
Performance Improvement
with the INMOS Dx305
occam 2 Toolset

~SGS-1IIOIISON
~TI®~~~~

INMOS is a member of the SGS-THOMSON Microelectronics Group

© INMOS Limited 1993. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

• , OULmOS·, IMS, occam and OS-Link are trademarks of INMOS Limited.

~~~~Wj is a registered trademark of the SGS-THOMSON Microelectronics Group.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TDS 379 00



IContents
Contents .

Preface. . .. . . . . . .. . . .. .. . . . . .. . . . . . . . . . . . . . . . .. .. . v

Host versions v
About this document v
About the toolset documentation set v
Other documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
FORTRAN toolset vi
Documentation conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Transputer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Trade-offs and issues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Space versus time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 On--ehip-RAM ." .-. . . . . . . . . . . . . . . . . . . .. . .. . . . . . . 3
2.3 Basic code generation techniques 3
2.4 Processor classes and types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.5 Interactive debugging 4
2.6 Virtual routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.7 Error modes 5
2.8 Vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.9 Alias checking 6
2.10 Usage checking 7
2.11 Memory layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.12 When there isn't enough on-chip RAM 8

3 Obtaining information 9

4 Command line switches 11

4.1 Compiler command line switches . . . . . . . . . . . . . . . . . . 11
4.2 Linker command line switches 13
4.3 Linker directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Configurer command line switches. . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Configuration language attributes for optimizing memory 14

4.5.1 Ordering attributes 14



ii Contents

4.5.2 Location attributes 14
4.5.3 Reserved attribute 14

4.6 Collector command line switches 15

5 Compiler optimizations .. 17

6 Source code optimizations . . . . . . . . . . . . . . . . . . . . . . . . . .. 19
6.1 Compiler workspace layout 19
6.2 Compiler code layout 20
6.3 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.3.1 Abbreviations - They should not be too trivial . . . . 20
6.3.2 Abbreviations - Removing range-checking code. 20
6.3.3 Abbreviations - Loop unrolling. . . . . . . . . . . . . . . . . 21

6.4 Vectorspace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Beware the PLACE statement. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.6 Abbreviating PLACED objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.7 Block move. . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . . 24
6.8 Use TIMES 25
6.9 Retyping - accelerating byte manipulation . 25
6.10 Scoping of variables -. 26
6.11 Use the whole language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.12 INLINE procedures and functions. . . . . . . . . . . . . . . . . . . . . . . . 27
6.13 Access to non-local variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.14 Access to formal parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.15 Pre-evaluate expressions 28
6.16 Conditional expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.17 Array subscripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.18 INT16s............................................... 29
6.19 ALTs................................................. 29
6.20 Use of ASSERTO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.21 Transputer scheduler 30

7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31
7.1 Optimizing for code size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.2 Removing run-time checks 31
7.3 Placing arrays in on-chip RAM . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Placing code in on-ehip RAM 32
7.5 Building benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 Maximizing multiprocessor performance. . . . . . . . . . . . .. 35
8.1 Maximizing link performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



Contents iii

8.1.1 Decoupling communication and computation ..... 35
8.1.2 Prioritization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

8.2 Large link transfers 37

9 Dynamic load balancing and processor farms 39

Index 41



iv Contents



Preface
Host versions

The documentation set which accompanies the occam 2 toolset is designed to
cover all host versions of the toolset:

• IMS 07305 - IBM PC compatible running MS-DOS

• IMS 04305 - Sun 4 systems running SunOS.

• IMS 06305 - VAX systems running VMS.

About this document

IPerformance Improvement with the DX305 occam 2 Toolset'

This document provides advice about how to maximize the performance of the
toolse1. It brings together information provided in other toolset documents particu­
larly from the Language and Libraries Reference Manual.

The document describes the layout of code and data in memory for programs
developed with the DX305 occam 2 Toolse1. It then goes on to describe methods
of improving code in order to:

• minimize the running time of the program;

• reduce the size of the program; either code or data or both.

Note: details of how to manipulate the software virtual through-routing mechanism
are given in the User Guide.

About the toolset documentation set

The documentation set comprises the following volumes:

• 72 TDS 366 01 occam 2 Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; 'Basics' which
describes each of the main stages of the development process and
includes a 'Getting started' tutorial. The tp.dvanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

• 72 TDS 367 01 occam 2 Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset

72 TDS 379 00 March 1993



vi Other documents

are generic to other INMOS toolset products Le. the ANSI C and
FORTRAN toolsets and the documentation reflects this. Examples are
given in C. The appendices provide details of toolset conventions, trans­
puter types, the assembler, server protocol, ITERM files and bootstrap
loaders.

• 72 TDS 368 01 occam 2 Toolset Language and Libraries Reference
Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details of extensions to the language are given in an
appendix.

• 72 TDS 379 00 Performance Improvement with the DX305 occam 2
Toolset (this document)

• 72 TDS 377 00 occam 2 Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer­
ence and summarizes information provided in more detail in the Tools
Reference Manual and the Language and Libraries Reference Manual.

• 72 TDS 378 00 occam 2 Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual and the
Performance Improvement document.

Other documents

Other documents provided with the toolset product include:

• Delivery manual giving installation data, this document is host specific.

• Release notes, common to all host versions of the toolset.

• 'occam 2 Reference Manuaf published by Prentice Hall.

• 'A Tutorial Introduction to occam Programming' published by BSP Profes­
sional Books.

FORTRAN toolset

At the time of writing the FORTRAN toolset product referred to in this document
set is still under development and specific details relating to it are subject to
change.

72 TDS 379 00 March 1993



Preface

Documentation conventions

The following typographical conventions are used in this manual:

vii

Bold type

Teletype

Italic type

Braces {}

Brackets []

Ellipsis ...

72 TDS 379 00

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and program listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.

Used in command syntax to denote optional items on the
command line.

In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna­
tives.

March 1993



viii

72 TDS 379 00

Documentation conventions

March 1993



1 Introduction

This document describes ways in which the performance of occam programs
which have been built with the INMOS 04305, 06305, and 07305 occam toolsets
can be improved. It assumes that the reader is familiar with these toolsets, and has
the user documentation available. It supersedes INMOS Technical note 17
("Performance Maximisation") , which was also supplied as chapter 18 of "The
Transputer Applications notebook - Systems and Performance". Some of the
information in this document is taken directly from that technical note.

Many of the techniques described here are equally applicable to early occam tool­
sets, and indeed to many other languages and computer systems. Similarly, many
of the transputer-specific optimizations are relevant when programming trans­
puters in other languages.

Also discussed are the specific features of the transputer which are amenable to
optimizations, and how to use the toolsets to take advantage of them. Transputers
covered include the T212, T222, T225, T400, T414, T425, T800, T801, T805.

1.1 Transputer architecture

This document will not attempt to describe the transputer architecture. However,
the particular points to note about the transputer, when considering performance
improvement, are as follows:

• On-chip RAM.

Each transputer has a part of its address space implemented as on-chip
RAM, which means that it can be accessed very quickly. There is a notice­
able penalty in accessing external RAM. Much of this document describes
methods to ensure that best use is made of this on-chip RAM. Current
transputer variants have either 2K or 4K bytes of on-chip RAM.

• Instruction prefixing.

Transputers use a variable length instruction encoding, which is built up out
of lots of single byte instructions. It is useful to minimize the size of these
instructions, both to minimize the code space required, and to minimize the
time taken to fetch the instructions from memory.

In practice, the only instructions whose length can be easily controlled are those
which access local variables; hence it is the layout of local variables which is impor­
tant.

72 TOS 37900 March 1993



2

72 TDS 37900

1 Introduction

March 1993



2 Trade-offs and.
Issues

2.1 Space versus time

Most optimizations which are performed are intended to minimize the running time
of a program. This is known as optimizing for time. In certain circumstances it is
required to minimize the size ofa program; eithercode size, data size, orboth. This
is known as optimizing for space. Often a particular optimization will produce an
improvement in both space and time. In general, and in this document, most opti­
mizations are aimed to optimize for time.

2.2 On-chipRAM

The on-chip RAM is based at the bottom of a transputer's memory address space.
