
occam 2.1 Toolset
User Guide

~ SGS-1HOMSON
It..,I ~O©OO©~[lJ~©1fOO@~D©~

August 1995

© SGS-THOMSON Microelectronics Limited 1995. This document may not be copied, in whole or in part,
without prior written consent of SGS-THOMSON Microelectronics.

e® I:] ®
,OlJi)mOS ,IMS, occam and DS-Link® are trademarks of SGS-THOMSON Microelectronics

Limited.

~~~~@mo©T~~em is a registered trademark of the SGS-THOMSON Microelectronics Group.

Windows is a trademark of Microsoft Corporation.

This product incorporates innovative techniques which were developed with support from the European
Commission under the ESPRIT Projects:

• P2701 PUMA (Parallel Universal Message-passing Architectures)

• P5404 GPMIMD (General Purpose Multiple Instruction Multiple Data Machines).

• P7250 TMP (Transputer Macrocell Project).

• P7267 OMI/STANDARDS.

Document Number: 72 TDS 366 02



Contents overview
Basics

1 Introduction to An introduction to transputers and transputer
transputers programming.

2 Overview of the An introduction to the occam 2.1 toolset and its
toolset features including descriptions of the tools provided.

3 Getting started Shows the command sequences to generate a
simple occam 2.1 program using the toolset.

4 Developing programs An overview of the program development cycle using
for the transputer the toolset.

5 An example program Describes an example program for a single
transputer, showing how it is built and run.

6 Programming in Gives further information on program development,
occam assuming a single transputer target.

7 Configuring Describes the configuration language and how to
transputer programs use it to configure software on transputer networks.

8 Loading application Describes how to load programs onto the target
programs transputer network.

9 Access to host Describes the access to host i/o using the libraries.
services

Advanced techniques

10 Advanced use of the Describes additional facilities provided by the
configurer configurer.

11 Mixed language Describes how to mix C and occam code at source
programming and configuration levels.

12 Low level Describes techniques such as code insertion,
programming dynamic code load and extraordinary use of links.

13 EPROM programming Describes converting a program into EPROM code.

14 ST20450 memory Describes how to configure the memory interlace of
interface configuration the ST20450.

15 Performance Describes how to maximize the performance of
improvement occam transputer programs.

Appendices

A Equivalent data types Lists type equivalents in C and occam.
B Transputer code Defines the assembly code insertion facilities.

insertion

C Glossary A glossary of terms.

D Bibliography Lists literature and documentation for further reading.

------------ ~lit9191-----------



Contents overview

-ii-----------lF;ili~@n'.'~~@'------------



Contents

Contents overview .

Contents iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Part 1: Basics ..... . . . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . 1
1 Introduction to transputers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1 Transputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Programming models 6
1.3 Transputer products 6

2 Overview of the toolset 9
2. 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Toolset features. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 9
2.3 Standard object file format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 occam 2.1 compiler. . .. .. .. .. . .. . . .. . . . .. . . . 10
2.5 Multi-language linker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Configuration system 12
2.7 Mixed language programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.8 Toolset summary . . . . . . . . . . . . . . . . . . . . 13

3 Getting started 15
3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Running the examples 15
3.3 The example program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Compiling and linking for other transputer types 20
3.5 Using the Makefile generator .- . . . . . . . . . . . . . . . . . . . . . . 21

4 Developing programs for the transputer 23

4.1 Program development using the toolsets 23
4.2 Compiling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Tools for building executable code . . . . . . . . . . . . . . . . . . . . 28
4.4 Loading and running programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Program development and support 32
4.6 EPROM programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Mixed language programming.. .. . .. .. .. .. . . .. . . 33
4.8 File types and filename extensions 34
4.9 Error reporting 37
4.10 Host dependencies 37
4.11 Unsupported options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

iii----------- ''''~II~@_£~©~-----------



Contents

5 An example program 41

5.1 Overview of the program 41
5.2 The channel protocol 43
5.3 The sorting element 44
5.4 The input/output process 45
5.5 The calling program 46
5.6 Compiling the program . . . . . . . . . . . . . . . . . . 46
5.7 Linking the program 47
5.8 Configuring and collecting the program . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9 Running the program 48
5.10 Automated program building 48

6 Programming in occam 49

6.1 Host channels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 occam error handling 50
6.3 Library ilo 53
6.4 Alias and usage checking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.5 Using separate vector space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6 Sharing source between files 56

6.7 Separate compilation 56
6.8 Using imakef 58
6.9 Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7 Configuring transputer networks 61

7.1 Introduction to configuration 61
7.2 Configuration model 62
7.3 Hardware description 68
7.4 Software description 76
7.5 Mapping description 78
7.6 Example - a pipeline sorter on four transputers. . . . . . . . . . . . .. . . . 83
7.7 Summary of configuration steps. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 87

8 Loading application programs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.2 Tools for loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
8.3 The boot from link loading mechanism 90
8.4 Boards and subnetworks 91
8.5 AServer and the AServer database 93
8.6 Skip loading 94
8.7 Clearing error flags 96

_iv i1ii~~I@~em _



Contents

9 Access to host services 99

9.1 Introduction. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Communicating with the host 99
9.3 Accessing the host from a program 101
9.4 Multiplexing processes to the host . . . . . . . . . . . . . . . . . . . . . .. 101

Part 2: Advanced techniques D •••••••••••••••••••••••••• 105

10 Advanced use of the configurer 107

10.1 Support for INQUEST. .. .. .. .. .. . . . . . .. .. .. . .. 107
10.2 Code and data placement 107
10.3 Channel communication - configuration techniques. . . . . . . . . . . .. 112
10.4 Control of routing .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 114
10.5 Example - optimized filter test program 121

11 Mixed language programming 125

11 .1 Mixed language programs 125
11 .2 occam interface procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 146

12 Low level programming ....................•...................... 157

12.1 Allocation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157
12.2 Retyping channels and creating channel array constructors 161
12.3 Code insertion 163
12.4 Dynamic code loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 167
12.5 Extraordinary use of links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 172
12.6 Scheduling. .. .. . . .. .. .. .. .. . .. . . . . . .. .. . . . . . .. .. 176
12.7 Setting the error flag 177

13 EPROM programming 179

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 179
13.2 Processing options 181
13.3 The EPROM tool: ieprom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182
13.4 Producing ROM-bootable code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 182
13.5 Summary of EPROM tool steps for different configurations . . . . . .. 183

"--.r'/ 14 ST20450 memory interface configuration. . . . . . . . . . . . . . . . . . . . . . . . . .. 185

14.1 The memory interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 186
14.2 General parameters 189
14.3 Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 190
14.4 Configuring for no external memory . . . . . . . . . . . . . . . . . . . . . . . . . .. 191
14.5 Configuring for SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 192

~ 14.6 Configuring for DRAM and Video RAM. . .. .. .. .. .. . . . .. .. . . . .. 195
14.7 Configuring for ROM. . .. .. .... . .. .. .. . .. . . .. .. .. . . . .... . .... 199
14.8 Configuring for non-memory devices . . . . . . . . . . . . . . . . . . . . . . . . .. 199

----------- "'T£ I~i@n&oo.lt v



Contents

15 Performance improvement 205

15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 205

15.2 Trade-ofts and issues 205

15.3 Obtaining information 210

15.4 Command line switches 211
15.5 Compiler optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 215

15.6 Source code optimizations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 216

15.7 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 228

15.8 Maximizing multiprocessor performance . . . . . . . . . . . . . . . . . . . . . .. 230

15.9 Dynamic load balancing and processor farms 233

Appendices 235

A Equivalent data types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 237

B Transputer code insertion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 247

C Glossary .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 253

o Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 263

Index 267

_vi LT~ li~@_II©' -----------



Preface

Host versions

The documentation set which accompanies the occam 2. 1 toolset is designed to cover
all host versions of the toolset:

IBM 386 PC compatible running MS-DOS

• Sun 4 systems running SunOS or Solaris.

About this manual

This manual is the User Guide to the occam 2.1 toolset.

The manual describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two parts; Basics which describes each of the
main stages of the development process, how to configure occam programs for the
transputer and how to build and load them. It also includes a Getting startedtutorial. The
Advanced Techniques part is aimed at more experienced users. The Appendices con
tain some reference material, a glossary of terms and a bibliography. Some chapters
are in common with other toolsets e.g. Developing programs for the transputer and
Mixed language programming.

About the toolset documentation set

The toolset documentation set comprises the following volumes:

rn 'm [[] rn..: ~ ..: : ..: . ..:

•......: .....J •......: ..... j •...... ~ ..... j : ......: ......j
User Guide occam 2.1 Toolset Reference Language and libraries

Reference Manual Reference

• occam 2. 1 Toolset User Guide

This manual.

• occam 2. 1 Reference Manual

Provides a description and definition of the occam 2.1 programming language,
including the changes from occam 2.

• Toolset Reference Manual

Provides reference material for each tool in the toolset, including command line
options, syntax and error messages. Many of the tools in the toolset are generic

___________ ....,£5tRlrl9©' v_ii



Preface

to several toolset products e.g. the occam 2.1 toolset and the ANSI C toolset
and the documentation reflects this. The appendices provide details of toolset
conventions, transputer types, memory configuration files and the configuration
languages.

• occam 2. 1 Language and Libraries Reference Manual

Provides a language reference for the toolset and implementation data. A list of
the library routines provided is followed by detailed information about each
function and procedure.

Other documents

Other documents provided with your toolset product include:

Delivery manual

This document gives installation data and is host specific.

Transputer targets supported by this toolset

The first generation of IMS T2xx, T4xx and TSxx transputers are referred to as the
'T2rr4rrS-series'. The new product family based around the IMS T9000 transputer is
referred to as the 'T9-series'. The ST20450 may be called an ST20 or the IMS T450
depending on the context, and is included in the T2rr4rrS-series family unless other
wise stated.

The documentation set provided with this toolset tends to be generic, e.g. it covers
different transputer types and in some cases different programming languages: C and
occam. The occam 2.1 toolset supports occam 2.1 running on T2rr4rrS-series and
ST20450 transputers. References in the documentation to other languages or trans
puter targets should be ignored.

Documentation conventions

The following typographical and notational conventions are used in this manual:

Bold type

Teletype

Italic type

Brackets []

Braces {}

Ellipsis ...

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments, and
program listings from normal text.

In command syntax definitions, used to stand for an argument of a
particular type. Used within text for emphasis and for book titles.

Used in command syntax to denote optional items on the command
line.

Used to denote optional items in a command syntax which may be
repeated.

Used to denote a range or the continuation of a series. For example,
in syntax definitions denotes a list of one or more items.

In command syntax, separates two mutually exclusive alternatives.

_vi_ii Aii~i~@_cfJ1J1-----------



I Part 1: Basics

-------- iiil~~Im_~~JI--------



Part 1: Basics

_2 ~5~@n_.'9©~ _



3

1 Introduction to transputers

This chapter introduces transputers and the programming models which may be
adopted when designing programs for the transputer. It describes the main features of
the transputer and transputer systems, and introduces the transputer model of parallel
processing.

1.1 Transputers

Transputers are high performance microprocessors that support parallel processing
through on-chip hardware and external communication links. They can be used singly
or connected one-to-another by their serial links in application-specific ways. They may
be used as powerful dedicated microprocessors or as building blocks for complex
parallel processing networks.

The transputer is a complete microcomputer on a single chip. In addition to hardware
support for concurrent programming and inter-processor communication it contains:

• Very fast (single cycle) on-chip memory.

• A programmable memory interface that allows external memory and memory
mapped devices to be added with the minimum of supporting logic.

• Real time clocks.

• On the T8 series, an integral floating point unit.

Figure 1.1 shows the generalized architecture of a transputer with four links.

1.1.1 Transputer links

Links are high performance communications interfaces. They allow processes running
on connected processors to exchange data and synchronize their activity. Support for
link communications is implemented in hardware on each transputer chip. Communica
tions down links operate concurrently with the processing unit and data can be trans
ferred simultaneously on all links. Most transputers have four links except the IMS T400
transputer which has just two links.

Transputer links allow tools such as debugging programs to examine memory directly
from a remote processor. Links also provide a means of loading programs onto a
network from the host down a single transputer link. Alternatively a network can be
loaded via links from a ROM on a single transputer. Both these models are supported
by the transputer toolsets. For ease of development, stand-alone systems and software
are generally developed using a hosted system and then the software is put into a ROM
as a final development stage.

~ SGS-1HOMSON------------ "T~ ~O©OO@rnl!.~~D©~------------



1.1 Transputers

T2rr4rrS-series transputer links consist of two wires, one in each direction, and uses
an asynchronous bit-serial (byte-stream) protocol. Each bit received is sampled five
times and hence the links are referred to as over-sampled links (OS-Links). Each link
provides a pair of channels, one in each direction and can operate at up to 20 Mbits/sec,
providing a bidirectional bandwidth of 2.4 Mbytes/sec.

Figure 1.1 Transputer architecture

1.1.2 Process scheduling

Each transputer has a highly efficient run-time scheduler for time-sharing user applica
tion processes running on the same transputer. Within a single transputer, communica
tion between processes is supported using channels. Processes waiting for input or
output or waiting for a processor to become available, consume no CPU resources, and
process context switching time is less than one microsecond. This means that most
applications require no operating system, with a corresponding improvement in perfor
mance and cost savings.

The scheduling mechanism may also be used for performing interrupts, which makes
interrupt-handling simple and reliable.



1 Introduction to transputers

1.1.3 Real time programming

The transputer has features which provide direct hardware support for real-time
programming. The key features are:

• Direct and efficient implementation of parallel processes in hardware.

• Two priority levels for parallel processes.

• Simple implementation of interrupt-handling software.

• Easy programming of software timers, allowing close control of timing and non
busy polling.

• Placement of variables and POR'lS at specific addresses in memory, for acces
sing memory mapped devices.

Direct support for these features can be found in the current range of transputer toolsets,
which use a common code format to facilitate code compatibility between languages.

Linked processors Pipeline

Tree Grid

Figure 1.2 Transputer networks

1.1.4 Multi-transputer systems

Multi-transputer systems can be built very simply using the two or four high speed links;
only two or four wires are required to connect two links together. The circuitry to drive
each link is on the transputer chip.

___________ J:fi~~@_'a©~ 5_



1.2 Programming models

Transputers may be connected by their links in many configurations, depending on the
needs of the application. Some possible arrangements of networks of transputers are
illustrated in figure 1.2.

1.2 Programming models

Programs developed for running on a single transputer can be designed using tradi
tional sequential programming methods or they can be designed to exploit parallelism,
either to simplify the software or to make the software portable onto multi-processor
systems.

Parallelism can be designed into a program at two levels by dividing the program into
a number of independent communicating sequential processes capable of operating in
parallel. Such processes can either be run on a single transputer, using the transputer's
hardware scheduler, or on a network of transputers. Programs designed for running on
a network of transputers must use the parallel processing model; see section 1.2.1.

Sequential programs can be run on a single transputer. Such programs can exploit the
transputer architecture and software support provided by the toolsets and systems
products, as described in section 1.3.

1.2.1 Parallel processing model

The abstract programming model which the transputer supports is the Communicating
Sequential Process (CSP) model, based on the idea of independent parallel processes
communicating through channels. A channel is a one-way, point-to-point communica
tion path that allows processes to exchange data and synchronize their activity. Further
details can be found in Communicating Sequential Processes by C.A.R. Hoare,
published by Prentice Hall International.

Each process is built from any number of parallel processes, so that an entire software
system can be described in the form of a hierarchy of intercommunicating parallel
processes. This model is consistent with many modern software design methodologies.

Communication between processes is synchronized. When data is passed between two
processes the output process does not proceed until the input process is ready and vice
versa.

Communication between software processes running on the same transputer takes
place through internal channels implemented as words in memory; communication
between processes running on connected processors is driven by the link interfaces and
takes place through the transputer links.

1.3 Transputer products

There is a complete family of transputer devices, including 32-bit and 16-bitprocessors,
link switches and link adaptors for interfacing to other processors and devices.

-6-----------15;l1~~~'9©'-----------



1 Introduction to transputers

A wide range of SGS-THOMSON TRAnsputer Modules (TRAMs) and motherboards is
available for specific hosts. A TRAM is a transputer with an amount of memory and
possibly some other application specific hardware, mounted on a circuit board. TRAMs
can be interconnected via links to build systems based on a number of motherboard
architectures. SGS-THOMSON transputer board products can be used for:

• Developing and debugging transputer software,

• Improving system performance (as accelerator boards),

• Loading software onto embedded systems,

• Building specific transputer networks,

• Specific applications such as SCSI interfacing.

1.3.1 Toolset products

The transputer toolsets are complete software cross-development systems for trans
puters. They allow transputers to be programmed sequentially and in parallel using
high-level languages, making optimum use of the transputer's built-in parallel features.
The combination of access to parallelism from a high level language and a set of tools
for configuring and loading programs on transputer-based systems forms a powerful
development system for all sequential, parallel and embedded software applications.

___________ L.,~~I@_'£' 7_



1.3 Transputer products

_8 Iiiili~©lr&"91-----------



2 Overview of the toolset

This chapter introduces the occam 2.1 toolset. It describes the main features of the
toolset and provides introductions to the occam 2.1 compiler, the toolset linker, the
configuration system, and mixed language programming. A summary of the toolset
components is given at the end of this chapter.

2.1 Introduction

The occam 2.1 toolset is a software cross-development system for transputers, hosted
on a 386 PC with MS-DOS or a Sun 4 system with SunOS. It consists of an occam 2.1
compiler, a multi-language linker, configuration and code collection tools and program
development tools.

The program development tools include a librarian, an object code lister, a makefile
generator, memory interface configurers and EPROM programming tools. Together
with the compilation system, these form an integrated support and development envi
ronment for the programming of transputers and transputer-based hardware.

The toolset is supplied with INQUEST and host interface software. INQUEST includes
an interactive and post-mortem debugger and various profiling tools. The INQUEST
tools are described in the INQUEST User and Reference Manual. The host interface
software includes an application loader and a host file server.

2.2 Toolset features

This toolset incorporates a number of important features:

• Standard object code format generated by the compiler and linker.

• An updated occam 2.1 compiler with language improvements, facilitating full
exploitation of a programming model designed to support parallelism.

• A configuration language which is an extension to occam and facilitates the
mapping of software to hardware. The language supports:

a Automatic placement of channels using software routing and multi
plexing processes. The ability to place channels manually is also
retained as an option.

a Placement of code and data at specific memory addresses.

• Support for mixed language programming through the configuration system and
by specific support in the compiler.

• Support for ST20450 (T450) targets, featuring the following:

----------- !fiEI©.'JlI-----------9



2.3 Standard object file format

o byte and half word instructions used to support a-bit and 16-bit integer
operations;

o POR'm implemented using the device access instructions on ST20450
processors;

o memory configuration.

2.3 Standard object file format

The current range of transputer toolsets generate object code in an intermediate form
known as TCOFF (Transputer Common Object Ale Format), that can be processed by
other tools in the toolset. This standard has been adopted for the development of trans
puter toolsets and enables modules written in different languages to be freely mixed in
the same system.

2.4 occam 2.1 compiler

The occam 2.1 compiler compiles occam source code contained within standard host
format text files. Any text editor that produces ASCII files can be used to create the
occam source. occam source code must conform to the definition of occam 2.1 which
is described in the occam 2. 1 Reference Manual. The compiler implements a number
of non-standard language extensions, as described in Appendix A in the occam 2. 1
Toolset Language and Libraries Reference Manual.

The compiler targets the current range of T2IT41T8-series transputers and the
ST20450. Code may be generated for specific processor types or for related groups,
as described in Appendix B in the Toolset Reference Manual.

Code may be generated in HALT, STOP, or UNIVERSAL occam error modes. The error
mode must be the same (or compatible) for all object files which are to be linked
together, and must be the same as the linker error mode.

2.4.1 Programming model

The occam programming model consists of parallel processes communicating over
channels. Processes may be on the same or different processors, communicating over
internal channels or transputer links.

occam 2.1 has been optimized for the architecture of the transputer - parallelism is
expressed directly in the language. The use of a formal mathematical framework
enables occam code to be extensively checked at compile time and supports formal
program proving and optimization. The inherent security of occam code coupled with
efficient use of the transputer's parallel features make it a powerful tool for the develop
ment of concurrent systems.

2.4.2 Language extensions

The compiler implements a number of language extensions. These are compiler-de
pendent and do not form part of the occam 2.1 definition.

_1_0 ~li~@n'Jllf~~©~ _



2 Overview of the toolset

Directives supported are # INCLUDE, #USE, # COMMENT, # IMPORT, #OPTION and
#PRAGMA. #PRAGMA supports a number of compiler-dependent functions, including
foreign language code import and name translation. These are fUlly described in section
3.13 of the Toolset Reference Manual.

Other language extensions supported by the compiler are:

• assembly code insertion;

• memory placement;

• extended channel retyping.

See Appendix A of the occam 2. 1 Toolset Language and Libraries Reference Manual
for details.

2.4.3 occam libraries

A comprehensive set of libraries and include files is supplied with the toolset. They
include the compiler libraries which form part of the standard support for the occam
language and a set of user libraries for use by the applications programmer.

The compiler libraries are used internally by the compiler; they are not intended for
general use by the programmer, although some routines have been made visible (see
Chapter 2 in the occam 2. 1 Toolset Language and Libraries Reference Manua~. The
compiler automatically loads the correct set of routines for the selected error mode and
transputer type. Compiler libraries are specified to the linker by means of target-specific
linker indirect files; see section 4.3.1.

The user libraries provide application-level support. There are libraries to support:

• single length, double length, and T4-optimized maths;

• file-based and stream-based i/o;

• string handling;

• type conversion;

• link error handling;

• CRC coding;

• debugging.

Constants and definitions are supplied in include files. See the occam 2. 1 Toolset
Language and Libraries Reference Manual for details.

2.4.4 Low level programming

Sequences of transputer instructions can be embedded in occam code using the ASK

construct. This can be useful for optimizing critical sections of code, but the facility
should not be over used because it reduces the compiler's opportunity to check code.

------------ Efl~it_'91-----------1-1



2.5 Multi-language linker

A set of procedures is provided which enables a separately compiled and linked occam
procedure to be loaded and called at run-time and incorporated in a running occam
program. This facility is aimed at experienced toolset users.

Full descriptions of these facilities are given in Chapter 12.

2.5 MUlti-language linker

The toolset linker takes compiled code and libraries and generates a linked unit in
TCOFF format. Input code can be generated by any compiler which generates TCOFF
code, for example, the ANSI C compiler icc. Linker indirect files (command scripts to
the linker) may be used to specify operations to the linker; for example, as in the tinker
indirect files provided with the toolset for referencing the compiler libraries; see section
4.3.1.

Linker directives, which must be referenced using linker indirect files, may be used to
modify the content of the linked unit. Linker directives are described in section 10.4 of
the Toolset Reference Manual.

2.6 Configuration system

The configurer occonf generates configuration information for transputer networks
from a textual configuration description containing separate descriptions of hardware
and software. Mapping of software to hardware is performed according to a mapping
description written by the user, while the mapping of channels to links can be performed
automatically by the configurer or be specified by the user.

The tool prepares the program for configuring on a specific arrangement of transputers
by analyzing the configuration file and creating a configuration data file for the code
collector tool to read. The code collector then generates the program image which may
be loaded onto the hardware.

The configuration language used to write the configuration description is an extension
of occam. It allows software and hardware networks to be described separately and
joined by an optional software-to-hardware description. The language is a simple
declarative language incorporating high-level constructs such as replication and condi
tional statements.

2.6.1 Software routing and multiplexing

The configurer uses software routing and multiplexing software to implement channel
communication over virtual links. This allows many virtual channels to use a single
physical link between processors and enables processes on non-adjacent processors
to communicate directly.

Software routing and multiplexing is performed automatically by the configurer and
requires no intervention on the part of the programmer. Generally, existing configuration

_1_2 Eil~i~@maIf9©' _



2 Overview of the toolset

code can be reused - virtual routing will be employed where required unless virtual
routing is specifically disabled by the configurer NV option.

2.6.2 Code and data placement

Normally, the configurer will use up the available memory accessible to a processor by
allocating the various parts of the application from the lowest address upwards.
However, it is sometimes necessary to specify exactly where a piece of code or data
should reside. The configurer allows the user to state where the code, workspace
(stack) or vectorspace of an occam program must be placed in memory.

The transputer has some very fast RAM which the application may be required to use
in a special way. The configurer can also be told to avoid this area of memory so that
the user has free access to it.

2.7 Mixed language programming

The use of standard TCOFF format allows compiled and linked modules from different
language sources e.g. C and occam, to be mixed in the same system. Individual linked
units in TCOFF format can be mixed in any combination and placed on any processor
in the network.

Calling modules written in other languages is also possible. For example, occam can
call C by using library routines to set up and terminate the static and heap areas. C can
call occam using the IMS_nolink pragma which directs the C code to be compiled
without a static base parameter, or a dummy static base parameter can be declared in
the occam code.

In all mixed language calls, parameters and return values passed must be of the correct
type. Lists of type equivalents between C, and occam are given in chapter 11. Where
character sets differ between languages, translate pragmas available in the compilers
can be used to create acceptable aliases.

2.8 Toolset summary

The components of the toolset, excluding the INQUEST tools, are summarized in
table 2.1. Descriptions of the tools can be found in chapter 4 which also describes the
main stages of program development.

----------- jjjil9©••JI 13_



2.8 Toolset summary

Tool Description

icollect The toolset code collector. Collects linked units into a single file for loading on a
transputer network. Takes as input a configuration data file or a single linked unit.

iemit The transputer memory configuration tool. Used for evaluating and defining memory
configurations for later incorporation into ROM programs.

ieprom The EPROM program formatter tool. Formats transputer bootable code for input to
ROM programmers.

ilauDch The Windows launch tool. Used for setting Windows environment parameters.

ilibr The toolset librarian. Builds libraries of compiled code.

ilink The toolset linker. Resolves external references and links separately compiled units
into a single file.

ilist The binary lister. Disassembles and decodes object code and displays information in a
readable form.

imakef The Makefile generator. Generates Makefiles for input to make programs.

imap The map tool which gives the addresses of functions and variables used by the
program.

imem4S0 The memory configuration tool for T450 targets. Used for evaluating and defining the
memory configuration.

irun The application loader. Used for loading built programs onto the target.

iset The Windows parameter tool. Used for setting Windows environment parameters.

oc The occam 2.1 compiler. Compiles code for the current range of transputers.

occonf The occam configurer. Reads a configuration description and produces a
configuration data file for the code collector.

Table 2.1 The occam 2.1 toolset



3 Getting started

This chapter contains a tutorial that shows you how to compile, link, and run a simple
example program on a single transputer.

A more complex programming example illustrating separate compilation can be found
in chapter 5. A detailed description of program development is given in chapter 4.
chapter 7 provides examples of multi-transputer programming.

3.1 Introduction

In order to create and run a transputer executable file, the following steps must be
followed:

The source files are compiled with the occam 2.1 compiler. The compiler
creates from each source file an object file.

2 The object files are linked together along with any libraries required, to create
a file known as a linked unit. Each linked unit contains the code and data neces
sary to execute as a main program.

3 The linked units are then configured onto a transputer network and collected to
create a bootable program. In the case of a single program on a single trans
puter, there is a short cut available here. However, it is strongly recommended
that development is made by using the full facilities of the configurer. The
INQUEST tools do not support unconfigured programs, and there are many
other advantages to configuring which will become apparent as the procedures
are described.

4 The program is then loaded and run from the host by using irun. The bootable
program contains everything necessary for execution on the transputer network
and it will start automatically after it has been loaded.

3.2 Running the examples

15

In the following examples, the programs are compiled and executed on a single IMS
T425 with 1Mbyte of memory available. If you have a different model of transputer, then
you should make the necessary changes to the command lines and configuration file
as indicated. Command line options for specifying other transputer types are listed in
appendix B of the Toolset Reference Manual.

The examples assume the existence of

• an environment variable TRANSPUTER which defines the name of a connection
to a target network on which to load the program, and

~SGS-1HOMSON------------ "'Y~~a©~~~D©~------------



3.3 The example program

• an AServer database file to define that connection.

See the Delivery Manua/which accompanies this toolset and the irun documentation
(chapter 15 of the Toolset Reference Manua~ for more details.

The examples also assume the existence of the environment variable ISEARCH, which
gives the tools a search path to find libraries and include files which are not in the current
directory. See the Delivery Manual for details.

The tutorial assumes that you have a boot from linkboard. If you have a boot from ROM
board or other non-standard hardware, refer to the manufacturer's documentation.

3.2.1 Sources

Source files for the example used in this chapter are supplied with the toolset under the
examples directory.

3.3 The example program

The example program is contained in the file simple. occ. simple. occ reads a name
from the keyboard and displays a greeting on the screen. The program uses the library
hostio .lib and the include file hostio. inc. The configuration description is in the
file simple.pgm.

The program is listed below with line numbers.

SP protocol

ts,
"Please type your name :")
ts, length, buffer, result)
ts)
ts, "Hello ")
ts,

[buffer FROM 0 FOR length])
ts, sps.success)(fs,

(fs,

so. exit

so.read.echo.line (fs,
so.write.nl (fs,
so.write.string (fs,
so.write.string.nl (fs,

9.
10.
11.
12.

13.
14.

1. #INCLUDE "hostio.inc" -- contains
2. PROC simple (CHAN OF SP fs, ts)
3. lOSE "hostio.lib"
4. [lOOO]BYTE buffer
5. BYTE result:
6. INT length:
7. SEQ
8. so.write.string

Line 1 in the program includes the file hostio. inc. This file contains the definition of
the protocol SP, used to communicate with the host file server, and a number of
constants that are used in conjunction with the host i/o library. This line must be the first
line because line 2 refers to the SP protocol defined in hostio. inc.

The procedure simple is then declared. All the working code is contained within this
procedure. The host i/o library hostio.lib is referenced by the #USE directive in



3 Getting started

line 3. This library contains all the procedures used by the program. See chapter 4 in
the occam 2. 1 Toolset Language and Libraries Reference Manual for descriptions of
these routines.

Before the body of the procedure, a number of variables are declared. buffer holds
the input string, length refers to the number of characters in the nam~ read from the
keyboard, and result is used by the library routine to indicate whether or not the read
was successful. The result is ignored by this example for the sake of simplicity; it is
assumed that screen writes and keyboard reads always succeed. The working code is
contained within a SEQ, indicating that the statements which follow are to be executed
sequentially. All of the statements are calls to library routines in hostio. lib. The code
prompts for a name on line 8, reads the name from the keyboard on line 9, and displays
a greeting on the screen in lines 11 and 12.

The last statement, on line 13, calls a library procedure which terminates the host file
server, returning control to the host operating system. Without this statement the
program would finish and appear to hang, and the server would have to be terminated
explicitly by interrupting from the keyboard.

3.3.1 Compiling the program

In order to compile the program for an IMS T425 use the following command line:

oe simple -t425

The compiler performs the necessary syntax, alias and usage checks, inserts code to
perform run-time error checking, and creates a file called simple. teo. Because the
source file has the default extension of •oee you can omit the extension on the
command line.

The target processor is given as an IMS T425; for information about compiling for other
transputer types, see section 3.4.

By default, the compiler enables interactive debugging with INQUEST and compiles the
program in HALT mode; see chapter 3 of the Toolset Reference Manuaifor a description
of the modes.

"--~/ 3.3.2 Linking the program

To use the result of your compilation it must be linked with the libraries that it uses.

To link the program type:

ilink simple. teo hostio.lib -t425 -f oeeama.lnk

This program uses hostio .lib and various target-specific compiler libraries.
hostio .lib is directly specified on the command line. The correct compiler libraries
are referenced in the linker indirect file oeeama. lnk which is specified by the F option.

___________ ...,£ 1~~@nlf31f£~ 1_7



3.3 The example program

The F option introduces a linker indirect file which is used to link in the correct compiler
libraries. For more details see chapter 10 in the Toolset Reference Manual. If interactive
debugging were required then the debugging libraries should be linked in, as described
in the INQUEST User and Reference Manual.

It is necessary to specify to the linker what the transputer target is. The toolset can
produce code for a range of transputers and the linker must then be told which the actual
target will be. In this example the chosen target is an IMS T425.

The linked program will be written to the file simple .lku. As no output file is specified,
the file is named after the input file and the default link extension • lku is added. By
default the program is linked in HALT mode.

In more complex programs, libraries may be dependent on other files and libraries. To
ensure all necessary libraries are linked into a program, the imakef tool may be used
with a suitable make program, as described in section 3.5.

3.3.3 Configuring the program

In order to configure the program, a description is required of the network it is to run on.
The file simple .pgm contains such a description.

You should look at this file and edit it if it does not correspond to the hardware you
actually have. For example check which link is connected to the host, the transputer
type, and memory size.

The file simple. pgm contains the following:

NODE P :
ARC hostarc
NETWORK

DO
SET p(type, memsize := "T425", 1024 * 1024)
CONNECT p[link] [0] TO HOST WITH hostarc

#INCLUDE "hostio.inc"
#USE "simple.lku"

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostarc
PROCESSOR p

simple (fs, ts)

In order to configure the application for the network, the configurer is invoked as follows:

occonf simple.pgm

-18-----------li;i~i~@n'.cf~~©'------------



3 Getting started

This produces a file called simple. cfb which contains all the information about where
the different parts of the program are to be placed.

3.3.4 Collecting the program

The final build stage is to collect all the parts of the program with the bootstrap and
loading and routing code and combine them into a file which can be loaded onto the
transputer for execution. This is done by the collector tool icollect. The collector is
invoked as follows:

icollect simple.cfb

The result is the executable boatable file simple .btl.

3.3.5 Running the program on a transputer board

To load the bootable file onto a transputer board and run it, use the application loader
tool irun.

On a Sun, the irun command line can be entered at a SunOS prompt. On a PC running
Windows, the irun command may be entered on the command line of a DOS window
if ilaunch is running. Alternatively irun may be started in the normal Windows
manner using the file manager Run.. command or an icon.

The irun command line is:

irun simple.btl

The connection to the transputer board is taken from the TRANSPUTER environment
variable.

The command line specifies the file to be booted. The command has the effect of
resetting the target network, opening communication between the host and the target,
and loading the program onto the target network. For further information about irun
options see chapter 15 in the Toolset Reference Manual.

Figure 3.1 shows an example of the screen display obtained by running simple. bt1
for a user called John.

Please type your name :John
Hello John

Figure 3.1 Example output produced by running simple. btl

3.3.6 A short cut to creating a bootable file

For single-transputer programs booted from transputer links attached to a host, an
alternative method can be used to create the .btl file. This method is not applicable

----------- i'T£li~@_'9J1-----__-_--19-



3.4 Compiling and linking for other transputer types

to stand-alone systems nor to systems which boot from ROM, and requires the program
to be contained within a single linked unit. The INQUEST debugger cannot be used to
debug programs created in this way. This facility is provided for compatibility with
previous versions of the toolset and is not recommended.

Non-configured programs require a fixed procedural interface, because the parameters
cannot be defined in the configuration description. Line 2 of simple. oee on page 16
would therefore become:

PROC simple (CHAN OF SP fs, ts, [lINT free.memory)

The free •memory parameter represents the spare memory not allocated by the tools.
The total size of the memory available is taken from the environment variable
IBOARDSIZE.

Unconfigured programs must always use a similar parameter list. A modified version of
the program can be found in the examples directory under the name simple3 .oee.

To make use of the short cut, compile and link the simple3 .oee in the same way as
in the previous example. Then, omitting the configurer stage, invoke the collector
directly on the linked unit, adding the T option to the command line. The T option directs
the collector to build a bootable file from a single linked unit.

ieolleet simple3.lku -t

The bootable file simple3 •btl is created. This can be loaded and run in the same way
using irun.

3.4 Compiling and linking for other transputer types

If you are using a transputer other than an IMS T425 you should specify the appropriate
target transputer type for the compilation and linking operations. Appendix B in the
Toolset Reference Manual describes the options available. The same processor type
must be specified to the compiler, linker, and in configuration description, otherwise an
error is reported. In addition, you must specify the correct linker indirect file for the
selected target, in order to link in the correct compiler libraries; see chapter 10 of the
Toolset Reference Manua~.

For example, to compile and link the program simple. oee so that it will run on a T800,
T801 or T805:

oe simple -t800
ilink simple.teo hostio.lib -f oeeam8.lnk -t800

Similarly for an ST20450:

oe simple -t450
ilink simple.teo hostio.lib -f oeeam450.lnk -t450

Modify simple .pgm to match the transputer type and memory size of your hardware
and run oeeonf on the modified file. Then collect and load the program as before.

_20 !Tilitnl!lf~~©' _



3 Getting started

3.5 Using the Makefile generator

As an alternative method of program building, the toolset Makefile generator imakef
can be used. This tool can produce a Makefile for any type of file that can be built with
the toolset tools. See chapter 12 in the Toolset Reference Manual for a full description
of the tool.

imakef serves two purposes:

• It enables the user to generate a makefile which can be used to generate a target
file automatically (e.g. a bootable file) without having to manually request the
intermediate stages of program development, i.e. compiling, linking, configuring
etc.

• For more complex programs, comprising several modules, it simplifies the incor
poration of changes to the program by identifying dependencies and incorpo
rating them into the Makefile so that only the affected parts need to be rebuilt.

In order that imakef can identify file types, target processor types and error modes, a
different system of file extensions must be used to that used in the examples above. See
section 12.3 in the Toolset Reference Manual for a description of the system.

To create a Makefile for the configured simple program, use the following command:

imakef simple2.btl

This directs imakef to build a makefile to create a bootable file simple2 .btl. The
.btl extension tells imakef to refer to a configuration description file simple2 .pgm.
This file can be found under the examples directory. Within the •pgm file, the correct
file extension is used to reference the linked unit for imakef. For example:

IUSE "simple.cSh"

tells imakef that the Makefile must 90mpile the program for an IMS T425 in HALT error
mode. For other transputer types and error modes use different suffixes, as described
in section 12.3 in the Toolset Reference Manual.

imakef generates the Makefile simple2 .mak. To build the program run your make
program using the Makefile simple2 .mak:

make -f simple2.mak

This creates the bootable file simple2 •btl which can be run in the normal way using
irun.

------------ "YL ~tlt&oo.©~ 2_1



3.5 Using the Makefile generator

_22 ~1~te&~I-----------



4 Developing programs for the
transputer

This chapter gives an overview of the program development cycle using the occam 2.1
toolset. It briefly describes the purpose of each tool and outlines how to use them in
developing, configuring, loading and running transputer programs from the host system.
The chapter also gives brief details of environment variables, and host dependencies.
Chapter 8 describes loading and running the built application on the target hardware.

Further information about the tools for building and loading code can be found in the
Toolset Reference Manual. The INQUEST debugging, profiling and analysis tools are
described in the INQUEST User and Reference Manual.

4.1 Program development using the toolsets

Programs are developed on the user's host system before down-loading for execution
on either a single transputer or a network of transputers.

Executable code may be loaded onto a transputer either from ROM or from the host
system. Code from the host file system is loaded via a single transputer link from the host
to the root transputer, Le. the transputer connected to the host. Code is propagated to
any other transputers in the network via the interconnecting transputer links.

Creation of executable code for a transputer or transputer network takes several stages
involving the use of specific tools at each stage. Figure 4.1 summarizes the main
development stages and figure 4.2 illustrates how the tools are used to build a program.

The following sections concentrate on how to develop programs which are loaded from
the host system. Any system that is to be loaded from ROM when completed, is normally
loaded from the host during development and then converted to loading from ROM as
a final development stage. Developing programs for loading from ROM is described
briefly in section 4.6 and more fully in chapter 13.

Software design

The software designer can specify the components of a system in terms of
communicating processes. The overall design can be directly expressed using
the support provided for multi-tasking and parallel programming.

Alternatively conventional sequential programs can be developed for running on
a single transputer.

23----------- J.v®Ii~@~I?©~-----------



4.1 Program development using the toolsets

Link

Configure

Make executable, using the
collector

OR

Figure 4.1 Main development stages

2 Write the source

Source code can be written using any ASCII editor available on the host system.
Code can be divided between any number of source files. Source code must
conform to the syntax required by the particular language compiler used. For C
this is the ANSI standard; occam source code must conform to the occam 2.1
language definition.

3 Compile the source

Each source file is compiled using the appropriate language compiler to produce
one or more compiled object files in TCOFF format. Each file must be compiled
for the appropriate transputer type or for a transputer class covering several
compatible types. (More information about transputer types and classes is given
in the Appendix 8 of the accompanying Toolset Reference Manua~. Commonly
used object code can be combined into libraries using the toolset librarian
ilibr.

_24 J:Fii li~©llIJL~©' -----------



4 Developing programs for the transputer

Source
code

Memory
configuration

tool
iemit or
imem450

o Source files

eTargetfile

* See section 4.6. •
Figure 4.2 Program build model

4 Link the compiled units

The compiled object files and libraries are linked together using the toolset linker
ilink. This generates a single file called a linked unit in which all external
references are resolved. The linking operation links in the library modules
required by the program, which are selected by transputer type from the
compiled library code. Object files for input to the linker can be generated by any
TCOFF compatible compiler.

Programs developed for the transputer may comprise one or more linked units,
created from separately compiled code and library modules. Linked units are
assigned to run on a single transputer or one processor of a network of trans
puters during configuration. A linked unit is the smallest unit of code which may
be placed on a transputer.

----------- JJ;lli~@_IlJl-----------2-5



a

4.1 Program development using the toolsets

5 Configure the program

Configuration is the process of defining how the application is to be run on the
hardware. It is achieved by writing a configuration description, assigning linked
units to specific processors and connecting them by channels. By changing the
configuration description it is possible to run a program on either a single trans
puter or on different network topologies. The description is processed by the
configurer tool to produce a configuration binary file. Configuration is used for
both single and multi-processor transputer programs.

The language used to write the configuration description is determined by the
toolset. The C toolset provides a common configurer, icconf which can be
used to configure programs written in C or occam. Using icconf, modules
written in different languages can be mixed at configuration level. The occam
toolset configurer occonf is designed to exploit the parallel programming model
of the occam language and is specific to the occam toolset.

6 Generate an executable file

Before a program can be run it must be made executable, Le. bootable. This
involves adding bootstrap and loading information. The result is a single execut
able file that it can be directly loaded onto the target. The collector can also
include debugging and profiling kernels.

This is achieved using the collector tool icollect. The configuration binary file
generated by the configurer is read by the collector. The collector can generate
either a file which is suitable for loading onto the target hardware from the host
via a hardware serial link or one for loading from ROM. The default behavior of
the tool is to produce a boot-from-link bootable.

Whether a boot-from-ROM bootable is generated is determined by command
line options specified to the configurer prior to creating the configuration binary
file.

7 Memory configuration

Some transputers (IMS T400, T414, T425, TaOO, Ta05) have a programmable
memory interface which may be optionally configured using iemit. This tool
generates a memory configuration file which can then be loaded into ROM; see
section 4.6.

For the ST20450 (T450) transputer a memory configuration file is needed if
there is any external memory. The memory configuration code for T450 TRAM
modules is held in a ROM, so the memory interface will automatically be config
ured when the hardware is reset. Memory configuration files for other ST20450
hardware are generated using imem450. Generating such files is described in
chapter 14.

Load and run the program

A bootable boot-from-link file is loaded and run on the target hardware down a
hardware serial link using the application loader irun, as described in

_2_6 iiill~~@1tIr"9J1-----------



4 Developing programs for the transputer

chapter 8. Once loaded the code begins to execute immediately. The application
loader maintains the environment that supports the program's communication
with the host.

Program development is supported by additional tools which provide facilities for
creating object code libraries, automating the program build, and obtaining information
about object files.

4.1.1 Compatibility with previous toolset releases

For single transputer programs the configuration stage of the development process can
be omitted. Instead bootable code can be generated directly from the linked unit by
specifying a collector command line switch.

This mode of development is not recommended, however, and code built in this way
cannot be debugged with the INQUEST interactive debugger.

If this mode is used, then the environment variable IBOARDSIZE should be set up; see
section 4.10.3.

4.2 Compiling

The occam 2.1 compiler produces compiled code for a specific processor type or for
a group of related processors called a transputer class. This compiler supports the IMS
T212, M212, T222, T225, T400, T414, T425, TaOO, Tao1, Ta05 and ST20450 (also
known as the T450). Each compiler has the same set of options to select the target
transputer; these are listed in the Appendix B of the Toolset Reference Manual. The role
of transputer types and classes in compilation and program development is also
described in that appendix.

The compiler is capable of compiling code in one of three error modes. The standard
error modes are HALT system and STOP process. A special mode, UNIVERSAL,
enables code to be compiled so that it may be run in either HALT or STOP mode. The
target processor and error mode must be specified for each compilation, using options
on the command line. By default the compiler compiles for HALT mode, and when
compiling for this error mode you may omit the error mode option. The error modes are
described in section 6.2.1.

The compiler enables interactive debugging by default unless the compiler D or y option
is used.

The current range of transputer compilers generate code files in a format known as
TCOFF (Transputer Common Object File Format). This standard has been adopted
for the development of transputer compilers and enables modules written in different
languages to be freely mixed in the same system.

Supplied with the Toolset is a set of libraries which provide run-time support, input and
output operations, mathematical functions etc. The libraries supplied with this toolset
are introduced in chapter 2.

----------- i'T~I~~@_.~ 2_7



4.3 Tools for building executable code

Support is also provided for language extensions, interactive debugging, assembler
inserts and software configuration of a network. Other operating features of the compiler
may be changed by options and directives; see chapter 3 in the Toolset Reference
Manual.

If the compiler detects any errors, a source file name and line number is displayed with
an explanatory message and a portion of the source code surrounding the error.

If the compilation succeeds, the compiler creates a new object file in the current direc
tory. The filename for the new file may be specified on the command line, or the default
filename is derived from the name of the source file with the file extension • teo.

Detailed information about the compiler and libraries can be found respectively in the
Toolset Reference Manualand the Language and Libraries Reference Manual supplied
with this toolset.

4.3 Tools for building executable code

Three tools are used in sequence to generate the executable file from compiled object
code:

• ilink - the toolset linker which links separately compiled units

• occonf - the configurer tool which generates a configuration binary file.

• icollect - the code collector which generates an executable file for a trans-
puter network from the configuration data file.

The configurer works on a configuration source file written by the programmer. The
output of the configurer is an information file which is processed by the collector to
generate an executable file. The executable file contains all the information needed to
distribute, load, and run the program on a specific network of transputers.

4.3.1 Linker - ilink

The toolset linker ilink links separately compiled modules or object files and libraries
together, resolving external references and generating a single linked unit. Linked units
are referenced directly from configuration descriptions to map software onto specific
arrangements of transputers.

The default output file is derived from the name of first file listed either on the command
line or in a linker indirect file.

If required, the compiler libraries are automatically loaded by the compiler unless specif
ically disabled with the compiler E option. If you are unsure whether your program uses
the compiler libraries it is best to always link in the appropriate library anyway. Only
library modules actually used by the compiled code will be included in the linked code
file. The correct library for your program depends on the transputer type used for the
compilation.

_28 ~~~1©M'9©' _



4 Developing programs for the transputer

By default, the order in which the code modules are specified on the command line
determines their order within the linked unit, library modules being placed after the
separately compiled modules. This default can be overruled by using the compiler
directive #PRAGMA LINKAGE and the linkage directive #section; see sections 3.13.7
and 10.4.6 in the Toolset Reference Manual. These directives enable the user to priori
tize the order in which modules are linked together and so influence the use of on-chip
RAM.

Linker indirect files

A linker indirect file is a text file containing a list of files and commands to the linker.
Libraries to be linked in with the program may be listed in a linker indirect file, which is
specified on the linker command line using the F option. The usual extension for a linker
indirect file is • Ink. For occam code, linker indirect files may be generated by imakef.

For example, a linker indirect file hello. lnk, listing all the files to be linked may be then
the following command line will cause the linker to link the listed files for an IMS T425:

ilink -f hello.lnk -tS

Standard linker indirect files, which specify the compiler libraries, are supplied with the
toolset, and may be explicitly specified on the command line or #included in a user
written indirect file. The correct standard linker indirect file must be specified, depending
the type of the target transputer, as shown in table 4.1. For further details of the compiler
libraries see the occam 2. 1 Toolset Language and Libraries Reference Manual.

Linker indirect file Target transputers

occam2.1nk T212,M212,T222,T225

occama.lnk T400,T414,T425,TA,TB

occam450.1nk ST20450

occam8.1nk T800, T801, T805

Table 4.1 Standard occam linker indirect files

Each standard linker indirect file contains a list of occam library files which may be
required to be linked, but which are additional to those explicitly referenced by the
program. These include compiler libraries and support for interactive debugging.
Depending on the other inputs and options specified on the command line the linker will
select the libraries it requires from the list supplied in the indirect file.

For example, the following linker indirect file will linkhello. tco with the host i/o library
and the compiler library:

hello.teo
hostio.lib
#include oceama.lnk

If the above lines are in the file hello. lnk then the linker command line

ilink -f hello.lnk -tS

----------- ""1£I~LU~aAl-----------29-



4.3 Tools for building executable code

is equivalent to:

ilink hello. teo hostio.lib -f occama.lnk -tS

Mixed language programs

Mixed language programs require an appropriate linker indirect file for each language
used.

For occam, one of the indirect files listed in table 4.1 is always used. When the main
program is written in C, one of the standard C start-up files should be used, as described
in the ANSI C Toolset UserGuide. However, if an occam program calls functions written
in C then it must be linked with C modules. In this case the standard C start-up files are
not suitable and one of the C linker indirect files without a main entry point definition
should be used. These linker files should also be used when incorporating a C program
into an occam program as if it were an occam process.

For further details of mixed language programming, see chapter 11.

4.3.2 Configurer - occonf

The configurer generates configuration information for transputer networks from a
textual configuration description. The tool prepares distribution information about a
specific arrangement of transputers by analyzing the configuration description and
creating a configuration binary file for the code collector tool to read.

Configuration descriptions are written using a transputer configuration language
appropriate to the configurer used. The occonf configuration language is described in
chapters 7 and 10.

4.3.3 Code collector - icollect

Configured code cannot be loaded directly onto a transputer network for two reasons:

1 Object code produced by the linker and compiler tools contains extra information
required by some tools. This information must be removed before the program
can be loaded.

2 Code to be run on a board which boots from link, such as the IMS B008, requires
the addition of bootstrap information to initialize the processor, load the program
and start it running.

Extraneous data is removed and a boot-from-link bootstrap is added by the code
collector icollect.

The code collector takes the binary file generated by the configurer (which refers to the
linked code) and generates a single file that can be loaded and run on a transputer
network. The collector generates all loading code. The output from the collector contains
bootable code modules together with distribution information that is used by the loading
code to place the correct code on each processor.

_3_0 ~li~@m&'£'1-----------



4 Developing programs for the transputer

The collector may also generate non-bootable output files which may be dynamically
loaded or loaded into ROM or RAM.

4.4 Loading and running programs

Boot-from-link code for single transputers and transputer networks is output from
icollect and is loaded onto the transputer hardware using the host file server
supplied with the toolset and described below. Boot-from-ROM code is processed by
the EPROM programming tool and is introduced in section 4.6.

Chapter 8 describes how to load and run application programs in more detail.

4.4.1 Host file server

The AServer is provided with the Toolset, which can act as a combined host server and
application loader tool. When invoked to load a program it both loads the code onto the
transputer hardware and provides run-time services on the host for the transputer
program including screen, keyboard and file i/o.

The version of the AServer supplied will depend on the host and hardware interface
supported by the toolset. Chapter 8 describes how to load application programs onto
the target hardware. The application loader irun is part of the AServer and is described
in more detail in chapter 15 of the Toolset Reference Manual.

The AServer can be extended and customized by adding extra services, such as
graphics servers. With the AServer, this can be done without modifying the standard
host file server. Details of how to add services are given in the AServer Programmers'
Guide.

4.4.2 Skip bootables

The skip bootables allow an application to run on a transputer subnetwork which is not
directly connected to the host, but is connected via one or more intermediate trans
puters. For example, the root transputer (the transputer directly connected to the host)
may not be part of the target network.

