not a valid name

An item starting with an occam identifier character contains a character other than a letter, digit or
dot.

Braces not matched

A { is not matched by a } with no intervening space or .
File name not terminated by "

A " is not matched by another " with no intervening space or }.
Library line structure error

The sequence of items in a line is not [directory.name] file.name keywords logical names.

13.1 occam program development package 153

No library directory name

The present line and no previous lines contain no directory.name.
No library file name

There is no file.name on the line.
No stopping mode/target

A logical name has been found before at least one keyword.
Two libraries conflict

A previous line defines a translation for the same logical name and at least one mode/target as the
current line.

Each of the above messages will be followed in the error line by the text of the line on which the error was
detected, and the utility will be aborted.

13.1.6 Program errors
The error messages have the general form of:

Exzox number: qualifier message

The error message describes which error the compiler has discovered. The error number and qualifier pinpoint
exactly which part of the compiler has produced the message.

13.1.7 Iimplementation limits

These errors produce a message in one of the following forms:

Implementation limit: description
Implementation restriction: description

These messages refer to limits (usally fixed buffer sizes) in the compiler. In some cases these limits can be
bypassed by restructuring the program. In general the following guidelines to writing programs will reduce
the possibility of encountering these limits.

o Declare variables and constants for the smallest amount of program that is possible. Variables and
constants that are left in scope unecessarily waste buffer space in the compiler.

e Write many small procedures rather than large pieces of in-line code.

o Nest procedure declarations wherever possible.

e Use SC procedures when practicable.

o Split complex expressions by use of abbreviations or temporary variables.

All implementation limits can be avoided by structuring a program so that it can be written as a number of
small separately compilable modules.

154 13 Utilities

13.1.8 Compiler errors
These errors produce the following message:
COMPILER ERROR - PLEASE REPORT
Any program that generates an error message of this form should be reported to INMOS.

13.1.9 Configurer error messages

This section describes the error messages which may appear when configuring a PROGRAM fold.

Note that in the following messages, when arrays of channels greater than one dimension are declared at
configuration level, the configurer has a problem when it tries to report an error involving a particular element
of the array. The problem is that the array has been flattened into a one dimensional array by multiplying the
appropriate subscripts by the sizes of the dimensions of the array.

e.g. if cisdeclared as [3] [5] CHAN OF ANY c : and the user makes an errorinvolvinge [2] [4]
then the configurer will report that channel ¢ subscript 14 has been illegally used.

Base value for placed par replicator not of type INT
The user has written something like PLACED PAR i = 2.0 FOR 10.
cis a configuration channel and cannot be placed IN anything
The user has attempted to PLACE ¢ IN VECSPACE : (or WORKSPACE)
Cannot place a 2 dimensional array of configuration channels

The user has written PLACE ¢ at 0 : where cis a 2 dimensional array of configuration level
channels. Only single elements of configuration level channels may be placed.

Cannot place an expression

The user has written something like PLACE x + y AT 10 :
Cannot place configuration channel at address n

Configuration channels must be placed on hardware links (addresses 0 to 7 for T2, T4 and T8)
Channel ¢, subscript nhas already been placed

User has attempted to place the same subscript of the same channel array twice on one processor.
Channel c7 has already been placed

User has attempted to place the same channel twice on one processor.
Config channel parameter nis placed for input, not output

The channel parameter n being passed to the procedure is used to pass messages in the opposite
direction to that allowed by the hardware.

Config channel parameter nis placed for output, not input

The channel parameter being passed to the procedure is used to pass messages in the opposite
direction to that allowed by the hardware.

13.1 -occam program development package 155

Configuration channel must have a constant subscript

The user has written something like PLACE ¢ [x] AT 0 : where x is not a constant expression.
Configuration level SCs may not contain functions

A configuration level SC must contain a procedure.
Configuration level SCs may only contain one proc.

A configuration level SC may only have one entry point.
Count value for placed par replicator not of type INT

The user has written something like PLACED PAR i1 = 2 FOR 10.0.
Libraries at configuration level may not contain SCs

Libraries at configuration level may only contain VAL definitions and PROTOCOLs.
Link pair a/b on processor nis connected to processors nf and n2

The input and input parts of one hardware link have been connected to different processors. This is
not possible. '

No load path from root processor to processorxr n

There is no path connecting the root processor to processor n.
Only VAL abbreviations / retypes allowed at configuration level

The user has written something like x IS y : at configuration level.
Only whole arrays can be placed, not just part of them

The user has attempted to PLACE [x FROM 2 FOR 3] AT 10 : or something similar.
Parallel inputs on channel ¢

Usage error of channel ¢. Two prbcesses are inputting from that channel.
Parallel inputs on channel ¢, subscript n

Usage error of channel array element. Two processes are inputting from that channel.
Parallel outputs on channel ¢

Usage error of channel ¢. Two processes are outputting from that channel.
Parallel outputs on channel ¢, subscript n

Usage error of channel array element. Two processes are outputting to that channel.
PLACE address is not constant

The user has written something like PLACE ¢ [2] At x : where x is not a constant expression.
PLACE address is not of type INT

The user has written something like PLACE ¢ [2] AT 2.0 :

156 13 Utilities

PLACED PAR replicator must have a constant base value
The user has written something like PLACED PAR i = x FOR 10 where x is not a constant.
PLACED PAR replicator counts must be > 0
The user has written something like PLACED PAR i = 2 FOR -2.
PLACED PAR replicator must have a constant value
The user has written something like PLACED PAR i = 10 FOR x where x is not a constant.
Processor n1, link n2is connected to itself
The output of the link has been wired back on itself.
Processor number cannot be evaluated
The user has written something like PROCESSOR x T4 where x is not a constant.
Processor number must be of type INT
The user has written something like PROCESSOR 2.0 T4.
Processor number nhas been used before
The user has specified the same logical processor number twice in one program.

Processors nf and n2may not be connected by a channel
with INT in its protocol

Processors n1 and n2 have different word length and so cannot exchange INTs properly on a link
between them.

program too big to configure
Implementation limit.
SC PROC name is not compiled for processor type processor.type
The SC is compiled for a different target.
Statement not allowed at configuration level
User has attempted to use IF, WHILE, etc. at configuration level.
There is already a channel placed at address n
The user has tried to place two different channels at the same address on one processor.
Variables of type lypemay not be declared at configuration level

Ohly channels may be declared at configuration level.

13.1.10 [EXTRACT

Extracts all the code from a fold set and puts it into a single additional fold placed as a new last item in the
fold set. If the fold set is a PROGRAM fold, the created fold contains all the necessary routing and bootstrap
information for loading the target network of transputers. If the fold set is an SC fold, the created fold contains

13.1 occam program development package 157

all of the linked code from that fold set as a single contiguous structure.

When applied to a valid PROGRAM fold the utility is used to produce a CODE PROGRAM fold which
may be loaded to a transputer network or included as part of an EPROM. In general loading a network from a
previously extracted CODE PROGRAM fold is quicker than loading from a PROGRAM fold which has not been
extracted.

When applied to a valid SC fold the produces a linked CODE SC fold. The fold produced can be
included as part of an EPROM.

Parameters — PROGRAM fold

output. fold This parameter determines whether the fold produced by the EXTRACT utility should contain
load time diagnostic information or not. The option BOOTABLE will cause the utility to produce a fold
which contains only data which is needed to load a transputer network. The option DIAGNOSTIC
will cause the utility to produce a fold which contains additional information to keep track of the
progress of a load. A DIAGNOSTIC fold requires the tool which is going to be used to send the
contents to the network to understand the format of the fold and keep track of the progress of the
load. A BOOTABLE fold can be sent directly to a network with no interpretation.

first.processor.is.boot.from.link This parameter, if TRUE, causes the load address of the
code for the first processor to be calculated assuming that it is booted from link. If FALSE, the load
address is calculated assuming that the processor is booted from ROM.

Parameters — SC fold

None

Description

Place the cursor on a valid compilation fold set.

Applied to a valid PROGRAM fold, the utility produces a fold containing all of the routing information,

the bootstraps and the code necessary to load the network described by the PROGRAM. The fold produced

may also contain embedded messages, which can be used to keep track of the progress of a future load.

While the fold is being produced various messages are displayed. The fold produced is marked with the fold

header string taken from the PROGRAM fold, prefixed with the string CODE.

Extracting network... start of run message.

Extracting SC.string displayed as a particular SC is extracted.The string is taken from the
fold header of the SC being extracted.

Extracting main bodies displayed after all the SCs have been extracted.
Network extracted OK end of run message.
Applied to a valid SC fold, the utility produces a fold containing all of the code from the SC and any
libraries referenced. The fold produced is marked with the fold header string taken from the SC fold, prefixed
with the string CODE .
The initial message is
Extracting sc.string

Where sc.string is taken from the fold header of the SC being extracted. When extraction is successfully
completed the message is changed to:

sc.string extracted OK

158 13 Utilities

Error messages — PROGRAM fold

Error messages generated by the utility fall into two groups; errors during extraction of the code
from the fold and errors which are generated by filing the extracted CODE PROGRAM fold.

Messages in the first group have the form:
Extraction error : error.message

Messages in the second group have the form:
Filing error error.number : error.message

The extraction error messages are:

Failure while entering fold
The extractor has been unable to enter a fold. This may often be overcome by making more of
the folds in the current environment into filed folds, and thereby, increasing the space available for
entering new folds.

Failure while exiting fold
This error is unlikely to occur. It normally signifies a problem with writing to the disk.

Incorrect compiler identity string

The compiler identity of the compiled code does not match the identity of the current utility set. The
item referenced should be recompiled with a compatible compiler.

Load path maximum exceeded
This is an implementation limit. The load path necessary to enable code to reach a specific processor
exceeds the buffer size allocated. A processor network structure which branches does not require
as long a load path as a linear structure.
Not a compiled PROGRAM fold
The cursor is not currently placed on a PROGRAM fold which has the attribute fold set.
Saved code buffer overflow
This is an implementation limit. It indicates that the portion of procedure code held back for extraction
to the network with the main bodies has overflowed the buffer available for it. This message is very
unlikely to occur.

Stack overflow

This is an implementation limit. The stack is used during production of the load path. A processor
network structure which branches does not require as large a stack as a linear structure.

Too many PROCESSORs
This is an implementation limit.
Error messages — SC fold

Error messages generated by the utility when applied to an SC fold are similar to the filing error
messages produced for a PROGRAM fold.

13.1 occam program d_evelopment package 159

13.1.11 [LOAD NETWORK |

Used to send code to a transputer network.
Parameters

link This parameter selects the output link from the host transputer through which the network is to be
loaded. All transputers in the network must be set to boot from link.

first.processor.is.boot.from.link This parameter, if TRUE, causes the load address of the
code for the first processor to be calculated assuming that it is booted from link. If FALSE, the load
address is calculated assuming that the processor is booted from ROM.

output.or. fail This parameter, if TRUE, causes all output by the host to the network to be done using
the extraordinary link handling library. This means that the loader is able to recover if it at any point
it is unable to output to the network when attempting to load it. The link is reset before use, enabling
multiple attempts to load. This parameter, if FALSE, causes the loader to use normal channel output
instructions. If the loading fails then the loader and the TDS will deadlock and need to be rebooted.
The reason for using FALSE is that it will not time-out if communication is slowed down significantly.
For example, communication might be slowed down by inserting an extra processor into the network
to display on a terminal all bytes that pass through it while the network is being loaded for debugging
purposes.

host .subsystem This parameter may be set to B004 or B002 and causes the loader to use the reset
subsystem hardware at the appropriate address. This enables the loader to reset the network before
loading it.

Description
Place the cursor on a configured PROGRAM fold, or on a CODE PROGRAM fold produced by [EXTRACT].

The utility exports code to the transputer network. It will link and extract that code from the
fold set only if it is necessary as described below.

Applied to a PROGRAM fold

Applied to a valid PROGRAM fold, the utility extracts all the allocated code and exports it along
with all the necessary routing information to the transputer network. A map is built of the target network from
the configuration information in the fold. Using this map the bootstraps for all the processors in the network
are exported so that each processor is ready to receive loading information. After this the utility traverses the
source fold structure extracting all the procedure code and exporting it from the selected line along with the
necessary routing information to direct it to the correct place on the target processors. Finally all the main
program code is exported to the line in the reverse order to the order in which the processors were booted.

Extracting and loading netwoxk... start of run message.

Extracting sc.string displayed when a particularSC is being extracted,
where sc.string is taken from the fold header of the
SC being extracted.

Extracting main bodies displayed after all the SCs have been extracted.
Network extracted and loaded OK end of run message.

Applied to a CODE PROGRAM fold

Applied to a CODE PROGRAM fold, or a PROGRAM fold which contains a CODE PROGRAM fold the utility
exports the contents to the transputer network. All of the bootstraps and routing information
are already contained within the CODE PROGRAM fold. If the CODE PROGRAM fold has been produced as

BOOTABLE by the utility, the utility simply copies the fold to the selected output line.

160 13 Utilities

If the CODE PROGRAM fold has been produced as DIAGNOSTIC by the utility, the
utility interprets the contents of the fold, displaying messages on the screen and sending the actual loading
data to the selected output line.

Loading network... start of run message.
If the CODE PROGRAM fold has been produced as DIAGNOSTIC, this
message is replaced by the messages which were displayed at the time
the CODE PROGRAM fold was produced by the utility. If the
CODE PROGRAM fold has been produced as BOOTABLE, this message
will not be replaced.

Network loaded OK end of run message.

Error messages

Error messages generated by the utility fall into three groups; errors during extraction of the
code from the fold, filing errors during extraction of the code from the CODE PROGRAM fold and errors with
communication to the target transputer network. Messages in the first group have the form:

Extraction error : error.message
Messages in the second group have the form:
Filing error error.number : error.message

Messages in the third group have the form:

Communication error : error.message
The extraction error messages are similar to the extraction error messages described for the [EXTRACT] utility.

The filing error messages report failures received from the TDS filer. The error.number will correspond to the
error numbers described in appendix E.

The communication error messages are:

Failed to output boot code for processoxr number
Failed to output boot terminator for processoxr number
Failed to output main body code for processor number
Failed to output sc.string

Failed to output saved SC code

Failed to output terminating null message

These messages indicate that an output to the loading link has failed. This will occur for bootstraps if the links
are not physically connected correctly, the processor is not ready to boot from link, or some other hardware
fault has occurred.

As the code for any processor may pass through a large number of intermediate processors, the failing
processor can not be identified exactly in all cases. The bootstrap code consists of eight packets and, as
there will be a single code packet on each intermediate board, the identity of the actual failing processor can
often be determined.

13.1.12 [MAKE COMMENT |

Used to ‘comment out’ a fold so that it will be ignored by the occam checker and compiler.
Parameters

None

13.1 occam program development package 161

Description

Place the cursor on a fold containing some 0ccam source text which is to be commented out.

produces a fold which encloses the source fold. This new fold is given the fold content
attribute of text. The fold header is prefixed with the letters COMMENT, followed by text copied from the
original fold header.

The action of may be reversed using the editor function on the fold produced.

Error messages

See [MAKE FOLDSET]

13.1.13 [MAKE FOLDSET

Used to create a compilation fold around the current fold.
Parameters

This utility uses the parameters fold make foldset parameters which has the single parameter
make.foldset .type. This parameter can be set to one of the following:

SC, EXE, UTIL, PROGRAM, or LIB which creates the corresponding compilation fold.
Description
Place the cursor on a filed fold containing some occam source text which is to become a compilation unit.
Pressing produces a compilation fold which encloses the source fold. This new fold is given
an attribute to indicate that it contains an uncompiled occam program. The fold header is prefixed with the
type of the compilation unit (SC, EXE, UTIL, LIB or PROGRAM) followed by text copied from the source fold
header. This text may be edited.
The action of may be reversed using the editor function on the fold produced.
Error messages
Cannot make a fold round this item

The cursor must be on a closed fold line.
Error - fold is not empty

To make a library, the utility must be applied to an empty fold.

Error - library cannot be filed

To make a library, the utility must be applied to an empty (non-filed) fold.

13.1.14 |[RECOMPILE

is used to recompile a fold structure containing compilation units which have already been com-
piled. It must be used to compile libraries or PROGRAM folds containing SCs for mixed processor types or
error modes.

162 13 Utilities

Parameters

The recompilation function uses compile.all and force.pop.up parameters from the compiler
parameter fold; for a PROGRAM fold it also uses other compiler parameters.

Description

Place the cursor on a compilation fold (a fold which has been created using the utility). This
may be an 0ccam SC, an EXE,a LIB or a PROGRAM fold. Besides the source folds within this fold structure
there must also be descriptor folds left over from a previous compilation.

It is also possible to apply the function to any source fold. The utility will search the fold for any
compilation units contained within it, and recompile each of them in turn, allowing a collection of libraries and
programs to be compiled as a batch.

The function behaves like [COMPILE], but for each unit compiled it takes the compiler parameters
from the descriptor left by the previous compilation. Unlike [COMPILE], which recompiles any compilation unit
it finds which has been compiled for a different target or error mode than the current set of parameters (see
14.5.3), may be applied to a fold structure containing compilation units compiled for different
targets or in different error modes. will only recompile units with uncompiled foldsets or changed
libraries, unless compile.all is TRUE, in which case it will recompile everything. If any inner compilation
fold encountered is found not to have a descriptor fold, the compilation halts, and the compiler locates to the
compilation fold in error.

Error messages
The same messages as for are generated, plus
No descriptor fold present in foldset

This message indicates that there was no descriptor fold in the foldset for the compilation unit
indicated, so could not proceed.

13.1.15

replaces one string with another.

Parameters

shares a parameter fold with [SEARCH]. It contains the following parameters:

search.string This is a string parameter, and is the string to be matched. It may include spaces, as it
is delimited by double quote marks (). occam rules for strings should be followed. In particular,
to make the characters quote (), double quote (™) or asterisk (*) appear in the string they should
be preceded by an asterisk.

replace.string This string parameter is the string used to replace the search string if a match is found.

case.sensitive This boolean parameter determines whether the string matching is case-sensitive. If it
is TRUE, an exact match for the string, with all letters in the same case as the search string, must
be found for the match to succeed. If it is FALSE, a string which differs from the search string only
in the case of one or more letters will match. The default is TRUE.

forward.replace This boolean parameter determines where the cursor ends up after the matched string
has been replaced. If forward.replace is TRUE, the cursor is moved forward to the character
following the new replaced string. If forward.replace is FALSE, the cursor remains in the
same column, on the first character of the new string. The default is TRUE.

13.1 occam program development package 163

Description

Place the cursor on the first character of the string to be replaced. If has been pressed this will have
already been done. N.B. does not do any searching.

may be used on its own, with an empty search string, to insert a string of text at multiple positions
in the document.

may be used anywhere it is legal to insert text using the editor, except for inserting spaces to the
left of a fold line marker.

When is pressed the utility attempts to match the string at the current position (starting with the
character under the cursor) with the search string.

Cannot replace: no match for search string no match found.

Replaced OK If a match is found the characters of the matching string are replaced with the
replace string. If forward. replace is TRUE, the cursor is moved forward
to the character following the new replaced string. This allows searching to
continue to the next occurrence without examining the newly inserted string.
If forward.replace is FALSE, the cursor remains in the same column,
on the first character of the new string. This is useful if using in
conjunction with cursor keys.

Error messages
Cannot replace : on invalid item

The replace utility may not be used to insert text to the left of the leftmost column of a fold, or on a
fold or crease marker symbol. Since text may not be inserted on a bottom crease, line replacement
may not be done anywhere on a bottom crease line.

13.1.16

is the string searching utility.

Parameters

shares a parameter fold with It contains the following parameters:

search.string This is a string parameter, and is the string to be searched for. It may include spaces,
as it is delimited by double quote marks (™). occam rules for strings are followed. In particular, to
make the characters quote (“), double quote (") or asterisk (*) appear in the string they should be
preceded by an asterisk.

replace.string This string parameter may be supplied when is pressed, but it is not used by
[SEARCH]. See the section on [REPLACE].

case.sensitive This boolean parameter determines whether the string matching is case-sensitive. If it
is TRUE, an exact match for the string, with all letters in the same case as the search string, must
be found for the search to succeed. If it is FALSE, a string which differs from the search string only
in the case of one or more letters will match. The default is TRUE.

forward.replace This boolean parameter may be supplied when is pressed, but it is not used
by [SEARCH]. See the section on [REPLACE]

164 13 Utilities

Description

Traverse the fold structure using [OPEN FOLD] and [ENTER FOLD] until the current view (i.e. the contents of the
last entered fold) is the context within which a search is to be done. Place the cursor anywhere on the screen
before pressing [SEARCH]. It will search from the current line onwards, including the contents of any folds.

The searcher looks for a match with the search string, starting with the character following the character
under the cursor.

Searching for "string"... is displayed.
The searcher will search from the cursor position up to and including the last line in the current
view, or until a match is found. Fold header strings and text lines are examined for a match with the

search string. Fold and crease markers, spaces inserted to the left of the leftmost column of a fold,
and spaces to the right of the rightmost significant character on a line are not matched.

All folds and filed folds which may be opened by the editor are opened and searched. Data and
code folds are not opened.

"string"” not found is displayed if no match is found.
(The editor position remains as it
was before the searcher was run)

"string1" found ; replace with "string2" is displayed if a match is found.

The found string is located. If the string is on the screen the cursor is moved to the first character of the
string.

If the string is not on the screen, the current position is moved from the position at which the searcher was
invoked (old position) to the position at which the string was found (new position).

Any folds needed to reach the new position are opened, and the line containing the string is placed as close
as possible to the centre of the screen. Any folds which contain the old position but which do not contain the
new position are closed. The cursor is placed on the first character of the found string. If the found string is
on a long line and off the right hand edge of the screen the cursor is placed in the rightmost column on the
screen.
Error messages
No search string

An empty search string has been supplied and as a result no searching can be done.
The following error message may be generated by [SEARCH], due to failure to read a filed fold:

Failed to open fold

When one of these errors occurs, the current position remains as it was when the searcher was started.
This indicates one of the following conditions:

1 A filed fold was encountered, for which there was not enough room to read in the contents of the file
(possibly because other filed folds were still open elsewhere). This is quite a common occurrence,
since while a search is being done the filed folds containing the position at which the search was
started and the filed folds containing the position which the search has reached are both open.

If this occurs, it is necessary to move out a few levels to close some surrounding filed folds, and
start the search again on a filed fold further down the document.

2 A filed fold was encountered which could not be opened. This indicates that the file could not be

13.2 File handling package 165

opened for reading, and should be treated as a system error, and the most likely cause is that the
file does not exist.

3 A filed fold was encountered for which the file does exist, but appears to be in an incorrect format
for reading by the system. This should be treated as a system error.

13.2 File handling package
13.2.1

Attaches a file to a fold. It may be used to attach to any type of TDS 2.0 supported file, such as text,
executable code (UTIL or EXE) and so on. The attributes (i.e. type of fold) are determined by the file name

extension. For example, a .tsxr extension will mean that the file contains text, while a .cex extension
indicates that the content is executable code.

Many folds may be attached to the same file, allowing the contents to be shared with other locations in the
fold structure. If a file is shared between different locations it can prevent the separate compilation version
control mechanism from functioning correctly. Also, by deleting one attached filed fold the contents of all
such attached files will be lost. It is strongly recomended to use to prevent the deletion of an
attatched filed fold from inadvertently deleting the underlying file. If it is required to delete an attached fold
use [DETACH], which removes an attached filed fold, without deleting the file.

is on the same key; the two utilities are toggled.

Parameters

None.

Description

should be invoked on an empty fold. The name of the file to be attached to the fold should be the
first word on the fold line. The filename may include a directory specification.

When is pressed, the TDS reads the file name from the fold line and checks to see if the file exists
and if it does the file is attached to the fold, making its contents accessible.

Attaching file... start of run message.
Attached file OK end of run message.

Error messages
Cannot attach file: must be on a fold

The cursor must be on a (non-filed) fold when is invoked.
Cannot attach file: fold is not empty

A fold cannot be attached to a file unless the fold is empty.
Cannot attach file: file does not exist

A fold cannot be attached to a non-existent file.
Error attaching file (Result = n)

Where n is the filing system error code. The system failed to attach a file to the fold.
See appendix E for a list of the error numbers.

166 13 Utilities

1322 [COMPACT LIBRARIES|

Copies the contents of a filed fold, including nested files, to another directory. Any library folds encountered
are compacted, that is, all information in the library is written into a single file. A parameter allows source to
be removed from the library as it is compacted. The name of a file being written is normally the same as that
of the file being read.

Parameters

DestinationFileName gives the full name of the file to be written, including all necessary directory
specifications needed to locate it.

DeleteSource is a boolean parameter. If it is set to TRUE then source text is removed from occam SC
foldsets in the compacted libraries, and certain information is removed from the debug fold. If set to

FALSE then source text is copied across. The default is TRUE. (This parameter has no effect on
the original fold to which the utility has been applied).

OverwriteFiles determines what happens when a file name clash occurs in the destination directory.
If OverwriteFiles is FALSE then when a name clash occurs the name of the file being written
is modified to make it unique. If the value is TRUE, then the old file is overwritten with the new file.
The default is FALSE.

The parameters are always offered for editing when this utility is run.

Description

Place the cursor on the fold to be copied and compacted.

When is pressed the fold under the cursor and all nested files are copied into the desti-

nation file. Nested files are copied to new files nested within the destination file. Libraries encountered during

the copying are compacted, and the source text is removed (depending on the value of the DeleteSource
parameter).

Apart from its behaviour with libraries, behaves like [COPY OUT].

Copying out and compacting libraries... start of run message.
Copying out: "string"... shows fold header of file being copied.
Copied from this directory OK end of run message.

Error messages

See the section on [COPY OUT].

13.23 |[COPY ATTACH

Performs a similar action to [ATTACH], but before attaching a file a complete copy of the file and all nested files
is made. The copy is attached to the fold under the cursor. File name clashes which occur as a result of the
copy are prevented, by making up new names for files derived from the file names in the original.
Parameters

None.

13.2 File handling package 167

Description

should be invoked on an empty fold of a type that can be opened by the editor. The name of
the file to be copied and attached to the fold should be the first word on the fold line.

When is pressed, the TDS reads the file name from the fold line and checks to see if the file
exists and if it does the file and all nested filed folds are copied and the copy is attached to the fold, so that
opening the (now) filed fold gives access to the copied file.

Attaching and copying file... start of run message.
Attached file OK end of run message.

Error messages

The error messages produced by [COPY ATTACH] are the same as for [ATTACH].

1324

Copies a TDS 2.0 format file and any nested files from another directory to a fold (in the current directory).
A parameter allows only text folds to be copied. It can be used to copy from a floppy disk into the TDS.
The name of a file being written is the same as that of the file being read, except where a file name clash
would occur. If a name clash occurs the name of the file being written is modified to make it unique. If a file
being copied contains a filed fold whose file is located in a directory other than that specified by the
parameter (i.e. the file name has a directory name prefix) then only the filed fold is copied, not its contents.

Parameters

SourceFileName gives the full name of the file to be copied, including all necessary directory specifica-
tions needed to locate it.

TextOnly is a boolean parameter. If set to TRUE then only text folds are copied. If set to FALSE then
text, data and code folds are copied (all folds are copied). The default is FALSE.

The parameters are always offered for editing when this utility is run.
Description
The cursor should be pointing at an empty fold, or an empty filed fold.

When is pressed the named source file and all nested files are copied into the current fold.

Copying to this directory... start of run message.
Copying in: "string"... shows fold header of file being copied.
Copied in OK end of run message.

Error messages
Copy aborted by user

The copying operation has been aborted by using
Copy in failed (Result = n) in "string"

The copy operation has failed while it was being carried out.

n is the filing system error result (if any), see appendix E.
string is the fold header of the file being read when the error occurred.

168 13 Utilities

Cannot copy in: error message (Result = n)

where n is a filing system error code (see appendix E), and error message is one of the following
messages:

cannot open destination file

The system cannot open the file that is to be written.
cannot open source file

The system cannot open the file that is to be read.
filed fold must be empty

The filed fold that the copy is to be made to must be empty.
must be on a text fold

The utility was invoked either on a text line or on a fold of a type that cannot be read by the editor.
cannot create filed fold

The utility was invoked on a non-filed fold and the system could not file it.
file name not given

No file name has been supplied in the parameters to the utility.
directory name not given

The file name supplied to the utility does not include a directory path.

1325

Copies the contents of a fold, including nested files, to another directory. A parameter allows only text folds
to be copied. It can be used to copy to a floppy disk from within the TDS. The name of a file being written is
the same as that of the file being read, except where a file name clash would occur. If a name clash occurs
the name of the file being written is modified to make it unique. If a file being copied contains a filed fold
whose file is located in a directory other than that specified by the parameter (i.e. the file name
has a directory name prefix) then only the filed fold is copied, not its contents.

Parameters

DestinationFileName gives the full name of the file to be written, including all necessary directory
specifications needed to locate it.

TextOnly is a boolean parameter. If set to TRUE then only text folds are copied. If set to FALSE then
text, data and code folds are copied (all folds are copied). The default is FALSE.

The parameters are always offered for editing when this utility is run.
Description
The cursor should be pointing at the fold to be copied.

When is pressed the filed fold under the cursor and all nested files are copied into the destination
file. Nested files are copied to new files nested within the destination file.

13.2 File handling package 169

Copying from this directory... start of run message
Copying out: "string"... shows fold header of file being copied
Copied out to "filename" OK end of run message.
Error messages
Copy aborted by user
The copying operation has been aborted by using
Copy out failed (Result = n) in "string"
The copy operation has failed while it was being carried out.
nis the filing system error result (if any), see appendix E.
string is the fold header of the file being read when the error occurred.
Cannot copy out: error message (Result = n)
where nis a filing system error code and error message is one of the following messages:
cannot open destination file
The system cannot open the file that is to be written.
cannot open sourxce file
The system cannot open the file that is to be read.
must be on a text fold
The utility was invoked either on a text line or on a fold of a type that cannot be read by the editor.
cannot create filed fold
The utility was invoked on a non-filed fold and the system could not file it.
file name not given
No file name has been supplied in the parameters to the utility.
directory name not given

The file name supplied to the utility does not include a directory path.

13.2.6 DETACH

detaches a file from a filed fold, leaving the fold unfiled. All the contents of the fold are removed from
the fold structure, but are not deleted at the host (DOS) level.

is on the same key; the two utilities are toggled.
Parameters

None.

170 13 Utilities

Description
should be invoked on a filed fold, the contents of which are to be removed.

When is pressed the filed fold is unfiled and all its contents are removed from the TDS. The actual
file, and nested files (if any), are not deleted. To regain access to a detached file should be used.

Detaching file... start of run message.

Detached file OK end of run message.

Error messages

Cannot detach file: must be on a filed fold

has been invoked an a line that is not a fold line.

13.2.7 |READ HOST

copies the contents of a host (DOS) file into a fold, thus converting it to TDS 2.0 file format. It is
normally used for importing text files to a TDS fold structure.

Parameters
HostFileName: This gives the full name of the file to be read.
The parameter is always offered for editing when this utility is run.
Description

Place the cursor on an empty fold, or an empty filed fold. When is pressed the contents of the
named file are read by the system and written into the fold.

Reading host file '"filename"... start of run message.
Read aborted by user abort message.
Read host file OK end of run message.

Error messages
Cannot read host file: must be on a text fold
The cursor is either not on a fold line or is on a fold of a type that cannot be opened by the editor.
Cannot read host file: fold must be empty
A host file cannot be read to a fold that already contains data.
Cannot read host file: cannot open filed fold
The filed fold pointed to by the cursor cannot be opened.
Cannot read host file: cannot create filed fold

The utility was invoked on.a fold that was not filed and the utility failed to file that fold.

13.2 File handling package 171

Cannot read host file: file name not given
The host file name parameter has been supplied without a file name.
The following messages take the form:
Error error message (Result = n)
where nis a filing system error code and error message is one of the following messages.
opening file for writing
A file system error occurred opening the filed fold for writing.
writing file
A file system error occurred writing to the filed fold.
reading host file

A filing error occurred reading the DOS file.

13.2.8 RENAME FILE

allows the name of the file belonging to a filed fold to be changed. It has no effect on the
contents of the filed fold, only on the host file name.

Parameters

None.

Description

RENAME FILE| should be invoked on a filed fold. The new file name should be the first word on the filed fold
line. When [RENAME FILE] is pressed, the TDS reads the file name and changes the host file name to match it,
provided it is a legal file name and there is no file already existing with the same file name. If a file already

exists with the new name the system will alter the name so that it is unique. The file will then be renamed
as the system derived name.

Renaming file... start of run message.
Renamed file as filename OK end of run message.
Error messages
Cannot rename file: fold is not filed
has been invoked on a fold that is not filed.
Cannot rename file: must be on a filed fold
has been invoked on a line that is not a fold line.
Error renaming file (Result = n)
Where n is the filing system error code (see appendix E). failed to rename the file.
The most likely cause of this is an illegal file name. If the error code is 0, the most likely cause is

using a TDS 2.0 file extension that is not permitted for the contents of that file. For example, using
a .tsr file extension on a utility code file (the extension for these files is . cut).

172 13 Utilities

13.29 |[WRITE ENABLE

sets the protection attribute of a file so that it can be changed or deleted. This reverses the
effect of [WRITE PROTECT]. Nested, protected files are not write enabled.

Parameters
None.
Description

should be invoked on a filed fold. When is pressed, the TDS sets the read only
protection attribute of the file to FALSE, thus allowing the file to be deleted or overwritten.

Setting file write enable... - start of run message.
File write enabled OK end of run message.

Error messages

All error messages are the same as for [WRITE PROTECT]

13.2.10

copies a fold and any nested files into a DOS format file, with all fold information removed. This
;glgg.rmally used to convert a TDS fold structure into a DOS text file. It may also be used on data and code
Parameters

HostFileName This gives the full name of the file to be written.

The parameter is always offered for editing when this utility is run.

Description

The cursor should be pointing at the fold to be written. When is pressed the contents of the fold

are copied to the named file. The file is written in DOS format. All nested text files are expanded in line,
including COMMENT folds.

Writing host file "filename" ... start of run message.
Write aborted by user abort message.
Written host file OK end of run message.

Error messages

Cannot write host file: must be on a text fold
The cursor is not on a fold line.

Cannot write host file: cannot create filed fold

The utility was invoked on a fold that was not filed and the utility failed to file that fold.

13.2 File handling package 173

Cannot write host file: file name not given
The host file name parameter has been supplied without a file name.
The following messages take the form:
Error error message (Result = n)
where nis a filing system error code and error message is one of the following messages:
opening file for reading
A file system error occurred opening the filed fold for reading.
reading file
A file system error occurred reading from the filed fold.
writing host file

A filing error occurred writing the DOS file.

13.2.11 |WRITE PROTECT|

sets the protection attribute of a file so that it cannot be changed nor deleted. Note that
nested files are not protected; each file must be protected explicitly.

This mechanism is recommended for protecting files that are attached to more than one point in the fold
structure. When a file is write protected you may delete the filed fold from the fold structure, but the DOS file
is not deleted. The contents of a write protected filed fold may be edited using the TDS, but upon exiting,
the filed fold will be unfiled and the changes will not be written back. Note that a file so protected cannot be
deleted outside the TDS without first changing the protection attribute (this may be done using the ATTRIB
command of DOS version 3.0 or later).

Parameters

None.

Description

should be invoked on a filed fold. When is pressed, the TDS sets the read
only protection attribute of the file to TRUE, thus preventing the file from being overwritten or deleted.

Setting file write protection... startof run message.
File write protected OK end of run message.
Error messages
Cannot set file protection: fold is not filed

has been invoked on a fold that is not filed.

Cannot set file protection: must be on a filed fold

WRITE PROTECT] has been invoked on a line that is not a fold line.

174 13

Utilities

The following messages take the form:

Error message (Result = n)

where n is a server error code and message is one of the following error messages:
opening file for writing characteristics

Unable to open the file to write the new protection characteristic.
writing characteristics

Unable to write the new protection characteristic to the file.
closing file after writing characteristics

Unable to close the file after writing the new protection characteristic.

14 Libraries

A list of the libraries included in the TDS is given in the table below. Those libraries without names do not
have to be explicitly referred to by #USE statements as the compiler automatically recognises calls to routines

in these libraries.

Library name

Description

mathvals
userhdr
filerhdr
krnlhdr
uservals
afhdr

snglmath
dblmath
t4math
ioconv
extrio
strings
userio
interf
slice
ufiler
msdos
derivio
afio
afiler
afinterf
t4board
t2board
reinit
blockcrc

Multiple length integer arithmetic functions
Floating point functions

32 bit IEEE arithmetic functions

64 bit IEEE arithmetic functions

2D block move library

Bit manipulation and CRC library

Code execution library

Arithmetic instruction library

Constants for mathematical algorithms
Constants for TDS terminal interface, etc.
Constants for TDS user filer interface, etc.
Constants for TDS kernel and server interfaces
Useful subset of userhdr and £ilerhdr
Constants for the afserver interface

Single length elementary function library
Double length elementary function library
T414 elementary function library

Basic type i/o conversion library

Extra type i/o conversion library

String handling library

General purpose i/o procedure library
Interface procedure library

Block transfer procedure library

Low level user filer interface support library
TDS server channel support library

Byte stream i/o library

Afserver low level protocol library
Afserver command library

Afserver protocol interface and multiplexor
Transputer board support library

B006 support library

Extraordinary link handling library

CRC library

|

The libraries of constants in this table are described in appendix D. Libraries of procedures and functions in
this table are described in turn in this chapter. Each description gives a table summarising the procedures
(and functions) in the library and the parameters required for each. This is then followed by a description of
each of the procedures (and functions) in the library. For the elementary function and I/O libraries, which are
provided in source form, a table is given showing how the library is split up into separate compilation units,
and which other libraries are needed by each unit.

176 14 Libraries

The SC is the unit of linking; that is using one procedure from within an SC will cause all the procedures in
that SC to be included in the code. The SC table should aid users who wish to alter the structure of libraries
so that only the procedures they actually require are included in the code.

There are some other libraries included in the TDS which are only used by calls from compiled code generated
by the compiler. These are:

Library name | Description

ré4util Long real arithmetic support
t2utils Arithmetic support for T2
reals 32 bit real arithmetic support
dreals 64 bit real arithmetic support
ints Integer arithmetic support
realpds Real predefined routines
intpds Integer predefined routines

Some of these libraries also include procedures and functions used by the libraries of the previous table.
These are automatically linked if required when the compiler parameter use.standard.1libs is set to
TRUE.

Code being compiled for the three processor types can use most of the libraries: the exceptions are listed
below:

Processor | Libraries not available
T2 interf

ufiler

msdos

afio

afiler

afinterf

t4board

Arithmetic instruction library
t4math

userio (SCs 11,12)
T4 t2board

T8 t2board

t4math

14.1 Multiple length integer arithmetic functions 177

14.1 Multiple length integer arithmetic functions

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations.

Result Function Parameter specifiers

INT LONGADD VAL INT left, right, carry.in
INT LONGSUB VAL INT left, right, borrow.in
INT ASHIFTRIGHT | VAL INT argument, places

INT ASHIFTLEFT | VAL INT argument, places

INT ROTATERIGHT | VAL INT argument, places

INT ROTATELEFT | VAL INT argument, places

INT, INT LONGSUM VAL INT left, right, carry.in
INT, INT LONDIFF VAL INT left, right, borrow.in
INT, INT LONGPROD VAL INT left, right, carry.in
INT, INT LONGDIV VAL INT dividend.hi, dividend.lo, divisor
INT, INT SHIFTLEFT VAL INT hi.in, lo.in, places
INT, INT SHIFTRIGHT | VAL INT hi.in, lo.in, places
INT, INT, INT | NORMALISE VAL INT hi.in, lo.in

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code.

For further information on the functions provided by this library see the occam 2 Reference Manual.

178 14 Libraries

14.2 Floating point functions
The floating point functions include the list of facilities suggested by the ANSI-IEEE standard 754—-1985.

Result Function Parameter specifiers

REAL32 ABS VAL REAL32 X

REAL64 DABS VAL REAL64 X

REAL32 SCALEB VAL REAL32 X, VAL INT n
REALG64 DSCALEB VAL REAL64 X, VAL INT n
REAL32 COPYSIGN VAL REAL32 X, Y
REAL64 DCOPYSIGN VAL REAL64 X, Y
REAL32 SQRT VAL REAL32 X

REALG64 DSQRT VAL REAL64 X

REAL32 MINUSX VAL REAL32 X

REAL64 DMINUSX VAL REAL64 X

REAL32 NEXTAFTER VAL REAL32 X, Y
REALG64 DNEXTAFTER VAL REAL64 X, Y
REAL32 MULBY2 VAL REAL32 X

REALG64 DMULBY2 VAL REAL64 X

REAL32 DIVBY2 VAL REAL32 X

REAL64 DDIVBY2 VAL REAL64 X

REAL32 LOGB VAL REAL32 X

REALG64 DLOGB VAL REAL64 X

BOOL ISNAN VAL REAL32 X

BOOL DISNAN VAL REAL64 X

BOOL NOTFINITE VAL REAL32 X

BOOL DNOTFINITE VAL REAL64 X

BOOL ORDERED VAL REAL32 X, Y

BOOL DORDERED VAL REAL64 X, Y

INT, REAL32 FLOATING.UNPACK VAL REAL32 X

INT, REAL64 DFLOATING.UNPACK | VAL REAL64 X

BOOL, INT32, REAL32 | ARGUMENT .REDUCE VAL REAL32 X, Y, Y.err
BOOL, INT32,REAL64 | DARGUMENT .REDUCE | VAL REAL64 X, Y, Y.err
REAL32 FPINT VAL REAL32 X

REAL64 DFPINT VAL REAL64 X

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code, or into compiler library calls.

For further information on the functions provided by this library see the occam 2 Reference Manual.

14.3 |IEEE arithmetic functions 179

14.3 IEEE arithmetic functions

Resuit Function Parameter specifiers

REAL32 REAL320P VAL REAL32 X, VAL INT Op, VAL REAL32 Y
REALG64 REAL640P VAL REAL64 X, VAL INT Op, VAL REAL64 Y
BOOL, REAL32 | IEEE320P VAL REAL32 X, VAL INT Rm, Op, VAL REAL32 Y
BOOL, REAL64 | IEEE640P VAL REAL64 X, VAL INT Rm, Op, VAL REAL64 Y
BOOL, REAL32 | IEEE32REM VAL REAL32 X, Y

BOOL, REAL64 | IEEE64REM VAL REAL64 X, Y

REAL32 REAL32REM VAL REAL32 X, Y

REAL64 REALG64REM VAL REAL64 X, Y

BOOL REAL32EQ VAI)L REAL32 X, Y

BOOL REALG64EQ VAL REAL64 X, Y

BOOL REAL32GT VAL REAL32 X, Y

BOOL REAL64GT VAL REAL64 X, Y

INT IEEECOMPARE VAL REAL32 X, Y

INT DIEEECOMPARE | VAL REAL64 X, Y

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code, or into calls to appropriate functions in the
libraries xreals or dreals.

For further information on the functions provided by this library see the occam 2 Reference Manual.

144 2D block move library

Procedure | Parameter Specifiers

MOVE2D | VAL [] []BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length

DRAW2D | VAL [][]BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length

CLIP2D VAL [][]BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines. They will be compiled into in-line code for the T8 or into a call to procedures in the
library intpds for the T4 or the T2.

MOVE2D

Move a block of size width by length which starts at byte Source[sy] [sx] to the block starting at
byte Dest [dy] [dx].

PROC MOVE2D (VAL [][]BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

180 14 - Libraries

DRAW2D

Move a block of size width by 1length which starts at byte Source[sy] [sx] to the block starting at
byte Dest [dy] [dx]. Only non-zero bytes in the source are transferred to the destination.

PROC DRAW2D (VAL [][]BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)
CLIP2D

Move a block of size width by length which starts at byte Source[sy] [sx] to the block starting at
byte Dest [dy] [dx]. Only zero bytes in the source are transferred to the destination.

PROC CLIP2D (VAL [] []BYTE Source, VAL INT sx, sy, [][]BYTE Dest,
VAL INT dx, dy, width, length)

14.5 Bit manipulation and CRC library

Result | Function Parameter Specifiers

INT BITCOUNT VAL INT Word, CountlIn

INT CRCWORD VAL INT data, CRCIn, generator
INT CRCBYTE VAL INT data, CRCIn, generator

INT BITREVNBITS | VAL INT x, n

INT BITREVWORD VAL INT x

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines. They will be compiled into in-line code for the T8 or into a call to procedures in the
library intpds for the T4 or the T2.

See INMOS technical note 26 for a discussion of CRC generation.

BITCOUNT
This function counts the number of bits set in Woxd, and returns this number added to the value CountIn.

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)

CRCWORD

This function performs a cyclic redundancy check over 1 word. It is normally used iteratively on a sequence
of words to obtain the CRC. It takes as input the word to CRC, the running CRC value produced by the last
call of the function (or the initial value, if this is the first call) and the polynomial generator. It returns the new
CRC result.

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

CRCIn contains initial value or running CRC.
data contains data on which the CRC is to be performed.
generator contains CRC polynomial generator.

14.6 Code execution 181

CRCBYTE

This function performs a cyclic redundancy check over 1 byte. It is normally used iteratively on a sequence
of bytes to obtain the CRC. It takes as input the byte to CRC (at the most significant end of the word data),
the running CRC value produced by the last call of the function (or the initial value, if this is the first call) and
the polynomial generator. It returns the new CRC result.

INT FUNCTION CRCBYTE (VAL INT data, CRCIn, generator)

CRCIn contains initial value or running CRC.
data contains data on which the CRC is to be performed.
generator contains CRC polynomial generator.

BITREVNBITS

This function takes INT parameters x and n and returns an INT containing the n least significant bits of x,
in reverse order.

INT FUNCTION BITREVNBITS (VAL INT x, n)

BITREVWORD
This function takes an INT x and returns an INT which is the bit reversal of x.

INT FUNCTION BITREVWORD (VAL INT x)

14.6 Code execution

Procedure Parameter Specifiers

KERNEL . RUN VAL []BYTE code, VAL INT entry.offset,
[] INT workspace,

VAL INT number.of.parameters
LOAD.INPUT.CHANNEL INT here, CHAN OF ANY in

LOAD . INPUT.CHANNEL.VECTOR INT here, [] CHAN OF ANY in.vec

LOAD .OUTPUT .CHANNEL INT here, CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR | INT here, [] CHAN OF ANY out.vec

LOAD.BYTE.VECTOR INT here, [] BYTE b.vec

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines and will compile them into in-line code.