This implies that it is important to utilize this space properly. In some cases, the
whole program can fit inside this RAM. In many other cases, however, a decision
must be made as to the best use of this RAM.

As a general rule of thumb, a program's stack (or workspace ) should be placed
onto the on-chip RAM if possible. This is because the transputer's instruction
encoding makes data accesses more frequent than instruction accesses, so less
penalty will be incurred if the data resides in fast memory. If there is space, then
it is useful to put inner loops and other frequently used code subroutines into
on-chip RAM too.

The INMOS occam toolsets attempt to place workspace onto on-chip RAM by
default.

Some TRAMs (Transputer Modules) are constructed in such a way that the 'next'
memory in the address space is the next fastest, followed by slower RAM at a
higher address. Thus the bottom 4K might be on-chip RAM, the next 32K might
be 3-cycle external SRAM, followed by 2M of 4-cycle external DRAM. The way
these are treated is exactly analogous to the simpler case; by simply attempting
to move the most important data and code areas to the bottom of memory.

2.3 Basic code generation techniques

The compiler supplied with the current INM08 occam toolsets generates good
code for expressions, but does not attempt to optimize code across statement
boundaries; future compilers will. It may be useful to bear this in mind to try to

72T08 37900 March 1993



4 2.4 Processor classes and types

improve performance; for example, by the introduction of abbreviations for
commonly used expressions.

The occam compiler allocates memory statically; that is, given any program the
compiler can determine exactly how much memory is required. This enables the
loader to specify exactly how much workspace is required and to attempt to place
it on-chip.

2.4 Processor classes and types

The occam 2 compiler can create code which can execute on many different
types of transputer; these are known as transputer classes. This facility can be
useful to build libraries which can be used for any transputer type. However,
compiling for a particular transputer type will make most use of that transputer's
particular instruction set, and therefore will make a program execute faster.

It is worth noting that you can create a library which contains, for example, both
TA and T425 code. The compiler and linker will automatically select the most
specific modules which exist in that library, depending on the command line
options supplied to the compiler or linker. Similarly if both interactive debugging
and non-interactive debugging modules exist in a library, the most specific one
(non-interactive) will be chosen.

The rule to use is: Always compile and link for the specific transputer type to get
the best performance.

2.5 Interactive debugging

The INMOS toolsets allow an interactive debugger to execute a program under
user control, to allow breakpointing, etc. This involves a certain amount of over­
head, both of space and time, because the compiler inserts run-time library calls
for certain operations; these require extra code, and extra stack space. Once a
program has been developed, this facility can· be disabled to improve program
performance.

Disabling interactive debugging has two effects; firstly, it win improve the speed of
code which performs communication. This is because the interactive debugger
requires (nearly) all communication to be performed via library routines. The
second effect is to reduce the memory size of the program; this reduces both work­
space size (because the library routines would use stack space) and code size
(because the library routines are not linked in). Also, when interactive debugging
is enabled, a generic start-up routine must be inserted. Configuring a program with
interactive debugging disabled, or collecting a single processor program with inter­
active debugging disa~led, means that simpler start-up code can be used.

The rule to use is: Always compile, link and configure with interactive debugging
disabled to get the best performance.

72 TDS 379 00 March 1993



2 Trade-ofts and issues 5

2.6 Virtual routing

This occam configurer provides the ability to use virtual routing. This means that
messages from one transputer to another can be automatically through-routed via
intervening transputers without requiring to be explicitly programmed. Also, many
occam channels may be multiplexed down a single transputer link.

This is performed by library routines which are inserted by the compiler. These are
the same routines as are used by the interactive debugging system described in
section 2.5. Therefore, to use the virtual routing facilities you must not disable inter­
active debugging.

When virtual routing is used, extra processes are placed onto each processor by
the configurer as required. These will use up memory. Therefore if memory space
is at a premium, it will be better not to use the virtual routing facilities. The confi­
gurer will automatically determine when the multiplexing and through-routing are
not required, and will omit the processes. A command line switch 'NV' on the confi­
gurer can be used to forcibly prevent the creation of these processes; in this case
an error is issued if they would have been required.

2.7 Error modes

occam programs can be compiled in three different error modes; HALT, STOP,
and UNIVERSAL. In HALT mode, as soon as any erroneous process is executed,
the whole processor halts. This is implemented by making use of the transputer's
global HaltOnError flag. In STOP mode, only that single process is halted. This
requires the HaltOnErrorflag to be clear. UNIVERSAL mode is provided to act like
either HALT or STOP, depending on the state of the HaltOnError flag.

Because of the behavior of particular transputer instructions, HALT error mode is
the simplest and fastest to implement. STOP mode requires extra instructions to
be inserted to detect and act on errors. UNIVERSAL mode requires slightly more
instructions again.

UNIVERSAL mode does not switch offall run-time error checking. The ucommand
line switch can be used to remove error checking code (see section 4.1). Thus any
error mode, in combination with the U option, provides the occam UNDEFINED
error mode.

The compiler libraries are most efficient in the HALT error mode, so benchmark
programs, and programs which are known to be correct, should be compiled in
HALT error mode, and with the u option.

The rule to use is: Always compile, link and configure in the HALT error mode, and
compile and configure with the U option, to get the best performance.

2.8 Vector space

The occam compiler uses a technique known as separate vector space to try to
minimize a program's stack requirement. Arrays are placed into a separate area

72 TDS 379 00 March 1993



6 2.9 Alias checking

of memory known as the vector space. This is organized as another stack, in
another area of memory. The idea is that the normal stack (workspace), containing
local variables and the procedure call stack, will then be as small as possible, and
will fit into on-chip RAM. In many cases the time required to access arrays will be
less critical than the time to access local variables, so this provides a useful optimi­
zation.

The use of separate vectorspace requires that an extra (hidden) parameter is
passed to each subroutine. In some circumstances this extra cost exceeds the
benefit, so it might be useful to disable the separate vectorspace (using the
compiler V option). Similarly, if the combined workspace and vectorspace would
togetherfit into on-chip RAM anyway, it will be most efficient to disable the separate
vectorspace.

It may be the case that access to most arrays is not critical, but that access to a
particular array is extremely time critical. This single array can be retained in work­
space (and hence more likely to be placed onto on-chip RAM) by a compiler alloca­
tion:

PLACE name IN WORKSPACE.

Alternatively, a program may consist of many small arrays which would benefit
from being placed in workspacer plus a few large arrays which would not. In this
case, separate vector space can be disabled by default. The large arrays can then
be explicitly placed into vectorspace by another allocation:

PLACE name IN VECSPACE.

Finally, the configurer provides attributes which allow the whole vectorspace to be
placed at the bottom of memory, etc. See section 4.5.

2.9 Alias checking

occam has strict rules about aliasing of variables (that is, making two different
variables point to the same data). These rules are there for a purpose; they enable
the compiler to make better deductions about the behavior of a program, and
therefore to generate better code. They also provide a simple model of what a
section of program means; its behavior is not affected by the context in which it is
executed.

The INMOS occam toolset permits a programmer to break these rules, but at the
programmer's own risk. In general, it will be better not to. There are two levels of
control over alias checking:

• On a whole program at a time.

Alias checking may be disabled for a whole program, by using the '](
command line switch, or #OPTION. The compiler will assume that all vari­
ables may alias each other.

72 TDS 379 00 March 1993



2 Trade-offs and issues

• For individual variables.

7

#PRAGMA PERMITALIASES may be used to indicate individual variables
which may be aliased. All other variables are assumed to abide by the
occam rules.

By default, the compiler will ensure that no aliases are permitted. In some cases,
this can require code being generated to check at run-time. The 'wo' option will
cause a warning message to be generated whenever a run-time check is inserted.
Where alias checks are disabled, these checks will not be generated. However,
the compiler will have to make worse assumptions about the behavior of the
program, and may generate slower code.

2.10 Usage checking

occam has strict rules about the usage of variables and channels in parallel
processes. These rules are there for a purpose; they enable the compiler to make
better deductions about the behavior of a program, and therefore to generate
better code. They also provide a simple model ofwhat a section of program means;
its behavior is not affected by the context in which it is executed.

The INMOS occam toolset permits a programmer to break these rules, but at the
programmers own risk. In general, it will be better not to. There are two levels of
control over usage checking:

• On a whole program at a time.