One or more of the skip bootables skipn. bt1 is loaded before loading the application
code. Each skip bootable makes one transputer pass on everything it receives, so it
becomes transparent to the software. Any code loaded is passed to the next transputer,
and host communications are passed between that transputer and the host. Skipped
transputers must not appear in the configuration.

The skip bootables are described in more detail in section 8.6.

----------- L"f~~il@_I9~ 3_1



4.5 Program development and support

4.5 Program development and support

Several tools are provided to assist in program development:

• ilibr - the librarian which generates libraries of compiled code.

• ilist - the binary lister which decodes and displays object files.

• imakef - the Makefile generator which creates Makefiles for use with make
automatic build utilities.

• imap - the map tool whi-ch generates a memory map of the functions and vari
ables used by the program.

4.5.1 Librarian - ilibr

The librarian ilibr creates libraries of compiled code for use in application programs.
A library is a concatenation of compiled files called modules. The linker only links in the
library modules that are required. Code compiled by compatible TCOFF toolsets can
be mixed in the same library. Libraries and the librarian are discussed in section 6.9.

4.5.2 Binary lister - ilist

The binary lister ilist decodes object code files and displays data and information
from them in a readable form. Command line options select the category and format of
data to be displayed. The lister can display symbolic names, code listing, the modular
structure and indexing of libraries and external reference data.

For details of ilist see chapter 11 in the Toolset Reference Manual.

4.5.3 Makefile generator - imakef

The Makefile generator imakef creates Makefiles for specific program compilations.
Coupled with a suitable make build utility, it can automate building of executable code
and greatly assist with code management and version control. A make utility is not
supplied with the toolset.

imakef constructs a dependency graph for a given object file and generates a Makefile
in standard format. In order to make use of the tool a special set of file extensions for
source and object files must be used throughout program development. imakef uses
these file extensions to deduce target transputer types and error modes. These exten
sions are described in chapter 12 in the Toolset Reference Manual.

4.5.4 Memory map tool - imap

The memory map tool imap takes output from the toolset compiler, linker and collector
and creates a map of the absolute addresses of the static variables for functions. The
memory map can be output on the display screen or redirected to a file.

_32 ~lil@m&'I. _



4 Developing programs for the transputer

4.6 EPROM programming

The previous sections have described the development process for boot-from-link
programs. The toolset also supports the development of boot-from-ROM applications
for use in stand-alone and embedded systems. .

Programs to be placed in ROM are normally developed first as boot-from-link, until they
are error free. They are then prepared for ROM by re-submitting them to the configurer
and collector, specifying different command line options, and then using the EPROM
tool to format them for ROM:

• The configurer has command line options to specify the application is to boot
from ROM. The options enable the user to specify whether all the processes are
to run in RAM or whether the root processor's code is to run in ROM.

• The default behavior of the toolset is to produce a boot-from-link executable. If
command line options on the configurer are used to specify that the executable
is to boot from ROM, then the collector will generate an executable file which is
suitable for input to the EPROM tool ieprom. The code will be executable from
ROM or RAM as appropriate.

• The EPROM program formatter ieprom is provided to assist with the installation
of programs into ROM. This tool generates files in a suitable format for input to
ROM programmers or may be used to output ASCII hexadecimal or binary for
input to the users' own ROM loaders.

• Some transputers have programmable memory interfaces which may be confi
gured for a particular memory design.

For IMS T400, T414, T425, TaOO and Ta05 transputers, the memory interface
configurer iemi t allows specific transputer memory configurations to be eva
luated and can output a configuration file for incorporation into ROM by ieprom
if required. If the MemConfig pin is correctly wired then the transputer will
automatically read this data when it is reset and use it to configure its memory
interface.

For ST20450 processors, a memory interface configuration is always required.
A memory configuration can be created using imem45 0 and is incorporated into
the ROM by ieprom, as described in chapter 14.

Preparing programs for loading into EPROM is described in more detail in chapter 13.
Further information about the tools, including ieprom can be found in the Toolset
Reference Manual.

4.7 Mixed language programming

The use of standard TCOFF format allows compiled and linked modules from different
language sources e.g. C and occam, to be mixed in the same system. Individual linked
units in TCOFF format can be mixed in any combination and placed on any processor
in the network. Mixed language programming is described in chapter 11.

___________ ~~£l~tmsrl9~ 3_3



4.8 File types and filename extensions

Calling modules written in other languages is possible as long as the different calling
conventions and parameter data types are respected. In all mixed language calls,
parameters and return values passed must be of the correct type. Pragmas exist in the
C and occam compilers to ease mixed language programming. occam library routines
exist which can be used to set up static and heap areas for C code called from occam.

For further details of mixed language programming, see chapter 11.

4.8 File types and filename extensions

By default, the current range of toolsets use a standard set of filename extensions to
identify specific files such as source, compiled object, linked units and bootable files.
Certain filename extensions are assumed by the tools on input, and others generated
by the tools on output, unless output filenames are explicitly given on the command line.
For example the compiler adds the extension • teo to generate the output filename
unless otherwise specified.

The adoption of a standard system allows filename extensions to be omitted on the
command line, and permits host file system utilities to be used. The system is designed
to form an integrated whole and reflects the architecture of toolset compilation.

The standard set of filename extensions is not mandatory and may be modified
according to personal choice, unless imakef is to be used to build the makefile. imakef
uses a special scheme to identify processor types and error modes from the filename
extensions; see section 4.8.1.

The standard system has the advantage of ready defaults but may not be readily
mapped onto existing development schemes. However, if it is decided to adopt a
personalized scheme then it should be used consistently, which is especially important
across development teams.

Some extensions recognized by the toolset are used for convention only and are not
interpreted by the tools in any special way. For example, the .lib suffix for library files
and the • inc suffix for include files are toolset programming conventions.

The main file extensions used in developing transputer programs are listed in table 4.2.
A full list of all filename extensions used by the toolset with descriptions of the file types
is given in the appendices to the accompanying Toolset Reference Manual.

Figure 4.3 illustrates the program development process in terms of the file extension
defaults used by the toolsets. The extensions assumed on input and generated on
output are used to represent source and target files. Figure 4.3 highlights the differ
ences between the different language toolsets and shows how software can be
prepared for loading onto transputer hardware directly by transputer links or held in
ROM.

_34 ~~i~@.'a©' _



4 Developing programs for the transputer

Extension Description

•ase ASCII format file output by imem, showing memory configuration timings.

•bin Binary format files produced by ieprom for loading into ROM.

•btl Bootable code file. Created by icolleet .

•btr Executable code. Used for input to the EPROM tool. Created by ieolleet .

•e C source files. Assumed by ice, the ANSI C compiler.

•efb Configuration data (binary) file. Created by the configurer.

•elu Configuration linked unit. Created by oeeonf, the occam configurer.

.dXX Map file output by the linker. The characters 'xx' are determined by the 2nd and 3rd
characters of the extension of the linker output file. For example if the linker output file
takes the default extension • lku, the map file is given the extension •dku.

•epr EPROM control file. Read by ieprom.

•h Header files for use in C source code.

•hex A hex dump of a file for loading onto a ROM by a custom ROM loader tool.

• ihx Intel hex format files produced by ieprom for loading into ROM.

• inc
Include files named in #INCLODE compiler directives for occam, or #include
statements in configuration descriptions.

• lbb Library build file. Input to ilibr.

• lib Library object file. Created by ilibr.

• liu Library usage files. Created and used by imakef.

• lku Linked unit. Created by il ink.

• Ink Linker indirect file. Input to ilink.

•mak Makefile.

•map Map file output by the collector.

•mem Memory configuration file. Created and read by iemit or imem450 .

•mot Motorola 'srecord' files produced by ieprom for loading into ROM.

.1nXX Map file output by the compiler. The characters 'xx' are determined by the 2nd and 3rd
characters of the extension given to the compiler object file. E.g. if the compiler object
file takes the default extension. teo, the map file is given the extension .mco.

•oce occam source files. Assumed by oc, the occam compiler.

•pgm Configuration description (source) file, read by the occam configurer occonf.

.ps Postscript format file output by iemit or imem4 5 0 showing memory configuration
timings.

. rse Dynamically loadable code file. Created by icolleet .

.s Assembler source files which can be read by the C assembler. (The assembler is invoked
by an option to the C compiler icc).

• tco Compiled code file. Created by all TCOFF compilers.

Table 4.2 Toolset main filename extensions

------------ E;l1~1®M'91-----------3-5



4.8 File types and filename extensions

"o
"

Key

Source file

Intermediate
file

Target file

Tool

File input by
reference
from source
file

Binary file
reference.
File input by
reference
from interme.
diate file.

Figure 4.3 File dependencies and default filename extensions



4 Developing programs for the transputer

4.8.1 Filename extensions required by imakef

The Makefile generator imakef requires a special set of filename extensions to be used
for compiled and linked object files. The extensions define the architecture of toolset
compilation so that imakef can trace file dependencies and create the correct
sequence of build commands. They are also used to deduce the transputer type and
error mode for each unit.

For details of the filename extensions that you must use with the imakef tool see
chapter 12 of the accompanying Toolset Reference Manual.

4.9 Error reporting

If a tool detects an error in its input, it is reported in a standard format. This contains the
name of the tool, a severity level, and some explanatory text explaining why the error
occurred. Standardization of the format is designed to improve error reporting and to
support automated error handling by host system utilities.

For example:

Serious-ilibr-mymod.txt-bad format: not a TCOFF file

where: mymod. txt is the name of the input file causing the problem.

Note: Messages that are part of the normal operation of the tool, for example, diagnostic
messages generated by the compiler, and messages from the debugger and simulator
tools, are not required to conform to the standard and may be displayed in special
formats appropriate to the tool. The formats will become familiar with use of the tool.

Details of the standard format can be found in the appendices of the accompanying
Toolset Reference Manual.

4.10 Host dependencies

The toolset uses a host to develop code which is then loaded onto a transputer or
transputer network. All the tools in this toolset are executed on the host.

The toolset can be hosted on one of several different platforms, and the tools are
designed to blend as far as possible with the operating system. Source and object code
is portable between all systems.

The toolset is available for the following host systems:

• IBM 386 PC (and compatibles) running MS-DOS

• Sun 4 running SunOS or Solaris

Differences between the operation of the tools on the various platforms are minor and
reflect the 'flavor' of the particular operating system.

___________ ~litnll'9~ 3_7



4.10 Host dependencies

Host system dependencies are as far as possible made invisible to the user. The few
differences include some minor variations in command line syntax, directory names,
and environment settings such as search paths and global variables. Each is described
briefly below. In addition, some extra tools are supplied with PC-hosted toolsets for
running and debugging applications under Windows.

Command line syntax

The normal prefix character for tool command line options for is a minus (-). On
MS-DOS based toolsets the prefix character forward slash (I) is also allowed for back
wards compatibility.

For consistency between implementations, the case of options is not significant.
However, the host syntax for filenames is used (see below), which means that on UNIX
systems the case of filenames is significant.

Other command line syntax conventions are identical in all implementations and are
described in Appendix A of the Toolset Reference Manual.

4.10.1 Filenames

Filenames, with or without a directory path, conform to the normal host system conven
tions except that characters which can be interpreted as directory separators (on any
of the supported hosts) must not be used in filenames. This prohibits the use of the
following characters: colon ':', semi-colon 'I', forward slash 'I', backslash '\' ('v' for
Japanese systems), square brackets' []', round brackets' ( )', angle brackets '< >',
exclamation mark'!' ,or the equals sign '='.

In addition the linker cannot accept filenames which begin with a hash 'I' or with two
dashes '--'a These are used to identify commands and comments within linker indirect
files.

Filenames prefixed by the character '@' indicate an indirect argument file; see section
A.1.2 of the accompanying Toolset Reference Manual. Such files enable host system
restrictions on command line length to be avoided.

4.10.2 Search path

All tools which use or generate filenames use a standard mechanism for locating files
on the host system. The same mechanism is used in all operating system versions of
the toolset. Briefly, the search mechanism is based on a list of directories to be searched
in sequence.

If a directory path is specified only this directory is searched. If the file is not found on
the path an error is generated. Relative pathnames are treated as relative to the current
directory, Le. the directory from which the tool is invoked.

If no directory path is specified the current directory is searched followed by the directo
ries specified in the :ISEARCH environment variable.

_3_8 EiiIU©nllf9©' _



4 Developing programs for the transputer

Details of how to set up a search path on your system can be found in the Delivery
Manual that accompanies the release.

Full details of the mechanism used in file searching can be found in Appendix A of the
accompanying Toolset Reference Manual.

4.10.3 Environment variables

The toolsets use a number of environment variables on the host system. Use of these
variables is optional but if defined they will influence the behavior of certain of the tools
on your system. Further information is given in the accompanying Toolset Reference
Manual. The environment variables are listed in table 4.3.

Variable Meaning
ASERVDB The pathname of the AServer database, which contains descriptions of possible

target hardware connections. Used by irun, inquest and profiling tools.

l:BOARDSl:ZE For non-configured programs only. The size (in bytes) of memory on the
transputer board.

l:SEARCH The search path; i.e. the list of directories that will be searched if a pathname is
not specified. Pathnames must be terminated by the standard directory separator
character for the system. Used by all tools that read and write files.

l:TERM The file that defines terminal keyboard and screen control codes. Used by iemit
and imem450.

TRANSPUTER The name of the target hardware connection, as given in the AServer Database.
Used by irun, inquest and profiling tools.

toolnameARG Default command line arguments. Applies to certain tools only. See section 4.10.4.

Table 4.3 Toolset environment variables

The exact commands used to define environment variables depend on the operating
system. For example, under MS-DOS they are defined using the set command; under
UNIX they are set using the setenv command. Examples of how to set up environment
variables can be found in the Delivery Manual that accompanies the release.

When running applications on the target hardware with Microsoft Windows running on
the host PC, some environment variables are held in a Windows initialization file. This
file can be edited using the Windows launch tool ilaunch or from a DOS window using
the iset tool.

4.10.4 Default command line arguments

For some tools, an environment variable can be defined to specify a default set of
command line arguments. The variable name must be defined in upper case and is
constructed from the tool name in upper case by appending the letters ARG. For
example, the variable for ilink is ILINKARG.

Tools for which a default command line can be defined, and the variables used to define
them, are listed in table' 4.4.

____________ J..Tllitr••~ 3_9



4.11 Unsupported options

Tool Variable

icollect iCOLLECTARG

iemit iEMiTARG

ieprom iEPROMARG

ilibr iLiBRARG

ilink iLiNKARG

ilist iLiSTARG

imem45 0 iMEM450ARG

oc OCARG

occonf OCCONFARG

Table 4.4 Environment variables for default options

Command line parameters must be specified within each variable using the specific
syntax required by each tool.

4.11 Unsupported options

A number of tools have various command line options beginning with 'z'. These options
are used by SGS-THOMSON Microelectronics Limited for development purposes and
have not been designed °for users. As such they are unsupported and should not be
used. SGS-THOMSON cannot guarantee the results obtained from such options nor
their continued presence in future toolset releases.

_4_0 i.Ti~~@_cf9©' _



5 An example program

This chapter describes a more complex programming example illustrating separate
compilation and showing how the program can be built for a single transputer. A simpler
programming example, to get you started, is provided in chapter 3. A version configured
for multiple processors is described in chapter 7.

The example program is designed for boot-from-link boards. If you have a board that
boots from ROM you should set it to boot from link.

The example serves to show how a large program might be structured, in terms of
separate compilation units, libraries, and a shared protocol. occam source files, header
files, and the configuration description for this program, can be found in the sorter
subdirectory of the examples directory.

5.1 Overview of the program

The program sorts a series of characters into the order of their ASCII code values.

Figure 5.1 Basic structure of sorter program

Figure 5.1 shows the basic structure of this program. There are three processes: the
input process, the output process and the sorter process. We can decompose the sorter
process by using a pipeline structure. This uses the algorithm described in A tutorial
introduction to occam programming. If we design the pipeline carefully we can ensure
that each element of the pipeline is identical to all the other elements. The pipeline is
served by an input process, which reads characters from the keyboard, and an output
process which writes the sorted characters to the screen. Figure 5.2 shows the structure
of the program using a pipeline.

Figure 5.2 Pipeline of n elements

------------ L.,£1~~@m'"A1-----------4-1



5.1 Overview of the program

An obvious implementation would be to write an occam process for each process in
figure 5.2, using a replicated process for the pipeline. Communication between the
processes is via occam channels and to aid program correctness we should use an
occam PROTOCOL for these channels. This protocol must be shared by all the
processes. As the occam compiler compiles procedures (PROCS) and as each of the
procedures is independent we can implement each one as a separately compiled unit.
The procedures share a common protocol and the best way to ensure consistency is
to place the protocol in a separate file and use the #INCLUDE mechanism to access it.
These procedures can then be called in parallel by an enclosing program which can
access the code of each process by the #USE mechanism.

There is a problem with this implementation because two processes require access to
the host file server. The host file server is accessed via a pair of occam channels and
occam does not allow the sharing of channels between processes. There are several
ways round this problem:

use a multiplexor process for the server channels, as described in section 9.4;

2 use the AServer's multiplexing capability, as described in the AServer Program
mers' Guide;

3 merge the two i/o processes into a single process.

Solution 3 is used here because the program accesses the server in a sequential
manner, i.e. it reads a line, then displays the sorted line, then reads a line and so on.
Figure 5.3 gives the final process diagram for the program.

Figure 5.3 Program with combined input/output process

The implementation can be split functionally into four files:

element.occ

inout.occ

sorter.occ

sorthdr.inc

the pipeline sorting element

the input/output process

the enclosing program

the common protocol definition

Figure 5.4 shows the way these files are connected together to form a program.

_4_2 Iiil~~©1tII'91------------



fUSE

#:INCLUDE

#:INCLUDE

sorthdr

5 An example program

fUSE

#:INCLUDE

Figure 5.4 File structure of program

The source of the program is given below and is supplied in the examples directory.
These files can be copied to a working directory.

Two system files are required to complete the program, namely the host file server
library hostio .lib and the corresponding • inc file containing the host file server
constants. These are automatically located using the ISEARCH environment variable.

5.2 The channel protocol

Declarations of constants and channel protocols are contained in the include file
sorthdr. inc, which is listed below:

PROTOCOL LETTERS
CASE

letter; BYTE
end.of.letters
terminate

VAL number.elements IS 100: - - upper bound

43

This declares a protocol called LETTERS, which permits th ree different types of
message to be communicated:

letter followed by the character to be sorted;

end. of • letters to mark the end of the sequence to be sorted;

terminate to signal the end of the program.

~ The constant number. elements is also declared. This defines both the number of
sorting elements in the pipeline and the maximum length of the sequence of characters
that can be sorted.

~SGS-1HOMSON------------ ...y~ Ir:iIO©OO@[g~OO@~O©~ ------------



5.3 The sorting element

5.3 The sorting element

The sorting element element. occ is listed below:

#INCLUDE "sorthdr.inc"
PROC sort.element (CHAN OF LETTERS input, output)

BYTE highest:
BOOL going:
SEQ

going : = TRUE

WHILE going

input ? CASE
terminate

going := FALSE
letter; highest

BYTE next:
BOOL inline:
SEQ

inline := TRUE

WHILE inline
input ? CASE

letter; next
IF

next > highest
SEQ

output ! letter; highest
highest := next

TRUE
output ! letter; next

end.of.letters
SEQ

inline := FALSE
output ! letter; highest

output! end.of.letters

output ! terminate

This program consists of two loops, one nested inside the other. The outer loop accepts
either a termination signal or a character sequence for sorting. If it receives a character
it enters the inner loop. The inner loop reads characters until it receives an
end. of .letters signal, signifying the end of the string of characters to be sorted. The
sort is performed by storing the highest value character it has received and passing any
lesser (or equal) characters on to the next process. The end.of • letters tag causes
the stored value to be passed on and the inner loop terminates.

The maximum number of characters which can be sorted is determined by the number
of sorter processes. One character is sorted per process.

-4_4 lifi.~~.I-----------



5 An example program

5.4 The input/output process

This process consists of a loop which reads a line from the keyboard, then sends the
line to the sorter and, in parallel, reads the sorted line back. It then displays the sorted
line. If the line read from the keyboard is empty the loop is terminated. At the end of the
process the host file server is terminated with the success constant sps. success,
which is defined in the file hostio. inc. If any ilo errors occur the program will stop,
allowing it to be examined by the post-mortem debugger.

The input/output process file inou t .occ is listed below:

#INCLUDE "sorthdr.inc"
#INCLUDE "hostio.inc"
PROC inout (CHAN OF SP fs, ts, CHAN OF LETTERS from.pipe, to.pipe)

#USE "hostio.lib"
[number.elements - l]BYTE line, sorted. line:
INT line.length, sorted. length:
BYTE result:
BOOL going:
SEQ

so.write.string.nl (fs, ts,
"Enter lines of text to be sorted - empty line te~inates")

going : = TRUE
WHILE going

SEQ
so.read.echo.line (fs, ts, line. length, line, result)
IF

result <> spr.ok
STOP -- stop if an error occurs

TRUE
so.write.nl (fs, ts)

PAR
SEQ

IF
(line.length = 0)

to.pipe ! te~inate

TRUE
SEQ

SEQ i = 0 FOR line.length
to.pipe ! letter; line[i]

to.pipe ! end.of.letters
BOOL end.of.line:
SEQ

end.of.line := FALSE
sorted.length := 0
WHILE NOT end.of.line

from. pipe ? CASE
te~inate

SEQ
end.of.line := TRUE
going := FALSE

letter; sorted.line[sorted.length]
sorted. length := sorted. length + 1

end.of.letters
SEQ

so.write.string.nl(fs, ts,
[sorted.line FROM 0 FOR sorted.length])

end.of.line := TRUE

----------- L.,~~il@~~I----------_4_5



5.5 The calling program

so.exit(fs, ts, sps.success) -- te~inate server

5.5 The calling program

This process calls the input/output process in parallel with the sorter elements, in a
pipeline. The calling program in file sorter. oee is listed below:

#INCLUDE "hostio.ine" --
PROC sorter (CHAN OF SP fs, ts)

IUSE "hostio.lib"
#INCLUDE "sorthdr.ine"
IUSE "inout"
IUSE "element"
[number.elements + l]CHAN OF LETTERS pipe:
PAR

inout(fs, ts, pipe[number.elements], pipe[O])
PAR i = 0 FOR number. elements

sort.element(pipe[i], pipe[i+l])

5.6 Compiling the program

To build the program, first compile each component of the program separately, then link
them together and add bootstrap code to the linked unit.

The program's components must be compiled in a bottom-up order, that is,
element.oee and inout. oee first (in either order), followed by the main program
sorter.oee. First, compile the sorting element element. oee using the following
command:

oe element -t425

The file extension can be omitted on the command line because the source file has the
conventional extension .oee. The compiler produces a file called element. teo,
compiled for an IMS T425 in HALT mode.

Next compile the input/output process using the following command:

oe inout -t425

The compiler produces a file called inout. teo, compiled for an IMS T425 in the default
HALT error mode.

Finally compile the main body using the command line:

oe sorter -t425

The compiler produces a file called sorter. teo, compiled for an IMS T425 in HALT
mode.



5 An example program

5.7 Linking the program

Having compiled all the components of the program you can now link them together to
form a whole program. Any libraries used by the program must also be specified to the
linker. The library hostio .lib is the host i/o library used by this program. Remember
the include file, occama. Ink, which identifies the compiler libraries, required in the
linking process (see section 4.3.1 ).

To link the files use the following command:

ilink sorter.teo inout.teo element.teo hostio.lib -f oeeama.lnk -t425

The linker will create the file sorter. lku linked for an IMS T425 in HALT mode.

If a main entry point is not specified, the linker uses the first valid entry point that it
encounters in the input. Therefore, in the above example, it is important to list the file
sorter. tco first. A main entry point may be specified within an indirect file using the
linker directive #mainentry or on the command line using the linker ME option.

5.8 Configuring and collecting the program

Before you can run the program you must configure and collect the program. This will
generate a bootable file which can be loaded and run using irun. Use the following
sequence of commands:

occonf sorter.pgm

icollect sorter.cfb

occonf generates the file sorter. cfb which is then processed by the collector tool.
This creates the bootable file sorter.btl.

sorter. pgm configures the program for a single IMS T425 with 1Mbyte of memory; this
should be checked against your own hardware and modified if necessary:

NODE p :
ARC hostarc
NETWORK

DO
SET p(type, memsize := "T425", 1024 * 1024)
CONNECT p[link] [0] TO HOST WITH hostarc

#INCLUDE "hostio.inc"
IUSE "sorter.lku"

CONFIG
CHAN OF SP fs, ts :
PLACE fs, ts ON hostarc
PROCESSOR p

sorter(fs, ts)

----------- L"f£lit~Y©~ 4_7



5.9 Running the program

5.9 Running the program

The bootable file can be run using irun. To load the program onto a transputer board
use the following command:

irun sorter.btl

For more details about loading see chapter 8, and for details of irun see chapter 15 in
the Toolset Reference Manual.

The program reads characters from the keyboard, sorts the line and displays it again.
The program will run until input is terminated by typing RETURN on an empty line.

Figure 5.5 shows an example of the screen display obtained by running sorter.btl
on a UNIX based toolset. The user enters the string Sorter program and terminates
the program by pressing RETURN.

irun sorter.btl
Enter lines of text to be sorted - empty line terminates
Sorter program
Saegmooprrrrt

Figure 5.5 Example output produced by running sorter. btl

5.10 Automated program building

The imakef tool can be used to automate the development process. From the above
example it can be seen that there are many steps to go through when building a program
of any size. Some of these steps must be performed in a specific order and if part of the
program were changed then all affected parts must be rebuilt.

make is a common utility for building programs. It uses information about when files were
last updated, and performs all the necessary operations to keep object and bootable
files up to date with changes in any part of the source. Makefiles are the standard
method of providing the make utility with the information it needs.

The occam toolset is designed in such a way that it is possible for a tool to construct
Makefiles to build occam programs. The Makefile generator imakef produces Make
files in a format acceptable to most make programs.

imakef requires the user to adopt a particular convention of file extensions. The user
then only has to specify the target file s/he requires i.e. a bootable file and imakef, using
its knowledge of file names rules, creates a suitable Makefile. This file has full instruc
tions on how to build the program. By running the make program for the file the entire
program will be automatically compiled, linked and made bootable, ready for loading
onto the transputer.

For more details about the imakef tool and an example of how to create a makefile for
the pipeline sorter program used in this chapter, see chapter 12 in the Toolset Refer
ence Manual.

_48 ~~it~91-----------



6 Programming in occam

This chapter discusses some programming issues related to the facilities provided by
the occam 2.1 Toolset outside the occam language. For information about program
ming multi-transputer networks see chapter 7.

Before reading this chapter the user should already be familiar with the concepts and
syntax of the occam programming language. A tutorial introduction to occam
programming is a good introductory text and the occam2. 1 Reference Manualcontains
a formal definition of the language.

6.1 Host channels

Terminal and file input and output is supported by the host file server, which is resident
on the host computer. A process may communicate with the host file server using the
library host i/o routines. These routines require a pair of channels from and to the host
file server, which are normally called fs and ts respectively. The protocol on these
channels is SP, as defined in the system include file bostio. inc. Therefore a process
communicating with the host file server generally has the following form:

#INCLUDE "bostio.inc"
PROC my.occam.program (CHAN OF SP fa, ts)

body of program

Figure 6.1 shows how these channels are connected.

Host computer

fs

ts

Transputer network

Figure 6.1 Program host input/output

Access to the host file server is via the i/o libraries, which are described in the occam
2. 1 Toolset Language and Libraries Reference Manual. Whenever routines from these
libraries are used the channels fs and ts must be passed to the routine so that it can
communicate with the host file server.

6.1.1 Interrupting programs

To interrupt an application program while it is still running, press the host system break
key, usually Ctrl-C.

------------ L.,~~i~©l1I&sa, 49_



6.2 occam error handling

When the break key is pressed, the host file server terminates. This does not terminate
the transputer application, although usually the application will be forced to wait for host
communications. In some cases, if the host server is restarted without rebooting the
transputer network, the application can resume.

6.2 occam error handling

For systems that require maximum security and reliability, the error behavior is of great
concern. occam 2.1 specifies that run-time errors are to be handled in one of three
ways, each suitable for different programs. This section describes the implementation
of error modes in this toolset. The error mode to be used is supplied as a parameter to
both the compiler and linker.

6.2.1 Error modes

The error modes provided by the toolset are listed in table 6.1.

Error option Error mode Description
H HALT Transputer halts when an error is detected.

S STOP Process STOPS when an error is detected.

X UNIVERSAL As HALT or STOP depending in HaltOnError flag.

Table 6.1 Compiler and linker options for selecting error mode

The first mode, called Halt system mode or HALT mode, causes any run-time error to
bring the whole system to a halt promptly, ensuring that any errant part of the system
is prevented from corrupting any other part of the system. This mode is extremely useful
for program debugging and is suitable for any system where an error is to be handled
externally. HALT system mode is the default for the compiler, and users should use this
mode when developing systems.

On the IMS T414, T212, T222, and M212, HALT mode does not halt the processor for
processes running at high priority, as the HaltOnError flag is cleared when going to high
priority.

The second mode, called Stop process mode or STOP mode, allows more control and
containment of errors than HALT mode. It maps all errant processes into the process
STOP, again ensuring that no errant process corrupts any other part of the system. This
has the effect of gradually propagating the STOP process throughout the system. This
makes it possible for parts of the system to detect that another part has failed, for
example, by the use of watchdog timers. It allows multiply-redundant, or gracefully
degrading systems, to be constructed.

The third mode, called UNIVERSAL mode, is not described in the occam2. 1Reference
Manual, but is provided in the toolset to simplify occam libraries. It may behave as either
HALT or STOP mode depending on the transputer's HaltOnError flag. For example if
a library is compiled in UNIVERSAL mode, it may be linked in HALT mode with HALT

-50-----------li;ili~@nllf9©'-----------



6 Programming in occam

mode modules and it will behave as if it had been compiled in HALT mode. Alternatively
if it is linked in STOP mode with STOP mode modules it will behave as if it had been
compiled in STOP mode.

All separately compiled units for a single processor must be compiled and linked with
compatible error modes. HALT and STOP modes are mutually incompatible and may
not be combined in the same linked unit, whereas UNIVERSAL mode can be mixed with
either HALT or STOP.

If no mode is specified the linker defaults to HALT mode; if the program contains STOP
modules then a linker error is generated. Similarly, if STOP is specified on the command
line the presence of HALT modules generates an error.

Where a library is used, the module with the appropriate error mode is selected by the
compiler.

Programs may also be compiled and linked in UNIVERSAL mode. This may be useful
where linked modules are used as components of the final linked program - the error
mode of the program can be postponed until the final link stage which builds the whole
program. Programs built entirely in UNIVERSAL mode and targetted at single proces
sors have their error mode set by the collector tool to its default, which is HALT mode.

Table 6.2 summarizes error mode compatibility.

Error mode Compatible with
HALT HALT, UNIVERSAL

STOP STOP, UNIVERSAL

UNIVERSAL HALT, STOP, UNIVERSAL

Table 6.2 Compatibility between error modes

occam error mode UNDEFINED

The occam 2. 1Reference Manual describes a further error mode called UNDEFINED.
This is not provided as an error mode in this toolset, but the same effect can be
reproduced by disabling the error checking code, as described in section 6.2.2. The
error checking code can be disabled in any of the error modes described above.

6.2.2 Error detection compiler options

In some circumstances it may be desirable to omit the run time error checking in one
part of a program, for example, in a time-critical section of code, while retaining error
checks in other parts of a program, for debugging purposes.

The compiler provides three command line options to enable the user to control the
degree of run time error detection; they are the K, u and NA options and they prevent
the compiler from inserting code to explicitly perform run time checks.

These options should only be used on code which is known to be correct. The compiler
does not insert much error checking code so it should only be disabled as a last resort.

------------ "T~lit9£~©' 5_1



6.2 occam error handling

It is the user's responsibility to ensure that errors cannot occur. The ability to disable
certain error checking code by using the K and U options should not be abused in an
attempt to use illegal code, since there is no way of telling the compiler to ignore all
errors.

The K option disables the insertion of code to perform run-time range-checking. In this
context the term range-checking refers only to checks on array subscripting and array
lengths. Note: in any situation where the compiler can detect a range check error without
specifically adding code, it may still do so. The type of situation where this is likely to
happen is when an array subscript such as [i+j] is used, and i+j overflows.

The u option disables the insertion of code whose only purpose is to detect some kind
of error. This option is stronger than the K option, and includes the K option, so it is not
necessary to use both options together. The U option does not include the NA option,
which is described below.

The u option will disable the insertion of run-time checks to detect occurrences such as
the following: .

•

•

negative values in replicators

errors in type conversion values,

errors in the length of shift operations,

• array range errors,

errors in replicated constructs such as SEQ, PAR, IF and ALT.

In any situation where the compiler can detect an error without specifically inserting
code, it may still do so. Thus an arithmetic overflows can still cause an error. To avoid
overflow errors the operators PLUS, MINUS and TIMES can be used.

If the u option is used in conjunction with HALT mode, it will prevent explicit checking
for floating point errors in those cases where library calls are not used to perform floating
point arithmetic (see below). In addition if the u option is used with STOP or UNIVERSAL
mode, it inhibits the ability of the system to gradually propagate a STOP process
throughout the system. This means that the u option, when used with any error mode
produces identical code. The object file, however, is still marked as being compiled in
a particular error mode.

The u option can be used to optimize run time performance in code which is fully
debugged and known to be error-free. This is equivalent to implementing UNDEFINED
error mode.

Faster code is produced by using the u option with any error mode. Any libraries which
are linked with the modules will maintain the error mode and level of error detection that
they were compiled for. In practice, libraries compiled in HALT mode will be fastest, so
for benchmarking, modules should be compiled in HALT mode and the u option used.

The NA option disables the insertion of code to check calls to ASSERT.

_52 iiiilil@m'£~JI-----------



6 Programming in occam

The occam 2.1 compiler recognizes a procedure ASSERT with the following parameter:

PROC ASSERT (VAL BOOL test)

At compile time the compiler will check the value of test and if it is FALSE the compiler
will give a compile time error; if it is TRUE, the compiler does nothing. If test cannot be
checked at compile-time then the compiler will insert a run-time check to detect its
status. The NA option can be used to disable the insertion of this run-time check.

6.3 Library i/o

The occam compiler and linker use library i/o by default. The compiler will generate
calls to library routines to perform channel input and output rather than using the
transputer's instructions; this is referred to as using library i/o. Using library i/o causes
a performance penalty to be incurred when virtual routing is not required. Using the
command line option Y disables library i/o and results in faster code execution but the
code cannot be used in a system which requires virtual routing.

Code which has library i/o disabled may call code which has library i/o enabled but not
vice versa. If library i/o is disabled for any module in a program then the configurer option
NV must be used to disable virtual routing throughout the program. This will prevent the
program from being interactively debugged as interactive debugging requires virtual
routing.

6.4 Alias and usage checking

The compiler implements the alias and usage checking rules described in the occam
2. 1Reference Manual. Alias checking ensures that elements are not referred to by more
than one name within a section of code. Usage checking ensures that channels are used
correctly for unidirectional point-to-point communication, and that variables are not
altered while being shared between parallel processes. For a further discussion of these
rules, see Appendix C in the occam 2. 1 Toolset Language and Libraries Reference
Manual.

Alias and usage checking during compilation may be disabled by means of the compiler
options A and N. Using the N option it is possible to carry out alias checking without usage
checking. However, it is not possible to perform usage checking without alias checking,
as the usage checker relies on there being no aliasing in the program. If alias checking
is switched off with option A, usage checking is also disabled.

The behavior of programs where alias and usage checks are disabled is defined in
Appendix C of the occam 2. 1 Too/set Language and Libraries Reference Manua/.

The K and u options will also disable the insertion of alias checks that would otherwise
be performed at run-time. These options do not affect the insertion of alias checks at
compile time nor the insertion of usage checks which are only performed at compile
time. Alias checking can impose some code penalties, for example, extra code is
inserted if array accesses are made which cannot be checked until run-time. The wo

____________ ;;..,~Ii~@_':l~ 53_



6.5 Using separate vector space

command line option will produce a warning message every time one of these checks
is generated. However, alias checking can also improve the quality of code produced,
since the compiler can optimize the code if names in the program are known not to be
aliased.

The compiler usage check detects illegal usage of variables and channels, for example,
attempting to assign to the same variable in parallel. The compiler performs most of its
checks according to the rules defined in the occam 2. 1 Reference Manual, but with
certain limitations. Normally, if it is unable to implement a check exactly, it will perform
a stricter check. For example, if an array element is assigned to, and its subscript cannot
be evaluated at compile time, then the compiler assumes that all elements of the array
are assigned to.

If a correct program is rejected because the compiler is imposing too strict a rule, it is
possible to switch off usage checking, either on the command line for the entire compila
tion, or by a pragma for a specific variable.

It should also be noted that usage checking can slow the compiler down. For example,
programs which contain replicated constructs defined with constant values for the base
and count, will be checked for each iteration of the routine. Replicated constructs which
have variable base and count values are only checked once with a stricter check,
because the compiler cannot evaluate, at this point, the actual limits of the replication.

6.5 Using separate vector space

The compiler normally produces code which uses separate vector space. Arrays which
are declared within a compilation unit are allocated into a separate vector space area
of memory, rather than into workspace, when they are more than 8 bytes.

This decreases the amount of stack required, which has two benefits: firstly, the offsets
of variables are smaller, so access to them is faster; secondly, the total amount of stack
used is smaller, allowing better use to be made of on-chip RAM.

The compiler option v disables the use of a separate vector space, in which case arrays
are placed in the workspace.

When a program is loaded onto a transputer in a network, memory is allocated contigu
ously, as shown in figure 6.2.

This allows the workspace (and possibly some of the code) to be given priority use of
the on-chip RAM. Generally, the best performance will be obtained with the separate
vector space enabled.

The default allocation of an array can be overridden by an allocation immediately after
the declaration of an array. This allocation has one of the forms:

PLACE name :IN VECSPACE :

PLACE name :IN WORKSPACE :

_5_4 L.,£~i~@_.©'------------



6 Programming in occam

#80000000

Unallocated memory
(passed as memory

to program)

occam vector space

occam code

occam workspace

Reserved by transputer

MOSTNEG :INT
+ IBOARDS:IZE

MemStart

MOSTNEG :INT

Figure 6.2 Memory allocation on a 32-bit transputer

The PLACE statement must be inserted immediately following the declaration of the
variable to which it refers.

For example, in a program which is normally using the separate vector space, it may
be advantageous to put an important buffer into workspace, so that it is more likely to
be put into internal RAM. The program would be compiled with separate vector space
enabled, but would include something like:

[buff.size]BYTE crucial.buffer :
PLACE crucial.buffer IN WORKSPACE

For a program where it is required to put all of the data apart from one large array into
the workspace, the program would be compiled with separate vector space disabled,
and the array allocated to vector space by a place statement such as:

PLACE large.array IN VECSPACE :

Within a program it is possible to mix code compiled with separate vector space on and
code compiled with separate vector space off. The parts of the program which have
been compiled with separate vector space enabled will be given use of the vector space.

Certain libraries such as hostio. lib use vector space. Therefore, it is likely that some
use of vector space will be made, even if vector space is disabled for a program module.

------------ j;.T~~~i@UI£~©' 5_5



6.6 Sharing source between files

6.6 Sharing source between files

The source of a program can be split over any number of files by using the #INCLUDE
directive. This directive enables the user to specify a file which contains occam source.
The contents of this file are included in the source at the same point and with the same
indentation as the #INCLUDE directive. Include files may be nested to any depth - the
compiler does not impose a limit. By convention, the • inc file extension is used for
occam constant and protocol definitions. An example of using the #INCLUDE directive
is given below:

#INCLUDE "infile.inc" -- source in infile.inc

The name of the file to be included is written in quotes ("). All of the line following the
closing quote may be used as for comments. All directives occupy a single line.

6.7 Separate compilation

Separate compilation reflects the hierarchical structure of occam, and the occam
compiler compiles occam procedures or functions (PROCS or FUNCTIONS) or both. Any
number of procedures and/or functions may be compiled at any time, provided the only
external references they make are via their parameter lists.

A group of procedures or functions or both that are compiled together are known as a
compilation unit. Each procedure or function in such a group may be called internally
by other procedures declared later in that group, or externally by any occam in the
scope of the directive which references that separate compilation unit. Constant decla
rations and protocols are also permitted inside a compilation unit, for the use of the
procedures and functions within it. The scope of a separate compilation unit is the same
as any normal occam procedure or function.

Separately compiled units are referenced from occam source as object code files,
using the fUSE directive. The object file may be a compiled ( • teo) or library (. lib) file.
If the file extension is omitted the compiler adds the extension of the current output file.
This will be (. teo) unless an output file has been specified using the 0 option.

An example of how to reference a separately compiled unit is shown below.

fUSE "scunit.tco" -- code in file scunit.tco

The filename must be enclosed in double quotes ("). All of the line following the closing
quote can be used as comment. The directive must occupy a single line.

Separate compilation units may be nested to any depth and may contain #INCLUDE
directives. They may also use libraries, as described in section 6.9. A separate compila
tion unit must be compiled before the source which references it can be compiled.

6.7.1 Sharing protocols and constants

occam constants and protocols may be declared and used within a compilation unit
according to the rules of the language. Where a constant or protocol or both is to be used

-5-6-----------I..~lil@.,£'-----------



6 Programming in occam

across separate compilation boundaries, it should always be placed in a separate file.
The file should be referenced in any compilation unit where it is needed, by using the
#INCLUDE directive before any #USE directive, which introduces procedures using the
protocol in their formal parameter lists. Protocols will also need to be referenced in any
enclosing compilation unit, because the channels will either be declared there or passed
through.

For example, suppose we have a protocol MYPROT defined in a file myprot. inc. This
might be used as follows:

PROC main ( )
#INCLUDE "myprot.inc"
#USE "myproc.tco"

CHAN OF MYPROT actual.channel
PAR

do.it(actual.channel)

The separately compiled procedure do. it, from source in the file myproc. occ, would
look like this:

#INCLUDE "myprot.inc" -- declares protocol MYPROT
PROC do.it (CHAN OF MYPROT in)

SEQ
body of procedure

Since the protocol name MYPROT occurs in the formal parameter list of the separately
compiled procedure do. it, the compilation unit must include a #INCLUDE directive,

~/ preceding the declaration of do. it, to introduce the name MYPROT.

6.7.2 Compiling and linking large programs

Building a program which includes separate compilation units and library references is
straightforward. Separate compilation units in the program can be compiled individually
by applying the compiler to them. Nested compilation units must be compiled in a
bottom-up order before the top level of the program is compiled; finally the whole
program is linked together.

Separate compilation units must be compiled before the unit which references them can
be compiled. This is because the object code contains all the information about a unit
(names, formal parameters, workspace and code size, etc.) which is needed to arrange
the static allocation of workspace and to check correctness across compilation bound
aries. This information may be viewed using the ilist tool.

When a program is linked the code for all the separate compilation units in the program
is copied into a single file. In addition, code for any libraries used is included in the file.



6.8 Using imakef

Where libraries contain more than one module, only those modules containing routines
actually required in a program are linked into the final code. This helps to minimize the
size of the linked code.

The target processor or transputer class and error mode must be specified to the linker
to enable it to select appropriate library modules. Only one processor type or class may
be used for the linking process and this must be compatible with the transputer type or
class used to compile the modules. The error mode used for the linking process must
also be compatible with the error mode(s) used to compile the modules. Compatible use
of the compiler and linker y option must also be adopted for the modules to be linked.

If there are a large number of input modules, they may be supplied to the linker within
an indirect file, as a list of filenames. Indirect files may also contain directives to the
linker. Linker directives enable the user to customize the linkage operation, e.g. define
aliases, symbols, and references, modify the ordering of modules, and include other
indirect files. Section 10.4 in the Toolset Reference Manual describes the operation of
linker directives.

6.8 Using imakef

When a change is made to part of a program it is necessary to recompile the program
to create a new code file reflecting the change. The purpose of the separate compilation
system is to split up a program so that only those parts of the program which have
changed or which depend on the changed units, need to be recompiled, rather than
needing to recompile the whole program. However, it would be tedious to have to
remember which modules had been edited, which modules might be affected by calls
and the order in which the modules were compiled and linked. For this reason a Makefile
generator imakef is supplied with the toolset and may be used to assist with building
programs consisting of several modules. This tool, when applied to a program (or part
of a program), compiles a list of dependencies of compilation units and uses this list to
produce a Makefile. The Makefile can be used with a suitable make utility to recompile
only the changed parts of a program. This ensures that compilation units will always be
recompiled where a change has made this necessary.

The Makefile generator is used by telling it the name of the file to build. The tool can
produce a Makefile for any type of file that can be built with the toolset tools. In order
that imakef can identify file types, a different system of file extensions must be used
from that used in this chapter. The filename rules for imakef are described in section
12.3 of the Toolset Reference Manual.

6.9 Libraries

A library is a collection of compiled procedures or functions or both. Any number of
separately compiled units may be made into a library by using the librarian. Separately
compiled units and libraries can be added to existing libraries. Each compilation unit is
treated as a separately loadable module within a library. When compiling or linking, only
modules which are used by a program are loaded. The rules for selective loading are
described in the following section.

_5_8 ~~i~@m&.9©' -----------



6 Programming in occam

Libraries are referenced from occam source by the #USE directive. For example:

lOSE "hostio.lib" -- host server library

The filename is enclosed in quotes ("). The rest of the line, following the closing quote,
may be used for comments. Directives must occupy a single line.

Libraries should always use a .lib file extension, and this must always be supplied in
a IUSE directive.

6.9.1 Selective loading

A library consists of modules where each module derived from a separately compiled
unit. Each module in a library is selectively loadable by the linker; i.e. parts of a library
not used or unusable by a program are ignored. The unit of selectivity is the library
module; Le. if one procedure or function of a library module is used then all the code for
that module is loaded.

The compiler is selective when a library is referenced. Only modules of a library that are
of the required, or compatible, transputer type or class, error mode and method of
channel input/output, are read. For details of processor types and classes, see
Appendix B in the Toolset Reference Manual, and sections 6.2 and 6.3 in this chapter.

Selective loading is based on the following rules:

The transputer type or class of a library module must be the same as, or compat
ible with, the code which could use it.

2 The error mode of the library module must be the same as, or compatible with,
the code which could use it.

3 The interactive debugging mode (Le. whether interactive debugging is enabled
or not) of the library must be the same, or compatible with, the code which could
use it.

4 At least one routine (entry point) in a module is called by the code.

Rules 1 to 3 apply to the compiler. All the rules are used by the linker. The compiler only
selects on transputer type, error mode and method of channel input/output. It is not until
the linking stage that unused modules are rejected. For details on mixing processor
classes see Appendix B in the Toolset Reference Manual, and for information on mixing
error modes see section 6.2.

6.9.2 Building libraries

Libraries are built using the librarian tool ilibr. Libraries can be created from either
separately compiled units (. teo or library files • 1 ib) or from linked units (. lku files)
but not a combination of both. The librarian takes any number of input files and combines
them into a single library file. Each separately compiled unit forms a single module in
the library.

----------- ..T~5~@-,91-----------59-



6.9 Libraries

When forming a library the librarian will warn if there are multiply defined routines (entry
points). In other words, for each combination of transputer type, error mode and method
of channel input/output there may only be one routine with a particular name. For further
information on building and optimizing libraries see chapter 9 of the Toolset Reference
Manual.

As an example consider building a library called mylib .lib. The source of this library
is contained in a file called mylib. oeo and has been written to be compilable for both
16 and 32 bit transputers. We want the library to be available for T212 and TaOO
processors in halt on error mode only. Having compiled the source for the two proces
sors we will have two files, for example: mylib. t2h and mylib. t8h. To form a library
from these compilation units use the following command line:

ilibr mylib.t2h mylib.t8h

When an output filename is not specified, as in this example, the librarian uses the first
file in the list to make up the output file name and adds the extension • lib. In this case
it will write the library to the file mylib.lib.

The librarian can also take an indirect file containing a list of the files to be built into the
library. Such files should have the same name as the library, but with a • lbb file
extension. So, still using the above example, if the names of the files to make up the
library were put in a file called mylib .lbb, we could then build the library using one of
the following commands:

ilibr -f mylib.lbb -0 mylib.lib

Compiled modules can be added to an existing library file. However, if the librarian
attempts to create an output file with the same name as an input library file, an error will
be produced. This can be avoided by specifying a different output filename using the 0
option. Alternatively if one on the compiled modules to be added to the library has a
different name, this could be specified first on the command line. Once the new library
file has been created it can be renamed if necessary. Adding modules to an existing
library does not require programs which call it to be recompiled, provided it is given its
original name in its final form.

The Makefile generator imakef can be used to assist with the building of libraries. This
is particularly useful where libraries are nested within other libraries or compilation units,
because imakef can identify the dependencies of libraries on other modules or sepa
rately compiled units. For further information about the imakef tool see chapter 12 of
the Toolset Reference Manual.

_60 ~li~@m&"~~JI-----------



7 Configuring transputer networks

This chapter describes how to build programs that run on networks of transputers. It
describes how to configure an occam program for a network of transputers using the
configuration language and the occam configurer tool occonf, illustrated with an
example program for four transputers. The chapter also includes examples illustrating
various aspects of configuration.

7.1 Introduction to configuration

This section introduces the concept of configuration and describes the configuration
model. It also provides some background information about network structure and the
communication facilities supported. Example configurations are given at the end of this
chapter as well as in the Getting started chapter of this manual.

The INQUEST network analyzer rspy can be used to generate a hardware description
in a form suitable for use in configuration files. For further details of rspy see the
INQUEST User and Reference Manual.

7.1.1 What is configuration?

An application generally contains a number of communicating processes which may be
designed to run in parallel. In a single transputer system, all the application software will
be loaded onto one transputer; in a multiprocessor system the application processes
may be distributed over several transputers.

Configuration is the process of defining the software and hardware components of a
system, describing how the software is placed on the hardware, and defining the
communications requirements of the system.

The application software is described in terms of its component processes and how they
communicate. The way that processes are placed on the hardware is described as the
mappingof software to hardware. The hardware is described in terms of the number and
type of transputers, the amount of memory on each transputer and how they are
connected.

Configuration is achieved by writing a configuration description in the occam configura
tion language. A configuration description is a text file created by the user, which is
processed by the configurer tool occonf to generate a configuration data file. This file
is in turn processed by the collector tool icollect to generate a transputer loadable
file.

Within a configuration description the hardware network and the software description
are kept separate. This enables the same software description to be used on a variety
of alternative hardware networks. Likewise the same hardware description may be used

----------- J.W@I~trn.£YI-----------6-1



7.2 Configuration model

in a variety of configurations describing different programs that may be run on the same
hardware.

7.1.2 Mixing languages

By using the facilities for calling other languages from occam, programs compiled from
mixed language sources may also be configured using the occam configurer. (These
facilities enable the foreign language code to be incorporated into the occam program
as equivalent occam processes. An example of this is provided in the user examples
directory supplied with the toolset. A description of this method of mixed language
programming is given in chapter 11). Similarly it is possible to configure occam modules
which are called by C programs using the configurer provided with the ANSI C toolset.
Details of how to do this are given in the ANSI C Toolset User Guide.

7.2 Configuration model

Each transputer has up to four hardware links. These links can be connected to one
another to form communication links between transputers. The transputers and their
connections are known as a network, and the individual devices are nodes of the
network. Links can also be used in conjunction with link adaptors, to connect peripheral
devices to the network.

The configuration model consists of the following:

A hardware description, defining the transputers in the network and how they are
connected.

• A software description, defining the processes and how they are connected via
channels, in the form of an occam process.

A mapping between the processes and channels of the software and the trans
puters and transputer link connections respectively of the network.

The software description takes the form of an occam process with at least as many
parallel sub-processes as there are processors in the network. Within the description,
each process (which may be independently placed on a processor) is introduced by a
PROCESSOR construct naming a processor. Processors so named may either be the
physical processors declared in the hardware description, or may be logical processors
mapped onto the physical processors in a separate mapping description. In either case
the processor name must have appeared in a NODE declaration in whose scope the
software description is written.

The connections between processes in the software description are defined by occam
channels. It is thus possible for the configurer to determine what code is to be loaded
onto what processor, and to choose the mapping of channels onto links between proces
sors.