The procedures described allow an occam program to read in a compiled occam PROC and call it. The
called PROC may be compiled and linked separately from the calling program and read in from a file. The
calling program runs the called PROC with a normal sequential PROC call mechanism.

The facilities include provision for passing parameters to the called PROC before running it.

182 14 Libraries

KERNEL.RUN

PROC KERNEL.RUN(VAL []BYTE code,

VAL INT entry.offset,
[1INT workspace,
VAL INT number.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer, starting execution at the
location code[entry.offset]. The workspace buffer is used to hold the local data of the called
procedure. The parameters passed to the called procedure should be placed at the top of the workspace
buffer by the calling process before the call of KERNEL .RUN. The call to KERNEL .RUN returns when the
called PROC terminates.
See section 11.3 for a description of how to set up the workspace for KERNEL . RUN.
LOAD.INPUT.CHANNEL

PROC LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
The variable here is assigned the address of the second parameter.
LOAD.INPUT.CHANNEL.VECTOR

PROC LOAD.INPUT.CHANNEL.VECTOR (INT here, []JCHAN OF ANY in.vec)
The variable here is assigned the address of the second parameter.
LOAD.OUTPUT.CHANNEL

PROC LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)
The variable hexe is assigned the address of the second parameter.
LOAD.OUTPUT.CHANNEL.VECTOR

PROC LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []JCHAN OF ANY out.vec)
The variable here is assigned the address of the second parameter.
LOAD.BYTE.VECTOR

PROC LOAD.BYTE.VECTOR (INT here, []BYTE b.vec)

The variable here is assigned the address of the second parameter.

14.7 Arithmetic instruction library 183

14.7 Arithmetic instruction library

Result Function Parameter Specifiers

INT, INT, INT | UNPACKSN | VAL INT X
INT ROUNDSN VAL INT Yexp, Yfrac, Yguard
INT FRACMUL | VAL INT X,Y

This library does not have to be referred to by a #USE statement; the compiler will automatically recognise
calls to these routines, when compiling for a T4, and will compile them into in-line code. The FRACMUL
function is available for the T8. None of the functions are available for a T2.

Introduction

This library provides access to some of the low-level arithmetic instructions on the transputer.

UNPACKSN and ROUNDSN support floating-point arithmetic on the T4.

FRACMUL supports fractional arithmetic on the T4 and the T8.

UNPACKSN

This function returns three integer results; the first is Xfrac, the second is Xexp, the third is Type.

INT, INT, INT FUNCTION UNPACKSN (VAL INT X)

UNPACKSN unpacks X, regarded as an |EEE single-length format binary floating-point quantity, into Xexp,
the (biased) exponent, and X£xac, the fractional part. It also returns an integer defining the Type of X. This
is:

0if X is zero

1 if X is a normalised or denormalised number
2if Xis Inf

3 if X is NaN

The sign of X is ignored.
ROUNDSN

ROUNDSN takes a possibly unnormalised fraction, guard word and exponent and returns the rounded IEEE
floating point value it represents. To do this the fraction is normalised, if necessary, then postnormalised and
finally rounded to the nearest IEEE value. The exponent should already be biased. If overflow occurs, Inf
is returned. Its use is in processes that have operated on unpacked floating point numbers to produce an
unpacked result. It takes care of all the normalisation, postnormalisation, rounding and packing of the result.
The round mode used is round to nearest.

The function normalises and postnormalises the number represented by Yexp, Yfrac and Yguard into the
local variables Xexp, Xfrac and Xguaxd. It then packs the (biased) exponent Xexp and fraction Xfrac
into the result, rounding using the extra bits in Xguaxd. The sign bit is set to 0. If there is overflow, the
result is set to Inf.

INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

184 14 Libraries

FRACMUL

FRACMUL takes two arguments representing real fractions in the range [-1,1) and returns their product
rounded to the nearest available representation. The value of the fractions represented by the arguments
and result can be obtained by multiplying their INT value by 2-31.

INT FUNCTION FRACMUL (VAL INT X,Y)

14.8 Single length and double length elementary function library

The elementary functions for any processor are contained in two separate libraries: one for the single length
functions, the other for the double length functions. The IMS T414 specific version of these functions, which
is described in the next section, consists of one library only.

The version of the library described by this section has been written using only floating-point arithmetic and pre-
defined functions supported in occam. Thus it can be compiled for any processor with a full implementation
of occam, and give identical resuits.

It will be efficient on processors with fast floating-point arithmetic and good support for the floating-point prede-
fined functions such as MULBY2 and ARGUMENT . REDUCE. For 32-bit processors without special hardware
for floating-point calculations the alternative version described in section 14.9 using fixed-point arithmetic will
be faster, but will not give identical results.

A special version has been produced for the IMS T212, which avoids the use of any double-precision arithmetic
in the single precision functions. This is distinguished in the notes by the annotation ‘T212 special’; notes
relating to the version for the IMS T800 and IMS T414 are denoted by ‘standard’.

Result Function | Parameter specifiers

REAL32 ALOG VAL REAL32 X

REAL32 ALOG10 | VAL REAL32 X

REAL32 EXP VAL REAL32 X

REAL32 POWER VAL REAL32 X, VAL REAL32 Y
REAL32 SIN VAL REAL32 X

REAL32 cos VAL REAL32 X

REAL32 TAN VAL REAL32 X

REAL32 ASIN VAL REAL32 X

REAL32 ACOS VAL REAL32 X

REAL32 ATAN VAL REAL32 X

REAL32 ATAN2 VAL REAL32 X, VAL REAL32 Y
REAL32 SINH VAL REAL32 X

REAL32 COSH VAL REAL32 X

REAL32 TANH VAL REAL32 X

REAL32, INT32 | RAN VAL INT32 X

To use the single length library a program header must include the line

#USE snglmath

14.8 Single length and double length elementary function library

185

The table below lists the procedures contained in each SC and which other libraries are used:

SC | procedures | USEs
1 ALOG mathhdr
ALOG10
2 EXP mathhdr
3 POWER mathhdr
4 SIN mathhdr
5 |[cos mathhdr
6 TAN mathhdr
7 ASIN mathhdr
8 ACOS mathhdr
9 ATAN mathhdr
ATAN2
10 | SINH mathhdr
COSH
TANH
11 | RAN mathhdr
Result Function | Parameter specifiers
REALG64 DALOG VAL REAL64 X
REAL64 DALOG10 | VAL REAL64 X
REALG64 DEXP VAL REAL64 X
REAL64 DPOWER VAL REAL64 X, VAL REAL64 Y
REAL64 DSIN VAL REAL64 X
REAL64 DCOS VAL REAL64 X
REAL64 DTAN VAL REAL64 X
REAL64 DASIN VAL REAL64 X
REAL64 DACOS VAL REAL64 X
REAL64 DATAN VAL REAL64 X
REALG64 DATAN2 VAL REAL64 X, VAL REAL64 Y
REAL64 DSINH VAL REAL64 X
REAL64 DCOSH VAL REAL64 X
REAL64 DTANH VAL REAL64 X
REALG64, INT64 | DRAN VAL INT64 X

To use the double length library a program header must include the line

#USE dblmath

186 14 Libraries

The table below lists the procedures contained in each SC and which other libraries are used:

SC | procedures | USEs
1 DALOG mathhdr
DALOG10
2 DEXP mathhdr
3 DPOWER mathhdr
4 DSIN mathhdr
5 DCOS mathhdr
6 DTAN mathhdr
7 DASIN mathhdr
8 DACOS mathhdr
9 DATAN mathhdr
DATAN2
10 | DSINH mathhdr
DCOSH
DTANH
11 | DRAN mathhdr

14.8.1 Introduction

This, and the following subsections, contain some notes on the presentation of the elementary function
libraries, including the IMS T414 version described in section 14.9.

These function subroutines have been written to be compatible with the ANSI standard for binary floating-point
arithmetic (ANSI-IEEE std 754-1985), as implemented in occam. They are based on the algorithms in:
Cody, W. J., and Waite, W. M. [1980]. Software Manual for the Elementary Functions. Prentice-Hall, New
Jersey.

The only exceptions are the pseudo-random number generators, which are based on algorithms in:

Knuth, D. E. [1981]. The Art of Computer Programming, 2nd. edition, Volume 2: Seminumerical Algorithms.
Addison-Wesley, Reading, Mass.

14.8.2 Inputs and Outputs
Inputs

All the functions in the library (except RAN and DRAN) are called with one or two parameters which are binary
floating-point numbers in one of the IEEE standard formats, either ‘single-length’ (32 bits) or ‘double-length’
(64 bits). The parameter(s) and the function result are of the same type.

NaNs and Infs

The functions will accept any value, as specified by the standard, including special values representing NaNs
(‘Not a Number’) and Infs (‘Infinity’). NaNs are copied to the result, whilst Infs may or may not be in the
domain. The domain is the set of arguments for which the result is a normal (or denormalised) floating-point
number.

14.8 Single length and double length elementary function library 187

Outputs
Exceptions

Arguments outside the domain (apart from NaNs which are simply copied through) give rise to exceptional
results, which may be NaN, +Int, or —Inf. Infs mean that the result is mathematically well-defined but too
large to be represented in the floating-point format.

Error conditions are reported by means of three distinct NaNs:
undefined.NaN

This means that the function is mathematically undefined for this argument, for example the logarithm of a
negative number.

unstable.NaN

This means that a small change in the argument would cause a large change in the value of the function, so
any error in the input will render the output meaningless.

inexact.NaN

This means that although the mathematical function is well-defined, its value is in range, and it is stable with
respect to input errors at this argument, the limitations of word-length (and reasonable cost of the algorithm)
make it impossible to compute the correct value.

14.83 Accuracy
Range Reduction

Since it is impractical to use rational approximations (i.e. quotients of polynomials) which are accurate over
large domains, nearly all the subroutines use mathematical identities to relate the function value to one
computed from a smaller argument, taken from the ‘primary domain’, which is small enough for such an
approximation to be used. This process is called ‘range reduction’ and is performed for all arguments except
those which already lie in the primary domain.

For most of the functions the quoted error is for arguments in the primary domain, which represents the
basic accuracy of the approximation. For some functions the process of range reduction results in a higher
accuracy for arguments outside the primary domain, and for others it does the reverse. Refer to the notes
on each function for more details.

Generated Error

If the true value of the function is large the difference between it and the computed value (the ‘absolute error’)
is likely to be large also because of the limited accuracy of floating-point numbers. Conversely if the true
value is small, even a small absolute error represents a large proportional change. For this reason the error
relative to the true value is usually a better measure of the accuracy of a floating-point function, except when
the ouput range is strictly bounded.

If f is the mathematical function and F the subroutine approximation, then the relative error at the floating-point
number X (provided f(X) is not zero) is:

(F(X) — £(X))
f(X)
Obviously the relative error may become very large near a zero of f(X). If the zero is at an irrational argument

(which cannot be represented as a floating-point value), the absolute error is a better measure of the accuracy
of the function near the zero.

RE(X) =

188 14 Libraries

As it is impractical to find the relative error for every possible argument, statistical measures of the overall
error must be used. If the relative error is sampled at a number of points X,, (n = 1 to N), then useful
statistics are the maximum relative error and the root-mean-square relative error.

MRE= max |RE(X.)

N
RMSRE = | Y (RE(X,))?

n=1

Corresponding statistics can be formed for the absolute error also, and are called MAE and RMSAE
respectively.

The MRE generally occurs near a zero of the function, especially if the true zero is irrational, or near
a singularity where the result is large, since the ‘granularity’ of the floating-point numbers then becomes
significant. ‘

A useful unit of relative error is the relative magnitude of the least significant bit in the floating-point fraction,
which is called one ‘unit in the last place’ (ulp). This is the relative magnitude of the least significant bit of
the floating-point fraction (i.e. the smallest ¢ such that 1 + ¢ # 1). Its magnitude depends on the floating-point
format: for single-length it is 22 = 1.19* 107, and for double-length it is 2-52 = 2.22 « 10— 18,

Propagated Error

Because of the limited accuracy of floating-point numbers the result of any calculation usually differs from
the exact value. In effect, a small error has been added to the exact result, and any subsequent calculations
will inevitably involve this error term. Thus it is important to determine how each function responds to errors
in its argument. Provided the error is not too large, it is sufficient just to consider the first derivative of the
function (written f').

If the relative error in the argument X is d (typically a few ulp), then the absolute error (E) and relative error
(e) in f(X) are:
E=|Xf(X)d| = Ad

Xf'(X)d
f(X)
This defines the absolute and relative error magpnification factors A and R. When both are large the function
is unstable, i.e. even a small error in the argument, such as would be produced by evaluating a floating-point

expression, will cause a large error in the value of the function. The functions return an unstable.NaN in
such cases which are simple to detect.

e=

’ERd

The functional forms of both A and R are given in the specification of each function.

Test Procedures

For each function, the generated error was checked at a large number of arguments (typically 100 000) drawn
at random from the appropriate domain. First the double-length functions were tested against a ‘quadruple-
length’ implementation (constructed for accuracy rather than speed), and then the single-length functions
were tested against the double-length versions.

In both cases the higher-precision implementation was used to approximate the mathematical function (called

f above) in the computation of the error, which was evaluated in the higher precision to avoid rounding errors.
Error statistics were produced according to the formulae above.

14.8.4° Symmetry

The subroutines were designed to reflect the mathematical properties of the functions as much as possible.
For all the functions which are even, the sign is removed from the input at the beginning of the computation so

14.8 Single length and double length elementary function library 189

that the sign-symmetry of the function is always preserved. For odd functions, either the sign is removed at
the start and then the appropriate sign set at the end of the computation, or else the sign is simply propagated
through an odd degree polynomial. In many cases other symmetries are used in the range-reduction, with
the result that they will be satisfied automatically.

1485 The Function Specifications
Names and Parameters

All single length functions except RAN are of type REAL32, and all except RAN, POWER and ATAN2 have
one parameter, a VAL REAL32 for the argument of the function.

POWER and ATAN2 have two parameters which are VAL REAL32s for the two arguments of each function.
RAN is of type REAL32, INT32, and has one parameter which is a VAL INT32.

In each case the double-length version of name is called Dname, is of type REAL64 (except DRAN, which
is of type REAL64, INT64), and has parameters of type VAL REAL64 (VAL INT64 for DRAN).

Terms used in the Specifications

A and R Multiplying factors relating the absolute and relative errors in the output to the relative error in the
argument.

Exceptions Outputs for invalid inputs (i.e. those outside the domain), other than NaN (NaNs are copied
direcly to the output and are not listed as exceptions). These are all Infs or NaNs.

Generated Error The difference between the true and computed values of the function, when the argument
is error-free. This is measured statistically and displayed for one or two ranges of arguments, the
first of which is usually the primary domain (see below). The second range, if present, is chosen to
illustrate the typical behaviour of the function.

Domain The range of valid inputs, i.e. those for which the output is a normal or denormal floating-point
number. :

MAE and RMSAE The Maximum Absolute Error and Root-Mean-Square absolute error taken over a number
of arguments drawn at random from the indicated range.

MRE and RMSRE The Maximum Relative Error and Root-Mean-Square relative error taken over a number
of arguments drawn at random from the indicated range.

Range The range of outputs produced by all arguments in the Domain. The given endpoints are not ex-
ceeded.

Primary Domain The range of arguments for which the result is computed using only a single rational
approximation to the function. There is no argument reduction in this range.

Propagated Error The absolute and relative error in the function value, given a small relative error in the
argument.

ulp The unit of relative error is the ‘unit in the last place’ (ulp). This is the relative magnitude of the least
significant bit of the floating-point fraction (i.e. the smallest e such that 1 +¢ # 1).
N.B. this depends on the floating-point format!
For the standard single-length format it is 2-22 = 1.19% 1077,
For the double-length format it is 2-52 = 2,22 « 10~16.
This is also used as a measure of absolute error, since such errors can be considered ‘relative’ to
unity.

190 14 Libraries

Specification of Ranges

Ranges are given as intervals, using the convention that a square bracket " or ‘] means that the adjacent
endpoint is included in the range, whilst a round bracket ‘(" or)’ means that it is excluded. Endpoints
are given to a few significant figures only.

Where the range depends on the floating-point format, single-length is indicated with an S and double-length
with a D.

For functions with two arguments the complete range of both arguments is given. This means that for each

number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments ic valid. Both ranges are shown, linked by an ‘x'.

Abbreviations

In the specifications, XM AX is the largest representable floating-point number: in single-length it is approx-
imately 3.4 + 10%, and in double-length it is approximately 1.8 « 1038,

Pi means the closest floating-point representation of the transcendental number =, In(2) the closest repre-
sentation of log.(2), and so on.

In describing the algorithms, ‘X" is used generically to designate the argument, and ‘result’ (or RESULT, in
the style of occam functions) to designate the output.

1486 ALOG
REAL 32 FUNCTION ALOG (VAL REAL32 X)

REAL 64 FUNCTION DALOG (VAL REAL64 X)

These compute: log.(X)

Domain: (0, XMAX]
Range: [MinLog, MazLog] (See Note 2)
Primary Domain: [v2/2,v2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=1, R-=1/log.(X)

Generated Error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 1.7ulp 0.43 ulp
Single Length(T212 special): 1.6 ulp 0.42 ulp
Double Length: 14ulp 0.38 ulp

The Algorithm
1 Split X into its exponent N and fraction F.
2 Find LnF, the natural log of F, with a floating-point rational approximation.

3 Compute In(2) * N with extended precision and add it to LnF to get the result.

14.8 Single length and double length elementary function library 191

Notes

1) The term In(2) » N is much easier to compute (and more accurate) than LnF, and it is larger provided N
is not 0 (i.e. for arguments outside the primary domain). Thus the accuracy of the result improves as the
modulus of log(X) increases.

2) The minimum value that can be produced, MinLog, is the logarithm of the smallest denormalised floating-
point number. For single length Minlog is —103.28, and for double length it is —745.2. The maximum value
MazLog is the logarithm of XM AX. For single-length it is 88.72, and for double-length it is 709.78.

3) Since Inf is used to represent all values greater than XM AX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

14.8.7 ALOG10
REAL32 FUNCTION ALOG1l0 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

These compute: 10g10(X)

Domain: (0, XM AX]
Range: [MinL10, MazL10] (See Note 2)
Primary Domain: [v2/2,/2) = [0.7071, 1.4142)
Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error

A =logioe)) R =logioe)/log.(X)
Generated Error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 1.70 ulp 0.45ulp
Single Length(T212 special): 1.71 ulp 0.46 ulp
Double Length: 1.84 ulp 0.45ulp

The Algorithm
1 Set temp:= ALOG (X).
2 If temp is a NaN, copy it to the output, otherwise set result = log(e) * temp
Notes
1) See note 1 for ALOG.
2) The minimum value that can be produced, MinL10, is the base-10 logarithm of the smallest denormalised
floating-point number. For single length M:nL10 is —44.85, and for double length it is —323.6. The maximum

value MazL10 is the base-10 logarithm of XM AX. For single length MazL10 is 38.53, and for double-length
it is 308.26.

3) Since Inf is used to represent all values greater than XM AX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

192 14

Libraries

14.88 EXP
REAL32 FUNCTION EXP (VAL REAL32 X)

REAL64 FUNCTION DEXP (VAL REAL64 X)
These compute: eX

Domain: [-Inf, MazLog) = [-Inf, 88.72)S, [—Inf, 709.78)D
Range: [0, Inf) (See note 4)
Primary Domain: [-Ln2/2,Ln2/2) =[-0.3466, 0.3466)

Exceptions

All arguments outside the domain generate an Inf.
Propagated error

A=XeX, R=X

Generated error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 099 ulp 0.25ulp
Single Length(T212 special): 1.0 ulp 0.25ulp
Double Length: 1.0 ulp 025ulp

The Algorithm
1 Set N = integer part of X/ In(2).
2 Compute the remainder of X by In(2), using extended precision arithmetic.

3 Compute the exponential of the remainder with a floating-point rational approximation.

4 Increase the exponent of the result by N. If N is sufficiently negative the result must be denormalised.

Notes

1) MazLog is 10g.(XM AX).

2) For sufficiently negative arguments (below —87.34 for single-length and below —708.4 for double-length)
the output is denormalised, and so the floating-point number contains progressively fewer significant digits,

which degrades the accuracy. In such cases the error can theoretically be a factor of two.

3) Although the true exponential function is never zero, for large negative arguments the true result becomes
too small to be represented as a floating-point number, and EXP underflows to zero. This occurs for arguments

below —103.9 for single-length, and below —745.2 for double-length.

4) The propagated error is considerably magnified for large positive arguments, but diminished for large

negative arguments.

14.8 Single length and double length elementary function library 193

1489 POWER
REAL32 FUNCTION POWER (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DPOWER (VAL REAL64 X, VAL REAL64 Y)
These compute: XY

Domain: [0, Inf] x [—Inf, Inf]
Range: (—Inf, Inf)
Primary Domain: See note 3.

Exceptions

If the first argument is outside its domain, undefined.NaN is returned. If the true value of X¥ exceeds
XMAX, Inf is returned. In certain other cases other NaNs are produced: See note 2.

Propagated Error
A=YXY(1+log.(X)), R=Y(1zxlog.(X)) (See note 4)

Generated error

Example Range Error: MRE RMSRE (See note 3)
Single Length(Standard): 1.0ulp 0.25ulp
Single Length(T212 special): 63.1 ulp 13.9 ulp
Double Length: 211ulp 24 ulp

The Algorithm
Deal with special cases: either argument = 1, 0, +Inf or —Inf (see note 2). Otherwise:
(a) For the standard single precision:
1 Compute L = log.(X) in double precision, where X is the first argument.
2 Compute W =Y x L in double precision, where Y is the second argument.
3 Compute RESULT = ¢V in single precision.
(b) For double precision, and the single precision special version:
1 Compute L = logx>(X) in extended precision, where X is the first argument.
2 Compute W =Y x L in extended precision, where Y is the second argument.

3 Compute RESULT =2% in extended precision.

194 14 Libraries

Notes

1) This subroutine implements the mathematical function z¥ to a much greater accuracy than can be attained
using the ALOG and EXP functions, by performing each step in higher precision. The single-precision version
is more efficient than using DALOG and EXP because redundant tests are omitted.

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Resuit
<0 ANY undefined.NaN
0 <0 undefined.NaN
0 0<Y < XMAX 0
0 Inf unstable.NaN
0<X<1 Inf 0
0<X<1 -Inf Inf
1 —XMAX <Y < XMAX 1
1 + Inf unstable.NaN
1< X< XMAX Inf Inf
1< X< XMAX -Inf 0
Inf 1<Y<Inf Inf
Inf Anf<yY < -1 0
Inf -1<Y <1 undefined.NaN
otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-precision algorithm very complex
in detail, and having two arguments makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed over (0.1, 10.0), with the exponent
linearly distributed over (—35.0, 35.0) (single-length), and (—300.0, 300.0) (double-length), producing the
errors given above. The errors are much smaller if the exponent range is reduced.

4) The error amplification factors are calculated on the assumption that the relative error in Y is + that in X,

otherwise there would be separate factors for both X and Y. It can be seen that the propagated error will be
greatly amplified whenever log.(X) or Y is large.

14.8.10 SIN
REAL32 FUNCTION SIN (VAL REAL32 X)

REAL64 FUNCTION DSIN (VAL REAL64 X)

These compute: sine(X) (where X is in radians)

Domain: [-Smaz, Smaz] =[-205887.4,205887.4]S (Standard),
[-4.2 x 108,4.2 « 108]S (T212 special)
_ =[-3.4+10%3.4+ 10°]D
Range: [-1.0,1.0]

Primary Domain: [-Pi/2, Pi/2] =[-1.57,1.57]
Exceptions

Al arguments outside the domain generate an inexact.NaN, except +Inf, which generates an undefined.NaN.

14.8 _Single length and double length elementary function library 195

Pi'opagated Error
A = X cos(X), R = X cot(X)

Generated error (See note 1)

Primary Domain [0,2Ps]
MRE RMSRE MAE RMSAE
Single Length(Standard): 094 ulp 023ulp 0.96ulp 0.19ulp
Single Length(T212 special): 0.92ulp 023 ulp 094 ulp 0.19 ulp
Double Length: 09 ulp 022ulp 091ulp 0.18 ulp

The Algorithm
1 Set N = integer part of | X|/Ps.

2 Compute the remainder of |X| by Pz, using extended precision arithmetic (double precision in the
standard version).

3 Compute the sine of the remainder using a floating-point polynomial.

4 Adjust the sign of the result according to the sign of the argument and the evenness of N.
Notes

1) For arguments outside the primary domain the accuracy of the result depends crucially on step 2. The
extra precision of step 2 is lost if N becomes too large, and the cut-off Smaz is chosen to prevent this.
In any case for large arguments the ‘granularity’ of floating-point numbers becomes a significant factor. For
arguments larger than Smaz a change in the argument of 1 ulp would change more than half of the significant
bits of the result, and so the result is considered to be essentially indeterminate.

2) The propagated error has a complex behaviour. The propagated relative error becomes large near each
zero of the function (outside the primary range), but the propagated absolute error only becomes large for
large arguments. In effect, the error is seriously amplified only in an interval about each irrational zero, and
the width of this interval increases roughly in proportion to the size of the argument.

3) Since only the remainder of X by Px is used in step 3, the symmetry sin(z + nx) = & sin(z) is preserved,
although there is a complication due to differing precision representations of .

4) The output range is not exceeded. Thus the output of SIN is always a valid argument for ASIN.

14.8.11 COS
REAL32 FUNCTION COS (VAL REAL32 X)

REAL64 FUNCTION DCOS (VAL REAL64 X)
These compute: cosine(X) (where X is in radians)

Domain: [-Cmaz,Cmaz] =[-205887.4,205887.4]S (Standard),
[-12868.0, 12868.0]S (T212 special)
=[-3.4+10°%3.4 + 10°]D
Range: [-1.0,1.0]
Primary Domain: See note 1.

196 14 Libraries

Exceptions
All arguments outside the domain generate an inexact.NaN, except +Inf, which generates an undefined.NaN.
Propagated Error

= - Xsin(X), R=-Xtan(X) (See note 4)

Generated error

Range: [0, P:/4) [0, 2Ps]

MRE RMSRE MAE RMSAE
Single Length(Standard): 093 ulp 025ulp 0.88ulp 0.18 ulp
Single Length(T212 special): 1.1 ulp 03 ulp 094 ulp 0.19 ulp
Double Length: 1.0 ulp 028ulp 09 ulp 0.19ulp

The Algorithm

1 Set N = integer part of (|X| + Pi/2)/Pi and compute the remainder of (|X| + P:/2) by P, using
extended precision arithmetic (double precision in the standard version).

2 Compute the sine of the remainder using a floating-point polynomial.

3 Adjust the sign of the result according to the evenness of N.

Notes

1) Inspection of the algorithm shows that argument reduction always occurs, thus there is no ‘primary domain*
for COS. So for all arguments the acuracy of the result depends crucially on step 2. The standard single-
precision version performs the argument reduction in double-precision, so there is effectively no loss of
accuracy at this step. For the T212 special version and the double-precision version there are effectively K
extra bits in the representation of »(K = 8 for the former and 12 for the latter). If the argument agrees with an
odd integer multiple of /2 to more than k bits there is a loss of significant bits from the computed remainder
equal to the number of extra bits of agreement, and this causes a loss of accuracy in the result.

2) The difference between COS evaluated at sucessive floating-point numbers is given approximately by the
absolute error amplification factor, A. For arguments larger than Cmaz this difference may be more than
half the significant bits of the result, and so the result is considered to be essentially indeterminate and an
inexact.NaN is returned. The extra precision of step 2 in the double-precision and T212 special versions is
lost if N becomes too large, and the cut-off at Cmaz prevents this also.

3) For small arguments the errors are not evenly distributed. As the argument becomes smaller there is an
increasing bias towards negative errors (which is to be expected from the form of the Taylor series). For the
single-length version and X in [-0.1,0.1], 62% of the errors are negative, whilst for X in [-0.01,0.01], 70%
of them are.

4) The propagated error has a complex behaviour. The propagated relative error becomes large near each
zero of the function, but the propagated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational zero, and the width of this interval
increases roughly in proportion to the size of the argument.

5) Since only the remainder of (|X |+ P:/2) by Pi is used in step 3, the symmetry cos(z+nw) = + cos(z) is pre-
served. Moreover, since the same rational approximation is used as in SIN, the relation cos(z) = sin(z+/2)
is also preserved. However, in each case there is a complication due to the different precision representations
of x.

6) The output range is not exceeded. Thus the output of COS is always a valid argument for ACOS.

14.8 Single length and double length elementary function library 197

14.8.12 TAN
REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)
These compute: tan(X) (where X is in radians)

Domain: [-Tmaz,Tmaz] =[-102943.7,102943.7]S(Standard),
[-2.1 108,21 « 10°]S(T212 special),
=[-1.7+10°1.7+10°]D

Range: (—Inf, Inf)
Primary Domain: [-P:/4, Pi/4] =[-0.785,0.785]
Exceptions

All arguments outside the domain generate an inexact.NaN, except tInf, which generate an undefined.NaN.
Odd integer multiples of =/2 may produce unstable.NaN.

Propagated Error
A=X(1+tan®(X)), R=X(1+tan®(X))/tan(X) (See note 3)

Generated error

Primary Domain Error: MRE RMSRE
Single Length(Standard): 144 ulp 0.39 ulp
Single Length(T212 special): 1.37 ulp 0.39 ulp
Double Length: 127 ulp 0.35ulp

The Algorithm

1 Set N = integer part of X/(Psi/2), and compute the remainder of X by P:/2, using extended precision
arithmetic.

2 Compute two floating-point rational functions of the remainder, X Num and X Den.

3 If N is odd, set RESULT = —XDen/X Num, otherwise set RESULT = XNum/X Den.
Notes

1) R is large whenever X is near to an integer multiple of »/2, and so tan is very sensitive to small errors
near its zeros and singularities. Thus for arguments outside the primary domain the accuracy of the result
depends crucially on step 2, so this is performed with very high precision, using double precision Pz /2 for
the standard single-precision function and two double-precision floating-point numbers for the representation
of x/2 for the double-precision function. The T212 special version uses two single-precision floating-point
numbers. The extra precision is lost if N becomes too large, and the cut-off Tmaz is chosen to prevent this.

2) The difference between TAN evaluated at sucessive floating-point numbers is given approximately by the
absolute error amplification factor, A. For arguments larger than Smaz this difference could be more than
half the significant bits of the result, and so the result is considered to be essentially indeterminate and an
inexact.NaN is returned.

3) Tan is quite badly behaved with respect to errors in the argument. Near its zeros outside the primary
domain-the relative error is greatly magnified, though the absolute error is only proportional to the size of
the argument. In effect, the error is seriously amplified in an interval about each irrational zero, whose width
increases roughly in proportion to the size of the argument. Near its singularities both absolute and relative
errors become large, so any large output from this function is liable to be seriously contaminated with error,
and the larger the argument, the smaller the maximum output which can be trusted. If step 3 of the algorithm

198 14 Libraries

requires division by zero, an unstable.NaN is produced instead.
4) Since only the remainder of X by P:/2 is used in step 3, the symmetry tan(z + n) = tan(z) is preserved,

although there is a complication due to the differing precision representations of =. Moreover, by step 3 the
symmetry tan(z) = 1/tan(r/2 — z) is also preserved.

14.8.13 ASIN
REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)
These compute: sine~'(X) (in radians)

Domain: [-1.0,1.0]
Range: [-P:/2,Pi/2]
Primary Domain: [-0.5,0.5]

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=X/v/T-X2, R=X/(sin”"(X)v1-X?)

Generated Error

Primary Domain [-1.0,1.0]
MRE RMSRE MAE RMSAE
Single Length: 058 ulp 021 ulp 135ulp 0.33 ulp
Double Length: 059ulp 0.21ulp 1.26ulp 0.27 ulp

The Algorithm

1 If | X| > 0.5, set Xwork := SQRT ((1 — |X|)/2). Compute Rwork = arcsine(—2 » Xwork) with a
floating-point rational approximation, and set the result = Rwork + Pi/2.

2 Otherwise compute the result directly using the rational approximation.
3 In either case set the sign of the result according to the sign of the argument.
Notes
1) The error amplification factors are large only near the ends of the domain. Thus there is a small interval

at each end of the domain in which the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be large.

2) By step 1, the identity sin~"(z) = x/2 — 2sin~"(\/(T — 2)/2)) is preserved.

14.8 Single length and double length elementary function library 199

14.8.14 ACOS
REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)
These compute: cosine~'(X) (in radians)

Domain: [-1.0,1.0]

Range: [0, Pz]

Primary Domain: [-0.5,0.5]
Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

=-X/V1-X2, R=-X/(sin""(X)v1-X?)
Generated Error

‘Primary Domain [-1.0,1.0]

MRE RMSRE MAE RMSAE
Single Length: 1.06 ulp 0.38 ulp 2.37ulp 0.61 ulp
Double Length: 096 ulp 032ulp 225ulp 0.53 ulp

The Algorithm
1 If |X| > 0.5, set Xwork := SQRT ((1 — |X|)/2) . Compute Rwork = arcsine(2 * Xwork) with a
floating-point rational approximation. If the argument was positive, this is the result, otherwise set
the result = Pi — Rwork.

2 Otherwise compute Rwork directly using the rational approximation. If the argument was positive,
set result = Pi/2 — Rwork, otherwise result = P:/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the domain. Thus there is a small interval
at each end of the domain in which the result is liable to be contaminated with error, although this interval is
larger near 1 than near —1, since the function goes to zero with an infinite derivative there. However since
both the domain and range are bounded the absolute error in the result cannot be large.

2) Since the rational approximation is the same as that in ASIN, the relation cos—'(z) = 7/2 — sin~(z) is
preserved.

14.8.15 ATAN
REAL32 FUNCTION ATAN (VAL REAL32 X)

REAL64 FUNCTION DATAN (VAL REAL64 X)
These compute: tan='(X) (in radians)

Domain: [—Inf, Inf]
Range: [-Pi/2, Pi/2]
Primary Domain: [-z,z], z=2-+/3=0.2679

200 14 Libraries

Exceptions

None.

Propagated Error

A=X/(1+X?, R=X/tan""(X)(1+X?))
Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 0.56 ulp 0.21 ulp
Double Length: 052 ulp 0.21 ulp

The Algorithm
1 If | X| > 1.0, set Xwork = 1/|X|, otherwise Xwork = |X]|.
2 If Xwork > 2 — /3, set F = (Xwork + /3 — 1)/(Xwork +V/3), otherwise F = Xwork.
3 Compute Rwork = arctan(F) with a floating-point rational approximation.
4 If Xwork was reduced in (2), set R = Pi/6 + Rwork, otherwise R = Rwork.
§ If X was reduced in (1), set RESULT = Pi/2 — R, otherwise RESULT = R.
6 Set the sign of the RESULT according to the sign of the argument.
Notes

1) For |X| > AT'maz, |tan~'(X)| is indisitinguishable from x/2 in the floating-point format. For single-length,
ATmaz = 1.68 » 107, and for double-length ATmaz = 9 * 10'5, approximately.

2) This function is numerically very stable, despite the complicated argument reduction. The worst errors
occur just above 2 — /3, but are no more than 3.2 ulp.

3) It is also very well behaved with respect to errors in the argument, i.e. the error amplification factors are
always small.

4) The argument reduction scheme ensures that the identities tan~'(X) = /2 — tan~"(1/X), and
tan~(X) = x/6 + tan~"((v/3 » X — 1)/(+/3 + X)) are preserved.

14.8.16 ATAN2
REAL32 FUNCTION ATAN2 (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, VAL REAL64 Y)

These compute the angular co-ordinate tan"(Y/X) (in radians) of a point whose X and Y co-ordinates are
given.

Domain: [—Inf, Inf] x [—Inf, Inf]
Range: (—Ps, Pr)
Primary Domain: See note 2.

Exceptions

(0, 0) and (*Inf,+Inf) give undefined.NaN.

14.8 Single length and double length elementary function library 201

Propagated Error

A=X(12Y)/(X2+Y?), R=X(1xY)/(tan” (Y/X)(X2+Y?) (See note 3)
Generated Error (See note 2)

The Algorithm

1 If X, the first argument, is zero, set the result to +x/2, according to the sign of Y, the second
argument.

2 Otherwise set Rwork:= ATAN(Y/X). Then if Y < 0 set RESULT = Rwork — Pi, otherwise set
RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the generated error.

3) The error amplification factors were derived on the assumption that the relative error in Y is + that in X,

otherwise there would be separate factors for X and Y. They are small except near the origin, where the
polar co-ordinate system is singular.

14.8.17 SINH
REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)
These compute: sinh(X)

Domain: [-Hmaz, Hmaz] =[-89.4,89.4]S, [-710.5,710.5]D
Range: (—Inf, Inf)
Primary Domain: (—1.0,1.0)

Exceptions

X < —Hmaz gives —Inf, and X > Hmaz gives Inf.
Propagated Error

A=Xcosh(X), R=Xcoth(X) (See note 3)
Generated Error

Primary Domain [1.0, X Big] (See note 2)
MRE RMSRE MRE RMSRE
Single Length: 091 ulp 026ulp 1.41ulp 0.34ulp
Double Length: 0.67ulp 0.22ulp 1.31ulp 0.33ulp

The Algorithm
1 If |X| > X Big, set Rwork:= EXP (| X| - In(2)).
2 If XBig > |X| > 1.0, set temp:= EXP (|X|), and set Rwork = (temp — 1/temp)/2.

3 Otherwise compute sinh(|X|) with a floating-point rational approximation.

202 14 Libraries

4 In all cases, set RESULT = +Rwork according to the sign of X.
Notes
1) Hmaz is the point at which sinh(X) becomes too large to be represented in the floating-point format.

2) XBig is the point at which ¢~!X| becomes insignificant compared with /X!, (in floating-point). For single-
length it is 8.32, and for double-length it is 18.37.

3) This function is quite stable with respect to errors in the argument. Relative error is magnified near zero,
but the absolute error is a better measure near the zero of the function and it is diminished there. For
large arguments absolute errors are magnified, but since the function is itself large, relative error is a better

criterion, and relative errors are not magnified unduly for any argument in the domain, although the output
does become less reliable near the ends of the range.

14.8.18 COSH
REAL32 FUNCTION COSH (VAL REAL32 X)

REAL64 FUNCTION DCOSH (VAL REAL64 X)
These compute: cosh(X)

Domain: [-Hmaz, Hmaz] =[-89.4,89.4]S, [-710.5,710.5]D
Range: [1.0, Inf)
Primary Domain: [-XBig,XBig] =[-8.32,8.32]S [-18.37,18.37]D

Exceptions

|X| > Hmaz gives Inf.

Propagated Error

A = X sinh(X), R = Xtanh(X) (See note 3)
Generated Error

Primary Domain Error: MRE RMS
Single Length: 1.24 ulp 0.32ulp
Double Length: 1.24 ulp 0.33 ulp

The Algorithm
1 If | X| > X Big, set result:= EXP (|X| —In(2)) .
2 Otherwise, set temp:= EXP (|X|), and set result = (temp + 1/temp)/2.
Notes
1) Hmaz is the point at which cosh(X) becomes too large to be represented in the floating-point format.
2) XBiyg is the point at which ¢~1X| becomes insignificant compared with ¢/X! (in floating-point).

3) Errors in the argument are not seriously magnified by this function, although the output does become less
reliable near the ends of the range.

14.8 Single length and double length elementary function library 203

14.8.19 TANH
REAL32 FUNCTION TANH (VAL REAL32 X)

REAL64 FUNCTION DTANH (VAL REAL64 X)
These compute: tanh(X)

Domain: [—Inf, Inf]

Range: [-1.0,1.0]

Primary Domain: [-Log(3)/2, Log(3)/2] = [-0.549,0.549]
Exceptions
None.

Propagated Error
A=X/cosh’(X), R =X/sinh(X)cosh(X)
Generated Error

Primary Domain Error: MRE RMS
Single Length: 0.53 ulp 0.2ulp
Double Length: 053 ulp 0.2ulp

The Algorithm

1 If |X| > In(3)/2, set temp:= EXP (|X|/2). Then set Rwork =1 —2/(1 + temp).

2 Otherwise compute Rwork = tanh(|X|) with a floating-point rational approximation.

3 In both cases, set RESULT = +Rwork according to the sign of X.
Notes
1) As a floating-point number, tanh(X) becomes indistinguishable from its asymptotic values of +1.0 for
|X| > HTmaz, where HTmaz is 8.4 for single-length, and 19.06 for double-length. Thus the output of TANH
is equal to +1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument are always diminished by it.

14.8.20 RAN
REAL32, INT32 FUNCTION RAN (VAL INT32 X)

REAL64, INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corresponding sequence of floating-point
numbers between zero and one.

Domain: Integers (see note 1)
Range: [0.0, 1.0) x Integers

Exceptions

None.

204 14 Libraries

The Algorithm
1 Produce the next integer in the sequence: Ni,1 = (aNk + 1)mod M
2 Treat Ni.1 as a fixed-point fraction in [0,1), and convert it to floating point.
3 Output the floating point result and the new integer.

Notes

1) This function has two results, the first a real, and the second an integer (both 32 bits for single-length, and
64 bits for double-length). The integer is used as the argument for the next call to RAN, i.e. it ‘carries’ the
pseudo-random linear congruential sequence Ni, and it should be kept in scope for as long as RAN is used.
It should be initialised before the first call to RAN but not modified thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same sequence (both floating-point and integer)
will be produced. If a different sequence is required for each run of a program it should be initialised to some
‘random’ value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in expressions requiring random integers.
The topmost bits are the most random. A random integer in the range [0, L] can conveniently be produced
by taking the remainder by (L + 1) of the integer parameter shifted right by one bit. If the shift is not done an
integer in the range [—L, L] will be produced.

4) The modulus M is 232 for single-length and 2%* for double-length, and the multipliers, a, have been chosen
so that all M integers will be produced before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may be repeated, although the sequence
of such will not be repeated until M calls have been made.

5) The floating-point result is uniformly distributed over the output range, and the sequence passes various
tests of randomness, such as the ‘run test’, the ‘maximum of 5 test’ and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than the single-length version. If a highly-
random sequence of single-length numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of double-length numbers is required,
RAN could be used for higher speed and its output converted to double-length.

14.9 IMS T414 elementary function library

The version of the library described by this section has been written for 32-bit processors without hardware
for floating-point arithmetic. Functions from it will give results very close, but not identical to, those produced
by the corresponding functions from the previous library.

This is the version specifically intended to derive maximum performance from the IMS T414. The single-
precision functions make use of the FRACMUL instruction available on the B revision of that processor.

The tables and notes at the beginning of the previous library section apply equally here. However all the
functions are contained in one library. To use this library a program header must include the line:

#USE tdmath

14.9 IMS T414 elementary function library

205

The table below lists the procedures contained in each SC and which other libraries are used:

SC | procedures | USEs
1 | ALOG tdutils
ALOG10
2 EXP tdutils
3 POWER tdutils
4 SIN tdutils
5 cos tdutils
6 TAN tdutils
7 ASIN tdutils
8 ACOS tdutils
9 | ATAN tdutils
ATAN2
10 | exp tdutils
SINH)
COSH
TANH
11 | RAN tdutils
12 | DALOG tdutils
DALOG10
13 | DEXP tdutils
14 | DPOWER tdutils
/15'» DSIN tdutils
16 | DCOS tdutils
17 | DTAN tdutils
18 | DASIN tdutils
DACOS
19 | DATAN tdutils
DATAN2
20 | Dexp tdutils
DSINR
DCOSH
DTANH
21 | DRAN t4utils

149.1 ALOG

REAL32 FUNCTION ALOG (VAL REAL32 X)

REAL64 FUNCTION DALOG (VAL REAL64 X)

These compute: log.(X)

Domain: (0, XMAX]

Range: [MinLog, MazLog] (See Note 2)
Primary Domain: [v2/2,v/2) = [0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.

206 14 Libraries

Propagated Error
A=1, R =1/log.(X)
Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 1.19ulp 0.36 ulp
Double Length: 24 ulp 1.0 ulp

The Algorithm
1 Split X into its exponent N and fraction F.

2 Find the natural log of F with a fixed-point rational approximation, and convert it into a floating-point
number LnF.

3 Compute In(2) = N with extended precision and add it to LnF to get the result.
Notes
1) The term In(2) * N is much easier to compute (and more accurate) than LnF, and it is larger provided N
is not 0 (i.e. for arguments outside the primary domain). Thus the accuracy of the result improves as the
modulus of log(X) increases.
2) The minimum value that can be produced, MinLog, is the logarithm of the smallest denormalised floating-
point number. For single length Minlog is —103.28, and for double length it is —745.2. The maximum value
MazLog is the logarithm of XM AX. For single-length it is 88.72, and for double-length it is 709.78.
3) Since Inf is used to represent all values greater than X M AX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

149.2 ALOG10
REAL32 FUNCTION ALOG1l0 (VAL REAL32 X)

REAL64 FUNCTION DALOG1l0 (VAL REAL64 X)

These compute: log4o(X)

Domain: (0, XM AX]
Range: [MinL10, MazL10] (See Note 2)
Primary Domain: [v2/2,v/?2) =[0.7071, 1.4142)

Exceptions

All arguments outside the domain generate an undefined.NaN.
Propagated Error

A=logio(e), R =logio(e)/log.(X)

Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 143 ulp 0.39ulp
Double Length: 2.64 ulp 0.96 ulp

14.9 IMS T414 elementary function library 207

The Algorithm

1 Set temp:= ALOG (X).

2 If temp is a NaN, copy it to the output, otherwise set result = log(e) * temp
Notes
1) See note 1 for ALOG.
2) The minimum value that can be produced, M:nL10, is the base-10 logarithm of the smallest denormalised
floating-point number. For single length MinL10 is —44.85, and for double length it is —323.6. The maximum
value MazL10 is the base-10 logarithm of XM AX. For single length MazL10 is 38.53, and for double-length
it is 308.26.
3) Since Inf is used to represent all values greater than XM AX its logarithm cannot be defined.

4) This function is well-behaved and does not seriously magnify errors in the argument.