Usage checking may be disabled for a whole program, by using the 'N'
command line switch, or #OPTION. The compiler will assume that all vari­
ables may be accessed in parallel, synchronized by communications down
channels.

• For individual variables.

#PRAGMA SHARED may be used to indicate individual variables which are
used in parallel processes. All other variables are assumed to abide by the
occam rules.

By default, the compiler will ensure that no variables and channels are permitted
to break the usage rules. Where the checks are disabled, the compiler will have
to make worse assumptions about the behavior of the program, and may generate
slower code.

72 TDS 379 00 March 1993



Free memory

8 2.11 Memory layout

2.11 Memory layout

By default, the toolset arranges memory as follows:

..- Top of memory

..- Top of vectorspace
Vectorspace

..- Top of code
Code

..- Top of workspace
Workspace

1--------1..- Start of usable memory (MemStart)
Reserved space

'----------' ..- Bottom of memory (MOSTNEG INT)

When the collector's S option is used for single processor programs, the collector
allocates another buffer below the workspace. See section 4.6.

The configurer's order. code, order. ws, and order. vs attributes may be
used to override this default ordering. By default; the (reserved space' is simply that
memory up to MemStart. However the configurer's reserved attribute may be
used to override this. location attributes may also be used to override this
memory layout. See section 4.5.

2.12 When there isn't enough on-chip RAM

When a program's workspace is substantially larger than the on-chip RAM, it may
well be true that most of the time the stack is working off-chip. In this case, it might
be more useful to move the code on-chip, particularly time-critical code sections,
and leave all the workspace off-chip. See section 4.3 and section 4.5.

72 TDS 37900 March 1993



3 Obtaining
information

Various tools provide information which can be useful when improving perfor­
mance.

• Compiler information

The compiler's I command line switch displays information about the
workspace and vectorspace requirements ofeach externallyvisible proce­
dure or function. It also displays the number of bytes ofcode in the module.

The compiler's P command line switch can be used to supply the name of
a text file which the compiler produces known as the map file. This lists the
layout of stack memory for each routine in the program, and the layout of
the code for each routine. This file can be processed by the imap tool to
produce a map of the entire program's memory.

• Linker information

The linker's MO command line switch can be used to produce a text file
which indicates how the code has been linked together. This file can be
processed by the imap tool to produce a map of the entire program's
memory.

• Collector information

The collector's P command line switch can be used to produce a text file
which indicates the memory layout ofeach processor in the network. It also
indicates the processor connectivity. This file can be processed by the
imap tool to produce a map of the entire program's memory.

• The debugger

The debugger can be used to provide information about the memory map
of a program. The Monitor Page's M (Memory map) command will display
the memory map ofeach processor in the network. The L (Links) command
will indicate the link connectivity.

• The lister tool

The ilist program can examine any data file which is created by the
INMOS toolsets, and display a decoded form of its contents. This may be
useful if extra information is required which is not available by the previous
methods.

72 TDS 379 00 March 1993



10 3 Obtaining information

• The mapper tool

The imap program takes the map files created by the compiler, linker, and
collector, and combines the information into a single text file which lists the
whole program's memory layout for each processor.

72 TDS 379 00 March 1993



4 Command line
switches

There are many different switches and commands which can be used with the
compiler, linker, collector, and configurer, in order to modify program execution
speed.

4.1 Compiler command line switches

The following compiler command line switches can affect program performance.
Note that many options can be specified in the source code by inserting a #OPTION
statement as the first line of the program.

A typical benchmark program would be compiled with options H, NA, U, and Y, and
maybe A and v too.

H HALT error mode. (This is the default)

See the discussion on error modes in section 2.7.

S STOP error mode.

See the discussion on error modes in section 2.7.

x UNIVERSAL error mode.

See the discussion on error modes in section 2.7.

K Disable range checking.

This removes any code whose sole purpose is to check for array bounds
violations. Any such check which can be performed at compile time (e.g.
because the index is a constant) will still be performed. Note that the K
option will also disable run-time alias checks.

U Disable run-time error checking.

This removes any code whose sole purpose is to detect errors (except
ASSERT - see below). For example, code to check that the number of repli­
cations of a replicator is not negative will be omitted. It does not mean that
errors are 'allowed'. Some errors may still be detected because the fastest
code includes error checking. (E.g. adc is used to add a constant number;
this instruction performs overflow checking). Note that this option is
stronger than the K option, in that it does everything that the K option does,

72 TDS 37900 March 1993



12 4.1 Compiler command line switches

and more, so it is not necessary to specify both on the command line. Also
see the discussion on error modes in section 2.7.

NA Disable run-time ASSERT checks.

The ASSERT predefine can be used to provide security checks. If a check
can be performed at compile-time, it will be. Otherwise code is inserted to
perform the check at run-time. This option disables the run-time checks.

N Disable Usage checking.

See the discussion on usage checking in section 2.10.

A Disable Alias checking.

See the discussion on alias checking in section 2.9. Note that the K option
will also disable run-time alias checks.

v Disable vectorspace.

See the discussion on separate vectorspace in section 2.8.

Y Disable interactive debugging.

See the discussion on interactive debugging in section 2.5. Also see the
discussion on virtual routing in section 2.6.

P Produce map file.

This option can be used to specify the name of a text file (the 'map' file)
which is created by the compiler to provide information about memory
layout. This is used by the imap toof.

72 TDS 379 00 March 1993



4 Command line switches

4.2 Linker command line switches

13

Use the linker's H, S, orX flags to link in the correct error mode. If interactive debug­
ging and virtual routing are not required, disable interactive debugging by using
the Y flag.

The MO option can be used to specify the name of a text file (the 'module' file) which
is created by the linker to provide information about the linkage. This is used by
the imap tool.

4.3 Linker directives

The linker allows a programmer to control the relative ordering ofdifferent modules
in the linked object file. The output file will still be a single consecutive chunk of
code, but the relative order of subroutines can be controlled. Primarily this is done
by rearranging the order in which the files are listed on the command line. The
linker does, however, provide finer control than this if required.

The linker inserts all separately compiled units into the output code file in the same
order as they are encountered on the command line. The first module will be
loaded at a lower address, that is, nearer MOSTNEG INT. It then adds library
modules as necessary. It chooses the entry name of the first separately compiled
module to be the entry point of the whole file; normally the top level module is listed
first. If you re-order the files on the command line,You must provide a
#mainentry command to the Iinker (or use the ME command line option) to tell
the linker the name of the main entry point of the program.

#section directives in the Iinker's input file provide finer control. By default, the
occam compiler places all code in any compilation module into a 'code section'
named "text%baseJJ

• This may be overridden by use of the compiler's #PRAGMA
LINKAGE. If this pragma is specified, the code section is named
"pri%text%baseJJ

• If the pragma is followed by a string (in double quotes), that
name is used for the code section.

The linker links all code modules in any particular named section in arbitrary order,
and then concatenates the sections. However, by naming different sections, a
programmer can control the overall order. Normally, the linker places the section
named "pri%text%baseJJ at the beginning of the code, (Le. nearer MOSTNEG
INT), followed by "text%baseJJ

, followed by any other code sections. If the
programmer supplies any 'section directives in the Iinker's input file, the default
is ignored. Instead, the linker places the first named section first, followed by the
next named section, etc. Any sections which were not explicitly named are placed
at the end. (Note that the #section directive should be followed by the section
name without enclosing quotes). The module file created by the Iinker's MO option
can be examined to confirm the relative placement of sections.

Note that floating point support libraries used on T4 series transputers are auto­
matically placed into section "pri%text%baseJJ

, so that they are more likely to be
placed onto on-chip RAM.

72 TDS 379 00 March 1993



14 4.4 Configurer command line. switches

4.4 Configurer command line switches

Interactive debugging should be disabled using the 'y' option, for optimum perfor­
mance. This also means that a smaller start-up routine can be used, which enables
more of a user's program to fit into on-chip RAM.

Similarly, virtual routing should be disabled by using the 'NV' option if appropriate.

4.5 Configuration language attributes for optimizing memory

As described in the discussion on memory layout in section 2.11, by default work­
space is placed at the lowest address, followed by code, followed by vectorspace.
The configurer provides attributes which can be set to override this default.

