
AServer
Programmers'

Guide

~ SGS-1HOMSON
A..,I ~O©ffi3@[g[L~©IYffi3@~O©~

May 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

•
® 0 .®,orrumos ,IMS, occam and DS-Link® are trademarks of SGS-THOMSON Microelectronics Limited.

~~~~?'R\9~~~1 is a registered trademark of the SGS-THOMSON Microelectronics Group.

Windows is a trademark of Microsoft Corporation.

X Window System is a trademark of MIT.

OSF/Motif is a trademark of the Open Software Foundation, Inc.

This product incorporates innovative techniques which were developed with support from the European
Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P7267 OMI/STANDARDS.

• P6290 HAMLET (High Performance Computing for Industrial Applications)

FLEXlm is a trademark of Highland Software, Inc.

Document Number: 72 TOS 403 02



1

2

3

4

5

6

Contents

Introduction ....•..........................•.....................
1.1 AServer features .
1.2 Gateways. . . . . . . . . . . . . . . . . . . . . . . . . . .
1.3 Clients and services .
1.4 Protocols .
1.5 Access points .
1.6 Using the AServer with occam .

irun

2.1 Running irun .
2.2 The AServer database .
2.3 Implementation limit .

The target gateway .
3.1 Configuration example .
3.2 Mega-packets .

iserver service ........•........................................
4.1 Auto-iserver mode .
4.2 iserver converter .
4.3 Hello example .
4.4 Hello2 example .
4.5 Getkey Example .

Clients and services .
5.1 Introduction .
5.2 Initializing data structures .
5.3 Waiting for packets to arrive .
5.4 Connecting and disconnecting .
5.5 Sending and receiving .
5.6 Terminating data structures .
5.7 Echo example .
5.8 Callback .
5.9 Print example .
5.10 occam clients .

AServer library .
6.1 Restrictions .
6.2 Function prototype and constant files .
6.3 Data types and macros .
6.4 Constants and limits .
6.5 Callback function type definition .
6.6 Functions .

1
2
2.
4
5
6
6

7
7
8

10

11
12
14

15
15
17
18
21
23

25
25
25
27
27
29
30
30
34
36
43

47
47
47
47
48
49
52

----------- !flBmw&~I-----------



Contents

Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A AServer example code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

A.1 Running the examples 99

A.2 Hello2 example 101

A.3 Hello2 example 103

A.4 Getkey Example 104

A.5 Echo example 106

A.6 Print example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 117

B AServer protocols 131

8.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

8.2 Packets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 131

8.3 Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 132

8.4 Mega-packet protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 135

C AServer result codes 137

o Glossary 139

Index 143

_ii J.fi1~.,£Ycl-----------



1 Introduction

The AServer (Asynchronous Server) system is a high performance interface system
which allows multiple processes on a target device to communicate via a hardware
serial link with multiple processes on some external device. The AServer software acts
as a standard interface which is independent of the hardware used.

A simple example is shown in Figure 1.1, in which the external device is the host. A more
complex example is shown in Figure 1.2. The AServer system supports the new genera
tion of INMOS development tools such as the INQUEST interactive debugger.

Host Target hardware

Services Clients

Virtual
channels

Figure 1.1 A simple software host-target interface

The AServer is a collection of programs, interface libraries and protocols that together
create a system to enable applications running on target hardware to access external
services in a way that is consistent, extensible and open. The software elements
provided are:

a target gateway which runs on the target (see Chapter 3);

• an irun gateway which runs on the host (see Chapter 2);

• an iserver service which runs on the host (see Chapter 4);

• an iserver converter which runs on the target (see Chapter 4);

a library of interface routines for use by client and service processes (see
Chapter 6);

simple example services.

_________ ,.;';SGS-1HOMSON _
6a....,,@~o~~



1.1 AServer features

1.1 AServer features

This type of architecture offers a number of advantages:

The AServer handles multiple services.

A number of services may be available on one device. These are handled by a
single gateway for a single link to the target hardware. For example, new
services may be added without modifying a standard server.

2 The AServer handles multiple clients.

Any process on any processor in the target hardware may open a connection
to any service. The process opening the connection is called the client. Using
virtual channels, a number of clients may be directly connected to the
appropriate gateway. Several clients may access the same service. The
gateway will automatically start new services as they are requested.

3 Services are easy to extend.

The AServer enables users to extend the set of services that are available to a
user's application. The AServer provides the core technology to allow users to
create new services by providing new processes.

For example, the iserver provides terminal i/o, file access and system
services. The AServer allows this to be expanded by adding new service
processes tailored by the user for the particular application. The new services
stand alone, so that the iserver code does not need to be modified.

4 AServer communications can be fast and efficient.

The communications over the link between gateways use mega-packets, which
make efficient use of the available bandwidth (see Chapter 3).

Messages between the client and the service are divided into packets of up to
1 kbyte. The packets are bundled into mega-packets to send over the hardware
serial link. Packets from different clients and services can be interleaved to
reduce latency.

5 AServer communications are independent of hardware.

When an AServer connection has been established the process can send data
messages of arbitrary length to the service it is connected to, receive data
messages of arbitrary length and disconnect from the service. The gateways are
responsible for building and dividing mega-packets and complying with hard
ware protocols.

1.2 Gateways

A pair of gateway processes, one at each end of a link interface, acts like a pair of
telephone exchanges. Each gateway multiplexes outgoing communications to the link
and demultiplexes incoming communications from the link.

_2 i:fi~I®.£~JI------------



1 Introduction

File
service SCSI

Transputer

Ethernet

Transputer

To other processors

Figure 1.2 Example of AServer uses

Figure 1.2 shows an example of a transputer network that has a link to a host (in this
case using Ethernet) and a link to a file service (in this case using SCSI). The links from
the transputer network are interfaced via gateways.

A gateway has the role of routing AServer communications to the appropriate place, Le.
to a process or on to another gateway. Optimized gateways can be written to make
efficient use of the particular link mechanism.

Processes running on the target can communicate with gateways using virtual chan
nels. The virtual channels can be provided in software, using the new generation of
INMOS configurers, or they can be provided by hardware, as in IMS T9000 networks

----------- ~~itnl.~JI-----------3-



1.3 Clients and services

with asynchronous packet switches. On the host machine the communication to a
gateway is provided by a host inter-process communication capability.

The gateway process which runs on a target is called the target gatewayand is provided
as part of the AServer software. The gateway process which runs on the host is called
a host gateway. The standard host gateway provided with the AServer is called irun.
The irun gateway provides target hardware booting and subsystem control similar to
that found in the iserver. This enables irun to be used to boot the target and
subsequently become a gateway.

1.3 Clients and services

A process using the AServer system may be acting as a client or as a service, or possibly
both. A client process makes the initial request for a service. The AServer attempts to
make a connection to a suitable service process and then handles the communications
until the connection is closed by the client.

A single process may be able to service a number of clients. A list of services, how to
start them and the maximum number of connections for each process is held in an
AServer database file. The AServer keeps a count of how many clients are connected
to each process. When a new service is requested, a connection will be made to an
existing service process if one exists with spare connections.

When a client requires use of a remote service, it issues a connect request to the local
gateway giving the name of the service to connect to. The connect request is sent to the
remote gateway which decides how the request can be serviced. If a connect request
is received by an irun gateway, the gateway will either:

find an existing process that can provide the service and can handle more
connections, or

2 create a process to provide that service.

The process that is created handles the connect request and sends a connect reply back
to the initiating process via the gateway. The reply contains a connection identifier that
is used in subsequent communications between the client and the service that has been
created.

A client may be connected to a local service without passing through gateways. This
may be desirable to make the client or service more portable. In this case the service
process cannot be created dynamically but both processes must be configured into the
same program.

Clients and services may in principle be anywhere in the system. In this implementation,
only the irun gateway can start services. This means that clients on a remote device
cannot request services on target hardware.

_4 Efi~~~@RI~~JI-----------



1 Introduction

Services provided by IN.MOS include:

• an iserver service (see Chapter 4)

• an INQUEST debugger

an example print server

an example file server

Examples of possible services which may be provided by the user include:

• a non-iserver host window

• a fast file server

a graphics window server

1.4 Protocols

The gateways and processes described in sections 1.2 and 1.3 communicate by means
of open standard protocols.

The gateways communicate between each other using a mega-packet protocol. This
is designed for use over serial link interfaces to external hardware and uses large
packets for high performance. The two protocols are illustrated in Figure 1.3.

Services

• Client

o Service

Gateway

Host Target hardware

... Mega-packet protocol

AServer standard protocol

Clients

Virtual
channels

Figure 1.3 AServer protocols

Processes communicate with each other and with gateways using the AServer standard
protocol, as described in Appendix B. The AServer protocol provides a standard

----------- ~litllll'~~JI-----------5



1.5 Access points

portable interface so that processes do not need to know where the process at the other
end of the communication is located. The main use of the AServer protocol is for
processes to communicate via gateways and links, but clients and services on the same
target hardware may communicate using the AServer protocol to aid portability.

The maximum size of packets used by this protocol is 1 kbyte, for reasonable efficiency
without unduly affecting latencies. For ease of use, this protocol is supported by the
AServer libraries, as described in Chapter 6.

1.5 Access points

Each AServer process has one or more access points. An access point is a host-inde
pendent means of accessing other AServer processes. Each access point is connected
either directly to another process access point or to a gateway and uses the AServer
standard protocol. On a target, an access point consists of a pair of virtual channels, one
input and one output.

The access points of one process are arranged into an array and the access point
number is the index into the array. The access point number is used as a parameter to
some AServer library functions.

The access points of a process must be initialized before use, using the library routine
as_apstart, as described in Chapter 6.

1.6 Using the AServer with occam

This manual generally assumes that any customized AServer processes running on the
target will be written in ANSI C. The AServer libraries are provided as ANSI C libraries.
It is recommended that occam applications either use the iserver protocol or have
ANSI C interface processes.

occam processes may call the AServer libraries by adding a shell to each library
function to make it look like an occam procedure, as described in the occam2 Toolset
User Guide. An example of this is provided in the examples directory and described in
Chapter 5.

_6 Efill@._-----------



2 irun

This chapter describes the irun program, its purpose, what it does and how the user
controls it.

irun runs on the host and is the main control program for the AServer, performing a
multiplexing and process creation role. It is a gateway process running on the host.
Unlike the gateway running on the target hardware, irun starts host services dynami
cally at the request of the target hardware, using information in an AServer database
file to determine how to execute what in order to provide the service. The user controls
irun through the values of environment variables, through irun's command line
interface and through the AServer database file.

2.1 Running irun

2.1.1 Environment variables

The AServer uses up to three environment variables, which should have been set up
during installation. On Suns these may be set using the setenv command, for example:

setenv TRANSPUTER target

On pes, the environment variables must either be set globally from DOS (Le. not from
a DOS Window) or be set in a Windows environment file. The irun chapter of the
Toolset Reference Manual describes how this is done.

When using Windows tools (Le. irun or an INQUEST tool), variable values set in a
Windows environment file will override an environment variable of the same name set
from DOS.

In the rest of this document, the term environment variable will mean either a true
environment variable or a variable set in a Windows environment file, whichever is
appropriate.

The three environment variables used by the AServer are as follows:

The ISEARCH variable specifies a path used by the INMOS tools to find files. It
will normally name the toolset library directory, any include file directories and
any user directories as required. If you are using toolset software then the toolset
libraries directory will also have to be on the ISEARCH path. See your Toolset
Delivery Manual for more information.

The ASERVDB variable points to the AServer database file. This variable need
not be specified if the AServer database file is on the ISEARCH path. The
AServer database specifies resources such as user services, hardware inter
faces and INQUEST, which may be requested by the application.

____________ ~~itnfl&~©' 7



2.2 The AServer database

• The TRANSPUTER variable specifies which target in the AServer database is to
be used. irun uses the TRANSPUTER environment variable to find the hardware
serial link to serve and to which bootable files are to be copied. The
TRANSPUTER variable may be overridden by the -SL option on the command
line.

2.1.2 Starting AServer applications

On X-Windows systems, AServer applications can be started by a command line. On
Microsoft Windows systems, AServer applications are run in the same way as other
Windows applications.

The name of the command that starts AServer applications is irun.

~ irun bootable_file {options}

where: bootable_file is the name of the application code bootable file,

options is a list of one or more options. A full list of options is given in your Toolset
Reference Manual.

Running irunwith no parameters causes irunto display its version number, build date
and brief help information.

Each of irun's command line parameters causes irun to perform an action. It
executes these actions strictly in the order described in the Toolset Reference Manual.

2.2 The AServer database

The AServer database lists:

the AServer host services provided by irun and

the target hardware connections.

It is a text file containing the names of the services and connections and the information
about them that irun needs to be able to respond to service requests. The pathname
of the AServer database is held by the ASERVDB environment variable.

The AServer database is described in the Toolset Reference Manual.

AServer database lines beginning with the hash (#) character are comments and are
ignored. Each other line of the AServer database contains information about one
resource, which may be:

an AServer service available on the host;

• a target hardware connection from the host.

_8 LTi~itnll.JI-----------



2 irun

Each resource line contains four fields, each field beginning with a bar ( I) character.

2.2.1 AServer database service resources

An AServer service is a piece of software to which a client may request a connection.
Normally a service is a separate process, but it may not be. Services listed in the
AServer database run on the host. If an AServer database line is a service, the four fields
are:

The name of the service, as used by the client in calls to asc_connect. Any
leading or trailing spaces are ignored, but spaces are allowed in the service
name.

2 The command to be executed when the service is requested. This is generally
the name of the service executable.

3 The maximum number of connections that the service will accept. The service
must be able to handle at least the number of connections specified here.

4 Any additional command line parameters for the service.

The command line used to start a service on the host is built up from:

the Path field of the service database,

2 the name of any bootable file given in the irun command line,

3 for the auto-iserver, all parameters to irun. For other services, the parameters
are provided by the client in the connect request.

4 the Extra Params field of the service database.

The iserver converter process does not give any parameters in the connect request
for the iserv service.

2.2.2 AServer database connection resources

A connection resource is a special case of an AServer service running on the host, used
internally by the irun target booting software. The connection process 'knows' how to
control links, and the parameters provided in the database line define the type and
location of the link.

If an AServer database line is a hardware connection, the four fields are:

The name of the resource, such as mybl03. If the resource is a connection to
target hardware then the target may be used by:

o setting the environment variable TRANSPUTER to this name or

o using the name with the irun option -sl, such as:

irun -sl mybl03 app.btl

----------- ~1~ttI.J?JI-----------9-



2.3 Implementation limit

If the resource is an AServer service then the name may be used by the client
to request the service.

A description of the resource, such as txcs tcp front@Apple. The format
of the description will depend upon the interface software being used, as
described in your Toolset Delivery Manual.

2 The number of connections that may be made to the resource or to a single
instance of the service. For target hardware connections this is always 1.

3 Any extra parameters that may be needed, as described in your Interface Soft
ware User Manual.

2.3 Implementation limit

There is an implementation limit on the number of host processes irun can handle. This
limit depends upon the processes, but is normally about 6 or 7.

_1o E;l~~-I-----------



3 The target gateway

This chapter describes the supplied gateway process that runs on the target hardware
to connect to a host. An AServer gateway process performs multiplexing and demulti
plexing, allowing one or more clients or services access to a hardware link. It also
converts the AServer packet protocol into a mega-packet protocol which makes more
efficient use of the hardware link. The hardware link may connect to a host, as in Figure
3.1, or to some other device outside the target hardware.

The target gateway process is a gateway running on the target hardware giving access
through a hardware serial link connection to a device such as the host. The irun
process performs a similar gateway role on the host.

The target gateway provided can only handle client processes on the target hardware.
It should be used only for client processes on the target hardware to communicate with
external services, as shown in Figure 3.1.

Host Target hardware

Services Clients

Virtual
channels

Figure 3.1 A software host-target interface

The target gateway process is provided as a configuration level process called
gateway. It is a linked unit in the file gateway. cax for TA class transputers,
gateway.cOx for T9000 transputers and gateway.c6x for T450s and ST20s. It
should be configured as a target process running in parallel with the user's application
code.

The gateway process takes five parameters, as listed in Table 3.1. The ASPROT

protocol is defined in the file gateway. inc.

For example, using the C-style configurer, the gateway process should look similar to:

process(interface (input from_link,
output to_link,
input from-processes[gateway_fan_in],
output to-processes[gateway_fan_in],
int max_mega-packet_size_to_host = 1040»

gateway;

------------ !Tl1~n&YI.JI-----------11-



3.1 Configuration example

Parameter name Parameter type Purpose

from_link input channel The channel from the link.

to_link output channel The channel to the link.

from-processes input channel array The array of input channels from the application
clients and services, one for each access point.

to-processes output channel array The array of output channels to the application
clients and services, one for each access point.

max_mega-packet_ integer constant The maximum size of a mega-packet. It should be
size_to_bost given the value 1040 in this implementation.

Table 3.1 gateway parameters

Using the occam-style configurer, the gateway process has the interface:

gateway(CHAN OF ANY from. link,
CHAN OF ANY to.link,
[gateway.fan.in]CHAN OF ASPROT from.processes,
[gateway.fan.in]CHAN OF ASPROT to.processes,
VAL INT max.mega.pkt.size}

In the configuration, the process should look similar to:

VAL max.mega.pkt.size IS 1040:
gateway (from. link,

to. link,
from.processes,
to.processes,
max.mega.pkt.size}

3.1 Configuration example

This example is similar to the configuration of the Print test example, described in
section 5.9. The arrangement of processes is shown in figure 3.2. It shows how the
gateway process is connected between the host edge of the target hardware and the
AServer processes.

Host
services ---~ \

Host Target hardware

Figure 3.2 Print example

print
clients

_12 k;i~~@_&~JI-----------



3 The target gateway

Notice that the gateway process must always be inserted between the host edge and
the AServer processes, even if there is only one AServer process. This is because the
gateway process is needed to convert from the AServer protocol to the mega-packet
protocol. Mega-packets are described in section 3.2.

The following is the C-style version of the configuration:

/* hardware */

Taoo (memory 1M) board;

connect host to board.link[O);

/* software */

input from_host;
output to_host;

val num-prints 6;

process(interface (input from_link,
output to_link,
input from-processes[gateway_fan_in],
output to-processes[gateway_fan_in],
int max_mega-pkt_size_to_host = 1040),

nodebug = true)
gateway;

connect gateway.to_link to to_host;
connect from_host to gateway. from_link;

process (interface (input as_in,
output as_out,
int hello_num),

heapsize = 50000,
stacksize = 20000)

print[num-prints);

rep i = 0 for num-prints
(

connect gateway.from-processes[i] to print[i).as_out[O);
connect gateway.to-processes[i) to print[i).as_in[O];
print [i) (hello_num = i);

/* mapping */

place from_host on host;
place to_host on host;

place gateway on board;
use "gatyeway.lku" for gateway;

rep i = 0 for num-prints
(

place print[i) on board;
use "print.cax" for print[i];

-----------li;if~n11£9©' 1_3



3.2 Mega-packets

The following code calls gateway from an occam-style configuration:

-- Hardware description

#INCLODE "hostio.inc"
#INCLUDE "occonf.inc"
#INCLODE "gateway. inc"
NODE root :
ARC hostlink :
NETWORK board

DO
SET root (type, memsize := "TaOO", 1 * X)
CONNECT root [link] [0] TO HOST WITH hostlink

Software description

fUSE "gateway.lku" for gateway
lOSE "print.cax" for print

VAL num.prints IS 6 :
VAL gateway.fan.in IS num.prints:
VAL max.mega.pkt.size IS 1040 :

CONFIG
CHAN OF ASPROT.OVEREDGE from. link, to. link
PLACE from. link ON hostlink :
PLACE to. link ON hostlink :
[gateway. fan. in] CHAN OF ASPROT gway.to.print, print.to.gway
PROCESSOR root

PAR
gateway (from. link,

to. link,
print.to.gway,
gway.to.print,
max.mega.pkt.size)

PAR i=O FOR num.prints
print(gway.to.print[i], print.to.gway[i])

3.2 Mega-packets

To improve performance, the connection between the host and the target hardware
uses bundles of packets called mega-packets. The gateway process is buffered and
pipelined in each direction and the two directions of the gateway run in parallel. Mega
packets contain one or more AServer packets and are compatible with INMOS commu
nications software.

Packets to the host are collected together in a mega-packet at the same time as the
previous mega-packet is being sent to the host. Similarly, a mega-packet from the host
is demultiplexed to the processes at the same time as the next one is being read from
the host. Using this technique, mega-packets may be sent almost continuously.

Packets from different clients may be interleaved in the mega-packet protocol to reduce
the latency of the communications. Similarly, mega-packets arriving from the link may
contain interleaved packets for different clients.

_14 E;i~~B&~lf -----------



4 iserver service