149.3 EXP
REAL32 FUNCTION EXP (VAL REAL32 X)

REAL64 FUNCTION DEXP (VAL REAL64 X)
These compute: eX

Domain: [-Inf, MazLog) =[-Inf, 88.72)S, [-Inf, 709.78)D
Range: [0, Inf) (See note 4)
Primary Domain: [-Ln2/2,Ln2/2) =[-0.3466,0.3466)

Exceptions

All arguments outside the domain generate an Inf.
Propagated Error

A=XeX, R=X

Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 0.51 ulp 0.21 ulp
Double Length: 05 ulp 021ulp

The Algorithm
1 Set N = integer part of X/In(2).
2 Compute the remainder of X by In(2), using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its exponential using a fixed-point rational function,
and convert the result back to floating point.

4 Increase the exponent of the result by N. If N is sufficiently negative the result must be denormalised.

208 14 Libraries

Notes

1) MazLog is log.(XM AX).

2) The analytical properties of ¢* make the relative error of the result proportional to the absolute error of the
argument. Thus the accuracy of step 2, which prepares the argument for the rational approximation, is crucial
to the performance of the subroutine. It is completely accurate when N = 0, i.e. in the primary domain, and
becomes less accurate as the magnitude of N increases. Since N can attain larger negative values than
positive ones, EXP is least accurate for large, negative arguments.

3) For sufficiently negative arguments (below —87.34 for single-length and below —708.4 for double-length)
the output is denormalised, and so the floating-point number contains progressively fewer significant digits,
which degrades the accuracy. In such cases the error can theoretically be a factor of two.

4) Although the true exponential function is never zero, for large negative arguments the true result becomes
too small to be represented as a floating-point number, and EXP underflows to zero. This occurs for arguments
below —103.9 for single-length, and below —745.2 for double-length.

5) The propagated error is considerably magnified for large positive arguments, but diminished for large
negative arguments.

14.9.4 POWER
REAL32 FUNCTION PO_WER (VAL REAL32 X, VAL REAL32 Y)
REAL32 FUNCTION DPOWER (VAL REAL64 X, VAL REAL64 Y)

These compute: XY

Domain: [0, Inf] x [—Inf, Inf]
Range: (—Inf, Inf)
Primary Domain: See note 3.

Exceptions

If the first argument is outside its domain, undefined.NaN is returned. If the true value of XY exceeds
XMAX, Inf is returned. In certain other cases other NaNs are produced: See note 2.

Propagated Error
A=YXY(1xlog.(X)), R=Y(1+log.(X)) (See note 4)
Generated Error

Example Range Error: MRE RMSRE (See note 3)
Single Length: 1.0ulp 0.24 ulp
Double Length: 13.2ulp 1.73 ulp
The Algorithm
Deal with special cases: either argument = 1, 0, +Inf or —Inf (see note 2). Otherwise:
(a) For single precision:
1 Compute L = logz(X) in fixed point, where X is the first argument.
2 Compute W =Y x L in double precision, where Y is the second argument.

3 Compute 2% in fixed point and convert to floating-point result.

209

14.9 IMS T414 elementary function library

(b) For double precision:
1 Compute L = log>(X) in extended precision, where X is the first argument.
2 Compute W =Y x L in extended precision, where Y is the second argument.
3 Compute RESULT =2% in extended precision.

Notes

1) This subroutine implements the mathematical function z¥ to a much greater accuracy than can be attained
using the ALOG and EXP functions, by performing each step in higher precision.

2) Results for special cases are as follows:

First Input (X) Second Input (Y) Result
<0 ANY undefined.NaN
0 <0 undefined.NaN
0 0<Y < XMAX 0
0 Inf unstable.NaN
0<X<1 Inf 0
0<X<1 —Inf Inf
1 —XMAX <Y < XMAX 1
1 + Inf unstable.NaN
1< X< XMAX Inf Inf
1< X< XMAX —Inf 0
Inf 1<Y<Int Int
Inf -Inf<Y < -1 0
Inf -1<Y <1 undefined.NaN
otherwise 0 1
otherwise 1 X

3) Performing all the calculations in extended precision makes the double-precision algorithm very complex
in detail, and having two arguments makes a primary domain difficult to specify. As an indication of accuracy,
the functions were evaluated at 100 000 points logarithmically distributed over (0.1, 10.0), with the exponent
linearly distributed over (—35.0, 35.0) (single-length), and (—300.0, 300.0) (double-length), producing the errors
given above. The errors are much smaller if the exponent range is reduced.

4) The error amplification factors are calculated on the assumption that the relative error in Y is + that in X,
otherwise there would be separate factors for both X and Y. It can be seen that the propagated error will be
greatly amplified whenever log.(X) or Y is large.

SIN
REAL32 FUNCTION SIN (VAL REAL32 X)

14.9.5

REAL64 FUNCTION DSIN (VAL REAL64 X)

(where X is in radians)

= [-12868.0, 12868.0]S,

These compute: sine(X)

[-Smaz, Smaz] [-2.1+108,2.1 %+ 10°]D
[=1.0,1.0]

[-Pi/2, Pi/2]

Domain:
Range:

Primary Domain: =[-1.57,1.57]

210 14 Libraries

Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf, which generates an undefined.NaN.
Propagated Error

A = X cos(X), R = X cot(X)

Generated Error (See note 3)

Range: Primary Domain [0,2Pz]

MRE RMSRE MAE RMSAE
Single Length: 0.65ulp 022ulp 0.74 ulp 0.18 ulp
Double Length: 056 ulp 0.21ulp 0.64ulp 0.16 ulp

The Algorithm
1 Set N = integer part of |X|/Ps.
2 Compute the remainder of | X| by Ps, using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its sine using a fixed-point rational function, and
convert the result back to floating point.

4 Adjust the sign of the result according to the sign of the argument and the evenness of N.
Notes

1) For arguments outside the primary domain the accuracy of the result depends crucially on step 2. The
extended precision corresponds to K extra bits in the representation of = (K = 8 for single-length and 12 for
double-length). If the argument agrees with an integer multiple of = to more than K bits there is a loss of
significant bits in the remainder, equal to the number of extra bits of agreement, and this causes a loss of
accuracy in the resuit.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off Smaz is chosen to prevent
this. In any case for large arguments the ‘granularity’ of floating-point numbers becomes a significant factor.
For arguments larger than Smaz a change in the argument of 1 ulp would change more than half of the
significant bits of the result, and so the result is considered to be essentially indeterminate.

3) The propagated error has a complex behaviour. The propagated relative error becomes large near each
zero of the function (outside the primary range), but the propagated absolute error only becomes large for

large arguments. In effect, the error is seriously amplified only in an interval about each irrational zero, and
the width of this interval increases roughly in proportion to the size of the argument.

4) Since only the remainder of X by Ps is used in step 3, the symmetry sin(z + nx) = £ sin(z) is preserved,
although there is a complication due to differing precision representations of .

5) The output range is not exceeded. Thus the output of SIN is always a valid argument for ASIN.

1496 COS
REAL32 FUNCTION COS (VAL REAL32 X)

REAL64 FUNCTION DCOS (VAL REAL64 X)

These compute: cosine (X) (where X is in radians)

14.9 IMS T414 elementary function library 211

Domain: [-Smaz,Smaz] =[-12868.0,12868.0]S, [-2.1s108,2.1+10°%D
Range: [-1.0,1.0]
Primary Domain: See note 1.

Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf, which generates an undefined.NaN.
Propagated Error

A = -Xsin(X), =-Xtan(X) (See note 4)

Generated Error

Range: [0, P:/4) [0,2P%]

MRE RMSRE MAE RMSAE
Single Length: 1.0 ulp 028ulp 0.81ulp 0.17 ulp
Double Length: 093 ulp 0.26ulp 0.76 ulp 0.18 ulp

The Algorithm
1 Set N = integer part of (|X| + Pi/2)/Ps.
2 Compute the remainder of (|X| + Pi/2) by P, using extended precision arithmetic.

3 Compute the remainder to fixed-point, compute its sine using a fixed-point rational function, and
convert the result back to floating point.

4 Adjust the sign of the result according to the evenness of N.
Notes

1) Inspection of the algorithm shows that argument reduction always occurs, thus there is no ‘primary domain’
for COS. So for all arguments the acuracy of the result depends crucially on step 2. The extended precision
corresponds to K extra bits in the representation of = (K = 8 for single-length and 12 for double length). If
the argument agrees with an odd integer multiple of x/2 to more than K bits there is a loss of significant bits
in the remainder, equal to the number of extra bits of agreement, and this causes a loss of accuracy in the
result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off Smaz is chosen to prevent
this. In any case for large arguments the ‘granularity’ of floating-point numbers becomes a significant factor.
For arguments larger than Smaz a change in the argument of 1 ulp would change more than half of the
significant bits of the result, and so the result is considered to be essentially indeterminate.

3) For small arguments the errors are not evenly distributed. As the argument becomes smaller there is an
increasing bias towards negative errors (which is to be expected from the form of the Taylor series). For the
single-length version and X in [-0.1,0.1], 62% of the errors are negative, whilst for X in [-0.01,0.01], 70%
of them are.

4) The propagated error has a complex behaviour. The propagated relative error becomes large near each
zero of the function, but the propagated absolute error only becomes large for large arguments. In effect,
the error is seriously amplified only in an interval about each irrational zero, and the width of this interval
increases roughly in proportion to the size of the argument.

5) Since only the remainder of (|X| + Pi/2) by P: is used in step 3, the symmetry cos(z + nx) = =+ cos(z)
is preserved. Moreover, since the same rational approximation is used as in SIN, the relation cos(z) =
sin(z + x/2) is also preserved. However, in each case there is a complication due to the different precision
representations of x.

212 14 Libraries

6) The output range is not exceeded. Thus the output of COS is always a valid argument for ACOS.

14.9.7 TAN
REAL32 FUNCTION TAN (VAL REAL32 X)

REAL64 FUNCTION DTAN (VAL REAL64 X)

These compute: tan(X) (where X is in radians)

Domain: [-Tmaz,Tmaz] =[-6434.0,6434.0}S [—1.05+10% 1.05+108]D
Range: (—Inf, Inf)
Primary Domain: [—Pi/4, Pi/4] =[-0.785,0.785]

Exceptions

All arguments outside the domain generate an inexact.NaN, except +Inf, which generate an undefined.NaN.
Odd integer multiples of /2 may produce unstable.NaN.

Propagated Error
A=X(1+tan’(X)), R=X(1+tan?(X))/tan(X) (See note 4)
Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 3.5 ulp 0.23ulp
Double Length: 0.69 ulp 0.23ulp

The Algorithm
1 Set N = integer part of X/(Pi/2).
2 Compute the remainder of X by P:/2, using extended precision arithmetic.

3 Convert the remainder to fixed-point, compute its tangent using a fixed-point rational function, and
convert the result back to floating point. '

4 If N is odd, take the reciprocal.

5 Set the sign of the result according to the sign of the argument.
Notes

1) R is large whenever X is near to an integer multiple of /2, and so tan is very sensitive to small errors
near its zeros and singularities. Thus for arguments outside the primary domain the acuracy of the result
depends crucially on step 2. The extended precision corresponds to K extra bits in the representation of x/2
(K = 8 for single-length and 12 for double-length). If the argument agrees with an integer multiple of «/2 to
more than K bits there is a loss of significant bits in the remainder, approximately equal to the number of
extra bits of agreement, and this causes a loss of accuracy in the result.

2) The extra precision of step 2 is lost if N becomes too large, and the cut-off Tmaz is chosen to prevent
this. In any case for large arguments the ‘granularity’ of floating-point numbers becomes a significant factor.
For arguments larger than Tmaz a change in the argument of 1 ulp would change more than half of the
significant bits of the result, and so the result is considered to be essentially indeterminate.

3) Step 3 of the algorithm has been slightly modified in the double-precision version from that given in Cody
& Waite to avoid fixed-point underflow in the polynomial evaluation for small arguments.

14.9 [IMS T414 elementary function library 213

4) Tan is quite badly behaved with respect to errors in the argument. Near its zeros outside the primary
domain the relative error is greatly magnified, though the absolute error is only proportional to the size of
the argument. In effect, the error is seriously amplified in an interval about each irrational zero, whose width
increases roughly in proportion to the size of the argument. Near its singularities both absolute and relative
errors become large, so any large output from this function is liable to be seriously contaminated with error,
and the larger the argument, the smaller the maximum output which can be trusted. If step 4 of the algorithm
requires division by zero, an unstable.NaN is produced instead.

5) Since only the remainder of X by Pi/2 is used in step 3, the symmetry tan(z + nx) = tan(z) is preserved,

although there is a complication due to the differing precision representations of . Moreover, by step 4 the
symmetry tan(z) = 1/tan(r/2 — z) is also preserved.

14.98 ASIN
REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)
These compute: sine~'(X) (in radians)
Domain: [-1.0,1.0]
Range: [-P:i/2, Pi/2]
Primary Domain: [-0.5,0.5]
Exceptions
All arguments outside the domain generate an undefined.NaN.
Propagated Error
A=X/V/T-X2, R=X/(sin""(X)V1-X?)
Generated Error

Primary Domain [-1.0,1.0]
MRE RMSRE MAE RMSAE
Single Length: 053 ulp 021ulp 1.35ulp 0.33 ulp
Double Length: 2.8 ulp 14 ulp 234ulp 0.64 ulp

The Algorithm
1 If | X| > 0.5, set Xwork:= SQRT ((1 — |X|)/2).
Compute Rwork = arcsine(—2 » Xwork) with a floating-point rational approximation, and set the
result = Rwork + Pi /2.
2 Otherwise compute the result directly using the rational approximation.
3 In either case set the sign of the result according to the sign of the argument.
Notes
1) The error amplification factors are large only near the ends of the domain. Thus there is a small interval

at each end of the domain in which the result is liable to be contaminated with error: however since both
domain and range are bounded the absolute error in the result cannot be large.

2) By step 1, the identity sin™'(z) = /2 — 2sin" (/1 = 2) /2)) is preserved.

214 14 Libraries

1499 ACOS
REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)
These compute: cosine~'(X) (in radians)

Domain: [-1.0,1.0]
Range: [0, Ps]
Primary Domain: [-0.5,0.5]
Exceptions
All arguments outside the domain generate an undefined.NaN.

Propagated Error
A=-X//T-X2, R=-X/(sin”"(X)V1-X?)
Generated Error

Primary Domain [-1.0,1.0]

MRE RMSRE MAE RMSAE
Single Length: 1.1ulp 038ulp 24ulp 0.61ulp
Double Length: 13 ulp 034ulp 29ulp 0.78 ulp

The Algorithm

1 If |X]| > 0.5, set Xwork = SQRT ((1 — |X|)/2) . Compute Rwork = arcsine (2 »+ Xwork) with a
floating-point rational approximation. If the argument was positive, this is the result, otherwise set
the result = Ps — Rwork. -

2 Otherwise compute Rwork directly using the rational approximation. If the argument was positive,
set result = Pi/2 — Rwork, otherwise result = P/2 + Rwork.

Notes

1) The error amplification factors are large only near the ends of the domain. Thus there is a small interval
at each end of the domain in which the result is liable to be contaminated with error, although this interval is
larger near 1 than near —1, since the function goes to zero with an infinite derivative there. However since
both the domain and range are bounded the absolute error in the result cannot be large.

2) Since the rational approximation is the same as that in ASIN, the relation cos~'(z) = /2 - sin~'(z) is
preserved.

14.9.10 ATAN
REAL32 FUNCTION ATAN (VAL REAL32 X)

REAL64 FUNCTION DATAN (VAL REAL64 X)
These compute: tan—'(X) (in radians)

Domain: [—Inf, Inf]
Range: [-Pi/2, Pi/2]
Primary Domain: [-z,z], z=2-+v3=0.2679

14.9 IMS T414 elementary function library 215

Exceptions

None.

Propagated Error

A=X/(1+X?), R=X/(tan"Y(X)(1+X?)
Generated Error

Primary Domain Error: MRE RMSRE
Single Length: 0.53ulp 0.21ulp
Double Length: 1.27 ulp 0.52 ulp

The Algorithm
1 If [X] > 1.0, set Xwork = 1/|X|, otherwise Xwork = | X|.
2 If Xwork > 2 — /3, set F = (Xwork * V3- 1)/(Xwork + \/5), otherwise F = Xwork.
3 Compute Rwork = arctan(F') with a floating-point rational approximation.
4 If Xwork was reduced in (2), set R = Pi/6 + Rwork, otherwise R = Rwork.
5 If X was reduced in (1), set RESULT = P:/2 — R, otherwise RESULT = R.
6 Set the sign of the RESULT according to the sign of the argument.
Notes

1) For |X| > ATmaz, |tan~'(X)| is indistinguishable from x/2 in the floating-point format. For single-length,
ATmaz = 1.68 + 107, and for double-length AT'maz = 9 + 10'%, approximately.

2) This function is numerically very stable, despite the complicated argument reduction. The worst errors
occur just above 2 — /3, but are no more than 1.8 ulp.

3) It is also very well behaved with respect to errors in the argument, i.e. the error amplification factors are
always small.

4) The argument reduction scheme ensures that the identities tan—'(X) = »/2 — tan~"(1/X), and
tan—'(X) = x/6 + tan~'((v3 + X — 1)/(V3 + X)) are preserved.

14.9.11 ATAN2
REAL32 FUNCTION ATAN2 (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION DATAN2 (VAL REAL64 X, VAL REAL64 Y)

These compute the angular co-ordinate tan~'(Y/X) (in radians) of a point whose X and Y co-ordinates are
given.

.Domain: [—Inf, Inf] x [—Inf, Inf]
Range: (—Px, P1)
Primary Domain: See note 2.

Exceptions

(0, 0) and (+Inf,+Inf) give undefined.NaN.

216 14 Libraries

Propagated Error

A=X(12Y)/(X2+Y?), R=X(1xY)/(tan""(Y/X)(X2+Y?) (See note 3)
Generated Error

See note 2.

The Algorithm

1 If X, the first argument, is zero, set the result to +x/2, according to the sign of Y, the second
argument.

2 Otherwise set Rwork := ATAN (Y/X). Then if Y < 0 set RESULT = Rwork — P, otherwise set
RESULT = Pi — Rwork.

Notes

1) This two-argument function is designed to perform rectangular-to-polar co-ordinate conversion.

2) See the notes for ATAN for the primary domain and estimates of the generated error.

3) The error amplification factors were derived on the assumption that the relative error in Y is + that in X,

otherwise there would be separate factors for X and Y. They are small except near the origin, where the
polar co-ordinate system is singular.

14.9.12 SINH
REAL32 FUNCTION SINH (VAL REAL32 X)

REAL64 FUNCTION DSINH (VAL REAL64 X)
These compute: sinh(X)

Domain: [-Hmaz, Hmaz] =[-89.4,89.4]S, [-710.5,710.5]D
Range: (—Inf, Inf)
Primary Domain: (-1.0,1.0)

Exceptions

X < —Hmaz gives —Inf, and X > Hmaz gives Inf.
Propagated Error

A=Xcosh(X), R=Xcoth(X) (See note3)
Generated Error

Primary Domain [1.0, X Big] (See note 2)
MRE RMSRE MRE RMSRE
Single Length: 0.89ulp 03 ulp 0.98ulp 0.31 ulp
Double Length: 13 ulp 051ulp 1.0 ulp 0.3 ulp

The Algorithm
1 If |X| > XBig, set Rwork = EXP (|X| — In(2)) .
2 If XBig > |X| > 1.0, set temp := EXP (|X|), and set Rwork = (temp — 1/temp)/2.

14.9 IMS T414 elementary function library 217

3 Otherwise compute Rwork = sinh(|X|) with a fixed-point rational approximation.
4 In all cases, set RESULT = +Rwork according to the sign of X.
Notes
1) Hmaz is the point at which sinh(X) becomes too large to be represented in the floating-point format.

2) XBig is the point at which ¢~1X| becomes insignificant compared with ¢!X!, (in floating-point). For single-
length it is 8.32, and for double-length it is 18.37.

3) This function is quite stable with respect to errors in the argument. Relative error is magnified near zero,
but the absolute error is a better measure near the zero of the function and it is diminished there. For
large arguments absolute errors are magnified, but since the function is itself large, relative error is a better

criterion, and relative errors are not magnified unduly for any argument in the domain, although the output
does become less reliable near the ends of the range.

14.9.13 COSH
REAL32 FUNCTION COSH (VAL REAL32 X)

REAL64 FUNCTION DCOSH (VAL REAL64 X)
These compute: cosh(X)

Domain: [-Hmaz, Hmaz] =[-89.4,89.4]S, [-710.5,710.5]D
Range: [1.0, Inf)
Primary Domain: [-XBig,XBig] =[-8.32,8.32]S [-18.37,18.37]D

Exceptions

|X| > Hmaz gives Inf.

Propagated Error

A = X sinh(X), R = Xtanh(X) (See note 3)
Generated Error

Primary Domain Error: MRE RMS
Single Length: 0.99ulp 0.3 ulp
Double Length: 1.23ulp 0.3 ulp

The Algorithm
1 If |X| > X Big, set result .= EXP (|X| - In(2)).
2 Otherwise, set temp := EXP (|X|), and set result = (temp + 1 /temp) /2.
Notes
1) Hmaz is the point at which cosh(X) becomes too large to be represented in the floating-point format.
2) XBig is the point at which ¢~1X| becomes insignificant compared with || (in floating-point).

3) Errors in the argument are not seriously magnified by this function, although the output does become less
reliable near the ends of the range.

218 14

Libraries

14.9.14 TANH
REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)
These compute: tanh(X)

Domain: [—Inf, Inf]

Range: [-1.0,1.0]

Primary Domain: [-Log(3)/2, Log(3)/2] = [-0.549,0.549]
Exceptions
None.

Propagated Error
A =X/cosh’(X), R =X/sinh(X)cosh(X)
Generated Error

Primary Domain Error: MRE RMS
Single Length: 0.52ulp 0.2ulp
Double Length: 46 ulp 2.6 ulp

The Algorithm
1 If | X| > In(3)/2, set temp = EXP (|X]|/2) . Then set Rwork =1 — 2/(1 + temp).
2 Otherwise compute Rwork = tanh(|X|) with a floating-point rational approximation.
3 In both cases, set RESULT = +Rwork according to the sign of X.

Notes

1) As a floating-point number, tanh(X) becomes indistinguishable from its asymptotic values of +1.0 for
|X| > HT'maz, where HTmagz is 8.4 for single-length, and 19.06 for double-length. Thus the output of TANH

is equal to +1.0 for such X.

2) This function is very stable and well-behaved, and errors in the argument are always diminished by it.

14.9.15 RAN
REAL32, INT32 FUNCTION RAN (VAL INT32 X)

REALG64, INT64 FUNCTION DRAN (VAL INT64 X)

These produce a pseudo-random sequence of integers, and a corresponding sequence of floating-point

numbers between zero and one.

Domain: Integers (see note 1)
Range: [0.0, 1.0) x Integers

Exceptions

None.

14.10 Basic type /o conversion library ioconv 219

The Algorithm
1 Produce the next integer in the sequence: Ni.1 = (aNk + 1)mod rr
2 Treat Ni.¢ as a fixed-point fraction in [0,1), and convert it to floating point.
3 Output the floating point result and the new integer.

Notes

1) This function has two results, the first a real, and the second an integer (both 32 bits for single-length, and
64 bits for double-length). The integer is used as the argument for the next call to RAN, i.e. it ‘carries’ the
pseudo-random linear congruential sequence Ny, and it should be kept in scope for as long as RAN is used.
It should be initialised before the first call to RAN but not modified thereafter except by the function itself.

2) If the integer parameter is initialised to the same value, the same sequence (both floating-point and integer)
will be produced. If a different sequence is required for each run of a program it should be initialised to some
‘random’ value, such as the output of a timer.

3) The integer parameter can be copied to another variable or used in expressions requiring random integers.
The topmost bits are the most random. A random integer in the range [0, L] can conveniently be produced
by taking the remainder by (L + 1) of the integer parameter shifted right by one bit. If the shift is not done an
integer in the range [—L, L] will be produced.

4) The modulus M is 2% for single-length and 25 for double-length, and the multipliers, a, have been chosen
so that all M integers will be produced before the sequence repeats. However several different integers can
produce the same floating-point value and so a floating-point output may be repeated, although the sequence
of such will not be repeated until M calls have been made.

5) The floating-point result is uniformly distributed over the output range, and the sequence passes various
tests of randomness, such as the ‘run test', the ‘maximum of 5 test’ and the ‘spectral test'.

6) The double-length version is slower to execute, but ‘more random’ than the single-length version. If a highly-
random sequence of single-length numbers is required, this could be produced by converting the output of
DRAN to single-length. Conversely if only a relatively crude sequence of double-length numbers is required,
RAN could be used for higher speed and its output converted to double-length.

14.10 Basic type i/o conversion library ioconv

Procedure Parameter Specifiers

STRINGTOINT BOOL Error, INT n, VAL []BYTE string
INTTOSTRING INT len, []BYTE string, VAL INT n
STRINGTOHEX BOOL Error, INT n, VAL []BYTE string
HEXTOSTRING INT len, []BYTE string, VAL INT n
STRINGTOBOOL | BOOL Error, b, VAL []BYTE string

BOOLTOSTRING | INT len, []BYTE string, VAL BOOL b

To use this library a program header must include the line:

#USE ioconv

220 14 Libraries

The table below lists the procedures contained in each SC:

SC | procedures
STRINGTOINT
INTTOSTRING
STRINGTOHEX
HEXTOSTRING
STRINGTOBOOL
BOOLTOSTRING

O ad WbhRE

The number to sfring conversion procedures are defined in the 0ccam 2 reference manual. Input conversion
procedures return two results, a boolean error indication and the converted value. Output conversions all
return an integer which is the number of significant characters written into the string.

14.11 Extra type i/o conversion library extrio

Procedure

Parameter Specifiers

STRINGTOINT16
INT16TOSTRING
STRINGTOINT32
INT32TOSTRING
STRINGTOINT64
INT64TOSTRING
STRINGTOHEX16
HEX16TOSTRING
STRINGTOHEX32
HEX32TOSTRING
STRINGTOHEX64
HEX64TOSTRING
STRINGTOREAL32
REAL32TOSTRING
STRINGTOREALG64
REAL64TOSTRING

BOOL Error, INT16 n, VAL []BYTE string
INT len, []BYTE string, VAL INT16 n
BOOL Error, INT32 n, VAL []BYTE string
INT len, []BYTE string, VAL INT32 n
BOOL Error, INT64 n, VAL []BYTE string
INT len, []BYTE string, VAL INT64 n
BOOL Error, INT16 n, VAL []BYTE string
INT len, []BYTE string, VAL INT16 n
BOOL Error, INT32 n, VAL []BYTE string
INT len, []BYTE string, VAL INT32 n
BOOL Error, INT64 n, VAL []BYTE string
INT len, []BYTE string, VAL INT64 n

BOOL Error, REAL32 X, VAL []BYTE string

INT len, []BYTE string, VAL REAL32 X, VAL INT Ip, Dp

BOOL Error, REAL64 X, VAL []BYTE string

INT len, []BYTE string, VAL REAL64 X, VAL INT Ip, Dp

#USE extrio

To use this library a program header must include the line:

14.11 Extra type i/o conversion library extrio 221

The table below lists the procedures contained in each SC and which other libraries are used:

SC | procedures USEs

1 STRINGTOINT16 | ioconv
INT16TOSTRING
2 STRINGTOINT32 | ioconv
INT32TOSTRING
3 STRINGTOINT64
4 INT64TOSTRING
5 STRINGTOHEX16 | ioconv
HEX16TOSTRING
'6 STRINGTOHEX32 | ioconv
HEX32TOSTRING
7 STRINGTOHEX64 | ioconv
HEX64TOSTRING
8 STRINGTOREAL32
9 REAL32TOSTRING
10 | STRINGTOREAL64

11 | REAL64TOSTRING

These have been separated to reduce the chance that extended arithmetic handling would have to be loaded
unnecessarily, they are a continuation of the conversion procedures in ioconv.

For further information on the procedures provided by this library see the occam 2 Reference Manual.

222

14 Libraries

14.12 String handling library strings

Result Function/Procedure Parameter Specifiers
BOOL is.in.range VAL BYTE char, bottom, top
BOOL is.upper VAL BYTE char
BOOL is.lower VAL BYTE char
BOOL is.digit VAL BYTE char
BOOL is.hex.digit VAL BYTE char
BOOL is.id.char VAL BYTE char
to.upper.case [1BYTE str
to.lower.case [1BYTE str
INT compare.strings | VAL []BYTE strl, str2
BOOL egstr VAL []BYTE sl,s82
str.shift [1BYTE str, VAL INT start, len, shift,
BOOL not.done
delete.string INT len, []BYTE str, VAL INT start, size,
BOOL not.done
insert.string VAL []BYTE new.str, INT len, []BYTE str,
VAL INT start, BOOL not.done
INT string.pos VAL []BYTE search, str
INT char.pos VAL BYTE search, VAL []BYTE str
INT, BYTE | search.match VAL []BYTE possibles, str
INT, BYTE search.ho.match VAL []BYTE possibles, str
append.char INT len, []BYTE str, VAL BYTE char
append.text INT len, []BYTE str, VAL []BYTE text
append.int INT len, []BYTE str, VAL INT number, field
append.hex.int INT len, []BYTE str, VAL INT number, field
append.real32 INT len, []BYTE str, VAL REAL32 number,
VAL INT Ip, Dp
append.real64 INT len, []BYTE str, VAL REAL64 number,
VAL INT Ip, Dp
append.hex.int64 | INT len, []BYTE str, VAL INT64 number,
VAL INT width
append.int64 INT len, []BYTE str, VAL INT64 number,
VAL INT field

To use this library a program header must include the line:

#USE strings

14.12 String handling library strings

223

The table below lists the procedures contained in each SC and which other libraries are used:

SC

procedures

USEs

1

is.
.upper
is.
.digit

.hex.digit

is

is
is

is.
to.
to.

in.range
lower
id.char

upper.case
lower.case

compare.strings
egstr

str.shift
delete.string
insert.string
string.pos
char.pos
search.match
search.no.match

append.char
append.text
append.int
append.hex.int

ioconv

append.real32
append.realé64d
append.hex.int 64
append.int64

extrio

The procedures and functions in this group provide the basis for string handling in occam. They are
consistent with the absence of dynamic space allocation, insofar as they work in terms of a declared array
and a used part of that array defined by an upper bound.

These functions and procedures facilitate simple manipulation of names, commands, replies, etc.

14.12.1 Character handling functions

is.in.range

BOOL FUNCTION is.in.range (VAL BYTE char, bottom, top)

Returns TRUE if the value of chaz is in the range defined by bottom and top inclusive.

is.upper

BOOL FUNCTION is.upper (VAL BYTE char)

Returns TRUE if char is an ASCII upper case letter.

224 14 Libraries

is.lower

BOOL FUNCTION is.lower (VAL BYTE char)

Returns TRUE if char is an ASCII lower case letter.
is.digit

BOOL FUNCTION is.digit (VAL BYTE char)

Returns TRUE if chaz is an ASCII decimal digit.
is.hex.digit

BOOL FUNCTION is.hex.digit (VAL BYTE char)

Returns TRUE if chax is an ASCIl hexadecimal digit. Upper or lower case letters A—F are allowed.
is.id.char

BOOL FUNCTION is.id.char (VAL BYTE char)

Returns TRUE if chax is an ASCII character which can be part of an occam name.
to.upper.case

PROC to.upper.case ([]BYTE str)

Converts all alphabetic characters in stx to upper case.
to.lower.case

PROC to.lower.case ([]BYTE str)

Converts all alphabetic characters in stx to lower case.

14.12.2 String comparison functions
Strings may be compared for order or for equality.
compare.strings
INT FUNCTION compare.strings (VAL []BYTE strl, str2)
This general purpose lexicographic ordering function compares two strings. (lexicographic ordering
is the ordering used in dictionaries etc., using the ASCI!I values of the bytes). It returns one of the 5
results 0, 1, —1, 2, —2 as follows.
0 The strings are exactly the same in length and content.
1 str2 is a leading sub-string of strl
—1 strl is a leading sub-string of stx2
2 strl is lexicographically later than stx2
—2 str2 is lexicographically later than stxl

14.12 String handling library strings 225

So if 8 is ‘abed':

compare.strings ("abc", [s FROM 0 FOR 3])
compare.strings ("abc", [s FROM 0 FOR 2])

compare.strings ("abc", s) =—1
compare.strings ("bc", 8) =
compare.strings ("ad", s) =-2

egstr
BOOL FUNCTION egstr (VAL []BYTE sl,s2)

This is an optimised test for string equality. It returns TRUE if the two strings are the same size and
have the same contents.

14.12.3 String editing procedures

A string to be edited will be stored in an array which may have some unused space at its end. The editing
operations supported are deletion of a number of charaters, with the closing up of the gap created, and
insertion of a new string starting at any position within a string, at which a gap of the necessary size is
created.

These two operations are supported by a lower level procedure for shifting a consecutive substring left or
right within the array. This lower level procedure does exhaustive tests against overflow.

str.shift

PROC str.shift ([]BYTE str, VAL INT start,
len, shift, BOOL not.done)

Take a substring [stxr FROM start FOR len], and copies it to a position shift places to
the right. Any implied actions involving bytes outside the string are not performed and cause the
error flag not .done to be set TRUE.

delete.string

PROC delete.string (INT len, []BYTE str,
VAL INT start, size, BOOL not.done)

Deletes size bytes from the string stz starting an stz [start]. There are initially 1en significant
characters in stx and it is decremented appropriately. If start is outside the string, or size is
negative or greater than the string length, then no action accurs and not . done is set TRUE.

insert.string

PROC insert.string (VAL []BYTE new.str, INT len,
[IBYTE str, VAL INT start, BOOL not.done)

Creates agap in stx before stx[start] and copies the string new. str into it. There are initially
len significant characters in str and len is incremented by the length of new. stx inserted. Any
overflow of the declared SIZE of stx results in truncation at the right and setting not .done to
TRUE. This procedure may be used for simple concatenation on the right by setting start = len
or on the left by setting start = 0. This method of concatenation differs from that using the
append. procedures in that it can never cause the program to stop.

226 _ 14 Libraries

14.12.4 String searching functions
These procedures allow a string to be searched for a match with a single byte or a string of bytes, or for
a byte which is one of a set of possible bytes, or for a byte which is not one of a set of bytes. Searches

insensitive to alphabetic case should use to.upper.case or to.lowez.case on both operands before
using these procedures.

string.pos
INT FUNCTION string.pos (VAL []BYTE search, str)

Returns the position in stz of the first occurrence of a sub-string which exactly matches search.
Returns —1 if there is no such match.

char.pos

INT FUNCTION char.pos (VAL BYTE search, VAL []BYTE str)

Returns the position in stz of the first occurrence of the byte search. Returns —1 if there is no
such byte.

search.match
INT, BYTE FUNCTION search.match (VAL []BYTE possibles, str)

Searches stx for any one of the bytes in the array possibles. If one is found its index and
identity are returned as results. If none is found then —1,255(BYTE) are returned.

search.no.match

INT, BYTE FUNCTION search.no.match (VAL []BYTE possibles, str)

Searches stz for a byte which does not match any one of the bytes in the array possibles. If
one is found its index and identity are returned as results. If none is found then —1,255(BYTE) are
returned.

14.12.5 String append functions

append.char
PROC append.char (INT len, []BYTE str, VAL BYTE char)

Writes a byte char into the array stxr at str[len]. len is incremented by 1. Behaves like
STOP if the array overflows.

append. text
PROC append.text (INT len, []BYTE str, VAL []BYTE text)

Writes a string text into the array stx, starting at stz [len] and computing a new value for 1en.
Behaves like STOP if the array overflows.

append.int
PROC append.int (INT len, []BYTE str, VAL INT number, field)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified £ield width if necessary. If the number cannot be represented in
field characters it is widened as necessary. A zero value for £ield will give minimum width.
The converted number is written into the array stx starting at stz [1en] and len is incremented.
Behaves like STOP if the array overflows.

14.12 String handling library strings 227

append.hex.int
PROC append.hex.int (INT len, []BYTE str, VAL INT number, field)
Converts number into a sequence of ASCIl hexadecimal digits, using upper case letters, preceded
by #. The total number of characters sent is always width+1, padding out with 0 or F on the left
if necessary. The number is truncated at the left if the field is too narrow, thereby allowing the less

significant part of any number to be printed. The converted number is written into the array stx
starting at stzr[len] and len is incremented. Behaves like STOP if the array overflows.

append.real32

PROC append.real32 (INT len, []BYTE str,
VAL REAL32 number, VAL INT Ip, Dp)

Converts numbex into a sequence of ASCII decimal digits padded out with leading spaces and
an optional sign to the specified number of digits Ip before and Dp after the decimal point. The
converted number is written into the array stx starting at str[len] and len is incremented.
Behaves like STOP if the array overflows.

The total added width will be Ip + Dp + 2 except in the following special cases:

If the value will not fit, an exponential form is used.

If Ip is zero, an exponential form with Dp significant digits is used, giving a field width of Dp + 6.
If Ip and Dp are zero, a minimum field width free format is used.

Numbers which correspond to the IEEE standard concepts of ‘Infinity’ and ‘NotaNumber’ produce
the texts Inf and NaN, respectively.

In exponential forms a number in the range [1.0, 10.0) is followed by E, a + or - sign, and a 2 digit
decimal exponent.

append.real64d

PROC append.real6d4 (INT len, []BYTE str,
VAL REAL64 number, VAL INT Ip, Dp)

Converts number into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified number of digits Ip before and Dp after the decimal point.

Details as for REAL32 but allowing 3 digits for the exponent.
append.hex.int 64

PROC append.hex.int64 (INT len, []BYTE str,
VAL INT64 number, VAL INT width)

As append.hex. int but for 64-bit integers
append.int64

PROC append.int64 (INT len, []BYTE str,
VAL INT64 number, VAL INT width)

As append. int but for 64-bit integers

228 14 Libraries

14.13 General purpose i/o procedure library userio

Procedure Parameter Specifiers
write.char CHAN OF ANY sink, VAL BYTE char
write.len.string CHAN OF ANY sink, VAL INT len, VAL []BYTE str
write.full.string CHAN OF ANY sink, VAL []BYTE str
newline CHAN OF ANY sink
write.int CHAN OF ANY sink, VAL INT number, field
write.hex.int CHAN OF ANY sink, VAL INT number, field
write.text.line CHAN OF ANY sink, VAL []BYTE str
write.endstream CHAN OF ANY sink
goto.xy CHAN OF ANY sink, VAL INT x, y
clear.eol CHAN OF ANY sink
clear.eos CHAN OF ANY sink
beep CHAN OF ANY sink
up CHAN OF ANY sink
down CHAN OF ANY sink
left CHAN OF ANY sink
right CHAN OF ANY sink
insert.char CHAN OF ANY sink, VAL BYTE char
delete.chl CHAN OF ANY sink
delete.chr CHAN OF ANY sink
ins.line CHAN OF ANY sink
del.line CHAN OF ANY sink
read.echo.char CHAN OF INT source, CHAN OF ANY echo, INT char
read.echo.hex.int CHAN OF INT source, CHAN OF ANY echo,
INT number, char
read.echo.int CHAN OF INT source, CHAN OF ANY echo,
INT number, char
read.echo.text.line | CHAN OF INT source, CHAN OF ANY echo, INT len,
[IBYTE line, INT char
read.char CHAN OF INT source, INT char
read.hex.int CHAN OF INT source, INT number, char
read.int CHAN OF iNT source, INT number, char
read.text.line CHAN OF INT source, INT len, []BYTE line, INT char
write.inté64 CHAN OF ANY sink, VAL INT64 number, VAL INT field
write.hex.int64 CHAN OF ANY sink, VAL INT64 number, VAL INT field

14.13 General purpose i/o procedure library userio

229

read.echo.int64

read.echo.hex.int 64

CHAN OF INT source, CHAN OF ANY echo,
INT64 number, INT char

CHAN OF INT source, CHAN OF ANY echo,

read.echo.realé64d

INT64 number, INT char
read.int64 CHAN OF INT source, INT64 number, INT char
read.hex.int 64 CHAN OF INT source, INT64 number, INT char
write.real32 CHAN OF ANY sink, VAL REAL32 number,
VAL INT Ip, Dp
write.real64 CHAN OF ANY sink, VAL REAL64 number,
VAL INT Ip, Dp
get.real.with.del CHAN OF INT in, CHAN OF ANY echo, INT len,
[1BYTE str, INT char
read.echo.real32 CHAN OF INT source, CHAN OF ANY echo,

REAL32 number, INT char

CHAN OF INT source, CHAN OF ANY echo,
REAL64 number, INT char

get.real.string
read.real32

read.realé64d

CHAN OF INT in, INT len, []BYTE str, INT char

CHAN OF INT source, REAL32 number, INT char

CHAN OF INT source, REAL64 number, INT char

create.new. fold

write.record.item

write.number.item

write.top.crease

write.fold.top.crease

write.filed.top.crease

write.bottom.crease

finish.new.fold

CHAN OF ANY from.ws, to.ws, INT fold.number,
VAL []BYTE comment, VAL []INT attributes,
VAL []BYTE fileid, INT errornum

CHAN OF ANY from.ws,
INT errornum

to.ws, VAL []BYTE recoxd,

CHAN OF ANY from.ws,
INT errornum

to.ws, VAL INT number,

CHAN OF ANY from.ws, to.ws, VAL []BYTE comment,
VAL []INT attributes, VAL BYTE file.or.fold,
VAL []BYTE fileid, INT errornum

CHAN OF ANY from.ws,
VAL []INT attributes,

to.ws, VAL []BYTE comment,
INT errornum

CHAN OF ANY from.ws, to.ws, VAL []BYTE comment,
VAL []INT attributes, VAL []BYTE fileid,

INT errornum

CHAN OF ANY from.ws, to.ws, INT errornum
CHAN OF ANY from.ws, to.ws,

VAL INT fold.number, VAL BOOL must.unfile,
INT errornum

230

14 Libraries

read.fold.heading

read.file.name

open. folded.stream

read.record.item

read.number.item

read.error.item

read.bottom.crease

input.record.item

input.number.item

input.error.item

input.top.crease

skip.item
enter. fold
exit.fold
repeat . fold

close. folded.stream

read.fold.top.crease

read.filed.top.crease

‘| VAL BYTE next.item

CHAN OF ANY from.rs, to.rs,

VAL INT fold.number, INT len.comment,
[IBYTE comment, []INT attributes,
INT errornum

CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, INT len.file.id,
[]BYTE file.id, INT errornum

CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, BYTE first.item,
BOOL not.filed, INT errornum

CHAN OF ANY from.rs, to.rs, INT len,
[IBYTE record, BYTE next.item

CHAN OF ANY from.rs, to.rs, INT number,
BYTE next.item

CHAN OF ANY from.rs, to.rs, INT status,
BYTE next.item

CHAN OF ANY from.rs, to.rs, INT len.comment,
[IBYTE comment, []INT attributes,
BYTE next.item

CHAN OF ANY from.rs, to.rs, INT len.comment,
[IBYTE comment, []INT attributes,

INT len.fileid, []BYTE fileid,

BYTE next.item

CHAN OF ANY from.rs, to.rs, []INT attributes,
BYTE next.item

CHAN OF ANY from.rs, INT len, []1BYTE record,
VAL BYTE next.item

CHAN OF ANY from.rs, INT number,
VAL BYTE next.item

CHAN OF ANY from.rs, INT status,
VAL BYTE next.item

CHAN OF ANY from.rs, to.rs, INT len.comment,
[1BYTE comment, []INT attributes,

INT len.fileid, []BYTE fileid,

CHAN OF ANY from.rs, to.rs, BYTE next.item
CHAN OF ANY from.rs, to.rs, BYTE next.item
CHAN OF ANY from.rs, to.rs, BYTE next.item
CHAN OF ANY from.rs, to.rs, BYTE next.item
CHAN OF ANY from.rs, to.rs,

VAL INT fold.number, VAL BOOL must.unfile,
INT errornum

14.13 General purpose i/o procedure library userio

231

To use this library a program header must include the line::

#USE userio

The table below lists the procedures contained in each SC and which other libraries are used:

SC

procedures

USEs

1

write.char
write.len.string
write.full.string
newline
write.int
write.hex.int
write.text.line
write.endstream

userhdr, ioconv

goto.xy
clear.eol
clear.eos
beep

up

down

left

right
insert.char
delete.chl
delete.chr
ins.line
del.line

userhdr

read.echo.char
read.echo.hex.int
read.echo.int
read.echo.text.line

userhdr, strings, userhdr

read.char
read.hex.int
read.int
read.text.line

uservals, strings, ioconv

write.int64
write.hex.int 64

userhdr, extrio

read.echo.int 64
read.echo.hex.int64

userhdr, strings, extrio

read.inté64
read.hex.inté64

uservals, strings, extrio

write.real32
write.real64

userhdr, extrio

get.real.with.del
read.echo.real32
read.echo.real64

userhdr, strings, extrio

232

14 Libraries

10

get.real.string

read
read

.real32
.real6d

uservals, strings, extrio

11

create.new. fold
write.record.item
write.number.item
write.top.crease
write.fold.top.crease
write.filed.top.crease
write.bottom.crease
finish.new. fold

filerhdr, ufiler

12

read.
read.
open.
read.
read.
read.
read.
read.

read

fold.heading
file.name
folded.stream
record.item
number.item
error.item
fold.top.crease
filed.top.crease
.bottom.crease

input.record.item
input.number.item
input.error.item
input.top.crease

skip

.item

enter. fold

exit

.fold

repeat . fold
close. folded.stream

filerhdr, ufiler

14.13.1 The simple input and output procedures

The design of this library is elaborated in Technical Note 28.

Two models of input/output are supported by appropriate sets of procedures.

A simple model of input and output which is applicable both to an interactive terminal and to sequential text
files is based on a sequence of lines of text, separated by carriage return characters. This model is also
appropriate for communication between the processes of an occam program, if the information being sent
is essentially a sequential text stream.

The second model is the folded stream model, which allows a hierarchical data structure to be traversed, with
the option to omit parts of the structure, to repeat parts of the traverse, etc.

The simple user procedures provide access to a stream of characters as input, and a stream of characters as
output. The characters are received from, or transmitted to, the environment as ASCII values, represented
as INT values on input and BYTE values on output. The procedures enable the programmer to think also,
if desirable, in terms of higher level concepts such as numbers and strings. The set of procedures provided
is not exhaustive, and users should feel free to add to the set for their own purposes.