Channels may also be used to connect to external hardware, such as the development
host or peripherals connected by means of link adaptors. External objects of this kind
are declared as EDGES in the hardware description.

_62 ~li~@mRI&~©~ _



63

7 Configuring transputer networks

The hardware connections, to external edges or between processors, may optionally
be associated with a name, declared as an ARC. This allows explicit mappings of
channels onto these connections.

7.2.1 Configuration tools

The following tools are provided for combining linked units into executable code:
occonf, icollect, iemit, imem450 and ieprom. They are described in the Toolset
Reference Manual.

occonf and icollect are used in the main development process of configuring an
application to run on a transputer network and are discussed in this chapter. Depending
on the transputer type, iemit or imem4 5 0 may be used to generate a memory configu
ration file to configure the transputer's external memory interface. ieprom is used to
load a configured application and a memory configuration file into ROM. Further
information about EPROM programming and configuring the ST20450 memory inter
face is given in chapters 13 and 14 respectively.

7.2.2 Configuration language

A configuration description consists of a sequence of declarations and statements. The
language used is an extension to occam and follows the usual occam scope rules, as
the configurer uses occam rules to evaluate these statements. Appendix G of the
Toolset Reference Manual defines the syntax of the occam configuration language.

Configuration declarations introduce physical processors, arcs and edges of the hard
ware, hardware connections and processor attributes, logical processors to be mapped
onto physical processors, the software description, and the mapping between logical
and physical processors. These are listed in table 7.1.

Statement Description

NODE Declares a processor (node of a graph). A processor is considered to be physical if it
is defined as part of the hardware description, or logical if it is defined as part of the
software description and mapped to a physical processor as part of the mapping.

ARC Declares a name for a hardware connection (arc of a graph) between processors
(using transputer links) or between a processor and an external object. Connections
need not be associated with ARCS unless channels are required to be explicitly placed
on particular links.

EDGE Declares an object external to the transputer network. An external object may be the
host, or a peripheral connected via a link adaptor e.g. a joystick, disc drive.

NETWORK A construct containing the connections and attribute settings of previously declared
NODES (physical processors).

MAPPING A construct containing mappings between previously declared logical processors and
physical processors.

CONFIG A construct containing the software description.

Table 7.1 Configuration description declarations

Arrays of NODES, EDGES, and ARCS may be declared. A configuration description
includes one NETWORK, one CONFIG and, optionally, one MAPPING construct. Each of

~SGS-1HOMSON------------ "T~ IK'AlO©oom~@[R!]U©~------------



7.2 Configuration model

the items appearing before CONFIG behaves as an occam specification, and ordinary
VAL abbreviations may be included amongst these components to facilitate the descrip
tion of scalable configurations. A NETWORK, CONFIG, or MAPPING construct is optionally
named by an identifier following the opening keyword.

Configuration declarations are usually followed by statements which perform various
actions relating to the declaration. Actions are defined by SET, CONNECT and MAP

statements. The DO construct enables these statements to be grouped or replicated.
PROCESSOR statements introduce processes wt'lich may be mapped onto named
processors. IF may be used as in occam. Configuration language statements are
listed in table 7.2.

Statement Description

SET Defines values for NODE attributes.

CONNECT Defines a connection between two EDGES, either the links of two NODES or between
a link of a NODE and an EDGE. See section 7.3.

MAP Defines the mapping of a logical processor NODE onto a physical processor NODE.
Optionally defines the mapping of up to two channels onto an ARC.

PROCESSOR Introduces a software process and associates it with a logical or physical processor.

DO Groups one or more actions defined by SET, CONNECT, or MAP statements.

:IF Conditional.

Table 7.2 Configuration description statements

A MAP statement may only appear within the MAPPING construct. A CONNECT statement
may only appear within the NETWORK construct. A SET statement may appear in either
the MAPPING or the NETWORK constructs.

7.2.3 Importing code and source files

Compiled and linked code from other files may be referenced by means of the fUSE

directive, either at the top level, or within the CONFIG construct.

#INCLUDE directives can be used to include other source files. It is suggested that the
distinct sections (hardware, software and mapping) are kept in different files, accessed
by #INCLUDE directives from a master file.

The include file occonf • inc, supplied with the toolset, defines some useful configura
tion values. It can be found on the toolset libs directory.

7.2.4 Overall structure of a configuration description

A configuration description consists of two or three parts; a hardware description, a
software description, and an optional mapping between the two.

The hardware description defines processor connections. It also defines attributes such
as processor types and memory sizes. These processors are known as physicalproces
sors.

-64-----------lFiili~©ltW&~I-----------



7 Configuring transputer networks

Alternative hardware descriptions

Configuration description

Hardware description

H
o
S
T

T425 T80S TaOS

1M -----EJ-E]

H
o
S
T

T425 T425 T425 Define physical hardware

D Physical
processor

Mapping description

MAP logical processor ONTO physical processor

Software
description

[] Logical
processor

o Software
process

Define logic of program

Altemative software
descriptions

~
; ~/ ~....

6//<39/6••••.••. //..... .......•.................•.. . > /.....•••••

Figure 7. 1 Configuration using logical processors

----------- iJ).T£~~t_'9©~ 6_5



declare protocol
must be linked units

7.2 Configuration model

The software description is essentially an occam parallel process, annotated with
PROCESSOR statements to indicate which processes are to be compiled for which
processors. These processes are allocated to logical processors.

The mapping section can be used to ease the task of changing a program to execute
on a different hardware network. The mapping section enables this to be performed
without modifying the software description in any way, by flexibly mapping the logical
processors onto the physical processors, as shown in figure 7.1.

The following example illustrates the basic style of the language:

-- hardware description, omitting host connection
#INCLUDE "occonf.inc" contains useful constants

for memory sizes

NODE root.p, worker.p -- declare two processors
NETWORK simple.network

DO
SET root.p (type, memsize := "T42S", 1 * M)
SET worker.p (type, memsize := "T80S", 4 * M)
CONNECT root.p[link] [3] TO worker.p[link] [0]

mapping description
NODE root.l, worker.l: -- logical processors
MAPPING

DO
MAP root.l ONTO root.p
MAP worker.l ONTO worker.p

software description
#INCLUDE "prots.inc"
lOSE "root.lku"
lOSE "worker.lku"
CONFIG

CHAN OF protocol root.to.worker, worker. to. root
PLACED PAR

PROCESSOR root.l
root.process(worker.to.root, root.to.worker)

PROCESSOR worker.l
worker.process{root.to.worker, worker.to.root)

This example is illustrated in figure 7.2.

Note: that the configurer can, in this example, automatically place the channels onto the
single connecting link. The configurer can make this placement by means of the normal
occam usage checking rules.

In a simple configuration such as this one where each physical processor is only
mapped with a single logical processor, a shortened configuration description may be

66 ~SGS.1HOMSON------------ ~""/£ [iVA]O©OO@~~@~O©~------------



7 Configuring transputer networks

used which omits the mapping section altogether by using the physical processor
names directly in the software description.

worker.proot.p

T42S TaOS

3 0
(1M) ~ ~ (4M)

~
,

~\

Maps onto

root. to.wor~r \

worker. to. root

Figure 7.2 Mapping of software onto hardware

To derive this shortened description from the above example remove the mapping
section and delete the suffixes •p and • 1 from the NODE declarations, SET, CONNECT,
and PROCESSOR statements:

-- hardware description, omitting host connection
#INCLUDE "occonf.inc" contains useful constants

for memory sizes

NODE root, worker : declare two processors
NETWORK simple.network

DO
SET root (type, memsize := "T425", 1 * M)
SET worker (type, memsize := "TeOS", 4 * M)
CONNECT root [link] [3] TO worker [link] [0]

declare protocol
must be linked units

-- software description
#INCLUDE "prots.inc"
lOSE "root.lku"
lOSE "worker.lku"
CONFIG

CHAN OF protocol root.to.worker, worker. to. root
PLACED PAR

PROCESSOR root
root.process(worker.to.root, root.to.worker)

PROCESSOR worker
worker.process(root.to.worker, worker. to. root)

67~SGS-THOMSON------------- ~..,~ ltAln©OO@[gl1rn©'iJoo@~n©~-------------



7.3 Hardware description

7.3 Hardware description

The configuration description for the hardware defines what processors are present and
how they are connected by means of their links. A simple example was shown in chapter
3 Getting Started, which defines a single transputer connected to the host.

A hardware description consists of physical processors of type NODE connected by their
links with the CONNECT statement. A processor has attributes which are used to define
the processor type, memory size and other characteristics.

7.3.1 Declaring processors

Processors are declared to have NODE type, as if they were occam data items:

NODE worker : single processor
[No.of.workers]NODE pipeline : -- array of processors

7.3.2 NODE attributes

A NODE representing a physical processor has a set of attributes, analogous to fields of
a record. Attributes may be values (such as processor type or memory size) or edges
(such as the links).

The attribute names, which are predeclared by the configurer, do not follow the occam
scope rules; they are only recognized in the context of a SET statement for value
attributes or a CONNECT statement for edge attributes.

Value attributes

An integer, boolean or string value can be assigned to a value attribute using a SET
statement. The value can be any occam expression of the appropriate type. For
example, the following statement sets the type attribute of proc to T80S:

SET proc ( type := "T80S")

No attribute may be set more than once for each processor.

Edge attributes

An edge attribute is referenced by subscripting the name of the node with the name of
the attribute. Edge attributes are arrays of type [] EDGE, so a subscript is required to
reference an element of the array. For example, link 2 of proc is referenced by:

proc[link] [2]

Edges are connected using a CONNECT statement. For example, the following specifies
that link 0 of procl is connected to link 3 of proc2:

CONNECT procl[link] [0] TO proc2[link] [3]

_6_8 i.~£lil@_dl-----------



7 Configuring transputer networks

Processor attributes

The attributes of processors are listed in tables 7.3 and 7.4. The attributes listed in table
7.3 are used in the hardware description and are described below. The attributes in table
7.4 are used in the mapping description and are described in more detail in chapter 10.
All the attributes are value attributes except 1ink which is an edge attribute.

type and memsize must be defined for all processors. The type attribute must be set
to a string (of any length) whose contents describe the processor type. Trailing spaces
at the end of the processor type are ignored.

The memsize attribute must be set to the amount of usable memory (on-chip + external
memory) available to the processor, expressed in bytes, which is to be used by the
configurer to place the code and data of processes. memsize defines the size of this
memory as a contiguous region of memory starting at the most negative address,
MOSTNEG INT. Regions of memory elsewhere in the address space are not included.
The constants K and M, defined in occonf • inc, can be used to specify Kbytes and
Mbytes. The size specified must be positive and should represent a whole number of
words for the processor. The top of the memory region specified by memsize must be
greater than or equal to the value of LoadStart; details of LoadStart are given in chapter
10.

The memstart and numlinks attributes are only used with processors whose type
is set to ST20. memstart specifies the location of MemStart as an absolute address,
which must be word aligned. numlinks specifies the number of links, and hence the
size of the link array. It is good practice to set these attributes for ST20 processors,
as the location of MemStart and the number of links depends on the ST20 variant in use.

Attribute Type Description

link []EDGE The links of the processor. This attribute is only defined if type has
already been defined, and if type is ST20 then numlinks should
also be defined and is the size of the array.

memsize INT Defines the size in bytes of the contiguous region of memory

Mandatory
available to the processor, starting from MOSTNEG INT.

memstart INT Defines the location of MemStart for processors of type ST20 only.
It is expressed as an absolute address, which must be word
aligned. The default value is MemStart for the ST20450.

numlinks INT The number of links available on the processor for processors of
type ST20 only. Valid values are in the range 1 to 4 inclusive. The
default value is 4.

romsize INT Defines the size in bytes of ROM attached to the processor.
Mandatory if root is TRUE.

root BOOL Defines the root processor if there is no host connection. Takes the
values TRUE or FALSE. The default value is FALSE.

type []BYTE Defines the processor type as a string. Processor types supported

Mandatory
are:T2l2,T222,T22S,M2l2,T400,T4l4,T42S,T4S0,ST20,
T800, T80l and T80S.

Table 7.3 Hardware description attributes

------------l:iilit~~©' 6_9



7.3 Hardware description

If a network is configured to be booted from ROM, the attribute root must be set to TRUE
for one processor only. The attribute roms i ze must also be set to the number of bytes
of ROM on the root processor. These attributes are ignored if the network is configured
to be booted from link.

Additional processor attributes can be set in the MAPPING section. These support the
following features:

• relative ordering of code, workspace and vector space (order. code,
order.ws and order.vs);

placing code, workspace, and vector space (location. code, location. ws
and location.vs);

reserving memory (reserved);

fine-tuning of software virtual routing (routecost, tolerance and
linkquota);

disabling the INQUEST tools for specific processors (nodebug and
noprofile).

Attribute Type Description

linkquota INT Defines the maximum number of links on a processor to be used by
virtual routing.

location. code INT Defines the absolute address at which the code for a program on a
processor should be placed in memory.

location.vs INT Defines the absolute address at which the vector space for a
program on a processor should be placed in memory (if it exists).

location.ws INT Defines the absolute address at which the workspace for a program
on a processor (stack) should be placed in memory.

nodebug BOOL For use with the INQUEST debugger. It informs the debugger that
the processor is not to be debugged. It takes the values TRUE or
FALSE; the default is FALSE if the GA configurer option is used, and
TRUE if the GD option is used.

noprofile BOOL For use with the INQUEST profiling tools. It informs the profilers
that the processor is not to be profiled. Takes the values TRUE or
FALSE; the default is FALSE.

order. code INT Defines the ordering priority of the code for a program on a
processor in memory. The default value is O.

order.vs INT Defines the ordering priority of the vector space for a program on a
processor in memory. The default value is O.

order.ws INT Defines the ordering priority of the workspace for a program on a
processor in memory. The default value is O.

reserved INT Defines the size in bytes of a contiguous block of memory starting
at MOSTNEG INT to be reserved for code and data placement.

routecost INT Defines the cost of using a processor in the network for virtual
routing.

tolerance INT Defines the .level of usage of a particUlar processor for load-sharing
routing paths.

Table 7.4 Mapping description attributes

70 ~SGS-1HOMSON
------------- ...,~ ~fi©OOm~@fK!l[]©®-------------



7 Configuring transputer networks

7.3.3 NETWORK description

The NETWORK construct introduces the hardware description which describes the
connectivity, and attributes of previously declared NODES. These should be declared
outside of the NETWORK construct, so that they are visible inside and below the NETWORK
construct.

To define a single processor, the SET statement provides values for the processor's
attributes in the style of a multiple assignment, for example:

NETWORK single
SET processor ( type, memsize := "T80S", 1024*1024 )

A sequence of SET statements must be enclosed in a DO construct, for example:

NETWORK single
DO

SET processor type .- "T80S" )
SET processor memsize.- 1024*1024

The DO construct does not imply any particular ordering, so there is no absolute
constraint on the order in which attributes may be defined. However, it is considered
good occam style to set the processor attributes before other statements such as
CONNECT statements.

Hardware description constructs

IF, SKIP and STOP may be used in DO constructs. The syntax is the same as for occam.

Processors are connected by means of CONNECT statements. Each CONNECT state
ment connects a pair of edges, each of which may be an edge attribute of a node (such
as the link of a processor) or a network EDGE. For example:

VAL K IS 1024:
NETWORK pair.from.ROM

DO
SET proc1 type, memsize .- "T80S", 2048 * K)
SET proc1 root, romsize .- TRUE, 2S6 * K)
SET proc2 ( type, memsize .- "T42S", 1024 * K)
CONNECT proc1[link] [0] TO proc2[link] [3]

The order of the two edges in a CONNECT statement is not significant.

____________ ..-,,£I~t_,~©~ 7_1



7.3 Hardware description

Arrays of processors do not need to be all set to the same type or the same value for
other attributes. The attributes can be set by using DO replicators within the NETWORK
construct, and by using conditionals, as in this example:

NETWORK pipe
DO

DO i = 0 FOR 100
IF

(i \ 4) = 0
SET processor[i] (type, memsize .- "T80S",

4 * (1024 * 1024) )
TRUE

SET processor[i] (type, memsize := "T42S",
2 * (1024 * 1024) )

DO i = 0 FOR 99
DO

CONNECT processor[i] [link] [1] TO
processor [i+l] [link] [0]

IF
(i \ 2) = 0

CONNECT processor[i] [link] [2] TO
processor [i+2] [link] [3]

TRUE
SKIP

More complicated expressions may also be used, as long as they can be evaluated at
configuration time:

VAL processor.type IS ["T42S", "T42S", "T42S", "T80S"] :
NETWORK fancy every fourth processor is different!

DO i = 0 FOR SIZE processor
SET processor[i] ( type := processor.type[i \ 4] )

7.3.4 Declaring EDGEs

EDGES define the external interfaces of a NETWORK, often implemented by link adaptors,
such as an interface to a host or peripheral. They are declared as though they were
occam data types, and as usual we can declare arrays of them:

[10]EDGE diskdrive
NETWORK disk. farm

DO i = 0 FOR 10
DO

insert code to set attributes, then:
CONNECT processor[i] [link] [0] TO diskdrive[i]

_72 iF;ili~@1!III9c1-----------



7 Configuring transputer networks

7.3.5 Declaring ARCs

It is necessary to name any connection to an EDGE so that channels can be placed on
it. It may also be necessary under certain circumstances to name a connection between
two processors to allow the explicit placement of channels onto hardware connections.
This is not normally necessary, because the configurer can place channels between
processors onto links automatically. Explicit placement may be needed, for example, if
there are multiple links between two processors, and one link runs at a different data rate
from the others.

Named connections are called ARCS, and are declared as though they were occam
data types. They are associated with a connection by adding a WITH clause to the end
of a CONNECT statement. For example:

EDGE joystick :
ARC link. to. joystick
NODE controller
NETWORK n

DO
SET controller (type, memsize := "T225", 64 * 1024)
CONNECT controller [link] [2] TO joystick WITH

link. to. joystick

7.3.6 Abbreviations

occam style abbreviations are permitted, to enable easier reference to elements of
arrays, etc, for example:

[10]NODE pipe :
NETWORK pipeline

DO i = 0 FOR 10
NODE this IS pipe[i]
SET this (type, memsize := "T425", 1024*1024)

A link of a processor may be abbreviated as an EDGE, for example:

[10]NODE pipe :
NETWORK pipeline

DO
DO i = 0 FOR 10

SET pipe[i] (type, memsize := "T425", 1024*1024)
DO i = 0 FOR 9

EDGE this IS pipe[i ] [link] [2]
EDGE that IS pipe[i+1] [link] [3]
CONNECT this TO that

Simple one-to-one mappings of logical to physical processors may also be expressed
as abbreviations:

NODE root.l IS root.p :

____________ i:;i1~1@m&'f'9©~ 73_



7.3 Hardware description

7.3.7 Host connection

There is a predefined EDGE named HOST, which indicates the connection to a host
serving the network:

NODE single :
ARC hostlink
NETWORK B008

DO
SET single (type, memsize := "T80S", 1000000)
CONNECT single [link] [0] TO HOST WITH hostlink

When configuring a program which is designed to be booted via a transputer link, one
processor must be connected to the predefined EDGE HOST.

7.3.8 Example - a single processor connected to the host

#INCLUDE "occonf.inc"
NODE single:
ARC hostlink:
NETWORK B008

DO
SET single (type, memsize := "T42S", 2 * M)
CONNECT single [link] [0] TO HOST WITH hostlink

This configuration is illustrated in figure 7.3.

I ~ I hostlink

single

T425

o (2M)

Figure 7.3 Example of host connection

7.3.9 Example - a simple pipeline

This example shows a simple pipeline, where the root processor has a different memory
size from the other processors.

_7_4 G;ili~@_.~' _



7 Configuring transputer networks

#INCLUDE "occonf.inc"
[p]NODE pipe:

ARC hostlink:
NETWORK simple.pipe

DO
SET pipe[O] (type, memsize := "TaOS", 2*M)
DO i = 1 FOR p-1

SET pipe[i] (type, memsize := "TaOS", l*M)
CONNECT HOST TO pipe[O] [link] [0] WITH hostlink
DO i = 0 FOR p-l

CONNECT pipe[i] [link] [2] TO pipe[i+l] [link] [1]

This network is illustrated in figure 7.4.

pipe[O] pipe[l] pipe[2] pipe[p-1]-
H Taos Taos Taos
0 host link
S 0

(2M)
2 r-- 1

(1M)
2 c--- 1

(1M)
2 -

T
-----

- - 1

Taos

(1M)

Figure 7.4 Simple pipeline with different processor memory sizes

7.3.10 Example - a square array with host interface processor

#INCLUDE "occonf.inc"
VAL Up IS 0:
VAL Left IS 1:
VAL Down IS 2:
VAL Right IS 3:
NODE HostSquare:
[p][p]NODE Square:
ARC hostlink:
NETWORK square

DO
SET HostSquare (type, memsize := "T42S", 2*M)
CONNECT HOST TO HostSquare[link] [0] WITH hostlink
CONNECT HostSquare[link] [1] TO Square [p-1] [p-1] [link] [Down]

DO i = 0 for p
DO j = 0 for p

DO
SET Square[i][j] (type, memsize := "T80S", l*M)
IF

(i = 0) AND (j = 0)
CONNECT HostSquare [link] [Down] TO Square [0] [0] [link] [Up]

i = 0
CONNECT Square[p - 1] [j - 1] [link] [Down] TO

Square [0 ] [j ] [link] [Up]
TRUE

CONNECT Square[i - 1] [j] [link] [Down] TO
Square[i ] [j][link][Up]

------------ L'T£5t.,a, 75_



7.4 Software description

DO i = 0 for p
DO j = 0 for p

IF
j = (p-l)

CONNECT Square[i] [j] [link] [Right] TO
Square[(i + l)\p] [0] [link] [Left]

TRUE
CONNECT Square[i] [j] [link] [Right] TO

Square[i] [j + 1] [link] [Left]

7.4 Software description

The software description is introduced by the CONFIG construct and may optionally be
given a name.

The software description itself is an occam process, PAR or PLACED PAR, with
processes annotated by PROCESSOR statements. These identify which processes may
be placed on particular processors. The keyword PLACED is retained for compatibility
with earlier products; it is no longer required and has no effect.

The NODES which are referenced by a PROCESSOR statement may be either physical
processors if they are described as part of the hardware description, or logical proces
sors if they are described as part of the software description. If the latter, they are
mapped onto physical processors by means of a MAPPING section.

Physical processor names are allowed here to simplify small networks, or those which
will not be re-mapped.

The logical processor names must be introduced first by means of NODE declarations.
These look identical to those used in the hardware description, but have no attributes.
Since these must be visible to a following MAPPING section, they must be declared
outside the CONFIG construct. Channels which are to be mapped onto ARCS by mapping
statements within a MAPPING section must also be declared outside the CONFIG
construct.

A PROCESSOR statement associates the process instance it labels with the logical or
physical processor it names. The same name may be referenced in more than one
PROCESSOR statement. The set of processes so named will run in parallel on that
processor.

The process associated with a PROCESSOR statement may consist of occam text.
However, it is recommended that the code should be restricted to simple procedure calls
Le. to separately compiled procedures, referenced as linked compilation units using the
IUSE directive. Code which generates library calls is not allowed.

7.4.1 Libraries of linked units

The facility to create libraries of linked units provides an easy method of targeting a
process at different processor types within a software description.

_76 ~li~©nwI'J1©' _



7 Configuring transputer networks

For example, suppose a process is compiled and linked once for a T2 and once for a
T8 and the linked units are given imakef file extensions in order to distinguish them.
If the two linked units are referenced directly within the software description by #USE
directives with nested scope, then one of them will hide the other from the configurer.

If, however, the linked units are used to create a library and this is referenced by a single
IUSE directive, the configurer will be able to extract the correct version of the process
for each PROCESSOR statement it finds.

Only libraries containing linked units may be referenced from within a software descrip
tion.

7.4.2 Example

The following example of a software description, is for the pipeline sorter program
introduced in chapter 5. The example is developed to show the complete configuration
description for the program, in section 7.6. Figure 7.5 illustrates the mapping of the
software processes onto a network of logical processors.

declares SP
declares LETTERS
linked unit
linked unit
logical processor

pipe.e1ement.1: logical
-- processors

IINCLUDE "hostio.inc"
IINCLUDE "sorthdr.inc"
IUSE "inout.1ku"
IUSE "element.1ku"
NODE inout.1 :
[string. length] NODE

CONFIG
CHAN OF SP app.in, app.out:
PLACE app.in, app.out ON host1ink:
[string.length+l]CHAN OF LETTERS pipe:
PAR

PROCESSOR inout.l
inout (app.in, app.out, pipe[string.1ength],

pipe[O])
PAR i = 0 FOR string. length

PROCESSOR pipe.element.l[i]
sort.e1ement (pipe[i], pipe[i+l])

This example names a single process inout associated with the logical processor
inout • 1 and an array of processes sort. element associated with the array of logical
processors pipe. element .1. The program may be mapped onto any hardware
configuration which matches the logical network as described by the software descrip
tion and which includes an ARC declaration for the host connection host1ink.



7.5 Mapping description

HOST

app.i app.out

o Logical
processor

inout.1
pipe.e1ement.

1[0]
pipe. element.

1 [string.1ength-l]

pipe [string. length]

Figure 7.5 Pipeline sorter -- mapping processes onto processors

7.5 Mapping description

A MAPPING construct is required if the user has declared logical processors. The
MAPPING construct enables the user to map logical processors used in the software
description onto physical processors used in the hardware description. It is possible to
map any number of logical processors onto a physical processor. The MAPPING
construct also enables the user to map channels onto links.

The priority at which a process runs may be determined as part of the mapping, if that
process does not explicitly include high priority code. This reflects the fact that changes
in mapping may not affect the overall structure of the software, but can often change the
decisions made about which processes should be prioritized.

IF, SKIP, and STOP may be used in a mapping structure.

As would be expected from the occam scope rules, logical processors must be
declared (as NODES) before the MAPPING construct. Each logical processor must
appear once and once only on the left hand side of a mapping item. Physical processors
may appear on the right hand sides of multiple mapping items. Similar rules apply for
channels and ARCS.

The mapping description itself may appear either before or after the software descrip
tion.

7.5.1 Mapping processors

Having declared physical processors as part of the hardware description, and logical
processors as part of the software description, we can assign logical processors to
physical processors using the MAP statement.

_7_8 iiiili~@~~©~ _



79

7 Configuring transputer networks

MAPPING map
MAP logical.proc ONTO physical.proc

We can also supply a list of logical processors to all be mapped onto the same physical
processor:

MAPPING map
MAP router.proc, application.proc ONTO root.processor

This is exactly equivalent to:

MAPPING map
DO

MAP router.proc ONTO root.processor
MAP application.proc ONTO root.processor

And we can use DO replicators, and IF constructs, etc:

MAPPING map
DO

DO i = 0 FOR 10
MAP router.proc[i] ONTO router.processor[i]

DO i = 0 FOR 5
MAP sieve.proc[i] ONTO sieve.processor

The optional PRI clause to the MAP statement is available if the priority of a process or
processes associated with a logical processor are required to be determined by the
mapping. The argument to PRI can be either 0 to indicate high priority, or 1 to indicate
low priority. For example:

MAPPING map
DO i = 0 FOR 10

MAP logical.proc[i] ONTO physical.proc PRI (INT (i = 0»

The file occonf • inc includes two named constants HIGH and LOW which can be used
for this.

The configuration tool will reject the mapping at high priority of a process which itself
includes a PRI PAR.

7.5.2 Mapping channels

At the configuration level, channels are defined in the software description by occam
CHAN declarations. Channels connecting processes do not need to be mapped, as the
configurer can derive how to implement a channel from the mapping of the processes
that use the channel.

~ SGS-1HOMSON------------ AT£ !fAlO©OO@rn~~D©~ ------------



7.5 Mapping description

The user may wish to place a channel explicitly to override the default configurer
placement. In general, channels should not be explicitly placed on links, as this enables
the configurer to implement channels using routing and multiplexing software where
applicable.

Explicit channel mapping

A channel connecting a processor to an external EDGE must be explicitly mapped onto
an ARC which connects to that EDGE. A channel may also be explicitly mapped if the user
wants to override the default allocation.

Channels are mapped onto ARCS in exactly the same way as logical processors are
mapped onto physical processors. Two channels may be mapped onto the same ARC.
The ARC must connect EDGES of the processors onto which are mapped the processes
which use the channel.

Channels may be mapped onto ARCS within the MAPPING section. For example:

EDGE peripheral :
ARC peripheral.arc
NODE root.proc : -- physical processor
NETWORK n

DO
-- insert code to set attributes, then:
CONNECT root.proc[link] [0] TO peripheral WITH peripheral.arc

CHAN OF protocol to.periph, from.periph :
NODE process : -- logical processor
CONFIG

PLACED PAR
PROCESSOR process

reads from channel from.periph, writes to
-- channel to.periph

MAPPING
DO

MAP process ONTO root.proc
MAP to.periph, from.periph ONTO peripheral.arc

From the above example it can be seen that more than one channel can be mapped to
a single arc. This makes it easy to place two opposing channels onto a transputer link
using a single line of code.

Direct and virtual channels

A channel may be implemented in one of three ways by the configurer:

•

•

A soft channel is a channel which communicates between processes running on
the same processor.

A direct channel is one of up to two channels (one in each direction) placed on
a single link between adjacent processors or between a processor and an edge.



7 Configuring transputer networks

A virtual channel is a channel between two processes on different processors
which is not a direct channel, Le. it may be routed through intermediate proces
sors, or may be multiplexed with other virtual channels. A virtual channel is
placed on a virtual link.

No action is required at configuration time to place the soft channels within an applica
tion; they are local to a processor and so the configurer need take no action.

Other channels are mapped automatically onto the available hardware links. If channels
are between processes on adjacent processors, then they can be placed directly onto
the link or links that join the processors. Direct channels occur when only one or two
channels (one in each direction) are using a link. A channel connecting an edge to a
process is always a direct channel. Direct channels may be automatically allocated by
the configurer or the user may specifically place up to two channels on a link. Channels
placed in the mapping description are always direct channels.

If more than one pair of channels need to use a link, then all channels needing to use
the link will be virtual. Any channel between processes on processors that are not
directly connected will also be virtual. The configurer can implement many virtual chan
nels over a single link as well as channels between processes on non-adjacent proces
sors. They are implemented by software virtual routing processes added automatically,
as required, by the configurer for multiplexing many channels overa link and for through
routing channels between non-adjacent processors.

Virtual channels enable an application program to run on most network topologies
irrespective of the number of links connecting the processors. The configurer can form

,~~ virtual channels that span up to 24 hops across the target network, i.e. up to 24 inter
mediate processors may be used for routing a channel. Should the configurer fail to
implement a long distance connection in a very large network, it will generate an error
message. Chapter 10 provides further information about routing channels.

Virtual channels require multiplexing and demultiplexing or routing processes or both,
which incur a run-time overhead in memory and CPU resources. The bootable file

~/ generated will be smaller if virtual routing processes are not included. In certain perfor
mance critical applications it may be important to avoid the overhead incurred when
using virtual channels by forcing channels to be direct or by using the attributes
described in chapter 10 to minimize the overhead on the most critical channels.

In each direction, a link may carry either one explicitly placed channel or any number
of virtual channels. A pair of virtual channels (one in each direction) may be routed by
the configurer via different links.

Note: The INQUEST interactive debugger uses hidden debugging channels to pass
debugger commands and data between the application and the host. In order to imple
ment these channels, some channels that would otherwise be direct are implemented
as virtual. In this case, it should be assumed that all channels that connect processes
on different processors may be virtual.



7.5 Mapping description

Direct channel communication

If all channels in a linked unit are intended to be direct channels, then the code must be
compiled and linked with the Y option. Code built in this way cannot be configured unless
the NV option is specified to occonf.

The NV option should also be used if it is required that the configuration does not use
any virtual routing, e.g. for performance reasons. This disables the configurer from
using virtual routing processes. The configurer will generate an error message if config
uration is not possible, in which case the configuration should be modified to ensure that
all channels can be placed.

If the NV option is specified then the program cannot be interactively debugged with the
INQUEST debugger.

7.5.3 Mapping without a MAPPING section

Channels can also be mapped onto ARCS outside the MAPPING construct, using the
PLACE statement. This is known as channelallocation. Any channel in scope at the point
where a process is associated with a processor is available for explicit placement on an
ARC declared in the hardware description.

Placements must immediately follow the channel declaration. For example:

CHAN OF protocol to.periph, from.periph :
PLACE to.periph, from.periph ON peripheral.arc :
CONFIG

PLACED PAR
PROCESSOR root.proc

-- as before

As with channel mapping, two opposing channels can be assigned to the same link in
a single statement.

7.5.4 Mapping example - pipeline sorter on a single processor

MAPPING
DO

MAP inout.p ONTO root
DO i = 0 FOR string. length

MAP pipe.element.p[i] ONTO root

7.5.5 Mapping example - pipeline sorter on a ring of processors

MAPPING
DO

MAP inout.p ONTO root
DO i = 0 FOR string. length

MAP pipe.element.p[i] ONTO ring[i]

_8_2 ii;ili~@m&'1£~ _



7 Configuring transputer networks

7.6 Example - a pipeline sorter on four transputers

This section describes how the pipeline sorter program first described in chapter 5 may
be distributed over four T425 transputers. Each processor has many processes allo
cated to it.

An explanation of the configuration description is given, followed by instructions about
how to compile, configure and run the program.

The occam source and configuration description developed in this example is very
similar to the sorter example supplied with the toolset in the examples directory; you
can either work in the sorter directory or copy the relevant files to a working directory:

sorthdr. ine the shared protocols.

element.oce the sorting element.

inout . oce the interface to the host file server.

sorteonf •pgm the configuration description for the network.

sorthdr.inc, element.occ, and inout.oec are the same as those used in the
single transputer example described in chapter 5.

sorteonf •pgm describes the hardware and software networks and maps the software
to the hardware. The software description is imported from the include file
sortsoft. ine.

In the configuration description it is assumed that there is a transputer network of four
T425 transputers connected in the pipeline configuration shown in figure 7.6. If this
configuration does not match your hardware the description can easily be modified by
changing the number and type of transputers. The example assumes the link connec
tions shown in figure 7.6.

pipeline [0] pipeline [1] pipeline[2] pipeline [3]

hostlink IMS IMS IMS IMS
0 T425 2-1 T425 2-1 T425 2~1 T425

3 3

I I

Figure 7.6 Pipeline of four transputers

The mapping places an equal number of element processes on all processors in the
pipeline after the first one, which gets any remaining element processes.

----------- iiflE~@mslI9J1-----------8-3



7.6 Example - a pipeline sorter on four transputers

--max no of chars on a line
VAL string. length is 80:
--include useful definitions e.g. K=Kilo, M=Mega
#iNCLUDE "occonf.inc"
--change the following to suit your network
VAL number.of.transputers is 4:
--declare processors as an array
[number.of.transputers]NODE pipeline:
ARC Hostlink:

--hardware description
NETWORK

DO
DO i = 0 FOR number.of.transputers

--change the following to suit your transputer type
SET pipeline[i] (type, memsize := "T42S", l*M)

DO i = 0 FOR number.of.transputers - 1
CONNECT pipeline [i) [link] [2] TO pipeline [i+1] [link] [1]

CONNECT pipeline [number.of.transputers-1] [link] [3] TO
pipeline [0] [link] [3]

CONNECT pipeline [0] [link] [1] TO HOST WiTH Hostlink

--mapping description
VAL number.of.elements is string. length:
--number.of.elements/number.of.transputers must be >= 2
VAL elements.per.transputer is number.of.elements/number.of.transputers:
VAL remaining.elements is number.of.elements\number.of.transputers:
VAL elements.on.root is elements.per.transputer + remaining.elements:
NODE inout.p:
[number.of.elements]NODE pipe.element.p:

MAPPiNG
DO

MAP inout.p ONTO pipeline[O] PRi HiGH

DO i = o FOR elements.on.root-l
MAP pipe.element.p[i] ONTO pipeline[O] PRi LOW

MAP pipe.element.p[elements.on.root-1] ONTO pipeline[O] PRi HiGH

DO j = 0 FOR number.of.transputers - 1
VAL first.element.here is

elements.on.root +(j*elements.per.transputer):
VAL last.element.here is

first.element.here +(elements.per.transputer-l):
DO

MAP pipe.element.p[first.element.here] ONTO
pipeline [j+l] PRi HiGH

DO i = first.element.here + 1 FOR elements.per.transputer - 2
MAP pipe.element.p[i] ONTO pipeline[j+l] PRi LOW
MAP pipe.element.p[last.element.here] ONTO

pipeline [j+1] PRi HiGH



7 Configuring transputer networks

--software description
#INCLODE "hostio.inc"
#INCLODE "sorthdr.inc"
lOSE "inout.lku"
lOSE "element.lku"
#INCLODE "sortsoft.inc"

In the mapping description shown, the logical processors named in the software
description are mapped onto the physical processors declared in the hardware descrip
tion. Note: On each processor, processes which communicate on external channels are
mapped to be run at high priority.

The allocation of processes to transputers is shown in figure 7.7. The number of
elements on each processor depends on the maximum string length permitted by the
program and the number of transputers in the pipeline.

pipeline [0]

pipeline [3]

pipeline [1]

pipeline[2]

element

8
O++-------+------4 element

Figure 7.7 Pipeline sorter processes

7.6.1 Building the program

Building the single transputer versions of this program is described in chapter 5. This
section describes how the steps to build a multi-processor version differ from the single
processor version.

----------- i.,~litrn.,SI-----------8-5



7.6 Example - a pipeline sorter on four transputers

Compiling

The components of the program must be compiled in the same way as described in
chapter 5.

Linking

The compiled files must be individually linked, since each represents a process which
is to be placed on a different processor. Each must be linked with any files they reference
and the compiler libraries. Each linking operation creates a unit of code which may be
loaded onto the processor, according to the configuration defined in the configuration
description.

Configuration

Configure the file sortconf. pgm which defines both the communication channels
between the processes and how they should be mapped onto the hardware:

occonf sortconf.pgm

This creates an output file called sortconf •cfb.

Collecting

After configuration, the program must be made executable by collecting the file
sortconf •cfb using icollect:

icollect sortconf.cfb

This creates the bootable file sortconf .btl.

7.6.2 Running the program

Load and serve the bootable file on the transputer network using the application loader
irun:

irun sortconf.btl

The program will then sort each line of input until terminated by a blank line.

7.6.3 Automated program building

As with the single processor version of this program it is possible to automate the
building of this program with the Makefile generator tool and a suitable make utility. The
version of the configuration program supplied in the file sortmak. pgm is written using
imakef file naming conventions, for example, the linked units are given file extensions
of the form •cxx.

sortmak.pgm compiles the program for transputer class TA in HALT error mode; it
references the linked units as •cah files and is configured for T425 transputers. For a
list of transputer targets see appendix 8 in the Toolset Reference Manual.

_8_6 ~li~@nlJL59J1------------



7 Configuring transputer networks

For more information about imakef see chapter 12 in the Toolset Reference Manual.

7.6.4 Other configuration examples

Example •pgm files which configure the sorter program for other networks are supplied
in the sorter directory. Descriptions can be found in the source files and in the README
file for the directory.

7.7 Summary of configuration steps

To summarize, the steps involved in building a program that runs on a network of
transputers are as follows:

Decide how your program will be distributed over the transputers in your
network.

2 Write a configuration description for your program by:

Describing your hardware network.

Inserting PROCESSOR statements into your program and adding any neces
sary mapping description.

3 Compile all the separate compilation procedures that form the code for each
transputer in a bottom-up fashion.

4 Link each configuration procedure with its component parts into a file with the
name used in IUSE directives in the configuration source file.

5 Run the configurer on the configuration description file.

a Collect the code using icol1ect.

7 Load the program into the network using the host file server.

Steps 3 to a can be automated by using imakef and a suitable make utility.



7.7 Summary of configuration steps



8 Loading application programs

This chapter explains how to load and run application programs on the target hardware
from a host machine. It briefly describes the format of loadable programs and introduces
the irun, which is used for loading programs, the AServer, the AServer database and
the skip bootables. The chapter ends with the use of the network analyzer rspy to clear
error flags.

8.1 Introduction

Transputer programs may be loaded from a host onto transputer boards by the irun
application loader tool. The code and data are sent from the host to the target network
using transputer links, so this process is called booting from link, to distinguish from
booting from a ROM.

The executable file consists of code to which bootstrap information has been added to
make the program self-booting on the target network. This self-booting executable code
is known as boatable code and the file in which it is held by the host is known as a
boatable file.

A bootable file is generated by ico11ect from a configuration data file, using the linked
units referred to by the configuration. The default filename extension for bootable host
files is •bt1. The bootable file is constructed such that copying it to the link will boot the
network automatically. Code is installed on each processor using processor and
distribution information embedded in the bootable file.

Transputer programs may also be loaded from ROM. The ieprom tool is used to
generate the file to be loaded into the ROM from a boatable-from-ROM file, which
usually has a •btr extension. See chapter 13 for a description of building ROM files.
This chapter is concerned only with booting from link.

8.2 Tools for loading

Two facilities are provided to load programs onto transputers and transputer networks:

irun - the host file server and application loader.

irun loads the bootable file onto the single transputer or transputer network and
provides communication with the host. irun can be started from a command
line, for example:

irun myprog.btl

skipn. btl - the skip loading bootables.

The skip bootables allow a program to be loaded over one or more transputers
onto a target network. One or more skip bootables are loaded and run immedi-

-----------If;i~itrnlllrl91-----------8-9



8.3 The boot from link loading mechanism

ately prior to loading the application. The skip bootables start up special route
through processes on the transputers that transfer data between the rest of the
network and the host system. Skip bootables are loaded by irun.

8.3 The boot from link loading mechanism

The irun loads programs onto transputer networks via the host link connection. It does
this by simply copying the contents of the bootable file to the link. The bootable file
contains all the bootstrap and loader code to ensure that the program is loaded onto the
network and starts running.

The bootstrap code for the transputers in the network is sent first. The code is propa
gated through the network as individual processors load neighboring processors. The
bootstrap code on each processor runs and performs the following tasks:

initialize the processor,

2 pass code and data from the host to adjoining processors,

3 read in application program code and start to execute it.

Thus, after all the transputers in the network have been booted, application program
code is sent to the individual processors. The allocation of processes to processors is
determined by the configuration file.

When the code is loaded into the transputers' memories, the program starts running and
can communicate with the host using the standard library routines for input and output.

The program continues to run until either:

• an error occurs,

• the program terminates naturally.

The server can be terminated, for example by pressing the interrupt key (usually
CTRL-C or CTRL-BREAK). Terminating the server will not stop the program running on
the transputer, but any processes on the transputer which attempt to communicate with
the host will wait indefinitely for the host server to respond. This may eventually cause
the whole program to halt as other processes become dependent on this communica
tion. The program may be able to continue if the server is restarted.

If a skip bootable is used, the first transputer in the network becomes transparent to the
software. Code apparently loaded onto the first processor will in fact be sent to the next
processor. That processor may then communicate with the host as if it were directly
connected.

8.3.1 Initializing the ST20450 memory interface

The memory interface of the ST20450 must be initialized before the external memory
can be accessed. This may be done by a ROM or by loading a memory bootable file

_90 L'T£II@Ut.,£'-----------



8 Loading application programs

before loading the application bootable. Building and installing a memory bootable file
is described in chapter 14. A T450 TRAM has a ROM containing code which initializes
the memory interface and then simulates booting from link.

The memory interfaces of earlier IMS T2xxff4xxffaxx transputers can only be config
ured by a ROM or by wiring the transputer.

8.4 Boards and subnetworks

A transputer board may be designed to boot from link or to boot from ROM. Each
transputer can be wired either to boot initially from ROM or to wait for code to arrive on
a link. In a multi-transputer system, it is usual either for ai' transputers to boot from link
(a Boot-from-link system) or for one transputer to boot from ROM which then boots the
other transputers by link. '

Boot-tram-link systems are used as development systems and for systems that work
under the control of a host. irun loads the application code down the hardware serial
link that connects the root transputer to the host, known as the host link. Programs
intended to run on boot-from-link boards must consist of boatable code, such as that
generated by icollect. An example of a boot-from-link board supplied by SGS
THOMSON is the IMS BOOa PC TRAM motherboard (with appropriate TRAMs).

Boot-tram-ROM systems are used for stand-alone applications such as embedded
systems. One transputer, known as the root transputer, on power-up starts executing
code from the fixed address #7FFFFFFE (32-bit transputers) or #7FFE (16-bit trans
puters), which is the top byte but one of the address space. Included in the ROM is code
for any other transputers and a loader to distribute that code.

Some other combinations are supported. For example, general purpose ST20450
modules may boot from ROM to initialize the memory interface from ROM code. The
ROM code should leave the ST20450 waiting for a boatable application to arrive on a

~/ link. The module then behaves as if it were a boot-from-Iink module.

8.4.1 System services Wiring

System services or subsystem wiring is the way in which board level control signals are
connected, in order to simplify the control of multi-transputer systems built from standard
modules.

The control signals are used to reset the transputers, detect when an error has occurred
and prepare a system for post-mortem debugging. These three functions are performed
by three signals, namely Reset, Analyse, and Error. Together these are known as the
system services. All SGS-THOMSON transputer boards use a common scheme for
propagating these signals to other subnetworks, as described in the following para
graphs, so that a single connection can control or read one of these three signals for an
entire system or subsystem.

The system service signals on each board are connected to ports for connection to other
boards or a host. The ports are of three types, namely Up, Down, and Subsystem. Up

___________ ~~ii@9&~©~ 9_1



8.4 Boards and subnetworks

is the inputport, used to control the board from an external source; Down and Subsystem
are both output ports and are used to send signals to other boards or subnetworks.

The Down and Subsystem ports work in the following ways:

Down propagates the Up signal unchanged to the next board orsubnetwork. This allows
multiple boards to be chained together by connecting successive Up and Down ports,
so the whole network can be controlled by a single signal.

Subsystem propagates the Reset and Analyse signals but also allows control by
software running on the board. This allows subnetworks downstream of the board to be
independently reset, analyzed, and their error flags read, under the control of the trans
puter or processor to which the subsystem is attached.

Figure 8.1 shows a typical multi-transputer system wired so that the whole system is
controlled by the host. This is the normal wiring for development and hosted systems.
Each of the three transputer boards has two transputers, both connected to the
subsystem wiring on the board, which is also connected to an Up port and a Down port.
The host has an interface which provides a Subsystem port. The boards and the host
are connected together by connecting the host SUbsystem port to the Up port of Trans
puter board 1, and the Down port on each but the last transputer board is connected to
the Up port on the next board. This daisy-chains the subsystems on the boards and
allows the host to reset or analyse all the transputers with a single output signal and
detect an error on any transputer by polling a single input signal.

Host Transputer board 1 Transputer board 2 Transputer board 3

UP Up port
ON Down port
SS SUbsystem port

Figure 8.1 Example system services wiring

8.4.2 Connecting subnetworks

Multiple transputer systems can either be controlled by the host computer or by a master
transputer controlled by the host computer.

In a typical multi-transputer system, the Up portof the root transputer board is connected
to the host computer, as in figure 8.1, so that the host can control the loading of programs
and monitor errors on the network.

_92 iJ;ili~@n'£'cfJ1©' _



8 Loading application programs

In a simple application requiring multiple transputers, the subnetwork would normally be
connected to Down on the root transputer board. This would allow the host computer to
reset the whole network in a single operation and to monitor the error signal on any
transputer in the network. If the INQUEST debugger is to be used for post-mortem
debugging, then the transputer boards must be connected in this way, as in figure 8.1 ,
so that the debugger running on the host can detect errors from any transputer in the
network.

If the next processor after to root is the first processor in a target subnetwork, it is
normally connected to either Down or Subsystem depending on the application, and
other boards in the target subnetwork are chained together via their Up and Down ports.

A more complicated application may require several programs to be loaded onto the
subnetwork under the control of the root transputer. Here the subnetwork would be
connected to Subsystem so that the root transputer could repeatedly reset and re-Ioad
the subnetwork. Any errors in the subnetwork would be detected by the root transputer
through its Subsystem port, and the error would not be propagated through the Up port
to the host computer. Reset and Analyse signals are propagated through to the
Subsystem port, but the error signal is not relayed back.

8.5 AServer and the AServer database

8.5.1 AServer

The AServer (Asynchronous Server) system is an interface system which allows
multiple processes on a target device to communicate via a hardware serial link with
multiple processes on some external device. The AServer software acts as a standard
interface which is independent of the hardware used.

The AServer is a collection of programs, interface libraries and protocols that together
create a system to enable applications running on target hardware to access external
services in a way that is consistent, extensible and open. irun is an AServer multi
plexing process, called a gateway, which runs on the host and handles the hardware
interface. The AServer is described in more detail in the AServer Programmers' Guide.

8.5.2 AServer database

irun has to be told which link connection to use and how to access it. This is done by
specifying the name of a User Link on the irun command line or in the environment
variable TRANSPUTER. irun gets information about the specified User Link from an
AServer database file.

The AServer database is a text file. It may be called aservdb and be on the ISEARCH
path or it may be pointed to by the ASERVDB environment variable. It consists of a list
of resources. Each resource is either:

• a target hardware connection which may be accessed by the host or

___________ JJflli~@1lIJIoo&" 93_



8.6 Skip loading

• a host software process which may be requested by the application, including
the debugger. The use of these processes for customizing the host interface is
described in the AServer Programmer's Guide.

ST20 txcs b008p.DLL "#150 #B" 1 I st20mem.btl

Resource
name

Description

Number of
connections

t
Any extra

parameters

Figure 8.2 AServer database line

Each resource is represented by one line of the database file. Each line contains four
fields, each preceded by the vertical bar character ( I ), as shown in figure 8.2. The entries
are case sensitive, so, for example, ST20 is not the same as st20.

The AServer database is described in more detail in an appendix to the Toolset
Reference Manual.

8.6 Skip loading

This section describes how to skip load a program onto a subnetwork, skipping over one
or more transputers, using the skip bootables. The skip bootables are described in more
detail in the irun chapter of the Toolset Reference Manual.

The skip bootables allow a program to be loaded onto a transputer network which has
no direct link connection to the host, but is connected via one or more intermediate
transputers. Each skip bootable starts up a special route-through process on the trans
puter that transfers data between the rest of the network and the host system.

There are four skip bootables, skipO.btl, skipl.btl, skip2.btl, and
skip3 •btl, one for each link. When a skip bootable is loaded onto a transputer, it boots
the transputer and runs code to pass on all messages, making the transputer effectively
transparent to the software. The link from which the transputer is booted is called the
boot link. If the skip bootable skipn. btl is used then all messages arriving on the boot
link are passed on to link n and all messages arriving on link n are passed to the boot
link. This means that subsequent code loaded onto the network is passed to the trans
puter connected to link n, so that transputer becomes the new root transputer. Host
communications from the new root transputer are passed back to the host. Any number
of skip bootables may be loaded to skip over that number of transputers.

The skipped transputers must not appear in the configuration. The root transputer in the
configuration must be the first transputer after skipping over the skipped transputers.

For example, in figure 8.3 there is one transputer between the configured target network
and the host. The target network is connected to link 2 of the skipped transputer. The
skipped transputer will run skip2 .btl. The skip bootable skip2 .btl is loaded first
onto the skipped transputer and then the user application is loaded onto the network
beyond.

_9_4 iiiili~@M~~JI-----------



Host
Skipped

transputer

8 Loading application programs

Configured
target

network

Host
server

Figure 8.3 Skipping over one transputer

In figure 8.4 there are two transputers to be skipped between the configured target
network and the host. The target network is connected to link 3 of the second skipped
transputer, which runs skip3 .btl. The second skipped transputer is connected to link
1 of the first skipped transputer, which runs skipl. btl. The skip bootable skipl.btl
is loaded first onto the first skipped transputer, then skip3.btl is loaded onto the
second skipped transputer and then the user application is loaded onto the network
beyond.