This chapter describes the iserver service, its purpose, what it does, and how the user
controls it. Three examples of simple programs using the iserver service are provided
at the end of the chapter. The sources of the examples are provided with the software
and full listings are given in Appendix A.

The AServer provides iserver services to support the INMOS standard libraries for
C and occam, which both use the iserver protocol. The iserver provides a stan
dard service for applications or parts of applications which do not need high perfor
mance input and output. The iserver service provided by the AServer is fully compat
ible with the iserver protocol and provides the same facilities that the iserver
provides.

The iserver service may be used either as an auto-iserver or with the iserver
converter. These two methods are described in sections 4.1 and 4.1.1 respectively. In
both cases the user application uses normal iserver protocol to communicate with the
host. This means that the user application can be the same linked unit using either the
iserver itself, the auto-iserver or the iserver converter.

Other AServer services can be used simultaneously with both these mechanisms. For
example, the INQUEST debugger uses the auto-iserver capability to run a program
which uses the iserver and at the same time the debugger itself runs as a service on
the host to perform the debugging.

One iserver service is incorporated into irun, so it uses the same window as irun.
If further iserver services are needed, they are spawned as separate processes and so
normally run in separate windows. On X-Windows systems, this is done by using xterm
with the -e option. By changing the path field in the AServer database file from xterm
-e iserv to iserv, the iserver service can be run in the same window as irun.

4.1 Auto-iserver mode

The auto-iserver capability of irun allows application programs that run with the
iserver to run unmodified under the AServer. This case is shown in Figure 4.2 (cf.
Figure 4.1).

In this mode, the user application is built exactly as if the iserver were being used. In
most cases a binary. btl file produced for use with the iserver may be used without
recompiling or reconfiguring. To permit this configuration, the irun gateway can distin
guish iserver protocol packets and interpret them appropriately.

In auto-iserver mode, each iserver packet must be no larger than the AServer packet
size. This limits iserver packets to 1024 bytes rather than the iserver maximum of
1040 bytes. The INMOS ANSI C and occam run-time libraries always use iserver
packets of less than 1024 bytes.

_________ J;;SGS-THOMSON 1_5
JJ.YI@ [ltUn~~~©®



4.1 Auto-iserver mode

Host Target hardware

Figure 4.1 iserver and client

Host Target hardware

iserver irun
service gateway

Figure 4.2 Auto-iserver and client

4.1.1 Use with the iserver converter

The iserver converter converts i server requests from the program into AServer
messages that are routed to an iserver service. It is described in section 4.2. The use
of the iserver converter is shown in Figure 4.3. This arrangement allows multiple
iserver clients and services at the same time.

To use this configuration, the target gateway, gateway, and the iserver converter,
isconv, must be configured with the user application to run on the root processor.

Host

iserver irun
service gateway

Target hardware

Figure 4.3 iserver service, iserver converter and client

When using the iserver converter, iserver packets can be any size up to 1040
bytes.

_16 L'T£litm'.JI-----------



4 iserver service

4.1.2 Parameters

If the irun 'built-in' iserver process is being used, then all the command line parame
ters given to irun are given to the iserver service in addition to those listed in the
'Extra Parameters' field.

For additional iserver processes, parameters given in the 'Extra Parameters' field of the
iserv entry in the AServer database are given to the iserver service.

Parameters to the iserver service should not be given in the 'Path' field of the AServer
database, or the command line may not be built correctly.

Possible parameters for the iserver service are listed in Table 4.1 .

Parameter Meaning

-sz Provide debugging information about the iserver service's operation. (Not
recommended for normal use)

Table 4.1 iserver service parameters

4.2 iserver converter

The iserver converter process, isconv, is used to convert iserver packets to
AServer messages and vice versa. The converter connects to an iserver service, and
passes iserver packets to the iserver service in AServer packets. The iserver
converter processes requests until it has processed an iserver exit request, when it
disconnects from the iserver service and terminates.

The i server converter process is provided as a configuration level routine called
isconv. Linked units are supplied for the target processors supported by your Interface
Software. It should be configured as a process running in parallel with the user's
application code.

The four parameters for isconv are all channels and are shown in Table 4.2. The
ASPROT protocol is defined in the file gateway. inc.

Parameter occam type Purpose
type

input channel CHAN OF ASPROT Input from gateway.

output channel CHAN OF ASPROT Output to gateway.

input channel CHAN OF SP Input from client. Connect to application ts channel.

output channel CHAN OF SP Output to client. Connect to application f s channel.

Table 4.2 isconv parameters

For example, the following code in a C-style configuration file calls isconv:

process(interface (input as_in,
output as_out,
input iserv_in,
output iserv_out),

stacksize = SK)
isconv;

------------ ~1~.I£~JI-----------1-7



4.3 Hello example

The following example code calls isconv from an occam-style configuration:

other declarations
[gway.fanout]CHAN OF ASPROT gway.to.client, client.to.gway:
CHAN OF SP app.to.isconv, isconv.to.app:
PROCESSOR root

PAR
isconv(gway.to.client[O],

client. to. gway [0] ,
app.to.isconv,
isconv.to.app}

other processes

4.3 Hello example

This example demonstrates iserver compatibility with the AServer using the
iserver converter process and the iserver service. Figure 4.4 shows the processes
involved and the AServer communication. Hello uses the standard Vo routines which
use iserver protocol, so an iserver converter is needed to convert to AServer
protocol used by the gateways and the iserver service.

This program could be run using the iserver without the AServer, as shown in
Figure 4.5. Generally, running applications with the AServer improves performance,
enhances portability and allows easier future expansion. This example is too simple to
illustrate these advantages.

Host

iserver irun
service gateway

Target hardware

Figure 4.4 Hello example using the AServer

Host Target hardware

iserver 14------I----------.t Hello

Figure 4.5 Hello example using the iserver

_1_8 ~~~@~,.lt _



4 iserver service

4.3.1 The Hello client

The Hello program prints one thousand times the message "Hello world - via
iseonv, and aserv (n)", then waits 10 seconds and terminates.

4.3.2 Configuring the Hello example

The program hello. c can be run using the iserver directly. The program can also
run with the AServer using the iserver converter and iserver service. This is done
by configuring the same compiled and linked unit with the iserver converter, isconv,
and the target gateway, gateway. This is shown in the configuration file hello.efs,
which is outlined below:

/* hardware */

/* software */

••• host edge

process( ••• ) gateway;
••• connections

process( ••• ) isconv;
••• connections

process ( .•• ) hello;
••• connections

/* mapping */

place gateway on board;
place isconv on board;
place hello on board;

------------ L'T£~&;;I!I.I-----------19-



4.3 Hello example

4.3.3 Building the Hello example

The makefiles provided are equivalent to the following, which builds the bootable file
hello.btl that contains the Hello process, the iserver converter and the target
gateway process:

hello.btl: hello.efb
ieolleet hello.efb -0 hello.btl

hello.efb: hello.efs hello.eax
ieeonf hello.efs -0 hello.efb

hello.eax: hello.lnk hello.tax
ilink -f hello. Ink -ta -x -0 hello.eax

hello. tax: hello.e
iee hello.e -g -ta -0 hello. tax

4.3.4 Running the Hello example

Once built, the Hello example can be run using a command line like:

irun -si hello.btl

The SI option tells irun to display extra information as it runs, and the bootable
filename hello. btl tells irun to boot hello. btl onto the target hardware, serve
it and monitor the error flag. When run, hello. btl will cause irun to try to use the
built-in iserver service.

After displaying the message 1000 times, the program hello.btl will terminate, along
with the iserver service, the iserver converter and the gateway irun.

-20-----------lFillit_I-----------



4 iserver service

4.4 Hello2 example

Host Target hardware

o
iserver
services iserver

converters
Hello

processes

Figure 4.6 Hell02 example

This example is based upon the Hello example, but has five 'Hello world' processes
running at once, each with its own iserver service running in a separate window.
Figure 4.6 shows the processes involved and the AServer communication. Each Hello
process is identical to the Hello process in the previous example and has its own
iserver converter.

4.4.1 Configuring the Hello2 example

The configuration file hello2. efs listed below is similar to hello. efs but has repli
cated copies of the hello process and the iserver converter, iseonv.

The number of 'Hello world' processes can be changed simply by changing the line

val num_hellos 5;

in the file hello2. efs.

Note that there is an implementation limit for the number of host processes irun can
handle. This limit is currently around 6 or 7.

------------ LT£~~@n'.&~JI-----------2-1



4.4 Hello2 example

/* hardware */

/* software */

val num_hellos 5;

process( ••• ) gateway;
• •• connect ions

process( ••• )isconv[num_hellos];

rep i = 0 for num_hellos
{

connect gateway.from-processes[i] to isconv[i].as_out;
connect gateway.to-processes[i] to isconv[i].as_in;

process ( ••• ) hello[num_hellos];

rep i = 0 for num_hellos
{

connect isconv[i].iserv_in to hello[i).ts;
connect isconv[i].iserv_out to hello[i].fs;

/* mapping */

rep i
{

o for num_hellos

place isconv[i] on board;
place hello[i) on board;
use "isconv.cax" for isconv[i];
use "hello.cax" for hello[i];

4.4.2 Running the Hello2 example

Hello2 can be built in a similar way to Hello, this time using the makefile hello2 .mak.
It can be run using the command line:

irun -si hello2.btl

The first process uses the built-in iserver service. The other four iserver requests
start iserver processes. For X users, these will appear in separate windows if the
AServer database has xterm -e as the command.

_22 Efi~~@nk_lj ------------



4 iserver service

4.5 Getkey Example

The Getkey example demonstrates the use of the standard library function getkey ( )
to read keyboard input. Getkey starts three iserver-using processes, the source of
which is in the file getkey.c (listed below). Figure 4.7 shows the processes involved
and the AServer communication. Again each Getkey process has an iserver
converter. One iserver service is the built-in service and the other two are separate
processes.

Host
Target hardware

iserver
services

Figure 4.7 Getkeyexample

The following is an outline of a Getkey process.

int main()
{

int key;

key = ' ';

while (key != 'q')
{

key = getkey();

if (key == -1)
printf("No key pressed\n");

else
printf("Key is \'%c\'\n", key);

if (key == 'e')
abort();

iserver
converters

Getkey
processes

Each Getkey process reads keys from the keyboard using the getkey () function. Each
key is then displayed. If the key is a q then the process terminates; if the key is e then
the process sets the error flag using the abort () function. The function call

----------- ~~itmir,&~I-----------2-3



4.5 Getkey Example

is used to make the abort () function set the error flag.

If the error flag is set, then all three iserver services will display the same message
that the error flag is set, and then terminate.

Getkey is configured in a similar manner to He1l02, using three replicated copies of the
Getkey process, three replicated copies of the iserver converter, isconv, and a
target gateway, gateway.

_24 ~~I@BIlI-----------



5 Clients and services

5.1 Introduction

To gain full benefit from the AServer, the user may wish to write customized client or
service processes. This chapter describes in outline how such processes may be
constructed using the AServer library provided. Examples of clients and services are
described in sections 5.7 and 5.9. An alphabetical list of AServer library functions, with
parameters and other details, is given in Chapter 6.

Clients and services communicate using the AServer protocol, possibly through gate
ways. This protocol makes the processes portable. The AServer protocol is defined in
Appendix B and is supported by the AServer library.

The full libraries are provided as ANSI C libraries for portability. It is expected that client
processes running on target hardware will be written in INMOS ANSI C, and the exam
ples in the body of the text of this chapter use ANSI C. occam users are recommended
to use ANSI C interface processes between the occam application and the AServer
protocol channels. Client processes can be written in occam if necessary, and an
example is given in section 5.10.

5.2 Initializing data structures

The AServer library uses a static data structure in each process to hold the type of
communications used and maintain the state of the access point. This must be initialized
by calling the function in Table 5.1 before any other AServer library routine is called.

Function name Purpose

Initialize an access point

Table 5.1 Library function to initialize access points

The parameters for as_apstart depend on the processor on which it is running. To
initialize the access point in a host process on a PC under Windows, no parameters are
needed, so the code would look like:

asrc result_code;

For Sun hosts, as_apstart takes two pre,defined file descriptors. The defaults are
AS_CHILD. IN_PIPE and AS_CHILD. OUT_PIPE, which are defined in the header file
asslib.h. To initialize the access point in a host process on a Sun the code would look
like:

----------- IJt:T£~itm21f,~I-----------2-5-



5.2 Initializing data structures

#include <osslib.h>
asrc result_code;

result_code = as_apstart (AS_CHILD. IN_PIPE,
AS_CHILD.OUT_PIPE);

Initializing the access points for an application process running on the target processor
is slightly different, because the application uses channels which must be passed in from
the context. These channels will often be configuration level channels connected to a
gateway. In this case, the channels must be passed into the process code, so in ANSI
C code they must be retrieved using get-param.

For example, for a single access point process:

#include <aslib.h>

int main()
{

asrc result_code;
Channel *chan_aserv_in
Channel *chan_aserv_out

(Channel *)get-param(3);
(Channel *)get-param(4);

result_code = as_apstart(chan_aserv_in, chan_aserv_out);
if (result_code != ASRC_SUCCESS)

printf("Failed to initialize access point\n");

Connection table

A connection table is used by the AServer library to hold for each connection the access
point number and the address of the process connected to the other end. The table must
be declared as an array of type conn_id, with the number of elements being the
maximum number of connections open at anyone time. This array must be kept and
not altered until all the connections are no longer needed. The connection table is
initialized with the function as_setconntable, as shown in Table 5.2.

Function name

as_setconntable

Purpose

Set up a connection table for calling process

Table 5.2 Library function to initialize a connection table

For example:

#include <aslib.h>
#define MAX_CONNECTIONS 4
conn_id conn_table[MAX_CONNECTIONS];
asrc res;

res = as_setconntable(MAX_CONNECTIONS, conn_table);
if (res != ASRC_SUCCESS)

printf("Failed to initialize connection table\n");

_26 E;i~~1!IlA~I-----------



5 Clients and services

5.3 Waiting for packets to arrive

It is essential that services and clients are always ready to receive a packet, since the
AServer contains no buffering. For example, processes must not wait for a key press
using getkey, since a packet may arrive while the process is waiting.

The mechanism to wait for incoming packets without blocking other events depends on
the platform being used. On the target processor in C, a channel ProcAlt function call
can be used, and a macro is provided to return the channel. In occam an ALT can be
used. On Sun systems, a 'select' system call can be used, and a macro is provided to
return an input pipe/socket file descriptor. In Windows 3.1 the AServer callback function
is used, as described in section 5.3.1.

This is summarized in Table 5.3 and further details are given in Chapter 6.

Platform Mechanism Macro or function

Target ChannelALT Macro AS_AP_GlVE_TX_CHAN (ap_num) returns a channel.

Sun Pipe I socket 'select' Macro AS_AP_GlVE_SUN_FD (ap_num) returns an input
call pipe I socket file descriptor

Windows 3.1 AServer callback Function ass_set_cb (callback_function) sets up the
AServer callback function.

Table 5.3 Library macros to wait for packets

If necessary, the receiving process can use as_read_ready to poll for incoming
packets, but this should be avoided if possible, as polling can be very wasteful of
processor time.

5.3.1 AServer callback

For services running on a PC under Windows only, an AServer callback function should
be set up using ass_set_cb, as shown in Table 5.4.

Function name Purpose

Set up an AServer callback function

Table 5.4 Library function to initialize a connection table

For example, to set up a callback function called AserverCallback:

ass_set_cb (AserverCallback);

The AServer callback function must be of type AserverProc, defined by:

typedef void (*AserverProc) (short aserverEvent);

AServer callback is described in more detail in section 5.8.2.

5.4 Connecting and disconnecting

Before communication can take place, a connection must be made between a client and
a service. The connection should be closed when the communication has ceased. The
AServer library functions related to connecting and disconnecting are listed in Table 5.5.

____________ ~~I@IlfI. 2_7_



5.4 Connecting and disconnecting

Function name Purpose

asc_connect Request a connection to a service

ass_acceptconnect Accept a connection request from a client

ass-processconnect Process a connection request

as_decode_conn_req Decode a connection request

asc_disconnect Request a disconnection from a service

ass_sendabort Request to abort a connection to a client

as_get_conn_info Get information about a connection

Table 5.5 Library functions to connect and disconnect

First, the client must request a connection, using asc_connect. This function waits for
a reply before returning. The service may be waiting to accept the connection, using
ass_acceptconnect, which automatically processes the request and sends a reply.

Alternatively, the service may be reading packets from some other connection using
as_rec-packet or an as_readpktcb callback function. In this case, the header of
the packet is extracted using as_translate-pkt and the type is extracted from the
header using as_hdr_get_type. The service then calls ass-processconnect to
process the request and send a reply.

For example:

int ap_num, c_num;
packet_hdr hdr;
pkt_type type;
unsigned char data[MAX_PACKET_SIZE];
asrc result;

result = as_rec-packet(ap_num, hdr, data);
result = as_translate-pkt(result, ap_num, hdr, data, NULL);
type = as_hdr_get_type(hdr);
if (result 1= ASRC_SUCCESS)

printf("Error trying to read packet\n");
else if «type & ASPH_TYPE_MASK) == ASPT_CONNECT_REQ)

result = ass-processconnect(ap_num, hdr, data, &c_num,
ASRC_SUCCESS, NULL);

The asc_connect function returns a connection number to the client as one of its
parameters. Similarly, ass_acceptconnect or assprocess_connect give a
connection number to the service. This number is used when sending and receiving
message or packets and when disconnecting.

After the communications are complete, the connection should be closed by the client
calling asc_disconnect. Any further packets received on that connection will be
discarded. If the service needs to close the connection for any reason, then it can do
so by calling ass_sendabort.

-2-8-----------lEfi~H~I&~I-----------



5 Clients and services

5.5 Sending and receiving

Messages and packets may be sent and received by either the client process or the
service process. The AServer functions to do this are listed in Table 5.6.

Function name Purpose

as_sendmessage Send an AServer message

as_recmessage Receive an AServer message

as_send-packet Send an AServer packet

as_rec-packet Receive an AServer packet

as_read_readY Poll whether a packet is waiting to be read

as_translate-pkt Translate packet type into components

Table 5.6 Library functions to send and receive

The connection being used is identified by a connection number. The client should use
the connection number given by asc_connect, while the service should use the
connection number given by ass_acceptconnect or assprocess_connect.

5.5.1 Packet level communications

Support is provided for low-level packet communication. If the access point is receiving
interleaved packets, then communications should be read as packets using
as_rec-packet. In other cases, all communications should normally be performed by
the message communication functions, which are much simpler to use.

Sending a packet

The sending process must provide a packet header for each packet sent. The header
will normally be constant for any particular connection except possibly for the data
length. Packet headers are built using the library functions in Table 5.7.

The packet header consists of five fields: data length, gateway index, connection
number, packet type and protocol byte. The data length is given in bytes. The gateway
index and connection number and can be set by as_set_dest.

Function name Purpose

as_hdr_set_len Set data length field in packet header

as_set_dest Set the gateway index and connection number fields of a packet
header

a s_hdr_set_gateway_i Set gateway index field in packet header

as_hdr_set_conn_num Set connection number field in packet header

as_hdr_set_type Set packet type field in packet header

as_hdr_set-p_byte Set protocol byte field in packet header

as-pack_hdr Set all fields of packet header

Table 5.7 Library functions to build packet headers

-----------If;l~itnl&~I-----------2-9



5.6 Terminating data structures

The packet type should normally be ASPT_DATA, except that if the current packet is the
last packet of the message then ASPT_DATA should be or-ed with the constant
ASPH_EOM_MASK to set the End-of-Message bit. Other packet types are listed in
Chapter 6.

The protocol byte field is user-defined, for use as a tag for data message types.

Receiving a packet

The packet is received using as_rec---packet. The receiving process must then call
as_translate---pkt to process the packet. This function automatically deals with
disconnect and abort requests.

The received packet header may be decoded using the library functions listed in
Table 5.8. The packet type needs to be further decoded by ANDing with
ASPH_EOM_MASK to extract the type and using the macro ASPH_IS_EOM
(packet_type) to extract whether the packet is the last of the message.

Function name Purpose

as_hdr_get_len Get data length field from packet header

a s_hdr_get_gateway_i Get gateway index field from packet header

a s_hdr_get_conn_num Get connection number field from packet header

as_hdr_get_type Get packet type field from packet header

as_hdr_get-p_byte Get protocol byte field from packet header

as_unpack_hdr Get all fields from packet header

Table 5.8 Library functions to decode packet headers

5.6 Terminating data structures

For services running on a PC under Windows only, the service libraries and data
structures should be closed down using as_apfinish, as shown in Table 5.9, before
the service is terminated. For example:

result_code = as_apfinish();

Function name Purpose

Close down data service structures

Table 5.9 Library function to close down Windows service data structures

5.7 Echo example

In this example, the application process talks directly to a custom built Echo service,
using the AServer gateways but avoiding the iserver protocol. This route is used for
the high performance part of the example. It also uses the iserver service where
appropriate.

-3-0-----------lii~ii@RIrA~AI-----------



5 Clients and services

A full listing of the Echo example is given in Appendix A.

iserver messages are at most 1040 bytes long, and each one is acknowledged before
the client can continue. The AServer supports messages of arbitrary length and
responses are not always necessary. The Echo example demonstrates the perfor
mance gains that come from using messages greater that one packet long. If this facility
is being used then the iserver service is not suitable, so a custom-built service must
be written, in this case the Echo service. This example also demonstrates how easy it
is to add functionality to that provided by the standard i server service.

The target code in the file echo. c acts as a client, sending messages to the specially
written Echo service, which receives AServer messages and sends those same
messages back to the client. Since this is all performed using AServer protocol, no
iserver converter is needed for this communication.

However, the Echo process also uses standard i/o, using iserver protocol, to write
messages on the screen. For this reason, an iserver service and iserver converter
are needed as well. Figure 5.1 shows the processes involved and the AServer commu
nication.

Host

Echo
service

Target hardware

iserver
converter

5.7.1 Echo client

Figure 5.1 Echo example

The Echo client has one AServer access point, which it uses to communicate directly