14.13 General purpose i/o procedure library userio 233

The user does not need, in the first instance, to be aware of the protocol used on the channels used by these
procedures. A simple program containing only sequential code, or doing screen output only from one branch
of its parallel structure can do all its terminal input and output through procedures from the first set, enhanced
if necessary by procedures in the same style which handle the extra types for real and long integer variables.

The output procedures are of two kinds. On the one hand there are procedures to output characters, numbers
and strings at the current cursor position, and an explicit newline procedure. On the other hand there is a
procedure for outputting a complete line of text which the user has built up in an array of bytes. Procedures
are provided in the libraries ioconv, extrio and strings for converting numbers into strings.

The user may decide whether or not he wishes to echo keyboard input to the screen as it is input. Each
procedure has a version with and without the ability to echo. It is normally preferable to use the versions
with echo, as these are coded to respond to the delete key for simple corrections of keyboard errors. Note
that the effect of the delete key is restricted to the current procedure call and cannot influence the result of
previous calls of procedures on the same line of input.

Simple output procedures

SC 1 contains the simple output procedures. All have a first parameter sink which is the channel on
which output commands are sent to cause an appropriate sequence of text characters to be generated.
The actual parameter corresponding to this should be a channel using the screen stream (output) proto-
col. Such a channel is the screen channel of an executable procedure (EXE). It may alternatively be an
input channel to one of the interface procedures scrstream.multiplexor, scrstream. fan.out,
scrstream.to. file, etc., described in the section on the library intex£. The procedures are designed
for streams of ASCII characters and may not be appropriate for binary byte streams.

Each line of text may be terminated either by an explicit call of the procedure write.text.line or
newline, or by including the character pair "*c*n" in a string. Both these characters should normally be
sent as one or other may be ignored in some circumstances, and both are usually required on real terminals.
The preferred convention is to terminate each line with a newline (rather than preceding it with one).

SC 2 contains a number of procedures forQSending terminal control codes down a screen stream channel.
These should only be used when the receiving process is controlling a terminal or is forwarding commands
to one which does. They can not sensibly be used if the receiver is creating a file. The control codes are
terminal-independent codes for a number of common screen handling operations. They are described in
detail in section 16.1.

SCs 5 and 8 contain further procedures in the same style for long integer and real types. These are not a
complete set, and may be extended if required.

Simple input procedures

SCs 3 and 4 contain the simple key stream input procedures. Values from a keyboard channel are expressed
as integers. Positive integers are key codes, negative ones are error numbers. Error numbers are only likely
if the source is a filing system interface procedure. Key codes may be either simple ASCII codes, or they
may be encoded representations of function keys as used by the TDS editor interface. These are discussed
in detail in section 16.1. End of line is normally represented by the value INT’ *c’ alone.

Each procedure is provided in two forms, with and without echo. Echo is the return of an ASCII code to an
output channel using screen protocol. A procedure with echo also allows characters to be deleted (as long
as a terminator has not yet been encountered).

The versions without echo perform input only and are otherwise identical to those which perform echo and
handle deletions.

The reading procedures for numeric values all obey the same conventions with respect to leading characters
and terminators. The first character which may be part of the number is assumed to have been already read
and must be provided by the caller as the initial value of the INT parameter chax. This requires that the
actual parameter corresponding to chaxr must be a variable and must be initialised before using any of the

234 14 Libraries

read number procedures. The initial value may be obtained by a call of read.chaxr or may be a dummy
value such as INT’ ‘.

The procedure then reads characters, ignoring everything before the first valid character (a digit, or for decimal
numbers, a + or - sign). A number in the appropriate syntax is then read terminated by the first character
which cannot validly continue the number, which is returned in the parameter chaz. If an error occurs an
error number is returned in char.

These conventions are adopted to facilitate the coding of input from text streams where numbers are embed-
ded within text and may have arbitrary terminators.

Although, strictly, hexadecimal digits greater than 9 and the decimal exponent symbol E are defined to be
upper case characters these procedures will accept the corresponding lower case characters, but will echo
them in upper case. The character ’ $/ is NOT accepted as an alternative to ’ #’.

There is one common error value which any of these procedures may generate if a number which is out of
range or otherwise invalid is encountered. This value has the name £t .number.erzror and is defined in
the library uservals. If such a value is returned the value of the parameter numbexr is undefined.

The procedures with echo copy the actual characters input to the echo channel, converting lower case
hexadecimal digits or e in a REAL number to upper case and acting on delete characters as they are received.
The first character (passed in as char) is assumed to have been already echoed, and an immediately
subsequent delete will delete it. The terminating character is echoed even when it is subsequently converted
into an error indication.

SCs 6 and 7 contain long integer procedures in the same style

SCs 9 and 10 contain similar real number procedures.

Output to and input from the folded file store
SCs 11 and 12 contain the folded stream access procedures.

This group of procedures enable the user to write and read hierarchically structured data mapped on to the
folding system of the TDS. They are therefore only suitable for inclusion in executable procedures (EXEs) or
in PROGRAMSs which will run in communication with an EXE at run time. The process within the TDS which
handles these communications is called the user filer.

The procedures provided do not exercise all the facilities available across the folded stream interface, but
support a subset. Programmers may wish to extend the set of procedures provided (in a similar style if this is
appropriate) to give the facilities they require. The full facilities of the interface are described in section 16.2.

All these procedures have a pair of channels as their first two parameters, the first of these is a channel
from the environment into the current process and the second is a channel from the current process to the
environment.

Communications across these channels are of three kinds (from the point of view of a user program commu-
nicating with the TDS):

o user filer control mode,

o file stream input modes (folded and data),

o file stream output modes (folded and data).
In any one sequence of communications using a pair of these channels the channel pair is first used in user
filer control mode sending commands or queries on the output channel and receiving data or responses on
the input channel. Actual data transfers are then carried out either in a file stream input mode or in a file

stream output mode. These modes are defined to be data stream modes or folded stream modes according
to the particular open command used to switch from command mode.

14.13 General purpose i/o procedure library userio 235

Data stream modes are for reading operations where any internal fold structure is to be ignored or for
writing operations where no internal fold structure is to be created in the new fold. They are used in the
interface procedures keystream.from.file and scrstream.to.file described in section 14.14
on the library inter£.

Folded stream modes give the user the potential to navigate the fold structure of an existing fold and to
create a nested fold structure in a new fold. The procedures described here support a significant subset of
the possible operations in these modes.

On exhaustion of a stream the channel pair reverts to user filer control mode.

The procedures are presented in two groups, those for writing new folded streams and those for reading
existing folded streams. They all make use of lower level procedures from the library ufiler described in
section 14.6.

The descriptions of the procedures assume familiarity with the structure of folded data as described in
appendix G of this manual.

The following conventions apply to the parameters of the procedures:

1 The first two parameters are channels; in a call where these procedures are being used to com-
municate directly with the TDS, the first will be an element from the array £rom.user.filer
and the second must be the corresponding element (with the same subscript) from the array
to.user.filer.

2 A parameter called £old.number is an integer defining the position of the root fold being used in
the operation with respect to the closed fold bundle on which the cursor is positioned when the EXE
program is run. The following example shows how folds are numbered:

{{{ fold.number = 0 - cursor here
... fold.number =1
any text or blank line not counted
... fold.number = 2

... fold.number = 3
and so on

11}
Fold number 0 cannot be accessed concurrently with any other fold.

3 [1BYTE parameters are used to pass text as lines of data or as fold line comment and/or file
names. A terminating ’ *c’ character is always permitted in strings passed to the environment.
This is removed when necessary by the procedure.

4 A []1BYTE parameter used to return a string read by the procedure is always preceded by an INT
parameter whose computed value defines the length of the string read. The array must be big
enough for the expected data (256 for text, 512 for arbitrary data).

5 A parameter called attxibutes is used to communicate an array of three integers defining what
kind of fold is being read or written. The values written as attributes must be chosen from those
defined in appendix D.3

6 A parameter called exrornum may at any time return an error code (see appendix E) to the caller.
If any of the folded stream output procedures returns errornum <> f£i.ok then the stream
must be immediately closed or the program will deadlock trying to read the next command from the
receiver.

14.13.2 Simple output

The strings handled by these procedures should not exceed 256 bytes in length and should not normally
include ASCII control characters.

236 14 Libraries

write.char
)
P

PROC write.char (CHAN OF ANY sink, VAL BYTE char)
Sends the ASCII value char down sink to the current position in the output line.
write.len.string

PROC write.len.string (CHAN OF ANY sink,
VAL INT len, VAL[]BYTE str)

str is any string with Len or more characters, the first len of these are sent to sink. This
procedure should be used for text passed as an array segment whose size is computed at run-time.

write.full.string

PROC write.full.string (CHAN OF ANY sink, VAL []BYTE str)

str is any string all of whose characters are sent to sink. This procedure should be used for
constant text strings, and other strings of known length (probably expressed as an array segment).

newline
PROC newline (CHAN OF ANY sink)
Sends "*c*n" t0 sink.
write.int
PROC write.int (CHAN OF ANY sink, VAL INT number, field)
Converts number into a sequence of ASCIHl decimal digits padded out with leading spaces and an
optional sign to the specified £ield width if necessary. If the number cannot be represented in

£ield characters it is widened as necessary, a zero value for £ield will give minimum width. The
converted number is sent to sink.

write.hex.int
PROC write.hex.int (CHAN OF ANY sink, VAL INT number, field)

Converts number into a sequence of ASCIl hexadecimal digits, using upper case letters, preceded
by #. The total number of characters sent is always £ield + 1, padding out with 0 or F on the
left if necessary. The number is truncated at the left if the field is too narrow, thereby allowing the
less significant part of any number to be printed. The converted number is sent to sink.

write.text.line
PROC write.text.line (CHAN OF ANY sink, VAL []BYTE str)

A line of characters from stx, optionally terminated by a ’*c’ is sent to sink followed by a
newline. This procedure should be used for text which the programmer organises into complete
lines.

write.endstream

PROC write.endstream (CHAN OF ANY sink)

Sends a special stream terminator value to sink. A call of this is needed if sink is a file interface,
or other interface procedure without an explicit stoppping channel, but not if it is a real screen channel
(parameter of the EXE).

14.13 General purpose i/o procedure library userio 237

14.13.3 Control codes to the terminal screen
These procedures may be used to generate the control codes in screen stream protocol defined in section
16.4.5. These enable programs which use cursor addressing, etc. to be isolated from the peculiarities of
different terminal types. The TDS server converts these codes into appropriate sequences for the host PC’s
terminal. Interface procedures for conversion into ANSI screen protocol or TVI920 screen codes are supplied
in the library inter€£.
goto.xy

PROC goto.xy (CHAN OF ANY sink, VAL INT x, y)

Sends the cursor to screen position (x,y). The origin (0,0) is at the top left corner of the screen.
clear.eol

PROC clear.eol (CHAN OF ANY sink)

Clears from the cursor position to the end of the current screen line.
clear.eos

PROC clear.eos (CHAN OF ANY sink)

Clears from the cursor position to the end of the current line and all lines below.

beep
PROC beep (CHAN OF ANY sink)
Sends a bell code to the terminal.
up
PROC up (CHAN OF ANY sink)
Moves the cursor one line up the screen.
down
PROC down (CHAN OF ANY sink)
Moves the cursor one line down the screen.
left
PROC left (CHAN OF ANY sink)
Moves the cursor one place left.
right

PROC right (CHAN OF ANY sink)
Moves the cursor one place right.

The remaining procedures in this group are not guaranteed to be fully implemented on all terminal types.
They should only be used when the terminal being used can perform the required effect.

238 ' 14 Libraries

insert.char
PROC insert.char (CHAN OF ANY sink, VAL BYTE char)

The character at the cursor and those to the right of it are moved one place to the right and the
character char is inserted at the cursor. The cursor moves one place right.

delete.chl
PROC delete.chl (CHAN OF ANY sink)

The character to the left of the cursor is deleted and the rest of the line is moved one place left. The
cursor moves one place left.

delete.chr

PROC delete.chr (CHAN OF ANY sink)

The character at the cursor is deleted and all following characters on the line are moved one place
left. The cursor does not move.

ins.line

PROC ins.line (CHAN OF ANY sink)

The lines below the current line are moved down one line on the screen, losing the bottom line. The
current line becomes blank.

del.line
PROC del.line (CHAN OF ANY sink)

The current line is deleted and all lines below it are moved up one line. The bottom line becomes
blank.

14.13.4 Simple input

These are in two groups. Those which perform echo and deletion, suitable for a real interactive keyboard,
and those which do not echo, suitable for input from a sequential file using an interface procedure from the
library interf£.

In these procedures the first parameter is always a key stream channel, and in those which echo the second
is a screen stream channel.

read.echo.char

PROC read.echo.char (CHAN OF INT source,
CHAN OF ANY echo, INT char)

Returns ASCII value of next char from source, (if input is from a file interface procedure (see
library intex£) end of line is normally signified by the value INT’ *c’). No deletions are allowed.
A " *¢c’ is echoed with the character pair "*c*n". All other ASCII control codes and TDS function
codes are not echoed.

read.echo.hex.int

PROC read.echo.hex.int (CHAN OF INT source,
CHAN OF ANY echo, INT number, char)

char must be initialised, normally with * #” .

14.13 General purpose i/o procedure library userio 239

Skips input up to a valid hexadecimal digit, then reads a sequence of hex digits to the first non-digit,
returned as char, and converts the digits to an integer in numbexr.

read.echo.int

PROC read.echo.int (CHAN OF INT source,
CHAN OF ANY echo, INT number, char)

char must be initialised to the first character of the number.

Skips input up to a digit, #, + or —, then reads a sequence of digits to the first non-digit, returned as
char, and converts the digits to an integer in numbez. If the first significant character is a # then
a hexadecimal number is input, thereby allowing the user the option of which number base to use.

read.echo.text.line

PROC read.echo.text.line (CHAN OF INT source, CHAN OF ANY echo,
INT len, []BYTE line, INT char)

Reads text into the array 1ine up to and including *c’, or up to and excluding any error code. A
final *c’ is always stored in the array. Any ’ *n’ encountered is thrown away. len is the length
of the line including the terminator. If there is an error its code is returned as chaz, otherwise
the value of char will be INT’ *c’. If the array is filled before a ’ *c’ is encountered all further
characters are ignored. Note that some TDS function codes have values which exceed 255 (see
appendix D), this procedure will ignore such values completely.

read.char
PROC read.char (CHAN OF INT source, INT char)

Returns ASCII value of next char from source, (if input is from a file end of line is signified by the
value INT’ *c’).

read.hex.int
PROC read.hex.int (CHAN OF INT source, INT number, char)

char must be initialised to the first character of the number.
Skips input up to a valid hexadecimal digit, then reads a sequence of hex digits to the first non-digit,
returned as char, and converts the digits to an integer in number.

read.int
PROC read.int (CHAN OF INT source, INT number, char)

char must be initialised to the first character of the number.

Skips input up to a digit, #, + or -, then reads a sequence of digits to the first non-digit, returned
as char, and converts the digits to an integer in numbezx. If the first significant character is a * #”
then a hexadecimal number is input, thereby allowing the user the option of which number base to
use.

read.text.line

PROC read.text.line (CHAN OF INT source, INT len,
[1BYTE line, INT char)

Reads text into the array 1ine up to and including ’ *c’, or up to and excluding any error code.
Any ’ *n’ encountered is thrown away.len is the length of the line. A terminating ’ *c’ is always
stored in the array. If there is an error its code is returned as char, otherwise the value of char
will be INT ‘*c’. If the array is filled before a **c’ is encountered all further characters are
ignored. Note that some TDS function codes have values which exceed 255 (see appendix D), this
procedure will ignore such values completely.

240 14 Libraries

14.13.5 Long integers and reals
write.int64

PROC write.int64 (CHAN OF ANY sink,
VAL INT64 number, VAL INT field)

As write.int but for 64-bit integer values.
write.hex.int64

PROC write.hex.int64 (CHAN OF ANY sink,
VAL INT64 number, VAL INT field)

As write.hex.int but for 64-bit integer values.
read.echo.int64

PROC read.echo.int64 (CHAN OF INT source, CHAN OF ANY echo,
INT64 number, INT char)

As read.echo. int, but for 64-bit integers.
read.echo.hex.int64

PROC read.echo.hex.int64 (CHAN OF INT source, CHAN OF ANY echo,
INT64 number, INT char)

As read.echo.hex.int, but for 64-bit integers.
read.int 64
PROC read.int64 (CHAN OF INT source, INT64 number, INT char)
As read. int, but for 64-bit integers.
read.hex.int 64
PROC read.hex.int64 (CHAN OF INT source, INT64 number, INT char)
As read.hex. int, but for 64-bit integers.
write.real32

PROC write.real32 (CHAN OF ANY sink,
VAL REAL32 number, VAL INT Ip, Dp)

Converts number into a sequence of ASCIl decimal digits padded out with leading spaces and
an optional sign to the specified number of digits Ip before and Dp after the decimal point. The
converted number is sent to sink.

The total width will be Ip + Dp + 2 except in the following special cases:

If the value will not fit, an exponential form is used.

If Ip is zero, an exponential form with Dp significant digits is used, giving a field width of Dp + 6.
If Ip and Dp are zero, a minimum field width free format is used.

Numbers which correspond to the IEEE standard concepts of ‘Infinity’ and ‘NotaNumber’ produce
the texts Inf and NaN, respectively.

14.13 General purpose i/o procedure library userio 241

In exponential forms a number in the range [1.0, 10.0) is followed by E, a + or - sign, and a 2 digit
decimal exponent.

write.realé64

PROC write.real64 (CHAN OF ANY sink,
VAL REAL64 number, VAL INT Ip, Dp)

Converts numbex into a sequence of ASCII decimal digits padded out with leading spaces and an
optional sign to the specified number of digits Ip before and Dp after the decimal point.

Details as for REAL32 but allowing 3 digits for the exponent.
get.real.with.del

PROC get.real.with.del (CHAN OF INT in, CHAN OF ANY echo,
INT len, []BYTE str, INT char)

For internal use only by the following two procedures.
read.echo.real32

PROC read.echo.real32 (CHAN OF INT source, CHAN OF ANY echo,
REAL32 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits (with optional decimal point and
exponent) up to the first invalid character, returned as char. Converts the digits to a floating point
value in number.

read.echo.realé6d

PROC read.echo.real64 (CHAN OF INT source, CHAN OF ANY echo,
REAL64 number, INT char)

Skips input up to a digit, + or -, then reads a sequence of digits (with optional decimal point and
exponent) up to the first invalid character, returned as char. converts the digits to a floating point
value in number.

get.real.string

PROC get.real.string (CHAN OF INT in, INT len,
[1BYTE str, INT char)

For internal use only by the following two procedures.
read.real32
PROC read.real32 (CHAN OF INT source, REAL32 number, INT char)
Skips input up to a digit, + or -, then reads a sequence of digits (with optional decimal point and
exponent) up to the first invalid character, returned as char. Converts the digits to a floating point
value in numbexr.
read.realé64d
PROC read.real6é4 (CHAN OF INT source, REAL64 number, INT char)
Skips input up to a digit, + or -, then reads a sequence of digits (with optional decimal point and

exponent) up to the first invalid character, returned as chax. Converts the digits to a floating point
value in number.

242 14 Libraries

14.13.6 Write folded stream

This group of procedures gives sequential write access to a folded stream for output. They are designed
for use with a receiver process which obeys the folded stream protocol used by the user filer. This section
should be read in conjunction with section 16.2.6 describing the user filer communications.

As supplied the procedures are restricted to creating a new fold at the end of an existing bundle and writing
sequentially into this new fold. The sequential stream may include nested folds and filed folds created by
calls of procedures which create the creases around the nested folds.

A procedure similar to create . new. £old may be written for opening an existing empty filed fold for writing
in folded stream mode. '

Similar procedures could be written for writing folds in data stream mode. As this mode is better supported
by using screen protocol and the interface procedure scrstream.to.file, these variants are left as
exercises for the reader.

A user filer channel pair may be used to access one or more file streams in sequence. Procedures applicable
in file stream output modes must be called in sequence according to the kinds of items being output. These
calls must be bracketted between calls of create.new. fold and £inish. folded.stream which
change the channel pair from user filer control mode to folded file stream output mode and vice versa,
respectively.

create.new. fold

PROC create.new.fold (CHAN OF ANY from.ws, to.ws, INT fold.number,
VAL []BYTE comment, VAL []INT attributes,
VAL []BYTE fileid, INT errornum)

This procedure may only be called when the user filer channel pair from.ws and to.ws are in
user filer control mode. Creates a new fold at the end of the bundle at position £old.number.
(Counting from the first embedded fold as 1). Writes the comment and attributes provided. Makes
the fold filed and opens a stream for writing. If successful the channel pair are then in file stream
output mode. Any error is signalled in errornum.

write.record.item

PROC write.record.item (CHAN OF ANY from.ws, to.ws,
VAL []BYTE record, INT errornum)

A record item is a line of text to be written to the output stream.

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
file stream output mode. Reads a command from the receiver and writes the record, if possible. If
the record includes a trailing **c’, this is removed.

write.number.item

PROC write.number.item (CHAN OF ANY from.ws, to.ws,
VAL INT number, INT errornum)

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
folded file stream output mode. Reads command and writes the (non-negative) number, if possible.
See appendix G for the representation of numbers in folded files.

write.top.crease
PROC write.top.crease (CHAN OF ANY from.ws, to.ws,
VAL []BYTE comment, VAL []INT attributes,
VAL BYTE file.or.fold, VAL []BYTE fileid,
INT errornum)

For internal use by the following two procedures.

14.13 General purpose i/o procedure library userio 243

write.

write.

write.

fold.top.crease

PROC write.fold.top.crease (CHAN OF ANY from.ws, to.ws,
VAL []BYTE comment,
VAL []INT attributes, INT errornum)

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
folded file stream output mode (folded stream or data stream). Reads a command from the receiver
and writes an unfiled top crease if possible. The comment string may contain a trailing * *c” which
will be removed.

filed.top.crease

PROC write.filed.top.crease (CHAN OF ANY from.ws, to.ws,
VAL []BYTE comment,
VAL []INT attributes,
VAL []BYTE fileid, INT errornum)

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
folded file stream output mode. Reads a command from the receiver and writes a filed top crease if
possible. The comment and £ileid strings may contain a trailing * *c’ which will be removed.

bottom.crease
PROC write.bottom.crease (CHAN OF ANY from.ws, to.ws, INT errornum)

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
folded file stream output mode. Reads a command from the receiver and writes a bottom crease if
possible.

Note that it is not necessary to distinguish between a filed and an unfiled fold as the receiver keeps
track of this.

finish.new.fold

14.13.7

PROC finish.new.fold (CHAN OF ANY from.ws, to.ws,
VAL INT fold.number, VAL BOOL must.unfile,
INT errornum)

This procedure may only be called when the user filer channel pair £rom.ws and to.ws are in
file stream output mode (folded or data stream). This procedure closes the newly written stream,
unfiling it if must .unfile is TRUE. The channel pair will then be in user filer control mode.

Must be entered with exrornum containing the result from the most recent write command, so
correct action can be taken if the file stream has been prematurely closed.

Read folded stream

This group of procedures gives read access to a folded stream. They can only be used in conjunction with
a source which obeys the folded stream protocol used by the user filer. They are thus principally applicable
in programs which will run as executable procedures (EXEs) in the TDS, or which communicate with such a
system at run time across INMOS links.

The procedures have been designed to give the programmer a view of a folded data stream corresponding
to the displayed form of a fold structure presented by the editor.

A folded

data stream may be opened, its contents may be read sequentially (with the option to skip folds

of certain kinds), and it may be closed. It may be a complete fold pointed at by the editor cursor when the

program

is run, or it may be a fold immediately contained within such a fold.

244 14 Libraries

In the simplest style of use, one procedure call corresponds to each line to be read into the program. These
lines are text lines or crease lines and there is a procedure for each type of line. Each procedure reads the
current line, and also determines the nature of the subsequent line so that the appropriate call may be made
to obtain it. The nature of the next line is returned by a BYTE parameter next . item which takes one of a
set of values conventionally associated with the names:

£8d.record normal text line
£8d.fold top crease of an unfiled fold
fsd.filed top crease of a filed fold

fsd.endfold bottom crease of an unfiled fold
fsd.endfiled Dbottom crease of a filed fold
fsd.endstream end of folded stream — must now be closed

Two additional values are also in general possible, £sd.number and £sd.error.
All these values are supplied as a set of constant declarations in the library £ilerhdr or uservals.

A user filer channel pair may be used to access one or more file streams in sequence. Procedures applicable
in file stream input mode must be called in sequence according to the value of next . item. These calls must
be bracketted between calls of open . folded. st ream and close. folded. stream which change the
channel pair from user filer control mode to file stream input mode and vice versa, respectively.

The first group of procedures supports reading the heading and attributes of a fold, opening a stream, and
exhaustive sequential access to the stream. Such exhaustive access involves entering any embedded folds
or filed folds and reading all of their contents also.

If a decision not to proceed, or not to enter a fold, is to be taken after reading part of the stream, then the
second group of input . procedures should be used rather than the read. procedures.

read. fold.heading

PROC read.fold.heading (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, INT len.comment,
[IBYTE comment, []INT attributes,
INT errornum)

This procedure may only be called when the user filer channel pair from.rs and to.rs are in user
filer control mode. Reads comment and attributes of the fold fo1d .number in the bundle pointed
to by the cursor. The number 0 refers to the whole bundle, 1 to the first fold embedded within it,
and so on. The attributes are an array of 3 integers defining the fold.type, fold.contents and
relative fold.indent of this fold. Values of these attributes and their meanings are defined in appendix
F. The effects of other attribute values are undefined. Any error is signalled in errornum. This
will be zero (£1 . ok) for success or a value from the list in appendix D.

read.file.name

PROC read.file.name (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, INT len.file.id,
[IBYTE file.id, INT errornum)

This procedure may only be called when the user filer channel pair £rom.rs and to.zxs are in
user filer control mode. According to which version of the TDS is in use, files may have names (as
in a conventional operating system directory structure) or not. This procedure reads the file name
of the indicated fold into [file.id FROM 0 FOR len.file.id]. If the development system
does not have a named file store 1en.£ile.id will be zero. Any error is signalled in exrornum.

14.13 General purpose i/o procedure library userio 245

open.folded.stream

PROC open.folded.stream (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, BYTE first.item,
BOOL not.filed, INT errornum)

This procedure may only be called when the user filer channel pair £rom.rs and to.zxs are in
user filer control mode. The procedure opens a fold for folded reading, and if successful the channel
pair are then in folded file stream input mode.

File stream modes require the fold being accessed to be filed and so if the fold identified by
fold.number is found not to be filed the parameter not .£filed is set TRUE and it is filed
by the procedure. (Note that this attempt will fail if the fold is of a kind which cannot be filed).
Errornum is returned as 0 (£i. ok) if it is already filed, —1206 (£i .not . £iled) if it was unfiled
(and has not been successfully filed by this procedure); other negative values indicate other error
conditions.

first.item is one of £8d.record, £sd.number, £3d. fold or £s8d. filed according to
the identity of the first item in the fold.

This value is used to choose the appropriate read procedure to call the first item in the folded
stream. In a similar way each subsequent read operation also defines the type of the following item.
Any failure to read an item will result in the value £sd.error being returned instead of a valid
item tag. At the end of the stream the next item will have the tag £sd.endstream. No further
read operations are allowed after £sd.endstrean is returned. After £sd.exrror the procedure
read.error.item should be called to obtain the error number.

A similar procedure may be written to open a fold for data stream reading. In this case there is
only one kind of item — £s8d.recoxrd. This mode of reading is used in the interface procedure
keystream.from.file and a procedure open.data.stream is declared and called within
that procedure.

read.record.item

PROC read.record.item (CHAN OF ANY from.rs, to.rs, INT len,
[IBYTE record, BYTE next.item)

This procedure may only be called when the user filer channel pair £xom.xs and to.xs are in
a file stream input mode (folded stream or data stream). Must be entered with next .item =
£sd.record. Reads the record into [record FROM 0 FOR len] and indicates the type of
the next item. .

The record will contain the text of a line from the folded file. In folded stream mode the text will
contain leading spaces only if the line is indented relative to the immediately enclosing fold. In data
stream mode indentation spaces are provided relative to the indentation of the root fold.

If a previous call of a stream input procedure has indicated that the next item is a top crease, the fold
may be skipped by explicitly changing the variable corresponding to next .item to £sd. record
before calling this procedure. The record returned will then be the fold comment and next . item
will correspond to the item after the fold.

read.number.item

PROC read.number.item (CHAN OF ANY from.rs, to.rs,
INT number, BYTE next.item)

This procedure may only be called when the user filer channel pair £xrom.zs and to.zs are in
-folded file stream input mode. Must be entered with next . item = £8d.numbexr. This procedure
is provided for completeness only as number items are rare in ordinary fold structures in the TDS.

Reads the number and indicates type of the next item.

246 14 Libraries

read.error.item

PROC read.error.item (CHAN OF ANY from.rs, to.rs,
INT status, BYTE next.item)

This procedure may only be called when the user filer channel pair £rom.xs and to. zs are in file
stream input mode. Must be entered with next .item = £8d.exrror. This procedure is provided
for completeness only as error items will not occur unless stream input procedures have been called
in the wrong context.

Reads the error status and indicates type of the next item.
read.fold.top.crease

PROC read.fold.top.crease (CHAN OF ANY from.rs, to.rs,
INT len.comment, []BYTE comment,
[JINT attributes, BYTE next.item)

This procedure may only be called when the user filer channel pair £fxrom.zs and to.xs are in
folded file stream input mode. Must be entered with next .item = £sd. fold. Reads comment
and attributes from fold line and returns the type of the first item within the fold.

read.filed.top.crease

PROC read.filed.top.crease (CHAN OF ANY from.rs, to.rs,
INT len.comment, []BYTE comment,
[1INT attributes, INT len.fileid,
[IBYTE fileid, BYTE next.item)

This procedure may only be called when the user filer channel pair £rom.rs and to.xs are in
folded file stream input mode. Must be entered with next .item = £sd. filed. Reads comment
and attributes from fold line and returns the type of the first item within the fold. On a named
file store also reads the file name into [fileid FROM 0 FOR len.fileid], otherwise sets
len.fileid to zero.

read.bottom.crease

PROC read.bottom.crease (CHAN OF ANY from.rs, to.rs,
[JINT attributes, BYTE next.item)

This procedure may only be called when the user filer channel pair £rom.xs and to.zs are in
folded file stream input mode. Must be entered with next.item = fsd.endfold or
£8d.endfiled. Reads attributes of the enclosing fold (the one whose end has been encountered)
and returns the type of the next item within the fold outside that one.

The following procedures may be used instead of or in addition to the above procedures in programs where
more control is required over the sequence of read operations on the file stream.

The procedures whose name begins input . start to do the same as the corresponding procedure with a
name beginning read., but do not ask what kind of item the next item will be.

The user then has the option to exit the current fold, repeat the current fold as well as to skip the current
item, and (when the current item is a fold) to enter the item. This option is exercised by calling one of
the procedures exit.fold, repeat.fold, skip.item or enter. fold. These all have a BYTE
next .item parameter and one of these must be called in sequence before the next call of an .input
procedure. The input stream may be closed by calling close. folded. st ream after any of the input.
procedures.

14.13 General purpose i/o procedure library userio 247

input.

input.

input.

input.

record.item

PROC input.record.item (CHAN OF ANY from.rs, INT len,
[IBYTE record, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair are in file stream input mode.
It inputs a record item but does not advance to the next item, which should be done by a later
call of skip.item. Must be entered with next .item = £sd.record. Reads the record into
[record FROM 0 FOR len].

This procedure does not prepare for the next input (it does not set next item). It may therefore be
used instead of read.record. iten if it is necessary to inspect the record to determine whether
any further lines in the current fold need to be read.

Note that this procedure has only one channel parameter £xrom. rs.
number.item

PROC input.number.item (CHAN OF ANY from.rs,
INT number, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair are in folded file stream input
mode. It inputs the number but does not advance to the next item, which should be done be as a
later call of skip.item. Must be entered with next.item = £s8d.numbexr. This procedure is
provided for completeness only as number items are rare in ordinary fold structures in the TDS.

Note that this procedure has only one channel parameter £rom. rs.
error.item

PROC input.error.item (CHAN OF ANY from.rs,
INT status, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair £rom.xs and to. s are in file
stream input mode. Must be entered with next .item = £sd.errox. This procedure is provided
for completeness only as error items will not occur unless stream input procedures have been called
in the wrong context. Reads the error status.

Note that this procedure has only one channel parameter £xom. rs.
top.crease

PROC input.top.crease (CHAN OF ANY from.rs, to.rs,
INT len.comment, []BYTE comment,
[JINT attributes, INT len.fileid,
[IBYTE fileid, VAL BYTE next.item)

This procedure may only be called when the user filer channel pair £xrom.zrs and to.rs are in
folded file stream input mode. Must be entered with next .item = £s8d. fold or £sd. filed.
Reads comment and attributes from fold line. An array of 3 integers is required for the attributes.
On a named file store also reads the fileid.

This procedure does not prepare for the next input (it does not set next item). It may therefore
be used instead of read.fold.top.crease or read.filed.top.crease if it is necessary
to inspect the comment and/or attributes to determine whether the fold should be entered or skipped.

skip.item

PROC skip.item (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input. procedures. It will
return the value of next . item corresponding to the following item. It may be used to skip any
item including a fold.

248

14 Libraries

enter.

fold
PROC enter.fold (CHAN OF ANY from.rs, to.rs, BYTE next.item)
This procedure may only be called immediately after a call of input .top.crease. On entry the

value of next . item should be £8d. fold or £8d. £filed. It will return the value of next . item
corresponding to the first item within the fold.

exit.fold

PROC exit.fold (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input . procedures. It will
return the value of next . item corresponding to the item immediately after the bottom crease of
the current fold, thereby causing the remainder of the contents of the fold not to be read.

repeat. fold

close.

PROC repeat.fold (CHAN OF ANY from.rs, to.rs, BYTE next.item)

This procedure may be called at any time immediately after one of the input. procedures. It will
return the value of next . item corresponding to the item immediately after the top crease of the
current fold, thereby causing the contents of the fold to be read again.

folded.stream

PROC close.folded.stream (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number,
VAL BOOL must.unfile, INT errornum)

This procedure may only be called when the user filer channel pair £rom.rs and to. xs are in file
stream input mode. This procedure should be called when next .item = £sd.endstrean. If it
is desired to close a folded input stream at any other time, the current item must first be consumed
by calling the appropriate input . procedure, or if the current item is £sd. exroz, by reading an
integer error result from the channel £xom. rs.

The procedure closes the folded stream, returning the channel pair to user filer control mode. If
must .unfile is TRUE the fold is unfiled. Any error is returned in exrornum.

14.14 Interface procedure library interf 249

14.14 Interface procedure library interf

Procedure Parameter Specifiers
scrstream.to.array CHAN OF ANY scrn, []BYTE buffer
scrstream. from.array VAL[] BYTE buffer, CHAN OF ANY scrn
scrstream.to.file CHAN OF ANY scrn, CHAN OF ANY from.uf,
to.uf, VAL[]BYTE fold.title, INT fold.number,
INT result

scrstream.multiplexor | [JCHAN OF ANY screen.in, CHAN OF ANY screen.out,
CHAN OF INT stopper

scrstream. fan.out CHAN OF ANY scrn, screen.outl, screen.out2
scrstream.sink CHAN OF ANY echo
scrstream.copy CHAN OF ANY scrn, scrn.out

scrstream.to.server CHAN OF ANY scrn, CHAN OF ANY from.server,
to.server, INT name.len,
[abs.id.size]BYTE file.name, INT result

keystream.from.file CHAN OF ANY from.uf, to.uf, CHAN OF INT kbd,
VAL INT fold.number, INT result

keystream.sink CHAN OF INT keys
keystream.to.screen CHAN OF INT keyboard, CHAN OF ANY screen

keystream. from.server | CHAN OF ANY from.server, to.server,
CHAN OF INT kbd, INT name.length,
[abs.id.size]BYTE file.name, INT result

scrstream.to.ANSI CHAN OF ANY scrn, CHAN OF BYTE ansi
scrstream.to.TVI920 CHAN OF ANY scrn, CHAN OF BYTE tvi

To use this library a program header must include the line:

#USE interf

The table below lists the procedures contained in each SC and which other libraries are used:

SC | procedures USEs

1 scrstream.to.array userhdr

2 scrstream. from.array | userhdr

3 scrstream.to.file userhdr, filerhdr, ufiler

4 scrstream.multiplexor | userhdr, filerhdr

5 scrstream. fan.out userhdr, filerhdr

6 scrstream.sink userhdr, filerhdr

7 scrstream. copy userhdr, filerhdr

8 scrstream.to.server userhdr, filerhdr, krnlhdr, msdos
9 keystream. from.file userhdr, filerhdr, ufiler

10 | keystream.sink uservals

11 | keystream.to.screen userhdr

12 | keystream. from.server | userhdr, filerhdr, krnlhdr, msdos
13 | scrstream.to.ANSI userhdr, derivio

14 | scrstream.to.TVIS920 userhdr

250 14 Libraries

The interface procedures are designed to be called in parallel with an application process using the simple
input output procedures in userio. They enable such processes to be interfaced to the TDS folded file
system and host filing systems.

The development system provides a set of system channels as parameters to an executable program (EXE)
which support a versatile virtual terminal interface and access to a generalised filing system accessible through
the idea of filed folds.

One end of each of these channels is available to the user, and the other end is in the run-time system.
Although declared as CHAN OF ANY these channels have well-defined protocols, and communications must
conform with these protocols. By using the procedures of this library and the library userio programmers
may insulate themselves from the details of these procedures.

The main body of a user’s application may either be written to interface directly to the system channels or
may be written to run in parallel with interface procedures which use these channels.

The simple user procedures may be used to access files if suitable interface procedures from this library are
used.

Two distinct classes of file may be accessed. Folded files which are part of the fold structure of the develop-
ment system, and host files which are not. Access to host files is only possible in implementations built on a
host operating system such as DOS. Note that although in a hosted implementation all files are accessible
as host files, those which are folded files have a particular internal structure defined in appendix G of this
manual, and should be accessed through the TDS user filer interface, or through other software which can
decode the special TDS folded file representation.

Access to host files may be obtained by means of communications on the system channel pair from. filer
and to.filer.

A pair of interface procedures are described which allow an existing host text file to be read sequentially
as if from a keyboard, and a new host text file to be created and written to as if it were a screen. The
implementations of these procedures may be host-dependent because of the different ways of handling the
ends of text lines in different operating systems. The interface procedures hide these possible difficulties and
treat all text files as sequences of ASCII character strings separated by ’ *c’ characters.

Elsewhere further details of the communications across channels to the filing system are described. There are
several different ways in which such communication can be organised according as to whether the program
is running inside the TDS, loaded directly by the TDS server or loaded by another server, either written by
the user or, for example, the host file server supplied with the TDS.

The host file server allows non-sequential access, read/write access, block access, etc., and is particularty
suitable for supporting the file structures of the scientific programming languages (C, FORTRAN, Pascal).

The interfaces to these servers are defined in chapter 16, ‘System interfaces’.

One or more filed folds which are themselves members of a single fold bundle may be accessed by an
executable program (EXE) called with the cursor on the fold line of the bundle. Each of these folds is
potentially the root of a nested tree structure.

Files to be read may be created as folds by the editor, or by another program using this library. New files
may be created within the bundle and written into. Such files will be readable by the editor.

The principal limitation is that no more than four root folds may be simultaneously in use, either for input or
for output. All access to these filed folds is sequential, and the procedures below are designed to facilitate
the reading of existing files as if they were a source of characters like a keyboard, and the writing of new files
as if they were a simple screen or printer. Folds used for input may include nested folds, but such structure
will not be visible.

Access to a file is obtained by a pair of channels which must be corresponding elements of the channel arrays
from.user.filer and to.user.filer passed to the EXE as parameters. Interface procedures take

14.14 Interface procedure library interf 251

parameters which represent these channels, terminal channels, fold numbers and fold comment text. The
members of the bundle of folds are identified by a fold number which starts at 1 for the top fold of the bundle.
The whole bundle, or just a simple fold, may be accessed as fold number 0.

There are also some generally applicable multiplexing and channel consuming procedures which are useful
for organising the plumbing of the channels in a program. It is particularly important when building these
procedures into a program to ensure that the proper termination of each interface procedure is assured. If
this is not done it will not be possible to return cleanly to the development system after calling the program.

scrstream.to.array

PROC scrstream.to.array (CHAN OF ANY scrn, []BYTE buffer)

A screen stream whose total size does not exceed the capacity of buffexr may be buffered by this
procedure, for subsequent onward transmission using scrstream. from. array.

scrstream. from.array

PROC scrstream.from.array (VAL[] BYTE buffer, CHAN OF ANY scrn)

Regenerates a screen stream buffered in buffexr by a previous call of scrstream. to. array.
scrstream.to.file

PROC scrstream.to.file (CHAN OF ANY scrn, CHAN OF ANY from.uf,
to.uf, VAL[]BYTE fold.title,
INT fold.number, INT result)

This procedure may be used to file a text stream, generated in screen stream protocol, in a new filed
fold. If used in conjunction with scrstream. fan. out it may be used to file a copy of everything
a program sends to the screen.

A new filed fold is created at the end of the current bundle, and its position is returned as
fold.numbex. The filed fold has attributes £t . opstext and £c.comment . text. The string
fold.title is written as its fold comment, £fold.title is truncated at the first space or 7 .’
to generate a file name. If it is empty a name will be created by the TDS.

Text to be filed is received on channel sczn in screen stream protocol as generated by simple user
output procedures. The procedure terminates on receipt of the code generated by
write.endstream. If any filing system error condition occurs the input screen stream is con-
sumed as usual but an error is.signalled in zresult when the procedure terminates.

scrstream.multiplexor

PROC scrstream.multiplexor ([]CHAN OF ANY screen.in,
CHAN OF ANY screen.out,
CHAN OF INT stopper)

Multiplexes a collection of channels using screen protocol into a single such channel. The input
channels must be an array screen.in, and the output channel is screen.out. Each change
of input channel directs output to a new line on the screen, tagged by the channel index. Any
integer input on stopper terminates the multiplexor. The endstream command generated by
write.endstrean is ignored.

scrstream. fan.out
PROC scrstream.fan.out (CHAN OF ANY scrn, screen.outl, screen.out2)

Sends copies of everything received on its input channel sczn to both of the output channels. Uses
screen protocol. Terminated by calling write.endstream on the input channel.

252 14 Libraries

scrstream. sink
PROC scrstream.sink (CHAN OF ANY echo)

Reads characters preceded by tt.out .byte and ignores them; also ignores all other tt. com-
mands except tt . endst ream (generated by write . endstream) which terminates the process.

scrstream. copy
PROC scrstream.copy (CHAN OF ANY scrn, scrn.out)

Sends a screen stream received on scrn out again on scrn.out. Terminates on receipt of
tt.endstream which is not sent on. This procedure is sometimes needed as a buffer (e.g.
between a link and a multiplexor whose inputs are specified as an array).

scrstream.to.server

PROC scrstream.to.server (CHAN OF ANY scrn,
CHAN OF ANY from.server, to.server,
INT name.len, .
[abs.id.size] BYTE file.name, INT result)

This procedure may be used to file a text stream, generated in screen stream protocol, in a host text
file. If used in conjunction with scrstream. fan.out it may be used to file a copy of everything
a program sends to the screen.

A new host text file is created using the name [file.name FROM 0 FOR name.len]. Note
that £ile.name is a fixed size array whose size is defined as a constant in FILERHDR. This name
may be modified by the server (and the changed name returned in the same array) if, for example,
a file of that name already exists.

Text to be filed is received on channel scrn in screen stream protocol as generated by sim-
ple user output procedures. The procedure terminates on receipt of the character generated by
write.endstream, or on an error condition. Any error code is returned in result.
If an error occurs before the end of the stream inputs on sczn continue to be read but are ignored.
keystream. from.file

PROC keystream.from.file (CHAN OF ANY from.uf, to.uf,

CHAN OF INT kbd, VAL INT fold.number,

INT result)

This procedure may be used to generate a stream of characters from a fold. If the fold is not filed
then it will be filed for the duration of this procedure and then unfiled again.

The file in member £o1d.number of the current fold bundle (0 = whole bundle, 1 = first fold inside
it ...) is opened. Its contents are output on channel kbd as if from a keyboard, with *c as line
terminator between lines.

The file is closed on any error condition or when its last character has been read, followed by
outputting £t . terminated. The procedure then terminates with an error number in result.

keystream.sink
PROC keystream.sink (CHAN OF INT keys)

Reads integers until the value £t.terminated, then terminates.

14.14 Interface procedure library interf 253

keystream.to.screen.
PROC keystream.to.screen (CHAN OF INT keyboard, CHAN OF ANY screen)

This procedure converts from key stream protocol to screen stream protocol. On its input channel
keyboard it receives a sequence of integers which may be ASCII values, or coded function keys.
ASCII values are passed through unchanged, except for ’ *c’ which is followed by ’ *n’. Those
function keys which have a corresponding screen function (simple cursor moves, etc) are converted
into this screen function, others ring the bell.

The procedure may also be used in programs which were originally written for earlier implementations
of occam which required text for the screen to be output as a sequence of integer values. All
negative values received, other than £t .terminated, are ignored.

The procedure terminates on receipt of £t .terminated.
keystream. from. server

PROC keystream.from.server (CHAN OF ANY from.server, to.server,
CHAN OF INT kbd, INT name.length,
[abs.id.size]BYTE file.name, INT result)

This procedure may be used to read a stream of characters from a host text file. The characters
are output one at a time as integers on the channel kbd. The name of the file to be read should be
in [file.name FROM 0 FOR name.length]. Note that £ile.name is a fixed size array.
Each text line will be terminated by a / *c’ character. The end of file will be signified by the negative
value £t.terminated which will always follow a complete line. Any error in accessing the file
will result in immediate generation of £t .terminated. The procedure terminates after outputting
this value, returning any error code in result.