Host
First

skipped
transputer

Second
skipped

transputer

Configured
target

network

Host
server

Figure 8.4 Skipping over two transputers

95

8.6.1 Invoking skip bootables

Skip bootables are normally specified in the AServer database. This method is preferred
as it allows post-mortem debugging. The AServer database is described in more detail
in an appendix of the Toolset Reference Manual.

A separate resource may be defined to connect to each appropriate subnetwork, skip
ping over one or more transputers. The skip bootables must be given in the extra
parameters field preceded by -a, which tells irun to reload the skip bootable when the
network is analyzed for post-mortem debugging.

For example, the following is an AServer database line to define a User Link called
TptrSkip. The target network is connected to link 2 of the root transputer, as in
figure 8.3, where the root transputer is on an IMS B008 board:

I':':' SGS-1HOMSON----------- AT~ ~D©OO@rn~@IR!IIl©~------------



8.7 Clearing error flags

I TptrSkip I txes b008p.DLL "#150 #B" I 1 I -a skip2.btl

If there are several transputers to skip over, then each skip must be preceded by -a, and
the order of the skip bootables should be the same as the order of the transputers being
skipped.

For example, for skipping over two transputers, as in figure 8.4:

I DblSkip I txcs b008p.DLL "1150 IB" I 1 I -a skipl.btl -a skip3.btl

A skip loading bootable may also be invoked by adding the skip bootable as a se option
on the irun command line. For example, to load boatable_file on the network
connected to link n of the root transputer, use the command:

irun -se skipn.btl boatable_file

The following command would be used to load and run the application example. btl
on the network shown in figure 8.3:

irun -se skip2.btl example.btl

This command resets the network, loads the skip loader onto the root processor, sends
the bootable file example.btl and serves the link, Le. responds to requests from the
example. btl application. This has the effect of running example. btl on the trans
puter network found down link 2 from the skipped transputer. The -se skip2.btl
option sets up link 2 as the path to the target network and starts the route-through
process on the skipped transputer. The server then loads example. btl without reset
ting the network.

The following command would be used to load and run the application example. btl
on the network shown in figure 8.4.

irun -se skipl.btl -se skip3.btl example.btl

This command loads skipl.btl then skip3 •btl then loads example. btl onto the
network beyond. The order of the skip bootables is significant.

8.7 Clearing error flags

Error flags can become set when a transputer board is powered up, since error flags are
not cleared by resetting. Error flags are normally cleared by the bootstrap code. If an
application does not load code onto all the transputers in a network then one or more
error flags may persist after the application is loaded. This may be immediately detected
by the host server, which will halt and display the message Transputer error flag
set.

To avoid this happening, error flags can be cleared by using a network analyzer program
such as rspy prior to loading the application. The rspy program is provided as an
INQUEST tool and is described in the INQUEST User and Reference Manual.

_96 i~£ In~t.£~©~ -----------



8 Loading application programs

An alternative to using a network check program to clear the network is to load a dummy
process onto each processor. In the act of loading the process code the error flag is
cleared.

------------ i5illii@Ml'I-----------9-7



8.7 Clearing error flags

_9_8 ~~i~@_'~JI-----------



9 Access to host services

This chapter describes how programs communicate with the host computer via the host
file server and the i/o libraries. It briefly describes the protocols used, outlines how to
place host channels on a transputer board, and discusses how processes can be
multiplexed to a single host.

9.1 Introduction

occam, like most high level programming languages, is independent of the host oper
ating system. At the programming level, communication with the host is achieved via a
set of i/o libraries that are provided with the toolset. The libraries in turn use the services
provided by the host file server. The host file server and the functions it provides are
transparent to the programmer. The server functions are activated whenever a program
is loaded using the irun tool supplied with this toolset. Programs that use the i/o
libraries should always be loaded using irun.

For an example of a program that communicates in a simple way with the host computer,
including details of how it is compiled, linked and loaded, see chapter 6.

9.2 Communicating with the host

Programs communicate with the host through i/o library routines that in turn use func-
~~ tions provided by the host file server.

9.2.1 The host file server

The host file server provides the runtime environment that enables application
programs to communicate with the host. It contains support for:

• Opening and closing files;

• Reading and writing to files and the terminal;

Deleting and renaming files;

Returning information from the host environment, such as the date and time of
day;

• Returning information specific to the server, such as a version number;

9.2.2 Library support

Two i/o libraries are provided for accessing the file system and other host services. The
libraries are summarized below.

------------IEii~itm&"'lj 99_



9.2 Communicating with the host

hostio.lib File and terminal i/o; host access

streamio .lib Stream ilo

All routines in these libraries are independent of the host operating system. They offer
same access to the host file server, but using a different model.

The hostio library contains basic routines for accessing files and controlling the file
system. The hostio library routines are closely related to the functionality provided by
the host server and provide efficient access to the host services. Each routine requires
access to a pair of channels to and from the server using the protocol SP. Generally each
host access requires a completed hand-shake.

The streamio library provides ilo support with a higher level of abstraction, called data
streams, on top of the basic ilo provided by the hostio library. Different protocols KS
and ss are used for keyboard and screen streams respectively. Each stream uses a
single channel without handshaking, which simplifies and speeds up buffering and
multiplexing. However, these streams are not directly supported by the host server, so
interface process routines are provided which convert between the streams and the
server protocol.

Definitions of constants and protocols used within the libraries are provided in the
include files hostio. inc and streamio. inc. These files should be included in all
programs where the respective libraries are used.

Details of all ilo procedures and functions can be found in the occam 2. 1 Toolset
Language and Libraries Reference Manual.

9.2.3 File streams

The host file server supports a stream model of file and terminal access. When a file is
opened, a 32-bit integer stream id is returned to the program. This identifier must be
quoted by the program whenever the file is accessed, and is valid until the file is closed.
Streams and files must be explicitly closed by the programs that use them, and the host
file server must be explicitly terminated when the program finishes and host services are
no longer required.

Three streams are predefined:

spid. stdin standard input

spid. stdout standard output

spid. stderr standard error

These streams can be closed by the programmer, but cannot be reopened. Take care
not to close the standard streams if you are using hostio routines that read or write to
them. The streams can only be closed by specifying the streamid explicitly and cannot
be closed inadvertently using the hostio routines.

_1_00 L'Y£lil@.,.------------



9 Access to host services

Standard input and output are normally connected to the keyboard and screen respec
tively, but may be redirected by the operating system. Streams and files other than the
three standard streams described above must be explicitly closed by the program.
When the program finishes and host services are no longer required, the server should
be terminated by the transputer application calling so. exit.

Protocols

occam programs communicate with the host file server through a pair of occam
channels. Requests for service are sent to the host on one channel and replies are
received on the other. Both channels use the SP protocol, which is defined in the include
file hostio. inc.

9.3 Accessing the host from a program

For programs to be run on transputer boards the host is accessed through the channels
fs and ts, both defined as CHAN OF SP. Protocol SP is defined in the include file
host io • inc. For configured programs the channels are declared in the configuration
and placed on the link that is connected to the host. The normal location for the connec
tion to the host is link zero on the root processor. For unconfigured programs the
channels are defined as formal parameters to the program.

9.4 MUltiplexing processes to the host

The host file server is a single resource, connected to a process running on the root
transputer via a pair of occam channels. This is illustrated in figure 9.1.

Host Transputer

Figure 9.1 Program input/output

If more than one process requires access to the host then the server may be shared
between a number of processes, ensuring that all processes are served in turn. The
simplest solution where a resource is used by more than one process is to provide a
multiplexor. An alternative solution is to use the AServer's multiplexing capability or
multiple host services. These facilities are described in the ASeNer Programmers'
Guide.

A multiplexor is a process which takes many inputs and connects them to a single
shared resource and ensures that communications from different processes do not
conflict.

-----------lEfilitmPfI9©' 1_0_1



9.4 Multiplexing processes to the host

Four routines that allow mUltiple processes to communicate with the host via the host
file server channels are provided in the hostio library. The routines are:
so.multiplexor; so.overlapped.multiplexor; so.pri.multiplexor; and
so. overlapped.pri •multiplexor. Details of the routines can be found in chapter
4 of the occam 2. 1 Toolset Language and Libraries Reference Manual.

An example of a multiplexed system is shown in figure 9.2, and the occam code that
would implement the system is as follows:

IINCLUDE "hostio.inc" SP protocol declaration
PROC mux.example (CHAN OF SP fs, ts, []INT free.memory)

lOSE "hostio.lib"

lOSE "processOR
IUSE "process1"
lOSE "process2"
SEQ

CHAN OF BOOL stop:
[3]CHAN OF SP from.process, to.process:
PAR

so.multiplexor (fs, ts,
from.process, to.process,
stop)

host i/o libraries

user processes

server channels
multiplexed channels
termination channel

SEQ
PAR -- run user processes in parallel

-- sharing the server
processO(to.process[O], from.process[O])
process1(to.process[1], from.process[l])
process2(to.process[2], from.process[2])

stop ! FALSE terminate multiplexor
so.exit(fs, ts, sps.success)

Host to.process[O]
from.process[O]

to.process[l]

so.multiplexor

from. process [1]

to.process[2]
from. process [2]

Figure 9.2 Multiplexing access to the host file server

_1_02 ----,- ~I~~@r••~' _



9 Access to host services

Multiplexor processes can be chained together to produce any degree of multiplexing
to the host. However, the host is a single, finite resource and unrestrained multiplexing
of processes should be avoided if possible.

9.4.1 Buffering processes to the host

It may sometimes be useful to pass data invisibly through another process, for example
when passing data to the server through intervening processes. The hostio library
routine so .buffer takes a pair of input and output channels and passes data through
unchanged.

9.4.2 Pipelining

If data has to pass through many processes before reaching the server efficiency may
be improved by allowing a data transfer to begin before the previous one has completed
its journey down the line of processes. This allows several data transfers to be in
progress simultaneously and is known as pipelining.

The routine so. overlapped. buffer can pipeline several buffers up to a user-de
fined limit. A pipelined version of the multiplexor process called
so.overlapped.multiplexor performs the same function for multiplexed
processes. Prioritized versions of the routines may also be used.

____________ J,....,~~i~@DI"©~ 1_0_3



9.4 Multiplexing processes to the host

_1o_4 ~Ii~@_~~©, _



I Part 2: Advanced techniques



Part 2: Advanced techniques

_10_6 G;ili~@.,al-----------



10 Advanced use of the configurer

This chapter describes the advanced use of occonf and is aimed at users who wish
to override certain configuration defaults. The chapter deals with the following topics:

• INQUEST support;

• Memory usage by the configurer;

• Channel communications.

The chapter describes how to override the default allocation of user's code and data in
memory and how to refine the channel communication for the target network using
advanced virtual routing techniques. An example configuration using virtual routing is
provided at the end of the chapter.

10.1 Support for INQUEST

Two attributes are included for use with the INQUEST debugger and profilers, namely,
nodebug and noprofile. These are boolean parameters which control the INQUEST
debugging and profiling tools respectively. They can be set to TRUE or FALSE; if set
equal to TRUE for a processor, that processor will be ignored.

The default value of the nodebug attributes is FALSE when the configurer GA option is
used and TRUE when the GD option is used. If the GD option is used, then for a processor
to be debugged its nodebug attribute must be set to FALSE. The default value of the
noprofile attribute is FALSE.

10.2 Code and data placement

The configuration language provides reserved, location and order processor
attributes for influencing the use of memory. These attributes are described in sections
10.2.3, 10.2.4 and 10.2.5 respectively. This section describes the circumstances in
which these attributes should be used.

The location and order attributes are normally disabled and must be explicitly
enabled by the configurer option RE.

10.2.1 Default memory map

By default the configurer maps code and data into memory in the following order
beginning at LoadStart: workspace; code; vector space and system data. The code and
data segments are contiguous. The upper limit of the memory available to the configurer
is defined by the mems i ze attribute specified for the processor. For details of the default
memory map and a definition of LoadStart, see chapter 4 of the Toolset Reference
Manual.

----------- LT~lii@M"AI----------1
-
O
-
7



10.2 Code and data placement

10.2.2 Other memory configurations

Figure 10.1 illustrates a memory configuration with additional requirements to those
provided by the configurer in the default case. To cater for such situations the reserved
and location attributes are supported by the configuration language.

Figure 10.1 illustrates two different sets of possible requirements:

• The first is where the available memory is discontinuous and the lowest block
of memory is not sufficiently large enough to hold all the code and data.

The second is where a block of memory is available outside the default range
of memory addressed by the configurer, as given by the default memory map.

Dual-ported
RAM

....-- location

memsize----+-

reserved ----+-

--

DRAM

-

SRAM

order may only be used in
this region

....-- LoadStart

On-Chip
RAM

Minlnt = ----+-~...............-...........;""'--310.-.3100......310.~~
MOSTNEG INT

location

MemStart

Figure 10.1 Example discontinuous memory map

10.2.3 Reserving memory

A region of memory may be reserved using the processor attribute reserved. The
region is specified as a number of bytes starting at the base of memory, MOSTNEG INT.
Since this attribute is a property of the program, not of the hardware description, the
setting must be made as part of the MAPPING section. However, the processor which
is referenced must be a physical processor.

It will be possible for the user, using the location attributes to place the code and data
segments of user processes into the reserved memory.

_10_8 iEiili~@nlf31f~~©' _



10 Advanced use of the configurer

By default, the configurer uses memory in a contiguous block from the bottom of the
transputer's available memory at LoadStart to the top of the memory specified by the
memsize attribute. This can be overridden by means of the reserved attribute which
specifies the number of bytes of memory which should be reserved from MOSTNEG INT.
This reserved memory cannot be used by the configurer to place user or system
processes. The reserved attribute must be set to a positive value.

For example:

MAPPING reserve.low.memory
DO

MAP logical ONTO physical
SET physical (reserved := 4*K)

This would ensure that the bottom 4 Kbytes of memory are reserved and will not
automatically be used by the configurer.

Checks are performed to ensure that the reserved memory size is greater than the
default LoadStart offset for the processor and less than the memory size specified by
the memsize attribute. The configurer will also ensure that the size is word aligned by
rounding the size up to the nearest word boundary. Note: the value of the default
LoadStart is variable; see section 4.15.1 of the Toolset Reference Manual.

In figure 10.1 the reserved attribute has been used to force the configurer to place
system and user code into the second block of memory and to ignore the on-chip RAM.

When the reserved attribute is used, the region of memory available to the configurer
for automatically placing the non-addressed code and data segments of processes is
defined as being:

(the top of memory as specified by the memsize attribute) minus
(the memory size specified by the reserved attribute)

If no reserved attribute is defined then the region of memory available to the configurer
is from the default LoadStart offset for the processor to the top of memory (as specified
by the memsize attribute).

~/ 10.2.4 Absolute address code placement

The location processor attributes allow the code and data segments of a processor
to be placed at absolute addresses in the transputer's address space. Since these
attributes are properties of the program, not of the hardware description, the settings
must be made as part of the MAPPING section. However, the processor which is refer
enced must be a physical processor.

The addresses referenced by the location attributes can only lie in the region of
memory reserved by the reserved attribute, or in a region of memory above memsize
bytes from the bottom of memory.



10.2 Code and data placement

If the location attributes are not specified then the configurer will automatically place
non-addressed code and data segments.

The location attributes are location. code, location.ws and location.vs, and
are defined in table 7.4.

For example:

.- 4*K)
#80000100)

MAPPING use. absolute. addresses
DO

MAP logical ONTO physical
SET physical (reserved
SET physical (location.ws .-

This would ensure that the bottom 4 Kbytes of memory are reserved and will not
automatically be used by the configurer, except that the workspace is placed at address
#800000100.

Vector space

location.va 1----------1 #80110000

Code

location.code 1-- -1 #80100000

memsize bytes Workspace 64 Kbytes

Figure 10.2 Example use of location attributes

In the following example, the memsize of the processor has been set to 64 Kbytes but
the transputer has additional memory starting at address #80100000, as shown in figure
10.2:

MAPPING use.absolute.addresses
DO

MAP logical ONTO physical
SET physical (location. code .- #80100000)
SET physical (location.vs .- #80110000)

_11_0 i~L li~@_I9©' ------------



10 Advanced use of the configurer

This would place the code at address #801000000, and the vector space at #80110000.

The location attributes must be enabled on the configurer command line using the
RE option. If this option is not given these attributes will be ignored. The location
attributes override the equivalent order attributes if specified.

Checks are performed to ensure that any code and data segments that have been
absolutely addressed using the location attributes are not placed into an illegal region
of memory, such as the:

• memory used by the configurer for automatically placing code and data seg
ments Le. the region defined by LoadStart and the memsize attribute. (See
section 4.15.1 of the Toolset Reference Manual for more information about
LoadStart) .

address locations that exceed the highest possible memory address location for
the processor.

The configurer will fail with an error message if either of the above occur. An error will
also be received if the addresses specified are not word aligned.

A further check is made that the addresses are non-overlapping and a warning will be
generated if they are. It is not illegal to have overlapping regions of memory within the
permitted regions for configuration code, as described above. However, it is user's
responsibility to ensure there is no conflict in the use of overlapping regions at runtime.

A warning will also be generated if the location attributes place code or data at
address locations that exist below MemStart.

Figure 10.1 indicates how the location attributes can be used to access memory
below LoadStart (which has been changed from its default value by the reserved
attribute) or spare memory locations available in external RAM.

10.2.5 Ordering code and data segments

The order processor attributes may be used to provide greater control over the layout
of code and data segments of a processor in memory. Since these attributes are
properties of the program, not of the hardware description, the settings must be made
as part of the MAPPING section. However, the processor which is referenced must be
a physical processor named in the hardware description.

By default, the code, workspace and vector space all have the same priority. If these
regions have the same priority then the configurer arranges for the program's work
space to be placed at the lowest addresses in memory. This means that the workspace
can make best use of the transputer's on-chip RAM. Program code is placed immedi
ately above the workspace, and vector space is placed above the code.

The default ordering can be overridden by setting one or more of the three processor
attributes order. code, order.we and order.vs. These attributes set the priorities

____________ L~~I~I@_B©' 1_1_1



10.3 Channel communication - configuration techniques

of the code, the workspace, and the vector space of the program respectively. The
priorities are by default all set to o.
An order attribute can be set to any INT value, where a lower value means a higher
priority and hence placement at lower addresses. Therefore setting order. code to -1
means that the code on the processor will be placed at a lower address than the
workspace or vector space.

Thus we may have a mapping section like the following:

MAPPING prioritise.code
DO

SET physical.processor (order. code := -1)
MAP logical.processor ONTO physical.processor

This would place the program code before the workspace i.e. closer to on-chip RAM.
In this mapping vector space has no priority defined and is therefore placed by default
after the workspace.

The order attributes must be enabled on the configurer command line by using the RE
option. If this option is not specified these attributes will be ignored.

The order processor attributes can still be used in conjunction with the reserved and
location attributes. The order attributes are used to change the ordering priority of
those processor segments automatically placed by the configurer i.e. non-addressed
code and data segments. They only operate within the memory region delimited by
LoadStart and the value of the memsize attribute.

If both the location and order attributes are specified for a particular segment then
the location attribute will override the order attribute.

10.3 Channel communication - configuration techniques

When software virtual routing is required, the configurer works by adding multiplexing
and de-multiplexing processes to implement a number of virtual channels over a single
hardware link. It will also add routing processes to through-route data between proces
sors which are not directly connected. In doing so it assumes by default that:

any link to link connections in the target network can be used for implementing
virtual channel traffic.

• any of the processors can be used for through-routing.

where multiple routes of the same length exist between two processors, the
virtual channels between these processors should be shared out between these
routes as much as possible.

While these are, in general, reasonable assumptions, users may require more control
over how processors and links are used for implementing virtual channels in specific

_1_12 ~~~i@nIIIlJl------------



10 Advanced use of the configurer

networks. The configurer permits users to control its routing decisions by means of
processor attributes and channel placements which can be defined in the configuration
source file. These are designed to supply the following capabilities:

A channel may be placed on a specific hardware link between processors. This
instructs the configurer to implement the channel directly using the hardware link
rather than as a virtual channel. Only two channels may be placed (one in each
direction) on a hardware link. This can be used to ensure that a limited number
of critical channels are directly implemented by hardware links.

• It is possible to prevent specific processors from being used as routes for virtual
channels required by other processors. This ensures that certain critical proces
sors within the target system are not used for through-routing virtual channels
for less critical processors.

• It is possible to ensure that all virtual channels are routed via a group of proces
sors specifically placed in the target network to support them. Hence a group of
small inexpensive processors may be placed in the middle of a network of
processors to provide the communications requirements at little cost to the other
processors.

• It is possible to control the number of virtual channel support processes that are
added to particular processors, and also whether they are given use of internal
memory in preference to application processes. This preserves the perfor
mance of critical processors in the target network and allows virtual channel
support on processors with limited memory capacity.

The following sections describe the use of the PLACE (or MAP) statement and the order
attributes to optimize important channels and to make the best use of fast memory.
Section 10.4 introduces the additional attributes used to control the configurer's routing
system and describes how to use them to meet the requirements identified above. An
example is included in section 10.5.

10.3.1 Routing and placement constants

The include file occonf. inc contains a number of constants associated with the
routing and placement attributes. The file must be referenced at the top of the configura
tion before the hardware description if any of the configuration constants mentioned in
the following sections are used. The statement to reference the file is:

#INCLUDE "occonf.inc"

10.3.2 Optimizing important application channels

By placing an application channel on an ARC it is possible to reserve the hardware link
solely for the use of the application channel concerned.

With this technique a sub-set of the channels used by an application can be placed on
a sub-set of the hardware links available within the target system. This then optimizes
the performance of the placed channels.

----------- L.,~1~1©MI'JI----------1-13-



10.4 Control of routing

When making placements the user must be careful to leave at least enough free links
to form a minimal spanning tree between each sub-set of processors in the target
network that require through-routed virtual channels to connect them; see section
10.4.4.

10.3.3 Virtual communications - use of fast memory

Normally the workspace of virtual channel support processes (added to the target
network by the configurer) is allocated within fast memory (Le. at the most negative
addresses) before the use~ process code and data segments are allocated.

User process code and data segments can, however, be allocated from internal store
before the workspace of the virtual channel support processes is allocated. This is done
by setting order attributes for the relevant processor to lower values than those auto
matically given to the workspace segments of the virtual channel support processes.

Virtual channel support processes are divided into routing processes and multiplexingl
demultiplexing processes. The workspace segments of the routing processes placed
by the configurer are all given the order value ROUTER. ORDER. The workspace
segments of mUltiplexing/demultiplexing processes placed by the configurer are all
given the order value MUXER.ORDER. Values of -20000 and -10000 respectively are
defined for these constants in the include file occonf • inc which is supplied with the
toolset.

If the order values of the code and data segments of the processor are less than
ROUTER_ORDER then the ordered segments will be allocated before any of the virtual
channel support processes' workspaces are allocated.

If the order values of the code and data segments of the processor are less than
MUXER_ORDER but greater than ROUTER_ORDER, then only the workspaces required by
routing processes will be allocated before the configurer allocates space for the ordered
segments.

If the workspaces of heavily-used virtual channel support processes are pushed out of
internal store by giving priority to user processes, the impact on the performance of the
virtual links and the processor will be quite noticeable. User processes should only be
given priority over the virtual channel support processes on a processor if the amount
of data through-routed by the processor during normal operation is likely to be small.

Giving user processes priority use of fast memory will only impact the performance of
those virtual channels used by processes on the processor. The CPU cost of supporting
those virtual channels will only be slightly increased.

10.4 Control of routing

This section describes how the allocation of a virtual routing system across a network
can be controlled. For example, particular routes can be avoided or promoted as
required.

_11_4 ~I~~@m"'@~ _



115

10 Advanced use of the configurer

The routecost, tolerance, and linkquota processor attributes are used to
control the way that virtual routing is performed. Since these attributes are properties
of the program, not of the hardware description, the settings must be made as part of
the MAPPING section. However, the processor which is referenced must be a physical
processor.

Values of all three attributes are defined as integer values. For example:

MAPPING routing.example
DO

MAP logical ONTO physical
SET physical (routecost .- 1000)
SET physical (tolerance .- 1000)
SET physical (linkquota .- 2)

The exact behavior of these attributes is defined in the following sections.

10.4.1 Routing cost

The routecost attribute can be used to make the configurer choose one processor
over another when deciding how to route channels in the network. In the default case,
all processors and links in the network are assumed to be equally usable.

When deciding how to route a channel between two processors, the configurer works
out the routes between the two points, and then calculates the cost of each route by
counting the number of processors on each route. The 'best' of these (the one with the
least number of processors) is then chosen to implement the channel, and the appropri
ate through-routing processes are placed on each intermediate processor on the route.
If there are a number of channels to be implemented between the two ends, and there
is more than one route of the same ('best') length available, then the channels are
shared between the available routes.

The routecost attribute allows a routing cost to be explicitly allocated to one or more
processors in the network. The cost of a route between two processors is then deter
mined not simply by the number of intermediate processors, but by the sum of the
routing costs of all the intermediate processors. There is a default routing cost for
processors which have not had one explicitly allocated. So by giving a high routing cost
value to a processor, this will discourage the configurer from using it as an intermediate
processor when routing channels. Similarly by giving it a low cost compared with other
processors in the network, this will encourage the configurer to use it for through-routing.

10.4.2 Tolerance

The tolerance attribute controls how the configurer decides to share out channels
between available routes. If there are a number of channels to be implemented between
two processors, then the configurer normally calculates the cost of each possible route,
and then shares out the channels between available 'best' routes with the least cost. If

~SGS-1HOMSON
------------ ...,~ ~O©OOm~@!i:!lD©~------------



10.4 Control of routing

there is only one 'best' route then all the channels will go via that one. In some circum
stances it may be better to share out the channels more evenly, to prevent bottlenecks
in the system, even if this results in some channels being implemented on slightly higher
cost routes. The tolerance attribute for a processor is designed to allow this.

When calculating whether to use a route for channel sharing, the configurer uses the
minimum of the tolerance values of the processors on that route. It subtracts that
tolerance from the route cost; if the result is less than the cost of the 'best' route, then
this route, as well as the 'best' routes, may be used for load-sharing of channels. As an
example, consider a network in which all processors have been given the same routing
cost (say 1000). Normally, this would result in load-sharing of channels only when the
routes are the same length. However, if the tolerance of all the processors were set to
twice the routing cost value (2000), then the configurer would also include routes with
one more processor on them than the 'best' route for channel load-sharing.

When setting up a network, the routecost attributes should be set first to indicate
which processors are preferred for through-routing. Then the tolerance attribute can
be set, for all processors in the network, to influence the load-sharing strategy. In
general a set of processors in a network (or in part of a network) would be given the same
tolerance value to indicate the load-sharing strategy required for that network (or part
of the network). The likely cases are:

• A zero tolerance value indicates that virtual channels should only be placed
on a route if it is the only'best' route between two processors. If all 'best' routes
have zero tolerance, then one will be picked arbitrarily and all virtual channels
will be routed on that one.

• A default tolerance value indicates that channels may be shared between the
'best' routes between two processors.

• A tolerance value which is some multiple of the routing cost values in the
network indicates that channels should be shared between the 'best' routes and
those routes with a higher cost but with tolerance values indicating that they are
also acceptable.

The maximum tolerance value indicates that all routes between two proces
sors can be used for channels. This might lead to some very long routes being
chosen.

10.4.3 Link quota

The linkquota attribute controls how many links on a processor may be used to carry
virtual channels to the processes on that processor. In the default case any of the links
may be used. For each link which is used, a small additional memory overhead is
incurred. On processors with very small amounts of memory it may be important to keep
the memory overhead as low as possible.

The linkquota attribute can be set to a value in the range 0 to 4 inclusive. It should
only be set to 0 if no virtual channels will be required by the processes on that processor.

_11_6 ~li~@9£~©~ _



10 Advanced use of the configurer

If it is set to 1, then the processes on the processor may use virtual channels, but it
should be possible for the configurer to implement them all via one of the processor's
links. Similarly for values of 2, 3, and 4 (although, obviously, setting the quota to 4 on
a processor with four links has no effect).

The 1 inkquota attribute is a guide to the configurer rather than an absolute directive.
If a processor has a 1 inkquota value of 1, but the processor provides the only route
available for the implementation of a particular channel in the network, then the confi
gurer will choose to route data through that processor, even though this will cause the
link quota to be exceeded.

The linkquota is not intended as a method of avoiding routing through a processor;
the routecost attribute should be used for that. Instead it is intended to indicate, on
memory-critical processors, that the minimum overhead should be placed on them. The
quota should reflect the requirements of the processes placed on that processor, and
the routing costs in the network should be chosen so that other processors are used for
through-routing. The link quotas will then be checked by the configurer as it sets up the
multiplexing and routing processes. The configurer will output a warning message if it
has exceeded a quota. The network can then be re-examined to see why this is happen
ing.

10.4.4 The minimal spanning tree

There is one aspect of the implementation of virtual channels which may become
evident when constraints are placed on how the configurer may route channels in the
network. Normally the configurer can use any of the links in the network for virtual
channels, so if the network is connected, then virtual channels can be routed from any
processor to any other. However, (as described in section 10.3.2) it is possible to PLACE
(or MAP) a pair of opposing channels on a link in the network; in this case the link is used
directly to implement those two channels, and cannot be used for virtual channels. Also
the routecost attribute on selected processors in the network may prevent the use
of some processors (and hence links) in the network for through-routing. If too many
links are removed from the network in this way then it may become impossible to
implement some of the virtual channels required.

So it is important to ensure that, for a set of processors in a network requiring virtual
channels to be connected between them, there is a set of links connecting the proces
sors over which virtual channels are allowed. This set of links will then be used by the
configurer to construct a minimal spanning tree of links to ensure that it can always
implement the virtual channels between these processors. Any additional links available
for virtual channels will also be used to provide better routes between processors. If the
configurer is unable to construct the route necessary to implement a requested virtual
channel, it will give an error message.

A network may not require a single minimal spanning tree to cover the whole network;
it depends on the virtual channel requirements of the configuration. For example, it
might be possible to divide a configuration into two separate parts, each requiring virtual
channels internally, but with a single pair of channels (which can be directly mapped onto

------------lFil~itRW&sa©' 1_1_7



10.4 Control of routing

a link) joining the two parts. In this case a minimal spanning tree of links is required for
each of the two parts. These are known as sub-networks.

10.4.5 Summary of routing attributes

The routing attributes may be summarized as follows:

• routecost - defines within the range MIN. COST = 1 to MAX. COST = 1000000
inclusive, the associated cost of routing virtual channels through a particular
processor.

If a value greater than MAX. COST is specified (e.g. INFINITE • COST, which has
the value MAX. COST+1) then no through-routing will be permitted on that pro
cessor.

If this attribute is not defined for a particular processor then the cost value
DEFAULT. COST =1000 will be assumed.

MAX. COST, MIN. COST, INFINITE. COST and DEFAULT. COST are defined in
the include file occonf • inc.

tolerance - controls with any value in the range ZERO. TOLERANCE =0 to
MAX. TOLERANCE =1000000 inclusive, how much a particular processor can be
used to provide load-sharing routing paths for other processors.

The default value for this attribute is DEFAULT. TOLERANCE = 1. This allows the
processor to implement alternate routes for through-routed channels with
exactly the same total cost as the 'best' route found between any two other
processors.

If the value ZERO. TOLERANCE is specified then the processor will only be used
for through-routing if it lies on the 'best' route found to implement virtual chan
nels.

If tolerance is set to MAX. TOLERANCE on all processors in the target network
all possible routes will be used to share the cost of carrying data between any
pair of non-adjacent processors.

MAX. TOLERANCE, ZERO. TOLERANCE and DEFAULT. TOLERANCE are defined
in the include file occonf • inc.

linkquota - suggests the maximum number of links on the processor that
should be used by the virtual channel routing system.

linkquota can have the values 0 to 4 inclusive.

A warning will be produced if the suggested linkquota for a processor is
exceeded. The linkquota will only be exceeded because of the requirements
of through-routing data for other processors.

-11-8-----------liiilil@Dltlf~'~-----------



10 Advanced use of the configurer

10.4.6 Prevention of through-routing via critical processors

If there are processors within the target network that are likely to be CPU-limited by the
application, then it may be undesirable to allow virtual channels from surrounding
processors to be routed through the performance-critical processors. In this case the
routeeost attribute for the critical processors should be set to INFiNITE. COST. If this
is done then no virtual channels can be through-routed via these processors.

Care must be taken to ensure that a minimal spanning tree of links is provided by the
other processors in the network. If a particular processor should only be used for
through-routing channels when absolutely necessary, then the routeeost attribute on
the processor can be set to some multiple of DEFAULT. COST. Alternatively the cost
value can be explicitly set on the other processors. If for example, the multiple con
cerned is larger than the number of lower cost processors in the network then any route
via those processors will be chosen in preference to a route via one of the high cost
processors.

10.4.7 Use of additional processors for through-routing

There may be situations when the configurer is required to route all communications via
a particular set of processors. For example:

to emulate closely the communications structure that would be provided by
dedicated hardware routing devices, or

when a block of low performance processors is provided in the target network
solely for the purposes of through-routing data for other processors.

This can be achieved in one of two ways:

If the routeeost of all processors, other than those intended as routers, is set
to INFINITE. COST then the only processors that the configurer can use for
through-routing are those left with the default routing cost. This technique has
the advantage of guaranteeing that no through-routing will be done via the
standard processors.

• If the routeeost of all the routing processors are set to a small value, e.g.
MIN. COST, then any route via these processors will be used in preference to
routes via processors with the default routing cost. This technique has the
advantage that the normal processors can still be used by the configurer for
routing channels that cannot be implemented by the nominated routing proces
sors. Hence the nominated routing network need not provide full connectivity.

~ Generally the second method is preferred as it preserves the ability of the configurer of
mapping an arbitrary application onto the target hardware.

10.4.8 Support for memory-critical systems

It may be desirable to ensure that for a particular processor the additional run-time
overhead added by the configurer is kept to a minimum.

----------- ~_:ulit.'~~JI----------1-1-9



10.4 Control of routing

Normally the configurer spreads virtual channels running between a pair of processors
across all routes that have equal cost. For each additional route employed additional
support processes may be required and hence additional memory consumed on the
target system.

This should not normally be a problem as the total cost of the maximal set of run-time
processes that can be placed on the target system by the configurer consumes only a
few thousand bytes more than the minimal set.

Some approximate figures for the minimum and maximum costs of both through-routing
and multiplexing software on different word length transputers are shown table 10.1.

Word Size Function Code Min workspace Max workspace

32 bits Through-routing 720 760 2120

Multiplexing 2100 780 2060

16 bits Through-routing 720 510 1570

Multiplexing 2100 520 1560

Table 10.1 Virtual routing approximate memory usage in bytes

Multiplexing software is needed whenever a processor has virtual channels terminating
on it. In the current system each opposing pair of virtual channels forming a virtual link
will require approximately 120 bytes of local storage on a 32-bit processor and 80 bytes
of storage on a 16-bit processor.

A particular case of the critical memory problem comes when the set of user processes
on a particular processor do not in themselves require virtual channels at all, because
the channels they use can be mapped directly onto the hardware links available. How
ever, if the configurer decides to use through-routing then through-routing support
processes will be added to the processor. In addition, to enable the available hardware
links to be shared, some of the channels used on the processor may be implemented
as virtual channels. In this case multiplexing software will also be required. In this case
the processor can be completely protected from run-time overheads by using the
techniques described in section 10.4.6.

A linkquota attribute can be specified on each processor in the target network. If the
linkquota of a particular processor is specified as 1 and the routecost set to
INFINITE. COST, then only a single hardware link will be used on the processor to
provide all the virtual channels it uses. In addition the memory overheads of the virtual
link system will be reduced to a minimum (minimal multiplexer only).

If linkquota is set to 1 on all processors in the target system then the minimal
spanning tree of links will be used to support all virtual channels required. Warnings will
be produced in this case for all processors that have had more than linkquota links
used on them; this is because all processors cannot be chosen as 'leaves'· in the
spanning tree.

If both performance and memory size are a problem in a particular system it is likely that
the user will have to tune the 1 inkquota and tolerance parameters of many proces
sors in order to get the best result.

120 ~SGS-1HOMSON------------ "'T~ It:'AIO©rnl@rn~~O©~------------



10 Advanced use of the configurer

10.5 Example - optimized filter test program

o Process
______ Channel HOST

Figure 10.3 Example filter test program

Figure 10.3 shows an example software process network that needs to be placed onto
a network of six processors, shown in figure 10.4. The function of the program is to test
the two filter components which are limited by the speed of the processors concerned.

PORTl PORT2

f
3 0 3

FILTERA GENERATE FILTERS

0 2 1 2 1 0
T425 + 128K T805 + 32K T425 + 128K

1 3 2

2 0 1
RESULTA MONITOR RESULTB

3 1 2 3 0 3

T425 + 128K T425 + 2M T425 + 128K
1 2

0 Transputer ~
~Link

HOST

Figure 10.4 Example filter test hardware

___________ ~1~I©JtI.'. 12_1_



10.5 Example - optimized filter test program

This is not a real program but has been constructed to demonstrate many of the features
for optimization described in the previous sections, within a comparatively small and
simple system. It is similar to an example supplied in the examples directory. The basic
configuration description is as follows:

-- Include values for router attributes
#INCLUDE "occonf.inc"

-- Hardware description for specialised sub-system

NODE GENERATE, FILTERA, FILTERB :
NODE RESULTA, RESULTB, MONITOR :
EDGE port1, port2
ARC hostarc :

-- The following ARCs are only required when optimising
ARC GENERATE.TO.FILTERA, GENERATE.TO.FILTERB
ARC FILTERA.TO.RESULTA, FILTERB.TO.RESULTB :

NETWORK
DO

SET GENERATE (type, memsize .- "T80S", 32*K)
SET FILTERA (type, memsize := "T42S", 128*K)
SET FILTERB (type, memsize := "T42S", 128*K)
SET RESULTA (type, memsize := "T42S", 128*K)
SET RESULTB (type, memsize .- "T42S", 128*K)
SET MONITOR (type, memsize := "T42S", 2*M)

CONNECT HOST TO MONITOR [link] [1] WITH hostarc
CONNECT MONITOR[link] [2] TO RESULTA[link] [1]
CONNECT MONITOR[link] [3] TO RESULTB[link] [0]
CONNECT MONITOR [1 ink] [0] TO GENERATE [link] [3]
CONNECT GENERATE [link] [1] TO FILTERA[link] [2] WITH

GENERATE.TO.FILTERA
CONNECT GENERATE [link] [2] TO FILTERB[link] [1] WITH

GENERATE. TO. FILTERB
CONNECT RESULTA[link] [2] TO FILTERA[link] [1] WITH

FILTERA.TO.RESULTA
CONNECT RESULTB[link] [1] TO FILTERB[link] [2] WITH

FILTERB. TO. RESULTB
CONNECT RESULTA[link] [3] TO FILTERA[link] [0]
CONNECT RESULTB[link] [3] TO FILTERB[link] [0]

CONNECT GENERATE [link] [0] TO RESULTB[link] [2]

CONNECT FILTERA[link] [3]
CONNECT FILTERB[link] [3]

TO port1
TO port2

Software description for filter test program

NODE generate.l, monitor.l
[2]NODE result.l, filter.l

IINCLUDE "hostio.inc"
IUSE "generate.cSh"
IUSE "filter.cSh"
IUSE "result.cSh"
IUSE "monitor.cSh"

-12-2----------lii~itmRlcf9©'-----""'-----------



10 Advanced use of the configurer

CHAN OF SP fs, ts :
[2]CHAN OF BYTE Generate.to.Filter
[2]CHAN OF BYTE Filter.to.Result :
CONFIG

[2]CHAN OF BYTE Result.to.Monitor
[2]CHAN OF BYTE Monitor.to.Result, Monitor.to.Filter
PAR

PROCESSOR monitor.!
Monitor (fs, ts, Result.to.Monitor,

Monitor.to.Result,
Monitor.to.Filter)

PROCESSOR generate.l
Generate (Generate.to.Filter)

PAR i = 0 FOR 2
PAR

PROCESSOR result.l[i]
Result (Filter.to.Result[i],

Result.to.Monitor[i],
Monitor.to.Result[i])

PROCESSOR filter.l[i]
Filter (Generate.to.Filter[i],

Filter.to.Result[i],
Monitor.to.Filter[i])

-- Mapping description
MAPPING

DO
MAP generate.l ONTO GENERATE
MAP filter.I[O] ONTO FILTERA
MAP filter.l[l] ONTO FILTERB
MAP result.I[O] ONTO RESULTA
MAP result.l[l] ONTO RESULTB
MAP monitor.l ONTO MONITOR

MAP fs, ts ONTO hostarc

Mapping optimisation:

Prevent through routing via GENERATE
SET GENERATE (routecost := INFINITE.COST)

-- Ensure minimum overhead on FILTERA
SET FILTERA (routecost, linkquota := INFINITE.COST, 1)

-- Ensure minimum overhead on FILTERB
SET FILTERB (routecost, linkquota := INFINITE. COST, 1)

-- Optimise Generate to Filter 0 Path
MAP Generate.to.Filter[O] ONTO GENERATE.TO.FILTERA

-- Optimise Generate to Filter 1 Path
MAP Generate.to.Filter[l] ONTO GENERATE.TO.FILTERB

-- Optimise Filter to Result 0 Path
MAP Filter.to.Result[O] ONTO FILTERA.TO.RESULTA

-- Optimise Filter to Result 1 Path
MAP Filter.to.Result[l] ONTO FILTERB.TO.RESOLTB

___________ ~11©nI.Y©' 1_2_3



10.5 Example - optimized filter test program

-- Use otherwise unspecified linkquotas to check
-- overheads on GENERATE, RESULTA, and RESULTS
SET GENERATE (linkquota : = 0)
SET RESULTA (linkquota:= 2)
SET RESULTS (linkquota:= 2)

For this real-time program to actually work correctly a number of optimization features
of the configurer have been exploited to ensure the right routing decisions are made:

• GENERATE has no memory space available to carry the overheads of routing
software and requires no virtual channels itself, so setting routecost to the
value INFINITE .COST prevents routing software being placed on it.

FILTERA and FILTERB must be operated in a state as close as possible to the
real case, where all their channels are placed onto hardware links. The main
data path through the Filter component must operate at hardware data rates,
so the Generate. to. Filter and Filter. to. Result channels must both
be placed onto hardware links to guarantee the required performance. The
Monitor. to •Resul t and Monitor. to. Fi1ter channels which carry a
small amount of parameterization data can, however, be implemented as virtual
channels without significant effect.

_12_4 E;i~ii@nIr.&~ _



11 Mixed language programming

This chapter describes the mechanisms for mixing code modules written in different high
level languages. It is divided into two parts. The first part discusses how to call proce
dures and functions written in one language from another language. This includes
details of the library procedures provided to allow occam programs to call C functions
which require use of static or heap memory.

The second part describes how complete C programs can be called as if they were
occam processes with a standard channel interface.

11.1 Mixed language programs

For many applications it is appropriate to write the software using more than one
programming language. For example, a particular algorithm may be better expressed
in a specific language, or application modules may already exist in particular languages.
In either case a well defined mechanism for mixing languages within a single system is
desirable.

The toolset provides a clean and simple basis for mixing languages on transputer
networks. Independent software processes can be written in different languages,
compiled and linked using a common set of tools, and the linked modules placed
anywhere on a network of transputers using a configuration description. Compiler
pragmas are provided to allow code to be imported with the correct calling conventions,
and to translate names so they are valid in the calling language.

Code written in other languages can be used as external routines in a program, providing
the language calling conventions are honored, and no conflicts of name occur.

There are a number of issues to be considered when mixing languages. These are:

The declaration of the external routine - in order for the calling program to be
able to correctly call an external routine, it must have a description of the inter
face to the routine. The way in which this is done depends on the language being
used.

• The translation of names - programming languages differ in the legal character
set for identifiers and symbolic names. Thus, names acceptable in one language
may not be valid in another. To avoid these problems compiler pragmas are
provided to perform name translations.

• The calling conventions of the languages - including passing the address of the
static area (required by C) and the types of the parameters in the two languages.

The types returned by functions.

The presence, or otherwise, of a static area in each language (this is discussed
in more detail below).

___________ iy£ I~tn'£'.©, 1_2_5



11.1 Mixed language programs

The libraries to be used when linking the complete program.

These issues are discussed in more detail in the the following sections.

Note: When mixing languages, the external procedures must not do any host commu
nications. All i/o should be performed by the calling program. The external procedures
can however perform channel communications with other processes.

11.1.1 Declaring external routines

In order to properly call a separately compiled procedure or function, the compiler needs
to be given information about the external routine. In C this is done by declaring the
function as external, for example:

extern int f (int a, int b);
extern void pl (char c);

The functions should be declared as prototypes, including the types of parameters, to
ensure that the actual parameters are converted to the specified types. If the functions
are declared without the parameter types then the default C argument type promotions
will take place.

The occam compiler uses a pragma to provide information about external procedures
and functions. The syntax of this is:

#PRAGMA EXTERNAL " formal declaration = workspace [, vectorspace]"

The optional parameter vectorspace is not required for C functions.

For example:

#PRAGMA EXTERNAL "PROC pl (VAL BYTE c) = 20"
#PRAGMA EXTERNAL "PROC p2 (BYTE x, y) = 40, 100"
#PRAGMA EXTERNAL "INT FUNCTION f (VAL INT a, b) = 50"

A void function in C is equivalent to a procedure in occam.

11.1.2 Translating identifiers

Because the syntax of valid identifiers can vary from one language to another, compiler
pragmas are provided in C and occam to allow the names used in a source file to differ
from those used externally.

The pragma can be used to change the name which is used in the object code to
reference an external routine. For example, a C program which needs to call an occam
function called get. next could use the following to convert the name into a valid C
identifier:

#pragma IMS_translate(get_next, "get.next")

extern void get_next(int *n, Channel *in);

_12_6 ~li~@UlfJ1©' _



127

11 Mixed language programming

Alternatively the pragma could be used to change the name exported from the occam
code:

#PRAGMA TRANSLATE{get.next, "get_next")

PROC get.next (INT next, CHAN input)

In this case, the object file will contain the name get_next and the procedure can only
be called by this name.

11.1.3 Parameter passing

The two issues in passing parameters between languages are, firstly, the types of the
formal and actual parameters (including whether they are passed by value or by refer
ence) and, secondly, the use of a static area by each language. These are described in
more detail below.

Parameter compatibility

Correct parameter passing depends on the compatibility of data types between
languages. See the language implementation chapters of the appropriate Language
and Libraries Reference Manual for details of the implementation of types and how
parameters are passed.

The way in which parameters are passed - either as a copy of the data (by value) or
a pointer to the data (by reference) - involves two issues: the semantics of the
language, and the actual implementation.

c: All parameters are passed by value. Arrays are passed as pointers to the base
type of the array. It is possible to pass pointers to variables which gives the effect
of passing by reference.

occam: parameters are either VAL parameters or non-VAL parameters. VAL
parameters may be implemented by passing by value, or by passing a pointer.
The latter will happen when the size of the parameter is larger than the word
length of the processor and will therefore depend on the data type and the
processor type. Non-VAL parameters are always passed as pointers.

Types can be considered to be compatible if they have the same interpretation, are the
same size and are passed in the same way. For example, a C parameter of type int
is compatible with an occam VAL INT parameter. Similarly, as an occam INT param
eter is passed as a pointer it is compatible with a C int * parameter.

When passing parameters the correct data type should be used. Equivalences for the
main C and occam data types are listed in tables 11.1 and 11.2.

~SGS-1HOMSON----------- ~'TL !K':ilo©OO@rn~@lK4lO~------------



11.1 Mixed language programs

occam type Ctype

VAL BYTE
char
unsigned char

BYTE char *
unsigned char *

VAL INT int

INT int *
INT32 long int *
REAL32 float *
VAL REAL64

double *REAL64

CHAN Channel *
TIMER No parameter required

Table 11.1 Type equivalents for all processors

Ctype
occam type

l6-bit processor 32-bit processor

VAL INT32 long int * long int

VAL REAL32 float * float

Table 11.2 Type equivalents dependent on processor word length

occam 2.1 RECORD types cannot be passed to C, and C cannot call an occam function
that accepts a RECORD as a parameter. Similarly, C struct types cannot be passed to
occam and occam cannot call a C function that accepts a struct as a parameter.
Named occam data types and C typedef types may be passable by using the rule
which applies to the underlying data type from which they are derived.

Comprehensive equivalence tables, with examples of calling external routines from
each language, can be found in Appendix A.

Range checking in occam

It is important to ensure that parameters passed to occam procedures and functions
from C have values within the legal range for the type. For example, when passing to
a formal parameter of type BYTE the value must be in the range 0 through 255. Violation
of this rule is liable to cause a runtime range check error in the occam code.

occam timers

An occam TIMER parameter should have noassociated actual parameter. For example,
consider the following occam procedure :

PROC p (VAL INT pi, TIMER t, VAL INT p2)
SEQ



11 Mixed language programming

The C code to call the above is as follows:

void p(int pl, int p2);
#pragma IMS_nolink(p)

int x, y;
p(x, y);

(The pragma used is described below in section 11.1.6; all pragmas supported by the
toolset are described in the Toolset Reference Manual).

11.1.4 Global static base parameter

C uses an area of memory for static data. This requires a parameter to be passed to the
called function to enable it to access the static area - this parameter is known as the
Global Static Base or GSB. This parameter is added automatically by the compiler and
is not normally visible to the programmer.

occam differs from C in that it does not use a static area and so does not expect a GSB
parameter to be passed to procedures. Similarly, occam programs do not pass a GSB
pointer when procedures are called. In order to allow calls to work correctly between
languages the presence of the GSB parameter must be taken into account.

There are three possible solutions to this problem:

A dummy GSB parameter can be provided in occam.

2 A compiler pragma can be used in the C program to specify that a function does
not require a GSB parameter.

3 When calling occam from C, make use of the call_without_gsb function;
see the ANSI C Toolset Language and Libraries Reference Manual.

The first two techniques can be used either on the routine being called or in the calling
program, whichever is more appropriate.

In the examples below which show C functions called from occam, it is assumed that
the C code does not use any static or heap memory. However, it will often be necessary
for the occam calling program to allocate some memory for use by the C code as the
static or heap area; a pointer to this memory is then passed as the first parameter when
the function is called. This technique is described in more detail in section 11.1.8.

Method 1 - dummy GSa parameter

A dummy parameter can be used either as a formal parameter for procedures which are
to be called from C, or as an actual parameter for C functions which are being called from

----------- Ly£~~i@_'JlI----------1-2-9



11.1 Mixed language programs

occam. For example the following occam function can be directly called from a C
program:

INT FUNCTION ocfunc(VAL INT GSB, argl, arg2)
-- Note: dummy parameter GSB is not used
INT return:
VALOF

RESULT return

Note: because the dummy parameter is not used, the occam compiler will generate a
warning message but correct object code is still generated.

To call this version of ocfunc from a C program it is declared as an extern function
(without the GSB parameter) and then called normally:

/* declare function as external */
extern int ocfunc(int argl, int arg2);

/* call function */
ret = ocfunc(x, y);

The same method can be used to call a C function from occam by passing a dummy
first parameter of type INT. For example the C function:

void cfun(int a)
{

could be called from occam in the following way:

#PRAGMA EXTERNAL "PROC cfun (VAL INT GSB, x) 20"

VAL INT GSB IS 0:
cfun(GSB, 42)

Method 2 - nolink pragma

In order to simplify mixing occam and C, the ANSI C compiler provides the
IMS_nolink pragma which directs the specified function to be compiled without the
static link parameter. Any calls of the function, within the scope of the pragma, will not
have the GSB added to the parameter list. If the function is defined within the scope of
the pragma then it will be compiled without the requirement for a static link parameter
(the compiler will flag a serious error if the function requires access to static data).

As an example, consider the occam function ocfunc below:

INT FUNCTION ocfunc(VAL INT argl, arg2)
INT ret
VALOF

RESULT ret

_1_3o Jjfilil©lt'••©~ _



11 Mixed language programming

To call ocfunc from a C program it must first be declared as an extern function and
then specified as not requiring the GSB parameter:

/* declare function as external */
extern int ocfunc(int argl, int arg2);

/* specify that function has no GSB parameter */
#pragma IMS_no1ink(ocfunc)

/* call function */
ret = ocfunc(x, y);

The same technique can be used to compile a C function which does not require a GSB
parameter so that it can be called directly from occam. As an example, consider the C
function below:

/* declare function before referencing */
void cfun(int a);

/* specify that function has no GSB parameter */
#pragma IMS_no1ink(cfun)

/* define the function */
void cfun(int a)
{

This can be called from occam in the following way:

#PRAGMA EXTERNAL "PROC cfun (VAL INT x) 20"

cfun(42)

Method 3 - using call_without_gsb function

This method is described in the ANSI C Toolset User Guide

11.1.5 Function return values

When functions are being called it is also necessary for the return types to be compatible.