with the gateway to send the large messages using the AServer library routines. The
Echo client uses printf calls using the standard C run-time library, which uses the
iserver service. This uses a pair of channels to the iserver converter which are only
explicitly shown in the configuration code.

Connecting to the service

The Echo client initializes the AServer library with the line

----------- E;iBllf.~~I-----------3-1



5.7 Echo example

and then displays 'Hello' ten times.

If all is still well, Echo initializes its connection table:

and connects to the echo service:

res = asc_connect("echo", "" , 0, &conn_num, NULL);

The first argument of asc_connect is "echo" which is the name of the service
requested and is the name which appears in the AServer database file. There are no
extra parameters to pass to the echo service, so the second argument is an empty string
("H). The connect request is to be sent from the access point 0, which is the only access
point. It is connected to the gateway and thus can be used to reach the Echo service
on the host. conn_num returns the connection number if the connection is successful.
The final, NULL, parameter, causes asc_connect to discard any unexpected packets;
there will not be any in this example.

Communicating with the service

The main code of Echo calls echo_test () a number of times, each with different
message lengths and number of messages. The outline of echo_test is shown below:

asrc echo_test(int conn_num,
unsigned char *buf,
unsigned long msg_len,
int num_msgs,
const as_bool time_operation)

int count = num_msgs;

while «count> 0) && (res == ASRC_SUCCESS»
{

res = as_sendmessage(conn_num, msg_len, buf, NULL);

if (res == ASRC_SUCCESS)
rec_res = as_recmessage(conn_num, &rec_size, buf);

if «res == ASRC_SUCCESS) && (rec_res 1= ASRC_SUCCESS»
res = rec_res;

if (res == ASRC_SUCCESS)
{

count --;

return(res);

The echo_test () function times the duration of a loop being executed num_msgs
times. Inside each loop, a message of length msg_len is sent and then received. The

_32 Eii~it1"nJI£~JI-----------



5 Clients and services

total number of bytes both sent and received is displayed, along with the time taken to
send and receive them and the number of bytes transferred per second.

The example shows how the number of bytes transferred per second dramatically
increases as the message size increases. Typically, over Ethernet to an INMOS IMS
8300, the transmission rate for 8kbyte messages is about four to five times greater than
for 1kbyte messages.

Disconnecting from the service

After performing the Echo tests using the function echo_test (), Echo disconnects
from the Echo service using:

(void) asc_disconnect(conn_num, NULL);

Echo ignores the result code returned because it does not make any further use of the
AServer library.

5.7.2 Configuration of the Echo client

The configuration source file is echo. cfs. There are three processes running on the
target:

/* software */

process( ••• ) gateway;

process( ••• ) isconv;

process( ••• ) echo;

5.7.3 Echo service

The Echo service runs on the host and simply reads and sends back the messages it
receives from the irun gateway. The Sun version is called echoserv, while the PC
version is called wechosrv.

Connecting to the client

The Echo service use of the AServer library starts with the same calls as Echo, to
as_apstart () and as_setconntable (MAX_ECHO_CONNECTS, conn_table).

The Echo service then waits for a connection request with the statement:

res = ass_acceptconnect(O, &conn_num, hdr, echo_buf, NULL);

The parameters to ass_acceptconnect () are the access point 0, conn_num which
returns the connection number, hdr the header of the connect request packet, and

-----------EUlitmftlf91-----------33
-



5.8 Callback

echo_buf, the data of the connect request packet. A host client or service only has one
access point, so it is always number o. -The final, NULL, parameter causes
ass_acceptconnect to discard any unexpected packets - there will not be any in this
example.

Communicating with the client

Once a connection has been formed, the Echo service enters a loop receiving
messages using:

It sends back the messages using:

If either as_recmessage or as_sendmessage returns a result which is not equal to
ASRC_SUCCESS then the Echo service terminates.

Disconnecting from the client

When the client sends a disconnection request, as_recmessage recognises the
request and returns ASRC_GOT_DISCONNECT_REQ. The Echo service then exits from
the loop. No further action is needed.

5.8 Callback

Callback functions are used by AServer to deal with external asynchronous events
which need immediate servicing. A function, called a callback function, is provided to
deal with the event whenever it occurs. When the event occurs, the normal sequence
of code is interrupted and the callback function is executed. When the callback function
returns, the interrupted code continues. The callback function can leave some state
which the main code can test and use.

There are two kinds of callback used by the AServer. A read callback is used on all hosts
when a packet arrives during certain library function calls which may be sending
messages. The read callback function reads the incoming packet and stores it in a
buffer. Read callbacks are described in section 5.8.1.

An AServer callback is used by Windows code for services run on PC hosts. Windows
code is essentially event-driven, so the code to handle an incoming packet or message
is an event-handling routine called an AServer callback function. AServer callbacks are
described in section 5.8.2.

5.8.1 Read callback

It is possible that a process may receive a packet while it is executing one of the sending
functions asc_connect, asc_disconnect, ass----processconnect, as_send
message, as_send----Packet or as_translate----Pkt. In order not to lose such a

_34 I:;l~~1!IItI'lf _



5 Clients and services

packet, a read callback can be used. Read callback means that the user provides a
function to handle the packet when it arrives. The callback function is provided by
passing a pointer as a parameter, so the callback function must be of type
as_readpktcb, which is defined by:

typedef asrc (*as_readpktcb) (int apnum,
packet_hdr hdr,
unsigned char *pkt_data)

A function of type as_readpktcb is used by a client or a service as a parameter to a
sending function. If any packets are received while sending, then the callback function
is called by the sending function.

A NULL callback function pointer can be passed to a sending function, in which case the
sending function will not attempt to read from the access point and thus may deadlock.
A NULL pointer should be used with care, and a function should normally be used. Some
implementations may have to read and discard the packet. In this case it returns an
error.

The callback function must not make any calls to the AServer library apart from those
that simply examine the packet (as_hdr_get_*), so the packets should normally be
buffered and processed later by the calling process.

After the sending function has returned, the calling process should check for buffered
packets. Any buffered packets should first be processed by as_translate-pkt
before processing the packet.

The Print example described in section 5.9 shows how callbacks and buffering can be
used.

5.8.2 AServer callback

The AServer callback applies only to services to be run on PC hosts under Microsoft
Windows.

The AServer callback function is set up by the function ass_set_cb. For example, to
set up a callback function called AserverCallback:

ass_set_cb (AserverCallback)

The callback function is started by the AServer when certain events occur. The two types
of event which trigger the AServer callback are:

• ASCB_RECPKT whenever a packet arrives for the service;

• ASCB_SIGINT whenever a terminate signal arrives from irun.

The AServer callback function must be of type AserverProc, which is defined by:

typedef void (*AserverProc) (short aserverEvent)

___________ ~~~1~1----------_3-5



5.9 Print example

When the callback function is called, the aserverEvent should have a value of either
ASCB_RECPKT or ASCB_SIGINT, indicating the type of event which has occured. If
ASCB_RECPKT has occurred then the the incoming packet should be read, as described
in section 5.5. If ASCB_SIGINT has occurred then the window should be closed.

An example of an AServer callback function and its use is given in the Print example,
described in section 5.9.3. The normal structure of an AServer callback function is:

void AserverCallback(short aserverEvent)
{

switch (aserverEvent)
{

case ASCB_RECPKT
deal with incoming packet

case ASCB_SIGINT
close window

When dealing with the incoming packet, it is usual to read and unpack the packet header
first and then deal with any packets read by the read callback function:

case ASCB_RECPKT
/* A packet is ready for reading */

/* Read it */
res = as_rec-packet(apNum, hdr, data);

do
{

/* Process packet */
interpret packet header

/* Keep processing packets from the list
* until the packet list is empty. */

if (pktListLength > 0)
remove packet from list

} while (anotherPacket);
break;

5.9 Print example

The Print example demonstrates:

an asynchronous service in which not all messages from the client have replies.

2 callbacks;

_36 ~~&IDm?III------------



5 Clients and services

3 multiple connections to a service;

4 the building up of messages from possibly interleaved packets.

This Print example uses a custom print service, called printer. Figure 5.2 shows the
processes involved and the AServer communication.

A full listing of the Print example is given in Appendix A.

5.9.1 The Print client

The Print client, print. 0, initializes itself and then connects to the print service. The
client then loops 1000 times. Inside the loop the function pr-print is called to print a
message. pr-print takes a connection number as its first parameter and then a format
string and values in the same manner as the standard printf function.

Printing function pr-print

pr-print is much faster than using the standard printf function. printf uses the
iserver service, and thus each printf sends a string to the iserver and then waits
for a reply. pr-print simply sends a string to the print service and then continues
without awaiting a reply.

static asrc pr-print(int c_num, const char for.mat[], ••• )
{

res = pr_sendmessage(c_num, 2L + (long) strlen(str), mag, NULL);
return (res);

Host Transputer Network

Print
services

Figure 5.2 Print example

----------- ~1~nll~I-----------3-7-



5.9 Print example

Sending messages function pr_sendmessage

The function pr~rint uses the function pr_sendmessage instead of the standard
as_sendmessage function. pr_sendmessage takes exactly the same parameters as
as_sendmessage. It is different in that the maximum size of the packets sent can be
adjusted by changing the value of the PR_SEND_PKT_SIZE macro. PR_SEND_PKT_

SIZE must never be made greater than MAX_PACKET_SIZE.

In general, most strings will fit in a single packet of size MAX_PACKET_SIZE. If, however,
PR_SEND_PKT_SIZE is set to a value of, say, 5, then each packet will have a data part
of a most 5 bytes, and each message will usually require more than one packet. It also
works very slowly if PR_SEND_PKT_SIZE is reduced to 1. This will reduce the perfor
mance but demonstrates the ability of the printer service to build up messages from
interleaved packets, since the packets making up different messages from different
clients will arrive interleaved.

static asrc pr_sendmessage(int c_num,
unsigned long data_size, unsigned char *data,
as_readpktcb read_fn}

while «res == ASRC_SUCCESS) &&
«len_to_go > OUL) I I (sent_a-pkt == AS_FALSE»)

{

data_len p_len;

if (len_to_go > PR_SEND_PKT_SIZE)
{

p_len = (data_len) PR_SEND_PKT_SIZE;
}

else
{

p_len = (data_len) len_to_go;
as_hdr_set_type(send_hdr, ASPT_DATA I ASPH_EOM_MASK);

as_hdr_set_len(send_hdr, p_len};
res = as_send-packet(ap_num, send_hdr, data, read_fn};
len_to_go -= (unsigned long) p_len;
data += p_len;
sent_a-pkt = AS_TRUE;

return(res};

Flushing function pr_flush

The purpose of the pr_flush function is to flush out all communications in progress.
It makes the client wait until the service has caught up and all handshaking has
completed. It is included in this example as an illustration.

Every 100 times round the loop pr_flush is called. pr_flush takes a connection
number as its parameter. It sends a message to the service and then waits for a reply.
The first byte of each message sent to the print service indicates the type of message.

_38 Jifi~~@mVI&~lf ------------



5 Clients and services

The value PR_STRING, defined in print. h, indicates a string to be printed, while
PR_FLUSH indicates a flush request.

static asrc pr_flush(int c_num)
{

res = as_sendmessage(c_num, 1, mag, NULL);
if (res == ASRC_SUCCESS) {

unsigned long msg_len = lOL;
res = as_recmessage(c_num, &msg_len, msg);

}

return(res);

The main program

The main part of the program starts by setting up the connection to the print service:

res = as_apstart(chan_aserv_in, chan_aserv_out);
if (res == ASRC_SUCCESS)

res = as_setconntable(CONN_TABLE_SIZE, conn_table);
if (res == ASRC_SUCCESS)

res = asc_connect("print", "", 0, &coDn_num, NOLL);
if (res == ASRC_SUCCESS)

connected = AS_TRUE;

The main loop does 1000 prints, provided there are no communication failures:

while «res == ASRC_SUCCESS) && (i < 1000»
{

res pr-print(coDn_num,
"Hello world (hello no. = %d) - via printer (i

%d) \n",
*hello_num, i);

if «res ASRC_SUCCESS) && «i % 100) 0»
res = pr_flush(coDn_num);

i++;

5.9.2 Configuring the Print client

The configuration source file is print. efa. It uses replication to connect the multiple
print clients to the gateway.

___________ i.Ti~&;mYl:~lj 3_9



5.9 Print example

/* software */

val num-prints 10;

process ( ••• ) gateway;

process ( ••• ) print[num-prints];

rep i = 0 for num-prints
{

connect gateway.from-processes[i] to print[i].as_out[O];
connect gateway.to-processes[i] to print[i].as_in[O];
print[i] (hello_num = i);

The line

val num-prints 10;

sets the number of Print clients. Changing the number will change the number of clients.
The source of the print service currently allows a maximum of 8 clients; this can also be
changed.

5.9.3 The Print service

The Print service, printer, is the most complex of the example services. The source
code of the service is in the file printer. c for Suns or wprinter •c for PCs, and is
listed in Appendix A.

Initializing

On Suns the initializing is the same as for the the Echo service. On PCs, the AServer
callback function must also be set up. For example, if the callback function is called
AserverCallback then:

ass_set_cb(AserverCallback);

After this has been done, the AServer callback function is automatically called whenever
a packet or terminate signal arrives.

Read callback

The print service could receive packets from one of the clients at any time, even while
it is sending. It is therefore necessary that all the AServer library calls that could send
packets (as_translate-pkt , ass-processconnect and as_sendmessage) all
have a callback function, add_to-l)kt_list, as their final parameter.

The callback function is called whenever the function receives a packet it cannot
process because it is either sending a packet or waiting for a specific packet. The
callback function is not allowed to use any AServer library calls, and thus should
normally (as in this example) buffer the packet up for later processing.

_40 EfiI~t_~~JI-----------



5 Clients and services

static asrc add_to-pkt_list(int ap_num,
packet_hdr hdr, unsigned char *data)

••• set up space for entry on packet list

if (res == ASRC_SUCCESS)
••• copy packet into linked list

return (res);

Buffered packets are processed later. On Suns they are processed at the start of the
main while loop. On Windows systems they are processed by the AServer callback
function immediately after a packet has been read following the ASCB_PKTREC AServer
callback event.

If there are any packets buffered up, a packet is removed from the list of packets, rather
than read from the access point. Note that the as_translate-packet call is made
after the packet has been removed from the list of buffered packets.

The main code

Each time round the main loop, the Sun version of the service either:

removes a packet from the buffer of waiting packets if there is one or else

2 reads a packet in.

if (pkt_list_len > 0)
{

}

else
{

ap_num = 0;
res = as_rec-packet(ap_num, hdr, data);

The PC Windows version is structured differently, demonstrating the use of AServer
callback. The AServer callback function AserverCallback is automatically called
whenever the following AServer events occur:

• ASCB_RECPKT whenever a packet arrives;

ASCB_SIGINT whenever a terminate signal arrives from irun.

If the event was a packet arriving then the AServerCallback function handles the
incoming packets by:

reading in a packet;

2 removing packets from the buffer of waiting packets until there are none left.

___________ ...,,~Ig;~. 4_1



5.9 Print example

/* Read packet */
res = as_rec-packet(apNum, hdr, data);

/* Process new packet, and keep processing packets *
* until the packet list is empty. */

do
{

••• deal with packet waiting in buffer
} while (anotherPacket);
break;

The packet handling is the same in the two versions except that in the Sun version it is
part of the main loop while in the PC version it is part of the AServer callback function.
In both versions, each packet is decoded to distinguish connect requests and discon
nect requests from data:

res = as_translate-pkt(res, ap_num, hdr, data, add_to-pkt_list);
type = as_hdr_get_type(hdr);
if (res == ASRC_SUCCESS)
(

switch(type & ASPH_TYPE_MASK)
{

case ASPT_CONNECT_REQ:
••• deal with connect request

case ASPT_DATA:
••• deal with data

}

else if (res == ASRC_GOT_DISCONNECT_REQ)
••• deal with disconnect request

Each connect request packet is processed using the ass-processconnect function,
and each data packet is added to a buffer. Each connection has a buffer, and incoming
packets are added to it. This allows interleaved packets from different connections.

The data packets from each connection are built up into messages:

int c_num = (int) as_hdr_get_conn_num(hdr);
int len = (int) as_hdr_get_Ien(hdr);

memcpy(msg_buffers[c_num].data + msg_buffers[c_num).len, data, len);
msg_buffers[c_num).len += len;

When a complete message has been built, the message is processed. If the first byte
is PR_STRING, the rest of the message is a string to be printed. If the first byte is
PR_FLUSH, then a zero length message is returned to the client. Note that because the
message is zero length, a NULL data pointer can be used.

_42 ~1f~~I&~I-----------



5 Clients and services

if (ASPH_IS_EOH(type»
{

switch(msg_buffers[c_num).data[O)
{

case PR_STRING:
printf("got string ••• ", ••• );
break;

case PR_FLtJSH:
printf ("got flush ••• ", ••• );
res = as_sendmessage(c_num, 0, NULL, add_to-pkt_list);
printf("sent flush reply\n");
break;

}

msg_buffers[c_num).len = 0;

5.9.4 The AServer database

The default PC AServer database file contains the line:

I print I wprinter. exe I 4

Similarly the Sun AServer database file contains the line:

I print I xterm -e printer I 4

In each case, the number 4 in the last field is the maximum number of client connections
that irun allows each instance of the print service to handle. This number must be
greater than or equal to 1, and no more the maximum this service is programmed
handle. In the printer example, the maximum number of connections the service code
can handle is given by MAX_PRINT_CONNECTS, which is set to 8.

With 10 clients, irun will start three print services, two with four clients, and one with
two. Using the SI option will show this in operation. Changing the 4 to 5 in the AServer
database file will cause only two print services to be started, each with five clients.

An implementation limit means that currently ten services cannot be supported at once,
so changing the 4 to 1 is not possible, at least without changing num-prints.

5.10 occam clients

An example of an occam client is provided in the examples directory in oecho . occ and
listed in Appendix A. This code is the occam equivalent of the Echo example in section
5.7.1. It uses occam versions of some of the library routines. The occam versions are
procedures, since occam functions cannot perform channel i/o.

The occam versions of the libraries use modified versions of the standard ANSI C
AServer libraries, as the C must not return a value. Some examples are given in the
examples directory in oaslib. c. For example, as_apstart is modified by the addi
tion of an interface as follows, to make it into oc_as_apstart:

----------- ~BItf.I-----------4-3_



5.10 occam clients

#include <stdio.h>
#include <aslib.h>
#include <misc.h>

void oc_as_apstart(Channel *in, Channel *out, asrc *result)
{

asrc res;

set_abort_action(ABORT_HALT);
res = as_apstart(in, out);
*result = res;

Each library procedure requires a TRANSLATE pragma and an EXTERNAL pragma to
translate the name and define the interface, as described in the occam 2 Toolset User
Guide. For example:

#PRAGMA TRANSLATE as.apstart "oc_as_apstart"
#PRAGMA EXTERNAL "PROC as.apstart(VAL INT GSB,

CHAN OF ASPROT in, out,
INT result) = 2048"

The structure of the outer level of the program is as follows. Stack and heap areas must
be set up for the C library routines. The body of the process is in the procedure main.

external file references
TRANSLATE and EXTERNAL pragmas
constants

PROC echo(CHAN OF SP fs, ts, CHAN OF ASPROT as. in, as.out}
PROC definitions

INT GSB:
••• declare heap and stack areas

SEQ
set up heap and stack

main (GSB, fs, ts, as.in, as.out}
close down

The procedure main is the body of the process. It sets up the communications and then
runs the procedure echo. test a number of times with different parameters.

-44-----------lifi~~@e&~I- --------



5 Clients and services

PROC main(INT GSB, CHAN OF SP fs, ts, CHAN OF ASPROT as. in, as.out)
INT res :
VAL INT CONN.TABLE.SIZE IS 1 :
[CONN.TABLE.SIZE] [3]INT32 conn.table
[MAX.ECHO.BUF.SIZE]BYTE buf :
INT conn.num :

SEQ
initialize

as.apstart(GSB, as. in, as.out, res)
IF

res <> ASRC.SUCCESS
display message

TRUE
SEQ

display messages
as.setconntable(GSB, conn. table, res)

display message
asc.connect(GSB, "echo", "", 0, conn.num, res)

display message
Test code
fill buffer with 1s
set up message lengths and numbers

SEQ i = 0 FOR number. runs
echo. test (GSB, fs, ts, conn.num, buf,

msg.len[i], num.msgs[i])

IF
res = ASRC.SUCCESS

asc.disconnect(GSB, conn.num, res)
TRUE

SKIP

The procedure echo. test sends the messages and receives the replies.

PROC echo.test(VAL INT GSB, CHAN OF SP fs, ts,
INT conn.num, []BYTE buf,
VAL INT32 msg.len, VAL INT num.msgs)

INT count, res, rec.res :
TIMER clock :

SEQ
initialize and display messages

WHILE (count > 0) AND (res = ASRC.SUCCESS)
SEQ

as.sendmessage(GSB, conn.num, buf, msg.len, res)
IF

res = ASRC.SUCCESS
as.recmessage(GSB, conn.num, buf, rec.size, rec.res)

TRUE
display message

check response
count := count - 1

finish off

----------- iT£11@m&.~1------_- 45-



5.10 occam clients

_46 L"LI~t_lt -----------



6 AServer library

This chapter describes the AServer library. The library consists of C functions for use
when sending and receiving using the AServer protocol. They may be called either in
client code or in service code except where the function description states otherwise.
Where appropriate, they are provided compiled for both the host and the target. Each
client and service on the host has only one access point. Processes on a target may
have multiple access points.

A description of using these library functions to write clients and servers is given in
Chapter 5.

6.1 Restrictions

The library functions provide no flow control or buffering other than that provided indi
rectly by the host transport mechanism, for example in UNIX pipes. This means that if
a packet could arrive then the programmer must ensure that the program is ready.

The receive message function cannot handle receiving interleaved packets from
different messages from different connections.

6.2 Function prototype and constant files

Function prototypes and constants for the AServer library are referenced by including
the header file aslib.h. aslib.h includes asconst.h and aspack.h. asmega.h
should also be included by user code that directly processes mega-packets instead of
using the library functions.

The filenames of the binary libraries are shown in Table 6.1. One of these files should
be linked in with user code, depending on the platform, Le. the processor on which the
code will run.

Platform Software Library binary filename

target ANSI C Toolset ast.lib

PC with MS-DOS Watcom compiler aslib.lib

PC with MS-DOS Microsoft compiler aslib_ms.lib

Sun libash.lib

Table 6.1 Library binary files

6.3 Data types and macros

Table 6.2 lists the defined types used by the AServer libraries. These types are defined
in the file asconst.h except for as_readpktcb which is defined in aslib.h.

----------- ii;i~~nll£~I-----------4-7



6.4 Constants and limits

Defined type Underlying type Description

AS_U:I:NT16 unsigned short 16-bit unsigned integer

data_len AS_U:I:NT16 Length of the data in an AServer packet

gateway_index AS_U:I:NT16 Gateway Index

conn_num AS_U:I:NT16 Connection Number

pkt_type unsigned char AServer packet type

protocol_byte unsigned char Protocol byte (not used by the AServer libraries, can be
used by the user)

packet_hdr unsigned char AServer packet header
[ASPH_S:I:ZE]

asrc int AServer library result code (see Appendix C).

as_readpktcb see section 6.5 Read callback function parameter for sending functions.

AserverProc see section 6.5 Aserver callback function parameter for Windows.

Table 6.2 AServer defined types

The size of an AServer packet header is ASPH_SIZE bytes, which has the value 8 in
this implementation and is defined in asconst. h. In calculations, the constant name