4.5.1 Ordering attributes

The order. code attribute of a PROCESSOR can be set to an integer value, in the
MAPPING section of the configuration source. The default value is O. If this attribute
is set to a value less than 0, the code will be placed at a lower address than the
workspace. Similarly, the order. vs attribute can be set to a negative value to indi­
cate that it should be placed at a lower address than the workspace. The relative
values of order. code, order. ws, and order. vs indicate which should be
placed at a lower address.

The collector's map file (produced by the p command line option) can be inspected
to see the effect of these switches.

Note that this facility must be explicitly enabled by the configurer's RE option,
because the idebuq debugger cannot be used if the memory layout has been
altered.

4.5.2 Location attributes

Attributes location. code, location. ws, and location. vs can be used to
explicitly specify where the code, workspace, or vectorspace of a program should
be placed. They are set to a machine address. This address must not be within the
address range used by the configurer for its own use; namely that area above
reserved BYTES from MOSTNEG INT, and below memsize BYTEs from
MOSTNEG INT.

4.5.3 Reserved attribute

The reserved attribute can be used to tell the configurer not to use the memory
immediately above MOSTNEG INT; Le. the lowest addresses in memory. It should
be set to the number of BYTEs above MOSTNEG INT which are to be reserved.
The configurer will then leave this area free for use by the programmer; either by
using the location attributes, or by PLACEing data there directly.

72 TDS 379 00 March 1993



4 Command line switches

4.6 Collector command line switches

15

Y Disable interactive debugging.

This also allows the collector to insert a more specialized loader which
takes up less memory. (This option is not required when collecting a
program which has already been configured with the Y option).

M Specify memory size.

When collecting a program for a single transputer, this option creates a
bootable which does not examine the environment variable IBOARDSIZE
at run-time. Instead, it uses the value supplied to the collector. This will
reduce the memory requirements of the start-up code.

P Specify memory map file.

This option creates a map file describing the memory map of each
processor, and their connectivity. This is used by the imap tool.

S Specify stack size.

This option can be used for single processor programs to gain access to
a reserved block of memory at the bottom of the address space. (In the C
toolset it is used to place the C program's stack onto the on-chip RAM,
hence the name of the option).

A single processor program normally requires the following formal param­
eter list:

#INCLUDE "hostio.inc"
PROC rnyprog (CHAN OF SP fs, ts, [lINT freespace)

This can be modified as follows:

#INCLUDE "hostio.inc"
PROC rnyprog (CHAN OF SP fS, ts, [lINT freespace, [lINT buffer)

The collector will allocate a buffer at the bottom of memory, and pass it as
the extra parameter. If the collector's S option is not specified, this array will
be of length zero. The buffer can be used to hold an array of data which
is required to be accessed quickly. See the discussion about memory
layout in section 2.11.

72 TDS 379 00 March 1993



16

72 TDS 37900

4.6 Collector command line switches

March 1993



5 Compiler
optimizations

The compiler already performs some minor optimizations:

• Constant folding

Expressions such as 27 + 33 are 'folded' into 60.

• Unused variable elimination

Any variables which are never used are not allocated stack space.

• Dead code elimination

Branches of IFs which can be determined at compile-time to always be
FALSE are ignored.

• Constant tables

The transputer instruction set creates large constants by repeated use of
a pfix instruction. This can sometimes mean that loading large constant
values can be slow. However, the compiler recognizes such constants, and
'caches' them into a constant table, which is accessed quickly via a small
offset from a local pointer.

• Workspace allocation

The compiler estimates the usage frequency of each variable which is
used in a procedure or function, and allocates the variables in memory so
that the most used variables are stored at small offsets in workspace, so
as to minimize the overall execution cost.

• Merging of constant arrays

Constant arrays and strings which appear more than once in a single
compilation unit are merged into a single array, and thus only appear once
in the code.

• Elimination of temporaries

The compiler 'knows' that different variables always refer to different data
items, and can reduce the number of temporaries required in multiple
assignment, etc.

72 TDS 379 00 March 1993



18

72 TDS 379 00

5 Compiler optimizations

March 1993



6 Source code
optimizations

The reader should be aware that many of the following source code optimizations
are implementation dependent, and may actually result in a performance degrada­
tion in a different implementation of the occam language.

6.1 Compiler workspace layout

The current compiler allocates workspace as a falling stack. Hence the workspace
for a nested procedure or function will be allocated at a lower address than that
of the enclosing subroutine.

Workspace for parallel processes are allocated below the workspace of the parent.
The first member of the PAR list (or the lowest replicator value of a replicated PAR)
is allocated workspace immediately below the parent, the next immediately below
that, etc. Thus the last process will have the lowest workspace address, and hence
is most likely to be placed on-chip.

Suppose we have three procedures a () , b () and c () . Then

SEQ
body of parent

PAR
a ()
b ()
c ()

is allocated as follows:

Parent's Workspace
1----------1 .- Base of parent's workspace
Workspace for a ( )
1----------1 .- Base of workspace for a ( )

Workspace for b ( )
1----------1 .- Base of workspace for b ( )

Workspace for c ( )
1---------1 .- Base of workspace for c ()

L.....- ----'...- Bottom of memory (MOSTNEG INT)

This arrangement also holds for PRI PAR. Hence if it is important to get the work­
space of a high priority process on-chip, where the low priority process has a large
workspace, the following can be used:

72 TDS 379 00 March 1993



20

PAR
low priority process

PRI PAR
... high priority process
SKIP

6.2 Compiler code layout

6.2 Compiler code layout

The compilerwrites code for a single compilation into a single object file. PROC and
FUNCTION bodies are written in the reverse order of the end of their declaration;
thus if you read the source backwards, the routines are inserted into the object file
in the order in which you find their terminating colons (:). This means that all calls
are forwards, and that calls to a routine do not have to jump over the body of that
routine; these considerations help make the call instruction smaller.

However, it tends to mean that nested subroutines are placed at higher addresses,
which can push them out of on-chip RAM. It may be useful to make critical inner
subroutines into separately compiled units, and use the linker to place that at a
lower address (see section 4.3).

6.3 Abbreviations

Abbreviations are a powerful feature of the occam language. They can be used
to bring non-local variables down into local scope, thus removing the need to chain
through the procedure call stack, and speeding up access. They can also speed
up execution by removing range check instructions. Where appropriate, VAL
abbreviations should be used; for scalar values this creates a local copy of a vari­
able rather than a pointer to it.

6.3.1 Abbreviations - They should not be too trivial

When performance is the main aim, abbreviations should not be used if the value
is only used once or twice. Similarly, if an expression is simple, it may be faster to
re-evaluate the expression, rather than to read another value from memory, espe­
cially if the workspace does not fit in on-chip RAM.

6.3.2 Abbreviations - Removing range-checking code

By abbreviating sub-vectors of larger vectors and using constants to index into the
sub-vector, the compiler will generate range-checking code for the abbreviation,
but will not need to generate range-checking code for accesses to the sub-vector.

As an example of an abbreviation removing range check instructions, here are two
versions of the same procedure. Part of the ray-tracer, this procedure is initializing
fields in a new node to be added into a tree. The identifier nodeptr points to the
start of the node. The second version uses abbreviations, generates no range
checking code (apart from initial generation of the abbreviation) generates shorter
code sequences for each assignment, and executes more quickly.

72 TDS 37900 March 1993



6 Source code optimizations

PROC initNode ( VAL INT nodeptr -- version 1
SEQ

tree nodeptr + n.reflect] := nil
tree nodeptr + n.refract] := nil
tree nodeptr + n.next]:= nil
tree nodeptr + n.object] := nil

PROC ini tNode ( VAL INT nodeptr ) -- version 2
node IS [ tree FROM nodeptr FOR nodeSize ] :
SEQ

node n.reflectJ:= nil
node n.refract]:= nil
node n.next] := nil
node n.object]:= nil

21

Even if range-checking were switched off, the second version will execute more
quickly. Without range check instructions, the statement will generate the following
transputer instructions:

ldc nil
Id! nodeptr
Id! static
ldnlp tree
wsub
stnl n.refract

-- get data to save
-- get pointer to base of node
-- get static chain
-- generate pointer to tree ( in outer scope)
-- generate pointer to tree [ nodeptr]
-- and store to tree [ nodeptr + n.refract]

whereas the second version will generate the following, appreciably shorter and
faster fragment of code:

ldc
ldl
stnl

nil
node
n.refract

-- get data to save
-- load abbreviation
-- and store

Of course there is an initial overhead to generate the abbreviation, but this is
rapidly swamped by the subsequent savings.