The definition of compatibility for function return types is stricter than that for parameters.
Floating point and integer function results are returned in different ways (depending on
the processor type) and so it is essential to ensure that the types of function return values
are strictly equivalent. A partial list of equivalents is given in table 11.3 for guidance.
Comprehensive tables of equivalent types can be found in Appendix A.

----------- "'T~~~©1tWI'9~ 1_3_1



11.1 Mixed language programs

occam function type C function type

BYTE
char
unsigned char

INT32 long int

INT int

REAL32 float

REAL64 double

Table 11.3 Equivalent function return types

C cannot call an occam function that returns a RECORD, and occam cannot call a C
function that returns a struct.

As an example, consider the C function cfun which returns int:

int cfun(int a);

#pragma IMS_nolink(cfun)

int cfun(int a)
{

}

This would be called from occam as an INT FUNCTION as follows:

#PRAGMA EXTERNAL "INT FUNCTION cfun (VAL INT x) = 20"

INT y:
SEQ

y .- cfun(42)

C function type void

A C function of type void must be called from occam as a PROC. For example:

void cfun(int a);

#pragma IMS_nolink(cfun)

void cfun(int a)
{

This can be called from occam in the following way:

#PRAGMA EXTERNAL "PROC cfun (VAL INT x) 20"

cfun(42)

_13_2 Efi~i~@m&"9©~ _



11 Mixed language programming

Similarly, an occam PROC must be called from C as a void function.

Restrictions on functions that may be called

Because occam functions can only have VAL parameters, and these do not always
have C equivalents, there are restrictions on the types of occam functions that can be
called from C and vice-versa. For example, there are no equivalents of the occam BOOL
type and so functions which require this type of parameter cannot easily be called.

Similarly, because C functions can only return a single value, only occam functions with
a single return value can be called from C.

occam cannot call C functions which return structure types. C cannot call an occam
function that accepts a RECORD as a parameter or returns a RECORD.

C functions that are called by occam must not modify any global variables, that is, they
must be free from side-effects.

11.1.6 Passing array parameters

In both C and occam an array parameter is passed as a pointer to the start of the array,
Le. the address of the first element. occam also supports unsized array parameters
where some or all of the array bounds may be omitted from the parameter declaration.
In this case the address of the array is followed by a sequence of integer parameters,
one for each unknown bound, giving the value of that bound. The unknown bound
parameters appear in the same order as the unknown bounds in the array parameter
declaration.

In the following sections occam procedures are used in the examples. The principles
described apply equally to occam functions except that an occam function may only
have VAL parameters.

C calling occam

There are four cases to consider when calling occam routines, which accept arrays as
parameters, from C. In the following examples we assume that the C declaration of the
occam routine has the nolink pragma applied to it so that the hidden Global Static
Base (GSB) parameter is not passed when we call the occam routine (see section
11.1.4). Although the examples use :INT arrays, the same principles apply to an array
of any other occam type.

1 Sized array:

PROC f{[8]INT a)

To call the above from C we can declare the occam procedure as a C prototype in any
of the following ways:

a)void f{int a[8]);
b)void f{int a[]);
c) void f{int *a);

----------- i"1£lit_&~lj 1_33_



11.1 Mixed language programs

The function is called as follows:

int a[8];

f{a);

2 Sized VAL array:

PROC f{VAL [8]INT a)

This is similar to case 1 except that since the array is a VAL array we can declare the
occam routine as a C prototype which accepts a const array.

a)void f{const int a[8]);
b)void f{const int at]);
c)void f{const int *a);

The function is called as follows:

int a[8];

f{a);

3 Unsized array:

PROC f ( [] INT a)

Here the occam procedure expects a hidden integer parameter following the array
which gives the number of elements in the array. Thus we can declare this occam
routine as a C prototype as follows:

a)void f{int at], const int size);
b)void f{int*a, const int size);

The function is called as follows:

int a[8];

f{a, 8);

4 Unsized VAL array:

PROC f{VAL []INT a)

This is similar to case 1 except that since the array is a VAL array we can declare the
occam routine as a C prototype which accepts a const array.

a)void f{const int at], const int size);
b) void f{const int *a, const int size);

_1_34 ~li~@m&'&C1I------------



11 Mixed language programming

The function is called as follows:

int a[8];

f(a, 8);

Multi-dimensional arrays (C calling occam):

Multi-dimensional arrays are treated in the same way as that described for unitary
arrays. The hidden array dimensions are passed in the same order as they appear in
the array definition. For example, consider the following occam routine which is to be
called from C:

PROC f ( [8] [] [] INT a)

This can be declared as the following C prototype:

void feint a[8] [] [], const int boundl, canst int bound2);

#pragma IMS_nolink(f)

Note that even though the array has three dimensions we only declare explicit extra
parameters for those dimensions that are hidden.

This function can be called as follows:

int a [8] [9] [4] ;

f(a, 9, 4);

occam calling C

There are a number of cases to consider when calling C routines, which accept arrays
as parameters, from occam. In the following examples we assume that the C functions
to be called have been declared using the nolink pragma so that we do not need to
pass a hidden GSB parameter (see section 11.1.4). Although the examples use int
arrays, the same principles apply to an array of any other C type.

1 Simple arrays and pointers

a)void feint a[8]);
b)void feint a[]);
c)void feint *a);

These would be declared as an occam procedure and called as follows:

#PRAGMA EXTERNAL "PROC f([8]INT a)=ws"

[8]INT a:
f(a)

___________ ~~i~@-'91----------1-3-5



11.1 Mixed language programs

Note that b) and c) cannot be declared as accepting unsized arrays in occam because
they are not expecting the hidden parameters that occam would pass implicitly when
f was called.

2 const arrays and pointers

a)void f(const int a[8]);
b)void f(const int all);
c)void f(const int *a);

These would be declared as an occam procedure and called as follows:

#PRAGMA EXTERNAL "PROC f(VAL [8]INT a)=ws"

[8]INT a:
f(a)

Note that b) and c) cannot be declared as accepting unsized arrays in occam because
they are not expecting the hidden parameters that occam would pass implicitly when
f was called.

3 Arrays and pointers accompanied by size values

It may be that the C function to be called is written in such a way that it expects an integer
to follow the array which gives the number of elements in that array. This matches the
parameter passing conventions for occam unsized arrays. Thus if the C function is
defined as follows:

a)void f(int a[], const int s);
b)void f(int *a, const int s);

then the equivalent occam declaration and call is:

#PRAGMA EXTERNAL "PROC f([]INT a)=ws"

[8]INT a:
f(a)

When f is called occam implicitly passes the array bound, 8, which is picked up as s
by the C function.

4 const arrays and pointers accompanied by size values

This is similar to the above but the array in the occam declaration of the C function is
now declared as a VAL array. Thus given the following:

a)void f(const int a[], const int s);
b)void f(const int *a, const int s);

then the equivalent occam declaration and call is:

#PRAGMA EXTERNAL "PROC f (VAL [] INT a) =ws"

[8]INT a:
f(a)



11 Mixed language programming

Multi-dimensional arrays (occam calling C)

Multi-dimensional arrays are treated in the same way as unitary arrays. For example,
consider the following C routine which we want to call from occam:

void feint a[3] [4]);

then the equivalent occam declaration and call is:

#PRAGMA EXTERNAL "PROC f([3] [4]INT a)=ws"

[ 3] [4] INT a:
f(a)

occam expects any hidden array dimensions to be passed in the same order as they
appear in the array definition. Consider the following C routine, which expects the array
bounds to be passed separately, and which we want to call from occam:

void feint *a, const int boundl, const int bound2);

The equivalent occam declaration and call is:

#PRAGMA EXTERNAL "PROC fer] []INT a)=ws"

[ 3] [4] INT a:
f(a)

When f is called in this case the C function will receive 3 for boundl and 4 for bound2.
The bounds are passed implicitly by occam.

11.1.7 Linking the program

After all the component parts of the program have been compiled, they must be linked
together with any libraries required. The libraries that are required will depend on a
number of factors such as the language that the main (calling) program is written in,
whether the program communicates with the host, which library routines are used by the
different language modules. Some guidelines for various configurations are given
below.

Calling occam from C

When calling occam code from a C program, then the following library files must be
linked with the compiled occam and C code.

The C runtime library

If the program uses the host file server then the full runtime library must be used.
This can be linked in by using the linker indirect file cstartup .lnk.

____________ iTl~I~'i' 13_7_



11.1 Mixed language programs

If the program does not use the host file server then the reduced runtime library
must be used. This can be linked in by using the linker indirect file
cstartrd.lnk.

The standard occam compiler libraries will be required by most occam code.
These libraries can be linked in by using the appropriate occaDLX. Ink linker
indirect file.

• Any other C or occam modules or libraries referenced by the program must also
be linked in.

Calling C from occam

When calling C code from an occam program, then the following library files must be
linked with the compiled C and occam code.

The standard occam compiler libraries can be linked in by using the appropriate
occamx. Ink linker indirect file.

If the main program is written in occam and allocates static or heap memory for
C functions using the library procedures described in section 11.1 .8, then the
library calle. lib must be linked in.

• Any other C or occam libraries used must also be linked in.

The reduced C library must be used as the called functions cannot make any
host file server requests. The reduced runtime library can be linked in by using
the clibsrd.lnk linker control file.

11.1.8 Allocating memory for C functions called from occam

The C runtime environment automatically provides C programs with a static area (for
holding static data and external variables) and a heap area (for memory allocation).
Howeveroccam does not provide these and so this memory must be explicitly allocated
by the calling program before Cfunctions are called. Four routines in the occam library
calle. lib (supplied with the ANSI C Toolset) are used to set up and terminate C static
and heap areas from occam for C functions that require them.

The static area

C static data is stored in a reserved area of memory called the static area which must
be set up by the system and initialized. Each C function which uses static data needs
to be able to find this area. In order to do this, every C function is passed implicitly, as
the first parameter, a pointer to the start of the static area, the global static base (GSB).
The static area must be set up and the GSB parameter passed explicitly by the calling
occam code. This means that a call to a C function from occam will have one extra
parameter compared to an equivalent call from C.

The heap area

The heap area is that area of memory from which the C memory allocation functions
reserve their memory space. It is separate from the static area and requires a static area
to be previously allocated because information about the heap is held in static variables.



11 Mixed language programming

The heap need not be set up if it is not required, but remember that it may be used
implicitly by a library call.

Providing static and heap

Some simple C functions may not require static or heap areas and may be called more
easily without using the special library routines. When calling a C function therefore, the
first step is to decide whether static and heap areas are required.

Deciding whether a static area is required

For many C functions it may not be immediately obvious whether static or heap is
required (the heap area requires a previously set-up static area). For example, some,
but not all, library functions require static and heap areas and so, because it would be
difficult to distinguish those that do, a static and heap area should be assumed whenever
a library function is called.

Because of the difficulty in covering all types of functions, the following series of rules
is offered as a way of determining whether a function requires static or heap. The rules
include the most common reasons for a C function requiring static or heap memory.

• If the function uses static variables then static is required.

If the function accesses external variables then static is required.

• If the function includes an automatic structure or union initializer then static is
required.

If the function uses any functions from the runtime library then static and heap
may be required.

Functions which fail all the above tests will probably not require static or heap, and can
be called without using any of the static or heap library functions.

Calling functions which do not require static or heap

C functions which do not require static or heap can be called as described in section
11.1.4.

Calling functions which do require static or heap

For C functions which require static and/or heap the space must be set up in the occam
code before the function is called, and terminated when no longer required. These
operations are performed by procedures supplied in the library calle. 1 ib. This library
is supplied as part of the ANSI C toolset.

The library calle. 1 ib provides four occam procedures for initializing static and heap
areas and terminating them after use. The routines are summarized in table 11.4 and
described in more detail below.

----------- A.'T~lii@.'91-----------1-
39

-



11.1 Mixed language programs

Procedure Description

init.static Initializes an area of memory for use as the static area.

init.heap Initializes an area of memory for use as the heap area.

te~inate.heap.use Terminates heap usage.

te~inate.static.use Terminates static usage.

Table 11.4 Library procedures to support memory allocation

PROC init.static([]INT static.area, INT required.size, GSB)

init. static is used to set aside and initialize an area of memory for use as a C static
area before any C functions are called. The static area is declared as an integer array
in the calling occam program.

Two integer values are returned in the procedure parameters:

required. size The number of words of static space required.

GSB A pointer to the base of the array which will act as the global static
base.

Note: the size of the integer array is equivalent to the number of words of static space
required. One element of the integer array is equivalent to one word of memory. If an
error occurs on initializing the static area the value MOSTPOS INT is returned instead
of the required size.

The procedure can be used to check the size of static area required by checking the
value returned in the second parameter. For example:

IUSE "calle. lib"

INT required. size, GSB:
[STATIC.SIZE]INT static.area:

SEQ
init.static(static.area, required. size, GSB)
IF

required. size > STATIC. SIZE
not enough space reserved

TRUE
array is big enough

Another possible way of using init. static is to reserve a large amount of memory
for use by the C function. To do this an initial call to init. static would be made with
an array size of zero to obtain the required size, followed by a second call which would
set up a segment of memory as the static area. The rest of the memory could be used

_14_0 L.,£ litUtlf9©' -----------



141

11 Mixed language programming

by the occam program for its own purposes, perhaps to allocate the C heap. For
example:

IUSE "calle. lib"

INT required, GSB:
[VERY.BIG.NUMBER]INT memory

SEQ
check the static requirement

init.static([memory FROM 0 FOR 0], required, GSB)

-- allocate required amount of memory for static
static.area IS [memory FROM 0 FOR required]:
-- rest is available for other purposes
memory. left IS [memory FROM required FOR

(VERY.BIG.NUMBER - required)]:
SEQ

now use allocated memory as static
init.static(static.area, required, GSB)

rest of program

PROC init.heap(VAL INT GSB, []INT heap.area)

init •heap is used to set aside an area of memory for use as a C heap before any C
functions are called. The first argument is the GSB pointer returned by init. static,
which is required because the memory allocation routines make use of static data.

Like the static area, the heap area is declared as an integer array. This array must be
large enough to accommodate all calls to the C memory allocation functions. The size
of the integer array is equivalent to the number of words of heap area required. One
element of the integer array is equivalent to one word of memory.

"----_/J

If the heap is used by a function before init •heap has been called the C memory
allocation functions will fail with their normal error returns.

PROC terminate.heap.use(VAL INT GSB)

terminate. heap. use should be called when the heap is no longer required, Le. when
no more C functions will be called. It provides a clean way of terminating the use of the
heap.

Once terminate. heap. use has been called, the state of the heap is undefined.

terminate. heap. use must be called before terminating the static area because the
heap is accessed using static variables.

PROC terminate.static.use(VAL INT GSB)

terminate. static. use should be called when the static area is no longer required,
i.e. when no further calls to C will be made. It provides a clean way of ending the use
of the C static area.

~ SGS-1HOMSON------------ ....,£ ~u©oo@rn~OO@~u©~ ------------



11.1 Mixed language programs

Once terminate. static.use has been called, the state of the static area is unde
fined.

Example

The following example illustrates how these library procedures can be used to set up and
terminate the static and heap areas for a C function. The C function to be called is:

#include <stdlib.h>

int c_func(int n, int release) {

static int *ptr = NOLL;
int i;

if (ptr == NULL) {
ptr = (int *) malloc(n);

if (ptr == NULL)
return 1;

for (i = 0; i < n I sizeof(int); i++)
ptr[i] = i;

if (release){
free (ptr);
ptr = NULL;

return 0;

The occam code to call this function (on a 32-bit transputer) is shown below:

#INCLUDE "hostio.inc"
#USE "hostio.lib"
#USE "callc.lib" -- the 'calling C' functions.

#PRAGMA TRANSLATE C "c_func"

-- declare the C function as an occam descriptor.
#PRAGMA EXTERNAL "INT FUNCTION C(VAL INT GSB,x,free) 200"

PROC mixed (CHAN OF SP fs, ts, [lINT freemem)
INT GSB, required. size :

-- Allow very large static and heap area sizes
VAL static. size IS 4000 :
VAL heap. size IS 4000 :
[static.size]INT static.area
[heap.size]INT heap.area:

_14_2 Eiil~i@m.lf~~©' _



11 Mixed language programming

SEQ
set up static.area as the static area

init.static(static.area, required. size, GSB)
-- now check for error
IF

required. size > static. size
so.write.string(fs, ts,

"error initialising static*n")
TRUE

INT fail:
SEQ

-- Set up the heap area.
-- Note that GSB is the first parameter
init.heap(GSB, heap.area)

-- Call the C f~nction. Note that the GSB
-- is passed as the first parameter.
fail := C (GSB, 20000, 0)
IF

fail = 0
so.write.string(fs, ts, "malloe OX*n")

TRUE
so.write.string(fs, ts, "malloe failed*n")

-- now tidy up the stack and heap allocated
terminate.heap.use(GSB)
terminate.static.use(GSB)

and exit
so.exit(fs, ts, sps.success)

The occam program must be compiled and then linked with the compiled C function,
the memory allocation library, the reduced C runtime library, the occam host i/o library,
and the standard occam libraries.

In this example (assuming that the C source code is in a file called cfune . e and the
occam source is in a file called mixed. ace) the set of files to be linked is:

mixed. teo compiled occam program;

efune •teo compiled C function;

el ibsrd. lnk linker indirect file for the C reduced runtime library;

hostio .lib occam i/o library;

calle .lib call C library;

oeeama. lnk linker indirect file listing standard occam libraries for code
compiled for transputer class TA.

The linker allows files to either be specified on the command line or listed in an indirect
file. Because there are several files required in this instance, it may be easier to supply

___________ ~lltl'.'9©' 1_4_3



11.1 Mixed language programs

a linker indirect file. To do this create a text file called calle. ink, containing the
following lines:

mixed. teo
efune.teo
#inelude elibsrd.lnk
hostio.lib
ealle.lib
#inelude oeeama.lnk

The occam module mixed. teo is listed first, because it contains the main entry point
of the program. Alternatively a #mainentry directive could be used to define the main
entry point.

ilink -t425 -f ealle.lnk

Details of the operation of the linker can be found in chapter 10 in the Toolset Reference
Manual.

Once linked, the program can be configured and collected and run in the usual way. The
output of the program is the message malloe OK.

11.1.9 Restrictions and caveats

General

A number of restrictions must be observed when calling routines written in one language
from a program in a different language:

The formal and actual parameters (and function return types) must be compat
ible. See sections 11.1.3 and 11.1.5 for more detail.

2 As occam does not have 'external' variables, there can be no common data
between the calling program and the called routine. Therefore, the only way that
data can be transferred between them is by means of parameters (and return
values). The called procedure may also use channels to communicate with other
parts of the program that are running in parallel.

3 No function or procedure which requires direct communication with the hostmay
be called.

Rules for importing C code

The following restrictions apply to C functions which are to be called from an occam
program:

Stack checking should not be enabled in any C function to be called from
occam.

2 Only C functions linked with the reduced C runtime library, can be called from
occam, Le. those which do not require any server communication.

_1_44 L'TLlitB'Jl~ -----------



11 Mixed language programming

3 Imported C functions which return a single value (other than a pointer) must not
have any side-effects. They must not:

• alter parameters and variables (except those declared within the function);

• perform channel or host i/o;

• call functions which do have side-effects;

• perform parallel operations;

• use timer delays;

• perform heap operations.

4 The following functions cannot be called in the imported C code:

clock( )

exit ( ) (or any of its variants)

Rules for importing occam code

There are certain rules which govern the calling of occam code from C:

occam functions that return more than a single value may not be called.

2 The occam procedure or function to be called must be at the outer level of a
compiled module.

3 INL:INE procedures and functions cannot be called from C.

4 The occam code must not use vector space, or call any other occam code
which uses vector space. Arrays, if used, should be explicitly placed within
workspace or the code should be compiled with the v option to disable the use
of separate vector space.

Some occam libraries supplied with the occam 2 toolset use vector space and
therefore cannot be called from C. These are:

hostio.lib streamio.lib

5 There must be enough workspace for the called procedures or functions on the
stack of the calling program. It is the programmer's responsibility to ensure that
this is the case.

6 There must be no aliasing between the parameters to occam functions or
procedures and the destination of the result. In other words the same variable
must not be used as both a parameter which will be read, and as a result. The
occam compiler checks that this is so for occam procedures and functions
called within an occam program.

----------- L'T£l!i~@~..©, 1_4_5



11.2 occam interface procedures

The presence or absence of alias checking when the occam code is compiled
has no effect on this rule.

As an example consider the occam function:

INT FUNCTION succ (VAL INT n) IS n + 1 :

If this is called from within an occam program, the compiler will check to see
whether the parameter and result are aliased; if they are then the compiler will
generate temporary variables as necessary. So, for example, the occam call
i : = succ ( i) may be compiled with a temporary variable for the function
result, which is then copied to the variable i. The C compiler is not able to
perform these checks and so, if this function is called from C, it is up to the
programmer to ensure that there is no aliasing. A suitable calling sequence could
be:

int tmp;

tmp = succ(i);
i = tmp;

Note that there may be mutual aliasing between VAL parameters as these are
only read, not written.

11.2 occam interface procedures

The following sections describe a set of interfaces provided to allow complete programs
written in C to be called from occam. This might be done for various reasons, for
example to allow a C program to be used with the occam configurer, or to provide some
simple modification of the runtime environment of the program - e.g. initializing some
external hardware before the application code starts, or intercepting the program's
communications with the host file server.

By specifying the appropriate entry point for a C program, it is given an occam-like
procedural interface allowing the program to be called from an occam program. The
code produced in this way is known as an occam equivalent process as it makes the
program look like an occam process with channels for input and output.

11.2.1 Interface code

The occam interface code described here provides a number of fixed interfaces to a
C program. There are three types of interface code, known as types 1, 2, and 3.
Descriptions and process diagrams for the three interfaces are given below.

Type 1

This interface is used when the C program runs on a single transputer and communi
cates only with the host file server. This interface is used with the full version of the C
runtime library.

_14_6 EUII@n'..'-----------



11 Mixed language programming

fs

ts

Figure 11.1 Type 1 interface

Type 2

This interface is used when the C program communicates with other processes as well
as the host file server. This interface is used with the full version of the C runtime library.

fs

ts

in[]

out[]

Figure 11 .2 Type 2 interface

Type 3

This interface is similar to the type 2 interface except that there is no access to the host
file server. The interface must be used with the reducedversion of the C runtime library,
which does not contain any functions which require access to the host.

in[]

PROC.ENTRY.RC
out[]

Figure 11 .3 Type 3 interface

Channel arrays

The type 2 and type 3 interfaces have arrays of channels which enable the C program
to communicate with other processes in the program. These arrays are mapped directly



11.2 occam interface procedures

onto the channel arrays which form part of the standard parameter list of the C main
function (see section 11.2.2).

These channel arrays actually appear as arrays of integers in the occam parameter
lists - this allows pointers to channels to be passed to the C program which provides
a more flexible way of mapping channels onto the arrays. Because occam does not
support pointers directly, two library procedures are prOVided to assign channel pointers
to array elements. For more information on these, see the examples below and the
occam 2. 1 Toolset Language and Libraries Reference Manual.

Reserved channels

Two of the input channels and two of the output channels in the Type 2 and Type 3
occam interface procedures (i.e. in [0], in [1], out [0] and out [1]) are reserved.
No program should use these channels. They are reserved as follows:

out [0]
in[O]
out [1]
in[l]

Reserved.
Reserved.
Messages from the runtime library to the host file server.
Responses from the host file server to the runtime library.

•

11.2.2 Parameters to the C program

Parameters to the C main function are described by the following function prototype:

#include <channel.h>

int main (int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

Where:

• argc - the number of arguments passed to the program from the command
line, including the program name.

argv - an array of pointers to those arguments.

Note: for programs linked with the reduced runtime library (Le. using the Type
3 interface), argc is set to 1 and the first element ofargv is a pointer to an empty
string.

envp - included for compatibility with previous toolsets - in this implementa
tion, this parameter is always set to NULL.

in - an array of input channels.

inlen - the size of the array in.

• out - an array of output channels.

_14_8 iFil~itnlr31f~I-----------



11 Mixed language programming

• outlen - the size of the array out.

The channel arrays in and out in the C program are passed from the interface proce
dures, and can be set up as described below. Where applicable, these channels can be
used by the C code to communicate via channels passed in from the calling occam
program. Note, however, that the first two elements in the arrays are reserved for use
by the C program's runtime system and cannot be used by the application program.

This interface to main is only valid when using the type 2 and type 3 occam interface
procedures. This interface to main is not valid in any other situation.

11.2.3 Stack and heap requirements

Data storage (workspace) requirements for C programs are provided by arrays in the
occam code. Stack, static and heap requirements vary from program to program. The
workspace arrays passed to the program must be large enough to accommodate:

• the stack needed by the program when it runs

• all the static data required by the program

• the heap used by the program and the runtime libraries.

Stack overflow may lead to unpredictable behavior by the program. For this reason it is
best to run a program initially with a large combined stack and heap. Later, after the
program has been run to determine stack and heap usage, it can be modified to use a
separate stack and heap of the appropriate sizes. The use of a separate array for the
stack allows the stack to be placed in the transputer's internal memory to optimize the
performance of the program. Methods for optimizing memory usage are described in the
chapter 15 in this manual.

A minimum stack size of 512 words is recommended.

Stack overflow detection

Failure or unpredictable behavior of programs may be due to stack overflow. To obtain
an estimate of the amount of stack used by a program:

Build all C code with stack checking enabled.

2 Call the function max_stack_usage at the end of the program, this will return
an approximation of the amount of stack used by the program.

A test for stack overflow in a program is to use the procedure outlined below:

Initialize the bottom few words of the stack (a falling stack is used) to some easily
recognizable pattern of values.

2 Run the program and, after it crashes, use the INQUEST debugger to examine
the values in the stack. If the values you initialized have been changed then stack
overflow is likely.

~SGS-1HOMSON 149----------- Aa"f~ ~[J@oo@rn~~o©~------------



11.2 occam interface procedures

3 Increase the stack size and try again.

A similar method can be used to determine static data and heap requirements, except
that these are allocated upwards in memory. The following occam fragment gives an
example of initializing the bottom of the stack:

SEQ i = 0 FOR SIZE wsi
wsl[i] := #DEFACED

Stack overflow in the C parts of the program can also be detected by using the stack
checking mechanism built into the C compiler and libraries.

11.2.4 Type 1 interface definition

The Type 1 interface is used when the C program does not communicate with any other
process apart from the host file server.

The parameters for the Type 1 procedure are: a pair of channels to communicate with
the host file server; and two arrays to provide the C program's heap, static and stack
space.

Procedural interface

The Type 1 occam interface is defined as follows:

PROC MAIN.ENTRY (CHAN OF SP fs, ts,
[]INT free.memory,
[]INT stack.memory)

The parameters to this procedure are:

fs - a channel from the host file server to the C program.

• ts - a channel from the C program to the host file server.

The channels fs and ts are connected to the channels in[l] and out[l]
which are passed as parameters to the C program - these are provided for the
use of the C runtime libraries only, and should not be used by the application
code.

• free. memory - used by the C program for its heap and static areas.

This array is generally used to pass the free memory which is available to the
C program after the all the code has been loaded.

stack. memory - used by the C program for its runtime stack (if the size of the
array is non-zero).

If the size of the stack.memory array is zero then the free •memory array is
used for the program's runtime stack as well as for the static and heap data
areas.

_15_0 lF;lli~@.,'©' _



11 Mixed language programming

Parameters to C program

The channel array parameters to the C main function are set up as follows:

• in1en and outlen are set to 2

• in[O] and out [0] are set to NULL

• in [1] is a pointer to the f s channel and is used by the C runtime system to
communicate with the host

• out [1] is a pointer to the ts channel and is used by the C runtime system to
communicate with the host

Example

The following example is an occam procedure, call.prog1, which calls a C program
via the MAIN. ENTRY procedure interface:

#INCLUDE "hostio.inc"

PROC call.prog1 (CHAN OF SP fs, ts)

#USE "centry.lib"

[lOOOOO]INT heap:
[1024]INT stack:
PLACE stack IN WORKSPACE

C interface code

static and heap space
stack for program
Put on chip

-- call program
MAIN. ENTRY (fs, ts, heap, stack)

11.2.5 Type 2 interface definition

The Type 2 interface is used when building a program that will communicate with other
processes as well as with the host file server.

The parameters for the Type 2 procedure are: a pair of channels to communicate with
the host file server; a flag value to control the use of memory by the C program; two
arrays to provide the C program's heap, static and stack space; and a pair of channels
for passing channel pointers to the C program.

Procedural interface

The Type 2 occam interface is defined as follows:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT flag,
[lINT wsl, ws2,
[lINT in, out)

----------- L.,~lit_£~JI----------1-5-1



11.2 occam interface procedures

The parameters are described below:

fs - a channel from the host file server to the C program.

ts - a channel from the program to the host file server.

The channels fs and ts are connected to the channels in[l] and out[l]
which are passed as parameters to the C program - these are provided for the
use of the C runtime libraries only, and should not be used by the application
code.

flag - indicates whether one or two workspaces are to be used.

If the value of flag is set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the value
of flag is set to 1 then the program will run with a single combined workspace.

• ws1- used by the C program for its workspace.

If flag is 0 then this array is used only for the runtime stack, if flag is 1 then
it is used as the program's combined workspace (static, heap and stack).

ws2 - used by the C program as its static/heap workspace when flag is set
to zero, otherwise unused.

in - an array of pointers to occam channels going to the C program.

out - an array of pointers to occam channels going from the C program.

Note: The first two elements in the channel pointer arrays in and out are reserved for
use by the C program's runtime system and cannot be used by the program.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

• inlen and outlen are set to the number of elements in the occam arrays in
and out

in[O] and out [0] are set to NULL

• in [1] is a pointer to the f s channel and is used by the C runtime system to
communicate with the host

• out [1] is a pointer to the ts channel and is used by the C runtime system to
communicate with the host

The remaining elements of the arrays in and out are set to the values in the
corresponding elements of the occam arrays

_1_52 i1;ili~@_'JI-----------



11 Mixed language programming

Example

The following example is an occam procedure, call. prog2, which calls a C program
via the PROC •ENTRY procedure interface:

#INCLUDE "hostio.inc"

PROC call.prog2 (CHAN OF SP fs, ts,
CHAN OF COMM to.process,
CHAN OF COMM from.process)

#USE "hostio.lib"
#USE "centry.lib"

VAL flag IS 1 :
[100000]INT wsi
[l]INT ws2
[3]INT in, out:

SEQ

C interface code

combined heap and stack
stack and heap for program
dummy workspace for program
channel pointers

153

set up user output channel
LOAD.OUTPUT.CHANNEL(out[2], from.process)

-- set up user input channel
LOAD.INPUT.CHANNEL(in[2], to.process)

-- call program
PROC.ENTRY(fs, ts, flag, wsl, ws2, in, out)
so.exit(fs, ts, sps.success)

Two channels are declared of type coo, the first being an input channel to the process,
the second an output channel from the process. (The declaration of protocol type COD
is assumed.)

11.2.6 Type 3 interface definition

The Type 3 interface is used to run programs which communicate with other processes
on the same processor or in a network of processes, but which do not require access
to host services. Processes built with the Type 3 interface can communicate with other
processes through channels in the same way as Type 2 processes.

Programs using the Type 3 interface must be linked with the reduced C runtime library.

The parameters for the Type 3 procedure are:

a flag value to control the use of memory by the C program;

two arrays to provide the C program's heap, static and stack space and

~SGS-tHOMSON------------ ~'T~ ~o©oomu,I?©'ii'OO@lK!JIl©~------------



11.2 occam interface procedures

a pair of channels for passing channel pointers to the C program.

Procedural interface

The interface for Type 3 equivalent occam processes is defined below:

PROC PROC.ENTRY.RC (VAL INT flag,
[]INT wsl, ws2,
[]INT in, out)

The parameters are described in the following list.

• flag - indicates whether one or two workspaces are to be used.

If the value of flag is set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the value
of flag is set to 1 then the program will run with a single combined workspace.

• wsl- used by the C program for its workspace.

If flag is 0 then this array is used only for the runtime stack, if flag is 1 then
it is used as the program's combined workspace (static, heap and stack).

ws2 - used by the C program as its static/heap workspace when flag is set
to zero, otherwise unused.

in - an array of pointers to occam channels going to the process.

• out - an array of pointers to occam channels coming from the process.

Note: The first two elements in the channel pointer arrays in and out are reserved for
use by the C program's runtime system and cannot be used by the occam program.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

inlen and outlen are set to the number of elements in the occam arrays in
and out

in [ 0] , in [1] , out [0] and out [1] are all set to NULL

• The remaining elements of the arrays in and out are set to the values in the
corresponding elements of the occam arrays.

_1_54 ..y~~i~~wl~~~~ _



11 Mixed language programming

Example

The following shows how to call a Type 3 equivalent occam process from occam
source, and how to set up the parameters required. The example consists of an occam
procedure call. prog3 within which a C program is called.

PROC call.prog3 (CHAN OF COMM to.process,
CHAN OF COMM from.process)

IUSE "centry.lib"

VAL flag IS 0

[1000]:INT wsi
[40000]INT ws2
[3]INT in, out:

SEQ

C entry point library

separate heap and stack

stack for program
heap for program
pointers to inputs/outputs

set up user output channel
LOAD.OUTPUT.CHANNEL(out[2], from.process)

-- set up user input channel
LOAD.INPUT.CHANNEL(in[2], to.process)

-- call program
PROC.ENTRY.RC(flag, wsl, ws2, in, out)

~c/ Two channels are declared of type COMM, the first being an input channel to the process,
the second an output channel from the process. (The declaration of protocol type COD
is assumed.)

The first statement sets up a pointer to the output channel, using the procedure
LOAD. OUTPUT. CHANNEL. The second statement sets up a pointer to the input channel,
using the procedure LOAD. :INPUT. CHANNEL. Note that the first two input and output
channels are reserved by the runtime system even though there is no host communica
tion taking place.

11.2.7 Building the occam equivalent process

The occam equivalent processes built from these interfaces can be called from an
occam program in the same way as any other occam procedure. Note that, because
the interface procedures have fixed names, there can only be one process of a particular
type in each linked unit. However, multiple C programs called in this way may be placed
on a processor by the configurer.

Once all the component C and occam code for the complete program has been
compiled, it is linked with the C runtime libraries, the occam entry points library and any
other occam libraries required. The program is then configured and a bootable code
file produced.

----------- L"1£~tDI£~©~ 1_5_5



11.2 occam interface procedures

The occam interface code is supplied in the library eentry • lib. The C libraries can
be linked by using the linker control file elibs .lnk, for the full runtime library, or
elibsrd.lnk, for the reduced runtime library. For example, consider a program that
consists of the following compiled files:

main. teo - the compiled C program to be called from occam

wrap. teo - the compiled occam code that calls the interface procedure

This program can be linked with the full run-time libraries, for a T425 transputer, using
the following command:

ilink wrap.teo main.teo calle. lib -t425 -f elibs.lnk -f oeeama.lnk

156 ~SGS-1HOMSON------------ A.~£ It:'Alo©oo@rn~@&l!It1©~------------



12 Low level programming

This chapter describes a number of features of the toolset occam 2.1 compiler which
support low-level programming of transputers. These are as follows:

Allocation to memory This allows a channel, a variable, an array or a port to be placed
at an absolute location in memory.

RETYPING channels and creating channel array constructors. These facilities enable
channels to be manipulated.

Code insertion This allows sections of transputer code to be inserted into occam
programs.

Dynamic code loading A set of library procedures is provided that allows an occam
program to read in a section of compiled code (from a file, for example) and
execute it.

Extraordinary use of links A set of library procedures is provided which allow link
communications which have not completed to be handled by timeout, or be
aborted by another part of the program.

Scheduling Using the predefined routine RESCHEDULE to reschedule processes.

Setting the error flag The T2rr4rrS-series transputer error flag can be explicitly set or
an ST20450 trap raised using the predefined routine CAUSEERROR.

12.1 Allocation

Allocation is performed using the occam PLACE statement, which is defined formally
as follows:

allocation =PLACE name AT expression :

Section A.3.2 of the occam 2. 1 Toolset Language and Libraries Reference Manual
provides details of the PLACE statement.

The PLACE statement allows a variable to be assigned to a specific memory location.
The variable can be a scalar variable, array variable, channel, or port. This feature may
be used for a number of purposes, for example:

• To map occam channels onto specific transputer links from within an occam
program. Channels mapped onto links in this way are known as 'hard' channels.

To map arrays onto particular hardware such as video RAM.

To access devices (such as UARTs or latches) mapped into the transputer's
address space.

- L'T~I~t.'JI----------1-57-



12.1 Allocation

The PLACE statement must be inserted immediately following the declaration of the
variable to which it refers e.g.

INT x, y, z :
PLACE x
PLACE Y

INT x
INT Y
PLACE x

is correct

is incorrect

12.1.1 The PLACE statement

Normally the PLACE statement should not be used to force critical arrays or variables
into on-chip RAM. The occam compiler allocates memory according to the scheme
outlined in Appendix B of the occam 2. 1 Toolset Language and Libraries Reference
Manual, and cannot allow data to be placed arbitrarily in memory. To make the best use
of fast RAM use separate vector space as described in section 6.5.

The address of a placed object is derived by treating the value of the expression as a
word offset into memory. In occam addresses start at zero, while physical machine
addresses start at MOSTNEG INT (#80000000 on 32-bit transputers and #8000 on
16-bit transputers). An occam address can be considered as a subscript to an INT
vector mapped onto memory. Thus the following statement would cause ehan to be
allocated address #80000004 on a 32-bit transputer:

PLACE ehan AT 1:

Addresses are calculated in this way so that the transputer links can be accessed using
code that is independent of the word length. The links are mapped to addresses 0, 1,
2 ...7; see section 12.1.3.

Translation from a machine address to the equivalent occam address PLACE value can
be achieved by the following declaration:

VAL oeeam.addr IS
(maehine.addr>«MOSTNEG INT» » w.adjust:

where: w. adjust is 1 for a 16-bit transputer and 2 for a 32-bit transputer.

All placed objects must be word aligned. If it is necessary to access a BYTE object on
an arbitrary boundary, or an INT16 object on an arbitrary 16-bit boundary, the object
must be an element of an array which is placed on a word address below the required
address. For example, to access a BYTE port called io. register located at physical
address #40000001 on a 32-bit transputer use the following:

[4]PORT OF BYTE io.regs.vee :
PLACE io.regs.vee AT #30000000 :
io.register IS io.regs.vee[l] :

The PLACE statement must be placed immediately after the declaration of the variable.

-15-8----------Iiii~il@nIIf~~©'-----------



12 Low level programming

12.1.2 Allocating specific workspace locations

A number of specialized transputer instructions require specific workspace placements.
For example, the instructions POSTNORMSN, OUTBYTE, OUTWORD and the disabling ALT
instructions all use workspace location O. When programming in occam this is taken
care of by the compiler, however, if these instructions are used within an ASH construct,
the programmer must specifically reserve the location. See section 12.3.4. To accom
modate this the compiler supports the following allocation:

PLACE name AT WORKSPACE expression:

where: expression is a constant of type INT; see Appendix A in the occam 2. 1 Toolset
Language and Libraries Reference Manual for syntax details.

This is used to ensure that a variable is allocated a particular position within a procedure
or function's workspace. The compiler ensures that a sufficient number of words of
workspace are allocated, and that no other variables are placed at that address. The
compiler will warn if a variable PLACED AT WORKSPACE n is in scope when its own
workspace allocation requires to use that workspace location, or when another is
PLACED at the same location.

For example on an IMS T425, the POSTNORMSN instruction can be used to pack a
floating point number; it requires an exponent to be previously stored at workspace
offset O. The following code may be used:

REAL32 FUNCTION pack (VAL INT guard, frac, exp, sign)
REAL32· result
VALOF

INT temp :
PLACE temp AT WORKSPACE 0
SEQ

temp := exp
ASH

LDAB guard, frac
NORM
POSTNORMSN
ROUNDSN
LDL sign
OR
ST result

RESULT result

For the background on this example, see the Transputer instruction set -a compiler
writer's guide, section 7.11.2. Use of the ASH construct is described in section 12.3.

12.1.3 Allocating channels to links

The facility to map channels onto links from the source code is largely redundant:

• it is not recommended that channels between processors are allocated to
specific links as the configurer will perform the allocation automatically;

___________ i.YiI~I®1"~.1 1_5_9



12.1 Allocation

the configuration language enables channels to be explicitly mapped to links for
those situations where this is mandatory i.e. for channels at the edges of a
network e.g. connecting the host or a peripheral device to the network.

• If a link is described in a configuration description then it should not be used
directly as well. This is because all links known to the configurer will be used by
it when forming the network connections. In addition, the configurer may use any
of the links in order to set up virtual links. Attempting to use any links directly in
such situations will result in undefined behavior.

The mechanism for allocating channels to links from the source code is described here
for completeness, however, it is strongly recommended that only mandatory allocations
are performed and that they are done using the configuration language; see chapter 7.

When mapping channels to specific transputer links, the channel word is placed at the
specified address for scalar channels. Arrays of channels, however, are mapped as
arrays of pointers to channels:

PLACE scalar.channel AT n:

places the channel word at that address.

PLACE array.of.channels AT n:

places the array of pointers at that address.

The following two code fragments illustrate the placement of channels on links.

CHAN OF ANY in.linkO, out.linkO
PLACE in.linkO AT linkO.in:
PLACE out.linkO AT linkO.out:

CHAN OF ANY in.linkl, out.linkl
PLACE in.linkl AT linkl.in:
PLACE out.linkl AT linkl.out:

CHAN OF ANY in.link2, out.link2
PLACE in.link2 AT link2.in:
PLACE out.link2 AT link2.out:

CHAN OF ANY in.link3, out.link3
PLACE in.link3 AT link3.in:
PLACE out.link3 AT link3.out:

CHAN OF ANY in. event :
PLACE in. event AT event. in:

or:

CHAN OF ANY out.linkO, out.linkl, out.link2, out.link3
PLACE out.linkO AT linkO.out
PLACE out.~inkl AT linkl.out :
PLACE out.link2 AT link2.out :
PLACE out.link3 AT link3.out :
[4]CHAN OF ANY outlink IS [out.linkO, out.linkl,

out.link2, out.link3]

_16_o Eil5t1tftlf'©~ _



12 Low level programming

CHAN OF ANY in.linkO, in.linkl, in.link2, in.link3 :
PLACE in.linkO AT linkO.in
PLACE in.linkl AT linkl.in :
PLACE in.link2 AT link2.in :
PLACE in.link3 AT link3.in :
[4]CHAN OF ANY inlink IS [in.linkO, in.linkl, in.link2,

in.link3]:

Link addresses are defined in the include file linkaddr. inc that is supplied with the
toolset.

Although shown here as CHAN OF ANY channels you should use specific occam
channel protocols wherever possible to ensure that channels are properly checked at
compile time.

A T2fT4rrS-series transputer only has the one e\len,t,.ein. Event addresses are defined
in the include file 1 inkaddr • inc that is supplied with the toolset.

The following code fragments illustrate the allocation and use of event channels.

CHAN OF BYTE event :
PLACE event AT event. in:

BYTE dummy:
event ? dummy

Although the example shown here use CHAN OF BYTE channels you could use any
channel protocol.

12.2 Retyping channels and creating channel array constructors

Channels may be RETYPEd (see also A.2 of the occam 2. 1 Toolset Language and
Libraries Reference Manua~. This allows the user to change the protocol on a channel
in order to pass it as a parameter to another routine, for example:

PROTOCOL PROT32 IS INT32
PROC P (CHAN OF INT32 X)

X ! 99(INT32)

PROC ql (CHAN OF PROT32 y)
SEQ

P (y) -- this is illegal
CHAN OF INT32 z RETYPES y
p(z) -- this is legal

The facilities for RETYPEing channels should only be used by programmers who under
stand the implementation of transputer channels, and the implications of attempting to
circumvent the checking of channel usage in occam. These facilities may be useful for
those programmers who are using occam at a very low level, for example, writing
loaders and other operating system type functions.

----------- ~~itrrll'91----------1-6-1



12.2 Retyping channels and creating channel array constructors

The current implementation of channels allows flexible use of channel arrays, which are
implemented as an array of pointers to channel words. This means, for example, that
it is possible to create an array of channels which map onto the hard links in a different
order than 0 to 3, by using channel array constructors. For example:

CHAN OF P out.linkO, out.linkl, out.link2, out.link3
PLACE out.linkO AT linkO.out
PLACE out.linkl AT linkl.out
PLACE out.link2 AT link2.out
PLACE out.link3 AT link3.out
[4]CHAN OF P outlink IS [out.link3, out.linkl,

out.link2, out.linkO]

A particular effect of this implementation is that it may be useful to retype channels into
integers, in order to give the programmer access to these pointers. A programmer may
set up an array of integers whose values are the addresses of channel words, and then
use these as addresses of channels, for example:

[n] INT x:
SEQ

••• initialize elements of array x to MOSTNEG INT

[n]CHAN OF protocol c RETYPES x:
SEQ

••• then communicate on c[i]

This will use the contents of x [ i] as the address of the channel word. Note: channels
set up in this way are not initialized automatically; you should initialize the contents of
the channel word to MOSTNEG INT yourself, unless the channel word is mapped to a
hard link.

Similarly channels may be retyped into pointers:

[n]CHAN OF protocol c :
SEQ

VAL [n] INT x RETYPES c:
SEQ i = 0 FOR n

SEQ
so.write.string (fs, ts, "The address of the

channel word of cry)
so.write.int (fs, ts, i, 0)
so.write.string (fs, ts, "] is : ")
so.write.hex.int (fs, ts, xli], 8)
so.write.nl (fs, ts)

Note: retyping channels to pointers must be a VAL RE';I.'YPE. You may not modify the
values of the pointers.

Single channels may be RETYPEd to and from INTS.

_16_2 ~~itnlt~lf~~' _



12 Low level programming

Channel retyping should not be used to create arrays of existing channels. (See also
section A.2 of the occam 2. 1 Toolset Language and Libraries Reference Manua~.

Channel array constructors may be used for this purpose:

PROC faney.mux ([2]CHAN OF INT in, CHAN OF INT spare, out)
[3]CHAN OF INT e IS [in[O], in[l], spare] :

WHILE TRUE
ALT i = 0 FOR 3

INT data :
eli] ? data

out ! data

12.3 Code insertion

This section describes the facilities provided by the occam 2.1 compiler code insertion
mechanism using ASH. A formal description is given in Appendix B.

The code insertion mechanism enables the user to access the instruction set of the
transputer directly within the framework of an occam program. Symbolic access to
occam variable names is supported, as is automatic jump sizing. More details on the
T2fT41T8-series transputer instruction set may be found in The transputer instruction
set: a compiler writer's guide. The ST20450 instruction set is described in The ST20
Instruction Set Reference Manual.

Code insertion may be employed to perform tasks which are not possible in occam, or
for particularly time-critical sections of a program. There are two reasons, however, why
code insertion should be avoided as a solution to problems which may, with some
thought, be solved using occam.

The first and most important reason is that the validity of a system consisting entirely of
occam can be checked by the compiler. The compiler can check usage of channels,
access to variables, communication protocols and range violations, and a single code
insert prevents the compiler from performing these checks adequately. A second reason
is that the transputer instruction set is optimized for high level languages, particularly
occam, and algorithms which are simple to code and easy to debug in occam may
become difficult and obscure when coded in the transputer instruction set directly.

12.3.1 Using the code insertion mechanism

Code insertions may be introduced by the ASH construct. This section describes the use
of the ASH construct. Details of the syntax are given in Appendix B.

The context of the ASH construct is determined, as with all occam constructs, by the
text indentation. The transputer instructions which follow the ASH must be indented and
there can only be one instruction per line. Lines may be terminated by a comment, which
is introduced by a double dash (- -) as in occam. The transputer instructions are upper
case versions of the standard mnemonics listed in The transputer instruction set: a
compiler writer's guide.



12.3 Code insertion

Compiler options determine which instructions may be used within sections of code
insertions, in the unit being compiled. The default is to disallow all code inserts. If the G
option is used, then the instructions allowed are a restricted set of instructions which are
sufficient for time-critical sections of sequential code. If the woption is used, then all
transputer instructions are allowed. Since the inclusion of some instructions may have
an unexpected effect on the occam program (for example, instructions which move the
workspace pointer), instructions outside of the restricted set must be used with great
care. Transputer instructions in the restricted set are listed in section B.3.

ASM statements can contain any number of primary or secondary transputer operations,
transputer pseudo-operations, or labels.

In the transputer instruction set primary operations are direct instructions, prefixing
instructions, or the special indirect instruction opr. Primary operations are always
followed by an operand which can be any constant or constant expression. If additional
pfixor nfix instructions are required to encode large values the ASM assembler automati
cally generates the required bytes. Secondary operations are any transputer operation,
that is, any instruction selected using the opr instruction. Pseudo-operations are direc
tives recognized by the compiler. They expand into one or more instructions, depending
upon their context and parameters.

For example, to perform a 1's complement addition we can write the following:

INT carry, temp:
SEQ

carry, temp := LONGSUM (a, b, 0)
c := carry PLUS temp

If this occurs in a time-critical section of the program we might replace it with:

ASM
LDABC a, b, 0
LSUM
SUM
ST c

which would avoid the storing and reloading of carry and temp. (Note: such examples
are specific to the current compiler implementation; future releases are likely to behave
differently).

Values in the range MOSTNEG INT to MOSTPOS INT may be used as operands to all
of the direct functions without explicit use of prefix and negative prefiX instructions.
Access to non-local occam symbols is provided without explicit indirection, if you use
the pseudo-instructions LD, LDAB etc.

A more complex example, which sets an error (T2IT41T8-series transputers) or traps
(ST20450) if a value read from a channel is not in a particular range, takes advantage
of both these facilities:



12 Low level programming

push value of free
variable onto stack
followed by 512
if NOT (0 < a <= 512)
then set error

CCNT1

INT a:
other code

PROC get.and.check.index (CHAN OF INT c)
SEQ

c ? a
ASH

LDAB 512, a

If there is a requirement for the code insertion to use some work space, then the work
space may be declared before the ASH construct, in which case, the work space loca
tions are accessed like any other occam symbol.

INT a
SEQ

INT b, c
ASH

LD a
ST b

more code

push value in a onto stack
pop value from stack into b

12.3.2 Special names

The following special names are available as constants inside ASK expressions.

•WSSIZE Evaluates to the size of the current procedure's workspace. This will be
the workspace offset of the return address, except within a replicated
PAR, where it will be the size of that replication's workspace require
ment.

•VSPTR Evaluates to the workspace offset of the vector space pointer. When it
is used inside a replicated PAR, it points to the vector space pointer for
that branch only. A compile time error is generated if there is no vector
space pointer because no vectors have been created.

•STATIC Evaluates to the workspace offset of the static link. When it is used
inside a replicated PAR it points to the static link for that branch only. A
compile time error is generated if there is no static link.

For example, to determine the return address of a procedure, the following could be
used:LDL .WSSIZE.

It is not checked that these names are used sensibly, for example, J •WSSIZE is legal
even though it has no useful effect.

___________ ~.,~lil@._-----------1-65-



12.3 Code insertion

12.3.3 Labels and jumps

Labels may be defined inside an ASH construct. Labels are in scope for the entire
procedure or function; thus both forward and backward references are permitted. It is
illegal to declare two labels with the same name in the same routine.