orthe expression sizeof (packet_hdr) should be used instead of the literal number.

The as_bool boolean type is defined in asconst •h. It can take the values AS_FALSE
and AS_TRUE. The macro AS_BOOL_TO_INT takes an as_boo1 as a parameter, and
returns an int which is non-zero for AS_TRUE, and zero for AS_FALSE.

On the target, the macro AS_AP_GlVE_TX_CHAN(ap_num) takes an access point
number as a parameter and returns a pointer to a Channel, enabling the use of the
various ProcAl t function calls to wait for either input from an access point or from other
channels. This macro is defined in astlib.h.

On Sun hosts, the macro AS_AP_GlVE_SUN_FD(ap_num) takes an access point
number as a parameter and returns the file descriptor of the input pipe/socket. This
facility enables the use of the 'select' system call to wait for either input from an access
point, or one or more file descriptors. This macro is defined in asslib.h.

When using AS_AP_GlVE_SUN_FD (ap_num) or AS_AP_GlVE_TX_CHAN (ap_num),
either as_rec---packet or as_recmessage should be called when the access point
is ready for a read operation.

The function as_read_ready is also available to poll to see if a packet is ready for
reading from an access point (see section 6.6.31 for details).

6.4 Constants and limits

The maximum size of an AServer packet is defined by the constant
MAX_PACKET_SIZE. The value is currently 1024. The maximum length of a service
name is MAX_SERVICE_NAME, set to 64.

These constants are in the header file asconst. h.

_48 ~~~®VJI&ql-----------



6 AServer library

6.5 Callback function type definition

6.5.1 AserverProc

Name AserverProc

Purpose

Used by

A function of type AserverProc is used as an AServer callback routine.
This callback function type is used by an AServer service to monitor
AServer events.

An AServer service running under Windows.

Description This callback is called when an AServer event occurs. The following
events are supported:

ASCB_RECPKT - A packet has been received and is ready to read.

ASCB_SiGiNT - Interrupt. The irun gateway is attempting to close
this service down. Depending on the application, the application
should terminate when this is received.

Interlace typedef void (*AserverProc) (short aserverEvent)

Header file aswlib.h

Parameters

Name

aserverEvent

Description

The 10 of the AServer event being raised.

Precondition None.

Return None.

Side effects None.

----------- iT£~i@_~~c1-----------4-9



6.5 Callback function type definition

6.5.2 as_readpktcb

Name

Purpose

Used by

as_readpktcb

A function of type as_readpktcb is used by a client or a service as a
parameter to a sending function (e.g. as_send-packet). If any packets
are received while sending, then the the callback function is called by the
sending function.

Any process.

Description A function of this type is called by the sending process.

A NULL callback function pointer can be passed into a sending function.
The sending function will not attempt to read from the access point, and
thus may deadlock. A NULL pointer should be used with care, and a
function should normally be used. Communications may fail if a NULL
callback function means that packets are discarded.

A typical callback function will buffer any packets received, and then the
caller of the sending function will read the packets from the buffer.

The callback must not make any calls to the AServer library apart from
those that simply examine the packet (as_hdr_get_*). The packets
should normally be buffered and processed later. as_translate-pkt
should be called after the packet has been removed from the buffer.
Callback functions are described in section 5.8 of Chapter 5, and the Print
example in section 5.9 shows how callbacks and buffering can be used.

Interface typedef asrc (*as_readpktcb) (int apnum,
packet_hdr hdr,
unsigned char *pkt_data)

Header file aslib.h

Parameters

Name Type In/Out Description

ap_num int In The number of the access point from which the packet was
received.

hdr packet_hdr In The header of the packet received.

data unsigned In The data of the packet received.
char *

Precondition None.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The send should continue.

_5o E;i~l®P'nlll1l-----------



6 AServer library

Return value: any result other than ASRC_SUCCESS.

The send should be aborted and return the same result code this function
returns.

Side effects None.

___________ ~~~m9.~JI-----------5-1



6.6 Functions

6.6 Functions

The use of the following functions and some examples are described in Chapter 5.
Functions beginning with asc_ may only be used by a client. Functions beginning with
ass_ may only be used by a service. Functions beginning with as_ may be used by
clients or services.

6.6.1 asc_connect

Name asc_connect

Purpose To make a connection to a service.

Used by An AServer client.

Description Attempts to connect to a service. A connect request is sent through the
access point, and a connect reply from the service or from the AServer
indicates whether the connection was successful or not.

Interlace asrc asc_connect(const char service_name[],
const char service-params[],
int ap_num, int *c_num,
as_readpktcb read_fn)

Header file aslib.h

Parameters

Name Type I/O Description

service- const char [] In The name of the service to connect to.
name

service- const char [] In Additional command line parameters for the service. If there
params are no additional command line parameters the empty string

1111 should be used.

ap_num int In The number of the access point through which the connection
is to be established.

c_num int * Out A pointer to the variable to hold the connection number for
this connection.

read_fn a s_readpktcb In A callback function called if any packets arrive that the
function cannot handle. If NULL, such packets are ignored.

Precondition There must be at least one free entry in the connection table.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The connection has been successful, and the variable pointed to by
c_num contains the connection number to be used when using the
connection.

-52-----------l:iiIf~@~~lf------------



6 AServer library

Return value: any result other than ASRC_SUCCESS.

The connection request failed, with the result code indicating the reason
(see Appendix C).

Side effects If the connection is successful, an entry in the connection table is allo
cated to the connection.

-----------li;l~J®~'i~' 5_3_



6.6 Functions

6.6.2 asc_disconnect

Name asc_disconnect

Purpose To disconnect from a service.

Used by An AServer client.

Description Disconnects from a service.

Interlace asrc asc_disconnect(int c_num, as_readpktcb read_fn)

Header file as1 ib •h

Parameters

Name Type 1/0 Description

c_num int In The connection number returned by the connection request.

read_fn as_readpktcb In A callback function called if any packets arrive that the function
cannot handle. If NULL, packets for other connections are
discarded. Packets for this connection are always discarded.

Precondition c_num must be a valid connection number.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The disconnect has been successful.

Return value: any result other than ASRC_SUCCESS.

An error occurred sending the disconnect request or receiving the reply,
and the connection is closed. The result code indicates the reason (see
Appendix C).

Side effects An entry in the connection table is freed.

_54 Eii~~®BI5'JI-----------



6 AServer library

6.6.3 ass_acceptconnect

Name ass_acceptconnect

Purpose To wait for a connect request from a client.

Used by An AServer service.

Description Wait for an AServer connect request from any access point. When a
connect request arrives, allocate a connection number, return it in
c_num, and send a connect reply to the client.

This function should be used only if a connect request packet is expected.
If any other packet could arrive, packets should be received using
as_rec-packet, and then ass-processconnect should be called
on each connect request.

Interlace asrc ass_acceptconnect(int ap_Dum, int *c_num,
packet_hdr hdr,
unsigned char *data)

Header file aslib.h

Parameters

Name Type In/Out Description

ap_num int In The access point to await a connect request from.

c_num int * Out The connection number of the connection from which the
connection request was received.

hdr packet_hd Out The packet header of the received connect request. Note that
r connect request messages are only one packet long.

data unsigned Out The data of the connect request message. See section 8.3.1
char * for information on the connect request format.

Precondition None.

Result Return value: ASRC_SUCCESS.

A connect request was received successfully.

Return value: ASRC_NOT_CONNREQ.

A packet other than a connect request was received.

Return value: any result other than ASRC_SUCCESS or
ASRC_NOT_CONNREQ.

An error occurred receiving the connect request. The result code indi
cates the reason (see Appendix C).

Side effects None.

----------- E;i11®I"~1cf91----------_5_5



6.6 Functions

6.6.4 ass-processconnect

Name ass-processconnect

Purpose To process a connect request received by as_rec-packet or by the
as_readpktcb callback function.

Used by Used by an AServer service.

Description Process a connect request received by as_rec-packet or by the
as_readpktcb callback function. Return the connection number in
c_num for use in subsequent operations on the connection.

The connection is only made if the result returned is ASRC_SUCCESS and
the result parameter is ASRC_SUCCESS. The connection request can be
refused by passing a result parameter other than ASRC_SUCCESS
(normally ASRC_FAILED) to the function.

Interlace asrc ass-processconnect(int ap_num, packet_hdr hdr,
unsigned char *data,
int *c_num, asrc result,
as_readpktcb read_fn)

Header file aslib.h

Parameters

Name Type I/O Description

ap_num int In The access point number of the access point from which the
request came.

hdr packet_hdr In The header of the connect request packet.

data unsigned char In The data of the connect request packet.

*
c_num int * Out If successful, the connection number of the newly formed

connection.

result asrc In The result to be returned to the requesting client. If this code
is anything other than ASRC_SUCCESS then the connection
is closed, and the connection number released.

read_fn as_readpktcb In A function to be called if any packets are received while
sending the connect reply. If NULL, ass-processconnect
may deadlock if there is a packet waiting to be read.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The connect reply was successfully sent.

Return value: any result other than ASRC_SUCCESS.

An error occurred sending the connect reply. The result code indicates
the reason (see Appendix C).

_56 E;i~~m.~I-----------



6 AServer library

6.6.5 ass_sendabort

Name ass_sendabort

Purpose To abort a connection to a client.

Used by An AServer service.

Description Disconnect from a client.

Interlace asrc ass_sendabort(int c_num)

Header file aslib.h

Parameters

Description

The connection number returned byass_acceptconnect.

Result Return value: ASRC_SUCCESS.

The abort was successful.

Return value: any result other than ASRC_SUCCESS.

An error occurred sending the abort request or receiving the reply, and
the connection is closed. The result code indicates the reason (see
Appendix C).

Side effects An entry in the connection table is freed.

----------- !Ti~~mYl£C?I-----------5-7



6.6 Functions

6.6.6 ass set_cb

Name ass set_cb

Purpose Sets the AServer service callback routine.

Used by An AServer host service running under Windows.

Interlace void ass_set_cb{AserverProc asCallback)

Header file aswlib.h

Parameters

Name Type 1/0 Description

asCallback AserverProc In The AServer callback function. If NULL then the AServer
callback is ignored.

Result None.

Side effects The callback function is set up.

_58 E;i1~EcI-----------



6 AServer library

6.6.7 as_apfinish

Name as_apfinish

Purpose To close down service structures.

Used by An AServer host service running under Windows.

Description This function should be used to clear library data structures and close
down libraries before terminating a Windows service.

Interface asrc as_apfinish (void)

Header file aswlib.h

Parameters None.

Result Return value: ASRC_SUCCESS.

The structures have been removed.

Return value: any result other than ASRC_SUCCESS.

The removal failed, with the result code indicating the reason (see
Appendix C).

Side effects The structures are cleared.

----------- ~_:;z~itIral.I-----------5-9



Interface

6.6 Functions

6.6.8 as_apstart

Name as_apstart

Purpose To initialize a single access point.

Used by Any process.

Description Initialize a single access point for a process. as_apstart must be called
before any other AServer library functions. The target version of this
function has channel parameters for ease of use in configuration and
occam. The versions for other platforms have parameters which depend
on the platform.

On targets:

asrc as_apstart(Channel *in, Channel *out)

On PC Windows hosts:

asrc as_8pstart()

On Sun hosts:

asrc as_apstart(int in, int out)

Header file aslib.h. The Sun default values are defined in asslib.h.

Parameters For targets, see table: .

Name Type In/Out Description

in Channel * InlOut Access point input channel.

out Channel * InlOut Access point output channel.

For Sun hosts, see table:

Name Type Default value Description

in int AS_CHILD. IN_PIPE Access point file descriptor for input.

out int AS_CHILD. OUT_PIPE Access point file descriptor for output.

Precondition This function should be called before any other AServer library calls.

Result Return value: ASRC_SUCCESS.

The access point has been correctly initialized.

Return value: any result other than ASRC_SUCCESS.

The initialization failed, with the result code indicating the reason (see
Appendix C).

Side effects Set the values of static variables in the AServer library that contain
information about the access point that belongs to the calling process.

60 ~SGS.DlOMSON------------ ....,£ ~O~~ImCQlKllO©® ------------



6 AServer library

Used by Any process.

Description Converts an asrc value into a string, typically for debugging.

Header file aslib.h

Parameters

Type
asro

Description

The value to be converted to a string.

Precondition None.

Result Return value: A pointer to a null-terminated string.

If res is a valid asrc the pointer is set to a string containing the name
of the value.

If res is not a valid asrc the pointer is set to a string containing
"Unknown ASRC value".

Side effects None.

----------- i:il1~_,9d1-----------6-1



6.6 Functions

Used by Any process

Description Converts an as_bool value into a string, typically for debugging.

Headerfi~ aslib.h

Parameters

Description

The as_bool boolean value to be converted to a string.

Precondition None.

Result Return value: A pointer to a null-terminated string.

If value is AS_TRUE then the string returned is "TRUE".

If value is AS_FALSE then the string returned is "FALSE".

Side effects None.

_62 i:i;i~H@DII9J1-----------



6 AServer library

6.6.11 as_decode_conn_req

Used by An AServer service.

Description Decode a connect request, returning pointers to the service name and
parameters given by the client.

Interlace void as_decode_conn_req(unsigned char *data,
char **service,
char **params)

Header file aslib.h

Parameters

Name Type In/Out Description

data unsigned char In The data part of a connect request.

*
service char ** Out Points to a pointer to the first character of a

null-terminated string containing the name of the
service requested by the client.

params char ** Out Points to a pointer to the first character of a
null-terminated string containing any parameter given
by the client.

Precondition None.

Side effects None.

----------- E;i~~nll&~I----------_6_3



6.6 Functions

Purpose To obtain information about a connection, typically for debugging.

Used by An AServer client or service.

Description Provide information about a connection.

as_get_conn_info takes a connection number and returns the
access point to reach the other end of the connection, the destination
gateway index, and the destination connection number.

Use as_set_dest to set the destination of a packet from a connection
number.

Interiace void as_get_conn_info(int c_num, int *ap_num,
gateway_index *dest_gateway_i,
conn_num *dest_conn_num)

Header file aslib.h

Parameters

Name Type 110 Description

c_num int In The number of the connection for which information is
required.

ap_num int * Out A pointer to the access point number for the
connection. If the value is INVALID_AP_NUM, then the
connection is not in use.

dest- gateway_ Out A pointer to the gateway index of the other end of the
gateway_i index * connection.

dest_conn_nu conn_num * Out A pointer to the connection number of the other end of
m the connection.

Precondition None.

Side effects None.

_64 ~~_I'I-----------



6 AServer library

Purpose To find an access point.

Used by An AServer client or service.

Description This returns a pointer to access point whose number is given as a param
eter.

Header file aslib.h

Parameters

Name

int

Type YO Description

In The access point number.

Precondition The access point number, ap_num, must lie in the range 0 up to
(num_aps - 1) inclusive.

Return A pointer to the specified access point.

Side effects None.



6.6 Functions

Purpose To decode the connection number field from an AServer packet header.

Description Unpack a packet header connection number and return that value.
as_hdr_set_conn_num should have been used to pack the connec
tion number.

Used by Any process.

Header file aspack •h

Parameters

Description

An AServer packet header

Precondition None.

Return The unpacked connection number field from an AServer packet header
hdr.

Side effects None.

_66 ~~itmMl£crt _



6 AServer library

Purpose To decode the gateway index field from an AServer packet header.

Used by Any process.

Description Unpack the gateway index value from an AServer packet header and
return that value. as_hdr_set_gateway_i should have been used to
pack the gateway index.

Header file aspack •h

Parameters

Description

An AServer packet header

Precondition None.

Return The unpacked gateway index field from the AServer packet header hdr.

Side effects None.

-----------I.Tl~~msll9l-----------6-7



6.6 Functions

Purpose To decode the data length field from an AServer packet header.

Used by Any process.

Description Unpack a data length value from an AServer packet header and return
the value. as_hdr_set_len should have been used to pack the data
length.

Header file aspack. h

Parameters

Description

An AServer packet header

Return

Precondition None.

The function returns the unpacked data length field from the AServer
packet header hdr.

Side effects None.

-68-----------lFiil~uJ.JI-----------



6 AServer library

Purpose To decode the protocol byte from an AServer packet header.

Used by Any process.

Description Unpack the protocol byte from an AServer packet header, and return that
value. as_hdr_set-p_byte should have been used to pack the
protocol byte.

Header file aspack •h

Parameters

Type

packet_hdr

Description

An AServer packet header

Precondition None.

Return The unpacked protocol byte from the AServer packet header hdr.

Side effects None.

------------ ~1~nlll?l-----------6-9-



6.6 Functions

Purpose To decode the AServer packet type from an AServer packet header.

Used by Any process.

Description Unpack the AServer packet type from an AServer packet header, and
return that value. as_hdr_set_type should have been used to pack
the AServer packet type.

Bits 0 to 6 hold the type and bit 7 holds the end-of-message tag (see
section B.2). Mask the result with ASPH_TYPE_MASK to get the packet
type and use the ASPH_IS_EOM () macro to test for the end-of-message
tag.

Header file aspack •h

Parameters

Type

packet_hdr

Description

An AServer packet header

Precondition None.

Return The unpacked AServer packet type from the AServer packet header hdr.

Side effects None.

_70 i:il~it~~lt _



6 AServer library

Purpose To set the connection number field in an AServer packet header.

Used by Any process.

Description Pack a connection number into an AServer packet header.

as_hdr_get_conn_num should be used to unpack the connection
number.

Interface

Header file aspack •h

Parameters

Name Type In/Out Description

hdr packet_hdr In/Out An AServer packet header

C_Dum conn_Dum In The value to be written into the connection number field of hdr

Precondition None.

Result The connection number field of the AServer packet header hdr is set to
c_num.

Side effects None.



6.6 Functions

Purpose To set the gateway index field in an AServer packet header.

Used by Any process.

Description Pack a gateway index value into an AServer packet header.

as_hdr_get_gateway_i should be used to unpack the gateway
index.

Interlace void as_hdr_set_gateway_i(packet_hdr hdr,
gateway_index gil

Header file aspack. h

Parameters

Name Type In/Out Description

hdr packet_hdr In/Out An AServer packet header

gi gateway_index In The value to be written into the gateway index field
ofhdr

Precondition None.

Result The gateway index field of the AServer packet header hdr is set to gi.

Side effects None.

72 ~SCS-THOMSON------------ ..~£ ~D~@~~'ii1m~~------------



6 AServer library

Purpose To set the data length field in an AServer packet header.

Used by Any process.

Description Pack a data length value into an AServer packet header.

as_hdr_get_len should be used to unpack the data length.

Interlace void as_hdr_set_len(packet_hdr hdr,
data_len len)

Header file aspack •h

Parameters

Name Type In/Out Description

hdr packet_hdr In/Out An AServer packet header

len data_len In The value to be written into the data length field of hdr

Precondition None.

Result The data length field of the AServer packet header (hdr) is set to len.

Side effects None.

----------- ~~itmal&~I----------_7_3



6.6 Functions

Purpose To set the protocol byte field in an AServer packet header.

Used by Any process.

Description Packs a protocol byte into an AServer packet header.

as_hdr_get-p_byte should be used to unpack the protocol byte.

Intedace void as_hdr_set-p_byte{packet_hdr hdr,
protocol_byte p_byte)

Header file aspack •h

Parameters

Name Type InlOut Description

hdr packet_hdr InlOut An AServer packet header

p_byte protocol_byte In The value to be written into the protocol byte field of
hdr

Precondition None.

Result The protocol byte field of the AServer packet header hdr is set to
p_byte.

Side effects None.

74 ~SGS.THOMSON------------ .:,£ ~D©OO@[g~'ii'rnl~a~------------



6 AServer library

Purpose To set the packet type field in an AServer packet header.

Used by Any process.

Description Packs a packet type into an AServer packet header.

as_hdr_get_type should be used to unpack the packet type.

Bits 0 to 6 hold the type, and bit 7 holds the end-of-message tag (see
section B.2).

Header file aspack •h

Parameters

Name Type In/Out Description

hdr packet_hdr In/Out An AServer packet header

type pkt_type In The value to be written into the packet type field of hdr

Precondition None.

Result The packet type field of the AServer packet header (hdr) is set to type.

Side effects None.

------------ LT£~~tmal'J?JI-----------7-5-



6.6 Functions

Used by Any process.

Description Converts an AServer packet header value into a string, typically for
debugging.

Header file aslib. h

Parameters

Name Type In/Out Description

str char * Out A character string buffer.

hdr packet In The AServer packet header to be converted to a string.

Precondition String str must be long enough to hold the header.

Return A pointer to a null-terminated string.

Side effects The string str is used as a buffer.

_7_6 J:ifi1~@~cf9c1------------



6 AServer library

6.6.25 as_numaps

Purpose To determine how many access points the calling process has.

Used by Any process.

Description Returns the number of access point that are available to the calling
process.

Interface asrc as_numaps (int *num_aps)

Header file aslib.h

Parameters

Type

int *
Description

The number of access points

Precondition The function will not work until the access points have been initialized by
as_apstart.

Return

Result

Result code.

Return value: ASRC_SUCCESS

The integer pointed to by num_aps is set to the number of access points
that the system has.

Return value: ASRC_FAILED

The access point table has not been initialized.

Side effects None.

----------- E;l~L_~~I-----------7-7



6.6 Functions

Purpose To pack values into all the fields of an AServer packet header.

Used by Any process.

Description Pack the len, gi, c_num, type, and p_byte values into an AServer
packet header. as_unpack_hdr should be used to unpack the whole
header, or the various as_hdr_get_* functions should be used to
unpack parts of the header.

Interlace void as-pack_hdr(packet_hdr hdr, data_len len,
gateway_index gi, conn_num c_num,
pkt_type type, protocol_byte p_byte)

Headerfi~ aspack.h

Parameters

Name Type I/O Description

hdr packet_hdr Out An AServer packet header

len data_len In The value to be written into the data length field of hdr

gi gateway_index In The value to be written into the gateway index field of hdr

c_num conn_Dum In The value to be written into the connection number field of
hdr

type pkt_type In The value to be written into the packet type field of hdr

p_byte protocol_byte In The value to be written into the protocol byte field of hdr

Precondition None.

Result The fields of the AServer packet header hdr are set to len, gi, c_num,
type, and p_byte.

Side effects None.

_7_8 E;i~~@mv.lj _



6 AServer library

6.6.27 as-pack_int32

Name as-pack_int32

Purpose To pack a signed 32-bit integer into a buffer of unsigned chars.

Used by Any process.

Description Pack a signed 32-bit integer into a buffer of unsigned chars.

as_unpack_int32 should be used to unpack the 32-bit integer.

Interlace void as-pack_int32(unsigned char *buf, long num)

