
Toolset Reference
Manual

May 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

•
® ®

,n[ft)mOS ,IMS, occam and DS-Link® are trademarks of SGS-THOMSON Microelectronics
Limited.

~~,@mg~~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The C compiler implementation was developed from the Perihelion Software "C" Compiler and the
Codemist Norcroft "C" Compiler.

This product incorporates innovative techniques which were developed with support from the
European Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P72670MI/STANDARDS.

Document Number: 72 TDS 487 00

Contents overview

Contents

Preface

Tools

1 icc Describes the ANSI C compiler.

2 iccont Describes the C configurer which generates configuration binary
files from configuration descriptions.

3 DC Describes the occam 2 compiler.

4 occant Describes the occam 2 configurer which generates configuration
binary files from configuration descriptions.

5 icollect Describes the code collector which generates executable code
files.

6 iemit Describes the memory configurer tool which helps to configure th~

transputer memory interface for T4/T8-series transputers.

7 ieprom Describes the EPROM formatter tool which creates executable
files for loading into ROM.

S ilaunch Describes the tool which supports the setup of environment vari-
ables for systems using PC Microsoft Windows.

9 ilibr Describes the toolset librarian which creates libraries from
compiled code files.

10 ilink Describes the toolset linker which links compiled code and
libraries into a single unit.

11 ilist Describes the binary lister which displays binary files in a readable
form.

12 imaket Describes the Makefile generator which creates Makefiles for
toolset compilations.

13 imap Describes the map tool which generates a memory map for an
executable file.

14 imem450 Describes the memory configurer tool which helps to configure the
transputer memory interface for the ST20 and T450 processors.

15 irun Describes the application loader which enables applications to be
loaded and run on the target hardware.

16 iset Describes the Windows parameter tool which sets and clears tool
parameters defined in the Windows environment file from DOS.

-----------li;i._ -----------

Contents overview

Appendices

A Toolset standards and Describes the conventions and standards of the
conventions toolset.

B Transputer types and Describes the meaning and use of transputer types
classes and classes and lists the command line options to

select them for the compiler and linker.

C ANSI C Compiler opti- Provides examples of local and global optimizations
mization examples available using the ANSI C compiler.

0 Using the assembler Describes the use of the C assembler and the assem-
bler directives.

E Memory interface Describes the format of memory interface configura-
configuration files tion files created for the ST20 and T450 processors.

F ANSI C configuration Describes the syntax of the ANSI C configuration
language language.

G occam 2 configura- Describes the syntax of the occam 2 configuration
tion language language.

H AServer database Describes the AServer database which is used to
access target hardware.

I ITERM Describes the format of the ITERM files.

Index

_ii Jii.fi~ _

Contents

Contents overview•...•.......••...........•......................

Contents .•...•••....••..••.• co u • • .. • • .. • • • • • • • • • • • iii

Preface . • . . . • . . . • • • . . . • • • . • • • . • • • • .• xvii

About this manual xvii
About the toolset documentation set xvii
Other documents xviii
Documentation conventions a •• xviii

Tools.. 1
icc - ANSI C compiler .

1.1 Introduction a ••••••••••••••••••••••••••••••••••••••

1.2 Running the compiler .
1.2.1 Input/output files .
1.2.2 Transputer targets .
1.2.3 Error modes .
1.2.4 Default command line options .
1.2.5 Search paths .
1.2.6 Using the assembler .
1.2.7 Using the compiler preprocessor .
1.2.8 Compatibility with other C implementations .
1.2.9 Software quality check ~ .
1.2.10 Runtime checking options .
1.2.11 Compactable code .

1.3 Compiling with optimization switched on .
1.3.1 Advantages of enabling optimization .
1.3.2 When optimization should not be used .
1.3.3 Optimization options .
1.3.4 Enable side effects information messages .
1.3.5 Disable side effect warning messages .
1.3.6 Language considerations .
1.3.7 How to use feedback information to improve optimized code

quality .
1.4 Memory map .

1.4.1 Notes on the compiler memory map format .
1.5 Compiler directives .

1.5.1 #define .

3

3
3
6
7
8
8
8
8
9
9

10
10
11
11
11
12
12
13
13
13

14
17
19
20
20

___________ Eii._~ iii

Contents

1.5.2 #elif. 20
1.5.3 #else. 20
1.5.4 #endif. 20
1.5.5 #error. 21
1.5.6 #if. 21
1.5.7 #ifdef. 21
1.5.8 #ifndef. 21
1.5.9 #include. 22
1.5.10 #Iine... 22
1.5.11 #pragma 22
1.5.12 #undef 31

1.6 Compiler predefinitions . 31

1.6.1 Macro names................... 31
1.6.2 Other predefines 31

1.7 Transputer inline code 32

1.7.1 Inlined functions. 32
1.8 Compiler diagnostics. 33

1.8.1 Message format . 33
1.8.2 Severities. 33
1.8.3 Standard terms 34
1.8.4 Information messages 36
1.8.5 Warning diagnostics 36
1.8.6 Recoverable errors 46
1.8.7 Serious errors... 54

2 icconf - configurer•........................... 65

2.1 Introduction. 65
2.2 Configuration language implementation 65
2.3 Running the configurer 66

2.3.1 Default command line . 67
2.3.2 Boot from ROM options 68
2.3.3 Support for INQUEST . 68
2.3.4 Virtual routing processes... 68
2.3.5 Mixed language programming . 69
2.3.6 Configurer library files. 69
2.3.7 Standard include files......... 69
2.3.8 Configuration description examples 70
2.3.9 Search paths 70
2.3.10 Default memory map 70
2.3. 11 System processes . 72

2.4 Configurer messages 72

2.4.1 Information. 72
2.4.2 Warnings. 73
2.4.3 Errors. 76

_iv lifir~ ----------

Contents

2.4.4 Serious messages . 93
2.4.5 Fatal errors. 96

3 oc - occam 2 compiler It .. • • 99
3.1 Introduction . 99
3.2 Running the compiler 100

3.2.1 Default command line arguments .. 102
3.3 Filenames 103
3.4 Transputer targets.. 103
3.5 Error modes 103
3.6 Enable/Disable Error Detection .. 104
3.7 Enabling/disabling warning messages. .. 105
3.8 Support for debugging 106
3.9 Channel input/output .. 106
3.10 Separately compiled units and libraries .. 106
3.11 Code insertion using ASM 107
3.12 Memory map. .. 107
3.13 Compiler directives 108

3.13.1 Syntax of compiler directives .. 109
3.13.2 #INCLUDE 109
3.13.3 #USE 110
3.13.4 #IMPORT 110
3.13.5 #COMMENT... 111
3.13.6 #OPTION 112
3.13.7 #PRAGMA 113

3.14 Error messages 116
3.14.1 Warnings.................... .. 117
3.14.2 Errors.. 120

4 occonf - occam configurer 123
4.1 Introduction 123
4.2 Running the configurer 124
4.3 Default command line. 126
4.4 Search paths 126
4.5 Configurer library files .. 126
4.6 Boot-from-ROM options 127
4.7 Configuration error modes .. 127
4.8 Enable/Disable Error Detection .. 128
4.9 Enabling memory re-ordering and placement. 128
4.10 Channel input/output. .. 128
4.11 Virtual routing 129
4.12 Enabling/disabling warning messages. 129
4.13 ASM code. 130
4.14 Support for INQUEST .. 130
4.15 Default memory map .. 131

-----------liii..mraoocl-----------v

Contents

4.15.1 LoadStart 131
4.15.2 System processes .. 132
4.15.3 Configuration description examples 132

4.16 Configurer diagnostics 132
4.16.1 Warning messages 133
4.16.2 Error messages 135

5 icollect - code collector. • • • • 145

5.1 Introduction 145
5.2 Running the code collector 146

5.2.1 Examples of use 148
5.2.2 Default command line .. 148
5.2.3 Input files. .. 148
5.2.4 Output files 0 • 0 • •• 149

5.3 Program interface for occam unconfigured programs 149
5.3.1 Interface used for 'T' option 150
5.3.2 Interface used for 'T' and 'M' options 150

5.4 Memory allocation for unconfigured programs 150
5.4.1 C programs .. 151
5.4.2 occam programs 152
5.4.3 Memory initialization errors 153
5.4.4 Small values of IBOARDSIZE 153

5.5 Clearing memory 154

5.6 Non-bootable files created with the K option 154
5.6.1 File format 0 •• 154

5.7 Boot-from-ROM output files a.................. 156
5.8 Alternative bootstrap schemes 0 •••••• a • a • • • • • • •• 156
5.9 The memory map file 156

5.9.1 Configured program boot from link .. 158
5.9.2 Unconfigured (single processor), boot from link. 159
5.9.3 Boot from ROM programs 161

5.10 Reducing the amount of memory used - 'V' option 162
5.11 Error messages 163

5.11.1 Warnings... 163
5.11.2 Serious errors .. 163
5.11.3 Fatal errors 0 • • • • • • • • • • • •• 167

6 iemit - memory interface configurer .••........................•... 169

6.1 Introduction 169
6.2 Running iemit .. 170
6.3 Output files 171
6.4 Interactive operation 0 •• 172

6.4.1 Page 0 172

_vi Eiil'~lj _

Contents

6.4.2 Page 1 0 ••••••••••••••• 0 • • • • • • • •• 173
6.4.3 Page 2 0 • 0 •••••• 0 ••••••••••• 0 • • • • • • • • • • •• 176
6.4.4 Page 3 .. 177
6.4.5 Page 4 .. 178
6.4.6 Page 5 179
6.4.7 Page 6 180

6.5 iemit error and warning messages..... . 181
6.6 Memory configuration file 0 •• 0 ••••••••••••••••••• 0 •• 182

7 ieprom - ROM program convertor•.........................

7.1 Introduction .
7.2 Prerequisites to using the ieprom tool .
7.3 Running ieprom .

7.3.1 Examples of use .
7.4 ieprom control file .
7.5 What goes into the EPROM 0 ••• 0 ••••••••••••••

7.5.1 Memory configuration data 0 0 •• 0 ••• 0 ••••••••••••••••••

7.5.2 Parity registers a •• a ••••••••••• a ••

7.5.3 Jump instructions a a ••••••••••••••••••••••••

7.5.4 Bootable file .
7.5.5 Traceback information .

7.6 ieprom output files. a a .

7.6.1 Binary output .
7.6.2 Hex dump .
7.6.3 Intel hex format .
7.6.4 Intel extended hex format .
7.6.5 Motorola S-record format .

7.7 Block mode .
7.7.1 Memory organization .
7.7.2 When to use block mode .
7.7.3 How to use block mode .

7.8 Example control files .

7.8.1 Simple output .
7.8.2 Using block mode .

7.9 Error and warning messages .

185

185
186
186
187
187
190
190
191
191
192
192
192
192
192
193
193
193
193

193
194
194
194

194
195
195

8 ilaunch - Windows launch tool.............. 197

8.1 The Windows environment file 198
8.1 .1 Syntax. .. 198

9 ilibr - librarian•.........•.................. 201

9.1 Introduction 201
9.2 Running the librarian 0 • • • • • • • • • • • • • • •• 202

-----------l.Tifi~ v_ii

Contents

9.2.1 Default command line .. 203
9.2.2 Library indirect files 203
9.2.3 Linked object input files 203
9.2.4 Library files as input 204

9.3 Library modules 204
9.3.1 Selective loading 204
9.3.2 How the librarian sorts the library index. 204

9.4 Library usage files 205
9.5 Building libraries. .. 205

9.5.1 Rules for constructing libraries 205
9.5.2 General hints for building libraries 205
9.5.3 Optimizing libraries 206

9.6 Error Messages 209
9.6.1 Information messages 209
9.6.2 Warning messages 209
9.6.3 Serious errors 209
9.6.4 Fatal errors 210

10 ilink - linker • .. 211

10.1 Introduction 211
10.2 Running the linker 212

10.2.1 Default command line .. 213
10.2.2 Output format 213

10.3 Linker indirect files. .. 213
10.3.1 Linker indirect files supplied with the toolset. 214
10.3.2 Linking different versions of software after occam upgrade 214

10.4 Linker directives .. 215
10.4.1 #alias basename {aliases} 215
10.4.2 #define symbolname value 215
10.4.3 #include filename. .. 216
10.4.4 #mainentry symbolname 216
10.4.5 #reference symbolname 216
10.4.6 #section name 216

10.5 Linker options .. 217
10.5.1 Processor types 217
10.5.2 Error modes - options H, S and X 217
10.5.3 Extraction of library modules - option EX 218
10.5.4 Display information - option I 221
10.5.5 Virtual memory - option KB .. 221
10.5.6 Main entry point - option ME .. 221
10.5.7 Link map filename - option MO 221
10.5.8 Suppress symbol table - NS .. 222
10.5.9 Linked unit output file - 0 222
10.5.10 Permit unresolved references - option U 222

_vi_ii li;i _

Contents

10.5.11 Channel input/output - Y .. 222
10.6 Selective linking of library modules 223
10.7 The link map file. .. 223

10.7.1 MODULE record: .. 223
10.7.2 SECT record: 224
10.7.3 MAP record: 224
10.7.4 Value record: 224
10.7.5 LOCALVALUE record 224

10.8 Using imakef for version control 225
10.9 Error messages 225

10.9.1 Warnings... 225
10.9.2 Errors.. 226
10.9.3 Serious errors. .. 227
10.9.4 Embedded messages .. 230

11 ilist - binary lister•......................... 231

11 .1 Introduction .. 231
11 .2 Data displays 231

11.2.1 Modular displays 231
11.2.2 Example displays used in this chapter. 232

11.3 Running the binary lister. .. 232
11.3.1 Options to use for specific file types 233
11.3.2 Output device .. 233
11.3.3 Default command line .. 234

11.4 Specifying an output file - option 0 234
11 .5 Symbol data - option A .. 234

11 .5.1 Specific section attributes 234
11 .5.2 General symbol attributes 235
11.5.3 Example symbol data display 235

11.6 Code listing - option C 235
11.6.1 Example code listing display .. 236

11 .7 Exported names - option E 237
11.7.1 Example exported names display. 237

11.8 Hexadecimal/ASCII dump - option H .. 237
11.8.1 Example hex dump display 238

11.9 Module data - option M 238
11.9.1 Example module data display 239

11 .10 Library index data - option N .. 239
11.10.1 Example library index display 240

11 .11 Procedural interface data - option P 240
11 .11.1 Example procedural data display 240

11 .12 Specify reference - option R .. 241
11.13 Full listing - option T .. 241

-----------liil&~ i_x

Contents

11.13.1 Example full data display 241
11 .13.2 Configuration data files .. 242

11.14 File identification - option W 242
11 .14.1 Example file identification display .. 243

11.15 External reference data - option X 243
11.15.1 Example external reference data display 244

11.16 Error messages 244
11.16.1 Information messages 244
11 .16.2 Serious errors .. 245
11 .16.3 Fatal errors 245

12 imakef - makefile generator•..........•.••..••........ 247

12.1 Introduction. 247
12.2 How imakefworks 247
12.3 File extensions for use with imakef .. 248

12.3.1 Target files 248
12.4 Linker indirect files. .. 251
12.5 Library indirect and library usage files 251
12.6 Running the makefile generator 251

12.6.1 Example of use 252
12.6.2 Specifying language mode. .. 253
12.6.3 Configuration description files 253
12.6.4 Debug data .. 254
12.6.5 Software virtual routing and channel input/output 254
12.6.6 Boot-from-ROM target files 254
12.6.7 Removing intermediate files 254
12.6.8 Files found on ISEARCH 254
12.6.9 Map file output for imap 255

12.7 imakef examples 255
12.7.1 C examples .. 255
12.7.2 occam examples.. 256
12.7.3 Mixed language program 258

12.8 Format of makefiles .. 260
12.8.1 Macros... 260
12.8.2 Rules.. 261
12.8.3 Delete rule 261
12.8.4 Editing the makefile 0 •• 261

12.9 Error messages 262
12.9.1 Warnings 262
12.9.2 Errors.. 264

13 imap - memory mapper • .. 265

13.1 Introduction 265
13.2 Running the map tool 266

_x J.V.P~ _

Contents

13.2.1 Source files required by imap 267
13.2.2 Re-directing imap's output 267

13.3 Output format D • • • • • • • • • • • •• •• 267
13.3.1 imap memory map structure 267
13.3.2 User processes 269
13.3.3 Module memory usage D •••• D • • • • • • • •• 269
13.3.4 Other processes 270
13.3.5 Symbol table. 270

13.4 Example. 270
13.5 Error messages 272

13.5.1 Serious errors 272
13.5.2 Fatal errors DO •••••••••••••••••••••• 0 • • • • • • • • • • • • • • •• 272

14 imem450 - memory interface configurer 275

14.1 Introduction 275
14.2 Running the memory interface configurer 0 • • • • • • • • • • • • •• 276

14.2.1 Default command line 277
14.3 Interactive operation 277

14.3.1 Interactive commands. 279
14.3.2 Interactive pages...... 279

14.4 Output files D D • • • • • • •• • • • • • • • • .. • • • • • • • • • • • • •• 283
14.4.1 Memfiles O. 0 •••••••••••••• D •• • • • • • • • • .. • • • • • • • • • • • • •• 283
14.4.2 ASCII display page output files D • 0 • • • • • • • • • • • • • • • • •• 284
14.4.3 Waveform file D • D • • • • • • • • • • • • • • • • • •• 284

14.5 Error messages D •••••••• 0 • • • • • • • • • • • • • • •• 286
14.5.1 Warnings... 286
14.5.2 Errors... 287
14.5.3 Fatal errors .. 289

15 irun - application loader 291

15.1 The purpose of irun 291
15.1.1 Initializing target hardware. 291
15.1.2 Loading programs .. 291
15.1.3 Access to host services 291

15.2 Starting an application 292
15.2.1 Target interface parameters.. 292
15.2.2 The irun command line .. 292
15.2.3 Starting using Microsoft Windows. 293

15.3 The environment 294
15.3.1 ISEARCH . D •••••• 0 D • • • • • • • • • • • • •• 294
15.3.2 ASERVDS. 0 • .. • .. • • • • • • • • • • • • • • •• 294
15.3.3 TRANSPUTER... 295
15.3.4 Setting target interface parameters on a Sun 295
15.3.5 Setting target interface parameters on a PC with Windows 295

15.4 Skip loaders D. D •••••••••• 0 ••••• D •••••••••••••• 295

___________ J:;i.1'~~ xi

Contents

15.4.1 Running the skip loader 296
15.4.2 Examples of use 296

16 iset - Windows parameter tool 297

Appendices . 299

A Toolset conventions and defaults. .. 301

A.1 Command line syntax 301
A.1.1 General conventions .. 301
A.1.2 Indirect argument files 301

A.2 Unsupported options .. 302
A.3 Filenames 302
A.4 Search paths 303
A.5 Standard file extensions 303

A.5.1 Main source and object files 304
A.5.2 Indirect input files (script files) 304
A.5.3 Files read by the memory map tool imap 305
A.5.4 Other output files 305
A.5.5 Miscellaneous files 305

A.6 Extensions required for imakef 305
A.7 Message handling. 306

A.7.1 Message format ' ~ .. 307
A.7.2 Severities... 307
A.7.3 Runtime errors 307

B Processor types and classes .. 309

B.1 Processor types supported by the toolset . .. 309
B.2 Processor types and classes .. 309

8.2.1 Single processor type .. 309
8.2.2 Creating a program which can run on a range of processors ..

310
8.2.3 Linking files which contain code compiled for different targets .

311
8.2.4 Classes/instruction sets - additional information 313

B.3 Processor type command line options .. 315

C ANSI C compiler optimization examples 317

C.1 Local optimization examples 317
C.1.1 Peephole optimization 317
C.1.2 Flowgraph optimizations. .. 317
C.1.3 Redundant store elimination 318

C.2 Global optimization examples 320
C.2.1 Common subexpression elimination 320

_xi_i J:ii.~ -----------

Contents

C.2.2 Loop-invariant code optimization 321
C.2.3 Global optimization example .. 321
C.2.4 Strength reduction 322
C.2.5 Tail-eall and tail recursion optimization 323
C.2.6 Workspace allocation by coloring 325

o

E

Using the assembler•.........................

D.1 Introduction 0 •••••••••• 0 ••••••••••••••••••••••••••••

D.2 Running the assembler .
0.2.1 Specifying the source filename .
D.2.2 Use of icc command options with the assembler .
0.2.3 Using the preprocessor with the assembler .

D.3 Language .

0.3.1 Label definitions .
0.3.2 Symbols .
0.3.3 Expressions .
0.3.4 Transputer instruction mnemonics .
0.3.5 Comments .

0.4 Assembler directives .
0.5 BNF grammar for assembler language .
0.6 Errors .

0.6.1 Fatal Errors .
0.6.2 Serious Errors .
0.6.3 Errors .

Memory interface configuration files .•.•.•........................•

E.1 Structure of memfiles .

E.1 .1 Processor type .
E.1.2 DRAM refresh parameters definition .
E.1.3 Global parameters 0 ••••••••••••••••••••••••••••••

E.1 .4 Bank definitions 0 ••••••••••••••••••••••••••••••

E.1.5 Strobe definitions .
E.2 Memfile statements .

E.2.1 Timing parameters .
E.2.2 Statement definitions .

E.3 Example file .

327

327

327
327
328
328
328

329
329
329
331
331
332
362

365

365
365
366

369

369

369
369
370
370
372
373

373
375
384

F ANSI C configuration language • • .. 387

F.1 Introduction .. 387
F.2 Statements 387
F.3 Comments. .. 388

F.4 Identifiers 0 • • • • • • • • • • • • • • • •• 388

~SGS 1HOMSON xiii---------- A'TI.~~----------

Contents

F.4.1 Character set 0 ••• 0 0 0 0 ••• 0 0 0 0 0 0 0 0 •• 0 0 • 0 0 ••• 0 ••• o. 388
F.5 Types .. 0 •• 0 •••• 0 • 0 0 ••• 0 •• 0 0 0 0 0 •• 0 • 0 0 • 0 0 • 0 0 0 0 0 0 • 0 0 0 • 0 0 0 0 0 0 0 388

Fo6 Constants .. 0 • 0 0 0 •• 0 0 0 0 0 0 0 • 0 0 0 0 •• 0 • 0 • 0 • 0 0 0 •• 0 0 • 0 0 • 0 0 0 0 • 0 0 o. 388

F.7 Booleans .00000 •• 00.0.000.0.000 •••• 000.00000000000.0.00.... 389

F.8 Expressions and arithmetic 000. 0 .000.00.0000 •• 0.0000.0000 •• 0. 389

F.9 Arrays 0 0 0 • 0 0 • 0 ••••••• 0 0 • 0 0 • 0 •••• 0 • 0 • 0 0 ••• 0 • 0 0 0 • 0 • 0 • 0 • 0 0 0 •• 390

F.10 Conditional statement 0 0 0 •• 0 • 0 0 • 0 • 0 0 0 0 0 •• 0 • 0 0 0 0 •• 0 • • • • • • •• 390

Fo11 Replication.. 391

F.12 Built-in functions 0 • • • • • • • • • • • • • • • • •• 391

F.13 Nodes 0 •• 392

F.13.1 Node attributes 0 •••••••••••••••••••• 0 • • • • • • • • • • • •• 392
F.13.2 Defining new node types 393
F.13.3 Connections 0 • ••••• • • •• 393
F.13.4 Prohibited connections 394

F.14 Configuration language summary .. 394

F.14.1 Network data types 0 •• 394
F.14.2 Numeric data types 0 •• 394
F.14.3 Language constructs. .. 394
F.14.4 Definitions and declarations. .. 395
F.14.5 Operators 395
F.14.6 Predefinitions 0 ••••••••• 0 • • • • •• 395
F.14.7 Built-in functions 396

F. 15 Configurer directives 0 •••••••••••••• 0 0 • • • • • • • • • •• 396

F.15.1 #include 0 • • • • • • • • • • • • • •• 396
F.15.2 Configurer directives summary 0 • • • • • • • • • • • •• 396

F.16 Configuration language syntax 397

F.16.1 Notation 0 •• 397
F.16.2 Configuration 0 • • • • • • • • • • • •• 397
F.16.3 Language features 398
F.16.4 Expressions 0 • • • • • • • • • • • • • • • • • •• 398
F.16.5 Replication and conditionals 399
F.16.6 Numeric value declarations 0 ••• 0 • • • • •• 400
F.16.7 Network declarations 0 •• 400
F.16.8 Mapping declarations 401

F.17 Implementation details 0 ••••••••••••••• 0 • • • • • • • • • • • • • •• 402

F.18 Reserved words 0 •• 402

F.18.1 Keywords '. 0 ••••••••• 0 ••• 0 • • • • • • • • • • •• 402
F.18.2 Pre-defined attributes 0 •• 402

F.19 Predefinitions... 404

F.19.1 Constants.. 404
Fo20 Types 0 ••• 0 •••••••••••••••••••••••• 0 • • • •• 405

F.21 Declarations 0 ••••••••• 0 •• 0 • • • • • • • • • • •• 406

_xi_v ~&"'tIIII-----------

Contents

G occam configuration language 407

G.1 Notation. .. 407

G.2 Introduction .. 407

G.3 New types and specifications 409

G.3.1 Syntax of configuration description. 410
G.4 Hardware description 410

G.4.1 Processor attributes 411
G.4.2 Syntax definition 412

G.5 Software description 413

G.5.1 Syntax definition 413
G.6 Mapping structure 414

G.6.1 Syntax definition 415
G.7 Constraints 416

G.8 Checking IF statements 417

H AServer database •.................•............................. 419

H.1 Target hardware connection fields 419

ITERM files•................................... 421

1.1 Introduction .. 421

1.2 The structure of an ITERM file 421

1.3 The host definitions... 422

1.3.1 ITERM version .. 422
1.3.2 Screen size .. 422

1.4 The screen definitions. .. 422

1.4.1 Goto X Y processing .. 423
1.5 The keyboard definitions 423

1.6 Setting up the ITERM environment variable 424

1.7 Iterms supplied with a toolset 424

1.8 An example ITERM 425

Index•.....•......•........•...................... 427

___________E;l~ x_v

Contents

_XV_i liii.P~ _

Preface

About this manual

This manual is the Toolset Reference Manual and it is designed to cover the following
products:

• ST20 toolset;

• ANSI C toolset;

• occam 2 toolset;

for the following hosts:

• IBM 386 PC compatible running MS-DOS

• Sun 4 systems running SunOS or Solaris.

This manual provides reference material for each tool in the toolsets including command
line options, syntax and error messages. Many of the tools in the toolset are generic to
several toolset products e.g. the ST20 toolset, the ANSI C toolset and the occam 2
toolset and the documentation reflects this. Examples are given in C. The appendices
provide details of toolset conventions, processor types, the ANSI C assembler, memory
configuration files and the configuration languages.

A list of the tools supported by your particular toolset is given in the'User Guide which
accompanies your toolset. References in the documentation to tools, languages or
processor targets which do not apply to your toolset, should be ignored.

About the toolset documentation set

The toolset documentation set comprises the following volumes:

~
L.L-I

User Guide

• Toolset User Guide

W
··

...... .

Toolset Reference
W

··
.............

Language and libraries
Reference

Describes the use of the toolset in developing programs. The main stages of the
development process are described and a 'Getting started tutorial is included.
The 'Advanced Techniques' section is aimed at more experienced users.

• Toolset Reference Manual (this manual - see above)

~SGS UIOMSOII xvii----------"TI.~~----------

Preface

• ANSI C Language and Libraries Reference Manual

The manual is divided into two parts: the toolset libraries and the language refer
ence. A set of appendices is also provided. The libraries section lists the runtime
library functions and provides detailed information about each function. A
chapter also describes how to modify the runtime startup system by removing
segments not required by the user's application. Only very experienced users
should attempt this. The language reference for the toolset includes imple
mentation and compliance data.

Other documents

Other documents provided with your toolset product include:

• Delivery manual

This document gives installation data and is host specific.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type
Teletype

Italic type

Braces {}

Brackets []

Ellipsis •••

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments, and
program listings from normal text.

In command syntax definitions, used to stand for an argument of a
particular type. Used within text for emphasis and for book titles.

Used to denote optional items in command syntax.

Used in command syntax to denote optional items on the command
line.

In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more items.

In command syntax, separates two mutually exclusive alternatives.

_xv_ii_i Ji;i..~ -----------

Tools

--------ED.~J4-------.....:...

Tools

2 l.fi - _

1 icc - ANSI C compiler

This chapter describes in detail the ANSI C optimizing compiler icc. It describes the
command line syntax, compiler options, preprocessor directives, optimization and other
features of the compiler such as support for transputer code. The chapter ends with a
list of error messages. Examples of the types of optimization supported are given in the
appendices.

1.1 Introduction

The ANSI C compiler conforms fully with the X3.159-1989 ANSI standard for the C
programming language. This standard has now been ratified as "ISO/lEG 9899:1990
Programming languages - C". The ANSI C compiler provides support for concurrent
programming as well as some additional extensions to the C language including
compiler directives, pragmas and low level programming.

The ANSI standard for the C language defines the language including runtime library
support, new types and function prototyping. The ANSI C compiler includes support for
parallel programming through a set of library functions with associated types and struc
tures, a mechanism for incorporating transputer code sequences, and a group of
compiler pragmas for enabling compiler options in sections of code and for conveying
directives to the linker. The transputer code mechanism supports the full set of trans
puter instructions and operations and also supports labels.

Parallel processing is achieved through a library of process, channel, and semaphore
functions and their related types and data structures. Calls to the functions are compiled
by icc into highly efficient parallel code for the transputer.

icc generates code for a particular transputer, transputer type, or class, and a target
should be specified for all compilations.

The operation of the compiler in terms of standard toolset file extensions is shown below.

-----------l.V.~mI----------3-

1.2 Running the compiler

1.2 Running the compiler

To invoke the compiler use the following command line:

~ icc filename {options}

where: filename is the C program source code. If no extension is given •c is assumed.
Only one filename may be given on the command line.

options is a list of options given in table 1.1. Options to select the transputer
target for the compilation are listed in appendix B.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'j'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order
on the command line.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1.2 for details.

If no arguments are given on the command line brief help information is displayed; the
full help page is displayed by using command option 'HELP'.

Note: icc must be invoked in a writeable directory, that is, one in which you (or any alias
you use 10 invoke the compiler) have write access.

Option Description
Transputer type See appendix B for a list of options to specify transputer type.

AS Assemble the inputfile to producean object file. The compiler phase is suppressed.
See section 1.2.6.

COMPACT Produce an object file which may be compacted by the linker. Compilerdefault. See
section 1.2.11 .

D symbol Defines a symbol. Same as #define symbol 1 at the start of the source file.

D symbol=value Defines a symbol and assigns avalue. Same as idefine symbol value at the start
of the source file.

EC Disables checks for invalid type casts. ANSI compliance check.
EP Disables checks for invalid text after #el.se or iendif. ANSI compliance check.

EZ Disables checks for zero-sized arrays. ANSI compliance check.

FC Change the signedness property ofpJain charandplain bit-fields to be signed. The
default is to compile as unsigned.

FEEDBACK A feedbackfile, generated by the INQUEST profiling tool, is used as input to the
feedbackfile compiler to improve the quality of optimization. See section 1.3.7.

FH Performs a number of software quality checks. See section 1.2.9.

FM Generates warning messages on #defined but unused macros.

FS Directs the compiler to treat right shifts of signed integers as arithmetic shifts. See
section 1.2.8.

_4 ii;i~ -- _

1 icc - ANSI C compiler

Option Description

FSA number Changes the alignment for struets and unionS to number. See section 5. 1.3 of
the 'ANSI C toolset language and libraries reference manual.
Note: code compiled with the FSA option (whose interface contains structures
whose alignment is changed by the FSA option) should not be mixed with code
compiled without it, or with a different value for the FSA option.

FSC Provides information on how the compiler has treated routines with respect to side
effects.

FV Reports all extemally visible functions and variables which are declared but
un-referenced, and have file scope.

G Generates comprehensive debugging data. The default is to produce minimal
debugging data. Debugging data is required for the correct operation of the
debugging tools.

HELP Displays full help information for the tool.

I Displays detailed progress information at the terminal as the compiler runs.

J dir Adds dir to the list of directories to be searched for source files incorporated with
the iinelude directive in extended search paths. See section 1.5.9 for details.

KP Inserts run-time code to check that pointers are correctly aligned, and that NULL
pointers are not de-referenced. See section 1.2.10 for details.

KS Inserts run-time code to check that the stack does not overflow. See section 1.2.10
for details.

NOCOMPACT Produces an object file which cannot be compacted by the linker. See section
1.2.11.

o outputfile Specifies the name of the output object file. If no filename is given the compiler
derives the output filename from the input filename stem and adds the. teo
extension.

00 Disable optimization.

01 Enable local optimization. Compilerdefault.
02 Enable both global and local optimization.

p mapfile Produces a map of workspace for each function defined in the file, and a map of
the static area of the whole file. The map is written to the file mapfile. See section
1.4.
Note: if this file is to be used as input to imap, it must be given an extension of the
form: •mxx. The characters'xx'are determined by the 2nd and 3rd characters of
the extension given to the compiler object file. For example if the compiler object
file takes the default extension •teo, the information file is given the extension
• mea.

PG Inserts instructions in the object code to collect data for 'caJl-graptt profiling with
the INQUEST profiling tool.

PL Inserts instructions in the object code to collect data for 'line profiling with the
INQUEST profiling tool.

PP Runs the preprocessor and then terminates. The preprocessed source file is sent
to stdout. Compilation is suppressed. See section 1.2.7.

PPC Runs the preprocessor and then terminates. The preprocessed source file is sent
to stdout. Compilation is suppressed. Comments are preserved in the
preprocessed output. See section 1.2.7.

PR Inserts instructions in the object code to collect data for 'routine' (i.e. function)
profiling with the INQUEST profiling tool.

QS Optimize for space.

QT Optimize for time. Compiler default.

__________ ii;iP~~ 5_

1.2 Running the compiler

Option Description

s Compiles the source file to assembly language and writes it to a file. Assembly is
suppressed and no object code is produced. The file is named after the input file
and given the .s extension.

u symbol Disables a symbol definition. Equivalent to #undef symbol at the start of the
source file.

w Suppress all warning messages.
WA Suppresses messages warning of '=' in conditional expressions.

WD Suppresses messages warning of deprecated function declarations.
WF Suppresses messages warning of implicit declarations of extern int ().

WN Suppresses messages warning of implicit narrowing or lower precision.

ws Suppress warning messages about possible side effects.

WT Suppresses messages warning of the possibility of less efficient code when
compiled for a transputer class. Note: this option no longer has any effect and the
warning messages are no longer generated.

WTG Suppress messages warning of trigraphs.
wv Suppresses messages warning of non-declaration of void functions

Table 1.1 Standard icc compiler options

Examples of use:

icc -st20 he110.c
i1ink -st20 hello. teo -f estartup.lnk
ieconf hello.cfs
ieollect hello.efb

icc -t450 he110.c
i1ink -t450 hello. teo -festartup./nk
ieconf hello.cfs
ieolleet hello.efb

icc -t80S he110.c
iJink -t805 hello.teo -f cstartup./nk
icconf hello.efs
icollect hello.cfb

1.2.1 Input/output files

The compiler command line will accept the following types of input file:

• A C source file, which by convention is given a ' •c' file extension. Although any
filename, which is legal on the host system, will be accepted. If a source file is
specified without an extension, the compiler will assume it is a C source file and
search for a file with a '. c' file extension.

• An assembler source file, which by convention is given an ' •s' file extension.
Assembler source files are input to the compiler's built-in assembler, using the
'AS' option, which suppresses compilation. Note: a file extension (other than
, •c') must be specified. Even though the 'AS' option is specified to invoke the

-6---------liii.fi~---------

1 icc • ANSI C compiler

assembler, the compiler will assume a ' • c' file extension if a file extension is not
specified on the command line.

Source files may contain preprocessor directives. If an assembler source file contains
preprocessor directives then it must be input to the compiler, using the 'preprocess-only'
'PP' or 'PPc' command line options. The output from the preprocessor may them be input
to the assembler as described above.

The compiler produces a single 'primary' output file and optionally a 'secondary' output
file. The type of output file produced depends on the command line options used. The
name of a primary output file is specified using the '0' command line option. Primary
output files are generated as follows:

• By default the compiler generates an object file in Transputer Common a>ject
File Format (TCOFF). Object files are required to be in this format to be compat
ible with other tools in the toolset. If the '0' command line option is not specified,
the input filename is used and a ' •teo' extension is added.

• An assembler source file. This is generated using the's' command line option,
the assembler is suppressed. If the '0' command line option is not specified, the
input filename is used and an ' •s' extension is added.

• A text file generated by using the 'preprocess-only' 'pp' or 'ppc' command line
options. If no output file name is specified, then the output is written to stdout.

Figure 1.1 summarizes icc's input and primary output file options. Sections 1.2.6 and
1.2.7 describe the use of the assembler and preprocessor options in further detail.

An optional secondary output file may also be produced by specifying the 'p' command
line option together with a filename. This generates a map file describing the code and
data layout of the object file. Naming conventions for map files are described in table 1.1 .
Section 1.4 describes the format of the map file.

~e DemuR

~8 Specifying the '5' option

~e Specifying the 'AS' option

~~G
Specifying the 'pp' option Specifying the 'AS' option

Figure 1.1 icc input/output file options

----------- JiU._ocI-----------7

1.2 Running the compiler

1.2.2 Transputer targets

The compiler generates code for a specific transputer type. This means that a processor
type must be specified for all transputer targets. The only time a processor type does
not have to be specified is when the preprocessor is selected, see section 1.2.7.

Transputers are also grouped into classes for the purpose of generating common code
suitable for running on a number of different transputer targets. Transputer classes
group transputers according to word size and instruction set compatibility. They can be
used to generate code for combinations of transputers.

The use of transputer types and classes in developing programs is explained in
appendix B. The command line options for selecting a transputer target are given in this
appendix.

1.2.3 Error modes

All code in mixed language transputer programs must be compiled and linked in the
same or a compatible error mode. icc always generates code in UNIVERSAL error
mode, which is compatible with HALT and STOP error modes created by other
SGS-THOMSON compiler toolsets.

The error mode for a mixed language program can be consolidated into a single mode
for the entire program by specifying the appropriate linker option. If no mode is specified
the linker generates the program in HALT mode.

1.2.4 Default command line options

Commonly used command line parameters can be defined in the host environment vari
able ICCARG. Parameters specified in this way are automatically added to the start of
the command line when the compiler is invoked.

Command line parameters must be specified in ICCARG using the syntax required by
the icc command line.

1.2.5 Search paths

The search rules are described in appendix A. Search path rules 1 and 2 are used for
locating files specified on the command line.

Search paths for files imported with the #include compiler directive differ slightly from
those for files specified on the command line and can be extended by the use of special
syntax and a command line option. Details of this facility can be found in section 1.5.9.

1.2.6 Using the assembler

Assembler source files may be assembled by using the icc command line option 'AS'.
This causes the compilation phase of the compiler to be suppressed and the input file

8 liii.---------

1 icc - ANSI C compiler

to be passed directly to the assembler. If the input assembly source file contains prepro
cessor directives, the compiler preprocessor must first be used to process the source
file; the output from the preprocessor may then be used as input to the assembler.

Note: the compileralso has an option '8' which will compile aCsource file into an assem
bler source file. The assembler phase is suppressed.

The use of the assembler is described in appendix 0, together with examples of how it
is invoked. The file name conventions for assembler files and the command options
which may be used with the assembler are listed. The appendix also describes the
syntax of assembler directives and lists the error messages which may be generated by
the assembler.

1.2.7 Using the compiler preprocessor

Source and header files may be preprocessed using the 'pp' command line option. The
preprocessor implements translation phases 1 to 4 of the ANSI Standard, section
2.1.1.2. The 'ppc' option additionally preserves comments in the preprocessed output.
These two options suppress compilation and can be thought of as 'preprocess-only'
mode.

The preprocessor is used to resolve preprocessor directives (Le. directives with a '#'
prefix) and to perform macro expansion. Preprocess-only mode is particularly useful for
header files or for assembler source files because the assembler does not have the
ability to process preprocessor directives. The output from preprocess-only mode may
then be fed back into the compiler or assembler for further processing.

In preprocess-only mode, a target processor type need not be specified. In this case the
preprocessor symbol_PTYPE takes the value zero '0' which is adummy value. Ifa target
processor is specified then _PTYPE will be set as normal.

Preprocess-only mode generates a text file which by default is sent to standard out
(stdout), alternatively the '0' command line option can be used to name an output file.

1.2.8 Compatibility with other C implementations

A number of compiler options are provided which may assist users porting existing C
code to transputer systems.

Arithmetic right shifts

By default, the compiler implements right shifts of signed integers as logical shifts, the
command line option FS switches the implementation. This allows correct working of
programs which assume that right shifts of signed values propagate the sign.

Signedness of char

By default the compiler implements plain charS as unsigned charS. The command
line option Fe switches the implementation to signed char, plain bit-fields are also

__________ Ji;i.... 9

1.2 Running the compiler

signed. Details of type representation are given in chapter 5 of the 'ANSI C Language
and Libraries Reference Manua!.

Alignment of structS/unionS

By default, the compiler aligns structs and unions on a word boundary. The
command line option 'FSA number' modifies this. Chapter 5 of the 'ANSI C Language
and Libraries Reference Manua! describes the use of this option in more detail.

Some C implementations align a struct/union according to the strictest alignment
requirements of the fields of the struct/union; this can be achieved using the 'FSAl'
option.

1.2.9 Software quality check

The FH option allows policing of software quality requirements. The option requires all
externally visible definitions to be preceded by a declaration (from a header file), thus
guaranteeing consistency.

When the FH option is used the compiler reports:

• all forward static declarations which are unused when the function is defined.

• all repeated macro definitions (this is when macros are redefined to the same
value; redefining a macro to a different value is always diagnosed as an error).

1.2.10 Runtime checking options

The KP and KS command line options cause the compiler to insert run-time code to
perform checking.

Enable pointer dereference checks

When the KP option is specified, the compiler inserts a check each time a pointer is
dereferenced. This check ensures that the pointer is not NULL and that the pointer is
correctly aligned for the type of object being accessed. For example, in the following
code,

int *pi;
char *pc;

*pc = (char)(*pi);

two pointer checks will be inserted: one to check that pi is not NULL and that it points
to a word-aligned object, and another to check that pc is not NULL.

Note: that no check is inserted if a pointer is assigned or read but not dereferenced. For
example, no checks will be inserted in the following code,

int *pil, *pi2;
pil = pi2;

_10 g;;.r~ _

1 icc • ANSI C compiler

Pointer dereference checks are not performed in functions which have been marked
with the pragma IMS_nolink.

Enable stack checks

When the KS option is specified, the compiler inserts a check on entry to each function.
This check ensures that the stack has enough space available for the function's work
space, plus a margin for calling library functions which do not contain stack checks. This
margin is currently 150 words.

As the stack check always ensures that there is a margin free below a function's work
space, any leaf functions (functions which do not call other functions) whose workspace
fits into this margin do not require a stack check. The compiler will automatically
suppress the stack check for such functions.

Stack checks are not performed in functions which have been marked with the pragma
IMS_nolink.

1.2.11 Compactable code

By default the compiler will generate code which may be compacted by the linker. Rather
than assuming a 'worst case' size for a variable length instruction, the compiler leaves
information in the object file which the linker then uses to determine the optimal length
of the instruction. The object file produced by the compiler will be larger than if compact
able output was switched off, using the icc 'NOCOMPACT' option, but after linking the
code will be smaller and faster.

Compacted and non-eompacted code may be mixed, however, non-compacted code
may not be supported by future toolsets.

1.3 Compiling with optimization switched on

Compiling source code with optimization enabled generates highly efficient object code.
The purpose of optimization is to improve the execution time of object code as well as
the program's use of memory Le. workspace or stack or code-size. Compiler options
QT and QS enable the user to control whether the optimization performed is predomi
nantly to improve execution time or memory use. Optimization does not affect the func
tionality of the program, although compile times will be slower when a high level of opti
mization is performed.

The compiler implements both local and global levels of optimization:

• The global optimizations include: common subexpression elimination, strength
reduction, loop invariant code motion and tail-eall optimization. The optimizer
examines each function as a single unit, enabling it to obtain as much information
as possible about that function, while performing the optimization. Global opti
mization is more complex than local optimization; generally the more information
available to the optimizer the better chance the optimizer has of improving code.
The compiler pragma IMS_nosideeffects enables the user to clarify the

__________ ~BmB8PJ4 1_1

1.3 Compiling with optimization switched on

behavior of individual functions. (Compiler pragmas are described in section
1.5.11).

• The local optimizations include: flowgraph, peephole and redundant store elimi
nation. To perform these optimizations efficiently, the optimizer only needs to
operate on short sequences of code.

1.3.1 Advantages of enabling optimization

The advantages of enabling the optimizing features of the compiler are that:

• It saves development time by relieving users of the need to optimize their code
themselves.

• It allows users to write more readable, and hence more maintainable, code
because they can rely on the compiler to transform the code into a more efficient
form.

• There are some optimizations which cannot be performed by the user at a source
code level but can only be performed by the optimizing compiler at compile time.

• The compiler is able to analyze the cost/effectiveness of potential optimizations
and will only apply an optimization where a saving can be made in either execu
tion time or space.

1.3.2 When optimization should not be used

If it is required to debug a program it may be wise to disable optimization using the '00'
command line option. The compiler will generate debug information requested via the
'G' option when optimization is enabled, however, the SGS-THOMSON debugging prod
ucts will produce more accurate results if optimization is disabled in the compiler.

1.3.3 Optimization options

Disable optimization 00

The option '00' disables all optimization which can be specifically enabled at the
command line using the '01' and '02' options.

Enable local optimization 01

This option is enabled by default and applies the following local optimizations:

• Flowgraph optimization, including dead code elimination.

• Peephole optimization.

• Redundant store elimination.

Local optimizations are described, with examples, in section C.1.

_12 EY. _

1 icc - ANSI C compiler

In addition, workspace allocation by coloring is enabled. This is in fact a global optimiza
tion and is described in section C.2.6.

Enable local and global optimization 02

This option, enables the following local and global optimizations:

• All optimizations enabled by option 01.

• Global common subexpression elimination.

• Loop invariant code motion.

• Strength reduction.

• Tail-eall optimization.

• Tail recursion optimization.

Global optimizations are described, with examples, in section C.2.

Optimize for time OT

This option controls how optimization is applied once it has been enabled by either the
01 or 02 options. The option instructs the compiler to perform only those optimizations
which will not reduce the speed of the program. Where a choice exists between gener
ating faster, but larger code over slower, more compact code, it will generate the faster
code. This option is enabled by default.

Optimize for space OS

As above, but does the reverse, Le. only performing those optimizations which will not
increase the size of the program. Where a choice exists between generating faster, but
larger code over slower, more compact code, it will generate the more compact code.

There is no definitive list for either the OT or OS options, as to which optimizations will
or will not be applied. This will vary depending on the code being optimized.

1.3.4 Enable side effects information messages

The F sc option enables the generation of information messages about the 'side effect'
characteristics of functions as the compiler performs optimization. The messages report
the actions of the compiler to give the user visibility of how functions are treated with
respect to side effects. The messages are purely informational and do not signal any
required response from the user.

Information messages are listed in section 1.8.4. Side effects are discussed in more
detail in section 1.5.11, as part of the description of the compiler pragma IMS_nosi
deeffects.

1.3.5 Disable side effect warning messages

The ws option disables messages warning users that functions marked as side effect
free may in fact still cause side effects. See section 1.5.11.

----------l..Tir~ 1_3

1.3 Compiling with optimization switched on

1.3.6 Language considerations

Before the compiler can optimize a function call it has to be sure that the optimization
is safe Le. that it will not break the code. Therefore it will treat function calls with caution,
assuming that they may modify global variables, unless it can deduce with certainty their
true behavior.

This section outlines language features which affect the implementation of optimization
by icc.

const keyword

The const keyword states that after it is initialized, a variable cannot subsequently be
modified by the program. For a const variable, the compiler does not have to make
worst case assumptions about its being modified when ambiguous modifications are
seen. If a variable is never modified, then declaring it as const wil1, in general, allow the
compiler to do a better job of optimizing.

Note: when pointers to const objects are used e.g.

const char *p

the const keyword does not guarantee that the char will not be modified, just that it
will not be modified through pointer p.

volatile keyword

The volatile keyword states that a variable may change asynchronously, or have
other unknown side effects. The compiler will not move or remove any loads or stores
to a volatile variable. volatile should be used for variables shared between parallel
threads (or variables modified by interrupt routines), or variables which are mapped onto
hardware devices.

register keyword

The register keyword is taken as a hint to the workspace allocator to allocate the vari
able at a small workspace offset.

1.3.7 How to use feedback information to improve optimized code quality

When the compiler is optimizing code, it requires information about how the code
executes: for example, it needs to know how many times a loop will iterate, or given a
conditional branch, whether the branch is likely to be taken or not. This information is
generally not available to the compiler, so it has to make educated guesses, which
enable it to achieve a general level of optimization without perhaps 'fine-tuning' perfor
mance in particular circumstances. One way of improving the compiler's ability to opti
mize code is to actually gather the required information during execution of the program,
and then rerun the compiler, feeding in the gathered information. Thus, the compiler can
be 'taught' how the program executes. If the information given to the compiler accurately
represents how the program normally executes, then the quality of code generated can
be improved.

_14 E;i&~ - _

1 icc • ANSI C compiler

This method of program development is supported by the combined use of the ANSI C
toolset optimizing compiler and the profiling tools supplied in the INQUEST product.

The sequence of events required is:

Step 1 Compile the program with global optimization and line profiling enabled (using
the compiler's '02' and 'PL' options). If you are only worried about one or two critical
routines then you can just enable profiling information for the source files with those
routines in.

Step 2 Link, configure, and collect the program as usual.

Step 3 Execute the program with a sample input. Note: that it is important that the
sample input is an accurate representation of the program's normal input, so that the
behavior of the program on this sample is close to the normal behavior of the program.
(Alternatively, for embedded systems, it may be the behavior in some critical situation
which is most important, so it is required that the compiler should optimize the code for
this critical situation, in which case, the sample input should represent this critical
situation .)

Step 4 After the program terminates, run the profiling tool of the INQUEST product to
extract 'line profiling information from the target network and create the 'feedbacK files,
which contain the information the compiler needs. (Currently only' line' profiling informa
tion can be used to generate 'feedback' files).

It is possible to execute the program on a number of different sample inputs, and accu
mulate the feedback information. To do this, repeat steps (3) and (4) for each sample
input, and use the INQUEST 'line' profiling options to append new data to the 'feedback'
files, rather than recreating them each time.

Step 5 Now recompile the source files for which you have gathered profiling information,
specifying the feedback file (using the compiler's 'FEEDBACK filename option). Do not
enable any profiling options in this recompilation.

Note: that the source code must not have changed in any way between the compilation
with profiling enabled and the compilation using the feedback files, otherwise the
compiler will not be able to work out which program constructs, the feedback information
refers to. If the compiler detects that the source has changed, it will report the error:

Serious-icc-<fflename>«fine»- Feedback file is out of step with source

Step 6 Relink, configure and collect the program as usual.

__________~~ 1_5

1.3 Compiling with optimization switched on

Example:

Suppose you have a program made up of two files bitl . c and hit2 . c and you are
compiling for an ST20 target:

Step 1: compile with line profiling enabled:

icc bitl.c -st20 -02 -pI
icc bit2.c -st20 -02 -pI

Global optimization is enabled by '02'.

Step 2: link, configure and collect:

ilink bitl.tco bit2.tco -f cstartup.lnk -st20 -0 bit.lku
icconf bit.cfs
icollect bit.cfb

Step 3: execute the program, for example:

irun -sb bit.btl

Chapter 15 of this manual has further details about irun and the accompa
nying 'User Guide' describes how to load and execute programs.

Step 4: gather profiling information using the INQUEST line profiling tool, and create a
feedback file, for example:

iline bit.btl -feed

The profiler will create two feedback files called bitl • d and bit2 . d.

Consult the profiler documentation which accompanies your INQUEST product
for details of how to use the line profiling tool.

Step 5: recompile your program using the feedback files (generated by step 4):

icc bitl.c -st20 -02 -feedback bitl.d
icc bit2.c -st20 -02 -feedback bit2.d

Step 6: relink, configure and collect:

ilink bitl.tco bit2.tco -f cstartup.lnk -st20 -0 bit.lku
icconf bit.cfs
icollect bit.cfb

16 tY.-----------

1 icc • ANSI C compiler

1.4 Memory map

The compiler may be instructed, via the P mapfileoption, to produce a map ofworkspace
for each function defined in the file, and a map of the static area of the whole file. The
file contains information which may assist the user during program debugging and can
be used as input to the memory mapper imap. The map is written to the file mapfile.

The file consists of a series of workspace maps; one for each routine, giving details of
workspace requirements. These are followed by a series of section maps; one for each
section of code or data, listing details of its contents.

The file is generated in text format and is structured as follows:

• The name of the source file for which the map of code and data is being produced.

• Version data for the compiler.

• The target transputer of the compilation, Ta05, T400 etc.

• The error mode of the compilation, this is always UNIVERSAL for C programs.

• Name of the routine for which the map of workspace is being produced. Items in
the workspace map are given in ascending order of workspace offset, expressed
as bytes or words as indicated in the heading. If the workspace map is in words,
individual items may still be expressed and annotated as byte offsets. The
following information is provided:

• A list of local variables giving their offset into the routine's workspace. This list
may include temporary variables introduced by the compiler.

• A list of formal parameters giving their name and offset into the routine's work
space. Parameters added by the compiler may also be listed, see table 1.2 for
a list of their names (further details of these parameters can be found in section
5.16 of the 'ANSI C Language and Libraries Manuaf).

• The workspace requirement of the routine. Note: this includes the four word
call overhead introduced by the transputer call instruction.

• Name of the section for which the section map is being produced. Items in the
section map are given in ascending order of section offset.

• A list of static variables or routines, giving the following details:

- Name of static variable or routine. This may be in the form '<name>%xp',
see table 1.3

- Type of variable or routine

- Offset in bytes into static data or code area

- Other properties of variable or routine, see table 1.3.

Static variables are either placed in the static or code areas. Details of how the compiler
allocates space for static data are given in section 5.15 of the 'ANSI C Language and
Libraries Reference Manual.

__________ A.Ti.~ 1_7

1.4 Memory map

Map of code and data for source file twoprocs.c

Created by INMOS C compiler Version 4.01.09 (02:24:52 Mar 11 1995) (SunO
S-Sun4)

Target processor ST20
Error mode UNIVERSAL

Map of workspace

Routine : hello_proc

No local variables

Formal parameter name

<return_address>
<gsb>
p

Offset (bytes)

o
4
8

Workspace size

Map of workspace

16 bytes

Routine : world_proc

No local variables

Formal parameter name

<return_address>
<gsb>
p

Offset (bytes)

o
4
8

Workspace size

Map of workspace

Routine : main

Variable name

16 bytes

Offset (bytes)

<compiler_temporary>
hello
world

Formal parameter name

<return_address>
<gsb>

Offset (bytes)

12
16

Workspace size

Section map

Section name

Name

28 bytes

text%base size = S:8 bytes

Type Offset (bytes)

hello-proc
world_proc
main

code
code
code

o
S:9
S:10

global
global
global

Figure 1.2 Example compiler map

_18 1ifi.~ _

1 icc • ANSI C compiler

Formal parameter

Compiler temporary

Result pointer

Return address

Global static base pointer (gsb)

Static link

Table 1.2 Parameters inserted by compiler

Property Description

global Globally visible static item.

static Static item which is not globally visible.

pointer to external object Static item introduced by the compiler to enable code to access
an external object. The name of the external object is used asthe
prefix to the compiler generated name. e.g. 'fred%xp' is a static
item introduced by the compiler which points to an external
object named 'fred'.

translated from data name Static items whose name has been modified by the
IMS_translate pragma are listed under the name that is put
into the object file. They are annotated with the message:
'translated from sourcename', where sourcename is the
name used in the source file.

Table 1.3 Static variable properties

1.4.1 Notes on the compiler memory map format

The message "No local variables" may be displayed if no user variables
are found, however, compiler temporaries may have been assigned to work
space.

2 If a file does not contain static data, such information will not be present in the
map file and in this case the ~static%base' section map will not appear. The
compiler does not generate an explicit ''No static data" message.

3 When optimization is enabled using the command options 01 or 02 the compiler
may remove some local variables from the map file generated. In such cases the
variable will not occupy any space in workspace. These variables are listed at
the end of the local variable map together with the message "Not Allocated".

4 Some offsets may only be resolved by the linker. In this case the compiler inserts
the string's: n', which informs the linker there is a local symbol 'n' which needs
resolving. The linker inserts the value of the symbol in a LOCALVALUE record in
the linker map file and this value will be inserted in the map file generated by
imap. See chapters 10 and 13.

5 Variables and external symbols are truncated to a maximum of 32 characters.

6 Information generated in the compiler map file may be extracted by the imap
tool. This tool can be used to produce a memory map for the program after it has
been compiled, linked and collected. See chapter 13.

-----------liii~ 1_9

1.5 Compiler directives

1.5 Compiler directives

1.5.1 #define

Syntax: #define name [(arg1, . . .,argn)] [value]

#define allows simple macro substitution to be performed. In its simplest mode of
operation name and value represent a series of ASCII characters causing the prepro
cessor to substitute all occurrences of name by value (which may be null). Arguments
may also appear after the name, and when this happens the preprocessor will still
replace all occurrences of name and its following arguments by value, but in this case
the value string will have been defined in terms of the expected arguments, and will
therefore exhibit a dependence on the original text.

#define YES 1 /* replace all occurrences
of YES by 1 */

#define max(a,b) «a) > (b) ? (a) (b»
/* max(2,4) will be replaced by

«2) > (4) ? (2) : (4» */

1.5.2 #elif

Syntax: #elif constanLexpression

This directive can be used in place of the sequence

#else
#if constanLexpression

1.5.3 #else

Syntax: #else

This directive can be used with the #if, #ifdef, and #ifndef directives to mark the
beginning of text which will be ignored whenever the expression following the #if evalu
ates to a non-zero value.

1.5.4 #endif

Syntax: #endif

This directive must be used with the #if, #ifdef, and #ifndef directives to mark the
end of the text which may be affected by the #if ... #else ... #endif construct.

20 J:fi ----------

1 icc - ANSI C compiler

1.5.5 #error

Syntax: #error text

This directive causes an explicit error with the text following the directive displayed in
the error message. This is useful for determining which pieces of code are being
bypassed by a construct of the form #if ... #else ... #endif.

1.5.6 #if

Syntax: #if constanLexpression

This directive, along with the #else and #endif directives, is used in a similar way to
the if ... else construct of many high level programming languages. When it is encoun
tered, the preprocessor evaluates the following constant expression and if it is zero it
ignores all text up to the following #else or #endif directive. If, however, the expres
sion evaluates to non-zero, then the text between the #else and #endif directives (if
any) is ignored. This mechanism would typically be used to allow conditional compila
tion.

As an extension to this directive, the preprocessor also allows 'if defined' type expres
sions. In this case 'defined' is used as a unary operator which returns true if its operand
represents an identifier that is currently defined within the preprocessor's symbol table,
and false if it is not. By combining this operator with the logical operators it is possible
to build complex expressions e.g.

#if defined £00 & ! defined dummy

/* if £00 is defined and dummy is not */

1.5.7 #i fdef

Syntax: #ifdef identifier

This directive works in a similar way to the #if directive, but instead of basing its deci
sion on the result of an expression it uses the existence or non-existence of the identifier
within the preprocessor's symbol table as the criterion. If the identifier has not previously
appeared in a #define directive or if it is not one of the predefined identifiers then all
text up to the following #else or #endif directive is ignored; otherwise all text between
the #else and #endif directives is ignored.

1.5.8 #ifndef

Syntax: #ifndef identifier

This directive is similar to #ifdef, except that the text is passed if identifier is not
currently defined.

-----------liii._: 2_1

1.5 Compiler directives

1.5.9 #include

Syntax: #include filename

The #include directive instructs the preprocessor to read the contents of the named
file as if they were at the current position in the current file. The filename must be
enclosed within angle brackets « filename» or double quotes ("filename"). The two
forms generate different search strategies.

If angle brackets are used only those directories specified by ISEARCH are searched.
No otherdirectories (including the current directory) are searched. This method is mainly
used to include the standard library header files.

If double quotes are used, then the compiler first searches for the file in the directory of
the top level source file (relative directory names are relative to the directory of the
current source file). If the file is not found the search continues with the list of directories
specified after the compiler'J' option. If the file is still not found, or if no list is given, direc
tories specified by ISEARCH are searched.

A #include preprocessing directive may appear in a source file that has been read
because of a #include directive in another file. There is no fixed limit to #include
nesting.

Relative directory names

Relative directory names are treated as relative to the directory containing the current
source file.

Backslash character in filenames

In included filenames the backslash is not treated as introducing an escape sequence
unless it is followed by another backslash ('\\').

1.5.10 #line

Syntax: #line linenumber [filename]

This directive instructs the compiler that subsequent lines begin with line number line
numberin the file filename. If no file name is specified, the original name is retained./ine
number must be within the range 1 to 32767 inclusive.

1.5.11 #pragma

Syntax: #pragma pragma (params)

This directive activates and deactivates various compiler options in sections of C code.
It may be used to set (or override) options specified on the command line. Most pragmas
also take parameters or numerical arguments. Table 1.4 lists the main compiler
pragmas.

22 Eii ---------

1 icc - ANSI C compiler

Option Description

IMS_codepatchsize Specifies the number of bytes reserved by the compiler for a
linker code patch. Requires the compiler NOCOMPACT option
to be used.

IMS_descriptor Creates a TCOFF descriptor for C functions.

IMS_interrupt_handler Causes the specified function to be treated as an interrupt
handler function. Only applicable when compiling for a T450
or ST20 target. Should not be used in conjunction with the
IMS_nolink pragma.

IMS_linkage Enables the user to change the order in which code modules
are linked together.

IMS_modpatchsize Specifies the number of bytes reserved by the compiler for a
linker module number patCh. Requires the compiler
NOCOMPACT option to be used.

IMs_nolink Compiles a specified function without a global static base
parameter. Should not be used in conjunction with either the
IMS_interrupt_handler or the IMS_trap_handler
pragmas.

IMS_nosideeffects Marks the specified function as being side effect free.

IMS_off Disables specific compiler actions.

IMS_on Enables specific compiler actions.

IMS-place_at_workspace_offset Allocates a local variable at a specific offset in the local
workspace.

IMS_translate The compiler replaces all references to a specified name with
anew name.

IMS_trap_handler Causes the specified function to be treated as a trap handler
function. Only applicable when compiling for aT450 or ST20
target. Should not be used in conjunction with the
IMS_nolink pragma.

Further details of each option is given below.

Table 1.4 icc compiler pragmas

Pragma IMS_codepatchsize

Specifies the number of bytes reserved by the compiler for a linker code patch.

Syntax: #pragma IMS_codepatchsize (n)

n has a default value of 6 for 32-bit targets and 4 for 16-bit targets.

Note: this pragma has no effect when compactable object code is generated, which is
the default. The compiler NOCOMPACT option must be specified on the command line.

Pragma IMS_descriptor

The pragma IMS_descriptor creates a TCOFF descriptor for C functions. It also
causes the definition of two TCOFF symbols giving the workspace and vectorspace
requirements of the function. This pragma is of particular use when modifying the C
runtime startup code, further details of which are given in chapter 3 of the 'ANSI C

- J.V. 2_3

Syntax:

1.5 Compiler directives

Language and Libraries Reference Manual. It is also applicable when making use ofthe
dynamic loading facility provided in the C library (see chapter 2 of the 'ANSI C Language
and Libraries Reference Manua! and the 'Dynamic code loading' chapter of the'User
Guide').

#pragma IMS_descriptor (function-name, language_type, \
workspace, vectorspace, "descriptor-string'?

The parameters to the pragma are given in table 1.5.

The rules governing the use of this pragma are as follows:

• The function must be externally visible.

• The function must have been declared before the pragma appears.

• The function must not have been defined before the pragma appears.

• The pragma must appear in the same file in which the function is defined.

• Only one descriptor pragma can exist per function.

• No argument to the descriptor pragma can be the result of earlier preprocessor
substitutions.

functionname Name of the C function to which the descriptor applies.

language_type The language in which the descriptor string is written. The language is given
as a keyword:
unknown
occam
ansi_c
fortran
iso-pascal
modula2
ada
assembler
occam_harness
Alternatively the descriptor-string may be an empty string, however, a
language type must still be given.

workspace The amount of workspace required by the function, expressed as a number
of words.

vectorspace The amount of vector space required by the function, expressed as a number
of words. This is usually '0' for C functions.

"descriptor-string' This is the descriptor string itself. If the string is not empty then it must contain
an occam style function declaration equivalent to the C function prototype.

Table 1.5 Parameters to IMS_descriptor

_24 l.fl _

1 icc • ANSI C compiler

An example of the use of this pragma follows:

void centry(int bill);

ipragma IMS_descriptor(centry, occam, 32, 0, \
"PROC centry(VAL INT bill)\n SEQ\n:")

void centry(int bill)
{

/* function body */;

This defines an occam descriptor for the function centry. A requirement for 32 words
of workspace and no vectorspace is also recorded in the descriptor. The syntax for the
descriptor string is the standard syntax for occam descriptors.

Note: type compatibility between the parameters in occam and C is retained by
following the rules given in the 'Mixed language programming' chapter of the accompa
nying 'User Guide' for those toolsets which support mixed language programming.

Example TCOFF output from the above can be obtained using the 't' option on the lister
tool ilist, as follows:

00000080 SYMBOL EXP "centry" id: 4

00000092 SYMBOL EXP UNI "centry'ws" id:
0000009F SYMBOL EXP UNI "centry'vs" id:
OOOOOOAC DEFINE_SYMBOL id: 5 32
OOOOOOBl DEFINE_SYMBOL id: 6 0
OOOOOOB6 DESCRIPTOR id: 4 lang: OCCAM
ws: 32 vs: 0
PROC centry(VAL INT bill)

SEQ

Pragma IMS_interrupt_handler

This pragma indicates to the compiler that the named function is to be used as an inter
rupt handler.

Syntax: #pragma IMS_interrupt_handler (function-name)

The named function must have been declared before the pragma is encountered.

A warning is generated and the pragma is ignored if,

• the named function has been defined before the pragma is encountered;

• its parameter is not a function identifier;

• it is given no parameters or more than one parameter;

• the target processor is not a T450 or ST20.

----------lii~ 2_5

1.5 Compiler directives

Where support is provided by the toolset for interrupt handling, details of how to use the
interrupt handling facilities are given in the accompanying'User Guide'.

Pragma IMS_linkage

Enables the user to change the order in which code modules are linked together; this
may aid the use of faster on-ehip RAM.

Syntax: #pragma IMS_linkage (["name"])

The compiler creates the object code into a section named "text%base". The
IMS_linkage pragma causes the compiler to change the name of the section to that
supplied in the string. If no string is present, "pri%text%base" is used; this section
being inserted at the front by the linker in the default case. A linker directive (see 10.4.6)
controls of the ordering of the sections.

The linkage directive should appear at the start of the code, before any function defini
tions.

Pragma IMS_modpatchsize

Specifies the number of bytes reserved by the compiler for a linker module number
patch.

Syntax: #pragma IMS_modpatchsize (n)

n has default values of 3 for 32-bit targets and 2 for 16-bit targets.

Note: this pragma has no effect when compactable object code is generated, which is
the default. The compiler NOCOMPACT option must be specified on the command line.

Pragma IMS_nolink

The pragma IMS_nolink compiles a specified function without a global static base
parameter. The function must already have been declared but must not have been
defined or called. This pragma is used for importing code written using languages such
as occam which do not use static data, and for exporting C functions to the same
languages.

Syntax: #pragma IMS_nolink(mnction-name)

The following code uses the pragma to allow an occam routine OCCAMREALOP to be
called in a C program:

extern float OCCAMREALOP(const float x,
const int op,
const float y);

#pragma IMS_nolink (OCCAMREALOP)

float x, y, z;
z = OCCAMREALOP(x, op_add, y);

26 Eii. -----------

1 icc • ANSI C compiler

The following code allows the C function max to be called from occam:

extern int max(const int x, canst int Y)i
#pragma IMS_nolink (max)
extern int max(const int x, canst int y)

{ return x > Y ? x : Yi }

Note: functions which have had the IMS_nalink pragma applied may not be called
through a pointer. The library routine call_withaut_gsb is supplied to allow a call
through a pointer to a nolinked function.

Pragma IMS_nosideeffects

This pragma enables the user to provide the compiler with more information about func
tions, whose behavior could otherwise be ambiguous and therefore helps to maximize
the degree of optimization performed. Its syntax is as follows:

#pragma IMS_nasideeffects (function-name)

where: function must have been declared but not defined or instanced before the
pragma is encountered. A warning is generated and the pragma ignored if:

• the named function has been defined, part defined or instanced before the
pragma is encountered;

• its parameter is not a function identifier;

• it is given more than one parameter or none at all.

Functions which are marked as side effect free enable the compiler to avoid making
worst~ase assumptions about variables modified when the function is called.

A function is side effect free when, within the body of a function:

• there are no assignments to variables which are defined outside the function,
including writing through a pointer where the pointer points to a variable defined
outside the function e.g. I/O or 'passing by reference' is not allowed;

• there are no assignments to static variables (although initialization of static vari
ables within definitions are allowed);

• there are no reads from or assignments to volatile variables;

• there are no calls to functions which may have side effects.

The user must ensure that a function meets the above criteria before marking it with the
pragma IMS_nasideeffects. If a function is marked as side effect free and it does
not meet the above criteria, the compiler will report an error. Assembler inserts Le.
__asm statements and pointers to functions, are a particular risk area, as the user might
unconsciously introduce a function which does break the above criteria. For this reason,
the compiler will warn the user, each time assembler code or a pointer to a function is

---------I.V.~ 2_7

1.5 Compiler directives

encountered. Note: these warning messages may be disabled by using the ws
command line option.

The compiler may mark a function as side effect free, even though the user has not
applied the IMS_nosideeffects pragma. Use of the FSC command line option will
cause an information message to be generated should this occur.

The compiler will only mark those functions that it detects as unambiguously side effect
free and that are not already marked. It is possible for there to be functions which are
side effect free that the compiler does not detect; for such functions, only the application
by the user of the pragma IMS_nosideeffects will cause these functions to be
marked as side effect free.

If a function that is side effect free is externally visible, then it may be useful to put the
pragma IMS_nosideeffects into the header file following the prototype of the func
tion. This enables the compiler to generate better code for calls to that function from
other files.

Pragmas IMS_on and IMS_off

IMS_on enables specific compiler actions; IMS_off disables the same actions. Both
pragmas take a list of parameters, (separated by commas) which specify the actions to
be enabled or disabled, they are listed in table 1.6.

Syntax:
Syntax:

#pragma IMS_off (params)
#pragma IMS_on (params)

_28 ~f~" _

1 icc - ANSI C compiler

Parameter Short Description
form

channel-pointers cp Treats a variable of type Channel in the scope of the definition
typedef const volatile void * as a channel type for the
debugger. Default is off. This pragma is enabled in the header file
channel. h. If channel. h is included in the program this pragma will
remain active until specifically disabled.

inline_ops il Compiles certain operationson long operands (signed or unsigned) on
16-bit targets as in-line operation rather than as calls to the compiler
library. Operationsaffected are: - (bitwise complement), +, -, & (bitwise
AND), I (bitwise OR), -"(bitwise exclusive OR), <<,», <, <=, ==, ! =,
>=, and >. Default is on.

printf_checking pc Checks that arguments passed to a function conform to the format
used byprintf. Default is off. This pragma is normally used to check
formal arguments which are to be passed directly as format strings to
printf.

For each function within the scope of the pragma the last formal
parameter is read as a format string and subsequent variable
arguments are checked for correct type, according to the formatting
rules of printf. This pragma is enabled in stdio.h for the
declaration of printf and related functions, and subsequently
disabled.

scanf_checking sf Checks that arguments passed to a function conform to the format
accepted by scanf. Default is off. Otherwise this pragma has the same
effectprintf_checking. This pragma is enabled in stdio.h for the
declaration of scanf and related functions, and subsequently
disabled.

stack_checking sc Checks for stack overflow at the start of each function. Default is off.

warn_deprecated wd Warns of parameterless function declarations. Default is on.

warn_implicit wi Warns of undeclared functions. Default is on.

Table 1.6 Parameters to IMS_on and IMS_off

This pragma directs the compiler to allocate a local (automatic) variable at offset words
from the base of the current function's local workspace. The compiler will ensure that
at least offsetwords are allocated, and that no other variables in scope at the same time
as local. variable are allocated in the same place in workspace.

Syntax: #pragma IMS-place_at_workspace_offset (~caivariab~,

offset)

This pragma is useful when using transputer instructions which require that values are
placed at fixed workspace offsets, or which may overwrite values in workspace. For
example, the disc instruction writes to workspace location '0', so to ensure that no other
local variables will be allocated in this location, a dummy variable can be declared and
placed at this location, as in the following example:

__________ /iii_ttl 2_9

1.5 Compiler directives

int dummy;
#pragma IMS-place_at_workspace_offset (dummy, 0)

_asm {
set up the a1t
disabling code

disc;
more disabling code

The named local variable must have been defined before the pragma is encountered.

A warning is generated and the pragma is ignored if:

• the named variable has not been defined before the pragma is encountered;

• the named variable is not local (automatic);

• the workspace offset supplied is negative.

Pragma IMS_trans1ate

The compiler replaces all references to name (e.g. an external routine) by "newname'.

Syntax: #pragma IMS_translate (name, "newname")

"newname' is a C string which can contain alphanumeric characters; the underscore
('_'), percent ('%'), or full stop (' • ') characters.

Pragma IMS_trap_handler

This pragma indicates to the compiler that the named function is to be used as a trap
handler.

Syntax: #pragma IMS_trap_handler (function-name)

The named function must have been declared before the pragma is encountered.

A warning is generated and the pragma is ignored if,

• the named function has been defined before the pragma is encountered;

• its parameter is not a function identifier;

• it is given no parameters or more than one parameter;

• the target processor is not a T450 or ST20.

Where support is provided by the toolset for trap handling, details of how to use the trap
handling facilities are given in the accompanying 'User Guide.

_30 J:;i.p~ ----------

1 icc • ANSI C compiler

1.5.12 #undef

Syntax: #undef identifier

This directive causes the current definition of identifier (as defined using the #define
directive) to be deleted.

1.6 Compiler predefinitions

Certain macros which identify global information, and some function names, are auto
matically recognized by the compiler. Generally, these items can be referenced directly
in C programs and do not need to be declared.

Note: Predefined variables _lsb and -params (see section 1.6.2) should be declared
to avoid spurious warning messages being generated by the compiler.

1.6.1 Macro names

All predefined macro names defined by the ANSI standard are present; they are:

__DATE__

__FILE__

__LINE__

__STDC__

__TIME__

The date of compilation of the source file.
Name of the current source file.
Line number of the current line of source.
The decimal constant '1' showing the implementation conforms to ANSI C.
The time of compilation of the source file.

The following SGS-THOMSON macro names are also defined:

__CC_NORCROFT

_ICC

_PTYPE
_ERRORMODE

__SIGNED_CHAR__

__ICC_VERSION_STRING__

__ICC_VERSION_NUMBER__

Derived from the Norcroft C compiler.
SGS-THOMSON C compiler.
Processor type.
Execution error mode.
Signedness of the plain char type, defined if the icc 'FC'
command line option is used.
Full debugging data, defined if the icc 'G' command line
option is used.
Compiler version string.
Compiler version number.

Details of the macros and the values they can take can be found in chapter 4 of the 'ANSI
C Language and Libraries Reference Manual.

1.6.2 Other predefines

Two further names _lsb and -params are predefined by the compiler. They can be
used in expressions in the same way as C variables. Both represent addresses which
may be manipUlated in low level programming and must be declared as follows:

extern volatile const void *_lsb;

extern volatile const void *-params;

---------I.Ti~ 3_1

1.7 Transputer inline code

_1sb is a pointer to the base of the compiled file's data area.

-params is a pointer to the base of the the current function's parameter block. It can be
used to obtain low level information about a function's runtime code.

The following example illustrates how -params can be used to determine a function's
return address, global static pointer, and workspace pointer.

void p()
{
extern volatile const void *-params;
typedef struct paramblock

{ void *return_address;
void *gsb;
int regparaml, regparam2;

}
paramblock;

paramblock *pp = (paramb1ock *)-params;

/* Return address is: pp->return_address
g1oba1 static base sb is: pp->qsb
caller Wptr is: (void *) (Pp + 1) */

1.7 Transputer inline code

The ANSI C toolset provides different levels of support for inlining transputer instruc
tions:

• A special keyword __asm can be used to insert sequences of transputer instruc
tions into C programs. The __asm statement and how to use it is described in
chapter 4 of the 'ANSI C Language and Libraries Reference Manuaf.

• A number of functions are supplied which can be compiled inline as transputer
instructions, provided the appropriate header files are included in the source
code. The inputs and outputs of the instructions are treated as parameters to and
results from the functions.

1.7.1 Inlined functions

Each of the supplied functions is designed to allow access to a transputer instruction
which is not directly accessible from the C source level. Note: however, that the auto
matic inlining will only occur if the appropriate header file has been incorporated in the
source code by using the #include directive. The header files contain prototypes for
the routines. Table 1.7 lists the functions, the instructions they support and the header
file which is required.

_32 liii..~ _

1 icc - ANSI C compiler

Function Instruction supported Header file
BitCnt bitcnt misc.h

BitcntSum bitcnt misc.h

BitRevNBits bitrevnbits misc.h

BitRevWord bitrevword misc.h

BlockMove move misc.h

CrcByte crcbyte misc.h

CrcWord crcword misc.h

DirectChanIn in channel.h

DirectChanInchar in channel.h

DirectChanInInt in channel.h

Directchanout out channel.h

DirectChanOutChar outbyle channel.h

DirectchanOutInt outward channel.h

memcpy move string.h

Move2D move2dall misc.h

Move2DNonZero move2dnonzero misc.h

Move2DZero move2dzero misc.h

procGetPriority Idpri process.h

ProcReschedule - process.h

ProcTime Idtimer process.h

semSignal t signal semaphor.h

semwait t wait semaphor.h

strcpy - string.h

t Supported by T450 and ST20 targets only.

Table 1.7 Inlined functions

Note: the 'nirectChan... ' functions must not be used with software virtual channels:
the chapter on 'Configuration' in the 'User Guide' discusses this, for toolsets which
support software virtual channels.

Descriptions of all the functions are provided in the 'ANSI C Language and Libraries
Reference Manual.

1.8 Compiler diagnostics

This section lists diagnostic messages generated by icc. The section is introduced by
descriptions of some standard terms which may be encountered in the message texts.

1.8.1 Message format

Diagnostic messages are displayed in the standard toolset format for error messages.
Details of the standard can be found in appendix A.

1.8.2 Severities

Diagnostics are tagged with a severity level which indicates their effect on the compila
tion. Severity levels are the same as those used in the toolset standard but have slightly
different meanings, which are described below.

----------li;i~ 3_3

1.8 Compiler diagnostics

Information messages provide the user with information about the functioning or perfor
mance of the tool. They do not indicate an error and no user action is required in
response.

Warning severity diagnostics are generated whenever legal, but unorthodox program
ming styles are detected. Compilation is unaffected and object code is generated
normally.

Errorseverity diagnostics are generated whenever the compiler detects a programming
error from which it can recover. Compilation continues, but may abort if more errors are
detected subsequently. No object code is generated.

Serious severity diagnostics are generated when programming errors are detected from
which the compiler cannot recover. Compilation continues but code has been lost. No
object code is generated.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but if they
do the fact should be reported to your local SGS-THOMSON distributor or field applica
tions engineer.

Error, Serious, and Fataldiagnostic messages return error codes for handling by system
MAKE programs and batch files.

1.8.3 Standard terms

This section explains some of the standard terms and notation used in compiler error
messages.

abstract declarator

When using explicit casts or when passing an argument to sizeof (), a data
type must be specified. This can be done by declaring an object of the correct
type without specifying the name of the object. Declarations of this type are
called abstract declarations, because they apply to no known object.

Examples of abstract declarations are:

(int) a = b; /* 'int' is the abstract
declarator */

sizeof(int [3]); /* 'int [3]' is the abstract
declarator */

char

Stands for a single ASCII character.

context

A context, e.g. 'case expression'.

34 J:.Y.----------

1 icc - ANSI C compiler

count

A number.

deprecated declaration

This means that a function declaration is incomplete. Declarations should
specify the type of the function and the type of each formal parameter. If there
are no parameters then the function type void should be specified.

expression

Stands for a C expression.

filename

A file name.

function prototype

A function declaration which usually precedes the function definition. It declares
the function's type and the types of its parameters.

identifier

A C identifier, for example, a variable or function name.

initializer

An initial value which is assigned to an object at the time of its declaration.

instruction

A transputer instruction, or a pseudo-instruction as accepted by the __asm
construct.

number

A number.

op

An operator. Valid operators include: "++", "-", "->", "(=", and the unary opera
tors &, *, + and-.

store class

A C storage class. Valid classes are static or extern.

string

Any string of ASCII characters.

structlunion

struct or union.

symbol

A C token.

_________~.... 3_5

1.8 Compiler diagnostics

type

A type identifier.

void context

This can occur at any point in a program where a value is not expected, for
example, calling a function without using the returned number.

1.8.4 Information messages

These messages are prefixed by the word 'Information -' ; they do not signal any
required response from the user.

Function identifier has been marked as side effect free

The compiler has checked that the named function is side effect free and has
marked it as SUCh, from this point on in the compilation. Marking the function as
side effect free may improve the generated code.

1.8.5 Warning diagnostics

These messages are prefixed by the word 'Warning -' and indicate that unexpected
results may occur.

#define macro identifier defined but not used

The named macro has been defined, but not referenced in the rest of the
program. This message is only generated if specifically enabled by the 'FM'
compiler option.