To insert a label into the sequence of instructions, put the name of the label, preceded
by a colon, on a line of its own. When the label is used in an instruction, the name is again
preceded by a colon. For example:

ASH
some instructions

:FRE;D
some more instructions

CJ :FRED

Labels are declared in a different name space from ordinary identifiers; thus it is possible
to have both a label x and a variable x in scope at the same time; the label is recognized
in context (following a :). This will not necessarily be true in all implementations.

Branches may only be made to a label defined within the same procedure or function.
It is permitted to branch to a PROC or FUNCTION which is in scope; it is up to the assembly
programmer to load the parameters for the call correctly.

12.3.4 Workspace zero

Some transputer instructions make use of data at the current workspace pointer, known
as workspace zero. These instructions are OUTBYTE, OUTWORD, POSTNORMSN and the
ALT disabling instructions.

If these instructions are used inside ASH, it is the programmer's responsibility to reserve
this location by means of the allocation:

PLACE name AT WORKSPACE n :

See section 12.1.2 for details of workspace allocation.

12.3.5 Below workspace slots

Some instructions require various words at small negative offsets of workspace to be
reserved. The compiler automatically reserves these when it sees the instructions listed
in table 12.1 inside an ASH statement.

Instructions Negative offsets

IN OUT OUTBYTE OUTWORD 3

ALT ALTWT ENBC ENBS 3

DISC DISS 3

VIN VOUT LDCNT 3

ENBG DISG GRANT 3

TIN TALT TALTWT ENBT DIST 5

Table 12.1 Instructions requiring workspace slots

_16_6 ~~iI@_'9©' _



167

12 Low level programming

12.3.6 Channels

Channels may be accessed in ASH; they are considered to be a pointer to a channel
word. Thus loading a channel will load a pointer to the channel word, and loading the
address of a channel will load a pointer to a pointer to the channel word.

12.3.7 Programming notes

Floating-point (fp) registers cannot be loaded directly; they must be loaded or
stored by first loading a pointer to the value to be loaded, into an integer register
and then using the appropriate floating-point indirect load instruction.

2 The operands to the load pseudo-ops must be small enough to fit in a register
and the operands to the store pseudo-ops must be word-sized modifiable
elements.

3 Code insertion using the GOY construct is obsolescent.

12.4 Dynamic code loading

The toolset compiler permits the dynamic loading and execution of code using the
procedures described in this section.

These procedures are provided automatically by the compiler and are not referenced
by a IUSE directive. The procedures allow you to write an occam program that reads
in a compiled occam procedure, and then calls it. The called procedure may be
compiled and linked separately from the calling program and read in from a file. It is
possible to pass parameters to the procedure, which must have at least 3 formal param
eters.

Dynamically loadable code files can be created using the icolleet Koption. By default
they are given the •rse extension.

(Note that if you wish to dynamically load occam FUNCTIONS, it is recommended that
you call the FUNCTION indirectly from an occam PROC, and use non-VAL parameters
to return the results to the calling environment).

The procedures for setting up parameters before the call and for making the call are
outlined in the table below, and described in the following sections, with examples.
Further information and examples of this technique can be found in section 5.3.5 of The
Transputer Applications Notebook - Systems and Performance.

Procedure Parameter Specifiers

KERNEL.RUN VAL [ ] BYTE code,
VAL INT entry.offset,
[]INT workspace,

VAL INT no.of.parameters

LOAD.INPUT.CHANNEL INT here, CHAN OF ANY in

LOAD.INPUT.CHANNEL.VECTOR INT here, []CHAN OF ANY in

LOAD. OUTPUT. CHANNEL INT here, CHAN OF ANY out

LOAD.OUTPUT.CHANNEL.VECTOR INT here, []CHAN OF ANY out

LOAD.BYTE.VECTOR INT here, VAL [ ] BYTE bytes

~SGS·1HOMSON------------ "''T~ ~O©OO@~~O©®------------



12.4 Dynamic code loading

The collector tool icollect can produce code in a format suitable for dynamic loading.
The tool is described in chapter 5 of the Toolset Reference Manual.

12.4.1 Calling code

The occam 2 compiler recognizes calls of a procedure KERNEL. RUN with the following
parameters:

PROC KERNEL.RUN (VAL []BYTE code,
VAL INT entry.offset,
[]INT workspace,
VAL INT no.of.parameters)

The effect of this procedure is to call the procedure loaded in the code buffer, starting
execution at the location code [entry. offset] .

The code to be called must begin at a word-aligned address. To ensure proper align
ment either start the array at zero or realign the code on a word boundary before passing
it into the procedure.

The workspace buffer is used to hold the local data of the called procedure. For details
of the contents of the workspace buffer see figure 12.1. The required size of this buffer
and the code buffer must be derived from information in the code file.

The parameters passed to the called procedure should be placed at the top of the
workspace buffer by the calling procedure before the call of KERNEL. RUN. The call to
KERNEL. RUN returns when the called procedure terminates. If the called procedure
requires a separate vector space, then another buffer of the required size must be
declared, and its address placed as the last parameter at the top ofworkspace. As calls
of KERNEL. RUN are handled specially by the compiler it is necessary for
no. of •parameters to be a constant known at compile time and to have a value ~ 3.

workspace
[(SIZE workspace)-l]

vector space pointer
or last parameter

1st parameter

workspace [0]

saved Wptr

[no.of.parameters+2]INT

parameters

saved Iptr

[ws.requirement]INT

workspace of
called procedure

Figure 12.1 Workspace buffer

saved by KERNEL. RUN

loaded by caller
(must be ~ 3)

saved by KERNEL. RUN

_16_8 L~£ ~~©.£~©, _



12 Low level programming

The workspace passed to KERNEL. RUN must be at least:

[ws.requirement + (no.of.parameters + 2)]INT

where ws •requirement is the size of workspace required, determined when the called
procedure was compiled and stored in the code file; no. of •parameters includes the
vector space pointer if it is required. The parameters must be loaded before the call of
KERNEL. RUN. The parameter corresponding to the first formal parameter of the proce
dure should be in the word adjacent to the saved Iptr word, and the vector space
pointer or the last parameter should be adjacent to the top of workspace where the Wptr
word will be saved.

12.4.2 Loading parameters

There are a number of library procedures to set up parameters before the call. These
are:

LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)

The variable here is assigned the address of the input channel in.

LOAD.INPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY in)

The variable here is assigned the address of the base element of the channel
array in (Le. the base of the array of pointers).

LOAD. OUTPUT. CHANNEL (INT here, CHAN OF ANY out)

The variable here is assigned the address of the output channel out.

LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY out)

The variable here is assigned the address of the base element of the channel
array out (Le. the base of the array of pointers).

LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)

The variable here is assigned the address of the byte array bytes.

Note: that when passing vector parameters, if the formal parameter of the PROC called
is unsized then the vector address must be followed by the number of elements in the
vector, for example:

LOAD.BYTE.VECTOR(param[O], buffer)
param[l] := SIZE buffer

Thus an unsized vector parameter requires 2 parameter slots. The size must be in the
units of the array (not in bytes, unless it is a byte vector, as above). For multi-dimensional
arrays, one parameter is needed for each unsized dimension, in the order that the
dimensions are declared.



12.4 Dynamic code loading

All variables and arrays should be retyped to byte vectors before using
LOAD. BYTE. VECTOR to obtain their addresses, using a retype of the form:

[]BYTE b.vector RETYPES variable:

LOAD. BYTE. VECTOR should also be used to set up the address of the separate vector
space.

12.4.3 Examples

This section gives two examples of dynamic loading. The first is a simple example
showing how code without parameters can be input on a channel and loaded. The
second is a more complex example showing how to set up and pass parameters into a
dynamically loaded program. Sources can be found in the examples directory.

Example 1: load from link and run

This is a simple procedure to load a code packet without parameters from a link and run
it. The type of the packet is given by the protocol:

PROTQCOL CODE.MESSAGE IS INT::[]BYTE; INT; INT

The code is sent first, as a counted array, followed by the entry offset and workspace
size.

PROC run. code (CHAN OF CODE.MESSAGE input,
[]INT run.vector, []BYTE code.buffer)

VAL no.parameters IS 3: -- smallest allowed
INT code.length,entry.offset,work.space.size:
INT total.work.space.size:
SEQ

input? code.length::code.buffer;
entry. offset; work.space.size

total.work.space.size :=
work. space. size + (no.parameters + 2)

[]INT work.space IS [run.vector FROM 0 FOR
total.work.space.size]

KERNEL.RUN (code.buffer, entry. offset,
work. space, no.parameters)

Example 2: system loader

This example shows how to set up parameters prior to running code loaded from a file.
It is assumed that the code requires use of a separate vector space.

Consider a process with an entry of the form:

PROC process (CHAN OF SP fs, ts, []INT buffer,
VAL BOOL debugging, INT result)

_17_0 ~I~~@~~©, _



12 Low level programming

The two channel parameters f sand ts handle output from and input to the file server;
the INT vector acts as a buffer. The two channels and the buffer are the same parame
ters as are provided by the bootstrap code added by the collector tool (see chapter 5 in
the Toolset Reference Manua~, and the example takes advantage of this. The fourth
parameter is a value parameter that will not be changed by the process, so only the value
needs to be passed. The final parameter is an INT that will be changed by the process,
and its address must be passed into the procedure.

The calling program is shown below. The program reserves 256 bytes for the code that
is to be read in; if you use this program make sure you modify this value to suit the size
of your own code.

#INCLUDE "hostio.inc"
PROC call.program (CHAN OF SP fs, ts, []INT free.memory)

-- Variables for holding code and entry and workspace
-- data read from file
[256]BYTE code:
INT code. length, entry.offset, work.space.size:
INT vector.space.size:
INT result: Variable used by process
VAL debugging IS TRUE: Value param for process
VAL no.params IS 7: No. of parameter slots

Need 1 slot per parameter + 1 for the size of the
-- array parameter + 1 for the vector space pointer

SEQ
Read in code and data about code
Slice up memory vector for use by process
Reserve work space requirement for process

[]INT ws IS [free.memory FROM 0 FOR
work.space.size + (no.params + 2)]:

-- Reserve vector space requirement for process
[]INT vs IS [free.memory FROM SIZE ws FOR

vector.space.size]:
-- Reserve remainder of memory for use
-- as process parameter buffer
[]INT buffer IS

[free.memory FROM (SIZE ws) + (SIZE vs) FOR
(SIZE free.memory) - «SIZE ws) + (SIZE vs»]:

SEQ
Reserve slot in ws for parameters

[]INT parameter IS [ws FROM work.space.size + 1 FOR no.params]:
SEQ

LOAD.INPUT.CHANNEL (parameter[O], fs)
LOAD.OUTPUT.CHANNEL(parameter[l], ts)

-- Retype buffer to take its address
[]BYTE b.buffer RETYPES buffer:
LOAD.BYTE.VECTOR(parameter[2], b.buffer)
parameter [3] := SIZE buffer

-- Store VAL BOOL parameter
parameter [4] := INT debugging
-- Store address of INT parameter
[]BYTE b.result RETYPES result:
LOAD.BYTE.VECTOR(parameter[5], b.result)

------------ '''1£ ~1@Mcf~YAl 1_7_1



12.5 Extraordinary use of links

-- Store pointer to vector space
[]BYTE b.vs RETYPES vs:
LOAD.BYTE.VECTOR(parameter[6], b.vs)

-- Run the process
KERNEL.RUN([code FROM 0 FOR code.length],

entry.offset, ws, no.params)

This example first declares the variables and constants required for the process. The
vector code should be of a size large enough to hold the code for the process. The
values of the variables code. length, entry. offset, work. space. size and
vector. space. size are determined from the data in the code file.

Next the vector free. memory is partitioned for use as the process's work space, vector
space and as the variable vector used by the process. All vectors and variables used
by the process must be retyped as byte vectors so that their address can be determined
by the predefined routine LOAD. BYTE. VECTOR.

The parameters for the process are then set up. The unsized vector buffer is passed
as an address followed the size of the vector, in integers. Note that the size of buffer,
notb.buffer, is used.

The partitioning of the free memory buffer is illustrated in figure 12.2.

Buffer

Vectorspace

Wptr

Vector space address

Parameters

Iptr

Workspace

.-- Top of free memory

ws + VS

ws

.-- Start of free memory

Figure 12.2 Partitioning of free memory

12.5 Extraordinary use of links

The transputer link architecture provides synchronized communication at the message
level which matches the occam model of communication.

_17_2 iTiIH@m~~©~ _



12 Low level programming

In certain circumstances, it is desirable to use a transputer link even though the synchro
nized message passing of occam is not exactly what is required. For example, if a
process cannot be certain that a processor exists or that the hardware is correctly
connected, then a trial output may be attempted. Using normal occam communication,
it is difficult to recover from a failure of such a trial. In such cases, it would be desirable
to be able to abort a link communication before it is completed. Such extraordinary use
of transputer links is possible but requires great care and the use of some special
occam procedures.

It is important to note that the problem arises from the need to recover from the commu
nication failure. It is perfectly straightforward to detectthe failure within pure occam and
this is quite sufficient for implementing resilient systems with multiple redundancy.

The use of the extraordinary link procedures is described in this chapter. To use them
in a compilation unit, the directive #USE "xlink .lib" should be inserted at the
beginning of the source for that unit. For details of the procedures see chapter 9 in the
occam 2. 1 Too/set Language and Libraries Reference Manua/.

The extraordinary link procedures provided are necessarily slow, and should not be
used routinely where performance is important. In many cases it is sufficient to use these
procedures once to test that the link is connected and an executing process is available
at the other end to communicate. Once this has been established, normal channel i/o
should be used.

The extraordinary link procedures may only be used with link channels which are direct,
as defined in section 7.5.2, and may not be used with interactive debugging.

12.5.1 Programming concerns

The first concern of a designer is to understand how to recognize the occurrence of a
failure. This will depend on the system; for example, in some cases a timeout may be
appropriate, in others the failure may need to be signalled to another process on a
channel.

The second concern is to ensure that even if a communication fails, all input processes
and output processes will terminate. As this cannot be achieved directly in occam, there
are a number of library procedures which perform the required function. These are
described below.

The final concern is to be able to recover from the failure and to re-establish communica
tion on the link. This involves re-initializing the link hardware; again there is a suitable
library procedure to allow this to be performed.

12.5.2 Input and output procedures

There are four library procedures which implement input and output processes which
can be made to terminate even when there is a communication failure. They will termi
nate either as the result of the communication completing, or as the result of the failure
of the communication being recognized.

------------ Eii~tM'91----------1-7-3



12.5 Extraordinary use of links

Two procedures provide input and output where communication failure can be detected
by a simple timeout, the other two procedures provide input and output where the failure
of the communication is signalled to the procedure via a channel.

The procedures are intended to be used as input/output pairs in order to provide secure
communication at both ends of the link; failure to do this could lead to undefined results.
Thus InputOrFail. t should be paired with OutputOrFail. t and the procedure
InputOrFail. c should be paired with OutputOrFail. c, see below.

The procedures have a boolean variable as a parameter which is set TRUE if the
procedure terminated as a result of communication failure being detected, and is set
FALSE otherwise. If the procedure does terminate as a result of communication failure
then the link channel can be reset.

All four library procedures take as parameters a link channel c (on which the commu
nication is to take place), a byte vector mess (which is the object of the communication)
and the boolean variable aborted. The choice of a byte vector as the parameter to
these procedures allows an object of any type to be passed along the channel provided
it is retyped first. Channel retyping (see section 12.2) may be used to pass channels of
any protocol to these procedures.

The two procedures for communication where failure is detected by a timeout take a
timer parameter TIME, and an absolute time t. The procedures treat the communication
as having failed when the time as measured by the timer TIME is AFTER the specified
time t. The names and the parameters of the procedures are as follows:

InputOrFail.t(CHAN OF ANY c, []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

OutputOrFail.t(CHAN OF ANY c, VAL []BYTE mess,
TIMER TIME,
VAL INT t, BOOL aborted)

The other two procedures provide communication where failure cannot be detected by
a simple timeout. In this case failure must be signalled to the inputting or outputting
procedure via a message on the channel kill. The message is of type INT. The names
and parameters to the procedures are as follows:

InputOrFail.c(CHAN OF ANY c, []BYTE mess,
CHAN OF INT kill, BOOL aborted)

OUtputOrFail.c(CHAN OF ANY c, VAL []BYTE mess,
CHAN OF INT kill, BOOL aborted)

Note: these procedures must not be used on virtual channels implemented in software.

12.5.3 Recovery from failure

To reuse a link after a communication failure has occurred it is necessary to reinitialize
the link hardware. This involves re-initializing both ends of both channels implemented

_1_74 ~~il@B.JI-----------



12 Low level programming

by the link. Furthermore, the re-initialization must be done after all processes have
stopped trying to communicate on the link. So, although the InputOrFail and the
OutputOrFail procedures reset the link automatically when they abort a transfer, it is
necessary to use the fifth library procedure Reinitialise (CHAN OF ANY c) after it
is known that all activity on the link has ceased.

The Reinitialise procedure must only be used to reinitialize a link channel after
communication has finished. If the procedure is applied to a link channel which is being
used for communication the transputer's error flag will be set and subsequent behavior
is undefined.

12.5.4 Example - unreliable connections

For our example consider the network illustrated in figure 12.3. The master transputer
needs to be able to recover from a link connection failure.

connection

Master Slave
Unreliable link

Figure 12.3 Unreliable connection

The first step in the solution is to recognize that the master knows when a failure might
occur, and hence knows when it might be necessary to abort a communication.

When the master decides to reset the slave it can send a message to the interface
process directing it to abort any transfers in progress. It can then reset the slave (which
resets the slave end of the link) and reinitialize the link.

The example program below could be that part of the master code which runs when the
slave starts executing and continues until the slave is reset and the link is re-initialized.

SEQ
CHAN OF SIGNAL end. input, end.output :
PAR

interface (link. in, link. out, end. input, end. output)
monitor (end. input, end. output)

reset slave
Reinitialise (link. in)
Reinitialise (link.out)

The monitor process will output on end. input and end. output when it detects an
error on the slave.

The interface process consists of two processes running in parallel; one process outputs
to the link, and the other inputs from the link. As the structures of the two processes are
similar only the output process is illustrated here.

----------- L.,~~t~~ydl------__--1_7_5



12.6 Scheduling

If there were no need to consider the possibility of communication failure the process
might be:

WHILE active
SEQ

ALT
end. output ? any

active := FALSE
from.main ? message

link. out 1 message

This process will loop, forwarding input from from.main to link. out, until it receives
a message on end.output. However, if the slave halts without inputting after this
process has attempted to forward a message, the interface process will fail to terminate.

The following program overcomes this problem:

WHILE active
BOOL aborted
SEQ

ALT
end. output ? any

active := FALSE
from.main ? message

SEQ
OutputOrFail.c (link.out, message,

end. output, aborted)
active := NOT aborted

This program is always prepared to input from end. output, and is always terminated
by an input from end. output. There are two possible cases. The first is where a
message is received by the input which then sets active to FALSE. The second is
where the output is aborted. In this case the whole process is terminated because the
variable aborted would then be true.

12.6 Scheduling

Processes in occam may have one of two priorities, high or low. A high priority process
will be executed in preference to a low priority process if both are active, so that a low
priority process will be interrupted. The PRI PAR construct is used to assign priority to
processes.

Scheduling in occam is achieved using the transputer's scheduler which maintains a
list of processes. The following predefined procedure may be used to affect scheduling:

• RESCHEDULE () - inserts instructions into the program to cause the current
process to be moved to the end of the current priority scheduling queue, even
if the current process is a 'high priority' process.

_17_6 ~li~@-'~I-----------



12 Low level programming

This procedure is recognized automatically by the compiler and does not need to be
referenced by the lOSE directive.

12.7 Setting the error flag

For T2IT4rrS-series transputers (including ST20450) the transputer error flag can be
explicitly set using the following predefined procedure:

CAOSEERROR () - inserts a seterr instruction into the program. If the program is
in STOP or UNIVERSAL mode it inserts a stapp instruction as well.

This procedure is recognized automatically by the compiler and does not need to be
referenced by the lOSE directive.

On a T2rr4rrS-series transputer, CAOSEERROR sets the transputer error flag no matter
what the error mode of the compilation. This is distinct from the occam primitive process
STOP, which only sets the flag if the compilation is in HALT mode.

___________ ~~ii@m9I£Y©~ 1_7_7



12.7 Setting the error flag

-17-8----------lF;ili~@_&~c1-----------



13 EPROM programming

The toolset EPROM software is designed so that programs can be developed, booted
onto a network via link and tested without using ROMs. Once they are working, they can
be placed in ROM with only minor changes.

13.1 Introduction

During development, software is booted onto a network from a link connecting the
network to the host computer. The software is then prepared for a ROM, which is
attached to the root transputer in the network.

Figure 13.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root transputer.

ROM~

Boot
from link

1
Root

transputer
~ Boot f---I-o Boot

boot from from link from link
ROM

1
Boot

from link

Figure 13.1 Loading a network from ROM

To prepare software to be booted from ROM, rather than to be booted from link, the
following steps must be taken:

Rerun the configurer and collector tools with different options so that they
produce ROM-bootable code.

2 Run the ieprom tool to produce a file or set of files suitable for blowing into
EPROM.

Figures 13.2 and 13.3 illustrate the stages of preparing ROM-bootable software. Figure
13.2 shows a non-configured program, compiled and linked for a single processor.

~SGS-1HOMSON 179----------- A.Y£ ~u©oom~@IRIJU©$ -----------



13.1 Introduction

Figure 13.3 shows a configured program, consisting of one or more linked units,
connected by channels and allocated to processors as described in a configuration
description file.

En icollectKf
I

-. InpuVoutput

- -.. References

I

4
Figure 13.2 Preparation of ROM-bootable software (non-configured program)

~ InpuVoutput
_..... References

I

4
Figure 13.3 Preparation of ROM-bootable software (configured program)

ieprom is driven by a control file which normally has the file extension •epr. The control
file describes the layout of the EPROM and gives the file names of the ROM bootable
code file and any memory configuration file. A detailed description of ieprom and its
control file, including examples, is given in chapter 7 of the accompanying Toolset
Reference Manual.

_18_0 iifi~~@~. _



13 EPROM programming

13.2 Processing options

The processing options used will depend on the number of software processes, the
number of transputers available to run the code and whether the code is to run from ROM
or RAM. The following sections outline the possible options.

When preparing C programs to be booted from ROM the configurer must be used in
order to specify the size of stack and heap. This applies even when the application
consists of a single process running on a single processor. A single occam process can
either be configured or prepared as a single, linked program.

13.2.1 Single processor, run from ROM

The application is defined as a collection of processes, connected as described in a
configuration description file. If the application consists of a single occam program then
it can be prepared without using the configurer. It is then run on a single processor, with
the code in ROM, and the RAM is used as the data area.

13.2.2 Single processor, run from RAM

The application is defined as a collection of processes, connected as described in a
configuration description file. If the application consists of a single occam program then
it can be compiled and linked without using the configurer. When booted from ROM, the
processor copies the code into RAM and runs it, using the RAM for the data area.

13.2.3 Multi-processor, run from RAM

The application is defined as a collection of processes, connected and allocated to
processors as described in a configuration description file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from ROM,
the root processor copies its own code into RAM, and loads the rest of the network via
its links. Each processor then sets off its own processes, and the application runs. (This
is the configuration shown in figure 13.1).

13.2.4 Multi-processor, root run from ROM, rest of network run from RAM

The application is defined as a collection of processes, connected and allocated to
processors as described in a configuration description file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from ROM,
the root processor loads the rest of the network via its links, and then continues to run
its own code from the ROM. Each processor then sets off its own processes, and the
application runs.

----------- 1:"1£ litUIIl9©' 18_1_



13.3 The EPROM tool: ieprom

13.3 The EPROM tool: ieprom

The EPROM tool ieprom takes the output of the collector, and produces a file or set of
files suitable for blowing into an EPROM. The following output formats are supported:

• Binary

• Hex

• Intel hex format

• Intel extended hex format

Motorola S-record format

ieprom supports the production of code files in block mode, which allows the code to
be placed in a set of different files. This is useful to program EPROMS organized as
separate byte-wide devices, or where the EPROM programming device does not have
enough memory to hold the entire image.

ieprom also supports the inclusion in the EPROM image of a memory configuration.
Some 32-bit transputers have a configurable memory interface which can be initialized
from a ROM when the transputer is reset. A particular memory configuration can be
specified to ieprom in a text file. These files are known as memory configuration files
and normally have the file extension •memo

There are two forms of memory configuration file for two different types of memory
interface supplied on different transputer versions. Memory configuration files for
ST20450 transputers are created and edited using imem450. Memory configuration
files for IMS T400, T414, T425, TaOO and TaOS transputers are created and edited using
iemit.

The format of these files, and the editing tools imem45 0 and iemit are described in the
accompanying Toolset Reference Manual.

13.4 Producing ROM-boatable code

To produce code suitable for running in ROM or RAM, the configurer and collector tools
must be specified with the appropriate command line options. The follOWing options are
used to configurer single and multi-processor programs and to collect unconfigured
single processor programs:

• The RO option specifies that the code is to run in ROM.

The RA option specifies that the code is to run in RAM.

The RS option specifies the ROM size (if not specified in the configuration
description file). This option does not apply to the occam configurer occonf,
see below.

-1-a2-----------liiili~@U&.I-----------



183

13 EPROM programming

In addition, if using icconf (the C configurer), the P option must be used in order to
specify the name of the root processor.

If using occonf, the NETWORK description in the configuration file should indicate:

which processor is the root processor, by setting its root attribute to TRUE

• the size of the ROM on that processor, by setting its roms i ze attribute to the
appropriate size, in bytes.

The collector will add the appropriate ROM bootstrap to the application code and the
output file will be given the extension •btr.

13.5 Summary of EPROM tool steps for different configurations

13.5.1 Using icconf

Compile and Configure Collect EPROM
link

Single processor, Compile and link Configure with Collect Run ieprom to add memory
run from ROM. a set of units, the RO, RS and P interface (if needed), and

one per process. options. produce EPROM files.

Single processor, Compile and link Configure with Collect Run ieprom to add memory
run from RAM. a set of units, the RA, RS and P interface (if needed), and

one per process. options. produce EPROM files.

Multi-processor, run Compile and link Configure with Collect Run ieprom to add memory
from RAM. a set of units, the RA, RS and P interface (if needed), and

one per process. options. produce EPROM files.

MUlti-processor, root Compile and link Configure with Collect Run ieprom to add memory
runs from ROM, a set of units, the RO, RS and P interface (if needed), and
others from RAM. one per process. options. produce EPROM files.

13.5.2 Using occonf

Compile and Configure Collect EPROM
link

Single processor, Compile and link Configure with Collect Run ieprom to add memory
run from ROM. a set of units. the RO option. interface (if needed), and

produce EPROM files.

Single processor, Compile and link Configure with Collect Run ieprom to add memory
run from RAM. a set of units. the RA option. interface (if needed), and

produce EPROM files.

Multi-processor, run Compile and link Configure with Collect Run ieprom to add memory
from RAM. a set of units. the RA option. interface (if needed), and

produce EPROM files.

Multi-processor, root Compile and link Configure with Collect Run ieprom to add memory
runs from ROM, a set of units. the RO option. interface (if needed), and
others from RAM. produce EPROM files.

~ SGS-1HOMSON------------- li.Tl, ~u©OO@rn~@[R4JD©~ -------------



13.5 Summary of EPROM tool steps for different configurations

_18_4 !iiil~tmll&. _



14 ST20450 memory interface
configuration

This chapter describes the process of designing a configuration for the ST20450
external memory interface, using the toolset software. It assumes that a memory system
has already been designed, although it does consider some implications for memory
design. Some illustrative examples are shown, which are not full worked examples, but
show how the interface configuration relates to the requirements of the memory system.

The steps required to build and use the memory configuration code are described in
section 14.9.

The ST20450 is also known as the T450, and is referred to by that names in the memory
configuration.

The memory interfaces for T2fT4fT8-series transputers other than the ST20450 cannot
be initialized by software, and so are not described in this chapter. The iemit tool is
provided to assist hardware and ROM designers of boards using these processors. For
details see the iemit chapter of the Too/set Reference Manua/.

The design of configurations can be aided by the use of the memory interface configurer
tool, imem450. This tool assists with selecting the parameters for an ST20450 external
memory interface. The tool produces a memory interface configuration file, called a
memfi/e, which describes the external memory configuration for a single processor. The
memfile is used to create the initialization data as part of a host file or in a ROM. This
is used to initialize the memory interface of the target hardware before code is loaded.
Details of how to use the memfile to initialize the memory interface are given in
chapter 4.

A memfile is normally needed to build the complete code for an application. It may be
omitted if there is no external memory or if the information is already included in a ROM.
Target hardware supplied with a boot ROM will normally have the memory interface
initialized by the boot ROM, so the user will not need to be concerned with memory
configuration. Target hardware supplied as a boot-from-link board will normally be
supplied with an appropriate memfile.

The memory interface tool can create and modify memfiles interactively, displaying the
effects that the parameters would produce. Alternatively, a memfile may be created or
modified by an ordinary text editor. The imem450 tool can also produce timing data or
waveform diagram files for printing.

The imem450 chapter of the Too/set Reference Manual describes how to use the
memory interface tool and outlines its capabilities. Example displays are provided. The
format of the memfile is given in an appendix to the Too/set Reference Manua/.

Details of the ST20450 memory interface and the configuration registers may be found
in the ST20450 Datasheet.

____________ L..,~I~~@~~' 1_85_



14.1 The memory interface

14.1 The memory interface

The ST20 has an external memory interface (EMI) which provides address decoding,
timing control and refresh functions. It allows up to four banks of memory or other
devices to be used.

The memory interface provides four configurable banks. Each configurable bank can
be initialized to have a different interface with a different data bus width, timing and other
characteristics. Each bank can have a data bus 32 bits, 16 bits or 8 bits wide. This width
is known as the port width. Address decoding between the banks is performed internally
by the memory interface, so in many cases no 'glue logic' is required. Each bank has
its own timing signal strobes, so for each access only the appropriate bank is activated.

The address space is the same as the range of a 32-bit integer, with the most negative
integer (#80000000) at the bottom of the address space and the most positive integer
(#7FFFFFFF) at the top of the address space.

The ST20450 memory map is shown in figure 14.1. The four banks are at fixed
addresses, each occupying a quarter of the total address space. Bank 2 contains the
peripheral registers and is usually used for I/O devices. When the processor boots from
ROM it starts executing code from address #7FFFFFFE, so Bank 3 is normally reserved
for ROM.

The 16 Kbyte of on-chip memory acts as fast internal memory. The address range of
the internal memory is fixed at the bottom of the address space, Le. from #80000000
to #80003FFF. Any access to addresses in this range will access the internal memory,
and external memory will not be accessed. The internal memory can be disabled if
necessary.

Bank 2

Bank 3

40000000 ~~~~~
3FFFFFFF On-chip peripheral
20000000 t-- r---:e9:....is_te_r_s-----f

1FFFFFFF

00000000 liiiilllll~
FFFFFFFF

Bank 1

COOOOOOO
BFFFFFFF

7FFFFFFF fIT0wms~~~

BankO

80000000 a....-__'n_te_rn_a_'S_R_A_M _

Figure 14.1 ST20 memory map

_1_86 E;ili~©.~" _



14 ST20450 memory interface configuration

The peripheral registers, including the EMI configuration registers, are on-chip in the
address space #20000000 to #3FFFFFFF. This space is reserved for such registers and
cannot be accessed through the EMI. Any memory at these addresses cannot be used.

Internal subsystems request memory accesses from time to time, and the internal
memory subsystem decides whether an external access is needed. It can request data
from external memory or memory-mapped devices, or it can send data to external
memory or memory-mapped devices. Such requests are handled by the memory inter
face.

Before the external memory can be used, the memory interface needs to know some
details of the external memory, such as its timing and refresh requirements. This data
is known as the memory interface configuration. This configuration data is held in
configuration registers, which are written to during initialization.

ST20

Strobes 3
Strobes 2
Strobes 1
Strobes 0

MemAddr2-31

MemDataO-31 I I
32,{ I 32,{ I 8,{ 32,{

SRAM DRAM I/O ROM

3 cycle 4 cycle 6 cycle

64 kByte 1 MByte 256 kByte

BankO Bank 1 Bank 2 Bank 3

Figure 14.2 Example of a mixed memory system

The processor uses 32-bit addresses to address bytes, which gives an address space
of 4 Gbytes. The memory interface has a 32-bit internal address bus. The address bus
appears externally as 30 address pins and four byte-enable strobes, which are used to
select one or more bytes within a word. For 8-bit and 16-bit memories, the unused byte
strobe pins are used for the extra address pins.

For each of the four configurable banks, three separate programmable strobes are
provided. They are given the names notMemRAS, notMemCAS and notMemPS. As
the names suggest, when using DRAM these three strobes are normally used for RAS,
CAS and, for example, Output Enable. They are completely programmable and their
use can be varied depending on the requirements of the system being designed.

____________ iEil.@nIr'~~©~ 1_87_



14.1 The memory interface

There are four byte-enable strobes (notMemBEO-3), all four of which are used by all
the banks. These strobes are used to select which bytes will be read or written and are
normally used for Write Enable. They are programmable in each bank, so the timing
depends on the bank being addressed.

MemAddr2-31

MemDataD-31

Timing and control {

ProcClockOut
notMemRd

notMemRf

MemWait

{

notMemRASQ-3
Strobes for notMemCASQ-3

banks 0 to 3
notMemPSQ-3

Byte enable strobes notMemBEQ-3

{

MemRefreshPending
DMA control MemReq

MemGranted

External
Memory
Interface

Figure 14.3 The memory interface pins

Page 2 - Input Data, General

Processor.Type .- T450

Dram. Refresh. Interval .- 300 Cycles

Dram. Refresh. Time .- 2 Cycles

Dram.Refresh.RAS.High .- 2 Phases

Proc. Clock. Out .- Disabled

Bank 0 non-DRAM

Bank 1 DRAM

Bank 2 non-DRAM

Bank 3

Figure 14.4

"SRAM"

" DRAM"

"FIFO + REGISTERS"

DISABLED

Example imem4 5 0 display page 2

-1-88-----------liiili~@M.©' ------------



14 ST20450 memory interface configuration

In order to allow extension of memory cycles, a MemWait pin is provided that can add
extra clock cycles to the current memory access when it is held high.

The MemReq, MemGranted and MemRefreshPending pins can be used to allow
external devices to take over the address and data bus from the memory interface in
order to perform DMA data transfers, for example.

14.2 General parameters

Figure 14.4 shows an example of page 2 of the imem4 5 0 display, which includes general
parameters which do not refer to any particular bank. The refresh parameters are
discussed in section 14.6.2. Page 3 shows the pad strengths and pages 4 to 7 show the
parameters for banks 0 to 3 respectively.

The four banks can each be marked as DRAM or non-DRAM, which determines possible
parameters. The banks can also be given names, which appear on the timing data
pages and the waveform diagrams.

14.2.1 Waveform diagrams

The imem4 5 0 waveform diagrams should be used to check the general shape of the
timing information.

In some cases it is important to check sequences of memory accesses, such as a
sequence of reads from the same row of DRAM. Page 19 of the imem450 display can
show such a sequence. The sequence of accesses is controlled by the input data shown
on page 8, which defines the bank, type and address for each of up to eight accesses.

Start of
cycle

Ras.Cycle.Time Cas.Cycle.TIme Precharge.Time

Data bus (read)

Data bus (write)

189

Address bus ~L...-.-__ro_w_--J~L.--__C_O_lu_m_n__-J~""-- --'

Rss.Strobe I L] }
Cas.Strobe-II I ,

Programmable.Strobe I I \ / I

Write.Strobe _ I I I
Bus.Release.TIme'. .,

f--------11------.4 ~ta in ~
Data.Drive.Delay .1 I

~ -..L-~_~ data out ~
I

internal read
latch

Figure 14.5 DRAM memory cycle

~SGS-1HOMSON----------- Aa'TL ~u©OO@rnlLmOO@~O©~ ------------



14.3 Timing

Start of
cycle

Bus.

Cas.Cycle.lime I Rel~ase'l
\. _;. Time _.

~'--_----'~ I

~ Ii:

d~ta in ~

~ I

Address bus

Data bus (read) I
Data.Drive.Delay
~ -----.......,

Data bus (write)

Ras.Strobe

Cas.Strobe

Programmable.Strobe
Write.Strobe

internal read
latch

Figure 14.6 Non-DRAM memory cycle

14.3 Timing

The full memory cycle is divided into three sub-cycles, Ras •Cycle. Time,
Cas. Cycle. Time and Precharge • Time, as shown in figure 14.5. The names
Ras •Cycle. Time, Cas. Cycle. Time and Precharge. Time suggest the usual use
of the three sub-cycles with DRAM, but they have no special significance.

When using SRAMs and other memories and devices, it is rarely necessary to define
a Ras •Cycle. Time for the memory cycle; the Cas. Cycle. Time becomes the whole
of the memory cycle, as shown in figure 14.6.

All timing parameters are given in either processor clock cycles or phases. For a
processor of speed m MHz, one cycle is 11m microseconds. A phase is half a cycle. If
the processor speed is m MHz then:

n cycles = fk microseconds

p phases = I'm microseconds

x nanoseconds = x X m X 10 - 3 cycles

= 2 x X m X 10-3 phases

Timings for sub-cycles such as Ras •Cycle. Time, Cas. Cycle. Time,
Precharge •Time and Bus. Release. Time are given in cycles, whereas edge
related timings, namely Time.to.Falling.Edge, Time.to.Rising.Edge and
Ras •Edge. Time, are defined in phases.

14.3.1 Strobes

A set of timing strobes is provided for each bank for use as timing signals. They can be
configured to become active at appropriate times. The strobes are provided by the pins

_1_9o Eiili~@_.~~ _



191

14 ST20450 memory interface configuration

notMemCASO-3, notMemRASO-3 and notMemPSO-3. In addition there is a set of four
byte enable strobes, notMemBEO-3, used to select the bytes being accessed, which
all apply to all four banks. The names of the strobes used by imem450 correspond to
these pins, as shown in table 14.1.

Pin name Strobe

notMemCASO-3 Cas.Strobe

notMemRASO-3 Ras.Strobe

notMemPSO-3 Programmable. Strobe

notMemBE-3 Write.Strobe

Table 14.1 Strobe names

Appropriate names can be given to the strobes. These names have no significance
except that they appear on the timing waveform diagrams.

Suitable timing strobes should be selected to drive the control pins of the devices in the
bank. The strobes Cas. Strobe, Programmable. Strobe and write. Strobe are
similar in that they start high and can be made to fall and rise during the
Cas. Cycle. Time. If the rising edge parameter implies that the rising edge will be after
the end of the CAS cycle time, then the strobe will rise at the end of the CAS cycle time.
If the rising and falling edges coincide or the rising edge is before the falling edge or the
falling edge is after the end of the cycle time, then the strobe will be inactive.

The Ras. Strobe is similar but differs in that it can be made to fall during
RAS •Cycle. Time, as described in section 14.6.1. This facility is provided so that it can
be used to latch the RAS address on DRAMs.

The Write. StrobeS are usually used to drive the read/write pins. The timing of the
Write •StrobeS is defined separately for each bank, although it refers to the same set
of write strobe pins common to all the banks. The timing of these strobes depends on
which bank is being accessed.

14.3.2 Timing skews

Each rising or falling timing strobe edge is specified relative to either the start of
Ras •Cycle •Time orthe start of Cas. Cycle •Time. Each of these edges is subject to
timing skew depending on the external loading of the memory interface pins. These
skews must be considered when designing the interface configuration.

As well as skews due to the memory interface, other sources of skew and delay should
also be taken into account when calculating timing parameters. For example, if a bank
is sub-decoded using logic gates, then the propagation delay through the gates will

'~ delay signal edges.

14.4 Configuring for no external memory

Many ST20 family devices can be used without any external memory or external I/O,
since a communication link can be used to set up and bootstrap the device, and internal
memory is provided on-chip.

~SGS-1HOMSON------------ "T£ It:A]O©OO@~~OO~u©~------------



14.5 Configuring for SRAM

If there is no external memory then no memfile is needed, but a memfile may be
supplied, in which case the memory should be configured as in figure 14.7.

Page 2 - Input Data, General

Processor.Type
Dram. Refresh. Interval

Proc.Clock.Out

:= T450
:= Refresh Disabled

:= Disabled

Bank 0 DISABLED

Bank 1 DISABLED

Bank 2 DISABLED

Bank 3 DISABLED

Figure 14.7 Example imem450 display for no external memory

Page 5 - Input Data, Bank 1 "SRAN"

Data.Drive.Delay := 2 Phases

Ras.Strobe
Inactive

Port.Size

Cas. Strobe
Inactive

:= 32 bits

Programmable.Strobe Write. Strobe
notCE notWR
Time.To.Falling.Edge := 1 Phase Time.To.Falling.Edge := 3 Phases
Time. To.Rising. Edge := Inactive Time.To.Rising.Edge:= 5 Phases
Falling := Rd Ii: Wr, Rising := Rd Ii: Wr Falling:= Wr, Rising:= Wr

Cas. Cycle.Time
Wait.pin

:= 3 cycles
:= Disabled

Bus. Release. Time 1 cycle

Figure 14.8 Example display page for SRAM

14.5 Configuring for SRAM

SRAM (Static RAM) banks are normally marked as non-DRAM. The software assumes
that non-DRAMs will have the following characteristics:

No refresh is needed.

• Address pins are not multiplexed.



193

14 ST20450 memory interface configuration

Bus

I- Cas.Cycle.Time .I~ Release .1
I Time I

Address bus ~ ~ I

I I :

Ras.Strobe

Cas.Strobe

Time.To.Falling.Edge

1 IProgrammable.Strobe RnotCE

I I I
Time.To.Falling.Edge

H I,- '\Write.Strobe
notWR I- .,

I ITime.To.Rising.Edge

I d~lain JData bus (read) q
'~~

Data.Drive.Delay I I,- .,
Data bus (write) <ro data out ~ I

Figure 14.9 Example SRAM timing

Paged memory is not supported.

• No precharge time is needed.

Figure 14.8 shows an example of the imem450 input for 64 Kbytes of SRAM in bank 1.
The SRAM is placed at the bottom of the address space, so the base address is
#80000000.

RAS strobe and CAS strobe are not needed, but the Programmable Strobe is used to
drive notCE.

14.5.1 Timings

Figure 14.9 shows the timing roughly corresponding to the SRAM parameters in figure
14.8, showing the meanings of the timing parameters.

The bus release time is the minimum time after a read access to allow the memory to
release the data bus. It is the minimum time after a read access before the start of:

a write access or

• a read access from another bank.

~SGS-THOMSON------------ ...,~ ~o©oom~@fRIJo©~------------



14.5 Configuring for SRAM

I Read cycle I Write cycle or access
1 I to another memory
I I I bank

Databus ~ d ~
1'"--------'1 I
I ~

Bus Release Time

1 Read cycle I Read cycle to the
I I same memory
I 1 bank

Data bus vt.------N/1 1\
~ ~ V
I I

Figure 14.10 Addition of BusReleaseTime between memory cycles

The data drive delay is the time after the start of the write cycle before the data is put
on the bus. These two delays ensure that the memory interface will not attempt to use
the data bus until the device has completely switched off its output drivers.

The wait pin, MemWait, may be used to dynamically delay access times. This may be
used when devices of different speeds are used in the same bank. In this case, the
parameters used would generally be the parameters for the fastest devices, and the wait
pin would be used to slow down the cycle for the slower devices. If the MemWait pin is
not used for this bank, then the bank Wait.pin parameter should be marked as
disabled.

Page 6 - Input Data, Bank 2 "DRAM"

Data.Drive.Delay := 1 Phase
Page.Address.Bits := 003FFOOO

Ras.Strobe
RAS

Time.To.Falling.Edge := 0 Phases
Time. To. Rising. Edge : = 6 Phases
Falling : = Rd &: Wr, Rising : = Rd &: Wr

Port. Size := 32 bits
Page.Address.Shift := 10 bits

Cas. Strobe
CAS

Time.To.Falling.Edge := 1 Phase
Time.To. Rising. Edge := 3 Phases
Falling : = Rd &: Wr, Rising: = Rd &: Wr

Programmable.Strobe Write.Strobe
PS WRITE
Time.To.Falling.Edge := 1 Phases Time.To.Falling.Edge := 3 phases
Time. To. Rising. Edge : = 5 Phases Time. To. Rising. Edge : = Inactive
Falling := Rd &: Wr, Rising := Rd &: Wr Falling:= Wr

Ras •Precharge. Time
Ras •Cycle.Time
Bus. Release. Time

1 cycle
1 cycle
1 cycle

Ras. Edge. Time
Cas.Cycle. Time
Wait.pin

:= 1 phase

:= 3 cycles
:= Disabled

Figure 14.11 Example imem450 display page for DRAM

_1_94 Iiiili~@.£'~ _



14 ST20450 memory interface configuration

14.6 Configuring for DRAM and Video RAM

Any bank may be marked as DRAM (Dynamic RAM), which means that refresh, address
multiplexing and page mode are normally provided, though all of these can be switched
off. Video RAMs are normally configured in the same way as DRAM.

Figure 14.11 shows an example of the imem450 input page for 8 Mbytes of DRAM in
bank 2.

In this example, the memory consists of 8 DRAM parts, each arranged as 1M x 4. Each
has 10 multiplexed address pins. The memory is 32 bits (or 4 bytes) wide, so the two
least significant bits of the 32-bit address select a byte within the width of the memory.
The column address is the ten bits 2 to 11 and the row address is the ten bits 12 to 21,
as shown in figure 14.12.

Connected to
DRAM address pins

Bank selection address Row address Column address Byte
select

bits

Figure 14.12 Example DRAM addressing

Three parameters, Ras •Cycle. Time, Page. Address. Shift and Ras •Edge. Time
are provided to support multiplexed addresses. The parameter Page. Address. Bits
is provided to support page mode. Multiplexed addresses are disabled if
Ras •Cycle. Time is zero and page mode is disabled by adding
Disable.Page.Mode.

The Page •Address •Shift is the number of bits the row address must be shifted to
place it on the DRAM address pins. This is generally equal to the number of address
pins, which is 10 in this example.

Two addresses in this bank are in the same page (Le. the same row) if bits 12 to 21 are
the same. The Page. Address. Bits parameter is the mask for the page address bits,
Le. the mask with bits 12 to 21 set, which is #003FFOOO in this example.

As with SRAM, the wait pin, MemWait, may be used to dynamically delay access times.
This may be used when devices of different speeds are used in the same bank. If the
MemWait pin is not used for this bank, then the bank wai t . P in should be marked as
disabled.

____________ ~1~t_B 1_9_5



14.6 Configuring for DRAM and Video RAM

Ras.pr~charge·1
Time .

'-------_I

I Ras.Edge.. : I Ti "T: R" Ed I I• Time I Ime.•0. ISing. gew: ) I
i Time.To.Falling.Edge i I
'Time.To.Rising.Edge I

--5 ~--I
Tim~.TO.Falli~g.Edge IBUS~~:ase. I,.

j. Ras.Cycle.Time.!. Cas.Cycle.Time .!.
Address bus r row ~ column ~

Ras.Strobe

Cas.Strobe]
Programmable.Strobe

Write.Strobe

Data bus (read)

Data bus (write)

--------+------~......_--:--da_ta_in_~H
Data.Drive.Delay I I
~ r-------,f\

-----------::~ data out Vl----------l

I I I
internal read

latch

Figure 14.13 Example DRAM timing

14.6.1 Timings

Figure 14.13 shows the timing for DRAM, showing the meanings of the timing parame
ters. DRAMs with non-multiplexed address pins should have Ras. Cycle. Time set to
zero.

Ras •Strobe is different from the other strobes because it can be made to fall within
Ras •Cycle •Time. This is done by setting Ras •Edge •Time, as shown in figure 14.13.
Ras . Strobe will then be low at the start of Cas. Cycle. Time. By default,
Ras •Strobe will rise again at the end of Cas. Cycle. Time. To achieve this,
Time.To.Rising.Edge and Time.To.Falling.Edge should both be set to To
end of cycle or the Time. To. Falling. Edge can be set to zero.

If an earlier rise is needed then this can be set using Time.To.Rising.Edge, as
shown in figure 14.14. In this case, Time.To.Falling.Edge should be set to less
than Time. To. Rising. Edge or greater than the Cas. Cycle. Time to avoid the
RAS •Strobe falling again.

The Ras •Strobe is also capable of rising and falling a second time in the same cycle,
as shown in figure 14.14. This is not normally required and the times to rising and falling
edges should be set to end of cycle to avoid this happening.

_1_96 ii;ili~@lt'.cf9©' _



14 ST20450 memory interface configuration

I I
Ras.Precharge. I

,. Ras.Cycle.Time ~I. Cas.Cycle.Time ~I. Time ~ I

Ras.Strobe

Ras.Strobe

I_ Ras.Edgeloo : ~me.To.Rising.Edge I
Time : .• • 1,..--...:....- ----.:

LI. ! I
! Time.To.Falling.Edge i
I ITime.To.I. Ras.Edge. : Rising.Edge II

I Time ~~ !.~.; ',..____-
, ~ u
I ,:nme:r;Falllng.Ed~~ !

Figure 14.14 Alternative Ras •Strobe timings

Ras •Precharge •Time is the time when DRAM charges its internal capacitors. A
precharge time will occur before another access to the same bank if:

• the next access is to a different row or

the next access is to a different bank.

When a precharge sub-cycle occurs, all the strobes for that particular memory bank are
reset inactive and are held in that state until the end of the sub-cycle. Since the DRAMs
are not selected during precharge, the address and data buses can be used to access
other memory banks, thus allowing the precharge to be performed at the same time as
accesses to other banks.

The Bus.Release.Time and Data.Drive.Delay are used to allow time for the
memory to release the data bus. It allows the designer to ensure that the ST20 will not
attempt to use the bus until the device has completely switched off its output drivers.
Bus. Release. Time starts at the end of the Cas. Cycle. Time and can occur at the
same time as the Ras. Precharge . Time. Data. Drive. Delay starts at the begin
ning of the next Cas. Cycle. Time and delays the output of data if it is a write cycle.
Bus.Release.Time plus Ras.Cycle.Time plus Data.Drive.Delay is the
minimum time after a read access before the data bus can be driven in:

a write access or

a read access from another bank.

14.6.2 Refresh

The refresh control parameters on page 2 of the imem45 0 display control the refresh
timings associated with driving DRAMs. There is one set of parameters which controls

____________ Efllit_,~~©, 1_9_7



14.6 Configuring for DRAM and Video RAM

refresh for all the DRAM banks. Banks marked as non-DRAM or with the
Disable. Refresh flag are not refreshed. If two or more types of DRAM are present
with different refresh requirements then the parameters must be set to values which
satisfy all the DRAMs.

Page 2 contains three refresh timing parameters, namely Dram. Refresh. Interval,
Dram. Refresh. Time and Dram. Refresh. Ras •High, and one flag,
Signal.All.Pending.Cycles, as shown in figure 14.15. The timing of a refresh
cycle is shown in figure 14.16.

Dram. Refresh. Interval is the time, in cycles, between successive refresh cycles.
One row of each bank is refreshed in each refresh cycle, so if the time between refreshes
of anyone row in milliseconds is Time.between.refreshes then:

Dram. Refresh. Interval
= Time.between.refreshes x m x 1000 + number.of.rows

where m is the processor speed in MHz.

Dram. Refresh. Time is the time from the falling edge of CAS before RAS and CAS
can be taken high during a refresh cycle. This value is given in cycles. If it is set to zero,
then no refreshing will occur.

Dram. Refresh. Ras •High is the time of the falling edge of the RAS strobe during a
refresh cycle after the CAS strobe goes low. This value is given in phases.