Header file aspack. h

Parameters

Name Type 110 Description

buf unsigned char * Out Address to write the signed integer as four unsigned
chars, in Iittle-endian format

num AS_UINT16 In Signed 32-bit integer to write into buffer

Precondition buf must be a valid pointer into a buffer of unsigned chars, there must
be at least three unsigned chars after that pointed to by buf.

Result The signed 32-bit integer is stored in the buffer of unsigned chars.

Side effects None.



6.6 Functions

6.6.28 a s"""pack_uint16

Name a s"""pack_uint16

Purpose To pack an unsigned 16-bit integer into a buffer of unsigned chars.

Used by Any process.

Description Pack an unsigned 16-bit integer into a buffer of unsigned chars.

as_unpack_uint16 should be used to unpack the 16-bit integer.

Interface

void as......pack_uint16(unsigned char *buf, AS_UINT16 num)

Header file aspack •h

Parameters

Name Type In/Out Description

buf unsigned char * Out Address to write the unsigned int as two unsigned
chars, in little-endian format

num AS_UINT16 In Unsigned 16-bit integer to write into buffer

Precondition buf must be a valid pointer into a buffer of unsigned chars, there must
be at least one unsigned char after that pointed to by buf.

Result The unsigned 16-bit integer is stored in the buffer of unsigned chars.

Side effects None.

80 ~SGS-ntOMSON------------ ...,£ [r:i]O~@ffil1rn©~O~------------



6 AServer library

6.6.29 as-pack_uint32

Name as-pack_uint32

Purpose To pack an unsigned 32-bit integer into a buffer of unsigned chars.

Used by Any process.

Description Packs an unsigned 32-bit integer into a buffer of unsigned chars.

as_unpack_uint32 should be used to unpack the 32-bit integer.

Interface

void as-pack_uint32 (unsigned char *buf, unsigned long num)

Header file aspack •h

Parameters

Name Type In/Out Description

buf una igned char * In Address to write the unsigned int as four unsigned
chars, in Iittle-endian format

num AS_UINT16 In Unsigned 32-bit integer to write into buffer

Precondition buf must be a valid pointer into a buffer of unsigned chars, there must
be at least three unsigned chars after that pointed to by buf.

Result The unsigned 32-bit integer is stored in the buffer of unsigned chars.

Side effects None.

___________ ~IL-19~ 8_1



6.6 Functions

Purpose To convert a pkt_type value into a string, typically for debugging.

Used by Any process.

Header file aslib.h

Parameters

Name Type In/Out Description

type pkt_type In The packet type to be converted to a string. The
value should be masked with ASPH_TYPE_MASK it
necessary to remove any end-ot-message tag.

Precondition None.

Result Return value: A pointer to a null-terminated string.

If type is a valid pkt_type the pointer is set to a string containing the
name of the packet type.

If type is not a valid pkt_type the pointer is set to a string containing
"Unknown packet type".

Side effects None.

_82 E;i1~l®mgl£'1------------



6 AServer library

Purpose To poll to see whether a packet is ready to be read from an access point.

Used by Any process.

Header file aslib.h

Parameters

Name Type In/Out Description

ap_num int In The access point number of the access point to be
checked.

Return

Result

Boolean value.

Return value: AS_TRUE

A packet is available to be read.

Return value: AS_FALSE

No packet is available.

Side effects None.

83----------- E;i~Lll1&.~~I------------



6.6 Functions

6.6.32 as_recmessage

Name as_recmessage

Purpose To receive an AServer message.

Used by Any process.

Description as_recmessage cannot cope with interleaved packets from different
connections to the access point. If packets making up messages from
different connections to an access point could arrive interleaved, then the
packets should be read individually, and built up into messages by the
receiving process. For an example see the source of the Print example
provided in section 5.9.

Interlace asrc as_recmessage(int c_num,
unsigned long *data_size,
unsigned char *data)

Header file aslib.h

Parameters

Name Type In/Out Description

c_num int In The connection number of the connection from which the
message is to be received.

data_size unsigned InlOut On entry, *data_size is set to the maximum size that
long * the incoming message may be. On exit, *data_size is

set to the actual size of the message.

data unsigned Out The data to be read from the message.
char *

Precondition *data_size is set to the maximum size message that the caller wants.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The receive was successful.

Return value: ASRC_MSGTOOBIG

The message was longer than the *data_size value. The excess data
was discarded and the data in the buffer should not be relied upon.

Return value: any result other than ASRC_SUCCESS or
ASRC_MSGTOOBIG.

An error occurred receiving the message, with the result code indicating
the reason (see Appendix C).

84 ~SGS-1HOMSON------------ ...,£ ~o©OOrn~lml~O~------------



6 AServer library

6.6.33 as_rec-packet

Name as_rec-packet

Purpose To receive an AServer packet from an access point. It is strongly recom
mended that as_recmessage should be used instead if possible.

Used by Any process.

Description Receives a packet from the access point whose access point number is
ap_num. If a packet is not immediately available, then the function waits
until one arrives, or an error occurs.

To perform a 'select' or 'alt' type operation, waiting for one of a number
of access points and (possibly) host specific communications channels
(e.g. Sun sockets/pipes, or target channels) to become ready for a read
operation, the AS_AP_GIVE_SUN_FD and AS_AP_GIVE_TX_CHAN

macros should be used.

Interiace asrc as_rec-packet(int ap_num,
packet_hdr hdr,
unsigned char *data)

Headerfi~ aslib.h

Parameters

Name Type In/Out Description

ap_num int In The access point number of the access point to read the
packet from.

hdr packet_hdr Out The header of the received packet.

data unsigned Out The data of the received packet. The length of the data
char * received is determined using the as_hdr_get_len

function on hdr

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The receive was successful.

Return value: any result other than ASRC_SUCCESS.

An error occurred receiving the packet, and hdr and data are invalid.
The result code indicates the reason (see Appendix C).

An error occurred sending the packet.

Side effects None.

----------- "T£~~~&'1J1-----------8-5



6.6 Functions

6.6.34 as_sendmessage

Name as_sendmessage

Purpose To send an AServer message to a connection.

Used by Any process.

Interface asrc as_sendmessage (int c_num,
unsigned long data_size,
unsigned char *data,
as_readpktcb read_fn)

Header file as1 ib. h

Parameters

Name Type In/Out Description

c_num int In The connection number to send the message to.

data_size unsigned long In The length of the data to be sent in the message.

data unsigned char * In/Out The data to be sent in the message.

read_fn as_readpktcb In A function to be called if any packets are received
while sending. If NULL, then as_sendmessage may
block if there is a packet to be read, thus causing
deadlock.

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The send was successful.

Return value: any result other than ASRC_SUCCESS.

An error occurred sending the message, with the result code indicating
the reason (see Appendix C).

Side effects None.

_8_6 E;i~J©MI1t1-----------



6 AServer library

Purpose Used by a client or a service to send an AServer packet. It is strongly
recommended that as_sendmessage should be used instead if
possible.

Used by Any process.

Description To send a packet to a connection, given a connection number,
as_set_dest should be used to set the gateway index and connection
number fields in the packet header and to determine which access point
to send the packet to.

For general use, sending packets between clients and services, the
packet type should be ASPT_DATA.

Interlace asrc as_send-packet(int ap_num,
packet_hdr shdr,
unsigned char *sdata,
as_readpktcb read_fn)

Header file aslib.h

Parameters

Name Type In/Out Description

ap_num int In The number of the access point to send the packet to.

shdr packet_hdr In The header of the packet to send.

sdata unsigned In The data of the packet to be sent.
char *

Precondition The packet header must be correctly initialized (usually using
as_set_dest).

Return

Result

AServer result code.

Return value: ASRC_SUCCESS.

The send was successful.

Return value: any result other than ASRC_SUCCESS.

An error occurred sending the packet, with the result code indicating the
reason (see Appendix C).

Side effects None.

----------- ~~itlr.&~I-----------87-



6.6 Functions

6.6.36 as_setconntable

Name as_setconntable

Purpose To set up the connection table needed by the AServer library.

Used by Any process.

Description Each entry in the table allows one connection to be made (either as a
client or a service). Static variables in the library hold details of the
connection table, and each entry in the table is initialized.

Interlace asrc as_setconntable(int max_connects,
conn_id conn_table[]}

Header file aslib.h

Parameters

Name Type In/Out Description

max_connects int In The maximum number of connections that the
calling process wishes to use.

conn_table conn_id In The connection table to be used by the library.
conn_table [ ]

Precondition The table should have max_connects elements. If the table is larger
memory is wasted, if smaller then errors will occur.

Return

Result

The memory use by the table must not be de-allocated until the library
has been completely finished with.

AServer result code.

Return value: ASRC_SUCCESS.

The connection table has been correctly initialized.

Return value: ASRC_FAI LED.

The connection table has not been initialized because conn_table
was a NULL pointer.

Side effects Set the values of static variables in the AServer library to hold a pointer
to the connection table and to hold the maximum number of connections.

_88 ~~J©m.~©~ _



6 AServer library

Purpose To set the destination fields (gateway index and connection number) of
a packet header when sending a packet.

Used by Any process.

Header file aslib.h

Parameters

Name Type In/Out Description

hdr packet_hdr In/Out The packet header which is to have its destination
fields set.

c_num int * Out The number of the connection for which information
is reqUired.

Return The access point number of the access point used to access the other
end of the connection (e.g. as a parameter to as_rec-packet), or, if the
connection is not in use, INVALID_AP_NOM.

Side effects None.

------------ ~~~mltf9I-----------8-9



6.6 Functions

6.6.38 as_translate-pkt

Name as_translate-pkt

Purpose To translate certain packet types into components.

Description If the value of the parameter prev_res is not ASRC_SUCCESS, then
as_translate-pkt immediately returns the value of prev_res.
Otherwise, as_translate-pkt examines the packet and, for certain
packet types and contents, translates the packet into a result code.
as_translate-pkt returns ASRC_SUCCESS if no translation was
performed. as_translate-pkt also processes disconnect and abort
requests.

If received packets are buffered up by a callback function, then
as_translate-pkt should be called for each buffered packet after it
has been removed from the buffer, rather than when it is added to it.

Any packet received as a packet (e.g. using as_rec-packet) must be
processed with as_translate-pkt.

Used by Any process.

Intenace asrc as_translate-pkt(asrcPrev_res, int ap_num,
packet_hdr hdr,
unsigned char *data,
as_readpktcb read_fn)

Header file aslib.h

Parameters

Name Type In/Out Description

prev_res asrc In A Previous result code. If Prev_res is not
ASRC_SOCCESS then as_translate-pkt returns
Prev_res. This enables as_translate-pkt to be
called immediately after, for example,
as_rec-packet.

ap_num int In The access point number of the access point that
the packet came from.

hdr packet_hdr InlOut The header of the received packet.

data unsigned char InlOut The data of the received packet. The length of the

* data received is determined by using the
as_hdr_get_len function on hdr

read_fn as_readpktcb In A callback function called if any packets arrive that
the function cannot handle. If NULL, then the packets
are discarded.

Precondition None.

Return AServer result code.

_9o Ji;i~itMll©~ -------- _



Result

6 AServer library

Return value: ASRC_SUCCESS.

The packet did not need translating.

A disconnect request was received, and the connection has been closed.

An abort request was received, and the connection has been closed.

Return value: any other result

Either an error occurred, or the packet was translated into a result code
(e.g. ASRC_TX_ERROR or ASRC_TERMINATE).

Side effects If the packet is a disconnect or abort request then as_translate-pkt
will close the connection.

----------- ~~~mal£?I-----_-_---9-1



Result

6.6 Functions

Purpose To unpack values from all the fields of an AServer packet header.

Used by Any process.

Description Unpack the len, gi, c_num, type, and p_byte values from an AServer
packet header. as""pack_hdr should have been used to pack the whole
header, or the various as_hdr_set_* functions should be used to pack
parts of the header.

Interface void as_unpack_hdr (packet_hdr hdr,
data_len *len,
gateway_index *gi,
conn_num *c_num,
pkt_type *type,
protocol_byte *p_byte)

Header file aspack . h

Parameters

Name Type 110 Description

hdr packet_hdr In An AServer packet header

len data_len * Out A pointer to the data length unpacked from hdr

gi gateway_index * Out A pointer to the gateway index unpacked from hdr

c_num. conn_num * Out A pointer to the connection number unpacked from hdr

type pkt_type * Out A pointer to the packet type unpacked from hdr

p_byte protocol_byte * Out A pointer to the protocol byte unpacked from hdr

Precondition None.

The variables pointed to by len, gi, c_num, type, and p_byte are set
to the various fields of the packet header.

Side effects None.

-92-----------lifi~ii@l!f~~lf------------



6 AServer library

Purpose To unpack signed 32-bit integers from a buffer of unsigned chars.

Used by Any process.

Description Unpack an signed 32-bit integer from a buffer of unsigned chars.
as_unpack_int32 should be used to unpack integers packed using
as-pack_int3 2.

Interiace long as_unpack_int32(unsigned char *buf)

Header file aspack •h

Parameters

Name Type In/Out Description

buf unsigned In Pointer to the character buffer. The integer is stored as
char * four unsigned chars, in little-endian format

Precondition The parameter buf must be a valid pointer into a buffer of unsigned
chars. There must be at least three unsigned chars after that pointed to
by buf. buf should point to a number packed using as-pack_int32.

Return The unpacked 32-bit integer.

Side effects None.



6.6 Functions

Purpose Used for unpacking unsigned 16-bit integers from a buffer of unsigned
chars.

Used by Any process.

Description Unpacks an unsigned 16-bit integer from a buffer of unsigned chars.
as_unpack_uint16 should be used to unpack integers packed using
as-pack_uint16.

Interlace AS_UINT16 as_unpack_uint16(unsigned char *buf)

Headerfi~ aspack.h

Parameters

Name Type In/Out Description

buf unsigned In Pointer to the character buffer. The integer is stored as
char * two unsigned chars, in little-endian format

Precondition buf must be a valid pointer into a buffer of unsigned chars, there must
be at least one unsigned char after that pointed to by buf. buf should
point to a number packed using as-pack_uint16.

Result The unpacked 16-bit integer.

Side effects None.

_9_4 E;i~~@nlel------------



6 AServer library

Purpose Used for unpacking unsigned 32-bit integers from a buffer of unsigned
chars.

Used by Any process.

Description Unpacks an unsigned 32-bit integer from a buffer of unsigned chars.
as_unpack_uint32 should be used to unpack integers packed using
as-pack_uint32.

Interlace unsigned long as_unpack_uint32(unsigned char *buf)

Headerfile aspack.h

Parameters

Name Type In/Out Description

buf unsigned In Address to read the unsigned int from. The int is stored
char * as four unsigned chars, in little-endian format

Precondition buf must be a valid pointer into a buffer of unsigned chars, there must
be at least three unsigned chars after that pointed to by buf. buf should
point to a number packed using as-pack_uint32.

Return Unpacked 32-bit integer.

Side effects None.



6.6 Functions

_9_6 EiiI~~@ltI!&~JI-----------



I Appendices

-------- E;l~i~_UJ1--------9-7



Appendices

_98 EiiI~@m?II9J1-----------



A AServer example code

This appendix gives full listings of the example programs using the AServer. These
examples range from using single iserver services, through multiple iserver
services, to purpose built services on the host. The first three examples show how to
use the standard software processes provided and are described in Chapter 4. The last
two examples show how to write a customized service and are described in Chapter 5.

Where the code is to run on the host, versions of the examples are given for a PC
Windows host and for a Sun host.

The sources for all the examples can be found in the examples directory. The six
examples are listed below.

Hello displays the message "Hello world" 1000 times using the provided
iserver converter and iserver service.

• Hell02 uses similar code to the Hello example, to have five "Hello" processes
each displaying through an iserver converter and its own iserver service.

• Getkey reads keys from several different windows. This is done with multiple
copies of a Getkey process each communicating through an iserver converter
to its own iserver service.

Echo echoes a message back to the client, to demonstrate how the communica
tions bandwidth increases as the message size increases. It uses both an
iserver service and a custom-built service.

• Print displays strings sent by a client using a custom-built service. The service
uses packet level communications and read callback.

A.1 Running the examples

A.1.1 AServer database

The examples assume that the example AServer database file aservdb is being used,
as provided with the examples in the same directory. The contents of file aservdb are
shown in Figure A.1 for PC Windows users and in Figure A.2 for X-Windows users.

inquest
iserv
autoiserver

I echo
I print

I inquest. exe
I iserv.exe
I iserv.exe
I wecho.exe
I wprinter.exe

1
1
1
1
4

Figure A. 1 Example service database for PC Windows

___________ E;if~_~ 9_9



A.1 Running the examples

# Service Name I Path I Max Conns I Extra Params

#--------------------------------------------------------------
I autoiserver
I iserv
I inquest
I rspy
I iex
I echo
I print

iserv I 1
xterm -e iserv I 1
inquest_irun I 1
rspy_irun i 1
iex_irun I 1
xterm -e echoserv I 1
xterm -e printer I 4

Figure A.2 Example service database for X-Windows

A.1.2 Target processor

Each of the examples requires a single processor. The processor type given in the
example configuration source (.c£s) files is IMS T805, but this can be changed by
changing the line:

T80S (memory = 1M) board;

For example, when using an IMS T425, this would become:

T425 (memory = 1M) board;

The host is assumed to be connected to link 0 of the root processor. This can be changed
by changing the 0 in the following line of the configuration source file to the number of
the correct link.

connect host to board.link[O];

All the examples should run in 1 Mbyte of memory.

A.1.3 Environment

The environment variable TRANSPUTER should contain the name of the link to the target
on which the examples will be run, as given in the AServer database.

The path of the directory containing the AServer header files and libraries must be
added to the ISEARCH environment variable.

A.1.4 Building the examples

To build the examples, the ANSI C Toolset is required.

In addition, a host ANSI C compiler (e.g. gcc on a Sun or Watcom C/386 version 9 on
a PC) is needed to build host services other than the iserver service, either those in
the last two examples supplied or code written by the user. The compiler must be on the
path and correctly set up.

_10_0 E;i~iI@m9I£~I-----------



A AServer example code

A.2 Hello2 example

For a description and explanation of this example see Chapter 4, section 4.3. The
source of this example is supplied in the examples directory.

A.2.1 The Hello client

The following is a listing of the main program source in the file hello. c.

linclude <misc.h>
linclude <stdlib. h>
linclude <time .h>
linclude <process. h>
linclude <stdio.h>

int maine)
{

int i;

for (i = 0; i < 1000; i++)
printf(nRello world - via isconv, and aserv (%d)\n", i);

ProcWait (CLOCKS_PER_SEC * 10);
exit_terminate (EXIT_SUCCESS) ;
return(O) ;

A.2.2 Configuring the Hello example

The following is the configuration source in the file hello. cfs.

1* hardware *1

'1'805 (memory = 1M) board;

connect host to board.liDk[O];

1* software *1

input from_host;
output to_host;

process (interface (input from_link, output to_link,
input from-processes [gateway_fan_in],
output to-processes [gateway_fan_in],
int max_mega-pkt_size_to_host = 1040),

nodebug = true) gateway;

connect gateway. to_link to to_host;
connect from_host to gateway.fram_link;

process (interface (input as_in, output as_in,
input iserv_in, output iserv_out),

stacksize = 5K) isconv;

connect gateway. from-processes [0] to isconv.as_out [0];
connect gateway. to-processes [0] to isconv. as_in [0] ;

LT£~l@mRll?l 1_0_1



A.2 Hello2 example

process (interface (input fs, output ts),
heapsize = 10K, stacksize = lK) hello;

connect isconv. iserv_in to hello. ts ;
connect isconv. iserv_out to hello. fs; I * mapping * I

place from_host on host;
place to_host on host;

place gateway on board;
place isconv on board;
place hello on board;

use "gateway.cab" for gateway;
use "isconv.cax" for isconv;
use "hello.cax" for hello;

A.2.3 Building the Hello example

The makefile listed below is equivalent to the Sun hello.mak. A similar makefile
makefile. tx is used in MS-DOS.

hello.btl: hello.efb
ieolleet hello.efb -0 hello.btl

hello.efb: hello.efa hello.eax
ieeonf hello.efa -0 hello.efb

hello.eax: hello.lnk hello.tax
ilink -f hello.lnk -ta -x -0 hello.eax

hello.tax: hello.e
iee hello.e -g -ta -0 hello. tax

A.2.4 Running the Hello example

Once built, the Hello example can be run using a command line like:

irun -ai -ab hello.btl



A.3 Hello2 example

A AServer example code

For a description and explanation of this example see Chapter 4, section 4.4. The
source of this example is supplied in the examples directory.

A.3.1 Configuring the Hello2 example

The following is the configuration source in the file hello2 •ofs.

I * hardware * I

T800 (memory = 1M) board;

connect host to board. link [0] ;

I * software * I

input from_host;
output to_host;

val num_hellos 5;

process (interface (input from_link, output to_link,
input fromJ)rocesses [gateway_fan_in] ,
output tOJ)rocesses [gateway_fan_in] ,
int max_megaJ)kt_size_to_host = 1040),

nodebug = true) gateway;

connect gateway. to_link to to_host;
connect from_host to gateway. from_link;

process (interface (input as_in, output as_out,
input iserv_in, output iserv_out),

stacksize = SK)
isconv[num_hellos] ;

rep i = 0 for num_hellos
(

connect gateway.fromJ)rocesses[i] to isconv[i] •as_out;
connect gateway. tOJ)rocesses [i] to isconv [i] •as_in;

process (interface (input fs, output ts),
heapsize = 10K, stacksize = 1K) hello [num_hellos] ;

rep i = for num_hellos
(

connect isconv[i] .iserv_in to hello[i] .ts;
connect isconv[i] .iserv_out to hello[i] .fs;

I * mapping * I

place from_host on host;
place to_host on host;

place gateway on board;
use "gateway.cab" for gateway;

rep i = 0 for num_hellos
(

place isconv [i] on board;
place hello [i] on board;
use "isconv.cax" for isconv[i];
use "hello. cax" for hello [i] ;



A.4 Getkey Example

A.4 Getkey Example

For a description and explanation of this example see Chapter 4, section 4.5. The
source of this example is supplied in the examples directory.

A.4.1 The main program

The following is a listing of the main program source in the file getkey. c.

#include <misc.h>
#include <stdlib.h>
#include <time.h>
#include <process.h>
#include <stdio.h>
#include <iocntrl.h>

int maine)
{

int key;

printf ("Hello world - via isconv, and aserv\n");
printf("Type keys, and I\'ll echo them ('g' to quit,

'e' to set error) \n");

key =

while (key != 'Q')
{

key = getkey ( ) ;

if (key == -1)
printf ("No key pressed\n");

else
printf ("Key is \ '%c\ ' \n", key);

if (key == ' e' )
abort() ;

ProcWait(CLOCKS_PER_SEC * 10);
exit_terminate (EXIT_SUCCESS) ;
return(O) ;

A.4.2 Configuring the getkey example

The following is the configuration source in the file getkey.cfs.

104 ~SGS-1HOMSON-------------- ....,£ ~D©fJ@rn~O©ft) --------------



A AServer example code

/ * hardware */

T800 (memory = 1M:) board;

connect host to board. link [0] ;

/* software */

input from_host;
output to_host;

val num_getkeys 3;

process (interface (input from_link, output to_link,
input from-processes [gateway_fan_in],
output to-processes [gateway_fan_in] ,
int max_mega-pkt_size_to_host = 1040),

nodebug = true) gateway;

connect gateway. to_link to to_host;
connect from_host to gateway. from_link;

process (interface (input as_in, output as_out,
input iserv_in, output iserv_out),

stacksize = SK) isconv [num_getkeys] ;

rep = 0 for num_getkeys
{

connect gateway.from-processes [i) to isconv[i] . as_out [0];
connect gateway.to-processes [i) to isconv[i] .as_in[O];

process (interface (input fs, output ts),
heapsize = 50000, stacksize = 20000) getkey[num_getkeys];

rep i = 0 for num_getkeys
{

connect isconv[i] .iserv_in to getkey[i] .ts;
connect isconv [i) • iserv_out to getkey [i] •fs;

/ * mapping */

place from_host on host;
place to_host on host;

place gateway on board;
use "gateway.cah" for gateway;

rep i = 0 for num_getkeys
{

place isconv [i) on board;
place getkey[i] on board;
use "isconv.cax" for isconv[i];
use "getkey.cax" for getkey[i];