6.3.3 Abbreviations - Loop unrolling

Using abbreviations in conjunction with loop unrolling by hand can speed up
execution considerably. Take the following piece of occam , a simple vector addi­
tion:

SEQ i = 0 FOR 20000
a[i] := b[i] + c[i]

The transputer loops in about a microsecond, but adds in about 50 nanoseconds.
Therefore to increase performance we must increase the number ofadds per loop:

72 TDS 379 00 March 1993



22

VAL bigLoops IS 2000 / 16 :
VAL leftOver IS 2000 - (bigLoops TIMES 16)
SEQ

SEQ i = 0 FOR bigLoops
VAL base IS i TIMES 16
aSlice IS [ a FROM base FOR 16
VAL bSlice IS [ b FROM base FOR 16
VAL cSlice IS [ c FROM base FOR 16
SEQ

aSlice [0] := bSlice [0] + cSlice [0]
aSlice [1] := bSlice [1] + cSlice [1]
aSlice [2] := bSlice [2] + cSlice [2]

aSlice [14] := bSlice[14] + cSlice[14]
aSlice [15] := bSlice[15] + cSlice[15]

SEQ i = 2000 - leftOver FOR leftOver
a[i] := b[i] + c [i]

6.4 Vectorspace

Obviously, loops can be opened out in any language, on any processor, and perfor­
mance will tend be improved at the expense of increased code size. However,
opening loops out in slices of 16 has a knock-on effect on the transputer, as optimal
code with no prefix instructions is generated for each addition statement.
Compare the cod~ generated for the two statements:

a[i] := b[i] + cri]

aSlice[15] := bSlice[15] + cSlice[15]

leil i
ldl b
wsub
ldnl 0
leil i
leil c
wsub
ldnl 0
add
Id! a
Id! i
wsub
stnl 0

leil bSlice
ldnl 15
ldl cSlice
ldnl 15
add
leil aSlice
stnl 15

The second piece of code is just over half the size of the first and the number of
loop end (lend) instructions executed is reduced by a factor of 16.

6.4 Vectorspace

Use the allocations:

PLACE name IN WORKSPACE and PLACE name IN VECSPACE

72 TDS 37900 March 1993



6 Source code optimizations 23

as described in the discussion on separate vector space (section 2.8).

Suppose we wish to clear a large block of memory, such as a clear screen opera­
tion. It may be worthwhile using an array which is placed in on-chip RAM as the
source of a block move:

PROC ClearScreen(VAL BYTE pattern)
-- the screen is declared as [512] [512] BYTE screen
[SIZE screen[O]]BYTE fastvec: -- this is in on-chip RAM
PLACE fastvec IN WORKSPACE :
SEQ

initBYTEvec(fastvec, pattern) -- fast BYTE initializer
SEQ y = 0 FOR SIZE screen

screen[y] := fastvec -- use a block move

This fires off 512 block move instructions, each of 512 bytes. Since the block move
is reading from on-chip memory, and writing to off-chip memory, it will proceed
more quickly than

PROC ClearScreen(VAL BYTE pattern)
-- the screen is declared as [512] [512]BYTE screen
[(SIZE screen) * (SIZE screen[O])]BYTE bytescreen :
initBYTEvec(bytescreen, pattern) -- fast BYTE initializer

where all data accesses are to off-chip memory. The time saved during the block
moves outweighs the cost of setting up the parameters to the block moves, and
of the initial ini tBYTEvec. See section 6.7 for more about block moves and for
the source of ini tBYTEvec.

6.5 Beware the PLACE statement

A common mistake in trying to make occam go faster is to physically place data
on-chip, using a PLACE AT statement. This does the right thing - the compiler will
physically place the variable on-chip, but the variable will be outside local work­
space. Therefore to access the variable, its physical address must be generated,
and an indirection performed to load the contents of the address. For example,
declaring a variable at word address 30 above MOSTNEG INT, and setting its
value to 3 :-

INT a :
PLACE a AT 30 -- 30th word above MOSTNEG INT
a := 3

Idc 3
mint
ldnlp 30
stnl 0

This code sequence takes 7 cycles (350 ns on a T800-20). Were a a local variable,
the code sequence would take only 3 cycles (150 ns) if the workspace were
on-chip, and would be:

ldc 3
stl a

72 TDS 37900 March 1993



24 6.6 Abbreviating PLACED objects

In any case it is dangerous to place variables directly into on-chip RAM, because
unless the on-chip RAM has been reserved in some other way, the explicit alloca­
tion to on-chip RAM will clash with some other code or data which is already there.

The key to making variable accesses go faster is to keep the workspace on-chip.
Then if it is necessary for a vector to be on-chip, it can be declared in local scope.

6.6 Abbreviating PLACED objects

In some circumstances PLACED objects must be used, for example to talk to some
external hardware such as a UART. In this case, it is often more efficient to create
a local copy of the address by using an abbreviation, rather than referring repeat­
edly to the original object:

PORT OF INT uart :
PLACE uart AT #12345

PORT OF INT uart IS uart
SEQ

use 'uart'

6.7 Block move

-- forces a local copy of the address

The transputer vector assignment instruction move is directly supported by the
occam language. The vector assignment statement:

[65536] BYTE bigVec, otherVec :
[ bigvec FROM 0 FOR 65536 ] := [ otherVec FROM 0 FOR 65536 ]

compiles down to only 4 instructions:

ldl bigVec
ldl otherVec
ldc 65536
move

-- assuming the vectors are abbreviated
-- locally
-- this will be prefixed of course

A very fast vector initializer can be written using block moves:

PROC initBYTEvec ([]BYTE vec, VAL BYTE pattern)
INT dest, transfer :
SEQ

transfer := 1
dest := transfer
vec [0] := pattern
WHILE dest < (SIZE vec)

SEQ
IF

(dest + transfer) > (SIZE vec)
transfer := (SIZE vec) - dest

TRUE
SKIP

[vec FROM dest FOR transfer] := [vec FROM 0 FOR transfer]
dest := dest + transfer
transfer := transfer + transfer

72 TDS 379 00 March 1993



6 Source code optimizations 25

This performs a series ofassignments of increasing length, initializing the first byte
of the vector, then the next 2, then the next 4, 8, 16 etc., until it finishes the vector.

6.8 Use TIMES

The transputer has a fast (but unchecked) multiply instruction, which is accessed
with the occam operator TIMES. An integer multiply on the IMS T414-20 takes
over a microsecond - using TIMES this will take as many processor cycles as
there are significant bits in the right-hand operand, plus 2 cycles overhead.

a TIMES 4 takes only 6 cycles (300 ns). Therefore, when multiplying integers
by small constants, use TIMES. Note that the IMS T800 Floating Point Transputer
has a modified version of TIMES which optimally multiplies small negative inte­
gers, as have all later transputers.

The compiler uses this faster, unchecked, version of multiply for normal multiply
operations if run-time error checking is disabled by means of the U command line
switch.

6.9 Retyping - accelerating byte manipulation

Under certain circumstances retyping can be used to speed up byte manipulation.
If it is necessary to frequently extract byte fields from aword, then retyping the word
to a BYTE array is faster than shifting and masking. For example:

INT word :
[4] BYTE bWord RETYPES word :
SEQ

... use bWord[O] , bWord[l] , bWord[2] , bWord[3]

To access bits 16..23 in word, simply reference bWord[2] , which will generate:
ldlp bWord -- load base of bWord
adc 2 -- select byte 2
lb -- and load it

To perform byte operations on large arrays it is worthwhile moving portions of the
array to a local (on-chip) array; this is because a block move transfers words and
is therefore much faster than accessing individual bytes from an off-chip array. For
example:

[1024] INT vector :
[]BYTE bytevector RETYPES vector

[16] BYTE local :
PLACE local IN WORKSPACE
INT base :
SEQ

base := 0
SEQ i = 0 FOR 64

SEQ
local := [bytevector FROM base FOR 16]
base := base + 16
SEQ i = 0 FOR 16

SEQ
... use local[i] to access each byte

72 TDS 379 00 March 1993



26

6.10 Seoping of variables

6.10 Seoping of variables

The compiler estimates the run-time count of the number of times each variable
in a subroutine is accessed, using a heuristic which allows for repetition of loops,
etc. It uses this information to place the most frequently used variables at the
smallest workspace addresses; hence these variables can be accessed via
smaller (and faster) instructions. The order of variable declarations has no major
effect, unlike the situation in the 07058 occam toolset; and the use of separate
vectorspace makes the problem less acute anyway.