This interface procedure for reading host text files, and the corresponding procedure for writing host
text files scrstream.to.sexver, are coded using a collection of lower level procedures in the
library msdos. Users with specific requirements for accessing host files which cannot be met by
using the interface procedures should write their own procedures using ones from msdos where
appropriate.

scrstream.to.ANSI
PROC scrstream.to.ANSI (CHAN OF ANY scrn, CHAN OF BYTE ansi)

Converts screen stream protocol into a stream of BYTEs according to the requirements of ANSI
terminal screen protocol. Not all of the screen stream commands are supported, as some are not
straightforward to implement. Refer to the source of the procedure to determine which commands
are supported.

tt.endstream acts as terminator.

scrstream.to.TVI920

PROC scrstream.to.TVI920 (CHAN OF ANY scrn, CHAN OF BYTE tvi)

Converts screen stream protocol into a stream of BYTEs according to the requirements of TVI920
(and compatible) terminals. Not all of the screen stream commands are supported, as some are
not straightforward to implement. Refer to the source of the procedure to determine which
commands are supported.

tt.endstream acts as terminator.

254 14 Libraries

14.15 Block transfer procedure library slice

Procedure Parameter Specifier

assign.bslice [IBYTE dest, VAL INT d.start, VAL []BYTE src,
VAL INT s.start, count

input.len.bslice CHAN OF ANY in, INT len, []BYTE buf

output.len.bslice | CHAN OF ANY out, VAL INT len, VAL []BYTE buf

To use this library a program header must include the line:

#USE slice
These procedures are provided because of historical difficulties both in hardware and software, which have
required special treatment of zero length, very short and misaligned block transfers. Their effect may now be
reliably obtained using in-line code.
All the procedures are contained in one SC.
assign.bslice

PROC assign.bslice ([]BYTE dest, VAL INT d.start,
VAL []BYTE srxc, VAL INT s.start, count)

Copies a block from [src FROM s.start FOR count] to [dest FROM d.start FOR
count], with protection against invalid values of count.

input.len.bslice
PROC input.len.bslice (CHAN OF ANY in, INT len, []BYTE buf)

Inputs a block [buf FROM 0 FOR len] from the channel in, with protection against invalid
values of len.

output.len.bslice

PROC output.len.bslice (CHAN OF ANY out,
VAL INT len, VAL[]BYTE buf)

Outputs a block from [buf FROM 0 FOR len] to the channel out, with protection against
invalid values of 1en.

14.16 Low level user filer interface support library ufiler

255

14.16 Low level user filer interface support library ufiler

Procedure

Parameter Specifiers

get.stream.result
clean.string
truncate.file.id
number.of.folds

write.fold.string

create. fold

send.command

make.filed

open.stream

read.fold.string

read.fold.attr

open.data.stream

close.uf.stream

read.data.recoxrd

CHAN OF ANY fs, INT result

INT len, []BYTE stzx

INT len, VAL[]BYTE id

CHAN OF ANY from.uf, to.uf, INT n, result

CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT len, VAL []BYTE data, INT result

CHAN OF ANY from.uf, to.uf, INT new.fold.number,
VAL []INT attributes, INT result

CHAN OF ANY from.uf, to.uf, VAL BYTE op,
VAL INT seq.no, INT result

CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT id.len, VAL []BYTE file.id, INT result

CHAN OF ANY fs, ts, VAL BYTE op, VAL INT fold.no,
INT result

CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
INT len, []BYTE data, INT result

CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
[]INT attributes, INT result

CHAN OF ANY from.rs, to.rs VAL INT fold.number,
BYTE first.item, BOOL not.filed, INT errornum

CHAN OF ANY from.rs, to.rs, VAL INT fold.number,
VAL BOOL must.unfile, INT errornum

CHAN OF ANY from.rs, to.rs INT len, []BYTE record,
BYTE next.item

To use this library a program header must include the line:

#USE ufiler

All the procedures are contained in one SC, which makes use of the library £ilerhdzr.

For safe use of these procedures the procedure number .of . folds must be called first and must return

a positive number.

get.stream.result

PROC get.stream.result (CHAN OF ANY fs, INT result)

Internal procedure called by fold stream procedures.

256 14 Libraries

clean.string

PROC clean.string (INT len, []BYTE str)

Internal procedure called by fold stream procedures. Replaces any ASCII control characters in stx
by ‘' and removes trailing ones.

truncate.file.id

PROC truncate.file.id (INT len, VAL[]BYTE id)

Internal procedure called by fold stream procedures. Truncates id at the first space or . character.

number.of. folds
PROC number.of.folds (CHAN OF ANY from.uf, to.uf, INT n, result)

If result is non-zero on entry does nothing. Otherwise examines the item at the current cursor
position and returns n = —1, if not on a fold item, or returns n as the number of folds at the top level
within the current fold item. The value of result is not changed.

write.fold.string

PROC write.fold.string (CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT len, VAL []BYTE data, INT result)

If zesult is non-zero on entry does nothing. Otherwise writes [stx FROM 0 FOR len] as
the fold comment of the fold identified by seq.no. Any error is returned as result.

create. fold

PROC create.fold (CHAN OF ANY from.uf, to.uf,
INT new.fold.number, VAL []INT attributes,
INT result)

If result is non-zero on entry does nothing. Otherwise creates a new fold, with the specified
attributes, in the current bundle after all existing folds. The position of this new fold is returned
as new. fold.number. Any error is returned as result.

send.command

PROC send.command (CHAN OF ANY from.uf, to.uf,
VAL BYTE op, VAL INT seq.no, INT result)

If result is non-zero on entry does nothing. Otherwise sends a user filer command op to perform
an operation on the member seq.no of the fold bundle which is the current item. Any error is
returned as result.

make.filed

PROC make.filed (CHAN OF ANY from.uf, to.uf, VAL INT seq.no,
VAL INT id.len, VAL []BYTE file.id, INT result)

If result is non-zero on entry does nothing. Otherwise assumes the current item is an unfiled fold
and makes it filed with the name [£file.id FROM 0 FOR id.len]. Any error is returned as
result.

14.16 Low level user filer interface support library ufiler 257

open.stream

PROC open.stream(CHAN OF ANY fs, ts,
VAL BYTE op, VAL INT fold.no, INT result)

If result is non-zero on entry does nothing. Otherwise opens the indicated fold as a user filer
input or output stream. The value of op should be a uf.open command as defined in the library
filerhdz. Any error is returned as result.

read.fold.string

PROC read.fold.string (CHAN OF ANY from.uf, to.uf,
VAL INT seq.no, INT len, []BYTE data,
INT result)

If result is non-zero on entry does nothing. Otherwise assumes the current item is a fold and
returns the fold comment string of the fold seq.no in the bundle as [data FROM 0 FOR len].
Any error is returned as result.

read. fold.attr

PROC read.fold.attr (CHAN OF ANY from.uf, to.uf,
VAL INT seqg.no, []INT attributes, INT result)

If zesult is non-zero on entry does nothing. Otherwise assumes the current item is a fold and
returns the attributes of the fold seq. no in the bundle. Any error is returned as result.

open.data.stream

PROC open.data.stream (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, BYTE first.item,
BOOL not.filed, INT errornum)

Opens the indicated fold as a user filer data input stream. The boolean not . £iled is set accord-
ing as the fold was an ordinary or a filed fold. This procedure files the fold if it was not already
filed. £irst.item is returned as £sd.recozxd if there is at least one text line in the fold,
£sd.endstream otherwise. Any error is returned as exrornum.

close.uf.stream
PROC close.uf.stream (CHAN OF ANY from.rs, to.rs,
VAL INT fold.number, VAL BOOL must.unfile,
INT errornum)

Closes a user filer data or folded input stream, unfiling it if must .un£ile is TRUE. Any error is
returned as exrornum.

read.data.record

PROC read.data.record (CHAN OF ANY from.rs, to.rs,
INT len, []IBYTE record, BYTE next.item)

Must be entered with next .item = £8d.record. Reads the record and indicates the type of
the next item.

258 14 Libraries

14.17 TDS server channel support library msdos

Procedure Parameter Specifier

test.exists CHAN OF ANY from.filer, to.filer, VAL INT name.len,
VAL [abs.id.size]BYTE name, BOOL exists

make.id CHAN OF ANY from.file, to.file, VAL []BYTE name,

INT id.len, [abs.id.size]BYTE abs.id, INT type,
content, result

file.lock CHAN OF ANY in, out,

VAL INT lock.command, VAL INT parent.id.len,

VAL [abs.id.size]BYTE parent.id, INT file.id.len,
[abs.id.size]BYTE file.id, INT result

file.release CHAN OF ANY in, out, VAL INT id.len,
VAL [abs.id.size]BYTE file.id, INT result

open.tkf.file CHAN OF ANY from.filer, to.filer,
VAL INT open.command, INT name.len,
[abs.id.size]BYTE name, INT result

close.tkf.file CHAN OF ANY from.filer, to.filer, INT result

write.tkf.block | CHAN OF ANY from.filer, to.filer, VAL INT length,
VAL []BYTE block, INT result

read.tkf.block CHAN OF ANY from.filer, to.filer, INT length,
[IBYTE block, INT result

read.tkf.line CHAN OF ANY from.filer, to.filer, INT block.length,
[IBYTE block, INT block.ptr, INT line.length,
[IBYTE line, BOOL last.block, end.of.file, INT result

To use this library a program header must include the line:

#USE msdos

The msdos library is a collection of procedures which use the £xrom. £iler and to. filer channels of
an EXE to provide a TDS program with direct access to a host file. Note that only one file can be opened at
a time using these procedures. The protocols on these channels are described in 16.4.6.

All the procedures are contained in one SC, which makes use of the libraries £ilerhdr and kxrnlhdr. File
names must always be passed to these procedures in an array of abs.id.size bytes. abs.id.size
is defined in krnlhdr.

test.exists
PROC test.exists (CHAN OF ANY from.filer, to.filer,
VAL INT name.len, VAL [abs.id.size]BYTE name,
BOOL exists)

Tests whether a file with name [name FROM 0 FOR name.len] exists in the host file store.
The name can be any valid host file name.

make.id
PROC make.id (CHAN OF ANY from.file, to.file, VAL []BYTE name,
INT id.len, [abs.id.size]BYTE abs.id, INT type,
content, result)

For internal use only.

14.17 TDS server channel support library msdos 259

file.lock

PROC file.lock (CHAN OF ANY in, out, VAL INT lock.command,
VAL INT parent.id.len,
VAL [abs.id.size]BYTE parent.id, INT file.id.len,
[abs.id.size]BYTE file.id, INT result)

For internal use only.
file.release

PROC file.release (CHAN OF ANY in, out, VAL INT id.len,
VAL [abs.id.size]BYTE file.id, INT result)

For internal use only.
open.tkf.file

PROC open.tkf.file (CHAN OF ANY from.filer, to.filer,
VAL INT open.command, INT name.len,
[abs.id.size]BYTE name, INT result)

Opens a file named [name FROM 0 FOR name.len].
open.command may be tkf.open.read, tkf.open.write or any other tkf.open. com-
mand defined in chapter 16.

close.tkf.file
PROC close.tkf.file (CHAN OF ANY from.filer, to.filer, INT result)
Closes the currently open file.

write.tkf.block

PROC write.tkf.block (CHAN OF ANY from.filer, to.filer,
VAL INT length, VAL []BYTE block, INT result)

Writes a block [block FROM 0 FOR length] to the currently open file.
read.tkf.block

PROC read.tkf.block (CHAN OF ANY from.filer, to.filer,
INT length, []BYTE block, INT result)

Reads a block [block FROM 0 FOR length] from the currently open file. block must
be big enough for the maximum size block which is 512 bytes (max.record.size declared
in £ilerhdr).

read.tkf.line

PROC read.tkf.line (CHAN OF ANY from.filer, to.filer,
INT block.length, []BYTE block, INT block.ptr,
INT line.length, []BYTE line,
BOOL last.block, end.of.file, INT result)

Reads a text line (terminated by ’ *c’) sequentially from the current file into [Line FROM 0 FOR
line.length]. Actual reads are buffered in block which is refilled as necessary.

On initial entry block .ptxr must be >=block.length.

last.block and end.of. £ile must be initialised to FALSE.

last.block is set TRUE when the last block in the file has been read.

end.of. file is set TRUE when the last byte of the file has been copied from block to 1ine.
These variables hold the state of the buffer between calls and must not be changed once initialised.
The user must ensure that the array 1ine is large enough to accomodate the longest text line in
the file (including the *c). Any error conditions are returned in result.

260

14 Libraries

14.18 Byte stream i/o library derivio

Procedure Parameter Specifier

GETSTRING CHAN OF INT in, BOOL error, INT len, []BYTE string
BOOLREAD CHAN OF INT in, BOOL error, BOOL value
BOOLWRITE CHAN OF BYTE out, VAL BOOL b

INTREAD CHAN OF INT in, BOOL error, INT value
INTWRITE CHAN OF BYTE out, VAL INT v

INT16READ CHAN OF INT in, BOOL error, INT16 value
INT16WRITE CHAN OF BYTE out, VAL INT16 v

INT32READ CHAN OF INT in, BOOL error, INT32 value
INT32WRITE | CHAN OF BYTE out, VAL INT32 v

INT64READ CHAN OF INT in, BOOL error, INT64 value
INT64WRITE CHAN OF BYTE out, VAL INT64 v

HEXREAD CHAN OF INT in, BOOL error, INT value
HEXWRITE CHAN OF BYTE out, VAL INT v

HEX16READ CHAN OF INT in, BOOL error, INT16 value
HEX16WRITE CHAN OF BYTE out, VAL INT16 v

HEX32READ CHAN OF INT in, BOOL error, INT32 value
HEX32WRITE CHAN OF BYTE out, VAL INT32 v

HEX64READ CHAN OF INT in, BOOL error, INT64 value
HEX64WRITE CHAN OF BYTE out, VAL INT64 v

REAL32READ CHAN OF INT in, BOOL error, REAL32 value
REAL32WRITE | CHAN OF BYTE out, VAL REAL32 r, VAL INT mn,
REAL64READ CHAN OF INT in, BOOL error, REAL64 value
REALG64WRITE | CHAN OF BYTE out, VAL REAL64 r, VAL INT nm,

To use this library a program header must include the line:

#USE derivio

This group of procedures demonstrates the use of the string to number conversions in an environment where
an input channel delivers a stream of integers and an output channel consumes a stream of bytes. It is not
designed for the TDS, in which environment the procedures in the library userio are to be preferred.

14.18 Byte stream i/o library dexivio 261

The table below lists the procedures contained in each SC and which other libraries are used.

SC | procedures USEs

1 GETSTRING ioconv, extrio
BOOLREAD
INTREAD
INT16READ
INT32READ
INT64READ
HEXREAD
HEX16READ
HEX32READ
HEX64READ
REAL32READ
REAL64READ
2 BOOLWRITE ioconv, extrio
INTWRITE
INT16WRITE
INT32WRITE
INT64WRITE
HEXWRITE
HEX16WRITE
HEX32WRITE
HEX64WRITE
REAL32WRITE
REAL64WRITE

GETSTRING
PROC GETSTRING (CHAN OF INT in, BOOL error, INT len, []BYTE string)
Reads a sequence of characters as INTs from the channel in up to the first space or carriage

return character. exrrox is set TRUE only if the end of the array string is encountered before
such a terminator is received.

BOOLREAD
PROC BOOLREAD (CHAN OF INT in, BOOL error, BOOL value)

Reads a string into a 40-byte buffer using GETSTRING. If this string is either "TRUE" or "FALSE"
the appropriate boolean value is returned, with exrror = FALSE. Otherwise exrozx is TRUE.

BOOLWRITE

PROC BOOLWRITE (CHAN OF BYTE out, VAL BOOL b)

Converts b into "TRUE" or "FALSE" sending the characters of one of these values down the
channel out.

262 14 Libraries

INTREAD
PROC INTREAD (CHAN OF INT in, BOOL error, INT value)

Reads a string into a 40-byte buffer using GETSTRING. If this string is a decimal integer in the range
of INT the appropriate value is returned, with erroxr = FALSE. Otherwise exrror is TRUE.

INTWRITE
PROC INTWRITE (CHAN OF BYTE out, VAL INT v)

Converts v into a minimal sequence of decimal digits and sends these as characters down the
channel out.

INT16READ
PROC INT16READ (CHAN OF INT in, BOOL error, INT16 value)
As INTREAD but for INT1 6s.
INT16WRITE
PROC INT16WRITE (CHAN OF BYTE out, VAL INT16 v)
As INTWRITE but for INT16s.
INT32READ
PROC INT32READ (CHAN OF INT in, BOOL error, INT32 value)
As INTREAD but for INT32s.
INT32WRITE
PROC INT32WRITE (CHAN OF BYTE out, VAL INT32 v)
As INTWRITE but for INT32s.
INT64READ
PROC INT64READ (CHAN OF INT in, BOOL error, INT64 value)
As INTREAD but for INT64s.
INT64WRITE
PROC INT64WRITE (CHAN OF BYTE out, VAL INT64 v)
As INTWRITE but for INT64s.
HEXREAD
PROC HEXREAD (CHAN OF INT in, BOOL error, INT value)
Reads a string into a 40-byte buffer using GETSTRING. If this string is a hexadecimal integer in

the range of INT the appropriate value is returned, with exror = FALSE. Otherwise error is
TRUE. Only digits 0-9 and upper case letters A-F are allowed.

14.18 Byte stream i/o library derivio 263

HEXWRITE
PROC HEXWRITE (CHAN OF BYTE out, VAL INT v)

Converts v into a sequence of hexadecimal digits and sends these as characters down the channel
out. Leading non-significant digits are included.

HEX16READ
PROC HEX16READ (CHAN OF INT in, BOOL error, INT16 value)
As HEXREAD but for INT16s.
HEX16WRITE
PROC HEX16WRITE (CHAN OF BYTE out, VAL INT16 v)
As BEXWRITE but for INT16s.
HEX32READ
PROC HEX32READ (CHAN OF INT in, BOOL error, INT32 value)
As HEXREAD but for INT32s.
HEX32WRITE
PROC HEX32WRITE (CHAN OF BYTE out, VAL INT32 v)
As HEXWRITE but for INT32s.
HEX64READ
PROC HEX64READ (CHAN OF INT in, BOOL error, INT64 value)
As HEXREAD but for INT64s.
HEX64WRITE
PROC HEX64WRITE (CHAN OF BYTE out, VAL INT64 v)
As HEXWRITE but for INT64s.
REAL32READ
PROC REAL32READ (CHAN OF INT in, BOOL error, REAL32 value)
Reads a string into a 40-byte buffer using GETSTRING. If this string is a decimal floating point
number with a decimal point and optionally a decimal exponent, conforming to occam language
syntax for real literals (without the type symbol), in the range of REAL32, the appropriate value is
returned, with exror = FALSE. Otherwise error is TRUE.
REAL32WRITE
PROC REAL32WRITE (CHAN OF BYTE out, VAL REAL32 r, VAL INT m, n)
Converts r into a decimal number including a decimal point and optional decimal exponent and
sends these as characters down the channel out. The parameters m and n determine the format

of the output according to the rules for the corresponding parameters of REAL32TOSTRING given
in the language reference manual.

264 14 Libraries

REAL64READ
PROC REALG64READ (CHAN OF INT in, BOOL error, REAL64 value)
As REAL32READ but for REAL64s.
REAL64WRITE
PROC REAL64WRITE (CHAN OF BYTE out, VAL REAL64 r, VAL INT m, n)
As REAL32READ but for REAL64s.

14.19 Afserver low level protocol library afio

Procedure Parameter Specifiers

af.read.integer | CHAN OF ANY from.filer, INT n
af.write.integer | CHAN OF ANY to.filexr, VAL INT n
af.read.record CHAN OF ANY from.filer, INT len, []BYTE =r

af.write.record CHAN OF ANY to.filer, VAL []BYTE r

To use this library a program header must include the line:
#USE afio
All the procedures are contained in one SC, which makes use of the library AFHDR.

These are low-level procedures for communicating with the host file server. They are needed by the library
afilex. User programs communicating with the host fileserver should use the procedures in afiler.

14.20 Afserver command library afiler

265

14.20 Afserver command library afiler

Procedure

Parameter Specifiers

read.key
read.key.wait

open.file

close.stream

read.block

write.block

seek

open.temp.file

open.input.stream

open.output.stream

terminate.filer

set.return.result

rename.file

stream.access

stream.status

stream.file

stream.length

CHAN OF ANY from.filer, to.filer, INT key, result

CHAN OF ANY from.filer, to.filer, INT key, result

CHAN OF ANY from.filer, to.filer,

VAL []BYTE file.name, VAL INT access.method,
open.mode, exit.mode, record.length,

INT stream.id, result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, close.mode, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, len, INT bytes.read,
[1BYTE buffer, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, VAL []BYTE record,
INT len, result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, offset, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT access.method, record.length,
INT stream.id, result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.no, INT stream.id, result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.no, INT stream.id, result

CHAN OF ANY from.filer, to.filer, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT set.result, INT result

CHAN OF ANY from.filer, to.filer,
VAL []BYTE old.name, new.name, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, INT access.method, result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, INT filename.length,
[]BYTE filename, INT result

CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, INT length, result

266 14 Libraries

Procedure Parameter Specifiers

stream.connect CHAN OF ANY from.filer, to.filer,
VAL INT stream.id, INT connection, result

run.command CHAN OF ANY from.filer, to.filer,
VAL [] BYTE command.line, INT result

read.time CHAN OF ANY from.filer, to.filer,
INT time, result

receive.block CHAN OF ANY from.filer, to.filer,
VAL INT location, len, INT bytes.read,
[] BYTE buffer, INT result

send.block CHAN OF ANY from.filer, to.filer,
VAL INT location, VAL [] BYTE record,
INT len, result

call.interrupt CHAN OF ANY from.filer, to.filer,

VAL INT interrupt, VAL [] BYTE register.blockl,
INT flag, len, [] BYTE register.block2,

INT result

read. regs CHAN OF ANY from.filer, to.filer,
INT len, [] BYTE buffer, INT result

runtime.data CHAN OF ANY from.filer, to.filer,
VAL INT option, INT option.value, result

read.environment CHAN OF ANY from.filer, to.filer,
VAL []BYTE logical.name, INT len,
[]IBYTE real.name, INT result

port.read CHAN OF ANY from.filer, to.filer,
VAL INT port.location, INT value, result

port.write CHAN OF ANY from.filer, to.filer,
VAL INT port.location, value, INT result

read.core.dump CHAN OF ANY from.filer, to.filer,
VAL INT offset, length, INT len,
[IBYTE core.dump, INT result

server.version CHAN OF ANY from.filer, to.filer, INT version,
date, state, result

handle.af.transaction | INT af.cmd, CHAN OF ANY to.af,
from.af, input, output

To use this library a program header must include the line:

#USE afiler

With the exception of handle.af.transaction, procedures in this group correspond exactly to the
commands defined in section 16.3.3 of the host file server interface. As such they are not documented in
detail here. In each procedure the parameters fall into three groups. First the channel pair, then parameters
to be sent to the server, then results returned by the server.

14.20 Afserver command library afiler

267

sC

procedures

USEs

read.key
read.key.wait
open.file
read.block
write.block
seek
close.stream

afhdr,

afio

open.temp
open.input.stream
open.output.stream

afhdr,

afio

terminate.filer
set.result
rename.file

afhdr,

afio

stream.access
stream.status
stream.file
stream.length
stream.connect

afhdr,

afio

run.command
read.time
receive.block
send.block
call.interrupt
read.regs
runtime.data
read.environment
port.read
port.write
read.core.dump
server.version

afhdr,

afio

6

handle.af.transaction

afhdr

handle.af.transaction

PROC handle.af.transaction (INT af.cmd, CHAN OF ANY to.af,
from.af, input, output)

This procedure is used by af .buffer and af .multiplexox. The first pair of channels is con-
nected to a user process, and the second pair to a server or muitiplexor process which understands
the host filer interface protocol. ’

Entered after reading the first alien filer protocol tag of an afserver command sequence, it completes
the sequence according to the command read (returned in af£.cmd) and its parameter pattern. In
the multiplexor (library afinterf£) it ensures that improper interleavings of messages cannot occur.

The command Terminate.Cmd is trapped and converted o AlienTerminate.Cmd.

268 14 Libraries

14.21 Afserver protocol interface and multiplexor afinterf

Procedure Parameter Specifiers

keystream. from.afserver | CHAN OF ANY from.maf, to.maf, CHAN OF INT kbd,
VAL []BYTE file.id, INT result

scrstream.to.afserver CHAN OF ANY scrn, CHAN OF ANY from.maf,
to.maf, VAL []BYTE file.id, INT result

af .multiplexor CHAN OF BYTE screen, CHAN OF INT keyboard,
CHAN OF BYTE errorchan, []JCHAN OF ANY to.maf,
from.maf, CHAN OF ANY input, output,

CHAN OF BOOL stopper, VAL INT ticks.per.poll

af .buffer CHAN OF ANY to.af.in, from.af.in,
CHAN OF ANY from.af.out, to.af.out

To use this library a program header must include the line:

#USE afinterf

A group of interface procedures is provided to facilitate the conversion of programs written to interface with
the TDS server, for running with the host file server.

SC | procedures USEs

1 keystream.from.afserver | uservals, afhdr, afiler

2 scrstream.to.afserver uservals, filerhdr, afhdr, afiler

3 af.multiplexor userhdr, filerhdr, afhdr, ioconv, afiler
af.buffer

keystream. from.afserver

PROC keystream.from.afserver (CHAN OF ANY from.maf, to.maf,
CHAN OF INT kbd,
VAL []BYTE file.id, INT result)

This procedure may be used to read a stream of characters from a host text file. The characters
are output one at a time as integers on the channel kbd. The name of the file to be read should be
provided as £ile.id. Each text line will be terminated by a ’ *c’ character.

The end of file will be signified by the negative value £t .texrminated which will always follow a
complete line. Any error in accessing the file will result inimmediate generation of £t . terminated.
The procedure terminates after outputting this value, returning any error code in result.

scrstream.to.afserver

PROC scrstream.to.afserver (CHAN OF ANY scrn, CHAN OF ANY from.maf,
to.maf, VAL []BYTE file.id, INT result)

A new host text file is created using the name file.id.

Text to be filed is received on channel scrn in screen stream protocol as generated by sim-
ple user output procedures. The procedure terminates on receipt of the character generated by
write.endstream, or on an error condition. Any error code is returned in result.

This procedure may be used to file a text stream, generated in screen stream protocol, in a host text
file. If used in conjunction with scrstream. fan.out it may be used to file a copy of everything
a program sends to the screen.

14.22 Transputer board support library tdboard 269

If an error occurs before the end of the stream inputs on scxn continue to be read but are ignored.

af.multiplexor

PROC af.multiplexor (CHAN OF BYTE screen, CHAN OF INT keyboard,
CHAN OF BYTE errorchan, []CHAN OF ANY to.maf,
from.maf, CHAN OF ANY input, output,

CHAN OF BOOL stopper, VAL INT ticks.per.poll)

This procedure multiplexes two channels screen and exrorchan using BYTE protocol,

a keystream channel keyboaxd, and a pair of arrays to.maf and £rom.maf of channels which
can take afserver command protocol, into a single afserver channel pair input and output. The
communication on the later pair assumes a host file server optimised for T414B. The additional filter
procedure required on T414A was provided with previous versions of the TDS.

In order to allow the user to ALT on the keyboard channel, keyboard activity is polled across the
afserver interface at intervals defined by the parameter ticks.pex.poll (e.g 1562 for polling
10 times per second at low priority on a T414). Keyboard input may be suppressed completely by
setting this parameter to the value MOSTPOS INT.

The screen and error channels can be connected to any sources of streams of bytes. Typically
these will be the outputs from calls of one of the interface procedures scxrstream.to.ANSI or
scrstream.to.TVI920. If no screen output is required then dummy channels may be used.

The multiplexor ensures that each communication with the master server is a pair of complete
command blocks according to the protocol. Getting out of step will be trapped sooner or later as a
communication will fail to start with the tag int32.value. This condition forces an error message
to the standard error output of the master server.

The multiplexor sends a Terminate.Cmd and terminates on receipt of any value on the chan-
nel stopper. A Terminate.Cmd received on one of the other channels will be converted to
AlienTerminate.Cmd which has no effect on afserver.

af.buffer

PROC af.buffer (CHAN OF ANY to.af.in, from.af.in,
CHAN OF ANY from.af.out, to.af.out)

This procedure acts as a simple buffer for AF protocol. It may be required to enable mixed multi-
plexing of inputs from local channel pairs and links to other transputers.

14.22 Transputer board support library t4board

Procedure Parameter Specifiers

BO0Ox.term.p.driver CHAN OF ANY from.user.scrn,

CHAN OF INT to.user.kbd, VAL INT board.type,
port, baud.rate

scrstream.to.B004.1link CHAN OF ANY scrn, B004.link.out

keystream. from.B004.link | CHAN OF ANY B004.link.in, CHAN OF INT kbd

terminate. server CHAN OF ANY to.link

To use this library a program header must include the line:

#USE tdboard

270 14 Libraries

SC | procedures USEs

BOOx.term.p.driver ioconv, interf

1

2 scrstream.to.B004.1link

3 keystream.from.B004.1link
4

terminate.server

B0Ox.term.p.driver

PROC BOOx.term.p.driver (CHAN OF ANY from.user.scrn,
CHAN OF INT to.user.kbd,
VAL INT board.type, port, baud.rate)

This interface procedure may be run in paraliel with any application on an IMS B001 or IMS B002
evaluation board. It takes input in screen stream protocol on the channel £rom.user.scrn and
sends it to an RS232 output, and sends the corresponding input in key stream protocol to the channel
to.user.kbd.

As provided this procedure is set up for a terminal which accepts ANSI screen commands. It may
readily be adapted for other terminal types as required. (Code for TVI920 terminals is included but
is not used).

board. type should be 1 for BOO1 or 2 for BO02. The uart port is defined by passing O(terminal) or
1(host) as the parameter port. baud. rate if non-zero causes the UART to be reset at startup,
the value should be one of 38400, 19200, 9600, 7200, 4800, 2400, 2000, 1800, 1200, 1050, 600,
300, 200, 150, 134, 110, 75 or 50. If zero the reset is assumed to have been already performed
(e.g by code in the ROM).
scrstream.to.B004.1link
PROC scrstream.to.B004.link (CHAN OF ANY scrn, B004.link.out)
This procedure talks direct to a link connected to a TDS server. It is designed for use in applications
which do not use the TDS, but are booted and supported by the TDS server. No other output
communication outward across the link is possible in parallel with this single output stream.
keystream. from.B004.1link

PROC keystream.from.B004.link (CHAN OF ANY B0O4.link.in,
CHAN OF INT kbd)

This procedure receives input direct from a link connected to a TDS server. It is designed for use in

applications which do not use the TDS, but are booted and supported by the TDS server. No other

output communication inward across the link is possible in parallel with this single input stream.
terminate.server

PROC terminate.server (CHAN OF ANY to.link)

This procedure should be called from programs booted by the TDS server in order to ensure smooth
termination after output using scrstream.to.B004.1ink has terminated.

14.23 IMS B006 support library t2board

271

14.23 IMS B006 support library t2board

Procedure Parameter Specifiers

B006.term.p.driver | CHAN OF ANY from.user.scrn,

port, baud.rate

CHAN OF INT to.user.kbd, VAL INT board.type,

To use this library a program header must include the line:

#USE t2board

This procedure is contained in one SC which makes use of the library ioconv.

B006.term.p.driver

PROC B0O6.term.p.driver (CHAN OF ANY from.user.scrn,
CHAN OF INT to.user.kbd,

VAL INT board.type, port, baud.rate)

This interface procedure may be run in parallel with any application on an IMS B0O06 evaluation board.
It takes input in screen stream protocol on the channel £xom.user . scrn and sends it to an RS232
output, and sends the corresponding input in key stream protocol to the channel to.user.kbd.
A limited extension of screen stream protocol to support tt .goto and tt.clear.eos for ANSI

terminals is provided.

board. type should be 6 for B0O06. The UART port is defined by passing O(terminal) or 1(host) as
the parameter port. baud. rate if non-zero causes the UART to be reset when the procedure
starts executing, if zero the reset is assumed to have been already performed (e.g. by code in the

ROM).

14.24 Extraordinary link handling library reinit

Procedure Parameter Specifiers

InputOrFail.t
OutputOrFail.t
InputOrFail.c
OutputOrFail.c

Reinitialise

CHAN OF ANY ¢, []BYTE mess,
VAL INT t, BOOL aborted

CHAN OF ANY c, VAL []BYTE mess,
VAL INT t, BOOL aborted

CHAN OF ANY ¢, []BYTE mess,
BOOL aborted

CHAN OF ANY c,
BOOL aborted

CHAN OF ANY c

VAL []BYTE mess,

TIMER TIME,

TIMER TIME,

CHAN OF INT kill,

CHAN OF INT kill,

To use this library a program header must include the line:

#USE reinit

There are four procedures which implement input and output processes which can be made to terminate
even when there is a communication failure. They will terminate either as a result of the communication
completing, or as a result of the failure of the communication being recognised. Two procedures provide
input and output where communication failure can be detected by a simple timeout, the other two procedures
provide input and output where the failure of the communication is signalled to the procedure via a channel.
The procedures have a boolean variable as a parameter which is set true if the procedure terminated as a
result of communication failure being detected, and is set false otherwise. If the procedure does terminate

272 14 Libraries

as a result of communication failure having been detected then the link channel can be reset using a fifth
procedure.

InputOrFail.t

PROC InputOrFail.t (CHAN OF ANY ¢, []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted)

The procedure takes as parameters a link channel ¢ (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

The procedure is used for communication where failure is detected by a timeout take a timer param-
eter TIME, and an absolute time t. The procedure treats the communication as having failed when
the time as measured by the timer TIMER is AFTER the specified time t.

OutputOrFail.t

PROC OutputOrFail.t (CHAN OF ANY c, VAL []BYTE mess, TIMER TIME,
VAL INT t, BOOL aborted)

The procedure takes as parameter a link channel ¢ (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
the choice of a byte vector as the parameter to these procedures allows an object of any type to be
passed along the channel provided it is retyped first.

This procedure is used for communication where failure is detected by a timeout. It takes a timer
parameter TIME, and an absolute time t. The procedure treats the communication as having failed
when the time as measured by the timer TIME is AFTER the specified time t.

InputOrFail.c

PROC InputOrFail.c (CHAN OF ANY ¢, []BYTE mess,
CHAN OF INT kill, BOOL aborted)

The procedure takes as parameter a link channel ¢ (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

This procedure provides communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting procedure via a message on the channel kill.
The message is of type INT and can be any value.

OutputOrFail.c

PROC OutputOrFail.c (CHAN OF ANY ¢, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

The procedure takes as parameters a link channel ¢ (on which the communication is to take place),
a byte vector mess (which is the object of the communication) and the boolean variable aborted.
The choice of a byte vector as the parameter to these procedures allows an object of any type to
be passed along the channel provided it is retyped first.

This procedure provides communication where failure cannot be detected by a simple timeout. In
this case failure must be signalled to the inputting or outputting procedure via a message on the
channel kill. The message is of type INT and can be any value.

14.25 Block CRC library blockcrc 273

Reinitialise
PROC Reinitialise (CHAN OF ANY c)

This procedure may be used to reinitialise the link channel ¢ after it is known that all activity on the link has
ceased.

Reinitialise must only be used to reinitialise a link channel after communication has finished. If the
procedure is applied to a link channel which is being used for communication the transputer’s error flag will
be set and subsequent behaviour is undefined.

14.25 Block CRC library blockcrc

Result | Function Parameter Specifiers

INT CRCFROMMSB | VAL []BYTE InputString, VAL INT
PolynomialGenerator,
INT O1ldCRC

INT CRCFROMLSB | VAL []BYTE InputString, VAL INT
PolynomialGenerator,
INT O1dCRC

To use this library a program header must include the line:

#USE blockcrc
CRCFROMMSB

FUNCTION CRCFROMMSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator, INT OldCRC)

The string of bytes is polynomially divided by the generator starting from the most significant bit of
the most significant byte in decreasing bit order.

CRCFROMLSB

FUNCTION CRCFROMLSB (VAL []BYTE InputString,
VAL INT PolynomialGenerator, INT OldCRC)

The string of bytes is polynomially divided by the generator starting from the least significant bit of
the least significant byte in increasing bit order.

274 14 Libraries

15 Tools

15.1 Debugger

Introduction

The Debugger can be used to debug any of the following:
TDS style programs running on the host transputer,
TDS style programs running on a network of transputers attached via a link,
Programs written under the TDS, but executing outside the TDS environment,

occam SC modules.

15.1.1 Debugging a PROGRAM

The Debugger can be used to debug a TDS PROGRAM which has been loaded and run on a transputer
network. The network may contain large numbers of transputers — the debugger has been tested on 1024
processors! If it is able to assert Analyse on the transputers in the network (e.g. by using a subsystem port
on the host) it will do so, otherwise the transputers which constitute the network must be in an analysed state.

It analyses the network described in the PROGRAM fold, retrieving state information and a copy of an area of
memory, starting at the lowest memory address, from every processor in the network. It then loads a program
into this area, which sets up a communication path through the network, and allows the debugger to retrieve
the contents of memory from any transputer in the network.

Start up procedure for a PROGRAM

Place the cursor on the PROGRAM fold and press [RUN EXE] The initial display is the title and version, and
the prompt:

Debugging a PROGRAM

Transputer link, Dummy, Analyse, Host, Network dump
or Quit (T,D,A,H,N,Q) ?

— Transputer link
If you choose option ‘T”, you will then be prompted:
Link number, or Quit (0,1,2,3,Q) ?
Type in the link number through which the host is connected to the network. You do not need to press

Is host system a B004 or a B002, Ignore analyse,
or Quit (4,2,I,Q) ?

Type 2 if the host system is an IMS B002 (or equivalent),
4 if the host system is an IMS B004,
I if you do not wish to assert Analyse,

or Q to quit.

This information is required because the subsystem ports are different; the debugger must know which is
being used so that it can assert the network’s Analyse signal.

276 15 Tools

While examining the network, the debugger displays:

Reading logical name table ...
Analysing network ..

@ — Dummy network

The response ‘D’ runs the debugger in parallel with a process which acts as a network of transputers. This
process simulates an arbitrary network in the analyse state providing artificial data for display. The user may
thus explore some of the options available without being connected to a target network. While initialising
itself, the debugger displays:

Reading logical name table
Analysing network ..

[E — Network including Host
This option is used to debug a standalone PROGRAM which has been developed in the TDS, but is executed
outside the TDS, and therefore includes the host transputer (i.e. the transputer which is now running the
TDS) in the network. See section 15.1.8 for details of how to create a core dump file.
Now run the debugger on-the PROGRAM, and type ‘B’ in reply to the first prompt. You will then be asked:
Read Core dump file, Ignore core dump, or Quit (C,I,Q) ?
If you reply ‘C’, the debugger will then prompt for the name of the core dump file:
Core dump filename ("core.dmp", or "QUIT") ?

Press to use the default filename
or enter a filename (any filename extension will be replaced by ‘. dmp’)
or type ‘QUIT (uppercase) to exit the debugger.

If you type ‘I’,the debugger will not read a core dump file, and therefore provides no useful information about
the root processor.

You will be asked what type of board is being used, so that the debugger can assert Analyse on the network.
If you have a modified IMS B004 which propagates the Reset and Analyse signals through to the subsystem
port, you should type ‘I’ so that the subsystem is not analysed twice.

While reading the core dump file, the debugger will display:

Reading logical name table ...
Reading Core dump file "filename.dmp"

[A] — Assert analyse

This option allows you to assert the Analyse signal on the transputer network attached to the host’s subsystem
port. You will be asked what type of board is being used, or given the option to quit.

After successfully asserting the analyse signal, you will see the message:
Subsystem has been analysed - Press a key to return to the TDS
|E — Network dump
This option allows you to read a previously created ‘network dump’ file. The debugger uses the information in
this file for its target information. This allows a debugging session to be suspended, and the complete state

of the network dumped to a file, so that debugging can be resumed at a later date, when the target network
may no longer even be present. How to create a network dump file is covered in section 15.1.6.

15.1 Debugger 277

After pressing ‘N’ you will be prompted:
Network dump filename ("network.dmp", or "QUIT") ?

Pre%s to use the default filename.
or enter the name of the network dump file (any filename extension is replaced by ‘. dmp’)
or type ‘QUIT (uppercase) to exit the debugger

While reading the network dump file, the debugger will display:

Reading logical name table ...
Reading Network dump file "filename.dmp"

What the debugger does-

After this initial interaction, the debugger uses the configuration description folds in the PROGRAM fold set
to build a data base for the network. The complete network is then analysed and some data retrieved from
every processor. If the ‘B’ or ‘N’ options were selected, the information will be read from the appropriate file.

o
The debugger will then determine which processor (if any) had its error flag set, and will continue with that
processor selected as the current processor. If none is set, the ‘root’ processor will be selected. The debugger
will then display the occam source in the vicinity of the error, or the last instruction executed, as explained
later.

15.1.2 Debugging an EXE

The Debugger can also be used to debug EXE programs running on the host transputer. To do this it uses
a ‘core-dump’ feature.

If the transputer error flag is set while executing an EXE, you should re-boot the TDS, and request the ‘C’
option for a normal core dump. This will save the memory of the transputer in a core dump file, whose name
you may specify, rather than use the default ‘coxe.dmp’. If the debugger is subsequently executed while
positioned over that EXE, it can read the core dump file, and you may then use all of the symbolic features
of the debugger. See section 15.1.8 for more details about creating a core dump file.

Start up procedure for an EXE
Place the cursor on the EXE fold, and press [RUN EXE]. The initial display is the title and version, and the
prompt:

Debugging an EXE
Read Core dump file, Ignore core dump, or Quit (C,I,Q) ?

Type either ‘Q’ to quit, or ‘C’ to confirm that you wish to continue to debug the EXE. If you type ‘T’, the
debugger will ignore any core dump file (if it exists), and locate the source line where error was set. You will
only be able to perform a single locate, no other facilities will be usefully available. If you type ‘C’, you will
be asked for the core dump filename:

Core dump filename ("core.dmp", or "QUIT") °?

Press to accept the default filename
or enter a filename (any filename extension will be replaced by ‘. dmp’)
or type ‘QUIT (uppercase) to exit the debugger.

If the core dump file does not exist, it will be treated as though you had typed ‘I’

278 15 Tools

The debugger will then display:

either Reading Core dump file "filename.dmp" ...
or Analysing EXE ...

15.1.3 Debugging an SC

The Debugger can also be used on SC modules, to find the occam source line corresponding to any
particular offset within this SC. The SC may contain nested SCs. No other facilities are available.

Start up procedure for an SC

The cursor should be positioned on the SC fold, and the debugger executed by pressing The initial
display is the title and version, and the prompt:

Display any offset within an SC
Display occam source, or Quit (0,Q) ?

Type either ‘Q’ to quit, or ‘O’ to locate to an occam source line.

If you type ‘O’, you will be prompted for the offset of the instruction you wish to find. You should type this in
in decimal, and the debugger will display the occam source line corresponding to that offset from the start
of the SC. The SC must have been compiled with the compiler's debugging option enabled. Press
to return to this prompt, or [EXIT FOLD] and [FINISH] to leave the debugger.

15.1.4 Symbolic facilities

Once you have chosen whether to debug a PROGRAM, or an EXE, the debugger will automatically display the
occam source corresponding to the error. If the program was still executing correctly when ‘analyse’ was
asserted, the debugger will display the last source line executed. However, if the transputer had stopped,
rather than halted upon finding an error, or was deadlocked, there will be no ‘last instruction’, so you will be
left at the main ‘Monitor page’ (see section 15.1.5).

While it is looking for the required source line, the debugger will display ‘Locating ...’ at the top of the
screen.

If the location which is to be displayed is in a compacted library for which the source code is not present, but
which was compiled with the debugging option enabled, the debugger will instead locate the line corresponding
to the library call, and will repeat until it finds some source code to display. As this is done, the original
message will be changed to ‘Backtracing ...’. When the debugger has successfully located some
source, it will display the name of the library which it first tried to display, which SC within that library (counting
from one), and the offset within that SC.

If the ultimate location is in a library containing source, the 0occam in the vicinity of that location is displayed,
and the cursor is left at the start of the correct source line. The debugger also displays the name of that
library, the SC number, and the offset within that SC. You may scroll through the source, and the special
debugging features are available via the utility tool keys.

If the location is in a section of normal 0ccam source, its context is displayed, and the user is left within the
TDS editor, providing read-only access to the source. You can use the key to allow modification of
the source. In addition there is a set of debugging features available via the utility keys.

Note that in certain situations the location displayed may not correspond to the expected location. In particular,
if no valid branch of an IF or CASE has been found, the debugger will locate to the following statement. See
section 15.1.7

Note also that only the SCs which are to be inspected via this debugger need to have been compiled with
the debugging option enabled; the remainder need not. It should also be pointed out that compiling an SC

15.1 Debugger 279

with debugging enabled does not affect the code which is produced in any way; it merely controls whether
the debug fold is produced, containing the information for the debugger to use. This means that no extra
bugs will be introduced (or hidden) by re-compiling with a different debugging option.

Debugging utilities

The extra debugging utilities are available via the following utility keys:

NSPECT] Display the type and value of an occam symbol.
NNE Locate to the process waiting on a channel.
Locate back to the error, or last 0ccam location.
Retrace the last etc.

Locate back to the last location line.

Display some extra information.

Toggle between Read-only and Read-write mode.
Display the link connections.

Change to the ‘Monitor page’.

BACKTRACE Locate to the procedure or function call.

Display a summary of utility key uses.

[¢)
X
>
—

=
o]
O

:[:]2 |[D
= S{m|m
X 05—'
2

H|lm

5
z
5!
3

N.B. a number of editor function keys are disabled while using the debugger.

This option allows you to find the type and contents of any occam symbol. You should use the cursor keys
to position the cursor on the required symbol, then press [INSPECT].

If the cursor is not positioned over an 0ccam symbol when you press [INSPECT], you will instead be prompted
for the symbol name at the top of the screen. You may type [ENTER] here to abort the INSPECT] operation, or
type a name, followed by [ENTER]. The case of the letters of the name is significant, as are spaces. If the
name is an array, it may also be followed by constant integer subscripts in square brackets (" and 7).

The symbol is then checked that it is in scope at the line last 'located to’. Note that this is not necessarily the
same as the current cursor position, and this must be understood for this feature to be useful. If the symbol
is not in scope at that location, or not found at all, one of the following messages will be displayed:

Name ‘symbol’ not in dynamic scope
or Name ‘symbol’ not found

Inspecting arrays

If the symbol is an array name, and you have not already supplied subscripts, you will be prompted for them.
The debugger will display the size and type of the array, and ask for the subscripts. For example:

[5] [4]INT ARRAY ‘a’, Subscripts ?