'a' unnecessary for function or array identifier

A pointer to a function or array is implied by use of the name alone; the'&' oper
ator is not required.

identifier already has a descriptor defined - pragma ignored

The pragma IMS_descriptor has already been applied to identifier, more
than one application is invalid.

identifier has been called - pragma ignored

The pragma must be applied to identifier before the latter has been called.

identifier has been defined - pragma ignored

The pragma must be applied to identifier before the latter is defined.

identifier has not been declared - pragma ignored

The pragma must be applied to identifier after the latter has been declared.

identifier is not a function - pragma ignored

The argument to the pragma must be a function name.

_36 ii;iIP.'- -----------

1 icc - ANSI C compiler

identifier is not a local variable • pragma ignored

The pragma IMS-place_at_workspace_offset has been applied to identi
fier, but the latter is not a local variable.

identifier is not a variable • pragma ignored

The pragma IMS-p1ace_at_workspace_offset has been applied to identi
fier, but the latter is not a variable.

identifier is not externally visible - pragma ignored

The first argument to the IMS_descriptor pragma must be the name of an
externally visible function.

identifier may be used before being set

The compiler has detected a use of a variable which may not have been initial
ized.

identifier multiply translated, this translation ignored

The IMS_trans1ate pragma has been applied to identifier more than once.

number treated as number ul in 32-bit implementation

No type was specified for the number. The compiler assumes unsigned long
if no type was specified.

op: cast between function pointer and non-function object

The operation is performed upon two arguments, one of which is a function, and
the other an object.

A very suspect way of writing through a pointer has been detected in function
which is marked as side effect free

The named function is marked side effect free and has some code in it to write
through a pointer either in an unportable manner or in a way that is typically
considered bad programming practice, e.g. *(int *)23 = ...; it is up to the user to
carefully check that the assignment is conformant with the definition of side effect
free.

Actual type type mismatches format '%char'

The type of an argument to printf or scanf does not match that implied by
the control string.

ANSI 'char char char' trigraph for 'char' found -was this intended?

The specified three character sequence was found in the source program. This
has been treated as an ANSI trigraph and substituted for the character shown.

Argument and old-style parameter mismatch: expression

There is an old (non-prototype) style function definition in scope, and the type
of an argument (after default argument promotion has taken place) does not
agree with the type of the corresponding formal parameter.

_________ 'V.fi~ 3_7

1.8 Compiler diagnostics

Be sure that assignment through pointer in identifier is side effect free

The named function is marked side effect free and assigns through a pointer; it
is up to the user to carefully check that the assignment is conformant with the
definition of side effect free.

Be sure that functions pointed to in identifier are side effect free

The named function is marked side effect free and calls functions through
pointers to them; it is up to the user to carefully check that the functions which
may be called in this way are themselves side effect free.

Be sure that the assembler in identifier is side effect free

The named function is marked side effect free and uses assembly language
inserts; it is up to the user to carefully check that assembler is conformant with
the definition of side effect free.

Both an asterisk and an integer have been given for a field width

Only one of '*' or a decimal integer is valid for a printf field width. This
message is only generated if IMS_on(pc) is active. The header file stdio.h
includes this pragma.

Both an asterisk and an integer have been given for a precision

Only one of '*' or a decimal integer is valid for aprintf precision. This message
is only generated if IMS_on(pc) is active. The header file stdio •h includes this
pragma.

Cannot delete temporary file filename

Host file system error.

Cannot generate stack check for identifier (pragma nolink applied)

A stack check requires a static link, and the function identifierhas been specified
not to receive a static link (using IMS_nolink). icc compiles the function with
the stack check omitted.

Character sequence 1* inside comment

The start-of-comment character sequence was detected within a comment.
Nested comments are not legal in C. Check that the previous comment was
terminated correctly.

Code relies on non-portable form of constant expression in initialiser

Objects that have static storage duration should only be initialized by constant
expressions, which does not include casts of pointer expressions to integral
types. However, icc does support this extension as long as the integral type has
the same size as a pointer type.

Dangling 'else' indicates possible error

Within nested if .. a else constructs, there is some ambiguity as to which 'if'
relates to which 'else'.

_38 lFii.E~ _

1 icc - ANSI C compiler

Deprecated declaration 'identifier ()' - give arg types

In the prototype declaration of the named function, the arguments' types were
not specified.

Division by zero: op

Division, or remainder, by zero, will cause overflow.

Empty body in an else-statement

A null statement (i.e. just a semicolon) has been found as the body of an e1se
statement. The e1se statement has no effect, therefore this may indicate a
mistake.

Empty body in an if-statement

A null statement (Le. just a semicolon) has been found as the body ofan if state
ment; this may indicate a mistake.

Enumeration constant identifier declared but not used

The named enumeration constant was declared but not used within its scope.

Expected ')'; perhaps you tried to give too many names - pragma ignored

A ')' was expected but not found in a pragma; it may be that too many parameters
have been given.

Expected integer as argument - pragma ignored

An integer argument was expected but not found in a pragma.

Expected string as argument - pragma ignored

The argument to the IMS_1inkage pragma must be a string literal.

Expected string as fifth argument - pragma ignored

The fifth argument to the IMS_descriptor pragma must be a string literal.

Expected string as second argument - pragma ignored

The second argument to the IMS_trans1ate pragma must be a string literal.

Extern 'main' needs to be 'inf function

In a declaration of main(), the function should always be declared as type into

Extern identifier not declared in header

All objects must be declared before use. This message is only generated if
specifically enabled by the 'FM' compiler option.

File filename is empty

A source file, or a file which is #inc1uded contains no characters.

Floating point constant overflow: op

Floating point overflow occurred during addition, subtraction, multiplication or
division of two constants.

----------l.Ti.~~ 3_9

1.8 Compiler diagnostics

Floating to integral conversion failed

Conversion (casting) from a floating point type to an integral type (such as int)
failed.

Formal parameter identifier may not be placed at a fixed workspace offset

The pragma IMS-place_at_workspace_offset has been applied to a
formal parameter, but this is not allowed in this implementation.

Formal parameter identifier not declared - 'inf assumed

A formal parameter has been listed in the parameter list of the function definition,
but there is no entry for it in the declaration list; it is therefore assumed to be of
type int.

Format requires count parameter(s), but count1 given

A call to printf or scanf was made with the incorrect number of arguments.
The control string indicated that count arguments are needed, but count1 were
provided. This warning is only generated for printf if IMS_on(pc) is active,
and for scanf if IMS_on (sf) is active. The header file stdio. h includes these
pragmas.

Function identifier declared but not used

The function was declared at block scope but was not called within the block.

Function identifier marked as an interrupt handler with no static link - this has
undefined effects

The named function has both the IMS_interrupt_handler and the
IMS_no1ink pragmas applied to it. This does not make sense because the
code which sets up an interrupt handler always makes sure that a static link is
available.

Function identifiermarked as a trap handler with no static link - this has undefined
effects

The named function has both the IMS_trap_handler and the IMS_nolink
pragmas applied to it. This does not make sense because the code which sets
up a trap handler always makes sure that a static link is available.

Global optimisation suppressed for identifier as it contains assembly code

The user has attempted to globally-optimize a function which contains an
assembler insert: the compiler automatically turns the global optimizer off. (This
applied only to the named function: the global optimizer will be turned on again
for subsequent functions.)

Illegal format conversion '%string ,

The character sequence '%string , is not a legitimate conversion specification for
printf or scanf. This warning is only generated for printf if IMS_on(pc)
is active, and for scanf if IMS_on (sf) is active. The header file stdio. h
includes these pragmas.

_40 ~ _

1 icc - ANSI C compiler

Illegal language type string; replaced by string

The language type given for the interface descriptor-string is not a valid one, and
has been overridden by a known type.

Implicit cast (to type) overflow

Overflow occurred when casting an expression.

Implicit narrowing cast: op

The result of an operation or expression performed at higher precision is immedi
ately, and implicitly, cast to lower precision, thus losing the extra precision: if the
extra precision is not required, the operation ought to be performed at the lower
precision.

If the narrowing cast is really required, the warning may be suppressed by writing
the cast explicitly or by specifying the 'WN' command line option.

Implicit return in non-void function identifier

The function does not contain a return statement, even though it is defined to
return a value.

IMS_interrupt_handler has no effect on this target

The IMS_interrupt_handler pragma has been used when compiling for a
target processor which does not support interrupt handlers. The compiler will
ignore the use of this pragma.

IMS_trap_handler has no effect on this target

The IMS_trap_handler pragma has been used when compiling for a target
processor which does not support trap handlers. The compiler will ignore the use
of this pragma.

Incomplete format string

The control string for use with printf or scanf is incomplete. This warning is
only generated for printf if IMS_on (pc) is active, and for scanf if
IMS_on(sf) is active. The header file stdio.h includes these pragmas.

'int identifier ()' assumed - 'void' intended?

A function was defined without specifying its return type. The compiler assumes
a return type of int if no type is specified.

Integer too large to be represented - pragma ignored

An integer parameter to a pragma has been given with a value too large to be
able to be dealt with by the compiler.

Inventing 'extern int identifier ();'

No declaration exists for the function; it will be defined by default as extern int,
with no information about its parameters.

__________ E;iBl"~~ 4_1

1.8 Compiler diagnostics

1'to immediately following label identifierwill be removed

In an assembler insert, there is aj Oump) instruction to an immediately following
label. This is effectively a no-op, and is removed.

If the user really requires a j 0 instruction, for breakpointing or descheduling
purposes, he should write jOin the assembler insert.

Label identifier was defined but not used

int i;
long int 1;
1 = (int)(i + i);

void f(void)
{

becomes:

The named label was set, but not used.

Linkage already set - pragma ignored

The IMS_linkage parameter has been specified more than once.

Lower precision in wider context: op

The result of an operation performed at lower precision is immediately cast to
a higher precision; it may be that the user was expecting the operation to be
performed at the higher precision.

This warning may be disabled by using the command line option 'wN' or by
inserting a cast to the lower precision. Thus indicating that the operation is really
expected to be performed at the lower precision. For example, in the following
code fragment:

void f(void)
[

int i;
long int 1;
1 = i + i;

Missing comma in pragma argument list - pragma ignored

Multiple arguments to a pragma must be separated by commas.

Missing macro argument

One of the parameter slots in a macro invocation is empty.

Negative value given for vectorspace - pragma ignored

Vectorspace values in the IMS_descriptor pragma must be ~ O.

Negative value given for workspace - pragma ignored

Workspace values in the IMS_descriptor pragma must be ~ O.

Negative value given for workspace offset - pragma ignored

Workspace values in the IMS-place_at_workspace_offset pragma must
be~O.

No parameter(s) given - pragma ignored

One or more parameters were expected to be given to the pragma, but none
were found.

42 Jifi ----------

1 icc - ANSI C compiler

No pragma name given in pragma directive - was this intended?

The compiler has detected a pragma directive which does not have a name. This
is not illegal, however, it has no effect.

No side effect in void context: identifier

The value which has been returned by an expression is not being used e.g.

int a;
a;

Non-portable - not 1 char in ' •.• '

The characters enclosed by single quotes represent more than one character.
The compiler will read the first character only, for example, 'AB' will be read as
'A'.

Non-positive values for patch size are meaningless - pragma ignored

Patch size values must be > O.

Non-value return in non-void function

A function which should return a value has terminated without using a return
statement or with a return statement that has no arguments. The value received
from the function by the calling routine is undefined.

Odd unsigned comparison with 0 : op

a ~ comparison of an unsigned integer with zero, or a::;; comparison of zero with
an unsigned integer, is always true.

Omitting trailing '\0' for char [count]
Omitting trailing '\0' for wchar_t [count]

The char array is fully occupied by characters and there is no room to append
the string terminator (\0). count is the full length of the character array.

Only one asterisk as field width has meaning

More than one '*' has been given as a field width in a printf. This message
is only generated if IMS_on(pc) is active. The header file stdio. h includes this
pragma.

Only one asterisk as precision has meaning

More than one '*' has been given as a precision in a printf. This message is
only generated if IMS_on(pc) is active. The header file stdio •h includes this
pragma.

Option 'G' conflicts with option 'Onumber - 'Onumber' ignored

Both debugging 'G' and optimization 'onumber' options have been specified on
the command line. The compiler cannot produce debugging information for opti
mized code and has therefore disregarded the optimization option.

__________ Jiiifidm~ 43_

1.8 Compiler diagnostics

Possible error: >= number lines of macro arguments

There are a surprisingly large number of lines of arguments to a macro; this may
indicate a syntax error.

Pragma identifier has no effect in preprocess only mode

The named pragma has been recognized but its effect is not entirely local to the
preprocessor, and hence in preprocessing only mode the pragma directive
cannot have the behavior defined for it.

Repeated definition of #define macro identifier; previous on command line

The named macro has been defined more than once. The first definition was on
the command line. The definitions are identical.

Repeated definition of#define macro identifier; previous on line numberof filename

The named macro has been defined more than once. The first definition was on
line number of the file filename. The definitions are identical.

Shift of type by count undefined in ANSI C

A shift of more than the number of bits in type, or less than zero was requested,
and this is undefined in ANSI C.

Signed constant overflow: op

Overflow occurred when performing op upon signed, constant operands.

Spurious {} around scalar initialiser

A scalar can take only one initializer, so there is no need to use braces as are
required with aggregate types such as arrays.

Static identifier declared but not used

The named static object was declared but not used.

'struct identifier has no named member

A structure has been declared without any named members.

The combination of a precision and the conversion specifier char is undefined

A precision, introduced by a period' .', in a printf format string only has a
meaning with certain conversion specifiers; an undefined combination has been
detected. This message is only generated if IMS_on(pc) is active. The header
file stdio.h includes this pragma.

The combination of the flag char and the conversion specifier char is undefined

The flags '#' and '0' in a printf format string have a meaning only with certain
conversion specifiers; an undefined combination has been detected. This
message is only generated if IMS_on(pc) is active. The header file stdio.h
includes this pragma.

_44 1iii.&~ _

1 icc - ANSI C compiler

The combination of the short/long indicator charand the conversion specifier char
is undefined

The short/long indicators 'h', '1' and 'L' in a printf/scanf format string have
a meaning only with certain conversion specifiers; an undefined combination
has been detected. This message is only generated for printf if IMS_on(pc)
is active, and for scanf if IMS_on(sf) is active. The header file stdio. h
includes these pragmas.

Typedef identifier declared but not used

The named identifier has been declared, but is not used in its scope.

Undefined declaration of 'enum' type

The use of an enumeration tag has been detected before the content of that
enumeration has been defined. Declarations of enumerations that have not yet
had their content defined are not assigned any meaning by the ANSI C Standard
and as such lead to un-portable code.

Undefined macro string in #if - treated as 0
Undefined macro string in #elif - treated as 0

This error occurs when enumeration constants, keywords, etc. appear after the
preprocessor iif or ie1if directives. For example, if cab' and 'cd' are enumer
ation constants, the directive #if ab == cd would generate this error.

'union identifier' has no named member

A union has been declared without any named members.

Unnamed bit-field ignored during initialisation

All unnamed structure or union members are ignored during initialization.

Unrecognised #pragma (no '(')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma (no ')')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma identifier

identifier is not a pragma recognized by this compiler.

Unrecognised pragma parameter string - pragma ignored

The pragma can take a limited range of parameters and the one given was not
from th is range.

Unsigned constant overflow: op

Overflow occurred when performing op upon unsigned, constant operands.

Unused earlier static declaration of identifier

There is a forward declaration of identifier which is not necessary as the defini
tion of identifier appears before identifier is referenced.

-----------liii.~d 4_5

1.8 Compiler diagnostics

Use of op in condition context

Generated when the operators '=' (assignment) or '-' (bit-not) are used in a
condition statement.

This message is given for use of the assignment operator in condition context,
e.g.

if (a = b)

as this is often due to mistyping the equality operator, Le. the desired code is:
if (a == b)

If you really wish to perform the assignment in condition context, the warning
message may be suppressed using the form:

if «a = b) != 0)

Value of identifier is undefined as it has been assigned since the last sequence
point

The compiler has detected that a variable has been assigned to and then subse
quently read. However, the assignment and the read are not separated by a
sequence point, and therefore the order in which they occur is undefined.

Variable identifier declared but not used

The variable was declared, but not used anywhere in its scope.

Variable identifier is assigned more than once between sequence points

If a variable is assigned more than once between sequence points, the order in
which the assignments occur is undefined. In addition if the assignments give
different values to the variable, then the subsequent value of the variable is
undefined.

Workspace clash between identifier1 and identifier2 PLACEd atworkspace number

Both identifiers are variables which have been placed at the same workspace
offset using the pragma IMS-place_at_workspace_offset. However, the
variables are both in use at the same time and so may conflict with each other.
The compiler will still allocate both variables at the specified offset.

Wrong number of parameters to identifier

A function declared without a prototype was called with the wrong number of
arguments. (An error is given if a function declared with a prototype is called with
the wrong number of arguments.)

1.8.6 Recoverable errors

These messages are prefixed by the word 'Error -' .

1# first or last token in #define body

The ## preprocessor operator must be both preceded and succeeded by a
preprocessor token.

_46 ifii.~ ---------

1 icc - ANSI C compiler

',' (not ';') separates formal parameters

A semicolon has been used to separate the formal parameters in a function defi
nition (as in Pascal) instead of a comma.

<int> op <pointer> treated as <int> op (int) <pointer>

The expression involving a integer and a pointer will result in the pointer being
converted (cast) to an integer.

identifier marked as side effect free assigns to a global variable

An assignment to a global variable is a side effect.

identifier marked as side effect free assigns to static

An assignment to a static variable, other than an initialization, is a side effect.

identifier marked as side effect free calls identifier which is not side effect free

The call of a function which is not side effect free is a side effect.

identifier marked as side effect free uses volatile variable

The read of or write to a volatile variable is a side effect.

instruction may not have a size specified

An __asm pseudo-instruction may not be explicitly sized.

op : cast between function pointer and non-function object

The operation is performed upon two arguments, one of which is a function, and
the other an object.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different type.
The cast is illegal and will be ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast will be ignored.

op : implicit cast of type to 'inf

A non-integer object has been used where an int was expected, for example,
attempting to use a double as an argument to a switch statement (which
requires an integer type).

op : implicit cast of non-O int to pointer

Evaluation of the expression will result in the cast of an integer to a pointer.

op : implicit cast of pointer to 'int'

Evaluation of the expression will result in the cast of the pointer to an integer.

op : implicit cast of pointer to non-equal pointer

Evaluation of the expression will result in the cast of one pointer type to another.

----------liii.... 4_7

1.8 Compiler diagnostics

op may not have whitespace in it

Compound assignment operators such as '+=' must not contain whitespace.

<pointer> operator <int> treated as (int) <pointer> operator <int>

Evaluation of the expression will result in the cast of the pointer to an integer.

Ancient form of initialisation, use '='

A), rather than =, was used to introduce an initializer, this is no longer legal C.

ANSI C does not support 'long float'

An object has been declared of type long float, this is illegal in ANSI C, which
supports float, double, or long double.

Array of type illegal - assuming pointer

An array of functions or void objects has been declared. The compiler treats this
as an array of pointers to functions or void objects.

Array [0] found

An empty array has been defined and will be set up instead as an array with one
element.

Assignment to 'const' object identifier

The expression contains an assignment to a constant.

Assignment to identifierwhich has 'const' qualified member

An attempt has been made to assign to a constant. The named object is a struc
ture or union which has a member, or recursively has a member of a contained
structure or union, which is constant.

Attempt to do arithmetic on pointer to an incomplete type

Pointer arithmetic must be done using pointers to object types. This includes the
fact that the pointer operand of array subscription must be the pointer to an
object, not incomplete, type.

Attempt to take address of identifierwhich has 'register' storage class

It is illegal to take the address of a variable with 'register' storage class.

Cannot use pointer to type type in arithmetic

Pointer arithmetic must be done using pointers to object types.

'const' typedef identifier has 'consf re-specified

A typedef which is already qualified with const, has been qualified with const.

Comparison op of pointer and int: literal 0 (for == and !=) is only legal case.

The specified operator was used to compare an object of type int and one of
a type pointer. The only legal comparison of this type is between a pointer and
ousing either == or ! =.

_48 Eii- ----------

1 icc - ANSI C compiler

Declaration with no effect

No name has been declared for the object. For example, specifying only the type
of an object generates this error.

Differing pointer types: op

The specified operator was used with pointers of different types.

Differing redefinition of #define macro identifier: predefined macro name

The named macro was predefined by the compiler, and has been redefined to
a different value.

Differing redefinition of #define macro identifier: previous on command line

The named macro was defined on the command line, and has been redefined
to a different value.

Differing redefinition of #define macro identifier: previous on line number of file
name

The named macro has been defined more than once. The definitions are not
identical.

Differing structlunion types: op

The specified operator was used with structS/unionS of different types.

Digit 8 or 9 found in octal number

8 and 9 are meaningless in an octal number.

Duplicate macro formal parameter: identifier

The function macro has two formal parameters with the same name.

Duplicate member identifier1 of identifier2

Two fields of structure or union identifier2 have the name identifier1.

Ellipsis (...) cannot be only parameter

A function declared to take a variable number of parameters must have at least
one known parameter.

Enumeration constant identifiertoo large to represent as 'int' - 0 assumed

The value of an enumeration constant has overflowed the range of ints.

Escaped newline must not immediately precede EOF - newline inserted

A non-empty source file must end in a newline which is not immediately
preceded by backslash.

Extern identifier mismatches top-level declaration

An extern declaration of identifier within a function definition does not match
an extern declaration of identifier at the top level.

__________Eii~ 4_9

1.8 Compiler diagnostics

Expected symbo/1 or symbol2 -inserted symbol1 before symbol3

symbol1 or symbo/2 was expected before symbo/3, but neither was found.
symbol1 is suggested as the most appropriate choice and the compiler has
changed the code accordingly.

Formal name missing in function definition

The name of a formal parameter has been omitted in a function definition.

Function identifier may not be initialised - assuming function pointer

Initializers cannot be used in function declarations or definitions.

Function prototype formal identifier needs type or class - 'int' assumed

At least one of type specifier, type qualifier (const orvo1ati1e) orthe storage
class register is needed when declaring a function prototype formal param
eter. An int has been assumed.

Function return type structlunion is incomplete - assuming pointer

The structure or union type that the function returns has not yet been completed
but must be before the function can be defined or called.

Function returning type illegal - assuming pointer

It is illegal for a function to return a function or an array.

Hex number cannot have exponent

A hex number ending in e may not be immediately followed by + or -; separate
the number and the additive operator with white space. In terms of the ANSI C
standard, a valid preprocessing number (pp-number) has been found, but it is
not a valid constant.

Illegal bit-field type type - 'inf assumed

A bit-field can only have a type that is a qualified or unqualified version of one
of int, unsigned int, or signed into The compiler assumes an int
instead.

Illegal format for command line macro definition string

The format must be macro_name or macro_name=va/ue, where macro_name
is a valid macro name (thus having the same syntax as an identifiel). In the
second form, the equals sign must NOT be separated from macro_name or
value by any white space.

Illegal escape sequence '\char' - treated as 'char'

The character following \ does not form part of a valid escape sequence. The
compiler treats the sequence \ char as char.

Illegal [] member: identifier

An open array may not be a member of a structure or union.

_5o ~PJm~ ----------

1 icc - ANSI C compiler

Junk at end of #identifier line

The text following the directive is invalid.

Linkage disagreement for identifier - treated as store class

The storage class of a previously defined static or extern object or function
disagrees with the current declaration. The object will be treated as though it is
in storage class store class.

Maximum object size exceeded; limit is number

An object has been declared which exceeds the maximum allowed for the target
processor. The maximum size an object may be declared to be is numberbytes.

Member identifier may not be function - assuming pointer

An attempt was made to declare a function as a structure or union member,
which is invalid.

Missing newline before EOF - inserted

Non-empty source files must end with an un-escaped newline.

Missing type specification - 'int' assumed

A type specification is missing. The object will be assumed to be of type into

Negative numbers and zero are not allowed in #line

ANSI C forbids negative numbers or zero in a #line directive.

No chars in character constant"

No characters or character codes have been specified for the character
constant. A NULL character is assumed.

No initializer list in braced initializer

There must be at least one entry in the initializer list of a braced initializer.

Number illegally followed by letter, underscore or period

A numerical constant may not be followed immediately by a letter, underscore
or period.

Number missing in #line

There is no line number following the preprocessor #line directive.

Numbers greater than 32767 are not allowed in #line

ANSI C forbids numbers greater than 32767 in a #line directive.

Object identifier may not be function - assuming pointer

An attempt was made to declare a function where such a declaration is not valid,
e.g. a block scope declaration with storage class static.

----------Ifii~wI----------5-1

1.8 Compiler diagnostics

Omitted <type> before formal declarator - 'inf assumed

No type was specified; type int will be assumed.

Operand of # not macro formal parameter

The operand to the # preprocessor operator must be a formal parameter of the
function macro containing it.

Overlarge escape '\number1' treated as '\number2'

An octal number in an escape sequence is too large to be represented in the
target architecture.

Overlarge escape '\xnumber1' treated as '\xnumber2'

A hexadecimal number in an escape sequence is too large to be represented in
the target architecture.

Parentheses (•.•) inserted around expression following string

Parentheses were expected after the specified string, for example, around a
conditional expression such as an if statement.

Prototype and old-style parameters mixed

It is illegal to mix new (prototype) and old-style parameter declarations.

Return <expl"> illegal for void function

A return statement with an expression was found within a void function. The
return statement is ignored.

Size of 'void' required

'void' was used as an argument to sizeof.

Size of a [] array required

An array of unspecified size was used as an argument to sizeof.

Size of <function> required

A function name was used as an argument to sizeof.

Sizeof <bit-field> illegal

A bit-field was used as an argument to sizeof.

Size of 'structlunion identifier needed but not yet defined

The size of the structure/union cannot be determined. This error can occur when
an undefined structure/union is used as an argument to the sizeof operator
and when an undefined structure/union is used in the declaration of a variable.

Size qualifier must be a positive value.

The operand to size is the number of bytes that the instruction is to occupy, and
therefore a negative or zero value is meaningless.

_52 Efi&~ ---------

1 icc - ANSI C compiler

Small floating point value converted to 0.0

The number is too small to represent in floating point format, and has been
rounded to 0.0.

Spurious #elif

The #elif directive could not be matched with a corresponding if directive.

Spurious #else

The #else directive could not be matched with a corresponding if directive.

Spurious #endif

The #endif directive could not be matched with a corresponding if directive.

Static function identifier not defined - treated as extern

A function was defined as static in the function prototype, but the compiler was
unable to find the function definition. An extern function is assumed.

String initialiser longer than char [counq
String initialiser longer than wchar_t [counq

A character array has been initialized with more characters than the array can
accommodate. Since the compiler adds a terminating NULL character to strings,
string initializers should always contain one less element than the array.

'struct identifier has no members

A structure definition must contain at least one member.

Struct member identifier may not be function - assuming pointer

A structure member was declared of function type; the compiler treats this as
pointer to function type.

Translation unit contains no external declarations

A translation unit must contain at least one external declaration. A translation unit
is a source file together with all the headers and source files included via the
preprocessing directive #include, and less any source lines skipped by any of
the conditional inclusion preprocessing directives.

Type specifier/qualifier or storage class needed -'int' assumed

At least one of type specifier, type qualifier (const or volatile) or storage
class is needed when declaring an object or function.

Undeclared name, inventing 'extern int identifier'

An undeclared identifier was encountered and will be given the type extern
into

'union identifier' has no members

A union definition must contain at least one member.

__________~~ 5_3

1.8 Compiler diagnostics

Union member identifier may not be function - assuming pointer

A union member was declared of function type; the compiler treats this as pointer
to function type.

Unprintable char number found

An unprintable character was found in the source text.

'volatile' typedef identifier has 'volatile' re-specified

A typedef which is already qualified with volatile, has been qualified with
volatile.

Wrong number of parameters to identifier

A function was called with the wrong number of arguments.

1.8.7 Serious errors

These messages are prefixed by the word 'Serious -' .

{} must have 1 element to initialise scalar

When initializing a scalar variable only on.e initializer should be specified within
the enclosing braces.

terror encountered string

The terror directive was found.

#include file filename wouldn't open

The file filename could not be opened.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different type.

op : illegal cast of type to pointer

A variable has been cast into a pointer type.

op : illegal cast to type

An illegal cast has been attempted.

context: illegal use in pointer initialiser

An invalid way of initializing a pointer has been attempted.

(...) must have exactly 3 dots

An ellipsis must consist of three dots.

'{' of function body expected - found string

The opening brace in the body of a function is missing.

_54 iiii.fi~ _

1 icc - ANSI C compiler

'{' or <identifier> expected after type, but found string

The opening brace following a struct, union or enum is missing. string marks
the position.

<asm-directive> expected but found a string

string indicates what was found in place of the expected __asm directive.

<command> expected but found a string

Statements such as switch or if should be followed by a command. string indi
cates where the command was expected.

<expression> expected but found string

string indicates where the expression was expected.

<identifier> expected but found string in 'enum' definition

The compiler was expecting to read an enumeration constant when it found
symbol. This may be because there is a spurious comma at the end of a list of
enumeration constants.

identifier has pragma nolink specified, but accesses static data

The specified function has been specified not to receive a static link (via
IMS_no1ink), but attempts to use static data. It is only possible to use static
data when a static link is available.

string is not a label

The operands to the 1d1abe1diff pseudo-instruction must be labels.

identifier1 has pragma nolink specified, but accesses static identifier2

Function identifier1 has had the IMS_no1ink pragma applied to it, which means
it cannot access static data.

identifier1 has pragma nolink specified, but addresses static identifier2

Function identifier1 has had the IMS_no1ink pragma applied to it, which means
it cannot address static data.

instruction not followed by label

A jump, conditional jump or call __asm instruction must have a constant or label
operand.

store class variables may not be initialised

Some types of C variables, such as those declared as extern, cannot be initial
ized.

A read error has occurred

An I/O error occurred during the reading of a file.

__________ ii;i.~ 5_5

1.8 Compiler diagnostics

Array size count illegal - 1 assumed

Arrays cannot be larger than Oxffffff on a 32-bit target, or 65535 on a 16-bit target.

Attempt to apply a non-function

A name not declared as a function has been used in a context where a function
should be.

Attempt to include lstructlunion identifier' object/member identifier within itself

A structure or union declaration may not contain a field of the structure or union
type, or a field which references another field.

Attempt to take the address of a bit-field

Elements of type bit-field in C structures cannot be addressed.

Bit-field size number illegal - 1 assumed

Bit-field sizes greater than 32 for 32-bit targets, or 16 for 16-bit targets are illegal.
Negative sizes are also illegal.

'break' not in loop or switch

A break statement was encountered outside the scope of a loop or switch state
ment. A break at this point is illegal.

Cannot address built-in variable identifier

identifier is a built-in name, such as _Ish or -params, which cannot be
addressed.

Cannot call identifier (it requires a static link)

An attempt has been made to call the specified function which requires a static
link, from a function which has been specified not to receive a static link (via
IMS_nolink).

Cannot do indirect call (it requires a static link)

An attempt has been made to call a function from a function which has been
specified not to receive a static link (via IMS_nolink). All calls through function
pointers are assumed to require a static link.

Cannot read indirect file filename

The file either does not exist, or does not have read permission.

Cannot write to built-in variable identifier

identifier is a built-in name, such as _Ish or -params, which cannot be
assigned to.

'case' not in switch

A case label has been encountered outside the body of a switch statement. A
case labelled statement at this point is illegal.

_56 ~r~ ----------

1 icc - ANSI C compiler

Char and wide (L"•.•") strings do not concatenate

A char string and a wide char string appear adjacently in the source text.
Normally, adjacent strings in the source text are concatenated; however, this is
not possible here, as they have different types.

'continue' not in loop

A continue statement has been encountered outside the body of a loop. A
continue statement at this point is illegal.

'defaulf not in switch

A default prefix has been encountered outside the body of a switch statement.
A default label at this point is illegal.

Digit required after exponent marker

Exponents of floating point numbers must be followed by a numeric character.
The numeric character may be preceded by '+' or '-'.

Duplicate 'default' label

The default label has already been specified for the switch construct.

Duplicate definition of identifier

The named identifier has already been defined.

Duplicate definition of structlunion tag identifier

The named structure or union identifier has already been used.

Duplicate definition of label identifier

The specified identifier has already been used.

Duplicate type specification of formal parameter identifier

The specified parameter has been listed more than once in the function's formal
parameter list.

Duplicated case constant: constant

The constant has been specified more than once in the same switch statement.

EOF in comment

The end-of-file was detected inside a comment.

Error reading feedback file

A file-read error occurred when trying to read the feedback file.

Expected symbol

symbol was expected.

Expected symbo/1 - inserted before symbol2

symbo/1 was expected before symbo/2 and the compiler has changed the code
accordingly. For example, in the code "if (TRUE printf () ;" the compiler
would expect to find ')' before 'printf'.

_________ 'Ti._Jt 5_7

1.8 Compiler diagnostics

Expected symbol1 or symbol2

Either symbo/1 or symbol2 was expected.

Expected <identifier> after op but found string

The specified operator must be followed by an identifier. This error may occur
after the structure member operator'.' and the structure pointer operator '->'.

Expecting <declarator> or <type>, but found string

An identifier or type was expected at string. For example, the declaration
'typedef int * [3] test;' generates this error.

Feedback file has incorrect format

The compiler cannot read the profiling feedback file because it does not have the
correct format - check it has been correctly specified on the command line.

Feedback file is out of step with source

File position information in the profiling feedback file does not match the source
file being compiled; probably because the source file has been altered since the
feedback file was created. Also, check the feedback file has been correctly
specified on the compiler command line.

'goto' not followed by label

The text following a goto statement does not represent a label.

Hex digit needed after Ox or OX

The hexadecimal specifier Ox must be followed by a valid hexadecimal digit. The
compiler assumes a zero digit.

Identifie'r identifier found in <abstract declarator>

An identifier should not be used in an abstract declarator. This error is generated,
for example, if sizeof (int *test [3]) ; is used instead of the correct form
sizeof(int *[3]);.

Illegal context for character (number ='char')
Illegal context for character (hex code numbet)

The character is in the source character set, but is only allowed in a character
constant, a string literal, a header name, a comment, or a preprocessing token
that is never converted to a token. (An example of the latter is the replacement
list in '#define DOLLAR $' if the macro DOLLAR is never used).

Illegal in context: text

Illegal expressions such as those involving division by zero generate this error.

Illegal in expression: non constant identifier

A constant is required in certain expressions, for example after a case prefix.

_58 1iii _

1 icc - ANSI C compiler

Illegal indirection on (void *): '*'

An attempt has been made to take the contents of the object pointed to by a
pointer to void.

Illegal in Ivalue: array identifier

A whole array is not a modifiable Ivalue.

Illegal in Ivalue: 'enum' constant identifier

Enumeration constants cannot be used as Ivalues in an expression.

Illegal in Ivalue: function identifier

Function names do not represent objects and so cannot be used as Ivalues.

Illegal in the context of an Ivalue: op

The operator op cannot appear in Ivalue context.

Illegal type for operand: op
Illegal types for operands: op

The operator has been used with an invalid type. For example, it is illegal to use
the structure member operator' • ' with a variable of type into

Illegal 'void' member/object: identifier

An object or member of a structure or union cannot be declared as being of type
void.

Incomplete tentative definition of identifier

The declaration of identifier has gone out of scope before the declaration has
been completed.

Invalid object file name

The argument to the command line option '0' is not a valid filename.

Invalid source file name

The source filename specified on the command line is not a valid file name.

Invalid use of command line option (string)

string is not a recognized command line option, or it is being used incorrectly, e.g.
it requires a parameter and none has been given.

1/0 error writing filename

An error occurred when writing to the named file.

Junk after #if <expression>
Junk after #elif <expression>

The #if and #elif directive must be terminated by a newline character.

__________Eii.~ 5_9

1.8 Compiler diagnostics

Junk after #include filename

The #include directive must be terminated by a newline character.

Label identifier has not been set

A label has been referenced but not set. This message will be generated if, for
example, goto is used with an undefined label.

Misplaced 'else'

An else statement was found where it was not expected.

Misplaced '{' at top level - skipping block

An opening brace was found at the top level of a program when it was not
expected, for example when not used as part of a function or structure definition.

Misplaced preprocessor character 'char'

A preprocessor directive character (# or \) was found where it was not expected.

Missing #endif at EOF

An #endif directive is missing. This error will not be generated until the last of
the currently open files is about to be closed (ANSI standard does not require
#if and #else statements to match in included files).

Missing'char' in preprocessor command line

A 'quote' character is missing from a preprocessor directive. The missing char
acter could be " <, >, or".

Missing ')' after identifier (•.• on line number

A closing parenthesis is missing from the macro invoked on line number.

Missing ',' or ')' after #define identifier (...

The list of parameters in a macro definition is either incomplete or has not been
correctly terminated by a closing parenthesis.

Missing '<' or ' " , after #include

The opening 'quote' character which introduces the filename is missing.

Missing hex digit(s) after \x

The hexadecimal introducer sequence \x was found, but no hexadecimal digit
was specified. The compiler assumes that the letter x was intended.

Missing identifier after #define

The definition is empty. #define must be followed by an identifier.

Missing identifier after #ifdef

#ifdef must be followed by an identifier.

60 Eii---------

1 icc - ANSI C compiler

Missing identifier after #ifndef

#ifndef must be followed by an identifier

Missing identifier after #undef

#undef must be followed by an identifier.

Missing parameter name in #define identifier (..•

A parameter is missing from the specified macro definition. This error would be
generated by a definition of the form #define test(arg,).

Multiple source files specified

Only one source file may be specified on the command line.

Newline or end of file within character constant

A newline or end-of-file was encountered within a character constant.

Newline or end of file within string literal

A newline or end-of-file was encountered within a string literal.

No ')' after #elif defined(...
No ')' after #if defined(•..

The closing parenthesis is missing from the directive.

No identifier after #elif defined
No identifier after #if defined

#elif defined and iif defined must be followed by an identifier.

Non-formal identifier in parameter-type-specifier

The parameter identifierwas included in the declarator list of a function, but not
in the parameter list. For example, a definition such as int foo () int x; [}
would generate this error.

Non-static address identifier in pointer initialiser

Static pointers and fields of structs or unionS cannot be initialized with the
address of an object of type auto.

Number number too large for 32-bit implementation

The specified number is too large to be represented internally to the compiler,
Le. in 32 bits.

Objects that have been cast are not Ivalues

An object has been cast in an Ivalue context; this is illegal in ANSI C.

Only const and volatile can qualify a pointer; found type

The only type qualifiers of a pointer are const and volatile but type was
found instead.

-----------liii_mI 6_1

1.8 Compiler diagnostics

Operand numberto instruction is larger than a word

The arguments to an __asm load or store pseudo-instruction must fit in a
machine word.

Operand number to instruction is not word-sized

The arguments to an __asm store pseudo-instruction must fit exactly in a
machine word.

Operand to instruction must be a constant or local variable

An illegal operand has been given to an __asm Idl or stl instruction.

Operand to instruction is larger than a word

The operand to a primary instruction inside __asm must fit in a machine word.

Out of memory
Out of store (for error buffer)
Out of store (in cc_ alloc)

The compiler ran out of available memory.

Overlarge (single precision) floating point value found

The number is too large to represent in single word (32 bit) floating point format.

Overlarge floating point value found

The number is too large to represent in double-word (64 bit) floating point format.

Quote (char) inserted before newline

The specified quote character was found before a newline character. This may
indicate a a spurious character or a missing closing quote.

Re-using structlunion tag identifier as union/struct tag

The named identifier has been used to identify two different types of object.

Size of array identifier is unknown

The type for objects with no linkage must be complete by the end of their defini
tion. The identified array needs either an explicit size specified or an initializer.

Storage class store class incompatible with store class

Two incompatible storage classes have been used in a declaration. For
example, extern static foo; generates this error because extern and
static are incompatible types.

Storage class store class not permitted in context context

The specified storage class is not permitted in the context in which it has been
used. This error would be generated, for example, if storage class auto were
to be used at the top level. .

_62 Jiii- ---------

1 icc • ANSI C compiler

'struct identifier' has no identifier field

The structure contains no field of that name.

struct identifier' must be defined for (static) variable declaration

An undefined structure has been used in a variable declaration.

struct identifier' not yet defined - cannot be selected from

A reference was made to an undefined structure.

Syntax error in command line option string

There is a syntax error on the command line. This is probably due to mismatched
quotation marks (").

Too few operands for instruction

A load or store __asm pseudo-instruction has too few arguments.

Too few arguments to macro identifier(. • . on line number

There are too few arguments to the macro invoked on line number.

Too many operands for instruction

A load or store __asm pseudo-instruction has too many arguments.

Too many arguments to macro identifier(. . . on line number

There are too many arguments to the macro invoked on number.

Too many errors

After 100 serious errors, the compilation aborts.

Too many initialisers in {} for aggregate

An aggregate type, for example an array, has been initialized with more values
than can be accommodated.

Type type1 inconsistent with type2

Two incompatible type identifiers are being used in the declaration of a single
object. For example, the declaration double int x; would generate this error.

Type disagreement for identifier

The specified identifier has already been assigned a different type.

Typedef name type used in expression context

A type definition has been used in an expression.

Type qualifier type not allowed to qualify type type

'const' may not be repeated in the qualifying list of a type, and similarly for
'volatile'.

---------_Ii;i_ocI----------6
-
3

1.8 Compiler diagnostics

Undefined'structlunion identifier1' member/object: identifier2

The structure or union is, at present, undefined.

Uninitialised static [] arrays illegal

Static arrays of unspecified size must be initialized.

'union identifier' has no identifier field

The union contains no field of that name.

'union identifier' must be defined for (static) variable declaration

An undefined union has been used in a variable declaration.

'union identifier' not yet defined - cannot be selected from

A reference was made to an undefined union.

Unknown directive: #identifier

identifier is not a valid preprocessor directive. Check spelling and/or syntax.

Unknown instruction instruction

instruction is not a defined transputer instruction.

'void' values may not be arguments

Actual arguments in function calls cannot be of type void.

'while' expected after 'do' - found string

The whi1e statement is missing from a do ... whi1e construct. string marks
the position.

Zero width named bit-field - 1 assumed

Named bit-fields must be at least one bit wide.

64 Jiii. ---------

2 icconf - configurer

This chapter describes the configurer tool icconf that configures code for transputer
networks. It describes the command line syntax and explains how the tool generates a
configuration data file from a configuration description for input to the code collector tool.
The chapter ends with a list of configurer diagnostics and error messages.

2.1 Introduction

The configurer takes a configuration description created using the transputer configura
tion language and produces a configuration binary file which ico11ect uses to
generate bootable code for a transputer network.

A configuration description describes how code is to be run on a network of transputers.
It consists of separate definitions of the software and hardware networks, and a mapping
description which defines how the software will be placed on the processor network.
Using this description the configurer allocates code to particular processors and
performs wide ranging consistency checks on the mapping of software to hardware.

icconf enables any topology of software network to be placed on any topology of hard
ware network. There are no restrictions on how many communication channels may be
allocated to a single inter-processor link. Where possible channels should be left
unplaced by the user, so that icconf can implement the 'best' route through the
network. Processes must be allocated to specific processors and any channels going
to edges must be placed on the specific edge links.

Code to be run on separate processors must be linked code. Linked units that are to be
run on the same transputer must be compiled for the same or a compatible transputer
type.

The operation of the configurer tool in terms of the standard toolset fi Ie extensions is illus
trated below.

,_.,, ,
I .inc I

\ '

~~_I~i_cconf~--8

___________ ii;ir~~ 6_5

2.2 Configuration language implementation

2.2 Configuration language implementation

The configuration language supported by icconf has a number of implementation
characteristics of which the programmer should be aware. These are briefly listed below;
details can be found in appendix F.

• Array sUbscript ranges are dependent on the word-length of the machine
running the configurer.

• Source lines must not exceed 1024 characters. Leading and following white
space is ignored.

• The number of dimensions for identifiers and array constants must not exceed
64.

2.3 Running the configurer

The configurer takes as input a configuration description file and produces a configura
tion data file for input to the collector tool.

To run the configurer use the following command line:

~ icconf filename {options}

where: filename is the configuration description file. The filename is interpreted as given
and no file extension is assumed.

options is a list of one or more options from table 2.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1 .2 for details.

Only one filename may be given on the command line.

If no arguments are given on the command line a reduced help page is displayed giving
the command syntax.

Example of use:

iee hello -st20
i1ink -st20 hello.teo -festartup./nk
icconf hello.cfs
ieolleet hello.efb

_66 g;;.fi~ _

2 icconf - configurer

iec -t45o hello.e
ilink -t450 hello.teo -festartup./nk
icconf hello.cfs
ieolleet hello.efb

iec -t805 hello.e
ilink -tB05 hello.teo -festartup./nk
icconf hello.cfs
ieollect hello.efb

Option Description

c Checks the configuration description only. No configuration data file is generated.

GA Generates a configuration which can be debugged by the INQUEST debugger in
interactive mode. See section 2.3.3. Must not be used with the NV option.

HELP Displays a full help page which lists all the standard options.

I Displays extra information as the tool runs.

NV Generates a configuration without virtual routing. Note: any definition of router
attributes for processor nodes will be redundant. Must not be used with the GA option.
See section 2.3.4.

NWI Disable the generation of warning messages about potential problems with the
interface of processes. Note this option overrides the effect of the wp option when
generating warnings of this type.

NWU Disable the generation of warning messages about undefined attributes of nodes,
Processes and processors. Note that this option overrides the effect of the wp option
when generating warnings of this type.

o filename Specifies an output filename. If no output file is specified the configuration binary file
is given the base name of the input file and the •c fb extension is added.

P procname Specifies the name of the root processor when configuring for EPROMs. procname
must not be an element from an array of processors.

PRE Generates a configuration which can be profiled by the INQUEST execution profiler.
See section 2.3.3.

PRU Generates a configuration which can be profiled by the INQUEST utilization profiler.
See section 2.3.3.

RA Creates a file suitable for a boot-tram-ROM application in which the user and system
processes for the root processor and all other processors are loaded into RAM to
execute.

RO Creates a file suitable for a boot-trom-ROM application in which the user and system
processes for the root processor execute in ROM and for all other processors the user
and system processes are loaded into RAM to execute.

RS romsize Specifies the size of ROM on the root processor. Only valid when used with the 'RA'
or 'RO' options. romsize is specified in decimal format and can be followed by 'K' or
'M' to indicate kilobytes or megabytes.

v Enables the generation of configurer messages of severity Information.

W Disables configurer messages of severity Warning.

WP Generates additional pedantic Warning messages.

Table 2.1 icconf command line options

-------- liii._ml----------6
-
7

2.3 Running the configurer

2.3.1 Default command line

Default command line parameters can be defined on the system in the ICCONFARG envi
ronment variable. Parameters must be specified using the syntax required by the confi
gurer command line.

2.3.2 Boot from ROM options

The boot-from-ROM options 'RO' and 'RA' indicate that the program is to be collected for
loading into EPROM and select the execution mode (from ROM or RAM) for the root
transputer code. The 'RS' option enables the size of ROM on the root processor to be
specified.

2.3.3 Support for INQUEST

Three options are available to support the use of the INQUEST debugger and profiler
tools.

The GA option generates a configuration which can be debugged by the INQUEST
debugger in interactive mode.

When the GA option is used, the configurer will allocate debugging kernels to all proces
sors which have been placed with at least one process which is available for debugging.
See figure 2.1.

D processor

® debugging kernel

• process available for debugging

o process not available for debugging

Figure 2.1 Allocation of debugging kernels using the GA option

Processes may be debugged provided the nodebug attribute is set to FALSE. When the
GA option is used the default for the nodebug attribute is FALSE.

The GA option must not be used with the RO boot-from-ROM option, or with the PRE and
PRU profiling options or with the NV option.

The PRE and PRU options generate a configuration which can be profiled by the
INQUEST execution and utilization profilers respectively. Processes may be profiled
provided thenoprofile attribute is set to FALSE, which is the default. The PRE and PRU
options are mutually exclusive.

_68 ~r~ _

2 icconf • configurer

2.3.4 Virtual routing processes

The configurer will automatically add virtual routing processes if they are required. If
virtual routing is not required the virtual router can be disabled by using the 'NV'
command line option. Note: the use of this option also has an affect on the value of
LoadStart, see section 2.3.10. The NV option must not be used with the GA option.

If occam modules are being configured using icconf and the 'NY' option is to be speci
fied then the preceding compilation and linking stages of the occam modules may be
performed using the occam compiler and linker 'Y' option. This is because library i/o
will not be required.

Further information about virtual routing is given in the'User Guide for those toolsets
which support virtual routing.

2.3.5 Mixed language programming

When the program includes a mixture or C and occam modules the configurer will
perform some extra checks to ensure continuity exists. If the command line options used
with icconf indicate that virtual routing is enabled then the configurer checks that
library i/o is enabled in the occam modules. If it is not, a warning will be issued.

2.3.6 Configurer library files

Depending on the command line options used, the configurer reads a number of special
library files which contain system processes. The library files are searched for on the
directory specified by ISEARCH. This is normally the toolset libs directory, in which the
files were originally installed. The library files are listed in table 2.2.

Library Description

sysproc.J.ib System startup processes for the different transputer types.

sysvlink.lib Software through-routing processes.

sysdebug.lib Debugging kernels to support the INQUEST debugger.

sysprof.J.ib Profiling kernels to support the INQUEST profiler.

Table 2.2 Configurer library files

2.3.7 Standard include files

A number of standard include files are supplied to assist with configuration. All include
files carry the • inc extension.

Defaults file setconf •inc

Configurer defaults are defined in the file setconf. inc.This file is automatically
included at startup and does not need to referenced by an #include statement.

_________Eii~ 6_9

2.3 Running the configurer

setconf . inc contains a number of boolean constants, definitions of process and
processor base types, and predefined processor types. setconf. inc is supplied on
the libs installation directory.

Other include files

Two other include files are provided on the libs directory. These provide definitions of
processor and memory combinations for SGS-THOMSON systems products.

trams.inc Processor type type definitions for SG8-THOMSON systems TRAnsputer
Modules (TRAMs).

boards.inc Processor type definitions for SG8-THOMSON systems transputer evaluation
boards.

These two files are not automatically referenced by the configurer and need to be
included in the normal way.

SGS-THOMSON systems products are available separately through your local distrib
utor.

2.3.8 Configuration description examples

A series of example configuration descriptions are supplied in the icconf examples
subdirectory. These include configurations for specific network topologies such as rings,
grids, trees, and pipelines.

Further simple configurations are provided in the simple examples subdirectory.

2.3.9 Search paths

If a directory path is not specified theconfigurer uses the standard toolset search mecha
nism for locating input files, include files, and system library files. Briefly, the current
directory is searched first, followed by the directories specified by ISEARCH (if defined
on the system). For details see appendix A.

2.3.10 Default memory map

By default the configurer maps code into memory in the following order beginning at
LoadStart: stack; code; vector space; static; heap and system data. The memory
segments are contiguous. The upper limit of the memory available to the configurer is
defined in the configuration description file (. cfs), by the memory attribute specified for
the processor node. The default memory map is illustrated in Figure 2.2. Note: vector
space is only required if occam modules are present in mixed language programs.

_70 liiiP~ _

2 icconf - configurer

memory -----:--.---------:

Free Space

Minlnt=
MOSTNEGINT

System data

Heap
Data Segments

Static
Data Segments

Vector
Data Segments

Code
Segments

Stack
Data Segments

Reserved by
transputer
architecture

.-- FreeStart

Contiguous memory

.-- LoadStart

.-- MemStart

Figure 2.2 icconf default memory map

The first 2 or 4 Kbytes of memory (16K for the ST20450 and T450) above MOSTNEG
INT is implemented as on-ehip RAM, and includes a few words which are reserved by
the transputer hardware for the implementation of links and other hardware registers.
LoadStart is either just above or coincident with MemStart, see below. Note: that on
the ST20 the start of MemStart is variable and is specified using the memstart attribute
in the configuration description. FreeStart is the start of unused memory.

LoadStart

The position of LoadStart for a processor varies depending on the use of icconf
command line options and the reserved processor attribute, optionally specified within
a configuration description.

When the reserved processor attribute is specified, LoadStart is defined to be the
memory location obtained by adding the value of reserved to MOSTNEG INT.

When the reserved processor attribute is not specified, LoadStart is coincident with
or just above MemStart:

• LoadStart=(MemStart + 12 words) when the 'NY' command line option has not
been specified Le. virtual through-routing support is enabled.

Note: for most processors, MemStart is assumed to be greater or equal to 28
words from MOSTNEG INT, but if not, then LoadStart = MOSTNEG INT + 40
words. Processors which have a MemStart which is less than 28 words from
MOSTNEG INT are the M212, T212, T222, T225 and T414.

--------- Eii.P~1JIBCI--------_7_1

2.4 Configurer messages

• LoadStart =(MemStart + 6 words) when the 'NV' command line option is speci
fied, disabling virtual through-routing and profiling is enabled.

• LoadStart =MemStart when the 'NV' command line option is specified but
profiling is not enabled.

The value of LoadStart can be checked once the application has been collected, by
generating and examining the collector map file, see chapter 5.

2.3.11 System processes

System processes are code and data placed by the configurer for initializing the applica
tion. By default, the system startup processes' code and data are placed into user
process data areas e.g. stack, heap and so on. These system processes do not interfere
with the user's data because they complete their task before the space is needed by the
user's code. Note: these system processes do not include the virtual routing processes
and profiler and debugger kernels, placed by the configurer.

2.4 Configurer messages

Errors in the configuration source produce error messages in standard toolset format.
Details of the format can be found in section A.7.

Messages are generated at Information, Warning, Error, Serious and Fatal severities.
Most messages are generated at Error severity. The configurer aborts after 400 source
file errors.

In the following lists messages are grouped by severity and listed in alphabetical order.

2.4.1 Information

The following messages are generated at severity level Information. They are enabled
by the I command line option.

isolated root processor 'name'

If multiple routing sub-networks are required then the named processor has
been selected as the root processor within its sub-network because it is the only
processor in its sub-network. This processor will have no connection to any
other processors via the basic spanning trees.

no through routing on processor 'name'

The named processor has been prevented from being used for through-routing
channels by assigning its routecost attribute to be INFINITE_COST or
greater.

placed channel 'name onto link 'name'

The named channel has been placed automatically by the configurer onto the
named link.

_72 Eiifi~ ---------

2 icconf - configurer

placed edge'name' onto edge'name'

The named input (or output) edge has been placed automatically by the confi
gurer onto the named hardware edge.

placing string onto processor 'name

The named processor has been placed with a software through-routing kernel
process. string is the module that has been placed.

processor 'name' I string1 0 string2 (Routers count1, DeMuxes count2, Muxes
count3)

The named processor requires virtual link support processes. cDunt1, count2,
and count3 specify the number of through-routing, demultiplexing, and multi
plexing modules. string1 and string2 describe the virtual links implemented by
each input and output link of the processor.

These strings consist of pairs of characters; where the first is a digit and specifies
the link number and the second, which can be 1, R, or r, specifies if local data,
local and through-routed data, or just through-routed data is carried by that link.

selected root processor 'name'

The named processor has been selected as the root processor of the spanning
tree derived to provide a basic route for all routed channels. If the application
requires routing as multiple sub-networks then each sub-network will generate
this message.

2.4.2 Warnings

The following messages are generated at severity level Warning.

attribute'name' definition ignored

This message can only occur in mixed language programs incorporating occam
modules. The named stacksize or heapsize attribute has been assigned a
value that has been ignored.

attribute 'name 1 has been reassigned

Named attribute has been reassigned.

attribute'name' undefined

Named attribute has not been assigned a value.

Note: this message is not generated when the NWU option is specified and if the
NWI option is specified then this message is notgenerated for the interface attrib
utes of processes.

-----------E;i~ 7_3

2.4 Configurer messages

If the wp option is specified then this message is generated for all attributes that
have not been assigned.

cannot through route between processors 'name1' and 'name2'

This message is output when the basic routing algorithm within the configurer
cannot find a viable route between a pair of processors. This may explain subse
quent errors output concerning channels running between these two proces
sors. name1 and name2 identifies the processors that cannot be connected.

channel'name' unconnected and unplaced

Named channel has not been connected or placed.

Note: this message is not generated when the NWI option is specified

connector'name' unused

Named connector has not been used in a connect statement.

Note: this message is only generated when the wp option is specified

edge'name' unconnected and unplaced

The named input (or output) edge has not been connected or placed.

Note: this message is only generated when the wp option is specified

edge 'name' unconnected

The named edge has not been connected.

Note: this message is only generated when the wp option is specified

exceeded linkquota on processor 'name'; count1 inputs count2 outputs

This warning is output if the requested linkquota on any processor has been
exceeded by the configurer. name identifies the processor concerned while
count1 and count2 indicates the number of input and output links that are
required.

illegal definition for attribute 'name' when profiling

The named attribute has been assigned an illegal value. This is generated if a
process has been specified to start in high priority and the PRE or PRU options
have also been specified.

insufficient memory size for attribute 'namti, value

The memory size specified by the named attribute is insufficient for the type of
processor. This will be generated if the memory or reserved processor attrib-

_74 J;;SGS-1HOMSOII _
.'YI.Il'tJ~~

2 icconf - configurer

utes have been assigned a memory size that is less than LoadS1art. value is the
memory size.

link'name unconnected

Named link has not been connected.

Note: this message is only generated when the wp option is specified

nested comment statements, value

One or more nested comments have been found by the configurer. value is the
number of nested comments found.

no Inquest debugger kernels to place

All processes have had their nodebug attribute set to TRUE (and therefore no
processors are available for debugging) .

overflow in hexadecimal escape character

A numerical overflow has occurred during the evaluation of a hexadecimal
escape character whose range is from 0 to 255.

overflow in octal escape character

A numerical overflow has occurred during the evaluation of an octal escape char
acter whose range is from 0 to 255.

processor 'name' unconnected

Named processor has not been connected to the network.

processor 'name' unused

Named process has been connected to the network but has had no user
processes placed onto it.

process 'name' using direct channel input/output

The named process has been compiled to use direct instructions instead of indi
rect functions for channel i/o and because the process may also execute with the
virtual link support processes, an incompatibility may arise.

process 'name' using indirect channel input/output

The named process has been compiled to use indirect functions instead of direct
instructions for channel i/o and because the process will not be executed with
the virtual link support processes, the use of functions for channel i/o is unneces
sary. Note: this message is only generated when the wp option is specified.

--- ii;i.....J4 7_5

2.4 Configurer messages

unable to debug on processor 'namd as not accessable from root processor

The named processor cannot be debugged by the INQUESTdebugger because
there exists no route, either physical or virtual, between the named processor
and the root processor (which is connected to the host).

using single hop software virtual links

This is output if the configurer adds any run-time multiplexing software to the
user's program to support virtual channels.

Note: this message is only generated when the wp option is specified

using through routed software virtual links

This is output if the configurer adds any run-time multiplexing and through
routing software to the users program to support virtual channels.

Note: this message is only generated when the wp option is specified

string for process 'name overlaps memory registers

A memory segment of the named process overlaps the hardware registers,
which are the memory locations below MemStart, of the processor that the
process has been placed on. string is the memory segment name which can be
code, heap, stack, static or vector.

string of process'name' overlaps string of process'name'

A memory segment of the first named process overlaps a memory segment of
the second named process. string is the memory segment name which can be
code,heap,stac~staticorvectoL

2.4.3 Errors

The following messages are generated at severity level Error. Most configurer diagnos
tics are generated at this level.

attribute'name' cannot be reassigned

The named attribute cannot be reassigned. This is only generated for the
element attribute for nodes, the type attribute for processors and the
numlinks attribute for processors with type set to "ST20".

attribute 'name' multiply defined in 'name'

Named attribute has been declared within the interface attribute and its name
clashes with a previously declared attribute or its name clashes with the name
of a predefined attribute for the named process.

76 Eii ----------

2 icconf - configurer

attribute 'name' undefined in 'name'

Named attribute is an undefined attribute of the named symbol.

attribute 'name' undefined

Named attribute has not been assigned a value which is required.

automatic Tree Router provoked Deadlock

A potential communications deadlock has been detected in the routing network
constructed by the virtual through-routing algorithm where a cycle of links that
may through-route to each other has been created. This is an internal consis
tency error and should never be generated.

bad channel placement between processors 'name' and 'name'

A channel placement between the named processors specifies link numbers
which do not correspond to each end of the same link connection. This is an
internal consistency error and should never be generated.

cannot route channel between processors 'name1' and 'name2

This message indicates a failure to complete autcrrouting. The message is
output each time a channel cannot be implemented either because it is too long
(> 24 hops) or no viable route exists to support it. name1and name2 are source
and destination processors between which the data or acknowledge path of a
channel cannot be routed.

channel'name' connected and unplaced

The named channel has been left unplaced because the configurer was unable
to automatically place the channel.

This is generated if either the other end of the connection is an input (or output)
software edge which has not been placed or if the other end of the connection
has been placed onto an unconnected link (or hardware edge).

channel 'name1 ' connected and unplaced, invalid placement of 'name2'

The channel'name1has been left unplaced because the configurer was unable
to automatically place the channel 'name1'.

This is generated if the other end of the connection'name2' has been placed
onto a link (or hardware edge) which is connected to a processor different to that
on which the channel name1 is to reside.

channel 'name' multiply connected

Named channel has been used more than once in a connect statement.

---------- J:;i.p~ocI----------7-7

2.4 Configurer messages

channel 'name' multiply placed

Named channel has been used more than once in a place statement.

channel 'name' placed onto link 'name1', expecting connection to 'name2'

The named channel has been placed onto the link name1where the link name1
has not been connected appropriately. It is expected that the link name1 is
connected to the link (or hardware edge) name2.

This is generated by both ends of a software connection being placed onto links
or hardware edges (as appropriate) which are not connected.

channel 'name' placed onto unconnected link 'name'

The named channel has been placed onto the named link which has not been
connected

channel'name' unconnected and placed

Named channel has been placed and has not been connected.

connect 'name to 'namft illegal, both channels

An illegal connect statement has been specified where both named elements
are channels and they communicate in the same direction.

connect 'name' to 'name' illegal, both edges

Connect statement is illegal because the named elements are both edges.

connect 'name to 'namft illegal, channel/edge

An illegal connect statement has been specified where the first named element
is a channel and the second named element is an input (or output) edge and they
communicate in different directions.

connect 'name to 'namft illegal, edge/channel

An illegal connect statement has been specified where the first named element
is an input (or output) edge and the second named element is a channel and they
communicate in different directions.

connector 'name' mUltiply placed

Named connector has been used more than once in a place statement.

connector 'name' multiply used

Named connector has been used more than once in a connect statement.

_78 ii;i.fi~ _

2 icconf • configurer

constant dimension sizes inconsistent, value

A constant array has been defined which has inconsistent dimension sizes for
some of its elements. value is the number of the incorrect dimension, counting
from zero.

constant dimensions incompatible with'name'

Named symbol has been assigned a constant value whose dimensions are
incompatible with those of the symbol.

constant element types not equal, type

A constant array has been defined where some or all of its elements have non
equal types. type is the expected type for each element in the array.

constant type incompatible with 'name', type

Named symbol has been assigned a constant value whose type is incompatible
with that of the symbol. type is the expected type for the constant.

edge'name' connected and unplaced

The named input (or output) software edge has been left unplaced since the
configurer was unable to automatically place the input (or output) software edge.

This is generated if either the other end of the connection has not been placed
or if the other end of the connection has been placed onto an unconnected link.

edge 'name1' connected and unplaced, invalid placement of 'name2'

The input (or output) software edge'name1' has been left unplaced because the
configurer was unable to automatically place the input (or output) software edge
'name1'.

This is generated if the other end of the connection'name2' has been placed
onto a link which is connected to a hardware edge different to that on which the
input (or output) software edge 'name1' is to reside.

edge 'name' mUltiply connected

The named edge has been specified more than once in a connect statement.

edge 'name' multiply placed

The named edge has been specified more than once in a place statement.

edge 'name' placed onto edge 'name1', expecting connection to 'name2'

The named input (or output) software edge has been placed onto the hardware
edge name1 where the hardware edge name1 has not been connected

----------Eii~ 7_9

2.4 Configurer messages

appropriately. It is expected that the hardware edge name1 is connected to the
link name2.

This is generated by both ends of a software connection being placed onto links
or hardware edges (as appropriate) which are not connected.

edge 'name' placed onto unconnected edge 'name'

The named input (or output) software edge has been placed onto the named
hardware edge which has not been connected

edge 'name' unconnected and placed

The named edge has been placed and has not been connected.

element 'name' in connection undefined

The named element has been used in a connect statement and is undefined.
This is only generated from process and processor types.

element 'name' in placement undefined

The named element has been used in aplace statement and is undefined. This
is only generated from process and processor types.

element 'name' not completely subscripted

Named symbol has been defined as an array and has not been completely
subscripted.

host edge 'name' unconnected

The named host edge has not been connected to anything when booting from
link.

host edge 'name' undefined

When configuring to boot from link, the named host edge has not been declared
in the configuration source. This error can only be caused if the standard include
file setconf • inc has been altered.

illegal # directive type, found'string'

An illegal identifier for a #directive has been specified. string is the illegal direc
tive identifier.

illegal 16 bit RAM + ROM memory size for processor 'name', value

The named processor is a 16 bit processor which has been specified RAM and
ROM memory sizes whose total is illegal for 16 bit processors. value is the illegal
memory size.

80 /iii ---------

2 icconf - configurer

illegal 16 bit RAM memory size for attribute 'name', value

The named processor is a 16 bit processor which has been specified a RAM
memory size which is illegal for 16 bit processors. value is the illegal memory
size.

illegal 16 bit ROM memory size for processor 'name', value

The named processor is a 16 bit processor which has been specified a ROM
memory size which is illegal for 16 bit processors. value is the illegal memory
size.

illegal 16 bit address for attribute'name'

The named attribute, which is a sub-attribute of the location attribute for a
process, has been assigned an address which is illegal for 16 bit processors.
value is the illegal address.

illegal assignment for attribute 'name'

The named attribute has been specified in an attribute modification statement
and is not of arithmetic type.

illegal definition of attribute 'name' for PRI PAR process

The named attribute, which is always the priority attribute of a process, has
been assigned to HIGH when the code for the process has been specified to also
execute at high priority.

illegal definition of attribute 'name' when executing from ROM

The named attribute, which is always the code attribute of the location
attribute for a process, has been assigned an address when the code for the
process is to execute from ROM.

illegal dimension size, value

A dimension size not greater than zero has been specified. value is the dimen
sion number with the illegal dimension size.

illegal escape character sequence, char

An illegal escape character sequence has been specified. char is the illegal
escape character.

illegal format character constant, char

An illegal format character constant has been specified. char is the unexpected
character found in the character constant.

illegal format hexadecimal constant, char

An illegal format hexadecimal constant has been specified. char is the unex
pected character found in the hexadecimal constant.

-----------liiiP~~ 8_1

2.4 Configurer messages

illegal memory size for attribute 'name', value

The named attribute, which is always the reserved attribute of a processor, has
been assigned a memory size which is greater than the size assigned to the
memory attribute of the processor. value is the illegal memory size.

illegal number of dimensions for edge'name' , value
illegal number of dimensions for processor 'name', value

The named identifier has been declared as an array when it should have been
declared as a scalar. This is either generated for the host edge (when booting
from link) or for the root processor (when booting from ROM). value is the
number of declared dimensions.

illegal number of dimensions, value

Number of dimensions for a symbol or constant exceeds the maximum number
of dimensions allowed by the configurer. value is the maximum number of dimen
sions allowed.

illegal number of subscripts for'name' , value

Number of subscripts specified for the named symbol exceeds the number the
symbol requires. value is the maximum number of subscripts allowed.

illegal number of subscripts for constant, value

Number of subscripts specified for a constant exceeds the number the constant
requires. value is the maximum number of sUbscripts allowed.

illegal operation for attribute 'name'

The named attribute has been used inappropriately in an attribute modification
statement.

illegal source file character, value

An unexpected character has been found in the source file. value is the ASCII
value for the illegal character.

illegal subscript value, value

A subscript value of less than zero or greater than the dimension size has been
specified. value is the number of the dimension with the illegal subscript value.

illegal token for expression, found token

An unexpected token has been found at the start of an expression. token is the
unexpected token.

illegal token for statement, found token

An unexpected token has been found at the start of a statement. token is the
unexpected token.

_82 liii _

2 icconf • configurer

illegal type for 'name' in USE statement, type

Named symbol has been specified in a use statement and is not a process or
a process type. type is the type of the symbol.

illegal type for'name' in connection, type

Named symbol has been specified in a connect statement and is not a channel,
edge, link or connector. type is the type of the symbol.

illegal type for 'name' in definition, type

Named symbol has been specified in a node definition statement and is not a
node type. type is the type of the symbol.

illegal type for 'name' in expression, type

Named symbol has been specified in an expression and is not a constant value.
type is the type of the symbol.

illegal type for 'name' in modification, type

Named symbol has been specified in an attribute modification statement and is
not a node. type is the type of the symbol.

illegal type for 'name' in placement, type

Named symbol has been specified in a place statement and is not a process,
processor, edge, channel, link or connector. type is the type of the symbol.

illegal type for 'name', expecting type1 found type2

The named identifier has been declared with an unexpected type. The named
identifier will either be the string specified by the P option and has not been
declared as a processor (when booting-from-ROM) or is the host edge and has
not been declared as an edge (when booting-from-link). type1 is the expected
type for the identifier and type2 is the actual type of the identifier.

illegal type for IF statement condition, type

The condition value for an if statement is not of integral type. type is the type
of the condition value.

illegal type for arithmetic operator operator, type

The operand of an arithmetic unary operator is not of arithmetic type. type is the
type of the operand and operator is the arithmetic operator.

illegal type for boolean operator operator, type

The operand of a boolean binary operator is not of integral type. type is the type
of the operand and operator is the boolean operator.

--- iiii.1'~~ 8_3

2.4 Configurer messages

illegal type for condition operator operator, type

The condition value for a conditional ternary operator is not of integral type. type
is the type of the condition value and operator is the conditional operator.

illegal type for connector 'name' in placement, type

Named symbol is a connector defining a connection and has been used in the
incorrect position in a place statement. type is the type of connection defined
by the symbol.

illegal type for dimension size, type

The type of a dimension size value is not of integral type. type is the type of the
dimension size value.

illegal type for integral operator operator, type

The operand of an integral unary operator is not of integral type. type is the type
of the operand and operator is the integral operator.

illegal type for module in USE statement, type

The module specified in a USE statement is not of string type. type is the type of
the module.

illegal type for subscript value, type

The type of a subscript value is not of integral type. type is the type of the
subscript value.

illegal type for value in REP statement, type

The base or limit value for a replicator statement is not of integral type. type is
the type of the base or limit value.

illegal types for arithmetic operator operator, type1and type2

The operands of an arithmetic binary operator are not both of arithmetic type.
type1 and type2 are the types of the operands and operator is the arithmetic
operator.

illegal types for equality operator operator, type1and type2

The operands of an equality binary operatorare not both ofarithmetic type. type1
and type2 are the types of the operands and operator is the equality operator.

illegal types for integral operator operator, type1 and type2

The operands of an integral binary operator are not both of integral type. type1
and type2 are the types of the operands and operator is the integral operator.

_84 iiii._rl---------

2 icconf - configurer

illegal use of constant for element

A constant value has been used as an element.

illegal use of subfield operator for 'name'

The named symbol, which has no accessible attributes, has been used with the
subfield operator.

illegal use of subfield operator for constant

A constant value has been accessed using the subfield operator.

illegal value for attribute'name'

Named attribute has been given a value which is inconsistent with the type of the
attribute and its semantic meaning.

incompatible interface, attribute 'name' has different type, type
incompatible interface, attribute 'name' has referenced type, type
incompatible interface, attribute 'name' has unequal dimensions
incompatible interface, process'name' has too few parameters
incompatible interface, process 'name' has too many parameters

These messages can only be generated in mixed language programs incorpo
rating occam modules. The named symbol is an occam process and the
interface defined for the process mismatches the formal parameter list
defined in the object file associated with the process in a use statement.

insufficient RAM memory for processor 'name', value bytes amiss

Named processor's total RAM memory size is insufficient for the number of
processes placed on the processor (which includes their data requirements).
value is the number of extra bytes needed to accommodate all the processes on
the processor.

link 'name' mUltiply connected

Named link has been used more than once in a connect statement.

link'name' multiply placed

Named link has been used more than once in a p1ace statement.

missing (for SIZE operator, found token

The size operator has been found and an opening parenthesis was expected
to be found after the keyword size, instead of which the token token was found.

missing) for SIZE operator, found token

The size operator has been found and a closing parenthesis was expected to
be found after the operand to the operator, instead of which the token token was
found.

__________ I:;i.~rI---------_85-

2.4 Configurer messages

missing) for attribute list, found token

An attribute list has been found and a closing parenthesis was expected to termi
nate the list, instead of which the token token was found.

missing) for cast operator, found token

A cast operator has been found and a closing parenthesis was expected to be
found after the type identifier, instead of which the token token was found.

missing) for expression, found token

A parenthesized expression has been found and a closing parenthesis was
expected to be found after the sub-expression, instead of which the token token
was found.

missing, or TO for CONNECT statement, found token

A connect statement has been found and a comma or the keyword to were
expected to be found, instead of which the token token was found.

missing: for conditional operator, found token

A conditional operator has been found and a colon was expected to be found
after the first sub-expression, instead of which the token token was found.

missing ; for statement, found token

A statement has been found which expects a semicolon to terminate it, instead
of which the token token was found.

missing =for REP statement, found token

A replicator statement has been found and an equals was expected to be found
after the replicator identifier, instead of which the token token was found.

missing =or (for attribute, found token

An attribute definition has been found and an equals or opening parenthesis
were expected to be found after the attribute identifier, instead of which the token
token was found.

missing FOR for USE statement, found token

A use statement has been found and the keyword for was expected to be
found, instead of which the token token was found.

missing ON for PLACE statement, found token

A p1ace statement has been found and the keyword on was expected to be
found, instead of which the token token was found.

86 Eii ---------

2 icconf • configurer

missing TO or FOR for REP statement, found token

A replicator statement has been found and the keywords to or for were
expected to be found, instead of which the token token was found.

missing] for sUbscript, found token

A subscript operator has been found and a closing square bracket was expected
to be found after the subscript value, instead ofwhich the token token was found.

missing attributes for attribute list

An attribute list has been found which is empty.

missing constants for constant list

A constant list has been found which is empty.

missing identifier for # directive, found token

A # directive has been specified and an identifier was expected to be found after
the #, instead of which the token token was found.

missing identifier for REP statement, found token

A replicator statement has been found and an identifierwas expected to be found
after the keyword rep, instead of which the token token was found.

missing identifier for VAL statement, found token

A value statement has been found and an identifier was expected to be found
after the keyword val, instead of which the token token was found.

missing identifier for attribute list, found token

An attribute list has been found and an identifier was expected to be found after
the opening parenthesis starting the list, instead of which the token token was
found.

missing identifier for attribute, found token

An attribute list has been found and an identifier was expected to be found in the
attribute list, instead of which the token token was found.

missing identifier for name, found token

A name expression has been found and an identifier was expected to be found
at the start of the expression, instead of which the token token was found.

missing identifier for subfield, found token

A subfield expression has been found and an identifier was expected to be found
after the subfield operator, instead of which the token token was found.

- Iiii._: 8_7

2.4 Configurer messages

missing statements for statement list

A statement list has been found which is empty.

missing string for #INCLUDE statement, found token

An #include statement has been found and a string was expected to be found
after #include, instead of which the token token was found.

missing type for DEFINE statement, found token

A define statement has been found and a type identifier was expected to be
found after the keyword define, instead of which the token token was found.

missing type for attribute, found token

A parameter list declaration has been found and a parameter type was expected
to be found in the list, instead of which the token token was found.

missing} for constant list, found token

A constant list has been found and a closing brace was expected to terminate
the list, instead of which the token token was found.

missing} for statement list, found token

A statement list has been found and a closing brace was expected to terminate
the list, instead of which the token token was found.

modification of 'name' illegal, already used

The named symbol is a node type that has been used to derive other symbols
and an attempt has been made to modify one of its attributes.

object file for process 'name' undefined

Named process has not been associated with an object file.

overflow in REP statement expression

A numerical overflow has occurred during the evaluation of a replicator state
ment, that is, the replicator identifier has overflowed.

overflow in arithmetic expression

A numerical overflow has occurred during the evaluation ofan arithmetic expres
sion.

overflow in decimal integer constant

A numerical overflow has occurred during the conversion of a string representing
a 32 bit decimal integer constant.

_88 ii;i~~ ----------

2 icconf • configurer

overflow in dimension size expression

A numerical overflow has occurred during the evaluation of a dimension size
expression (which is done to the precision of the hosts integer word length).

overflow in dimension sizes for'name'

A numerical overflow has occurred during the evaluation of the array size for the
named symbol (performed to the precision of the integer word length of the host).

overflow in dimension sizes for constant

A numerical overflow has occurred during the evaluation of the array size for a
constant array (performed to the precision of the integer word length of the host).

overflow in hexadecimal integer constant

A numerical overflow has occurred during the conversion of a string of digits
representing a 32 bit signed hexadecimal integer constant.

overflow in octal integer constant

A numerical overflow has occurred during the conversion of a string of digits
representing a 32 signed bit octal integer constant.

overflow in real double constant

A numerical overflow has occurred during the conversion of a string of digits
representing a 64 bit real constant.

overflow in real float constant

A numerical overflow has occurred during the conversion of a string of digits
representing a 32 bit real constant.

overflow in subscript value expression

A numerical overflow has occurred during the evaluation of a subscript value
expression (which is done to the precision of the hosts integer word length).

place'name' on 'name' illegal, channel/edge

An illegal place statement has been specified where the first named element
is a channel and the second named element is an input (or output) edge.

place 'name' on 'name' illegal, edge/link

An illegal place statement has been specified where the first named element
is an input (or output) edge and the second named element is a link.

process 'name' and channel 'name' placed on different processors

The named channel, which is a channel of the named process, has been placed
on the link of a processor which is different to the processor placed with the
process.

-----------/iiiPda,J4 8_9

2.4 Configurer messages

process 'name' and processor 'name' execution types mismatch

The named process has an execution type (specified in the object file associated
with the process) which is incompatible with the execution types of other
processes executing on the named processor.

process 'name' and processor 'name' processor types mismatch

The named process has a processor type (specified in the object file associated
with the process) which is incompatible with the processor type of the named
processor.

process 'name' multiply USEd

Named process has been used more than once in a use statement.

process 'name' multiply placed

Named process has been used more than once in a place statement.

process 'name' unplaced

Named process has not been placed.

process type 'name' multiply USEd

Named process type has been used more than once in a use statement.

processor'name' unconnected and placed

The named processor has not been connected to the hardware network and has
been placed with one or more processes.

reference to undefined symbol 'name'

Named symbol has been referenced but had not been defined at the point of
reference.

root processor'name' undefined

When configuring to boot from ROM, the named processor (specified using the
p option) has not been defined in the configuration source.

subscript out of range for'name' , value

Named symbol has been accessed with the subscript operator and the subscript
value used is outside the valid range of the dimension being subscripted. value
is the dimension number that was subscripted.

subscript out of range for constant, value

A constant value has been accessed with the subscript operator and the
subscript value used is outside the valid range of the dimension being
subscripted. value is the dimension number that was subscripted.

_90 1iii _

2 icconf - configurer

symbol'name' mUltiply defined in symbol table

Named symbol has been multiply defined in the configuration source.

unable to debug on processor 'name' as breakpoints not supported, target

The named processor (which has been placed with debuggable processes)
cannot be debugged by the INQUEST debugger because there does not exist
instruction level support on the processor to allow breakpoints to be set. target
is the processor type.

unable to place channel 'name' onto processor 'name', expecting connection to
processor 'name2'

The named channel cannot be automatically placed onto the processor name1
by the configurer as no connection exists between itself and the processor
name2.

This is generated if one end of a channel requires placing onto the link of a
processor and there is no connection between that processor and the processor
on which the other end of the channel is to reside.

unable to place channel 'name' onto processor 'name', insufficient connections
to processor 'name2'

The named channel cannot be automatically placed onto the processor name1
by the configurer because insufficient connections exists between itself and the
processor name2.

This is generated if one end of a channel requires placing onto the link of a
processor and there are not enough connections between that processor and
the processor on which the other end of the channel is to reside.

unable to support Inquest debugger, host edge 'name' not connected to root
processor 'name'

The named host edge has not been connected to the named root processor
when the GA option has been specified. The named host edge must be
connected to the named root processor in order for the INQUEST debugger to
operate.

unable to support Inquest debugger, host edge'name' unconnected

The named host edge has not been connected to anything when the GA option
has been specified. The named host edge must be declared and connected to
the root processor in order for the INQUEST debugger to operate.

unable to support Inquest debugger, host edge'name' undefined

The named host edge has not been declared when the GA option has been speci
fied. The named host edge must be declared and connected to the root
processor in order for the INQUEST debugger to operate.

___________ J:iir~ 9_1

2.4 Configurer messages

unalligned address for attribute'name'

The named attribute, which is a sub-attribute of the location attribute for a
process, has been assigned an address which is not word aligned. value is the
unaligned address.

uninitialised symbol'name' in expression

Named symbol, which is of arithmetic type, has been used in an expression and
has not been assigned any value.

unterminated character constant

A character constant has been specified where a closing quote has not been
found before the end of the line.

unterminated comment statement

Acomment has been started and has not been terminated before the end of the
file.

unterminated string constant

A string constant has been specified where a closing double quote has not been
found before the end of the line.

unused connector 'name' in placement

Named connector has not been used in a connect statement and has been
used in a place statement.

value for attribute'name' out of range

Named attribute has been assigned a value that is not in the valid range for the
attribute.

zero length character constant

A zero length character constant has been specified.

string for process'name exceeds maximum memory address

The named segment of the named process has been specified an address which
results in the segment exceeding the maximum memory address of the
processor that the process has been placed on. string is the memory segment
name which can be code, heap, stack, static or vector.

string for process 'name overlaps ROM memory

The named segment of the named process has been specified an address which
results in the segment overlapping the ROM memory region of the processor that

_92 JF;i~ ----------

2 icconf - configurer

the process has been placed on. string is the memory segment name which can
be code, heap, stack, static or vector.

string for process 'name' overlaps unusable memory

The named segment of the named process has been specified an address which
results in the segment overlapping the unusable memory region of the processor
that the process has been placed on. string is the memory segment name which
can be code, heap, stack, static or vector.