Variables should be scoped as locally as possible. The compiler uses the lexical
scoping ofvariables to determine which variables are live (in use) at the same time,
and which can be overlaid over each other. Hence localized scoping of variables
can also reduce the total workspace requirement, thus helping to fit the total work­
space into on-chip RAM.

BYTE and BOOL scalar variables are initialized at declaration by the compiler, to
enable quick access as a local variable. Therefore it is not a good idea to declare
them inside inner loops.

Note - Unfortunately this is not good programming practice. Declaring items at the
scope within which they are required is more secure, preventing accidental modifi­
cation and otherprogramming errors. This conflict ofgood programming style and
program efficiency is a feature of this compiler implementation, not the occam
language. It is intended that future releases of the occam compiler will be more
flexible.

6.11 Use the whole language

There are features ofoccam which are particularly suited to certain types of prob­
lems.

For example, when comparing an expression against a list of distinct constants,
use a CASE statement rather than an IF. A compiler will attempt to make a CASE
construct as fast as possible, assuming that all the values are equally possible, and
may use a combination of techniques to select the correct branch. This compiler
uses a combination of jump tables, binary searches, and explicit tests, depending
on the relative values and density of the target values (Le. whether there are any
'gaps').

An IF construct must be executed sequentially, evaluating each of the guards in
turn. The first guard which is TRUE will be executed. Thus branches which are
likely to be chosen frequently should be listed at the start of the IF.

Note that a combination of these two constructs may be the best solution where
one value is particularly common, but where there may be many other possibilities:

72 TDS 37900 March 1993



6 Source code optimizations

VAL temp IS complicated. expression
IF

temp = frequent. value
... process frequent.value

TRUE
CASE temp

infrequent.valueO
... process infrequent.valueO

infrequent. value! ,
... process infrequent.valuel

infrequent.value2
... process infrequent.value2

etc

27

Note that replicated IFs are particularly suited to 'search' type lookups and
comparisons:

BOOL FUNCTION equal.string(VAL []BYTE a, b)
-- This returns TRUE if a = b
BOOL result :
VALOF

IF
(SIZE a) <> (SIZE b)

result := FALSE
IF i = 0 FOR SIZE a

a[i] <> b[i]
result := FALSE

TRUE
result := TRUE

RESULT result

6.12 INLlNE procedures and functions

This compiler allows you to write the keyword INLINE immediately before the
keyword PROC or FUNCTION of a procedure or function declaration. The effect is
that any call of that subroutine is expanded out as though the body were written
in-line at the call site. This can be used to greatly improve program readability with
no loss of performance. More importantly, this can improve performance by
removing the overhead of the procedure or function call. It also allows the compiler
to compile the body of the routine knowing the actual parameters, which provides
further opportunities for optimization.

The programmer should be aware that inlining normally increases code size, and
can cause problems because the calling procedure is then enlarged.

The current implementation does not permit the definition of the procedure orfunc­
tion which is to be inlined to exist in a different separately compiled unit to the caller.
Instead, the declaration should be written in an include file, and #INCLUDEd by
every source file which calls the routine.

6.13 Access to non-local variables

Non-local variables (Le. those which are declared in an outer procedure or func­
tion) are accessed via a 'static link'. This will require one memory access for each

72 TDS 379 00 March 1993



28 6.14 Access to formal parameters

level of nesting, every time that variable is accessed. It is possible to avoid doing
this repeatedly, for example when a variable is used inside a loop, by creating a
local abbreviation to that variable; this will create a pointer in the local workspace,
and this local copy can be used inside the loop.

6.14 Access to formal parameters

All variable (non-VAL) parameters, and all VAL parameters which are eitherarrays,
or longer than a word, are accessed via a pointer. If a parameter is accessed
frequently, it may be worthwhile 'cache-ing' such a variable in a local variable:

PRoe cumulative.sum(INT sum, VAL []INT array)
INT local.sum :
SEQ

local.sum := sum -- copy into a local variable
SEQ i = 0 FOR SIZE array

local.sum := local.sum + array[i]
sum := local.sum -- write back into the real variable

6.15 Pre-evaluate expressions

This technique is applicable to all programming languages. Any calculation which
is to be performed repeatedly should be removed from any inner loops. If the
calculation is relatively simple, it can be pre-evaluated by hand. Alternatively, at
the beginning of the program a table can be initialized so that the values can be
accessed quickly later.

As a trivial example, suppose a program requires frequent access to 'n cubed'
where n is always less than 100.

PROC init.cubes([]INT cubes)
SEQ i = 0 FOR SIZE cubes

cubes[i] := (i • i) • i

E100]INT cubes:
SEQ

init.cubes(cubes)
other initialisation

WHILE test -- this is the 'inner loop'
... use "cube[x]" instead of "(x· x) * x" here

6.16 Conditional expressions

Remember that by definition INT TRUE evaluates to 1 and INT FALSE to O. This
can be used to transform the following type of example

72 TDS 37900 March 1993



6 Source code optimizations

SEQ
IF -- this is slower

test
x := 1

TRUE
x := 0

x := INT test -- this is quicker

29

Note that some programmers consider the second form to be less readable, so the
first could be left as a comment.

6.17 Array subscripts

Array subscripts of the form "a [c]" (where c is a constant) are evaluated most
efficiently. However, if no range checks are required, and run-time error checking
is disabled, "a [e + c]" (where e is any expression), is evaluated as quickly as
"a [e]", as is "a [c + e]" and (la [e - c]".

6.18 INT16s

INT16 values are not handled very efficiently on current 32-bit transputers. They
should be converted to INT while being processed, and converted back to INT16
to be stored, if they are really required.

If a mixed system of 16-bit and 32-bit transputers is being used, it may be more
efficient to use INT32s as the portable communication values, since INT32 values
on a 16-bit processor are generally handled more efficiently than INT16 values on
a 32-bit processor. However, using INT32s will require twice as much data to be
communicated and stored. The memory requirements may be particularly impor­
tant on a 16-bit processor which only has 64K of addressable memory.

6.19 ALTs

Large, multi-way ALTs are relatively slow, since their time cost is proportional to
the number of channels in the ALT. A technique known as fan-in can be used to
enhance their speed.

Instead of, say, a 1OD-way ALT, it would be faster to use ten processes consisting
of 10-way ALTs collecting the input, and passing that information to another
process with another 1O-way ALT. Each communication through the ALT then is
processed by two 10-way ALTs instead of one 1OD-way ALT, and will be faster.
Care must be taken, however, because using this model will change the synchro­
nization properties of the program.

6.20 Use of ASSERT ()

This compiler implements a predefined procedure ASSERT (VAL BOOL test).
If test is FALSE, and can be detected at compile time, this causes a compile-time

72 TDS 37900 March 1993



30 6.21 Transputer scheduler

error. If test can only be evaluated at run-time, the compiler will insert code to
check that test is TRUE.

This can be used for various debugging tests, and to document and check various
assumptions which have been made in the source code. If required, run-time
ASSERT checks can be removed by using the compiler's NA command line option.

6.21 Transputer scheduler

This compiler implements a predefined procedure RESCHEDULE () : This will place
the current process to the back of the active process queue, and will work in either
priority. RESCHEDULE should be used rather than relying on the implications of the
transputer scheduling model. In some implementations of occam, the following
"works", but the compiler is quite at liberty to optimize it out completely.

PAR
SKIP
SKIP

72 TDS 379 00 March 1993



7 Summary

7.1 Optimizing for code size

Most of the optimizations described in this document will optimize for both space
and time, but note:

• If an INLlNE routine is called more than once, its body will be expanded
multiple times.