Press to obtain the address of the array
or enter the required subscripts, which must be in the correct range

The subscripts should be typed either as decimal constant integer values within square brackets, or as integers
separated by commas (e.g. ‘[3] [2]’, or ‘3, 2'). Spaces are ignored.

To simplify access to values such as ‘a[i]’ you may type ‘a[!]’; the ‘!’ is replaced by the value of the last
integer displayed.

280 15 Tools

Information displayed

If the name is in scope, its type and value will be displayed, together with its address in memory. If it is an
array, and subscripts were supplied, its type, value, and address will be displayed. If it is a short BYTE array,
it is displayed in ASCII. If it is any other type of array, its dimensions are displayed. If it is a channel, and is
not empty, the Iptx and Wdesc of the process waiting for communication, and its priority, are displayed. If
it is a PROC or FUNCTION name, its entry address, and nested workspace and vectorspace requirements
are displayed (no address is displayed for library names). Only the types of protocol names and tags, timers,
and ports are displayed.

If there is too much information to be displayed on one line, it will be displayed in two parts. Firstly the
symbol’'s name and type will be displayed, then, after a short pause, its value and address.

Inspecting memory

You may inspect the contents of arbitrary locations in memory, by giving an address rather than a symbol
name, when prompted for a symbol. You should type the address as a decimal number, a hexadecimal
number (preceded by ‘#), or the special short form %h...h, which assumes a prefix #8000. .. . Any letters
(A to F) in a hexadecimal number typed at this prompt must be in upper case. The debugger will then display
the contents of the word of memory at that address, both in decimal and hexadecimal. For more versatile
displays of memory contents, you should use the options available from the ‘Monitor page’. See section
15.1.5.

For this option, you supply the name of the channel in exactly the same way as [INSPECT], but instead of
displaying the Iptr and Wdesc of the process waiting for communication on that channel, the debugger
will locate to the corresponding line of occam source. You may then continue debugging that process. This
key is invalid if the symbol is not a channel.

‘Hard’ channels

The key also allows you to ‘jump’ from one processor to another along hard channels. If the channel
is mapped onto a transputer link, and there is a process waiting for communication on the processor at the
other end of that link, the debugger will change to that processor. It will then display the new processor
number to inform you that it has changed processor. If there is no process waiting at either end of the link,
you will be told so, and if you are already located at the process waiting for communication at one end of the
link, you will receive the message:

Already located - No process is waiting at the other end
of this 1link

TOP

This option forces the debugger to locate back to the original location, where the debugger located an error,
or to the address given to the Iptx and Wdesc prompts of the Monitor page ‘O’ option (see section 15.1.6).

This option forces the debugger to retrace its steps. It will locate back to the previously displayed location.
Repeated use of will reverse the effect of successive [BACKTRACE], [CHANNEL}, and operations.

This option forces the debugger to relocate to the line which it last located to. This is in case the user has
become ‘lost’ after browsing through the source.

15.1 Debugger 281

This option provides some extra information. It displays the Iptx of the last location, the corresponding
Wdesc, in hex, the priority, and the current processor’s number and type. For example:

Located to Iptr #80001564, and Wdesc #80000124,
(Bi pri), Processor 2 (T800)

or Located to Iptr #80001564, and Wdesc #80000124,
(Hi pri), EXE (T800)

If the Wdesc has not been supplied, it will be given as ‘invalid’.
If this key is pressed when the debugger has been invoked on an SC, you will see a message of the form:
Located to offset 450 of this SC
R/W
This option toggles the Read-only and Read-Write mode of the editor. This prevents the user from accidentally
modifying the source code. Its use is exactly the same as the key. Initially the editor is in Read-only
mode. After pressing this key, you will see one of the messages:

Read only mode is now set
or Read and Write mode is now set

Note that this key is ignored while viewing the source of a library, since you cannot change library source
code when within the debugger.

This option provides a quick means of determining the connections to this transputer’s links. It lists each link
in turn, and the processor and link to which it is connected. For example:

Links: LO to host. Ll to P3 L2. L2 ---. L3 to P45 LO.

[CODE INFORMATION |

This is a standard editor key which has a different function while in the debugger. This key displays a brief
summary of which tool keys correspond to which debugger features.

MONITOR
This option transfers the user to the ‘Monitor page’ of the debugger.

To leave the debugger use the and/or keys. You may also leave by using the ‘Q" option
from the Monitor page.

BACKTRACE

This option will locate to the line corresponding to the call of the present procedure or function. If the current
location is in the program'’s top level procedure, the following message is displayed:

Error : Cannot backtrace from here

282 15 Tools

Debugging an SC

The operations [BACKTRACE], [INSPECT], [CHANNEL], [TOP], [LINKS], and [RETRACE] have no meaning when the
debugger has been invoked on an SC. If you press any of these keys, you will be informed:

This key is invalid on an SC

Invalid Wdesc

If you are debugging an EXE, without a core dump file, the debugger cannot read the contents of memory
at the time of the error. This means that it cannot read the contents of variables and channels, nor find
the return addresses of procedures. It flags this by leaving the Wdesc as an invalid value — that of the
transputer’s most negative address. Also, if you do not supply a valid Wdesc when using the Monitor page
‘0’ (0occam) option, you will not be able to access memory contents. However, you may still determine the
values of scalar constants, and some other symbols.

Any attempt to inspect variables or channels, or to backtrace, will cause one of the following messages to be
displayed:

Wdesc is invalid - Cannot backtrace
or Wdesc is invalid - Cannot inspect variables

Also, if the location to be displayed-is in a compacted library, and the Wdesc is invalid, the debugger will not
be able to find the call of that library function or procedure. You will then be informed:

Wdesc is invalid so cannot backtrace out of compacted library

15.1.5 Monitor page

When you leave the symbolic mode to enter the low level mode, the debugger displays a ‘Monitor page’
containing information about the current processor. The information displayed lists:

Iptr Contents of instruction pointer (address of the last instruction executed)
Wdesc Contents of workspace descriptor

IptrIntSave Contents of saved low priority instruction pointer

WdescIntSave Contents of saved low priority workspace descriptor

Error Whether the error flag was set

FPU Error Whether the FPU error flag was set (if it exists)

Halt On Exrror Whether the halt on error flag was set

Fptrl Pointer to the front of the low priority active process queue

Bptrl Pointer to the back of the low priority active process queue

Fptr0 Pointer to the front of the high priority active process queue
Bptx0 Pointer to the back of the high priority active process queue
TPtrl Pointer to the low priority timer queue

TPtx0 Pointer to the high priority timer queue

Clockl Value of the low priority clock

ClockO0 Value of the high priority clock

It also displays the current processor number and type, the cause of the error, and last instruction executed,
and the current transputer’s memory map.

The Iptr which is displayed has already been adjusted to point to the last instruction actually executed, if
necessary. The saved low priority Iptx and Wdesc are only displayed if the processor was running in high
priority mode when it was stopped.

If the Wdesc contains the most negative address value, it will be described as ‘invalid’. This normally means
that no process was executing on that processor when it was stopped (e.g. it may have been deadlocked).

15.1 Debugger 283

)
Try using the ‘L’ option to find processes waiting for communication on the links. The Wdesc is also flagged
as invalid when debugging an EXE with no core dump file.

If the Wdesc contains the address of ‘Memstart’ it will be displayed as such. This normally means that the
network’s analyse signal has been asserted more than once. This may be because your host transputer
board (e.g. IMS B004) has been modified to assert its subsystem signal when it is itself analysed. If this
happens try re-running your program, then when re-running the debugger type ‘I’ to ignore analyse, rather
than ‘4’ to indicate that you wish to assert the IMS B004's subsystem signal.

If there is an asterisk displayed next to either the Iptr or Wdesc, this means that they do not correspond
to a valid code and data pointer for your program. Use the ‘M’ option to display a memory map for each
transputer. If debugging an EXE this is normally because the last instruction executed was part of the TDS
itself; your EXE may have deadlocked. See section 15.1.7.

Summary of options

Key | Description]

A ASCII View a portion of memory in ASCII.

C Compare Compare the code on the network with the code that should be there,
to ensure that the code has not become corrupted.

D Disassemble | Display the transputer instructions at a specified area of memory.

E Next Error Switch the current display to data from the next processor in the net-
work which has halted with its error flag set.

H Hex View a portion of memory in hexadecimal.

| Inspect View a portion of memory in any occam type (e.g. REAL32).

L Links Display the instruction pointers and workspace descriptors for the pro-

cesses currently waiting for input or output on a transputer link, or for
a signal on the Event pin.

M Memory map | Display the memory map of that transputer.

N Network dump | Copy the entire state of the transputer network into a ‘network dump’
file, so that you can continue debugging later.

(o] occam Resume the occam source level symbolic features of the debugger.

P Processor Switch the current display to data from a different processor.

Q Quit Leave the debugger, and return to the TDS.

R Run queue Display the instruction pointers and workspace descriptors of the pro-
cesses on either the high or low priority active process queue.

T Timer queue | Display the instruction pointers, the workspace descriptors and the
wake-up times of the processes on either the high or low priority timer
queue.

X Exit Return to symbolic mode.

[RELOCATE]

Scroll display | Scroll the currently displayed memory, disassembly, or queue

CURSOR LEFT, Change Scroll the currently displayed processor.
[CURSOR RIGHT] processor
? Help Display a help screen.
[COBEINFO]
[REFRESH] Refresh Re-draw the screen.

TOP) Locate to the last instruction executed on the current processor.

284 15 Tools

15.1.6 Monitor page options

A full description of the Monitor page options follows, with the options listed in alphabetical order. These
options are not available when the debugger has been invoked on an SC.

[A]— Ascn

The ASCII option gives the following prompt:
Start address (#hhhhhhhh) ?

Press to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ‘#’,
or the short form ‘¢h. . . h’, which assumes a prefix of #8000. . .).

The memory is displayed as sixteen rows of 32 ASCII bytes. The bytes are displayed in order, with a ‘.’
replacing any unprintable characters.

The address at the start of each line is an absolute address displayed as a hexadecimal number. The byte
containing the specified start address is the top leftmost byte of the display. [CURSOR UP] and [CURSOR DOWN]
keys may be used to scroll the display.

@ — Compare memory

Selecting the Compare memory option allows you to check whether the code on the network agrees with the
code which was loaded, in case memory has been corrupted. It can also be used for an EXE. You will be
offered the following options:

Compare memory
Number of processors in network is : ‘n’

- Check whole network for discrepancies
- Check this processor for discrepancies
- Compare memory on screen

Find first error on this processor

- Quit

vy

or

Checking an EXE

A or B - Check this EXE for discrepancies
C - Compare memory on screen

D - Find first error on this processor

Q - Quit

Compare memory option (A,B,C,D,Q) ?
You should type one of the options A, B, C, D, or Q. Option ‘Q’ will return you back to the Monitor page.
Checking the whole network
Option ‘A’ checks the whole network to ensure that the code in the network is the same as the code which

was originally loaded onto each processor. All the top level SCs in the occam PROGRAM must have been
extracted to CODE SC folds (this is performed automatically by the configurer). As itis checking, the debugger

15.1 Debugger 285

will display the following messages for your information:

No of processors checked so far : ‘n’

Checking processor : ‘p’

Bytes to test : nnn

Checking memory : #hhhhhhhh to #hhhhhhhh ...
Checking address : #hhhhhhhh ...

Checked processor : ‘p’ OK

Checked processor : ‘p’, ‘e’ errors

When it has finished checking, it will display either

Checked whole network OK, or
‘n’ Errors, first at #hhhhhhhh on processor ‘p’

Checking a single processor
Option ‘B’ checks just the current processor. In all other respects it is similar to option ‘A’
Compare memory on screen

Option ‘C’ allows you to display both the correct contents, and the actual contents, on screen side by side. It
displays each block of memory as sixteen lines of 8 bytes, with the contents of the network on the left, and
the correct code on the right. Any discrepancies are marked with an asterisk (‘*’). At the end of each 128
byte block, type either ‘Q’ to quit, or to read the next block. The display will look like:

Network Code Correct Code
#800001234 : 0011223344556677 7766554433221100 *
#80000123C : 0011223344556677 0011223344556677
#800001244 : 0011223344556677 7766554433221100 *

#8000012AC : AABBCCDDEEFF0011 AABBCCDDEEFF0011

Press [SPACE] or [DOWN] to scroll memory, or Q to quit :

Find first error

Option ‘D’ allows you to let the debugger look for any discrepancy itself, and then display it on the screen. It
will search this processor, as in option ‘B’, until it finds a discrepancy. If it does, it switches into mode ‘C’,
and allows you to continue displaying the memory on screen.

@ — Disassemble
The Disassemble option gives the following prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ‘#’,
or the short form ‘sh. . . h’, which assumes a prefix of #8000. . .).

The memory is displayed as sixteen transputer instructions, starting with the instruction occupying the memory
at the specified address. If that address was in the middle of an instruction, the disassembler will correctly find
its start. Note that this may not work correctly if data precedes that instruction, rather than other transputer
instructions. This is because the data may end with a byte corresponding to a transputer ‘pfix’ or ‘nfix’
instruction, and therefore be indistinguishable from a real instruction.

Each instruction is displayed on a line preceeded by the address corresponding to the first byte of that
instruction. The disassembly is simply a translation of memory contents into instructions, it does not insert
labels, nor provide symbolic operands. [CURSOR UP] and [CURSOR DOWN] keys may be used to scroll the display
16 bytes at a time.

286 15 Tools

|E] — Next Error

Selecting the Next Error option causes the debugger to find the next processor in the network which has both
its error and halt-on-error flags set. Note that the debugger looks through the network in the order in which
the processors are stored in its internal data base, not in the order of processor number. If one is found, the
display is updated to the new processor's data, as if you had used the ‘P’ option. You can then press
to display the occam source line which caused the error. If none is found, the display is not changed.

If you press this key when debugging an EXE, or if there is only one processor in the network, you will be
informed:

This is an EXE - There are no other processors
or There is only one processor in the network

E— Hex

The Hex option gives the following prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ‘#’,
or the short form ‘sh. . . h’', which assumes a prefix of #8000. . .).

The memory is displayed as sixteen rows of hexadecimal numbers, one hex number for each word (4 or 8
hexadecimal digits). The words in a row are ordered least significant on the left, so that for a four bytes per
word processor the relationship between sequential bytes and the display is as follows:

: 3210 7654 11 10 9 8 15 14 13 12
Or on a processor with two bytes per word:
:10 32 54 76 98 11 10 13 12 15 14
The address at the start of each line is an absolute address displayed as a hexadecimal number. The word

containing the specified start address is the top leftmost word of the display. The address will be aligned to
the start of that word. [CURSOR UP] and [CURSOR DOWN] keys may be used to scroll the display.

m — Inspect

This option allows you to inspect the contents of a whole 0ccam array in one go. The Inspect option gives
the following prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ‘#’,
or the short form ‘sh. . . h’, which assumes a prefix of #8000...).

The start address of an array may be found in the symbolic mode by pressing while the cursor is
positioned over the name, then simply pressing when asked for a subscript.

15.1 Debugger 287

The screen display will then show:

Typed memory dump
ASCII
INT
BYTE
BOOL
INT16
INT32
INT64
REAL32
REALG64
CHAN

Voo AEWNHO
| I T A T N O O N B |

Which occam type (1 - INT) ?

You should then type the digit oorrésponding to the 0occam type you wish to display. Press to accept
the default type.

The memory is displayed as sixteen rows of data. ASCII is displayed exactly as in the ASCII option above.
The other occam types are displayed both in their normal representation, and in hexadecimal.

The address at the start of each line is an absolute address displayed as a hexadecimal number. The value
containing the specified start address is on the top row of the display. It will be aligned to the nearest valid
boundary: BYTE and BOOL to the nearest byte; INT16 to the nearest even byte; INT, INT32, INT64,
REAL32, REAL64, and CHAN to the nearest word. [CURSOR UP] and [CURSOR DOWN] keys may be used to
scroll the display.

— Links

Selecting the Links option displays the instruction pointer, workspace descriptor, and priority, of the processes
waiting for communication on the links, or for a signal on the Event pin. If no process is waiting, it is described
as ‘Empty’.

The link connections are also displayed; each link is described as ‘unconnected’, ‘connected to host’, or
‘connected to processor ..., link ...".

Finally the link by which that processor was booted is also displayed. The display will look something like
this:

Link 0 out Empty
Link 1 out Empty
Link 2 out Iptr: #80000256 Wdesc: #80000091 (Lo)
Link 3 out Empty
Link 0 in Empty
Link 1 in Empty
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo)
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi)

Event in Empty

Link 0 connected to Host

Link 1 not connected

Link 2 connected to Processor 88, Link 1
Link 3 connected to Processor 23, Link 3

Booted from link O

288 15 Tools

@ — Memory map

Selecting the Memory map option displays the memory map of the current processor. This is the same as
that provided by the utility [COMPILATION INFORMATION], when applied to a PROGRAM.

It lists the start and finish addresses of the program’s code, libraries, and real arithmetic library. It also
includes the configuration code, and the program’s workspace and vectorspace. If any of these components
are not used, they will not be listed. The size of each component is then listed, in bytes, or rounded up to
the nearest K. The debugger also displays the total memory usage on this processor.

It also lists the size and address range of that processor’s on-chip RAM, and ‘MemStart’, the first free location
after the RAM reserved for the processor’s own use.

It then lists the maximum size network which can be accommodated by the debugger’s buffer space. This
will depend on the memory size of the host system, and on the other code in memory at the same time.

The complete display looks like this:

Memory map
Workspace : #80000064 - #800000F3 (144)
Configuration code : #800000F4 - #80000117 (36)
RealOp : #80000118 - #80000233 (284)
Program body : #80000234 - #80012373 (73K)
Libraries : #80012374 - #80012773 (1024)
Vectorspace : #80012774 - #80024643 (72K)

Total memory usage : 149060 bytes (146K)

On-chip memory (2K) : #80000000 - #800007FF
Mem Start : #80000048

Debugger has enough memory for 1271 processors

The value which is displayed for MemStart is the value actually found on the transputer in the network. If this
does not correspond to that expected by the configuration description, for example because a T414 and a
T800 have been mixed up, you will be informed:

MemStart should be : #80000070 (T800)

@ — Network dump

This option allows you to save the state of the transputer network, so that you can continue debugging later.
If you leave the debugger without creating a network dump file, you will not be able to continue debugging
from the same point without re-running the application program. This is because the debugger itself corrupts
parts of the memory on each transputer in the network.

Once you have created a network dump file, you may continue debugging from the file instead of from the
target network. The debugger will take all relevant information from the network dump file, and from the
program’s source code and descriptors, and it does not even need to be still connected to the target network.

You will be informed how much space a network dump file would take up, and asked whether to continue.
The space required depends on how much memory is actually used on each processor in the network.

Create network dump file
Number of processors : 10
File size will be : 89673 bytes

Continue with network dump (¥,N) ?

15.1 Debugger 289

If you type 'N’, no file will be created, and the operation is aborted. Otherwise you will be asked:
Filename ("network.dmp", or "QUIT") ?

Press to use the default filename
or enter a filename (any filename extension will be replaced by ‘. dmp’)
or type ‘QUIT (uppercase) to exit the debugger.

If the file already exists, you will be warned:

File "network.dmp" already exists
Overwrite it (Y,N) ?

If you type ‘N’, you will be prompted for the filename again.
While dumping the state and memory contents of each processor in the network, it will display:

Dumping network to file "network.dmp”
Processor 99 (T800)
Memory to dump : 10456 bytes ...

This option can not be used while debugging an EXE; this is because you can use a TDS core dump file
instead.

[0] —occam

Selecting the occam option allows you to resume symbolic debugging, either at the same occam line, or
at another location. You will be prompted:

Iptr (#hhhhhhhh) ?

The default suggested is the last 0ccam line located to on this processor, or the address shown as the last
instruction executed.

Press to accept the default address

or enter the desired address (a decimal number, a hexadecimal number preceeded by ‘#’,
or the short form ‘sh. . . h’, which assumes a prefix of #8000. . .).

Useful values are displayed by the ‘R’, ‘“T", and ‘L’ options from the Monitor page, or the value of the saved
low priority Iptz.

If the supplied Iptzx is not within the program body, an error message is reported:

Error : Cannot locate to configuration level code or
Error : Location is not in program or a library

and after pressing a key you will return to the Monitor page.
Otherwise, you are then prompted:
Wdesc (#hhhhhhhh) ?

If you used any Iptx which was shown on screen at that time, its corresponding Wdesc will be offered as
a default. Otherwise you must supply it yourself, in the same format as the Ipter.

If no symbolic features other than a single ‘locate’ are required, the Wdesc is not needed, and any value
may be given, so you should accept the default by typing on its own. Note that if an invalid Wdesc
is given, most of the symbolic features will not work, or will give incorrect answers.

Once the Iptx and Wdesc have been supplied, the debugger will display the occam source at the required

290 15 Tools

location, and the full range of symbolic features are then available.
IE] — Processor

This option is used to change the Monitor page to show details for a different processor in the network.
Selecting the Processor option causes the prompt

New processor number ?

to be displayed. The processor number (the number used to identify the processor in the configuration
description of the program) of the required processor should then be typed. This is checked against the data
base to make certain the processor exists. If that processor is found, the display is changed to provide the
same information for the new processor. If memory is being displayed, but the new processor's word length
is different to that most recently displayed, the start address will be reset to the bottom of memory. If the
processor was not in the configuration, the message

Error : Processor does not exist
is displayed, and you will be re-prompted for the processor number.

If you press this key when debugging an EXE, or if there is only one processor in the network, you will be
informed:

This is an EXE - There are no other processors or
There is only one processor in the network

[@] — quit

This command leaves the debugger, and returns to the TDS. Note that once you have left the debugger, you
cannot continue debugging the same program again unless you have created a ‘network dump’ file. This is
because using the debugger overwrites much of the contents of the network. The program must be re-loaded
before the debugger can be used again.

[E — Run queue

This option allows you to see a list of the processes waiting on the processor’s active process queues. If
both high and low priority front process queue pointers are empty, the following message is displayed:

Both process queues are empty
If neither are empty, you will be prompted:
High or low priority process queue ? (H,L)
You should then type ‘B’ or ‘L’ as required. Otherwise the debugger will assume the non-empty queue.

The instruction pointers and workspace descriptors of the first page full of processes on the queue will be
displayed. If there are more processes than can fit on the screen, the following message(s) will be displayed:

<<< Scroll up for more >>>
and/or <<< Scroll down for more >>>

The [CURSOR UP] and [CURSOR DOWN] keys can be used to see the extra processes.

— Timer queue

This option allows you to see a list of the processes waiting on the processor’s timer queues. If both high
and low priority Front Timer queue pointers are empty, the following message will be displayed:

Both timer queues are empty

15.1 Debugger 291

If neither are empty, you will be prompted:
High or low priority timer queue ? (H,L)
You should then type ‘B’ or ‘L’ as required. Otherwise the debugger will assume the non-empty queue.

The instruction pointers, workspace descriptors, and wake-up times of the first page full of processes on the
queue will be displayed. If there are more processes than can fit on the screen, the following message(s) will
be displayed:

<<< Scroll up for more >>>
and/or <<< Scroll down for more >>>

The [CURSOR UP] and [CURSOR DOWN] keys can be used to see the extra processes.
[x]

RETRACE
RELOCATE | — Exit

These commands return to the debugger's symbolic mode. They can not be used if you have changed
processor while in the Monitor page.

CURSOR UP
CURSOR DOWN | — Scroll display

Typing [CURSOR UP] or [CURSOR DOWN] scrolls the display of either the ASCII or hex memory dump, disassembly,
occam typed memory, or queue, whichever was last displayed. The memory dump is scrolled by eight lines
(256 bytes of ASCII data, 128 bytes of hex data) up or down, or sixteen lines for the typed memory dump.
The disassembly is scrolled by sixteen bytes, then aligned to the start of that instruction. The memory display
wraps round when the highest memory address is reached. The process and timer queues are scrolled by
fourteen lines.

CURSOR LEFT
CURSOR RIGHT | — Change processor

Typing sets the current processor to the preceding processor in the data base and displays the
same information for the new processor. Typing [CURSOR RIGHT] sets the current processor to the succeeding
processor in the data base and displays the same information for the new processor.

This next processor may not correspond to the next processor number given in the configuration details, but
depends on the internal database in the debugger. The display shows the processor number, as given in the
configuration details.

If you press these keys when debugging an EXE, or if there is only one processor in the network, you will be
informed:

This is an EXE - There are no other processors or
There is only one processor in the network

— Display last instruction

The key can be used from the Monitor page to display the occam source corresponding to the last
instruction to be executed on the current processor. Its use is as if you typed ‘O’, then gave the Iptr and
Wdesc as displayed on the Monitor page.

292 15 Tools

?
CODE INFORMATION | — Help

These commands display a help page, which lists the available options.

— Refresh

This command redisplays the screen.

15.1.7 Hints
Invalid pointers

Any time an instruction pointer and workspace descriptor are displayed, they are checked to be within correct
code and data limits, as defined by the memory map option. Any invalid Iptz and Wdesc pair is flagged
by an asterisk (‘*’).

This can occur when displaying: the Iptr and Wdesc; the saved low priority Iptr and Wdesc; the
processes waiting for communication on any of the links; processes waiting on any of the queues; a typed
memory dump as CHANS; or when you use on a channel.

Failure to communicate

The debugger uses the extraordinary link handling library routines for communication with the target network.
This means that the debugger can recover if communication fails for any reason. This will normally be because
the debugger has failed to reset the network, or because it has been executed on the wrong PROGRAM fold.
This will be reported by the message:

Error : Cannot read processor ‘n’ (T414)

Default addresses

The debugger’s ‘Monitor page’ maintains two default addresses. These are the address of the last disas-
sembly, and the address of the last other memory display. This means that you can disassemble a portion
of memory, then look at its workspace as a hex dump, for example, then simply by typing ‘D’ again, you will
still have the correct address to disassemble from.

IF and CASE

The semantics of occam 2 state that an IF construct with no TRUE guards behaves like STOP. Similarly
a CASE construct with no matching selection also behaves like STOP. In both cases it is not necessary to
insert an explicit default case which simply STOPs. However, it can be a very good idea to do so, to aid
debugging. The way in which the debugging information is generated means that if either of these defaults
are taken, and there is no explicit default, the debugger can only locate to the line following the IF or CASE
construct.

However, if the default is explicitly stated, the debugger will locate to the STOP statement, which provides a
more immediate indication of the cause of the error. There is no object code size penalty in providing the
explicit case.

ALT

Due to the way that ALT constructs are implemented on a transputer, all channels and timers waiting in a
single ALT will wait at the same location. The debugger will indicate this by locating to the first alternative of
the ALT, no matter which channel or timer is requested.

15.1 Debugger 293

CASE input

In some circumstances a CASE input will stop due to an incorrect protocol tag being received, yet the sender
will appear to be sending a valid tag. Consider the following example executing on a single transputer:

PROTOCOL protocol
CASE
tagl
tag2 ; INT

CHAN OF protocol ¢ :
PAR

INT x :
c ? CASE tag2 ; x

SEQ
c ! tagl
c ! tag2 ; 42

This will STOP on the CASE input, since ‘tagl’ has been sent. Suppose the inputting branch is executed
before the other branch of the PAR (Note that occam does not define which branch will be executed first).
It will then deschedule, waiting for communication on channel ‘c’. The other branch of the PAR will then
proceed. It will communicate ‘tagl’, and return the waiting process to the active process queue. It will also
proceed to the next communication, where it will deschedule since there is now no process waiting to input.

The first process will then resume execution. It will test the value of the tag it received, namely ‘tagl’,
and hence STOP. The debugger can then be used to locate to this CASE input. However, if you use the
debugger to look at the channel ‘c’ to determine which process was outputting on that channel, the debugger
will indicate that the second output (‘tag2’) is waiting.

This problem can only occur with communications involving variant protocols, when a tag with no data is
communicated.

Deadlocks

There is a simple method which can be used to help find the cause of a deadlock. Since the debugger
can inspect the transputer’s links, it can be used to detect deadlocks which occur across more than one
transputer (use the Monitor page ‘L’ option). A problem only arises when a single processor has deadlocked.
Then there will be no active process from which the programmer can inspect channels, and hence jump to
the waiting process.

In practice, it is almost always known (or guessed) which channel or channels are causing deadlock. This
means that we can add a simple routine to help keep track of these channels. Consider the following simple
procedure:

PROC p ()
CHAN OF INT c :
PAR
SEQ
c! 99
c ! 101

IN
c

v H

X
x

This procedure will deadlock, and the debugger will not be able to find out where the channel is stored in
memory.

294 15 Tools

The procedure can be transformed to:

PROC p ()
CHAN OF INT c :
CHAN OF INT stopper :
PAR
VAL one.second IS 15625 : -- Low priority
VAL secs.per.day IS (60 * 60) * 24 :
VAL one.day IS one.second * secs.per.day :
TIMER time :
INT now :
SEQ
time ? now
ALT
time ? AFTER now PLUS one.day -- will locate to here
SKIP
stopper ? now
SKIP

SEQ
PAR
SEQ
c ! 99
c ! 101 -- will jump to here

INT x :
c?x
stopper ! 0

When this modified procedure is executed, it will appear to deadlock, as before. However, there is now a
‘way in’ to the program. The debugger can be used to inspect the transputer’s timer queue (using the Monitor
page ‘T’ option), which will have a process waiting on it. You can then use the Monitor page ‘O’ option, and
give it the Iptxr and Wdesc of that waiting process. The debugger will then locate to the ALT statement.
You can then use the symbolic key to inspect the channel ‘c’, which will be found to have a process
waiting inside it. Use the key to jump to the process waiting for communication, where the program
has deadlocked.

Note that the compiler does not insert these modifications automatically for many reasons. Firstly, one
philosophy behind this debugger is that the code being debugged is identical to that which is eventually
used. Note that the extra code portion inserted in the above example can be safely inserted permanently;
on a transputer, a process waiting on a timer consumes no CPU time. Secondly, in a typical program, there
would be many channels, and it would significantly increase the channel and PAR execution overhead, not to
mention the code size. Thirdly, if every channel had this type of extra debugging provided, there would be so
many processes waiting on the timer queues that it would be difficult to detect which was actually required.

15.1.8 Creating a core dump file

The debugger can read a file to find the contents of a transputer's memory. This is useful either when
debugging an EXE, or when debugging a PROGRAM which has used the host processor as part of the
network.

Debugging EXEs

The debugger can be used to debug EXEs which have been written within the TDS. When an EXE fails, the
TDS server will detect that the transputer’s error flag has been set, and allow you to re-boot the TDS. The

15.1 Debugger 295

TDS will then allow you to create a core dump file. It will prompt you:

Options :
c : normal core dump
£ : normal core dump + freespace
a : standalone core dump - all of memory
8 : standalone core dump - part of memory
any other key to skip

You should then select an option — when debugging an EXE you should use either ‘C’ or ‘F”. If you type ‘C’,
the TDS will save all the relevant memory contents of a normal EXE. The length of the file will be the size
of the EXE’s code, plus its workspace and vectorspace, plus about 25K bytes of extra information. If your
EXE uses the extra £reespace parameter, as a dynamic buffer, you should type ‘F’, and the buffer will be
saved to the file too.

The TDS will then ask for the name of the core dump file:

Core dump file name ("core.dmp") ?

Press to accept the default name
or enter another filename (any filename extension will be replaced by ‘. dmp’)

While writing the file, the TDS will display:

Writing core dump file "core.dmp"
Debugging standalone programs
The debugger can be used to debug PROGRAMs which have been written within the TDS, but execute with
their own server. These programs will use the host transputer (i.e. the transputer which runs the TDS) as part
of their network. This means that simply re-booting the TDS will corrupt the contents of the first transputer in
the network. Instead, the debugger has the ability to read the first transputer’s state from a file held on the
host filing system, and read the rest of the network directly as normal.
The TDS can be directed to save the state of the transputer as it starts up. To do this, call the TDS with the
command line option ‘-x’. This tells the server to analyse the transputer, rather than reset it. The TDS will
then allow you to create a ‘standalone core dump’ file in the same way as for an EXE. You should use either
the ‘A’ or ‘S’ options from the core dump menu.

Use option ‘A’ if your program uses all of the memory on the host transputer. If you type option ‘S’, you will
be asked:

Memory size in kilobytes

You should type in the amount of memory which your program uses on the host transputer board. This must
include the code size, workspace, and vectorspace.

Next you will be asked for a filename, in exactly the same way as when creating an EXE’s core dump file.
The TDS will then save that amount of memory in the core dump file, starting at the bottom of memory. The
file length will simply be the amount of memory saved, plus about 500 bytes for register contents, etc.
15.1.9 occam run time errors

This section lists the possible causes of run time errors. All the errors will have their effect defined by the
compilation error mode:

o In HALT mode, they will halt the transputer.

296 15 Tools

« In STOP mode, they will stop that process, allowing other processes executing on the same trans-
puter to continue.

o In REDUCED mode most of these errors will not be detected.

The compiler will perform as rhany of these checks as possible when compiling. For instance, if an array is
subscripted by a constant value, the range check is performed by the compiler and no extra code is inserted
to check at run time.

STOP The STOP process is implemented to behave as though an error has occurred. So too are occam
constructs defined to behave like STOP:

IF An IF construct with no true guard will STOP.
CASE A CASE construct with no ELSE option will STOP if no option is matched.

ALT An ALT construct with none of the boolean guards of its alternatives true also
behaves like STOP.

Arithmetic errors Arithmetic overflow, divide by zero, etc., cause an error.

Also any Floating-point calculations will cause an error if any of their inputs are either infinity, or ‘Not-
a-Number'. This can be avoided by explicit use of the IEEEOP library routines. See the occam 2
reference manual for details.

Shifts Shifting an integer by more than the number of bits in its representation will cause an error.

Type conversions When converting a value from one type to another, the value must be able to be
represented in the target range, or an error will be caused (e.g. a BYTE must lie in the range 0-255).

Replicatoxrs Any replicated construct (SEQ, PAR, IF, or ALT) with a negative replicator count will cause
an error. A zero replicator is permitted.

Array accesses Any accesses to elements outside the range of an array will cause an error. This also
applies to segments of arrays.

If a segment of an array is assigned to another segment of the same array, the two segments must
not overlap.

The sizes of an array must correspond when an array is passed as a parameter to a procedure or
function, or when an array is assigned or abbreviated. Zero length segments are allowed.

The range.checking compiler option can be used to disable these forms of error checking.

Abbreviations If the same element of an array is abbreviated twice in the same scope, an error will be
caused. The alias.checking compiler option can be used to disable this form of error checking.

Communications Attempting to communicate a zero length array on a channel of type CHAN OF ANY
will cause an error. However, you may use a zero length counted array communication.

A CASE input process, where the communicated tag does not match any of those supplied, will
cause an error.

RETYPES Any RETYPES expression must be aligned to the correct word or byte boundary
(e.g. you may not RETYPE bytes 5, 6, 7 and 8 of a BYTE array as an INT32, since INT32s must
be aligned on a word boundary).

PRI PARs If a PRI PAR is executed from within a high priority process, an error will be caused.

15.2 Transputer network tester 297

15.2 Transputer network tester
Introduction

Given perfect parts, a hardware system may not work properly because of wrongly connected cables, poor
connections, electrical noise, poor design, etc. All INMOS products are tested before being shipped. However,
in the real world of bad tracks, static discharges, and transputers designed into experimental systems, there
is a need for diagnostic software.

A number of ‘worm’ programs have been developed, for use in exploring, testing and debugging various
transputer systems. Some of these have now been put into a single program, for use as a general purpose
diagnostic tool. An algorithm for relating the physical network found to the one which the user specifies is
also included.

This document describes the transputer network test program, gives interpretations of the error messages,
and describes some of the more common problems encountered in running multiple transputer networks.

15.2.1 What the network tester does

This section describes the use of the transputer network test program, both for checking the configuration
in which a number of transputers have been connected, and for pinpointing any hardware problems. The
program is run as an EXE on the host transputer, which may be an IMS B004, IMS B010, or similar board (a
version is also available for an IMS B002), running on an IBM or similar PC. Any of the available links may
be connected into a network of transputers, with a reset cable from the subsystem socket of the IMS B004
or IMS B010 controlling the rest of the network. One of the links connects the host transputer to the host
computer, and this link should not be tested (if it is the program will crash). In the rest of this section, the
term ‘master transputer’ is used to describe the processor on which the network test program is run.

The only restriction on the network to be tested is that there is no path into the control link of an IMS C004
(crossbar switch) — otherwise the state of the IMS C004 will be corrupted. However, the program can test a
network of transputers whose connections have been set up by an IMS C004.

The network test program executes by sending a worm into a network of transputers. The worm explores the
network, reaching every single transputer that is connected, no matter what configuration, and reports back
the configuration which it finds. No initial assumption is made about the network. This should be contrasted
with the loading of a network of transputers with a program of fixed configuration, which is the normal approach
to developing programs using the transputer development system.

The worm algorithm is described in INMOS technical note 24, ‘Exploring multiple transputer arrays’. It is
important to realise that the worm numbers transputers in the order in which it finds them, which may bear
absolutely no relation whatsoever to any conceptual order which the user has in mind.

For ease of use, however, the network test program can compare the network it has found against a user’s
PROGRAM specification, and give results in terms of the user’s numbering, together with a statement on
whether or not the two networks match.

The worm proceeds in two phases. Initially, each transputer in the network is loaded with a copy of the worm
program. As this happens, information about each new transputer found — the loading data — is relayed
back to the master and displayed. At the same time, the error flag is briefly set high on the newly found
transputer (halt on error has been set to false!) which may light up an error light, and is detected by the
master in order to determine that error signals are being propagated back correctly. The error flag (and, in
the case of the IMS T800, the FPU error flag) is then left cleared.

Once the entire network has been explored, any further tests are performed on all transputers in the network
in parallel. The ‘network test data’ thus found, including a complete list of link connections, is reported.

Having completed testing, the program starts again by resetting or analysing the system and sending in a
fresh worm.

298 15 Tools

15.22 Using the network test program

The program is loaded and run as an EXE. If you want the results to be filed, then run the program while
pointing at a fold bundle.

If you want to match results against your own network definition, run the program while pointing at your
PROGRANM fold. If the matched results are to be filed, then pick the descriptor fold from your PROGRAM fold,
and put it inside a fold bundie.

You are then prompted for an option. These are listed in the next section. Different options are appropriate
to different circumstances, but for a quick check, try option ‘C'.

After selecting an option, you will be prompted for a link from which to send the worm. When the master
transputer controls a module motherboard, this will usually be link 2. The link connected back to the host
computer must not be selected; if it is the program will crash (this is commonly link 0). A link which is used
to control IMS C004 settings must not be used.

Some options allow both links 2 and 3 of the master to be tried. Usually only one connection is made from
the master into the rest of the system, but it is often useful to be able to explore a network from two different
directions, in order to pin-point an error.

Finally, you will be asked whether you want results displayed in brief or in full. Brief mode simply presents a
summary of results — whether a hardware error has been found, and whether the network found will match
the one specified by the user (if, indeed, one was specified). Full mode presents all results available, and is
described in the following sections.

After a 3 second delay, testing is repeated, until a key is pressed. If results are being filed, a new file will
appear for each run.

A note on matching
The problem of matching two networks is not trivial.

The worm uses its own numbering as it explores the network of transputers, and matches what it has found
against the description of the user's PROGRAM configuration (if given). So long as the two networks match,
the worm gives results using the user’'s numbering scheme. If, however, no match is found (which is always
the case if no PROGRAM configuration is given), the worms own number will be given, suffixed by a *.

The master transputer is never included in a PROGRAM description, but is reported by the worm as MT*.

The matching algorithm is as follows. While the worm loads the network, each time it finds a new transputer it
consults the configuration specified in the descriptor fold to see whether it matches. However, if the physical
network contains more transputers, or more links, than the network specified, the matching may be incomplete;
consider for example the situation when an extra connection is present in the physical network, and the worm
loads through it onto a transputer which does have a counterpart in the PROGRAM descriptor. The matching
algorithm cannot know immediately that the worm has found a transputer which is described in the descriptor.

As the worm returns the network test data, together with a complete map of the link connections, results are
reported using the (possibly incomplete) numbering equivalence discovered above.

However, once all the results are returned, and a complete list of link connections established, the link map
is used to discover any new equivalences between the network found and the network specified. If new

equivalences are indeed found, then the network test data and link map is again displayed, using the user's
numbering scheme as far as possible.

Limitations of use

If a network contains IMS T414 revision A transputers, then only option A should be used.

15.2 Transputer network tester 299

If a network contains IMS M212 disk controller chips, then only option C should be used.

If a worm finds an IMS C004 control link, the state of the IMS C004 will be corrupted, and an error may result.
Care must also be taken if any other peripheral is connected via a link-adaptor.

15.2.3 Options available

The following options are available:

[A] — Check IMS T414/T800 network using internal RAM

The network is explored, but no testing is performed, by a program which only requires 2Kbytes of memory
on each transputer (except, of course, the master). The network may consist of IMS T414 revs A and B, and
IMS T800 transputers. This is the only option which can explore networks containing IMS T414’s of revision
A and is used both to locate such devices (which should ideally be upgraded to revision B) and to check
configurations in which one or more transputer has no external memory.

— Check IMS T212 network using internal RAM

As option A, but for T212s. This option also requires only 2Kbytes of memory on each transputer — it fits
inside internal RAM.

[C] — Check IMS M212/T212/T414/T800 networks

Again, the network is explored, but no testing is performed. However, this program requires 6Kbytes of
memory on each transputer. It is the only option which will explore networks of mixed wordlength (16 and
32-bit transputers), indeed it is the only option which is safe to use with IMS M212 disk controller chips.

[4] — Test IMS T414/T800 networks

A network of IMS T414 and IMS T800 transputers is explored, and all devices found are tested. The pa-
rameters used for testing can be varied, or certain suitable defaults used. These are outined below. Section
15.2.7 describes the testing in more detail. The worm requires 16Kbytes of memory to operate, and will only
work on IMS T414 revision B, and IMS T800 transputers. There is no option available to test a network with
both IMS T212 and IMS T414 transputers.

E] — Test IMS T212 networks

A network of IMS T212 transputers is explored, and all devices found are tested. The bottom 10Kbytes of the
first IMS T212, however, are not tested. The worm requires 10Kbytes of memory to operate. The following
sections outline the different modes of testing both IMS T212 and IMS T414 networks.

@ — Development mode

This mode allows you to explicitly set certain testing values. These are described in section 15.2.7.

[E] — Error light testing

This mode proceeds slowly, flashing the error light on and off on each transputer as it is found. All modes,

infact, toggle error, but this one holds the light on for long enough for you to see it clearly. Thus, the progress
of the worm may be followed, so that if it fails, its last processor found will be obvious.

300 15 Tools

|E] — Full testing

This mode tests all the memory it finds on each transputer, with pauses to test for data retention. This means
that it loads up the network very slowly, for it is testing the bottom 16Kbytes (IMS T414/IMS T800) or 10Kbytes
(IMS T212) of memory by writing data, pausing for a second, and reading it back, for 4 different sets of data,
before loading each transputer.

In the case of the IMS T414/IMS T800, there is an algorithm which determines the size of memory (to a
resolution of 16Kbytes). The remainder of the memory, and the links, are thoroughly tested once the whole
network of transputers have been loaded. Memory is not tested on the master transputer, so there may
be a pause after results come back from the master transputer, before data from the rest of the network is
returned.

When testing a network of IMS T212s, however, no further memory is tested unless explicitly set using option
D. Also, the memory of the first IMS T212 in the network is not tested. However, all links in the network,
including the link from the master transputer to the first IMS T212, are tested, as above.

— Link test

This mode loads up the network, and then tests all the links in the network in parallel. Because the network
is loaded quickly, and a lot of power is drawn due to all links and the processor working flat out in parallel,
this mode is useful to ‘warm up’ a network if a temperature-dependent problem is suspected.

[M] — Memory test
As in mode F, 16Kbytes (IMS T414/IMS T800) or 10Kbytes (IMS T212) of memory is tested on each transputer

before loading, and the remainder is tested at the end. However, there is no pause for data retention. This
makes this mode much faster than mode F. Links are not tested.

@ — Quit

The program terminates without exploring the network. However, it does reset all input links of the master
transputer, and also resets the subsystem.

15.2.4 Interpretation of loading data

This section covers the table of data which appears as the network is loaded. Each new entry in the table
corresponds to a new transputer which has been found. The first entry is from the host transputer.

Typically, the table looks like this:

Boot Booted by Analysed Error
Id Link Id Link Type Speed or Reset Line
MT* -- - -- Host - Reset ok ..
0 1 MT* 2 T414 -15 ok ok ..
1 0 0 3 T800 -—- ok ok ..

A classic problem is that a network is found on the first run of the worm, but not on subsequent runs. This
indicates that the reset cable is not connected to the subsystem socket of the master transputer correctly.
The network of transputers always powers up in a reset state, ready to run a program, but if the reset cable
is not connected correctly, then the network cannot be reset for another run of the worm.

Id

As far as possible, the numbering scheme is as specified in the user's PROGRAM. However, if n0o PROGRAM
descriptor fold is found, or the networks don't match exactly (see the note on matching, above), then the
worm’s own numbering will be given, suffixed by a *. In certain cases, such as a module motherboard or
IMS B003, the worm’s numbering will conveniently match the standard numbering of transputers. MT* is the
master transputer.

15.2 Transputer network tester 301

Link

Links are numbered 0, 1, 2, 3. The boot link is the link on which the transputer was booted by the worm.
(Note that this is not necessarily the same as the way a PROGRAM would be booted.)

Booted by id, link

These entries indicate which parent loaded the transputer. The master was loaded by no-one. So, in the
example given above, link 2 of the master transputer booted transputer 0 on link 1, and link 3 of transputer
0 booted transputer 1 on link 0.

Type

IMS T212, IMS T414, or IMS T800. Note that, at this stage, the worm does not distinguish an IMS M212
from an IMS T212 (see section 15.2.5).

Speed

The speed of the part is reported. This test has not yet been calibrated for the IMS T800, so the speed is
not reported for that device.

Because the test for speed is sensitive to the speed of external RAM, there is a possibility that this test will
give the wrong speed when very fast, or very slow, external RAM is used. In case of discrepancy, the modes
which use internal RAM (A, B) should give the correct speed — assuming internal RAM hasn't been disabled!