Page 2 - Input Data, General

Processor. Type
Dram.Refresh.Interval
Dram.Refresh.Time
Dram.Refresh.RAS.High
Proc.Clock.Out

:= T4S0
.- 320 Cycles
:= 2 Cycles
:= 2 Phases
:= Disabled

Bignal.All.Pending.Cycles

Bank 0 non-DRAM "BRAM"

Bank 1 non-DRAM "DRAM bank 1"

Bank 2 DRAM "DRAM bank 2"

Bank 3 non-DRAM "FIFO + registers"

Figure 14.15 Example imem display showing refresh parameters

Signal.All. Pending. Cycles defines the meaning of the MemReqOut pin signal.
This is generally used when an external device has direct access to the memory (DMA).



14 ST20450 memory interface configuration

With the Signal.All.Pending.Cycles flag set, the MemReqOut pin is used to
signal that a memory access or refresh is waiting. Otherwise, MemReqOut is used to
signal that a refresh is due.

I
Ras.preCharge·1

I Dram.Refresh.Time Ti_ ~ _ .me~

\'- {r----.---.

i~------J{'-------
Dram.Refresh.RAS.High I

I- ~

Cas.Strobe

Ras.Strobe

Figure 14.16 Refresh timings

14.7 Configuring for ROM

14.7.1 EPROM

EPROMs are devices that contain a programmable non-volatile memory array. These
can be easily programmed to bootstrap a single processor or a multi-processor system,
using the relevant software tools to generate the programming data. EPROMs are often
byte-wide, but may be wider.

EPROM is configured as non-DRAM, in much the same way as SRAM. The strobes
should all be marked as active on read cycles only. By convention, the
Programmable. Strobe is used to drive the notCE pin. The write strobes are not
needed.

14.7.2 Flash EPROM

'~ This type of ROM is electrically erasable, but is non-volatile in the same way as EPROM.
Flash EPROM allows the system to change its own bootstrap code, for example in a
prototype system.

Flash EPROM is configured as non-DRAM, in much the same way as SRAM. The
strobes can all be marked as active on read and write cycles except the write strobes.

14.8 Configuring for non-memory devices

Non-memory devices are generally configured as non-DRAM.

199~SGS·1HOMSON----------- "T£ ~O©OO@[g~@IRIJO©~-----------



14.8 Configuring for non-memory devices

The code being used to access the device should be carefully matched to the width of
the port. For example, reading or writing a word will cause four accesses to a byte-wide
bank. The order of such accesses is not guaranteed.

It may be desirable to configure the bank to wider than the device in order to use block
moves to read or write. The order of accesses within a block move is not guaranteed.
However, the minimum possible number of accesses will be made, even if an interrupt
occurs.

Otherwise, configuring for I/O devices is similar to configuring for SRAM.

14.9 Building and using memory configuration code

ST20450 memory interface configuration code is generated from a memfile and must
be run on the processor before any external memory can be used. The memory inter
face configuration code can be in different forms depending upon the method of booting
the target hardware. The different methods of booting each ST20450 are:

• booting the ST20450 from link with no ROM present;

• booting the ST20450 from a ROM which contains application code;

booting the ST20450 from a memory configuration ROM and then simulating a
boot-from-link.

All SGS-THOMSON T450 TRAMs include a memory configuration ROM. Such TRAMs
may be used as if they were booting from link with the memory interface already
configured.

The method of building and using the memory configuration code in each of these cases
is described in the following sections.

The memory configuration code is small enough to run in the internal memory of the
ST20. It initializes the memory interface and then terminates. The application can then
be loaded, provided that the processor is not reset.

For multi-processor applications, a memory configuration ROM may be used for each
non-root ST20450. Alternatively the example scripts or batch files described in section
14.9.1 may be modified to build a multi-processor memory bootable or ROM code.

14.9.1 Booting from link

A separate bootable file, called a memory boatable, is loaded and run, using irun,
before the application bootable is loaded. Either the - se option can be used on the irun
command line or the path name of the memory bootable may be added to the extra
parameters field of the AServer database, as described below.

The memory bootable configures the memory interface and then simulates the boot
from-link state so that the application bootable code can be loaded. The memory
bootable will run in internal memory, so it does not need access to external memory.



14 ST20450 memory interface configuration

A memory bootable may be generated using the example script bui ldIna for Sun users,
or the example batch file buildma.bat for PC users. These examples are provided
to help with the generation of such bootables and may be found in the example
directory of the release. For example, the following command will build a memory
bootable called mymemcfg.btl from the memfile mymemcfg.mem:

buildma mymemcfg

Running a memory bootable

The memory bootable and the application bootable can be loaded with a single irun
command. irun will automatically load a memory bootable before loading the applica
tion provided the memory bootable is given in the AServer database file. AServer
database files are described in section 8.5. The AServer database file should have been
set up as part of the installation, and the memory bootable will not normally change
unless the hardware is changed.

For example, if the memory bootable is mymem.btl then mymem.btl must be added
in the extra parameters field for the line for the appropriate target hardware connection.
A complete AServer database line for a connection named ST20 might be:

I ST20 I txcs b008p.DLL "#150 #B" I 1 I mymem.btl

Alternatively, the memory bootable file may be explicitly loaded with the irun option se.
For example, to load the memory bootable mymem.btl and then load and run the
application app.btl:

irun -sc mymem.btl app.btl

If memory bootables are given both in the AServer database and on the irun command
line then the one given in the AServer database will be run and then the one given on
the command line. The memory bootable on the command line will therefore overwrite
the effect of the one given in the AServer database.

14.9.2 Booting from an application code ROM

The ROM which contains the application code also includes the memory interface
configuration code. The ROM is generated using the EPROM tool ieprom, as
described in chapter 13. The memfile name must be given in the ieprom control file,
using the memory. configuration statement. For example, to include code derived
from the memfile mymemcfg.mem, the following line should be included in the control
file:

memory. configuration mymemcfg.mem

14.9.3 Booting from a memory configuration ROM

A ROM is used which contains only the memory interface configuration code. The code
in the ROM configures the memory interface and then simulates booting from link so that
the application bootable may be loaded from a link.



14.8 Configuring for non-memory devices

The ROM code may be generated using the example script buildmr for Sun users, or
the example batch file buildmr.bat for PC users. These examples are provided to
help with the generation of such ROM code and may be found in the example directory.
For example, the following command will build ROM code from the memfile
mymemc£g •mem:

buildmr mymemc£g

This produces the file mymemc£g.hex which is suitable for blowing into ROM.

_20_2 lFii~it.£~©' _



•

15 Performance improvement

15.1 Introduction

This chapter describes ways in which to improve the performance of occam programs
which have been built with the occam 2.1 toolset.

Many of the techniques described here are equally applicable to early occam toolsets,
and indeed to many other languages and computer systems. Similarly, many of the
transputer-specific optimizations are relevant when programming transputers in other
languages.

Also discussed are the specific features of the transputer which are amenable to optimi
zations, and how to use the toolsets to take advantage of them. Transputers covered
include the IMS T212, T222, T22S, T400, T414, T42S, T800, T801, TaOS and ST204S0.

15.1.1 Transputer architecture

This chapter will not attempt to describe the transputer architecture. However, the
particular points to note about the transputer, when considering performance improve
ment, are as follows:

On-chip RAM.

Each transputer has a part of its address space implemented as on-chip RAM,
which means that it can be accessed very quickly. There is a noticeable penalty
in accessing external RAM. Much of this chapter describes methods to ensure
that best use is made of this on-chip RAM.

Instruction prefixing.

Transputers use a variable length instruction encoding, which is built up out of
lots of single byte instructions. It is useful to minimize the size of these instruc
tions, both to minimize the code space required, and to minimize the time taken
to fetch the instructions from memory.

In practice, the only instructions whose length can be easily controlled are those which
access local variables; hence it is the layout of local variables which is important.

15.2 Trade-offs and issues

15.2.1 Space versus time

Most optimizations which are performed are intended to minimize the running time of
a program. This is known as optimizing for time. In certain circumstances it is required

----------- L..,£5tM£'l©' 2_03_



15.2 Trade-offs and issues

to minimize the size of a program; either code size, data size, or both. This is known as
optimizing for space. Often a particular optimization will produce an improvement in both
space and time. In general, and in this chapter, most optimizations are aimed to optimize
for time.

15.2.2 On-chip RAM

The on-chip RAM is based at the bottom-of a transputer's memory address space. This
implies that it is important to utilize this space properly. In some cases, the whole
program can fit inside this RAM. In many othercases, however, a decision must be made
as to the best use of this RAM.

As a general rule of thumb, the stack(or workspace) of a program should be placed onto
the on-chip RAM if possible. This is because the transputer instruction encoding makes
data accesses more frequent than instruction accesses, so less penalty will be incurred
if the data resides in fast memory. If there is space, then it is useful to put inner loops
and other frequently used code subroutines into on-chip RAM too.

The occam toolsets attempt to place workspace onto on-chip RAM by default.

Some TRAMs (Transputer Modules) are constructed in such a way that the lowest
external memory in the address space is the next fastest, followed by slower RAM at
higher addresses. Thus the bottom 4K might be on-chip RAM, the next 32K might be
3-cycle external SRAM, followed by 2M of 4-cycle external DRAM. The way these are
treated is exactly analogous to the simpler case; by simply attempting to move the most
important data and code areas to the bottom of memory.

15.2.3 Basic code generation techniques

The compiler supplied with the occam 2.1 toolset generates good code for expres
sions, but does not attempt to optimize code across statement boundaries; future
compilers will. It may be useful to bear this in mind to try to improve performance; for
example, by the introduction of abbreviations for commonly used expressions.

The occam compiler allocates memory statically; that is, given any program the
compiler can determine exactly how much memory is required. This enables the loader
to specify exactly how much workspace is required and to attempt to place it on-chip.

15.2.4 Processor classes and types

The occam 2.1 compiler can create code which can execute on many different types
of transputer; these are known as transputer classes. This facility can be useful to build
libraries which can be used for any transputer type. However, compiling for a particular
transputer type will make most use of the instruction set of that transputer, and therefore
will make a program execute faster.

It is worth noting that you can create a library which contains, for example, both TA and
T425 code. The compiler and linker will automatically select the most specific modules

_20_4 ~1~~@-I9J1-----------



15 Performance improvement

which exist in that library, depending on the command line options supplied to the
compiler or linker. Similarly if both interactive debugging and non-interactive debugging
modules exist in a library, the most specific one (non-interactive) will be chosen.

The rule to use is: always compile and link for the specific transputer type to get the best
performance.

15.2.5 Interactive debugging

The occam 2.1 toolset includes an interactive debugger for executing a program under
user control, allowing breakpointing and other debugging operations. This involves a
certain amount of overhead, both of space and time, because the compiler inserts
run-time library calls for certain operations; these require extra code, and extra stack
space. Once a program has been developed, this facility can be disabled to improve
program performance.

Disabling interactive debugging has two effects. Firstly, it will improve the speed of code
which performs communication, because the interactive debugger requires nearly all
communication to be performed via library routines. The second effect is to reduce the
memory size of the program; this reduces both workspace size (because the library
routines would use stack space) and code size (because the library routines are not
linked in). Also, when interactive debugging is enabled, a generic start-up routine must
be inserted. Configuring a program with interactive debugging disabled, or collecting a
single processor program with interactive debugging disabled, means that simpler
start-up code can be used.

The rule to use is: always compile, link and configure with interactive debugging
disabled to get the best performance.

15.2.6 Virtual routing

This occam configurer provides the ability to use virtual routing. This means that
messages from one transputer to another can be automatically through-routed via
intervening transputers without requiring to be explicitly programmed. Also, many
occam channels may be multiplexed down a single transputer link.

This is performed by library routines which are inserted by the compiler. These are the
same routines as are used by the interactive debugging system described in section
15.2.5. Therefore, to use the virtual routing facilities you must not disable interactive
debugging.

When virtual routing is used, extra processes are placed onto each processor by the
configurer as required. These will use up memory. Therefore if memory space is at a
premium, it will be better not to use the virtual routing facilities. The configurer will
automatically determine when the multiplexing and through-routing are not required,
and will omit the processes. A command line switch NV on the configurer can be used
to forcibly prevent the creation of these processes; in this case an error is issued if they
would have been required.



15.2 Trade-offs and issues

15.2.7 Error modes

occam programs can be compiled in three different error modes; HALT, STOP, and
UNIVERSAL. In HALT mode, as soon as any erroneous process is executed, the whole
processor halts. This is implemented by making use of the transputer's global HaltOn
Error flag. In STOP mode, only that single process is halted. This requires the HaltOn
Error flag to be clear. UNIVERSAL mode is provided to act like either HALT or STOP,
depending on the state of the HaltOnError flag.

Because of the behavior of particular transputer instructions, HALT error mode is the
simplest and fastest to implement. STOP mode requires extra instructions to be inserted
to detect and act on errors. UNIVERSAL mode requires slightly more instructions again.

UNIVERSAL mode does notswitch off all run-time error checking. The u command line
switch can be used to remove error checking code; see section 15.4.1. Thus any error
mode, in combination with the u option, provides the occam UNDEFINED error mode.

The compiler libraries are most efficient in the HALT error mode, so benchmark
programs, and programs which are known to be correct, should be compiled in HALT
error mode, and with the u option.

The rule to use is: always compile, link and configure in the HALT error mode, and
compile and configure with the u option, to get the best performance.

15.2.8 Vector space

The occam compiler uses a technique known as separate vector space to try to
minimize a program's stack requirement. Arrays are placed into a separate area of
memory known as the vector space. This is organized as another stack, in another area
of memory. The idea is that the normal stack (workspace), containing local variables and
the procedure call stack, will then be as small as possible, and will fit into on-chip RAM.
In many cases the time required to access arrays will be less critical than the time to
access local variables, so this provides a useful optimization.

The use of separate vectorspace requires that an extra (hidden) parameter is passed
to each subroutine. In some circumstances this extra cost exceeds the benefit, so it
might be useful to disable the separate vectorspace (using the compiler v option).
Similarly, if the combined workspace and vectorspace would together fit into on-chip
RAM anyway, it will be most efficient to disable the separate vectorspace.

It may be the case that access to most arrays is not critical, but that access to a particular
array is extremely time critical. This single array can be retained in workspace (and
hence more likely to be placed onto on-chip RAM) by a compiler allocation:

PLACE name :IN WORKSPACE:

Alternatively, a program may consist of many small arrays which would benefit from
being placed in workspace, plus a few large arrays which would not. In this case,
separate vector space can be disabled by default. The large arrays can then be explicitly
placed into vectorspace by another allocation:

PLACE name :IN VECSPACE:

206 ~SGS-1HOMSON----------- A.T£ ~O©OO@~~@It:!lD©~ -----------



15 Performance improvement

Finally, the configurer provides attributes which allow the whole vectorspace to be
placed at the bottom of memory, etc; see section 15.4.5.

15.2.9 Alias checking

occam has strict rules about aliasing of variables, to ensure that different variables do
not point to the same data. These rules enable the compiler to make better deductions
about the behavior of a program, and therefore to generate better code. They also
provide a simple model of what a section of program means; its behavior is not affected
by the context in which it is executed.

The occam 2.1 toolset permits a programmer to disable alias checking, but at the
programmer's own risk. In general, it will be better not to. There are two levels of control
over alias checking:

• On a whole program at a time. Alias checking may be disabled for a whole
program, by using the A command line switch, or #OPTION. The compiler will
assume that all variables may alias each other.

For individual variables. #PRAGMA PERMITALIASES may be used to indicate
individual variables which may be aliased. All other variables are assumed to
abide by the occam rules.

By default, the compiler will ensure that no aliases are permitted. In some cases, this
can require code being generated to check at run-time. The wo option will cause a
warning message to be generated whenever a run-time check is inserted. Where alias
checks are disabled, these checks will not be generated. However, the compiler will
have to make worse assumptions about the behavior of the program, and may generate
slower code.

15.2.10 Usage checking

occam has strict rules about the usage of variables and channels in parallel processes.
These rules enable the compiler to make better deductions about the behavior of a
program, and therefore to generate better code. They also provide a simple model of
what a section of program means; its behavior is not affected by the context in which
it is executed.

The occam 2. 1 toolset permits a programmer to disable usage checking, but at the
programmers own risk. In general, it will be better not to. There are two levels of control
over usage checking:

• On a whole program at a time. Usage checking may be disabled for a whole
program, by using the N command line switch, or #OPTION. The compiler will
assume that all variables may be accessed in parallel, synchronized by commu
nications down channels.

For individual variables. #PRAGIIA SHARED may be used to indicate individual
variables which are used in parallel processes. All other variables are assumed
to abide by the occam rules.

___________ Ii;i1~t.&~JI----------2-0-7



15.3 Obtaining information

By default, the compiler will ensure that no variables and channels are permitted to
break the usage rules. Where the checks are disabled, the compiler will have to make
worse assumptions about the behavior of the program, and may generate slower code.

15.2.11 Memory layout

By default, the toolset arranges memory as shown in figure 15.1 .

.- Top of memory
Free memory

.- Top of vectorspace
Vectorspace

.- Top of code

Code
.- Top of workspace

Workspace
J---------~ .- Start of usable memory (MemStart)

Reserved space
~----------'.- Bottom of memory (MOSTNEG INT)

Figure 15.1 Default memory layout

When the collector s option is used for single processor programs, the collector allo
cates another buffer below the workspace; see section 15.4.6.

The configuration attributes order. code, order.ws, and order. vs may be used to
override this default ordering. By default; the reserved space is simply that memory up
to MemStart. However the configurer's reserved attribute may be used to override
this. location attributes may also be used to override this memory layout; see section
15.4.5.

15.2.12 When there is not enough on-Chip RAM

When a program's workspace is substantially larger than the on-Chip RAM, it may well
be true that most of the time the stack is working off-chip. In this case, it might be more
useful to move the code on-chip, particularly time-critical code sections, and leave all
the workspace off-chip; see sections 15.4.3 and 15.4.5.

15.3 Obtaining information

Various tools provide information which can be useful when improving performance.

Compiler information.

The compiler I command line switch displays information about the workspace
and vectorspace requirements of each externally visible procedure or function.
It also displays the number of bytes of code in the module.

_20_8 ;:uIB@MI~~I-----------



15 Performance improvement

The compiler p command line switch can be used to supply the name of a text
file which the compiler produces known as the map file. This lists the layout of
stack memory for each routine in the program, and the layout of the code for
each routine. This file can be processed by the imap tool to produce a map of
the entire program's memory.

Linker information.

The linker MO command line switch can be used to produce a text file which
indicates how the code has been linked together. This file can be processed by
the imap tool to produce a map of the entire program's memory.

Collector information.

The collector p command line switch can be used to produce a text file which
indicates the memory layout of each processor in the network. It also indicates
the processor connectivity. This file can be processed by the imap tool to
produce a map of the entire program's memory.

• The lister tool.

The ilist program can examine any data file which is created by the toolset,
and display a decoded form of its contents. This may be useful if extra informa
tion is required which is not available by the previous methods.

• The mapper tool.

The imap program takes the map files created by the compiler, linker, and
collector, and combines the information into a single text file which lists the whole
program's memory layout for each processor.

15.4 Command line switches

There are many different switches and commands which can be used with the compiler,
~/ linker, collector, and configurer, in order to modify program execution speed.

15.4.1 Compiler command line switches

The following compiler command line switches can affect program performance. Note
that many options can be specified in the source code by inserting a #OPTION statement
as the first line of the program.

A typical benchmark program would be compiled with options H, NA, U, and Y, and maybe
A and v too.

H HALT error mode. (This is the default)

See the discussion on error modes in section 15.2.7.

----------- L..,~li~@_'91----------2-0-9



15.4 Command line switches

S STOP error mode.

See the discussion on error modes in section 15.2.7.

x UNIVERSAL error mode.

See the discussion on error modes in section 15.2.7.

K Disable range checking.

This removes any code whose sole purpose is to check for array bounds viola
tions. Any such check which can be performed at compile time (e.g. because the
index is a constant) will still be performed. Note that the K option will also disable
run-time alias checks.

u Disable run-time error checking.

This removes any code whose sole purpose is to detect errors (except ASSERT

- see below). For example, code to check that the number of replications of a
replicator is not negative will be omitted. It does not mean that errors are
'allowed'. Some errors may still be detected because the fastest code includes
error checking. (E.g. ado is used to add a constant number; this instruction
performs overflow checking). Note that this option is stronger than the K option,
in that it does everything that the K option does, and more, so it is not necessary
to specify both on the command line. Also see the discussion on error modes
in section 15.2.7.

NA Disable run-time ASSERT checks.

The ASSERT predefine can be used to provide security checks. If a check can
be performed at compile-time, it will be. Otherwise code is inserted to perform
the check at run-time. This option disables the run-time checks.

N Disable Usage checking.

See the discussion on usage checking in section 15.2.10.

A Disable Alias checking.

See the discussion on alias checking in section 15.2.9. Note that the K option
will also disable run-time alias checks.

v Disable vectorspace.

See the discussion on separate vectorspace in section 15.2.8.

Y Disable library calls for channel i/o.

See the discussion on interactive debugging in section 15.2.5. Also see the
discussion on virtual routing in section 15.2.6.

P Produce map file.

_2_10 ..TiIU@.'a©'-----------



15 Performance improvement

This option can be used to specify the name of a text file (the 'map' file) which
is created by the compiler to provide information about memory layout. This is
used by the imap tool.

15.4.2 Linker command line switches

Use the linker H, S, or x flags to link in the correct error mode. If interactive debugging
and virtual routing are not required, disable library i/o by using the y flag.

The MO option can be used to specify the name of a text file (the 'module' file) which is
created by the linker to provide information about the linkage. This is used by the imap
tool.

15.4.3 Linker directives

The linker allows a programmer to control the relative ordering of different modules in
the linked object file. The output file will still be a single consecutive chunk of code, but
the relative order of subroutines can be controlled. Primarily this is done by rearranging
the order in which the files are listed on the command line. The linker does, however,
provide finer control than this if required.

The linker inserts all separately compiled units into the output code file in the same order
as they are encountered on the command line. The first module will be loaded at a lower
address, that is, nearer MOSTNEG INT. It then adds library modules as necessary. It
chooses the entry name of the first separately compiled module to be the entry point of
the whole file; normally the top level module is listed first. If you re-order the files on the
command line, you must provide a #mainentry command to the linker (or use the ME
command line option) to tell the linker the name of the main entry point of the program.

#section directives in the linker's input file provide finer control. By default, the occam
2.1 compiler places all code in any compilation module into a code section named
text%base. This may be overridden by use of the compiler's #PRAGMA LINKAGE. If
this pragma is specified, the code section is named pri%text%base. If the pragma is
followed by a string (in double quotes), that name is used for the code section.

The linker links all code modules in any particular named section in arbitrary order, and
then concatenates the sections. However, by naming different sections, a programmer
can control the overall order. Normally, the linker places the section named
pri%text%base at the beginning of the code, (Le. nearer MOSTNEG INT), followed by
text9--obase, followed by any other code sections. If the programmer supplies any
#section directives in the linker's input file, the default is ignored. Instead, the linker
places the first named section first, followed by the next named section, etc. Any
sections which were not explicitly named are placed at the end. (Note that the
#section directive should be followed by the section name withoutenclosing quotes).
The module file created by the linker MO option can be examined to confirm the relative
placement of sections.

Note that floating point support libraries used on T4-series transputers are automatically
placed into section pri%text%base, so that they are more likely to be placed onto
on-chip RAM.

___________ ~f~~~~©~ 2_1_1



15.4 Command line switches

15.4.4 Configurer command line switches

Interactive debugging should be disabled using the Y option, for optimum performance.
This also means that a smaller start-up routine can be used, which enables more of a
user's program to fit into on-chip RAM.

Similarly, virtual routing should be disabled by using the NV option if appropriate.

15.4.5 Configuration language attributes for optimizing memory

As described in the discussion on memory layout in section 15.2.11, by default work
space is placed at the lowest address, followed by code, followed by vectorspace. The
configurer provides attributes which can be set to override this default.

Ordering attributes

The order. code attribute of a PROCESSOR can be set to an integer value, in the
MAPPiNG section of the configuration source. The default value is O. If this attribute is
set to a value less than 0, the code will be placed at a lower address than the workspace.
Similarly, the order. vs attribute can be set to a negative value to indicate that it should
be placed at a lower address than the workspace. The relative values of order. code,
order. ws, and order. vs indicate which should be placed at a lower address.

The collector's map file (produced by the p command line option) can be inspected to
see the effect of these switches.

Note that this facility must be explicitly enabled by the configurer RE option, because the
idebug debugger cannot be used if the memory layout has been altered.

Location attributes

Attributes location. code, location.ws, and location.vs can be used to
explicitly specify where the code, workspace, or vectorspace of a program should be
placed. They are set to a machine address. This address must not be within the address
range used by the configurer for its own use; namely that area above reserved BYTES
from MOSTNEG iNT, and below memsize BYTES from MOSTNEG iNT.

Reserved attribute

The reserved attribute can be used to tell the configurer not to use the memory
immediately above MOSTNEG iN'!'; i.e. the lowest addresses in memory. It should be set
to the number of BYTES above MOSTNEG INT which are to be reserved. The configurer
will then leave this area free for use by the programmer; either by using the location
attributes, or by PLAcEing data there directly.

15.4.6 Collector command line switches

M Specify memory size.

_2_12 iFiiIU@.,9J1-----------



213

15 Performance improvement

When collecting a program for a single transputer, this option creates a bootable
which does not examine the environment variable IBOARDSIZE at run-time.
Instead, it uses the value supplied to the collector. This will reduce the memory
requirements of the start-up code.

P Specify memory map file.

This option creates a map file describing the memory map of each processor,
and their connectivity. This is used by the imap tool.

S Specify stack size.

This option can be used for single processor programs to gain access to a
reserved block of memory at the bottom of the address space. (In the C toolset
it is used to place the C program's stack onto the on-Chip RAM, hence the name
of the option).

A single processor program normally requires the following formal parameter
list:

#INCLUDE "hostio.inc"
PROC myprog (CHAN OF SP fs, ts, [lINT freespace)

This can be modified as follows:

#INCLUDE "hostio.inc"
PROC myprog (CHAN OF SP fs, ts, [lINT freespace,

[lINT buffer)

The collector will allocate a buffer at the bottom of memory, and pass it as the
extra parameter. If the collector's S option is not specified, this array will be of
length zero. The buffer can be used to hold an array of data which is required
to be accessed quickly; see the discussion about memory layout in section
15.2.11. .

15.5 Compiler optimizations

The compiler already performs some minor optimizations:

• Constant folding

Expressions such as 27 + 33 are folded into 60.

• Unused variable elimination

Any variables which are never used are not allocated stack space.

• Basic dead code elimination

Branches of IFS which can be determined at compile-time to always be FALSE
are ignored.

~SGS-1HOMSON------------ "'T~ ~O©rnoo~@[R!]U©®------------



15.6 Source code optimizations

Constant tables

The transputer instruction set creates large constants by repeated use of a pfix
instruction. This can sometimes mean that loading large constant values can be
slow. However, the compiler recognizes such constants, and 'caches' them into
a constant table, which is accessed quickly via a small offset from a local pointer.

Workspace allocation

The compiler estimates the usage frequency of each variable which is used in
a procedure or function, and allocates the variables in memory so that the most
used variables are stored at small offsets in workspace, so as to minimize the
overall execution cost.

• Merging of constant arrays

Constant arrays and strings which appear more than once in a single compila
tion unit are merged into a single array, and thus only appear once in the code.

• Elimination of temporaries

The compiler knows that different variables always refer to different data items,
and can reduce the number of temporaries required in multiple assignment, etc.

15.6 Source code optimizations

The reader should be aware that many of the following source code optimizations are
implementation dependent, and may actually result in a performance degradation in a
different implementation of the occam language.

15.6.1 Compiler workspace layout

The current compiler allocates workspace as a falling stack. Hence the workspace for
a nested procedure or function will be allocated at a lower address than that of the
enclosing subroutine.

Workspace for parallel processes are allocated below the workspace of the parent. The
first member of the PAR list (or the lowest replicatorvalue of a replicated PAR) is allocated
workspace immediately below the parent, the next immediately below that, etc. Thus the
last process will have the lowest workspace address, and hence is most likely to be
placed on-chip.

Suppose we have three procedures a ( ) , b () and c ( ) . Then

SEQ
body of parent

PAR
a ()
b ()
c ()

_2_14 ~litB&fI-----------



15 Performance improvement

is allocated as shown in figure 15.2.

Parent's Workspace
1------------1 ..- Base of parent's workspace

Workspace for a ( )
1------------1 ..- Base of workspace for a ( )

Workspace for b ( )
1--- ---1 ..- Base of workspace for b ( )

Workspace for c ( )

1------------1 ..- Base of workspace for c ( )

L..--- ----J ..- Bottom of memory (MOSTNEG INT)

Figure 15.2 Workspace layout

This arrangement also holds for PRI PAR. Hence if it is important to get the workspace
of a high priority process on-chip, where the low priority process has a large workspace,
the following can be used:

PAR
low priority process

PRI PAR
high priority process

SKIP

15.6.2 Compiler code layout

The compiler writes code for a single compilation into a single object file. PROC and
FUNCTION bodies are written in the reverse order of the end of their definition; thus if
you read the source backwards, the routines are inserted into the object file in the order
in which you find their terminating colons (:). This means that all calls are forwards, and
that calls to a routine do not have to jump over the body of that routine; these consider
ations help make the call instruction smaller.

However, it tends to mean that nested subroutines are placed at higher addresses,
which can push them out of on-chip RAM. It may be useful to make critical inner
subroutines into separately compiled units, and use the linker to place that at a lower
address; see section 15.4.3.

15.6.3 Abbreviations

Abbreviations are a powerful feature of the occam language. They can be used to bring
non-local variables down into local scope, thus removing the need to chain through the
procedure call stack, and speeding up access. They can also speed up execution by
removing range check instructions. Where appropriate, VAL abbreviations should be
used; for scalar values this creates a local copy of a variable rather than a pointer to it.

____________ ~lil@nll&Y©' 2_1_5



15.6 Source code optimizations

When performance is the main aim, abbreviations should not be used if the value is only
used once or twice. Similarly, if an expression is simple, it may be faster to re-evaluate
the expression, rather than to read another value from memory, especially if the work
space does not fit in on-chip RAM.

Removing range-checking code

By abbreviating sub-vectors of larger vectors and using constants to index into the
sub-vector, the compiler will generate range-checking code for the abbreviation, but will
not need to generate range-checking code for accesses to the sub-vector.

As an example of an abbreviation removing range check instructions, here are two
versions of the same procedure. Part of the ray-tracer, this procedure is initializing fields
in a new node to be added into a tree. The identifier nodeptr points to the start of the
node. The second version uses an abbreviation, generates no range checking code
(apart from initial generation of the abbreviation) generates shorter code sequences for
each assignment, and executes more quickly.

PROC initNode ( VAL I:NT nodePtr version 1
SEQ

tree nodeptr + n.reflect] .- nil
tree nodeptr + n.refract] .- nil
tree nodeptr + n.next] .- nil
tree nodeptr + n.object] .- nil

version 2
nodeSize ] :

.- nil

.- nil

.- nil

.- nil

n.reflect]
n.refraet]

n.next]
n.object]

PROC initNode ( VAL I:NT nodeptr )
node I:S [ tree FROM nodeptr FOR
SEQ

node
node
node
node

Even if range-checking were switched off, the second version will execute more quickly.
Without range check instructions, the statement will generate the following transputer
instructions:

ldc nil
ldl nodePtr
Idl static
Idnlp tree
wsub
stnl n.refract

-- get data to save
-- get pointer to base of node
-- get static chain
-- generate pointer to tree ( in outer scope)
-- generate pointer to tree [ nodeptr]
-- and store to tree [ nodeptr + n.refract]

whereas the second version will generate the following, appreciably shorter and faster
fragment of code:

Ide
ldl
stnl

nil
node
n.refract

get data to save
load abbreviation
and store

216 ~SGS-THOMSON------------ "~L~o@oom~lRlJn@$------------



15 Performance improvement

Of course there is an initial overhead to generate the abbreviation, but this is rapidly
swamped by the subsequent savings.

Loop unrolling

Using abbreviations in conjunction with loop unrolling by hand can speed up execution
considerably. Take the following piece of occam, a simple vector addition:

SEQ i = 0 FOR 20000
a[i] := b[i] + c[i]

The transputer loops in about a microsecond, but adds in about 50 nanoseconds.
Therefore to increase performance we must increase the number of adds per loop:

VAL bigLoops IS 2000 / 16 :
VAL leftOver IS 2000 - (bigLoops TIMES 16)
SEQ

SEQ i = 0 FOR bigLoops
VAL base IS i TIMES 16
aSlice IS [ a FROM base FOR 16
VAL bSlice IS [ b FROM base FOR 16
VAL cSlice IS [ c FROM base FOR 16
SEQ

aSlice [0] .- bSlice [0] + cSlice [0]
aSlice [1] .- bSlice [1] + cSlice [1]
aSlice [2] .- bSlice [2] + cSlice [2]

aSlice [14] := bSlice[14] + cSlice[14]
aSlice [15] := bSlice[15] + cSlice[15]

SEQ i = 2000 - leftOver FOR leftOver
a[i] := b[i] + c[i]

Obviously, loops can be opened out in any language, on any processor, and perfor
mance will tend be improved at the expense of increased code size. However, opening
loops out in slices of 16 has a knock-on effect on the transputer, as optimal code with
no prefix instructions is generated for each addition statement. Compare the code
generated for the two statements:

a[i] := b[i] + c[i]

Idl i
Idl b
wsub
Idnl 0
Idl i
Idl c
wsub
Idnl 0
add
Idl a
Idl i
wsub
stnl 0

___________ 1.W@51@_'9~ 2_1_7



15.6 Source code optimizations

aSlice[15] := bSlice[15] + cSlice[15]

ldl bSlice
ldnl 15
ldl cSlice
ldnl 15
add
ldl aSlice
stnl 15

The second piece of code is just over half the size of the first and the number of loop
end lend instructions executed is reduced by a factor of 16.

15.6.4 Vector space

Use the allocations:

PLACE name IN WORKSPACE: and PLACE name IN VECSPACE:

as described in the discussion on separate vector space in section 15.2.8.

Suppose we wish to clear a large block of memory, such as a clear screen operation.
It may be worthwhile using an array which is placed in on-chip RAM as the source of a
block move:

PROC ClearScreen(VAL BYTE pattern)
-- the screen is declared as [512] [512]BYTE screen :
[SIZE screen[O]]BYTE fastvec -- this is in on-chip RAM
PLACE fastvec IN WORKSPACE :
SEQ

initBYTEvec(fastvec, pattern) fast BYTE initializer
SEQ y = 0 FOR SIZE screen

screen[y] := fastvec use a block move

This fires off 512 block move instructions, each of 512 bytes. Since the block move is
reading from on-chip memory, and writing to off-chip memory, it will proceed more
quickly than

PROC ClearScreen(VAL BYTE pattern)
-- the screen is declared as [512] [512]BYTE screen :
[(SIZE screen) * (SIZE screen[O])]BYTE bytescreen :
initBYTEvec(bytescreen, pattern) -- fast BYTE initializer

where all data accesses are to off-chip memory. The time saved during the block moves
outweighs the cost of setting up the parameters to the block moves, and of the initial
initBYTEvec. See section 15.6.7 for more about block moves and for the source of
initBYTEvec.

15.6.5 Beware the PLACE statement

A common mistake in trying to make occam go faster is to physically place data on-chip,
using a PLACE AT statement. This does the right thing - the compiler will physically

_2_18 ~li~©m&'£~JI------------



15 Performance improvement

place the variable on-chip, but the variable will be outside local workspace. Therefore
to access the variable, its physical address must be generated, and an indirection
performed to load the contents of the address. For example, declaring a variable at word
address 30 above MOSTNEG :tNT, and setting its value to 3 :-

:tNT a :
PLACE a AT 30
a := 3

Ide 3
mint
Idnlp 30
stnl 0

-- 30th word above MOSTNEG INT

This code sequence takes 7 cycles (350 ns on a T800-20). Were a a local variable, the
code sequence would take only 3 cycles (150 ns) if the workspace were on-chip, and
would be:

Ide 3
stl a

In any case it is dangerous to place variables directly into on-chip RAM, because unless
the on-chip RAM has been reserved in some other way, the explicit allocation to on-chip
RAM will clash with some other code or data which is already there.

The key to making variable accesses go faster is to keep the workspace on-chip. Then
if it is necessary for a vector to be on-chip, it can be declared in local scope.

15.6.6 Abbreviating PLACED objects

In some circumstances PLACED objects must be used, for example to talk to some
external hardware such as a UART. In this case, it is often more efficient to create a local
copy of the address by using an abbreviation, rather than referring repeatedly to the
original object:

PORT OF :tNT uart :
PLACE uart AT #12345

PORT OF :tNT uart IS uart
address
SEQ

use luart'

15.6.7 Block move

-- forces a local copy of the

The transputer block instruction move is directly supported by the occam language.
The array assignment statement:

[65536] BYTE bigVec, otherVec :
[bigVec FROM 0 FOR 65536] := [otherVec FROM 0 FOR 65536]

----------- L.,£ ~1@DlI£~©~ 2_1_9



15.6 Source code optimizations

compiles down to only four instructions:

ldl bigVec
ldl otherVec
ldc 65536
move

assuming the vectors are abbreviated
locally
this will be prefixed of course

A very fast array initializer can be written using block moves:

PRoe initBYTEvee ([]BYTE vee, VAL BYTE pattern)
iNT dest, transfer :
SEQ

transfer := 1
dest := transfer
vee [0] := pattern
WHiLE dest < (SiZE vee)

SEQ
iF

(dest + transfer) > (SIZE vee)
transfer := (SiZE vee) - dest

TRUE
SKiP

[vee FROM dest FOR transfer] := [vee FROM 0 FOR transfer]
dest := dest + transfer
transfer := transfer + transfer

This performs a series of assignments of increasing length, initializing the first byte of
the array, then the next 2, then the next 4, 8, 16 etc., until it finishes the array.

15.6.8 Use TIMES

The transputer has a fast (but unchecked) multiply instruction, which is accessed with
the occam operator TIMES. A checked integer multiply on the IMS T414-20 takes over
a microsecond, whereas using TIMES this will take as many processor cycles as there
are significant bits in the right-hand operand, plus 2 cycles overhead.

a TIMES 4 takes only 6 cycles (300 ns). Therefore, when multiplying integers by small
constants, use TIMES. Current transputers have a modified version of TIMES which
optimally multiplies small negative integers.

The compiler uses this faster, unchecked, version of multiply for normal multiply opera
tions if run-time error checking is disabled by means of the u command line switch.

15.6.9 Retyping - accelerating byte manipulation

Under certain circumstances retyping can be used to speed up byte manipulation. If it
is necessary to frequently extract byte fields from a word, then retyping the word to a
BYTE array is faster than shifting and masking. For example:

INT word
[4] BYTE bWord RETYPES word :
SEQ

use bWord[O], bWord[l], bWord[2], bWord[3]

_2_20 Iiii5t._©, _



15 Performance improvement

To access bits 16..23 in word, simply reference bWord[2] , which will generate:

ldlp bWord
adc 2
lb

load base of bWord
-- select byte 2
-- and load it

To perform byte operations on large arrays it is worthwhile moving portions of the array
to a local (on-chip) array; this is because a block move transfers words and is therefore
much faster than accessing individual bytes from an off-chip array. For example:

[1024] INT vector
[]BYTE bytevector RETYPES vector

[16] BYTE local :
PLACE local IN WORKSPACE
INT base :
SEQ

base := 0
SEQ i = 0 FOR 64

SEQ
local := [bytevector FROM base FOR 16]
base := base + 16
SEQ i = 0 FOR 16

SEQ
use local[i] to access each byte

15.6.10 Seoping of variables

The compiler estimates the run-time count of the number of times each variable in a
subroutine is accessed, using a heuristic which allows for repetition of loops, etc. It uses
this information to place the most frequently used variables at the smallest workspace
addresses; hence these variables can be accessed via smaller (and faster) instructions.
The order of variable declarations has no major effect, unlike the situation in the IMS
07058 occam toolset; and the use of separate vectorspace makes the problem less
acute anyway.

The scope of variables should be as local as possible. The compiler uses the lexical
scoping of variables to determine which variables are live (in use) at the same time, and
which can be overlaid over each other. Hence localized seoping of variables can also
reduce the total workspace requirement, thus helping to fit the total workspace into
on-chip RAM.

BYTE and BOOL scalar variables are initialized at declaration by the compiler, to enable
quick access as a local variable. Therefore it is not a good idea to declare them inside
inner loops.

Note: Unfortunately this is not good programming practice. Declaring items at the scope
within which they are required is more secure, preventing accidental modification and
other programming errors.

----------- L.,~l~tB.JI----------2-2-1



15.6 Source code optimizations

15.6.11 Use the whole language

There are features of occam which are particularly suited to certain types of problems.

For example, when comparing an expression against a list of distinct constants, use a
CASE statement rather than an IF. A compiler will attempt to make a CASE construct as
fast as possible, assuming that all the values are equally possible, and may use a
combination of techniques to select the correct branch. This compiler uses a combina
tion of jump tables, binary searches, and explicit tests, depending on the relative values
and density of the target values (Le. whether there are any gaps).

An IF construct must be executed sequentially, evaluating each of the guards in turn.
The first guard which is TRUE will be executed. Thus branches which are likely to be
chosen frequently should be listed at the start of the IF.

Note that a combination of these two constructs may be the best solution where one
value is particularly common, but where there may be many other possibilities:

VAL temp IS complicated. expression
IF

temp = frequent.value
process frequent.value

TRUE
CASE temp

infrequent.valueO
process infrequent.valueO

infrequent.valuel
process infrequent.valuel

infrequent.value2
process infrequent.value2

etc

Note that replicated IFS are particularly suited to search-type lookups and compari
sons:

BOOL FUNCTION equal.string(VAL []BYTE a, b)
This returns TRUE if a = b

BOOL result
VALOF

IF
(SIZE a) <> (SIZE b)

result := FALSE
IF i = 0 FOR SIZE a

a[i] <> b[i]
result := FALSE

TRUE
result := TRUE

RESULT result



15 Performance improvement

15.6.12 INLINE procedures and functions

This compiler allows you to write the keyword INLINE immediately before the keyword
PROC or FUNCTION of a procedure or function declaration. The effect is that any call of
that subroutine is expanded out as though the body were written in-line at the call site.
This can be used to greatly improve program readability with no loss of performance.
More importantly, this can improve performance by removing the overhead of the
procedure or function call. It also allows the compiler to compile the body of the routine
knowing the actual parameters, which provides further opportunities for optimization.

The programmer should be aware that inlining normally increases code size, and can
cause problems because the calling procedure is then enlarged.

The current implementation does not permit the definition of the procedure or function
which is to be inlined to exist in a different separately compiled unit to the caller. Instead,
the declaration should be written in an include file, and # INCLUDEd by every source file
which calls the routine.

15.6.13 Access to non-local variables

Non-local variables (Le. those which are declared in an outer procedure or function) are
accessed via a static link. This will require one memory access for each level of nesting,
every time that variable is accessed. It is possible to avoid doing this repeatedly, for
example when a variable is used inside a loop, by creating a local abbreviation to that
variable; this will create a pointer in the local workspace, and this local copy can be used
inside the loop.

15.6.14 Access to formal parameters

All variable non-VAL parameters, and all VAL parameters which are either arrays, or
longer than a word, are accessed via a pointer. If a parameter is accessed frequently,
it may be worthwhile saving such a variable in a local variable:

PROC cumulative.sum(INT sum, VAL []INT array)
INT local.sum :
SEQ

local.sum := sum -- copy into a local variable
SEQ i = 0 FOR SIZE array

local.sum := local.sum + array[i]
sum := local.sum -- write back into the real variable

15.6.15 Pre-evaluate expressions

This technique is applicable to all programming languages. Any calculation which is to
be performed repeatedly should be removed from any inner loops. If the calculation is
relatively simple, it can be pre-evaluated by hand. Alternatively, at the beginning of the
program a table can be initialized so that the values can be accessed quickly later.

~SGS.1HOMSON 223------------ ..~£ Ii':iIn©rnm~©&:9u©@------------



15.6 Source code optimizations

As a trivial example, suppose a program requires frequent access to n3 where n is
always less than 100.

PROC init.cubes([]INT cubes)
SEQ i = 0 FOR SIZE cubes

cubes [i] := (i * i) * i

[lOO]INT cubes:
SEQ

init.cubes(cubes)
other initialisation

WHILE test -- this is the 'inner loop'
use "cube[x]" instead of "(x * x) * x" here

15.6.16 Conditional expressions

Remember that by definition:INT TRUE evaluates to 1 and INT FALSE to O. This can
be used to transform the following type of example:

SEQ
IF

test
x := 1

TRUE
x := 0

-- this is slower

Using the INT type conversion operator this becomes:

x := INT test -- this is quicker

Note that some programmers consider the second form to be less readable, so the first
could be left as a comment as is probably better for code that is not performance critical.

15.6.17 Array SUbscripts

Array subscripts of the form a [c] (where c is a constant) are evaluated most efficiently.
However, if no range checks are required, and run-time error checking is disabled,
a [e + c] (where e is any expression), is evaluated as quickly as a [e], as is
a [c + e] and a [e - c].

15.6.18 INT16s

INT16 values are not handled very efficiently on current 32-bit transputers. They should
be converted to INT while being processed, and converted back to INT16 to be stored,
if they are really required.

If a mixed system of 16-bit and 32-bit transputers is being used, it may be more efficient
to use INT32s as the portable communication values, since :INT32 values on a 16-bit

_22_4 Eiilit_'9@~ _



15 Performance improvement

processor are generally handled more efficiently than INT16 values on a 32-bit
processor. However, using INT32S will require twice as much data to be communicated
and stored. The memory requirements may be particularly important on a 16-bit
processor which only has 64 kbytes of addressable memory.

15.6.19 AL-IS

Large, multi-way AL-IS are relatively slow, since their time cost is proportional to the
number of channels in the ALT. A technique known as fan-in can be used to enhance
their speed.

Instead of, say, a 100-way ALT, it would be faster to use ten processes consisting of
10-way AL-IS collecting the input, and passing that information to another process with
another 10-way ALT. Each communication through the ALT then is processed by two
10-way AL-IS instead of one 100-way ALT, and will be faster. Care must be taken,
however, because using this model will change the synchronization properties of the
program.

15.6.20 Use of ASSERT ( )

This compiler implements a predefined procedure ASSERT (VAL BOOL test). If
test is FALSE, and can be detected at compile time, this causes a compile-time error.
If test can only be evaluated at run-time, the compiler will insert code to check that
test is TRUE.

This can be used for various debugging tests, and to document and check various
assumptions which have been made in the source code. If required, run-time ASSERT
checks can be removed by using the compiler NA command line option.

15.6.21 Transputer scheduler

This compiler implements a predefined procedure RESCHEDULE ( ) . This will place the
current process to the back of the active process queue, and will work in either priority.
RESCHEDULE should be used rather than relying on the implications of the transputer
scheduling model. In some implementations of occam, the following code reschedules
the current process, but a compiler is quite at liberty to optimize it out completely.

PAR
SKIP
SKIP

____________ iiill~~@B'9©' 2_2_5



15.7 Summary

15.7 Summary

15.7.1 Optimizing for code size

Most of the optimizations described in this chapter will optimize for both space and time,
but note:

If an INLINE routine is called more than once, its body will be expanded multiple
times.

• The use of separate vectorspace may cost code space because an extra param
eter must be passed to every routine.

On the other hand, careful use of abbreviations can also reduce code size.

15.7.2 Removing run-time checks

Remember that run-time checks are not as costly as is sometimes thought.

The compiler's K switch removes any checks concerning array bounds violations. The
NA switch removes all run-time checks of ASSERT. The u switch removes all code whose
sole purpose is to detect errors (e.g. integer conversions, etc.). The Y switch disables
library calls for channel i/o and will speed up communication.

So to compile a program with no error checking, use:

oc myprog -h -na -u -y

15.7.3 Placing arrays in on-ehip RAM

If the access time of a particular array is critical, and the workspace of a program fits into
on-chip RAM, it will be useful to move that array into on-chip RAM instead of vector
space, by inserting the following declaration after the array's declaration:

PLACE array.name IN WORKSPACE :

If the workspace does not already fit into on-chip RAM, it might be worth putting the
vectorspace at the bottom of memory, instead of the program's workspace. Turn vector
space off by default, by using the compiler's v option, but place the critical array into
vectorspace explicitly:

PLACE array. name IN VECSPACE :

The order. vs configurer attribute can then be used to move the vectorspace to the
bottom of memory. This attribute must be set in the MAPPING section of the program;
see section 15.4.5.

MAPPING
SET processor (order.vs .- -1)

-22-6----------1.W®li~~~©'-----------



15 Performance improvement

An alternative method which can be used for single processor programs which are not
configured, is to use the collector's S switch (see section 15.4.6). The program should
be declared with an extra parameter as follows:

#INCLUDE "hostio.inc"
PROC myprog(CHAN OF SP fs, ts, [lINT mem, [lINT fastmem)

The fastmem array is placed onto the on-chip RAM by the collector, and is allocated
so that the space is not used for anything else. Hence this array can then be used for
buffers, etc., which are required to be accessed quickly. For example, it could be used
as the initializer buffer for the ClearScreen subroutine described in section 15.6.4.
The collector should be invoked as follows:

icollect myprog.lku -t -s 100

This will allocate 100 words at the bottom of memory, which are passed in as the
parameter fastmem, and can be accessed more quickly than the rest of memory.

15.7.4 Placing code in on-Chip RAM

Turn the critical subroutine into a separately compiled routine by passing all 'global'
variables into it as parameters.

Add the following directive to the beginning of the subroutine:

#PRAGMA LINKAGE

This informs the linker to place the code for this subroutine in front of the rest of the code.

If the workspace requirement of the program is small and fits in on-chip RAM anyway,
some of the code will be placed on-chip too. Since the linker has placed the critical
routine at the start of the code section, this routine will be placed in on-chip RAM.

If the workspace requirement is large, it may be better to move the entire workspace
off-chip, so that the code can be placed in on-chip RAM. This is done by setting the
order. ws configurer attribute in the MAPPING section of the configuration program,
which forces the workspace to reside at a higher address than the code; see section
15.4.5.

MAPPING
SET processor (order.ws .- 10)

15.7.5 Building benchmarks

Compile the program in HALT error mode, and turn off all error checks with the u switch
(see section 15.4.1), and the NA switch.

S 0 227------------ L..,~~ioo@_'~o©~-----------



15.8 Maximizing mUltiprocessor performance

Disable library calls for channel i/o with the Y compiler switch. Use the linker and
configurer Y switches too; see section 15.2.5.

Also, disable virtual routing with the configurer's NV option; see section 15.2.6.

Single processor programs may benefit from using the collector Moption to specify the
memory size in advance, so that a simpler bootstrap may be used; see section 15.4.6.

Experiment whether disabling vectorspace has any useful effect; this may be true if the
workspace requirement is small anyway, as it commonly is with benchmarks; see
section 15.2.8.

Take particular care to ensure that the workspace is placed in on-chip RAM. Where
possible, use linker section ordering to ensure that the inner loop subroutines are also
placed on-chip.

15.8 Maximizing multiprocessor performance

The following sections will describe how to obtain more performance from an array of
transputers. However, only very general guidelines can be offered. Maximizing multipro
cessor performance is still an area of active research, and any solution will tend to be
specific to the problem at hand.

15.8.1 Maximizing link performance

The transputer links are autonomous DMA engines, capable of transferring data bidirec
tionally at up to 20 Mbits/sec. They are capable of these data rates without seriously
degrading the performance of the processor. To achieve maximum link throughput from
a multi transputer system the links and the processor should all be kept as busy as
possible.

Decoupling communication and computation

To avoid the links waiting on the processor or the processor waiting on the links, link
communication should be decoupled from computation.

For example, the following program is part of a pipeline, inputting data, applying a
transformation to each data item, then outputting the transformed data:

PROC transform (CHAN OF protocol in, out)
[dataSizel INT data :

WHILE TRUE
SEQ

in ? data
applyTransfo~ ( data )
out ! data

If the channels in and out are transputer links, then the performance of the pipeline
will be degraded. The SEQ construct is forcing the transputer to perform only one action

_22_8 ~li~@_'J1©, _



start-up sequence •• pull in data

now transfo~ that data
and pull in more

and from here on
the buffers pass round-robin
between the inputter, transformer
and outputter

~./

15 Performance improvement

at a time; it is either inputting, computing or outputting; it could be doing all three at once.