• The use of separate vectorspace may cost code space because an extra
parameter must be passed to every routine.

On the other hand, careful use of abbreviations can also reduce code size.

7.2 Removing run-time checks

Remember that run-time checks are not as costly as is sometimes thought.

The compiler's K switch removes any checks concerning array bounds violations.
The NA switch removes all run-time checks of ASSERT. The u switch removes all
code whose sole purpose is to detect errors (e.g. integer conversions, etc.). The
Y switch disables interactive debugging and will speed up communication.

So to compile a program with no error checking, use:

oc myprog -h -na -u -y

7.3 Placing arrays in on-chip RAM

If the access time of a particular array is critical, and the workspace of a program
fits into on-chip RAM, it will be useful to move that array into on-chip RAM instead
of vectorspace, by inserting the following declaration after the array's declaration:

PLACE array.name IN WORKSPACE :

If the workspace does not already fit into on-chip RAM, it might be worth putting
the vectorspace at the bottom of memory, instead of the program's workspace.
Turn veclorspace off by default, by using the compiler's v option, but place the crit­
ical array into vectorspace explicitly:

PLACE array.name IN VECSPACE :

The order. vs configurer attribute can then be used to move the vectorspace to
the bottom of memory. This attribute must be set in the MAPPING section of the
program (see section 4.5).

72 TDS 37900 March 1993



32

MAPPING
SET processor (order.vs := -1)

7.4 Placing code in on-chip RAM

An alternative method which can be used for single processor programs which are
not configured, is to use the collector's S switch (see section 4.6). The program
should be declared with an extra parameter as follows:

'INCLUDE "hostio.inc"
PROC myprog(CHAN OF SP fs, ts, [lINT mem, [lINT fastmem)

The fastmem array is placed onto the on-chip RAM by the collector, and is allo­
cated so that the space is not used for anything else. Hence this array can then
be used for buffers, etc., which are required to be accessed quickly. For example,
it could be used as the 'initializer' buffer for the ClearScreen subroutine
described in section 6.4. The collector should be invoked as follows:

icollect myprog.lku -t -s 100

This will allocate 100 words at the bottom of memory, which are passed in as the
parameter fastmem, and can be accessed more quickly than the rest of memory.

7.4 Placing code in on-chip RAM

Turn the critical subroutine into aseparately compiled routine by passing all 'global'
variables into it as parameters.

Add the following directive to the beginning of the subroutine:

'PRAGMA LINKAGE

This informs the tinker to place the code for this subroutine in front of the rest of
the code.

If the workspace requirement of the program is small and fits in on-chip RAM
anyway, some of the code will be placed on-chip too. Since the tinker has placed
the critical routine at the start of the code section, this routine will be placed in
on-chip RAM.

If the workspace requirement is large, it may be better to move the entire work­
space off-chip, so that the code can be placed in on-chip RAM. This is done by
setting the order. ws configurer attribute in the MAPPING section of the configura­
tion program, which forces the workspace to reside at a higher address than the
code. (see section 4.5).

MAPPING
SET processor (order.ws := 10)

72 TDS 379 00 March 1993



7 Summary

7.5 Building benchmarks

33

Compile the program in HALT error mode, and turn off all error checks with the U
switch (see section 4.1), and the NA switch.

Disable interactive debugging with the Y switch. Use the linker, configurer and
collector's Y switch too. (See section 2.5).

Also, disable virtual routing with the configurer's NV option. (See section 2.6).

Single processor programs may benefit from using the collector's M option to
specify the memory size in advance, so that a simpler bootstrap may be used. (See
section 4.6).

Experiment whether disabling vectorspace has any useful effect; this may be true
if the workspace requirement is small anyway, as it commonly is with benchmarks.
(See section 2.8).

Take particular care to ensure that the workspace is placed in on-chip RAM. Where
possible, use linkersection ordering to ensure that the 'inner loop' subroutines are
also placed on-chip.

72 TDS 379 00 March 1993



34

72 TDS 37900

7.5 Building benchmarks

March 1993



8 Maximizing
multiprocessor
performance

The following sections will describe how to obtain more performance from an array
of transputers. However, only very general guidelines can be offered. Maximizing
multiprocessor performance is still an area ofactive research, and any solution will
tend to be specific to the problem at hand.

8.1 Maximizing link performance

The transputer links are autonomous DMA engines, capable of transferring data
bidirectionally at up to 20 Mbits/sec. They are capable of these data rates without
seriously degrading the performance of the processor. To achieve maximum link
throughput from a multi transputer system the links and the processor should all
be kept as busy as possible.

8.1.1 Decoupling communication and computation

To avoid the links waiting on the processor or the processor waiting on the links,
link communication should be decoupled from computation.

For example, the following program is part of a pipeline, inputting data, applying
a transformation to each data item, then outputting the transformed data:

PROC transfo~ (CHAN OF protocol in, out)
[dataSize] INT data

WHILE TRUE
SEQ

in ? data
applyTransform ( data )
out ! data

If the channels in and out are transputer links, then the performance of the pipe­
line will be degraded. The SEQ construct is forcing the transputer to perform only
one action at a time; it is either inputting, computing or outputting; it could be doing
all three at once. Embedding the transformer between a pair of buffers will improve
performance considerably:

PAR
buffer ( in, a )
transfo~( a, b )
buffer ( b, out )

72 TDS 379 00 March 1993



36 8.1 Maximizing link performance

The buffers are decoupling devices, allowing the processor to perform computa­
tion on one set of data, whilst concurrently inputting a new set, and outputting the
previous set.

In this example the buffer processes will simply input data then output it. There is
a transfer of data here which can be avoided, as all the data can be passed by
reference:

[dataSize] INT a, b,
proc input

. .. proc transform

. .. proc output
SEQ

input (a)
PAR

input (b)
transform (a)

WHILE TRUE
SEQ

PAR
input (c)
transform (b)
output (a)

PAR
input (a)
transform (c)
output (b)

PAR
input (b)
transform (a)
output (c)

c :

-- start-up sequence .. pull in data

-- now transform that data
-- and pull in more ...

-- and from here on
-- the buffers pass round-robin
-- between the inputter, transformer
-- and outputter

Instead of input and output operations transferring data between the processes,
the processes transfer themselves between the data, each process cycling
between the vectors a, band c as the PAR statements close down and restart.

This is a special case, a data flow architecture where all communication and
processing is synchronous - there is a lock-step in, transform, out sequence
which allows this sequential overlay of computing and communication. This is not
the case in many programs, where buffer processes are required.

8.1.2 Prioritization

Correct use of prioritization is important for most distributed programs communi­
cating via links. If a message is transmitted to a transputer and requires through­
routing, it is essential that the transputer input the message then output it with
minimum delay - another transputer somewhere in the system could be held up,
waiting for the message. In such cases it is important to run the processes which
use the links at high-priority. There will tend to be more than one process talking
to links, at most eight, and the PRI PAR statement allows only one process at
each priority level. It is necessary to gather together all the link communication
processes, unify them into a process with a PAR statement, and run this process
at high-priority.

72 TDS 37900 March 1993



8 Maximizing multiprocessor performance

The program from above now becomes:

[dataSize] INT a, b, c :
proc input
proc transform
proc output

37

(c) -- between the inputter, transformer
(a)
(b) -- and outputter

SEQ
input (a)
PRI PAR

input (b)
transform (a)

WHILE TRUE
SEQ

PRI PAR
PAR

input
output

transform
PRI PAR

PAR
input (a)
output (b)

transform (c)
PRI PAR

PAR
input (b)
output (c)

transform (a)

-- start-up sequence .. pull in data

-- now transform that data (HI-PRI)
-- and pull in more ...

-- and from here on
-- the buffers pass round-robin

8.2 Large link transfers

Setting up a transfer down a link takes about about a microsecond (20 processor
cycles), but once that transfer is started it will proceed autonomously from the
processor, consuming typically 4 processor cycles every 4 microseconds (one
memory read or write cycle per 32-bit word).

Keep messages as long as possible.