Processor analysed

Every transputer has an internal flag which indicates whether the transputer was most recently reset or
analysed. The worm reads this flag, and sends the results back. The purpose of this is to check that both
the reset and analyse control signals are correctly propagated through the system.

On alternate runs, the master will reset, then analyse the system. If the flag matches what was expected, then
the message ok is given. Otherwise, a message Reset not Analysed or Analysed not Reset is
given, and a fault in the reset/analyse chain should be suspected.

The flag on the master transputer, however, is either Reset or Analysed, but should not change during
repeated testing. :

Error Line

The error line is tested each time the worm finds a new transputer. If it is working, the message ok is
reported. If the line is broken, the message Not set will appear.

On the master transputer, however, it is expected that the error line is clear. If this is not so, then the message
Not clear will appear. The same message may also appear the first time that the worm is run — this
is quite normal, and is due to the fact that error may have been set on one of the transputers (transputers
power up with the error flag in a random state).

Since the worm leaves the error flag low, option C is useful when a user wants to clear error (and, in the case
of an IMS T800, the FPU error flag) on all transputers in a network.

15.2.5 Description of network
Having completed Ioadivng the network, further tests may be performed, according to the option selected.

Sometimes, the program may appear to pause while returning results. This is because it is still testing some
transputers. Results are then returned, together with a complete list of link connections.

302 15 Tools

Here is an example of some results returned (using option F), from a particularly bad network:

Memory Link: 0 1 2 3
Id Type Tested Error Id Link Id Link Id Link Id Link

MT* Host - -- -— -— 0 1 —

0 T414 256 k ok 0000 MT 2 0000 i1 0
1 T800 64 k #80008014 0 3 Link Err 17 0000 #80000800

Memory is tested in two phases. Firstly, as the network is loaded, a transputer tests a section of its neighbour’s
memory before loading the program. Then, once all the transputers have been loaded, each transputer tests
the remainder of its own memory. If a memory error is found at the first stage, it is reported under the link
which was doing the testing. At the second stage, the error is reported under Memory Erzoz.

Type

IMS M212 (which at this stage is distinguished from the IMS T212), IMS T212, IMS T414, or IMS T800 as
appropriate.

Memory tested (applies to options D, F, M)

If an option is selected which tests memory, it will first find out how much memory (to a resolution of 16Kbytes)
is present, and then test that amount of memory. This is not true when testing an IMS T212 network. A given
memory size can be explicitly selected by using option D (see section 15.2.7). The amount of memory which
has been tested is indicated, in this case 256 Kbytes for transputer 0, 64 Kbytes for transputer 1. The memory
of the master transputer is never tested.

Testing memory can take some time, (up to 30 seconds per megabyte), and the program will pause while
this is happening.

Address of memory error (applies to options D, F, M)
If an error is found, it will be repbrted as a hexadecimal address. This address should give the actual
byte which is at fault. In the example given, there is a problem in the memory of transputer 1 at address
#80008014.
Network connections
Each transputer has four entries, corresponding to its four links. Each entry may be

---- indicating that the link has not been tried (applies to master transputer);

oooo indicating that the link is unattached;

x y indicating that the link is attached to link y of transputer x;

or an error message. Such a message indicates either a problem on the link, or on a transputer attached to

that link. It does not necessarily imply a problem on the transputer being reported. Read section 15.2.7 for
a background to the error messages.

15.2.6 Error messages

The error messages are listed below. Some of the messages may refer to a particular ‘stage’, which is the
stage of testing at which the error occurred. Certain errors tend to be revealed at particular stages, but for
completeness the stages are listed in section 15.2.8.

#8000abcd - Options D, F, M

Before a neighbouring transputer is loaded with code, part of its memory is tested using the peek and poke
facility of the transputer. This error indicates that a neighbouring transputer has indeed been found, but that

15.2 Transputer network tester 303

its memory is faulty (or does not exist) at the address given. If the value is in the range #80000000 to
#800007FF (IMS T414) or #80000FFF (IMS T800), then the problem lies in internal RAM. Otherwise,
up to a highest tested address of #80003FFF. (16K), the problem lies in external RAM. Don't forget that a
transputer must have 16Kbytes of RAM for this test to succeed.

In the example, the entry #80000800 indicates that the first byte of external RAM is faulty on the transputer
which is connected to transputer 1 link 3. The most likely explaination in this example is that it has no external
memory!

Token error z — all options

When waiting for a reply on a link under test, an unknown token has been returned, at stage z. This may
indicate a problem on the links (e.g. they are communicating at different speeds, or noise) — this usually
appears as Token Exr 1.

If an option is selected which doesn’t check memory, a Token Error may indicate a memory problem on the
adjacent transputer; when a transputer is first booted, it returns a copy of the program code for confirmation,
which may have been corrupted. This usually occurs as Token Erxr 9.

Time out error z — all options

When waiting for a reply on a link under test, no reply has been received within a reasonable time, at stage
z. For some reason, the neighbour died before it was properly loaded.

If an option is selected which doesn't check memory, Time Out 9 may indicate a memory problem on the
adjacent transputer; the transputer has been loaded, but does not run. This might happen, for example, if
option C is used on a network which includes a transputer with no external memory.

Time Out 18 indicates that a link, which was expecting to pass back results from further down the chain,
has not received anything. This error will usually be part of a line of results which is otherwise a repeat of a
previous line — the transputer has reported results, but now wishes to revise its report to indicate an error.
It means that, although the worm was successfully loaded, it has subsequently died somewhere down the
chain from the link indicated.

Alt error y — all options

While waiting for a reply on link y, an unrecognised token was input on this link. This frequently occurs when
two links are communicating at different speeds. It can also occur if a link is unconnected and floating (i.e.
is not pulled down using an appropriate resistor). Check link y on the same transputer, as well as the link
which reported this error.

Link error z — options D, F, L

When testing the links, corrupted data was transmitted at stage = (probably stage 17, which is when the links
are tested exhaustively). This may be due to noise on the line, because of insufficient decoupling, or strong
electical interference, for example. Or it might indicate a problem with the transputer link at either end, though
this is rare.

More often, this error indicates a fault in the section of memory where test data is prepared. This occurs
when the links but not the memory are being tested (i.e. option L). Try again with option M or F.

In the example, the entry Link Err 17 indicates a problem on link 1 of transputer 2. Since option F was
used in the example, this implies that data was being corrupted during transmission between transputer 2
link 1 and the attached neighbour.

Output error z — all options except A, B

The worm has failed to output data on a link, despite the fact that it has already discovered the link to be
attached to another transputer. This implies that the neighbouring transputer has died, for some reason.

304 15 Tools

?#

An unknown error message has been returned to this link. The hexadecimal error value, z, may or may not
be useful. If an option has been used which performs no testing, then try again with, for example, option F.

15.2.7 Testing specifications

To understand how a worm works, it is essential that Technical Note 24 is read. The program explores the
network, using one of five worms, corresponding to options A, B, C, 2, and 4. These have been called the
‘Skinny’ (T2, T4), ‘Mixed Network’, and ‘Fat’ (T2, T4) worms. All five will exercise the reset, analyse and error
lines, but the first three do not have any means of testing memory or links.

The fat worm, on the other hand, performs tests on memory and links using parameters supplied to it. The
various options E, F, M, L, set defaults which have found to be suitable, while option D allows the user to
alter the defaults himself. The sections below which describe the testing of memory and links refer to the fat
worm — default values corresponding to option F are written inside (brackets).

Order of loading

The worm explores the transputer links in order of priority 2, 3, 0, 1 (i.e. from a particular transputer, it first
tries to explore any network off link 2, then off link 3, etc.). This contrasts to the order given in technical note
24. The order of exploration means that the numbering scheme which the worm uses matches the actual
numbering of transputers when module mother boards and IMS B003s are explored.

Size of system

The limit on the size of system which can be explored is displayed by the program. At the time of wrmng it
is 1000 transputers.

Speed of part

Much useful information can be'deduced from the time taken at low priority to perform the loop:

SEQ I = 0 FOR 1000
"INT x :
SEQ
= -1
x := x TIMES x

This will depend on the speed of the part, and type of the part. It may be used to distinguish IMS T414
revision A from revision B, and IMS T800 revision A from subsequent revisions. However, if internal RAM is
disabled, the timings will be affected, and the speed of the part may be wrongly stated.

The following possible values for the Tick Rate assume that the program and workspace are both inside
internal RAM (i.e. option A/B):

(_Device Value
IMS T212a 20MHz parts 30 or 31
IMS T414a 12.5 MHz parts | about 2800

IMS T414b and T800a | 20 MHz parts 43 or 44
IMS T800b,c and d 20 MHz parts | 20

If external memory is used (all options other than A, B), the value will be slightly larger. On the master
transputer, which may be performing other work at the same time, the value given will be substantially larger,
and depends on what else (displaying results, etc.) that transputer is doing.

15.2 Transputer network tester 305

Type

By combining a test for MemStart (see the transputer reference manual) with the above tests for speed,
the various different types of transputer can be distinguished. A 16-bit transputer is easily distinguished from
a 32-bit transputer, for example, by using the transputer BCNT instruction (see the compiler writer’s guide).

Reset and analyse

On alternate runs, the master will either reset or analyse the subsystem. This makes no difference to the
function of this program, but a register exists on the transputer which is read to tell whether the transputer
was reset or analysed, and hence confirm that these signals have been propagated correctly.

Error line

As each transputer (except the master) is loaded, its error flag is set, the master reads the subsystem error
line, and the error flag is then cleared before the worm proceeds to the next transputer. Thus, the Error Line
should be TRUE for every transputer, except for the master, when it should be FALSE.

Note that, on the first run, the error line may be TRUE for the master transputer — error flags may have been
set by a previous program, and not yet cleared. Indeed, when transputers power up, the state of the error
flag is not initialised. If, however, the value is TRUE for the master transputer on subsequent runs, or FALSE
for any other transputer, then a fault on the error line should be suspected.

Memory

Before loading a transputer with code, the parent tests the lowest 16Kbytes (for IMS T414, or 10Kbytes for
IMS T212) of memory using peek and poke. This allows it to verify that the space which will be occupied
by the worm, when it is loaded onto that transputer, is indeed safe. An error which occurs at this stage
is reported in the network test data as an entry under the link which was performing peek and poke. It is
possible to increase this value using option D.

When testing IMS T212s, note that the master (IMS T414) does not peek and poke the memory of the first
IMS T212.

Once loaded, the program uses an algorithm to determine how much memory it has. (This is not true for the
IMS T212). This algorithm has a 16Kbytes resolution, and may violate parity. In development mode (D), the
user may specify the amount of memory to be tested on each transputer, to 1K resolution, with no risk of
violating parity.

The remainder of memory, up to the largest memory address found, is tested on all transputers in parallel,
once all the transputers in the network have been loaded. Any error will be reported in the network test data
under the memory error column.

In both cases, the memory is tested as follows:
1 The address is written, as a word, to each word in the block to be tested.

2 After a pause of 1000 milliseconds, each word is read back, and checked, in turn, being replaced
by the BITNOT conjugate word.

3 After a further pause, each word is checked, and replaced by the value #55555555
(#5555 for the IMS T212).

4 After a further pause, the words are checked and replaced by #AAAAAAAA
(#AAAA for the IMS T212).

5 Finally, after a pause, the words are read and checked.
Option M does not use any pause. A different pause may be specified using option D.

The memory of the master transputer is not tested. The program does not perform detailed tests on the
memory (e.g. march tests, etc.) except as described above.

306 15 Tools

Links

Each link is tested for the existence of a neighbour by attempting to output a probe sequence, and wait-
ing (50) milliseconds for a reply (modes A, B wait just 10 milliseconds). This default is more than ample.
Communication takes place using a byte protocol, and if at any stage incorrect data is returned, the link is
assumed to be bad, and no further communication takes place on that link. If a communication with incorrect
protocol takes place on the link which is being probed, the error is reported as a Token Error, the entry being
made against the link which was doing the probing. If some unrecognised data appears on a different link, it
is reported as an Alt error.

When a transputer is loaded, it immediately returns the program for checking. If the program has been
corrupted in transmission, this will show up as Token Error 9.

After all transputers in the network have been loaded, on receipt of a synchronise token, all links in the whole
network are tested in both directions in parallel. A test block of data, which is 256 words long and consists
of a section of the orginal program, is transmitted in both directions on each link. The input is checked, and
the exchange is repeated 350 (IMS T414/T800) or 700 (IMS T212) times on each link, independently. As far
as possible, the constructs OutputOzFail.t and InputOrFail.t are used, so that the program can
recover from, and report the communication of bad data. An error appears as the entry Link Error 17 against
the link which discovered that its input data was corrupted.

Any links of the master transputer which are found to be connected into the rest of the network are tested in
the same way as the other links in the network.

15.2.8 Stages of loading

In technical note 24, the worm algorithm is described with reference to a number of different stages. These
stages are also useful in telling when an error was detected. The following list of stages refers to the fat
worm. Other worms may use a subset of these stages. The meaning of the tokens is described in technical
note 24.

1 Send a probe sequence from a link, to determine whether there is another transputer connected.

2 Set the bottom 10K/16K of memory of the neighbour to word addresses.
Pass back a GreenLight .t token to the master. Pause for one second.

3 — 6 Read back and check data, writing a new word as we go.
After each stage, pass back a GreenLight .t token, and pause for one second.

9 Having determined that there is an unbooted neighbour with at least 10K/16K of good data, boot that
transputer with a copy of the worm program. The neighbour will return the program for checking.

11 Send down a set of initalisation data to the newly booted transputer. The booted transputer will
return a set of LoadingData. Pass this back to parent, and synchronise with the master.

12 The neighbour, or someone further down the chain, is now testing its links.
Pass back GreenLight .t tokens. Do not timeout the link at this stage.

12 Also be prepared to pass back loadingData, and forward a Synchronise.t token.

12 When the neighbour sends back ReturnControl. t and the number of transputers found so far,
it is assumed that the branch off that link has been completly explored. Try another link.

14 Once all links have been explored, return control to parent.
15 Synchronise the whole network, prior to final testing.
17 Test all links and memory in parallel.

18 Send results of testing, networkData, back to parent. Forward networkData from each link
in turn, reading from a link until NoMoreData. t is encountered. When all links have been read,
return NoMoxreData.t to parent.

The dots which appear while the worm is loading indicate the return of the token GreenLight . t.

15.3 Memory interface program 307

15.3 Memory interface program

Introduction

The External Memory Interface Program allows the designer of a system to get the best out of the configurable
external memory interface on the IMS T414 and IMS T800 transputers.

The program allows the system designer to modify the values of the timing parameters of the memory interface
and see what effect the changes have. The program’s user interface has a number of pages, some of which
have inputs on them, some of which have outputs and some of which have both. It is possible to switch

between pages at the touch of a button, and therefore to be able to see the effect of the input values very
quickly and change them easily.

It is possible to store both the current input parameters and the contents of the pages in folds. The input
parameters may then be read in by the program allowing continued development of a system. The pages,
stored in folds, can for instance be sent to a printer and the configuration table can be used as input to the
EPROM programmer program for placing in ROM.

The configuration table can also be used to generate PAL equations.

15.3.1 Capabilities
Input to the program can be divided into three broad categories:

1 Values of the various parameters of the memory interface itself, such as the periods of the various
Tstates.

2 Parameters of the system, such as the processor type and speed.

3 Parameters of the program itself, such as the labels and names of signals and the name to be used
if the parameters and pages are written to folds.

Given the above input, the program displays on its various pages:
1 General timings useful for any memory.
2 Times specific for DRAMS.
3 The waveforms of the programmable strobes.

4 The table of bits that makes up the memory configuration data and the addresses that those bits
occupy in memory.
15.3.2 Using the program

This section explains how to get started with the program and lists the various commands that it will obey.

Getting started

The program is in the form of a CODE EXE fold. First it is necessary to get the program into memory by
pressing the key. Place the cursor on an empty fold and press the key.

The program will initialise itself, then the title page will be displayed.

308 15 Tools
Commands
Key Description
0.5 Move to and display the corresponding page.
[CURSOR UP Use to select the current input; the cursor moves to the next or previous input on the
|CURSOR DOWN] | page. If there is only one input on a page then nothing happens. If there are no inputs
on the page then the help window is displayed.
[CURSOR LEFT] | Used to scroll the waveforms page (page 4) horizontally. If used on any other page or an
CURSOR RIGHT] | attempt is made to scroll off the edge of the screen then the help window is displayed.
C Change the value of a parameter. It's action depends upon the type of the parameter
(see section 15.3.3). If there are no input parameters on the current page then the help
menu is displayed.
R Reset all the parameters to their default values; these are the values that the program
uses immediately after starting unless the parameters were read from a fold.
F Store the current values of the parameters and the contents of all the pages, other than
the title page, in folds (see section 15.3.5).
Q Quit from the program. The program will ask for confirmation, press Q again to confirm
the command.
HELP] Displays the help window. This key may be used at any time to get the help window
(e.g. half way through typing in a new label for a strobe).
other Pressing any other key will cause the help window to be displayed.

The commands may be typed in upper or lower case.

15.3.3 Input

There are three main types of input parameter, which can be changed using C:

Cycle — C is used to obtain the next value in the cycle, wrapping round at the end of the cycle.

Number — A number is expected, terminated by any character other than 0 to 9 and
may be used to delete the last digit entered. The program prevents too many digits being
typed in. The value is checked and if it is outside the range for the parameter an error is produced
and the number must then be re-entered.

String — A string is expected, terminated by [ENTER]. may be used to delete the last character
entered. The string is displayed between a pair of ". Entry of strings too long to fit between the "’s
is prevented, excess characters being ignored.

The durations of the Tstates, the strobes and the wait period are measured in periods Tm. One period Tm
is half of the processor cycle time.

Memory interface parameters

1 The length of each of the Tstates, T1 to T6, is entered as a number of Tm periods between 1 and 4.

2 The time periods of each of the programmable strobes, S1 to S4, is entered as a number between
0 and 31. Note that 0 is a special case, if the period of S1 is set to 0 then notMemS1 stays high
throughout the memory cycle and if the period of S2, S3 or S4 is set to 0 then the corresponding
signal will stay low throughout the memory cycle.

3 The refresh period cycles between 0, 18, 36, 54 and 72 clockin periods. If the value is 0 then refresh
is disabled.

4 The write mode cycles between early and late.

~
15.3 Memory interface program 309

5 The configuration cycles between 0 to 11 and 31. This indicates whether the current parameters
match one of the preset memory configurations of the transputer. These configurations may be
chosen by cycling through the values of this parameter. When modifying other parameters, it is
possible for the resulting parameters to match one of the preset configurations, if so the value will
indicate which preset configuration this is, if not then ‘=’ is displayed instead of a number.

System parameters

1 The type and speed cycles between IMS T414-15, T414-17, T414-20, T800-17, T800-20, T800-22,
T800-25, T800-30 and T800-35.

2 This clock frequency should not be changed; it should be left at 5000kHz.

3 The wait parameter may be set either to a number greater than or equal to 0, or to one of the
programmable strobes, S2 to S4, simply by either typing in the number or s followed by a number
2 to 4. Note that connection to S1 is meaningless and therefore not allowed.

Program parameters

1 Each strobe has two labels each of which is a string. One is 9 characters long and is used on the
waveforms page to label each waveform. The other is only 1 character long and is used extensively
in the timing pages.

2 The file name is a 20 character string used as a label on the folds produced by F.

15.3.4 Output
There are two types of output:
o Numeric output

e Waveform output

Numeric output
Three pages consist entirely of numeric output; for basic times, DRAM times and configuration table.

Basic times

The basic times page contains general times useful for every type of memory:

TOLOL Cycle time (in both nanoseconds and processor cycles)
TAVQV Address access time

TOLQV Access time from notMemS0
TrLQV Access time from notMemRd
TAVOL Address setup time

TOLAX Address hold time

TrHQX Read data hold time

TrHQZ Read data turn off

TO10H notMemS0 pulse width low
TOHOL notMemSO0 pulse width high
TrLrH notMemRd pulse width low
TrLOH Effective notMemRd width
TOLwL notMemSO0 to notMemWrB delay
TDVwL Write data setup time

TDVwL Write data hold time 1

TwHDX Write data hold time 2

TwLwH Write pulse width

TwLOH Effective notMemWrB width

310 15 Tools

DRAM times
The DRAM times page contains information useful when using drams:

T1L1H notMemS1 pulse width

T1H1L notMemS1 precharge time

T3H3L notMemS3 pulse width

T3H3L notMemS3 precharge time

T1L2L notMemS1 to notMemS2 delay
T2L3L notMemS2 to notMemS3 delay
T1L3L notMemS1 to notMemS3 delay
T1LQV Access time from notMemS1
T2LQV Access time from notMemS2
T3LQV Access time from notMemS3
T3L1H notMemS1 hold (from notMemS3)
T1L3H notMemS3 hold (from notMemS1)
TwL3H notMemWrB to notMemS3 lead time
TwL1H notMemWrB to notMemS1 lead time
T1LwH notMemWRB hold (from notMemS1)
T1LDX Write data hold from notMemS1
T3HQZ Read data turn off .

TRFSH Time for 256 refresh cycles (in microseconds)

Configuration table

The configuration table page contains a list of bits that make up the memory interface configuration
respresented by the input parameters together with the addresses that those bits occupy when
placed in ROM.

The basic and DRAM times pages each have a list of parameters. Each of these parameters consists of a
JEDEC symbol, a description of the parameter, and the minimum and/or maximum times for that parameter.

The number of wait states is displayed on the parameters page.

Waveform output
The waveforms page displays a diagram of the waveforms of each of the strobes.

At the top of the page is displayed the processor clock and the Tstates, a number indicating the Tstate, ‘"W’
indicating a wait state, and 'E’ indicating a state that is inserted to ensure that T1 starts on a rising edge of
the processor clock.

Below this are displayed the waveforms of the programmable strobes and the read, write and address/data
strobes. Each of these strobes is labeled with the corresponding label parameter.

The point at which the read data is latched is indicated by a '+’ beneath the read cycle address/data strobe.

The MemWait waveform shows the input to the MemWait pin. If the wait input is a number then it goes low
n Tm periods after the end of T1 and high again at the end of T6, if the wait input is connected to a strobe it
goes low and then high when that strobe does so.

15.3.5 Storing and retrieving parameters and pages

The F command causes the program to write out two folds. These two folds are inserted as the last items in
the fold bundle on which the cursor was placed when the program was run. Repeated use of £ results in a
pair of folds each time.

The first of the folds contains the current values of the input parameters. If the program is run with the cursor
pointing to a fold bundle with one of these folds as the first item in the bundle then the parameters will be read
from the fold and a message displayed. This enables continued development of a memory configuration. It

15.3 Memory interface program 311

is strongly recommended that no changes be made to the contents of this fold directly as this may cause
problems should it later be used as input to the program.

The second of the folds contains a fold for each page apart from the title page. These folds contain the text
of the pages making, for example, printing the waveforms very easy. The fold containing the configuration
table can be used as part of the input to the EPROM hex program to make placing the configuration in ROM

easy. It is strongly recommended that no changes be made to the contents of the configuration fold directly
as this may cause problems should it later be used as input to the EPROM hex program.

15.3.6 Examples
This is some sample output, taken directly from the folds produced by pressing F:

Page 1 EMI Configuration Parameters

Device selection - T414-20
External Memory Interface clock period (Tm) = 25 ns
Input clock frequency = 5000khz
Wait States = 0

Address setup time Tl = 1 periods Tm
Address hold time T2 = 1 periods Tm
Read cycle tristate / Write data setup T3 = 1 periods Tm
Extended for wait T4 = 1 periods Tm
Read or write data TS5 = 1 periods Tm
End tristate / Data hold T6 = 1 periods Tm
Programmable strobe "notMemS1l " "1" S1 = 30 periods Tm
Programmable strobe '"notMemS2 " "2" S2 = 1 periods Tm
Programmable strobe "notMemS3 " "3" 83 = 3 periods Tm
Programmable strobe '"notMemS4 " "4" S4 = 5 periods Tm
Refresh period 72 clockin periods Wait 0

Write mode Late Configuration 0

Non-Programmable strobe (S0) "notMemSO " "O"
Read cycle strobe "notMemRd " "r"
Write cycle strobe "notMemWrB" "w"

312 15 Tools

Page 2 Basic Times

Symbol Parameter min(ns) max(ns) notes
TOLOL Cycle time 150 - = 3 processor cycles
TAVQV Address access time - 125

TOLQV Access time from 0 - 100

TrLQV Access time from r - 50

TAVOL Address setup time 25 -

TOLAX Address hold time 25 -

TrHQX Read data hold time 0 -

TrHQZ Read data turn off - 25

TOLOH 0 pulse width low 100 -

TOHOL 0 pulse width high 50 -

TrLrH r pulse width low 50 -

TrLOH Effective r width 50

TOLwWL 0 to w delay 50

TDVWL Write data setup time 25
TwLDX Write data hold time 1 75
TwHDX Write data hold time 2 25

TwLwH Write pulse width 50

TwLOH Effective w width 50

Page 3 Dram Times
Symbol Parameter min(ns) max(ns) notes
T1L1H 1 pulse width 125 -
T1H1L 1 precharge time 25 -
T3L3H 3 pulse width 25 -
T3H3L 3 precharge time 125 -
T1L2L 1 to 2 delay 25 -
T2L3L 2 to 3 delay 50 -
T1L3L 1 to 3 delay 75 75
T1LQV Access time from 1 - 100
T2LQV Access time from 2 - 75
T3LQV Access time from 3 - 25
T3L1H 1 hold (from 3) 50 -
T1L3H 3 hold (from 1) 100 -
TwL3H w to 3 lead time 50 -
TwL1lH w to 1 lead time 75 -
T1LwH w hold (from 1) 100 -
T1LDX Wr data hold from 1 125 -
T3HQZ Read data turn off - 25

TRFSH 256 refresh cycles - 3650 Time is in microseconds

15.3 Memory interface program 313

Page 4 | 1 | 2 | 3 | 4 | 5 | 6 |
ProcClock /— \ /— \ /— \ /
notMemSO0 (0)= \ /
notMemS1 (1)= \

notMemS2 (2)= \ /

notMemS3 (3)= \ /

notMemS4 (4)=

MemWait \ /

READ CYCLE

MemAD X > e < >--<
Read data latched here *

notMemRd (r)= \ /

WRITE CYCLE _

MemAD X X X

notMemWrB (w)= \ /

Page 5 Configuration Table

#7FFFFF6C - 0 #$7FFFFFB4 - 0
#7FFFFF70 - 0 #7FFFFFB8 - 0
#7FFFFF74 - 0 #7FFFFFBC - 0
#7FFFFF78 - 0 #7FFFFFCO0 - 0
#7TFFFFF7C - O #7FFFFFC4 - 1
#7FFFFF80 - O #$7FFFFFC8 - 1
#7FFFFF84 - 0 #$7FFFFFCC - 0
#7FFFFF88 - O #7FFFFFDO - O
#7FFFFF8C - O #$7FFFFFD4 - O
#7FFFFF90 - O #7FFFFFD8 - 1
#7FFFFF94 - 0 #7FFFFFDC - O
#7FFFFF98 - 0 #7FFFFFE0 - 1
#7FFFFF9C - O #7FFFFFE4 - O
#7FFFFFA0 - 1 #7FFFFFE8 - 0
#7FFFFFA4 - 1 #$7FFFFFEC - 1
#7FFFFFA8 - 1 #7FFFFFF0 - 1
#7FFFFFAC - 1 #$7FFFFFF4 - 1
#7FFFFFB0 1 #$7FFFFFF8 - 1

15.3.7 Caveats

Please note that the values supplied by the program are subject to alteration when IMS T414 and IMS T800
characterisation data is added to the program.

314 15 Tools

15.3.8 Error and warning messages

The following is a list of error and warning messages the program can produce:

Wait race
If one of the programmable strobes is used to extend the memory cycle then the strobe must be
taken low an even number of periods Tm after the start of the memory interface cycle. If the strobe
is taken low an odd number of periods after the start then a wait race warning will appear. Should

this warning appear, it will remain on display on all pages apart from the title and waveforms page
until the race condition is removed. See the IMS T414 and/or IMS T800 data sheet for more details.

Input out of range
If the value entered for a numeric parameter is outside the range valid for that parameter, an input

out of range warning is displayed, the value cleared from the screen and the program waits for a
new value.

S1 to MemWait

If an attempt is made to connect S1 to the MemWait input an error is displayed because it is a
meaningless operation.

Unable to access fold
This can occur on startup and indicates that the program is unable to read and write folds, usually

because the program has not been run on a fold bundle. The program waits for a key press and
then terminates.

Filer unusable

This indicates that the program is unable to create the folds due to a previous error.

Filer error

This indicates that when trying to store the parameters and pages in folds an error occured. The
filer will be unusable for the rest of the program’s execution.

154 EPROM hex program
15.4.1 Using the program
The program must be run on a fold bundle. The fold bundle may contain up to three folds.

1 A CODE SC fold.

2 A CODE PROGRAM fold.

3 A memory configuration fold.
A CODE SC fold and a CODE PROGRAM fold are produced by the utility of the compiler, when
applied to an occam SC or occam PROGRAM fold set respectively. The memory configuration may be
produced as output from the ‘Memory interface program’ or may be generated by hand.

The only item which must be present in the bundle is the CODE SC fold. If no memory configuration fold is
present, no memory configuration will be loaded into the EPROM. Similarly, if no CODE PROGRAM fold is

15.4 EPROM hex program 315

present, no CODE PROGRAM fold will be loaded into the EPROM.

Two occam procedures are provided in source form as example loaders. One of these interfaces to a host
and loads a network from information received via a serial line and the other loads a network from information
obtained by scanning through a CODE PROGRAM held in the EPROM. These programs should be modified
for the environment in which they are to run, if the user wishes to create an EPROM which is to be used as
a loader.

15.42 What the EPROM hex program does
The EPROM hex program builds a buffer containing the future contents of the EPROM in the order:

1 Contents of the CODE PROGRAM fold (if present)

2 Contents of the CODE SC fold (the main procedure)

3 Transputer initialisation code

4 Memory configuration (if present)

5 Entry jump to the inititalisation code
These items, padded to word boundaries, are placed adjacent in the buffer. A transputer booting from ROM
starts executing with the instruction pointer set to location MOSTPOS INT - 2. The two bytes from this
address are loaded with a jump to the entry point of the initialisation code, or to a longer jump if the full
jump cannot be achieved using a two byte instruction. The position of this jump, therefore, governs the

actual address for all the other components of the EPROM. The size and start address of the contents of the
EPROM and how large an EPROM is required can then be calculated.

The buffer is built in the following way:

Stage 1
The fold bundle is checked to see if a CODE PROGRAM fold is present, if it is, the contents of this fold are
read directly into the buffer, which is then padded to a word boundary.

Stage 2
The contents of the CODE SC fold are added to the buffer. At the same time the workspace requirement
and the entry point of the SC are noted. The buffer is again padded to a word boundary.

Stage 3
The bundle is checked for a memory configuration fold. Note that this fold must be filed. A memory configu-
ration is a list of pairs of numbers in the format:

configuration.address configuration.value
A configuration address may be in hex (preceded by ‘#') or in decimal. A configuration value must be either
0 or 1. A memory configuration fold must contain all of the configuration address value pairs, a fold which

contains some but not all of the values is treated as an error. A ‘Configuration Table’ page produced by the
memory interface program, which has been written to a fold, may be used without modification.

Stage 4
The code which initialises the transputer is added to the buffer directly after the CODE SC. The initialisation
code does the following:

1 Copy 600 bytes from internal RAM to top of RAM if required.

2 Read and save the current state of the transputer if required.

3 Set up local workspace.

316 15 Tools

4 Initialise process queues.
5 Clear Error and HaltOnError.
6 Clear FP.Error on a T800.

7 Initialise all link process words, the event process word and the high and low priority timer queues
to Not Process.

8 Start the processor clock
9 Initialise the work space and parameters for the procedure in the SC.
10 Call the procedure.

The local workspace is initialised for the main procedure as though it had just been called from an outer level
process. The workspace is initialised for the following parameter list

PROC EPROM.SC (INT entry.point,
[60]1BYTE buffer,
VAL[600]BYTE memory.Ccopy,
VAL[]BYTE program.buffer)
SEQ

The workspace initialisation depends on the presence of a CODE PROGRAM fold in the bundle and on the
response to prompts given by the EPROM interface program as it is constructing its internal buffer. All of the
parameters must be present to enable the EPROM Hex Program to supply a pointer to a separate vector
space if the SC has been compiled with a separate vector space. The use of the parameters in relation to
the actions of the initialisation code is described in more detail below.

entry.point is used when the main procedure is going to be used as a loader. This variable must then
be set by the procedure to the offset (from MOSTNEG INT) of the initial workspace pointer AND
entry point of the loaded code. This value is obtained from the loading information that the EPROM
loader interprets from the host, or from the included CODE PROGRAM. INMOS technical note 34,
‘Loading transputer networks’, describes the transputer development system loading protocol in
detail and shows how the entry point is sent to each processor in a network. On exit from the
loader procedure, the transputer’s instruction pointer and workspace pointer will be set to the value
contained in entry.point.

buffer is used when the main procedure will load and analyse the transputer network. It has two uses. On
entry to the procedure, buffer contains the processor state information, retrieved by the initialisa-
tion code, which enables the EPROM to emulate the actions of a processor which is analysing from
link. After any analyse function required has been completed, this buffer may then also be used as
an intermediate buffer for passing on code packets to processors later in the network, and passing
back data packets from processors later in the network.

memory.copy is used when the procedure will analyse the transputer network. It contains a copy of the
600 bytes of memory starting at MOSTNEG INT. This copy is the first action performed by the
initialisation code. The copy is performed, because the area of RAM copied contains information
vital when analysing a transputer, and the EPROM uses the area as local workspace and thus
destroys its contents.

program.buffer is used when the procedure will load a network from the contents of the EPROM. It is
a reference to the location of the contents of the CODE PROGRAM fold if there was one in the fold
bundle. If there was not a CODE PROGRAM fold in the fold bundle,
then (SIZE program.buffer) = 0.

15.4 EPROM hex program 317

When the required components have been input and inserted into the buffer, the following information is
displayed:

o The total ROM requirement for code and data, in bytes.
o The workspace requirement of the main procedure, in words and bytes.
« The total RAM requirement of the EPROM, in bytes.
The total RAM requirement of the EPROM is made up from:
o Transputer reserved locations from MOSTNEG INT.
e The (small) workspace of the initialisation code.
e The 60 bytes of buffer.
o The workspace of the main procedure.
e The separate vector space of the main procedure (if any).
If the EPROM is intended for use as a loader, the total RAM requirement must not exceed 560 bytes on a

T4 or T8 and 464 bytes on a T2. The program produces a warning message if these values are exceeded.
If, however, the main procedure is not a loader the warning can be ignored.

Stage 5

The program will write the contents of the buffer into a new last fold of the bundle, labelled EPROM hex.
The first line of the new fold contains the start address for the code in the EPROM followed by the transputer
type. A typical example is:

.TFFFF22C - T4

The rest of the fold consists of lines containing the EPROM contents as bytes written out in hexadecimal:
73 41 F7 72 30 AC 71 73 72 30 F7 72 30 71 F2 D1

00 00 66 02

Messages

The initial display is the title and version followed by the prompt:
Create Hex Table For EPROM Program

Insert copy for analyse (y/n) ?

If n is typed then the initialisation code will not copy the bottom 600 bytes of RAM to the top of RAM and the
memory . copy parameter will not contain processor state information for use by analyse.

If y is typed then the initialisation code will copy the bottom 600 bytes of RAM up to the top of RAM; this

is the copy that is passed into the SC as the parameter memory . copy and contains information which is
needed when analysing the board. The program then prompts the question:

RAM size (in k-bytes) ?

The size ma); be entered in hex (preceded by ‘#) or in decimal and is terminated by carriage return. The
initialisation code will copy to the 600 bytes immediately below this value of the RAM size.

318 15 Tools

The program will then display the message:
Building table in buffer...

and then either

Configuration table read ok
or No configuration table in bundle

indicating whether or not a configuration table has been read and inserted into the buffer. This is followed by
the message

EPROM hex created OK
indicating that the EPROM code has been built. Information about the EPROM code is then displayed.
Total ROM space requirement = number bytes
SC’s work space requirement = number words, number bytes
Total RAM space requirement = number bytes

If the total RAM requirement is too large for the code to act as a loader, the program produces the following
warning message:

WARNING: total RAM space requirement exceeds maximum allowed for a
loader (limit = numberbytes)

If the main procedure is not a loader the warning can be ignored. The next message displayed is:
Writing hex to fold

This is followed by the termination message:
Press a key to exit

and waits for the user to press a key before terminating.

Error messages

Error messages produced by the program are:

Cannot open fold

Unreadable fold in bundle

Cannot create file for write

Cannot open file for write

Code buffer overflow

Incorrect configuration value

All config values have not been filled
Fold bundle does not contain code file

Unknown transputer target

15.5 Hex to programmer program 319

15.5 Hex to programmer program

The Hex to Programmer program inputs a fold in the format output by the EPROM hex program, and outputs
it to the serial port (device name COM1:) in Intel Hex format. The program has been tested using the GP
XP640 EPROM programmer.

The program is provided in source form to illustrate how a fold prepared for EPROM may be transmitted to
a device or file. Many users will find that the program can be used without modification but if, for example
the EPROM programmer being used does not support Intex Hex format, then the program will need to be

modified. The program has been designed to make such modifications easy to make. The format specific
parts of the program are in PROC send.buffer and are also listed at the end of this section.

15.5.1 Using the program

The Hex to Programmer program should be applied to a fold containing data in the format output by the
EPROM hex program.

The first action of the program is to read in the data and check that the start address is correct for the amount

of data in the fold. The start address is checked by making certain that the code length read in, added to the
start address, places the last two bytes at the correct boot from ROM entry point for the specific transputer

type.
The startup title displayed by the program is:
Hex Table To EPROM Programmer Program

This is followed by version and copyright messages, and then the message:

Reading table into buffer...
When this is completed, information about the input data is displayed:

Transputer target is T2/T4/T8
Start address = hex.number
Code size = hex.number bytes

If the transputer target is T2, this will be followed by the question:

Number of EPBOMS on T2 board (1 (byte access) or 2 (word access)) ?
This question is to determine whether consecutive bytes are to be written to a single EPROM (byte access),
or alternate bytes are to be written to two EPROMs (word access). Word access is assumed for T4 and T8
and so four EPROMs are assumed.
Depending on the response to the previous question, one of the following messages is displayed:

In word access mode
or In byte access mode

This is followed by the prompt:

EPROM size (in K bytes): 1, 2, 4, 8, 16, 32, 64, (0 quits) ?
The EPROM size is used by the program to determine the start offset within the EPROM which corresponds
with the start address of the code read in. Only EPROM sizes large enough to hold the data are offered to
the user.

The next message displayed is the help message for communicating with the EPROM programmer. The

320 15 Tools

contents of this message will depend on the interface provided to the programmer.

XP640 EPROM programmer
Connect XP640 to IBM’s serial port (COM1)
Set XP640 to :
9600 baud
Intel Hex
8 data bits, 1 stop bit, no parity, handshake on

Commands are :
? : type this information

D : display DEFine area (part of EPROM to be written to)
w : send full woxrds (only in byte access mode)
{byte.no} : send selected byte (only in word access mode)

Q : terminate session
S{byte.no} : display selected byte on screen

The program then prompts for a command:
Ready for command:

Before use the serial port (COM1 :) must be set up using the DOS command:

mode coml1:9600,n,8,1

For other baud rates etc. the parameters to the mode command will need to be changed, see the DOS
manual for more information.

This is a more detailed version of the help information:
? displays the help information that has been listed above.

D displays the range of address in the EPROM that are to be programmed. This makes it easy to only
program the area of the EPROM that needs to be programmed thus saving time.

W sends every byte to be programmed out to the programmer. It is only usable in word access mode
as it sends out both bytes of the word (remember this is only possible on a T2) one after the other.

byte.no sends only the selected byte from each word to the programmer (0 or 1 for a T2, 0 to 3 for a T4 or
T8) to enable each one of the EPROMs to be programmed individually with a single byte from each
word.

Q terminate the programming session (i.e. exit from the program).

Sbyte.no displays the selected byte from each word on the screen.

15.5.2 Adapting the Hex to programmer program

This section outlines the parts of the Hex to programmer program which format and output the hex data. In
particular, the format of a data frame is specified in the fold else data recozxd and the end-of-file frame
is specified in the fold sent all of data, so send end of file record. These are the only
parts of the program which need to be changed if a different output format is required.

15.5 Hex to programmer program 321

PROC send.buffer defines some useful constants and procedures before entering output data.
PROC send.hex.byte sends a byte and adds it to the checksum; PROC send.hex.word sends a
two byte word by calling send.hex.byte twice.

PROC send.buffer (CHAN OF ANY from.line, to.line,
VAL []BYTE buffer, VAL INT address, count, byte.no)

INT named.result :
VAL colon IS INT ’‘:’ :
VAL data.record IS #00:
VAL end.of.file.record IS #01
INT sum, bytes.sent
BOOL going:
... send.hex.byte

.. send.hex.word
INT record, reply :
SEQ

... dinit

... output data

.. terminate

output data formats the data into records of no more than record. size bytes and outputs them to
the programmer, terminating with an end-of-file record.

{{{ output data
WHILE going
INT bytes.left
VAL record.size IS 16
INT bytes.this.record :
SEQ
bytes.left := count - bytes.sent
IF
bytes.left >= record.size
bytes.this.record := record.size
TRUE
bytes.this.record := bytes.left
IF
sent all data, so send end of file record
else data recorxd

11}
The format of the Intel Hex end-of-file record is specified by:

{{{ sent all data, so send end of file record
bytes.this.recoxrd = 0

SEQ
string.to.screen ("*cEnd of file record")
to.line ! colon -- delimiter
sum := 0
send.hex.byte (0)
send.hex.word (0) -- dummy address

send.hex.byte (end.of.file.recoxd)

INT checksum:

SEQ
checksum := - (sum \ 256)
send.hex.byte (checksum)

-- n.b. serial convertor ignores *c

- but sends *c*n on receiving *n

write.string (to.line, "*c*n")

going := FALSE

}}1}

322

15

Tools

The format of the data record is specified by:

{{{

else data record

TRUE
INT address.this.recozxd :
SEQ

h

address.this.record := address + bytes.sent
string.to.screen ("*cRecord number ")
int.to.screen (record)

record := record + 1
to.line ! colon -- delimeter
sum := 0

send.hex.byte (bytes.this.record)
send.hex.word (address.this.record)
send.hex.byte (data.recorxd)
send data bytes

bytes.sent := bytes.sent + bytes.this.record
INT checksum:
SEQ

checksum := - (sum \ 256)

send.hex.byte (checksum)
-- n.b. serial convertor ignores *c
- but sends *c*n on receiving *n
write.string (to.line, "*c*n")

The conditions at the top of these folds must not be changed as they are the tests in the IF construct
which selects the record type to be sent. The channel to.1line is the output to a process, called the serial
converter, which converts a stream of ASCIl characters into output to the file COM1. The device name COM1
may be changed if required.

else data record uses the following code to send the next bytes.this. record data bytes to the

programmer:
{{{

send data bytes

SEQ i = bytes.sent FOR bytes.this.record
INT databyte :
SEQ

}}}

IF
byte.no >= 0
databyte := INT buffer[(i * bpwd) + byte.no]
TRUE
databyte := INT buffer[i]
send.hex.byte (databyte)

16 System interfaces

This chapter describes a number of system interfaces associated with components of the transputer develop-
ment system. These are provided for reference; it is expected that users will normally use the 1/O procedures
provided to carry out sequences of operations on these interfaces.

The interfaces described are:

1 The terminal interfaces provided over the channels keyboard and screen available to an EXE
running within the TDS.

2 The user filer interface provided over the channel array pairs to.user.filer and
from.user. filer available to an EXE running within the TDS.

3 The host file server interface available across the link to the host when a standalone program is
booted up by the host file server.

4 The TDS file server interface available across the link to the host when a program is booted up by
the TDS file server. This includes the filer protocol available to an EXE running within the TDS over
the channels to.£filer and £rom.filex, and the kernel protocol available over the channels
to.kernel and from.kernel.

16.1 Terminal interfaces

The channels keyboard and screen, available within an executable procedure (EXE), communicate with
the terminal used by the host. They are not connected directly to the devices of the terminal but to a terminal
driver process called texm.p. Various commands may be sent to term.p which implements a virtual
screen and keyboard interface so that it is possible to write terminal-type independent code. The protocol
also allows the user to drive the terminal directly and exploit features of a particular terminal which are not
accessible using the simple virtual terminal interface.

The process term.p is actually two processes, running in parallel, one driving the screen and the other the
keyboard. There are three occasions when these two processes have to communicate with each other; these
are initialisation, release and termination. These operations cause software generated values to be passed to
the program on the keyboazd channel. Apart from this the two processes are completely independent and
asynchronous, (i.e. itis possible to output to screen in parallel with waiting for input from keyboaxrd without
either process being aware of the behaviour of the other). These interfaces are used by the procedures in
the library userio.

16.1.1 Input from the keyboard channel
The keyboard channel returns integers. These are one of the following:
o ASCII values for simple keys
o positive values greater than ASCII values for special ‘function keys’ required by the folding editor

e negative values (sometimes followed by positive parameters) as reponses to initialisation commands,
error codes, etc.

o the special negative value £t .terminated generated at end of file by interface procedures pro-
ducing a simulated keyboard stream from a file

The simple keys returned as ASCII values are the visible ASCIl range from # # (32) to ’ ~’ (126), plus
’*c’ (13) and ‘delete’ (127).

Special function keys result from the keyboard process recognising either multiple key strokes or terminal-
specific keys that generate multiple character sequences.

324 16 System interfaces

The coded values for function keys are given in the library userhdr and tabulated in appendix D. They
are all given names beginning £t .. By sending the command key.raw to screen the recognition of mul-
tiple keystrokes and terminal-specific keys is disabled. This will be acknowledged by a value £t.raw on
keyboaxrd, preceded by any cooked keys that may be in a hardware or software type-ahead buffer. The
character values that make up function key values are now passed direct to the user.

The recognition of function keys is re-enabled by sending key.cooked to screen. This will be acknowledged
by a value £t.cooked on keyboard, preceded by any raw keys that may be in a hardware or software
type-ahead buffer.