2.4.4 Serious messages

The following diagnostic messages are generated at severity level Serious.

ROM memory size required when booting from ROM

The RA or RO command line options have been specified and the RS option has
been omitted.

TCOFF descriptor, illegal dimension size, value
TCOFF descriptor, illegal type for name, type
TCOFF descriptor, missing (, found char
TCOFF descriptor, missing), found char
TCOFF descriptor, missing :, found char
TCOFF descriptor, missing? or !, found char
TCOFF descriptor, missing], found char
TCOFF descriptor, missing OCCAM PROe keyword
TCOFF descriptor, missing OCCAM identifier
TCOFF descriptor, missing OF for CHAN or PORT parameter
TCOFF descriptor, overflow in dimension size
TCOFF descriptor, undefined channel parameter
TCOFF descriptor, unknown OCCAM parameter type
TCOFF descriptor, unknown OCCAM process type
TCOFF format, expected INDEX-ENTRY command (value)
TCOFF format, expected LIB-INDEX-START command (value)
TCOFF format, expected LINKED-UNIT command (value)
TCOFF format, expected START-MODULE command (value)
TCOFF format, invalid ADJUST-POINT adjust size (value)
TCOFF format, invalid ADJUST-POINT value type (value)
TCOFF format, invalid DEFINE-MAIN symbol reference (value)
TCOFF format, invalid DEFINE-MAIN/DESCRIPTOR definitions
TCOFF format, invalid DEFINE-SYMBOL symbol reference (value)
TCOFF format, invalid DEFINE-SYMBOL value type (value)
TCOFF format, invalid DESCRIPTOR language type (value)
TCOFF format, invalid DESCRIPTOR scalar size (value)
TCOFF format, invalid DESCRIPTOR string size (value)
TCOFF format, invalid DESCRIPTOR symbol reference (value)
TCOFF format, invalid DESCRIPTOR vector size (value)

---------lfii 9_3

2.4 Configurer messages

TCOFF format, invalid INDEX-ENTRY attributes (value, value)
TCOFF format, invalid INDEX-ENTRY language type (value)
TCOFF format, invalid INDEX-ENTRY string size (value)
TCOFF format, invalid LOAD-TEXT text size (value)
TCOFF format, invalid ORIGIN SYMBOL format ('string')
TCOFF format, invalid SET-LOAD-POINT symbol reference (value)
TCOFF format, invalid START-MODULE attributes (value, value)
TCOFF format, invalid START-MODULE language type (value)
TCOFF format, invalid SYMBOL string size (value)
TCOFF format, invalid code entry offset (value)
TCOFF format, multiple DEFINE-MAIN commands
TCOFF format, multiple DESCRIPTOR commands
TCOFF format, multiple LOAD-TEXT commands
TCOFF format, multiple ORIGIN SYMBOL commands
TCOFF format, multiple VIRTUAL SECTION commands
TCOFF format, undefined DEFINE-MAIN definition
TCOFF format, unexpected ADJUST-POINT command
TCOFF format, unexpected command (value)

An error has been detected in an object file specified by a use statement or a
library file containing the system processes.

execution and utilisation profiling are incompatible

The PRE option and the PRU option have been specified together.

illegal ROM memory size, value

Value specified for the RS option is not greater than zero. value is the illegal
. memory size.

illegal command line option, string

An illegal option has been specified on the command line. string is the illegal
option.

illegal format ROM memory size, string

An illegal format memory size value has been specified for the RS option. string
is the illegal format memory size.

illegal record length (value)

A record length has been input from a file which exceeds the maximum string
length for a file. value is the illegal record length found.

illegal string length (value)

A string length has been input from a file which exceeds the maximum record
length for a file. value is the illegal string length found.

94 iSii----------

2 icconf - configurer

illegal syntax in indirect file, string

An argument with illegal syntax has been specified in an indirect file for the
command line. sting is the argument with illegal syntax.

Inquest debugging and profiling are incompatible

The GA option and the PRE or PRU options have been specified together.

Inquest debugging requires software through routing

The GA option and the NV option have been specified together.

interactive and postmortem debugging are incompatible

The G option and the GP option have been specified together.

internal token buffer overflow, value

An internal buffer used for storing a source line has overflowed. value is the size
of the internal buffer in bytes.

module entry lstring' not found in library (type, mode)

The named module entry (of the specified processor type and execution mode)
has been requested from a library file of system processes and has not been
found. target is the processor type and mode is the execution mode.

multiple ROM memory sizes, string

The RS option has been specified more than once. string is the latest value for
the RS option.

multiple input file names, string

The input file name has been specified more than once. string is the latest input
file name.

multiple output file names, string

The 0 option has been specified more than once. string is the latest value for the
o option.

multiple processor names, string

The p option has been specified more than once. string is the latest value for the
p option.

processor name required when booting from ROM

The RA or RO options have been used and no p option has been specified.

----------lfii.~ocI----------9-5

2.4 Configurer messages

running from ROM and Inquest/post mortem debugging are incompatible

The RO option and the GA option have been specified together.

too many errors occurring, value

Number of errors exceeds maximum number allowed. value is the maximum
number of errors allowed.

unable to allocate memory
unable to reallocate memory

Amount of memory available to the configurer is insufficient for configuring the
configuration source.

unable to close 'string' (value)
unable to close (value)
unable to open 'string' (value)
unable to open (value)
unable to read (value)
unable to seek (value)
unable to tell (value)
unable to write (value)

These messages are generated as a result of an error occurring in the host file
system. value is the error failure code.

unable to read environment variable, string

An attempt has been made to read an environment variable which does not exist.
string is the environment variable name.

unable to read indirect file, 'string'

An error has been detected in the host filing system while reading an indirect file
for the command line. string is the indirect file name.

unexpected end of input

The end of the file has been found unexpectedly in an object file.

2.4.5 Fatal errors

Any fatal errors which occur should be reported to your local SGS-THOMSON distributor
or field applications engineer.

The following errors are generated at severity Fatal:

did not find all processors in routine BuildDataStructs
did not find all processors in routine FilllnKernelTable
did not find all processors in routine PlaceDebugKernels

An internal error has occurred in the configurer. The configurer has found an
internal inconsistency while virtual routing.

96 l.fi.~. _

2 icconf - configurer

problem in allocation routines

An internal error has occurred in the configurer. The configurer has incorrectly
attempted to allocate memory from the heap.

problem in deallocation routines

An internal error has occurred in the configurer. The configurer has incorrectly
attempted to return memory to the heap.

___________ J..Ti._ocI----------9-7

2.4 Configurer messages

_98 1iii _

3 oc - occam 2 compiler

This chapter describes the syntax and command line options of the occam 2 compiler
oc. The chapter ends with a list of error messages.

The 'occam 2 Toolset Language and Libraries Reference Manua! describes some
technical aspects of occam's implementation on the transputer, including the allocation
of memory, the machine representation of occam types, and other hardware depen
dencies.

3.1 Introduction

The toolset compiler oc implements the occam 2 language generating code for a partic
ular transputer, transputer type or class. A target should be specified for all compilations.
Transputer targets are discussed in detail in Appendix B.

oc supports some extensions to the occam 2 language, including: compiler directives,
extended channel handling, extended syntax, and low level programming support.
These are compiler-dependent and do not extend the definition of the language. Exten
sions supported by oc are listed in appendices of the 'occam 2 Toolset Language and
Libraries Reference Manua!.

Each compilation of a program must be targetted at a specific transputer type or class
and in one of three execution error modes. In addition the selection or not of the compil
er's 'y' option determines the method of channel inpuVoutput used by the compiler.

All components of a program to be run on the same transputer must be compiled for
compatible target processors, error modes, and method of channel i/o.

Libraries and separately compiled units must be compiled before any file which refer
ences them can itself be compiled. It is the programmer's responsibility to ensure all
components of a program are compiled in the correct order and that object code is kept
up to date with changes in the source; the linker will object if this is not done. This may
be assisted by using a MAKE program in conjunction with the imakef tool. The imakef
tool depends on a particular system of file extensions being used. For details of version
control using MAKE programs and the imakef tool see Chapter 12. The operation of
the compiler in terms of standard file extensions is shown below.

occam source files can contain references to object code libraries, occam source to
be included in the compilation, separately compiled occam code, and code produced
by compatible compilers for other languages.

For a full description and formal definition of the occam 2 language see the 'occam
2 Reference Manua!.

__________ ii;ifi~ 9_9

3.2 Running the compiler

.teo

The object file is generated by the compiler in rransputer Common Object File Format
(TCOFF). Object files are required to be in this format to be compatible with other tools
in the toolset such as the librarian and linker tools.

3.2 Running the compiler

The occam 2 compiler takes as input an occam source file and compiles it into a binary
object file. Command line options determine the target transputer for the compilation,
the compilation error mode, and other compiler facilities such as alias and usage
checking. A target processor and compilation error mode should be specified for each
compilation. By default the compiler produces code in HALT mode.

To invoke the compiler use the following command line:

~ oc filename {options}

where: filename is the name of the file containing the source code. If you do not specify
a file extension, the extension .occ is assumed.

options is a list, in any order, of one or more of the options given in Table 3. 1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lowercase and can be given in any order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

If the compilation is unsuccessful, error messages are displayed giving the name of the
file and the number of the line where the error occurred. Compiler error messages are
listed in section 3.14.

_10_0 Efi_ ---- _

3 oc - occam 2 compiler

Examples:

oc -t450 simple.oce
ilink -t4S0 simple. teo hostio.lib -f oeeam450.lnk
oeeonf simple.pgm
ieolleet simple.efb

oc -taos simple.oce
ilink -tBOS simple. teo hostio.lib -f oeeama.lnk
oeeonf simple.pgm
ieollect simple.cfb

In each of the above examples the source code is compiled for a single processor. The
examples also shows the commands for linking, configuring, collecting, and loading the
program.

Option Description
Transputer type See Appendix 8 for transputer type options.

A Prevents the compiler from performing alias checking.This option also disables
usage checking. The default is to perform alias checking. When alias checking is
enabled, the compiler may insert run-time alias checks, and can often generate
more efficient code. Details of alias and usage checking rules are given in the
appendices of the'occam 2 Toolet Language and Libraries Reference Manual
and also in the'occam 2 Reference Manual.

B Displays messages in brief (single line) format.

C Disables the generation of object code. The compiler performs syntax, semantic,
alias and usage checking only.

CODE nnn Specifies how large to make the code buffer. If not specified, the compiler will allo-
cate 240 Kbytes. The code buffer is expressed as Kbytes, e.g. to allocate a buffer
= 100kbytes, specify CODE 100.

D Generates minimal debugging information. The default is to produce full debugging
information. Debugging data is required by the debugger.

E Disables the use of the compiler libraries. This prevents the compilation of some
programs which require 'complicated' arithmetic such as real arithmetic on a
processor which does not have a floating point unit. If this option is used and the
occam code requires use of the libraries, an error is reported.

G Enables the compiler to recognize the restricted range of transputer instructions
via the ASH construct, as listed in the 'Transputer code insertion' appendix of the
'occam 2 Toolset User Guide.

H Produces code in HALT mode. This is the default compilation mode and may be
omitted for HALT mode programs. (See options S and x also).

HELP Displays a full help page.

I Displays additional information as the compiler runs. This information includes
target and error mode, and information about directives asthey are processed. The
default is not to display this information.

K Disables run-time range checking. The default is to insert run-time range checks.
See section 3.6.

N Disables usage checking. The default is to perform usage checking. Usage
checking is also disabled by option 'K. When usage checking is enabled the
compiler is able to generate more efficient code. Details of alias and usage
checking rules are given in the appendices of the 'occam 2 Toolset Language and
Libraries Reference Manual and also in the'occam 2 Reference Manual.

----------lSii. 1_0_1

3.2 Running the compiler

Option Description
NA Disables the insertion of run-time checks for calls to ASSERT.

NWCA Disables wamings when CHAN OF ANY is used. See section 3.7.
NWGY Disables warnings when the obsolete construct GUY is used. See section 3.7.
NWP Disables warnings when function or procedure parameters are not used. See

section 3.7.
NWU Disables warnings when declared variables or routines are not used. See section

3.7.

o outputfile Specifies the name of the output file. If no output file is specified the compiler uses
the current directory and input filename and adds a •teo extension.

p filename Generates a map file giving details of code mapping in memory. A filename must
be specified. Map files can be displayed as normal text files and are read by the
imap tool, see section 3.12. Note: if this file is to be used as input to imap, it must
be given an extension of the form: .lllZ%. The characters'Ja'are determined by
the 2nd and 3rd characters of the extension given to the compiler object file. For
example ifthecompiler object file takes the defaultextension. teo, the information
file is given the extension •mea.

QS Generates code which favours space efficiency. Where a choice exists between
generating faster, but largercode over slower, more compact code, itwill generate
more compact code.

QT Generates code which favours faster execution times. This is the default. Where
a choice exists between generating faster, but larger code over slower, more
compact code, it will generate the faster code.

R filename Redirects error messages to a file.

S Produces code in STOP mode. (See options H and x also).
u Disables the insertion of code to perform run-time error checks. The default is to

Perform run-time error checks. See section 3.6.
v Prevents the compiler from producing code which has a separate vector space

requirement. The default is to produce code which uses separate vector space.
See the appendix in the 'occam 2 Toolset Language and Libraries Reference
Manual' which describes occam 2 implementation details.

W Enables the compiler to recognize the tull range of transputer instructions via the
ASM construct

WALIGN Warns whenever a runtime alignment check is inserted for a RETYPE. See section
3.7.

WALL Enable all warnings which are controlled from the command line. See section 3.7.
WI) Provides a warning whenever a name is descoped. See section 3.7.
wo Provides awarning whenever arun-time alias check is generated. See section 3.7.

WQUAL Enables software qUality warnings, see section 3.7.
x Produces code in UNIVERSAL mode. See section 3.5. (See options Hand s also).
y Disablesthe useof library calls forchannel inputand outputand instead usestrans-

puter instructions. See section 3.9. Note: This option is incompatible with the 'soft-
ware virtual routing' facilities of the configurer.

Table 3.1 occam 2 compiler options

3.2.1 Default command line arguments

Commonly used command line parameters can be defined in the host environment vari
able OCARG. Parameters specified in this way are automatically added to the start of the
command line when the compiler is invoked.

_10_2 l.fi.~ _

3 oc • occam 2 compiler

Command line parameters must be specified in OCARG using the syntax required by the
oc command line.

3.3 Filenames

occam source files can be given any legal filename for the host system you are using.
The use of the .occ extension for occam source, and the • ine extension for files
containing declarations of constants and protocols, is recommended. If an extension is
not specified for the input file, the compiler will assume the extension is .occ.

Output files are specified using the '0' option. If you do not specify a filename, the input
filename is used (minus any directory name) and a •teo file extension is added. In this
case the file will be placed in the current directory i.e. the directory from which the
compiler is invoked.

If you use the Makefile generator tool imakef you must use the extensions described
in section 12.3.

3.4 Transputer targets

The compiler generates code for a specific transputer type. This means that a processor
type should be specified for all transputer targets. If more than one processor type is
specified, the compilation will terminate immediately and an error message will be
displayed.

Transputers are also grouped into classes for the purpose of generating common code
suitable for running on a number of different transputer targets. Transputer classes
group transputers according to word size and instruction set compatibility. They can be
used to generate code for combinations of transputers.

The use of transputer types and classes in developing programs is explained in
appendix B. The command line options for selecting a transputer target are also given
in this appendix.

3.5 Error modes

The execution error mode determines the behavior of a program if it fails during execu
tion. There are two main modes; HALT system and STOP process. There is also a
special mode called UNIVERSAL. Command line options are provided to select the error
mode for the compilation. Specifying more than one error mode will cause the compila
tion to terminate immediately and an error message will be displayed. The execution
behavior of programs compiled in the different modes is as follows:

----------Eii~ 1_0_3

3.6 Enable/Disable Error Detection

HALT When an error occurs in the program the transputer halts. This is useful
for developing and debugging systems and is the default mode. For
errors to be detected correctly the server must be invoked with the 'SE'
option.

STOP When an error occurs the system behaves like the occam STOP
process, that is the process causing an error does not continue. Other
processes continue until they become dependent upon the stopped
process. This ensures that a failure in one process does not automati
cally produce failure in other processes. Using this mode it is possible
to build a system with redundancy and enable a system to run even if
parts of the program fail or processes fail because a time out is
exceeded.

UNIVERSAL UNIVERSAL mode enables the user to compile code that may be run
with either HALT or STOP mode in effect. The decision about which
mode to adopt need not betaken until the separately compiled modules
are combined into a linked object file. On linking the modules, any code
that has been compiled in UNIVERSAL error mode will adopt the error
mode of the other modules Le. either HALTmode or STOP mode. HALT
and STOP error modes may not be combined on the same processor.

Code compiled in either HALT or STOP mode may call code compiled in UNIVERSAL
mode, however, code compiled in UNIVERSAL mode may only call code which has also
been compiled in UNIVERSAL mode. It cannot call code which has been compiled in
HALT or STOP mode.

All separately compiled units for a single processor must be compiled for compatible
error modes. Where a library is used the module with the appropriate error mode will be
selected.

Note: The implementation of error modes on the T9000 is done via a trap handler
(installed automatically by the configurer), which gives either HALT or STOP behavior
when an error occurs.

Compilation error modes and their effects are described in more detail in the'Program
ming single transputers' chapter of the 'occam 2 Toolset User GuidE!.

3.6 Enable/Disable Error Detection

By default the compiler inserts code to execute run-time checks for errors it cannot
detect at compile time. In some circumstances it may be desirable to omit the run time
error checking in one part of a program, for example, in a time-critical section of code,
while retaining error checks in other parts of a program, for debugging purposes. Three
command line options are prOVided to enable the user to control the degree of run-time
error detection performed; they are the 'K', 'u' and 'UA' options.

The compiler option 'K' disables the run-time range checks for the module being
compiled. Range checking only includes checks on array subscripting and array lengths.

_10_4 ~r~ _

3 oc • occam 2 compiler

The compiler option 'u' prevents the compiler from inserting any code to explicitly
perform run-time checks. This will disable run-time checks associated with type conver
sion, shift operations, array access, range validation and replicated constructs such as
SEQ, PAR, IF, and ALT. Runtime checks implicit in the transputer instructions are still
performed, for example, addwill automatically check for arithmetic overflow.

Note: The 'u' option can be used to remove unnecessary runtime checks from code
which is fully debugged and known to be error-free. It is equivalent to implementing the
occam error mode UNDEFINED.

The 'NA' option prevents the compiler from inserting any code to check calls to ASSERT.
In effect, each ASSERT behaves like SKIP. Any calls to ASSERT which can be evaluated
at compile time will still be checked.

The effect of using these options is described in detail in the'Programming single trans
puters' of the 'occam 2 Toolset User Guide.

3.7 Enabling/disabling warning messages

There are several command line options which allow the user to either enable or disable
the generation of certain warning messages produced by the compiler:

• The NWCA option disables the generation of warning messages when CHAN OF
ANY is used. CHAN OF ANY is now considered obsolete and replacement with
named protocols of type ANY is recommended. See section'Language exten
sions' appendix of the 'occam 2 Toolset Languages and Libraries Reference
Manual.

• The NWGY option disables the generation of warning messages when the GUY
construct is used. GUY is now considered obsolete and ASM should be used
instead.

• The NWP option disables warning messages being generated when parameters
to procedures are not used.

• The NWU option disables warning messages being generated when variables or
routines are not used.

• The WALIGN option provides a warning whenever a runtime alignment check is
inserted for a RETYPE.

• The WALL option turns on all warnings which are controlled from the command
line Le. it is currently equivalent to WD, wo, WALIGN and WQUAL.

• The WD option provides a warning whenever a name is descoped, for example
when a name is used twice and one occurrence of it is hidden within an inner
procedure. See section 8 of the 'occam 2 Reference Manual for details of
occam scope rules.

----------LV._: 1_0_5

3.8 Support for debugging

• The wo option provides a warning whenever a run-time alias check is generated
Le. to check that variables do not overlap. These checks generate extra code
and the user may wish to be alerted to this.

• The WQUAL option enables software quality warnings. Currently these include a
warning about incorrect positioning of PLACE statements and a warning about
unused CASE options.

Section 3.14.1 lists the warning messages which are affected by these options.

3.8 Support for debugging

The occam 2 compiler supports interactive debugging with the debugger by default.

The compiler 'D' option disables the generation of full debugging data. Minimal debug
ging data remains to allow the debugger to backtrace through the code. This option
enables library code to be created without the overhead of debugging data.

3.9 Channel input/output

By default the compiler will generate calls to library routines to perform channel input and
output, rather than using the transputer's instructions. The compiler's 'y' option forces
the compiler to use sequences of transputer instructions for channel input and output,
resulting in faster code execution.

Note: that code which is compiled to use transputer instructions for channel input/output
may call code which uses library routines to perform channel input/output, but not vice
versa.

Note: The 'Y' option is incompatible with the 'software virtual routing' facilities of the
configurer. When software processes are used to implement the routing of channel
communications between non-adjacent transputers, channel input/output must be
implemented by library calls. See the chapter about 'Configuration' in the 'occam 2
Toolset User Guide for further details.

3.10 Separately compiled units and libraries

Any group of one or more occam procedures and/or functions may be compiled sepa
rately prOVided they are completely self-contained and make no external references
except via their parameters or compiler directives. Separate compilation is used to
reduce the need for recompilation, and to split compilations into smaller parts. Sepa
rately compiled code is known as a compilation unit.

Any collection of compilation units may be made into a library using the librarian ilibr
(see chapter 9). Libraries and compilation units differ in the following way:

• Libraries are selectively loaded as required by the transputer type and error
mode of the compilation, whereas separately compiled units are always loaded.
If a unit containing incompatible code is used an error is generated, whereas
libraries containing incompatible code are ignored.

_10_6 liii.fi~~ _

3 oc - occam 2 compiler

All separate compilation units and libraries must be compiled before the program that
references them is itself compiled. An easy way to ensure this is to use the toolset Make
file generator imakef with a suitable Make utility. For more details see Chapter 12.

3.11 Code insertion using ASM

Two compiler options are provided to enable the compiler to recognize transputer
instructions inserted into source code using the ASM construct. The 'G' option permits
use of a limited range of sequential instructions whereas the 'w' option permits use of
the full range of transputer instructions. For further details see the' Transputer Code
Inserlion' appendix of the 'occam 2 Toolset User Guide.

3.12 Memory map

The compiler may be instructed, via the P mapfiJeoption, to produce a map of workspace
for each function defined in the file. The file contains information which may assist the
user during program debugging and can be used as input to the memory mapper imap.
The map is written to the file mapfiJe.

The file consists' of a series of workspace maps, one for each routine, giving details of
workspace requirements. These are followed by a section map listing details of proce
dures and functions.

Map of code and data for source file simple.occ

Created by 2.03.48

Target processor T450
Error mode : HALT

Map of workspace

Routine : simple
Variable name
length
result
buffer

Formal parameter name
fs
ts
<vectorspace-pointer>

Offset (words)
4
5
9

Offset (words)
7
8
9

Workspace size = 52 words, Vectorspace size = 378 words

Section map

Section name
Name
simple

text%base size = 156 bytes
Type Offset (bytes)
code 2

Figure 3.1 Example compiler map

__________ EU.BmIII 1_O_7

3.13 Compiler directives

The file is generated in text format. The following information is present:

• The name of the source file for which the map of code and data is being produced.

• Version data for the compiler.

• The target transputer of the compilation, T450, T805, T400, etc.

• The error mode of the compilation.

• Name of the routine for which the map of workspace is being produced. Items in
the workspace map are given in ascending order of workspace offset.

• List of local variables giving their offset (in words) into the routine's workspace.
This list may include temporary variables introduced by the compiler.

• List of formal parameters giving their name and offset (in words) into the
routine's workspace. Parameters added by the compiler may also be listed,
see Table 3.2 for a list of their names. Further details of these parameters can
be found in the appendix of the 'occam 2 Toolset Language and Libraries
Manuar which describes occam 2 implementation details.

• The workspace and vector space requirements of the routine in words. This
includes the requirements of all nested calls but not the four word overhead
introduced by the transputer call instruction.

• Name of the section for which the section map is being produced. Items in the
section map are given in ascending order of section offset.

Details of how the compiler allocates space for variables are given in the appendix of
the'occam2 Toolset Language andLibraries Manuaf which describes occam 2 imple
mentation details.

Fonnal parameter

hidden dimension

vectorspace pointer

static link

Table 3.2 Parameters inserted by compiler

Note: The message ''No local variables" may be displayed if no user variables
are found, however, compiler temporaries may have been assigned to workspace. In
addition some compiler temporaries may not be listed in the map file.

Information generated in the compiler map file may be extracted by the imap tool. This
tool can be used to produce a memory map for the program after it has been compiled,
linked and collected. See chapter 13.

3.13 Compiler directives

The occam compiler supports a number of directives that allow the programmer to
customize a compilation. All are extensions to the language. If the compiler 'I' option
is used directives are displayed on the screen as the compilation proceeds.

_10_8 l.Ti... _

3 oc - occam 2 compiler

Directives supported are:

#INCLUDE

#USE

#IMPORT

#COMMENT

#OPTION

#PRAGMA

inserts occam source code

references separately compiled units and libraries

references non-Occam compiled code

inserts comments in object code

- allows selection of compiler options from within source text

miscellaneous extensions, including support for the import of other
languages, code placement in RAM, and disablement of checks on
specific variables.

3.13.1 Syntax of compiler directives

Filenames referred to in compiler directives must be enclosed in double quotes ("). Files
are located according to the search strategy defined in section A.4.

If double quotes are to be used within a directive, the double quote character must be
preceded by an asterisk (*).

The scope of directives are defined, like declarations of constants and protocols, by the
level of indentation in the occam source.

When imakef is used, if a filename in a #USE, #INCLUDE or #IMPORT directive does
not already have an extension then imakef will add the appropriate extension
depending upon the target that it is attempting to build. If you use the Makefile generator
tool imakef you must use the extensions described in sections 12.3 and A.S.

3.13.2 #INCLUDE

The #INCLUDE directive inserts the contents of a named file at the point in the program
source where the directive occurs, with the same indentation as the directive.

INCLUDE files can be used by any number ofprograms, including separately compiled
units, and are commonly used to share common declarations of constants and protocols
between several programs.

To track file dependencies within included files use of the imakef tool is recommended.

The syntax of the #INCLUDE directive is as foJlows:

#INCLUDE "filename" [comment]

where: filename is the name of the file to be included. The extension must be supplied.

comment is any text preceded by the characters '-'.

The first text after the directive must be the filename enclosed within double quotes (").

__________~~ 1_0_9

3.13 Compiler directives

All other text on the line is ignored and may be used for comments. For example:

#INCLUDE "header.inc"

Included files may be nested to any depth.

3.13.3 #USE

The #USE directive allows separately compiled occam units and libraries (in TCOFF
format) to be referenced from occam source. The file referenced by the #USE directive
must be compiled for a compatible processor type and compilation mode as the main
program, and should be made available in all modes for which the program will be
compiled.

The compiler ignores all library modules compiled with a processor type or compilation
mode incompatible with the current compilation. A library may be used in any number
of separately compiled units or other libraries, provided that each unit contains the #USE
directive.

Note: that if a library, which will be read by an occam compiler #USE directive, contains
routines of the same name, these routines must have the same interface Le. result type
and parameter list, and should have the same functionality.

Any names in the library which do not conform to occam syntax, and which have not
been translated by means of a TRANSLATE pragma will be ignored. Note: this means
that a TRANSLATE pragma must precede its related #USE directive. See section 3.13.7.

The syntax of the #USE directive is as follows:

#USE "filename" [comment]

where: filename is the name of the object code file. The object file can be a compiled
(. teo) or library (.lib) file. If you omit the file extension, the compiler adds the
extension of the output file. This will be •teo unless you specified an output file
name using the '0' option.

comment is any text preceded by the characters '-'.

The first text after the· #USE directive must be the filename, which must be enclosed
within double quotes ("). All other text on the line is ignored and may be used for
comments. For example:

#USE "module"
#USE "library.lib"
#USE "module. teo"
#USE "module.t2h"

3.13.4 #IMPORT

The #IMPORT directive allows code produced by compatible non-Occam compilers to
be referenced from occam programs. It operates in the same way as #USE except that
the code that is imported is marked as 'foreign' and not included in makefile searches.

_11_0 !fi.&1JIrB _

3 oc • occam 2 compiler

Note: The code imported by #IMPORT must be compatible with the current toolset linker
ilink.

The syntax of the #IMPORT directive is as follows:

#IMPORT "filename" [comment]

where: filename is the name of the compiled equivalent occam process. If no extension
is given the •tco extension is assumed.

comment is any text preceded by the characters '-'.

The first text after the #IMPORT directive must be the file name, which must be enclosed
within double quotes ("). All other text on the line is ignored and may be used for
comments.

An example of how to use the #IMPORT directive is given below:

#IMPORT "centry.lib" -- C interface code

PROC.ENTRY(fs, ts, flag, wsl, ws2, in, out)
-- call C language program

The parameters supplied in the program call, flag, wsl, ws2, in, and out are those
of the type 2 procedural interface. The program must be linked with C libraries
centry. lib and libc .lib. Details of this method of mixed language programming
can be found in the 'occam 2 Toolset User Guide'.

Details of an alternative method of mixed language programming where non-Occam
programs are called directly using library functions can also be found in the'Mixed
language programming' chapter of the 'occam 2 Toolset User Guide'.

3.13.5 #COMMENT

The #COMMENT directive allows comments to be placed in the object code. These
comments can be read by the binary lister tool ilist.

The syntax of the #COMMENT directive is as follows:

#COMMENT "string" [comment]

where: string is the text of the comment. Comments must be enclosed in double quotes
following the #COMMENT directive. Comments cannot be split over more than one
line.

Comments may not appear at the exact position in the object code corresponding with
the source code directive, but the sequence of comments in the file is always main-

----------liii... 11_1

3.13 Compiler directives

tained. Comments included by #COMMMENT are stripped from the object code when it
is linked or made bootable.

The main use for the #COMMENT directive is in libraries or other pre-compiled code where
it can be used to indicate a version number, record dependencies on other libraries, and
hold copyright information. The comment strings can then be displayed using ilist.

An example of how to use the #COMMENT directive is given below:

PROC my.lib ()

#COMMENT "My library Vl.3, 18 March 1995"
#COMMENT "Copyright me 1995"

SEQ
library source

#COMMENT acts like #PRAGMA COMMENT. For example:

#COMMENT "string"

is equivalent to:

#PRAGMA COMMENT "string"

See also section 3.13.7.

3.13.6 #OPTION

The #OPTION directive allows you to specify certain command line options within the
source text of a compilation unit, so that they apply only to that unit. Options specified
in this way are simply added to the command line when the compiler is invoked.

Arguments to #OPTION are those that relate directly to the source, namely:

A - disable alias (and usage) checking.

E - disable the compiler libraries.

G - allow sequential code inserts (via the ASM construct).

K - disable the insertion of run-time range checks.

N - disable usage checking.

U - disable the insertion of any run-time error checks.

V - disable separate vector space usage.

W - enable full code inserts, (via the ASM construct).

Y - disables channel i/o by library calls, instead transputer instructions are used.

Specifying any other option produces an error. Descriptions of the arguments can be
found in Table 3.1.

_11_2 li;ir~ _

3 oc • occam 2 compiler

#OPTION directives can only appear in the file to which they apply; they cannot be
nested in an included file. #OPTION directives must also be the first non-blank or non
comment text in the source file. If they are found at any other position in the file an error
is reported.

The syntax of the #OPTION directive is as follows:

#OPTION "optionname {optionname}" [comment]

where: optionname is any option permitted in a #OPTION directive. Spaces within the
double quotes are ignored. No option prefix character is required in the syntax
and none should be specified.

comment is any text preceded by the characters '-'a

The first text after the #OPTION directive must be the list of options enclosed in double
quotes. All other text on the line is ignored and may be used for comments.

An example of how to use the #OPTION directive is given below. In the example the unit
does not require usage checking but contains transputer code inserts from the restricted
set.

-- This compilation unit requires sequential
-- code inserts and does not pass the usage check.

#OPTION "G N"

PROC x ()
body of procedure

The #OPTION directive should only be used for compiler options that are always
required for a specific compilation.

UNDEFINED error mode

#OPTION "u" can be used to implement the occam error mode UNDEFINED.

3.13.7 #PRAGMA

The #PRAGMA directive is provided to reference segments of code for mixed language
compilations and/or linking functions:

#PRAGMA pragma-name {optional values} [comment]

where: pragma-name may be one of:

COMMENT
EXTERNAL
LINKAGE
PERMITALIASES
SHARED
TRANSLATE

----------lii~ 1_1_3

3.13 Compiler directives

optional values may be specified for each type of pragma. The values that the
options may take are specific to the pragma being used; they are described
below.

comment is any text preceded by the characters '-'. All pragma types may have
a comment appended to them.

#PRAGMA COMMENT"string" [comment]

#PRAGMA COMMENT allows comments to be placed in the object code. These comments
can be read by the binary lister tool ilist. In all respects #PRAGMA COMMENT acts like
#COMMENT (see section 3.13.5).

#PRAGMA EXTERNAL"declaration" [comment}

This directive allows access to other language compilations. declaration is a PROC or
FUNCTION declaration, with formal parameters which correspond to the required calling
convention. This is followed (within the string) by two numbers in decimal, indicating the
number of workspace slots (words) and optionally the number of vectorspace slots to
reserve for that call. The number of vectorspace slots defaults to O. The number of the
workspace slots should not include those needed to set up the parameters for the call.
Note: that if the vectorspace requirement is zero, then no vectorspace pointer parameter
will be passed to the routine.

It is important to ensure that enough space is allocated, both for workspace and vector
space, because the compiler cannot check for overruns.

The syntax of the declaration is as follows:

formal procedure or function declaration = workspace [, vectorspace]

Examples:

#PRAGMA EXTERNAL "PROC p1 (VAL INT x, y) = 20"
#PRAGMA EXTERNAL "PROC p2 (VAL INT x, y) = 20, 100"
#PRAGMA EXTERNAL "INT FUNCTION £1 (VAL INT x, y) = 50"
#PRAGMA EXTERNAL "INT FUNCTION £2 (VAL INT x, y) = SO, 0"

The procedure or function name is the name by which the external routine is accessed
from the occam source. It is also the name which will be used by the linker to access
the extemallanguage function, though this may be modified by use of the TRANSLATE
pragma.

#PRAGMA LINKAGE ["section-name"] [comment]

This pragma enables the user to identify modules that he wishes to be placed in on-ehip
RAM. The user may then prioritize the order in which these modules are linked together
by using a linker directive. On-ehip RAM is allocated to workspace first and then to code.
Provided there is enough RAM available it should be possible for commonly used
subroutines to be processed in the on-ehip RAM. This should make the program run
faster.

_11_4 lFii~. _

3 oc • occam 2 compiler

Normally the compiler creates the object code in a section named "text%base". The
#PRAGMA LINKAGE directive causes the compiler to change the name of the section
to that supplied in the string. If the directive is used but no section name is provided by
the user, the compiler supplies the priority section name "pri%text%base". More than
one module may take the section name "pri%text%base".

A linker directive is used to change the order in which code modules are linked together,
by supplying a list of prioritized section-names, see section 10.4.6. Provided that the
linker does not encounter any linker directives listing section-names, it will place
"pri%text%base" modules first.

Note: floating point routines such as REAL320P and REAL320PERR are automatically
optimized by the compiler by placing them in a "pri%text%base" section.

The #PRAGMA LINKAGE directive should appear at the start of the source code, immedi
ately following the #OPTION directive, if one is present.

For example:

#OPTION "N"
#PRAGMA LINKAGE "PRIORITYl" - highest priority

#PRAGMA PERMITALIASES variable.list [comment]

This pragma disables alias checking for specified variables. It may be applied to normal
variables, abbreviations and RETYPES, or non-VAL formal parameters.

See the 'occam 2 Toolset Language and Libraries Reference Manual for a description
of alias checking.

This pragma must immediately follow the declaration of the variables to which it refers.
For example:

INT x, y, Z :
#PRAGMA PERMITALIASES x
#PRAGMA PERMITALIASES Y

INT x :
INT y :
#PRAGMA PERMITALIASES x •••••

is correct

is incorrect

If the pragma refers to formal parameters, it must immediately follow the procedure
heading.

To allow the compiler to generate efficient code, it is preferable to use the #PRAGMA
PERMITALIASES on individual variables, rather than applying the '1\ command line
option on the whole compilation. However, the most efficient code will be generated
when neither the PERMITALIASES pragma nor the '1\ command line option are used.

#PRAGMA SHARED variable.list [comment]

This pragma disables usage checking for specified variables. It may be applied to
normal'variables, abbreviations and RETYPES, or non-VAL formal parameters.

---------liii.~ 1_1_5

3.14 Error messages

See the 'occam 2 Toolset Language and Libraries Reference Manual for a description
of usage checking.

This pragma must immediately follow the declaration of the variables to which it refers.
If these are formal parameters, it must immediately follow the procedure heading. See
pragma PERMITALIASES above.

To allow the compiler to generate efficient code, it is preferable to use the #PRAGMA
SHARED on individual variables, rather than applying the 'N' command line option on the
whole compilation. However, the most efficient code will be generated when neither the
SHARED pragma nor the 'N' command line option are used.

#PRAGMA TRANSLATE identifier"string" [comment]

This is used to enable linkage with routines whose entry point names do not correspond
to occam syntax for identifier names; both imported names to be called by this compila
tion unit and exported names defined in this compilation unit. An entry point is a name
which is visible to the linker. Thus procedures and functions declared at the outermost
level of a compilation unit are entry points, whereas nested procedures and functions
are not.

Any entry point defined in the compilation unit whose name matches identifier is trans
lated to string when inserted into the object file, and hence can only be referenced as
string when linking.

String may not contain the following characters: the NUL character ('*#00'), space(' '),
or open and close parentheses (' (' and') ').

Any entry points in #usEd libraries and other compilation units whose names match
stringcan be referred to within the compilation unit as identifier. This also applies to iden
tifiers defined by EXTERNAL pragmas. TRANSLATE pragmas must precede any refer
ence to their identifier.

For example:

#PRAGMA TRANSLATE c.routine "c_routine"
#PRAGMA EXTERNAL "PROC c.routine () = 100"

3.14 Error messages
All messages produced by the compiler are in the standard toolset format. Details of the
format can be found in section A.7. Messages are generated at severity levels Informa
tion, Warning, Error, Serious and Fatal.

No object files are generated if a message occurs at severity levels Error, Serious or
Fatal.

Notes

The compiler libraries are automatically loaded if required, unless the compiler
'E' option is used.

2 The compiler finds the compiler libraries by searching the path specified by the
host environment variable ISEARCH. The most common cause of a compiler
library error is failure to set up this environmental variable correctly.

_11_6 l.fi~.. _

3 oc • occam 2 compiler

The error messages listed here are those which are produced by incorrect use of the
compiler, caused for instance by failing to specify command line options correctly. The
compiler also reports all syntax and semantic errors found in the program; these
messages are not listed here as they are language specific and therefore outside the
scope of this document.

3.14.1 Warnings

Badly formed #PRAGMA name directive

The pragma directive does not conform to the required syntax.

CHAN OF ANY is obsolete: use PROTOCOL name IS ANY

The CHAN OF ANY construct is now considered obsolete. The ability to define
a named protocol as in PROTOCOL name IS ANY provides greater security
and should be used in preference. This warning may be disabled by means of
the NWCA command line switch.

GUY construct is obsolete: use ASM instead

The GUY construct is obsolete; the ASM construct provides greater security and
should be used in preference. This warning message may be disabled by means
of the NWGY command line switch.

name is not used

The named variable is never used. This warning may be disabled by the NWU
command line option.

name placed below MEMSTART

The named variable has been placed below MemStart.

name placed below MEMSTART

The named variable has been placed below MemStart on one of the byte-mode
link control words.

Illegal use of PROTOCOL tag name in an expression

A PROTOCOL tag name has been used in an expression. This is illegal and will
not be permitted in future compilers.

Name name descopes a previous declaration

This name descopes another name which has already been declared. This
warning is only enabled when the WD command line option is used.

No compatible entrypoints found in name

The named library contains no routines which may be called from this error mode
and/or processor type.

__________ ii;i~a1---------1-1-7

3.14 Error messages

Obsolete channel type conversion: use channel RETYPE

The ability to pass a CHAN OF ANY as an actual parameter to a procedure
whose formal parameter is a different channel type is obsolete. A channel
RETYPE should be inserted before the call to make the type conversion explicit.
This warning may be disabled by means of the NWCA command line switch.

Parameter name is not used

The named parameter is never used. This warning may be disabled by the NWP
command line option.

Placement expression for name clashes with virtual routing system

The named variable is placed on one of the transputer links. This may interfere
with the interactive debugging system or the virtual routing system.

Placement expression for name wraps around memory

The calculation of the machine address for this variable has overflowed; the trun
cated address is used.

Possible side-effect: PLACED variable name

A PLACEd variable has been declared inside a VALOF. The compiler cannot
ensure that this cannot cause a side-effect.

Possible side-effect: instanced PROC has PLACED variable name

A PLACEd variable has been declared inside a PROC which is called from within
a VALOF. The compiler cannot ensure that this cannot cause a side-effect.

PORT name must be placed

A PORT type must be placed using an allocation. See the 'occam 2 Reference
Manuaf for further details.

PRAGMA or PLACEment must immediately follow declaration of name

There should be no other variable declarations between a variable's own decla
ration and any PLACE statement.

Routine name is not used

The named routine was never called. This warning may be disabled by the NWU
command line option.

Run-time allignment check required for RETYPE

A RETYPE is being used to convert from one type to another with a more restric
tive alignment requirement. The compiler inserts a run-time check to ensure that

, _11_8 1iii _

3 oc - occam 2 compiler

the object is suitable aligned. This warning is only enabled by means of the
WALIGN command line option.

Run-time disjointness check inserted

number Run-time disjointness check inserted

The compiler has inserted run-time checks to ensure that variables are not
aliased (Le. that they do not overlap). This warning is only enabled when the wo
command line option is used.

Tag name is not handled in CASE input

Tag name appears in the channel's PROTOCOL, but no guard for it appears in this
CASE input. This warning is only enabled by means of the WQUAL command line
switch.

TRANSLATE ignored: Module containing name has already been loaded

The #TRANSLATE pragma must precede any #USE of a library containing that
string.

TRANSLATE ignored: Name name has already been used

You may not specify multiple translation strings for the same name.

TRANSLATE ignored: String contains NUL character

The specified string for a #TRANSLATE pragma may not include a NUL (zero)
byte.

TRANSLATE ignored: String name has already been used

You may not specify multiple names to be translated to the same string.

Unknown #PRAGMA name: name

The pragma name is ignored.

Using length 'name' in array part of counted array input is obsolete

The language no longer permits using the length part of a counted array input
to appear in the array part. It does however allow the following special case to
be written where the length only appears as the length of a slice:

channel.exp ? name :: [array.exp FROM 0 FOR name

This is transformed by the compiler into the equivalent construct:

channel.exp ? name :: array.exp

The former construct is obsolescent and programs should be re-written to use
the latter form.

----------LTi. 1_1_9

3.14 Error messages

Workspace clashes with variable PLACED AT WORKSPACE number

A variable has been placed at the workspace address number, and this clashes
either with another placed variable, or with the compiler's workspace allocation
requirements.

3.14.2 Errors

Bad object file format

Library or separately compiled procedure object code is not in the correct format.
The code may not have been linked correctly, or the file may have become
corrupted.

Badly formed compiler directive

A compiler directive following # was not recognized.

Badly formed #EXTERNAL directive

The number of workspace slots to reserve for the call has not been specified or
negative workspace or vector space slots have been specified in error.

Cannot open file"string"

File is missing, or file system error.

Cannot open output file

The object file could not be opened. File system error.

Cannot open output file (string)

The file given as parameter to the command line R option could not be opened.

Cannot open source file

The source file cannot be opened. Either it does not exist, or there is a file system
error.

Code buffer full (nnn bytes); use command line to increase buffer size

The compiler has an internal buffer for code which is about to be placed into the
object file; this has overflowed. The CODE command line option may be used to
increase the size of this buffer.

Code insertion is not enabled

You must use the G or Woptions to enable assembler inserts.

Descriptor has incorrect format

Library or separately compiled procedure object code is not in the correct format.
The code may not have been linked correctly, or the file may have become
corrupted.

_12_0 1iii. _

3 oc • occam 2 compiler

Duplicate error modes on command line

Multiple error modes may not be specified for the compilation.

Duplicate processor types on command line

Multiple processor types may not be specified for the compilation.

Expected string after #COMMENT

#COMMENT directive must be followed by a string containing the comment.

Expected string after #OPTION

#OPTION directive must be followed by a string containing the options.

'Filename' is not a valid object file

Library or separately compiled unit object code is not in the correct format. The
code may not have been linked correctly, or the file may have become corrupted.

Instruction is not available in current code insertion mode

You must set the woption in order to use this instruction.

Instruction is not available on target processor

The given instruction is not present in the target instruction set.

Invalid command line option (string)

The user specified an unrecognized command line option.

Missing filename

Filename is missing on #USE, #INCLUDE or #IMPORT directive.

Missing object file name

There is no object file name parameter to the command line 0 option.

Missing output file name

There is no output file name parameter to the command line R option.

No filename given

No source file was specified on the command line.

number reading source file

File system error. The source file or an include file could not be read. number is
the host file system error number.

__________EiiP~ 1_2_1

3.14 Error messages

numberwriting to object file

File system error. The object file could not be written to. number is the host file
system error number.

Option in illegal position

Only one #OPTION directive is allowed in a file, and it must be on the first non
blank or non-eomment line in a file.

PRAGMA or PLACEment must immediately follow declaration of name

There should be no other variable declarations between a variable's own decla
ration and any #PRAGMA.

Run out of symbol space

The source compilation unit is too large to be compiled.

Unrecognised option "char' in option string

Incorrect compiler options specified after a #OPTION directive.

_12_2 Eii._ ---------

4 oceonf - occam configurer

This chapter describes the configurer tool occonf that configures code for transputer
networks. It describes the command line syntax and explains how the tool is used to
generate a configuration data file for input to the code collector tool. The chapter ends
with a list of error messages.

4.1 Introduction

The configurer takes a configuration description created using the transputer configura
tion language and produces a configuration binary file which icollect uses to
generate bootable code for a transputer network. The bootable code may be generated
in a specific error mode.

A configuration description describes how code is to be run on a network of transputers.
It consists of separate definitions of the software and hardware networks, and a
mapping description which defines how the software will be placed on the processor
network. Using this description the configurer allocates code to particular processors
and performs wide ranging consistency checks on the mapping of software to hardware.
The chapter on 'Configuration' in the'User Guide' explains how to write a configuration
description.

occonf enables any topology of software network to be placed on any topology of hard
ware network. There are no restrictions on how many communication channels may be
allocated to a single inter-processor link. Where possible channels should be left
unplaced by the user, so that occonf can implement the 'best' route through the
network.

Linked modules and libraries which are referred to by a configuration description must
be already compiled and linked before any file which references them can itself be confi
gured.

The operation of the configurer tool is illustrated below. Files are represented in terms
of their standard toolset file extensions.

, --, ,
I, .inc;

~~'I ocean!~
I, .clu:

... '

----------liii.fi~ 1_2_3

4.2 Running the configurer

occonf produces two output files:

• the main configuration binary file (. cfb) for the collector

• a file (. clu) contai'ning executable code packets, used by the collector.

4.2 Running the configurer

To run the configurer use the following command line:

~ occonf filename {options}

where: filename is the configuration description file. If no file extension is specified, the
extension •pgm is assumed. Only one file may be specified.

options is a list of one or more options from Table 4.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Examples of use:

ae -t450 simple. ace
ilink -t450 simple. teo hostio.lib -f oeeam450.lnk
occonfsimple.pgm
iealleet simple.efb

ae -tB05 simple. ace
ilink -t80S simple. teo hostia.lib -f oeeama.lnk
occonf simple.pgm
iealleet simple.efb

_12_4 Jiii_ ----------

4 occonf • occam configurer

Option Description

B Displays messages in brief (single line) format.

e Disables the generation ofobject code. The configurer performs syntax, semantic,
alias and usage checking only.

CODE nnn Specifies how large to make the code buffer. Ifnotspecified, the configurer will allo-
cate 40 Kbytes. nnn is a value in Kbytes i.e. the 'K' suffix is not required.

G Enables the configurer to recognize the restricted range of transputer instructions,
via the ASM construct. See section 4.13 and the appendices of the accompanying
'User Guide.

GA Generates a configuration which can be debugged using the INQUESTdebugger
in interactive mode. This option is incompatible with the RO, NV, PRE and PRU
options. See section 4.14.

H Producescode in HALTerror mode. This is thedefaultconfiguration mode and may
be omitted for HALT error mode programs. See section 4.7.

HELP Displays a full help page which lists all the standard options.

I Displays extra information as the tool runs. This information includes target and
error mode, and information about directives as they are processed. The default
is not to display this information.

K Disables run-time range checking. The default is to insert run-time range checking.
See section 4.8.

NA Disables the insertion of run-time checks for calls to ASSER~ See section 4.8.

NV Generates a configuration without virtual routing. Note: any definition of router
attributes for processor nodes will be redundant. See section 4.11.

NWCA Disables warnings when CHAN OF ANY is used. See section 4.12.
NWGY Disables warnings when the obsolete construct GUY is used. See section 4.12.

NWP Do not warn if declared parameters are not used.

NWU Do not warn if declared variables or routines are not used.

o outputfile Specifies an output filename. If no output file is specified the configurer uses the
input filename and adds the extension .cfb.

PRE Generates a configuration which can be profiled by the INQUEST execution
profiler. Note: This option cannot be used with the GA and PRU options. See
section 4.14.

PRU Generates a configuration which can be profiled by the INQUEST utilization
profiler. Note: This option cannot be used with the GA and PRE options. See
section 4.14.

QS Generates code which favours space efficiency. Where a choice exists between
generating faster, but largercode over slower, more compact code, it will generate
more compact code.

QT Generates code which favours faster execution times. This is the default. Where
a choice exists between generating faster, but larger code over slower, more
compact code, it will generate the faster code.

R filename Redirects error and information messages to a file.

RA Creates a file suitable for a boot-from-ROM application in which the user and
system processes for the root processor and all other processors are loaded into
RAM to execute.

__________ ii;i..~~~ 1_2_5

4.3 Default command line

RE Enables re-ordering of code and data layout in memory, using the order. code,
order. vs and order.ws attributes.
Also enables the location. code, location. ws, and location. vs attrib-
utes. See section 4.9.

RO Creates a file suitable tor a boot-trom-ROM application in which the user and
system processes for the root processor execute in ROM and for all other proces-
sors the user and system processes are loaded into RAM to execute.

s Produces code in STOP error mode. See section 4.7.

u Disables the insertion ot all extra run-time error checking. The default is to insert
run-time error checks. This is a 'stronger' option than K, and can be used to imple-
ment the occam UNDEFINED error mode. See section 4.8.

v Prevents the configurer from producing code which has a separate vector space
requirement. The default is to produce code which does use separate vector
space.

W Enables the contigurer to recognize the tull range oftransputer instructions, via the
ASM construct. See section 4.13 and the appendices of the accompanying'User
Guide.

WALIGN Warns whenever a runtime alignment check is inserted. See section 4.12.
WALL Enable all warnings. See section 4.12.

WD Provides a warning whenever a name is descoped.

wo Provides a warning whenever a run-time alias check is generated.

WQUAL Enables software quality warnings, see section 4.12.

x Produces code in UNIVERSAL error mode. See section 4.7.

y The 'y' option disables the use of library calls for channel input/output and instead
uses transputer instructions. See section 4.10.

Table 4.1 occonf command line options

4.3 Default command line

Default command line parameters can be defined on the system in the OCCONFARG
environment variable. Parameters must be specified using the syntax required by the
configurer command line.

4.4 Search paths

If a directory path is not specified the configurer uses the standard toolset search mech
anism for locating input files, include files, and system library files. Briefly, the current
directory is searched first, followed by the directories specified by ISEARCH (if defined
on the system). For details see section A.4.

4.5 Configurer library files

Depending on the command line options used, the configurer reads a number of special
library files which contain system processes. The library files are searched for on the

_12_6 Jiii.- --- _

4 occonf - occam configurer

directory specified by ISEARCH. This is normally the toolset libs directory, in which the
files were originally installed. The library files are listed in table 4.2.

Library Description

sysproc.1ib System startup processes for the different transputer types.

sysv1ink.1ib Software through-routing processes.

sysdebug.1ib Debugging.kernels to support the INQUEST debugger.

sysprof.1ib Profiling kernels to support the INQUEST profiler.

Table 4.2 Configurer library files

4.6 Boot-from-ROM options

The boot-from-ROM options RO and RA indicate that the program is to be collected for
loading into EPROM and select the execution mode (from ROM or RAM) for the root
transputer code.

4.7 Configuration error modes

The configuration error mode determines the behavior of a program if it fails during
execution. The execution behavior of programs configured in the different modes is as
follows:

HALT An error halts the transputer immediately.

STOP An error stops the process and causes graceful degradation.

UNIVERSAL Code configured in this mode behave as either HALT or STOP mode, according to
the state of the transputer's HaltOnEfforflag.

The error mode selected for the configuration must be compatible with the error mode
of the compiled units, referenced by the configuration source. The configurer will
produce an error message, if this is not the case.

Table 4.3 indicates the compilation error modes which are compatible and the possible
error mode they may be configured for.

Compatible compilation error modes occonf options

HALT, UNIVERSAL H

STOP, UNIVERSAL S

UNIVERSAL X

Table 4.3 occonf error modes

Compilation error modes and their effects are described in more detail in section 9.3.1.
Note: that occam UNDEFINED mode can be achieved by using the configurer u option,
to disable the insertion of run-time checks. This option behaves in the same way as the
uoption to the occam compiler, which is documented in the 'Programming single trans
puters' chapter of the 'User Guide.

-- JiD.~ 1_2_7

4.8 Enable/Disable Error Detection

4.8 Enable/Disable Error Detection

By default the configurer inserts code to execute run-time checks for errors it cannot
detect during configuration. In some circumstances it may be desirable to omit the run
time error checking in one part of a program, for example, in a time-critical section of
code, while retaining error checks in other parts of a program, for debugging purposes.
Three command line options are provided to enable the user to control the degree of
ru~-time error detection performed; they are the K, u and NA options.

The K option disables the insertion of run-time range checks on array sUbscripting and
array lengths.

The u option prevents the configurer from inserting any code to explicitly perform run
time checks. This option will disable run-time checks associated with type conversion,
shift operations, array access, range validation and replicated constructs such as SEQ,
PAR, IF, and ALT.

The NA option prevents the configurer from inserting any code to check calls to ASSERT.
In effect, each ASSERT behaves like SKIP. Any calls to ASSERT which can be evaluated
during configuration will still be checked.

Note: that some checks are still performed; some transputer instructions implicitly check
for erroneous conditions.

The K, U and NA options behave in exactly the same way, as the same options provided
for the occam compiler. The effects of using these options are described in the
'Programming single transputers' chapter of the'User Guide.

4.9 Enabling memory re-ordering and placement

The RE option enables the user to have more control of the layout ofcode and data areas
in memory. When this option is used, the special processor attributes 'order. code',
'order. vs' and 'order. ws' which indicate the relative priority of different data and
code areas, and the placement attributes location. code, location.ws, and
location. VS, are enabled. See the 'Configuration' chapter in the 'User Guide for
more details.

4.10 Channel input/output

By default the configurer will generate calls to library routines to perform channel input
and output, rather than using the transputer's instructions. The configurer's Y and NV
options, when used together, force the configurer to use sequences of transputer
instructions for channel input and output, resulting in faster code execution.

Note: that code which is configured to use transputer instructions for channel input/
output may call code which uses library routines to perform channel input/output, but
not vice versa. This means that an application which includes linked units built with the
Y option, must be configured with the Y and NV options to maintain compatibility.

The NV option is also described in section 4.11, below.

_12_8 lFii._---------

4 occonf - occam configurer

4.11 Virtual routing

In order to support the virtual routing facilities of the configurer it is required to perform
channel input/output using library routines.

The virtual routing facilities of the configurer are normally enabled, that is, the configurer
automatically adds virtual routing and multiplexing processes if they are required by the
configuration.

If virtual routing is not required the virtual router can be disabled by using the NV
command line option. In the absence of explicitly supplied multiplexing processes, the
normal limit of two channels per link (one in each direction) and a maximum of 4 links
applies. If these limits are exceeded and the NV option is specified then the configura
tion will generate errors indicating that channels could not be placed by the configurer.
In this case the Y or NV options should not be used at any stage in the application build.

If the NV option is to be specified to the configurer then the preceding compilation and
linking stages of the application build may be performed using the compiler and linker
Y option. This is because library i/o will not be required.

If the NV option is not specified then library i/o must be used for all stages of the
application build.

Note: the use of the NV option also has an effect on the value of LoadStart, see section
4.15.1.

4.12 Enabling/disabling warning messages

There are several command line options which allow the user to either enable or disable
the generation of certain warning messages by the configurer:

• The NWCA option disables the generation of warning messages when CHAN OF

ANY is used. CHAN OF ANY is now considered obsolete and replacement with
named protocols of type ANY is recommended. See the 'occam 2 Toolset
Language and Libraries Reference Manual.

• The NWGY option disables the generation of warning messages when the GUY
construct is used. GUY is now considered obsolete and ASM should be used
instead.

• The NWP option disables warning messages being generated when parameters
to procedures are declared and not used.

• The NWU option disables warning messages being generated when variables or
routines are not used.

• The WALIGN option provides a warning whenever a runtime alignment check
is inserted for a RETYPE.

----------lFii. 1_2_9

4.13 ASM code

• The WALL option turns on all warnings Le. it is currently equivalent to WALIGN,
WD, wo and WQUAL.

• The WD option provides a warning whenever a name is descoped, for example
when a name is used twice and one occurrence of it is hidden within an inner
procedure. See section 8 of the 'occam 2 Reference Manual for details of
occam scope rules.

• The wo option provides a warning whenever a run-time alias check is generated
i.e. to check that variables do not overlap. These checks generate extra code
and the user may wish to be alerted to th is.

• The WQUAL option enables software quality warnings Currently these include
warnings for unused options in CASE inputs and warnings about badly posi
tioned PLACE statements.

Section 4.16.1 lists the various warning messages which are affected by these options.

4.13 ASM code

Two configurer options are provided to enable the configurer to recognize transputer
instructions, via the ASM construct (see the appendices of the 'User Guide').

The Woption enables the full range of transputer instructions. The G option enables the
use of a limited range of sequential instructions. Examples of the use of transputer code
insertion can be found in the 'Low level programming' chapter of the 'User Guide.

The transputer instruction set is documented in full in the Transputer Instruction Set
A compiler Writer's Guide.

4.14 Support for INQUEST

Three options are available to support the use of the INQUEST debugger and profiler
tools.

The GA option generates a configuration which can be debugged by the INQUEST
debugger in interactive mode.

When the GA option is used, the configurer will allocate debugging kernels to all proces
sors which are available for debugging and which have been placed with at least one
process. See figure 4.1 .

-1 °H® -I•- ®
D processor • process available for debugging®debugging kernel °process not available for debugging

Figure 4.1 Allocation of debugging kernels using the GA option

_13_0 -----lii.~1JIm _

4 occonf - occam configurer

Processes may be debugged provided the nodebug attribute (set in the MAPPING
section) is set to FALSE, which is the default.

The GA option must not be used with the RO boot-from-ROM option, or with the PRE and
PRU profiling options.

The PRE and PRU options generate a configuration which can be profiled by the
INQUEST execution and utilization profilers respectively. Processes may be profiled
provided the noprofile attribute (set in the MAPPING section) is set to FALSE, which
is the default. The PRE and PRU options are mutually exclusive.

4.15 Default memory map

By default the configurer maps code into memory into the same order as the compiler
Le. beginning at LoadStart: workspace; code; separate vector space. The memory
segments are contiguous. The upper limit of the memory available to the configurer is
defined in the configuration description file (.pgm file), by the memsize attribute speci
fied for the processor node. The default memory map is illustrated in Figure 4.2.

memory -...I:--------~

I

I Free Space

Minlnt=
MOSTNEGINT

System data

Vector Space
Segment

Code
Segment

Workspace
Segment

Reserved by
transputer
architecture

4-- FreeStart
Contiguous memory

4-- LoadStart
...- MemStart

Figure 4.2 occonf default memory map

The first 2 or 4 Kbytes of memory (16K for the T450) above MOSTNEG INT is imple
mented as on-chip RAM, and includes a few words which are reserved by the transputer
hardware for the implementation of links and other hardware registers. LoadStart is
either just above or coincident with MemStart, see below. FreeStart is the start of
unused memory.

4.15.1 LoadStart

The position of LoadStart for a processor varies depending on the use of oceonf
command line options and the reserved processor attribute, optionally specified within
a configuration description.

__________ I..ji~ 1_3_1

4.16 Configurer diagnostics

When the reserved processor attribute is specified, LoadStart is defined to be the
memory location obtained by adding the value of reserved to MOSTNEG INT.

When the reserved processor attribute is not specified, LoadStart is coincident with
or just above MemStart:

• LoadStart =(MemStart + 12 words) when the NV command line option has not
been specified i.e. virtual through-routing support is enabled.

Note: for most processors, MemStart is assumed to be greater or equal to 28
words from MOSTNEG INT, but if not then LoadStart =MOSTNEG INT + 40
words. Processors which have a MemStart which is less than 28 words from
MOSTNEG INT are the M212, T212, T222, T225 and T414.

• LoadStart =(MemStart + 6 words) when the NV command line option is speci
fied, disabling virtual through-routing and profiling is enabled.

• LoadStart =MemStart when the NV command line option is specified but
profiling is not enabled.

The value of LoadStart can be checked once the application has been collected, by
generating and examining the collector map file.

4.15.2 System processes

System processes are code and data placed by the configurer for initializing the applica
tion. By default, the system startup processes' code and data are placed into user
process data areas Le. workspace or separate vector space. These system processes
do not interfere with the user's data because they complete their task before the space
is needed by the user's code. Note: these system processes do not include the virtual
routing processes and profiler and debugger kernels, placed by the configurer.

4.15.3 Configuration description examples

A series of example configuration descriptions are supplied in the occonf examples
subdirectory. These include configurations for specific network topologies such as rings,
grids, trees, and pipelines.

4.16 Configurer diagnostics

If the source code does not conform to the occam 2 configuration language definition,
then the configurer will issue diagnostics, in the form of error messages, during the
compilation process. When this occurs no object file nor configuration binary file will be
produced.

Errors in the configuration source produce diagnostic messages in standard toolset
format. Details of the format can be found in section A.7.

_13_2 £;i.~. _

4 occonf - occam configurer

Diagnostics are generated at the standard severity levels Information, Warning, Error,
and Fatal. No messages are generated at severity level Serious.

Warning messages are listed below.

Note: if you obtain a configuration diagnostic message which does not appear in any
of the following error lists, consult the diagnostic message lists in the icconf reference
chapter. Some messages are common to both oceonf and icconf, and to avoid
duplication are only listed for icconf.

4.16.1 Warning messages

In the following list the Warning prefix is omitted for clarity.

Badly formed #PRAGMA name directive

The pragma directive named does not conform to the required syntax.

CHAN OF ANY is obsolete: use PROTOCOL name IS ANY

The CHAN OF ANY construct is now considered obsolete. The ability to define
a named protocol as in PROTOCOL name IS ANY provides greater security
and should be used in preference. This warning may be disabled by means of
the NWCA command line switch.

GUY construct is obsolete: use ASM instead

The GUY construct is obsolete; the ASM construct provides greater security and
should be used in preference. This warning message may be disabled by means
of the NWGY command line switch.

name is not used

The named variable is never used. This warning may be disabled by means of
the NWU command line option.

Name name descopes a previous declaration.

This name descopes another name which has already been declared. This
warning is only enabled by means of the WD command line option.

No channel has been placed onto the host connection

PLACE or MAP statements should be used to define channel input/output across
the host connection, if host communication is required.

No direction known for channel name on PROCESSOR name

The configurer cannot determine whether channel name is used for input or
output on this processor; it will make a guess.

---------lii.&...: 1_3_3

4.16 Configurer diagnostics

Obsolete channel type conversion: use channel RETYPE

The ability to pass a CHAN OF ANY as an actual parameter to a procedure
whose formal parameter is a different channel type is obsolete. A channel
RETYPE should be inserted before the call to make the type conversion explicit.
This warning may be disabled by means of the NWCA command line switch.

Parameter name is not used

The named parameter is never used. This warning may be disabled by means
of the NWP command line option.

Placement expression for name clashes with virtual routing system

The named variable is placed on one of the transputer links. This may interfere
with the INQUEST interactive debugging system or the virtual routing system.

Placement expression for name wraps around memory

The calculation of the machine address for this variable has overflowed; the
truncated address is used.

Possible side-effect: PLACED variable name

A PLACEd variable has been declared inside a VALOF. The compiler cannot
ensure that this cannot cause a side-effect.

Possible side-effect: instanced PROC has PLACED variable name

A PLACEd variable has been declared inside a PROC which is called from within
a VALOF. The compiler cannot ensure that this cannot cause a side-effect.

Processor name unused

The named processor has no code placed onto it.

Routine name is not used

The named routine is never called. This warning may be disabled by means of
the NWU command line option.

Run-time disjointness check inserted
number Run-time disjointness checks inserted

The configurer has inserted run-time checks to ensure that variables are not
aliased (Le. that they do not overlap). This warning is only enabled by means of
the wo command line option.

Unknown #PRAGMA name: name

The named pragma is unknown and therefore ignored.

-134---------lf;lfidoxl"~uI----------

4 occonf - occam configurer

Using length 'name' in array part of counted array input is obsolete

The language no longer permits using the length part of a counted array input
to appear in the array part. It does however allow the following special case to
be written where the length only appears as the length of a slice:

channel.exp ? name :: [array.exp FROM 0 FOR name

This is transformed by the compiler into the equivalent construct:

channel.exp ? name :: array.exp

The former construct is obsolescent and programs should be re-written to use
the latter form.

Workspace clashes with variable PLACED AT WORKSPACE number

A variable has been placed at the address number in workspace, and this
clashes either with another placed variable, or with the configurer's workspace
allocation requirements.

4.16.2 Error messages

Most of the messages in this section have been caused by mis-use of the configuration
language. For further help see the 'Occam Configuration Language appendix in this
manual. These messages are generated at the severity level Error.

name has already been mapped

name appears twice on the left-hand side of a MAP or PLACE statement.

name has already been used as a physical NODE

Some attributes have already been set for name, so it can only be used as a
physical node and not as a logical node.

ARC name has already been connected

Examine all 'CONNECT' statements creating link connections between processor
edges or a processor edge and an external edge.

Attribute name has already been set on NODE name

Check the declaration of node name and any attributes defined for name in the
mapping and network sections.

Attribute name has not been set for NODE name

Attribute name is a mandatory node attribute and should be set in the NETWORK
description.

__________J:;i~ 1_3_5

4.16 Configurer diagnostics

Attribute name may not be SET

You may not SET a link attribute.

Attribute name may not be used on logical NODEs

Logical nodes cannot have attributes set for them. Perhaps you meant to set the
attribute for a node representing a physical processor.

Attribute name set to illegal value on NODE name

Check the syntax and range of permitted values for the type of attribute required.
For further help see the 'Occam Configuration Language' appendix in this
manual.

CHAN name is placed but not properly connected

Check that the ARC that CHAN name is PLACEd on is connected within the
NETWORK description by a CONNECT statement.

CONNECT expression must be of type EDGE

CONNECT expressions connect two nodes or a node to an external edge by spec
ifying their link connections. They take the form:

'CONNECT edge TO edge [WITH arcname] ,

where arcname is optional.

Cannot PLACE name which was declared outside a PROCESSOR construct

PLACE statement must immediately follow channel declaration.

Cannot disable virtual routing with the INQUEST debugger

You have used the command line options NV and GA together; they are incom
patible.

Cannot interactively debug ROM programs

You have used the command line options RO and GA together; they are incom
patible.

If you want to debug your program, develop it as a boot-from-link program or
boot-from-ROM program with the RA option and debug, and when it is clear of
errors re-configure as a boot-trom-ROM program with the RO option.

Cannot run both profilers together

You have used the PRE and PRU command line options together, selecting both
INQUEST profiler tools. These tools are mutually exclusive.

_13_6 liii _

4 occonf • occam configurer

Cannot run the profiler with the INQUEST debugger

The PRE or PRU command line options have been used in conjunction with the
GA command line option; they are incompatible.

Cannot set NODE name as root; another has already been set

Examine the other processor declarations, one of them has the root attribute
set.

Cannot use VAL on a CHAN, PORT, TIMER, or hardware item

Abbreviations of CHAN, PORT, TIMER, NODE, ARC and EDGE cannot use VAL.

Cannot use VAL on a hardware item

It is illegal to use VAL on a NODE, ARC or EDGE.

Channel name is mapped onto ARC name, not connected to this processor

You need to identify which physical or logical processor is connected to ARC
name. Either the ARC is connected to the wrong processor or you are trying to
map the wrong channel to ARC name.

Channel name is used for both input and output, but ARC name connects to an
EDGE

ARC name connects this processor to an edge, so this processor can input on
it or output on it but cannot do both. Two channels are required to support
two-way communication.

Channel name mapped onto unconnected ARC name

ARC name is required to be connected to a physical link. This is done using a
CONNECT statement within the NETWORK description e.g.:

'CONNECT edge TO edge [WITH arcname] ,

Channel name used for input by more than one process

Channel name appears in a previous PROCESSOR statement, defining a process
and its channels.

Channel name used for output by more than one process

Channel name appears in a previous PROCESSOR statement, defining a process
and its channels.

Channel name with protocol containing INT used across different wordlengths

This is a constraint of the current configurer, see the 'Occam Configuration
Language' appendix in this manual.

----------liii. 1_3_7

4.16 Configurer diagnostics

Code buffer full (nnn bytes); use command line to increase buffer size

The configurer has an internal buffer for code which is about to be placed into
the object file; this has overflowed. The CODE command line option may be used
to increase the size of this buffer.

EDGE name has already been connected

Edge name has been connected in a previous CONNECT statement.

EDGE name is not connected to rest of network

Edge name defines a peripheral device which, if it is to be used, needs to be
connected to the rest of the network by a CONNECT statement.

Expected a NODE attribute, found a subscript expression

You appear to have used too many subscripts. The configurer expected to see
the name "link" as in:

CONNECT name [link] [number] TO .

where name is a node name and number is the link connection

FUNCTION name returns a REAL result but is compiled for wrong calling conven
tion

A routine compiled for class TA can only be run on a T800 if it obeys the correct
calling conventions. See the advice for occam code given in section 8.2.3.
Alternatively re-compile your code for a T8 transputer.

Illegal item in configuration code

An illegal expression has been used in the configuration description. Check the
description against the syntax definition, described in the 'Occam Configuration
Language' appendix in this manual.

Illegal item inside CONFIG construct

Check the configuration description against the syntax definition, described in
the 'Occam Configuration Language appendix in this manual.

Illegal item inside MAPPING construct

Check the configuration description against the syntax definition, described in
the 'Occam Configuration Language appendix in this manual.

Illegal item inside NETWORK construct

Check the configuration description against the syntax definition, described in
the 'Occam Configuration Language appendix in this manual.

_13_8 J:fiP~ ----------

4 occonf - occam configurer

Illegal processor type"name"

Supported processor types are: "T212" "T222" "T225" "M212"
"T400" "T414" "T425" "T800" "T801" "T80S" "T450"

Implementation restriction: Cannot RETYPE INT constants on 16-bitprocessors;
use INT16

This is a constraint of the current configurer, see the 'Occam Configuration
Language' appendix in this manual.

Implementation restriction: Cannot declare name name inside a replicator

Declarations of NODES, ARCS, and EDGES may not appear inside a replicator.

Implementation restriction: Cannot use INT constant arrays on 16-bit proces
sors; use INT16

This is a constraint of the current configurer, see the 'Occam Configuration
Language' appendix in this manual.

Implementation restriction: Cannot use replicator name in channel abbreviation
outside a PROCESSOR construct

You have encountered an implementation restriction.

Implementation restriction: INT constant overflows on 16-bit processors; use
INT16

This is a constraint of the current configurer, see the 'Occam Configuration
Language' appendix in this manual.

Implementation restriction: root NODE name must not be an array element

You have encountered an implementation restriction.

Left hand side of mapping must be of type CHAN

Channels are mapped onto an ARC, with a statement of the following form:

MAP channel.list ONTO arc

where channel. list is a list of channels previously declared to have type CHAN.

Left hand side of mapping must be of type NODE

logical processors are mapped onto a physical processor, with a statement of
the following form:

MAP processor./ist ONTO node

where processor. list is a list of logical processors previously declared as NODE
types.

__________ Eii. 1_3_9

4.16 Configurer diagnostics

Link name(link](numbet) has already been connected

Check any previous CONNECT statements to identify what

link name[1ink][numberj is connected to.

Link number number is illegal for this NODE

T400 and M212 transputers have just two links, identified oa091. All other trans
puters in the T2/T41T8 series have four links, numbered 0, 1, 2 and 3.

Location attributes ignored because re-ordering isn't enabled

Use the RE command line option to enable the 1ocation attributes.

Multiple CONFIG constructs not permitted

The CONFIG keyword introduces the software description, which is a PAR or
PLACED PAR and should include PROCESSOR statements defining all required
software processes.

MUltiple MAPPING constructs not permitted

All MAP statements should appear in one section introduced by the MAPPING
keyword. Any attributes used to control the use of memory or routing should also
be included in this section.

Multiple NETWORK constructs not permitted

All statements describing the connectivity and attributes of physical nodes
should be placed in one section, introduced by the NETWORK keyword.

NODE name has not been mapped

Check your mapping description, a logical processor has been declared but not
mapped to a physical processor.

No CONFIG construct

The software description is missing or has not been introduced by a CONFIG

keyword.

No NETWORK construct

The network description is missing or has not been introduced by a NETWORK
keyword.

No NODE has been specified as root

Configurations which are for boot-from-ROM application must have one
physical node defined to be the root transputer. This is performed using the root

attribute in a SET statement.

_14_0 Eii._ ---------

4 occonf - occam configurer

No hardware route exists from processor name for channel name

There is no direct link available for channel name to use. Because through
routing has been disabled by the NV command line option an indirect route
cannot be established.

No priority expression permitted when mapping CHANs

The priority expression PRI can only be used when mapping logical processors
onto physical processors. The priority expression relates to the software
process which will run on the processor.

Not enough links from processor name for channel name

The NV command line option has been specified, disabling virtual routing. This
means that only one channel can be placed in each direction, onto each link
specified in the hardware description.

Ordering attributes ignored because re-ordering isn't enabled

Use the RE command line option to enable the order attributes.

PRI expression nn must evaluate to 0 or 1

Priority expressions are introduced by a PRI keyword in a MAP statement. PRI
expressions may take one of two integer values; either 0 indicating high priority
or 1 indicating low priority.

Priority expression of mapping must be of type INT

PRI expressions may take one of two integer values; either 0 indicating high
priority or 1 indicating low priority.

Process evaluates to STOP

The logic within the configuration description itself evaluates to a STOP and will
therefore not execute.

Process mapped at high priority may not contain a PRI PAR

The logic of the MAP statement which includes the PRI expression conflicts with
the internal logic of the program which uses a PRI PAR.

Processor type has already been set for NODE name

Node name already has the type attribute set. Check the hardware description.

Processor type has not been set for NODE name

The attribute type is a mandatory node attribute and should be set in the hard
ware description for NODE name.

__________ Iiii_al---------1-4-1

4.16 Configurer diagnostics

ROM memory size has not been set for root NODE

The size of ROM attached to the root node must be specified using the romsize
attribute. (The root node is the node which has the root attribute set).

Right hand side of mapping must be a physical NODE

Logical processors are mapped onto a physical processor, with a statement of
the following form:

MAP processor.list ONTO node

where node is a physical node declared within the hardware description.

Right hand side of mapping must be of type ARC

Channels are mapped onto an ARC, with a statement of the following form:

MAP channel.list ONTO arc

where arc is a named link declared within the hardware description.

Right hand side of mapping must be of type NODE or ARC

MAP statements are used to map logical processors onto physical processors
or channels onto named links called ARCS. The statement takes the form:

MAP processor.list ONTO node

where node is a physical node declared within the hardware description.

OR:

MAP channel.list ONTO arc

where arc is a named link declared within the hardware description.

SET expression must be of type NODE

The SET expression is used to set attributes for physical processors. It takes the
form:

SET device (attribute.assignment)

where device is a node name.

Too many channels inputting on ARC name

An ARC can carry a maximum of two channels, one in either direction. It is a dedi
cated link Le. one which will not be used by virtual channels.

_14_2 g;;. _

4 occonf - occam configurer

Too many channels outputting on ARC name

An ARC can carry a maximum of two channels, one in either direction. It is a dedi
cated link i.e. one which will not be used by virtual channels.

Unknown attribute name name

The attribute name used is not supported by the language. Valid attributes are:

link, linkquota, location. code, location.ws, location.vs,
memsize, nodebug, noprofile, order.code, order.ws, order.vs,
reserved, ro~size, root, routecost, tolerance, type

Further information can be found in the 'Occam Configuration Language'
appendix in this manual.

Value must be in range 0 to n for attribute name

Attribute name has been incorrectly specified.

WITH expression must be of type ARC

The only configuration statement that a WITH expression may appear in, is a
CONNECT statement. This is used to connect an ARC with a link connection. It
takes the form:

'CONNECT edge TO edge [WITH arcname] ,

__________J.V.~ 1_4_3

4.16 Configurer diagnostics

144 J:iii ----------

5 icollect - code collector

This chapter describes the code collector tool icollect which generates an execut
able file for a single or multitransputer program from a configuration data file, or for a
single transputer program directly from a linked unit. The tool is also used to create files
for input to the EPROM programmer tool ieprom, and to create files that can be dynami
cally loaded by a user program.

5.1 Introduction

icollect generates bootable files for transputer programs, and other executable files
in special formats.

Bootable files are transputer executable files that can be directly loaded onto the trans
puter hardware down a transputer link. The bootable file contains all the information for
loading and running the program on a specific network ofprocessors, including data that
controls the distribution of code on the network, and self-booting code for each
processor. Bootable programs are therefore self-distributing and self-starting when they
are sent down a transputer link.

Recommended program development for single and multitransputer programs is to
create a configuration data file (Le. binary file) and to use this as input to the collector.
The configuration data file describes the placement of processes and channels on the
processor network in a special format which can be read by the collector. They are
created from configuration descriptions by the configurer.

Single transputer programs can by-pass the configuration stage and use a single linked
unit as input. The collector then adds bootstrap and system code for a single processor.
Unconfigured programs can only run on a single transputer. This method of program
development is not recommended and may not be supported in future toolsets.

icollect can be directed to generate output files in a special format for processing
by the ieprom tool, and executable code with no bootstrap or system process informa
tion, intended for dynamic loading by a supervisory program.

The command line default is to assume input from a configuration binary file. Special
format outputs are selected by specifying command line options.

The main inputs and outputs of the collector tool for bootable programs are shown
below.

__________ iiii.__rl---------1-4-5

5.2 Running the code collector

Unconfigured program (using 'T' option):

*occam only

icol1ect

, _"f ..

.:.map;
... '

Configured processor program:

G
icollect

,,_"f ..

.:.map;
... '

5.2 Running the code collector

The code collector is invoked using the following command line:

~ icol1ect filename {options}

where: filename is a configuration data file created by a configurer or a single linked unit

created by ilink. Only one filename may be given on the command line.

options is a list of the options given in Table 5.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1.2 for details.

If no' arguments are given on the command line a help page is displayed giving the
command syntax.

_14_6 J:ii.&~ -- _

5 icol1ect - code collector

Option Description
BM Instructs the tool to use a different bootstrapping scheme, which uses the bottom

of memory, see section 5.8.

This option is only valid for configured programs Le. when the 'T' option is not
used.

CM Instructs the collector to add a bootstrap which will clear memory during the
booting and loading of the transputer network. (See section 5.5).

CP Performs collect time patching Le. reduces the amount of memory used. (See
section 5.10). This option can only be used with the 'T' option (unconfigured
mode).

E Changes the setting of the transputer Halt On Error flag. HALT mode programs
are converted so that they not stop when the error flag is set, and non HALT mode
programs to stop when the error flag is set.

This option can only be used .with the 'T' option (unconfigured mode).

I Displays progress information as the collector runs.

K Creates a single transputer file with no bootstrap code. If no file is specified the
output file is named after the input filename and given the •rsc extension.

This option can only be used with the 'T' option (unconfigured mode).

M memorysize Specifies the memory size available (in bytes) on the root Processor for single
transputer programs. memorysize is specified in bytes and may be given in
decimal format (optionally followed by 'K' or 'M'to indicate Kilobytes or Megabytes
respectively), or it may be specified in hexadecimal using the 'i' or '$' prefixes.

This option can only be used with the 'T' option (unconfigured mode) and results
in a smaller amount ofcade being produced (see section 5.4).

a filename Specifies the output file. A filename must be supplied and is used as given. (See
section 5.2.4).

P filename Specifies a name for the memory map file. A filename must be supplied and is
used as given. The file extension •map should be used when the file is to be used
as input to imap, see chapter 13.

RA Creates a file for processing by ieprom into a boot from ROM file to run in RAM.
If no output file is specified the filename is taken from the input file and given the
•btr extension.

This option is only necessary when using the 'T' option (unconfigured mode) to
create a ROM code file.

RO Creates a file for processing by ieprom into a boot from ROM file to run in ROM.
If no output file is specified the filename is taken from the input file and given the
•btr extension.