~~~ttlI191 10_5_


A.5 Echo example

A.5 Echo example

The echo example is described in Chapter 5 in section 5.7. The source is supplied in
the examples directory.

A.5.1 Echo client in ANSI C

The following is a listing of the ANSI C version of the Echo client, which is in the file
echo.c:

/* Copyright SGS-THOMSON Microelectronics Limited 1992, 1993 */

/* @(ft) Module: echo.c, revision 1.9 of 10/17/93 */

ftinclude <misc.h>
ftinclude <stdlib.h>·
ftinclude <time .h>
ft include <process. h>
ftinclude <stdio.h>
ftinclude <aslib.h>

ftdefine CONN_TABLE_SIZE
ftdefine MAX_ECBO_BUF_SIZE

1
(32 * 1024)

asrc echo_test (int conn_num, unsigned char *buf,
unsigned long msg_len, int num_msgs,
const as_bool time_operation)

int count = num_msgs;
asrc res = ASRC_SUCCESS;
asrc rec_res;
unsigned long rec_size;
int i, start_time, end_time;
unsigned char *bufp;

printf("echo_test: message len %ld, num. messages %d\n",
msg_len, num_msgs);

start_time = ProcTime () ;

while «count> 0) && (res == ASRC_SUCCESS»
{

if (AS_BOOL_TO_INT(time_operation) == AS_FALSE)
{

for (i = 0, bufp = buf; i < MAJCECBO_BUF_SIZE / 2; i++, bufp += 2)
as~ack_uint16(bufp, i);

if (res == ASRC_SUCCESS)
rec_res = as_recmessage (conn_num, &rec_size, buf);

if «res == ASRC_SUCCESS) && (ree_res != ASRC_SUCCESS»
res = reo_res;

if (res == ASRC_SUCCESS)
{

if (rec_size ! = msg_len)
{

printf (llreceived message of different length\n");
res = ASRC_FAILED;

count

106 ~SGS-1HOMSON-------------- ~.,£ ~o©OO@rn[Ug©'ITI~Kgl~)[J©®--------------

A AServer example code

end_time = ProcTime () ;

if (res == ASRC_SUCCESS)
(

float time_taken = «float) procTimeMinus(end_time, start_time» /
CLOCKS_PER_SEC;

long num_bytes = mag_len * num_msgs;

printf("%ld bytes echoed in %f seconds\n", num_bytes, time_taken);
printf("average send/receive speed is %f bytes/sec\n\n",

(float) num_bytes * 2.0 / time_taken);

return (res) ;

int mainO
{

conn_id conn_table£CONN_TABLE_SIZE];
asrc res;
as_bool connected = AS_FALSE;
int cODD_num, i;
unsigned char *buf = malloc (MA1CECHO_BUF_SIZE);
Channel *chan_aserv_in = (Channel *)get-param(3);
Channel *chan_aserv_out = (Channel *)get-param(4);

for (i = 0; i < 10; i++)
printf ("Echo saying hello - via isconv\n");

if (res ! = ASRC_SUCCESS)
printf("Failed to initialise access points\n");

else if (buf == NOLL)
printf ("Failed to malloc echo buffer\n");

else
{

printf ("echo: as_setconntable returned %s\n", as_asrc_to_str (res»;

res = asc_connect ("echo", "", 0, &coDD_num, NOLL);

printf ("echo: as_coDDect returned %s (9'od,) \n", as_asrc_to_str (res), res);

if (res = = ASRC_SUCCESS)
connected = AS_TRUE;

(void) echo_test (conn_num, buf,
(void) echo_test (conn_num, buf,
(void) echo_test (coDD_num, buf,
(void) echo_test (conn_num, buf,
(void) echo_test (conn_num, buf,
(void) echo_test (conn_num, buf,

512, 200, AS_TRUE)
1024, 100, AS_TRUE)
1500, 100, AS_TRUE)

* 1024, 50, AS_TRUE)
* 1024, 50, AS_TRUE)
* 1024, 50, AS_TRUE)

if (AS_BOOL_TO_INT(connected»
(void) asc_disconnect (conn_num, NOLL);

if (buf ! = NOLL)
free (buf) ;

printf("About to terminate\n");
ProcWait(CLOCKS_PER_SEC * 10);
exit_terminate (EXIT_SUCCESS);
return(O) ;

E;l1~_Jl 1_07_

A.5 Echo example

A.5.2 Echo client in occam

The following is a listing of the occam version of the Echo client, which is in the file
oecho.occ:

#:INCLUDE "hostio. inc"
#:INCLUDE "gateway. inc"
fUSE "hostio.lib"
fUSE "callc .lib"

#PRAGMA TRANSLATE as.apstart "oc_as_apstart"
#PRAGMA TRANSLATE as. setconntable "oc_as_setconntable"
#PRAGMA TRANSLATE asc. connect "oc_asc_connect"
#PRAGMA TRANSLATE asc.disconnect "oc_asc_disconnect"
#PRAGMA TRANSLATE as. sendmessage "oc_as_sendmessage"
#PRAGMA TRANSLATE as.recmessage "oc_as_recmessage"
#PRAGMA TRANSLATE as.pack.uint16 "oc_as-pack_uint16"

#PRAGMA EXTERNAL "PROC as.apstart(VAL INT GSB, CHAN OF ASPROT in, out, INT result) 2048"
#PRAGMA EXTERNAL "PROC as.setconntable(VAL INT GSB, [] [3]INT32 conn.table,

INT result) 2048"
#PRAGMA EXTERNAL "PROC asc. connect (VAL INT GSB, VAL []BYTE service.name,

VAL []BYTE service.params, VAL INT ap.num, INT c.num, result) 2048"
#PRAGMA EXTERNAL "PROC asc.disconnect(VAL INT GSB, c.num, result) = 2048"
#PRAGMA EXTERNAL "PROC as.recmessage(VAL INT GSB, VAL INT c.num, []BYTE data,

INT32 data. size, INT result) 40960"
#PRAGMA EXTERNAL "PROC as. sendmessage (VAL INT GSB, VAL INT c. num, [] BYTE data,

VAL INT32 data. size, INT result) 40960"
#PRAGMA EXTERNAL "PROC as.pack.uint16(VAL INT GSB, []BYTE buf, INT32 num) = 2048"

VAL INT ASRC. SUCCESS IS 0 :
VAL INT ASRC.FAILED IS 128
VAL INT CONN.TABLE.SIZE IS 1 :
VAL INT MAX.ECHO.BUF.SIZE IS (32 * 1024) :
VAL REAL32 CLOCKS. PER. SEC IS 15625.0 (REAL32)

PROC echo(CHAN OF SP fs, ts, CHAN OF ASPROT as.in, as.out)

PROC delay (VAL INT interval)
TIMER clock :
INT timenow :
SEQ

clock timenow
clock? AFTER timenow PLUS interval

_1o_8 L'T£~~m.~lf -----------

A AServer example code

PROC echo.test(VAL INT GSB, CHAN OF SP fs, ts, INT conn.num, []BYTE buf,
VAL INT32 mag. len, VAL INT num.msgs)

INT start.time, end. time :
INT count, res, rec. res
INT32 rec.size :
REAL32 time. taken
INT32 num.bytes
TIMER clock

SEQ
count : = num.mags
so.write.string(fs, ts, "echo test: message len ")
so.write.int32 (fs, ts, mag. len, 4)
so.write.string(fs, ts, ", num. messages ")
so.write.int(fs, ts, num.mags, 4)
so.write.nl(fs, ts)

clock ? start. time

res : = ASRC. SUCCESS
WHILE (count > 0) AND (res = ASRC. SUCCESS)

SEQ
as. sendmessage (GSB, conn.num, buf, mag. len, res)
rec.size := (INT32 mag. len)
IF

res = ASRC. SUCCESS
as.recmessage(GSB, conn.num, buf, rec.size, rec.res)

TRUE
so.write.string(fs, ts, "as .sendmessage failed*n")

-- END IF
IF

(res = ASRC. SOCCESS) AND (rec. res <> ASRC. SUCCESS)
res := rec.res

TRUE
SKIP

-- END IF
IF

(res = ASRC.SOCCESS) AND (rec.size <> mag. len)
SEQ

so.write.string(fs, ts, "received message of different lengths*n")
res := ASRC.FAlLED

-- END SEQ
TRUE

SKIP
-- END IF
count : = count - 1

-- END SEQ
-- END WHILE

clock? end. time

IF
res = ASRC. SUCCESS

SEQ
time.taken := (REAL32 ROUND (end.time MINOS start.time» / CLOCKS.PER.SEC
num.bytes := mag.len * (INT32 num.msgs)
so.write. int32 (fs, ts, num.bytes, 6)
so.write.string(fs, ts, " bytes echoed in ")
so.write.real32 (fs, ts, time. taken, 6, 6)
so.write.string(fs, ts, " seconds*n")
so.write.string(fs, ts, "average send/receive speed is ")
so.write.real32 (fs, ts, «REAL32 ROUND (num.bytes» * 2.0(REAL32» /

time. taken, 6, 6)
so.write.string(fs, ts, " bytes/sec*n")

-- END SEQ
TRUE

SKIP
-- END IF

-- END SEQ

____________ i.Ti~~@ml. 1_0_9

A.5 Echo example

PROC main(INT GSB, CHAN OF SP fs, ts, CHAN OF ASPROT as.in, as.out)
INT res:
VAL INT CONN. TABLE. SIZE IS 1 :
[CONN.TABLE.SIZE] [3] INT32 conn.table
[MAX. ECHO. BUF. SIZE] BYTE buf
INT conn. num :
BOOL connected :
SEQ

connected : = FALSE

so.write.string(fs, ts, "Occam Echo*n")
as.apstart(GSB, as.in, as.out, res)
IF

res <> ASRC. SUCCESS
so.write. string(fs, ts, "Failed to initialise access points*n")

TRUE
SEQ

SEQ i = 0 FOR 10
so.write.string(fs, ts, "Echo saying hello - via isconv*n")

as . setconntable (GSB, conn. table, res)
so.write.string(fs, ts, "echo: as.setconntable returned II)
so.write.int(fs, ts, res, 4)
so.write.nl (fs, ts)

asc. connect (GSB, "echo", "", 0, conn. Dum, res)
so.write. string (fs, ts, "echo: as. returned ")
so.write.int(fs, ts, res, 4)
so.write.nl(fs, ts)

IF
res = 0

connected TRUE
TRUE

SKIP
-- END IF

SEQ i = 0 FOR SIZE buf
buf[i] := 255 (BYTE)

-- Test code
echo. test (GSB, fs, ts, conn.num, buf, 512 (INT32), 200)
echo. test (GSB, fs, ts, conn.num, buf, 1024 (INT32), 100)
echo. test (GSB, fs, ts, conn.num, buf, 1025 (INT32), 100)
echo. test (GSB, fs, ts, conn.num, buf, 1500 (INT32), 100)
echo.test (GSB, fs, ts, conn.num, buf, 2 (INT32) * 1024 (INT32), 100)
echo. test (GSB, fs, ts, conn.num, buf, 4 (INT32) * 1024 (INT32) , 100)
echo. test (GSB, fs, ts, conn.num, buf, 8 (INT32) * 1024 (INT32), 100)

IF
connected

asc.disconnect(GSB, conn.num, res)
TRUE

SKIP
-- END IF

-- END SEQ
END IF

-- END SEQ

_11_0 Jiillit_~~J! _

A AServer example code

INT GSB, required.size :
VAL static.size IS 4096 :
VAL heap. size IS 4096 :
[static. size] INT static. area
[heap.size] INT heap. area

SEQ
init.static(static.area, required. size, GSB)
IF

required.size > static.size
so.write.string(fs, ts, "Error initialising static*n")

TROE
SEQ

init . heap (GSB, heap. area)
main (GSB, fs, ts, as.in, as.out)

-- END SEQ

END IF
terminate. heap. use (GSB)
terminate. static. use (GSB)
so.write.string(fs, ts, "About to terminate*n")
delay (100000)
so.exit(fs, ts, sps.success)

-- END SEQ

-----------li;lI~~llIl£~JI----------1-11-

A.5 Echo example

A.5.3 Configuration of the Echo client

The following is a listing of the configuration source file echo. cfa:

1* hardware *1

T800 (memory = 1M) board;

connect host to board. link [0] ;

1* software *1

input from_host;
output to_host;

process {interface (input from_link, output to_link,
input from-processes [gateway_fan_in] ,
output to-processes [gateway_fan_in] ,
int max_mega-pkt_size_to_host = 1040),

nodebug = true) gateway;

connect gateway. to_link to to_host;
connect from_host to gateway. from_link;

process {interface (input as_in, output as_out,
input iserv_in, output iserv_out),

stacksize = 5K) isconv;

connect gateway. from-processes [0] to isconv.as_out [0];
connect gateway. to-processes [0] to isconv. as_in [0] ;

process {interface (input fs, output ts,
input as_in, output as_out),

heapsize = 50000, stacksize = 20000) echo;

connect isconv.iserv_in to echo.ts;
connect isconv. iserv_out to echo. fs;

connect gateway. from....,processes [1] to echo. as_out [0] ;
connect gateway. to-processes [1] to echo. as_in [0] ;

1* mapping *1

place from_host on host;
place to_host on host;

place gateway on board;
place isconv on board;
place echo on board;

use "gateway.cab" for gateway;
use "isconv.cax" for isconv;
use "echo.cax" for echo;

A.5.4 Building the Echo target code

On a PC, the Echo ANSI C target code can be built by:

running the batch file mkecho. bat or

by using a make utility with the makefile echo. make

The Echo occam target code can be built by:

running the batch file mkoecho.bat or

_1_12 E;i~~~@DI!.I------------

A AServer example code

• by using a make utility with the makefile oecho. mak.

A.5.5 Echo service for PC host

The following is a listing of the Echo service for Windows on a PC host. The source is
in file wechosrv. c:

/*********** Copyright SGS-THOMSON Microelectronics Limited 1994 ************* /

static char *rcsid = "@(ft) $RCSfile: wechosrv.c,v $ $Revision: 1.1 $ of $Date: 1994/08/03
13: 30: 08 $ Copyright SGS-THOMSON Microelectronics Limited 1994";

ftinclude <windows .h>
ftinclude <stdio.h>
ftinclude <stdlib.h>
ftinclude <malloc .h>
ftinclude <stdarg.h>
ftinclude <aslib. h>

/***

*
* Definitions

*** ***** *********** ****** /

static char applicatioDName [32]
ftdef ine MAIN_WINDOW_TITLE
ftdefine MAJCECHO_SIZE
ftdefine MAX_ECHO_CONNECTS

ftifdef __WINDOWS__386
ftdef ine _EXPORT
ftelse
ftdef ine _EXPORT __export
ftendif

"EchoServer" ;
applicatioDName
32768
1

/***

*
* Global Data

*
***************** ****** ** ************* ******* **************** ** ** ***** * **** **/

static HANDLE
static HWND

instanceHandle;
windowHandle;

/***

*
* Code

*
** ******** ***** ***** ***** ***** *** ***** ************************* ** ************/

extern LONG _EXPORT FAR PASCAL wndProc (HWND hWnd, OINT message, WPARAM wParam, LPARAM
lParam) ;

static void Debug(const char *fmt, •••)

static char b[1024];
static char b2 [1024] ;
va_list args;

va_start (argos, fmt);
vsprintf (b, fmt, args);
sprintf (b2, " ["oX] - %s", instanceHandle, b);
OutputDebugString (b2) ;
va_end (args) ;

113----------- L'T~IL-~JI------------

A.5 Echo example

void Error(eonst char *fmt••••)
{

char b [1024] ;
va_list args;

va_start (args. fmt);
vsprintf(b. fmt. args);
MessageBox (windowHandle, h, applieationName, MB_ICONEXCLAMATION);
va_end (args) ;
DestroyWindow (windowHandle) ;

LONG _EXPORT FAR PASCAL WndProe (HWND hWnd. UINT message, WPARAM wParam. LPARAM IParam)

switch (message)

case WM_CREATE
break;

case WM_DESTROY
as_apfinish(); /* Close down the aserver library before we finish */
PostQuitMessage (0) ;
break;

default:
return (DefWindowProe (hWnd. message. wParam. IParam»;

return (NULL) ;

int PASCAL WinMain(HANDLE hInstanee. HANDLE hPrevInstanee.
LPSTR IpCmdLine. int ncmdShow)

WNDCLASS
MSG
asre
int
eonn_id
HGLOBAL
unsigned char
paeket_hdr
unsigned long

we;
mag;
res = ASRC_SUCCESS;
eonnNum;
eonnTable [MAX_ECHO_CONNECTS] ;
hEehoBuff;

*pEehoBuff;
hdr;
messLen;

#ifdef __WINDOWS_386__
sprintf (applieationName. "%s%d". applieationName. hInstanee);

#else
if (!hPrevInstanee) {

#endif
we.style = CS_HREDRAW I CS_VREDRAW;
we .lpfnWndProe = (WNDPROC)WndProe;
we •ebCIsExtra = 0;
we. ebWDdExtra = 0;
we .hInstanee = hInstanee;
we.hIeon = LoadIeon(hInstanee. "GenerieIeon");
we.hCursor = LoadCUrsor(NULL. IDC_ARROW);
we.hbrBaekground = GetStoekObjeet(WHITE_BRUSH);
we .lpszMenuName = NULL;
we .lpszClassName = applieationName;

if (!RegisterClass (&we»
return FALSE;

#ifndef __WINDOWS_386__
}

#endif

instaneeHandle = hInstanee;
windowHandle =

CreateWindow(applieationName. MAIN_WINDOW_TITLE. WS_OVERLAPPEDWINDOW.
CW_USEDEFAULT. CW_USEDEFAULT. 350. 350.
NULL. NULL. hInstanee. NULL);

114

A AServer example code

if (windowHandle) {
ShowWindow (windowHandle, nCmdShow);
OpdateWindow (windowHandle) ;
else {
return FALSE;

res = as_apstart () ;
if (res == ASRC_SOCCESS)
{

hEchoBuff = LocalAlloc (GHND, MAX_ECHO_SIZE);
if (hEchoBuff == NOLL) (

Error("Failed to allocate an echo buffer of size %d bytes\n",
MAX_ECHO_SIZE) ;

res = ASRC_FAILED;

}

else
Error("Failed to initialise access points\n");

if (res == ASRC_SOCCESS)
res = as_setconntable(MAJCECHO_CONNECTS, connTable);

if (res ! = ASRC_SOCCESS)
Error("Failed to as_setconntable - res = %s\n", as_asrc_to_str(res»;

else {
pEchoBuff = (unsigned char *) LocalLock (hEchoBuff) ;
res = ass_acceptconnect(O, &connNum, hdr, pEchoBuff);
LocalOnlock (hEchoBuff) ;

/* Main Windows message loop */
while (GetMessage (&msg, NOLL, NOLL, NULL» (

TranslateMessage(&msg) ;
DispatchMessage(&msg) ;

if (res == ASRC_SUCCESS)
(

/ * Read message and echo it */
messLen = MAJCECHO_SIZE;
pEchoBuff = (unsigned char *)LocalLock (hEchoBuff) ;
res = as_recmessage (coDDNum, &messLen, pEchoBuff);
if (res == ASRC_SUCCESS)

res = as_sendmessage(cODDNum, messLen, pEchoBuff, NULL);
LocalOnlock(hEchoBuff) ;
if (res != ASRC_SUCCESS) (

Des troyWindow (windowHandle) ;

return (msg. wParam) ;

A.5.6 Building the Echo host code

On a PC, the Echo and Print host code can be built by using a make utility:

nmake -f ms.mak

wmake -f wat.mak

A.5.7 Echo service for Sun host

(Microsoft make)

(Watcom make)

The following is a listing of the Echo service for X-Windows on a Sun host. The source
is in file echoserv. c.

___________ i..,£~~@_£~1----------_1_1-5

A.5 Echo example

1* Copyright SGS-THOMSON Microelectronics Limited 1992, 1993 *1

1* @(#) Module: echoserv.c, revision 1.7 of 10/17/93 *1

static const char prog_name [] "echo" ;
static const char prog_version[] = "echo: version 1.1";

#include <stdio. h>
#include <aslib.h>

(128 * 1024)

int main()
{

asrc res = ASRC_SUCCESS;
int conn_num;
conn_id conn_table [MAX_ECHO_CONNECTS] ;
unsigned char *echo_buf = NULL;

printf ("The Echo Service (%s) •••• \n", prog_version);

res = as_apstart () ;

if (res = = ASRC_SUCCESS)
{

if (echo_buf = = NULL)
{

printf ("Failed to malloc a echo buffer of size %d bytes \n" ,
MAX_ECHO_SIZE) ;

res = ASRC_FAILED;

}

else
printf("Failed to initialise access pointes\n");

if (res == ASRC_SUCCESS)
res = as_setconntable (MAX_ECHO_CONNECTS, conn_table);

if (res ! = ASRC_SUCCESS)
printf ("Failed to as_setconntable - res = %s\n", as_asrc_to_str(res»;

else
{

packet_hdr hdr;

res = ass_acceptconnect(O, &conn_num, hdr, echo_buf);
I*printf("ass_acceptconnect res = %s\n", as_asrc_to_str(res»;*1

while (res == ASRC_SUCCESS)
{

if (res == ASRC_SUCCESS)
{

l*printf("Echoing message of length %ld\n", mess_len) ;*1
res= as_sendmessage(conn_num, mess_len, echo_buf, NULL);

printf ("echoserv finishing\n");

printf ("Zzzzzzz •••• \n") ;
sleep(10) ;

return(O) ;

_11_6 EiiI~@l!IE14 _

A AServer example code

A.6 Print example

The print example is described in Chapter 5 in section 5.9. The source is supplied in the
examples directory.

A.6.1 The Print client

The following is a listing of the Print client which is in the file print. c:

linclude <misc .h>
linclude <stdlib.h>
linclude <stdarg.h>
linclude <time.h>
linclude <process.h>
linclude <stdio.h>
linclude <string.h>
linclude <aslib. h>
linclude "print. h"

Idefine CONN_TABLE_SIZE 1
Idefine PR_SEND_PKT_SIZE (MAJCPACKET_SIZE)

static asrc pr_sendmessage(int c_num.
unsigned long data_size. unsigned char *data.
as_readpktcb read_fn);

static asrc pr-print (int c_num. const char format []. . •.);
static asrc pr_flush (int c_num);

static asrc pr_sendmessage(int c_num.
unsigned long data_size. unsigned char *data.
as_readpktcb read_fn)

packet_hdr send_hdr;
unsigned long len_to_go = data_size;
asrc res = ASRC_SUCCESS;
int ap_num = as_set_dest (send_hdr. c_num);
as_bool sent_a-pkt = AS_FALSE; /* allows sending 0 length messages */

as_hdr_set_type (send_hdr. ASPT_DATA);
as_hdr_set-p_byte (send_hdr. (protocol_byte) 0);

while «res == ASRC_SUCCESS) &&
«len_to_go > OUL) II (sent_a-pkt == AS_FALSE») (

data_len p_len;

if (len_to_go > PR_SEND_PKT_SIZE) (
p_len = (data_len) PR_SEND_PKT_SIZE;
else (
p_len = (data_len) len_to_go;
as_hdr_set_type(send_hdr. ASPT_DATA ASPH_EOM_MASK);

as_hdr_set_len(send_hdr. p_len);
res = as_send-packet (ap_num. send_hdr. data. read_fn);
len_to_go -= (unsigned long) p_len;
data += p_len;
sent_a-pkt = AS_TRUE;

return (res) ;

117
------------ i..,£~~tr£'£~I------------

A.6 Print example

static asrc pr-print (int c_num, const char format [], •••)
{

asrc res;
unsigned char msg [MAJCPRINT_MSG_LEN] ;
char *str = (char *) (msg + 1);
va_list argp;

msg[O] = PR_STRING;
va_start (argp, format);
vsprintf (str, format, argp);
va_end (argp) ;
res = pr_sendmessage(c_num, 2L + (long) strlen(str), msg, NULL);
return (res);

static asrc pr_flush(int c_num)
{

asrc res;
unsigned char msg[l];
msg[O] = PR_FLUSH;
res = as_sendmessage (c_num, 1, msg, NULL);
if (res == ASRC_SUCCESS) {

unsigned long msg_len = 1UL;
res = as_recmessage (c_num, &meg_len, msg);

}

return(res) ;

int main (void)
{

conn_id conn_table [CONN_TABLE_SIZE] ;
asrc res;
as_bool connected = AS_FALSE;
int conn_num;
int i = 0;
Channel *chan_aserv_in = (Channel *)get-param(l);
Channel *chan_aserv_out = (Channel *)get-param(2);
int *hello_num = get-param(3);

res = as_apstart (chan_aserv_in, chan_aserv_out);
if (res == ASRC_SUCCESS)

res = as_setconntable(CONN_TABLE_SIZE, conn_table);
if (res == ASRC_SUCCESS)

res = asc_connect ("print", "", 0, &conn_num, NULL);
if (res == ASRC_SUCCESS)

connected = AS_TRUE;

while «res == ASRC_SUCCESS) && (i < 1000» {
res = pr-print (conn_num,

"Hello world (hello no. = "cad) - via printer (i = %d) \n" ,
*hello_num, i);

if «res == ASRC_SUCCESS) && «i % 100) == 0»
res = pr_flush(conn_num);

i++;

if «res == ASRC_SOCCESS) && AS_BOOL_TO_INT(connected»
(void) asc_disconnect (conn_num, NULL);

return(O) ;

_11_8 lFil~~.I1I_-_-_------

A AServer example code

A.6.2 Configuring the Print client

The following is a listing of the configuration source file, print. cfs.