Negative values are used in responses from the software and also to convey errors in the hardware.

16.1.2 Screen stream protocol

The protocols used by the screen output channel and the filing system access channels are explicitly tagged
protocols. A communication using such a protocol always starts with one of a limited set of constant values,
coded as BYTEs. The rest of the communication depends on the particular value of the tag and may consist
of zero or more further values of particular types. Arrays of arbitrary size may be communicated, if they are
preceded by a count defining their size.

Note that these explicitly tagged protocols are not identical to the implicitly tagged protocols supported by the
language. Hence for language purposes these protocols are coded as CHAN OF ANY.

The protocol of the parameter channel screen allows single characters (as bytes), strings (as arrays of
bytes), cursor movement, absolute cursor addressing, insert and delete operations, efc., to be coded.

The channels called sink in all the simple output procedures use this protocol. It is defined below, but the
meanings of all the tag values are not explained in detail until a later section. In this definition the values of
the tags are represented by the names used in programs. These are given in the library userhdr and are
listed in appendix D. Subsequent values are represented in the style of a variable declaration using a type
and a name. Each of the lines of the table represents a command to the process at the other end of the
channel. The use of the channel consists of a sequence of such commands.

The commands on the screen channel are as follows:

tt.reset

tt.up

tt.down

tt.left

tt.right

tt.goto; INT x; INT y
tt.ins.char; BYTE ch
tt.del.char
tt.out.byte; BYTE ch
tt.out.int; INT n
tt.out.string; INT::[]BYTE string
tt.clear.eol
tt.clear.eos
tt.ins.line
tt.del.line

tt.beep
tt.terminate
tt.claim

tt.release

tt.help

tt.key.raw
tt.key.cooked
tt.initialise
tt.endstream

16.1 Terminal interfaces 325

Screen stream protocol may be used for communicating text, in a form suitable for subsequent display,
between arbitrary user processes. It is used as the input protocol in interface procedures which send text to
the filing system. It is conventional to separate lines of text in screen stream protocol by the pair of characters
"*c*n".

In particular it allows text to be communicated as a mixture of single characters and arrays of characters
communicated by block transfer. When the ultimate destination is a real terminal screen commands for

cursor movement, character and line deletion, etc., may be included. File interface procedures, however,
while accepting the full protocol, are not able to perform all the control operations.

This section describes the behaviour of the process texm.p in the transputer development system when
the various commands available are sent to it via the channel screen.

Any process written by the user to receive inputs in the same protocol should at least accept all possible
commands, but may choose to perform modified or null actions where appropriate.

Each output to the screen channel must match one of the alternatives of the screen protocol. A command

and its data is represented in this section by a command name in italics. For example out.byte represents a
command that would be coded as scxreen ! tt.out.byte; ch where ch is a BYTE value.

Commands may have one or more of the following kinds of effect:
1 text is displayed at the current cursor position,
2 the cursor is moved relatively or absolutely to a new position,
3 characters or lines are deleted
4 blank characters or lines are created
5§ miscellaneous other actions.

Sending any screen commands that would result in moving the cursor or characters beyond the bounds
of the screen has unspecified consequences. Subsequent commands also have unspecified consequences
until a goto command or reset command is sent.

Some of the commands cause characters to be sent to the screen. They affect the terminal as described
below.

Normal visible characters are ASCI| characters with codes intherange # * -’ ~’ (32-126), *¢’ (carriage
return = 13) and ' *n’ (new line = 10).

Other characters are sent directly to the device just as normal visible characters are, but the consequences
are terminal dependent. Subsequent commands have unspecified consequences until a reset command is
sent.

The effects of sending these characters are as follows:

1 Characters in the range (*) to (“ ~’) appear on the screen at the current position, moving the
cursor one place to the right. The behaviour at the end of a line is undefined.

2 7 *c’ moves the cursor to the first character of the current line.

3 ’*n’ moves the cursor to the line beneath the current line, remaining at the same character position
within the line. If the cursor position was the last line on the screen, then the contents of the screen
are moved up a line, (the contents of the top line being lost) and the cursor is left on the last line,
which is now blank.

326 16 System interfaces

Outputting characters to the screen

out.byte

The command out.byte contains a byte value. The ASCII character with that value is output at the current
cursor position. The cursor position is moved one character position to the right.

out.string

The command out.string contains an integer length and then a byte array of that many bytes. ASCII characters
with values of these bytes are output starting at the current cursor position. The maximum size of the array is
max.string.size (currently 256). After each byte is output the cursor position is moved one character
position to the right.

Any byte value sent to screen (using the out.byte and out.string commands) is sent to the screen hardware.
If the byte values are normal visible characters, then term.p can track the cursor position and support
commands such as ins.char, ins.line, etc. Values outside this range are also sent and allow the user to
access more exotic features of the terminal hardware; however, term.p will probably not have tracked the

screen state correctly and issuing commands that depend on the current cursor position after sending special
control chars is not likely to have the desired effect.

Cursor movement

up, down, left, right

The commands up, down, left and right move the cursor one character position in the direction indicated.
goto

The command goto contains a column and row co-ordinate (x, y) and the cursor is moved to this position on
the screen. The screen is addressed with the upper leftmost character position having the co-ordinates (0,0),
with x going across and y going down the screen.

reset

The command reset causes texm.p to reset the screen and the keyboard. This will perform any standard
initialisations necessary to enable function keys for the particular type of terminal in use and will move the

cursor to (0,0). It should be used after sending non-standard character codes to the screen if it is required
to ensure that the user and system have the same idea as to where the cursor is.

Clearing the screen
clear.eol, clear.eos

The commands clear.eol and clear.eos clear the screen from the current cursor position to the end of the line
or screen respectively. The cursor position remains unchanged.

Character operations

The commands ins.char and del.char can only be used if the terminal initialisation returns 0 after
ft .nocharops.prefix. (see tt.initialise).

delete

If supported delete deletes the character at the current cursor position, shifting the characters to the right of
the current position one place to the left and leaving the cursor unmoved.

16.1 Terminal interfaces 327

insert

If supported insert inserts a character before the character at the current position, shifting the characters at
and to the right of the current position one place to the right and moving the cursor one place to the right.

Line operations

The commands ins.line and del.line can only be used if the terminal initialisation returns 0 after
ft .noops.prefix. (see tt.initialise).

del.line

If supported del.line deletes the contents of the current line, shifting the contents of all the lines below it up
a line and making the last line on the screen blank.

ins.line

If supported ins.line shifts the contents of the current line and all lines below it down a line, losing the contents
of the last line on the screen and making the current line blank.

In both cases the current cursor position remains unchanged.

Other operations

beep

The command beep makes a noise at the terminal without affecting the screen.

help

The command help causes a system defined page of text to appear on the screen. All current text is lost,

the cursor is left anywhere. The content of this page usually describes the keyboard in use and identifies the
release date of the software.

Initialising

Resetting the screen causes the driver to output codes to set the terminal modes to those required (e.g.
setting the keypad to application mode) and sends the cursor to (0, 0). It can be used after non-standard
values have been sent to the terminal to allow the virtual screen driver commands to be used again.

initialise

Initialising the the screen and keyboard is performed by sending initialise to scxeen and reading the initial-
isation information from keyboaxrd. Initialising also causes the screen to be reset.

The initialisation information is returned as series of special values terminated by the value £t .end.init.
The special values are:

VAL ft.lines.prefix IS -1:
VAL ft.columns.prefix Is -2:
VAL ft.nolineops.prefix IS -3:

VAL ft.end.init IS -4:
VAL ft.table.error IS -5:
VAL ft.noncom.table IS -6:

VAL ft.nocharops.prefix IS -7:

The £t.lines.prefix and £t.columns.prefix values are followed by another integer that is the
number of lines or columns on the screen.

328 16 System interfaces

The £t .nolineops.prefix and £t.nocharops.prefix value is followed by an integer that is 0 if
the term.p process supports line insert/delete or character insert/delete respectively, otherwise it is 1.

All the above four values should be returned, along with their following values, terminated by £t .end.init.
The £t.table.error and £t.noncom. table values indicate that an error has occured on a table
driven texrm.p, either the table cannot be read (£t .table.exrox) or the table has an invalid format
(£t .nocom.table).

If there are characters read by the keyboard process into a typeahead buffer but not yet read by the user,

they may have to be read by the user before the initialisation information is seen, as shown in the following
example:

INT key :
SEQ
screen ! tt.initialise
keyboard ? key
WHILE key >= 0
keyboard ? key
... read initialisation

Changing the way keyboard input is processed

key.raw

The command key.raw causes future input from the keyboard to be passed exactly as received. Any char-
acters already in the type-ahead buffer will still be read followed by the special value £t . raw. Subsequent
characters will be passed raw.

key.cooked

The command key.cooked causes the input from the keyboard to be processed to recognise and ‘bundle

up’ multi-character keys as single values. Any characters already in the type-ahead buffer will still be read
followed by the special value £t .cooked. Subsequent characters will be passed cooked.

Termination, claim and release

These commands should not be used in an EXE talking to the TDS.
claim

claim should not be used by an application program.

release

The texrm.p process is released (a process using the channel pair, wishing to clear the keyboaxrd channel),
by sending release to screen and reading from keyboard until £t .released is seen.

terminate

The texm.p process is terminated (so both its component processes are terminated) by sending terminate
to screen and reading from keyboard until £t.terminated is seen.

The user process does not need to send release before terminating; it is done on its behalf after it terminates,
before the editor attempts to resume using term.p.

endstream

This command has no effect.

16.2 User filer interfaces 329

16.2 User filer interfaces

This section describes in detail the user filer protocol and how it may be used to provide access to the folded
filing system from an occam program running in the transputer development system.

The channel arrays £rom.usezr. filer and to.user. filer which are available within an executable
procedure (EXE) allow user processes to communicate with a process called ‘the user filer’. Through com-
munication with this process, user processes may read and write data in the fold structure of the development
system.

A running program accesses the fold structure in a similar manner to the TDS utilities. Just as a utility is
given a portion of the fold structure on which it can operate by placing the cursor on a fold before running
the utility, a user program may also be given some data by placing the cursor on a fold containing the data
before the program is run. Any of these folds may be filed and these filed folds will correspond to files in the
host operating system. Utility programs [READ HOST] and [WRITE HOST] are provided to convert files between the
representation used by the fold system and the usual types of text files used by the host operating system.

The structure and representation of folds and files in the TDS is described fully in appendix G.

16.2.1 User filer protocol

The protocol used by all the folded filing system access channels from.user.filer[i] and to.user.
filer[i], i=0..3 is similar in style to screen stream protocol but more complicated. Each of the lines of
the list below represents a command, a question, or a unit of data transfer to the process at the other end of
the channel. The tag values are given in the library £ilerhdr listed in appendix D

uf.number.of.folds

uf.test.filed; INT fold.number

uf.read.fold.string; INT fold.number
uf.read.fold.attr; INT fold.number

uf.read.file.id; INT file.number
uf.write.fold.string; INT fold.number; INT::[]BYTE record
uf.make.fold.gset; INT fold.number
uf.unmake.fold.set; INT fold.number

uf.create.fold; [attr.size]INT attr

uf.delete.fold; INT fold.number

uf.make.filed; INT fold.number; INT::[]BYTE file.id
uf.unfile; INT file.number

uf.attach.file; INT fold.number; INT::[]BYTE file.id
uf.derive.file; INT fold.number

uf.delete.contents; INT fold.number
uf.open.data.read; INT file.number
uf.open.fold.read; INT file.number
uf.open.text.read; INT file.number
uf.open.data.write; INT file.number
uf.open.fold.write; INT file.number
uf.open.text.write; INT file.number

fsd.record; INT::[]BYTE record
fsd.attr; [attr.size]INT attr
fsd.file.id; INT::[]BYTE file.id
fsd.result; INT status
fsd.error; INT status
fsd.number.of.folds; INT fold.count
fsd.fold; INT::[]BYTE record
fsd.filed; INT::[]BYTE record
fsd.endfold

fsd.endfiled

fsd.endstream

330 16 System interfaces

f£sc.read

fsc.close; INT status
fsc.read.file.id
fsc.read.attr
fsc.read.enc.attr
fsc.enter. fold
fsc.exit. fold
fsc.repeat. fold

16.2.2 Selecting a fold for access

Once the cursor has been placed on a fold (referred to as the top-level fold or fold bundle), and a user
program has been started by pressing the key, the program may then do a number of things:

1 It may open the top-level fold and read its contents.
2 If the top-level fold is empty, it may open the fold and write data into it.
3 It may concurrently read and write a number of the folds directly nested inside the top-level fold.

4 It may read the attributes and the fold header of the top-level fold or any of the folds directly nested
inside it.

§ It may write new fold headers and delete the contents of the top-level fold or any of the folds directly
nested inside it.

6 It may delete folds or create new folds within the top-level fold.

If the top-level fold contains a sequence of fold lines and data lines, then the folds in the bundle are numbered
from 1. Data lines (including blank lines) are ignored in the numbering.

The top-level fold is referred to as number 0.

For example, consider the following fold:

{{{ A bundle of folds
...F First member

...F Second member

any text
...F Third member
11}

If the cursor were placed on the closed fold A bundle of folds before running a user program, then
the program could open and read the top-level fold by referring to it as number 0, or it could concurrently
open and read the member folds by referring to them as numbers 1, 2 and 3.

A program may access either the top-level fold or the folds directly contained within it; these two modes of
access cannot be mixed. The user filer will return an error if the top-level fold is accessed while the inner
folds are being accessed or vice versa.

16.2.3 User filer channels

A program may perform a number of independent sequences of communication with the user filer, possibly in
parallel. Each sequence uses a pair of channels which must be corresponding elements (that is, the elements
with the same subscript) from the arrays from.user.filer and to.user.filex. As their names
indicate the to.user.filer channel is used for communications from the program to the environment,
and the from.user. filexr channel is used for communications in the other direction.

16.2 User filer interfaces 331

16.2.4 User filer modes
User filer channel pairs are used for two purposes:

1 They are used to communicate questions or commands to the user filer, and to receive answers or
results corresponding to these questions or commands.

2 They are used to communicate a stream of data associated with reading or writing a file. A stream
of data is communicated as a sequence of data items, with an acknowledgment on the other channel
following each item.

When a user program is started by the TDS, the user filer is started in parallel with it. All the channel pairs are
initially in user filer command mode. This means that valid communications consist of questions or commands
to the user filer, followed immediately by the corresponding answer or result.

Once a successful open command has been issued on a particular pair of channels, that channel pair is then
used to read or write a stream of data. The mode of the channel pair is then file stream input or file stream
output according to the kind of open command which was used. Once a close operation has occurred on the
stream, then the channel pair is once again available for commands.

There are two variants of the file stream modes:
1 data stream modes,
2 folded file stream modes.

In data stream modes only text lines within the fold structure are visible. In folded file stream modes the
internal structure including embedded text and non-text folds is fully visible.

In the present implementation the user filer channel arrays each have 4 elements, numbered from 0 to 3.
This is reflected by the system constant max . files. There are therefore four channel pairs, allowing up to
four files to be open at the same time. The pairs may be used in parallel with each other or sequentially.

In user filer command mode the channel pairs are all connected to the one command-handling process in the
TDS. This process only services one channel pair at a time; the process ALTs on all the to.user.filer
channels until a command is received on one of them. The process then reads all the parameters associated
with the command received, performs the required action and sends back the results on the corresponding
from.user. £filer channel. Only after these have been sent does the user filer return to the ALT and
service commands on other to.user. £iler channels.

However, once a file has been opened and the channel pair is being used to read or write a file stream, then
the channel pair is in the appropriate file stream mode and is connected to a file streamer process started by
the TDS for this purpose. The command handler and the file stream process can then proceed in parallel.
Other channel pairs may be used to issue commands to the user filer, and become connected to further file
stream processes, in parallel with and unaffected by the communications between the first channel pair and
their file stream process.

332 16 System interfaces

16.2.5 Commands in user filer command mode

Commands for the following operations may be used in user filer command mode. All except the open
commands leave the channel pair in user filer command mode, and so they may be issued in any order.
Some commands require the relevant fold to be filed; in the case that it is not, an error result will be returned.

Count folds Find out the number of folds in the bundle.

Read fold string Read the fold header of any numbered fold.

Read fold attributes Read the attributes of any numbered fold.

Test if filed Test any numbered fold to see if it is filed.

Read file identifier = Read the file identifier of any numbered fold that is filed.

Write fold string Write the fold header of any numbered fold.

Create fold Create an empty fold in the bundle.

Delete fold Delete an empty fold.

Delete contents Delete the contents of a fold.

Make filed Make a fold into a filed fold using a user supplied identifier.

Unfile Make a filed fold into an unfiled fold.

Attach file Make an empty fold into a filed fold containing a copy of a file already existing
in the filing system. (Not available in unnamed filestore implementations.)

Derive file Make a fold into a filed fold using the identifier of the first file in the bundle.

Make set valid Change an invalid fold set to valid.

Make set invalid Change a valid fold set to invalid.

Open to read Open any numbered filed fold for reading.

Open to write Open any empty numbered filed fold for writing.

Any numbered fold which is opened for reading or writing must be filed before opening (if it is not already
filed).

Definitions of uf. commands

Questions and commands in user filer command mode are tagged by byte values conventionally associated
with names beginning uf.. In the following definitions the pair of communications is first displayed as an
occam fragment showing the error-free behaviour of the user filer. Procedures incorporating these fragments,
and allowing for errors, are provided with the software.

In cases where possible errors are described the tag returned will have the value £sd.error and will be
followed by an integer error status number. Filing system or hardware errors are possible for all commands
which may involve disk hardware access. These numbers are all listed in appendix E.

16.2 User filer interfaces 333

The following variables are assumed to have been declared:

-- for commands

INT fold.number:--fold number within the bundle

INT file.number:--fold number within bundle
—-(must be filed)

INT len :—-length of a record or string
-- for answers

INT fold.count : -- count of folds

INT status : -- error number

INT number : -- other number

-- for both

VAL attr.size IS 3:
[attr.size] INT attr:--array of fold attributes
VAL max.record.size IS 512:

[max.record.size] BYTE record: -- data array

VAL max.string.size IS 256:

[max.string.size]BYTE file.id: -- file name
number.of.folds

-- question

to.uf ! uf.number.of.folds

-- reply

from.uf ? tag -- tag = fsd.number.of.folds

from.uf ? fold.count

The user filer responds to the question number.of.folds with a count of the number of folds within the bundle
at the cursor position. If the command is issued when the cursor is not on such a bundle, a count of —1 will
be returned.

read.fold.string

to.uf ! uf.read.fold.string; fold.number
from.uf ? tag -- tag = fsd.recoxd
from.uf ? len:: record

The user filer responds to the question read.fold.string with the text of the comment on the top crease line
of the fold indicated. An error will be signalled if the command is issued when the cursor is not on a fold or
bundle of folds or the indicated fold does not exist.

This command, used to read the comment text on a root fold, must be distinguished from the command to
read the crease comment of embedded folds, which can only be given when the channel pair is in folded
stream input mode.

read.fold.attr
to.uf ! uf.read.fold.attr; fold.number
from.uf ? tag -- tag = fsd.attr

from.uf ? attr

The user filer responds to the question read.fold.attr with the array of attributes of the fold indicated. An error
will be signalled if the command is issued when the cursor is not on a fold or bundle of folds or the indicated

fold does not exist.

This command, used to read the attributes of a root fold, must be distinguished from the command to read
the attributes of embedded folds, which can only be given when the channel pair is in folded stream input
mode.

334 16 System interfaces

test.filed
to.uf ! uf.test.filed; file.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok or fi.not.filed

The user filer responds to the question test.filed with a result showing whether the indicated fold is filed or
not. An error will be signalled if the command is issued when the cursor is not on a fold or bundle of folds or
the indicated fold does not exist.

read.file.id
to.uf ! uf.read.file.id; file.number
from.uf ? tag -- tag = fsd.file.id

from.uf ? len:: file.id

The user filer responds to the question read.file.id with the name of the file corresponding to the fold indicated.
On a system which does not support named files a zero length will be returned. An error will be signalled if
the command is issued when the cursor is not on a filed fold or bundle of folds or the indicated fold does not
exist.

This command, used to read the file id of a root fold, must be distinguished from the command to read the
file id of embedded filed folds, which can only be given when the channel pair is in folded stream input mode.

write.fold.string

to.uf ! uf.write.fold.string; fold.number;
len:: record

from.uf ? tag -- tag = fsd.result

from.uf ? status -- status = fi.ok

The command write.fold.string causes the user filer to replace the fold comment on the indicated fold by the
string given. An error will be signalled if the command is issued when the cursor is not on a fold or bundle
of folds or the indicated fold does not exist.

create.fold

to.uf ! uf.create.fold; attr
from.uf ? tag -- tag = fsd.number.of.folds
from.uf ? fold.count

The command create.fold causes the user filer to create a new fold at the end of the bundle.
The £old. count returned includes the new fold and is therefore the number of the new fold. An error will
be signalled if the command is issued when the cursor is not on a bundle of folds.

delete.fold
to.uf ! uf.delete.fold; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command delete.fold causes the user filer to delete the indicated fold in the bundle, which must be empty.
The numbers used to access all subsequent folds are thereby decreased by 1. An error will be signalled if
the command is issued when the cursor is not on a bundle of folds, or the indicated fold is not empty or does
not exist.

16.2 User filer interfaces 335

delete.contents
to.uf ! uf.delete.contents; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command delete.contents causes the user filer to delete the contents of the indicated fold in the bundle.
An error will be signalled if the command is issued when the cursor is not on a bundle of folds, or the indicated
fold does not exist.

WARNING! This operation could, if used without care, cause loss of significant quantities of data. Programs
including this command should provide adequate protection against being run with the cursor in an arbitrary
position.

make.filed

to.uf ! uf.make.filed; fold.number;
len:: file.id

from.uf ? tag -- tag = fsd.result

from.uf ? status -- status = fi.ok

The command make.filed causes the user filer to file an unfiled fold. The £ile.id provided should be
valid in the particular host system being used. For maximum portability it should consist of no more than
6 alphanumeric characters and should not include a filename extension which may be generated by the
software from the fold attributes. An error will be signalled if the command is issued when the cursor is not
on a bundle of folds, or the indicated fold does not exist. The server may create a random filename if an
empty string is provided.

unfile
to.uf ! uf.unfile; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command unfile causes the user filer to unfile a filed fold. An error will be signalled if the command is
issued when the cursor is not on a bundle of folds, or the indicated fold does not exist. An error will also be
signalled if there is insufficient room in the system’s fold manager buffer to read the contents of the file.

attach.file

to.uf ! uf.attach.file; fold.number;
len:: file.id

from.uf ? tag -- tag = fsd.result

from.uf ? status -- status = fi.ok

The command attach.file causes the user filer to create a filed fold from an existing empty fold by causing it
to point to a copy of an existing file with the name £ile.id. The copy will have a name derived by a simple
disambiguating algorithm from that of the previously existing file. An error will be signalled if the command is
issued when the cursor is not on a bundle of folds, or the indicated fold or file does not exist.

derive.file

to.uf ! uf.derive.file; fold.number;
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command derive.file causes the user filer to file an unfiled fold, giving it a name derived from the name
of the first fold in the bundle and the attributes of the fold indicated. An error will be signalled if the command
is issued when the cursor is not on a bundle of folds, the indicated fold does not exist, or the first fold in the
bundle is not filed.

336 16 System interfaces

make.fold.set

to.uf ! make.fold.set; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

The command make.fold.set is intended for use by compilers which need to keep control of the integrity of
folds. It causes the user filer to change the fold. type attribute of the fold indicated to £t.foldset,
implying that it contains corresponding source text and compiled code. An error will be signalled if the
command is issued when the cursor is not on a bundle of folds, or the indicated fold does not exist or does
not have appropriate attributes.

unmake.fold.set
to.uf ! unmake.fold.set; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- gtatus = fi.ok

The command unmake.fold.set is intended for use by compilers which need to keep control of the integrity
of folds. It causes the user filer to change the £old.type attribute of the fold indicated to £t .voidset,
implying that it requires recompilation. An error will be signalled if the command is issued when the cursor is
not on a bundle of folds, or the indicated fold does not exist or does not have appropriate attributes.

Example showing use of a uf. command

PROC read.fold.attr (CHAN OF ANY from.uf, to.uf,
VAL INT seq.no,
[attr.size]INT attr,
INT result)

BYTE tag :
SEQ
IF
result = fi.ok
SEQ

to.uf ! uf.read.fold.attr; seq.no
from.uf ? tag
IF
tag = fsd.error
from.uf ? result
tag = fsd.attr
from.uf ? attr
TRUE
SKIP

Procedures in this style which test the value of result on entry and only perform the operation if
result = £i.ok may be written for all the user filer control commands. They have the advantage that
a sequence of different commands may be programmed without the need to test the value of the result
parameter after each call. A collection of such procedures is supplied in the library ufilex and user level
procedures calling these are supplied in the library userio.

Opening a fold for reading

A numbered fold, if it is already filed, may be opened for reading. If fold 0, the top-level fold, is opened
either for reading or for writing then no other fold may be opened until it has been closed. Fold 0 may not be
opened if any other fold is open.

Before being opened a fold must be filed, and so in subsequent discussion the terms fold and file are used
interchangably. A file may be opened either as a data stream or as a folded stream.

When a file is opened as a folded stream, all the information in the fold is sent, including where folds begin

16.2 User filer interfaces 337

and end, and the header and attributes of each fold.

When a file is opened as a data stream the user filer outputs a sequence of data records which are the data
stored in the file. The contents of internal text folds are sent, but the information associated with the internal
fold itself (the fold attributes and the header) is not.

From the point of view of the protocol which must be used for channel communications, data stream operations
are a subset of folded stream operations, but they do differ in their handling of indentation (implicit leading
spaces in text within folds).

open.fold.read, open.data.read

The uf£. commands for opening a fold for reading are:
to.uf ! uf.open.fold.read; fold.number

from.uf ? tag -- tag = fsd.result
from.uf ? status -— status = fi.ok
to.uf ! uf.open.data.read; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

If the status value returned is £i . ok then the open was successful.

The channel pair used to open the file is then in file stream input mode and must then be used to read the
resulting stream. If the open fails, one of the error results listed later is returned as the status value and the
channel pair is still in user filer command mode.

The operations needed to read a fold or data stream are described in the next section.

Opening a fold for writing

A numbered fold, if it is filed, may be opened for writing. If fold 0, the top-level fold, is opened then no other
fold may be opened until it has been closed.

Only an empty filed fold may be opened for writing.
A file may be opened as a data stream or as a file stream. Data stream mode allows the user program

to write a sequence of text or data records into the file. Folded stream mode allows the user to write an
arbitrarily complex nested folded structure into the file.

open.fold.write, open.data.write

The u£. commands for opening a fold for writing are:
to.uf ! uf.open.fold.write; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok
to.uf ! uf.open.data.write; fold.number
from.uf ? tag -- tag = fsd.result
from.uf ? status -- status = fi.ok

If the status value is £i . ok then the open was successful.

The channel pair used to open the file is then in file stream output mode and must then be used to output
data to the file.

If the open fails, one of the error results listed later is returned as the status integer value following the result
and the channel pair is then still in user filer command mode.

338 16 System interfaces

The operations needed to write a fold or data stream are described in the next section.

16.2.6 Communications in file stream modes
Introduction to file stream modes

The way the channel pair is used in file stream modes is strictly symmetrical. One channel of the pair sends
requests from a receiver process to a sender process, the other returns data, results, or errors from the
sender process to the receiver. This symmetry has been provided to allow user processes to use the same
protocol when transferring folded data streams amongst themselves as they do when communicating with
the user filer in the TDS.

Communications in file stream input mode are between a system sender process in the user filer and the
user program acting as a receiver.

Communications in file stream output mode are between the user program acting as a sender and a system
receiver process in the user filer.

The sequence of communications in file stream modes is strictly determined by a sequential pass (possibly
with skips and/or repeats of parts of the structure) through a properly nested fold structure by the sender
process.

In folded file stream modes, this sequential pass includes the option to enter, or not to enter any embedded
folds, and to provide additional information before entering folds. These options are exercised by the receiver
process.

The valid communications by a sender process depend on the mode of opening and the current position in
the folded data structure. A receiver process must base its actions on the tags and data it receives from the
sender.

It is important to note that all the facilities provided in the protocol for file stream communication are not
necessarily applicable in all programs. In particular it is important for user programs to know what the system
sender and receiver processes do when they are in a state where the protocol allows options. This is
described in detail below.

Syntax of valid sequences of communications

In order to define the permitted sequences of operations in a syntactic notation it is necessary to define the
tagged commands and their data as ‘terminal symbols’ for the syntax. Tags output by a sending process
all have names beginning £sd., those output by a receiving process all have names beginning £s8c.. The
values of these tags are defined in the library £ilerhdr and are listed in appendix D

In subsequent discussion in this chapter one of these words in italics always means the communication of
the appropriate tag followed, if necessary, by its data in the form indicated.

16.2 User filer interfaces 339

Communications from the sender to the receiver:

record = £sd.record;

INT:: []BYTE record
number = f£sd.number;"

INT value
attr = fsd.attr;

[attr.size] INT attr
file.id = fsd.file.id;

INT:: []BYTE file.id
result = £sd.result;

INT status
error = £sd.error;

INT status
fold = f£sd.fold;

INT:: []BYTE record
filed = fsd.filed;

INT:: []BYTE record
endfold = fsd.endfold
endfiled = fsd.endfiled
endstream = £sd.endstream

Communications from the receiver to the sender:

read = fsc.read
close = fsc.close;

INT status
read.file.id = fsc.read.file.id
read.attr = fsc.read.attr
read.enc.atir = fsc.read.enc.attr
enter.fold = fsc.enter.fold
exit.fold = fsc.exit.fold
repeat.fold = fsc.repeat.fold

The syntax defining permitted sequences of communications is displayed in two columns representing the
sender and receiver respectively. Time advances downwards and the syntactic metasymbols {, } and | have
their normal meanings. Ordinary parentheses are used for bracketting.

Data stream modes

Data stream syntax

Sender Receiver
read
{ (record| number)
read }
(record| number| endstream)
close

result

This syntax represents a sequence of data transfers from the sender to the receiver. Each transfer is of a
record item (an array of up to 512 bytes) or of a number item (a single non-negative integer) and is sent as a
response to a read from the receiver. At any time the receiver may terminate the stream transfer by sending
a close instead of a read. If the sender has no more data to send it will send an endstream in response to
each subsequent read. Note that a close includes a status value which should normally be £i . ok.

At any time (not shown in the syntax) the sender may send an error instead of a data item or endstream. If
an error is sent the receiver may then send another request.

340 16 System interfaces

The syntax shows the permissible temporal sequences of communications using a user filer channel pair.
From the point of view of a sender process the left hand column defines outputs and the right hand column
inputs. From the point of view of a receiver process the left hand column defines inputs and the right hand
column outputs.

The system sender process, which communicates with a user program as receiver, using a user filer channel
pair in input file stream mode, produces a stream of records from the fold specified in the open.data.read
operation which defined the stream. Any embedded fold creases are ignored and the records within folds are
communicated in sequence.

In a text fold a record corresponds to a text line as seen by the editor. Each record is preceded by a number
of ASCII space characters corresponding to the cumulated sum of the indent attributes of the folds entered
within the stream. The system sender sends endstream at the bottom of the fold structure. It may send an
error at any time if a hardware or low-level software problem arises. The user may send a close at any time,
and must then read the corresponding result.

The system receiver process, which communicates with a user program as sender, using a user filer channel
pair in file stream output mode, receives record or number items from the user program and inserts them
sequentially into an initially empty file. After opening and after each item it will normally return a read but
may return a close (including an error number) if there are hardware or low-level software problems inhibiting
progress. Normal termination is by the user program sending an endstream to the system receiver. This will
be acknowledged by a close, after which the user program must send the final result (in which the status
value should be £i. ok).

After a stream has been transferred in either direction and a close sequence has been completed the user
filer channel pair returns to user filer command mode, and is available for reuse.

Examples of the user filer being used in data stream mode may be found in the implementation of the interface
procedures keystream. from. file and scrstream.to.file (described in section 14.14, interface
procedure library intex£), which are provided as occam source with the software.

Folded stream modes

The structure and representation of folded data is described in full in appendix G. For the purpose of the
present description it is only necessary to think in terms of folds as displayed on the terminal screen by the
TDS editor.

A fold is a structure consisting of a sequence of items. An item may be a data item or a fold item, where a
fold item in turn consists of a top crease item, a sequence of items and a bottom crease item. A data item
is either a record item or a number item. A fold item (or top crease item) has associated with it a record
item which is the text displayed on the fold line by the editor, and an array of three attributes, defining certain
properties of the contents of the fold.

Some values of attributes define folds whose contents are not suitable for display on the screen by the editor.
This is not a property that concerns access to folds across the user filer interface. The principal constraint
imposed by the implementation of folded files is a maximum size for records stored in the folds. This is 512
bytes. Each byte may contain arbitrary data and is not restricted to displayable ASCII characters.

As a fold structure is traversed there is always an item which is deemed to be the ‘current item’. Immediately
after opening a fold stream the current item is undefined. Thereafter the current item is that item which was
most recently transmitted from the sending process to the receiving process. The fold most closely enclosing
the current item is called ‘the current enclosing fold’. The identities of the current fold and the current enclosing
fold constitute the state of the sending process.

Folded stream protocol makes the folds and their attributes visible to the user program and gives the program-
mer the ability to control his navigation of an existing fold structure by deciding at each top crease whether
or not to enter the fold. It is also possible to abandon the sequential traverse of the current enclosing fold or
to return to its first item for a repeated traverse. The table below defines the general form of the syntax of a
valid sequence of communications between two processes using folded stream protocol.

16.2 User filer interfaces 341

Note that the alternative read commands allowed at certain points imply that full implementations must allow
the receiver process to send any one of these. According to the way the sender is creating its stream it is
not always possible to perform all of the possible operations that may be requested.

It may sometimes be desirable for user programs communicating with a system receiver process to take
advantage of knowledge of the particular options which will be taken at various points.

Specialised syntaxes for communicating with the system sender and system receiver are given later.
Folded stream syntax

To save space in the tabulation we define:

read.command = read | enter.fold | exitfold | repeat.fold
data.item = record | number
top.crease = fold | filed
bottom.crease = endfold | endfiled
item = data.item | top.crease | bottom.crease
Sender Receiver
read
{ item
{ (read.attr| read.enc.attr)
attr }
{ read.file.id
file.id }
read.command }
(item| endstream)
close

result

As in the case of data stream mode communications (which are a strict subset of these) the sender may at
any time send an error as an alternative to what the syntax shows. If an error is sent the receiver may then
send another request.

£sc commands
The £sc. commands used by a receiver process are defined as follows:

close

to.sender ! £sc.close; status
from.sender ? tag; status
-- tag = fsd.result or fsd.error

The close command requests the sender to stop sending data and to terminate. Before doing so the sender
should (and the system sender will) return a result or an error.

342 16 System interfaces

read

to.sender ! fsc.read

from.sender ? tag --tag = fsd.record, £sd.number,
- fsd.fold, fsd.filed,
-- fsd.endfold, fsd.endfiled,
-- fsd.endstream or fsd.error

-- act according to tag value

-- (in data stream mode only the first and last

-- three are possible, in folded stream mode

-- all are)
IF
tag = fsd.record -- data record
from.sender ? len:: record
tag = fsd.number -- number item

from.sender ? number
(tag = fsd.fold) OR (tag = fsd.filed)
-- crease comment
from.sender ? len:: record
(tag = fsd.endfold) OR (tag = fsd.endfiled) OR
(tag = fsd.endstream)
SKIP
tag = fsd.error
from.sender ? status

The read command requests the sender to return the next item. This is the item immediately following the
current item in the fold stream. When the current item is a fold or filed item, the next item is the item after
the fold, not the first item within it.

If a read command is issued when the current item is an endfold or an endfiled the sender should (and the
system sender will) return that item again. The receiver should use exit.fold in this situation.

The sender should (and in the absence of errors or a premature close the system sender will) ensure that
the sequence of items represents a properly nested fold structure.

The system receiver will accept either an endfold or an endfiled at the bottom of any fold, and so a user
program when sending to it does not need to keep track of whether or not its folds are filed.

enter.fold
to.sender ! fsc.enter.fold
from.sender ? tag -- tag = fsd.record,
- f£sd.number,

- fsd.fold, f£fsd.filed,

-- fsd.endfold, fsd.endfiled,

-- fsd.endstream or fsd.error
... act according to tag value

The enter.fold command should only be used in folded stream input mode when the current item is a fold or
a filed. It requests the sender to return the first item within the fold, which becomes the current item.

The system receiver will always send an enter.fold after receiving a fold or a filed from a user program and
requesting and receiving the attributes (and possibly the file name) of the fold (see read.attr and read.file.id).

16.2 User filer interfaces 343

exit.fold

to.sender ! fsc.exit.fold
from.sender ? tag -- tag = fsd.recorxd,
- fsd.number,
- fsd.fold, fsd.filed,
-- fsd.endfold, fsd.endfiled,
-- fsd.endstream or fsd.error
... act according to tag value

The exit.fold command, applicable in folded stream input mode only, requests the sender to cease sending
the items of the current enclosing fold and to return the first item after this fold, which becomes the current
item.

The system sender will accept exit.fold commands at any time, thereby allowing a user to skip the remaining
items in any fold.

The system receiver will only send an exit.fold after it has received an endfold or an endfiled.

repeat.fold
to.sender ! fsc.repeat.fold
from.sender ? tag -- tag = fsd.recorxd,
- fsd.number,

- fsd.fold, fsd.filed,

-- fsd.endfold, fsd.endfiled,

-- fsd.endstream or fsd.error
act according to tag value

The repeat.fold command, applicable only in folded stream input mode, requests the sender to cease sending
the items following the current item and to return again the first item within the current enclosing fold, which
becomes the current item.

The system sender will accept repeat.fold commands at any time, thereby allowing a user to repeat the
reading of any fold.

The system receiver will never send a repeat.fold.

read.attr
to.sender ! fsc.read.attr
from.sender ? tag -- tag = fsd.attr or fsd.error
from.sender ? attr -- assuming tag = fsd.attr

The read.attr command, applicable only in folded stream input mode, should only be used when the current
item is a fold or a filed. The sender should (and the system sender will) respond by returning an array of
attributes for the fold which is the current item. The current item does not change.

The system receiver will always send a read.attr after receiving a fold or a filed, and before sending an
enter.fold.

read.enc.attr
to.sender ! fsc.read.enc.attr
from.sender ? tag -- tag = fsd.attr or fsd.error
from.sender ? attr -- assuming tag = fsd.attr

The read.enc.attr command, applicable only in folded stream input mode, requests the sender to return the
attributes of the current enclosing fold.

The system sender will respond to this command independently of the nature of the current item which does
not change. User programs may wish to use this command before leaving a fold to determine its relative

344 16 System interfaces

indentation, or after doing so to reestablish knowledge about the type or contents of the enclosing fold.
The system receiver will never send read.enc.attr.

read.file.id

to.senderxr ! f£sc.read.file.id
from.sender ? tag
-- tag = fsd.file.id or fsd.error
from.sender ? len:: file.id
-- assuming no error

The read.file.id command, applicable only in folded stream input mode, should only be used in an environment
where named files are being used, and should only be used when the current item is a filed. It requests the
sender to return the name of the file in which the contents of the current item, a filed fold, are stored.

The system sender in named filestore implementations will respond to this command at any time when the
current item is a filed. This may be before or after supplying the attributes but before entering the fold.

The system receiver in named filestore implementations will always send this command after requesting the
attributes of a filed fold.

Reading a fold stream from the system sender

This section summarises the application of the details of the protocol already defined to the specific task of
writing a program which reads a folded file from the filing system of the transputer development system host.

Wherever possible such communications should be coded using the procedures described in the section on
the i/o library userio.

If the folds in the file are irrelevant then the simple user procedures may be used and access to the file
obtained by running the interface procedure keystream. from. £ile in parallel with the application.

If the fold structure is to be traversed sequentially with the folds having significance then the fold access
procedures may be used.

Examples of both these styles are provided with the software and the user may extend them as appropriate
to support additional features of the interface as necessary.

Any sequence of communications with the files of the development system must use the channels to and
from the user filer provided as parameters of the executable procedure (EXE).

A channel pair will start in user filer command mode. Any sequence of commands meaningful in that mode
may then be used. An open command may then be used to put the channel pair into data stream input
mode or folded stream input mode. In this mode the channel pair connect a system sender process to a user
process as a reveiver. Operations in data stream modes are a subset of those in the corresponding folded
stream modes.

16.2 User filer interfaces 345

In these modes communications must obey the bidirectional syntax presented above. That syntax is repeated
below:

Data stream input mode

Sender (system) ... Receiver (user)
read
{ (record| number)
read }
(record| number| endstream)
close
result
Folded stream input mode
Sender ... Receiver
read
{ item
{ (read.attr| read.enc.attr)
attr }
{ read.file.id
file.id }
read.command }
(item} endstream)
close
result
Where:
read.command = read | enter.fold | exit.fold | repeat.fold
data.item = record | number
top.crease = fold | filed
bottom.crease = endfold | endfiled
item = dala.item | top.crease | bottom.crease

The type of each item received determines the valid commands which may be sent back. An enter.fold or a
read.altr may only be sent after receiving a fold or a filed. A read.file.id may only be sent after receiving a
filed.

Writing a fold stream to the system receiver

This section summarises the application of the details of the protocol already defined to the specific task of
writing a program which writes a folded file into the filing system of the transputer development system host.

Wherever possible such communications should be coded using the procedures described in the section on
the i/o library userio. If the folds in the file are irrelevant then the simple user procedures may be used

and access to the file obtained by running the interface procedure scrstream.to.£ile in parallel with
the application.

If it is required to generate a fold structure with nested folds then the fold access procedures may be used.

Examples of both these styles are provided and the user may extend them as appropriate to support additional

346 16 System interfaces

features of the interface as necessary.

Any sequence of communications with the files of the development system must use the channels to and
from the user filer provided as parameters of the executable procedure (EXE).

A channel pair will start in user filer command mode. Any sequence of commands meaningful in that mode
may then be used. An open command may then be used to put the channel pair into data stream output
mode or folded stream output mode. In this mode the channel pair connect a user process as sender to a
system receiver process. Operations in data stream modes are a subset of those in the corresponding folded
stream modes.

In these modes communications must obey the bidirectional syntax presented above. An alternative pre-

sentation of this syntax applicable when the sender is a user process and the receiver is a system receiver
process whose particular behaviour is defined, is as follows:

Data stream output mode

Sender (user) Receiver (system)
read
{ (record) number)
read }
(record| number| endstream)
close
result
Folded stream output mode
Sender Receiver
read
{ (record
reaa)
| (number
read)
| (fold
read.attr
attr
enter.fola)
| (filed
read.attr
attr
read.file.id
file.id
enter.fold)
| ((endfold| endfiled)
exit.fold) }
endstream
close
result

The user process may send an error at any time which will cause the file to be terminated with no contents.

16.3 Host file server 347

16.3 Host file server

The host file server boots up a transputer network with a program in a DOS file, and then supports a protocol
which allows the program to open, read and write DOS files and use standard streams for terminal input and
output. This server is intended as a starting point for users who want to write a server for their application.
In this section the server will be referred to as the afserver.

The following sections describe the operation and protocol of the afsexrver (version V1.5).

16.3.1 Afserver command syntax
The syntax for the command line of the afserver is as follows:
afserver [command.line]

Where command.line is defined as follows:

command.line = option
| program.parameter
| option command.line
| program.parameter command.line
program.parameter = any argument that is not an option
option = - : options
| /:options
options = b boot.file.name
| o option.flag
| s board.size
| i
| 1 link.address
| x
| n
| e
boot.file.name = standard host file name
option.flag = number
board.size = number
link.address = number
load.address = number
number = decimal value

| # hexadecimal value

program.parameter is supplied to resident programs on request by the program by issuing a
ReadBlock.Cmd command on standard input stream 1 (the parameter stream). Note, this can only be
done after the stream has been opened for access.

348 16 System interfaces

16.3.2 Afserver command line options
The afserver options are described below.
Boot transputer (- :b boot.file.name)

If the option -:b is used, the afsexrver will try to use the file name after the - :b to boot the transputer.
If the file name is not a valid file or the afserver is unable to boot the transputer with this file, an error
message will be generated by the afsexvex and then it will terminate.

If this option is not specified the afsexver will try to communicate with a program that has been previously
loaded onto the transputer board. If no program is loaded on the transputer, the afserver will be unable to
detect this and so will not terminate. If this happens then break out of the afsexvex using the appropriate
break key (‘control-break’ on the IBM PC).

The ability to ignore this option enables the user to load a program onto a board once and then to re-run the
program any number of times without the need to re-load the transputer board every time the program is to
be used.

Specify board size (-:s [#]board.size)

This option is used to pass to the user program the size of the transputer board (in bytes) on which
the program is running. The value given with this option is accessed using the afserver command
RunTimeData.Cmd with an option number of 1. If a # is used as a prefix of the number then the number
is taken to be hexadecimal. If no number is specified an error will occur.

Note that if this option is not used the value for the board size defaults to zero.

Specify option flag (-: o [#]option.flag)

This option is used to pass values directly to a user program by using the afserver command
RunTimeData.Cmd with an option number of 0. If a # is used as a prefix for the following number then
the number is taken to be a hexadecimal number. If no number is specified an error will occur.

Note that if this option is not used the the value of the option flag defaults to zero. This option should only
be used with implementations that specify how to make use of this option.

afserver information (-:4i)

If this option is used the afsexrvex will display a copyright message and its version date.

Specify link address (-:1 [#]link.address)

This option enables the user to change the address which the afserver uses to communicate with the
transputer board. If a # is used as a prefix of the number then the number is taken to be hexadecimal. If no
number is specified an error will occur.

The default link address used by the afsexvexr when running on an IBM PC is #150 (hexadecimal 150).
Boot in analyse mode (-:x)

This option is only relevant if the —:b option is also used. If this option is specified then the transputer being
loaded is reset in analyse mode. The default is to reset the transputer in the normal way.

Also when this option is used the afserver performs a core dump of the first 16 Kbytes of the transpUter's
memory (i.e. starting from MOSTNEG INT) and stores this data in an internal buffer. This core dump can
then be accessed by using the afserver command ReadCor