This option is only necessary when using the 'T' option (unconfigured mode) to
create a ROM code file.

RS romsize Specifies the size of ROM on the root processor in bytes. Only valid when used
with the 'RA' or 'RO' options.

romsize is specified in bytes and may be given in decimal format (optionally
followed by 'K' or 'M' to indicate Kilobytes or Megabytes respectively), or it may
be specified in hexadecimal using the 'i' or '$' prefixes.

This option is only necessary when using the 'T' option (unconfigured mode) to
create a ROM code file.

--------__ 1.Ti. 1_4_7

5.2 Running the code collector

Option Description

s stacksize Specifies the extra runtime stack size in words for single transputer programs.
(For occam programs this option refers to stack. buf£er, see section 5.4.2 for
details).

stacksize is specified in words and may be given in decimal format (optionally
followed by 'K' or 'M' to indicate Kilowords or Megawords respectively). or it may
be specified in hexadecimal using the 't' or '$' prefixes.

This option can only be used with the 'T' option.

T Creates a bootable file for a single transputer. The input file specified on the
command line must be a linked unit This option can not be used for C programs
which are linked with the reduced runtime library.

Table 5.1 icollect command line options

5.2.1 Examples of use

Example A (unconfigured program mode):

icc - t450 hel/o.c
i1ink -t450 hello.tco -fcnonconf./nk
icollect hello.lku -t

Example B (configured program mode):

icc -st20 hel/o.c
ilink -st20 hello. tco -f cstartup./nk
icconf hel/o.cfs
icollect hello.cfb

icc -t805 hel/o.c
iJink -t805 hello. tco -f cstartup./nk
icconf hel/o.cfs
icollect hell0.cfb

Note: single transputer programs linked with the reduced runtime libraries cannot be
linked and collected with the 'T' option, they must be configured.

5.2.2 Default command line

Commonly used command line parameters can can be defined for the tool using the
ICOLLECTARG environment variable. Parameters specified in this way are automati
cally added to the command line when the tool is run.

Parameters in ICOLLECTARG must be specified using the syntax required by the
command line.

5.2.3 Input files

The input file to icollect is either a configuration data file generated by a configurer,
or a linked unit generated by ilink. By default the collector assumes a configuration

_14_8 lfl_ ----------

5 ico11ect - code collector

data file; for single transputer programs the input file may be a linked unit, in this case
the 'T' option must be given.

Input files of an incorrect format generate an error message and no output is produced.

5.2.4 Output files

The output produced by the tool depends the type of file input to the collector and the
collector options used.

Specifying an output filename

An output filename can optionally be specified using the 0 option, followed by a filename,
which will be used as given. If the 0 option is not used, the input filename will be used
with an extension added indicating the file type, see below.

Default case

The default output file is a binary file that can be loaded directly onto the transputer hard
ware down a transputer link. This type of file is known as a boot from link program. By
default the file is given the .btl extension.

Boot-from-ROM/RAM

Boot-from-ROM programs output is generated by using the appropriate command line
options; RO for boot-from-ROM; RA for boot-from-RAM. By default the file will be given
the .btr extension.

C programs must be configured, prior to using icollect, in order to generate boot
from-ROM or RAM output. occam boot-from-ROM or RAM output can be generated
from either configured or unconfigured input.

Dynamically loadable output

Dynamically loadable code is generated by using the K command line option. By default
the file is given the • rsc extension.

Dynamically loadable code file may only be generated when the input to the collector
is a linked unit and the T option is used, Le. this type of output can only be produced for
the unconfigured casee

Memory map files

A memory map file may be generated, in addition to the normal output, by specifying
the 'p' option. The format of these files is described in section 5.9.

5.3 Program interface for occam unconfigured programs

For programs which are loaded onto a single transputer, the program interface must
conform to the appropriate format, depending on whether or not memory size is speci
fied on the collector command line.

__________ £ii.~d 1_4_9

5.4 Memory allocation for unconfigured programs

5.3.1 Interface used for 'T' option

occam programs which are collected with the T option, without specifying memorysize
(using the M option), must use one of the following formats of procedure declaration:

PROC program (CHAN OF SP from. link, to.link,
[lINT user.buffer)

PROC program (CHAN OF SP from. link, to. link,
[lINT user.buffer, stack.buffer)

where: from . link and to . link are the input and output channels respectively of the
transputer link, down which the transputer was booted.

user .buffer is the free memory buffer.

stack.buffer is a buffer allocated at the base of memory by the collector,
whose size is determined by the s option. If the s option is not specified when
icollect is invoked this buffer will be of size zero.

5.3.2 Interface used for 'T' and 'M' options

In the case where both the 'T' and 'M' options are used, the program must conform to
one of the following procedure declarations:

PROC program (CHAN OF anyproroco/from.link, to. link,
[lINT user.buffer)

PROC program (CHAN OF anyprotocol from.link, to. link,
[lINT user.buffer, stack.buffer)

where: The channel protocol can take any valid type.

The other variables are as defined above.

5.4 Memory allocation for unconfigured programs

The memory allocation outlined in this section applies only to single processor programs
collected with the 'T' option and without the 'K' option. For configured programs the
layout of code and data in memory is determined by the configurer. For programs gener
ated with the 'T' option the layout is determined by the collector. The details of memory
use depend on the language used and the options to icollect; this is described below.

Memory which is not reserved by the system for program code and data (known as free
memory) can be made available to a user application. For C programs this is used for
the heap and, optionally, the stack. In the case of a single transputer occam program
the free memory passed as an array.

To calculate the actual memory available, the loader program in the bootable file first
reads the total memory size from the host environment variable IBOARDSIZE. This
communication with the host is performed after the program has been loaded onto the

_15_0 liU. _

5 icollect • code collector

transputer board but before the program is started. The size of the free memory is given
by IBOARDSIZE minus the combined program code and data space required.

The process code which reads IBOARDSIZE requires approximately 3.5 Kbytes of
memory. This process is executed and terminated before the user program runs, and
the segment of free memory that the process uses is then returned to the user program.
Therefore when the user program executes it will not know whether the process was
present or not.

When the 'M' option is used to specify the memory size, IBOARDSIZE is not read and
therefore the total amount of memory required when loading the program will be approx
imately 3.5 Kbytes less.

A memory map file may be obtained by specifying the 'p' command line option. The
content of memory map files is described in section 5.9.

5.4.1 C programs

For C programs the bootstrap loader must allocate memory for static data, stack and
heap areas.

When the collector '8' option is specified the program's stack is placed at the bottom of
memory. When the's' option is not specified a stack area is allocated by the runtime
system, typically at the top of free memory.

Areas for static data and heap are always allocated by the language's runtime system
at the bottom of free memory. The heap area grows upwards, towards the top of
memory, and the stack grows downwards.

Figure 5.1 shows the memory map layouts for programs with and without the stack
requirement specified by the user.

The value of LoadStart is described in section 5.9.

__________ ii;i."~ 1_5_1

5.4 Memory allocation for unconfigured programs

Top of
memory

1 1 Stack 1

Heap t Free memory

!
Static ! Heap t

Static

Code

Code
Stack ~

Bottom of US"""
memory

Using's' option to (LoadStart) Without using's'
specify stack size option

Figure 5.1 Memory maps for C

5.4.2 occam programs

Free memory

Vector space
(if used)

Code

Workspace

stack.buffer
(if used)

Top of memory

Bottom of user memory
(LoadStart)

Figure 5.2 Memory map for occam program

_15_2 1i;i&.. _

5 icol1ect - code collector

An occam program requires space to be allocated for code, workspace and, possibly,
vector space. Programs can also be passed one or two arrays as parameters; one
(always available) provides access to the free memory. The other is optional but, if used,
it is placed at the bottom of the memory map to provide access to the transputer's fast
internal RAM. This array is known as the stack. buffer. The default bootstrap loader
attempts to optimize placement of the program's, and its own, code and workspace. If
present, the stack.buffer array is placed at the bottom of memory (at LoadStart).
This is followed in order by the workspace, code, vector space (if used) and free
memory. The's' option allows space to be reserved in the internal RAM.

Figure 5.2 shows the memory map of the loaded occam code as created by the default
bootstrap loader.

5.4.3 Memory initialization errors

While the loader is executing the memory initialization process, described above,
warning messages may be obtained which have the following format:

Warning-SystemA- message

where: message can be one of the following:

IBOARDSIZE, unable to read

IBOARDSIZE environment variable is not defined correctly.

number, illegal format number

The value specified for IBOARDSIZE is in the wrong format.

illegal 16 bit memory size, set to zero

The value of IBOARDSIZE is greater than 64Kwhen a 16 bit processor is being
used. The memory size has therefore been set to zero.

negative memory size, set to zero

A negative value was specified for IBOARDSIZE, which has been set to zero.

unable to reset free memory

The loader cannot return the memory it has used to the user.

All the above errors are generated by the system process at runtime.

5.4.4 Small values of IBOARDSIZE

When the 'T' option is used, very small values of IBOARDSIZE (including zero) are
detected at runtime and prevent the program from being run. IBOARDSIZE is read at
runtime, not by the collector at build time. Small values of IBOARDSIZE cause the
collector to generate a warning message but do not prevent the generation of a boatable
file.

----------lii.~Jf 1_5_3

5.5 Clearing memory

IBOARDSIZE must be ~ to the total memory requirements of the user program being
executed.

5.5 Clearing memory

The 'eM' collector option, instructs the collector to use a bootstrap that clears memory
on each transputer before the application code is executed. The bootstrap will clear the
memory for all processors in the network.

In order to clear the memory on a processor, it is necessary for the bootstrapping
sequence to know the size of the memory. There are four cases to consider:

A configured program.

Here the memory size is known at configuration time, and is specified by the user
in the configuration source file. The bootstrapping sequence produced by the
collector will clear the amount of memory specified (in the configuration source
file) before booting the application.

2 A collected program with fixed memory size.

The collector may be used, with the 'T' option, to produce a bootable file from
a single linked unit. The amount of memory on the processor may be specified
with the 'M' option. In this case the bootstrapping sequence will clear the amount
of memory specified (with the 'M' option) before booting the application.

3 A collected program with variable memory size, booted from link.

If the collector is run with the 'T' option, but without the 'M' option, the memory
size is known only at runtime. The memory size is found out at runtime using the
environment variable IBOARDSIZE. In this case the bootstrapping sequence
will clear memory up to the minimum required to boot the program. After booting,
the value of IBOARDSIZE will be read and the remaining memory will be cleared.

4 A collected program with variable memory size, booted from ROM.

If the collector is run with the 'T' option, but without the 'M' option, and the
program is booted from ROM, then the memory size is not known at all. In this
case the bootstrapping sequence will clear enough memory for the minimal
requirements of the application. It is then the user program's responsibility to
clear any additional memory required.

5.6 Non-bootable files created with the K option

Files created with the 'K' option are non-bootable files which can be dynamically loaded
or manipulated by a program at runtime. Non-bootable files cannot be loaded and run
on transputer hardware in the normal way.

5.6.1 File format

Non-boatable files consist of program code preceded by a specific sequence of data
words which provide runtime information. The sequence of data words and code blocks

_15_4 Jf;il'd;P~ _

5 ico11ect - code collector

is summarized in table 5.2. Descriptions of the more important data items are given after
the table.

Data Number of bytes occupied Unit

Interface descriptor size Four bytes

Interface descriptor Set by above -
Compiler id size Four bytes

Compilerid Set by above -
Target processor type Four -
Version number Four -
Program scalar workspace requirement Four words

Program vector workspace requirement Four words

Static size Four words

Program entry point offset Four bytes

Program code size Four bytes

Program code block Set by above -

Table 5.2 Sequence of code segments in non-boatable files

Target A value indicating the processor type or transputer class for
which the program was compiled. Set by compiler options or by
default. Possible values and their meaning are:
Value Applies to:
2 T212,T222,T225,~12

4 T414
a Taoo, Ta01, Ta05
9 T425, T400
10 TA
11 TB
1024 T450,ST20

Version The format version number of the file. This can be either 10 or
11 in TCOFF files. For C programs this value is 11 , which indi
cates that the 'Static size' parameter (below) is present. For
occam programs the value is 10, indicating no static data; the
parameter list will also not be present.

Scalar workspace Specifies the size of the workspace required for the linked
program's runtime stack.

Vector workspace Specifies the size of the workspace required for the linked
program's vector (array) data.

Static size Specifies the size of the static area (only present if the file format
version number is 11).

Entry point offset Indicates the offset in bytes of the program entry point from the
base of the code block.

----------liii 1_5_5

5.7 Boot-from-ROM output files

Code size

Code
Indicates the size of the program code in bytes.

The program code.

5.7 Boot-from-ROM output files

Boot-from-ROM output files are either generated by using the collector options 'RA' or
'RO' for unconfigured programs or by configuring a program to boot from ROM, prior to
collecting. (The configurer also has 'RA' and 'RO' command line options).

The boot-from-ROM files contain code that can be loaded into EPROM using the
ieprom tool. The code may be run on the root transputer of a network; processors on
the network connected to the root transputer are booted from the root transputer's links.

'RA' generates code which is executed from RAM.The code is copied from ROM into
RAM at runtime. 'RO' generates code which is directly executed from ROM.

RAM executable code can be used for applications which are to be executed from fast
RAM, and for code which may be user-modified. ROM executable code may require no
external RAM for programs which use small amounts of data and can be used to create
a truly embedded system.

5.8 Alternative bootstrap schemes

When building for a configured network, the collector uses a bootstrapping scheme
which makes use of the top two hundred bytes of memory. This memory is required to
load the last few bytes of application code prior to its execution. The memory region
becomes available to the user once their application is running.

This scheme does not remove memory from the user's environment on a permanent
basis and it facilitates the absolute placement of code and data by the user. See the
,User Guide for details.

The user can tell the collector to use a different booting scheme by using the option 'BM'.
In this case the booting scheme permanently removes a section of memory from the
user's environment and moves the value of LoadStart accordingly. This section of
memory is never made available to the user. This booting scheme does not support the
absolute placement of code and data by the user.

The booting scheme invoked by the 'BM' option, is used by default for unconfigured
programs Le. those collected using the 'T' option.

5.9 The memory map file

A memory map file may be obtained by specifying the 'p' command line option, followed
by a filename. Such files contain the memory layout for each processor in the network.

The file layout takes the form of a list ofcode and data to be placed on respective proces
sors. The right hand side of the file gives the start and end address followed by the size
of each block.

_15_6 J.Ti.&~ ----------

5 icollect • code collector

The memory map file contains the following information:

• icollect version data

• For each processor the following details are given:

o Processor type

o Error mode (HALT or STOP)

o LoadStart (lowest user memory address)

o For each process on this processor the following is listed:

o Code, name of file, offset from start (decimal), start address and end
address (hex), size (decimal), entry address (if any, in Hex)

o Workspace, start and end address (hex), size (decimal)

o Any other data requirements

• Boot path for the network - onIy present if program is configured

• Connectivity of the network - only present if program is configured

The absolute addresses are calculated using LoadStart, which is the base of user
memory. This varies for different processor types Le. the value of LoadStart for a T4
processor is different to that for a T8.

If the 'BM' option is used the memory from MemStart to LoadStart is used by the low
level bootstraps and their workspace.

When the 'BM' option is not used the value of LoadStart is determined by the configura
tion, see the reference chapter for the configurer, for further details.

The addresses allocated to various data items reflect the command line options speci
fied to the collector. Details of the memory map files for the following types of files are
given below:

• Unconfigured (single processor), boot from link programs targetted at a specific
processor type.

• Unconfigured (single processor), boot from link programs targetted at a
processor class.

• Configured, boot from link programs.

• Boot from ROM (single and configured)

The examples below demonstrate the map file format; they may change in detail.

-----------Iiii.I'~ 1_5_7

5.9 The memory map file

5.9.1 Configured program boot from link

icollect INMOS toolset collector, Sun Version 3.0.29

Memory map for 'Single' processor 0 ST20
Load Start is 80000170, HALT ON ERROR, Minimum memory size is 68488

HIGH priority INITSYSTEM process , Init.system.simple'
Code from 'sysproc.lib', file offset 19736

,800001B8 '80000240 136
Entry address #800001BB

Invocation stack '80000194 '800001B8 36
Workspace '80000170 #80000194 36

HIGH priority OVERLAID SYSTEM process 'System.process.b'
Code from 'sysproc.lib', file offset 143550

180000274 1800002E4 112
Entry address '80000277

Invocation stack '80000260 #80000274 20
Workspace '80000240 #80000260 32

LOW priority USER process 'Simple'
Code from 'hello.lku', file offset 2

Entry address
Invocation stack
Workspace
Static
Heap

Parameter data

Boot path for network

Boot processor 0 down link 0 from HOST

Connectivity for network

Connect HOST to processor 0 link 0

180001198
1800011B4
'80001184
#80000170
,80003E38
'80004198

#80010998

#80003E38

'80001198
#80001184
180004198
#80010998

180010AC4

11424

20
4116

864
51200

300

Figure 5.3 Memory map file for a configured ST20 processor program

The example shown in Figure 5.3 was produced by the following command line:

icollect hello.cfb -p hello.map

where: hello. cfb is the configuration binary file produced by the configurer for the
single processor 'Hello World' example program.

The Memory map for the configured program is similar to that produced for unconfigured
transputer programs (see section 5.9.2) except that it has two additional configuration
sections at the end of the file. The Bootpath for the network lists processors in the order
in which they are to be booted. The Connectivity for network lists the link connections
between the processors.

_15_8 lFii. _

5 icollect - code collector

5.9.2 Unconfigured (single processor), boot from link

Program targetted at transputer type

The first memory map described in this section is for a program which is to be booted
for a specific processor type.

The example shown in Figure 5.4 was produced by the following command line:

icollect -t hello.lku -s 400 ~p hello.map

where: hello .lku was produced by compiling and linking the example program
hello. c for a T425 in the default halt-on-error mode. The compiled object file
was linked with the C linker indirect file cnonconf . Ink because the example
is for an unconfigured program.

hello.map lists code and data segments to be placed on each processor (one in this
case). For each process the workspace and vector space requirements are given
together with the entry point of the process. Note that the first three processes listed are
non-user processes; this will always be the case for this type of program.

icollect : INMOS toolset collector
Sun Version 3.0.17

Memory map for processor 0 T425
Load Start is 80000168, HALT ON ERROR, Minimum memory size is 21056

LOW priority INITSYSTEM process 'Init.system'
Code from 'sysproc.lib', file offset 9438

#800001F8 #80000418 544
Entry address #800001F9

Invocation stack #800001D8 #800001FO 24
Workspace #80000168 #800001D8 112

LOW priority SYSTEM process 'System.process.a'
Code from 'sysproc .lib' , file offset 27180

#80004670 #80005040
Entry address #80004671

Invocation stack #80004654 #80004668
Workspace #8000443C #80004654

'---c___/
Vectorspace #80005040 #80005240

HIGH priority SYSTEM process 'System.process.b'
Code from 'sysproc .1ib' , file offset 45498

#8000044C #800004A8
Entry address #8000044C

Invocation stack #80000430 #80000444
Workspace #80000418 #80000430

2512

20
536
512

92

20
24

LOW priority USER process
Code from 'hello.lku', file offset 2

Entry address
Invocation stack
Workspace
Extra stack
Static

#80000888
#800008B3
#8000086C
#800007A8
#80000168
#8000443C

#8000427C

#80000880
#8000086C
#800007A8
#8000466A

14836

20
196

1600
558

Parameter data #8000427C #8000443C 448

Figure 5.4 Memory map file for a single T425 processor program

_________~... 1_5_9

5.9 The memory map file

Program targetted at transputer class

The second memory map described in this section is for a program which is to be booted
for processor classes TA or TB.

The example shown in Figure 5.5 was produced by the following command line:

icollect -t hello.lku -p hello.map

where: hello .1ku was produced by compiling and linking the example program
hello. c for class TA in the default halt-on-error mode. The compiled object file
was linked with the C linker indirect file cnonconf . Ink because the example
is for an unconfigured program.

icollect : INMOS toolset collector
Sun Version 3.0.17

Memory map for processor 0 TA
Load Start is UNKNOWN, HALT ON ERROR, Minimum memory size is 20180

LOW priority INITSYSTEM process 'Init.system'
Code from 'sysproc.lib', file offset 10420

Entry address
Invocation stack
Workspace

#3D48
#3D49
#3D28
#3CB8

#3F68

#3D40
#3D28

544

24
112

LOW priority SYSTEM process 'System.process.a'
Code from 'sysproc .lib' , file offset 30561

#419C #4B6C 2512
Entry address #419D

Invocation stack #4180 #4194 20
Workspace 13F68 #4180 536
Vectorspace #4B6C #4D6C 512

HIGH priority SYSTEM process 'System.process.b'
Code from 'sysproc.lib' , file offset 45888

#34 #90 92
Entry address #34

Invocation stack #18 #2C 20
Workspace #0 #18 24

LOW priority USER process
Code from 'hello.lku' , file offset 2

lEO #3AF8 14872
Entry address 110B

Invocation stack #C4 #D8 20
Workspace #0 #C4 196
Static #3F68 #4196 558

Parameter data #3AF8 #3CB8 448

Figure 5.5 Memory map file for a single TA processor program

The memory layout of user's code and data is the same as for the previous example,
except that no space is allocated for the extra stack (because extra stack was not
requested on the command line). LoadStart, from which the start and end addresses
are calculated,' can only be calculated at runtime. This is because the value ofMemStart

_16_0 £.fi._----------

5 icollect - code collector

cannot be determined at collect time. The numbers given, in place of absolute
addresses are offsets from LoadStart.

5.9.3 Boot from ROM programs

There are four cases for this type of program:

• Unconfigured (single processor), boot from ROM, run in RAM

• Unconfigured (single processor), boot from ROM, run in ROM

• Configured program, boot from ROM, run in RAM

Configured program, boot from ROM, run in ROM

The memory maps for each of these are summarized below.

Unconfigured (single processor), boot from ROM, run in RAM

The memory map for this case will have the same layout as the single processor boot
from link programs.

Unconfigured (single processor), boot from ROM, run in ROM

It is not known at collect time where in memory the ROM is to be placed. Therefore, the
start and end addresses of the code segments are given as offsets from the start of
ROM, and are annotated as such. Items such as workspace will have absolute
addresses allocated, if the program is targetted at a specific processor type.

Note: for C programs the runtime startup system would require modification first, in
order to provide the system with details of heap and stack etc.

Configured program, boot from ROM, run in RAM

The layout of the memory map for this case will be the same as that for the boot from
link configured program. This is because everything (code and data) is copied into RAM.

Configured program, boot from ROM, run in ROM

For this case the root processor will be shown in the same format as the single processor
case, run in ROM; some memory locations being expressed as offsets from the begin
ning of ROM.

The other processors in the network will appear as in the boot from link case.

The example shown in Figure 5.6 was produced by the following command line:

icollect hell0.cfb -p hello.map

------- ii;i. 1_6_1

5.10 Reducing the amount of memory used - 'Y' option

where: hello. cfb is the configuration binary file produced by the configurer, for the
single processor 'Hello World' example program. The configurer 'RO', 'RS' and
'p' options were used to create a boot from ROM input file for the collector.

icollect INMOS toolset collector, Sun Version 3.0.29

Memory map for 'Single' processor 0 (Booting and running in ROM) ST20
Load Start is 80000170, HALT ON ERROR, Minimum memory size is 56912

HIGH priority INITSYSTEM process 'Rom. init.system. simple'
Code from 'sysproc.lib', file offset 25907

ROM OFFSET 100002D7F 100002E2B 172
ROM entry offset 100002D81

Invocation stack 180000194 #800001B8 36
Workspace 180000170 #80000194 36

HIGH priority OVERLAID SYSTEM process 'System.process.h'
Code from 'sysproc.lib', file offset 143550

ROM OFFSET #00002E2B #00002E9B 112
ROM entry offset #00002E2E

Invocation stack #800001D8 #800001EC 20
Workspace #800001B8 # 800001D8 32

#OOOOOODF #00002D7F 11424
#OOOOOOFB
180001184 #80001198 20
#80000170 #80001184 4116
#80001198 #800014F8 864
#800014F8 #8000DCF8 51200

#8000DCF8 #8000DE24 300Parameter data

LOW priority USER process 'Simple'
Code from 'hello.lku', file offset 2

ROM OFFSET
ROM entry offset

Invocation stack
Workspace
Static
Heap

Boot path for network

Connectivity for network

Figure 5.6 Memory map for program configured to boot from and run in ROM

5.10 Reducing the amount of memory used - 'y' option

The 'y' collector option reduces the amount of memory used.

For programs compiled and linked for a specific transputer type, this option will cause
icol1ect to produce a program that uses less memory. However, programs compiled
and linked for transputer classes 'TK or 'TB' will not build when this option is used. This
option is only valid for programs collected with the T option.

_16_2 ~~ _

5 icol1ect • code collector

5.11 Error messages

This section lists error messages generated by icollect. The messages are listed in
alphabetical order underthe appropriate severity classification. In all cases the introduc
tory string (severity, and filename if appropriate) is omitted.

icollect generates errors of severities Warning and Serious. Serious errors cause
the tool to terminate without producing any output.

5.11.1 Warnings

The following messages are prefixed with 'Warning-'. They are only generated when
the 'T' option is used (single processor mode).

Flip error mode ignored with user bootstrap

The 'E' option is ignored when a user-defined bootstrap is specified since the
collector will only accept a single linked unit as a bootstrap.

Strange board size for sixteen bit processor: Setting to zero

The memory size specified exceeds the addressing capacity of a 16 bit
processor (64 Kbytes). The collector uses a memory size of zero for the rest of
the build.

5.11.2 Serious errors

The following errors are prefixed with 'Serious -'.

Address space for target processor exhausted

The address space required by the program is greater than 64Kbytes, the
maximum addressable space on a 16-bit processor.

Cannot have both rom types

'RA' and 'RO' options are mutually exclusive and cannot both be specified on the
same command line.

Cannot have configured and memory size

The memory size option is incompatible with building a boatable program for a
configuration binary file.

Cannot have configured and non boatable file

The collector cannot generate both a network loadable file and a non-bootable
file simultaneously for the same program.

Cannot have rom and non bootable file

The collector cannot generate both a ROM-Ioadable file and a non-bootable file
simultaneously for the same program.

----------liii.~ 1_6_3

5.11 Error messages

Cannot open file filename

Host file system error. The file specified cannot be opened.

Cannot patch parameter data for processor class

The 'y' option has been specified with a linked unit for a processor class. The
collector cannot initialize some of the data without a linked unit for a specific
processor type.

Cannot use absolute placement and bottom of memory loader

The user has specified BM to the collector but is using absolute code and data
placement at configuration. This combination is not legal.

Command line parsing error at string

Unrecognized command line option.

Dynamic memory allocation failure

Memory allocation error. The collector cannot allocate the required amount of
memory for its internal data structures.

Expected end tag found not present in .cfb file

A specific end tag is missing in the configuration binary file. Either the file is
corrupted or the versions of icollect and configurer used are incompatible.

Illegal tag found in .cfb file

Incorrect format configuration binary file, recognized as an illegal tag. Either the
file is corrupted or the versions of icollect and configurer used are incompat
ible.

Illegal language type found in input file

Source language used to create the file is not supported by the collector. Less
likely, but possible, is that the file was created using an incompatible (possibly
earlier) version of a tool.

Illegal process type

Unrecognized process type. Either the file has been corrupted or the versions
of icollect and configurer used are incompatible.

Illegal processor type

Unrecognized processor type. Either the file has been corrupted or icollect
and the configurer are incompatible.

Illegal tag found in input file: filename

Incorrect format input file. The most likely reason for this error is that an incorrect
file has been specified. Other less likely but possible explanations are that the

_16_4 EfiP~ _

5 icollect - code collector

file was created using an earlier or incompatible version of one of the tools, or
that the file has become corrupted.

Input file already specified

More than one input file specified on the command line.

Input file has not been linked filename

The collector accepts only linked files, either directly when using single
processor operation, or indirectly via entries in the configuration binary file. This
message can be generated if the file was created using a previous version of a
tool, or if the file is corrupt.

Input file is of incorrect type: filename

If the 'T' option is specified (single processor program) the input file must be a
single linked unit (.lku type). If the 'T' option has not been specified the input
file must be a configuration binary file (.cfb type).

Input filename too long

The maximum length allowed for the input filename is 256 characters.

Linked unit file in cfb and linked unit in input file found do not match: filename

The linked file specified in the configuration binary and the one found the
collector do not match.

Linked unit module not found in: filename

The required library module is missing or has been corrupted. This message is
generated when an incorrect version of the library is installed.

Memory requirement for build is greater than specified, an extra <n> bytes
required at least

The amount of memory specified on a processor is not enough for the program
to execute. An extra <n> bytes are required at least.

Memory size already specified

Memory size must be specified once only.

Memory size string invalid

Memory size must be given in decimal or hex. Hex numbers must be introduced
by '#' or '$'.

Memory size string too long

Specified memory size is too large.

More than one parameter statements

The collector expects only one parameter statement per processor. Either the
file has been corrupted or the versions of ico11ect and configurer used are
incompatible.

---------li;i.~ 1_6_5

5.11 Error messages

No input file specified

One, and only one, input file must be specified on the command line.

No parameter descriptor present in input file: filename

The formal parameter descriptor in the input file is not present. This usually
means that the process has not been linked with a main entry routine. This
message will only appear if the collector is invoked with the 'T' option
(unconfigured mode).

Output file already specified

More than one output file was specified. Specify only one.

Output filename too long

The maximum length allowed for the output filename is 256 characters.

Parameter descriptor error in input file : filename

The formal parameter descriptor in the input file is not of the correct form, indi
cating that the process interface is not one recognized by the collector. This
message will only appear if the collector is invoked with the 'T' option
(unconfigured mode). See section 5.3.

Print map file already specified

More than one print map file was specified. Specify one only.

Program configured for boot from ROM command line is boot from link

The specified configuration binary file was created for either ROM or RAM, and
neither has been specified to icollect.

Program configured for running in RA mode command line is RO mode

Wrong mode specified, or incorrect option given to the configurer when the
specified configuration binary file was created. RA and RO modes are mutually
exclusive.

Program configured for running in RO mode command line is RA mode

Wrong mode specified, or incorrect option given to the configurer when the
specified configuration binary file was created. RA and RO modes are mutually
exclusive.

ReqUire at least<ny> bytes at the top of memory for bootstrapping on processor
<n>

The bootstrapping sequence requires an extra<ny> bytes at the top of memory.
Once the bootstrapping has finished this memory is available to the user.

Rom size already specified

ROM size must be specified once only.

_16_6 liii.P~ _

5 icol1ect • code collector

Rom size in input file and command line do not match

The ROM size specified on the command line does not match that specified to
the configurer when the input file was created.

Rom size not specified

A ROM size must be specified because the input file is to be loaded into ROM.

Rom size string invalid

ROM size must be given in decimal.

Rom size string too long

ROM size specified was too large.

Stack size already specified

Stack size must be specified once only.

Stack size string invalid

Stack size must be specified in decimal format.

Stack size string too long

Specified stack size was too large.

Strange function or attribute for linked unit in : filename

The collector has found an unfamiliar value in the input file. Either an old version
of a tool was used in the creation of the input file, or the input file has been
corrupted.

System error

Host system error has occurred, probably when accessing a file. This message
may be generated when a file is read and its contents seem to have changed
or the file does not exist.

Unexpected end of file: filename

One of the files specified in the configuration binary has ended prematurely. file
name identifies the offending file. If the message 'Suspect corrupted file' is
substituted for filename then the file is corrupted.

5.11.3 Fatal errors

Internal error <message text>

An internal error has occurred this should be reported to your local
SGS-THOMSON distributor or field applications engineer.

-----------LV._~ 1_6_7

5.11 Error messages

_16_8 J.Y._---------

6 iemi t - memory interface
configurer

This chapter describes the memory configuration tool iemit. This tool can be used
interactively to explore the effects of changes in the external memory interface parame
ters of certain 32 bit transputers. The tool can also be used in batch mode to create
ASCII or PostScript files. The tool produces a memory configuration file which may be
included as an input file to ieprom and blown into EPROM along with a ROM-bootable
application file.

The chapter describes how to use iemit and outlines its capabilities. Example displays
are provided, followed by a list of error messages which the tool may generate. The
format of the memory configuration file is described and an example is given. Note:
memory configuration files are simple text files which may be created manually using
a standard text editor or generated by using iemit.

6.1 Introduction

The IMS T400, T414, T425, TaOO and Ta05 transputers have a configurable external
memory interface (EMI) which allows a variety of types of memory device to be
connected using few extra components.

For these transputers, the interface configuration may be selected by one of two mecha
nisms. The user may select one of the 17 standard memory configurations (13 for the
T414) or a customized memory configuration may be loaded from a ROM or PAL on
reset.

Both methods of memory configuration are available when booting from ROM or from
link. If the transputer is being booted from ROM, a customized memory configuration
may be added to the ROM or a standard configuration may be used. If the transputer
is booted from link a standard configuration may be used at no extra cost, or a dedicated
ROM or PAL may be added for a customized configuration.

In order to generate a customized configuration the user may create a memory configu
ration file, describing the memory configuration and have this blown into an EPROM.
The configuration chosen is made known to the transputer by simple board level
connections which are detected by the transputer on reset. If a standard configuration
is required the MemConfig pin is connected to the appropriate address pin. For
example, standard configuration 7 is selected via address pin MemAD7.lf a customized
configuration is required the MemConfig pin is connected though an invertor to the
appropriate data line, usually this is MemnotWrDO. Note: when iemit is used to
generate the memory configuration, the MemnotWrDO pin must be used. For further
details see the relevant device datasheet.

The external memory interface configuration tool iemit produces timing diagrams for
potential configurations of the memory interface and warns of possible errors in the

___________ iiii....rI 1_6_9

6.2 Running iemit

design. It indicates whether one of the preset configurations that are available would be
suitable, or whether it would be necessary to use an externally programmed configura
tion.

Note: That it is assumed that readers creating memory configuration files are familiar
with the memory interface of the processor that they are using. The stages in designing
a memory interface, including examples, are described in chapter 2 of· The transputer
applications notebook - Systems and performance. Further information may also be
found in The transputer databook.

6.2 Running iemit

The iemit tool can be invoked by the following command line:

~ iemit options

where: options is a list of options given in Table 6.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1.2 for details.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

A Produce ASCII output file.

E Invoke interactive mode.

F filename Specify input memory configuration file.

I Select verbose mode. In this mode the user will receive status information about
what the tool is doing during oPeration for example, reading or writing to a file.

o filename Specify output filename.

p Produce PostScript output file.

Table 6.1 iemit command line options

Note: that if option 'E' is selected Le. interactive mode, then no other options may be
specified on the command line.

The operation of iemit in terms of standard file extensions is shown below:

_17_0 J.Ti.fi~ _

6 iemit - memory interface configurer

.mem

Examples of use

iemit may be invoked in interactive mode by using one of the following command:

iemit -e

Output files in ASCII or PostScript may be specified by command options from within
interactive mode; alternatively iemit may be invoked in batch mode, to create an
output file in one of these formats.

When the tool is invoked in batch mode to produce an output file in either ASCII or Post
Script format, then an input file must be supplied using the 'F' option. It is also mandatory
to specify either the 'Pt: or 'p' option. If the '0' parameter is not supplied then an output
filename will be constructed, from the input filename, with an extension of ' •ps' for a
PostScript output, or'. asc' for an ASCII output.

Example:

The following command causes iemit to produce an output file in PostScript format.
The tool is invoked in verbose mode.

iemit -i -p -f memconfig.mem -0 waveform.ps

Note: iemit will make use of the ITERM host environment variable, if it is available,
otherwise it will use defaults.

6.3 Output files

Two different types of output may be produced by iemit, these are listed below:

• A memory configuration file suitable for including as an input file to the ieprom
tool.

• An output file in either ASCII or Postscript format, suitable for inclusion in docu
mentation.

The tool may be used interactively to produce a memory configuration file in text format.
This file may then be used as an input file to the ieprom tool, thus enabling the memory
configuration to be stored on ROM. iemit is capable of saving and reloading configura
tions to allow for design over an extended period and for comparison of different configu-

----------liii.fi~ 1_7_1

6.4 Interactive operation

rations. The memory configuration file is described and an example is given in section
6.6.

Additionally iemit may be used to produce an output file which is either a plain ASCII
file containing timing data or a file in PostScript format containing waveform diagrams.
These formats were chosen so that the results of the program could be easily included
in reports or other documentation.

6.4 Interactive operation

When iemit is invoked in interactive mode the program will start up with the default
standard configuration 31 .

The tool's user interface is presented as a number ofdisplay pages showing timing data.
The displays may be updated by changing the timing parameters, which are accessed
from page 1. All inputs are executed immediately so that the user can see the effect on
any of the displays. As each page is shown, the user has the option of selecting another
page for display by keying in its number. The current configuration may be saved at any
time to a specified output file.

The information displayed and options available on each page are described below.

6.4.1 Page 0

This page acts as an index to the others. It shows the title of each page and allows one
of them to be selected. An option is provided to enable an input file to initialize the
memory configuration. Other options enable the user to selectively generate output
files. Options are listed in table 6.2 and an example of the display page is given in figure
6.1.

The user enters an option code followed by thel RETURN Ikey. If a file option is specified
the user will be prompted for a filename. Note: file extensions should be specified, there
are no defaults.

Page 0
T414/T800 External Memory Interface Program

Page 0: Index - this page
1: EM! configuration parameters
2: General timing
3: Dynamic RAM timing
4: Read cycle waveforms
5: Write cycle waveforms
6: Configuration table

Please enter 1 ... 6 to see a new page;
<S> to save configuration to a file;
<L> to load a saved configuration;
<A> to generate an ASCII listing of all pages to a file;
<P> to generate PostScript file of waveforms;
<Q> to exit the program.

Figure 6.1 Example iemit display page 0

_17_2 ii;i.p~ -- _

6 iemit· memory interface configurer

Option Description
1 to 6 Selects the page to be displayed.

Q Quit - selection of this option exits the program.

L Load previously saved configuration. A filename is prompted for, and the configuration
saved in that file is read in and the display data is updated. The program expects a memory
configuration file.

If loading does not succeed because the file has a bad format, the current configuration
is reset to standard configuration 31. If loading fails because the file could not be found or
could not be oPened for reading, the load is abandoned without losing the current configu-
ration.

s Save configuration to a file. The program prompts for the name of a file to which the data
will be written, by convention the extension •mem should be used. Output is a memory
configuration file. An error is reported if the data could not be saved. The saved file is given
comments in its header indicating that it was created by the iemit program.

A Output pages in ASCII format to a file. The program prompts for the name of a file to which
the data will be written. Output is in plain ASCII format with a form feed (FF) character after
each page. It includes full timing information and a representation of the timing diagrams
for read and write cycles. An error is reported if the output could not be written.

p Generate PostScript file. The program prompts for a filename. The program writes to the
file a program in the PostScript page description language to draw the timing diagrams for
the chosen memory interface configuration. The waveforms shown are the same as those
which can be seen by selecting Pages 4 and 5.

The file produced fully conforms to the PostScript structuring conventions, allowing it to be
processed by other programs. The diagram is designed to fit lengthways on an A4 page,
and is suitable for inclusion in technical notes and reports. The file can be sent directly to
an Apple LaserWriter or other PostScript output device.

Table 6.2 iemit page 0 options

6.4.2 Page 1

This page shows the input parameters to iemit. It is from these parameters that the
tool computes the timing information and the waveforms. Only one parameter may be
changed at a time and the display data is immediately updated. An example of the
display page is given in figure 6.2.

When the page is displayed, the user has the option to select a new page by entering
its number, or entering~ to change one of the parameters. In the latter case, a list of
parameter identifiers is displayed (see table 6.3) and the user is a prompted to select
one. The user may then specify a new value, or by pressing the I RETURN Ikey, leave
the current selection unchanged. The parameters used for modifying the timing data are
described in table 6.4.

Note: there are two parameters displayed on page 1 which are calculated by iemit and
cannot be directly updated by the user; they are the EMI clock period Tm and the Wait
states (see Table 6.4).

___________ i:i;i.&1JIBO~ 1_7_3

6.4 Interactive operation

Parameter identifier Parameter
0 to 6 Page to be displayed

D Device type

Tl Address setup time before address valid strobe

T2 Address hold time after address valid strobe

T3 Read cycle tristate or write data setup

T4 Extendible data setup time

T5 Read or write data

T6 End tristate or data hold

so Non-programmable strobe "notMemSO"

S1 Programmable strobe "notMemS1"

S2 Programmable strobe "notMemS2"

S3 Programmable strobe "notMemS3"

S4 Programmable strobe "notMemS4"

RS Read cycle strobe name

ws Write cycle strobe name

R Refresh period

liM Write mode

w Memwait input connection

c Standard configuration

Table 6.3 iemit page 1 parameter identifiers

Page
EMI configuration parameters

Device type T425-25
EMI clock period Tm 20ns at Clockln = 5MHz
Wait states 0
Address setup time T1: 4 periods Tm
Address hold time T2: 4 periods TIn
Read cycle tristate/write data setup T3: 4 periods TIn
Extended for wait T4: 4 periods TIn
Read or write data T5: 4 periods TIn
End tristate/data hold T6: 4 periods Tm
Nonprogrammable strobe "notMemSO " "0" SO
Programmable strobe "notMemS1 " "1" Sl: 30 periods TIn
Programmable strobe "notMernS2 " "2" S2: 30 periods Tm
Programmable strobe " notMemS3 " "3" S3: 30 periods Tm
Programmable strobe "notMemS4 " "4" S4: 18 periods TIn
Read cycle strobe "notMemRd " "r"
Write cycle strobe "notMemWrB" "w"
Refresh period: 72 Clockln periods Wait: 0
Write mode: Late Configuration: 31

Enter a new page number (0 for the index) or <C> to change a parameter:

Figure 6.2 Example iemit display page 1

_17_4 Eii.~ ---------

Parameter

Device type

6 iemit - memory interface configurer

Description

This parameter enables the program to deduce the time taken for a half cycle
of the signal ProcClockOut: this is Tm, the basic unit of time of the memory
interface. A menu of the available devices is displayed and the user is invited to
select one:

T400-20
T414-I5
T414-17
T414-20
T425-17
T425-20
T425-25
T425-30

T800-I7
T800-20
T800-22
T800-25
T800-30
T800-35
T805-25
T80S-30

Tstates TI-T6 The length of each Tstate T1 to T6, is entered as a number of Tm periods
between 1 and 4. (2 Tm periods = 1 clock cycle).

Programmable The programmed durations of the strobes notMemSO to notMemS4. The
strobes SO-S4 strobes each have two names which can be altered. One which can be up to 9

characters in length, and one consisting of just one character. There should be
no embedded spaces in the long names. The short names are used in the timing
information on pages 2 and 3, while the long names are used to label the wave
forms on pages4 and 5, and in the PostScript output. The signal names are
initialized to sensible defaults.
Note: that SO is a fixed strobe, so its duration cannot be changed. The duration
of a strobe can be a to 31 Tm periods. If the value for S1 is set to zero, then
notMemS1 stays high throughout the cycle; if the value for S2, 83 or 84 is set
to zero, then the strobe is low for the duration of the cycle.

Read strobe The names for the read strobe notMemRd can be altered.
name

Wri te strobe The names for the write strobe notMemWrB can be altered. Note that because
name the four byte write strobes have the same timing, only one is considered.

Refresh period The refresh period is given as a number of Clockln periods (18, 36,54, or 72)
or as Refresh Off if zero is selected.

Write mode The write mode can be set to Early or Late to suit the type of memory being
used.

Wai t connection The MemWait input may be connected to one of the strobes S2, S3, 84 by
entering 'S2', 'S3' or '84' respectively. Alternatively, by specifying a number in
the range 1 to 60 Memwait may be connected to a simulated external wait state
generator. This causes MemWait to be held high then to become inactive (low)
a set number of Tm periods after the start of T2. Note: that this mode is not
supported directJy by the T414; in a final design, a circuit would have to be built
to perform this function.
If the current connection of MemWait causes the signal to become inactive just
as ProcClockOut is falling during T4, a warning is given that there is a hazard
of a wait race condition. This is because MemW8it is sampled on the falling
edge of ProcClockOut -and if the signal is changing while being sampled, the
result is undefined.

EMI clock The value of Tm for a clockln frequency of 5MHz. This is computed from the
period TIn other parameters and displayed.

__________ Eii.1iL~ 1_7_5

6.4 Interactive operation

wait states The number of wait states in the current configuration. This is computed from
the other parameters and displayed.

standard The parameters can all be reset to those for one of the built in configurations.
configuration There are 13 standard configurations available for the T414, valid configuration

numbers being 0 to 11 and 31. For the T400, T425, T800 and the T805 there are
17 standard configurations available, valid configuration numbers being 0 to 15
and 31. If the user selects, for a T414, one of the four configurations which are
not available, a message will be displayed indicating that this configuration may
not be hardwired on a T414.
If the currently set configuration happens to correspond exactly to one of the
preset configurations, the tool reports the fact.

Table 6.4 iemit page 1 parameters

6.4.3 Page2

This page shows general timing information for the interface, such as delays between
various strobes and required access times of the memory devices to be used. The user
should adjust these figures to allow for delays in external logic. Table 6.5 lists the timing
information displayed on this page while an example of the display is given in figure 6.3.

JEDEC symbol Parameter description

TOLOL Cycle time (in both nanoseconds and processor cycles)

TAVQV Address access time

TOLQV Access time from notMemSO

TrLQV Access time from notMemRd

TAVOL Address setup time

TOLAX Address hold time

TrHQX Read data hold time

TrHQZ Read data turn off

TOLOH notMemSO pulse width low

TOHOL notMemSO pulse width high

TrLrH notMemRd pulse width low

TrLOH Effective notMemRd width

TOLwL notMemSO to notMemWrB delay

TOVwL Write data setup time

TwLDX Write data hold time 1

TwHDX Write data hold time 2

TwLwH Write pulse width

TwLOH Effective notMemWrB width

Table 6.5 General timing parameters

_17_6 J:fi&~ ----------

6 iemit· memory interface configurer

The total cycle time is given in nanoseconds and in processor clock cycles. The onIy
option available from this page is to select another page for display.

Page 2
General Timing

Symbol Parameter min(ns) max(ns) Notes

TOLOL Cycle time 480 12 processor cycles
TAVQV Address access time 400
TOLQV Access time from 0 320
TrLQV Access time from r 160
TAVOL Address setup time 80
TOLAX Address hold time 80
TrHQX Read data hold time 0
TrHQZ Read data turn off 80
TOLOH o pulse width low 320
TOHOL o pulse width high 160
TrLrH r pulse width low 160
TrLOH Effective r width 160
TOLwL o to w delay 160
TDVwL Write data setup time 80
TwLDX Write data hold time 1 240
TwHDX Write data hold time 2 80
TwLwH Write pulse width 160
TwLOH Effective w width 160
Please enter a new page number (0 for the index) :

Figure 6.3 Example iemit display page 2

6.4.4 Page3

Page 3

symbol Parameter

Dynamic RAM Timing

min(ns) max(ns) Notes

T1L1H
T1H1L
T3L3H
T3H3L
T1L2L
T2L3L
T1L3L
T1LQV
T2LQV
T3LQV
T3L1H
T1L3H
TwL3H
TwL1H
T1LwH
T1LDX
T3HQZ
TRFSH
Please

pulse width
precharge time
pulse width
precharge time
to 2 delay
to 3 delay

1 to 3 delay
Access time from 1
Access time from 2
Access time from 3
1 hold (from 3)
3 hold (from 1)
w to 3 lead time
w to 1 lead time
w hold (from 1)
Wr data hold from 1
Read data turn off
256 refresh cycles

enter a new page number

400
80

320

240
320
400

3650
(0 for the index) :

time in microseconds

Figure 6.4 Example iemit display page 3

This page gives timing information of special interest to designers working with dynamic
memory, including various access times and the time for 256 refresh cycles. With this

__________ Eii.~J4 1_7_7

6.4 Interactive operation

information the designer can ensure that the requirements of the memory devices to be
used are met. The user should adjust these figures to allow for delays in external logic.
Table 6.6 lists the DRAM timing parameters.

The only option available from this page is to select another page for display. An
example of the display is given in figure 6.4.

JEDEC symbol Parameter description

T1L1H notMemS1 pulse width

T1H1L notMemS1 precharge time

T3L3H notMemS3 pulse width

T3H3L notMemS3 precharge time

T1L2L notMemS1 to notMemS2 delay

T2L3L notMemS2 to notMemS3 delay

T1L3L notMemS1 to notMemS3 delay

T1LQV Access time from notMemS1

T2LQV Access time from notMemS2

T3LQV Access time from notMemS3

T3L1H notMemS1 hold (from notMemS3)

T1L3H notMemS3 hold (from notMemS1)

TwL3H notMemWrB to notMemS3 lead time

TwL1H notMemWrB to notMemS1 lead time

T1LwH notMemWrB hold (from notMemS1)

T1LDX Write data hold from notMemS1

T3HQZ Read data turn off

TRFSH lime for 256 refresh cycles (in microseconds)

Table 6.6 DRAM timing parameters

6.4.5 Page 4

This page shows graphically the timing for a memory read cycle. An example of the
display page is given in figure 6.5.

The Tstates and strobes are labelled, and bus activity is shown. The point where data
are latched into the processor is also indicated.

At the top of the page is displayed the processor clock and the Tstates, a number indi
cating the Tstate, 'W' indicating a wait state, and 'E' indicating a state that is inserted to
ensure that T1 starts on a rising edge of the processor clock.

_17_8 i.V.fidm.- -------..,...----

6 iemit· memory interface configurer

Below this are displayed the waveforms of the programmable strobes and the read,
write and address/data strobes. Each of these strobes is labelled with the corresponding
label parameter.

The point at which the read data is latched is indicated by a 'A' beneath the read cycle
address/data strobe.

Page 4

ProcClock

111111111212121213/31313141414141515151516/616161

- - - - - - - - - - - -
/\.J\..../\.J\..../\.J\J\..../\..../\J\J\..J'-

---'-- ---'1

'------- ---'1

-------~>---------------<--------->------
Read data latched here ~

notMemSO (0) \

notMemS1 (1) \

notMemS2 (2)

notMemS3 (3)

notMemS4 (4)

MemWait \
READ CYCLE
MemAD

notMemRd (r)

Please enter a new page number (0 for the index), <L> to
scroll display left, or <R> to scroll display right:

Figure 6.5 Example iemit display page 4

The MemWait waveform shows the input to the MemWait pin. If the wait input is a
number then it goes low n Tm periods after the end of T1 and high again at the end of
T6, if the wait input is connected to a strobe it goes low and then high when that strobe
does so.

If the cycle is too long to fit horizontally on the screen, it may be scrolled left and right
using the IT] and [E) keys. The displayed area moves by about 15 characters each
time these are used.

6.4.6 Page 5

Page 5 shows the waveforms for a memory write cycle. The display is similar to that of
page 4, indeed the read and write cycle diagrams are combined when the PostScript
output is produced.

Scrolling the display to the left or right is done in the same way as for page 4.

An example of the display page is given in figure 6.6.

---- ~r~ 1_7_9

6.4 Interactive operation

Page 5

ProcClock

notMemSO (0)

1111111112121212131313131414141415151515161616161

- - - - - - - - - - - -
/ \J \J \J \J \J \J \J \J \J \J \J \.-

\\- -11

notMernS1 (1) \

notMemS2 (2)

notMemS3 (3)

notMemS4 (4)

MemWait \
WRITE CYCLE
MemAD X X

notMemWrB(w) \ I

Please enter a new page number (O for the index), <L> to
scroll display left, or <R> to scroll display right:

Figure 6.6 Example iemit display page 5

6.4.7 Page 6

This page gives a configuration table for the current configuration. This is a listing of
the data which have to be placed in a ROM situated at the top of the transputer's memory
map in order to achieve the desired configuration. The table consists of 36 words of data,
but only the least significant bit in each is used. The address and contents are given for
each location. Note: when iemit is used to generate the memory configuration, the
Memconfig pin must be connected to MemnotWrDO.

An example of the display page is given in figure 6.7.

Note: that if page 1 indicates that the configuration is one of the transputer's preset
ones, there will be no need for a ROM; configuration can be achieved by connecting the
MemConfig pin of the device to one of the address/data lines.

_18_0 ~-- Eiifi~ ---------

6 iemit - memory interface configurer

Page 6
Configuration Table

#7fffff6c
#7fffff70
#7fffff74
#7fffff78
#7fffff7c
#7fffff80
#7fffff84
#7fffff88
#7fffff8c
#7fffff90
#7fffff94
#7fffff98
#7fffff9c
#7fffffaO
#7fffffa4
#7fffffa8
#7fffffac
#7fffffbO 0

Please enter a new page number

#7fffffb4 1
#7fffffb8 1
#7fffffbc 1
#7fffffcO 1
#7fffffc4 0
#7fffffc8 1
#7fffffcc 1
#7fffffdO 1
#7fffffd4 1
#7fffffd8 0
#7fffffdc 1
#7fffffeO 0
#7fffffe4 0
#7fffffe8 1
#7fffffec 1
#7ffffffO 1
#7ffffff4 1
#7ffffff8 1

(0 for the index):

Figure 6.7 Example iemit display page 6

6.5 iemit error and warning messages

The following is a list of error and warning messages the tool can produce:

Command line parsing error

An option has been specified that the tool does not recognize.

Configuration cannot be hardwired on a T414

The transputers which have a configurable memory interface alf have (with the
exception of the T414) 17 standard memory configurations available to them.
The T414 only has a choice of 13 standard configurations. If the standard config
urations 12, 13, 14 or 15 are selected for a T414 the above warning message
will be displayed against the selection on page 1.

Input out of range

If the value entered for a numeric parameter is outside the range valid for that
parameter, an input out of range warning is displayed, the value cleared from the
screen and the program waits for a new value.

MemWait connection error

If an attempt is made to connect 51 to the MemWait input an error is displayed
because it is a meaningless operation.

No input file specified

This indicates that when trying to invoke the tool to produce an output file, the
user has not specified a memory configuration file to use as input.

----------l.Ti. 1_8_1

6.6 Memory configuration file

One and only one of options A or P must be specified

This indicates that when trying to produce an output file, the user has not speci
fied whether the output is to be in ASCII or PostScript format.

Unable to open configuration file 'filename'

This can occur when attempting to load a memory configuration file and indi
cates that the tool cannot find the specified input file. Check the spelling of the
filename and/or that the file is present.

Unable to open output file lfilename'

An output filename has been specified incorrectly. Check the format of the file
name.

Wait race

If one of the programmable strobes is used to extend the memory cycle then the
strobe must be taken Iowan even number of periods Tm after the start of the
memory interface cycle. If the strobe is taken Iowan odd number of periods after
the start then a wait race warning will appear. Should this warning appear, it will
remain on display on page 1, until the race condition is removed. Further
information can be obtained from reference 1, listed at the start of this chapter.

6.6 Memory configuration file

Memory configuration files are text files which may be generated by a standard text
editor or by using the memory interface configuration tool iemit, see section 6.2.

By convention memory configuration files have the file extension •memo The file consists
of a sequence of statements and comments. The following are considered to be
comments:

• Blank lines

• Any line whose first significant characters are '-'

• Any portion of a line following '-'a

Comments are ignored by the ieprom and iemit tools. Statements are all other lines
within the file; they may be interspersed with comments.

Individual statements are constructed of the statement and an associated parameter.
These must be separated by at least one space or tab but extra spaces may be inserted
before, between, or after them for aesthetic purposes. An example memory configura
tion file is shown in figure 6.8.

_18_2 EiiP~ ---------

6 iemit - memory interface configurer

Memory configuration file produced
by a save command from IEMIT.
on Thu Feb 13 15:04:04 1992

device.type

t1.duration
t2.duration
t3.duration
t4.duration
t5.duration
t6.duration

sO.label
sl.label
s2.label
s3.label
s4.label
rs.label
w5.label

s1.duration
52.duration
s3.duration
54.duration

refresh.period
write.mode
wait. connection

T425-25

4
4
4
4
4
4

notMemSO
notMemS1
notMemS2
notMemS3
notMemS4
notMemRd
notMemWrB

30
30
30
18

72
LATE
o

Figure 6.8 Example memory configuration file

The statements defined are listed along with their parameters in table 6.7. Further
information about specifying parameters is given in section 6.4.2.

----------liii..dn~ 1_8_3

6.6 Memory configuration file

Option Description

standard. configuration oto 13, or 31 for T414 processors. 0 to 15, or 31 for T400,
T425, T800 and T805 processors.

device. type One of the following devices:

T400-20 T800-17
T414-15 T800-20
T414-17 T800-22
T414-20 T800-25
T425-17 T80o-30
T425-20 T800-35
T425-25 T80o-25
T425-30 T805-30

t1.duration, 1 to 4 Tm periods. (2 Tm periods = 1 clock cycle). Defines the
t2.duration, length in Tm periods of Tstates, T1 to T6, of the memory
t3.duration, cycle.
t4.duration,
t5.duration,
t6.duration

sO.label, Each of these parameters accepts two text strings. They are
s1.label, the long (up to 9 characters) and short (1 character) names
s2.label, of the strobes notMemSO to notMemS4. The names should
s3.label, not contain embedded spaces. Names longer than the
s4.label permitted number of characters will be truncated.

rs.label As above, the long and short names for the read strobe
notMemRd.

ws.label As above, the long and short names for the read strobe
notMemWrB.

s1.duration o to 31 Tm periods. The 81 strobe goes low at the start of
Tstate 2. This parameters defines the number of Tm periods
before it goes high.

s2.duration, oto 31 Tm periods. The 82 to 84 strobes all go high at the
s3.duration, end of Tstate 5. These parameters define the number of Tm
s4.duration periods before each strobe goes low.

refresh.period 18,36,54, 72 orthe string "Disabled". This parameter defines
the period between refresh cycles as a count of Clockln
cycles.

write.mode String value either: "Early" or "Late". Defines the write mode.

wait. connection 82, S3, 84 or a value in the range 0 to 60. This parameter
connects MemWait to one of the strobes 82, 83, 84 or to
simulated external wait state generator.

Table 6.7 Memory Configuration file statements

_18_4 Eii.P~ _

7 ieprom - ROM program
convertor

This chapter describes the EPROM hex tool ieprom. This tool is used to convert a
ROM-bootable file into one or more files suitable for programming an EPROM.

The chapter describes how to invoke ieprom and gives details of the command line
syntax. It describes the control file which the tool accepts as input and provides back
ground information on the layout of the code in the EPROM. A description of the various
file formats which may be output by the tool is given, including block mode where the
output is split up over a number of files. The chapter ends with a list of error messages
which may be generated by the tool.

7.1 Introduction

The SGS-THOMSON EPROM software is designed so that programs which have been
developed and tested as boot-from-link programs, using the toolset may be placed in
ROM with only minor modification (see below).

This has the advantages that an application need not be committed to ROM until it is fully
debugged and the actual production of the ROMs can be done relatively late in the devel
opment cycle without the fear of introducing new problems.

If a network of transputers is being used, only the root transputer needs to be booted
from ROM; once this has been booted it will boot its neighbors by link.

Figure 7.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root transputer.

ROM Boot from link Boot from link

Figure 7.1 Loading a network from ROM

Some 32 bit transputers have a configurable external memory interface. For these trans
puters a memory configuration file may be created and put into ROM together with the

----------l.TiP~Jt 1_8_5

7.2 Prerequisites to using the ieprom tool

application. A description of memory configuration files and how to create them is given
in Chapter 6 (T4fT8-series) and Chapter 14 (ST20 and T450).

7.2 Prerequisites to using the ieprom tool

For an application file to be suitable for programming into ROM it must have been confi
gured to be booted from ROM rather than booted from link. This selection is made by
specifying the appropriate command line option when using the configurer and collector
tools (see the relevant chapters of this manual). It is also essential that all C programs,
including those targeted at a single processor, are configured. C programs prepared with
the icollect 'T' option are not in a format suitable for ieprom.

7.3 Running ieprom

ieprom takes as input a control file and outputs one or more files which may be put into
ROM by an EPROM programmer.

The control file, in text format, specifies the root transputer type, the name of the boot
able file containing the application, the memory configuration file (if one is being used),
the amount of space available in the EPROM, and the format that the output is to take.
Available output formats are: binary, hex dump, Intel, Extended Intel, or Motorola S-Re
cord format.

The ieprom tool is invoked by the following command line:

~ ieprom filename {options}

where: filename is the name of the control file.

options is a list of options from Table 7.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1 .2 for details.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description
I Selects verbose mode. In this mode the user will receive status information about

what the tool is doing during its operation. for example reading or writing to a file.

R Directs ieprom to display the absolute address of the code reference point. This
address can be used to locate within the memory map created by the icollect
'p' option.

Table 7.1 ieprom command line options

_18_6 Eii._---------

7 ieprom - ROM program convertor

The operation of ieprom in terms of standard file extensions is shown below.

7.3.1 Examples of use

ieprom may be invoked in verbose mode by using the following command:

ieprom -i mycontrol.epr

7.4 ieprom control file

The control file is a standard text file, prepared with an editor; it consists of comments
and statements. A comment is any blank line or any text following the comment marker
'-'. Comments are ignored by the ieprom tool.

Statements are all other lines within the file. They may be in any order, except that the
four statements defining a block must immediately follow the statement
'output.block' (see table 7.3). Statements may be interspersed with comments.

Individual statements are constructed of a keyword and an associated parameter. These
must be separated by at least one space or tab but extra spaces may be inserted before,
between, or after them for aesthetic purposes. The statements are listed, along with their
parameters, in tables 7.2 to 7.4.

Examples of control file contents are given in section 7.8.

The statements in table 7.2 are used to specify the contents of the EPROM: the
processor type, the source of the data (code and memory configuration) to be placed
in the EPROM, and the total size of EPROM memory.

----------liii 1_8_7

7.4 ieprom control file

Statement Parameter/Description

root.processor.type type

This statement specifies the processor type. The processor type
can be specified in full (e.g. T400), or one of the following classes
can be specified:

T2: 16 bit processor (M212, T212, T222, T225)

T4: 32 bit processor (T400, T414, T425)

T8: 32 bit processor with FPU (T800, T801, T805)

T4 50: 32 bit processor (ST20450)

See appendix B for a full list of valid processor types.

This statement must be present as the first line in the control file.

bootab1e.fi1e filename

This statement specifies the file that contains the output of
ico11ect, usually the application plus its ROM loader(s).

This statement must be present in the control file.

memory. configuration filename

This statement specifies a T4rr8 memory configuration file to be
included in the EPROM image. This file is a standard memory
configuration description (see chapter 6 for details).

This statement is optional. If absent from the control file then no
memory configuration will be inserted in the output file.

eprom.space hex number

This statement specifies the size of the EPROM memory space in
bytes. This space may actually contain several physical devices.

This statement mustbe present in the control file.

Table 7.2 Specifying the EPROM contents

The statements in table 7.3 specify the output to be produced: the format of the data and
whether the data is to be placed in a single file or split into blocks.

_18_8 J:;i.~ _

7 ieprom • ROM program convertor

Statement Parameter/Description

output. format hex I intell extintel Isrecord I binary

This statement specifies the output file format as being one of: plain ASCII hex,
Intel hex, extended Intel hex, Motorola S-record or binary format resPectively.
These output formats are explained in section 7.6.

This statement is optional. If absent from the control file then the default output
is hex.

output. all filename

output.block filename

These statements are used to specify the type of output and the output filename.
By convention the following file extensions should be used:

.hex Hexadecimal

.bin Binary

.ihx Intel formats

.mot Motorola format

output.all means that all of the image is to be output to one file.

output •block specifies that a block ofdata is to be output to the specified file.
It must be followed by the four statements that define the block; these are
detailed in table 7.4.

The control file must contain one output.all statement, or one or more
output.blockstatements.

Table 7.3 Specifying the output format

Table 7.4 lists the statements used to define each output block. One of each of these
statements must follow each output. block statement.

__________ Iiii.~mI- - __1_8_9

7.5 What goes into the EPROM

Statement Parameter/Description

start. offset hex number

This statement specifies the address of the start of the block, as a byte offset
into the EPROM space.

end. offset hex number

This statement specifies the address of the end of the block, as a byte offset
into the EPROM space.

byte. select byte Jist I all

This statement is followed by either a list of byte numbers (separated by &),
or the keyword all. It specifies which bytes in a word are to be output in this
block. The byte numbers can be 0, 1, 2 and 3 for 32 bit processors; or 0 and
1 for 16 bit processors.

output. address hex number

This statement specifies the byte address, in the EPROM programmer's
memory map, at which the block is to be output.

Table 7.4 Output block specification

7.5 What goes into the EPROM

This section describes the contents of the EPROM, the reasons behind the code layout
and the function of those components inserted by ieprom.

The contents of the EPROM includes the bootable file, traceback data and jump instruc
tions to enable the processor to find the start of the bootable file. Should the user define
the memory configuration this information will also be placed in the EPROM. The
general layout of the code in the EPROM is shown in figure 7.2.

7.5.1 Memory configuration data

Memory configuration data, when present, is placed immediately below the top word of
the EPROM. The top word holds the first instructions to be executed if the transputer is
booting from ROM.

If the processor has a configurable memory interface it will scan the memory configura
tion data held on the EPROM, before executing the first instructions. If a standard
memory configuration is being used there should be no memory configuration data
present and the processor will ignore this section of the EPROM.

_19_0 /iii~ ---------

7 ieprom - ROM program convertor

Address (T41T8) Address (T2)

#7FFA

#7FFE

#7FFFFF68

#7FFFFFFE

rincreasing address

jump to bounce f-+

data from memory
configuration file
(T4, T8 and ST20450
only)

"bounce jump ~

content of bootable
file minus icollect
comment bootstrap

.- "-
traceback information

empty

Figure 7.2 Layout of code in EPROM

7.5.2 Parity registers

The T426 has the ParityErrorReg and ParityErrorAddressReg mapped into the two
words immediately below the memory configuration data (addresses #7FFFFF64 and
#7FFFFF6 8). The EPROM tool needs to know that it must avoid these addresses on the
T426 and so the processor type must be given explicitly in the root.processor.type
statement.

7.5.3 Jump instructions

The first instruction executed by the processor when booting from EPROM, is located
at mostpositive integer-1: this is #7FFFFFFE for 32-bit machines and #7FFE for 16-bit
machines. The first two instructions cause a backwards jump to be made, with a distance
of up to 256 bytes; however, since most applications are larger than 256 bytes it is neces
sary for ieprom to insert a 'bounce' jump back to the start of the boatable file.

----------lifi. 1_9_1

7.6 ieprom output files

7.5.4 Bootable file

The boatable file will have been produced by the collector tool icollect, using a boot
from ROM loader. The comment bootstrap, containing traceback information originally
added to this file by icollect, is stripped off by ieprom.

The boatable file is placed in the EPROM such that the start of the file is placed at the
lowest address, with the rest of the file being loaded in increasing address locations. The
end of the file is placed immediately below the bounce jump instruction, which points to
the start of the bootable file.

7.5.5 Traceback information

ieprom creates its own traceback information consisting of the name of the control file
and the time at which ieprom ran. This information is placed below the start of the boot
able file. Note: at present this information is not used by any of the tools.

7.6 ieprom output files

The tool can produce output in a form readable by the user or in a form readable by
EPROM programming devices. The following formats are supported:

• Binary output

• Hex dump

• Intel hex format

• Intel extended hex format

• Motorola S-record format

Whichever form is used, it is sometimes necessary to output the data in separate blocks.
Block mode operation is discussed in section 7.7.

Note: there is no output for unused areas of the EPROM. If the buffer in the EPROM
programmer is not initialized before loading the files produced by this program into it,
unused areas of the EPROM will be filled with random data. Although the operation of
the bootstrap code and loader programs will not be affected by the presence of random
data, these areas of the EPROM cannot SUbsequently be programmed without erasing
the whole device.

7.6.1 Binary output

This file is in binary format and simply contains all bytes output. There is no additional
information such as address or checksums.

7.6.2 Hex dump

This simple format is intended to be used to check the output from the program. The
dump consists of rows of 16 bytes each, prefixed by the address of the first byte of each

_19_2 £ii.fi~ ---------

7 ieprom - ROM program convertor

row. The format contains no characters other than the hexadecimal digits, the space
character and newlines.

7.6.3 Intel hex format

This is a commonly used protocol for EPROM programming equipment. A sequence of
data records is sent. Each record contains a few bytes of information, a start address
and a checksum. In addition, a special record marks the end of a transmission. Since
the format only supports 16-bit addresses, any longer addresses will generate an error
message. Records produced by this program contain at most 32 bytes each.

7.6.4 Intel extended hex format

This format, also known as Intel 86 format, is similar to Intel hex, but adds another type
of record. The new type 02 record is used to specifyaddresses of more than 16 bits. The
type 02 record contains a 16-bit field giving a segment base offset. This value is shifted
left four places and added to subsequent addresses. This mimics the operation of the
segment registers on the Intel 8086 range of microprocessors. The segment base offset
value persists until the next type 02 record occurs. This format therefore allows
addresses up to 20 bits in length. Again, longer addresses will generate an error
message. The program minimizes the number of type 02 records inserted in its output.

7.6.5 Motorola S-record format

This format is another well known industry standard; it consists of a header record, data
records, and finally an image end record. The advantage of th is format is that, by the use
of different data record types, it can support 16, 24, or 32 bit addresses. This program
uses whichever data record type is necessary.

7.7 Block mode

Block mode is a term used to describe the output from ieprom, when more than one
output file is produced. The user defines how the data is to be split between files using
control file statements (see table 7.4).

7.7.1 Memory organization

In order to understand the ideas behind block mode operation it is helpful to understand
the way memory is organized in a 16 or 32 bit transputer.

In general, a transputer with a 32 bit data bus will expect to read from memory in 32 bit
words; the addresses of these words will be on word boundaries (Le. the address will
always be divisible by 4, the two least significant bits will be 0). EPROM devices,
however, are usually 8 bits wide, and so it is necessary to have 4 EPROMs side by side
to make up the 32 bit width. These 4 devices are addressed as bytes 0to 3. The two least
significant bits of an address (the 'byte selector') give the byte numbers.

---------liii~ 19_3

7.8 Example control files

Similarly a 16 bit transputer will expect to read from memory in 16 bit words. The address
of each word will always be divisible by 2. The two EPROM devices required to make
up the 16 bit width will be addressed as bytes 0 and 1. In this case the least significant
bit of an address indicates the byte being accessed.

7.7.2 When to use block mode

Block mode has three uses:

• When the EPROM programmer being used is unable to split the input data into
bytes, in order to program separate byte wide devices.

• When the EPROM programmer has insufficient memory to hold the entire image.

• When it is necessary, for some reason, to load the program to a different address
in the EPROM programmer to that which it will occupy in the EPROM space.

7.7.3 How to use block mode

When block mode is to be used, the user must first decide on the blocks to be output.
For each block an output. block statement must be specified in the control file. Each
output. block statement must be followed by the four statements:

start.offset
end. offset
byte. select
output. address

ieprom will scan the entire image and output those bytes that have an EPROM space
address between start. offset and end. offset and whose byte address matches
the byte. select value. It will output this data to contiguous addresses starting at
output. addres s.

Note: if the image does not occupy all of the EPROM space then there may be some
space at output. address before the data starts.

7.8 Example control files

7.8.1 Simple output

For this example the application is in the file bootable.btr, there is no memory config
uration, there is 128 kbytes of EPROM, and the EPROM programmer can take all of the
code as one file.

-- EPROM description file for example 1
root.processor.type T4
bootable.file bootable.btr
eprom.space 20000
output. format srecord
output. all image.mot

_19_4 lFii.P~~ _

7 ieprom - ROM program convertor

7.8.2 Using block mode

In this example the application is in embedded.btr, there is a memory configuration
in fastsram. mem, there are 16 kbytes of EPROM and the data is to be split into four
blocks of 4k EPROMs to be programmed at locations 0000, 1000,2000, and 3000 in the
EPROM programmer's memory.

-- EPROM description file example 2

root.processor.type T8
bootable.file embedded.btr
memory.configuration fastsram.mem
eprom.space 4000
output. format intel

output.block
start. offset
end. offset
byte. select
output. address

output. block
start. offset
end. offset
byte. select
output. address

output. block
start. offset
end. offset
byte. select
output. address

output. block
start. offset
end. offset
byte. select
output. address

partl.ihx
0000
3FFF
o
0000

part2.ihx
0000
3FFF
1
1000

part3.ihx
0000
3FFF
2
2000

part4.ihx
0000
3FFF
3
3000

7.9 Error and warning messages

The following is a list of error and warning messages the tool can produce:

Command line parsing error

This indicates that a command line option has been specified that the tool does
not recognize.

Control file error

This message will be received whenever an error is found in the format of the
control file. A self explanatory message will be appended, giving details of what
the tool expects the format to be.

----------liii. 1_9_5

7.9 Error and warning messages

No input file specified

This indicates that when trying to invoke the tool the user has not specified a
control file to use as input.

Unable to open bootable file 'filename'

The boatable file specified in the control file cannot be found. Check the spelling
of the filename and/or that the file is present.

Unable to open configuration file 'filename'

The memory configuration file specified in the control file cannot be found. Check
the spelling of the filename and/or that the file is present.

Unable to open control file 'filename'

The control file specified cannot be found. Check the spelling of the filename
and/or that the file is present.

Unable to open output file 'filename'

An output filename has been specified incorrectly. Check the format of the file
name.

_19_6 ~~ _

8 ilaunch - Windows launch tool

The purpose of the Windows launch tool is to edit (from Microsoft Windows) the contents
of the Windows environment file and enable the running of Windows tools from a DOS
window.

The application loader irun uses the parameters described in Chapter 15. On PC
systems using Windows, these parameters may be held either in DOS environment
variables or in a Windows environment file. The Windows launch tool ilaunch is used
to edit the Windows environment file. If ilaunch is running, then irun and other
Windows tools may be run by entering a command in a DOS window. ilaunch may only
be used with Windows.

The launch tool can be made to start automatically by placing it in the Program Manag
er's StartUp group; see your Windows User Manual for details. The launch tool will then
appear as an icon at the bottom of the screen, and a double click on this icon will open
the window shown in Figure 8.1.

[ENVIRONMENT]

ISEARCH = C:\TOOLSET\LIBS\
ASERVDB = C:\TOOLSET\ASERVDB
TRANSPUTER = bOOB

Figure 8.1 ilaunch window

The text displayed is the content of the Windows environment file. With the ilaunch
window selected, the text in the Windows environment file may be edited using the
mouse, cursor keys and scroll bars.

To apply any edits made, click on the Apply button. To revert to the last saved version
click on the Cancel button.

__________ /fii._t1---------1-9-7

8.1 The Windows environment file

8.1 The Windows environment file

The Windows environment file is a text file holding the values of certain parameters used
by irun and other Windows-based tools. It is divided into sections by section headings
in square brackets ([]) such as [ENVIRONMENT]. The order of the entries within each
section is not significant. The values given in the Windows environment file override any
environment variables of the same name and may be overridden by command line
options.

The Windows environment file may be used to hold any values used by the tools,
including the following values:

ISEARCH. This is the search path used by some tools. Each directory pathname
must be terminated with a backslash (\). Directory pathnames may be sepa
rated by semicolons (;) or spaces. Any definition of ISEARCH must appear in
the ENVIRONMENT section.

ASERVDB. This is the pathname of the AServer database file used to define
resources, Le. target connections and host AServer services. Any definition of
ASERVDB must appear in the ENVIRONMENT section.

TRANSPUTER. This is the resource name of the target connection to be used.
The resource must be defined in the AServer database. Any definition of
TRANSPUTER must appear in the ENVIRONMENT section.

Values to be passed to the application running on the target. Any such values
must appear in the ENVIRONMENT section. Any value defined in the ENVIRON
MENT section may be read by an ANSI C application using the getenv function.
Values not defined in the ENVIRONMENT section may be read from DOS environ
ment variables defined before Windows was started.

8.1.1 Syntax

The Windows environment file consists of a number of lines. Each line may be an
assignment statement, a section heading, a comment or blank.

Section heading

The syntax of a section heading line is:

[section_name]

The lines following a section heading up to the next section heading or the end of the
file are in the section. All sections are ignored by the tools except the ENVIRONMENT
section.

Assignment

The syntax of an assignment statement is:

variable_name = value

_19_8 li;i&~ _

8 ilaunch - Windows launch tool

Only one assignment statement may be given for anyone variable.

The contents of the Windows environment file are not case sensitive, so any name may
be typed in any combination of upper and lower case. White space (such as space
characters and tab characters) between the components of a line are ignored.

Comment

A comment is any line that begins with a semi-eolon (;). For example:

; This is a comment

----------liii.~: 1_99_

8.1 The Windows environment file

_2_00 E;i..L~ -----------

9 ilibr - librarian

This chapter describes the librarian tool ilibr that integrates a group of compiled code
files into a single unit that can be referenced by a program. The chapter begins by
describing the command line syntax, goes on to describe some aspects of toolset
libraries, and ends with some hints about how to build efficient libraries from separate
modules.

9.1 Introduction

The librarian builds libraries from one or more separately compiled units supplied as
input files. The input files may be any of the following types:

• Compiled object code files produced by the SGS-THOMSON compilers:

- oc (OCcam 2 compiler),

- icc (ANSI C compiler),

• Library files already generated by ilibr (see section 9.2.4).

• Linked object files (see section 9.2.3).

The input files for one library must all be of the same type.

The librarian takes a list of compiled files in TCOFF format and integrates them into a
single object file that can be used by a program or program module. Each module in the
input list becomes a selectively loadable module in the library. Input files can either be
specified as a list on the command line or in indirect files.

The library, once built, will contain an index followed by the concatenated modules. The
index is generated and sorted by the librarian to facilitate rapid access of the library
content by the other tools in the toolset, for example, the linker.

Compiled object files (excluding library files) may be concatenated for convenience
before using the librarian. This may prove useful when dealing with a large number of
input files.

The operation of the librarian in terms of standard file extensions is shown below.

o
~-ili-br~G

8 -'
.Iku ,<Ib~'.

, '

----------liii._~ 2_o_1

9.2 Running the librarian

9.2 Running the librarian

To invoke the librarian use the following command line:

~ i1ibr filenames {options}

where: filenames is a list of input files separated by spaces.

options is a list of one or more options from Table 9.1 .

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options may be supplied in an indirect argument file, prefixed by '@', (see
section A.1.2 for details) but must not appear within library indirect files, see
section 9.2.2.

Options must be separated by spaces.

The number of file names allowed on a command line is system dependent. To avoid
overflow, an indirect file may be used or files (other than library files) may be concate
nated. It is the user's responsibility to ensure that the concatenation process does not
corrupt the modules, for example by omitting to specify that the concatenation is to be
done in binary mode.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

F filename Specifies a library indirect file.

I Displays progress information as the library is built.

o filename Specifies an output file. If no output file is specified the name is taken from the first
input file and a .lib extension is added.

Table 9.1 i1ibr command line options

Example

i1ibr myprog.t4x myprog.t8x

In this example, the compiled object code files myprog. t4x and myprog. t8x
(compiled for T4 and T8 transputers respectively) are used to create a library. Because
no output file name is specified on the command line, the library will be given the name
myprog .1ib.

(Note: the extensions in this example adopt the imakef file naming conventions which
indicate transputer target and error mode etc. This is not required but has been done

_2_02 £ii.- -----------

9 ilibr - librarian

for demonstration purposes. For further details see the appendix covering toolset
conventions).

9.2.1 Default command line

A set of default command line options can be defined for the tool using the ILIBRARG
environment variable. Options must be specified in the variable using the syntax
required by the command line. Options from an environment variable are processed
before other options.

9.2.2 Library indirect files

Library indirect files are text files that contain lists of input files, directives to the librarian,
and comments. Filenames and directives must appear on different lines. Comments
must be preceded by the double dash character sequence '--', which causes the rest
of the line to be ignored. By convention indirect files are given the .lbb extension.

Indirect files may be nested within each other, to any level. This is achieved by using the
#INCLUDE directive. By convention nested indirect files are also given the extension
.lbb.

The following is an example of an indirect file:

-- user's .lbb file

userprocl .. tco
userproc2 .. tco
userproc3.tco
myconcat.tco
#INCLUDE indirect.lbb
userproc4.tco

single modules

-- concatenation of modules
-- another indirect file
-- another single module

The contents of a nested indirect file will effectively be expanded at the position it
occurred.

To specify indirect files on the command line each indirect filename must be preceded
by the 'F' option.

9.2.3 Linked object input files

The librarian will also accept linked object files as input, with certain conditions. The
facility to create libraries of linked modules provides an easy method of specifying input
to the configurer. Such library files should only be referenced from a configuration
description.

The librarian will generate an error if an attempt is made to include both linked units and
compiled modules in a single library. In addition, libraries of linked object modules must
not be used as input to the linker ilink. This is because the linker does not accept
linked units as input files.

_________ EiiBmrRI 2_O_3

9.3 Library modules

9.2.4 Library files as input

Library files can themselves be used as input files to i1ibr. When a library file is used
as a component of a new library, its index is discarded by i1ibr.

Library files may not be concatenated for input to the librarian.

9.3 Library modules

Libraries are made up of one or more selectively loadable modules. A module is the
smallest unit of a library that can be loaded separately. Modules are selected via the
library index.

9.3.1 Selective loading

Libraries can contain the same routines compiled for different transputer types and (for
occam modules) in different error modes.

Selection of library modules for linking in with the program is made on the basis of target
processor type and error mode. For example, if the program is compiled for an IMS T425
only modules compiled for this processor type or for processors in a compatible trans
puter class are loaded. For languages such as C the error mode is always UNIVERSAL.

For C modules the linker selects the library modules best suited to the compilation units.
For occam the compiler identifies the modules to be selected according to the require
ments of the main program. The linker then makes the selection.

The linker also selects library modules for linking on the basis of usage. Only those
modules that are actually used by the program are linked into the program.

9.3.2 How the librarian sorts the library index

The librarian creates a library index which is used by the linker to select the required
modules. The librarian sorts the index so that for a given processor type, the optimum
module is always selected by the linker.

The librarian compares and sorts modules according to a number of factors including
attributes set by the compiler options used. These determine for example, the instruction
set of the module and influence run-time execution times.