/ * hardware */

T800 (memory = 1M) board;

connect host to board.link[O];

/* software */

input from_host;
output to_host;

val nUDl-prints 10;

process(interface (input from_link, output to_link,
input from-processes [gateway_fan_in] ,
output to-processes [gateway_fan_in] ,
int DlaX_mega-pkt_size_to_host = 1040),

nodebug = true) gateway;

connect gateway. to_link to to_host;
connect from_host to gateway. from_link;

process (interface (input as_in, output as_out, int hello_num),
heapsize = 50000, stacksize = 20000) print [nUDl-prints];

rep i = 0 for nUDl-prints
{

connect gateway. from-processes [i] to print [i] . as_out [0];
connect gateway. to-processes [i] to print [i] . as_in [0] ;
print[i] (hello_num = i);

/ * mapping */

place from_host on host;
place to_host on host;

place gateway on board;
use "gateway.cah" for gateway;

rep i = 0 for nUDl-prints
(

place print [i] on board;
use "print.cax" for print[i];

A.6.3 Building the Print target code

On a PC the Print target code can be built by:

running the batch file mkprint .bat or

• using a make utility with the makefile print .mak.

A.6.4 The Print service for PC hosts

The following is a listing of the Print service for Windows on a PC host, which is in the
file wprinter. c:

_________ ";SGS-1HOMSON 1_1_9
""""f'@~o~~o~

A.6 Print example

/************ Copyright SGS-THOMSON Microelectronics Limited 1994 ****************/

static char *rcsid = "@(#) $RCSfile: printer.c,v $ $Revision: 1.1.1.1 $ of $Date:
1994/07/19 08: 10: 00 $ Copyright SGS-THOMSON Microelectronics Limited 1994";

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <stdarg .h>
#include <aslib. h>
#include <assert .h>
#include <string.h>
#include "print.h"

/***

*
* Definitions

*
************************* *** *** /

static char applicationName [32] = "wPrinter";
#define MAIN_WINDOW_TITLE applicatioDName

#define MAJCPRINT_CONNECTS

#ifdef __WINDOWS_386__
#define _EXPORT
#else
#define _EXPORT __export
#endif

/***

*
* Structures

*
"'********************************** /

typedef struct {
int len;
unsigned char data [MAX_PRINT_MSG_LEN] ;

meg_buf;

struct pkt_list_st;
typedef struct pkt_list_st pkt_list_t;

struct pkt_list_st {
int ap_num;
packet_hdr hdr;
unsigned char *data;
pkt_list_t *next;

};

/***

*
* Global Data

*
*** ********** **** * *** ** /

static pkt_list_t *pktListFirst, *pktListLast;
static int pktListLength;

connTable [MAJCPRINT_CONNECTSl ;
totalConnects = 0;

long
long
long
long

connectRequests = 0;
flushCount [MAX_PRINT_CONNECTS] ;
disconnectRequests = 0;
stringCount [MA%_PRINT_CONNECTS] ;

_12_0 GiSCiS-1HOMSON
aI'{j) ~o~rn~©&)

static HANDLE
static HWND

instanceHandle;
windowHandle;

A A8erver example code

/***

*
* Packet List Services

*
*********** ************* * *********************** ******* *** ** ******** ********* /

static asrc
add_to-pkt_list (int ap_num.

packet_hdr hdr. unsigned char *data)

asrc
int
pkt_list_t

res = ASRC_SOCCESS;
len = (int) as_hdr_get_len(hdr);

*entry = (pkt_list_t *) malloc (sizeof (pkt_list_t));

assert (ap_nUDl == 0);
if (entry == NOLL)

res = ASRC_OOT_OF_MEMORY;
else {

entry->data = (unsigned char *) malloc(len);
if (entry->data == NULL) {

res = ASRC_OUT_OF_MEMORY;
abort() ;
free (entry) ;

if (res == ASRC_SUCCESS) {
entry->ap_num = ap_num;
memcpy(entry->hdr. hdr. sizeof (packet_hdr»;
memcpy(entry->data. data. len);
entry->next = NULL;
if (pktListFirst == NULL)

pktListFirst = entry;
else

pktListLast->next = entry;
pktListLast = entry;
pktListLength++ ;

}

return (res);

static asrc
remove_from-pkt_list (int *ap_num.

packet_hdr hdr. unsigned char *data)

asrc res = ASRC_SUCCESS;

if (pktListFirst == NULL) {
res = ASRC_FAILED;
else {
pkt_list_t *entry = pktListFirst;
*ap_nUDl = entry->ap_num;
memcpy(hdr. entry->hdr. sizeof (packet_hdr»;
memcpy(data. entry->data. (int) as_hdr_get_len(hdr»;
pktListFirst = entry->next;
free (entry->data) ;
free (entry) ;
pktListLength-- ;
assert (*ap_nUDl == 0);

}

return (res);

-----------li;i~~Bfi©' 12_1

A.6 Print example

1***
*
* Windows Code

*
*** ***** ************ *** ******************************** **********************1

extern LONG _EXPORT FAR PASCAL wndProc (HWND hWnd, UINT message, WPARAM wParam, LPARAM
lParam) ;

static void Debug (const char *fmt, •••)

static char b [1024] ;
static char b2 [1024];
va_list args;

va_start (args, fmt);
vsprintf (b, fmt, args);
sprintf (b2, "[%x] - %s", instanceHandle, b);
OUtputDebugString(b2) ;
va_end (args) ;

void Error(const char *fmt, •••)
(

char b [1024] ;
va_list args;

va_start (args, fmt);
vsprintf (b, fmt, args);
MessageBox(windowHandle, b, applicationName, MB_ICONEXCLAMATION);
va_end (args) ;
DestroyWindow(windowHandle) ;

BOOL FirstInstance(HANDLE hInstance)

WNDCLASS we;

wc •style = CS_HREDRAW I CS_VREDRAW;
wc .lpfnWndProc = (WNDPROC) WndProc;
we.ebClsExtra = 0;
wc •cbWndExtra = 0;
wc •hInstance = hInstance;
wc •hIcon = LoadIcon (hInstance, "GenericIcon");
we.hCursor = LoadCursor(NULL, IDC_ARROW);
wc .hbrBackground = GetStockObject (WHITE_BRUSH);
we.lpszMenuName = NULL;
wc .lpszClassName = applieationName;

return (RegisterClass (&wc»;

BOOL AnyInstance (HANDLE hInstanee, int nCmdShow, LPSTR lpCnldLine)

BWND hWnd;
BOOL result = FALSE;

hWnd = CreateWindow(applicationName, MAIN_WINDOW_TITLE, WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, CW_USEDEFAULT, 350, 350,
NULL, NULL, hInstance, NULL);

if (hwnd) {
ShowWindow (hWnd, nCnldShow);
UpdateWindow(hWnd) ;
result = TRUE;

windowHandle = hWnd;
instanceHandle = hInstance;

return (result) ;

_12_2 iF;i~e~li _

A AServer example code

/***
*
* Main Code
* ,
***** *** ** ************* ************ ******************** ******** ******* *** **** /

void AserverCallback (short aserverEvent)
{

BOOL
int
packet_hdr
pkt_type
unsigned char
asrc

anotherPacket;
apHum, connHumber;
hdr;
type;
data [MA]CPACKET_SIZE] ;
res;

switch (aserverEvent)
case ASCB RECPKT :

/ * A pa~ket is ready for reading */
apNum = 0;

/* Read it */
res = as_rec-packet (apHum, hdr, data);

/* Process new packet, and keep processing packets *
* until the packet list is empty. */

do {
anotherPacket = FALSE;
res = as_translate-pkt (res, apNum, hdr, data, add_to-pkt_list);
type = as_hdr_get_type(hdr);
if (res == ASRC_SUCCESS) {

switch (type &; ASPB_TYPE_MASK) {
case ASPT_COHNECT_REQ:

res = ass-processconnect (apNum, hdr, data, &;connNumber,
ASRC_SUCCESS, add_to-pkt_list);

totalConnects++ ;
connectRequests++ ;
InvalidateRect(windowBandle, HULL, FALSE);
break;

case ASPT_DATA
int
int

(

connNumber = (int) as_hdr_get_conn_Dum(hdr);
len = (int) as_hdr_get_len (hdr) ;

memcpy(msgBuffers [connNumber] .data + msgBuffers [connNumber] . len, data, len);
msgBuffers [connNumber] .len += len;

if (ASPB_IS_EOM(type» {
switch (msgBuffers [connNumber] .data [0])

case PR_STRING:
stringCount [connNumber] ++;
InvalidateRect (windowBandle, NULL, FALSE);
break;

___________ E;i1~_rrrB•• 12_3_

A.6 Print example

case PR_FLUSH:
res = as_sendmessage(connNumber, 0, NULL, add_to-pkt_list);
flushCount [conDNumber] ++;
InvalidateRect (windowBandle, NULL, FALSE);
break;

}

msgBuffers [connNumber] • len = 0;
}

break;

}

else if (res = = ASRC_GOT_DISCONNECT_REQ) {
totalConnects- -;
disconnectRequests++ ;
InvalidateRect (windowBandle, NULL, FALSE);
if(totalConnects == 0)

DestroyWindow(windowHandle) ;

if (pktListLength > 0) (
res = remove_from-pkt_list (&apNum, hdr, data);
anotherPacket = TRUE;
assert (apNum == 0);

} whi le (anotherPacket);
break;

case ASCB_SIGINT :
/* "SIGINT" signal received. Destroy application. */
DestroyWindow (windowHandle) ;
break;

LONG _EXPORT FAR PASCAL WndProc (HWND hWnd, UINT message, WPARAH wParam, LPARAH lParam)

HDC hdc;
PAINTSTRUCT ps;
asrc res;
int i;
char b[lOO];

switch (message)

case WM_CREATE
break;

case WM_USER_INIT :
/* Initialise everything. * I
pktListFirst = NULL;
pktListLength = 0;

for (i = 0; i < MAX_PRINT_CONNECTS; i++) (
msgBuffers [i) .len = 0;
stringCount[il = 0;
flushCount [i) = 0;

/* Register our aserver callback routine with the aserver library */
ass_set_cb (AserverCallback) ;

/* Initialise access points * /
res = as_apstart () ;
if (res ! = ASRC_SUCCESS)

Error("Failed to initialise access points .");

/* Set up the connection table */
if (res == ASRC_SUCCESS) {

res = as_setconntable (MAX_PRINT_CONNECTS, connTable);
if (res != ASRC_SUCCESS)

Error ("Failed to as_setconntable - res = $s\n", as_asrc_to_str (res)) ;
}

break;

_1_24 iiil~i~@m?I~JI _

A AServer example code

case WM_PAIN'l' :
hdc = BegiDPaint (hWnd, &ps);
/* 'l'extOut (hdc, 1, 1, lpszStatus, strlen(lpszStatus»; */
wsprintf (b, "Connect Requests [%ld] ", connectRequests);
'l'extOut(hdc, 1, 1, b, strlen(b»;

wsprintf (b, "Disconnect Requests [%ld]
'l'extOut(hdc, 1, 31, b, strlen(b»;

disconnectRequests) ;

nmake -f ms.mak

wsprintf (b, "Connections [%d] ", totalConnects);
'l'extOUt (hdc, 1, 61, b, strlen(b»;

for(i = 0; i < connectRequests; i++) {
wsprintf (b, "Conn "cd flushes [%ld], strings [%ld]", i, flushCount [i] ,

stringCount [i]) ;
'l'extOUt(hdc, 1, 91 + (i * 30), b, strlen(b»;

EndPaint (hWnd, &ps);
break;

case WM_DESTROY
as_apfinish () ;
PostQuitMessage (0) ;
break;

default:
return (DefWindowProc(hWnd, message, wParam, lParam»;

}

return (NULL) ;

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance,
LPSTR lpCIndLine, int ncmdShow)

MSG mag;

#ifdef __WINDOWS_386__
sprintf (applicationName, "%s%d", applicationName, hInstance);

#else
if (lhPrevInstance)

#endif
if (IFirstInstance (hInstance»

return (FALSE);

if(IAnyInstance (hInstance, nCmdShow, lpCmdLine»
return (FALSE);

/* Initialise program */
PostMessage(windowHandle, WM_USER_INIT, 0, OL);

/* Main Windows message loop */
while (GetMessage (&msg, NULL, NULL, NULL» (

'l'ranslateMessage(&msg) ;
DispatchMessage (&mag);

return (msg. wParam) ;

A.6.5 Building the Print host code

On a PC, the Echo and Print host code can be built by using a make utility:

(Microsoft make)

wmake -f wat.mak (Watcom make)

___________ ~~~nIl&~I------__-_12_5_

A.6 Print example

A.6.6 The Print service for Sun hosts

The following is a listing of the Print service for X-Windows on a Sun host, which is in
the file printer. c:

1* Copyright SGS-THOMSON Microelectronics Limited 1992 */

static char SccsId[] = "@(I> Module: printer.c, revision 1.6 of 2/19/93";

/* Idefine DEBUG_MODULE */

static const char prog_name[]
static const char prog_version[]

linclude <stdio. h>
linclude <assert .h>
linclude <aslib. h>
linclude "print.h"

lifdef VMS
linclude <unixio. h>
linclude <file.h>

linclude descrip
linclude ssdef
linclude prcdef
linclude iodef
linclude psldef

"printer";
"printer: version 1.2";

static short int InputChan;
static struct dsc$descriptor_s ttydesc;
lendif

typedef struct {
int len;
unsigned char data [MAJCPRINT_MSG_LEN] ;

} meg_buf;

struct pkt_list_st;
typedef struct pkt_list_st pkt_list_t;

struct pkt_list_st {
int ap_num;
packet_hdr hdr;
unsigned char *data;
pkt_list_t *next;

};

static pkt_list_t *pkt_list_first, *pkt_list_last;
static int pkt_list_len;

126
i:;i~~_9-----------

A AServer example code

static asrc add_to-pkt_list (int ap_num,
packet_hdr hdr, unsigned char *data)

asrc res = ASRC_SUCCESS;
int len = (int) as_hdr_get_len (hdr) ;
pkt_list_t *entry = (pkt_list_t *) malloc(sizeof(pkt_list_t»;

assert (ap_num == 0);
if (entry == HULL)

res = ASRC_OUT_OF_MEMORY;
else {

entry->data = (unsigned char *) malloc(len);
if (entry->data == HULL) (

res = ASRC_OUT_OF_MEMORY;
abort() ;
free (entry) ;

if (res == ASRC_SUCCESS) (
entry->ap_num = ap_num;
memcpy(entry->hdr, hdr, sizeof (packet_hdr»;
memcpy(entry->data, data, len);
entry->next = NULL;
if (pkt_list_first == NULL)

pkt_list_first = entry;
else

pkt_list_last->next = entry;
pkt_list_last = entry;
pkt_list_len++;

return (res);

static asrc remove_from-pkt_list (int *ap_num,
packet_hdr hdr, unsigned char *data)

asrc res = ASRC_SUCCESS;

if (pkt_list_first == NULL)
res = ASRC_FAILED;
else (
pkt_list_t *entry = pkt_list_first;
*ap_num = entry->ap_nUDl;
memcpy(hdr, entry->hdr, sizeof (packet_hdr»;
memcpy(data, entry->data, (int) as_hdr_get_len(hdr»;
pkt_list_first = entry->next;
free (entry->data) ;
free (entry) ;
pkt_list_len- -;

/* printf("Removed packet from list, len = %d\n", pkt_list_len);*/
assert (*ap_num == 0);

}

return (res) ;

int maine)
{

asrc res = ASRC_SUCCESS;
conn_id conn_table [MAJCPRINT_CONNECTS] ;
int total_connects = 0;
int i;
as_bool has_been_used = AS_FALSE;

___________ J.Tl~itnll. 1_2_7

A.6 Print example

lifdef VMS
lifdef SEPARATE_TERMINAL

char device_name [50];
short device_length;

lelse
char* device_name = "TT:";
short device_length = 3 ;

lendif 1* SEPARATE_TERMINAL * 1
int status;

lendif

lifdef VMS
lifdef SEPARATE_TERMINAL

status = DECwTermPort (0,0,0, device_name, &device_length);
device_name [device_length] = ' \ 0' ;
if (status ! = SS$_NORMAL)

LIB$STOP (status) ;
if (freopen(device_name, "a+", stdin, "rfm=udf") = = NULL) {

printf("freopen stdin failed\n");
}

if (freopen(device_name, "a+", stdout, "rfm=udf") = = NULL)
printf ("freopen stdout failed\n");

}

if (freopen(device_name, "a+", stderr, "rfm=udf") = = NULL)
printf ("freopen stdin failed\n") ;

}

lendif 1* SEPARATE_TERMINAL *1

ttydesc .dsc$w_length = device_length;
ttydesc •dsc$b_dtype = DSC$K_DTYPE_T;
ttydesc .dsc$b_class = DSC$K_CLASS_S;
ttydesc .dsc$a-pointer = device_name;
status = SYS$ASSIGN(&ttydesc, &InputChan, PSL$C_tJSER, 0);
if (status ! = SS$_NORMAL)

LIB$STOP (status) ;
lendif

printf ("The Printer Service (%s) •••• \n", prog_version);
pkt_list_first = NULL;
pkt_list_len = 0;

for (i = 0; i < MAX_PRINT_CONNECTS; i++)
msg_buffers [i) • len = 0;

if (res ! = ASRC_StJCCESS)
printf("Failed to initialise access points\n");

if (res = = ASRC_StJCCESS) {
res = as_setconntable(MAJCPRINT_CONNECTS, conn_table);

if (res ! = ASRC_StJCCESS)
printf("Failed to as_setconntable - res = %s\n",as_asrc_to_str(res»;

while «res == ASRC_StJCCESS) &&
«total_connects != 0) II (has_been_used == AS_FALSE») {

int ap_num, c_num;
packet_hdr hdr;
pkt_type type;
unsigned char data [MAX_PACKET_SIZE] ;

if (pkt_list_len > 0) {
res = remove_from-pkt_list(&ap_num, hdr, data);
assert(ap_num == 0);
else {
ap_num = 0;
res = as_rec-packet(ap_num, hdr, data);

}

res = as_translate-pkt (res, ap_num, hdr, data, add_to-pkt_list);
type = as_hdr_get_type (hdr) ;

_12_8 EiiI~@l!I.~lt -----------

A AServer example code

if (res == ASRC_SUCCESS) (
switch(type & ASPH_TYPE_MASK)

case ASPT_CONNECT_REQ:
printf ("got CODDect request\n");
res = ass-proceSSCODDect (ap_num, hdr, data, &c_num,

ASRC_SUCCESS, add_to-pkt_list);
printf ("ass-processcoDDect returned res = %s, c_num = %d \n" ,

as_asrc_to_str(res), c_num);
total_connects ++;
has_been_used = AS_TRUE;
break;

case ASPT_DATA: (
int c_num = (int) as_hdr_get_coDD_num(hdr);
int len = (int) as_hdr_get_len (hdr) ;

memcpy(mag_buffers[c_num] .data +
mag_buffers [c_num] .len, data, len);

mag_buffers [c_num] • len += len;

if (ASPH_IS_EOM(type» (
switch (mag_buffers [c_num] .data[O])

case PR_STRING:
printf ("got string (connection "od): %s", c_num,

mag_buffers [c_num] .data + 1);
break;

case PR_FLUSH:
printf ("got flush (coDDection %d) \n", c_num);
res = as_sendmessage(c_num, 0, NOLL, add_to-pkt_list);
printf ("sent flush reply\n");
break;

}

mag_buffers [c_numl • len = 0;
}

break;

}

else if (res == ASRC_GOT_DISCONNECT_REQ) (
total_coDDect s - - ;
printf ("coDDection %d disconnected (num connects now %d) \n",

(int) as_hdr_get_coDD_num(hdr), total_connects);
res = ASRC_SUCCESS;

printf ("printer finishing\nZzzzzzz •••• \n") ;
sleep(10) ;

return(O) ;

li;lBml~I 1_29_

A.6 Print example

_13_0 ~~~~I.I-----------

B AServer protocols

B.1 Introduction

This appendix describes the AServer protocol and the Mega-packet protocol. The
AServer protocol is the protocol between a process and a gateway on the same device,
or between a client and a service if no gateway is used. This protocol is described in
sections 8.2 to 8.3. The Mega-packet protocol is the protocol used on hardware serial
links between gateways. This protocol is described in section 8.4.

The AServer allows processes on targets to communicate with external devices such
as a host. Communication using the AServer is asynchronous.

Processes communicate by sending messages. Each message is made up of one or
more packets. Each packet has a header describing the packet, and a data section
containing information being carried by the packet. A packet header is a fixed size of 8
bytes, while the data section can be any length from 0 to 1024 bytes.

B.2 Packets

A packet is the basic unit of data between clients and servers. A packet is made up of
a header and a data section. A packet has a type, indicated by the header, such as a
connect request or data. All the packets in a single message have the same packet type.

The header is ASPH_SIZE bytes long, where ASPH_SIZE is currently set to 8. The
header consists of the fields listed in Table 8.1, where AS_UINT16 is an unsigned,
little-endian, 16-bit integer, and BYTE is an unsigned a-bit number.

The header includes the access point number and the connection number, which
together form an address of the destination of the packet and control the routing of the
packet to its destination.

Byte Type Description

0-1 AS_UJ:NT16 Length of the data in bytes.

2-3 AS_UJ:NT16 Access point number.

4-5 AS_UJ:NT16 Connection number.

6 BYTE Packet Type (bits 0-6), and End-of-Message tag (bit 7).

7 BYTE Protocol byte, a user defined byte not used by the AServer itself.

Table B.1 Packet header fields

The maximum length of the data is MAX_PACKET_SIZE bytes, which is currently set to
1024.

If the End-of-Message tag bit is 1 then this packet is the last packet in the message; if
it is 0, then there is at least one more packet in this message. This allows multi-packet
messages to be built up.

----------- Jt:.,~~~'lIroo.,,9c!1----------1-3-1

B.3 Messages

To set the End-of-Message tag, the packet type should be or-ed with the constant
ASPH_EOM_MASK:

To obtain the packet type, the packet type byte should be and-ed with
ASPH_TYPE_MASK:

packet_type = Type_byte & ASPH_TYPE_MASK;

To determine whether a packet header has the End-of-Message tag set, use the macro
ASPH_IS_EOM(x) where x is the packet type byte:

EOM_is_set = ASPH_IS_EOM(Type_byte);

ASPH is an abbreviation of AServer Packet Header.

The defined packet types are listed in Table B.2. The packet types correspond to the
types of message defined in section B.3. Other values of the packet type are reserved
by INMOS for future expansion.

Type Value Meaning

ASPT_CONNECT_REQ 0 Connect request

ASPT_CONNECT_REPLY 1 Connect reply

ASPT_DISCONNECT_REQ 2 Disconnect request

ASPT_DISCONNECT_REPLY 3 Disconnect reply

ASPT_DATA 4 This packet carries data

ASPT_CONTROL 5 This packet carries control information

ASPT_ABORT_REQ 6 Abort service request

Table B.2 Packet types

ASPT is an abbreviation of AServer Packet Type.

ASPT_CONTROL packets are hidden from the user in the sense that they are translated
into result codes by as_translate-pkt, and are only used in some implementations
of the AServer. They are used internally in the AServer and the service/client libraries.
They carry information such as the transputer error flag being set. The user of service/
client libraries sees events such as the transputer error flag being set as a return code
to a library call, enabling the implementation of the communication of such events to
vary.