For example:

[300] INT data
SEQ

out! some.data; 300; [ data FROM 0 FOR 300]

is far better than

[300] INT data
SEQ

out ! some.data; 300
SEQ i = 0 FOR 300

out ! data [i]

However, long link transfers increase latency when data must be through-routed.
Some optimal message length will give the best compromise between overhead
on setting up transfers, and overhead on through-routing.

72 TDS 379 00 March 1993



38

72 TDS 37900

8.2 Large link transfers

March 1993



9 Dynamic load
balancing and
processor farms

Processor farms are a general way of distributing problems which can be decom­
posed into smaller independent sub-problems. See INMOS Technical note 22
(UCommunication Process Computers"), which was also supplied as chapter 4 of
"The Transputer Applications notebook - Architecture and Software".

If implemented carefully, processor farms can give linear performance in multi
transputer systems - that is ten processors will perform 10 times as well as one
processor. Processor farms come into their own when solving problems where the
amount of computation required for any given sub-problem is not constant.

For example, in the INMOS ray tracer one pixel may only require one traced ray
to determine its color, but other pixels may require over a hundred.

Rather than give each processor say one tenth of the screen (assuming ten
processors in the array), the screen is split into much smaller areas - in this case
8x8 pixels, giving a total of 4096 work packets for a 512x512 pixel screen. These
are handed out piecewise to the farm. Each processor in the farm computes the
colors of the pixels for that small area, and passes the pixels back, the pixel packet
being an implicit request for another area of screen to be rendered.

Since work is only given to the farm on demand, load is balanced dynamically, with
the whole system keeping itself as busy as possible. Buffer processes overlay data
transfer with communication, reducing the communication overhead to zero, and
the end-case latency of a processors farm implemented this way is far lower than
in a statically load-balanced system.

The key to the processor farm is a valve process, allowing work packets into the
farm only when there is an idle processor. The structure of this valve is:

72 TDS 379 00 March 1993



40 9 Dynamic load balancing and processor farms

PAR
-- pump work unconditionally
SEQ i = 0 FOR workPackets

inject ! packet
-- regulate flow of work into fa~

SEQ
idle := processors
WHILE running

PRI ALT
fromFa~ ? results

idle := idle + 1
(idle > 0) , inject ? packet

SEQ
tofann ! packet
idle := idle - 1

where the crucial statement is the guarded ALT,

(idle > 0) , inject ? packet

only allowing work to pass from the pumper into the farm when there is an idle
processor. The ALT is prioritized to accept results.

72 TDS 379 00 March 1993



Index

Symbols

#mainentry, 13

#OPTION, 6, 7

#PRAGMA
LINKAGE, 13,32
PERMITALIASES, 7
SHARED, 7

#section, 13

A
Abbreviation

loop unrolling, 21
of PLACED objects, 24
of variables, 20

Alias checking, 6
disable, 6

ALT,29

Array
placing on-chip, 31
subscripts, 29

ASSERT, 29

B
Benchmarks, 33

Block move, 24

c
Code, placing on-chip, 32

Collector
command line options, 15
information, 9

Compiler
command line options, 11

72 TDS 37900

information, 9
optimizations, 17

Configuration, language, optimizing
memory, 14

Constant arrays, merging, 17

Constants
cached in table, 17
folding, 17

D
Dead code elimination, 17

Debugger, information, 9

Debugging, interactive, 4

Directives, linker, 13

E
Error, modes

HALT, 5
STOP, 5
UNDEFINED, 5
UNIVERSAL, 5

Expressions
conditional, 28
pre-evaluate, 28

F
FALSE, 28

Farm. See Processor farm

FUNCTION, 20,27

H
HALT error mode, 5

HaltOnError, 5

March 1993



42

Host, versions, v

imap, 10

Information, provided by toolset, 9

INLINE,27
disadvantage, 31

Instruction prefixing, 1

INT16, on 32-bit transputers, 29

INT32,29

Interactive debugging, 4

L
Link

long messages, 37
optimization, 35
prioritization, 36

Linker
command line options, 13
directives, 13
information, 9

Lister, information, 9

location, 8
location. code, 14

location. vs, 14

location.ws,14

Loop unrolling, 21

M
Memory, allocation, 8

Message length, 37

Multiprocessor, optimization, 35

N
Network, optimization, 35

72 TDS 37900

Index

o
Optimization

code size, 31
links, 35
multiprocessor, 35
of source code, 19
performed by compiler, 17
space versus time, 3
use of occam, 26

order. code, 8, 14
order.vs, 8, 14
order.ws, 8, 14

p
Parameters, access to, 28
Performance improvement, 1
PLACE

then abbreviate, 24
when not to use, 23

PLACE name IN VECSPACE,6,22
PLACE name IN WORKSPACE 622 J ,

Prefixing instructions, 1
Priority, links, 36
PROC, 20, 27
Processor, farms, 39

R
RAM, on-chip

improve use of, 1, 3
not enough, 8
placing arrays in, 31
placing code in, 32

RESCHEDULE, 30
reserved, 8, 14
Retyping, to a byte array, 25
Run-time, checks, 31

s
Scheduling, 30

March 1993



Index

Scoping of variables, 26

Stack, 6
See also Workspace

STOP error mode, 5

T
Target transputer, 1,4

Temporaries, elimination of, 17

TIMES, 25

Toolset, documentation, v
conventions, vii

Transputer
scheduler, 30
targets, 1, 4

TRUE, 28

u
UNDEFINED error mode, 5

UNIVERSAL error mode, 5

Usage checking, 7
disable, 7

v
Variable

non-local, access to, 27
scoping,26
unused - elimination of, 17

Vector space, 5, 22
disadvantage, 31

Virtual routing, 5

w
Workspace, 6

See also Stack
allocation, 17, 19

72 TDS 379 00

43

March 1993



44

72 TDS 37900

Index

March 1993


	Contents
	Preface
	Host versions
	About this document
	About the toolset documentation set
	Other documents
	FORTRAN toolset
	Documentation conventions

	1 Introduction
	1.1 Transputer architecture

	2 Trade-offs and Issues
	2.1 Space versus time
	2.2 On-chip RAM
	2.3 Basic code generation techniques
	2.4 Processor classes and types
	2.5 Interactive debugging
	2.6 Virtual routing
	2.7 Error modes
	2.8 Vector space
	2.9 Alias checking
	2.10 Usage checking
	2.11 Memory layout
	2.12 When there isn't enough on-chip RAM

	3 Obtaining information
	4 Command line switches
	4.1 Compiler command line switches
	4.2 Linker command line switches
	4.3 Linker directives
	4.4 Configurer command line switches
	4.5 Configuration language attributes for optimizing memory
	4.5.1 Ordering attributes
	4.5.2 Location attributes
	4.5.3 Reserved attribute

	4.6 Collector command line switches

	5 Compiler optimizations
	6 Source code optimizations
	6.1 Compiler workspace layout
	6.2 Compiler code layout
	6.3 Abbreviations
	6.3.1 Abbreviations - They should not be too trivial
	6.3.2 Abbreviations - Removing range-checking code
	6.3.3 Abbreviations - Loop unrolling

	6.4 Vectorspace
	6.5 Beware the PLACE statement
	6.6 Abbreviating PLACED objects
	6.7 Block move
	6.8 Use TIMES
	6.9 Retyping - accelerating byte manipulation
	6.10 Scoping of variables
	6.11 Use the whole language
	6.12 INLINE procedures and functions
	6.13 Access to non-local variables
	6.14 Access to formal parameters
	6.15 Pre-evaluate expressions
	6.16 Conditional expressions
	6.17 Array subscripts
	6.18 INT16s
	6.19 ALTs
	6.20 Use of ASSERT()
	6.21 Transputer scheduler

	7 Summary
	7.1 Optimizing for code size
	7.2 Removing run-time checks
	7.3 Placing arrays in on-chip RAM
	7.4 Placing code in on-chip RAM
	7.5 Building benchmarks

	8 Maximizing multiprocessor performance
	8.1 Maximizing link performance
	8.1.1 Decoupling communication and computation
	8.1.2 Prioritization

	8.2 Large link transfers

	9 Dynamic load balancing and processor farms
	Index