For example, where two library modules were derived from the same source but
compiled for classes TA and T8, the librarian would place the T8 module first because
it uses a larger instruction set. Modules compiled with the occam 2 compiler's 'y' option
are placed earlier in the index than occam modules compiled without the 'y' option. This
is because the 'y' option causes transputer instructions to be used for channel input!
output instead of calls to library routines, and thus results in faster code execution. The
librarian orders the index entries such that the first valid entry is always the 'best choice'.
If two entries are found to be identical the librarian will issue a warning.

_20_4 1iii. _

9 ilibr - librarian

9.4 Library usage files

Library usage files describe the dependencies of a library on other libraries or separately
compiled code. They consist of a list of separately compiled units or libraries referenced
within a particular library. The .liu files required by the toolset's libraries are supplied
with the toolset.

If the imakef tool is used then library usage files should be created for all libraries that
are supplied without source. This is to enable the imakef tool to generate the necessary
commands for linking. Library usage files are text files. They may be created for a
specific library by invoking the imakef tool and specifying a .1iu target. See section
12.5.

Such files are given the same name as the library file to which they relate but with an
.liu extension.

9.5 Building libraries

This section describes the rules that govern the construction of libraries and contains
some hints for building and optimizing libraries.

9.5.1 Rules for constructing libraries

Routines of the same name in a library must be compiled for different transputer
types, error modes or debug attributes.

2 Routines of the same name in a library which will be read by an occam compiler
#USE directive must have the same interface Le. result type and parameter list,
and should have the same functionality.

3 Libraries that contain modules compiled for a transputer class (Le. TA or TB) are
treated as though they contain a copy for each member of the class (using the
subset of instructions which are common).

4 Libraries that contain modules compiled in UNIVERSAL mode are treated as
though they contain a copy for each of the two error modes HALT and STOP.

5 Libraries that contain occam modules compiled without the 'y' option are
treated as though they also contain a copy with the 'y' option. (When the 'y'
option is not used for compiling occam code files, channel input/output is
performed via library calls, if the 'y' option is used then transputer instructions
are used for channel input/output).

9.5.2 General hints for building libraries

Routines that are likely to be used together in a program or procedure (such as routines
for accessing the file system) can be incorporated into the same library. At a lower level,

----------l.Tl&~ 2_0_5

9.5 Building libraries

routines that will always be used together (such as those for opening and closing files)
can be incorporated into the same module.

Libraries can contain the same routines compiled for different transputer types, in
different error modes and with different input/output access to channels. Only those
modules actually used by the program are incorporated by the compiler and linked in by
the linker.

Where possible compile library input files with debugging enabled. This enables the
debugger to locate the library source if an error occurs inside the library.

When building C libraries care should be taken if the 'FS' or 'Fe' C compiler command
line options are used, that code compatibility is maintained.

9.5.3 Optimizing libraries

It is possible for the user to optimize the size and content of any libraries which he builds
himself, to target appropriate processors, improve the speed of code execution and to
provide the best code for a given processor. At the same time is can be desirable to build
libraries which are flexible Le. support different transputer targets.

All libraries

Points to consider when constructing libraries in any language or mixture of languages:

• Whether the library is to be targeted at one or two specific processors or a wide
range of processors. The transputer type specified forthe compilation of a library
module determines the instruction set used. Transputer classes TA and TB
provide the basic instruction sets common to several transputer types. Trans
puter classes such as the T5 provide extended instruction sets but are targetted
at fewer transputers than classes TA and TB.

• For floating point operations, classes T5 and TB provide better code and there
fore better execution times than class TA.

• Whether the versatility of the library should be reduced in order to create a
smaller library.

Libraries containing occam modules

When building libraries which include modules written in occam the same consider
ations apply, but also note the following:

• The error mode used will affect the size of the library. A library created from
modules compiled in UNIVERSAL mode will behave as if it contains a copy of
the code for both HALT and STOP mode. Also, on the current range of trans
puters, code compiled in HALT mode will tend to execute faster than if it is
compiled in STOP or UNIVERSAL error modes.

_20_6 lii _

9 ilibr - librarian

• For libraries containing modules where the method of channel input/output may
be altered, (such as in OCCam), both the availability of the interactive debugging
facility and the speed at which the code will be executed may be affected.

By default the compiler will implement channel input/output via library calls.
When the occam compiler 'y' option is used, transputer instructions are used
for channel input/output. This leads to faster execution times.

A side effect of the occam compiler's 'y' option is that it disables the 'software
virtual routing' facilities of the configurer. If the debugging processes require the
'software virtual routing' facilities of the configurer then using the compiler 'y'
option will disable interactive debugging.

Code which is compiled to use library calls for channel i/o can be called by code
compiled to use either library calls or transputer instructions for channel i/o. The
opposite case is not true, therefore, in order to build a library which is flexible in
this respect, code should be compiled to use library calls.

For a detailed description of transputer types and error modes, see appendix B.

Outlined below are three different approaches to optimization. The first approach
provides the greatest level of flexibility in its application. The experienced user may
refine these guidelines to specific requirements.

Semi-optimized library build targeted at all processor types

This is the simplest way to build a flexible library that covers the full range of processors
supported by this toolset.

The user should compile each module separately for the following four cases and incor
porate all four versions into the library.

Processor type/class Error mode Method of channel 1/0

ST20 or T450 UNIVERSAL Via library calls

T2 UNIVERSAL Via library calls

TA UNIVERSAL Via library calls.

Ta UNIVERSAL Via library calls.

Notes: Error mode and channel i/o only apply only to modules which employ them e.g. occam modules
compiled by oe.

The resulting library will be small in terms of the number of modules it will contain. Due
to their generic nature the modules themselves may be bulky and because they contain
only the base set of instructions, the execution time for the program will tend to be slower
than a more optimized approach.

Optimized library targeted at all processor types

In order to build a library which is both generalized enough to work for all 32-bit proces
sors and is then optimized for modules which require extended instructions sets the
following approach is recommended:

---------IF;iP~JI&O~ 2_0_7

9.5 Building libraries

Compile all modules for classes TA, T8 and T450 (or ST20). This will provide
modules which can be run on all 32-bit processors.

2 If any of the modules perform floating point operations, compile these modules
for class TB as well.

For 16-bit transputers it should be sufficient to compile all modules for class T2.

Library build targeted at specific processor types

This method of building a library will limit the use of the library modules to specific
processor types and error modes. It is recommended as the simplest strategy to use
when the following options are known for each module:

• Target processor type.

• Error mode of modules, if any, (Le. HALT, STOP or UNIVERSAL).

• Method of channel input/output, if any.

All modules to be included in the library must be compiled for each target processor type
required and, if appropriate, for the same error mode and method of channel input/
output. The resulting library may be large and contain a certain amount of duplication.

For example, for the following options:

• T425 and T805 processor types

• HALT error mode

• channel input/output via library calls

each module should be compiled for the following:

Processor type/class Error mode Method of channel UO

T425 HALT Via library calls

T80S HALT Via library calls.

Note: Error mode and channel i/o only apply only to modules which employ them e.g. occam modules
compiled by 00.

_20_8 /iiiEt'JIaCI----------

9 ilibr - librarian

9.6 Error Messages

This section lists each error and warning message which may be generated by the
librarian. Messages are in the standard toolset format which is explained in appendix A.

9.6.1 Information messages

filename • Previous"Aio failed" message related to file

An "Aio failed"error has been reported. This message identifies the file that was
being read/written at the time of the failure.

9.6.2 Warning messages

filename - bad format: symbol symbol mUltiply exported

An identical symbol has occurred in the same file. There are three possibilities:

The same file has been specified twice.

The file was a library where previous warnings have been ignored.

A module in the file has been incorrectly generated.

filename1 - bad format: symbol symbol also exported by filename2

An identical symbol has occurred in more than one module. If the linker requires
this symbol, it will never load the second module.

9.6.3 Serious errors

filename - Cannot mix linked and linkable files

The librarian is capable of creating libraries from compiled modules or linked
units, but it is illegal to attempt to create a library from both.

filename - Could not open for reading
filename - Could not open for writing

The named file could not be found/opened for reading/writing.

filename -line number- Unrecognised directive directive

An unrecognized directive has been found in an indirect file.

filename 1 -line number - Could not open filename2 for reading

The file specified in an INCLUDE directive in an indirect file could not be opened.

----------Ii;i.&t!I_~ 2_0_9

9.6 Error Messages

filename - bad format: directive outside module
filename - bad format: not a TCOFF file
filename - bad format: multiple descriptors for symbol
filename - bad format: unexpected end of file
filename - bad format: unknown expression type
filename - bad format: unmatched end module

These errors are not expected during normal operation. They should only
appear if an invalid module is specified to the librarian, or a non-user option has
been used incorrectly.

Aio failed: Failed memory allocation
Aio failed: Read failed
Aio failed: Unexpected end of input
Aio failed: Write failed

Failure reported via a low level library routine. These errors will be followed by
an Information message to identify the file which caused the error.

Command line error token

An unrecognized token was found on the command line.

Could not open aio handle

An internal error has occurred which should never be reported during normal
operation.

Internal errors should be reported to your local SGS-THOMSON distributor or
field applications engineer.

9.6.4 Fatal errors

filename - Unable to set file buffer
Aio failed: Invalid abstract i/o handle, NULL or missing installed values
Aio failed: Invalid character in record format
Aio failed: Invalid parameter value
Aio failed: Tell failed
Aio failed: Unexpected read of an 8 byte TCOFF integer

An internal error has occurred which should never be reported during normal
operation.

Internal errors should be reported to your local SGS-THOMSON distributor or
field applications engineer.

_21_0 lii~ _

10 ilink - linker

This chapter describes the linker tool ilink which combines a number of compiled
modules and libraries into a linked object file. The chapter begins with a short introduc
tion to the linker, explains the command line syntax and goes on to describe linker indi
rect files and the main linker options. The chapter ends with a list of linker messages.

10.1 Introduction

The linker links a number of compiled modules and library files into a single linked object
file (known as a linked unit), resolving all external references. The linker may be used
to link object files produced by the ANSI C compiler icc and the occam 2 compiler oc.
Code produced by the linker can be used as input to the configurer and collector tools
to produce a bootable code file.

The linker can be driven directly from the command line or indirectly from a linker indirect
file. This is a text file which contains a list of files to be linked, together with directives
to the linker.

The linker is designed to accept input files in the Transputer Common ClJject Ale Format
(TCOFF) supported by this release of the toolset. The linker is a 'compacting' linker Le.
it will accept compactable input generated by the compiler and calculate the optimum
size of some instructions. This enables the linker to produce smaller and faster code
than is possible with non-eompactable input, leading to faster execution times for
applications. For compatibility with previous toolsets the linker will still accept non
compactable input and generate non-eompacted output, although this facility may not
be supported by future toolset releases. The linker automatically recognizes whether
the input is compactable or non-eompactable.

The operation of the linker in terms of standard toolset file extensions is shown below.

----------l.Ti.P~..: 2_1_1

10.2 Running the linker

10.2 Running the linker

To invoke the linker use the following command line:

~ ilink [filenames] {options}

where: filenames is a list of compiled files or library files.

options is a list of the options given in Table 10.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options may be supplied in an indirect argument file, prefixed by '@', (see
section A.1.2 for details) but must not appear within linker indirect files, see
section 10.3.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

If an error occurs during the linking operation no output files are produced.

Examples of use:

icc -st20 hello.c
ilink -st20 hello. teo -f estartup.Ink
icconf hello.cfs
icollect hello.cfb

icc -t450 hello.c
ilink -t4S0 hello. teo -f estartup.lnk
icconf hello.cfs
icollect hello.cfb

icc -tB05 hello.c
ilink -taos hello. teo -f cstartup.lnk
icconf hello.cfs
icollect hello.cfb

In the above examples, acompiled C file is linked for a specific target, using the standard
C startup linker indirect file cstartup •Ink. The examples also shows the steps for
compiling, configuring and collecting.

_21_2 lFii _

10 ilink - linker

Option Description
Transputer type See appendix 8 for a list of options to specify transputer type.

EX Allows the extraction of modules without linking them. See section 10.5.3.

F filename Specifies a linker indirect file.

H Generates the linked unit in HALT mode. This is the default mode for the linker
and may be omitted for HALT mode programs. This option is mutually exclusive
with the's' option.

I Displays progress information as the linking proceeds.

KB memorysize Specifies virtual memory required in Kilobytes.

ME entryname Specifies the name of the main entry point of the program and is equivalent to
the #mainentry linker directive (See 10.4.4).

MO filename Generates a module information file with the specified name, see section 10.7.
Note: if this file is to be used as input to i.map, it must be given an extension
of the form: •dxx. The characters'Ja'are determined by the 2nd and 3rd char-
acters of the extension given to the linker object file. For example if the linker
object file takes the default extension •1ku, the information file is given the
extension •dku.

NS Prevents the linker including a symbol table in the linked unit. The linked unit
will be smaller, however, the functionality/efficiency ofthe INQUEST debugging
and profiling tools may be impaired if used with the linked unit. See section
10.5.8.

o filename Specifies an output file.

s Generates the linked unit in STOP mode. This option is mutually exclusive with
the 'H' option.

T Specifies that the output is to be generated in TCOFF format. This format is the
default format.

u Allows unresolved references.

x Generates the linked unit in UNIVERSAL error mode, which can be mixed with
HALT and STOP modes.

y Applies only to occam code. Disables the use of library calls for channel input!
output and instead uses transputer instructions. See section 10.5.11.

Table 10.1 ilink command line options

10.2.1 Default command line

A set of default command line options can be defined for the tool using the ILINKARG
environment variable. Options must be specified using the syntax required by the
command line. Environment options are interpreted before other arguments.

10.2.2 Output format

By default the linker outputs object files in TCOFF format. TCOFF is used by all tools
in the toolset. A command line option 'T' has the same effect but is not required.

10.3 Linker indirect files

Linker indirect files are text files containing lists of input files and commands to the linker.
Indirect files are specified on the command line using the 'F' option.

__________ Eii.BI"~wI-------_-2_1_3

10.3 Linker indirect files

Linker indirect files can contain filenames, linker directives, and comments. Filenames
and directives must be on separate lines. Comment lines are introduced by the double
dash ('-') character sequence and extend to the end of line. Comments must occupy
a single line.

Indirect files can include other indirect files.

Linker indirect files must be created for all link operations which involve the use of
imakef and C modules. For further details see section 12.4.

10.3.1 Linker indirect files supplied with the toolset

Linker indirect files supplied with the toolset are described in the 'Developing
programs...' chapter of the 'User Guide. The purpose of these files is to reference
various runtime libraries (or in the case of occam, compiler libraries) required to link
application programs. When specifying the program modules to be linked, the
appropriate linker indirect file must be included on the linker command line.

10.3.2 Linking different versions of software after occam upgrade

Because it is possible to specify the full path names of files within linker indirect files they
can be used to link different versions of the same occam routines. This may help user's
who have used third party libraries which are not supplied in source form, and who wish
to upgrade their occam toolset. Problems can occur when the toolset libraries have
been upgraded, as they will have the same names but will be different to those used by
the third party library. The linker will not link occam libraries with incompatible code.

A possible solution to this situation is to create a linker indirect file which references the
third party library and the original copy of the toolset libraries, (specifying their full path
name to differentiate them). This can then be linked with the user's program and
upgraded toolset libraries.

The following example shows how this could be done for an occam program where the
third party library clashes with the upgraded compiler libraries. Note: the example uses
a UNIX host; path names and the option flags would require changing for other hosts.
The user creates a linker indirect file, lib. Ink, containing the following:

lib.lib
original/libs/occamult.lib
original/libs/occama.lib
original/libs/virtual.lib

-- third party library
-- original compiler
-- libraries, specifying
-- the full path name

This is then linked with the user's program and the upgraded compiler libraries, which
are linked using a supplied linker indirect file, see section 10.3.1. The name takes the
form occamx• Ink. For example:

ilink -t80S userprog.tco -f occama.lnk -f lib.lnk

_21_4 liii _

10 ilink -linker

Note: this is not guaranteed to work. The upgrade may have introduced other incompat
ibilities and you are normally recommended to recompile after an upgrade.

10.4 Linker directives

The linker supports six directives which can be used to fine tune the linking operation.
Linker directives must be incorporated in indirect files (they cannot be specified on the
linker command line) and are introduced by the hash (' #') character.

The six linker directives are summarized below and described in detail in the following
sections.

Directive Description
'alias Defines a set of aliases for a symbol name.
'define Assigns an integer value to a symbol name. Not applicable to occam programs.
'include Specifies a linker indirect file.
'mainentry Defines the program main entry point.
'reference Creates a reference to a given name.
'section Defines the linking priority of a module.
Note: Symbol names are case sensitive.

10.4.1 #alias basename {aliases}

The #alias directive defines a list of aliases for a given base name. Any reference to
the alias is converted to the base name before the name is resolved or defined. For
example, if a module contains a call to routine proc_a, which does not exist, then
another routine proc_d may be given the alias proc_a in order to force the call to be
made to routine proc_d.

In the above example the reference to proc_a is considered to be resolved. Modules
may be loaded from the library for proc_d but the linker will not attempt to search for
library modules for proc_a. If a procedure called proc_a is found in any module then
an error will result as the symbol will be multiply defined.

10.4.2 #define symbolname value

The #define directive defines a symbol and gives it a value. This value must either be
an optionally signed decimal integer, or an unsigned hexadecimal integer. (If it is the
latter it must be preceded by a # sign). #define is also discussed in section 10.5.3.

Note: this directive is not applicable to occam.

- Eii.~ 2_1_5

10.4 Linker directives

10.4.3 #include filename

The #include directive allows a further linker indirect file to be specified. Linker indirect
files can be nested to any level. The following is an example of nested indirect files:

-- user's .Ink fi1e:

userprocl.tco
#mainentry proc_a
:ftinclude sub.Ink

- module
- main entry point direct~ve

- nested indirect file

-- user's sub.Ink fi1e:

userproc2.tco
userproc3.tco
userlib.lib

- further modules

- library

10.4.4 #mainentry symbolname

The #mainentry directive defines the main entry point of the program Le. the top level
function of the program. This directive is equivalent to the 'ME' command line option.
Only one main entry point may be specified. If it is omitted the linker will select the first
valid entry point in its input as a default. If there is more than one such symbol the linker
will warn that there is an ambiguity.

For C programs the supplied linker indirect startup files define the system main entry
point.

10.4.5 #reference symbolname

The #reference directive creates a forward reference to a given symbol. This allows
names to be made known to the linker in advance, or forces linking of library modules
that would otherwise be ignored. The purpose is to allow the inclusion of library initializa
tion routines which might not otherwise be included. For example:

#reference open

The above example causes open to be included in the link, whether it is needed or not.

10.4.6 #section name

The #section enables the user to define the order in which particular modules occur
in the executable code.

In order to use this directive the program modules must have been compiled using the
compiler pragma IMS_linkage (C programs) or LINKAGE (OCCam programs). Details
of the appropriate directive can be found within the compiler reference chapter of this
manual.

_21_6 l.Ti.~ _

10 ilink - linker

A compiler directive enables a section name to be associated with the code of a compila
tion module. A section name may take the default value "pri%text%base" or a name
specified by the user.

The linker will place modules associated with the section name "pri%text%base" first
in the code of the linked unit, in the order in which these modules are encountered. When
the linker directive #section is used this default condition is overridden. The modules
identified by user defined section names will be placed first in the linked module, in the
order in which the #section directives are encountered. These will be followed by any
other modules in an undefined order at the end of the linked unit.

For example:

#section first%section%name
#section second%section%name

In the above example any modules identified by first%section%name will be linked
first, followed by modules identified by second%section%name, followed by any other
modules.

10.5 Linker options

10.5.1 Processor types

A number of options are provided to enable the user to specify the target processor for
the linked object file, see appendix B. A single target processor or transputer class must
be specified and this must be compatible with the processor types or transputer class
used to compile the modules.

If any input file in the list is incompatible with the processor type in use, the link fails and
an error is reported.

10.5.2 Error modes - options H, S and x

Linked code may be generated in three error modes. For C modules, compiled using
icc, the error mode will be UNIVERSAL. occam modules, compiled by oc, may be
compiled in one of three error modes as shown in table 10.2.

Error mode Description

HALT An error halts the transputer immediately.

STOP An error stops the process and causes graceful degradation.

UNIVERSAL Modules compiled in this mode may be run in either HALT or STOP mode
depending on which mode is selected at link time.

Table 10.2 Error modes

Modules that are to be linked together must be compiled for compatible error modes.
C modules can be mixed with occam modules and occam modules compiled for

__________ A.Ti.&~ooI---------2_1_7

10.5 Linker options

different error modes may also be mixed. Table 10.3 indicates the compilation error
modes which are compatible and the possible error modes they may be linked in.

Compatible error modes ilink options

HALT, UNIVERSAL H

STOP, UNIVERSAL s

Table 10.3 ilink error modes

Note: Modules which have been compiled in UNIVERSAL error mode may be linked in
this mode using the x option. If the resulting linked unit is then processed by the
icollect tool it will be treated as if it had been linked in HALT mode.

The linker will produce an error if an input file is in a mode incompatible with the
command line options or defaults. The linker default is to create linked modules in HALT
mode unless otherwise specified.

10.5.3 Extraction of library modules - option EX

The EX option instructs the linker to extract the modules which would normally have
been linked by the ilink command, and to insert them unmodified into an output file.
When the EX option is used, the linker does not produce a linked unit as output. Instead
it outputs a concatenation of the component modules that would have made up the
linked unit. This file can then itself be used as input to either the linker or librarian. By
default the output file produced will have the extension • lku, although it is not a linked
unit. An alternative output filename and extension can be specified using the ilink 0
option.

This mechanism can be used for creating sub units for linking at a laterdate or for extrac
tion of modules from libraries.

When linking or extracting modules the linker attempts to resolve any unresolved refer
ences. The linker u option and the #reference directive are particularly useful for
controlling the extraction of unlinked modules. For non-oCCam modules the #define
directive can also be used to refine the selection of modules which are extracted. Linker
options and directives used in conjunction with the EX option do not modify the extracted
modules, they just influence the selection process.

Example: Extraction from a user library

This example demonstrates how to extract sub-parts of a previously supplied library,
which contains modules compiled for an ST20 target.

Suppose we are given a library, mylib . lib, which contains routines with entry points
start, run, clear, and stop. These routines may also call other modules which
reside in the same library, but we are not concerned about their exact names. We can
use the linker's EX option to extract a sub-library, which just contains start, run, and
stop, but does not contain clear.

_21_8 fiii._ ---------

10 ilink - linker

We do this by forcing the linker to 'find' references to start, run and stop, but leave
out clear.

Create the following linker indirect file x .lnk:

- Items wanted
#reference start
#reference stop
#reference run

- Libraries
mylib.lib

2 Use ilink to extract the required modules and place them in a named file:

ilink -st20 -f x.lnk -0 sublib.tco -ex

This command will create a file called sublib. tco which will contain all the
submodules required.

3 The librarian can then be used to create a library:

ilibr sublib.tco -0 sublib.lib

Example: Extraction from a user library, using the run-time library

The example demonstrates how to extract sub-parts of a previously supplied library
which uses the run-time library. In this example the library contains modules compiled
for a Ta05 target.

Consider the example described above, but in this case, the routines start, stop and
run have calls to the run-time library embedded inside them. We have to tell the linker
not to complain about these references, because they will be resolved later, when
sublib .lib is used.

We do the same as before, but we tell the linker not to complain about unresolved
references, by using the u command line flag:

ilink -t80S -f x.lnk -0 sublib.tco -ex -u

2 sublib. tco then be supplied to the librarian in the same way as before.

Example: Extraction from a user library, for multiple processor types

Suppose we are supplied with mylib . lib which contains the routines start, stop,
run, and clear for both T400 and TA, and that we wish to create a library sublib . lib
which contains everything except clear.

We use the same method as the first example to extract the T400 code:

ilink -f x.lnk -0 sublib.t4 -ex -t400

This command will create a file called sublib. t4 which will contain all the submodules
compiled for T400.

----------- J:;i.... 2_1_9

10.5 Linker options

2 We do the same again for TA:

ilink -f x.lnk -0 sublib.ta -ex -ta

This command will create a file called sublib. ta which will contain all the submodules
compiled for TA.

3 The librarian can then be used to create a library containing both:

ilibr sublib.t4 sublib.ta -0 sublib.lib

Example: Generation of a completely linkable library

Suppose we have built a library mylib . lib, which requires access to the run-time
library, and we wish to supply this to another person, without having to supply the run
time library separately. We can arrange for the linker to extract all the required parts of
the run-time library and add them to mylib • lib.

Create a linker indirect file x . Ink which contains #reference lines for each
symbol in mylib • lib:

- Items wanted
#reference start
#reference stop
#reference run

- Libraries
mylib.lib

- Linker indirect file to access run-time library
#include clibs.lnk

The run-time library line should be adjusted depending on the type of processor
and toolset which is being used:

Language When Linker indirect file Toolset

C Full run-time library clibs.lnk ANSI C and ST20
toolsets

C Reduced run-time library clibsrd.lnk ANSI C and ST20
toolsets

occam T450 and ST20 processors occam450.lnk occam toolset

occam 32-bit processors without an FPU occama.lnk occam toolset

occam 32-bit processors with an FPU occam8.lnk occam toolset

occam 16-bit processors occam2.lnk occam toolset

2 Use ilink to extract the required modules and place them in a named file:

In order to supply modules which are suitable for running on all processors, the
extraction should be repeated for each required processor class, e.g.:

ilink -t450 -f x.lnk -0 sublib.450 -ex

ilink -ta -f x.lnk -0 sublib.ta -ex

ilink -t8 -f x.lnk -0 sublib.t8 -ex

ilink -t2 -f x.lnk -0 sublib.t2 -ex

_22_0 1i;i..~ _

10 ilink· linker

This will create the files sublib.450, sublib.ta, sublib.t8 and
sublib. t2 which will contain all the submodules required.

3 The librarian can then be used to create the extended library fulllib 0 lib
which will contain the user library together with any routines which are required
from the run-time library.

ilibr sublib.450 sublib.ta sublib.t8 sublib.t2 -0 full1ib.lib

Extraction using #define

A module is the smallest unit the linker can extract from a library, and a module may
contain several functions. It is quite likely that a module contains functions which are not
required as well as functions which are referenced from modules which are required.
To prevent a function from being extracted it is assigned a dummy value within a
#define directive; any value will do. This causes any reference to it to be satisfied.

When the linker encounters a reference to a required function it will extract the whole
module. However, if the module contains a function already specified in a #define
directive, the function will be multiply defined and the linker will abort the extraction. It
may be wise when a function is not required, to define all functions which are exported
from that module, to some dummy value, thereby preventing them all from being
extracted.

10.5.4 Display information - option I

This option enables the display of linkage information as the link operation proceeds.

10.5.5 Virtual memory - option KB

The KB option allows the user to specify how much memory the linker will use for storing
the image of the users program. By default the linker will attempt to store the entire
image in memory. In situations where memory is limited, an amount (~1 Kbytes) may
be specified. If the program is larger than the amount specified then the linker will use
the host filing system as an intermediate store. A reduction in speed may be expected
at link time.

10.5.6 Main entry point - option ME

The ME option defines the main entry point of the program Le. the point from which linking
will start. This option is equivalent to the #mainentry directive and takes as its argu
ment a symbol name which is case sensitive.

Only one main entry point may be specified. If it is omitted the linker will select the first
valid entry point in its input as a default. If there is more than one such symbol the linker
will warn that there is an ambiguity.

10.5.7 Link map filename - option MO

This option causes a link map file to be produced with the specified name. A file exten
sion should be specified as there is no default available. By convention the first character

---------li;iP~ 2_2_1

10.5 Linker options

of the extension should be cd'; the 2nd and 3rd characters are determined by the exten
sion of the linker object file. For example, if the linker object file takes the default exten
sion .1ku, the map file should be given the extension •dku.

If the MO option is not specified, a separate link map file is not produced.

A link map file is a text file containing information about the position of modules in the
code file, see section 10.7. It is intended to be used as input to the imap tool, see chapter
13.

10.5.8 Suppress symbol table - NS

The linker will place symbol table information in the linked unit which it produces, unless
the 'NS' command line option is specified.

The symbol table contains an entry for each named symbol defined in each object
module or library module used in the linked unit. The symbol table may be used by the
INQUEST debugger and profiling tools.

10.5.9 Linked unit output file - 0

The name of the linked unit output file can be specified using the 0 option. If the option
is not specified the output file is named after the first input file given on the command
line and a .1ku extension is added. If the first file on the command line is an indirect file
the output file takes the name of the first file listed in the indirect file.

Note: Because there is no restriction on the order in which files may be listed it is up to
the user to ensure that the output file is named appropriately.

10.5.10 Permit unresolved references - option u

The linker normally attempts to resolve all external references in the list of input files and
reports any that are unresolved as errors.

Sometimes it is desirable to allow unresolved external references, for example during
program development. The u option allows the link to proceed to completion by
assuming unresolved references are to be resolved as zero. Warning messages may
still be generated and the program will only execute correctly if such references are in
fact redundant.

10.5.11 Channel input/output - y

This option applies only to the occam modules.

By default the compiler will generate calls to library routines to perform channel input
and output, rather than using the transputer's instructions. The compiler's 'y' option
forces the compiler to use sequences of transputer instructions for channel input and

_22_2 E;i.fi~ ----------

10 ilink - linker

output, resulting in faster code execution. When modules have been compiled using the
'y' option they must also be linked using the linker's 'y' option, in order to maintain
compatibility.

Note: that code which is linked to use transputer instructions for channel input/output
may call code which uses library routines to perform channel input/output, but not vice
versa.

10.6 Selective linking of library modules

Library modules that are compiled for incompatible processor types or error modes are
ignored by the linker. This allows library modules to be selectively loaded for specific
processor types or transputer classes.

Libraries supplied with the toolset are supplied in several forms to cover the complete
range of transputer types. User libraries that are likely to be used on different transputer
types should be supplied for all transputer types likely to be used.

Libraries are also selected for linking on the basis of previous usage. Modules that are
used by several input files are linked in only once.

10.7 The link map file

Module data and details of the target processor are always included in the linked unit
output file in the form of a comment. This information may also be directed to a named
output file by using the MO command line option.

The file contains a map of the code being linked and contains information which may
assist the user during program debugging. It is intended as input to the imap tool, see
chapter 13.

The map file is generated in text format and covers two categories of input file; separate
compilation units, and library modules. The map consists of single line records
containing a number of fields. Fields have a single character name followed by a colon.
The following information is included:

10.7.1 MODULE record:

A module record is created for each component module in the linked unit.

Record name Description

N Module number assigned by the linker.

S Source filename, may be empty if string is unobtainable.

F Object filename, the name of the file of library from which the module has been
loaded. This will be the full path name.

0 File offset, the offset (in bytes) of the module within its object file.

R Reference, an external symbol that is used for loading the module from a library.
This field will be blank it the module was not loaded from a library.

M The compilation mode, processortype/class and error mode.

----------li;i_: 2_2_3

10.7 The link map file

10.7.2 SECT record:

A section record for each section in the linked unit, shows where it is located.

Record name Description

N Section number assigned by the linker.

R Name of the section.

A Section attributes, where R - read, W - write, X- execute, D - debug, V - virtual.
p Whether the code has been placed at a fixed address; either N (no) or Y (yes).

0 The offset in bytes of the section within the code.

S The size in bytes of the section.

10.7.3 MAP record:

This record shows how a region of the linked unit is mapped to a module and section.

Record name Description

M Module number of the module that supplied this region.

R Section number of the section in which this region lies.

A Address of the region, in bytes.

S Size of the region, in bytes.

10.7.4 Value record:

This record shows the value of a symbol after linkage.

Record name Description

N Name of the symbol.

0 Name of the origin symbol - occam modules only. (Used by the linker to ensure
the order of compilation is correct in respect to #USE) •

M Module number of the exporting module.

U Whether the symbol has been used (externally at least); either N (no) or Y (yes).

V Value of the symbol after linking. Expressed as a decimal integer or as a section
number plus byte offset into that section.

10.7.5 LOCALVALUE record

This record shows the value of a local symbol after linkage.

Record name Description

N Name of the symbol.

M Module number of the module defining the symbol.

I TCOFF identity of the symbol within the module which defines the symbol.

V Value of the symbol after linking. Expressed as a decimal integer or as a section
number plus byte offset into that section.

_22_4 ~fi~ _

10 i1ink - linker

10.8 Using imakef for version control

The imakef tool may be used to simplify the linking of complex programs, particularly
those which use libraries that are nested within other libraries or compilation units.

Note: For imakef to function correctly the special file extension system described in
section 12.3 and appendix A must be used.

10.9 Error messages

This section lists each error and warning message that can be generated by the linker.
Messages are in the standard toolset format which is explained in appendix A.

10.9.1 Warnings

filename - ambiguous main entry points, choosing symbol

If no main entry point is specified, either explicitly or by linker directive, and no
main entry point occurs in the input object files and libraries, then the linker
defaults to a main entry point.

The default main entry point chosen, is the first entry point in the first module that
is linked. If the first module is an occam module, then it may contain more than
one candidate entry point. The first encountered will be chosen.

filename - bad format: reason

The named file does not conform to a recognized SGS-THOMSON file format
or has been corrupted.

filename - symbol, implementation of channel arrays has changed

Only generated in programs where occam code is used that was compiled in
LFF format. The implementation of channel arrays in occam differs between the
earlier occam 2 compiler and the current TCOFF-based configurer, and
channel arrays cannot therefore be used as parameters to configured proce
dures.

filename - symbol symbol not found

The specified symbol was not found in any of the supplied modules or libraries.

file 1- usage of symbol out of step with file2

May be generated when linking programs incorporating occam modules with
a #USE directive, which causes the compiler to scan the file for details
concerning certain program resources. This file mustbe unchanged at link time,
and the message indicates that this is not the case. There are several possible
causes:

file2 has been recompiled after file 1, in which case file 1requires recom
piling.

__________ Jii.~ooI---------2-2-5

10.9 Error messages

2 The file that occurred in the #USE directive has been replaced by a
different version of the file at link time.

3 The file that occurred in the #USE directive has not been supplied to the
linker, but the linker has located a different version of a required entry
point elsewhere.

The occam compiler oc may need to scan certain libraries, of which the user
is unaware. Specifying one of the special occam linker indirect files
occam2 .1nk, occama .1nk or occam8 .1nk should take care of these 'hidden'
libraries.

Size bytes too large for 16 bit target

The code part of the linked unit has exceeded the address space of the T212
derived processor family.

10.9.2 Errors

filename • name clash with symbol from filename

May be generated when linking mixed language programs incorporating
occam modules.

In languages such as occam entry points may be scoped, i.e. extra information
is associated with each symbol to indicate which version of that entry point it is.
This allows programs to be safely linked even though there are several different
versions of the same entry point occurring at different lexical levels within the
program.

This error indicates that a language without occam-type scoping has been
mixed with a scoped language and a name conflict has occurred between a
scoped and non scoped symbol.

filename· symbol symbol mUltiply defined

The symbol, introduced in the specified file, has been introduced previously,
causing a conflict. The same module may have been supplied to the linker more
than once or there may be two or more modules with the same entry point or data
item defined.

filename • symbol symbol not found

The specified symbol was not found in any of the supplied modules or libraries.

filename· usage of symbol out of step with namefile

May be generated when linking programs incorporating modules with a #USE
directive which causes the compiler to scan the file for details concerning certain
program resources. This file must be unchanged at link time, and the message
indicates that this is not the case. There are several possible causes:

file2 has been recompiled after filet, in which case filet requires recom
piling.

_22_6 i.Ti.1'~~ ----------

10 ilink -linker

2 The file referenced by the #USE directive has been replaced by a
different version of the file at link time.

3 The file referenced by the #USE directive has not been supplied to the
linker, but the linker has located a different version of a required entry
point elsewhere.

The occam compiler oc may need to scan certain libraries, of which the user
is unaware. Specifying one of the special occam linker indirect files
occam2 .lnk, occama .1nk or occam8 .1nk should take care of these 'hidden'
libraries.

10.9.3 Serious errors

filename - bad format: reason

The named file does not conform to a recognized SGS-THOMSON file format
or has been corrupted.

filename - line number - bad format: excessively long line in indirect file

A line is too long. The length is implementation dependent, and is set to 256
characters in this version.

filename -line number - bad format: file name missing after directive

A directive (such as include) has no file name as an argument.

filename - line number - bad format: directive invalid number

A numeric parameter supplied to a directive does not correspond to the
appropriate format, i.e. decimal or hexadecimal.

filename - bad format: multiple main entry points encountered

A symbol may be defined to be the main entry point of a program, instead,
multiple main entry points have been defined. Only one main entry point symbol
may exist within a single link.

filename - linenumber - bad format: non ASCII character in indirect file

The indirect file contains some non printable text. A common mistake is to
specify a library or module with the 'F' command line argument or an include
directive.

filename - bad format: not linkable file or library

The linker expects that all files names presented without a preceding switch (on
the command line) or directive (in an indirect file) are either libraries or modules.

filename - line number - bad format: only single parameter for directive

The directive has been given too many parameters.

__________ J:fi 2_2_7

10.9 Error messages

Cannot create output without main entry point

No main entry point has been specified.

Command line: 1k minimum for paged memory option

When using the KB option, the amount of memory used to hold the image of the
program being linked is specified. There is a minimum size of 1k.

Command line: token

An illegal token has been encountered on the command line.

Command line: bad format number

A numerical parameter of the wrong format has been found.

Command line: image limit multiply specified

The command line option 'KB' has been specified more than once.

Command line: 'load and terminate' option set, some arguments invalid

Options to load and terminate the linker have been specified in conjunction with
other command line options. The linker cannot execute these options if it has
been instructed to terminate first.

Command line: multiple debug modes

The command line option 'y' has been specified more than once.

Command line: multiple error modes

More than one error mode has been specified to the linker.

Command line: multiple module files specified

The command line option 'MO' has been specified more than once.

Command line: multiple output files specified

The command line option '0' has been specified more than once.

Command line: multiple target type

More than one target processor type has been specified to the linker.

Command line: only one output format allowed

The options 'T', 'LB' and 'LC' are mutually exclusive.

filename - could not open for input

The named file could not be found/opened for reading.

filename - could not open for output

The named file could not be opened for writing.

_22_8 1Fii. _

10 ilink - linker

filename -line number - could not open for reading

The file name specified in an include directive could not opened.

Could not open temporary file

The 'KB' option has been used in a directory where there is no write access or
not enough disc space.

filename - mode: mode - linker mode: mode

The linker has been given a module to link which has been compiled with attrib
utes incompatible with the options (or lack thereof) on the linker command line.

Invalid or missing descriptor for main entry point symbol

Applies to occam modules only. The specified main entry point to the program
does not have a valid occam descriptor. This occurs if the wrong symbol name
has been used to specify the main entry point.

Multiple main entry points specified

The main entry point has been specified on the command line or in an indirect
file more than once.

filename -line number- directive not enough arguments

The wrong number of arguments have been supplied to a directive.

filename - nothing of importance in file

The file name specified in an include directive was empty or contained nothing
but white space or comments.

Nothing to link

Various options have been given to the linker but no modules or libraries.

filename -line number- only one file name per line

More than one file name has been placed on a single line within an indirect file.

filename - line number - directive too many arguments

The wrong number of arguments have been supplied to a directive.

Unknown error modes not supported in the LFF format
Unknown processors not supported in the LFF format

When generating LFF format files, certain constructs will have no representa
tion. For example processor types that have come into existence since the LFF
format was defined.

filename -line number- unrecognised directive directive

An unrecognized directive has been found in a linker indirect file.

__________~&~ 2_2_9

10.9 Error messages

10.9.4 Embedded messages

Tools that create modules to be linked with ilink may embed "messages" within them.
Three levels of severity exist; serious, warning, and message. The documentation of the
appropriate tool should be consulted for more information. The format of these
messages is as follows:

Serious - ilink - filename - message: message
Warning - ilink - filename· message: message
Message - ilink - filename· message

_23_0 Jiii.1'~ ---------

11 ilist - binary lister

This chapter describes the binary lister tool ilist, which takes a binary file and displays
information about the file in a readable form. The chapter provides examples of display
options and ends with a list of error messages which may be generated by ilist.

11.1 Introduction

The binary lister tool ilist reads a binary file, decodes it, and displays useful informa
tion it on the screen. The output may be redirected to a file. Command line options control
the type of data displayed.

The ilist tool can decode and display files produced by the SGS-THOMSON C and
occam 2 compilers, by the linker, librarian, configurer and collector tools. Files in
editable ASCII format are listed without processing.

Also, because ilist uses the same method to locate files as the other tools (see
section A.4) it can be used to find and display the location of header files and library files
on the search path specified by ISEARCH.

11.2 Data displays

There are several categories of data that can be displayed when decoding the output
from the compilers, linker or librarian. Categories are selected by options on the
command line. The main categories are:

• Symbol data - symbol names in each module. Information is displayed in tabular
form.

• External reference data - names of external symbols used by each module.
Information is displayed in tabular form.

• Module data - data for each module including target processor, compilation
mode, and module file name.

• Code Jisting- code contained in each module, displayed in hexadecimal format.

• Index data - the content of library indexes.

• Procedural data - for external occam routines only.

Note: that for C programs compiled with the 'NOCOMPACT' option, ilist will produce
more detailed information.

11.2.1 Modular displays

Object code files reflect the modular structure of the original source. Single unit compila
tions produce a file containing a single object module, whereas units containing many
compilations, such as libraries and concatenations of modules, produce object files with
as many object modules. The data produced by ilist reflects the modular composition
of object files.

----------liii.~ 2_3_1

11.3 Running the binary lister

11.2.2 Example displays used in this chapter

Except where indicated, the example displays used in this chapter show the output
generated from the lister for a compiled (. teo) file generated by icc.

11.3 Running the binary lister

To invoke the binary lister use the following command line:

~ i1ist { filenames} {options}

where: filenames is a list of one or more files to be displayed.

options is a list of one or more of the options given in Table 11.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@', (see
section A.1 .2 for details)

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

A Displays all the available information on the symbols used within the specified .
modules.

c Displays the code in the specified file as hexadecimal. This option also invokes the
'T' option by default.

E Displays all exported names in the specified modules.

H Displays the specified file(s) in hexadecimal format.

I Displays full progress information as the lister runs.

M Displays module data.

N Displays information from the library index.

o filename Specifies an output file. If more than one file is specified the last one specified is
used.

p Displays any procedural interfaces found in the specified modules.

R reference Displays the library module(s) containing the specified reference. This option is
used in conjunction with other options to display data for a specific symbol. If more
than one library file is specified the last one specified is used.

T Displays a full listing of a file in any file format

w Causes the lister to identify a file. The filename (including the search path if appli-
cable) is displayed followed by the file type. This is the default option.

x Displays all external references made by the specified modules.

Table 11.1 i1ist command line options

_23_2 J:;i.~ ---------

11 ilist· binary lister

Note: Options will only be applied to files of the appropriate file type. If the file cannot
be displayed by the specified option, an error message is generated and the file is not
displayed.

ilist will attempt to identify the file type by its contents. If only filenames are supplied,
ilist assumes the default option 'w" and simply displays the file's identity.

Example of use:

ilist hello. teo -a

Examples of ilist usage and the displays generated by the options can be found in
succeeding sections.

11.3.1 Options to use for specific file types

Table 11.2 lists the available options and indicates which file formats they may be used
to list. The table also lists the file types it is recommended to use with each option, in
order of usefulness.

Option Permitted file fonnat Recommended usage

H Any format

0 Any format

T Any format

w Any format

A TCOFF only .lib, . teo, .lku

C TCOFF only . teo, .lku, .lib, .nif

E TCOFF only .lib, . teo, .lku

M TCOFF only . teo, .lku•. lib

I N TCOFF libraries only .lib

p TCOFF only I' lib•• teo, .1ku

I
R TCOFF libraries only .lib

x TCOFF only .lib, .teo, .lku

Table 11.2 Recommended options

11.3.2 Output device

ilist sends its output to the standard output stream on the host, normally the terminal
screen. Facilities available on the host system may allow you to redirect the output to
a file, or send it to another process, such as a sort program. For details of these facilities
consult the documentation for your system.

_________ EilBDBO: 2_3_3

11.4 Specifying an output file - option 0

11.3.3 Default command line

A set of default command line options can be defined for the tool using the ILISTARG
environment variable. Options must be specified using the syntax required by the
command line. Options in environment variables are processed before other options.

11.4 Specifyi~g an output file - option 0

The 0 option enables the user to redirect the display data to an output file. If more than
one output file is specified on the command line then the last one specified is used. File
extensions should be specified, because defaults are not assumed.

Display options are described in the following sections 11 .5 to 11 .15. Options are given
in alphabetical order.

11.5 Symbol data - option A

This option displays all the available information about the symbols used within the
specified modules. A tabular format is used.

Note: The data produced by this display is extensive and detailed and assumes some
knowledge of the object file format.

The following information is given:

• Symbol name.

• Section attributes, if applicable.

• Symbol attributes.

• The number of the symbol within the module plus the number of its origin.

• Module name.

• Target processor.

• Error mode.

• occam 2 compiler's 'y' option - if used indicated by the presence of a 'y' char
acter. The compiler's 'y' option causes transputer instructions to be use for
channel inputloutput.lfthis field is blank this indicates that library calls are being
used for channel input/output.

11.5.1 Specific section attributes

Certain attributes apply only to symbols which are section names. If they are applicable,
these attributes are indicated by the following nomenclature and displayed as a char
acter string:

_23_4 iiii.~ ---------

11 ilist - binary lister

R Read section.

W Write section.

X Execute section.

D Debug section.

V Virtual section.

11.5.2 General symbol attributes

Attributes for all symbols, including section names, are also indicated by a character
string, using the following nomenclature:

Symbol Description attribute
L Symbol local to the module.
E Symbol exported from the module.
I Symbol imported to the module.

W Weak attribute, indicates that the symbol takes the value 0 when not defined.
C Conditional attribute, indicates that the first value given to the symbol is always

used.
U Unindexed, indicates that the symbol is not present in the library index.
p Provisional attribute, indicates that the last value given to the symbol is always

used.
0 Indicatesthat thesymbol isan origin symbol. The origin symbol is used by the linker

to check the origin of the module.

Symbol attributes are displayed immediately after the section attributes, and each
attribute is displayed at a specific position in the string. Attributes which are not present
are indicated by a hyphen '-'.

The position of each attribute in the string is as follows:

RWXDV LEIWCUPO

11.5.3 Example symbol data display

Figure 11.1 shows the symbol data display for the compiled file hello. teo.

main
_1MS_printf
text%base
local%text

----- -E------ 0
----- --1----- 1
R-X-- -E------ 2
----- L------- 3

hello.c
hello.c
hello.c
hello.c

ST20 X
ST20 X
ST20 X
ST20 X

Figure 11 .1 Example output produced by the A option.

11.6 Code listing - option c

The 'c' option produces a full listing of the code in the same format as that generated
by the 'T' option, but with the addition of a hex listing of the code at each LOAD_TEXT

__________~~ 2_3_5

11.6 Code listing -option C

directive. This option may be accompanied by the 'T' option; if the 'T' option is not
specified it is supplied automatically. Note: that when the 'c' option is used with Network
Initialization files (. nif) the output will be in the same format as that produced by the
'T' option.

The output from this option gives an ASCII dump, in hexadecimal format, of the code for
each module. It can be used on any object code.

When used to display object code, the code for each module is displayed as a contig
uous block of lines, where each line has the format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset from
the start of the module.

ASCII hex is the hex representation of the code.

ASCII characters are the ASCII characters corresponding to the hex code.

Inall cases code is read from left to right. If a value is not printable it is replaced by a dot

11.6.1 Example code listing display

Figure 11.2 shows the code listing display for the compiled file he110 . teo.

00000000 LINKABLE
00000002 START_MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR

LDDEVID LDMSTVL POP RMC_CORE1 RMC_CORE2 RMC_CORE3 SEMAPHORE DEVICE BIT32 M
S<=28 ICALL X lang: ANSI_C ""
00000010 VERSION tool: icc origin: hello.c
0000001E SYMBOL EXP ROU "main" id: 0
00000028 SYMBOL IMP ROU "_IMS_printf" id: 1
00000039 LOCAL_SYMBOLS number: 2 ids: 2 to 3
0000003C SECTION REA EXE EXP "text%base" id:
0000004A SET_LOAD_POINT id: 4
0000004D SYMBOL LOC "local%text" id: 5
0000005B DEFINE_LABEL id: 5
0000005E COMMENT PRINT "INMOS C compiler Version 4.01.09 (02:24:52 Mar 11
1995) (SunOS-Sun4)"

OOOOOOAA DEFINE_LABEL id: 0
OOOOOOAD LOAD_PREFIX size: 0 SV:2-SV:3 instr: ldc
OOOOOOB6 LOAD_TEXT bytes: 2
OOOOOOB9 21FB ! .
OOOOOOBB DEFINE_LABEL id: 3
OOOOOOBE LOAD_TEXT bytes: 1
OOOOOOC1 71 q
OOOOOOC2 LOAD_PREFIX size: 0 AP(SV:1-LP) instr: call
OOOOOOCB LOAD_TEXT bytes: 3
OOOOOOCE 4022FO @" •

OOOOOOD1 ALIGN modulo: 4
OOOOOOD4 DEFINE_LABEL id: 2
OOOOOOD7 LOAD_TEXT bytes: 16
OOOOOODA OA48656C 6C6F2057 6F726C64 OA002020 .Hello World ..
OOOOOOEA COMMENT bytes: 5
OOOOOOF4 COMMENT bytes: 37
0000011E END_MODULE

Figure 11.2 Example output produced by the C option

_23_6 lfi~ _

11 ilist· binary lister

11.7 Exported names - option E

The output from this option is in a tabular format. It consists of a list of names exported
by the modules. This option also displays any globally visible data.

The following information is given by the display:

• Exported name.

• The name of the module in which the exported name is found.

• Language used.

• Target processor.

• Error mode.

• occam 2 compiler's 'y' option - if used indicated by the presence of a 'y' char
acter. The compiler's 'y' option causes transputer instructions to be use for
channel input/output. If this field is blank this indicates that library calls are being
used for channel input/output.

11.7.1 Example exported names display

Figure 11 .3 shows the exported names display for the compiled file hello. teo.

main -> hello.c ST20 X

Figure 11.3 Example output produced by the E option

11.8 Hexadecimal/ASCII dump - option H

This option provides a display of the specified files in hexadecimal and ASCII format. The
option does not attempt to identify file types and may be used to display any files which
the lister has previously identified incorrectly.

The output takes the form of a hexadecimal representation of the whole of the file
content. The display has a similar appearance to that produced by the c option, however,
the c option only functions on code found within the file.

Each file is displayed as a contiguous block of lines, where each line has the format:

address ASCII hex ASCII characters

where: address is the address of the first byte on the line, expressed as an offset from
the start of the file.

----- J.Ti.BI'JN&O~ 2_3_7

11.9 Module data - option M

ASCII hex is the hex representation of the code.

ASCII characters are the ASCII characters corresponding to the hex code.

In all cases code is read from left to right. If a value is not printable it is replaced by a dot, ,

11.8.1 Example hex dump display

Figure 11.4 shows the hex dump display for the compiled file hello. teo.

00000000 0100020C FDFF661E OEFD42EO 07000400
00000010 1BOC0369 63630768 656C6C6F 2E631E08
00000020 FC020104 6D61696E 1EOFFC04 010B5F49
00000030 4D535F70 72696E74 660D0102 OBOC0602
00000040 09746578 74256261 73650401 041EOC01
00000050 OA6C6F63 616C2574 6578740E 0105144A
00000060 00014749 4E4D4F53 20432063 6F6D7069
00000070 6C657220 20566572 73696F6E 2020342E
00000080 30312E30 39202830 323A3234 3A353220
00000090 4D617220 31312031 39393529 20202853
OOOOOOAO 756E4F53 2D53756E 34290E01 00070700
OOOOOOBO 07030203 03040603 0221FBOE 01030602
OOOOOOCO 01710707 000D0703 01020906 04034022
OOOOOODO FOOA0104 OE010206 11100A48 656C6C6F
OOOOOOEO 20576F72 6C640AOO 20201408 0000050D
OOOOOOFO 00899406 14280000 25090101 00020004
00000100 6D61696E 03020100 010E0302 00030408
00000110 00000E05 04000E06 04000407 04080300

...... f ... B

... icc.hello.c ..
'" .main _1
MS_printf .
· text%base .
· local%text J
· . GINMOS C compi
ler Version 4.
01.09 (02:24:52
Mar 11 1995) (S
unOS-Sun4) .

I.................
.q " @"

· Hello
World ..

• •••• (•• %•••••••
main .

Figure 11.4 Example output produced by the H option

11.9 Module data - option M

This option displays any header information which is present. This may include version
control data, general comments that may have been appended to the file during use of
the toolset and copyright information. The data is displayed for individual modules in the
object file and includes:

• Module name.

• Transputer type, error mode and occam 2 compiler's 'y' option - if used indi-
cated by the presence of a 'y' character.

• Language used.

• Version control data.

• Comments inserted by the toolset, for example, copyright clauses.

Data is displayed in separate blocks for each module. Some of the data is also used by
other tools; for example, some comments are used by the debugger tools while version
information is used by some tools for compatibility testing.

_23_8 I.Ti.P~ _

11 ilist· binary lister

When linked object files are displayed using this option, a long comment will be
displayed. This comment gives details of the allocation of memory to each separately
compiled code and library module used in the linked module. The following information
is given in tabular format:

• Code type - Separately compiled code (SC) or library module (LIB).

• Module name.

• Address offset in linked module.

• Start address.

• End address.

• Reference in library (if applicable) used to locate the relevant library module.

11.9.1 Example module data display

Figure 11 .5 shows the module data display for the compiled file hello. teo.

MODULE: ANSI_C ST20 X
VERSION: icc hello.c
COMMENT: INMOS C compiler Version 4.01.09(02:24:52 Mar 11 1995)(SunOS-Sun4)

Figure 11.5 Example output produced by the M option

11.10 Library index data - option N

This option is used to list library indexes. The data is given in a tabular format. For each
entry in the index the following information is given:

• Address of the module in the library.

• Symbol name.

• Language.

• Target processor type.

• Error mode.

• occam 2 compiler's 'y' option - if used indicated by the presence of a 'y' char
acter. The compiler's 'Y' option causes transputer instructions to be use for
channel input/output. If this field is blank this indicates that library calls are being
used for channel input/output.

___________ I.Ti.1G~ 2_3_9

11.11 Procedural interface data - option P

11.10.1 Example library index display

Figure 11.6 shows part of the output produced by the 'N' option for one of the standard
C library files.

00025C21 ie64op.pax:8340AC71
00036155 xlink1.pax:F11BAD5A
00034AF7 DATAN2%c
000330DO DCOS%c
0000B898 DefaultSignalHandler%c
0001CAC6 floorf
0002007B get_static_size%c
000129AD sub_vfprintf%c

OCCAM
OCCAM
OCCAM
OCCAM
ANSI_C
ANSI_C
ANSI_C
ANSI_C

TA X
TA X
TA X
TA X
TA X
TA X
TA X
TA X

Figure 11.6 Example output produced by the N option

11.11 Procedural interface data -option P

This option is only applicable to occam modules or mixed language programs. It
displays procedural interface information for all external occam functions and proce
dures. The following information is displayed for each module:

• Target processor.

• Error mode.

• Whether the Y compiler option was used.

• Language used.

• Amount of workspace used by the procedure or function, in words.

• Amount of vector space used by the procedure or function, in words.

• Parameters used by the procedure or function.

• Data type of parameters.

• Channel usage, if applicable.

Channel usage is displayed in occam notation. A channel marked with an ? is an input
channel to the code of that entry point, and a channel marked with! is an outputchannel.

When a library file is listed this will be indicated by the words 'INDEX ENTRY mode:'
rather than 'DESCRIPTOR mode'.

11.11.1 Example procedural data display

Figure 11.7 shows an example procedural data display for a compiled occam module.
This example is taken from the 'simple' example occam program compiled by oc for
the TA processor class.

_24_0 1fii.~ _

DESCRIPTOR mode: TA H language: OCCAM
DESCRIPTOR mode: TA H language: OCCAM
ws: 52 vs: 378
PROC simple(CHAN OF SP fS,CHAN OF SP ts)
SEQ
fs?
ts!

11 i1ist • binary lister

<ORIGIN DESCRIPTOR>

Figure 11.7 Example output produced by the p option

11.12 Specify reference - option R

This option is used in conjunction with any of the other display options to locate a specific
symbol within a named library. All library modules that export the symbol are displayed.

The exact format of the display depends on the main display option with which R is used.

Note: Symbol names must be specified in the correct case.

11.13 Full listing - option T

This option displays all data found in the input file. Provided that i1ist recognizes the
file type, the file is decoded in its own format. Text file are displayed as text and unrecog
nized file types are displayed as a hexadecimal dump.

Data is not displayed in a tabular form but is output in the sequence in which it is found
in the file.

The display formats are tailored to each file format and are intended for diagnostic
support and analysis; large amounts of data are produced which may require skilled
interpretation.

11.13.1 Example full data display

Figure 11 .8 shows the full data display for a compiled file he110 •teo, showing module
information.

__________ Iiii._ml---------2-4-1

11.14 File identification - option W

00000000 LINKABLE
00000002 START_MODULE CORE FMUL FPSUP DUP WSUBDB MOVE2D CRC BITOPS FPTSTERR

LDDEVID LDMSTVL POP RMC_CORE1 RMC_CORE2 RMC_CORE3 SEMAPHORE DEVICE BIT32 M
S<=28 ICALL X lang: ANSI_C ""
00000010 VERSION tool: icc origin: hello.c
0000001E SYMBOL EXP ROU "main" id: 0
00000028 SYMBOL IMP ROU "_IMS_printf" id: 1
00000039 LOCAL_SYMBOLS number: 2 ids: 2 to 3
0000003C SECTION REA EXE EXP "text%base" id:
0000004A SET_LOAD_POINT id: 4
0000004D SYMBOL LOC "local%text" id: 5
0000005B DEFINE_LABEL id: 5
OOOOOOSE COMMENT PRINT "INMOS C compiler Version 4.01.09 (02:24:52 Mar 11
1995) (SunOS-Sun4)"

OOOOOOAA DEFINE_LABEL id: 0
OOOOOOAD LOAD_PREFIX size: 0 SV:2-SV:3 instr: Idc
000000B6 LOAD_TEXT bytes: 2
OOOOOOBB DEFINE_LABEL id: 3
OOOOOOBE LOAD_TEXT bytes: 1
000000C2 LOAD_PREFIX size: 0 AP(SV:1-LP) instr: call
OOOOOOCB LOAD_TEXT bytes: 3
000000D1 ALIGN modulo: 4
000000D4 DEFINE_LABEL id: 2
000000D7 LOAD_TEXT bytes: 16
OOOOOOEA COMMENT bytes: 5
000000F4 COMMENT bytes: 37
0000011E END_MODULE

Figure 11.8 Example output produced by the T option for a . teo file

11.13.2 Configuration data files

The full data listing of a configured (. efb) file shows how the processes are mapped
onto a transputer system.

11.14 File identification - option w

This option causes the lister to identify the file type. i1ist takes a heuristic approach
to file identification. The filename is displayed along with the file type. The full path to the
file is also displayed if the file is not in the current directory (Le. if it has been found in
the search path specified in the I SEARCH environment variable). This is the default if no
other option is supplied.

Table 11.3 indicates how the lister classifies file types.

_24_2 LTi_----------

11 ilist - binary lister

File format Default Listed file type
extension

TCOFF compiled unit .teo TCOFF LINKABLE UNIT

TCOFF compiled library unit .1ib TCOFF LINKABLE UNIT LIBRARY

TCOFF linked unit .1ku TCOFF LINKED UNIT

TCOFF linked library unit .1ib TCOFF LINKED UNIT LIBRARY

Configuration binary .efb VERSION 1 CONFIGURATION BINARY

Core dump .dmp CORE DUMP

Network dump .dmp NETWORK DUMP

Extracted SC .rse EXTRACTED SC

Bootable program .bt1 BOOTABlE FilE

ROM boatable program .btr BOOTABlE FilE (ROM)

Empty file - EMPTY FilE

Text files - TEXT FilE

None of the above - UNKNOWN BINARY FORMAT

Table 11.3 File types recognized by ilist

where: Version 1 configuration binary files are generated using a T2IT4rrS-series confi
gurer (icconf or occonf).

SC files are separately compiled files.

Extracted files are files which have been compiled and developed (using the K
option of icollect) for dynamic loading onto a transputer system.

11.14.1 Example file identification display

Figure 11.9shows the file identification display for the compiled file hello. teo. and two
linker control files. This output was generated by the following command:

ilist hello. teo oeeama.lnk estartup.lnk

hello. teo

/home/D430S/1ibs/oeeama.lnk

/home/D4314/1ibs/cstartup.lnk

TCOFF LINKABLE UNIT

TEXT FILE

TEXT FILE

Figure 11 .9 Example output produced by the woption

11.15 External reference data - option x

This option displays a list of all the code and data symbols imported by the modules
specified to the lister, Le. it lists their external references. External references are

---------liii 2_4_3

11.16 Error messages

references to separately compiled units. For C programs the option will also display any
external references to globally visible data.

The output from this option is in a tabular format. It consists of a list ofexternal references
and their associated modules. The following information is displayed:

• External reference i.e. name of the separately compiled unit.

• The name of the module in which the external reference exists.

• Language used.

• Target processor.

• Error mode.

• occam 2 compiler's 'y' option - if used indicated by the presence of a 'y' char
acter. The compiler's 'y' option causes transputer instructions to be use for
channel input/output. If this field is blank this indicates that library calls are being
used for channel input/output.

11.15.1 Example external reference data display

Figure 11.10 shows the external reference data display for the compiled file
he110.tco.

<- hello.c ST20 X

Figure 11.10 Example output produced by the x option

11.16 Error messages

This section lists error and warning messages that can be generated by the lister.
Messages are in the standard toolset format which is explained in appendix A.

11.16.1 Information messages

filename - Previous message resulted from decoding file as format token

This message is only output following an error message reported by an
internal routine. The information message identifies the file in which the
error occurred.

_24_4 Eii.&1"~ _

11 ilist - binary lister

11.16.2 Serious errors

filename - Cannot close file

The named file could not be closed.

filename - Cannot open file

The named file could not be found/opened for readinglwriting.

filename - Input type invalid with command line options

The options given to the lister apply to formats incompatible with the file
type being read.

Aio failed: reason

Failure reported via a low level library routine. An input /output error has
occurred.

Aio failed: Bad format: reason

Failure reported via a low level library routine. An incorrect file format has been
detected - possibly due to file corruption or the use of an incompatible file format.

Cannot close abstract ilo handle token
Cannot open abstract i/o handle token

An internal structure could not be allocated or released to/from memory.

Parsing command line token

The lister was invoked with an unrecognized token on the command line.

11.16.3Fatal errors

filename - Cannot set file buffer

Internal error, and error was returned by a call to the C library routine
setvbuf () for the file.

Internal errors should be reported to your local SGS-THOMSON distrib
utor or field applications engineer.

__________ riii._ocI 2_45_

11.16 Error messages

_24_6 Eii._ ----------

12 imakef - makefile generator

This chapter describes the makefile generator imakef that creates makefiles for input
to make programs. It explains how the tool can be used to create makefiles and
describes the special file naming conventions that allow imakef to create makefiles for
mixtures of code types. The chapter describes the format of makefiles generated by
imakef and ends with a list of error messages.

12.1 Introduction

make programs automate program building by recompiling only those components
whose dependents have been changed since their last build. To do this they read a
makefile which contains information about the interdependencies of files with one
another, along with command lines for rebuilding the program.

imakef creates makefiles for all types of toolset object files, using its built in knowledge
of how files referenced within the target file depend on one another. It is intended to be
used with all SGS-THOMSON compiler systems that generate TCOFF object code,
which includes the the ANSI C compiler icc and the occam 2 compiler ac. Its mode
of operation with different languages is controlled by command line options. The make
file is generated in a standard format for input to most make programs.

Makefiles created using imakef are compatible with many public domain and propri
etary make programs. The following make programs are directly compatible:

• Borland make.

• UNIX make.

• Microsoft nmake.

• Gnu make.

However, the older Microsoft make program "make" is not compatible.

12.2 How imakef works

imakef operates by working back from the target file to determine its dependences on
other files, using its knowledge of inputs and outputs of each tool and the compilation
architecture of the toolset. For example, compiled object files must be created from
language source files using the compiler.

In a similar way linked files must be generated from compiled files. imakef assumes
that programs targeted at a single transputer are not required to be configured. Boatable
files may therefore be generated from linked units or configuration data files. imakef

__________ 1ii.fi~~mI_--------2-47-

12.3 File extensions for use with imakef

works back from the target file, determining file dependencies and creating commands
to recreate the target file, recompiling and relinking where necessary.

In most cases, imakef is able to discover all the file dependencies required to build a
target, in some cases, however, imakef will require some extra pointers. Section 12.4
explains how linker indirect files are used to assist with the building of C programs.

12.3 File extensions for use with imakef

imakef identifies files and file types by a special set of file extensions which identify the
transputer target type and compilation error mode. This allows the tool to produce make
files for mixed module combinations.

Note: The extensions that imakef requires differ in most cases from the standard
toolset default extensions which are described in section A.5. For imakef to work
correctly the extensions described in section 12.3.1 must be used on all intermediate
and target files, at all stages of program development Le. compiling, linking, configuring,
and booting.

The file naming convention uses a three-eharacter extension which identifies the type
of file and in most cases includes the transputer target and error mode. Source files for
the most part use standard language extensions.

12.3.1 Target files

The following table Iists the types ofobject code files for which imakef can create make
files, along with the file extension formats that must be used.

Target file Filename extension

Compiled code. .t%%

Linked code. .C%Z

Boatable code for single transputer programs. .bxx

Boot-tram-link code for configured programs. .bt1

Boot-tram-ROM code, which must be configured. .btr

Dynamically loadable code. .r%Z

Libraries. .1ib

Library usage file.t .1iu

t Creates target file only, does not create makefile.

Compiled, linked, boatable and non-boatable files, whatever their language origin, have
a transputer target designator as the second character of the extension, and an error
mode designator as the thirdcharacter. Accepted values of these designators are listed
below.

_24_8 Eii. _

12 imakef • makefile generator

2nd Transputer types
Character supported

2 T212, T222, M212

3 T225

4 T414

5 T425,T400

6 T450

8 T800

9 T805,T801

a Class TA

b ClassTB

3rd Error mode
Character

x UNIVERSAL

h HALT

s STOP

Examples:

· t6x - refers to a compiled module targetted for the T450, in UNIVERSAL error
mode.

· t4x - refers to a compiled module targetted for T4 transputers, in UNIVERSAL
error mode.

• tah - refers to a module targetted for any 32-bit transputer in HALT error
mode.

Compiled code generated by icc is in UNIVERSAL mode, designated by the character
'x'. HALT and STOP code can be generated by the occam 2 compiler oc.

Transputer types are explained further in section 8.2.

Program development using imakef and the extensions to use are illustrated in Figure
12.1. Target files which can be created by imakef are shown in bold.

__________ l.V._ocI---------2-4-9

12.3 File extensions for use with imakef

Keyo Source file

Intermediate
file

_ Targetfile

--. Tool

File input by reference
from source file

Binary file reference.
File input by reference
from intermediate file.

* See section 12.6.3

Figure 12.1 Main target files showing extensions required

_25_0 ii;ir~ _

12 imakef - makefile generator

12.4 Linker indirect files

For C modules linker indirect files must be created for all linked units where imakef will
be used to generate a target file. Linker indirect files define to imakef the components
of the linked unit, providing a starting point for working out file dependencies.

Linker indirect files must be named after the linked unit to which they relate and carry
the • Ink extension.

If the imakef 'c' option is not specified, (see table 12.1) or if imakef cannot find a linker
indirect file associated with a particular linked unit, it will assume it is linking occam
modules and generate a linker indirect file itself. The file is named after the target file
name but is given an extension in the form • IXX. The file contains a list of modules to
be linked. In addition an #INCLUDE statement references a further linker indirect file,
referencing compiler libraries. imakef deduces the compiler libraries to be included
from the extension of the linked object file.

Section 12.6.2 provides a short description of linker indirect files and several examples
are given in section 12.7.

12.5 Library indirect and library usage files

When building a library using imakef, a file must be provided that contains the names
of all the object modules required to build the library. This file is known as a library indirect
file and has the extension • lbb. See chapter 9 for further details.

Library usage files describe the dependencies of a library on other libraries or separately
compiled code. They contain a list of files to which the library must be linked before it
can be run, and ensure that the correct linker commands are generated.

Library usage files should be created for all user-defined libraries where the source of
the library is not available. They are created using imakef.

Library usage files are given the same name as the library to which they relate, but with
a .liu extension. To create a library usage file using imakef, specify the library name
and add a .liu extension. For example, the following command creates a library usage
file for the library mylib .lib:

imakef mylib.liu

When imakef is used to create a library usage file no makefile is generated.

12.6 Running the makefile generator

The imakef tool takes as input a list of files generated by tools in the toolset and gener
ates a makefile, containing full instructions of how to build the application program. The
output file is named after the first target filename and is given a •mak extension (if no
output file is specified on the command line).

__________ ~Iitm~ 2_5_1

12.6 Running the makefile generator

To invoke imakef use the following command line:

~ imakef filenames {options}

where: filenames is a list of target files for which makefiles are to be generated. If more
than one file is specified the single makefile generated will generate all of the
specified files.
options is a list, in any order, of one or more options from Table 12.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be given in any order.

Options may be entered in upper or lower case and can be given in any order.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description

c Specifies that the list of files to be linked is to be read from a linker indirect file. This option
must be specified when the program includes C modules.

D Disables all debugging support in a makefile. The default is to build the makefile with full
debugging information to support post-mortem debugging.

GA Enable the use of the INQUEST debugger in interactive mode. This option is incompat-
ible with the 'y' and 'NV' options.

I Displays full progress information as the tool runs.

M Produce compiler, linker and collector map files for imap.

NC Indicatesthat an NDLfile is referenced and therefore either the inconf oronconf confi-
gurer will be used. Not applicable to T2IT41T8-series transputers.

NI Files in the directories in ISEARCB are not put into the makefile. This means that system
files are not present, making it easier to read.

NIF Generate a Network Initialization file. The name is derived from the name ofthe NDLfile,
referenced within the configuration description. This option is only valid if specified in
conjunction with 'NC'. Not applicable to T2fT4fT8-series transputers.

NV Generates a configuration which does not use software virtual routing. Only valid when
used with icconf or occonf.

o filename Specifies an output file. If no file is specified the output file is named after the target file
and given the •mak extension.

R Writes a deletion rule into the makefile.

y Applies only to occam modules. Disables the use of library calls for channel input/output
and instead uses transputer instructions. This option is incompatible with the 'GK option.

Table 12.1 imakef options

12.6.1 Example of use

imakef hello.b6x -c

This creates the makefile hello. mak which when used as input to make generates the
bootable file hello.b6x (a bootable file for T450 transputers).

_25_2 iiii. _

12 imakef - makefile generator

12.6.2 Specifying language mode

imakef can be used with all compilers in the SGS-THOMSON TCOFF family. This
includes the ANSI C compiler icc and the occam compiler oe.

imakef has two modes of operation: one for the traditional languages such as C, and
another for occam. occam mode is the default; C operation is controlled by a
command line option.

In occam programs, file dependencies are wholly deducible from the source and target
files. In C programs the list of files to be processed by the linker must be given in a linker
indirect file; use of the imakef 'c' option instructs imakef that there are linker indirect
file(s) to be read. The linker indirect files must include all the components of a program,
including any libraries that are used.

The 'c' option must be specified for all Cprograms and for any mixed language programs
which incorporate modules in these languages. For mixed language programs all files
which are to be linked must be listed in the linker indirect file(s), including any occam
modules or library files. In systems that use mixtures ofcode compiled for different trans
puter types and error modes, a separate linker indirect file must be created for each.

The C option has two effects:

• It directs imakef to search for a linker indirect file with an extension of .1nk. If
no •Ink file is found then imakef looks for an occam source file. The default
is to only search for an occam source file.

• It directs imakef to search for a •c f s configuration file before looking for a •pgm
configuration file. The default is to search in the opposite order. The filename
extension of the configuration source file found determines which configurer
imakef will apply. If a •pgm file is found then an occam configurer will be used
(occonf), while if a •cfs file is found then a C configurer will be used (icconf).

An example is given in section 12.7.3 of how imakef may be used to build a mixed
language program.

12.6.3 Configuration description files

When imakef builds a makefile for a configured program it will look for the presence
of a configuration description file which has the same filename root as the program to
be built, but a different filename extension.

The type of file searched for depends on the mode of operation specified to imakef. If
the default occam mode is used, that is, the 'c' option is not specified, imakef will look
first for a configuration description file with the extension •pgm, (readable by the occam
configurer occonf). If a •pgm file is not present imakef will then look for a •cfs file
(readable by the 'C-style' configurer icconf).

If the C mode is used, that is, the 'c' option is specified, the reverse sequence is used,
that is, imakef looks first for a •cfs file.

----------l.ii.~ 2_5_3

12.6 Running the makefile generator

Which configurer is targeted is also dependant on the presence, or not, of the 'NC' option.

12.6.4 Debug data

By default the INQUEST debugger is only supported in post-mortem mode. Interactive
debugging has to be specifically enabled using the 'GA' command line option.

The 'n' option disables the generation of all debugging support in the target file. If this
option is used the resulting target code cannot be debugged.

12.6.5 Software virtual routing and channel input/output

The option 'w' disables the use of software virtual routing processes in target configura
tion files, configured by icconf or occonf.

If the 'w' option is specified for non-eonfigured targets, it is ignored.

The 'y' option instructs imakef to use transputer instructions for channel input/output
rather than using library calls.

The 'y' option only applies to occam modules and if specified the occam compiler and
configurer and the linker will be invoked with the 'y' option. If either icconf or occonf
are used then imakef will automatically invoke them with the 'NV' option, even if it is not
specified on the command line. This maintains consistency in the implementation of
channel input/output because the software virtual routing processes require channel
input/output to be implemented by library calls. If the 'y' option is used it will not be
possible to use the software virtual routing processes and they may therefore be
disabled.

12.6.6 Boot-from-ROM target files

If a specified target file has a 'BTR' extension, a makefile will be produced fora boot
from-ROM target file. imakef will insert a macro '$ (CONFOPTROM)' to invoke the confi
gurerwith the 'RA' option. All toolset configurers currently use the 'RA' option for applica
tions which will be executed in RAM.

The user may wish to edit the macro entry in the makefile, in order to specify different
configurer command line options which control boot-from-ROM output. This will depend
upon the configurer used. See section 12.8.1 for further details of macros.

12.6.7 Removing intermediate files

Intermediate files can be removed by specifying the 'R' option to imakef. This adds a
delete rule to the makefile which directs make to remove all intermediate files after the
program is built. The delete operation is only honored if make is subsequently invoked
with the DELETE target.

12.6.8 Files found on ISEARCH

When imakef runs, it includes all dependencies in the set of rules. The NI option
prevents imakef recording in the makefile, any dependencies on files found using
ISEARCH. As a result the makefile is easier to read and is more portable.

_25_4 ~ _

12 imakef • makefile generator

12.6.9 Map file output for imap

Using the 'M' option, imakef can be made to generate switches in the calls to the
compiler, linker or collector to output map files.

These map files are then available for reading by the imap tool, details of which can be
found in chapter 13.

12.7 imakef examples

This section contains several examples which use imakef with different
SGS-THOMSON toolsets. The examples aim to demonstrate imakef and may not be
specific to your toolset.

12.7.1 C examples

The first example shows how to create a makefile for a multi-module program, written
in C, running on a single T450 target. The second example shows how to create a make
file for a configured C program.

Single transputer program

This first example is for a program which is not configured.

The example program is made up of three source files, written in C:

main.c

hellof.c

worldf.c

imakef needs to know the names of the main components of the program, and looks
for the associated linker indirect file hello •Ink:

r

hello •Ink must contain the following text:

main.t6x
hellof.t6x
worldf.t6x
#include cnonconf.lnk

Note: the use of the •t6x extension rather than • teo. This is because imakef needs
to work out the required processor type. The C run-time start-up linker indirect file cnon
conf • Ink is also included. The inclusion of this file is standard for all C programs which
are not configured and directs imakef to include the libraries. To create the makefile
use the command:

imakef hello.b6x --c

Note: the use of the •b6x extension instead of •btl. Using this form of extension
informs imakef that we wish to create a bootable program for a single T450 transputer
without the aid of the configurer. The makefile hello. mak is created.

---------liii.&.. 2_5_5

12.7 imakef examples

Multitransputer program

This example program uses the configurer to place linked units on two processors. The
program is made up of the following source files written in C:

master.c
muIt.c
muIti.cfs

The. cfs file is the configuration description file. It places two linked units on two proces
sors, using the following statements:

use "master.c8x" for master;
use "muIt.c4x" for muIt;

Note: the use of the •cxx form of extension instead of the toolset default extension for
linked units .Iku. imakef reads the. cfs file and determines that the program is made
up of two linked units, each of which must have an associated linker indirect file, namely,
master.Ink, and muIt.lnk.

The two linker indirect files files must contain the following text:

master.lnk:

master.t8x
#inciude cstartup.Ink

mult.lnk:

muIt.t4x
#inciude cstartrd.Ink

Again note the use of the •txx form of extension. master •Ink includes the C run-time
start-up linker indirect file cstartup .lnk, which is used for configured programs linked
with the full ANSI C run-time library. mult •Ink includes cstartrd .1nk, the standard
C run-time start-up linker indirect file used for configured programs linked with the
reduced library. This library can be used by mult. t4x because the module does not
require host access.

To create the makefile use the following command:

imakef multi.btl --e

The •btl extension informs imakef that the target is a configured program, to be built
from a configuration description file called multi.cfs. The makefile muIti.mak is
created.

12.7.2 occam examples

Two examples are described, the first for a multi-module program running on a single
transputer and the second example for a configured program.

Single transputer program

The example program is made up of four source files, written in occam:

_25_6 lii. _

12 imakef - makefile generator

sorthdr.inc

element.occ

inout.occ

sorter.oee

To create the makefile use the following command:

imakef sorter.bSh

Note the use ofthe. bSh extension instead of •btl. Using this form of extension informs
imakef that we wish to create a bootable program for a single transputer without the
aid of the configurer.

The makefile generator has built-in knowledge of the file name rules for occam. In this
example, it knows by examining the file name that the program to be built is for a single
T400 or T425 processor in HALT mode, and that the source of the main body of the
program is in the file sorter. oce. It reads the file sorter. occ and discovers that it
uses a library called hostio . lib, the two compilation units inout. teo and
element. teo, and two include files, sorthdr. inc and hostio. inc. It then reads
the sources of the include files and compilation units and finds no more file dependen
cies.

With this information about source file and their dependencies, imakef builds a make
file called sorter. mak containing full instructions on how to build the program and
creates a linker indirect file sorter .l4h (see section 12.4).

To build the program run the make program on sorter .mak. The entire program will
be automatically compiled, linked and made boatable, ready for loading onto either a
T400 or T425 transputer.

Multitransputer program

This version of the sorter program is configured to place linked units on four processors.

The program is made up of the following occam files:

sorthdr.ine

element.oee

inout.oee

sortmak.pgm

sortsoft.ine

To create the makefile use the following command:

imakef sortmak.btl

The. btl extension informs imakef that the target is a configured program, to be built
from a configuration description file called sortmak. pgm. The configuration description
references two linked units:

---------- ifii..~ 2_5_7

12.7 imakef examples

#USE "inout.cah"
#USE "element.cah"

Note: the use of the •cxx form of extension instead of the toolset default extension for
linked units .lku. imakef reads the .pgm file and will produce a file called sort
mak. mak suitable for building the program.

To build the program run the make program on sortmak.mak.

12.7.3 Mixed language program

This example, uses a mixed language program which combines both occam and C
modules.

The example program is made up of the following files:

mixed.t6h

cfunc.t6x

- Compiled occam module

- Compiled C module

where: the occam module is the main program which calls in the C function.

To create the makefile for the example program use one of the following command:

imakef mixed.b6h -c

This command informs imakef that we wish to create a bootable program for a single
T450 processor in HALT mode. The 'c' option tells imakef to search for a linker indirect
file.

imakef needs to know the names of the C components of the program, and looks for
the associated linker indirect file mixed . Ink. Because a linker indirect file is supplied
to imakef, all the modules to be linked must be listed.

mixed . Ink must contain the following files:

mixed.t6h
cfunc.t6x
callc.lib
hostio.lib
#INCLUDE clibsrd.lnk
#INCLUDE occam450.lnk

The occam module is listed first, because it contains the main entry point of the
program. Note: the use of the • t6h and •t6x extensions. The C module will be
compiled in UNIVERSAL mode, which is the standard mode for the C compiler. This
does not cause a problem because UNIVERSAL mode may be called by HALT mode.

The files hostio .lib and callc .lib are the occam libraries. occam450 • Ink
contains a list of occam compiler libraries which may be required.

_25_8 ii;i.1i~ ----------

12 imakef - makefile generator

cIibsrd .Ink references the reduced C runtime library used by the C module.

With this information imakef builds the makefile mixed.mak.

Further information about mixed language programming can be found in the accompa
nying 'User Guide', where it is supported by the toolset.

__________ ii;i.&~mI---------2-5-9

12.8 Format of makefiles

12.8 Format of makefiles

Makefiles essentially consist of a number of rules for building all the parts of a program.
Each rule contains two main elements: a definition of the file's dependencies in a format
acceptable to make programs; and the command to recreate the file on a specific host.
All makefiles also contain macros which define command strings and option combina
tions.