The protocol byte is not used by the AServer libraries, and thus is available to software
layered above these libraries, for example for distinguishing different types of
messages.

B.3 Messages

A message may be of arbitrary length, and is made up of one or more packets. Certain
services may require that messages have a specified maximum length.

_13_2 L~£ ~i~@B1.~I-----------

8 AServer protocols

Each packet in a message must have the same packet type. The message type is the
type of each packet in the message. The last packet in a message has its
End-of-Message bit set; other packets do not.

The communication mechanism used to carry the packets ensures that packets and
messages arrive in the same order as they were sent.

If a process sends a disconnect request message or an abort message to the other end
of the connection, then that process should discard all data packets received from the
connection before the disconnect reply is received.

8.3.1 Connect request messages

A connect request message is used by a client to initiate a connection to a service. The
client will receive a connect reply that indicates whether or not the connect request was
successful or not. The data in the message has the format shown in Table B.3. The data
should always be extracted using as_decode_conn_req.

Bytes Type Meaning

0:1 AS_OJ:NT16 Gateway index of client.

2:3 AS_OJ:NT16 Connection number at client end.

4 char Unsigned length n of name of requested service including null
terminator.

S: (4+n) char[] Name of requested service including null terminator.

S+n char Unsigned length m of service specific parameters including null
terminator.

(6+n) : (6+n+m) char[] Service specific parameters (if any) including null terminator.

Table B.3 Connect Request message format

The array contains two null-terminated strings, which may have zero length. The length
count is thus at least one, as it always contains the null termination byte.

Connect request messages always fit in a single packet. This makes the implementation
easier.

The gateway index of the client is set by the gateway that the client is connected to; the
client should simply initialize it to o. If the client is directly connected to the service, then
the gateway index does not get used.

8.3.2 Connect reply messages

A connect reply message is used by a service or the AServer to give the result of a
connect request to the client. If the AServer is unable to start the requested service then
it will return an error to the client in a connect reply message.

The data in the message has the format shown in Table B.4.

----------- E;Z1f~mall9J1-----------1-3-3

B.3 Messages

Type Meaning

BYTE Result code of connect

AS_U:INT16 Gateway index at service end

AS_U:INT16 Connection number at service end

Table 8.4 Connect Reply message format

If the result code is not ASRC_SUCCESS, then the connect failed.

The gateway index and connection number returned in the connect reply are put into
the header of any packet sent to the service subsequently.

B.3.3 Disconnect request messages

A disconnect request message is sent by a client to a service that the client no longer
wishes to use.

The client will always receive either a disconnect reply or an abort request. The latter
can happen if the service happens to send an abort after the disconnect request is sent
and before it is received by the service.

This message contains no data.

B.3.4 Disconnect reply messages

A disconnect reply message is sent by a service to a client that has sent a disconnect
request message.

This message contains no data.

B.3.5 Data messages

Data messages are used to carry service specific data from the client to the service and
from the service to the client.

The contents of the data in the message is completely service specific.

B.3.6 Control messages

Control messages are used to carry information about the state of the AServer and the
target. For example, if the transputer error flag becomes set on an IMS Txxx transputer
network, then the processes (servers and/or clients) running on the host are sent a
control message to inform them that the error flag has been set.

Control messages are not processed by the user; they are converted into result codes
byas_translate-pkt.

_1_34 Eii~~~~JI-----------

B AServer protocols

The data in the message has the following format:

MeaningIControl message codeBYTE
I TYpe

The following is a list of control messages codes:

Type Meaning

CONMSG_TX_ERROR Transputer error flag set; receiving function should return
ASRC_TX_ERROR

CONMSG_TERMINATE Receiving function should return ASRC_TERMINATE

CONMSG_RESTART Receiving function should return ASRC_RESTART

B.3.7 Abort request messages

Abort request messages are used by services to terminate connections to clients in
'abnormal' conditions. Normally, the client will disconnect from the service when it
chooses.

If a service decides that it no longer wishes to communicate with a client (for example,
because the client is trying to do something invalid), then the service may send an abort
request message to the client.

The client will reply with a disconnect reply. The service will ignore any (data) message
from the client until the disconnect reply is received.

This message contains no data.

B.3.8 Result codes

The result codes are listed in Appendix C.

8.4 Mega-packetprotocol

A mega-packet is used for transporting one or more AServer packets across a link that
connects a gateway to another gateway, or irun to a gateway.

Transporting AServer packets in mega-packets has the advantage that a number of
small AServer packets can be grouped together and sent as one larger packet. This
reduces network overheads (e.g. on ethernet using an IMS B300 ethernet gateway),
and/or host computer overheads (Le. reduced number of device driver accesses).

The use of mega-packets is currently also used to maintain compatibility with the current
Linkops format packet. Linkops is the INMOS link interface software. By making a
mega-packet look like a Linkops packet it can be carried through current software (e.g.
the IMS B300 Ethernet Gateway, and the host Linkops software). To maintain Linkops
compatibility, the maximum size of a mega-packet is generally limited to the maximum
size of a Linkops packet, which is 1040 bytes.

~ 135------------ ...,~ lit_&~I------------

8.4 Mega-packet protocol

Note that the size of mega-packets that travel from one transputer or ST20 processor
directly to another transputer or ST20 processor is not dependent upon the maximum
size of a Linkops packet, as those mega-packets are not transported by Linkops.

8y using moderately intelligent buffering techniques, the grouping of the packets can
be done so that is does not delay any individual AServer packet significantly.

For example, in a gateway process, packet processing can be double buffered. AServer
packets are read into a buffer from clients and services at the same time as a mega
packet is sent to irun (or the other gateway). As soon as the mega-packet has been sent,
the buffers are swapped around, and the newly formed mega-packet sent.

Alternatively, in irun, AServer packets can be put into a buffer ready to be sent to the
target. As soon as the buffer is full, or the last packet of a message is put in the
mega-packet, the mega-packet is sent.

The idea is to get as much into a mega-packet without actually delaying waiting for more
AServer packets to put in it - as soon as the process building the mega-packet is idle,
the packet is sent.

A mega-packet has a header that is followed by one or more complete AServer packets.
The format of a mega-packet header is shown in Table 8.5.

Field Size Field

2 bytes mega-packet length

1 byte Linkops passthrough tag

1 byte not used (contains 0)

Table 8.5 Mega-packet header format

Mega-packets from the target to the host contain the passthrough tag
LOPS_PASSTHROUGH_TO_HOST. Mega-packets from the host to the target contain the
passthrough tag LOPS_PASSTHROUGH_TO_TX.

The passthough tags are defined like this in the file asmega. h

#define LOPS_PASSTHROUGH_TO_HOST
#define LOPS_PASSTHROUGH_TO_TX

(102)
(140)

The passthrough tag is not used by the receiving gateway. However, irun, if it detects
any other tag in a packet it receives, starts an auto-iserver to process any such packets.

An auto-iserver is an iserver service to which any packets that do not contain the
passthrough tag are routed, and replies from that iserver service are sent directly to the
link and not converted into AServer packets or mega-packets. Note that there is
currently an implementation limit which limits packets to/from an auto-iserver to the size
of an AServer packet, rather than that of a larger i server packet.

_1_36 J:ii~H@m'~~lt _

C AServer result codes

The following AServer library result codes (or asrc values) are defined in the header
file asconst •h:

#define ASRC_SUCCESS

#define ASRC_FAILED
#define ASRC_BROKEN
#define ASRC_TX_ERROR
#define ASRC_MSGTOOBIG
#define ASRC_TERMINATE
#define ASRC_RESTART
#define ASRC_INVALID_APOINT
#define ASRC_STR_TOO_LONG
#define ASRC_DATA_TOO_BIG
#define ASRC_NO_REC_BUFFER
#define ASRC_CONN_TABLE_FULL
#define ASRC_NOT_CONNREQ
#define ASRC_SERVICE_BUSY
#define ASRC_OUT_OF_MEMORY
#define ASRC_UNEXP_CONN_NUM
#define ASRC_OUT_OF_RANGE
#define ASRC_CANT_OPEN_FILE
#define ASRC_GOT_DISCONNECT_REQ
#define ASRC_GOT_ABORT_REQ
#define ASRC_NOT_IMPLEMENTED
#define ASRC_NO_SUCH_SERVICE
#define ASRC_BOOT_FAILED
#define ASRC_UNEXPECTED_READ

(0)

(128)
(129)
(130)
(131)
(132)
(133)
(134)
(135)
(136)
(137)
(138)
(139)
(140)
(141)
(142)
(143)
(145)
(146)
(147)
(149)
(150)
(151)
(154)

The meanings of these constants are listed in Table C.1.

----- ~litmg&59I----------_1_37-

C AServer result codes

Result Code Value Meaning

ASRC_SUCCESS (0) Function succeeded.

ASRC_FAILED (128) Function failed (general failure).

ASRC_BROKEN (129) The connection has broken.

ASRC_TX_ERROR (130) The transputer error flag is set.

ASRC_MSGTOOBIG (131) The message received was too large for the buffer
provided.

ASRC_TERMINATE (132) The calling process should now terminate.

ASRC_RESTART (133) The calling process should now restart or terminate.

ASRC_INVALID_APOINT (134) The access point parameter was invalid.

ASRC_STR_TOO_LONG (135) A string parameter was too long.

ASRC_DATA_TOO_BIG (136) The data part of a packet was too long.

ASRC_NO_REC_BUFFER (137) No buffer was available to receive packet.

ASRC_CONN_TABLE_FULL (138) The connection table was full.

ASRC_NOT_CONNREQ (139) A connect request was expected but a packet other than
a connect request was received.

ASRC_SERVICE_BUSY (140) The service was busy, and the connect failed.

ASRC_OUT_OF_MEMORY (141) A dynamic allocation of memory failed.

ASRC_UNEXP_CONN_NUM (142) A packet from an unexpected connection number was
received.

ASRC_OUT_OF_RANGE (143) A parameter was out of range.

ASRC_CAHT_OPEN_FILE (145) A file could not be opened.

ASRC_GOT_DISCONNECT_REQ (146) A disconnect request was received, and the connection is
now closed.

ASRC_GOT_ABORT_REQ (147) An abort request was received, and the connection is
now closed.

ASRC_NOT_IMPLEMENTED (149) The function is not implemented.

ASRC_NO_SUCH_SERVICE (150) The service requested does not exist.

ASRC_BOOT_FAILED (151) A boot operation failed.

ASRC_UNEXPECTED_READ (154) A packet was read by a write function with a null callback.

Table C.1 Result code meanings

-1-38-----------l:fi~~@m?1.1------------

D Glossary

access point

A software communication port using AServer protocol.

access point number

The index of an access point in the array of access points for an AServer process.

AServer

A system for portable communication between processes, generally between
processes on targets and processes on devices external to the target. It consists of
protocols, libraries, gateways, clients and services.

AServer callback

A callback used by Windows services to handle incoming packets and terminate
signals.

AServer database

A list of services and target hardware connections available to a host gateway.

AServer process

A section of code run in parallel with the rest of the program which communicates
using the AServer protocol.

AServer protocol

The protocol used by AServer clients and services to communicate with each other.

auto-iserver

The use of the iserver service to mimic the action of the iserver without the use
of converter or interface processes running on the target.

callback

A function called like an interrupt routine when an event occurs. When the callback
is completed the interrupted function resumes. Callbacks may be read callbacks or
AServer callbacks.

client

The AServer process which opens a connection using the AServer protocol.

----------- ~~I®.II~JI----------1-3-9

o Glossary

connect

To initialize an AServer connection.

connection

A means of AServer communication between two access points on different
processes. A connection does not exist until it has been initialized.

gateway

An interface between multiple AServercommunications on one hand and an external
hardware interface using a link on the other hand. A gateway mUltiplexes outgoing
communications and demultiplexes incoming ones and may change the protocol.

host

A programmable device capable of resetting and debugging the target.

host gateway

A gateway which runs on a host.

irun

A host gateway.

iserver

An INMOS/SGS-THOMSON server program which runs on a host, providing a host
interface for the application software, using the iserver protocol. It boots and loads
a program onto a target then provides host services for the target on demand from
a link.

iserver protocol

The protocol used by the i/o libraries for communication with the host.

link

A hardware serial communication connection between a transputer or ST20 and
another device using the on-chip link port and any necessary interfacing.

mega-packet

A large packet containing one or more AServer packets designed to maximize effi
ciency over hardware connections to remote devices.

mega-packet protocol

The protocol used between gateways to transmit mega-packets.

_14_0 i:fi~I@.~lf _

o Glossary

packet

The data sent in a single transmission.

process

A sequential section of code with its own memory and resources running in parallel
with the rest of the program. One task in a multi-task program.

An AServer process is a section of code run in parallel with the rest of the program
which communicates using the AServer protocol.

protocol

The format of possible communications.

read callback

A cal/back used when an incoming packet arrives while another routine is sending.

service

A process to which a client can open an AServer connection.

service database

A list of services available to a gateway.

target gateway

A gateway running on a target processor.

toolset

A collection of tools for building application programs.

transputer link

A serial communication port provided on-chip on transputers and ST20s.

----------- J.uI1®9191 1_4_1

o Glossary

_14_2 Eii~i~@..cI-----------

Index

A
Abort request, 135

Access point, 6, 139
number, 6, 139

as_apfinish, 30, 59

as_apstart, 6, 25, 60

as_asrc_to_str,61

as_bool_to_str,62

as_decode_conn_req,28,63

as_disconnect, 28

as_get_conn_info, 28, 64

as_give_ap-ptr,65

as_hdr_get_conn_num,30,66

as_hdr_get_gateway_i, 30, 67

as_hdr_get_len,30,68

as_hdr_get-p_byte,69

as_hdr_get-P_type,30

as_hdr_get_type, 30, 70

a s_hdr_set_conn_num, 29, 71

as_hdr_set_gateway_i, 29, 72

as_hdr_set_len,29,73

as_hdr_set-p_byte,74

as_hdr_set_type,29,75

as_hdr_to_str, 76

as_numaps, 77

as-pack_hdr,29,78

as-pack_int32,79

as-pack_uint16,80

as-pack_uint32,81

as-ptype_to_str,82

as_read_ready,29,83

as_readpktcb,47,5Q-96

as_rec-packet,29,85

as_recmessage,29,84

as_send-packet, 29, 87

as_sendabort,28

as_sendmessage,29,86

as_set_dest,29,89

as_set-p_byte,29

as_setconntable,26,27,88

as_translate-pkt,29,9D-91

as_unpack_hdr,30,92

as_unpack_int32,93

a s_unpack_uint16, 94

as_unpack_uint32,95-96

asc_connect,9, 28, 52-53

asc_disconnect,54

AServer, 1, 139
connection table, 26
data types, 47-48
database, 4, 7,139,141
examples, 99-130
library, 47-96
macros, 47-48
process, 139
protocols, 5-6,131-136,139,140

sending and receiving, 29-30
result codes, 137-138
service database, 8, 99-100

AServer callback, 34, 35-36

AserverProc,49-52

ASRC_*,137

ass_acceptconnect,28,55

ass-processconnect,28,56

ass_sendabort,57

ass_set_cb,58

Auto-iserver, 15-17, 139

c
Callback, 34-36

AServer, 35-36
function type definition, 49-52
read, 34-35

Client, 1,4-6,25-46,139

Codes, AServer results, 137-138

Command line, irun, 8

Connect, 140
client to service, 27-28

143------------ ii;l~I®~I&~dI------------

Index

reply, 133-134
request, 4, 133

Connection, 140
number, 29
table, 26

Control messages, AServer protocol, 134-135

D

Data messages, 134

Data types, AServer library, 47-48

Database, AServer services, 8

Disconnect
client from service, 27-28
reply, 134
request, 134

E
Echo, AServer example, 30, 106

Environment variable, 7

Environment variables, 7-8
ASERVDB, 7
TRANSPUTER, 8, 100

Examples, AServer, 99-130
Echo, 30, 106
Getkey, 23-24, 104-130
Hello, 18-20
Hello2, 21-22, 101-130
iserver converter, 18
multiple services, 21-22, 101-130
Print, 36-43,117-130
service, 30,106

F

Files, AServer library, 47

Flush, 38-39

G
Gateway, 1, 2-6, 11-14, 140

irun, 7-10

Getkey, AServer example, 23-24, 104-130

H
Header

AServer packet, 131
mega-packet, 136

Header files, AServer, 47

Hello, AServer example, 18-20

Hello2, AServer example, 21,101-130

Host, 140
gateway irun, 7-10,140

Inputting, using AServer protocol, 29-30

irun, 7-10, 140
command line, 8

isconv(),17

iserver, 140
converter, 16-18
service, 15-24

parameters, 17

L
Library, files, 47

Link, 140

Linking, AServer library, 47

M
Macros, AServer library, 47-48

Mega-packet, 14, 140
protocol, 135-136, 140

Messages, AServer protocol, 132-135

o
Outputting, using AServer protocol, 29-30

p

Packet, 141
AServer protocol, 131-132

size, 48

Parameters
of gateway, 12

-1-44-----------l:;l~e©nI.~9J1-----------

of iserver converter, 17
of iserver service, 17

Print, AServer example, 36, 117

Process, 141
AServer, 139

Protocols, 5-6, 141
AServer, 131-136
mega-packet, 131, 135-136

R
Read callback, 34-35, 141

Receiving, using AServer protocol, 29-30

Result codes, AServer, 137-138

s
Scope, 141

Sending, using AServer protocol, 29-30

Service, 1, 4-6, 25-46
AServer example, 30-34, 106-130
database, 4,8,99..100, 139, 141
iserver, 15-24
name size, 48
terminating under Windows, 30

Size
of AServer packets, 48
of service name, 48

T
Target, gateway, 11-14, 141

Terminating, a Windows service, 30

Toolset, 141

Transputer, link, 141

TRANSPUTER environment variable, 100

Types
AServer library, 47-48
of AServer packet, 132

v
Virtual channel, 3

w
Windows, terminating a service, 30

Writing, using AServer protocol, 29..30

Index

___________ E;i~iLtIfe©~ 1_4_5

Index

_1_46 ~~iLllIII9lt _

	Contents
	1 Introduction
	1.1 AServer features
	1.2 Gateways
	1.3 Clients and services
	1.4 Protocols
	1.5 Access points
	1.6 Using the AServer with occam

	2 irun
	2.1 Running irun
	2.1.1 Environment variables
	2.1.2 Starting AServer applications

	2.2 The AServer database
	2.2.1 AServer database service resources
	2.2.2 AServer database connection resources

	2.3 Implementation limit

	3 The target gateway
	3.1 Configuration example
	3.2 Mega-packets

	4 iserver service
	4.1 Auto-iserver mode
	4.1.1 Use with the iserver converter
	4.1.2 Parameters

	4.2 iserver converter
	4.3 Hello example
	4.3.1 The Hello client
	4.3.2 Configuring the Hello example
	4.3.3 Building the Hello example
	4.3.4 Running the Hello example

	4.4 Hello2 example
	4.4.1 Configuring the Hello2 example
	4.4.2 Running the Hello2 example

	4.5 Getkey Example

	5 Clients and services
	5.1 Introduction
	5.2 Initializing data structures
	5.3 Waiting for packets to arrive
	5.3.1 AServer callback

	5.4 Connecting and disconnecting
	5.5 Sending and receiving
	5.5.1 Packet level communications

	5.6 Terminating data structures
	5.7 Echo example
	5.7.1 Echo client
	5.7.2 Configuration of the Echo client
	5.7.3 Echo service

	5.8 Callback
	5.8.1 Read callback
	5.8.2 AServer callback

	5.9 Print example
	5.9.1 The Print client
	5.9.2 Configuring the Print client
	5.9.3 The Print service
	5.9.4 The AServer database

	5.10 occam clients

	6 AServer library
	6.1 Restrictions
	6.2 Function prototype and constant files
	6.3 Data types and macros
	6.4 Constants and limits
	6.5 Callbackfunction type definition
	6.5.1 AserverProc
	6.5.2 as_readpktcb

	6.6 Functions
	6.6.1 asc_connect
	6.6.2 asc_disconnect
	6.6.3 ass_acceptconnect
	6.6.4 ass_processconnect
	6.6.5 ass_sendabort
	6.6.6 ass_set_cb
	6.6.7 as_apfinish
	6.6.8 as_apstart
	6.6.9 as_asrc_to_str
	6.6.10 as_bool_to_str
	6.6.11 as_decode_conn_req
	6.6.12 as_get_conn_info
	6.6.13 as_give_ap_ptr
	6.6.14 as_hdr_get_conn_num
	6.6.15 as_hdr_get_gateway_i
	6.6.16 as_hdr_get_len
	6.6.17 as_hdr_get_p_byte
	6.6.18 as_hdr_get_type
	6.6.19 as_hdr_set_conn_num
	6.6.20 as_hdr_set_gateway_i
	6.6.21 as_hdr_set_len
	6.6.22 as_hdr_set_p_byte
	6.6.23 as_hdr_set_type
	6.6.24 as_hdr_to_str
	6.6.25 as_numaps
	6.6.26 as_pack_hdr
	6.6.27 as_pack_int32
	6.6.28 as_pack_uint16
	6.6.29 as_pack_uint32
	6.6.30 as_ptype_to_str
	6.6.31 as_read_ready
	6.6.32 as_recmessage
	6.6.33 as_rec_packet
	6.6.34 as_sendmessage
	6.6.35 as_send_packet
	6.6.36 as_setconntable
	6.6.37 as_set_dest
	6.6.38 as_translate_pkt
	6.6.39 as_unpack_hdr
	6.6.40 as_unpack_int32
	6.6.41 as_unpack_unit16
	6.6.42 as_unpack_uint32

	Appendices
	A AServer example code
	A.1 Running the examples
	A.1.1 AServer database
	A.1.2 Target processor
	A.1.3 Environment
	A.1.4 Building the examples

	A.2 Hello2 example
	A.2.1 The Hello client
	A.2.2 Configuring the Hello example
	A.2.3 Building the Hello example
	A.2.4 Running the Hello example

	A.3 Hello2 example
	A.3.1 Configuring the Hello2 example

	A.4 Getkey Example
	A.4.1 The main program
	A.4.2 Configuring the getkey example

	A.5 Echo example
	A.5.1 Echo client in ANSI C
	A.5.2 Echo client in occam
	A.5.3 Configuration of the Echo client
	A.5.4 Building the Echo target code
	A.5.5 Echo service for PC host
	A.5.6 Building the Echo host code
	A.5.7 Echo service for Sun host

	A.6 Print example
	A.6.1 The Print client
	A.6.2 Configuring the Print client
	A.6.3 Building the Print target code
	A.6.4 The Print service for PC hosts
	A.6.5 Building the Print host code
	A.6.6 The Print service for Sun hosts

	B AServer protocols
	B.1 Introduction
	B.2 Packets
	B.3 Messages
	B.3.1 Connect request messages
	B.3.2 Connect reply messages
	B.3.3 Disconnect request messages
	B.3.4 Disconnect reply messages
	B.3.5 Data messages
	B.3.6 Control messages
	B.3.7 Abort request messages
	B.3.8 Result codes

	B.4 Mega-packetprotocol

	C AServer result codes
	D Glossary

	Index