LIBRARIAN=ilibr
OCCAM=oc
LINK=ilink
CONFIG=icconf
OCONFIG=occonf
INCONFIG=inconf
ONCONFIG=onconf
COLLECT=icollect
CC=icc
FORTRAN=if77
INIF=inif
DELETE=rm
LIBOPT=
OCCOPT=
LINKOPT=
CONFOPT=
OCONFOPT=
INCONFOPT=
ONCONFOPT=
COLLECTOPT=
COPT=
F770PT=
INIFOPT=
CONFOPTROM=-RA

Macros Rules Action string

tit## IMAKEF CUT #iit· imakef will not overwrite anything above this line

heIlo.b6x : hello.c6x

$ (COLLECT) hello.c6x -t -0 hello.b6x $(COLLECTOPT)

heIlo.c6x : hello. Ink hello.t6x \
/inmos/prod/d4314e/1 ibs/cstartup .lnk \
/inmos/prod/d4 314e/1 ibs/cl ibs. Ink \
/inmos/prod/d4314e/libs/centry.lib \
/inmos/prod/d4314e/libs/Iibc .lib \
/inmos/prod/d4 314e/l ibs/spc. lib

$(LINK) -f hello.lnk -t450 -x -0 hello.c6x $(LINKOPT)

hello. t6x : hello. c /inmos/prod/d4314c/libs/stdio. h

$(CC) hello.c -g -t450 -0 hello.t6x $(COPT)

Figure 12.2 Example makefile

12.8.1 Macros

All makefiles created by imakef include a set of macro definitions inserted at the head
of the file.

_26_0 liir~.. _

12 imakef - makefile generator

Macros define strings which are used to call the compiler, the configurer, the linker, the
librarian, the collector, and the eprom formatter tools, and fixed combinations of options
for these tools.

Macros are provided so that customized versions of the toolset commands, and specific
combinations of options, can be easily incorporated. Existing macros can be modified
for specific host environments, and new macros created, by editing the makefile.

The full set of macros defined by imakef can be found by consulting any makefile
created by the tool.

12.8.2 Rules

Rules define the dependencies of object files on other files and specify action strings to
build those files.

Example:

example.t6h : example.c
$(CC) example -t6 -h -0 example.t6h $(COPT)

This rule first defines the target as the compiled program example. t6h, which is
dependent on the source file example. c and then specifies the command that must be
invoked to build it.

The first rule in all makefiles is for the main target. Succeeding rules define sub-compo
nents of the main target, and are listed hierarchically.

Action strings

Action strings define the complete command line needed to recreate a specific file. The
format is similar for all tools and consists of a call to the tool via a predefined macro, a
fixed set of parameters, a list of command line options, usually via a macro, and the
output filename. (The output file is specified on the command line so that the rebuilt file
is always written to the directory that contains the source.)

12.8.3 Delete rule

The delete rule directs make to remove all intermediate object files once the program
has been built. It consists of a single labelled action string which invokes the host system
'delete file' command. Deletion is only performed if make is subsequently invoked with
the DELETE target.

The delete rule is appended to the makefile by specifying the imakef 'R' option.

12.8.4 Editing the makefile

Makefiles created by the imakef tool can be edited for specific requirements. For
example, new macros can be added and new rules defined for compiling and linking
code written in other languages.

---------lFii 2_6_1

12.9 Error messages

Adding options

imakef generates action strings which have the minimum of options for each tool. In
most cases additional options are unnecessary or may be specified using compiler
directives. For example, the D and U options to icc may be replaced by #define and
#undef at the start of the C source. Several options to oc may be replaced by #OPTION
statements at the start of occam source.

To modify the set of default options for a particular tool simply edit the appropriate macro
in the makefile.

For example, if the output of progress information is to be enabled for all invocations of
the compiler, the compiler 'I' option would be added to the macro which defines the stan
dard combination of options for invoking the compiler. So for the example makefile in
figure 12.2 the compiler macro 'cc = icc' could be redefined to be 'cc = icc -i'.
Alternatively a new macro containing only the 'I' option could be defined and added to
each compiler action string.

Re-running imakef

Once the set of options have been changed in the macros, it is useful to retain this set
of options when imakef is run again. For this reason, imakef will check for the exis
tence of a previous makefile. If one exists, it will re-use (in the new makefile) the set of
macro definitions from the old one, plus any additional text up to the line:

#iii# IMAKEF CUT i#iii imakef will not overwrite anything above this line

12.9 Error messages

imakef generates error messages of severities Warning and Error. Messages are
displayed in standard toolset format.

12.9.1 Warnings

#IMPORT references are illegal in configuration text

At the given line number in the file there is a reference to the #IMPORT directive,
which is illegal for configuration source.

#INCLUDE may not reference a library

The #INCLUDE directive is being used to reference a file with the •lib exten
sion.

#INCLUDE may not reference binary files

The #INCLUDE directive is being used to reference a file containing compiled
code.

#USE may not reference source files

Applies to occam modules only.
The directive #USE cannot be used to reference occam source code.

_26_2 1i;i~ _

12 imakef - makefile generator

Cannot write library usage file

The library usage file cannot be opted for writing.

Cannot write linker command file

The linker command file cannot be opened for writing by the program.

Empty library usage file created

An empty library usage file has been created because there is no .1bb file or
there are no library dependencies that make up the library.

Error whilst reading

A file system error has occurred whilst reading the source.

File generated even though NI option supplied

An option, e.g. 'NIF' has been specified in order to generate a file but the file is
located via ISEARCH. The 'NI' option is ignored with respect to this file.

Found NETWORK directive but not using NDL configurer, need imakef NC option

A #NETWORK (C) or #network (OCCam) directive in the configuration descrip
tion implies that the target processor is an IMS T9000 transputer. Therefore the
NC option should be used.

GA option has no effect with the Y option

The GA and y options are incompatible.

Incomplete compiler directive

At the given line number in the file there is an invalid compiler directive.

Invalid syntax in environment variable

ISEARCH has been set up incorrectly.

Invalid to mix STOP and HALT error mode

The STOP and HALT error modes are mutually exclusive. Make sure the #USE
statements in the configuration description are compatible.

Invalid to mix T9000 linked units with any other processor types

A T2IT4rrS-series transputer network can talk to an IMS T9000 transputer
network via an IMS C1 00 system protocol converter but they cannot be mixed
within the same network at configuration level.

NV option has no effect with the NC option

The NC option causes either of the configurers inconf or onconf to be
selected, neither of which have a NV command line option.

Source file does not exist

The referenced source file does not exist.

__________~&~.. 2_6_3

12.9 Error messages

Unexpected file type in INCLUDE directive
INCLUDE directives are supported by the C and occam compilers and
configurers. They are used to import source code e.g. definitions of constants
and standard header files. Include files usually have a • inc extension.

Unexpected/unknown file type in USE directive
The occam compiler's USE directive should only be used to reference compiled
source files • txx or library files .1ib. Check the extension follows the naming
rules for imakef extensions.

12.9.2 Errors

A library usage file is only valid by itself

If a library usage file is specified as the target file, no other target file may be
specified.

Cannot have a makefile
The file specified on the command line is not one for which imakef can generate
a makefile. imakef can only create makefiles for object files, bootable files and
library usage files.

Cannot open "filename" :reason
The file specified as the output file cannot be opened for writing by the program,
for the reason given.

Command line is invalid
An incorrect command line was supplied to the program. Check the syntax of the
command and try again.

Creating root node of file structure
Malloc failed
Out of memory

The program has failed while trying to dynamically allocate memory for its own
use. Try using a transputer board with more memory. If the program is being run
on the host it may be possible to increase the memory available using host
commands.

Target is not a derivable file
The specified file cannot be generated by the toolset.

Tree checking failed - no output performed
The tree of files has been found to be invalid and unusable for generating make
file. This message always follows a message indicating what is wrong with the
tree. The most common reason for this error is the presence of cyclic references
in the source.

"filename" unknown/illegal file reference
A compiler directive is attempting to reference the wrong type of file.

Writing file
A host system error occurred while the file was being written.

_26_4 1iii _

13 imap - memory mapper

This chapter describes the memory map tool imap. The tool takes the text output from
the toolset compiler, linker and collector and gives the absolute addresses of the static
variables and functions. The chapter begins with an introduction to imap and explains
the command line syntax. imap'S output is described in some detail and an example is
given. The chapter ends with a list of error messages.

13.1 Introduction

The imap tool takes as input memory map files output by the compiler, linker and
collector. Command line options for these tools enable the user to specify that a memory
map file is to be produced. imap collates the information from the different source files
and puts it in a format suitable for output on the display screen. Alternatively the output
from imap can be redirected to another output file as the user wishes. Memory maps
may be generated for both single and multiprocessor transputer programs.

imap is invoked by supplying it with the name of a map file produced by the collector.
The tool will automatically determine the names of map files produced by the linker and
compiler, provided the naming convention for extensions has been adhered to, see
section 13.2.1. Each tool generates a different level of information:

Collector: For each process on each processor, memory locations of code, static,
heap, stack, invocation stack and vector space are listed.

Linker: For each process the offset in memory for code and static for individual
modules which make up the process are listed.

Compiler: For each module listed in the linker output file the offset in memory for
individual static items, procedures and functions are listed.

Where a particular category of information is not applicable to a language, this field will
be left blank. occam programs for instance do not use heap, so obviously such details
are not generated for occam.

Where the output files from the compiler and linker cannot be opened or parsed properly
imap will insert a warning at the appropriate point in the output. Specific addresses of
static data or functions associated with that file will not be given.

The operation of the map tool in terms of standard toolset file extensions is shown below.
Output is sent to standard out, which is usually set to the display screen.

~Input

- -~ References

~ imap

88
I--I:Q

- EjiBmlfPJj 2_6_5

13.2 Running the map tool

13.2 Running the map tool

To invoke the map tool use the following command line:

~ imap filename { options}

where: filename is the name of the file containing the map output from the collector
icollect. If there is no extension given, •map is assumed. Otherwise the file
name is taken as given.

options is a list of the options given in Table 13.1.

Options must be preceded by '-' for UNIX-based toolsets and either '-' or 'I'
for MS-DOS based toolsets. Note: '-' is used in all documentation examples.

Options may be entered in upper or lower case and can be given in any order.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@', (see
section A.1.2 for details)

Only one filename may be given on the command line.

If no arguments are given on the command line a help page is displayed giving the
command syntax.

Option Description
A Displays the list of symbols produced by the linker, including those symbols the

linker identifies as not being used. This option will not override the 'R' option if it
is used.

I Displays progress information as imap processes information from the input files,
such as the filenames of files as they are opened and closed.

o filename Specifies an output file.

p processor name Umits the output generated by imap to that associated with the specified
processor. processorname is defined by the user in the configuration description.

R This option reduces the amount of detail generated by imap in two ways:. the Module memory usage table only displays details for user
processes.

. the Symbol table excludes those symbols containing a '0/0' character in
their name. Such symbols are normally internal symbols e.g. C runtime
library symbols.

ROM hex offset This option is only applicable to, and mustbe specified for, code targetted at ROM.
Itenables a hexadecimal offset to be specified which represents the start address
of the code in ROM. This offset will be added to the start address of any code
which is to run in ROM, in imap'S output.

SN Sorts the symbol tables by symbol name in ASCII order.

Table 13.1 imap command line options

_26_6 li;i&.. _

13 imap - memory mapper

Examples of use:

imap myprog

imap myprog.map

Both the above examples will cause imap to read the file myprog •map, generated by
the collector.

13.2.1 Source files required by imap

Three different types of source file are read by imap and should therefore be made
available. The files are in fact memory maps generated by the compiler, linker and
collector. The appropriate command line option must be specified on each tool's
command line including a filename for the map produced. The filename specified by the
user must have the appropriate extension as indicated in table 13.2.

Extension File description

.lIlZ.X' Map file output by the compiler. The characters'gz'are determined by the 2nd and 3rd
characters of the extension given to the compiler object file. For example if the compiler
object file takes the default extension. teo, the information file is given the extension
.meo.

.dzz Map file output by the linker. The characters 'zz' are determined by the 2nd and 3rd
characters ofthe extension given to the linker output file. For example if the linkeroutput
file takes the default extension .1ku, the information file is given the extension •dku.

•map Map file output by the collector.

Table 13.2 Files extensions for imap source files

13.2.2 Re-directing imap'S output

imap'S output goes to standard out by default. To redirect it to an output file, use the '0'
option and specify an output filename.

13.3 Output format

This section describes the format of the memory map produced by imap. An example
output is given in section 13.4.

If the imap tool cannot find a linker or compiler output file, it will insert a warning
message in place of the missing information. It will not produce a warning if the process
or module comes from a library (such as the system process library).

13.3.1 imap memory map structure

Information is given for each processor in turn and includes the following:

__________ LV._: 2_6_7

13.3 Output format

• a table of the memory blocks that user processes use;

• a table of the code and static memory blocks that each module uses;

• a table of the memory blocks that non-user processes use;

• a table of symbols used by the processor.

Note: the 'p' command line option can be used to limit imap'S output to a specified
processor.

Figure 13.1 shows the layout of imap's output.

Memory map for 'mapfile'

Information on processor 'processor name-j' 'processor type'

User processes on processor 'processor name-l' 'processor type'

Process Type Start End Length

Module memory usage for processor 'processor name-j'

Process Module Section Start

'processor type'

End Length

Other processes on processor 'processor name-j'

Process Type Start

'processor type'

End Length

Table of symbols for processor 'processor name-]' 'processor type'

Symbol Module Address Type

Information on processor 'processor name-2' 'processor type'

User processes on processor 'processor name-2' 'processor type'

etc ...

Figure 13.1 imap output format

The name of the map file input on imap's command line, is given at the top of the
memory map file.

_26_8 iiii_ ----------

13 imap· memory mapper

Each table identifies the processor it relates to and gives the processor's type e.g. ST20,
T450, TaOS etc. The name of the processor is taken from the name specified in the
configuration description file.

All tables, except the symbol table, are sorted on start address order. Each of the tables
is described below.

13.3.2 User processes

The table headed with "User processes" gives the start and end addresses and lengths
of the various blocks of memory used by the user processes for that processor. The table
is ordered by start address and is structured as follows:

• Process name or 'All' if it is the parameter data block, which is not associated
to just one process. 'M:' indicates that the block's process has no name and the
list that follows gives the names of the linked units that made up the process.

• Memory block type - code; heap; overhd; param; stack; static or vector.
See table 13.3.

• Start address in hexadecimal.

• End address in hexadecimal.

• Length in decimal.

Block type Description

code Used for code

heap Used for heap

overhd Used for invocation stack

param Used for the parameter data block

stack Used for workspace

static Used for static data

vector Used for vector space (for occam programs)

Table 13.3 Memory block types

13.3.3 Module memory usage

The table headed with "Module memory usage" gives the memory areas that are used
by each module for code or static data. The table is ordered by start address and has the
following format:

• Process name.

• Module name. Modules which come from a library are prefixed by 'L:'.

• Section name to which the area belongs.

__________EU_al---------2-6-9

13.4 Example

• Start address in hexadecimal.

• End address in hexadecimal.

• Length of the area in decimal.

Examples of section names are pri%text%base and text%base for code, and
static%base for static data.

If the 'R' command line option is used only details of user processes are shown.

13.3.4 Other processes

The table headed with "Other processes" is the same as the "User processes" table but
for all the non-user processes. These are system processes added by the configurer.
This table will not include an entry for the parameter data block.

13.3.5 Symbol table

The symbol table, by default is sorted in address order. The user can specify it is to be
sorted by symbol name into ASCII order, by specifying the 'SN' command line option.
The symbol table gives the following information:

• Symbol name.

• Module name.

• Start address associated with symbol (in hexadecimal).

• Symbol type (see below).

The type field of the symbol table is either taken directly from the compiler map file, or is
created by imap. In the latter case, the field wilt be enclosed in parentheses. This
information is based on which section the symbol comes from. Refer to the compiler
documentation for the meaning of items in this field that aren't enclosed in parentheses.

Note: command line options can be used to extend or limit the amount of symbol
information generated. Normally imap only gives details of symbols used by the
program; the '1\ option instructs imap to include unused symbols in the list. The 'R'
option prevents details of internal symbols, such as those used by the runtime libraries,
being listed.

13.4 Example

The following example output is only a partial listing, all the table entries have been trun
cated in order to demonstrate the overall layout of a map file. The example is based on
the 'hello. c' program configured for a single ST20 processor. The example was
generated by the command:

imap he110

_27_0 £i;i.r~ _

13 imap· memory mapper

Memory map for 'hello'

Information on processor 'Single' (ST20):

User processes on processor 'Single' (ST20):

Process Type Start End Length

Simple
Simple
Simple
Simple
Simple
All

stack #80000170 #80001183
overhd #80001184 #80001197
code #80001198 #80003E37
static #80003E38 #80004197
heap #80004198 #80010997
param #80010998 #80010AC3

4116
20

11424
864

51200
300

Module memory usage for processor 'Single' (ST20):

Process Module Section Start End Length

Simple
Simple
Simple
Simple

Simple
Simple
Simple

hello.c text%base
L:centrydl.p text%base
L:centryd2.p text%base
L:ioprgnam.c text%base

L:ioprgnam.c static%base
L:centryd2.p debug%1
L:ioprgnam.c debug%1

#00001198 #000011B3
#000011B4 #000011C7
#000011C8 #0000126B
#0000126C #000014D3

t00003E38 #00003E3F
#00003E38 #00003E3B
t00003E3C #00003E4F

28
20

164
616

8
4

20

Simple
Simple
Simple
Simple

L:ioinit.c
L:malloc.c
L:exit.c
L:fatal.c

static%base
static%base
static%base
static%base

#00004108 #00004117
#00004118 #00004123
#00004124 #00004127
#00004128 #00004197

16
12

4
112

Other processes on processor 'Single' (ST20):

Process Type Start End Length

Init.system.simple
Init.system.simple
Init.system.simple
System.process.b
System.process.b
System.process.b

stack #80000170 #80000193
overhd #80000194 #800001B7
code #800001B8 #8000023F
stack #80000240 #8000025F
overhd #80000260 #80000273
code #80000274 #800002E3

36
36

136
32
20

112

Table of symbols for processor 'Single' (ST20):

Symbol Module Address Type

CENTRYD_stage2%c
Chanln%c
ChanOut%c

main
exit
vlinkfunc_out%
_IMS_fdmax
_IMS_closeptr

libc.lib
libc.lib
libc.lib

hello.c
spc.lib
libc.lib
libc.lib
libc.lib

#80001198 (code)
#80001198 (code)
#80001198 (code)

#80001198 code
#8000119A (code)
#8000119A (code)
#8000410C (static)
#80004114 (static)

Figure 13.2 Example partiallisfing of imap'S output

---------_ Eiifi~: 2_7_1

13.5 Error messages

13.5 Error messages

This section lists each error message that can be generated by the memory map tool.
Messages are in the standard toolset format which is explained in appendix A.

All open files are closed when an error is found and the tool halts without producing a
map.

13.5.1 Serious errors

Filename input file cannot be parsed properly

The named file cannot be read by imap.

Cannot open collector's output file for reading

The collector map file specified on the command line cannot be found. Check
that the extension used for the collector map file is in the correct format. See
section 13.2.

Cannot open output file for writing

The output file cannot be opened for writing. May indicate a disk space problem
or some other host system error.

Error parsing command line

The command line has the wrong syntax or a non-existent option has been
specified.

Must specify input file

An input file must be specified.

Only single output filename allowed

More than one output filename has been specified.

Only single processor name allowed

More than one processor name has been specified with the 'p' option; this is
illegal.

Only single ROM offset value allowed

More than one ROM offset has been specified.

13.5.2 Fatal errors

Filename internal data structure failure or file corrupt

A source file used by imap has referenced something which cannot be found.
This can occur when redundant map files are read by imap in error.

_27_2 ~r~ _

13 imap - memory mapper

Filename out of heap space

There is not enough heap space to generate the memory map.

Unexpected end of file

A source file, read by imap has been corrupted. Regenerate compiler, linker and
collector map files.

__________ ii;ir~ ---,--2_7_3

13.5 Error messages

_27_4 JI;l~ ----------

14 imem4 5 0 - memory interface
configurer

This chapter describes the memory interface configurer tool, imem4 5 O. This tool assists
with selecting the parameters for an ST20450 external memory interface. The tool
produces a memory interface configuration file, called a memfile. It can create and
modify the file interactively, displaying the effects that the parameters would produce.

The contents of the memfile are used to create the data to initialize the memory interface
from a host link or from a ROM. The tool can also be used, interactively or in batch mode,
to produce timing data or waveform diagram files for printing.

This chapter describes imem4 50 and outlines its capabilities. Example displays are
provided. The chapter ends with a list of error messages.

The format of a memfile is described and an example is given in Appendix E. The
process ofconverting a memory design to a memory interface configuration is described
in the'ST20 Toolset User Guidd.

14.1 Introduction

The ST20 has an external memory interface (EMI) which provides address decoding,
timing control and refresh functions. It allows up to four banks of memory to be defined
with different interface and timing characteristics. The memory interface has a 32-bit
data bus and each bank of memory can be configured to be 32-bit, 16-bit or a-bit wide.

The memory interface of the ST20 can be initialized by writing to memory-mapped
configuration registers. This is performed by the bootstrap code initializing the ST20,
which may be loaded from a remote host or read from a ROM.

The imem4 50 tool can be used to create and modify a memfile and display or print the
timing data and waveforms it would produce.

The operation of imem4 50 in terms of input and output files is shown in figure 14.1. The
files are shown with their standard file name extensions, which are recommended but
not required.

----------liiiPdn~mI---------2-7-5

14.2 Running the memory interface configurer

8 Memory
.mem interface

configuration

Memory
interface

configuration
imem450 Waveforms

easc Text output
file

Figure 14.1 imem4 50 input and output files

14.2 Running the memory interface configurer

To invoke the memory interface configurer, the following command line is used:

~ imem4 5 0 {options}

where: options is a list of options. The options for interactive mode are given in
table 14.1. The options for batch mode are given in table 14.2.

Options may be entered in upper or lower case and can be given in any order
on the command line.

Options must be separated by spaces.

Options may be supplied in an indirect argument file, prefixed by '@'. See
section A.1.2 for details.

If no arguments are given on the command line a help page is displayed giving the
command syntax and options.

Option Description

-E Run in interactive mode.

-DW Disable warnings.

-F memfile Specify the initial state memfile.

-I Select verbose mode which displays status information as it runs - e.g. listing the
files it opens.

Table 14.1 imem450 command line interactive mode options

If no input file is specified in interactive mode, then an initial default configuration will be
used, with refresh disabled and all the banks disabled.

_27_6 1i;i _

14 imem450 - memory interface configurer

Option Description

-A Produce an ASCII display page output file.

-DW Disable warnings.

-F memfile Specify the input memfile.

-I Select verbose mode. In this mode the tool will display status information as it runs -
e.g. listing the files it opens.

-0 filename Specify the output Postscript or ASCII filename.

-p Produce a PostScript waveform output file.

Table 14.2 imem450 command line batch mode options

In batch mode, option -F is mandatory and one of-p or -A must be used. If the --0 option
is not used then an output filename will be constructed from the input filename, with an
extension of •ps for a Postscript output or •ase for an ASCII output.

Examples:

The following command runs imem450 interactively, starting with the default configura
tion:

imem450 -e

The following command runs imem450 in verbose batch mode to produce a waveform
PostScript output file:

imem450 -i -p -f myeonfig.mem --0 diagram.ps

14.2.1 Default command line

A set of default command line options can be defined for the tool using the IMEM4 50ARG
environment variable. Options must be specified using the syntax required by the
command line. Environment options are interpreted before other arguments. For
example, to make imem450 run in verbose interactive mode by default with initial
memory configuration defined by default.mem:

setenv IMEM450ARG "-e -i -f default.mem"
(for UNIX toolsets using C shell)

set IMEM450ARG="-e -i -f default.mem"

14.3 Interactive operation

(For MS-DOS toolsets)

The tool's interactive user interface is presented as a number of ASCII display pages
showing menus, timing data and waveforms. The timing data appears on pages 2 to 7.
It may be updated interactively by entering new timing parameters from the keyboard.
All inputs are executed immediately so that the user can see the effect on any of the

----------iiii&~ 2_7_7

14.3 Interactive operation

displays. As each page is shown, the user has the option of selecting another page for
display by keying in its number. The current configuration may be saved at any time to
a specified output file.

The meanings of the variables on the input pages are the same as the corresponding
variables in a memfile. The memfile variables are fully described in Appendix E.

Command Action

<Retum> Go to next page

PageNumber Go to given page

< Scroll timing display window left

> Scroll timing display window right
1\ Scroll timing display window up

v Scroll timing display window down

A Generate ASCII page output file

AS Generate ASCII sequence output file, large page

c Change configuration data

DW Disable warnings

E Enter configuration data

EW Enable warnings

H Go to help page

L Load memory configuration from a file

P Generate PostScript waveform output file

PS Generate PostScript sequence waveform output file

Q Exit program

S Save memory configuration to a file

SA Sequence - append cycle

sc Sequence - clear all entries

SD Sequence - delete last entry

w Display configuration warning messages

Table 14.3 Interactive commands

The ASCII display uses the file referred to by the ITERM environment variable. If ITERM
is not defined then the screen will be treated as having 24 lines of 80 characters each
and default character values and routines will be used. For example, the screen will be
cleared by writing 24 line feeds.

The ITERM file can be used to improve the display. For example, the screen size can
be changed to show more of the waveform diagrams. The screen size is given by the
line beginning 2: in the screen section. It can be increased to 170 columns and 50 lines
by the following line:

2:170,50.

_27_8 liii~ _

14 imem450 - memory interface configurer

Full details of ITERM files are given in Appendix I.

14.3.1 Interactive commands

Table 14.3 lists the interactive commands and their actions.

14.3.2 Interactive pages

Table 14.4 lists the interactive pages which may be selected. Pages aand 1are introduc
tory pages. Pages 2 to 8 are input pages, in which the user may enter or change
parameters via the keyboard. Pages 9 to 19 display the effects of the parameters.
Details can be entered or parameters changed while any page is displayed.

Page Title

0 Pages menu

1 Interactive commands menu

2 Input Data, General

3 Input Data, Pad drive strengths

4 Input Data, Bank 0

5 Input Data, Bank 1

6 Input Data, Bank 2

7 Input Data, Bank 3

8 Input Data, Sequence of cycles definition

9 Register Values

10 Timing Diagram, Refresh Cycle

11 Timing Diagram, Bank 0 read cycle

12 Timing Diagram, Bank 0 write cycle

13 Timing Diagram, Bank 1 read cycle

14 Timing Diagram, Bank 1 write cycle

15 Timing Diagram, Bank 2 read cycle

16 Timing Diagram, Bank 2 write cycle

17 Timing Diagram, Bank 3 read cycle

18 Timing Diagram, Bank 3 write cycle

19 Timing Diagram, Sequence of cycles

Table 14.4 imem4 50 interactive pages

Page 0

Page 0 of the imem4 5 0 display gives a list of the ASCII input and display pages, as listed
in table 14.4.

Page 1

Page 1 of the imem450 display gives a list of all the commands that may be used in
interactive mode, as listed in table 14.3.

----------liilfi~ 2_7_9

14.3 Interactive operation

Page 2

Page 2 of the imem4 5 0 display is the input page for general data that does not relate
to a particular memory bank. An example is shown in figure 14.2.

Page 2 - Input Data, General

Processor. Type

Dram. Refresh. Interval

Dram. Refresh. Time
Dram .Refresh.RAS •High

Proc. Clock. out

:= T450

:= 320 Cycles

:= 2 Cycles
:= 2 Phases

:= Disabled

Signal.AlI. Pending. Cycles

Bank 0 non-DRAM "SRAM"

Bank 1 DRAM "DRAM"

Bank 2 DISABLED

Bank 3 non-DRAM "FIFO + REGISTERS BANK"

Figure 14.2 Example interactive display page 2

Page 3

Page 3 of the imem4 5 0 display is the input page for the details of pad drive strengths.
Figure 14.3 shows an example of page 3.

Page 3 - Input Data, Pad drive strengths

Pad. strength. RcpO := 3

Pad. strength.Rcpl := 0
Pad. strength. Rcp2 := 1

Pad. strength. Rcp3 := 2
Pad. Strength. Bel := 3
Pad. Strength. Be2 := 0
Pad.Strength.A2.8 := 1
Pad.Strength.A9.12 := 2

Pad.strength.A13.16 := 3
Pad.strength.A17.20 := 0
Pad.Strength.A21.24 := 1
Pad.Strength.A25.31 := 2
Pad.Strength.DO.7 := 3
Pad.strength.D8.15 := 0
pad.strength.D16.31 1

Figure 14.3 Example interactive display page 3

_28_0 g;;.1'~ ----------

14 imem450 - memory interface configurer

Pages 4 to 7

Pages 4 to 7 of the imem4 50 display are the input pages for the details of memory banks
oto 3 respectively. Figure 14.4 shows an example of page 5.

Page 5 - Input Data, Bank 1 "DRAM"

Data . Drive. Delay
Page •Address •Bits

2 Phases
3FFFFOOO

Port.size
Page .Address. shift

32 bits
10 bits

Ras •strobe
RASl

Time. To •Falling. Edge
Time. To •Rising. Edge
Falling : '= Rd & Wr

o Phases
Inactive

Cas.Strobe
CAS1
Time. To • Falling. Edge : = 2 Phase
Time. To •Rising. Edge : = 7 Phases
Falling : '= Rd & Wr, Rising: = Rd

Programmable. strobe
PSl
Time. To •Falling. Edge : = 0 Phases
Time. To . Rising. Edge : = 7 Phases
Falling : '= Rd, Rising: = Rd

Write. strobe
WRITEl
Time. To • Falling. Edge : = 2 Phases
Time. To. Risi.ng. Edge Inacti.ve
Falling :'= Wr

Ras . Precharge. Time
Ras • Cycl.e •Time
Bus. Release. Time

cycle
cycles
cycle

Ras. Edge. Time
Cas. Cycl.e. Time
Wait. pin

1 phases

4 cycles
Disabl.ed

Figure 14.4 Example interactive display page 5

PageS

Page 8 of the imem4 5 0 display is the input page to define a sequence of memory cycles
for display on page 19. This facility is useful for checking precharge and bus release
times and page mode for multiple memory accesses. Figure 14.5 shows an example
of page 8.

Page 8 - Input Data, Sequence definition

0/ Read - Bank 0
1/ Write - Bank 1
2/ write - Bank 1
3/ Read - Bank 3
4/ No access
5/ No access
6/ No access
7/ No access

- 80000000

- C0080000

- C0080020

- 40000000

Figure 14.5 Example interactive display page 8

----------I.fi.fi~ 2_8_1

14.3 Interactive operation

Page 9

Page 9 of the imem450 display shows the memory interface configuration register
values needed to specify the parameters listed on the previous pages. Figure 14.6
shows an example.

Page 9 - Register Values

=========================

BankO Bank1 Bank2 Bank3 Bank4

COnfigDataFieldO 00000000 3FFFFOO1 3FFFFFOO 00000000 00000000

ConfigDataField1 410A0581 41841829 4180141A 61050183 00000000

ConfigDataField2 EC1COOA6 6F18D182 6FD8D10A FCOOOSEE 00000000

COnfigDataField3 31410030 31403041 31133041 51006140 13939393

Figure 14.6 Example interactive display page 9

Pages 10 to 19

Pages 10 to 19 of the imem450 display are the display pages for the waveform timing
diagrams. Page 10 shows the refresh cycle. Pages 11 to 18 show the read and write
cycles of memory banks 0 to 3. Page 19 shows the sequence of read, write and refresh
cycles defined on page 8. Figure 14.7 shows an example of page 17.

Page 17 - Timing Diagram, Bank 3 "FIFO + REGISTERS BANK", read cycle

Access

Cycle

Phases

Read 40000000

CAS FLOAT

1

I

Processor clock / '-I '-I '-I '-I '-I '-I '-I

Ras Strobe

CAS 3

PS3

WRITE3

Address bus

Data bus

-«-----------------»---

Figure 14.7 Example interactive display page 17

_28_2 lii. _

14 imem450 - memory interface configurer

14.4 Output files

Three different types of output may be produced by imem4 50, as listed below:

A memfile suitable for including as an input file to the initialization file generator
or the EPROM program formatting tool or for further editing using imem450.

An ASCII display page output file, suitable for inclusion in documentation.

A waveform output file in Postscript format, suitable for inclusion in documenta
tion.

14.4.1 Memfiles

The imem4 50 tool can be used interactively to create or modify a memory interface
configuration file, or memfile. imem4 50 is capable of saving and reloading memfiles to
allow for design and modification over an extended period and for comparison of
different configurations. The memfile is described and an example is given in
Appendix E.

Memfiles are simple text files that may also be created or modified manually using a
standard text editor.

The memfile is read during the building of the binary code file and the configuration
information is either incorporated into the bootstrap for booting from a host or into a
ROM.

Page 10 - Timing Diagram, Refresh Cyc1e

Access Refresh
Cycle

1 ! 2 I 3 4 I 5

Phases I I I I I i I j

Processor c10ck / '----I '---J '---/ \-.-/ '--/

unti.t1ed ras strobe

CE

RAS1

CASl

unti.tled ras strobe

CAS 3

"--__-'I

\\--------1

Figure 14.8 A page of an example ASCII display page output file

__________ fjji 2_8_3

14.4 Output files

To create, modify or view a memfile, the -E run-time option should be selected.

14.4.2 ASCII display page output files

The imem450 tool may be used to produce timing data and waveforms in the form of
ASCII text output files. These files can be printed and included in reports or other
documentation.

To produce an ASCII display page output file in batch mode, the -A run-time option
should be selected. An ASCII page output file may also be produced in interactive mode
with the commands A and AS. The file produced by the -A run-time option orA interactive
command will consist of all the pages which could be displayed in interactive mode, as
described in section 14.3.2. The AS command produces a file containing just the full size
sequence page, page 19. Part of an example of an output file is shown in figure 14.8.

The output is an ASCII text file which may be edited using an ordinary text editor.

14.4.3 Waveform file

The imem450 tool may be used to produce waveform data in the form of a PostScript
format output file. This file can be printed and included in reports or other documenta
tion. The diagrams provided are the refresh cycle and the read and write cycles for all
active banks.

Timing Diagram, Refresh Cycle

I
I I I I I I I I I I I I I I I

~-'---,.----'/

Figure 14.9 Refresh cycle waveform postscript output example

To produce a waveform diagram file in batch mode, the -p run-time option should be
selected. In interactive mode, a waveform diagram file may be produced with the

_28_4 ii;i_---------

14 imem4 50 • memory interface configurer

command p or ps. The file produced by the -p run-time option or p interactive command
will consist of PostScript versions of the waveform diagrams for refresh and for read and
write for the enabled banks. Example pages are shown in figures 14.9 and 14.10.

Timing Diagram, Read cycle, bank 0 - SRAM

Cycle

~------~------.,--->>-------

-~-------;--;c:=::=JI--:--~--------

Figure 14.10 Read cycle waveform postscript output example

The ps command produces a file containing a PostScript version of the waveform
diagram for the sequence of cycles, as displayed on page 19. An example is shown in
figure 14.11.

__________~&...mI---------2-8-5

14.5 Error messages

I - ~oo I _800~ I Wnte80080020 I _cooooooo I
I 1 CAS 2 ! FL~AT ~ 1 :2 CAS 3 4 1 2 CAS 3 4 1 ~ 3 Flc;u'T

1",1,,: 111,1",1,111",111111,1; 'III'I'II"I'I';"'I"'III,I! II.
;. .; : ::

: .. '.
-;~..~r---:--T---..------,--.........-----:---.---..----r-~----.---r--T-~

~-;-;------'---'-:---'--;----=----:..--'-:----r--~---=-----;-

--i--'-:......;......:~.;..-:..'.~~, : .. . • . • ,.----.....,....-.---:-

-:----~.---T''-'~:----.''--------r........'----J>A-f-·~~-~----+-

-,----~-. -''-'---~.-'---'.-----~..-----.- -...--.-----r:r-+-
.: .

: .

Figure 14.11 Postscript output example of a sequence of cycles

14.5 Error messages
This section lists each error message that can be generated by imem4 50. Messages
are in the standard toolset format which is explained in Appendix A.7.

14.5.1 Warnings

bank number CAS strobe has rising edge before falling edge.

During a cycle, an active strobe will start high. When the user specified
'Time. To •Falling. Edge' has elapsed, it will go low, and will remain low until
'Time. To •Rising. Edge', or the end of the cycle (if 'Time. To •Rising. Edge' is
not specified). Both of these times are specified from the start of the cycle. This
message indicates that the user requested the strobe go back to high, before it went
low.

bank number no strobes enabled for this bank.

Self explanatory, all the strobes have been defined to be inactive during accesses,
the outside world won't even know that an access has been made to the bank.

bank numberPAGE.ADDRESS.SHIFT is too large, not all page address bits will be
on the bus during RAS cycle.

During a RAS cycle, when the page address is presented, the address bus is shifted
down by an amount specified by the user. Le. if the page address bits mask is

_28_6 li;i _

14 imem450 - memory interface configurer

OOOFFCOO then it is likely that the address will be shifted down by, for example, 8
to present the address on bits 2..11. If it was shifted by more than 10, then some
page address bits will be shifted out, and will not be presented on the bus during the
RAS cycle.

bank number Programmable strobe has rising edge before falling edge.

During a cycle, an active strobe will start high. When the user specified
'Time. To. Fa11ing • Edge' has elapsed, it will go low, and will remain low until
'Time. To. Rising. Edge', or the end of the cycle (if 'Time. To. Rising. Edge' is
not specified). Both of these times are specified from the start of the cycle. This
message indicates that the user requested the strobe go back to high, before it went
low.

bank number RAS.EDGE.TIME is longer that the RAS.CYCLE.TIME

During a RAS cycle, the RAS strobe stays high for a time then goes low until at least
until the end of the RAS cycle. The RAS. EDGE. TIME specifies how long the strobe
stays high. If this time is longer than the cycle time then the RAS strobe will not go
low during the RAS cycle.

bank number Strobes extend beyond end of CAS cycle time.

During a cycle, an active strobe will start high. When the user specified
'Time 0 To. Fa11ing •Edge' has elapsed, it will go low, and will remain low until
'Time. To. Rising • Edge', or the end of the cycle (if 'Time. To •Rising •Edge' is
not specified). Both of these times are specified from the start of the cycle. This
message indicates that one of these times, specified by the user, was greater than
the entire cycle time, specified as Cyc1e. Time or Cas. Cyc1e. Time depending
on whether or not this is a DRAM.

bank number Write strobe has rising edge before falling edge.

During a cycle, an active strobe will start high. When the user specified
'Time. To. Fa11ing •Edge' has elapsed, it will go low, and will remain low until
'Time. To. Rising. Edge', or the end of the cycle (if 'Time. To •Rising. Edge' is
not specified). Both of these times are specified from the start of the cycle. This
message indicates that the user requested the strobe go back to high, before it went
low.

14.5.2 Errors

These errors may occur during the processing of the memory configuration file and are
considered to be self explanatory:

Attempt to define bank number twice.

Attempt to specify string twice.

__________ Gii 2_8_7

14.5 Error messages

Bank number, number, out of range, expecting 0..3

BUS 0 RELEASE. TIME must be specified.

CAS. CYCLE. TIME must be specified.

Decimal number number to large - string

Expecting "" to open string - string.

Expecting assignment operator ':='

First statement in bank definition must be device. type

Hexadecimal number too large - string

If 'inactive' is used it must be the only statement in a strobe definition

Illegal decimal number - string

Illegal hexadecimal number - string

Legal options are :- <options>

Missing decimal number

Missing hexadecimal number

Missing keyword
Legal options are :- <options>

Missing name

Missing string

Missing word, expecting 'string'

Number, number, out of range, expecting 0..15

Number, number, out of range, expecting 0..1023

PAGE. ADDRESS. BITS must be specified for a DRAM.

RAS • CYCLE. TIME must be specified for a DRAM bank.

RAS • EDGE. TIME must be specified for a DRAM bank.

RAS • PRECHARGE • TIME must be specified for a DRAM bank.

RAS • STROBE must be inactive or have falling edge specified in DRAM bank.

_28_8 lV. _

14 imem450 • memory interface configurer

Statement has no meaning in non-DRAM bank.

Statement must occur inside bank definition

Statement must occur inside strobe definition

Statement must occur outside bank definition

Statement must occur outside strobe definition

Status of wait pin not specified.

Surplus data after valid statement - 'string'

Time out of range, expecting 2..6 phases, or 1..3 cycles

Time out of range, expecting 0..30 phases, or 0.•15 cycles

Time out of range, expecting 2..30 phases, or 1..15 cycles

Time out of range, expecting 4..30 phases, or 2.•15 cycles

Time out of range, expecting 0..3 phases

Time out of range, expecting 0..7 phases

Time out of range, expecting 0..31 phases

Time to edge out of range, expecting 0..63 phases, or 0..15 cycles

Unable to open memory configuration file 'string'

Unable to open output file

Unrecognised keyword 'string'

Unrecognised statement keyword - string

Unrecognised word 'string', expecting 'string'

Unterminated string - "string

Value must be whole number of cycles, or number of phases divisible by 2.

Value uses bits 0 & 1, illegaly

14.5.3 Fatal errors

This version of sparse does not support activity number

An internal error has occurred. This should be reported to your local
SGS-THOMSON distributor of field applications engineer.

__________~~Jf 2_89_

14.5 Error messages

_29_0 l.Ti.~ _

15 irun - application loader

This chapter describes how to use irun to load and run an application on the target
hardware. Applications may either use iserverprotocols or the AServer or a combination
of both. irun also fully supports the INQUESTtools. The INQUESTtools have their own
commands which in turn load irun in order to load the application.

15.1 The purpose of irun

irun performs three functions, namely:

1. to initialize the target hardware;

2. to load a bootable application program onto the target hardware;

3. to serve the application, Le. to respond to requests from the application program
for access to host services, such as host files and terminal input and output.

These steps are normally performed when irun is invoked, and are described in more
detail below.

15.1.1 Initializing target hardware

Normally, the target hardware must be initialized before an application can be loaded
onto it. For hosted systems, including development systems, this is performed automati
cally by irun in combination with any boot ROM.

15.1.2 Loading programs

Before an application program can be loaded onto target hardware, a bootable file must
be built, as described in the 'User Guide. By convention, a bootable file generally has
a •btl file extension. The process of building includes compiling, linking, configuring
and collecting.

Bootable files contain a loader and the application code. If the target hardware has been
initialized, then the bootable file may be sent to the target. This will cause the target to
be bootstrapped and the application to be loaded and start running.

15.1.3 Access to host services

Once an application is loaded and running, it can communicate with the host using the
i/o libraries for the language being used. The library calls available and their parameters
are documented in the 'Language and Libraries Reference Manual.

irun supports the iserver protocol which is used by the ANSI C and occam 2
run-time libraries to communicate with the host.

--- Eii.P~~ 2_9_1

15.2 Starting an application

15.2 Starting an application

An application is started on the target hardware by the irun command. The irun
command can be entered at a SunOS prompt. For Microsoft Windows users, the irun
command can be entered in a DOS window provided ilaunch is running. For Windows
users, the irun command may also be implemented by the normal Windows methods,
as described in section 15.2.3.

15.2.1 Target interface parameters

Before starting irun, the target interface parameters must be set up. irun uses two
parameters, TRANSPUTER and ASERVDB, which should have been set up during instal
lation of the software, although they may need to be changed from time to time. These
are described in more detail in section 15.3. A launch tool and an iset tool are provided
to facilitate setting these parameters from Microsoft Windows. The launch tool is
described in Chapter 8 and the iset tool is described in Chapter 16.

Target interface parameters may be stored as environment variables or for Microsoft
Windows they may be stored in a Windows environment file. The value of TRANSPUTER
may also be given at run time as a command line option. Values stored in a Windows
environment file override DOS environment variables but do not change them.
Command line options override any Windows environment file and any environment
variables but do not change them.

15.2.2 The irun command line

irun can be started using the following command line:

~ irun {options} {bootable_file} {options}

where: bootable_file is the name of the application code bootable file,

options is a list of one or more options from table 15.1.

Options may be entered in upper or lower case.

Options can be given in any order and the order may be significant.

Options must be separated by spaces.

If irun is invoked with no options and no bootable file, then help information is
displayed, briefly explaining the command line arguments.

The full list of command line options for this release of irun is given in table 15.1.

_29_2 Eii.&.- ----------

15 irun - application loader

Option Description

-NE Turn off monitoring for errors while serving the link.

-NR Turn off resetting the network before booting.

-SAD entry Add entry to the AServer database for this execution of the program.

-SB bootable_file Load bootable_file and serve the link, monitoring for errors. This is the same as
specifying bootable_file as the parameter. This option is provided for
compatibility with earlier versions.

-sc bootable_file Load boatable_file onto the target hardware.

-SCL command Start the client or service with command command.

-SE Turn on monitoring for errors while serving the link.

-5I Turn on display of progress information as the program is loaded.

-5L resource Use the target hardware connection resource, which is the name of a resource
in the AServer database. This overrides the TRANSPUTER environment variable.

-SN filename Initialize an IMS T9000 network using the named •nif file. This overrides the
AServer database entry.

-SR Reset the target hardware.

-55 Serve the link without resetting, i.e. respond to host i/o requests from the target
(not IMS T9000s unless a bootable file is given).

-5T Pass any following arguments to the application.

Table 15.1 irun command line options

For example, to load the application hello. btl, enter the command:

irun he110.bt1

To load the application hello. btl onto the target hardware bO 0 8, enter the command:

irun -sl b008 hel10.bt1

The order of some of the irun options in the command line is significant, so that several
bootable files may be loaded in succession with a single irun command. Each irun
option implies one or more actions by irun and the actions are carried out in the
following order:

1. all actions except loading and serving;

2. load all boatable files given with the sc option in the order they are given in the
command line;

3. load any bootable file given as a parameter or with the SB option;

4. serve the link if required (i.e. if the ss or SB option is given or a boatable file
without an option is given).

15.2.3 Starting using Microsoft Windows

irun can be run in the same way as other Windows applications. Four possible
methods are:

----------lii~Jj 2_9_3

15.3 The environment

Use the Program Manager to create a program group and assign the command
line given in section 15.2.2 to an appropriate icon. New icons can be created
using New••• in the File menu. The command line assigned to an icon can be
changed by selecting the icon and using Properties.•. in the File menu.

Use the File Manager to associate irun with the extension .btl. In this case,
no options are permitted. Double clicking on a •btl file in the File Manager will
then start irun.

Click on irun. exe in the File Manager. This will open a Command Line Box,
with fields for the bootable file to be run, the options and the working directory.
The possible options are listed in table 15.1. The File field has a Browse button
and the Options field has a history button.

Select the Run•.• command in the File menu of the File Manager and enter the
command line, as given in section 15.2.2.

If ilaunch is running then irun commands may be entered in a DOS window.

15.3 The environment

irun uses three environment parameters, I SEARCH, ASERVDB and TRANSPUTER,
which should have been set up during installation of the software, although they may
need to be changed from time to time. irun needs to communicate with the target
hardware, and uses these parameters to identify which connection is to be used and the
method of communication.

Parameter Meaning
I SEARCH Search path for libraries and include files.

ASERVDB Pathname of AServer database file if not on the ISEARCH path.

TRANSPUTER Name of target hardware connection.

Table 15.2 Environment parameters

15.3.1 ISEARCH

The ISEARCH parameter gives the path which is searched by certain tools for libraries,
include files and other files. Each directory in the path should be terminated with a path
separator (\ on PCs, / on Suns) as the directory is directly prepended to the filename.
Directories are separated by spaces.

15.3.2 ASERVDB

The ASERVDB parameter gives the pathname of the AServer database file if the file is
not on the ISEARCH path. The AServer database defines possible resources, which
may be target hardware connections or host processes which may be requested by the
application. For each hardware connection the AServer database gives the method of
communication. The AServer database file is described in Appendix H.

_29_4 Eii.~ - _

15 irun - application loader

15.3.3 TRANSPUTER

The TRANSPUTER parameter specifies which target hardware connection is to be used.
The possible values are the resource names in the AServer database pointed to by
ASERVDB. The AServer database is described in Appendix H.

irun uses the TRANSPUTER parameter to find the connection to serve and to which
bootable files are to be copied. The TRANSPUTER variable may be overridden by the SL
option on the irun command line.

15.3.4 Setting target interface parameters on a Sun

On a Sun, the target interface parameters are environment variables, and may be set
in the same way as other environment variables.

15.3.5 Setting target interface parameters on a PC with Windows

On a PC with Windows, the target interface parameters should normally be set using
the Windows launch tool ilaunch, which is described in Chapter 8 or the iset
command line tool, which is described in Chapter 16. These tools are used to set values
in the Windows environment file.

The Windows launch tool is normally started automatically when Windows is started and
allowed to run throughout the Windows session, represented by a Windows icon
appearing at the bottom of the screen. The iset tool is run by a command line in a DOS
window and sets or clears a single parameter.

15.4 Skip loaders

This section describes the skip loaders, skipn. btl. The skip loaders allow code to be
loaded onto and run on sub-networks of a transputer network which do not include the
root transputer, Le. it allows one or more transputers to be skipped. One or more skip
loaders may be loaded before loading the final code. The skip bootables are not
included with ST20 toolsets.

Unk
n

Network
link

Host

Skip loader
transputer

Figure 15.1 Using one skip loader

Target
transputer
network

- '9."- 2_9_5

15.4 Skip loaders

A skip loader copies all data received on the boot link to a specified network link and
copies all data received from the specified network link to the boot link, as shown in
figure 15.1. Thus the transputer on which it runs becomes effectively transparent so that
code can be loaded through it and messages may be passed through it to and from the
host as if there were a direct connection. The boot link is the link from which the skip
transputer was booted. The network link is given by the particular skip loader used.

There are four skip loaders, as follows:-

skipO . btl Network link is link 0 of the skip loader transputer;

skipl. btl Network link is link 1 of the skip loader transputer;

skip2.btl Network link is link 2 of the skip loader transputer;

skip3.btl Network link is link 3 of the skip loader transputer.

MUltiple skip loaders may be used to skip as many transputers as necessary. The chain
of boot links then forms a path from the host to the user application.

Resetting the transputer network after the skip loader has been loaded will cause the
skip loader to be lost. The network can be reset using the irun option SR. An application
to be skip loaded must be loaded using the NR option or the skip loader will be lost.

15.4.1 Running the skip loader

To load a single skip loader using irun use the following command line:

irun -sr -sc skipn.btl

where: n is the number of the link from the skip loader to the target network.

15.4.2 Examples of use

The following example resets the network, loads the skip loader onto the root processor,
sends the bootable file example.btl and serves the link, Le. responds to requests
from the example.btl application. This has the effect of running example.btl on the
transputer network found down link 2 from the root transputer:

irun -sr -sc skip2.btl -sc example.btl -se -ss

The following example saves the extracted results from example. btl which was
running on the network found down link 2 from the root transputer. It then displays those
results.

iprof -sc skip2.btl example.btl

_29_6 1i;i.~ _

16 iset - Windows parameter tool

The purpose of the iset Windows parameter tool is to set and clear tool parameters
defined in the Windows environment file from DOS.

The application loader irun uses the parameters described in Chapter 15. On PC
systems using Microsoft Windows, these parameters may be held either as DOS envi
ronment variables or in a Windows environment file or both. The Windows parameter
tool iset is used to edit a line of the Windows environment file from a DOS command
line or in a batch file, such as autoexec .bat. iset may only be used on a PC with
Microsoft Windows.

The Windows environment file is described in Chapter 8.

The iset command has the syntax:

~ iset command

where: command is a string describing the action required, which must be in one of the
following forms:

variable = value

This writes the following assignment statement into the ENVIRONMENT section
of the Windows environment file:

variable = value

environmenLvariable

This writes the following assignment statement into the ENVIRONMENT section
of the Windows environment file:

environmenLvariable = value

where environmenLvariable is a DOS environment variable with the value
value. This effectively copies the environment variable into the Windows envi
ronment file.

variable =

This deletes from the Windows environment file any assignment statement to
variable.

Spaces are not permitted on either side of the equals sign (=).

----------Jiii.~ 2_9_7

16 iset - Windows parameter tool

Examples

The following command line sets the parameter ISEARCH to search C:\myapp and
C: \ toolset\libs by writing the corresponding assignment statement in the
Windows environment file:

iset ISEARCH=C:\myapp\ C:\toolset\libs\

The following command line sets the parameter TRANSPUTER to the value of the
TRANSPUTER environment variable by writing the corresponding assignment statement
in the Windows environment file:

iset TRANSPUTER

The following command line deletes the parameter ASERVDB from the Windows envi
ronment file, which means that tools needing an AServer database will use the one
defined in the ASERVDB environment variable:

iset ASERVDB=

_29_8 E;i.~ ---------

Appendices

_______ lFii._occI-------29-9

Appendices

_30_0 1iii.~~ _

A Toolset conventions and defaults

This appendix describes the standards and conventions used by the toolsets for:

• Command line syntax

• Filenames

• Search paths

• File extensions

• Error message format.

A.1 Command line syntax

All tools in the toolsets conform to a common command line format.

A.1.1 General conventions

• Commands, and their parameters and options, obey host system standards.

• Filenames, either directly specified on the command line or as arguments to
options, must conform to the host system naming conventions.

• Indirect argument files are prefixed by the character '@', see section A.1.2.

• Options must be prefixed with the option prefix character '-'. (Note: that
MS-DOS based toolsets also allow the use of 'I' as a prefix character).

• Command line parameters and options can be specified in any order but must
be separated by spaces.

• If no parameters or options are specified the tool displays a help page that
explains the command syntax.

A.1.2 Indirect argument files

Arguments to a command line can be supplied in an indirect file introduced by the prefix
character '@'. This enables host system restrictions on command line length to be
avoided. Files prefixed by '@' are searched for within the current directory. If the filename
is relative then it is considered to be relative to the current directory.

An indirect argument file is treated as a text file containing a sequence ofcommand lines
separated by newline characters. Each line is treated as a single command line, argu
ments being separated by tabs or blank spaces. Blank spaces can be included in an

--------_ Jf;i.Pdn~ 3_0_1

A.2 Unsupported options

argument by surrounding the argument string by double quotes "". If a double quote is
to be contained within the argument string then the double quote should be repeated.
e.g.

"string with ""quotes"" inside"

converts to:

string with "quotes" inside

Each line in the file is treated as being complete in itself, Le. a prefix character that
expects an operand, must have its operand on the same line. All string arguments
surrounded by double quotes must have the terminating double quote character on the
same line.

Lines beginning with a hash symbol '#' are treated as comments and are ignored.

Example

The ANSI C compiler can be invoked with the command:

icc @localopt.txt prog.c

where: 'localopt. txt' may contain the line (for MS-DOS based systems):

Its "/DHOST=""MS DOS"""

which will define the macro HOST to have the value "MS DOS" including the
quotes.

'prog. c' is the name of the source file to be compiled.

A.2 Unsupported options

A number of tools have various command line options beginning with 'z'. These options
are used by SGS-THOMSON Microelectronics Limited for development purposes and
have not been designed for users. As such they are unsupported and should not be
used. SGS-THOMSON cannot guarantee the results obtained from such options nor
their continued presence in future toolset releases.

A.3 Filenames

File names generally follow the naming and character set conventions of the host oper
ating system except that the following directory separator characters cannot be used
within a filename:

• Colon ':'

• Semi-colon';'

• Forward slash 'I'

_30_2 l.fi~: _

A Toolset conventions and defaults

• Backslash '\' ('¥' for Japanese MS-DOS)

• Square brackets ' [] ,

• Round brackets '()'

• Angle brackets'<>'

• Exclamation mark ' ! '

• Equals sign '='

Filenames prefixed by the character '@' indicate an indirect argument file, see section
A.1.2.

A.4 Search paths

The tools locate files by searching a specified directory path on the host system. The
path is specified using the host environment variable ISEARCH. The search rules for all
tools except compilers are listed below:

(See the compiler reference chapters for details of search rules for compilers).

If the filename contains a directory specification then the filename is used as
given. Relative directory names are treated as relative to the directory in wh ich
the tool is invoked.

2 If no directory is specified the directory in which the tool is invoked is assumed.

3 If the file is not present in the current directory, the path specified by the environ
ment variable (or logical name) ISEARCH is searched. If there are several files
of the same name on this path, the first occurrence is used.

4 If the file is not found using the above rules, then the file is assumed to be absent,
and an error is reported.

If no search path has been set up then only rules 1 and 2 apply.

By default all files are written to the current directory.

A.5 Standard file extensions

The toolsets use a standard set of file extensions for source and object files. In most
cases these extensions must be specified on the command line for input files. They are
automatically created for output files, unless an alternative filename is specified on the
command line.

A separate set of extensions for object files must be used where imakef is used to build
programs for mixed processor networks. These are described separately in section A.6.

__________ Eii.~aI---------3-0-3

A.5 Standard file extensions

A.5.1 Main source and object files

Extension Description

.btl Bootable file which can be loaded onto atransputer or transputer network. Created by
icollect directly from a .lku file (single transputer programs) or from a •cfb file.

Bootable files can be sent down a link by the server for immediate execution. Contains
information used by the server to control the host link for execution. Also read by the
debugger.

. c C source files. Assumed by icc, the ANSI C compiler.
.cfb Configuration binary file containing a description of how code is to be placed on a

network, a description of the route to be used to load the network, and the parameters
to be passed to each of the processes. Created by the configurer from a user-defined
configuration description and read by icollect to prepare a bootable file and by the
debugger.

.cfs Configuration description file. This is a text file, created by the user and describes the
hardware and software networks and the mapping between them. It also references
the linked units and is used as input to the C configurer icconf.

. epr EPROM control file. Read by ieprom.

. h Header files for use in C source code.

. inc Include files named in #INCLUDE compiler directives for occam, or #include state-
ments in configuration descriptions.

. lku Linked unit. Created by ilink as an executable process with no external references.
Referenced from a configuration description. Also read by the debugger.

. lib Library file containing a collection of binary modules. Created by iIibr.

.mem Memory configuration file. Created and manipulated by iemit and imem450. Read
by ieprom.

. occ occam source files. Assumed by oc, the occam 2 compiler.

.pgm occam configuration description file. This is a text file, created by the user and
describes the hardware and software networks andthe mapping between them. Italso
references the linked units and is used as input to the occam configurer occonf.

.s
Assembler source files which can be read by the C assembler. (The assembler is
invoked by an option to the C compiler icc).

.tco Compiled binary module produced by all SGS-THOMSON TCOFF compilers. Used
as input to ilink and ilibr. Also read by the debugger.

A.5.2 Indirect input files (script files)

Extension Description

. lbb Library build files which specify the components of a library to ilibr.

. liu Library usage files. Created and used by imakef.

. Ink Linker indirect files which specify the components of aprogram to be linked. Also used
by imakef when creating Makefiles.

_30_4 lFiZ _

A Toolset conventions and defaults

A.5.3 Files read by the memory map tool imap

Extension Description

.DlXX Map file output by the compiler. The characters'xx'are determined by the 2nd and 3rd
characters of the extension given to the compiler object file. For example if the compiler
object file takes the default extension •teo, the information file is given the extension
.meo.

.dxx Map file output by the linker. The characters'xx' are determined by the 2nd and 3rd
characters ofthe extension given to the linker output file. For example if the linkeroutput
file takes the default extension .1ku, the information file is given the extension •dku.

•map Map file output by the collector.

Note: These extensions also satisfy imakef'S requirements, see section A.6.

A.5.4 Other output files

Extension Description

.ase ASCII format file output by iemit and imem450, showing memory configuration
timings.

•bin Binary format files produced by ieprom for loading into ROM.

.btr Executable code without a bootstrap. Created by ieol1eet and used as input to
ieprom.

•elu Configuration object file, created by the occam configurer oceonf.

.hex A hex dump of a file for loading onto a ROM by a custom ROM loader tool.

. ihx Intel hex format files produced by ieprom for loading into ROM.

. mot Motorola 'srecord' files produced by ieprom for loading into ROM.

.ps Postscript format file output by iemit and imem450 showing memory configuration
timings.

.rsc An •rsc file contains the code of a process together with a description of its require-
ments for data areas and parameters. It is created by the collector from a linked unit.
The format is described in chapter 5. . rse files are suitable for using with either the
occam or C functions which support dynamic code loading.

A.5.5 Miscellaneous files

Extension Description

.itm ITERM files containing information about the terminal. Used by tools such as iemit
and imem4 50 to handle the screen in a device-independent manner. Can also be
created by users for other terminals. The file is referenced via the environmentvariable
I TERM.

.mak Makefilegenerated by imakef. This file maybe input to a make utility to build the target
file. May also be edited by the user.

A.6 Extensions required for imakef

The standard set of file extensions are adequate for simple programs executing on a
single transputer, or on a network of transputers all of the same type. If the network is

- !iiifi~occI--------_3_0_5

A.7 Message handling

heterogeneous and a particular source file needs to be compiled for more than one
transputer type, the following scheme can be used to identify the individual processor
types and error modes.

If imakef is used to build the program, this scheme must be used.

The extended system uses extensions of the form • fp8'.

where: f denotes the type of file and can take the following values:

t for •teo equivalents.

1 for .1nk equivalents.

e for .1ku equivalents.

r for .rse equivalents.

p denotes the transputer target type or class. This can take the following
values:

2 -IMS T212, T222, M212

3 -IMS T225

4 -IMS T414

5 -IMS T400, T425

6 -IMS T450

8 -IMS T800

9 -IMS T801, T805

a -IMS T400, T414, T425, T800, T801, T805

b-IMS T400, T414, T425

e denotes the execution error mode. The values it can take are:

h - on execution, an error will immediately halt the transputer.

s - when an error occurs, this process will terminate.

x - the program can be executed in either HALT or STOP mode.

A.7 Message handling

All tools in the toolsets display diagnostic messages in a standard format. This has
certain advantages:

The tool generating the message can be identified even when the tool is run out
of contact with the terminal.

2 User programs or system utilities can be used to detect and manipulate errors.
Some host system editors permit automatic location of errors.

_30_6 JFii.P~ _

A Toolset conventions and defaults

A.7.1 Message format

Diagnostic messages are displayed in a standard format by all tools. The generalized
format can be expressed as follows:

severity - toolname - [filename [(/inenumber)]]-message

where: severity indicates the severity level. Severity categories are described below.

too/name is the standard toolset name for the tool. Names used to rename tools
by the user, are not used.

filename and linenumber indicate the file and line where an error occurred. They
are only displayed if the error occurs in a file. They are commonly displayed when
files of the wrong format are specified on the command line, for example, a
source file is specified where an object file is expected.

message explains the error and may recommend an action.

A.7.2 Severities

The severity attached to the message indicates the importance of the diagnostic to the
operation of the tool. It also implies a certain action taken by the tool.

Five severity categories are recognized:

Information Warning E"or Serious Fata/

Information messages provide the user with information about the functioning or perfor
mance of the tool. They do not indicate an error and no user action is required in
response.

Warning messages identify minor logical inconsistencies in code, or warn of the
impending generation of more serious errors. The tool continues to run and may produce
usable output if no errors are encountered subsequently.

Errormessages indicate errors from which the tool can recover in the short-term but may
cause further errors to be generated which may lead to termination. The tool may
continue to run but further errors are likely and the tool is likely to abort eventually. No
output is produced.

Serious errors are errors from which no recovery is possible. Further processing is aban
doned and the tool aborts immediately. No output is produced.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but if they
do the fact should be reported to your local SGS-THOMSON distributor or field applica
tions engineer.

A.7.3 Runtime errors

Errors which prevent the program from being run are detected by the runtime system
at startup or during program execution. These errors are displayed in a similar format
to that used by the tools. All runtime errors are generated at Fatal severity and cause
immediate termination of the program.

----------l:ii.P~ 3_o_7

A.7 Message handling

_30_8 1iil _

B Processor types and classes

This appendix first identifies the processor type(s) supported by different toolsets. It then
explains the concept of processor classes in terms of developing programs for multiple
targets. This includes compiling and linking program modules. The examples given are
based on the 'Hello world' program, written in C and compiled with the icc compiler.

It also explains the command line options which can be used to specify a target
processor or class.

Note: the information given in this appendix covers a broad range of processors;
readers should ignore details of processors which do not apply to their particular toolset.

B.1 Processor types supported by the toolset

The ST20 toolset can be used to develop programs targetted at the ST20 family of
processors. (Because code developed for the ST20 cannot be run on other processor
types discussed in this appendix, the appendix has little relevance to the current ST20
toolset).

The ANSI C and occam 2 toolsets support the following processor types:

IMS T225, T400, T425, T450, Ta05

and can be used to generate code for the following obsolete processors (support for
which may not be included in future toolsets):

IMSM212,T212, T222, T414,T800,T801

B.2 Processor types and classes

This section describes the meaning of processor types and classes and how selection
of the target processor affects the compilation and linking stages of program develop
ment. The section describes how to compile and link code targeted at a single processor
type and then describes how to compile and link programs so that they can be executed
on different processor types.

The ST20 and the T450 must not be mixed with any of other processor types mentioned
in this appendix, see section B.2.4.

8.2.1 Single processor type

For those who have a single processor or indeed a network of processors all of the same
type, the compilation and linking stages of program development are very straightfor
ward. Simply compile and link all your modules for the required processor.

- E;i.fi~rtI---------3-09-

B.2 Processor types and classes

Examples:

To compile and link for an ST20:

iee hello.e -st20
ilink hello. teo -st20 -f estartup.lnk

To compile and link for a T450:

iee hello.e -t4S0
ilink hello. teo -t450 -f estartup.lnk

To compile and link for a Ta05:

iee hello.e -t80S
ilink hello. teo -t80S -f estartup.lnk

8.2.2 Creating a program which can run on a range of processors

The compiler and linker use the concept of processor class to enable programs to be
developed which may be run on different processor types without the need to recompile.

A processor class identifies an instruction set which is common to all the processors in
that class, as described in section 8.2.4. When a program is compiled and linked for a
processor class it may be run on any member of that class.

Note: Code created for a processor class will often be less efficient than code created
for a specific processor type. Therefore, creating code for a processor class is discour
aged in situations where program efficiency is a primary concern; it should only be
performed where there is a genuine need to produce code which will run on a range of
processors or to reduce the size of a support library, where program efficiency is not a
major concern.

Table B.1 lists all the processor classes which the compiler and linker support and indi
cates which processors the program can be run on.

Processor class Processors which compiled program can be run on

T2 IMS T212, M212, T222, T225

T3 IMST225

T4 IMS T414, T400, T425

T5 IMS T400, T425

T8 IMS T800, T801, T805

T9 IMS T801, T80S

TA IMS T400, T414, T425, T800, T801, T805

TB IMS T400, T414, T425

Table 8.1 Processor classes

_31_0 iSilfi~ _

B Processor types and classes

In order to develop a program which will run on different processor types, perform the
following steps:

Identify the processors on which the program is to run.

2 Using Table 8.1 select the class which may be run on all the target processors.

3 Compile and link all the program modules for this class.

For example, to create a program which will run on both a T400 and a T425, compile
and link for processor class T5:

ice hello.c -tS
ilink hello. teo -t5 -f estartup.lnk

Alternatively to create a program which will run on an IMS T400, T425 or a Ta05, compile
and link for processor class TA:

ice hello.c -ta
ilink hello. teo -ta -f cstartup.lnk

Code compiled for an IMS T414 (class T4) may be run on an IMS T400, T414 or T425,
which form class T5.

Programs compiled for the IMS T212, M212, or T222 processors Le. class T2, can be
run on a T225 (class T3) because an IMS T225 has a similar but larger instruction set
than class T2 processors. Similarly the IMS T400 and T425 have additional instructions
to those of the IMS T414. Likewise, code compiled for an IMS TaOO (class Ta) may be
run on an IMS TaOO, T801 or Ta05, which form class T9. Again the IMS Ta01 and Ta05
have additional instructions to those of the IMS TaOO. See section 8.2.4.

8.2.3 Linking files which contain code compiled for different targets

This section describes how object code compiled for one target processor or class can
be linked with code compiled for different processor types or classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

• An individual module can be compiled once e.g. for class T4, and then linked with
separate programs to run on different processor types e.g. IMS T400 and T425.

• When the user is preparing a library for use by programs intended to run on
different processor types, a single copy of code compiled for a processor class
can be inserted instead of multiple copies for specific processors.

When linking a collection of compiled units together into a single linked unit, the user
must select a specific processor type or processor class on which the linked unit is to
run. As before, this determines the set of processor types on which the code will run.
When linking for a particular type or class, the linker will accept compilation units

__________ Efifi~mI---------3-1-1

B.2 Processor types and classes

compiled for a compatible class. Table B.2 shows which processor types and classes
the linker will accept when linking for a particular class.

For example, if the target processors are an IMS T400 and a T425 the user may compile
for classes T5 and TB and link the code for class T5. Code for a different processor class
can be included in the final linked unit, as long as:

• It uses the instruction set or a subset, of the instruction set of the link class

• The calling conventions are the same.

Link class Processor classes which may be linked

T2 T2
T3 T3, T2
T4 T4, TB, TA
T5 T5,T4,TB,TA
T8 T8
T9 T9, T8
TB TB,TA
TA TA

Table B.2 Linking processor classes

As can be seen from table B.2 certain processor classes are incompatible, e.g. classes
T8 and T9 cannot be linked with class TA. The reason why these classes cannot be
linked together is explained in section B.2.4. which gives details of the differences
between the instruction sets, as additional information.

A library can be made, consisting of the same modules compiled for different processor
types or classes. The user then needs only to specify the library file to the linker, and
the linker will choose a version of a required routine which is suitable for the system
being linked.

The linker uses the rules given in Table B.2 to determine whether a compiled module,
found in a library, is suitable for linking with the current system. So, for example, to create
a library which may be linked with any T2ff4/T8-series processor class or specific
processor type, all routines could be compiled for classes T2, TA, T8, and processor
type ST20 or T450.

If there are a number of possible versions of a module in a library the best one (i.e. the
most specific for the system being linked) is chosen.

Note: code compiled for ST20 or T450 processor types cannot be linked with any of the
other classes.

occam object files targetted at different targets

For occam programs the above rules must also be applied during the program design
stage when deciding which modules should call each other. Code for a different

_31_2 1Fii1'~ _

B Processor types and classes

processor class can be called provided that it uses the instruction set or a subset of the
instruction set of the calling class. (This is because the compiler needs to know which
modules to select from libraries containing copies for different processor types.)

Table 8.2 can be used as guide, by regarding the 'link class' as the 'calling class' and
the 'processor classes which may be linked', as the 'processor classes which may be
called'.

Note: classes T8 and T9 cannot call class TA.

Note: At configuration level, code compiled for class TA can be run on a T8 processor,
provided the outermost routine does not include any function which returns an arithmetic
REAL. This is because of the different methods of evaluating REAL arithmetic for
different processor targets, see section 8.2.4.

8.2.4 Classes/instruction sets - additional information

The instruction sets of the processor classes differ in the following ways:

• Classes T2 and T3 support 16-bit processors whereas all the other processor
classes support 32-bit processors.

• Class T3 is the same as class T2 except that T3 has some extra instructions to
perform CRC and bit operations, dup, double word indexing and includes special
debugging functions.

• Class T5 is the same as class T4 except that T5 has extra instructions to perform
CRC, 2D block moves, bit operations, double word indexing, special debugging
functions and also includes the dup instruction.

• Class T9 is the same as class T8 except T9 has additional debugging instruc
tions.

• The T800, T801 and Ta05 processors use an on-ehip floating point processor
to perform REAL arithmetic. Thus a large number of floating point instructions
are available for these processors and for their associated classes T8 and T9.
These instructions are listed in The Transputer Databook.

• For the T414, T400, and T425 processors Le. processor classes T4 and T5 the
implementation of REAL arithmetic is in software. These processors make use
of a small number of floating point support instructions. Details can be found in
The Transputer Databook.

• The instruction set of class TA only uses instructions which are common to the
T400, T414, T425, T800, T801 and T805 processors. Therefore it does not use
the floating point instructions, the floating point support instructions or the extra
instructions to perform CRC, 20 block moves or special debugging or bit opera
tions and it does not use the dup instruction.

• The instruction set of class T8 only uses instructions which are common to the
T400, T414, and T425 processors. Therefore it uses the floating point support

---------l:fi.~ 3_1_3

B.2 Processor types and classes

instructions, but does not use the extra instructions to perform CRC, 20 block
moves or special debugging or bit operations and it does not use the dup instruc
tion.

• The runtime model used for T450 and ST20 differs from that of all other proces
sors; for example, the use of hardware semaphores. Therefore T450 and ST20
code cannot be mixed with code for any other processor types. For further
details see 'The ST20450 Datasheet - 42-1626-02.

When considering the similarities and differences in the instruction sets of different
processor classes it helps to divide them into the separate structures as shown in Figure
B.1.

IST201
T450

Figure B.1 Structures for mixing processor types and classes

, By comparison with Table B.2 it can be seen that a module may only be linked with
modules compiled for a processor class which belongs to the same structure.

Classes T2 and T3 are targetted at 16-bit processors so it is obvious that they cannot
be linked with the other classes which are all targetted at 32-bit processors.

The reason why classes T8 and T9 cannot be linked with classes TA, TB, T5 or T4 is
because floating point results from functions are returned in a floating point register for
T8 and T9 code and in an integer register for classes TA, TB T5 or T4. Even if your code
does not perform real arithmetic, linking code compiled for a T9 orT8 with code compiled
for any of the other classes is not permitted.

To summarize, co"mpiling code for the processor classes TA and TB enables it to be run
on a large number of processor types, however, the code may not be as efficient as code
compiled for one of the other processor classes or for a specific processor type. For
example compiling code for class T5 enables the CRC and 20 block move instructions

_31_4 ~ _

B Processor types and classes

to be used, whereas these instructions are not available to code compiled for classes
TA and TB.

B.3 Processor type command line options

This section lists the command line options used to specify a target processor or
processor class. A target processor must be specified for the following tools:

icc The ANSI C compiler.

oc The occam 2 compiler.

ilink The toolset linker.

Option Description
ST20 Specifies the ST20 target processor. Same as T4S0.

TA Specifies target processor class TA (T400, T414, T425, T800, T801, T805).

TB Specifies target processor class T8 (T400, T414, T425).

T212 Specifies an IMS T212 target processor.
T222 Specifies an IMS T222 target processor. Same as T2.

M212 Specifies an IMS M212 target processor. Same as T2.

T2 Same as T212, T222 and M212

T22s Specifies an IMS T225 target processor.
T3 Same as T22 5.

T400 Specifies an IMS T400 target processor. Same as T42s.

T414 Specifies an IMS T414 target processor.

T4 Same as T414.

T42s Specifies an IMS T425 target processor.

T4S0 Specifies an IMS T450 target processor.

Ts Same as T400. and T42S.

T800 Specifies an IMS 1800 target processor.

T8 Same as T800.

T801 Specifies an IMS T801 target processor. Same as T80s.

T80s Specifies an IMS T805 target processor.

T9 Same as T801 and T80S.

Table 8.3 Processor type command line options

__________LV.~ 3_1_5

B.3 Processor type command line options

_31_6 ii;i.p~ ----------

C ANSI C compiler optimization
examples

C.1 Local optimization examples

This section briefly describes each of the local optimizations supported by the ANSI C
optimizing compiler.

C.1.1 Peephole optimization

This optimization is performed by the compiler at assembly code level. The compiler
scans the assembly code for sequences of instructions which may be reduced to a faster
or more compact sequence of instructions.

Example:

If a source code instruction generated the following assembly code instructions:

Ide :x:
Ide y
and

then they could be reduced to the following single instruction:

Ide :x: & y

where: the expression:x: & y is evaluated by the compiler (since x and yare
constants).

In a similar manner, the sequence:

ldl n
stl n

could be removed altogether.

Summary of effects:

• Slight improvement to execution time: some instructions are no longer
executed.

• Slight improvement to code size: some instructions are no longer coded.

C.1.2 Flowgraph optimizations

Flowgraph optimizations cover a wide range of local optimizations which are performed
on short sequences of code.

The following examples describe typical optimizations of this type.

__________ liiifi~ocI---------3-1-7

C.1 Local optimization examples

Branch~haining optimization

When the destination of one jump is to another jump, then the first jump is replaced with
a jump to the destination of the second jump.

This optimization cannot be performed at source code level and is best demonstrated
in assembly code:

j L1

L1: j L2

becomes:

j L2

L1: j L2

Dead code elimination

Dead code elimination is the removal of statements which cannot be reached and is
another type of flowgraph optimization. For example:

void p(void)
[

while (1)
...Ioop body - contains no break statements

s; /* This statement cannot be reached*/

With dead code elimination," this code segment would be transformed to:

void p(void)
{

while (1)
...Ioop body - contains no break statements

The statement's' is deleted.

Summary of effects of flowgraph optimizations:

The effect on both execution time and code size varies on the particular optimization
performed. For the examples shown above the results are:

• Branch-ehaining - improved execution time and a slight reduction in code size.

• Dead code elimination - code size is improved.

C.1.3 Redundant store elimination

Assignments to variables which are not subsequently used, are deleted by an optimiza
tion called redundant store elimination.

_31_8 liil'~ _

C ANSI C compiler optimization examples

Example:

void p(void)

int X;
... some code
X = 27;
... some more code which does not read x

With redundant store elimination, this segment of code would be transformed to:

void p(void)
[

int X;
... some code
... some more code which does not read x

The assignment of a value to x is removed.

Summary of effects:

• Slight improvement to execution time.

• Slight improvement in code size.

----------Eii~ 3_1_9

C.2 Global optimization examples

C.2 Global optimization examples

This section briefly describes each of the global optimizations supported by the ANSI
C optimizing compiler.

C.2.1 Common subexpression elimination

The purpose of common subexpression elimination is to remove from the program any
redundant computations. An expression is redundant where it is identical to and
computes the same value as another expression whose value is still available for use.

Such commonality is not restricted to explicit computations in the source code but may
include implicit computations such as array element address calculation. Subscripted
expressions often repeat in blocks of code. Where this happens it is often more efficient
to extract expressions which occur more than once so that they are evaluated once only.

Example:

Code segment before common subexpression elimination is applied:

int a[10][10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i][j] = a[i][j] + t;

Code segment after common subexpression elimination is applied:

int a[10][10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
(

int *temp3 = &a[i][j];
*temp3 = *temp3 + t;

Notice that the sUbscripted variable in the summation has been replaced by a single
variable *temp3 .

Common subexpression elimination is achieved by saving the result of a computation
in a temporary location rather than recomputing the expression.

Summary of effects:

• Improvement to execution time: expressions which were evaluated several
times are now only evaluated once.

• Improvement to code size: expressions which were coded several times are now
only coded once.

_32_0 1.Ti.&~ _

C ANSI C compiler optimization examples

• Increase in workspace size: expressions which were evaluated several times
now have their value stored in a temporary variable in workspace.

The compiler evaluates each potential case and only applies the optimization if it is
worthwhile.

C.2.2 Loop-invariant code optimization

This optimization removes expressions which remain constant during the execution of
a loop, to outside the loop so that they are executed once only. Invariant expressions
often include subscripting calculations as well as computations in the source code.

Example:

Code segment before loop-invariant code optimization is applied:

(
int a[lO][lO], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i][j] = a[i][j] + t;

]

Code segment after loop-invariant code optimization is applied:

(
int a[10][10], i, j;
for (i = 0; i < 10; i++)

(
int *temp1
int *temp2
for (j = 0

temp1[j]

&a[i];
&a[i];
j < 10; j++)
temp2[j] + t

In this example the value of i remains constant during iterations of the inner loop which
increments j. The calculation of &a [i] can therefore be moved outside the inner loop.

Summary of effects:

• Improvement to execution time: expressions which were evaluated on every
loop iteration are now only evaluated once.

• Slight increase in code size: extra code has to be inserted to store the result of
an expression in a temporary.

• Increase in workspace size: expressions which were evaluated on every loop
iteration are now evaluated into a temporary variable outside of the loop.

C.2.3 Global optimization example

This example is based on the source code used in the previous two sections and shows
what happens when both global subexpression elimination and loop-invariant code
optimization are applied:

__________ ii;i.&~mI---------3-2-1

C.2 Global optimization examples

int a[10][10], i, j;
for (i = 0; i < 10; i++)

{
int *templ = &a[i];
for (j = 0; j < 10; j++)

int *temp3 = templ[j];
*temp3 = *temp3 + t;

C.2.4 Strength reduction

This optimization replaces an expensive operation by a cheaper one. The compiler
examines each loop in the source code, looking for any expression which is a linear func
tion of the number of times the loop is executed. For each such expression found, the
compiler introduces a temporary to hold the value of the expression on entry to the loop,
and increments the temporary each time round the loop. The evaluation of the expres
sion is replaced by a load from the temporary.

Example:

Code segment before strength reduction optimization is applied:

i = 1;
while (i < 10)

{
ali] [j] = ali] [j] + b[i] [j];
i += 1;

Code segment after strength reduction optimization is applied:

int *templ, *temp2;
i = 1;
tempI = &a[I][j];
temp2 = &b[I][j];
while (i < 10)

{
*templ = *templ + *temp2;
i += 1;
tempI += 10;
temp2 += 10;

In this example, the addresses of the array accesses, &a [i] [j] and &b [i] [j]
increase by 10 words on each iteration of the loop. The compiler evaluates the

_32_2 Eii.~ ----------

C ANSI C compiler optimization examples

addresses on first entry to the loop, and puts them in temporaries: tempI contains the
value of &a [i] [j] on entry to the loop, and temp2 contains the value of &b [i] [j]
on entry to the loop.

Then on each iteration of the loop, instead of recalculating the addresses, the compiler
generates code to load the values of the temporaries. The compiler also inserts code
to increment the temporaries each time round the loop.

Summary of effects

Improvement to execution time: expressions which needed recalculation each time
round the loop are reduced to a simple addition.

Increase in workspace size: new temporaries are introduced to hold the values of
strength-reduced expressions.

Slight increase in code size: extra code has to be inserted to load and increment the
temporaries.

C.2.5 Tail-call and tail recursion optimization

The purpose of these optimizations is to make function calls more efficient. When the
last operation performed by a function is to call another function, tail-call optimization
may be applied. In C programs a function may in fact, call itself, in which case the opti
mization is called tail recursion optimization.

The optimization is achieved by substituting a jump instruction instead of the call instruc
tion. This optimization cannot be performed at source code level.

When a jump instruction is used, the return from the other function will return the caller
to the caller of the current function, thereby saving one return sequence. The called
function's workspace is also laid on top of the current function's workspace, thus saving
stack size.

Example: (Tail-call optimization)

Take the following code segment:

void p(int x)
{

a..body of p
q(x+I);

}

Without optimization the code generated for routine 'p' would be:

p:
ajw -3
... body of P
ldl
adc
Id1
call
ajw
ret

2
1
1
$q
3

-x

-<static_link>

_________ Iiii.~ocI--------3-2-3

C.2 Global optimization examples

After tail-eall optimization, the code generated is:

p:
ajw -3
... body of p
ldl 2 --x
adc 1
stl 2 --x
ajw 3
j $q

Note: that the workspace for routine 'q' is overlaid on the workspace for routine 'p'.

Summary of effects: (Tail-call optimization)

• Little effect on execution time.

• Workspace requirements are reduced as the called function's workspace is
overlaid on the calling function's workspace.

Example: (Tail-recursion optimization)

void p(int x)
{

...body of P
p(x+l);

}

This code segment when compiled without optimization would cause the following code
to be generated for routine p.

p:
ajw -3
... body of P
ldl
adc
ldl
call
ajw
ret

2
1
1
$p
3

--x

After tail-recursion optimization, the code generated is:

p:
ajw -3

•• 3 :
... bodyofp
Idl 2 --x
adc 1
stl 2 --x
j .. 3

_32_4 liii. _

C ANSI C compiler optimization examples

Note: that the workspace for the second invocation of 'p' is laid on top of the workspace
for the first invocation of 'p'. Also note that the second invocation of 'p' does not
re-execute the routine entry code (in this example, an 'ajw -3' instruction).

Summary of effects: (Tail-recursion optimization)

• Execution time is improved as the called function's entry sequence is already
evaluated. In addition, it may not be necessary to assign the actual parameters
to the formal parameters of the function called.

• Workspace requirements are reduced as the called routine's workspace is over
laid on the calling routine's workspace.

C.2.6 Workspace allocation by coloring

This method of workspace allocation can be performed when the lifetimes of two vari
ables, 'a' and 'b' do not overlap. When this is the case 'a' and 'b' may be allocated in
the same workspace slot.

For example, in the following segment of code, variables 'a' and 'b' can be placed in the
same workspace slot because their values are never required at the same time:

int a, b:
a = funcl(27);
procl(a);
procl(a) ;
/* 'a' is not used after this point, 'b' is not

used before this point */
b = func2(34);
proc2 (b) ;

When optimization is enabled, the compiler will use this method ofworkspace allocation,
provided the code is suitable.

If workspace is allocated by coloring, then the compiler calculates a usage count for
each variable, and places the most frequently used variables at lower workspace posi
tions.

When the command line option '00' is used i.e. when optimization is disabled, all vari
ables are allocated their own unique workspace slot.

___________ i.V.~Jj 3_2_5

C.2 Global optimization examples

_32_6 J:;l~1JIBPJj ----------

o Using the assembler

This appendix describes the assembler supplied with the ANSI C toolset. The appendix
explains how to invoke the assembler and describes the use and syntax of assembler
directives. The chapter ends with a list of assembler diagnostic messages which may
be obtained.

0.1 Introduction

The assembler is supplied as an integral part of the ANSI C compiler icc and is normally
run as the final stage ofcompilation. The command line interface of the compiler enables
the user to invoke the assembler directly. This suppresses the compilation phase of the
compiler and the input file is passed directly to the assembler.

The assembler is a cross-assembler which enables a source file written in assembly
code to be translated into object code. The assembler accepts as input a single ASCII
text file consisting of transputer instructions and assembler directives.

If required the compiler preprocessor can be run on an assembler source file and the
output file generated by the preprocessor used as input to the assembler.

The assembler generates an object file in Transputer Common Object File Format
(TCOFF). This file may then be linked with other TCOFF object files or library modules
to produce a linked unit, which may then be configured and/or loaded onto a transputer
network and the application executed.

0.2 Running the assembler

The assembler is invoked by using the 'AS' option of the ANSI C compiler icc.

The assembler is invoked to assemble a source file by the following command line:

icc filename.ext -as {options}

where: filename.ext is the filename and extension of the assembler source file, see
section 0.2.1.

options is a list of icc command line options, see section 0.2.2.

A list of error messages which may be generated by the assembler is given in section
0.6.

0.2.1 Specifying the source filename

The full filename including extension must always be supplied on the compiler
command line when the 'AS' option is used. If an extension is not supplied the compiler

__________ I:ii._tl---------3-2-7

0.3 Language

assumes a C source file is to be compiled and searches for an input file which has the
appropriate name and' •e' file extension.

0.2.2 Use of icc command options with the assembler

Many of the icc command line options have no meaning if used with the assembler and
will be ignored. The only options which have meaning are:

• Any option to select the target processor type (see appendix B).

• 'I' - Displays progress information as the tool runs.

• '0 filename' - Specifies an output filename.

icc command line options are documented in full in chapter 1.

0.2.3 Using the preprocessor with the assembler

Preprocessor directives may be included in assembler source files, pragma directives,
however, should not.

When preprocessor directives are used, the compiler preprocessor must be run on an
assembler source file prior to using the assembler. The output file generated by the
preprocessor is then used as input to the assembler. The preprocessor is invoked using
the compiler command line option 'pp' and the '0' option is used to name the output file.
This temporary file is then input on the compiler command line and the assembler is run.
The '0' option is used to specify an output file for the assembled code.

Examples:

icc test.s -pp -0 temp.s
icc temp.s -st20 -as -0 test. teo

icc test.s -pp -0 temp.s
icc temp.s -t4S0 -as -0 test. teo

icc test.s -pp -0 temp.s
icc temp.s -t80S -as -0 test. teo

0.3 Language

An assembler source file is made up of lines of ASCII text. Each line can contain the
following:

• A label definition.

• Assembler commands separated by semi-eolons or new lines.

• A comment.

_32_8 Ji;i.~ ---------

o Using the assembler

None of the above may extend to more than one line.

An assembler command is one of the following:

• A transputer instruction mnemonic (with its operand, if any)

• An assembler directive.

D.3.1 Label definitions

Label names can contain alphanumeric characters and the characters' • ' (full-stop) and
'_' (underscore). A label is defined by terminating its name by a colon:

label:

A label is used by giving its name without the colon, e.g.

j label - jump to label

Labels are also referred to as code symbols.

0.3.2 Symbols

There are three kinds of symbols in the assembler. They are as follows:

• Code symbols: These are labels as defined above.

• Data symbols: These are symbols introduced by the data or common direc
tives.

• Defined symbols: These are symbols defined using the def sym directive.

Once a symbol has been defined as one kind of symbol it cannot be redefined to another.

0.3.3 Expressions

The assembler can recognize simple integer expressions constructed from operators,
operands and parentheses. An operator performs a mathematical or logical operation
on the operand(s) in the expression. Allowable operators are listed in table 0.1.

__________ I.ii~mI---------3-2-9

0.3 Language

operator Meaning Precedence

- unary minus 1

- bitwise not 1

! symbol offset 1

* multiplication 2

/ division 2

% modulus 2

+ addition 3

- subtraction 3

& bitwise and 4

I bitwise or 4
1\ bitwise exclusive or 4

< logical left shift 5

> logical right shift 5

Table 0.1 Operators

Evaluation is left-to-right, except for unary operations where the operator closest to the
operand binds more tightly, with precedence rules as follows. The lower the number in
the precedence column of the table, the higher the precedence of the operator. Paren
theses, (...), may be used to alter the order of evaluation of an expression.

All calculations are performed in twos complement arithmetic, modulo 32 bits, with the
following exceptions:

• division and modulus by zero will result in a serious error being reported;

• MOSTNEG_INT / -1 will result in a serious error being reported.

Table 0.2 indicates the different types of operand which may appear within expressions:

Operand Value

Number Its numerical value.

Defined symbol The value assigned to the symbol using defsym.

Code symbol The offset in bytes from the end of the instruction containing the expression to
the symbol.

Data symbol The word offset of this symbol in the data area.

Table 0.2 Operands

Note: code and data symbols may not appear in the same expression.

When code or data symbols are preceded by the' ! ' operator, the value yielded is the
offset of the symbol from the start of the section in which they are defined. This is the
offset after the linker has concatenated all of the sections together, and hence this value
can only be calculated by the linker.

_33_0 Iiii_---------

o Using the assembler

Mnemonic Instruction name

adc add constant

ajw adjust workspace

call call

cj conditional jump

eqc equals constant

j jump

ldc load constant

Idl load local

Idlp load local pointer

Idnl load non-local

ldnlp load non-local pointer

nfix negative prefix

opr operate

pfix prefix

stl store local

stnl store non-local

Table 0.3 Transputer primary instructions

0.3.4 Transputer instruction mnemonics

Detailed information on the transputer instruction sets is given in the Transputer instruc
tion set - a compiler writer's guide and The transputerdatabook for IMS T2IT4fTa series
transputers. Pseudo instructions are given in the ANSI C Toolset Language and
Libraries Reference Manual. Primary instructions are listed in Table 0.3.

The 'ST20T450 Datasheet-42-1626-02 gives details of the ST20 and T450 instruction
set.

Note: No check is made that the transputer instructions used in the source code are
supported by the transputer target selected on the compiler command line.

0.3.5 Comments

A comment is introduced by the characters --. If a comment needs to be split over more
than one line, each line must start with the characters --. All text appearing on the same
line and to the right of these characters is interpreted as a comment. For example:

-- A comment on a line of its own
j fred -- A comment at the end of a line

__________ Efi.~mI---------3_3_1

0.4 Assembler directives

0.4 Assembler directives

This section briefly describes each assembler directive and provides an example where
appropriate. Directives appear in alphabetical order.

Table 0.4 summarizes the directives available.

Directive Description

align Aligns next generated byte to word boundary.

blkb Generates a block of bytes.

blkw Generates a block of words.

byte Generates a sequence of bytes set to specified values.

comment Causes a comment to be written to the object file.

common Defines a FORTRAN common block.

data Defines a symbol to be a data symbol.

debug Generates a debug information record.

defsym Assigns a value to a symbol. Used only for local symbols within an assembler
file.

descriptor Creates an occam style descriptor in the object file.

extern Declares a symbol to be external to the module.

global Defines a symbol to be globally visible.

init Defines a member of the static initialization chain.

language Defines the language of the current module.

local Defines a symbol to be local to the current module.

maininit Used to find the start of the static initialization chain.

mapl Generates text information for a memory map file.

map2 Generates symbol information for a memory map file.

map 3 Generates symbol information for a memory map file.

patch Generates a patch. Six patch types are available.

size Pads out an instruction so that it occupies a specified number of bytes.

sourcefile Overrides the default source file name with the specified name.

textname Replaces the default code section name for the current module with the speci-
fied name.

toolname Overrides the record of the tool used to create the object file, with the speci-
fied tool name.

word Generates a sequence of words set to specified values.

Table 0.4 Assembler directives

The names of assembler directives are reserved keywords, as are all transputer instruc
tion mnemonics.

_33_2 J.fi&~ _

o Using the assembler

align

Syntax:

align

Description:

The align directive causes the next generated byte in the code section to be aligned
on the next word boundary as defined by the target word length of the processor.

- "iiP~ 3_3_3

D.4 Assembler directives

blkb

Syntax:

blkb <expr> [, <expr_or_string>]

Description:

The blkb directive generates a block of bytes. The number of bytes to be generated
is given by the first expression, the size. The value of the bytes is given by the operands
which follow the first expression.

If no operands are given then size zero bytes are generated.

If the operand is an expression and its value is too large to fit in a byte then an error is
reported. See section 0.6.

If the operand is a string then the characters of the string are written to consecutive bytes
of memory.

If the length of the string exceeds the specified size then the trailing bytes are ignored.

If too few expressions are given then the remaining bytes are set to zero. It is an error
to give too many expressions to the blkb directive.

Examples:

blkb 10, "hello", 6, 7, 8, 9, 10

This generates the byte values 'h', 'e', 'I', 'I', '0',6,7,8,9,10 to consecutive bytes of
memory.

_33_4 l.V. _

o Using the assembler

blkw

Syntax:

blkw <expr> [, <expr>l

Description:

The blkw directive generates a block of words. The number of words to be generated
is given by the first expression, the size. The value of the words is given by the oper
ands which follow the first expression. Each of the operands is itself an expression.

If no operands are given then size zero words are generated. This result is also
obtained if the size given is zero or a negative quantity.

If too few operands are given then the remaining words are set to zero. It is an error to
give too many operands to the blkw directive. Each word is stored in little-endian
format.

Examples:

blkw 3 + 4, 1, 2, 3, 4, 5, 6, 7

The above generates 7 words in memory with the values 1, 2, 3, 4, 5, 6 and 7.

-----------liii.&.- 3_3_5

0.4 Assembler directives

byte

Syntax:

Description:

The byte directive generates a sequence of bytes each of which takes on the values
of the following operands.

If the operand is an expression and the result of the expression is too large to fit in a byte
then an error is generated. See section 0.6.

If the operand is a string then the characters of the string are assigned to consecutive
bytes of memory.

Examples:

byte "hello", 6, 7, 8, 9, 10

This generates the byte values 'h', 'e', 'I', 'I', '0', 6, 7, 8, 9, 10 to consecutive bytes of
memory.

_33_6 Jifi.~J4 ----------

D Using the assembler

comment

Syntax:

comment <string>

Description:

This directive causes the string to be written to the object file as a TCOFF comment. The
comment is printable but cannot be copied so it will not appear in a linked unit.

A comment can be seen by using the lister tool on an object file. The ilist command
line option em' is used.

Examples:

To write the comment "Hello" to the object file:

comment "Hello"

---------- Jiii.~A 3_3_7

D.4 Assembler directives

common

Syntax:

common <symbol> <expr>

Description:

The common directive defines a FORTRAN common block denoted by the symbol
symbol, with size in words given by the expression. A common block resides in a
TCOFF section of its own.

The final size of a common block is given by the common directive for a given symbol
with the greatest size which is present in the link.

This directive is included for completeness, it has no application in C programs.

_33_8 ~ _

D Using the assembler

data

Syntax:

data <symbol> <expr>

Description:

The data directive defines symbol as a data symbol. The size in words of the data item
is given by the expression and this much space is reserved in the current module's data
area. The space is allocated from above the last data symbol or from the start of the area
if there were no previous data symbols. The value of adata symbol is its word offset into
the current module's data area.

Examples:

To define a data symbol fred, 1 word long and to make it visible outside of this module:

data fred 1
global fred

--define the data symbol, 1 word long
-- make it global

---------- Eii.fi~mI---------3-39-

D.4 Assembler directives

debug

Description:

The debug directive defines a debug information record and is designed for use by
compilers and other programs generating assembly language output. It is listed here for
completeness.

_34_0 JFii~ ----------

D Using the assembler

defsym

Syntax:

defsym <symbol> <expr>

Description:

This directive allows a numeric value to be assigned to the symbol symbol. The value
is given by the expression. This symbol can then be used in expressions as if it were
the value itself.

This is only for use internally to an assembler file. These symbols cannot be made global
and used in other files. A symbol which is defined using a defsym directive must not
have been previously defined as a code or data symbol and vice versa.

Code and data symbols may not appear in the expression, only symbols defined using
defsym are permissible. Any symbol used in the expression must have been previously
defined.

Examples:

To set the symbol 'one' to be the value 1:

defsym one 1

one can now be used in expressions as if it were the value 1.

___----,. ~~ 3_4_1

0.4 Assembler directives

descriptor
Syntax:

descriptor <symbol> <string> {language_type> <expr> <expr> <string>

Description:

This directive causes an occam style descriptor to be output to the object file. It also
causes two symbols to be defined which are used by some other tools, including the
toolset collector, to obtain workspace and vector space information.

The symbol is a code symbol denoting the routine for which the descriptor is to be
created. This symbol must have previously been declared as global.

The first string is used as a prefix for two symbols which contain the workspace and
vector space requirements, (in words) for the routine.

language_type is a language type of the same form as that for the language direc
tive. The convention is that the language type denotes the source language used in the
interface description contained in the descriptor string, however a language type must
still be supplied even if the descriptor string is an empty string.

The next two expressions are the workspace and vector space requirements respec
tively and the last string is the descriptor string itself.

Examples:

To define an occam descriptor for the routine FRED which requires 42 words of work
space, no vector space and has the following definition:

PROC FRED([18]INT ProcessData)
SEQ

• •• lots of work

use the following directive:

FRED:
global FRED
descriptor fred "FRED" occam 42 0 "PROC FRED([18]INT

ProcessData)\n SEQ\n:"

This generates the following TCOFF records:

00000053 SYMBOL EXP UNI "FRED'ws" id: 3
0000005E SYMBOL EXP UNI "FRED'vs" id: 4
00000069 DEFINE_SYMBOL id: 3 42
0000006E DEFINE_SYMBOL id: 4 0
00000073 DESCRIPTOR id: 2 lang: OCCAM
ws: 42 vs: 0
PROC FRED([18]INT ProcessData)

SEQ

TCOFF records can be listed with ilist, using the command line 't' option.

_34_2 ~ _

o Using the assembler

extern

Syntax:

extern <symbol> [weak] [realname <string>] [origin <string>]
[datausage] [routineusage] [notypeusage]

Description:

The extern directive is used to declare the symbol symbol as external to the current
module. An example of its use is to call an external routine (see the description of the
patch directive for an actual example).

The optional weak argument indicates that a weak reference is to be made to the
symbol. weak references do not force the linker to resolve the reference. They are used
for example, to resolve debug information, but will not cause the linker to pull in extra
library modules simply to resolve debug information.

The name used for the symbol in the object file is the same as the name of the symbol
in the assembler source file, unless realname is specified. In this case the name used
for the symbol in the object file is the name specified by the string argument to real
name.

origin enables an origin to be specified for the symbol in the object file. This allows
the linker to ensure that only a definition of a symbol with the same name and the same
origin matches this external reference. If origin is not specified, then the symbol in the
object file is not given a specific origin. The linker can match this external reference with
a definition of a symbol with the same name and any origin.

The three optional arguments datausage, routineusage and notypeusage
generate extra symbol information in the object file which can be incorporated by the
linker into a symbol table. This may be used by tools such as a debugger or profiler, when
reading symbol information.

• datausage indicates that the symbol is associated with a data object.

• routineusage indicates that the symbol is associated with a routine.

• notypeusage indicates that the symbol type (data or routine) is not specified.

---------lifi~ 3_4_3

D.4 Assembler directives

global
Syntax:

global <symbol> [realname <string>] [origin <string>]
[datausage] [routineusage] [notypeusage]

Description:

The global directive is used to cause the symbol to become available outside of the
current module. It causes the symbol to become globally visible so that it can be
accessed by the linker.

The operand to a global directive Le. the symbol, may be acode or data symbol. Note:
it must not be a symbol defined by the defsym directive. The global directive can
appear before the definition of its operand.

The name used for the symbol in the object file is the same as the name of the symbol
in the assembler source file, unless realname is specified. In this case the name used
for the symbol in the object file is the name specified by the string argument to real
name.

origin enables an origin to be specified for the symbol in the object file. This allows
the linker to ensure that only a reference to a symbol with the same name and the same
origin matches this symbol. If origin is not specified, then the symbol in the object file
is not given a specific origin. The linker can match this symbol to a symbol with the same
name and any origin.

The three optional arguments datausage, routineusage and notypeusage
generate extra symbol information in the object file which can be incorporated by the
linker into a symbol table. This may be used by tools such as a debugger or profiler, when
reading symbol information.

• datausage indicates that the symbol is associated with a data object.

• routineusage indicates that the symbol is associated with a routine.

• notypeusage indicates that the symbol type (data or routine) is not specified.

Examples:

To create a routine called fred which can be called from extemal modules:

fred:
g1oba1 fred routineusage
-- do freds operations

To create a routine called fred which can be called from external modules by the name
'fred's name', only with the specific origin 'fred's origin':

fred:
g1oba1 fred rea1name "fred's name" origin "fred's origin"

routineusage
-- do freds operations

_344 ii;i.1'~ _

D Using the assembler

init
Syntax:

init

Description:

The init directive is used to define a member of the static initialization chain. The static
initialization chain is a list of routines which are called by the runtime initialization code,
in order to set up the static area.

Each routine in the list is introduced by the init directive, which defines the location
of a word in memory which is used to link the members of the chain together. After
linking, this word holds the byte offset to the next init word or zero if it is the end of
the chain. The byte directly following the init word is the first executable byte of the
initialization routine.

Note: that init does not itself reserve the word in memory. It is necessary to follow the
init directive immediately with a directive or dummy instructions to reserve the space.
Initialization routines are called with one parameter, a pointer to the start of the static
area.

Examples:

For a 32 bit machine:

align
init
byte #20, #20, #20, #20
Idc 1
of
routine.
Idc 2
ret

init directive
space reserved for init word
first executable instruction

-- initialization

-- end of initialization routine

__________ I:fi.fi~mI--------_3-4-5

0.4 Assembler directives

language

Syntax:

1anguage (1anguage_type>

Description:

Used to mark a module with its original source language type. For example, the C
compiler would mark assembler files that it produced as 'ansi_c'. 1anguage_type is
one of the following:

• unknown

• occam

• ansi_c

• fortran

• iso-pasca1

• modu1a2

• ada

• assemb1er

• occam_harness

If no 1anguage directive appears in the input file then the language defaults to assem
b1er. The language type is written into the TCOFF START_MODULE record.

occam_harness is a special language type used to define language runtime system
main entry points for use by the configurer.

Examples:

To set the language type for the current file to be ada:

1anguage ada

_34_6 liii.&~ _

o Using the assembler

local
Syntax:

local <symbol> [realname <string>] [origin <string>]
[datausage] [routineusage] [notypeusage]

Description:

The localdirective is used to declare a symbol which is local to the current module (Le.
not visible outside of the current module). The symbol may be a code or data symbol.

The local directive should appear before the definition of its operand.

It is not necessary to declare local symbols, as they are automatically declared at their
point of definition, however, symbols which are declared with the local directive are
put into the object file. This means that the local directive can be used to ensure that
a local symbol's name appears in the object file, and thus be accessible to other tools
such as a linker, for insertion in a symbol table.

The name used for the symbol in the object file is the same as the name of the symbol
in the assembler source file, unless the realname parameter is present. In this case
the name used for the symbol in the object file is the name specified by the string argu
ment to realname.

If origin is specified, then in the object file, the symbol is given the origin specified by
the string argument to origin.

The three optional arguments datausage, routineusage and notypeusage
generate extra symbol information in the object file which can be incorporated by the
linker into a symbol table. This may be used by tools such as a debugger or profiler, when
reading symbol information.

• datausage indicates that the symbol is associated with a data object.

• routineusage indicates that the symbol is associated with a routine.

• notypeusage indicates that the symbol type (data or routine) is not specified.

Examples:
To create a routine called fred which will be named in the object file as fred:

local fred routineusage

fred:
- - do freds operations

To create a routine called fred which will be named in the object file as fred's name
with the specific origin fred's origin:

local fred realname "fred's name" origin "fred's origin"
routineusage

fred:
- - do freds operations

----------liii~ 3_4_7

0.4 Assembler directives

maininit

Syntax:

maininit

Description:

The maininit directive is used to find the start of the static initialization chain. The
maininit directive defines the location of a word in memory into which the linker will
patch the byte offset to the first routine in the static initialization chain. In other words,
after linking, the word defined by the maininit patch contains the byte offset to the
location of the first init word in the static initialization chain.

Note: that maininit does not itself reserve the word in memory. It is necessary to
follow the maininit directive immediately with a directive or dummy instructions to
reserve the space.

Note: In order to use a maininit directive, an init directive must be present some
where in the link. If this is not the case then the link will fail.

Examples:

To obtain the start of the initialization chain on a 32 bit machine:

align
.mainlab: -- label so we can find this

-- word
maininit -- maininit directive
byte #20, #20, #20, #20 -- space reserved for maininit

-- word
ldc (.mainlab - .label) -- load the address of the

-- maininit word
ldpi -- load a pointer to this

-- address
• label:

ldnl 0 -- load the contents of the
-- maininit word
-- into the A register

_34_8 Jii.r~ _

D Using the assembler

mapl

map2

map3

Description:

These directives are used internally by the compiler to generate information for a map
file. They are listed here for completeness and are not intended for use in customers'
assembly source files.

mapl generates text information, map2 and map3 generate symbol information.

_________ Iiii~JI---------3-4-9

0.4 Assembler directives

patch

Overview:

There are six different types of patch directive. They are:

• CODEFIX

• DATAFIX

• EXTOFFSET

• LIMIT

• MODNUMBER

• STATICFIX

Each is discussed in detail below. Note: that no space is reserved by the patch direc
tive. The appropriate number of bytes should be reserved following the patch directive
using other directives or dummy instructions.

Each of the six types of patch can come in three forms, they are:

• Instruction. Denoted by the patch directive containing a primary instruction
mnemonic. In this case the value of the patch becomes the operand to the
instruction and this instruction/operand combination is patched into the hole in
the code. If the instruction/operand combination is shorter than the number of
bytes reserved in the patch directive then it occupies the start of the reserved
space and the unused trailing bytes are filled with pfix 0 instructions (hex 20).

• Short. Denoted by the patch directive containing the word short. In this case
the value of the patch is patched directly into the hole in the code reserved for
it. The value patched will occupy 2 bytes irrespective of the target processor
word length and the hole reserved must reflect this.

• Long. Denoted by the patch directive containing the word long. In this case the
value of the patch is patched directly into the hole in the code reserved for it. The
value patched will occupy 4 bytes irrespective of the target processor word
length and the hole reserved must reflect this.

The first operand of a patch directive is the patch size in bytes. The size of a patch must
be between °and 255 bytes inclusive. An attempt to issue a patch with a size outside
this range will result in an error being reported. Also the size given for a short patch
must be two bytes and the size given for a long patch must be four bytes otherwise an
error is reported.

If the patch size specified is 0, then the assembler will generate TCOFF directives to
instruct the linker to calculate the optimal patch length. In this case, no space should be
reserved following the patch directive.

_35_0 lFfi_ ---------

o Using the assembler

patch - codefix

Syntax:

patch <expr> <instruction> codefix <symbol> <expr>

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the offset between the byte following the patched
instruction or value and the address of the symbol symbol. In the case where the patch
is an instruction patch and the patched instruction does not entirely fill the reserved
space, the value of the instruction operand is the offset between the first unused trailing
byte and the address of the symbol. The symbol must be a code symbol.

The final expression is an offset which is added to the value of the patch. instruction
is a transputer primary instruction or the tokens short or long (see the overview of the
patch directive for an explanation of these).

Examples:

To call an external function

extern
patch
byte

_IMS-printf -- declare an external symbol
6 j codefix $_IMS-printf 0 -- do the patch
#20, #20, #20, #20, #20, #20 -- hole for the patch

In the above example the patch is six bytes long. The patch produces a j (jump) instruc
tion, the operand of which is the offset between the instruction after the patch and the
symbol_IMS-printf. Therefore the jump instruction will transfer control to the instruc
tion at the address of the _IMS-printf symbol. The offset zero in this example,
causes a jump directly to the symbol.

To perform the same call, but requesting that the linker calculate the optimal patch size:

extern _IMS-printf -- declare an external symbol
patch 0 j codefix $_IMS-printf 0 -- do the patch

-- do not leave a hole

__________ JSiiP~~ 3_5_1

D.4 Assembler directives

patch - datafix

Syntax:

patch <expr> <instruction> datafix <symbol> <expr>

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the offset, in words, between the start of the local
static area for this module and the symbol symbol, plus the value of the second expres
sion, the offset.

The offset can be used to access elements of structures etc. The symbol must be a data
symbol. instruction is a transputer primary instruction or the tokens short or long
(see the overview of the patch directive for an explanation of these).

Examples:

To obtain the offset of fred from the start of the local static area for this module:

extern fred
patch 4 long datafix fred 0
byte #20, #20, #20, #20

The above example patches the offset, in words, from the start of the local static area
to the location of fred, into the four byte hole.

_35_2 J;fi~ - _

D Using the assembler

patch - extoffset

patch <expr> <instruction> extoffset <symbol> <expr>

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the offset to the symbol symbol from the start
of the section containing it. If the symbol is a code symbol this offset is in bytes. If the
offset is a data symbol the offset is in words. The final expression is an offset which is
added to the value of the patch.

instruction is a transputer primary instruction or the tokens short or long (see the
overvi.ew of the patch directive for an explanation of these).

Examples:

To obtain the byte offset to main from the start of the text section:

extern main -- dec1are an externa1 symbo1
patch 4 10ng extoffset main 0 -- do the patch
byte #20, #20, #20, #20 -- hole for the patch

In the above example the patch is 4 bytes long. The offset of main in the text section is
patched into the 4 byte hole.

----------liii.fi~ 3_5_3

0.4 Assembler directives

patch - limit

patch <expr> <instruction> limit

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the size, in words, of the global static area for
the entire link. Note: that this includes any common blocks which are defined.

instruction is a transputer primary instruction or the tokens short or long (see the
overview of the patch directive for an explanation of these).

Examples:

To obtain the static size for the program:

patch 6 Ide limit
byte #20, #20, #20, #20, #20, #20

The above example patches a Ide instruction into the 6 byte hole. The operand of the
instruction is the size of static used by the program in words.

_35_4 Jiii.fi~ ---------

D Using the assembler

patch - modnumber

patch <expr> <instruction> modnumber

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the current module number. Each module is iden
tified by a unique module number within a link.

instruction is a transputer primary instruction or the tokens short or long (see the
overview of the patch directive for an explanation of these).

Examples:

To obtain the module number for the current module:

patch 6 Ide modnumber
byte #20, #20, #20, #20, #20, #20

The above example patches a Ide instruction into the 6 byte hole. The operand of the
instruction is the current module number.

---------lii..~ 3_5_5

0.4 Assembler directives

patch - staticfix

patch <expr> <instruction> staticfix [<expr>l

Description:

This creates a patch of size n bytes, where n is given by the first expression in the direc
tive. The value of this patch is given by the offset, in words, between the start of the local
static area for this module and the global static area for the program, plus the value of
the second expression. The second expression is optional; if it is not specified, the value
zero is assumed.

instruction is a transputer primary instruction or the tokens short or long (see the
overview of the patch directive for an explanation of these).

Examples:

To obtain the offset between the local static area for this module and the start of the
global static area:

patch 4 long staticfix
byte #20, #20, #20, #20

The above example patches the offset, in words, from the start of the global static area
to the start of the local static area, for the current module, into the four byte hole.

_35_6 lfi.P~ _

o Using the assembler

size

Syntax:

size <expr> <instruction>

The size directive causes the instruction following to be encoded in exactly n bytes,
where n is given by the expression in the directive. If the instruction can be encoded in
less bytes then padding is added after the instruction to increase the size of the instruc
tion to n bytes. The padding used is prefix zero instructions.

An error is reported if the size given is too small for the instruction.

Examples:

To force a jump instruction to occupy 4 bytes:

size 4 j label

__________J:;i~ 3_5_7

0.4 Assembler directives

sourcefile

Syntax:

sourcefile <string>

Description:

The VERSION TCOFF record which appears at the start of all TCOFF object files
contains a string which holds the name of the source file used to create the object file.
The sourcefile directive causes this name to be changed to the name given by its
string operand.

If no sourcefile directive appears in the input then the source file name defaults to
the filename given on the command line by the user.

Examples:

To enter the filename fred. s:

sourcefile "fred.s"

_35_8 LTi-----------

o Using the assembler

textname

Syntax:

textname <string>

Description:

The textname directive replaces the default code section name for the current module
with the name given in the string. This is required in order to perform priority linkage
(see chapter 10).

If no textname directive appears in the input then the text section name defaults to
text%base.

Examples:

To change the name of the text section to fred:

textname "fred"

---------l.Ti~ 3_5_9

0.4 Assembler directives

toolname

Syntax:

toolname <string>

Description:

The VERSION TCOFF record which appears at the start of all TCOFF object files
contains a string which holds the name of the tool used to create the object file. The
toolname directive causes this name to be changed to the name given by its string
operand.

If no toolname directive appears in the input then the tool name string defaults to
'iasm'.

Examples:

To set the tool name to be fred:

toolname "fred"

_36_0 Eii.P~ ---------

o Using the assembler

word

Syntax:

word <expr> [, <expr>]

Description:

The word directive generates a sequence of words containing the values of the expres
sions. Each word is stored in Iittle-endian format.

Examples:

word 3, 3 + 4

This stores the values 3 and 7 to the next two consecutive words in the code section.

__________ Eii&~mI---------3-6-1

0.5 BNF grammar for assembler language

0.5 BNF grammar for assembler language

primary-op is a mnemonic, in lower case, of one of the instructions listed in Table 0.3
or a pseudo instruction. Pseudo instructions are given in Chapter 4 of the ANSIC Toolset
Language and Libraries Reference Manual. secondary-op is a mnemonic, in lower
case, of any other instruction listed for the appropriate transputer in Transputer instruc
tion set - a compiler writer's guide or The Transputer Databook. The'ST20T450 Data
sheet - 42-1626-02 gives details of the ST20 and T450 instruction set.

assembler-file

line

label-def

command-list

separator

command

comment

tp-instruction

primary-op

secondary-op

directive

line {nl line}

[/abel-def] [command-list] [comment]

symbol:

command { separator command}

nl

tp-instruction
directive

-string

primary-op expression
secondary-op

<any primary instruction (in lower case»

<any secondary instruction (in lower case»

align
blkb expression {, expr-or-string}
blkw expression {, expression}
byte expr-or-string { , expr-or-string}
comment string
common symbol expression
data symbol expression
debug number, number {, number-or-string}
defsym symbol expression
descriptor symbol string language-type
expression expression string
extern symbol [weak] [realname string] [origin string]

[datausage] [routineusage]
[notypeusage]

global symbol [realname string] [origin string]
[datausage] [routineusage]
[notypeusage]

init

_36_2 EU._---------

~./

patch-instruction

patch-type

language-type

expr-or-string

number-or-string

expression

D Using the assembler

language language-type
local symbol [realname string] [origin string]

[datausage] [routineusage]
{notypeusage]

maininit
mapl string
map2 string expression
map3 string expression
patch expression patch-instruction patch-type
size expression tp-instruction
sourcefile string
textname string
toolname string
word expression { , expression}

primary-op
short
long

codefix symbol expression
datafix symbol expression
staticfix [expression]
modnumber
limit
extoffset symbol expression

unknown
occam
ansi_c
fortran
iso-pascal
modula2
ada
assembler
occam_harness

expression
string

number
string

number
symbol
monadic-expression
dyadic-expression
(expression)

---------l:ii..~ 3_6_3

0.5 BNF grammar for assembler language

dyadic-expression expression dyadic-operator expression

monadic-expression = monadic-operator expression

dyadic-operator *
I /
I %
I +
I
I &
I I
I 1\

I <
I >

monadic-operator
I
I

number

decimal-number

hex-number

hex-intra

symbol

string

decimal-number
hex-number

<any base 10 number>

hex-intro <any base 16 number>

#
Ox
ox

<any alphanumeric characters>
I .
I _ (underscore)

" <any sequence ofprintable ASCII characters> "

_36_4 J:U.....-----------

D Using the assembler

0.6 Errors

There are three levels of errors which can occur in the assembler: Error, Serious and
Fatal. These messages adhere to the standard format for error messages produced by
the toolset. This format is documented in Appendix A.

0.6.1 Fatal Errors

These are runtime errors within the assembler. They usually indicate a fault in the
assembler. The assembler outputs the error message followed by a banner directing
users to seek support. The assembler then exits.

The banner is as follows:

* The assembler has detected an internal inconsistency. *
* Please contact your supplier who may be able to help *
* you immediately and will be able to report a suspected *
* assembler fault to SGS-THOMSON Microelectronics Limited.*

Note: that if the error occurred before the file was opened then the filename and line
number are omitted from the error message.

D.6.2 Serious Errors

These are errors from which the assembler cannot recover, e.g. not being able to open
a file or out of memory. The assembler will output the error message and then exit.

Note: that if the error occurred before the file was opened then the filename and line
number are omitted from the error message.

Arithmetic overflow in expression operator

The expression generator has discovered an operation which may result in over
flow. The only instance of this at present is the following expression:
MOSTNEG_INT / -1. Currently operator can only be /.

Attempt to divide by 0 in expression operator

An attempt to divide by zero has been detected in the expression generator.
operator can be either / or %.

Cannot open filename for input

The file filename could not be opened for reading.

Cannot open filename for output

The file filename could not be opened for writing.

----------l:;iPrdm..., 3_65_

0.6 Errors

Cannot open VM file filename for output

The assembler's internal virtual memory system has tried to open a file for output
and failed.

Error closing object file

A file system error has been detected while closing the object file.

Error writing object file

A file system error has been detected while writing the object file.

Found a map directive with no mapfile

A map directive, mapl, map2 or map3 has been found but no map file is open.

Illegal processor type string

The processor type string is not recognized as a valid processor type.

Instruction won't fix in <number> byte(s) (operand value =<value>)

A size directive is too small: it is not possible to encode the number value in that
number of bytes.

Operator <operator> cannot be translated to TCOFF

The TCOFF file format does not support the operator.

Out of memory

The assembler is unable to allocate any more memory.

Token too large: string

The token string is greater than 1024 characters. Only the first 32 characters of
the token are given.

VM file operation failure

An operation on the virtual memory file failed (One of seek, read, write).

0.6.3 Errors

These are errors which the assembler will attempt to recover from. They generally occur
while reading the input file. Usually the assembler, on detecting the error, will restart
assembly from the next command after the command in which the error occurred. No
object file is produced if an error occurs.

position operand to directive-name must be a numeric expression

The directive given by directive-name has been given an incorrect operand. The
operand should be a numeric expression. Which operand is erroneous is given
by position.

'symbol-name' has already been defined with DEFSYM

The symbol symbol-name has been defined using defsym and has now been
discovered in a label definition context. This is illegal.

_36_6 liiiP~rcI----------

D Using the assembler

'symbol-name' may not be redefined using DEFSYM

The symbol symbol-name has been previously defined somehow. It is now
appears in a defsym directive. This is illegal.

Cannot mix Code and Data symbols in same expression

An expression has been discovered where code and data symbols are mixed.
This is illegal.

Colon missing - assumed

The assembler was expecting a colon. It assumes one existed and continues.

Data symbol re-defined as code symbol 'symbol-name'

The data symbol, symbol-name, has been redefined as a code symbol.

Debug: variable dims should be 0

The dimension field of a debug variable record should be zero. Anon-zero value
has been found.

Duplicate definition of symbol 'symbol-name'

The symbol symbol-name has been previously defined.

Duplicate label definition 'symbol-name'

The label given by symbol-name has been redefined.

Error in data mapping

A data item has been encountered twice at the mapping stage.

Expected number in directive-name directive got symbol

A number was expected in the directive given by directive-name, instead we got
the symbol given by symbol.

Expected string in directive-name directive got symbol

A string was expected in the directive given by directive-name, instead we got
the symbol given by symbol.

Illegal position operand to directive-name directive

The directive given by directive-name has been given an incorrect operand.
Which operand is erroneous is given by position.

Illegal patch size number

A patch directive has been encountered with a size operand which is outside the
range of legal patch sizes, less than one or greater than 255. The patch size
encountered is given by number.

Illegal symbol in directive-name directive: 'symbol-name'

The directive given by directive-name contains an illegal symbol (given by
symbol-name) .

_________ liii_ml--------3-6-7

0.6 Errors

Instruction won't fit in number byte(s)

The size of an instruction requested with the size directive is too small.

Malformed expression

A badly formed expression has been encountered by the expression parser.

Number too large: <number>

number must be representable in 32 bits.

Only numeric expressions or strings allowed in directive-name

An operand to the directive, directive-name, (one of byte or blkb) has been
found which is not a string or a number.

Operator 'I' must have symbol operand, found '<sting>'

The ! operator must have a symbol operand.

Symbol symbol-name is undefined

The symbol given by symbol-name has been encountered and it is undefined.

Symbol in DESCRIPTOR must be global

The symbol in the descriptor directive must be declared as global.

Undefined symbol 'symbol-name' as operand to directive-name

The symbol given by symbol-name is undefined and has been used in the direc
tive given by directive-name. This is illegal.

Unexpected symbol: 'symbol hex-number

The symbol given by symbol and hex-numberwas encountered in the main loop
of the assembler parser.

Unexpected symbol 'symbof in expression

The symbol symbol has been found in an expression by the expression parser.
It shouldn't be there.

Value hex-number out of range for directive-name directive

The value given by hex-number has been encountered in the directive given by
directive-name (one of byte or blkb) and is not in the range of a byte value.

Wrong length for patch-type patch - should be number

The length specified for the patch given by patch-type (one of long or short)
is incorrect. It should be that given by number.

_36_8 liii~ _

E Memory interface configuration
files

This appendix describes the memory interface configurer files, known as memfiles,
which are used for initializing the ST20450 memory interface. These files are ASCII text
files which may be written or modified by running the Memory Interface Configurer tool,
imem450, or by using a standard text editor. By convention memfiles have the file
extension •memo

E.1 Structure of memfiles

An example memfile is shown in section E.3.

The memfile should have the following structure:

Processor type

2 DRAM refresh parameters

3 Global parameters

4 Zero to four memory bank definitions

E.1.1 Processor type

The processor type is specified by the statement Processor. type, in Table E.1.

Statement Meaning

Processor. type : = T450 Type of processor

Table E.1 Processor type statement

E.1.2 DRAM refresh parameters definition

The refresh parameters are specified by the statements in Table E.2.

Statement Meaning Required

Dram.refresh.interva1 := Cycles Refresh interval Optional

Dram.refresh.time := Cycles CAS low time If interval

Dram.refresh.RAS.high := Phases RAS high time non-zero

Table E.2 DRAM refresh statements

If Dram. refresh. interval is present and non-zero then both the parameters
Dram. refresh. time and Dram. refresh. RAS. high must be present.

_________ ii;i~wacI--------3_6_9

E.1 Structure of memfiles

E.1.3 Global parameters

The global parameter statements are shown in Table E.3.

Statement Meaning Required

Signal.all.pending.cycles Signal any memory cycle Optional

Pad. strength.A2. 8 := Strength Pad driving strength Yes

Pad.strength.A9.12 := Strength Pad driving strength Yes

Pad.strength.A13.16 := Strength Pad driving strength Yes

Pad.strength.A17.20 := Strength Pad driving strength Yes

Pad. strength.A21. 24 := Strength Pad driving strength Yes

Pad.strength.A2S.31 := Strength Pad driving strength Yes

Pad. strength.DO. 7 := Strength Pad driving strength Yes

Pad. strength.D8. 15 := Strength Pad driving strength Yes

Pad.strength.D16.31 := Strength Pad driving strength Yes

Pad.strength.bel := Strength Pad driving strength Yes

Pad.strength.be2 := Strength Pad driving strength Yes

Pad.strength.rcpO : = Strength Pad driving strength Yes

Pad.strength.rcpl := Strength Pad driving strength Yes

Pad.strength.rcp2 := Strength Pad driving strength Yes

Pad.strength.rcp3 := Strength Pad driving strength Yes

Proc.clock.out := enabled I disabled ProcClockOut pin enabled Yes

Table E.3 Global parameter statements

E.1.4 Bank definitions

There can be up to four memory bank definitions in the memory configuration file for up
to four of the memory banks of the IMS T9000. Each bank definition has the following
structure:

Bank header

2 Memory type

3 Bank description

4 Bank terminator

In Tables E.4 and E.5, the 'Required' column shows whether the statement is required
in every bank definition.

The first statement of each bank is the bank header which introduces a bank definition.
The last statement of each bank is the bank terminator.

Statement Meaning Required

Bank BankNumber ("Title"] Start of bank definition Yes

End. bank End of bank definition Yes

Table E.4 Bank header and terminator statements

_37_0 li;i.~ _

E Memory interface configuration files

The type of the memory in the bank is specified as DRAM or non-DRAM. This defines
whether refresh is provided and which statements are expected in the following bank
definition. The statement must be the first statement of the bank definition after the Bank
statement.

Statement

Device.type := dramlnon-dram

Meaning

DRAM or non-DRAM

Table E.5 Memory type statement

A DRAM bank definition may contain any of the statements in Table E.6. These state
ments may appear in any order after the bank header and Device. type : = dram
statements and before the bank terminator. In Table E.6, the 'Required' column shows
whether the statement is required in every DRAM bank definition.

Statement Meaning Required

Page.address.bits := HexMask Mask page address Yes

Page. address. shift : = BitShift [bits] Shift of page address Optional

Disable.page.mode Disable page mode Optional

Port. size := BitWidth[bits] Width of memory Optional

Disable. refresh Do not refresh bank Optional

Wait.pin := enabled/disabled Whether wait pin enabled Yes

Ras.cycle.time := Cycles RAS cycle time Yes

Cas.cycle.time := Cycles CAS cycle time Yes

Data.drive~delay := Phases Data bus write drive delay Optional

Ras.edge.time := Phases Failing edge delay Yes

Ras.edge.active.during := CycleType Cycles when RAS edge active Optional

Ras.precharge.time := Cycles RAS pre-charge time Yes

Bus.release.time := Cycles Bus release time Yes

Table E.6 DRAM bank description statements

The definition of a DRAM bank should normally include timing definitions of one or more
of the following strobes, as described in Section E.1.5:-

Programmable strobe (notNIemPS)

RAS strobe (notMemRAS)

CAS strobe (notMemCAS)

Write strobe (notlVlemWrBG-3)

A non-DRAM bank definition may contain any of the statements in Table E.7. These
statements may appear in any order after the bank header and Device. type : =

non-dram statements and before the bank terminator. In Table E.7, the 'ReqUired'
column shows whether the statement is required in every non-DRAM bank definition.

__________~_~ 3_7_1

E.1 Structure of memfiles

Statement Meaning Required

Port. size : = BitsWidth [bits] Width of memory Optional

wait.pin := enabled I disabled Whether wait pin enabled Optional

Cas.cycle.time := Cycles CAS cycle time Yes

Data.drive.de1ay := Phases Data bus write drive delay Optional

Bus.release.time := Cycles Bus release time Yes

Table E.7 non-DRAM bank description statements

The definition of a non-DRAM bank may include definitions of any of the following
strobes, as described in Section E.1.5:-

Programmable strobe (notNIemPS)

RAS strobe (notMemRAS)

CAS strobe (notMemCAS)

Write strobe (notNIemWrB~3)

E.1.5 Strobe definitions

A strobe definition is structured in the following way :

Strobe definition header

2 Strobe description statements

3 Strobe definition terminator

In Tables E.8, E.g and E.10, the 'Required' column shows whether the statement is
required in every strobe definition.

A strobe definition is prefaced by one of the strobe definition header statements, listed
in Table E.8. The choice of header defines the processor pin which will produce the
signals. The optional quoted title string is used by the imem program to label timing
diagrams.

Statement Meaning Required

Pro9rammable.strobe["Tm~1 Start programmable strobe

RAS.strobe["TIffe~ Start RAS strobe definition One of

CAS. strobe [" Tit/~'] Start CAS strobe definition these

Write.strobe["Tm~1 Start write strobe definition

Table E.8 Strobe definition headers

A strobe definition is terminated by the statement End. strobe. It has no parameters.
This statement must be present after each strobe definition and before the next.

End. strobe

Statement Meaning

End strobe definition

Table E.g Strobe definition terminator

_37_2 J;;SGS-1HOMSON _
"'Tl.liiloce~

E Memory interface configuration files

The statements used to describe a strobe are listed in Table E.10. The Inactive
statement may not appear in the same strobe definition as any of the other statements
listed.

Statement Meaning Required

Inactive Strobe not active Optional

Falling.edge.active.during := CycleType Read and/or write active Optional

Rising.edge.active.during : = CycleType Read and/or write active Optional

Time.to.fal1ing.edge := Phases Delay of strobe Usually

Time. to. rising. edge := Phases Time to end of strobe Optional

Table E.1 0 Strobe description statements

E.2 Memfile statements

A memfile consists of a sequence of statements and comments. A comment is a blank
line or any text following the comment marker'--' up to the end of the line. Comments
are ignored by all tools.

All other lines within the file are statements. Statements and parameters can be
provided in either upper or lower case - these are treated as equivalent, except in
strings inside quotation marks ("). Some of the statements are assignments of the form
keyword: = value. Other statements may have one or more parameters separated from
the initial keyword and from each other by spaces or tabs. The statements are defined
in section E.2.2 and a summary is given in Table E.11.

E.2.1 Timing parameters

In Table E.11 parameters named Cycles or Phases are timing parameters. All timing
parameters may be given in either processor clock cycles or phases, with the exception
of the DRAM refresh interval, which must be specified in processor clock cycles.

For a processor of speed m MHz, one cycle is Amicroseconds. A phase is half a cycle.
If the processor speed is m MHz then:

n cycles = -Hi microseconds

p phases = [m microseconds

x nanoseconds = x X m X 10 - 3 cycles

= 2 x X m X 10- 3 phases

The units are specified by using one of the keywords phase, phases, cycle, or
cycles after the value. Parameters which are shown as Cycles may be specified in
phases, but the value given must be a whole multiple of two (i.e. a whole number of
cycles) and the number of cycles must be in the range shown in Table E.11. Similarly,
parameters which are shown as Phases may be specified in cycles; the equivalent
number of phases must be in the range shown in Table E.11.

__________ Ii;i.~aI--_-__- __3_7_3

E.2 Memfile statements

Statement Parameters Values
Bank BankNumber 0 .. 3

["Tit/e"] string
Bus. release. time := Cycles 0 .. 15 cyclers]

Cas.cycle.time := Cycles 2 .. 15 cyclers]

Cas. strobe ["Title"] string
Data.drive.delay := Phases 0 .. 3

Device.type := DeviceType dram 1non-dram

Disable.page.mode none
Disable. refresh none
Dram. refresh. interval := Cycles [cycles] 0 .. 4095

Dram.refresh.ras.high := Phases o .. 31 phase[s]

Dram.refresh.time := Cycles 1 .. 15 cyclers]

End. bank none
End. strobe none
Fa1ling.edge.~ctive.during := CycleType read 1write 1read & write

Inactive none
Pad.strength.A2.8 := Strength 0 .. 3

Pad. strength.A9. 12 := Strength 0 .. 3

Pad.strength.A13.16 Strength 0 .. 3

Pad.strength.A17.20 := Strength 0 .. 3

Pad.strength.A21.24 := Strength 0 .. 3

Pad.strength.A25.31 := Strength 0 .. 3

Pad.strength.be1 := Strength 0 .. 3

Pad.strength.be2 := Strength 0 .. 3

Pad. strength.DO. 7 := Strength 0 .. 3

Pad.strength.D8.15 := Strength 0 .. 3

Pad.strength.D16.31 := Strength 0 .. 3

Pad.strength.rcpO := Strength 0 .. 3

Pad.strength.rcp1 := Strength 0 .. 3

Pad. strength. rcp2 := Strength 0 .. 3

Pad. strength. rcp3 := Strength 0 .. 3

Page.address.bits := HexMask OOOOOOOO .. FFFFFFFC

Page.address.shift := BitShift [bits] 0 .. 31

Port. size := BitsWidth [bits] 8 116 132

Proc. clock. out := WhetherEnabled enabled 1disabled

Processor. type := ProcessorType T450

Programmable. strobe ["Title"] string
Ras.cycle.time := Cycles 1 .. 3 cyclers]

Ras.edge.active.during := CycleType read 1write 1read & write

Ras.edge.time := Phases o .. 7 phase(s]

Ras.precharge.time := Cycles o .. 15 cyclers]

Ras.strobe ["Title'1 string

_37_4 lii _

E Memory interface configuration files

Rising. edge. active. during := CycleType read I write I read & write

Signa1.a11.pending.cyc1es none
Time.to.fa11ing.edge := Phases o .. 31 phase[s]

Time.to.rising.edge := Phases o .. 31 phase[s]

wait.pin := WhetherEnabled enab1edldisabled

write. strobe ["Title"] string

Table E.11 Memfile statement parameters

E.2.2 Statement definitions

Bank BankNumber [IT Title"]

This statement starts a memory bank definition. The parameter BankNumber
selects one of the four banks and must be in the range 0 to 3. The optional Title
string is used by the memory interface program to label timing diagrams. One
Bank statement must appear as the first line of each bank definition.

Bus. release. time : = Cycles cyclers] I phase[s]

This statement defines the bus release time for the devices in the current bank.
If the keyword cycles (or cycle) is used then the value of Cycles must be in
the range 0 to 15 and will be written in the BusReleaseTime field of the
ConfigDataField1 register for the current bank. If the keyword phases (or
phase) is used then the value of Cycles must be in the range 0 to 30 and must
be a whole number ofcycles, Le. divisible by2, as the value Cycleswill be divided
by 2 and the result written in the BusReleaseTime field.

This statement must be present in each bank definition.

Cas. cycle 0 time : = Cycles cyclers] I phase[s]

This statement defines the CAS cycle time in the current bank. If the keyword
cycles (or cycle) is used then the value of Cycles must be in the range 2 to
15 and will be written in the CAStime field of the ConfigDataField1 register for
the current bank. If the keyword phases (or phase) is used then the value of
Cycles must be in the range 4 to 30 and must be a whole number of cycles, Le.
divisible by 2, as the value Cycles will be divided by 2 and the result written in
the CAStime field.

This statement must be present in each bank definition.

Cas.strobe["Tffle~

This statement begins the definition of CAS strobe for the current dram bank,
which is output on the notMemCAS pin. The optional Title string is used by imem
in output displays.

This statement is optional and may appear in any dram bank definition. If a dram
bank definition does not include this statement then the CAS strobe for that bank
will be assumed to be inactive.

__________ EU. 3_7_5

E.2 Memfile statements

Data . drive. delay : = Phases phase[s] I cycle[s]

This statement defines the drive delay of the data bus at the first of one or more
write cycles for the current bank. The delay is the time from the start of CASTime
before the data pins are driven.

If the keyword phase or phases is used then the value of Phases must be in
the range 0 to 3 and it will be written into the DataDriveDelay field of the
ConfigDataField2 register. If the keyword cycle or cycles is used then the
value of Phases must be in the range 0 to 1 and it will multiplied by 2 and the
result written into the DataDriveDelay field.

This statement is optional and may be included in the bank specification. If it is
not present then the default value of zero is used.

Device.type dramlnon-dram

This statement specifies the type of device which will be accessed by the current
bank, specifying whether or not the bank is attached devices which need refresh.
The legal values are dram and non-dram. Using non-dram disables refresh
for the current bank.

This statement must be present as the first statement in each bank definition
after the Bank statement.

Note that using dram also causes the tools reading the file to assume multi
plexed address pins, using the RAS and CAS strobes. This means that the
Page.address.bits, Page.address.shift, Ras.cycle.time and
Ras •precharge . time statements are expected. For non-multiplexed dram
all these values should be set to zero.

Disable.page.mode

The presence of this statement signifies that page mode will be disabled for the
current bank. This statement may only appear in a DRAM bank definition and
is optional. If it is not present in a DRAM bank definition then page mode may
be used when two or more successive memory accesses are made to the same
memory page (Le. the same row). The PageMode bit in the ConfigDataFieldO
register will be set for DRAM banks unless this statement is present for the bank.

Disable.refresh

This statement signifies that the devices in this bank are not to be refreshed. If
this statement is present in the definition of a bank n then the DRAMn bit of the
ConfigDataField1 register will be set to 0; otherwise the default value of 1 will
be written for DRAM or 0 for non-DRAM. Setting the DRAMn to 1 enables refresh
for bank n if Dram. refresh. interval is non-zero. This statement is optional. .
It may only appear in a bank definition for a DRAM type bank.

Dram. refresh. interval : = Cycles [cycle[s]]

This statement specifies the time between successive refresh cycles in cycles.
The value Cycles will be written in the Refreshlnterval field of the

_37_6 liii. _

E Memory interface configuration files

ConfigDataField1 register. Cycles must be a value in the range 0..4095, option
ally followed by the word cycles. If a non-zero value is given, then all DRAM
banks which include the statement Device. type dram will be refreshed.

This statement is optional and may be included in the refresh specification. If it
is not present then the default value of zero is used.

A zero value for the refresh interval means there is no refresh, and the following
statements must not then be present in the memory configuration file:

Dram. refresh. time

Dram.refresh.ras.high

Dram.refresh.ras.high := PhaseSphase[s] I cyclers]

This statement defines the time for which the RAS strobe remains high, timing
from the start of the refresh time. This statement must be present if the refresh
interval is non-zero.

If the keyword phase or phases is used then the value of Phases must be in
the range 0 to 31 and it will be written into the RefreshRASedgeTime field of
the ConfigDataField1 register. If the keyword cycle or cycles is used then
the value of Phases must be in the range 0 to 15 and it will multiplied by 2 and
the result written into the RefreshRASedgeTime field.

Dram. refresh. time : = Cycles cyclers] I phase[s]

This statement gives a refresh time for the current bank as a number of cycles,
in the range 1..15 cycles. The refresh time for the current bank is the time
between CAS going low at the start of the refresh cycle and CAS going high at
the end of the refresh cycle.

If the keyword cycles (or cycle) is used then the value of Cycles must be in
the range 1 to 15 and it will be written in the RefreshTime field of the appropriate
configuration register. If the keyword phases (or phase) is used then the value
of Cycles must be in the range 2 to 30 and must be a whole number of cycles,
Le. divisible by 2, as the value will be divided by 2 and the result written in the
RefreshTime field.

This statement must be present in the refresh specification if the refresh interval
is non-zero.

End. bank

This statement ends a memory bank definition. This statement must be present
as the last line of each memory bank definition.

End. strobe

This statement ends a strobe definition. This statement must be present as the
last statement in each strobe definition. Strobe definitions may only appear in
bank definitions.

__________E;i.~ 3_7_7

E.2 Memfile statements

Falling.edge.active.during := read I write I read & write I write &
read

This statement specifies in which type of cycle (Le. read cycles, write cycles or
both) the current strobe will have a falling edge during CAS time. This does not
affect the RAS strobe falling edge during RAS time. The value assigned to
Falling. edge. active. during determines the value written to the
appropriate xxxiactive field of the ConfigDataField2 register.

This statement is optional. It must not be present in the definition of an inactive
strobe. If not specified, the current strobe will go low in both read and write
cycles, unless the current strobe is the Write Strobe, in which case it will go low
in write cycles only.

Inactive

This statement is used to explicitly define the current strobe as being inactive.
This statement is optional and has the same effect as omitting the strobe defini
tion from the current bank. If it is present there should be no other statements
in the body of the strobe definition.

Pad.strength.A2.8 := Suen¢h

This statement is used to define the drive strength of the external address bus
pads MemAddr2-8, notMemBEO and notMemBE3. The value of Strength must
be in the range 0 to 3, where 0 signifies the weakest drive and 3 the strongest.
The value of Strength will be written into the A2-8 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.A9.12 := Suen¢h

This statement is used to define the drive strength of the external address bus
pads MemAddr9-12. The value of Strength must be in the range 0 to 3, where
osignifies the weakest drive and 3 the strongest. The value of Stren¢h will be
written into the A9-12 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.A13.16 := Suength

This statement is used to define the drive strength of the external address bus
pads MemAddr13-16. The value of Strength must be in the range 0 to 3, where
osignifies the weakest drive and 3 the strongest. The value of Strength will be
written into the A13-16 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.A17.20 := Suength

This statement is used to define the drive strength of the external address bus
pads MemAddr17-20. The value of Strength must be in the range 0 to 3, where

_37_8 J.Ti _

E Memory interface configuration files

osignifies the weakest drive and 3 the strongest. The value of Strength will be
written into the A17-20 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.A21.24 := Suenwh

This statement is used to define the drive strength of the external address bus
pads MemAddr21-24. The value of Strength must be in the range 0 to 3, where
osignifies the weakest drive and 3 the strongest. The value of Strength will be
written into the A21-24 field of the PadDrive register.

This statement must be present in the memory configuration.

Padostrength.A2S.31 := Sueng~

This statement is used to define the drive strength of the external address bus
pads MemAddr25-31. The value of Strength must be in the range 0 to 3, where
osignifies the weakest drive and 3 the strongest. The value of Strength will be
written into the A25-31 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.bel := Suenwh

This statement is used to define the drive strength of the external byte enable
strobe pad notMemBE1. The value of Strength must be in the range 0 to 3,
where 0 signifies the weakest drive and 3 the strongest. The value of Strength
will be written into the BE1 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.be2 := Sueng~

This statement is used to define the drive strength of the external byte enable
strobe pad notMemBE2. The value of Strength must be in the range 0 to 3,
where 0 signifies the weakest drive and 3 the strongest. The value of Strength
will be written into the BE2 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.DO.7 := Sueng~

This statement is used to define the drive strength of the external data bus pads
MemDataO-7. The value of Strength must be in the range 0 to 3, where 0
signifies the weakest drive and 3 the strongest. The value of Strength will be
written into the DO-7 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.D8.1S := Sueng~

This statement is used to define the drive strength of the external data bus pads
MemData8-15. The value of Strength must be in the range 0 to 3, where 0

___________ Eii_ml----------3-7-9

E.2 Memfile statements

signifies the weakest drive and 3 the strongest. The value of Strength will be
written into the 08-15 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.DiG.3! := Suen¢h

This statement is used to define the drive strength of the external data bus pads
MemData16-31. The value of Strength must be in the range 0 to 3, where 0
signifies the weakest drive and 3 the strongest. The value of Strength will be
written into the 016-31 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.repO := Suen¢h

This statement is used to define the drive strength of the external strobe pads
notMemRASO, notMemCASO and notMemPSO. The value of Stren¢h must
be in the range 0 to 3, where 0 signifies the weakest drive and 3 the strongest.
The value of Strength will be written into the RCPO field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.rep! := Suen¢h

This statement is used to define the drive strength of the external strobe pads
notMemRAS1, notMemCAS1 and notMemPS1. The value of Strength must
be in the range 0 to 3, where 0 signifies the weakest drive and 3 the strongest.
The value of Strength will be written into the RCP1 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.rep2 := Sueng~

This statement is used to define the drive strength of the external strobe pads
notMemRAS2, notMemCAS2 and notMemPS2. The value of Strength must
be in the range 0 to 3, where 0 signifies the weakest drive and 3 the strongest.
The value of Strength will be written into the RCP2 field of the PadDrive register.

This statement must be present in the memory configuration.

Pad.strength.rep3 := Sueng~

This statement is used to define the drive strength of the external strobe pads
notMemRAS3, notMemCAS3 and notMemPS3. The value of Strength must
be in the range 0 to 3, where 0 signifies the weakest drive and 3 the strongest.
The value of Strength will be written into the RCP3 field of the PadDrive register.

This statement must be present in the memory configuration.

Page.address.bits := HexMask

This statement defines the mask to select the page address bits to be output on
the address bus during a RAS cycle in the current bank. HexMask is in hexade-

_38_0 ii;i..~ ---- _

E Memory interface configuration files

cimal, using no prefix. Bits 0 and 1 must be clear. The most significant 30 bits
of the value HexMask is placed in the RASbits field of the ConfigDataFieldO
register for the current bank.

This statement must be present in each dram bank definition.

Page. address. shift : = BitsShift fbi ts]

This statement controls the right shift of the page address prior to outputting the
page address on the address bus during the RAS part of the cycle in the current
bank. Its purpose is to enable multiplexing of the address for memory devices
with multiplexed address pins. Legal values of BitsShift are in the range 0 to 31
and are checked with the page address bits mask to ensure no bits are lost. The
value may optionally be followed by the word bits. The value BitsShift is
inserted in the ShiftAmount field of the appropriate configuration register for the
current bank.

This statement is optional and can only appear in a dram bank definition. If
unspecified then the shift will be set such that a page address of m bits appears
on the least significant address pins (excluding the byte select pins), which are:

o pins 0 to m-1 for an a-bit port size

o pins 1 to m for a 16-bit port size

o pins 2 to m+1 for a 32-bit port size

Port. size : = BitWidth [bits]

This statement defines the width in bits of the devices in the current bank. Legal
values of BitWidth are 32, 16 and 8. The value may optionally be followed by the
word bits. The value of BitWidth determines the value written to the PortSize
field of the appropriate configuration register for the current bank.

This statement is optional. It may only appear in a bank definition. If this state
ment is not present then the default value of 32 bits wide will be used.

Proc.clock.out := enabled I disabled

This statement defines whether an output signal will appear on the Proc
ClockOut pin. If Proc. clock. out is assigned the value enabled then the
ProcClockEnable bit in the PadDrive register will be set.

This statement must be present in the memory configuration.

Processor. type := T450

This statement defines the processor type. T450 is the only legal value. This
statement must be the first statement in the file.

Programmable. strobe [IfTitle"]

This statement begins the definition of the programmable strobe for the current
bank, which is output on the notMemPS pin. The optional Title string is used by
imem4 50 in output displays.

_________Eii.&~ 3_8_1

E.2 Memfile statements

This statement is optional. If a bank definition does not include this statement
then notMemPS for that bank will be assumed to be inactive.

Ras •cycle. time : = Cycles cyclers] I phase[s]

This statement defines the RAS sub-cycle time for DRAM in the current bank.
If the keyword cycles (or cycle) is used then the value of Cycles must be in
the range 1 to 15 and will be written in the RASTime field of the appropriate
configuration register for the current bank. If the keyword phases (or phase)
is used then the value of Cycles must be in the range 2 to 30 and must be a whole
number of cycles, Le. divisible by 2, as the value Cycles will be divided by 2 and
the result written in the RASTime field for the current bank.

This statement must be present in each dram bank definition.

Ras.edge.active.during := read I write I read & write I write &
read

This statement specifies in which type ofcycle the RAS strobe will become active
during RAS time, Le. read cycles, write cycles or both. The value assigned to
Ras . edge . active. during determines the value written to the appropriate
RASedgeActive field of the ConfigDataField2 register.

This statement is optional. It must not be present in the definition of an inactive
strobe. If not specified, the RAS strobe will be active in both read and write
cycles.

Ras.edge.time := Phasesphase[s] I cyclers]

This statement defines the delay from the start of the RAS cycle until the RAS
strobe goes low for dram in the current bank. If the keyword phases (or phase)
is used then the value of Phases must be in the range 0 to 63 and will be written
in the RASEdgeTime field of the appropriate configuration register for the
current bank. If the keyword cycles (or cycle) is used then the value of
Phases must be in the range and the result written in the RASEdgeTime field
of the TimingControl register for the current bank.

This statement must be present in each dram bank definition.

Ras •precharge . time : = Cycles cyclers] I phase[s]

This statement defines the RAS pre-charge time for dram in the current bank.
If the keyword cycles (or cycle) is used then the value of Cycles must be in
the range 0 to 15 and will be written in the PrechargeTime field of the
TimingControl register for the current bank. If the keyword phases (or phase)
is used then the value of Cycles must be in the range 0 to 30 and must be a whole
number of cycles, Le. divisible by 2, as the value Cycles will be divided by 2 and
the result written in the PrechargeTime field of the TimingControl register for
the current bank.

This statement must be present in each dram bank definition.

_38_2 liii.~. _

E Memory interface configuration files

Ras. strobe [" Title"]

This statement begins the definition of RAS strobe for the current dram bank,
which is output on the notMemRAS pin. The optional Titlestring is used by imem
in output displays.

This statement is optional and may appear in any dram bank definition. If a dram
bank definition does not include this statement then the RAS strobe for that bank
will be assumed to be inactive.

Rising. edge. active. during := read I write I read & write I write &
read

This statement specifies in which type of cycle the current strobe will rise before
the end of the cycle, Le. read cycles, write cycles or both. The value assigned
to Rising. edge. active. during determines the value written to the
appropriate XXX2active field of the ConfigDataField2 register.

This statement is optional. It must not be present in the definition of an inactive
strobe. If not specified, the rising edge of the current strobe will occur in both read
and write cycles, unless the current strobe is the Write Strobe, in which case it
will occur in write cycles only.

Signal.all.pending.cycles

This statement specifies that the MemRefreshPending pin is used to indicate
that a memory cycle is pending during DMA; otherwise the pin indicates that a
refresh is pending. If this statement is present then 1 will be written to the
CyclePendingMask bit of the ConfigDataField1 register; otherwise a 0 will be
written. This statement is optional.

Time. to. falling. edge : = Phases phase[s] I cyclers]

This statement specifies the time delay until the current strobe goes low, timed
from the start of the CAS time for DRAMs orthe start of the cycle for non-DRAMs.
If the keyword phases (or phase) is used then the value of Phases must be in
the range 0 to 63 and will be written in the E1 Time field of the strobe timing
register for the current strobe. If the keyword cycles (or cycle) is used then
the value of Phases must be in the range and the result written in the E1Time
field of the strobe timing register for the current strobe.

This statement should always be present in an active strobe definition, except
that it may be omitted in the case of the RAS strobe in a DRAM bank.

Time. to. rising. edge : = Phases phase[s] I cyc1e[s]

This statement specifies the time delay until the current strobe goes low, timed
from the start of the CAS time for DRAMs or the start of the cycle for non-DRAMs.
If the keyword phases (or phase) is used then the value of Phases must be in
the range 0 to 63 and will be written in the E2Time field of the strobe timing

_________ iiii 3_8_3

E.3 Example file

register for the current strobe. If the keyword cycles (or cycle) is used then
the value of Phases must be in the range and the result written in the E2Time
field of the strobe timing register for the current strobe.

This statement is optional and may appear in any strobe definition. If it is omitted
then the strobe will stay low, after Time e to . falling. edge, until the end of
the cycle.

wait.pin := enabled I disabled

This statement controls whether or not the wait pin, MemWait, affects strobe
timing of the current bank. If Wait. pin is assigned the value enabled then 1
will be written to the MemWaitEnable bit of the ConfigDataField1 register of
the current bank; otherwise a zero will be written.

Write.strobe["Tme~

This statement begins the definition of the write strobe timing for the current
bank, which is controlled by the the register WriteStrobe. This controls the
behavior of all four notMemBEQ-3 pins when addressing the current bank. The
optional Title string is used by imem in output displays.

This statement is optional. If a bank definition does not include this statement
then the write strobes will be assumed to be inactive for that bank.

E.3 Example file

Memory configuration file produced
by the MEM package.
on Thu Mar 2 12:55:30 1995

Processor. Type := T450
Dram.Refresh.lnterval := 320 Cycles
Dram.Refresh.Time := 4 Cycles
Dram.Refresh.RAS.High := 3 Phases
Signal.All.Pending.Cycles
Proc.clock.out := enabled

Pad.strength.RcpO
Pad. strength. Rcp1
Pad. Strength. Rcp2
Pad. strength. Rep 3
Pad.strength.Be1
Pad. strength. Be2
pad.Strength.A2.8
Pad.Strength.A9.12
Pad.strength.A13.l6
Pad.Strength.A17.20
Pad.Strength.A21.24

2
2
2
2
2
2
2
2
2
2
2

_38_4 Iiii.&~ - _

Pad.Strength.A25.3l := 2
Pad.strength.DO.7 := 2
Pad.Strength.D8.l5 := 2
Pad.Strength.D16.3l := 2

Bank 0 "SRAM"
Device.Type
Wait. Pin
Port. Size

Ras.strobe "SO"
Inactive

End. Strobe

E Memory interface configuration files

:= Non-Dram
:= disabled
:= 32 bits

Cas.strobe "CAS"
Falling.Edge.Active.During
Rising. Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

End.Strobe

Programmable.Strobe "Read strobe"
Falling.Edge.Active.During
Rising. Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

End.Strobe

write. Strobe "Write strobe"
Falling. Edge.Active.During
Rising. Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

End. strobe

:= Read & Write
:= Read & write
:= 0 Phases
:= 4 Phases

:= Read
:= Read
:= 0 Phases

4 Phases

:= Write
:= Write
:= 1 Phases
:= 3 Phases

Cas. Cycle. Time
Bus.Release.Time
Data.Drive.Delay

End. Bank

Bank 1 "DRAM"
Device. Type
Wait. Pin
Port. Size
Page.Address.Bits
Page.Address.Shift

:= 2 Cycles
:= 1 Cycles
:= 0 Phases

:= Dram
:= disabled
:= 32 bits
:= 003FFOOO
:= 10 bits

Ras.strobe "RAS"
Falling.Edge.Active.During
Time.To.Falling.Edge

End. Strobe

Cas.Strobe "CAS"
Falling.Edge.Active.During
Rising.Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

: = Read & write
:= 0 Phases

:= Read & write
Read & Write

:= 2 Phases
:= 12 Phases

----------li;i.Bm1flROtrI---------3
-
8
-
5

E.3 Example file

End. Strobe

Programmable. strobe "Write"
Falling.Edge.Active.During
Rising.Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

End. Strobe

Write.strobe neE"
Falling. Edge.Active.During
Rising. Edge.Active.During
Time.To.Falling.Edge
Time.To.Rising.Edge

End. Strobe

:= Write
:= write
:= 0 Phases
:= 12 Phases

:= Read & Write
:= Read & Write
:= 0 Phases
:= 12 Phases

Ras.Precharge.Time
Ras.Edge.Time
Ras.Edge.Active.During
Ras.cycle.Time
Cas. Cycle. Time
Bus.Release.Time
Data.Drive.Delay

End. Bank

:= 2 Cycles
:= 2 Phases
:= Read & Write
:= 2 Cycles
:= 6 Cycles
:= 1 Cycles
:= 0 Phases

_38_6 ii;i_---------

F ANSI C configuration language

This appendix describes various aspects of the configuration language and provides a
language summary. The syntax of the language is given at the end of this appendix. A
description of how to use the language can be found in the'User Guidli.

F.1 Introduction

The network configuration language is a special purpose language that allows linked
object files to be connected to other linked object files and placed on any physical
arrangement of transputers. The language has been designed to be compatible with the
toolsets and allows linked object files from these toolsets to be mixed on the same
network.

The main features of the language are listed below.

• The language is C-like. Declarations and expressions use C notation.

• Software and hardware networks are described using a common syntax.

• Identifiers have global scope (except replication counters).

• Arrays can be declared of any symbolic element, including processes, channels,
and edges.

• Replicative and conditional statements allow easy declaration of regular
networks and exceptions within them.

• New node types can be defined.

• Source files can be included.

• Comments can be inserted at any point.

A formal description of the language can be found in section F.16. The following sections
describe the main features of the language and explain each of the language state
ments.

F.2 Statements

All statements, except the conditional statement if and the replication statement rep,
must be terminated by a semicolon. Blocks of statements must be enclosed in braces
'{' and '}'.

Indentation may be used to indicate structure in conditional and replicative statements,
but is not required by the syntax.

------ Eii.1'~..tI---------3-8-7

F.3 Comments

F.3 Comments

Comments can appear anywhere in the configuration text and may extend over any
number of lines. Comments must be preceded by the character sequence '/*' and
followed by the character sequence '*I'. For example:

process worker; /* declare s/w process "worker" */

Comments may be nested.

F.4 Identifiers

Identifiers are symbolic names for configuration elements such as processors,
processes, channels, edges and constants (see section F.6). Identifiers can be
associated with a·type (see below) in a typed statement. Identifiers may be followed by
dimensions to create array types.

F.4.1 Character set

Identifiers can contain any letter, digit, or the underscore character; they must begin with
a letter or underscore. All characters in the name are significant and letters are case
sensitive.

F.5 Types

The following base types are defined in the language:

node input output edge connection numeric type

Hardware and software networks are described as collections of interconnected nodes.
Each node has a set of attributes defined by the node type. The node types processor
(hardware) and process (software) are predefined from a defaults file that is read when
the configurer is invoked on the configuration description file.

The following numeric types are available:

char int float double

char represents the signed 8-bit integer value of a character's ASCII code. int is a
signed 32-bit integer, float is a 32-bit IEEE 754 single length real, and double is a
64-bit IEEE 754 double length real. Types for constants are implied by the form of the
numeric value.

F.6 Constants

Numeric and character constants can be defined using the val statement. The type of
the constant will be deduced from the expression. For example:

_38_8 1iii. _

F ANSI C configuration language

val gridsize 4; /* integer assumed */
val x_coord 2.0£; /* single length real */
val y (x*23.2e3); /* double length real expression */

Integers can be expressed in decimal, octal, or hexadecimal. The suffixes K and Mean
be used on decimal values as fixed multipliers to indicate 'Kilo' (210) and 'Mega' (220)
values. Single length floating point numbers must be suffixed with the letter F or f.

Character constants must be enclosed within single quotes and string constants within
double quotes. Standard escape sequences can be used to specify control characters
such as Tab and EOl ('end-of-line'). For example:

val c 'c'; /* character constant */
val greeting "Hello\n"; /* string constant */

Note: Any string constant that is to be passed to a C program must be explicitly termi
nated by the null character escape sequence \0. This is because the configurer does
not automatically terminate strings with \0.

Escape sequences are defined in appendix F.16.4.

Constant arrays can be defined by enclosing the sequence of values in braces. Multidi
mensional constant arrays are also allowed. For example:

val pow2 {I, 2, 4, 8, 16, 32, 64, 128};
val powers [{ 1, 1, I}, {2, 4, 8}, {3, 6, 9}};

F.7 Booleans

The boolean constants TRUE and FALSE are predefined as integer constants with
values one and zero respectively. In conditional statements any non-zero expression
counts as true.

F.8 Expressions and arithmetic

Expressions follow the syntax used in the C programming language. Operator prece
dence determines the order of evaluation, and brackets can be used to override the
normal ordering.

The operators which are supported are as follows:

Unary: + - ! - (numeric-type)

Binary: + - * / % & I 1\ & & I I << >> < <= > >= ! =

Ternary: ?:

---------li;i~ 3_8_9

F.9 Arrays

All integer arithmetic is carried out to 32-bit precision. Casts can be to any of the numeric
types int, char, float or double.

Strings and arrays can be tested for equality in the same way as integer expressions
by using the == and ! = operators.

F.9 Arrays

Arrays can be declared for any base type or user-defined node type. For all array decla
rations except constant arrays, the dimensions are specified after the array name using
the square bracket convention for subscripts. Subscripts are numbered from zero and
values are stored in row order.

For constant array declarations all elements must be of the same type. In multidimen
sional constant arrays the dimension sizes of all the subarrays must be the same.

Elements of constant arrays can be referenced by specifying the subscript either after
the array name or after the array declaration. For example:

val y x[i];
val x (1, 2, 3}[i];

Arrays are commonly used to define the basic elements of software networks. For
example:

processor grid[4];
process slave[4];

F.10 Conditional statement

The if .•• else statement controls the execution of the statement that immediately
follows it. The syntax of the statement is as follows:

if exp statement [else statement]

where: exp is any valid expression;

statement can be a single statement or a group of statements.

if can be used to conditionally place a process on a specific processor, for example,
to place a process on a remote processor in a network if its memory requirements
exceed a pre-determined threshold:

if master.heapsize >= 2M
place master on remote;

else
place master on root;

_39_0 J.fi~. ---------

F ANSI C configuration language

F.11 Replication

The rep statement replicates the following statement or group of statements. rep is a
counted loop in which the control bounds are integer expressions.

rep has two syntactic forms in which the number of iterations can be specified by a
range or by an initial value followed by a count:

rep index = exp 1 to exp2 statement

rep index = expt for exp2 statement

For example the following are equivalent:

rep i = 0 to 9
{
}

rep i 0 for 10
{
}

If the range or count is zero the succeeding statement or group of statements is not
executed.

Replication is commonly used to define regular networks such as grids, rings, and
hyper-eubes and to place processes on them. It can be used for both hardware and soft
ware networks.

The following example connects four T425 transputers in a square array and places the
same process on each. The processors are connected to their neighbors via links 2 and
3; links 0 and 1 of the processor are left unconnected:

T425 (memory=lM) grid[4];

rep i = 0 to 3
connect grid[i].link[2] to grid[(i+1)%4].link[3];

process slave[4];

rep i = 0 for 4
place slave[i] on grid[i];

F.12 Built-in functions

The function size (array) is built-in. size returns the number of elements in an array.
If the argument is not an array then size returns the value 1 (one).

__________ iifi.-. 3_9_1

F.13 Nodes

F.13 Nodes

Software and hardware networks are defined using a common syntax based on the
declaration of nodes and their connections. Nodes are a generic network type from
which hardware and software nodes can be defined. Node types processor and
process are predefined in the configurer startup file.

Nodes are associated with a number of attributes,the exact number and nature of which
depends on the value given to the element attribute of a node Le. process or
processor. Nodes with element type processor include attributes such as type and
memory, whereas nodes of type process have a set of runtime process attributes such
as the process interface parameters, priority of execution, memory requirements, and
code segment ordering.

Definitions of software nodes (processes) and hardware nodes (processors) which are
the basic elements from which software and hardware networks are constructed, are
read from a file of predefinitions when the configurer is invoked. The predefinitions are
used as though they are defined in the language and are listed in section F.18.2.

F.13.1 Node attributes

Node attributes can be accessed in expressions using the dot convention. For example,
they can be used to control the placing of processes:

if (master.heapsize >= 2M)
place master on remote;

else
place master on root;

When assigning values to sub-attributes open and closed brackets '()' are used in
place of the dot. For example, the statements:

prOceSS(order(code= ••• » ;
proceSS.order(code= •••);
process (code= ••.) ;

are equivalent. (Where process is the name of a declared process or process type).

Sub-attributes can be specified without specifying the parent attribute: However,
because some attributes have sub-attributes of the same name, ambiguity can be a
problem. For example, the statements:

proceSS(location(code= ••• » ;
proceSS.location(code= •••);

are equivalent, however, the statement:

proceSS(code=. 0.);

is the same as:

prOceSS(order(code= ••• »;

_39_2 i:i;i_ - _

F ANSI C configuration language

The order and location attributes associated with the process node type have the
same sub-attributes. In cases where the parent attribute (Le. order or location) is
not specified, the configurer will assume that an order attribute is intended.

Process and processor attributes are described in detail in the'User Guide, for those
toolsets which support configuration.

F.13.2 Defining new node types

Refinements of existing node types can be created by using the define statement to
specify nodes with specific attributes. As an example, consider the definition of the node
types process and processor which are in the configurer startup file:

define node(element="processor") processor;
define node(element="process") process;

Once defined, node types can be used to define other node types. For example, the
base type process can be used to define a specific process definition in the following
way:

define process(stacksize = 10K,
interface(int count,

input command,
output result» workpackage;

Or, for example, the processor type can be used to define a specific transputer type
which can then be refined into a TRAM definition:

define processor(type = "T425") T425;
define T425(memory = 1M) B4ll;

Once defined, new types can be used to declare variables in the same way as base
types. For example:

workpackage slave[4];
B41l root;
T425 worker;

F.13.3 Connections

Nodes are connected by the connect statement which can be used to join software
channels (unidirectional), transputer links (bi-directional), or network edges (bi-direc
tional for hardware and uni-directional for software). The statement has two syntactic
forms:

connect item to item [by connection] ;

connect item, item [by connection] ;

Connections can also be named for later use in the configuration, using the name of the
cannection defined by the optional by clause.

__________ liii.~ocI-----__-_3-9-3

F.14 Configuration language summary

F.13.4 Prohibited connections

The following connections are disallowed and generate a configurer error:

• Inputs to inputs (except channel to edge connections)

• Outputs to outputs (except channel to edge connections)

• Processes to processors

• Network edge to network edge

F.14 Configuration language summary

F.14.1 Network data types

node A point in a software or hardware network. Has the general attribute element
(defined as 'process' for a software network and 'processor' for a hardware
network) and other attributes defined by the value given to element.

connection A named connection between links or channels.

edge Declares a hardware network edge.

input Declares a software process inputchannel or edge.

output Declares a software process outputchannel or edge.

F.14.2 Numeric data types

int Integer type.

char Character type.

float Single length floating point type (IEEE 754).

double Double length floating point type (IEEE 754).

F.14.3 Language constructs

if if exp statement [else statemen~

Simple conditional construct. exp can be any valid integer expression and
statement can be a single statement or a group of statements. else statement is
optional.

rep rep index = exp1 to exp2 statement
rep index = exp1 for exp2 statement

I Simple replication construct. Can be controlled by a range or a count.

connect connect item to item [by connection);
connect item, item {by connection];
Joins channels to channels, links to links, channels to software edges, and links to
hardware edges. by connection is optional.

place place process on processor;
place channel on edge;
place channel-eonnection on link-connection;
Assigns a software process to a processor, a channel to a link, a software edge to
a hardware edge or a named channel connection to a named link connection.

use use filename for process;
Assigns a linked object file to a process.

_39_4 J.V._ - _

F ANSI C configuration language

F.14.4 Definitions and declarations

val val identifier exp;
Defines a numeric constant. The type is deduced from the type of the expression.

define define type [(attributes)] identifier;
Declares a node type. A list of attributes is optional.

Declare type [(attributes)] name;
node Declares a node. A list of attributes is optional.

Set name [(attributes)1;
attributes Modifies or declares attributes for a node. A list of attributes is optional.

F.14.5 Operators

Unary + - 1 - (numeric-type)

Binary + - '* / % & I 1\ « » && II < > <= >= -- 1=

Ternary ?:

F.14.6 Predefinitions

Constants

Constant Value Use
HIGH, high 0 Indicates a high priority process.

LOW, low 1 Indicates a low priority process.

TRUE, true 1 Logical value.

FALSE, false 0 Logical value

MIN_COST 1 For use by the routecost processor attribute.
min_cost

MAX_COST 1000000 For use by the routecost processor attribute.
max_cost

DEFAULT_COST 1000 For use by the routecost processor attribute.
default_cost

INFINITE_COST 1000001 For use by the routecost processor attribute.
infinite_cost

ZERO_TOLERANCE 0 For use by the tolerance processor attribute.
zero_tolerance

DEFAULT_TOLERANCE 1 For use by the tolerance processor attribute.
default_tolerance

MAX_TOLERANCE 1000000 For use by the tolerance processor attribute.
max_tolerance

ROUTER_ORDER -20000 Weights the relative position of software virtual routing
router_order system processes in memory.

MUXER_ORDER -10000 Weights the relative position of software multiplexing
muxer_order system processes in memory.

----------li;i.~ 3_9_5

F.15 Configurer directives

Types

process Software process node type.
PROCESS

1owprocess Software low priority process node type.
LOWPROCESS

highprocess Software high priority process node type.
HIGHPROCESS

processor Hardware processor node type.
PROCESSOR

T2l2 t2l2 T222 t222 T22S IMS T2 processor series.
t22S M2l2 m2l2

T400 t400 T4l4 t4l4 T42S IMS T4 processor series.
t42S T4S0 t4S0

T800 t800 T80l taOl T80S IMS T8 processor series.
t80S

ST20 st20 The ST20 processor series.
ST20_l ST20_2 ST20_3
ST20_4 st20_l st20_2
st20_3 st2o_4

F.14.7 Built-in functions

Isize IReturns the size of an array.

F.15 Configurer directives

F.15.1 #inc1ude

This directive allows the configuration source to be split between several files.

#inc1ude "filename"

The configuration source file filename will be included at the line where this directive is
inserted.

F.15.2 Configurer directives summary

#include "fflenam&'
Includes another source file.

_39_6 1.V. _

F ANSI C configuration language

F.16 Configuration language syntax

The section gives details of the configuration language syntax.

F.16.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly, the
form is as follows:

• Terminal strings of the language - those not built up by rules of the language
- are printed in teletype font e.g. node.

• Each phrase definition consists of an equality expression built up using a double
colon and an equals sign to separate the two sides e.g. '::='.

• Alternatives are separated by vertical bars ('I').

Optional sequences are enclosed in square brackets Cf and 'I).

• Items which may be repeated zero or more times appear in braces ('f and '}').

• {o, x} represents a list of zero or more items of type 'x' separated by commas.

• {" x} represents a list of one or more items of type 'x' separated by commas.

F.16.2 Configuration

configuration

config-item

declaration

compound-decl

config-item {config-item}

declaration
replicator
conditional
directive

node-decl
node-attr-decl
nodedef-decl
connect-decl
edge-decl
connector-decl
mapping-decl
numeric-value-decl
compound-decl
use-decl

{ config-item {config-item} }

__________ ii;i..~ 3_9_7

F.16 Configuration language syntax

F.16.3 Language features

letter ..- AIBI ... lzlalbl ... lz

digit ..- 011121 ... 19

id-char ..- letter 1digit 1_

identifier ..- letter {id-char}
_ {id-ehar}

comment ..- f * any characters except */sequence */

directive ..- file-include

file-include ..- #include string

F.16.4 Expressions

octal-digit ..-

hex-digit ..-

octal ..-

decimal

hex ..-

character-const ..-

char ..-

escape-sequence ..-

string ..-

string-char ::=

scale-size ..-

int-const ..-

011121 ••. 17

digit 1AlB I ... I F 1alb 1... I f

o octal-digit {octal-digit}

digit {digit}

Ox hex-digit {hex-digit}
OX hex-digit {hex-digit}

, char'

any character except end of line and '
escape-sequence

\' I \" I \ \ I \?
\al\bl\fl\nl\rl\tl\v
\ octal-digit [octa/~igit] [octal-digit]
\x {hex-digit}

" {string-char} "

any character except end of line and"
escape-sequence

k I K 11 I L

decimal[scale-size]
octal
hex

_39_8 Efi_---------

sign

exponent

real-size

real-eonst

array-const

subscript

const

numeric-type

monadic-op

dyadic-op

element

function-eall

exp

::=

::=

F ANSI C configuration language

+ I -

E [sign] decimal
e [sign] decimal

flFIIIL

decimal . [decimal] [exponent] [real-size]
decimal exponent [real-size]
. decimal [exponent] [real-size]

{ {1, exp}}
string

[exp] {[exp] }

int-eonst
real-eonst
character-eonst
array-eonst [subscript]

int I float 1 double 1char

+ 1 - 1 ! 1 -

(numeric-type)

+1-1*1/1%
&1111\1«1»
&& I II
<1> I <= I >= 1== I ! =

identifier {[subscript} . identifier} [subscript]

size (element)

const
element
monadic-op exp
exp dyadic-op exp
exp ? exp : exp
(exp)
function-eall

F.16.5 Replication and conditionals

replicator

conditional

rep identifier = exp to exp config-item
rep identifier = exp for exp config-item

if exp config-item [else config-item]

-----------l:;lfi~~ 3_99_

F.16 Configuration language syntax

F.16.6 Numeric value declarations

numeric-value-decl ::= val identifier exp ;

F.16.7 Network declarations

node-decl

node-type

attributes

general-aftr

node-aftr

element-type

processor-attr

router-attr

processor-type

::= node-type I({1' attributes})1 {1, identifier [subscript] } ;

node
identifier

general-aftr
node-aftr
process-aftr
processor-attr

identifier = exp
identifier ({1, general-attr})
identifier ({1, formal-aftr})

element = element-type

"processor"
"process"

type = processo~type

memory = exp
memstart = exp
numlinks = exp
reserved = exp
router ({1' router-attr}

linkquota =exp
routecost =exp
tolerance =exp

"ST20"
"M212"
"T212"
"T222"
"T225"
"T400"
"T414"
"T425"
"T450"
"T800"
"T801"
"T805"

_40_0 lfi_ ---------

'-----/

process-attr

segment-attr

formal-aftr

formal-type

node-attr-decl

nodedef-decl

connector-decl

::=

F ANSI C configuration language

stacksize = exp
heapsize = exp
priority = exp
nodebug = exp
noprofile = exp
interface ({1, formal-att})
order ({1, segment-aft})
location ((1, segment-aft})

code = exp
heap = exp
stack = exp
static = exp
vector = exp

formal-type { 1, identifier [subscript] [= exp] }

numeric-type
input
output

element [({1, attributes})] ;

define node-type [({1, attributes})] identifier;

connection { 1, identifier [subscript] } ;

connect-decl

edge-decl

::= connect element I element [by identifier [subscript]] ;
I connect element to element [by identifier [subscript]] ;

--- edge { 1, identifier [subscript] } ;
input { 1, identifier [subscript] }
output {1, identifier [subscript]} ;

F.16.8 Mapping declarations

mapping-decl

use-decl

::= place element on element;

--- use string fC?r element;

----------liii. 4_0_1

F.17 Implementation details

F.17 Implementation details

• Subscript ranges for arrays are dependent on the word length of the machine
running the configurer. For 16-bit machines the range is 0 to 215_1, for 32-bit
machines the range is 0 to 231_1.

• Each line in the source configuration file should not exceed 1024 characters, not
including leading and following white space.

• The maximum number of dimensions for an identifier or array constant is 64. If
this limit is exceeded then an error message will be generated. (This also means
that any occam process referenced in the configuration description cannot
have a formal parameter that has more than 64 dimensions).

F.18 Reserved words

This section defines the set of reserved words, and predefined types, attributes and
constants, that are defined in the configuration language.

F.18.1 Keywords

Reserved words cannot be used by the programer as identifiers in the configuration
description.

The reserved words are as follows:

by
define
f10at
int
place
use

char
double
for
node
rep
va1

connect
edge
if
on
size

connection
else
input
output
to

F.18.2 Pre-defined attributes

Node attributes

The e1ement attribute used for defining the type of a node can take the following
values:

• process - the node is a process in a software network.

• processor - the node is a processor in a hardware network.

Note: The names of node attributes are not reserved words and can be freely used as
general purpose identifiers by the programmer.

_40_2 lFii.~ _

F ANSI C configuration language

Processor attributes

The attributes defined for nodes of type processor are as follows:

• link - used by processor nodes to define interconnection. Only defined if the
type attribute has already been defined. In addition if type takes a value of
ST20 then link will only become defined when the numlinks attribute is
defined.

• memory - used by processor nodes to define memory size.

• memstart - specifies the location of MemStart as an absolute address which
must be word aligned. Only supported for processors whose type attribute is
set to ST20.

• numlinks - defines the number of links available on a processor and can take
the values 1 to 4 inclusive. This attribute only applies when type is set to ST20.
numlinks must be defined, in order for a value for link to be determined.

• reserved - used by processor nodes to reserve memory.

• router - used by processor nodes to control the virtual routing decisions of the
configurer. The router attribute can take the following sub-attributes: link
quota, routecost and tolerance.

o linkquota - suggests the maximum number of links on the associated
processor that should be used by the virtual channel routing system.

o routecost - defines within the range MIN_COST to MAX_COST inclu
sive the associated cost of through-routing data through this processor
for other processor's virtual channel traffic.

o tolerance - controls with any value between ZERO_TOLERANCE and
MAX_TOLERANCE inclusive how much the particular processor
concerned can be used for the provision of load-sharing through-routing
paths for other processors.

• type - used by processor nodes to define processor type. Processor types
predefined in standard include files are as follows:

ST20
T400
T800
T212
M212

T414
T80l
T222

T425
T805
T225

T450

_________~~ 4_0_3

F.19 Predefinitions

Process attributes

The attribute names currently defined for nodes of type process are:

• heapsize - used by the process nodes to specify the size of the heap data
segment used by the process.

• interface - used by process nodes to define the type and the default values
of parameters to be passed into the process when the process starts executing.

• location - used by process nodes to specify the absolute locations of their
code and data segments. The location attribute can take the following sub-at
tributes:

code stack static heap vector

• nodebug - used by process nodes to notify the INQUEST debugger whether
the process is to be debugged or not.

• noprofile - used by process nodes to notify the INQUEST profiler whether
the process is .to be profiled or not.

• order - used by process nodes to specify the ordering of their code and data
segments. The order attribute can take the following sub-attributes:

code stack static heap vector

• priority - used by process nodes to specify the priority of the process.

• stacksize - used by the process nodes to specify the size of the stack data
segment used by the process.

F.19 Predefinitions

The following definitions are read by the configurer from the standard include file
setconf • inc at invocation.

F.19.1 Constants

val FALSE 0;
val TRUE 1;

val false 0;
val true 1;

val HIGH 0;
val LOW 1;

val high 0;
val low 1;

_40_4 Eii._ ----------

val MIN_COST
val DEFAULT_COST
val MAX_COST
val INFINITE_COST 1000001;

F ANSI C configuration language

1;
1000;
1000000;

val ZERO_TOLERANCE 0;
val DEFAULT_TOLERANCE 1;
val MAX_TOLERANCE 1000000;

val ROUTER_ORDER -20000;
val MUXER_ORDER -10000;

val min_cost 1;
val default_cost 1000;
val max_cost 1000000;
val infinite_cost 1000001;

val zero_tolerance
val default_tolerance
val max_tolerance

val router_order
val muxer_order

0;
1;

1000000;

-20000;
-10000;

TRUE, true, FALSE, and false are used in expressions where a boolean value is
needed.

HIGH, high, LOW, and low can be used to define the execution priority for a process.

The remaining constants are used to influence the performance of the software virtual
routing network.

F.20 Types

define node (element "processor") processor;

define node (element "processor", type "ST20") st20;
define node (element "processor", type "ST20", numlinks 1) st20 l'- ,
define node (element "processor", type "ST20", numlinks 2) st20 2·- ,
define node (element "processor", type "ST20", numlinks 3) st20 3·- ,
define node (element "processor", type "ST20", numlinks 4) st20 4'- ,
define node (element "processor", type "T80S") t80S;
define node (element "processor", type "T801") ta01;
define node (element "processor", type "T800") t800;
define node (element "processor", type "T4S0") t4S0;
define node (element "processor", type "T425") t425;
define node (element "processor", type "T414") t414;
define node (element "processor", type "T400") t400;
define node (element "processor", type "T225") t225;
define node (element "processor", type "T222") t222;
define node (element "processor", type "T212") t212;
define node (element "processor", type "M212") m212;

iiii.P~~
405

F.21 Declarations

define node (e1ement "processor") PROCESSOR;

define node (e1ement "processor", type "ST20") ST20;
define node (e1ement "processor", type "ST20", num1inks 1) ST20_1;
define node (e1ement "processor", type "ST20", num1inks 2) ST20_2;
define node (e1ement "processor", type "ST20", num1inks 3) ST20_3;
define node (e1ement "processor", type "ST20", num1inks 4) ST20_4;
define node (e1ement "processor", type "T80S") T80S;
define node (e1ement "processor", type "T801") T801;
define node (e1ement "processor", type "T800") T800;
define node (e1ement "processor", type "T4S0") T4S0;
define node (e1ement "processor", type "T425") T42S;
define node (e1ement "processor", type "T414") T414;
define node (e1ement "processor", type "T400") T400;
define node (e1ement "processor", type "T22S") T22S;
define node (e1ement "processor", type "T222") T222;
define node (e1ement "processor", type "T212") T212;
define node (e1ement "processor", type "M212") M212;

define node (e1ement "process") process;
define node (e1ement "process", priority high) highprocess;
define node (e1ement "process", priority 1ow) 1owprocess;

define node (e1ement "process") PROCESS;
define node (e1ement "process", priority HIGH) HIGHPROCESS;
define node (e1ement "process", priority LOW) LOWPROCESS;

F.21 Declarations

One declaration is defined in setconf. inc:

edge host;

_40_6 Ii;i.Pdm..... _

G occam configuration language

This appendix describes various aspects of the occam configuration language and
defines the syntax of the occam configuration language. This should be considered as
extending the syntax of occam. A full description of how to use the language can be
found in the 'Confi~uration' chapter in the'User Guide'.

G.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly, the
form is as follows:

• Each phrase definition consists of an equality expression built up using an
equals sign to separate the two sides.

• Terminal strings of the language - those not built up by rules of the language
- are printed in teletype font e.g. NODE.

• Alternatives are separated by vertical bars ('I').

• Optional sequences are enclosed in italic square brackets ('r and '1).

• Items which may be repeated zero or more times appear in braces ('{' and '}').

• {a, x} represents a list of zero or more items of type 'x' separated by commas.

• {1, x} represents a list of one or more items of type 'x' separated by commas.

G.2 Introduction

The occam configuration description consists of a sequence of declarations and state
ments. The language used is an extension to occam and follows the usual occam
scope rules. The configuration language consists of the following:

• a hardware description

• a software description

• an optional mapping description

The mapping may appear either before of after the software configuration, but after the
declaration of any nodes and after the hardware description. Normal occam scope
rules apply.

The #INCLUDE mechanism may be used to incorporate hardware descriptions, soft
ware descriptions, or any source text from other files.

__________Eii._~ 4_0_7

G.2 Introduction

The #USE statement may be used to reference pre-compiled code, either at the outer
level, or within the software description.

Configuration declarations introduce physical processors, arcs and edges of the hard
ware, hardware connections and processor attributes, logical processors to be mapped
onto physical processors, the software description, and the mapping between logical
and physical processors. These are listed in Table G.1.

Declaration Description

NODE Introducesprocessors (nodes of a graph). These processors are considered to be
physicaJifthey are defined aspart ofthe hardware description, or logicaJifthey are
defined as part of the software description and mapPed to a physical processor as
part of the mapping.

ARC Introduces named connections (arcs of a graph) between processors (using the
transputer links). These connections need not be declared as ARCS unless chan-
nels are required to be explicitly placed on particular links.

EDGE Introduces external connections of the hardware description. External edges may
be the host, or any peripheral connected via a link.

NETWORK Defines the connections and attribute settings of preViously declared NODES
(physical processors).

MAPPING Defines mappings between logical processors and physical processors.
CONFIG Introduces the software description.
Arrays of NODES, EDGES, and ARCS may be declared.

Table G.1 Configuration description declarations

A configuration description includes one NETWORK, one CONFIG and, optionally, one
MAPPING. Each of the items appearing before CONFIG behaves as an occam specifi
cation, and ordinary VAL abbreviations may be included amongst these components to
facilitate the description of scalable configurations. A NETWORK, CONFIG, or MAPPING
is optionally named by an identifier following its opening keyword.

Configuration declarations are usually followed by statements which perform various
actions relating to the declaration. Actions are defined by SET, CONNECT and MAP state
ments. The DO construct enables these statements to be grouped or replicated.
PROCESSOR statements introduce processes which may be mapped onto named
processors. IF may be used as in occam. Configuration language statements are
listed in Table G.2.

The MAP and SET statement may be combined or replicated, via the DO construct, within
a MAPPING declaration. SET and CONNECT statements may be used within a NETWORK
declaration and may be combined or replicated in any order using the DO statement.

_40_8 1iil _

G occam configuration language

Statement Description

SET Defines values for NODE attributes.

CONNECT Defines a connection between two EDGES, either of two nodes or between
a node and a declared external EDGE.

MAP Defines the mapping of a logical processor onto a physical processor
declared as a NODE. Optionally defines the mapping of up to two channels
onto an ARC.

PROCESSOR Introduces a software process and associates it with a logical or physical
processor.

DO Groups one or more actions defined by SET, CONNECT, or MAP statements.

IF Conditional - combines a number of actions each of which is guarded by a
boolean expression.

Table G.2 Configuration description statements

Importing code and source files

Compiled code from external files may be referenced by means of the #USE directive,
either at the top level, or within the CONFIG construct.

#INCLUDE directives can be used to include other source files. For example, the soft
ware description and the mapping description may be kept in different files, accessed
by #INCLUDE directives from a 'master' configuration description file.

The include file occonf •inc, supplied with the toolset, defines some useful configura
tion values. It can be found on the toolset libs directory.

G.3 New types and specifications

This section defines the new occam types introduced by the configuration language.

The syntax adds the new primitive types NODE, EDGE and ARC, and structures CONFIG,

NETWORK and MAPPING to the occam language.

NODE declarations introduce processors (nodes of a graph). These processors are
physical if their type and memory size attributes are defined as part of the hardware
description, and logical otherwise.

EDGE declarations introduce external connections of the hardware description.

ARC declarations introduce named connections (arcs of a graph). Each arc connects two
edges, which may be attributes of nodes, or declared edges. Connections need only be
named if it is required to force a particular mapping of channels, or if names are required
to aid debugging.

NETWORK declarations introduce the hardware description.

CONFIG declarations introduce the software description.

MAPPING declarations introduce the mapping description.

---- l.ii.fi~rI---------4-0-9

G.4 Hardware description

G.3.1 Syntax of configuration description

configuration

specification

primitive type

hardware.description
software.description
[mapping]
specification
configuration

VAL. •• (see the 'occam 2 Reference Manual)

NODE
EDGE
ARC

G.4 Hardware description

The NETWORK keyword introduces a hardware description, an optionally named struc
ture which describes the types, connectivity and attributes of previously declared
processor nodes. Connections are defined in CONNECT statements. Attributes are given
values in SET statements. The attributes of a processor node include an array of edges
which are its links, a string which defines its processor type, and an integer value which
is the memory size in bytes.

Connections and attribute settings may be combined in any order using the DO
constructor, including replication and conditionals. For each processor node the attrib
utes with predefined names type and memsize must be set once (and only once). The
connections connect declared edges and edges of nodes, which have the predefined
attribute name link. The predefined boolean attribute root may be set to TRUE for only
one node in a network without a connection to the predefined edge HOST. The prede
fined attribute romsize defines the size in bytes of read only memory on a node. Attrib
utes are referenced by subscripting node names with attribute names in square
brackets ([]).

_4_10 E;i._-- _

G occam configuration language

G.4.1 Processor attributes

This section describes processor attributes defined in the occam configuration
language.

The following processor attributes can be defined in the NETWORK description:

• link - used by processor nodes to define interconnection. Only defined if the
type attribute has already been set.

• memsize - used by processor nodes to define memory size.

• root - defines the root processor if there is no host connection.

• romsize - specifies the size of ROM attached to the root processor, expressed
as an integer value.

• type - used by processor nodes to define their processor type.

The following optional processor attributes can be defined in the MAPPING description:

• linkquota - suggests the maximum number of links on the associated
processor that should be used by the software virtual channel routing system.

• location. code, location. WS, location. vs, - used by processor nodes
to specify the absolute locations of their code, workspace, and vectorspace
segments.

• order. code, order. WS, order. vs - used to specify the ordering of code and
data segments on a processor node.

• nodebug - disables debugging by the Inquest Toolset. Takes the value TRUE
or FALSE. The default is FALSE.

• noprofile - disables profiling by the Inquest Toolset. Takes the value TRUE
or FALSE. The default is FALSE.

• reserved - used by processor nodes to reserve memory from MOSTNEG INT.

• routecost - defines within the range 1 to 1000000 the associated cost of soft
ware through-routing data through this processor for other processor's virtual
channel traffic.

• tolerance - controls with any value between aand 1000000 how much the
particular processor concerned can be used by the software virtual channel
routing system for the provision of load-sharing through-routing paths for other
processors.

___________ I.Ti.mI&'I 4_1_1

G.4 Hardware description

G.4.2 Syntax definition

hardware.description

specification

node.declaration
edge.declaration
arc .declaration

network.item

connection.item

edge

attribute.setting
node
attribute.assignment
attribute
attribute.value

conditional.network.item

network.choice

guarded.network.choice

NETWORK [network.name 1
network. item

specification
hardware.description

node.declaration
edge.declaration
arc.declaration
VAL ••• (see the 'occam 2 Reference Manuaf)

{[expression] } NODE node.name :
{ [expression] } EDGE edge.name :
{ [expression] } ARC arc.name :

DO [replicator]
network.item

connection.item
attribute.setting
condi#onaLnetwork.ffem
SKIP
STOP
abbreviation
network.item

CONNECT edge TO edge [WITH arcname 1

edge.name { [subscript] }
node [link] [expressron]

SET node (attribute.assignment)
node.name { [subscript] }
{1 , attribute} : = {1, attribute. value}
attribute.name { [subscript] }
expression

IF
{network.choice}

guarded.network.choice
condi#onal.network.item

boolean
network.item

_4_12 LY.r~~ _

G occam configuration language

G.5 Software description

A CONFIG declaration introduces the software description as an occam process. Addi
tional specifications and processes are added to occam: the processor name in a
PROCESSOR statement which may be a physical processor name or the name of a logical
processor which is mapped onto a physical processor. A channel allocation may allocate
channels onto a named arc of the network. Arcs and physical processors are defined
in the hardware description.

G.5.1 Syntax definition

software.description

placedpar

conditional.network.item

network.choice

guarded.network.choice

channel.allocation

node

arc

CONFIG [config.name]
placedpar

specification
software.description

[PLACED] PAR [replicator]
placedpar

PROCESSOR node
process (see the 'occam 2 Reference Manual)

specification
placedpar
conditional.network.item
SKIP
STOP

IF
{network.choice}

guarded.network.choice
conditional.network.item

boolean
placedpar

PLACE { channel.list } ON arc:

node.name {[subscript] }

arc.name {[subscript] }

___________ liii.~tI -_---_4-13-

G.6 Mapping structure

G.6 Mapping structure

The MAPPING keyword introduces an (optionally named) mapping structure which may
be either before or after the software description. The IF construct may be used as in
occam. SKIP and STOP are also allowed. A DO construct facilitates replication.

Mappings are introduced by the MAP keyword. A mapping may be used to associate
logical processors with physical processors (code mapping), and channels with arcs
(channel mappings).

In code mappings a logical processor may appear on the left hand side of only one
mapping item whereas a physical processor may appear on the right hand side of more
than one mapping item. A code mapping may include a priority clause, introduced by
PRI, which will determine the priority at which the process will run. SET may be used
to define processor attributes, see section G.4.1.

Channel mappings are optional except in the case where one end of the arc is an
external edge. In channel mappings the arc must connect the nodes onto which the
processes using the channels are mapped. The effect of channel mappings is identical
to the corresponding channel allocations which may appear in the software description.

_41_4 liii.r~ _

G.6.1 Syntax definition

mapping

mapping. item

code.mapping
priority.clause
node.list
node

channeJ.mapping
channeJ.list
channel
arc

channeJ.aJlocation

attribute.setting
attribute.assignment
attribute
attribute.value

conditional.map.item

mapping.choice

guarded.mapping.choice

G occam configuration language

MAPPING [mapping.name J
mapping.item

specification
mapping

code.mapping
channel.mapping
channel.allocation
DO [replicatorJ

mapping.item
attribute.setting
conditional.map.item
SKIP
STOP
abbreviation
mapping. item

MAP node.list ONTO node [priority. clauseJ
PRI expression
{l , node}
node.name { [subscript] }

MAP channel.list ONTO arc
{l , channel}
channel.name { [subscript] }
arc.name { [subscript] }

PLACE { channel. list } ON arc:

SET node (attribute.assignment)
{l , attribute} : = {I , attribute. value}
attribute.name {[subscript] }
expression

IF
{mapping.choice}

guarded.mapping.choice
conditional.map.item

boolean
mapping. item

__________ l.Ti._ml---------4-1-5

G.7 Constraints

G.7 Constraints

The following constraints apply to all configurations:

• All physical processors whose types are set must be connected to each other.

• Any physical processor whose type is set must have its memsize set.

• Logical processors may only be mapped onto physical processors whose type
has been set.

• Channels connecting processors of different word size must not use protocols
based on the type INT.

• A priority expression must evaluate to 0 (high) or 1 (low).

• The configuration tool will reject the mapping at high priority of a process which
itself includes a PRI PAR.

• Any channel which is explicitly placed onto an arc can only be used by proces
sors which directly connect to that arc.

• The configurer is applied to a program after it has been linked; this means that
files referenced via the #USE statement must have already been linked. It also
means that you may not access libraries from the software description, except
for libraries of linked units.

A side effect of this is that some arithmetic which would normally be performed
via calls to compiler libraries will be disallowed within the software description.

• Channel abbreviations referencing replicator variables are not permitted outside
a PROCESSOR construct. For example, the first code extract below must be
changed to the second:

CONFIG
PAR i = 0 FOR n

inchan IS chan[i]
outchan IS chan[i+l]
PROCESSOR p[i]

process (inchan, outchan)

CONFIG
PAR i = 0 FOR n

PROCESSOR p[i]
inchan IS chan[i]
outchan IS chan[i+l]
process(inchan, outchan)

• CHAN declarations are not permitted inside replicators but outside PROCESSOR
constructs.

• The configurer can compile a maximum of 40K of 'object' code for any single
processor. This is all the code within the PROCESSOR statements for each
processor. (This limit can be changed by using a command line switch).

• INT array constructors such as [1, 2, 3] are not accepted for 16-bit proces
sors. They should be converted into INT16 arrays.

• It is not permitted to RETYPE INT constants into other types for 16-bit proces
sors. INT16 constants should be used instead.

• INT expressions are treated as INT32S. Thus MOSPOS INT evaluates to the
same value as MOSTPOS INT3 2. Where this is a problem, Le. it causes a 16-bit
integer overflow, the configurer will generate an error.

_41_6 LV..~ -----------

G occam configuration language

G.8 Checking IF statements

The configurer checks subscripts in all expressions during configuration, including
those inside code which will never be executed. Hence the following code is illegal:

VAL n IS 1
[n]CHAN OF INT c :
CONFIG

IF
n > 1

PROCESSOR proc
p(c[l]) -- illegal because n 1

TRUE
PROCESSOR proc

P(c[O])

__________~~ 4_1_7

G.8 Checking IF statements

_41_8 l.Ti. _

H AServer database

This appendix describes the AServer database, its purpose, use and format. The
AServer database replaces the connection database used with earlier Toolsets. The
environment variable or Windows environment file variable ASERVDB should hold the
full path for the AServer database file if it is not on the ISEARCH path. An example
AServer database is supplied with the interface software.

An AServer database consists of a list of resources. Each resource is either:

a target hardware connection which may be accessed by the host or

a host software process which may be requested by the application, including
the debugger. The use of these processes for customizing the host interface is
described in the AServer Programmer's Guide.

Each resource is represented by one line of the database file. Each line contains four
fields, each preceded by the vertical bar character (I), as shown in figure H.1. The
entries are case sensitive, so, for example, ST20 is not the same as st20.

ST20 txcs b008p.DLL "1150 IB" I 1 I -a st20.btl

Resource
name

Description

t
Any extra

parameters
Number of

connections

Figure H.1 AServer database line

H.1 Target hardware connection fields

The four fields in a line defining a target hardware connection are:

1. The name of the resource, such as ST20. If the resource is a connection to target
hardware then the target may be used by:

o setting the environment variable or Windows environment file variable
TRANSPUTER to this name or

o using the name with the irun option SL, such as:

irun -sl ST20 app.bt1

If the resource is an AServer service then the name may be used by the client
to request the service.

-----------l.V.~ 4_1_9

H.1 Target hardware connection fields

2. A description of the resource, such as txcs b008p.DLL "#150 #B". This
description tells the interface software how to communicate with the target. The
format of this description depends on the interface software being used. The
description consists of:

o an AServer control service (e.g. txcs);

o the driver for this type of interface (e.g. bOO 8p. DLL);

o the parameter string for the interface driver.

For further details see the'ST20 Toolset Delivery Manual.

3. The number of connections that may be made to the resource or to a single
instance of the service. For target hardware connections this is always 1.

4. Any extra parameters that may be needed. For AServer services, this may be
any extra parameters needed in the service command line. For ST20 hardware
booting from link, this should include -a followed by the memory interface file
name.

_42_0 Iiii&..ocI _

ITERM files

This appendix describes the format of ITERM files; it is included for people who need
to write their own ITERM because they are using terminals that are not supported by
the standard ITERM file supplied with the toolset.

Standard ITERM files for this release are provided in the i terms directory, which is a
subdirectory of the main toolset installation directory. These files may be used as
templates and tailored to suit your own needs. It is recommended that the installation
files are not changed in any way, and that modifications are only made to copies of the
files.

1.1 Introduction

ITERMs are ASCII text files that describe the control sequences required to drive termi
nals. Screen oriented applications that use ITERM files are terminal independent.

ITERM files are similar in function to the UNIX termcap database and describe input
from, as well as output to, the terminal. They allow applications that use function keys
to be terminal independent and configurable.

Within the toolset, the ITEAM file is only used by the memory interface tool imem.

A default ITERM file may be defined in the ITERM environment variable. For details see
section 1.8 and the Delivery Manual for the release.

1.2 The structure of an ITERM file

An ITERM file consists of three sections. These are the host, screen and keyboard
sections. Sections are introduced by a line beginning with the section letters 'a', 's' or
'K'. Case is unimportant and the rest of the line is ignored. Sections consist of a number
of lines beginning with a digit. A section is terminated by a line beginning with the letter
'E'. The host section must appear first; other sections may appear in any order in the
file. Sections must be separated by at least one blank line.

The syntax of the lines that make up the body of a section is best described in an
example:

3:34,56,23,7. comments

Each line starts with the index number followed by a colon and a list of numbers sepa
rated by commas. Each line is terminated by a full stop (' • ') and anything following it is
treated as a comment. Spaces are not allowed in the data string and an entry cannot
be split across more than one line.

----------LTi._: 4_2_1

1.3 The host definitions

Comment lines, beginning with the character '#', may be placed anywhere in an ITEAM
file. Extra blank lines in the file are ignored.

The index numbers in each section correspond to an agreed meaning for the data. In
the following sections the meaning of the data in each of the three sections is described
in detail.

1.3 The host definitions

1.3.1 ITERM version

This item identifies an ITERM file by version. It provides some protection against incom
patible future upgrades.

e.g. 1:2.

1.3.2 Screen size

This item allows applications to find out the size of the terminal at startup time. The data
items are the number of columns and rows, in that order, available on the current
terminal.

e.g. 2: 80,25.

SCreen locations should be numbered from 0, 0 by the application. Terminals which use
addressing from 1, 1 can be compensated for in the definition of goto X, Y.

1.4 The screen definitions

The lists of values in the screen section represent control codes that perform certain
operations; the data values are ASCII codes to send to the display device.

ITEAM version 2 defines the indices given in table 1.1. These definitions are used in the
example ITEAM file; for a complete listing of the file see section 1.8.

Index Screen operation

1 cursor up

2 cursor down

3 cursor left

4 cursor right

5 goto x y

6 insert character

7 delete character at cursor

8 clear to end of line

Index Screen operation

9 clear to end of screen

10 insert line

11 delete line

12 ring bell

13 home and clear screen

20 enhance on (not used)

21 enhance off (not used)

Table 1.1 ITERM screen operations

For example, an entry like: '8: 27, 91, 75. ' indicates that an application should output
the ASCII sequence 'ESC [K' to the terminal output stream to clear to end of line.

_42_2 liiiP~ _

IITERMfiles

1.4.1 Goto X Y processing

The entry for 5, 'goto X V', requires further interpretation by the application. A typical
entry for 'goto X Y' might be:

5:27,-11,32,-21,32

The negative numbers relate to the arguments required for X and Y.

... , -00, nn, ...

where: a is the argument number (Le. 1 for X, 2 for V).

b controls the data output format.

If b =1 output is an ASCII byte (e.g. 33 is output as !).

If b =2 output is an ASCII number (e.g. 33 is output as 33).

nn is added to the argument before output.

As a complete example, consider the following ITEAM entry in the screen section:

5:27,91,-22,1,59,-12,1,72. ansi cursor control

This would instruct an application wishing to move the terminal cursor to X=14, Y=8
(relative to 0,0) to output the following bytes to the screen:

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [9 1 5 H

1.5 The keyboard definitions

Each index represents a single keyboard operation. The data specified after each index
defines the keystroke associated with that operation. Multiple entries for the same index
indicate alternative keystrokes for the operation.

ITERM version 2 defines the indices given in table 1.2. These definitions are used in the
example ITEAM file; for a complete listing of the file see section 1.8.

----- Eii.fi~ 4_2_3

1.6 Setting up the ITERM environment variable

Index Function
2 delete character

6 cursor up

7 cursor down

8 cursor left

9 cursor right

12 delete line

14 start of line

15 end of tine

18 lineup I

19 line down

20 page up

21 page down

26 enter file

27 exit file

28 refresh

29 change file

31 finish

34 help

36 get address

Index Function
39 goto line

40 backtrace

41 inspect

42 channel

43 top

44 retrace

45 relocate

46 info

47 modify

48 resume

49 monitor

50 word left

51 word right

55 top of file

56 end of file

62 toggle hex

65 continue from

66 toggle breakpoint

67 search

Table 1.2 ITERM key operations

1.6 Setting up the ITERM environment variable

To use an ITERM the application has to find and read the file. An environment variable
called ITERM should be set up with the pathname of the file as its value.

For more details about setting environment variables see the Delivery Manual that
accompanies the release.

1.7 Iterms supplied with a toolset

The following ITERM files are supplied with the toolset:

File Description
ansi.itm Generic ANSI iterm

ned.itm NCO X terminal iterm

neeansi.itm NEC PCiterm

peansi.itm PC iterm (requires ANSI.SYS)

sun.itm SunView iterm

vt100.itm vt100 iterm

Table 1.3 ITERM files supplied

_42_4 Jiii~J4 ----------

IITERMfiles

ansi. i tm is likely to be the most portable in that it will work unchanged with most hosts.
However, because of this it may only use the normal (alpha-numeric keys) of a
keyboard. This means that some keys (when used in conjunction with the CNTL or
SHIFT key) are associated with more than one operation. Specific host iterms make use
of known function keys etc. which leads to less overloading of keys.

Each iterm file may be treated as an example; you may create and use your own iterm
file if you wish.

1.8 An example ITERM

This is the generic toolset ITERM file for an ANSI terminal.

#
#
ANSI ITERM for any ANSI terminal
Support for imem
#
V1.0 16 November 1990 (RD) Created
V1.1 11 January 1991 (NH) Modified
#
#

host section
1:2.
2:80,24.
end of host section

screen control characters

screen section
#
1:27,91,65.
2:27,91,66.
3:27,91,68.
4:27,91,67.
5:27,91,-22,1,59,-12,1,72.
#6.
#7.
8:27,91,75.
9:27,91,74.
#10 ansi terminals do
#11 not have these
12:7.
13:27,91,50,74.
end of screen section

version
screen size

DEBUGGER

cursor left

goto x y
insert char
delete char
clear to eol
clear to eos
insert line
delete line
bell
clear screen

SIMULATOR
cursor up
cursor down
cursor left
cursor right
goto x y
insert char
de1ete char
clear to eol
clear to eos
insert line
de1ete line
be1l
clear screen

keyboard section,,
2:127.
2:8.
6:27,91,65.
7:27,91,66.
8:27,91,68.
9:27,91,67.

KEY

DELETE
BACKSPACE,UP
, DOWN
, LEFT
, RIGHT

DEBUGGER

del char
del char
cursor up
cursor down
cursor left
cursor right

SIMULATOR

cursor up
cursor down
cursor left
cursor right

---------l:;i~ 4_2_5

12:21. # crtl-U delete line
14:1. # CTRL-A start of line start of line
15:5. # CTRL-E end of line end of line
18:27,85. # ESC U line up
18:27,117. # ESC u line up
19:27,68. # ESC D line down
19:27,100. # ESC d line down
20:27,86. # ESC V page up page up
20:27,118. # ESC v page up page up
21:27,87. # ESC W page down page down
21:27,119. # ESC W page down page down
26:14. # CTRL-N enter file
27:24. # CTRL-X exit file
28:12. # CTRL-L refresh refresh
28:23. # CTRL-W refresh refresh
29:27,70. # ESC F change file
29:27,102. # ESC f change file
31:27,88. # ESC X finish
34:27,72. # ESC H help help
34:27,104. # ESC h help help
36:27,65. # ESC A get address
36:27,97. # ESC a get address
39:7. # CTRL-G goto line
40:27,48. # ESC 0 backtrace
41:27,49. # ESC 1 inspect
41:9. # CTRL-I inspect
42:27,50. # ESC 2 channel
43:27,51. # ESC 3 top
44:27,52. # ESC 4 retrace
45:27,53. # ESC 5 relocate
46:27,54. # ESC 6 info
47:27,55. # ESC 7 modify
48:27,56. # ESC 8 resume
49:27,57. # ESC 9 monitor
50:11. # CTRL-K word left
51:16. # CTRL-P word right
55:27,60. # ESC < top of file
56:27,62. # ESC > end of file
62:27,116. # ESC t toggle hex
62:27,84. # ESC T toggle hex
65:27,67. # ESC C continue from
65:27,99. # ESC c continue from
66:2. # CTRL-B toggle break
67:6. # CTRL-F search (Find)
end of keyboard section

THAT'S ALL FOLKS

_42_6 l.fi.~ _

Index

Symbols
#alias, linker directive, 215

#COMMENT, 111

#define
linker directive, 215
syntax, 20

#elif, syntax, 20

#else,21
syntax, 20

#endif,21
syntax, 20

#error, syntax, 21

#if, syntax, 21

#ifdef, syntax, 21

#ifndef, syntax, 21

#IMPORT, 110

#INCLUDE, 109
in configuration language, 407

#include
configurer directive, 396
filename syntax, 22
icc directive, 22
linker directive, 216
nesting icc directives, 22

#line, syntax, 22

#mainentry,216

#OPTION,112

#PRAGMA,113
COMMENT, 114
EXTERNAL, 114
LINKAGE, 114, 216
PERMITALIASEs,115
SHARED, 115
TRANSLATE, 110, 116

#pragma
IMS_codepatchsize,23
IMS_descriptor,23

parameters, 24
IMS_interrupt_handler,25
IMS_linkage,26,216
IMS_modpatchsize,26
IMS_nolink,26
IMS_nosideeffects,11,27

IMS_off,28
parameters, 29

IMS_on,28
parameters, 29

IMS-place_at_workspace_offset,29
IMs_translate,30
IMS_trap_handler,30
syntax, 22

#reference,216

#section,216

#undef, syntax, 31

#usE,110
in configuration language, 408

0/0, imap, 266

@, filename prefix, 301

\, in filenames, 22

__asm,32
use when optimizing, 27

_lsb, 31, 32

-params, 31

-params, 31, 32

A
Abbreviation, configuration language, 412

Action strings, in makefiles, 261

Alias check, 101, 112
disable, 106, 115

align, assembler directive, 332, 333

ALT,105

ANSIC
compiler, 3
language, use when optimizing, 13

ARC, 408,409

Arithmetic, configuration language, 389

Arithmetic right shift, 9

Arrays
constant, in configuration, 389
in configuration language, 390

ASCII display page file, 283, 284-290

ASM, 112, 130

Assembler, 327
directives, 332

__________ J.Ti.~mI---------4_27_

Index

errors, 365
invoking, 8, 327
language, 328

syntax, 362
transputer instructions, 331

ASSERT, 105, 128

Attributes
configuration, 388, 392
occam configuration language, 411

B
Backslash, in filenames, 22

Backus-Naur Form, configuration language,
397,407

Bank, memfile statement, 375

Bank definition, 370

Banks, of memory, 275

Binary lister, 231
command line, 232
errors, 244

Binary output, ieprom, 192

blkb, assembler directive, 332, 334

blkw, assembler directive, 332,335

Block mode, ieprom, 193

Block move, 33

BNF,397
See also Backus-Naur Form

boards.inc,70

Booleans, in configuration language, 389

Boot from link, 169
collector memory map, 158, 159
default collector output, 149

Boot from ROM, 149, 156, 169, 185
configurer options, 68, 127

Bootable code, 123, 145

bootable.file,188

Bootstrap, alternatives, 156

Branch-chaining optimization, 318

Building libraries, 205

Built-in functions, 33

Bus. release. time, memfile statement, 375

byte, assembler directive, 332, 336

byte. select, 190

c
C, implementation, compatibility issues, 9

call_without_gsb,27

Cas. cycle. time, memfile statement, 375

Cas. strobe, memfile statement, 375

centry •lib, 111

CHAN OF ANY, 105, 129

Channel, input and output, 106, 222

Channel input/output, configurer option, 128

char, signedness, 9

Character, signedness, 9

Code
allocation in memory, 131
insertion, 112
listing, 235
position in memory, 70, 128, 150, 152

Collector
command line, 146
error messages, 163
input files, 148
output files, 149

non-boatable, 154

Command line
conventions, 301
skip loaders, 296

Command line options
icc, 6
icconf,67
icollect, 148
iemit, 170
ieprom, 186
ilibr,202
ilink,213
ilist,232
imakef, 252
imap,266
imem450,276,277
irun,293
iset,297
oc,102
occonf,126
specify processor target, 315

comment, assembler directive, 332, 337

COMMENT pragma, 114

Comments
in assembly code, 331
in EPROM control files, 187
in object code, 111,114

common, assembler directive, 332, 338

_42_8 J:ii.&..-----------

Common sUbexpression elimination, 320

Compactable code, 4,11,211

Compatibility
error modes, 104
other C implementations, 9

Compilation
error modes, 103
order of, 107
targets, 103

Compiler, 3
command line, 3, 100

default, 8, 102
command line options, 101, 102
diagnostics, 33

implementation data, 306
information, 36
recoverable errors, 46
serious errors, 54
terminology, 34
warnings, 36

directives, 108
syntax, 109

error messages, 116
error modes, 8
file names, 103
libraries, disabling, 101
memory map, 17, 107
occam, 99
optimizing

global optimizations, 320
information messages, 13
language considerations, 13
local optimizations, 317

options, 4
pragmas, 23
predefines, 31

macros, 31
preprocessor directives, 20
selective loading of libraries, 204
warning messages, 117
warnings, enable/disable, 105

Compiling, for a range of processors, 310

Conditionals, in configuration language, 390

CONFIG,408,409,413

ConfigDataFieldO register, 376

ConfigDataField1 register, 375, 376, 377, 383,
384

ConfigDataField2 register, 378, 382, 383

Configuration
constants, 395,404
description, 123

example files, 70,132

Index

error modes, 127
language, 387, 407

arrays, 390
booleans, 389
character set, 388
comments, 388
conditionals, 390
connections, 393
constants, 388
constraints, 416
expressions and arithmetic, 389
identifiers, 388
implementation, 65, 402
keywords, 402
predefinitions, 391 , 402, 411
replication, 391
reserved words, 402
statements, 387
summary, 394
syntax, 397, 407
syntax notation, 397
types, 388

of memory, 369-386
of memory interface, 275-290, 369--386
warning messages, enable/disable, 129

Configurer, 65,123
command line, 66,124
default command line, 67, 126
diagnostics

recoverable errors, 76
serious errors, 93
warnings, 73

error messages, 132
errors, 72
information messages, 72
memory map, 70,131
options, 125,126
search paths, 70, 126
standard definitions, 69

CONNECT, 408, 410

connect statement, in configuration descrip
tion,393

Connecting, links, 408, 410

Connections, in configuration description, 393
prohibited, 394

const, 14

Constants
arrays, in configuration, 389
configuration predefinitions, 395, 404
in configuration language, 388

Conventions
command line syntax, 301
error messages, 306
filenames, 302

----------I.Ti.mwAO~ 4_2_9

Index

imakef file extensions, 305
search paths, 303
standard file extensions, 303

Core dump, listing, 243

Cursor positioning, 423

Cycles, 373

D
Data, listing all, 241

data, assembler directive, 332, 339

Data.drive.delay, memfile statement, 376

Dead code elimination, 318

debug, assembler directive, 332,340

Debugging, data, 101

Default, memory map, 131

defsym, assembler directive, 332, 341

DELETE,254

descriptor, assembler directive, 332, 342

Device. type, memfile statement, 376

Directives
assembler, 332
linker, 215
of configurer, 396
preprocessor, 20

Directory path, 303

Disable
alias checking, 115
configurer warnings, 129
error detection, 104
range checks, 104, 112, 128
run-time checks, 105, 112, 128
separate vector space, 112
usage checking, 112,115
virtual routing, 68, 129
warning messages, 105

Disable. page. mode, memfile statement, 376

Disable. refresh, memfile statement, 376

Display
object code, 231
reference, 241

DO, 408,415

DRAM timimg parameters, 177

Dram.refresh.interval, memfile state-
ment, 376

Dram. refresh. ras . high, memfile state
ment, 377

Dram. refresh. time, memfile statement, 377

Dynamic code loading
file format, 154
listing files, 243

E
Early write, 175

EDGE,408,409

Editing makefiles, 261

element,392

EMI, 169,275
clock period, 175

End. bank, memfile statement, 377

end. offset, 190

End. strobe, memfile statement, 377

Entry point, 116

Environment, in Windows, 197-200,297-298

Environment variable
ASERVDB, 294
TRANSPUTER, 295

Environment variables, 424
IBOARDSIZE,150
ICCARG,8
ICCONFARG,67
ICOLLECTARG, 148
ILIBRARG,203
ILINKARG,213
ILISTARG, 234
IMEM450ARG,277
OCARG, 102
OCCONFARG, 126

EPROM, 68, 127, 156
code layout, 190
devices, 193

EPROM program convertor, 185
binary output, 192
block mode, 193
command line, 186
control file, 187
errors, 195
hex dump, 192
Intel extended hex format, 193
Intel hex format, 193
Motorola 8-record format, 192
output files, 192

EPROM programming, 185

eprom. space, 188

_43_0 ~r~oI----------

Error
detection, disable, 104, 128
handling, 306
modes, 8,103,217

behavior, 127
compatibility, 104, 127
configurer, 127
HALT, 104
selective loading of libraries, 204
STOP, 104
UNDEFINED, 105,113,127
UNIVERSAL, 104

runtime, 307
severities, 307

Error messages
assembler, 365
format, 307
icc,33
icconf,72
icollect, 163
iemit, 181
ieprom, 195
ilibr,209
ilink,225
ilist,244
imakef,262
imap,272
imem, 286
oc,116
occonf, 132
runtime memory initialization, 153

Examples
#COMMENT,112

#IMPOR~ 111
#OPTION, 113
#PRAGMA EXTERNAL, 114
#PRAGMA LINKAGE, 115
#PRAGMA TRANSLATE,116
configuration files, 70, 132
ieprom control file, 194
imakef, 255
indirect argument file, 302
oc,101
occonf,124
of memfile, 384-386

Exported names, listing, 237

Expressions, in configuration language, 389

Extensions, 267
file, 303

required by imakef, 248, 305
language, 99

extern, assembler directive, 332, 343

External memory interface, 169, 275

Index

EXTERNAL pragma, 114

External references, listing, 243

Extraction of library modules, 218

F
Falling. edge. active . during, memfile

statement, 378

File
extensions, 303

imap source files, 267
required by imakef, 248,305

identification, 242,303
memory interface configuration, 275
name, conventions, 302

Flowgraph optimization, 317

G
global, assembler directive, 332,344

Global compiler optimizations, 320

GUY, 105, 129

H
HALT error mode, 104, 127

Hardware configuration description, 410

Heap area, 151
position in memory, 70,150

Hexadecimal, listing, 237

Hexadecimal format, for EPROM, 192

HOST, 410

Host, versions, xvii

IBOABDSIZE, 150
errors, 153

icc,3
channel-pointers, 29
checking

printf,29
scanf,29
stack, 29

command line options, 4
file extension defaults, 6
inline_ops, 29
memory map, 17

__________Eii~ 4_3_1

Index

optimizing compiler
global optimizations, 320
information messages, 13
language considerations, 13
local optimizations, 317

search path, 8
syntax, 3

ICCARG,8

icconf,65
command line, 66
error messages, 72

ICCONFARG,67

icollect
command line, 146
command line options, 148
environment variables, 148, 150
errors, 163

ICOLLECTARG, 148

Identifiers, in configuration language, 388

IEEE 754, 394

iemit, 169
command line, 170
DRAM timing parameters, 177
errors, 181
index page, 172
input parameters, 173
memory read cycle, 178
memory write cycle, 179
timing information, 176

ieprom,185
command line, 186

.. control file, 187
errors, 195

IF, 105,408,412,417

if, 390

if ... else,390

ilaunch, Windows launch tool, 197-200

ilibr, 201,203
command line, 202
command line options, 202
error messages, 209

ILIBRARG,203

ilink,211
command line, 212
indirect files, 213

ILINKARG,213

ilist, 111,231
command line, 232
command line options, 232

errors, 244

ILISTARG,234

imakef,99, 103, 109,225,247
C examples, 255
command line, 251
command line options, 252
deleting intermediate files, 254
errors, 262
examples, 255
file extensions, 248,305
file formats, 260
linker indirect files, 251 , 253
mixed language example, 258
occam examples, 256
target files, 248

imap,265
command line, 266
command line options, 266
errors, 272
output file structure, 267, 268

imem
error messages, 286
index page, 279
interactive commands, 279

imem450,275-290,369-386
command line, 276

lMEM450ARG,277

Implementation
compiler diagnostics, 306
configuration language, 402

IMS_codepatchsize,23

IMS_descriptor,23

IMs_interrupt_handler,25

IMS_linkage,26

IMs_modpatchsize,26

IMS_nolink,26

IMS_nosideeffects,27

IMS_off,28

IMS_on,28

IMS-place_at_workspace_offset,29

IMs_translate,30

IMS_trap_handler,30

Inactive, memfile statement, 378

Include file, occonf . inc, 409

Indirect argument file, 301

init, assembler directive, 332, 345

Initializing, memory interface, 275-290,
369-386

_43_2 ~fi~ _

Inline functions, 32

INM~SC, implementation, compatibility issues,

INQUEST, 130
support for, 68

Intel extended hex format, ieprom, 192

Intel hex format, ieprom, 192

Interactive debugging, compiler support, 106

irun,291-296
command line, 292
command line options, 293

ISEARCH,294

ISEARCH, 22, 70, 126,303

iset, Windows parameter tool, 297-298
syntax, 297

ITERM,424

ITERMfile
example listing, 425
format, 421
keyboard, 423
screen, 422
version, 422

J
JEDEC, symbol, 176, 178

Jump instructions, in ROM, 191

K
Keyboard, definitions, 423

Keywords, configuration language, 402

L
language, assembler directive, 332, 346

Late write, 175

libc.lib, 111

Librarian, 201
command line, 202
concatenated input, 201
linked object input, 203
options, 202

Library
building, 205
building optimized, 206

Index

compilation, 106
extraction of modules, 218
index, 201,204
indirect files, 201, 203

imakef, 251
linking supplied libraries, 214
listing index, 239
modules, 204
selective loading of, 204
upgrade problems, 214
usage files, 205

imakef,251

Link, map, 223

link, 411

LINKAGE pragma, 114

Linker, 211
command line, 212
compatible transputer classes, 217
directives, 215
errors, 225
extraction of library modules, 218
indirect files, 213

imakef, 251, 253
LFF output, 213
selective loading of libraries, 204
TCOFF output, 213

Linking, targets, 309

linkquota, 411

Lister. See ilist

Loading applications, 291-296

loadStart, 70, 71,131,157,160

local, assembler directive, 332, 347

Local compiler optimizations, 317

location.code,128,411

location.vs, 128,411

location.ws,128,411

Logical processor, 408

Loop-invariant code, optimization, 321

M
Macros

definition, 10, 20
in makefiles, 260

Main entry point, 221

maininit, assembler directive, 332, 348

Make programs, 247
Borland, 247
Gnu, 247

_________ii;i~ 4_3_3

Index

Microsoft, 247
UNIX, 247

Makefile generator, 247
command line, 251
errors, 262

Makefiles
delete rule, 261
editing, 261
formats, 260
macros, 260

MAP, 408, 415

mapl, assembler directive, 332,349

map2, assembler directive, 332,349

map3, assembler directive, 332,349

MAPPING, 408,409,414

Mapping, in configuration description, 414

MemConfig, 169

Memfile, 275, 283-290

MemnotWrDO, 169

Memory
clearing, 154
configuration

ASCII output, 171
customized, 169
file, 182
in PAL, 169
in ROM, 169, 190
PostScript output, 171
standard, 169, 176
table, 180

configurer, 169
command line, 170
default configuration, 172
errors, 181
input parameters, 173
interactive operation, 172
output files, 171

interface, configurable, T4 and T8 series, 169
mapper, 265

command line, 266
errors, 272

on-chip, 114, 131
read cycle, 178
reducing amount used, 162
write cycle, 179

memory, 392

Memory bank definition, 370

Memory banks, 275

Memory configurer
interactive operation, 277
output format, 283

Memory interface tool, 275-290, 369-386
command line, 276
interactive commands, 279

Memory map
boot from link (network), 158
boot from link (single processor), 159
boot from ROM, 161
collector output, 156
configurer, 70,131

memory. configuration, 188

MemReqOut pin, 383

memsize, 411

MemStart, 131, 157

MemWait, 175, 179
connection error, 181

Messages. See Error messages

Mixed language programming
#IMPORT directive, 110
TRANSLATE pragma,116
use of imakef, 258

Module data, listing, 238

Motorola S-record format, ieprom, 193

N
NETWORK, 408, 409,410

Network, dump, listing, 243

NODE, 408,409

Node, 392
types, 393

nodebug, 411

Non-bootable files, format, 154

Non-configured programs. See icollect

noprofile, 411

notMemCAS pin, 375

notMemPS pin, 381

notMemRAS pin, 383

notMemRd, 175

notMemSO, 175

notMemS4,175

notMemWrB, 175

notMemWrB0-3 pins, 384

_43_4 l:ii.fi~~d _

o
Object code, displaying, 231

Object file, 100

oC,99
command line options, 102
error messages, 120
memory map, 107
syntax, 100
warning messages, 117

OCARG, 102

occam
configuration language, 407
interface code, 149

occonf, 123
command line options, 125, 126
error messages, 132
syntax, 124
warning messages, 133

occonf.inc, 409

OCCONFARG,126

On-chip RAM, 114, 131

Operators, 389

Optimization, code placement, 114

Optimizing object code
for sPace, 13,320
for time, 13, 320
global optimizations, 320
language considerations, 13
local optimizations, 317

Options
in occam source, 112
specify processor target, 315
unsupported,302

order. code, 128,411

order.vs,128,411

order.ws,128,411

output. address, 190

output. all, 189

output.block,189

output. format, 189

p
Pad. strength .13 .16, memfile statement,

378

Index

Pad.strength.A17 .20, memfile statement,
378

Pad. strength.A2 .8, memfile statement, 378

Pad. strength.A21. 24, memfile statement,
379

Pad.strength.A2S. 31, memfile statement,
379

Pad. strength .A9 .12, memfile statement,
378

Pad. strength.bel, memfile statement, 379

Pad. strength.be2, memfile statement, 379

Pad. strength .DO .7, memfile statement, 379

Pad. strength.D16 . 31, memfile statement,
380

Pad. strength.D8 •15, memfile statement,
379

Pad. strength. rcpO, memfile statement, 380

Pad. strength. rcp1, memfile statement, 380

Pad. strength. rcp2, memfile statement, 380

Pad. strength. rep3, memfile statement, 380

PadDrive register, 381

Page. address .bits, memfile statement,
380,381

PAR, 105

patch
assembler directive, 332,350
codefix, assembler directive, 351
datafix, assembler directive, 352
extoffset, assembler directive, 353
li.mi.t, assembler directive, 354
modnumber, assembler directive, 355
stati.cfi.x, assembler directive, 356

Path searching, 303

Peephole optimization, 317

PERMITALIASES pragma, 115

Phases, 373

Physical processor, 408

Pointer dereference checks, 5, 10

Port, 118

Port. size, memfile statement, 381

Porting C, 9

Postscript waveform file, 283, 284-290

Pragmas
See also #pragma
icc,23

Predefines, in configuration language, 391

__________ii;iP~ 4_3_5

Index

Preprocessor
directives, 20
invoking, 9
use with assembler, 328

Proc . clock. out, memfile statement, 381

ProcClockOut, 175

Procedural interface data, listing, 240

process, 392

PROCESSOR, 408, 413

Processor
targets, 309

command line options, 315
types, 309

processor, 392

Processor. type, memfile statement, 381

Programmable. strobe, memfile statement,
381

R
RAM, 114, 127, 156, 161

Ras . cycle. time, memfile statement, 382

Ras . edge. active. during, memfile state-
ment, 382

Ras . edge. time, memfile statement, 382

Ras . precharge. time, memfile statement,
382

Ras. strobe, memfile statement, 383

Read, strobe, 175

Redundant store elimination, 318

Refresh, 369

Refresh period, 175

register, 14

rep, 391

Replication, in configuration language, 391

reserved, 132, 411

Reserved words, configuration language, 402

Right shift, 9

Rising. edge . active. during, memfile
statement, 383

ROM, 127,156,161,185
used for memory configuration, 275

romsize,411

root, 411

root.processor.type,188

routecost, 411

Running, skip loader, 296

Runtime, optional checks, 10

s
Scalar workspace, 155

Scheduling lists. See Process queues; Run
queues

Screen definitions, 422

Screen size, 422

Search path
#include,22
configurer, 70, 126
conventions, 303
icc, 8

Selective linking, 223

selective loading, libraries, 204

Separate compilation, 106

Separate vector space, 102, 112

SEQ,105

Sequence of memory accesses, 281

serving an application, 291

SET, 408, 410

setconf.inc, 69, 404

Setting the Windows environment, 197-200,
297-298

SHARED pragma, 115

Shift right, 9

Signal. all. pending. cycles, memfile
statement, 383

Signedness of char, 9

size, 391
assembler directive, 332, 357

SKIP, 128,415

Skip loaders, 295-296

Software description, 413

sourcefile, assembler directive, 332, 358

Space, optimizing compilation, 13

Stack
checking, 5, 10, 29
position in memory, 70, 150

stack.buffer, 153

_43_6 1fii.&~ _

Standard memory configuration, 176

Standards
command syntax, 301
file extensions, 303

start.offset,190

Starting applications, 291-296

Static area, position in memory, 70, 150

Static data, 151
memory map, 17

Static declarations, unused, 10

Static variables, memory map, 265

STOP, 415

STOP error mode, 104, 127

Strength reduction, 322

Strobe timing register, 383

Structures, 9

Symbol data, listing, 234

Syntax
configuration language, 397
iset command line, 297

sysdebug.lib,69,127

sysproc.lib,69,127

sysprof.1ib, 69, 127

sysv1ink.lib, 69, 127

T
T4 series, configurable memory interface, 169

T8 series, configurable memory interface, 169

Tail recursion optimization, 323

Tail-call optimization, 323

Target files, for imakef, 248

Target processor, 309
command line options, 315

TCOFF,100
listing files, 243

Text files, listing, 243

textname, assembler directive, 332, 359

Time, optimizing compilation, 13

Time. to. falling. edge, memfile statement,
383

Time. to •rising. edge, memfile statement,
383

Index

Timing data, 176

Timing of memory, 373

TimingControl register, 382

Tm,175

tolerance, 411

too1name, assembler directive, 332, 360

Toolset
documentation, xvii

conventions, xviii
standards and conventions, 301

Traceback information, in ROM, 192

trams.inc,70

TRANSLATE pragma, 110

Transputer
classes, 103
inline code, 32
targets, 7, 99, 103

command line options, 315

Type
in configuration language, 388
nodes, 393

type, 392, 411

u
UNDEFINED error mode, 105, 113, 127

Unions, 9

UNIVERSAL error mode, 8,104,127

Unresolved references, 222

Unsupported options, 302

Upgrade, problems with libraries, 214

Usage check, 101 , 112
disable, 115

v
VAL, 408

Vector space, 114,155
default, 131
position in memory, 70,152

Virtual memory, 221

Virtual routing, 106
disable, 68
disabling, 129

volatile, 14

w
Wait

connection, 175

_________ i:ii_trl--------4-3-7

Index

race, 175
error, 182

states, 176

Wait.pin, memfile statement, 384

Warnings
See·also Error messages
selective enabling, icc, 10
selective suppression, icc, 29

Waveform
diagrams, 275
file, 283, 284-290

Waveform diagrams, 178

Windows, environment, 197, 297

Windows environment file, 197-200

Windows initialization file, 198-200

Windows launch tool, 197-200

Windows parameter tool, 297-298

word, assembler directive, 332, 361

Workspace, 114
allocation, optimizing, 325
default,131

Write
mode, 175
strobe, 175

write. strobe, memfile statement, 384

WriteStrobe register, 384

z
Z, command line option, 302

438----------lifi_---------

	Contents overview
	Contents
	Preface
	About this manual
	About the toolset documentation set
	Other documents
	Documentation conventions

	Tools
	1 icc - ANSI C compiler
	1.1 Introduction
	1.2 Running the compiler
	1.2.1 Input/output files
	1.2.2 Transputer targets
	1.2.3 Error modes
	1.2.4 Default command line options
	1.2.5 Search paths
	1.2.6 Using the assembler
	1.2.7 Using the compiler preprocessor
	1.2.8 Compatibility with other C implementations
	1.2.9 Software quality check
	1.2.10 Runtime checking options
	1.2.11 Compactable code

	1.3 Compiling with optimization switched on
	1.3.1 Advantages of enabling optimization
	1.3.2 When optimization should not be used
	1.3.3 Optimization options
	1.3.4 Enable side effects information messages
	1.3.5 Disable side effect warning messages
	1.3.6 Language considerations
	1.3.7 How to use feedback information to improve optimized code quality

	1.4 Memory map
	1.4.1 Notes on the compiler memory map format

	1.5 Compiler directives
	1.5.1 #define
	1.5.2 #elif
	1.5.3 #else
	1.5.4 #endif
	1.5.5 #error
	1.5.6 #if
	1.5.7 #ifdef
	1.5.8 #ifndef
	1.5.9 #include
	1.5.10 #line
	1.5.11 #pragma
	1.5.12 #undef

	1.6 Compiler predefinitions
	1.6.1 Macro names
	1.6.2 Other predefines

	1.7 Transputer inline code
	1.7.1 Inlined functions

	1.8 Compiler diagnostics
	1.8.1 Message format
	1.8.2 Severities
	1.8.3 Standard terms
	1.8.4 Information messages
	1.8.5 Warning diagnostics
	1.8.6 Recoverable errors
	1.8.7 Serious errors

	2 icconf - configurer
	2.1 Introduction
	2.2 Configuration language implementation
	2.3 Running the configurer
	2.3.1 Default command line
	2.3.2 Boot from ROM options
	2.3.3 Support for INQUEST
	2.3.4 Virtual routing processes
	2.3.5 Mixed language programming
	2.3.6 Configurer library files
	2.3.7 Standard include files
	2.3.8 Configuration description examples
	2.3.9 Search paths
	2.3.10 Default memory map
	2.3.11 System processes

	2.4 Configurer messages
	2.4.1 Information
	2.4.2 Warnings
	2.4.3 Errors
	2.4.4 Serious messages
	2.4.5 Fatal errors

	3 oc - occam 2 compiler
	3.1 Introduction
	3.2 Running the compiler
	3.2.1 Default command line arguments

	3.3 Filenames
	3.4 Transputer targets
	3.5 Error modes
	3.6 Enable/Disable Error Detection
	3.7 Enabling/disabling warning messages
	3.8 Support for debugging
	3.9 Channel input/output
	3.10 Separately compiled units and libraries
	3.11 Code insertion using ASM
	3.12 Memory map
	3.13 Compiler directives
	3.13.1 Syntax of compiler directives
	3.13.2 #INCLUDE
	3.13.3 #USE
	3.13.4 #IMPORT
	3.13.5 #COMMENT
	3.13.6 #OPTION
	3.13.7 #PRAGMA

	3.14 Error messages
	3.14.1 Warnings
	3.14.2 Errors

	4 occonf - occam configurer
	4.1 Introduction
	4.2 Running the configurer
	4.3 Default command line
	4.4 Search paths
	4.5 Configurer library files
	4.6 Boot-from-ROM options
	4.7 Configuration error modes
	4.8 Enable/Disable Error Detection
	4.9 Enabling memory re-ordering and placement
	4.10 Channel input/output
	4.11 Virtual routing
	4.12 Enabling/disabling warning messages
	4.13 ASM code
	4.14 Support for INQUEST
	4.15 Default memory map
	4.15.1 LoadStart
	4.15.2 System processes
	4.15.3 Configuration description examples

	4.16 Configurer diagnostics
	4.16.1 Warning messages
	4.16.2 Error messages

	5 icollect - code collector
	5.1 Introduction
	5.2 Running the code collector
	5.2.1 Examples of use
	5.2.2 Default command line
	5.2.3 Input files
	5.2.4 Output files

	5.3 Program interface for occam unconfigured programs
	5.3.1 Interface used for 'T' option
	5.3.2 Interface used for 'T' and 'M' options

	5.4 Memory allocation for unconfigured programs
	5.4.1 C programs
	5.4.2 occam programs
	5.4.3 Memory initialization errors
	5.4.4 Small values of IBOARDSIZE

	5.5 Clearing memory
	5.6 Non-bootable files created with the K option
	5.6.1 File format

	5.7 Boot-from-ROM output files
	5.8 Alternative bootstrap schemes
	5.9 The memory map file
	5.9.1 Configured program boot from link
	5.9.2 Unconfigured (single processor), boot from link
	5.9.3 Boot from ROM programs

	5.10 Reducing the amount of memory used - 'Y' option
	5.11 Error messages
	5.11.1 Warnings
	5.11.2 Serious errors
	5.11.3 Fatal errors

	6 iemit - memory interface configurer
	6.1 Introduction
	6.2 Running iemit
	6.3 Output files
	6.4 Interactive operation
	6.4.1 Page 0
	6.4.2 Page 1
	6.4.3 Page 2
	6.4.4 Page 3
	6.4.5 Page 4
	6.4.6 Page 5
	6.4.7 Page 6

	6.5 iemit error and warning messages
	6.6 Memory configuration file

	7 ieprom - ROM program convertor
	7.1 Introduction
	7.2 Prerequisites to using the ieprom tool
	7.3 Running ieprom
	7.3.1 Examples of use

	7.4 ieprom control file
	7.5 What goes into the EPROM
	7.5.1 Memory configuration data
	7.5.2 Parity registers
	7.5.3 Jump instructions
	7.5.4 Bootable file
	7.5.5 Traceback information

	7.6 ieprom output files
	7.6.1 Binary output
	7.6.2 Hex dump
	7.6.3 Intel hex format
	7.6.4 Intel extended hex format
	7.6.5 Motorola S-record format

	7.7 Block mode
	7.7.1 Memory organization
	7.7.2 When to use block mode
	7.7.3 How to use block mode

	7.8 Example control files
	7.8.1 Simple output
	7.8.2 Using block mode

	7.9 Error and warning messages

	8 ilaunch - Windows launch tool
	8.1 The Windows environment file
	8.1.1 Syntax

	9 ilibr - librarian
	9.1 Introduction
	9.2 Running the librarian
	9.2.1 Default command line
	9.2.2 Library indirect files
	9.2.3 Linked object input files
	9.2.4 Library files as input

	9.3 Library modules
	9.3.1 Selective loading
	9.3.2 How the librarian sorts the library index

	9.4 Library usage files
	9.5 Building libraries
	9.5.1 Rules for constructing libraries
	9.5.2 General hints for building libraries
	9.5.3 Optimizing libraries

	9.6 Error Messages
	9.6.1 Information messages
	9.6.2 Warning messages
	9.6.3 Serious errors
	9.6.4 Fatal errors

	10 ilink - linker
	10.1 Introduction
	10.2 Running the linker
	10.2.1 Default command line
	10.2.2 Output format

	10.3 Linker indirect files
	10.3.1 Linker indirect files supplied with the toolset
	10.3.2 Linking different versions of software after occam upgrade

	10.4 Linker directives
	10.4.1 #alias basename {aliases}
	10.4.2 #define symbolname value
	10.4.3 #include filename
	10.4.4 #mainentry symbolname
	10.4.5 #reference symbolname
	10.4.6 #section name

	10.5 Linker options
	10.5.1 Processor types
	10.5.2 Error modes - options H, S and X
	10.5.3 Extraction of library modules - option EX
	10.5.4 Display information - option I
	10.5.5 Virtual memory - option KB
	10.5.6 Main entry point - option ME
	10.5.7 Link map filename - option MO
	10.5.8 Suppress symbol table - NS
	10.5.9 Linked unit output file - O
	10.5.10 Permit unresolved references - option U
	10.5.11 Channel input/output - Y

	10.6 Selective linking of library modules
	10.7 The link map file
	10.7.1 MODULE record
	10.7.2 SECT record
	10.7.3 MAP record
	10.7.4 Value record
	10.7.5 LOCALVALUE record

	10.8 Using imakef for version control
	10.9 Error messages
	10.9.1 Warnings
	10.9.2 Errors
	10.9.3 Serious errors
	10.9.4 Embedded messages

	11 ilist - binary lister
	11.1 Introduction
	11.2 Data displays
	11.2.1 Modular displays
	11.2.2 Example displays used in this chapter

	11.3 Running the binary lister
	11.3.1 Options to use for specific file types
	11.3.2 Output device
	11.3.3 Default command line

	11.4 Specifying an output file - option O
	11.5 Symbol data - option A
	11.5.1 Specific section attributes
	11.5.2 General symbol attributes
	11.5.3 Example symbol data display

	11.6 Code listing - option C
	11.6.1 Example code listing display

	11.7 Exported names - option E
	11.7.1 Example exported names display

	11.8 Hexadecimal/ASCII dump - option H
	11.8.1 Example hex dump display

	11.9 Module data - option M
	11.9.1 Example module data display

	11.10 Library index data - option N
	11.10.1 Example library index display

	11.11 Procedural interface data - option P
	11.11.1 Example procedural data display

	11.12 Specify reference - option R
	11.13 Full listing - option T
	11.13.1 Example full data display
	11.13.2 Configuration data files

	11.14 File identification - option W
	11.14.1 Example file identification display

	11.15 External reference data - option X
	11.15.1 Example external reference data display

	11.16 Error messages
	11.16.1 Information messages
	11.16.2 Serious errors
	11.16.3 Fatal errors

	12 imakef - makefile generator
	12.1 Introduction
	12.2 How imakef works
	12.3 File extensions for use with imakef
	12.3.1 Target files

	12.4 Linker indirect files
	12.5 Library indirect and library usage files
	12.6 Running the makefile generator
	12.6.1 Example of use
	12.6.2 Specifying language mode
	12.6.3 Configuration description files
	12.6.4 Debug data
	12.6.5 Software virtual routing and channel input/output
	12.6.6 Boot-from-ROM target files
	12.6.7 Removing intermediate files
	12.6.8 Files found on ISEARCH
	12.6.9 Map file output for imap

	12.7 imakef examples
	12.7.1 C examples
	12.7.2 occam examples
	12.7.3 Mixed language program

	12.8 Format of makefiles
	12.8.1 Macros
	12.8.2 Rules
	12.8.3 Delete rule
	12.8.4 Editing the makefile

	12.9 Error messages
	12.9.1 Warnings
	12.9.2 Errors

	13 imap - memory mapper
	13.1 Introduction
	13.2 Running the map tool
	13.2.1 Source files required by imap
	13.2.2 Re-directing imap's output

	13.3 Output format
	13.3.1 imap memory map structure
	13.3.2 User processes
	13.3.3 Module memory usage
	13.3.4 Other processes
	13.3.5 Symbol table

	13.4 Example
	13.5 Error messages
	13.5.1 Serious errors
	13.5.2 Fatal errors

	14 imem450 - memory interface configurer
	14.1 Introduction
	14.2 Running the memory interface configurer
	14.2.1 Default command line

	14.3 Interactive operation
	14.3.1 Interactive commands
	14.3.2 Interactive pages

	14.4 Output files
	14.4.1 Memfiles
	14.4.2 ASCII display page output files
	14.4.3 Waveform file

	14.5 Error messages
	14.5.1 Warnings
	14.5.2 Errors
	14.5.3 Fatal errors

	15 irun - application loader
	15.1 The purpose of irun
	15.1.1 Initializing target hardware
	15.1.2 Loading programs
	15.1.3 Access to host services

	15.2 Starting an application
	15.2.1 Target interface parameters
	15.2.2 The irun command line
	15.2.3 Starting using Microsoft Windows

	15.3 The environment
	15.3.1 ISEARCH
	15.3.2 ASERVDB
	15.3.3 TRANSPUTER
	15.3.4 Setting target interface parameters on a Sun
	15.3.5 Setting target interface parameters on a PC with Windows

	15.4 Skip loaders
	15.4.1 Running the skip loader
	15.4.2 Examples of use

	16 iset - Windows parameter tool
	Appendices
	A Toolset conventions and defaults
	A.1 Command line syntax
	A.1.1 General conventions
	A.1.2 Indirect argument files

	A.2 Unsupported options
	A.3 Filenames
	A.4 Search paths
	A.5 Standard file extensions
	A.5.1 Main source and object files
	A.5.2 Indirect input files (script files)
	A.5.3 Files read by the memory map tool imap
	A.5.4 Other output files
	A.5.5 Miscellaneous files

	A.6 Extensions required for imakef
	A.7 Message handling
	A.7.1 Message format
	A.7.2 Severities
	A.7.3 Runtime errors

	B Processor types and classes
	B.1 Processor types supported by the toolset
	B.2 Processor types and classes
	B.2.1 Single processor type
	B.2.2 Creating a program which can run on a range of processors
	B.2.3 Linking files which contain code compiled for different targets
	B.2.4 Classes/instruction sets - additional information

	B.3 Processor type command line options

	C ANSI C compiler optimization examples
	C.1 Local optimization examples
	C.1.1 Peephole optimization
	C.1.2 Flowgraph optimizations
	C.1.3 Redundant store elimination

	C.2 Global optimization examples
	C.2.1 Common subexpression elimination
	C.2.2 Loop-invariant code optimization
	C.2.3 Global optimization example
	C.2.4 Strength reduction
	C.2.5 Tail-call and tail recursion optimization
	C.2.6 Workspace allocation by coloring

	D Using the assembler
	D.1 Introduction
	D.2 Running the assembler
	D.2.1 Specifying the source filename
	D.2.2 Use of icc command options with the assembler
	D.2.3 Using the preprocessor with the assembler

	D.3 Language
	D.3.1 Label definitions
	D.3.2 Symbols
	D.3.3 Expressions
	D.3.4 Transputer instruction mnemonics
	D.3.5 Comments

	D.4 Assembler directives
	align
	blkb
	blkw
	byte
	comment
	common
	data
	debug
	defsym
	descriptor
	extern
	global
	init
	language
	local
	maininit
	map1 map2 map3
	patch
	patch - codefix
	patch - datafix
	patch - extoffset
	patch - limit
	patch - modnumber
	patch - staticfix
	size
	sourcefile
	textname
	toolname
	word

	D.5 BNF grammar for assembler language
	D.6 Errors
	D.6.1 Fatal Errors
	D.6.2 Serious Errors
	D.6.3 Errors

	E Memory interface configuration files
	E.1 Structure of memfiles
	E.1.1 Processor type
	E.1.2 DRAM refresh parameters definition
	E.1.3 Global parameters
	E.1.4 Bank definitions
	E.1.5 Strobe definitions

	E.2 Memfile statements
	E.2.1 Timing parameters
	E.2.2 Statement definitions

	E.3 Example file

	F ANSI C configuration language
	F.1 Introduction
	F.2 Statements
	F.3 Comments
	F.4 Identifiers
	F.4.1 Character set

	F.5 Types
	F.6 Constants
	F.7 Booleans
	F.8 Expressions and arithmetic
	F.9 Arrays
	F.10 Conditional statement
	F.11 Replication
	F.12 Built-in functions
	F.13 Nodes
	F.13.1 Node attributes
	F.13.2 Defining new node types
	F.13.3 Connections
	F.13.4 Prohibited connections

	F.14 Configuration language summary
	F.14.1 Network data types
	F.14.2 Numeric data types
	F.14.3 Language constructs
	F.14.4 Definitions and declarations
	F.14.5 Operators
	F.14.6 Predefinitions
	F.14.7 Built-in functions

	F.15 Configurer directives
	F.15.1 #include
	F.15.2 Configurer directives summary

	F.16 Configuration language syntax
	F.16.1 Notation
	F.16.2 Configuration
	F.16.3 Language features
	F.16.4 Expressions
	F.16.5 Replication and conditionals
	F.16.6 Numeric value declarations
	F.16.7 Network declarations
	F.16.8 Mapping declarations

	F.17 Implementation details
	F.18 Reserved words
	F.18.1 Keywords
	F.18.2 Pre-defined attributes

	F.19 Predefinitions
	F.19.1 Constants

	F.20 Types
	F.21 Declarations

	G occam configuration language
	G.1 Notation
	G.2 Introduction
	G.3 New types and specifications
	G.3.1 Syntax of configuration description

	G.4 Hardware description
	G.4.1 Processor attributes
	G.4.2 Syntax definition

	G.5 Software description
	G.5.1 Syntax definition

	G.6 Mapping structure
	G.6.1 Syntax definition

	G.7 Constraints
	G.8 Checking IF statements

	H AServer database
	H.1 Target hardware connection fields

	I ITERM files
	I.1 Introduction
	I.2 The structure of an ITERM file
	I.3 The host definitions
	I.3.1 ITERM version
	I.3.2 Screen size

	I.4 The screen definitions
	I.4.1 Goto X Y processing

	I.5 The keyboard definitions
	I.6 Setting up the ITERM environment variable
	I.7 Iterms supplied with a toolset
	I.8 An example ITERM

	Index