Embedding the transformer between a pair of buffers will improve performance consid
erably:

PAR
buffer ( in, a )
transfo~ ( a, b )
buffer ( b, out )

The buffers are decoupling devices, allowing the processor to perform computation on
one set of data, whilst concurrently inputting a new set, and outputting the previous set.

In this example the buffer processes will simply input data then output it. There is a
transfer of data here which can be avoided, as all the data can be passed by reference:

[dataSize] INT a, b, c :
proc input
proc transfo~

proc output
SEQ

input (a)
PAR

input (b)
transform (a)

WHILE TRUE
SEQ

PAR
input (c)
transform (b)
output (a)

PAR
input (a)
transform (c)
output (b)

PAR
input (b)
transform (a)
output (c)

Instead of input and output operations transferring data between the processes, the
processes transfer themselves between the data, each process cycling between the
vectors a, band c as the PAR statements close down and restart.

This is a special case, a data flow architecture where all communication and processing
is synchronous - there is a lock-step in, transform, out sequence which allows this
sequential overlay of computing and communication. This is not the case in many
programs, where buffer processes are required.

Priority

Correct use of priority is important for most distributed programs communicating via
links. If a message is transmitted to a transputer and requires through-routing, it is

~SGS.1HOMSON 229------------ "T~ ~o©OO@rnl1rn©'ii'OO@lK!IO©®------------



15.8 Maximizing multiprocessor performance

essential that the transputer input the message then output it with minimum delay 
another transputer somewhere in the system could be held up, waiting for the message.
In such cases it is important to run the processes which use the links at high-priority.
There will tend to be more than one process talking to links, at most eight, and the PRJ:
PAR statement allows only one process at each priority level. It is necessary to gather
together all the link communication processes, unify them into a process with a PAR
statement, and run this process at high-priority.

The program from above now becomes:

[dataSize] J:NT a, b, c :
proc input
proc transform
proc output

SEQ
input (a)
PRI PAR

input (b)
transform (a)

WHJ:LE TRUE
SEQ

PRJ: PAR
PAR

input (c)
output (a)

transform (b)
PRJ: PAR

PAR
input (a)
output (b)

transform (c)
PRJ: PAR

PAR
input (b)
output (c)

transform (a)

start-up sequence •• pull in data

now transform that data (HI-PRI)
and pull in more

and from here on
the buffers pass round-robin

between the inputter, transformer

and outputter

15.8.2 Large link transfers

Setting up a transfer down a link takes about about a microsecond (20 processor
cycles), but once that transfer is started it will proceed autonomously from the processor,
consuming typically 4 processor cycles every 4 microseconds (one memory read or
write cycle per 32-bit word).

Keep messages as long as possible.

For example:

[300] INT data :
SEQ

out ! some. data; 300; [ data FROM 0 FOR 300]

_2_30 ~~it_~~~' _



15 Performance improvement

is far better than

[300] INT data
SEQ

out some.data; 300
SEQ i 0 FOR 300

out ! data [i]

However, long link transfers increase latency when data must be through-routed. Some
optimal message length will give the best compromise between overhead on setting up
transfers, and overhead on through-routing.

15.9 Dynamic load balancing and processor farms

Processor farms are a general way of distributing problems which can be decomposed
into smaller independent sub-problems. Processor farms are described in Transputer
Technical Note 22 (Communication Process Computers), which was also supplied as
chapter 4 of The Transputer Applications Notebook - ArChitecture and Software.

If implemented carefully, processor farms can give linear performance in multi trans
puter systems - that is ten processors will perform 10 times as well as one processor.
Processor farms come into their own when solving problems where the amount of

"-_/ computation required for any given sub-problem is not constant.

For example, in the ray tracer example one pixel may only require one traced ray to
determine its color, but other pixels may require over a hundred.

Rather than give each processor say one tenth of the screen (assuming ten processors
in the array), the screen is split into much smaller areas - in this case axa pixels, giving
a total of 4096 work packets for a 512x512 pixel screen. These are handed out piece
wise to the farm. Each processor in the farm computes the colors of the pixels for that
small area, and passes the pixels back, the pixel packet being an implicit request for
another area of screen to be rendered.

Since work is only given to the farm on demand, load is balanced dynamically, with the
whole system keeping itself as busy as possible. Buffer processes overlay data transfer
with communication, reducing the communication overhead to zero, and the end-case
latency of a processors farm implemented this way is far lower than in a statically
load-balanced system.

The key to the processor farm is a valve process, allowing work packets into the farm
only when there is an idle processor. The structure of this valve is:

PAR
-- pump work unconditionally
SEQ i = 0 FOR workPackets

inject ! packet
-- regulate flow of work into farm

------------ L.,~5~©RWI£~©' 2_3_1



15.9 Dynamic load balancing and processor farms

SEQ
idle := processors
WHILE running

PRI ALT
fromFarm ? results

idle := idle + 1
(idle > 0) & inject ? packet

SEQ
tofarm packet
idle := idle - 1

where the crucial statement is the guarded ALT,

(idle > 0) & inject ? packet

only allowing work to pass from the pumper into the farm when there is an idle processor.
The ALT is prioritized to accept results.

_23_2 E;ili~@1r&.I-----------



Appendices

-------- J;.''1~~~I~IJI--------23-3



Appendices

_2_34 ii;ili~@n'.£~©~ _



A Equivalent data types

This appendix may be used for constructing interfaces between sections of code in
different languages, primarily for calling occam routines from C and calling C functions
from occam. The information may also be useful when using channels between occam
and C processes. The appendix lists equivalent data types to use when passing param
eters to external routines and receiving function return values. The information is pres
ented with both occam and C as the calling language.

A.1 occam as the calling language

This section shows an example of passing parameters from occam to C. Tables of the
equivalent data types used are given in sections A.1 .2 and A.1.3.

A.1.1 Example of passing parameters from occam to C

The following examples show two C functions with a variety of formal parameters along
with the occam code which can call them. The code for 32-bit and 16-bit transputers
is given separately.

C functions to be called on a 32-bit transputer:

int cfuncl(int pa~l);

#pragma IMS_nolink(cfuncl) /* remove the gsb hidden parameter */

void cprocl(char c, int i,
long int 1, float f,
char *cp, short int *sp,
int *ip, long int *lp,
float *fp, double *dp,
int arrayl[8],
int array2[], const int array2len);

#pragma IMS_nolink(cprocl)

int cfuncl(int pa~l)

{

return par.ml * 10;

/* remove the gsb hidden parameter */

----------- LT£lil@."©~ 2_3_5



A.1 occam as the calling language

void cprocl(char c, int i,
long int 1, float f,
char *cp, short int *sp,
int *ip, long int *lp,
float *fp, double *dp,
int arrayl[8],
int array2[], const int array21en)

int j;

*cp c;
*sp (short)c;
*ip i;
*lp 1;
*fp f;
*dp (doub1e)i;
for (j = 0; j < 8; j++)

arrayl[j] 42;
for (j = 0; < array21en; j++)

array2[j] array21en;

occam code fragment to call the above C functions on a 32-bit transputer:

#PRAGMA EXTERNAL "INT FUNCTION cfuncl(VAL INT parml) = 100"
#PRAGMA EXTERNAL "PROC cprocl(VAL BYTE c, VAL INT i, *

* VAL INT32 1, VAL REAL32 f, *
* BYTE cp, INT16 sp, *
* INT ip, INT32 1p, *
* REAL32 fp, REAL64 dp, *
* [8]INT arrayl, []INT array2) 100"

BYTE c, cp:
INT i, ip, result:
INT16 sp:
INT32 1, 1p:
REAL32 f, fp:
REAL64 dp:
[8]INT arrayl:
[S]INT array2:
SEQ

-- set up function and procedure parameters
result := cfuncl(i)
cprocl(c, i, 1, f, cp, sp, ip, 1p, fp, dp, arrayl, array2)

C functions to be called on a 16-bit transputer:

int cfuncl(int parml);

#pragma IMS_no1ink(cfuncl) /* remove the gsb hidden parameter */

void cprocl(char c, int i,
short int s, char *cp,
short int *sp, int *ip,
long int *lp, float *fp,
double *dp, int arrayl[8],
int array2[], const int array21en);

#pragma IMS_no1ink(cprocl) /* remove the gsb hidden parameter */

_23_6 Eii~i~@.,'©' -----------



A Equivalent data types

int cfuncl(int pa~l)

return pa~l * 10;

void cprocl(char c, int i,
short int s, char *cp,
short int *sp, int *ip,
long int *lp, float *fp,
double *dp, int arrayl[8],
int array2[], const int array2len)

int j;

*cp c;
*sp s;
*ip i;
*lp (long)i;
*fp (float)i;
*dp (double)i;
for (j = 0; j < 8; j++)

arrayl[j] 42;
for (j = 0; j < array2len; j++)

array2[j] array2len;

occam code fragment to call the above C functions on a 16-bit transputer:

#PRAGMA EXTERNAL "INT FUNCTION cfuncl(VAL INT pa~l) 100"

#PRAGMA EXTERNAL "PROC cprocl(VAL BYTE c, VAL INT i, *
* VAL INT16 s, BYTE cp, *
* INT16 sp, INT ip, *
* INT32 lp, REAL32 fp, *
* REAL64 dp, *
* [8]INT arrayl, []INT array2)

BYTE c, cp:
INT i, ip, result:
INT16 s, sp:
INT32 lp:
REAL32 fp:
REAL64 dp:
[8]INT arrayl:
[S]INT array2:
SEQ

-- set up function and procedure parameters
result := cfuncl(i)
cprocl(c, i, s, cp, sp, ip, lp, fp, dp, arrayl, array2)

A.1.2 Parameter passing

100"

Table A.1 lists the equivalent data types to use when passing parameters from occam
to C. The first column gives the C formal parameter, the second and third columns give
the occam actual parameter type to pass. Where there is no true equivalent this is
indicated.

___________ ~.,£lil~9~ 2_3_7



A.1 occam as the calling language

C formal parameter occam actual parameter

32-bit transputer 16-bit transputer

char VAL BYTE VAL BYTE
unsigned char

signed char No direct equivalentt No direct equivalentt

short No direct equivalentt (see Note 1) VAL INT
signed short VAL l:NT16

unsigned short No direct equivalentt No direct equivalentt

int VAL l:NT VAL l:NT
signed int VAL l:NT32 VAL l:NT16
enum

unsigned int No direct equivalentt No direct equivalentt

long VAL l:NT No direct equivalentt
signed long VAL l:NT32

unsigned long No direct equivalentt No direct equivalentt

float VAL REAL32 No direct equivalentt

double No direct equivalentt No direct equivalentt

struct No direct equivalentt No direct equivalentt
union

char * BYTE BYTE
unsigned char *

signed char * No direct equivalentt No direct equivalentt

short * INT16 l:NT16
signed short * l:NT

unsigned short * No direct equivalentt No direct equivalentt

int * INT INT
signed int * INT32 l:NT16
enum *

unsigned int * No direct equivalentt No direct equivalentt

long * INT INT32
signed long * INT32

unsigned long * No direct equivalentt No direct equivalentt

float * REAL32 REAL32

double * REAL64 REAL64

struct * No direct equivalentt No direct equivalentt
union *

channel * CHAN CHAN

Array See section 11.1.6. See section 11.1.6.

Defined by a typedef As the underlying type. As the underlying type.

tThere is no direct type equivalent in occam. Either recode the C program or pass in another form.

Note 1: A C short on a 32-bit processor is stored in 32 bits with the upper 16 bits zeroed. In occam
an INT16 on a 32-bit processor is also stored as a 32-bit value, however, in this case the upper 16
bits are ignored and not zeroed. Hence C short and occam INT16 are not directly equivalent.

Table A.1 Parameter passing - occam equivalent data types to pass to C



239

A Equivalent data types

A.1.3 Return values

Table A.2 gives the occam data type to use when receiving return values from C
functions. Equivalents are given separately for 32-bit and 16-bit transputers.

C function type occam function type

32-bit transputer 16·bit transputer

char BYTE BYTE
unsigned char

signed char No direct equivalentt No direct equivalentt

short INT16 INT
signed short INT16

unsigned short No direct equivalentt No direct equivalentt

int INT INT
signed int INT32 INT16
enum

unsigned int No direct equivalentt No direct equivalentt

long INT INT32
signed long INT32

unsigned long No direct equivalentt No direct equivalentt

float REAL32 REAL32

double REAL64 REAL64

struct No direct equivalentt No direct equivalentt
union

Any pointer type No direct equivalentt No direct equivalentt

Defined by a typedef As the underlying type. As the underlying type.

tThere is no direct type equivalent in occam. Either recode the C program or pass the parameter in
another form.

Table A.2 Parameter passing - occam equivalents of data types received from C

A.1.4 typedef types

C types defined by a typedef statement may be passed using the guidelines given
above applied to the underlying type.

~ A.2 C as the calling language

This section shows an example of passing parameters from C to occam. Tables of the
equivalent data types used are given in sections A.2.2 and A.2.3.

A.2.1 Example of passing parameters

The following example shows an occam function and an occam procedure with a
variety of formal parameters, along with the C code which can call them. The calling
code for 32-bit and 16-bit transputers is given separately. The occam routines to be
called are as follows:

~SGS-1HOMSON------------ "'Y£ ~O©OO©[g~OO@!R!lD©~ ------------



A.2 C as the calling language

INT32 FUNCTION ocfunci(VAL INT32 pa~i) IS pa~i:

PROC ocproci(VAL BYTE vb,
VAL INT16 vi16,
VAL INT32 vi32,
VAL INT vi,
VAL REAL32 vr32,
VAL REAL64 vr64,
VAL BOOL vbo,
VAL [] INT varri,
VAL [8]INT varr2,
BYTE b,
INT16 i16,
INT32 i32,
INT i,
REAL32 r32,
REAL64 r64,
BOOL bo,
[] INT arri,
[8]INT arr2)

SEQ
b := vb
i16 := vi16
i32 := vi32
i := vi
r32 := vr32
r64 := vr64
bo := vbo
arri := varri
arr2 := varr2

A C code fragment to call the above occam routines on a 32-bit transputer is as follows:

#define ARRAY_SIZE_l 4
#define ARRAY_SIZE_2 8

extern long int ocfuncl(long int parmi);

extern void ocproci(char vb, short int vi16,
long int vi32, int vi,
float vr32, double *vr64,
int vbo,
int varri[], const int varri_size,
int varr2[ARRAY_SIZE_2],
char *b, short int *i16,
long int *i32, int *i,
float *r32, double *r64,
char *bo,
int arri[], const int arri_size,
int arr2[ARRAY_SIZE_2]);

#pragma IMS_nolink(ocfunci)
#pragma IMS_nolink(ocproci)

long int result;
char vb, b;
short int vi16, i16;
long int vi32, i32;
int vi, i;



A Equivalent data types

float vr32, r32;
double vr64, r64;
int vbo;
char bo;
int varrl[ARRAY_SIZE_l], arrl[ARRAY_SIZE_l];
int varr2[ARRAY_SIZE_2], arr2[ARRAY_SIZE_2];

result = ocfuncl(vi32);

ocprocl(vb, vi16, vi32, vi, vr32, &vr64,
vbo, varrl, ARRAY_SIZE_l, varr2,
&b, &i16, &i32, &i, &r32, &r64,
&bo, arrl, ARRAY_SIZE_l, arr2);

A C code fragment to call the above occam routines on a 16-bit transputer is as follows:

#define ARRAY_SIZE_l 4
#define ARRAY_SIZE_2 8

extern long int ocfuncl(long int *pa~l);

extern void ocprocl(char vb, short int vi16,
long int *vi32, int vi,
float *vr32, double *vr64,
int vbo,
int varrl[], const int varrl_size,
int varr2[ARRAY_SIZE_2],
char *b, short int *i16,
long int *i32, int *i,
float *r32, double *r64,
char *bo,
int arrl[], const int arrl_size,
int arr2[ARRAY_SIZE_2]);

#pragma IMS_nolink(ocfuncl)
#pragma IMS_nolink(ocprocl)

long int result;
char vb, b;
short int vi16, i16;
long int vi32, i32;
int vi, i;
float vr32, r32;
double vr64, r64;
int vbo;
char bo;
int varrl[ARRAY_SIZE_l], arrl[ARRAY_SIZE_l];
int varr2[ARRAY_SIZE_2], arr2[ARRAY_SIZE_2];

result = ocfuncl(&vi32);

ocprocl(vb, vi16, &vi32, vi, &vr32, &vr64,
vbo, varrl, ARRAY_SIZE_l, varr2,
&b, &i16, &i32, &i, &r32, &r64,
&bo, arrl, ARRAY_SIZE_l, arr2);

A.2.2 Parameter passing

Table A.3 lists the equivalent data types to use when passing parameters from C to
occam. The first column gives the occam formal parameter, the second and third

O 241
------------ i"1£ lil@_'~u@' ------------



A.2 C as the calling language

columns give the C actual parameter type to pass. Where there is no true equivalent this
is indicated.

occam formal parameter C actual parameter

32-bit transputer 16-bit transputer

VAL BOOL int (value must be 0 or 1) int (value must be 0 or 1)

VAL BYTE char char
unsigned char unsigned char

VAL INT16 short int short int
int

VAL INT32 int long int •
long int

VAL INT64 No direct equivalentt No direct equivalentt

VAL INT int int

VAL REAL32 float float •

VAL REAL64 double • double •

VAL array See section 11.1.6. See section 11.1 .6.

BOOL char • char •
unsigned char • unsigned char· (value
(value pointed to must be 0 or 1) pointed to must be 0 or 1)

BYTE char • char •
unsigned char • unsigned char •

INT16 short int • short int •
int •

INT32 int • long int •
long int •

INT64 No direct equivalentt No direct equivalentt

INT int • int •

REAL32 float • float •

REAL64 double • double •

CHAN Channel • Channel •
(see Note 1) (see Note 1)

PORT No direct equivalentt No direct equivalentt

TIMER Pass nothing (see page 128). Pass nothing (see page 128).

Array See section 11.1.6. See section 11.1.6.

RECORD No direct equivalentt No direct equivalentt

Named type As the underlying type. As the underlying type.

tThere is no direct type equivalent in C. Either recode the occam program or pass the parameter in
another form.

Note 1: Channel is an SGS-THOMSON specific type declared in the C header file channel.h.

Table A.3 Parameter passing - C equivalent data types to pass to occam



A Equivalent data types

A.2.3 Return values

Table A.4 outlines the conventions that must be followed when receiving occam func
tion return values in C.

occam function type C function type

32-bit transputer 16-bit transputer

BOOL int int

BYTE char char
unsigned char unsigned char

INT16 short int short int
int

INT32 int long int
long int

INT64 No direct equivalentt No direct equivalentt

INT int int

REAL32 float float

REAL64 double double

RECORD No direct equivalentt No direct equivalentt

Named type As the underlying type. As the underlying type.

tThere is no direct type equivalent in C. Either recode the occam program or pass the parameter in
another form.

Table A.4 Parameter passing - C equivalents of data types received from occam

A.2.4 Named types

occam named types may be passed using the guidelines given above applied to the
underlying type.

----------- ~'Y£l~t_&~JI----------2-4-3



A.2 C as the calling language

_24_4 i.Tilil@.£\'-----------



B Transputer code insertion

This appendix describes the facilities for inserting transputer instructions into occam
programs, using the ASH construct. In-line assembly code is described in section 12.3.

B.1 Inline transputer code insertion

The occam compiler supports the insertion of transputer code directly into an occam
program. The facility must be specifically enabled on the command line. Two levels of
insertion are available.

8.1.1 Sequential code insertion

Sequential code insertion allows access to all transputer instructions on the processor
except those which affect parallel processes and scheduling. A list of instructions
supported by this facility can be found in section B.3.

8.1.2 Full code insertion

Full code insertion allows access to all transputer instructions supported by the
processor where the process is running. A list of T2rr41T8-series transputer instructions
can be found in The transputer instruction set: a compiler writer's guide; the ST20450
instruction set is listed in the ST20 Instruction Set Reference Manual.

B.2 ASM construct

The ASH construct provides the ability to insert transputer code sequences into occam
programs.

8.2.1 Syntax

process

asm.construct

asm.line

asm.construct

ASK

{ asm.line}

primary.op constant.expression
load.or.store.op name
branch.op : label
branch.op name
secondary.op
pseudo.op
labeldef

___________ ~lil@~~©' 2_4_5



B.2 ASK construct

labeldef : label

any primary instruction (in upper-case letters)primary.op

load.or.store.op = LDL
STL

LDNL I LDLP I LDNLP
STNL

branch.op

secondary.op

pseudo.op

asm.exp

J I CJ I CALL

any secondary instruction (in upper-case letters)

LDasm.exp
LDAB asm.exp, asm.exp
LDABC asm.exp, asm.exp, asm.exp
ST element
STAB element, element
STABC element, element, element
BYTE {, constant.expression}
WORD {, constant.expression}
ALIGN
LDLABELDIFF : label - : label
RESERVELOWWS constant.expression

ADDRESSOF element
ADDRESSOF routine.name
expression

Note: instructions should be specified in uppercase.

B.2.2 ASM instructions

The primary instructions which perform loads and stores are allowed to take a symbolic
name as their operand; they evaluate to the primary instruction with an operand equal
to that symbol's offset in workspace. This means that if x is a non-local variable, the
operand used will be the variable's offset in the non-local workspace. Note that this
means non-VAL parameters will appear as pointers; for example, LDL x where x is a
non-VAL parameter, will return the pointer to x. Primary instructions with symbolic name
operands should only be used in special cases; you would normally use the pseudo-ops
as described below.

The assembler will optimize away primary instructions which are known to be no-ops.
These are:

AJW 0 ADC 0 LDNLP 0

PFIX 0 should be used where a NOP byte is required, or the BYTE pseudo-op could be
used.

Secondary instructions, and the fpentry instructions, simply expand out to the correct
byte sequence, as expected.

_24_6 ~.~@M£~JI-----------



B Transputer code insertion

Branching to a label defined within the same procedure or function is permitted. (Two
labels with the same name may not appear in the same procedure.)

Branching to a PROC or FUNCTION which is in scope is permitted, but it is the responsi
bility of the programmer to load the parameters for the call correctly.

8.2.3 Pseudo operations

The pseudo.op operations are listed in table B.1 .

Pseudo-op Action

LD Loads a value into the Areg. May use other stack slots and/or temporaries.

LDAB Loads values into the Areg and Breg. The left hand expression ends up in Areg.
May use other stack slots and/or temporaries.

LDABC Loads values into the Areg, Breg and Crego The leftmost expression ends up in
Areg. May use temporaries.

ST Stores the value from the Areg. May use other stack slots and/or temporaries.

STAB Stores values from the Areg and Breg. The left hand element receives Areg.
May use other stack slots and/or temporaries.

STABC Stores values into the Areg, Breg and Crego The leftmost element receives
Areg. May use temporaries.

BYTE Inserts the following constant BYTE value(s) into the code. The expression may
be either a single BYTE, or a BYTE table or string, or a comma separated list of
such items.

WORD Inserts the following constant INT value(s) into the code. The expression may be
either a single integer, or an integer table, or a comma separated list of such
items.

LDLABELDIFF Calculates the difference, n, between two labels and inserts a LDC n.

RESERVELOWWS Reserves 'below workspace' slots. This ensures that the specified number of
words are reserved below the current process's workspace, and will not be allo-
cated to any other concurrent process. The specified expression must be a
compile-time integer constant.

ALIGN Inserts zero or more PFIX 0 instructions until aligned to a word boundary.
Currently not implemented.

Figure B.1 Inline code pseudo-operations

Note: that arbitrarily complicated expressions are permitted, including function calls.
~/ For example:

ASH
LDABC a[x], y+27, f(p,q,r)
STABC a[f(w,x,y)], z, a[91

Expressions used in load pseudo-ops must be word sized or smaller. To load a floating
point value, use a LD ADDRESSOF name to load its address, then a FPLDNLSN or
FPLDNLDB as required. Elements used in store pseudo-ops must be word sized or
smaller.

ADDRESSOF operator

----------- ...,£~ii@B':lcl----- -2-47-



B.3 Instructions supported by sequential code insertion

The ADDRESSOF operator is used in the LD, LDAB, and LDABC pseudo-ops, and can be
applied to any variable, constant expression, or routine name. It returns a word
containing the machine address of that object.

Special names

Tlie following special names are available as constants inside ASH expressions:

•WSSIZE Evaluates to the size of the current procedure's workspace. This will be
the workspace offset of the return address, except within a replicated
PAR, where it will be the size of that replication's workspace require
ment.

•VSPTR Evaluates to the workspace offset of the vectorspace pointer. If inside
a replicated PAR, it points to the vectorspace pointer for that branch
only. A compile time error is generated if there is no vectorspace pointer
because no vectors have been created.

• STATIC Evaluates to the workspace offset of the static link. If inside a replicated
PAR, it points to the static link for that branch only. A compile time error
is generated if there is no static link.

For example, to determine the return address of a procedure, you would use: LDL
• WSSIZE. There is no checking of 'suitability', hence, for example, J •WSSIZE is legal.

Channels

Channels may be accessed in ASK; they are considered to be a pointer to a channel
word. Thus 'loading' a channel will load a pointer to the channel word, and loading the
'address' of a channel will load a pointer to a pointer to the channel word.

B.3 Instructions supported by sequential code insertion

The instructions in this section can be used when sequential code insertion is enabled
by the Gcompiler option. Note: Only use those instructions which exist on the target
processor may be used. For example, floating point instructions (those beginning with
fp) may not be used on T4-series transputers or the ST20450.

_24_8 LT£lil@.,9J1-----------



B Transputer code insertion

ade fpeq fpsub Iddevid or
add fpgt fptesterr Idiff pop
and fpi32tor32 fpuabs Idinf postnormsn
bent fpi32tor64 fpuehki32 Idiv prod
bitent fpint fpuehki64 Idl rem
bitrevnbits fpldnladddb fpuelrerr Idlp rev
bitrevword fpldnladdsn fpudivby2 Idmemstartval roundsn
bsub fpldnldb fpuexpdee32 IdnJ sb
cent1 fpldnldbi fpuexpine32 JdnJp seterr
efterr fpldnlmuldb fpumulby2 Idpi shl
ej fpldnlmulsn fpunoround Idpri shr
erebyte fpldnlsn fpur32tor64 Idtimer stl
ereword fpldnlsni fpur64tor32 Imul stnl
esngl fpldzerodb fpurm Ishl sttimer
esubO fpldzerosn fpum Ishr sub
eword fpmul fpurp Isub sum
diff fpnan fpurz Isum testerr
div fpnotfinite fpuseterr mint testhalterr
dup fpordered fpusqrtfirst move testpranal
eqe fpremfirst fpusqrtlast move2dall unpaeksn.
fmul fpremstep fpusqrtstep move2dinit went
fpadd fprev gt move2dnonzero wsub
fpb32tor64 fprtoi32 j move2dzero wsubdb
fpehkerr fpstnldb ladd muJ xdble
fpdiv fpstnli32 Ib norm xor
fpdup fpstnlsn Ide not xword

The following instructions are supported by the G option, but apply only to the ST20450:

eauseerror devlw Ibx satadd sttrapped
eb devmove Ideloek satmuJ sulmul

~> ebu devsb Idprodid satsub swapqueue
cir devss Idshadow settimeslice swaptimer
ciru devsw Idtraph signal timeslice
cloekdis? gintdis? Idtrapped slmul trapdis?
eloekenb? gintenb? Is ss trapenb?
es gtu Isx ssub trapret
esu insertqueue nop stclock wait
devlb intdis reboot? stshadow xbword
devIs intenb restart sttraph xsword

ASM pseudo-operations are also permitted when sequential code insertion is enabled.

-----------l.Tllit~I9©' 2_4_9



8.3 Instructions supported by sequential code insertion

_25_0 ~~~@_,91-----------



C Glossary

Within the definition of a term, items which appear in bold are special names such as
register names or tool names. Items in italics are terms defined elsewhere in the glos
sary.

Alias

If two or more expressions denote the same object, then the expressions are
aliases of one another.

Alias check

A program compilation check that ensures that no two names denote the same
object within a given scope.

Analyse

An IMS T2fT4fT8-series transputer and ST20450 input pin which is held high to
indicate that a reset is for debugging. To reset with the Analyse pin held high.

A network analyzer is a tool which tests the types of transputers in the network
and how they are connected.

Big endian

The opposite of little endian.

Bootable code

Self-starting program code that can be loaded onto a transputer or transputer
network down a link and run. Bootable code is produced by icollect from
linked units or configuration binary files.

Bootstrap

The first piece of code which is run on the transputer before the loader or the
application code. Depending on the transputer type the bootstrap performs
some or all of the initialization of the transputer.

____________ ~~itrn~.Jllf 2_5_1_



C Glossary

Capability

A text string which identifies a transputer resource (or resources).

Channel

A communication channel. Channels are unidirectional, point-to-point connec
tions between processes.

Compactable code

Object code generated by the C compiler which may be compacted by the linker.
Rather than assuming a worst case size for a variable length instruction, the
compiler leaves information in the object file for the linker to use to determine the
optimal length of the instruction.

Compiler library

A group of occam library routines that are used by the compiler to implement
extended arithmetic and transputer system operations.

Configuration

The association of components of a program with a set of physical resources.
Used in this manual to refer to the specific case of allocating software processes
to processors in a network, and channels to links between processors. The term
is also used, depending on the context, to describe the act of deciding on these
allocations for a program, the configuration code which describes such a set of
allocations, and the act of applying the configurer to a configuration description.

In the context of the programmable memory interface, configuration means the
selection of parameters to control the memory interface. Amemory configuration
file called a memfile is created by the memory configuration tool. A memfile must
be created for ST20450 targets and is referenced from the configuration descrip
tion (see above). For other IMS T4rrS-series transputers the configuration of the
memory interface is optional and if required the memory configuration file is
referenced from an EPROM control file which formats applications for input to
ROM.

Configurer

The tool which assigns processes and channels on a specified configuration of
transputers. The output from the tool is a configuration binary file for input to
icollect.

Connection manager

The functionality provided by the Linkops part of the host file server. It provides
and maintains connections to transputer systems across a network.

_2_52 ~I~~@n'••©, _



C Glossary

Communicating Sequential Processes (CSP)

A theory and notation, developed by Professor Tony Hoare, for describing
systems made up of concurrent processes which communicate via channels.
The occam model of concurrency is based on esp.

Data network

Used to describe the network of communication links on a transputer network.

Deadlock

A state in which one or more concurrent processes can no longer proceed
because of a communication interdependency.

Error modes

The compilation mode of a program that determines what happens when a
program error (such as an array bounds violation) occurs. Programs compiled
by icc are in UNIVERSAL mode, which is the mode that can be mixed with HALT
and STOP code generated by other compilers.

HALT mode halts the transputer when a program error occurs. In STOP mode
only the errant process is stopped immediately, allowing other processes to
continue until the STOP is gradually propagated through the system.
UNIVERSAL mode enables programs to run in either STOP or HALT mode.

Error signal (or error flag)

For IMS T2fT4fT8-series transputers: an external signal used to indicate that an
error has occurred in a running program. Also refers to one of the system control
functions on IMS T2fT4fT8-series transputer networks. Error signals can be
OR-ed together on IMS T2fT4fT8-series transputer boards to indicate that an
error has occurred in one of the transputers in a network.

For ST20450 transputers see also Trap.

Ethernet

A LANtechnology based on a passive coaxial cable which transmits at 10 Mbps.

Exception

The result of a hardware detected runtime violation (arithmetic overflow, mis
aligned access etc.)

___________ ~I~t_,i©' 2_5_3



C Glossary

Extended data types

The occam data types INT16, INT32, INT64, REAL32 and REAL64.

External memory interface (EMI)

The signals which connect a transputer to external memory, consisting of
address and data buses and a number of control signals. Most of the 32-bit IMS
T4 and IMS T8-series transputers have a programmable EMI which can be confi
gured for different types and speeds of external memory device. See also
Programmable memory interface.

Event

On IMS T2ff4fT8-series transputers an input signal to the transputer which can
be used an external interrupt. The event input can be treated by a process as
a (zero length) communication.

Free variables

Variables which are referred to in a function or procedure, but declared outside
of it.

Gateway

A dedicated computer that connects two or more networks, and routes
messages between them or a software routing process that multiplexes and
handles communications.

Hard channels

Channels which are mapped onto links between processors in a transputer
network. See also soft channels.

Host

The computer to which a transputer system is connected and which possibly also
provides file system access and terminal 110.

Host file server

A server which provides access to the filing system and terminal 110 of a host
operating system.

_25_4 ~li~@1!III'©' _



C Glossary

Include file

A file containing source code which is incorporated into a program using the C
#include (#INCLUDE for occam) directive. Include files are, by convention,
given the. h extension in C; occam include files are given the extension • inc.

Include files may also be referenced from configuration descriptions and linker
indirect files which are input to the configurer and linker respectively. These
include files have the extensions • inc and • Ink by convention.

Interrupt

A fast context switch from one priority to a higher priority. Interrupts may occur
after any instruction or during certain long instructions such as block moves.

LAN (Local Area Network)

Any computer network that works over short distances at high speeds.

Library

A collection of separately compiled procedures or functions, created by the
toolset librarian ilibr, which may be shared between parts of a program or
between different programs.

Library build file

A file containing a list of input files for the librarian tool ilibr. Each input file
forms a separately loadable module in the library. Library build files should have
the • Ibb extension.

Library usage file

A file listing the libraries and separately compiled units used by another library.
Library usage files should have the .liu extension.

Link

In the context of transputer hardware, the communication link between proces
sors. IMS T9000 transputers have data-strobe links (OS-links), while all other
transputer have over-sampled links (OS-links).

In the context of program compilation, collecting together all the compiled code
for a program, resolving all references and placing the collected code into a
single file.

O 255------------ iF;i1~tU'~~~------------



C Glossary

Linker

The program or tool which links a program or compilation unit.

Linker indirect file

A linker indirect file contains a list of compiled object files, or compiled library files
which are to be linked into a linked object file. Linker indirect files may also
contain directives to the linker.

Linkops

A software link interface, used by host interlace software.

Little endian

The transputer is totally 'little endian', Le. less significant data is always held in
lower addresses. This applies to bits in bytes, bytes in words and words in
memory. In serial communications the least significant data is communicated
first.

Loader

Depending on the context, refers to the part of the host file server which loads
a transputer network or to a small program which is loaded into a transputer, and
which then distributes code to other transputers and loads a larger program on
top of itself.

LoadStart

The lowest address at which code and data may be loaded.

Makefile

An input file for a make program. A makefile contains details of file dependencies
and directions for rebuilding the object code. Makefiles are created for the toolset
using imakef.

Memfile

A text file describing an ST20450 memory configuration, as generated by the
imem450 tool.

MemStart

The lowest address above the memory reserved for processor internal use.

_2_56 ~Ii~@.~\' _



257

C Glossary

Mis-aligned access

An access to an object in memory which is not located on its appropriate
boundary (e.g. words must be word aligned rather than half-word Le. byte
aligned).

Mostneg

The most negative integer - Ox80000000 on a 32-bit transputer or Ox8000 on a
16-bit transputer. This value is the bottom of the transputer's address space and
acts as the null pointer. It is also called MOSTNEG INT and Minlnt.

Network

Depending on context may refer to a conventional computer network or a set of
interconnected transputers.

Object code

Intermediate code between source and boatable code. The compiler and linker
tools generate object code.

Peek and poke

To read (peek) and write (poke) locations in a transputer's memory via a link
while the transputer is waiting to be booted.

PostScript

PostScript is a device-independent, interpreted language for describing the
layout of text and graphics on a page. It is used by a large number of printers and
software applications as the standard means of transferring graphics data.

Preamble

The preamble is a small optional piece of user code, executed before the loader
program that initializes the state of the processor.

Priority

In the transputer, the priority level at which the currently executing process is
being run. Transputers support two levels of priority, known as 'high' and 'low'.

~SGS-1HOMSON------------ ~.",£lK:ilo©oo@rn~oo~o©~-----------



C Glossary

Process

Self-contained, independently executable code.

Programmable memory interface (PMI)

Most 32-bit transputers have a programmable memory interface. The IMS T450
has four memory banks which must be configured before using the external
memory. For all other transputers, configuring the memory interface by software
is optional. See also External memory interface.

Protocol

The pattern (type, etc.) of communications between two processes, often
including communications on more than one channel. Protocols can be defined
in occam and must be specified when a channel is declared.

Reset

On IMS T2ff4fT8-series transputers: the reset/analyse pin.

Root transputer (or root processor)

The processor in a transputer network which is connected to the host computer
directly or via a switch, and through which the transputer network is loaded.

Server

A program running on a host computer which provides access to the file system
and terminal I/O of the host for the transputers, or access to the transputer
system from the host. The server can also be used to load an application onto
the transputer network.

Soft channels

Channels declared and used within, or between processes running on a single
transputer (see also hard channels). Soft channels are implemented in memory.

Standard error

Specifies the standard error output device, for example, the terminal screen. For
details of how to modify standard error on the system, consult the operating
system documentation.

_25_8 liiili~@.£~©, _



259

C Glossary

Standard input

Specifies the standard input device, for example the terminal keyboard or a disk
file. For details of how to modify standard input on the system, consult the oper
ating system documentation.

Standard output

Specifies the standard output device, for example, the terminal screen or a disk
file. For details of how to modify standard output on the system, consult the oper
ating system documentation.

Subsystem

In transputer board architecture (on IMS T2fT41T8-series transputers), the
combination of the Reset, Analyse and Error signals which allows one board to
control another board connected to its subsystem port.

Switch

A switch, such as the ST C004 link switch, allows link connections to be control
lable from software.

Target transputer

The transputer on which the code is intended to run. The transputer type, or a
restricted set of types defined in a transputer class, is defined when the program
is compiled, using command line options.

Transputer Module (TRAM)

A range of small printed circuit boards which typically hold a transputer, some
memory and, optionally, some other application specific hardware. TRAMs can
be interconnected via links to build systems based on a number of motherboard
architectures. For more information see the Systems databook.

Trap

A mechanism provided by some processors to enable a program to handle
exceptions, which may be used for exception handling or by a run-time kernel
or operating system.

Trap handler

A piece of code (and associated storage) called when a trap occurs.

~SGS-1HOMSON----------- "'T~ ~o©OO@rn~@~o©~------------



C Glossary

Usage check

A compilation check that ensures no variables are shared between parallel
processes, and that enforces rules about the use of channels as unidirectional,
point-to-point connections.

Vector space

The data space reqUired for the storage of arrays within occam code (see also
workspace).

Virtual channel

A virtual channel is either a hard channelwhich is implemented using the virtual
channel processor or a soft channel implemented by software through routing
kernels.

Worm

A program that distributes itself through a network of transputers (perhaps with
an unknown topology) and allows all the processors in the network to b.e loaded,
tested or analyzed. Also known as a network analyzer.

Workspace

The data space required by an occam process. When used in contrast to vector
space, refers to the data space required for scalars within the occam code.

_2_60 Efilil@.~I-----------



261

o Bibliography

0.1 Transputers

The transputer databook (Third Edition 1992)

INMOS Limited, July 1992
INMOS document number 72 TRN 203 02

The military and space transputer databook (First Edition 1990)

INMOS Limited, July 1990
INMOS document number 72 TRN 224 00

Transputer instruction set: A compiler writer's guide

INMOS Limited
Prentice Hall 1988

The T9000 Transputer Hardware Reference Manual (First Edition 1993)

INMOS Limited 1993
INMOS document number 72 TRN 238 01

The T9000 Transputer Instruction Set Manual (First Edition 1993)

INMOS Limited 1993
INMOS document number 72 TRN 240 01

Networks, Routers & Transputers: Function, Performance and Application

Edited by: MD May, PW Thompson, PH Welch
INMOS Limited
lOS Press 1993

Transputer Hardware and systems design

JC Hinton and AL Pinder
Prentice Hall 1993

The transputer handbook

Ian Graham and Tim King
Prentice Hall 1990

0.2 C programming

The C programming language (First Edition)

Brian W Kernighan & Dennis M Ritchie
Prentice Hall 1978

~SGS-1HOMSON----------- "''''1£IK:ilO©oo@[g~o©~-----------



0.3 occam programming

The C programming language (Second Edition - ANSI C)

Brian W Kernighan and Dennis M Ritchie
Prentice Hall 1988

C: A reference manual (Second Edition - ANSI C)

Samuel P Harbison and Guy L Steele
Prentice Hall 1987

American National Standard for Information Systems 
Programming Language C

American National Standards Institute 1990
Ref. Doc. X3J11 /88-159

0.3 occam programming

occam 2 reference manual

INMOS Limited
Prentice Hall 1988

A tutorial introduction to occam programming

D Pountain and D May
Blackwell Scientific 1987

An introduction to occam 2 programming

KC Bowler, RD Kenway, GS Pawley and D Roweth
Chartwell-Bratt 1987

Programming in occam 2

A Burns
Addison-Wesley 1988

occam 2

A Gallently
Piman 1989

Programming in occam 2

G Jones and M Goldsmith
Prentice Hall 1988

Concurrent programming in occam 2

J Wexler
Ellis Horwood 1989

_26_2 ii;ili~@_~~ _



263

o Bibliography

Parallel Programs for the Transputer

Ronald S Cok
Prentice Hall 1991

0.4 Technical notes

The transputer applications notebook:
Architecture and software (First Edition 1989)

INMOS Limited, May 1989
INMOS document number 72 TRN 206 00

The transputer applications notebook:
Systems and performance (First Edition 1989)

INMOS Limited, June 1989
INMOS document number 72 TRN 205 00

IMS B004 IBM PC add-in board

Technical note 11
INMOS document number 72 TCH 011

Notes on graphics support and performance improvements on the 1MB T800

Technical note 26
INMOS document number 72 TCH 026

Security aspects of occam 2

Technical note 33
INMOS document number 72 TCH 033

Simple real-time programming with the transputer

Technical note 51
~' INMOS document number 72 TCH 051

Using the occam toolsets with non-Occam applications

'~ Technical note 55
INMOS document number 72 TCH 055

T9000 Toolset Hardware Configuration Manual

INMOS Limited, 1994
INMOS document number 72 TDS 427 00

HTRAM specification

INMOS Limited, 1993
INMOS document number 42 156701

~SGS·1HOMSON----------- AT£ ~lJ©OO©rn~@lR!Jn©~ -----------



0.5 Development systems

D.5 Development systems

The transputer development and iq systems databook (Second Edition 1991)

INMOS Limited, 1991
INMOS Document Number 72 TAN 219 01

IMS 8300 TCPlink hardware manual

INMOS Limited, June 1991
INMOS Document Number 72 TAN 229 01

D.6 References

Software manual for the elementary functions

WJ Cody and WM Waite
Prentice Hall 1980

The art of computer programming
2nd edition, Volume 2: Seminumerical algorithms

DE Knuth
Addison Wesley 1981

IEEE Standard for binary floating-point arithmetic

ANSI-IEEE Std 754-1985

Communicating sequential processes

CAR Hoare
Prentice Hall

_26_4 ~~itnILSJl©' _



Index

Symbols
• STATIC, 165, 250

• VSPTR, 165,250

•WSSIZE, 165,250

#COMMENT, 11

# IMPORT, 11

#INCLUDE, 11,56,57

#mainentry, 213

#OPTION, 11, 209

#PRAGMA, 11
EXTERNAL, 126
LI~GE,29,213,229

PERMITALIASES, 209
SHARED,209
TRANSLATE, 127

#pragma
IMS_nolink, 130
IMS_translate, 126

#SECTION, 29

#section, 213

#USE, 11,56,57,59

A
Abbreviation

configuration language, 73
loop unrolling, 219
of PLACED objects, 221
of variables, 217

Abort
link communication, 175
program, 49

Access, mis-aligned, 259

ADDRESSOF, 249

Alias,253

Alias check, 53

Alias checking, 209
disable, 209
warning messages, 53

Alignment, word, 158

Allocating

channels to links, 159
specific workspace locations, 159

ALT, 227

Analyse, 91, 253

ANSI C toolset, 62

Application, loading, 89-98

ARC, 63, 73

Areg, 249

Array
of channels, 160
placing on-chip, 228
subscripts, 226

Arrays, passing between languages, 133-156,
240,244

AServer, 93
database, 93-95

ASM, 163
channel use, 250
examples, 164
predefined names, 165
syntax, 247

Assembly code
direct instructions, 164
indirect instructions, 164
insertion into occam, 163
operands, 164
prefix instructions, 164
primary operations, 164

ASSERT, 53, 227

Assigning code to transputers, 25

Attributes, of transputer, 69

Automated program bUilding, 86

B
B004,30

B008, PC motherboard, 91

Banks, 185-204

Benchmarks, 229

Big endian, 253

Binary output, ieprom, 182

Block move, 221

Boards

O 265------------ /iii ~i~@nl'~lf~D©' ------------



266

connections, 91
IMS B008, 91

BOOL, 244

Boot from link, 91
loading mechanism, 90

Boot from ROM, 91

Boatable, 89, 253

Boatable code, creating, 19

Booting from link, 89

Bootstrap, 253

Breg, 249

Buffering processes, 103

Build files, library, 257

Bus.Release.Time, 190

BYTE, 244

c
calle. lib, 138, 139

calle .lnk, 138

Capability, 254

CAS, 196

Cas.Cycle.Time, 190

CAUSEERROR, 177

CHAN,244

CHAN OF SP, 49,101

Change control, 58

Channel, 6, 254
array, 160
array constructors, 157, 161
checking, 54
configuration, 62
direct, 80
fault handling, 173
hard, 256
place at address, 158
placement, 113, 114, 159
reinitialize, 174
reserved, 148
reset, 175
retyping, 161
soft, 80,260
usage,54
usage checking, 53
use within ASH, 250
virtual, 81

Index

advanced techniques, 112

channel. h, 244

Check
alias, 53
channel, 53
usage, 53

Checking, occam code, 163

Clearing, error flag, 96

clibs .lnk, 156

clibsrd.lnk, 138, 156

Code
allocation in memory, using PLACE state

ment, 157
insertion, 157, 163
place in memory, configuration statements,

107
placement, 109
placing on-Chip, 229
position in memory, 107, 111

Collecting, simple program, 19

Collector, 30
command line options, 214
information, 211

Communicating Sequential Processes, 6, 255,
266

Compactable code, 254

Compilation
separate, 56
unit, 56

Compiler
command line options, 211
directive, 29
information, 210
libraries

introduction, 11
occam, 138, 143, 254

optimizations, 215

Compiling, 27
for other transputer types, 20
simple example, 17

Concurrency, hardware support, 4

CONFIG,63

Configurable memory banks, 186

Configuration, 61, 254
automatic generation, 61
code & data placement, 13
code and data, placement in RAM, 107
debugging considerations, 81
description, 61 , 64

multiple transputer example, 84

_26_6 ~1~"9©~ _



Index

examples, 66, 67, 74-76
multiple transputer, 83
simple, 18

hardware description, 68
host connection, 74
language, 63

abbreviations, 73
introduction, 12
optimizing memory, 214

libraries of linked units, 76
mapping, 62

channels, 80
description, 78
processes, 78

mixed language, 62
model, 62
of memory

DRAM, 195-199
EPROM, 199
Flash ROM, 199-204
I/O devices, 199-204
no memory, 191-192
ofT450, 185-204
ROM,199
SRAM, 192-194
Video RAM, 195-199

reliable channels, 174
single transputer program, 19
software description, 76
summary, 87
using imakef, 86

Configurer, 30, 254

CONNECT, 64

Connecting
boards, 91
links, 64
subnetworks, 92

Connection manager, 254

Constant arrays, merging, 216

Constants
cached in table, 216
folding, 215
include files, 100
sharing, 56

Creg,249

CSP, 6, 255, 266

cstartrd.lnk, 138

cstartup.lnk,137

Cycles, 190

267

D
Data

network, 255
place in memory, configuration statements,

107

Dead code elimination, 215

Deadlock, 255

Debugging, interactive, 207

Default
command line arguments, 39
error mode,27

Devices non-memory, 199-204

Direct channels, 80

Direct instructions, 164

Directives, linker, 213

Disable
alias checking, 53
interactive debugging, 53
range checking, 52
run-time checks, 51
usage checking, 53
vector space, 54
virtual routing, 53

DO,64

Down, subsystem wiring, 91

DRAM, 189

DRAM, memory cycle, 189, 195-199

Dynamic code loading, 157, 167
examples, 170

E
EDGE, 63,72

Edge, declaring, 72

Edge attributes, 68

EMI, 186
See also External Memory Interface

Environment variables, 16, 39

EPROM programming, 33,179,199
collecting, 182
configuring, 182

Error, 91, 255

Error
detection, disable, 51
flag____________ '''~ ~~@.&. 26_7_



268

clearing in a network, 96
of a subsystem, 92

modes, 50, 255
default, 27
HALT, 50, 208, 255
STOP, 50, 208, 255
UNDEFINED, 51, 208
UNIVERSAL, 50, 208, 255

reporting, 37

Error flag, setting, 157, 177

Ethernet, 255

Event, 266-" ,,(l( \
addresses, 161

Examples
ASH, 164
collecting, 19
configuration, 18
configuration mapping, 82
dynamic code loading, 170
linking equivalent occam process, 156
memory configuration, 188, 192, 194, 198
multiple transputer, 83
multiplexing to host, 102
network description, 74-76
passing C parameters, 237
placing channels, 160
retyping channels, 161
running a program, 19
simple program, 16
simple. occ, 16
single transputer program, 19
skip load, 94
software description, 77
sorter. occ, 46
through-routing, 121
type 1 interface, 151
type 2 interface, 153
type 3 interface, 155
virtual routing, 122

Exception, 255

Executable code, 28

Expressions
conditional, 226
pre-evaluate, 225

Extended data types, occam, 256

Extensions, filename, 34

External memory interface, 256
See also EMI
ofT450,185-204

Extraordinary use of links, 157, 172

Index

F
FALSE, 226

File, streams, 100

Filename, extensions, 34
imakef, 37

Flash ROM, 199-204

Floating point, registers, 167

Free variables, 256

FUNCTION, 217, 225

G
Gateway, 256

Getting started, 15

Global static base, 129, 138

Grid, network topology, 5

H
HALT error mode, 50, 208

HaltOnError, 50, 208

Hard channels, 256

Hardware configuration description, 68

Hardware support, for concurrency, 4

Heap area, mixed language programs, 138, 149

Hexadecimal format, for EPROM, 182

HOST, 74

Host, 256
access to services, 99
channel protocols, 101
communications, 99
connection, in configuration language, 74
dependencies, 37

command line syntax, 38
filenames, 38
search paths, 38

environment variables, 39
file server, 256
versions, vii

Host file server
file streams, 100
introduction, 99

Hostio library, 99

hostio.inc, 100

hostio.lib, 100

268 G'i SGS-1HOMSON
------------- aJ'1F) ~a©oo@rn~@~a©~ -------------



Index 269

KERNEL. RUN, 167

Jump, in ASK code, 166

K

J

L

iserver, 99

iSPY,96

ITERM,39

Intel hex format, 182

Interactive debugging, 207

Interrupt, program, 49 L11.f~ -J eV6N T
irun,89-98 i6 I
ISEARCH, 16, 39 ~

<'S'«

Label, in ASK code, 166

LAN, 257

Large programs, 57

Librarian, 32

Library, 257
build files, 257
building, 59
C runtime

full, 156
reduced, 156

compiler, 11
maths,11
occam, 11,145
of linked units, 76
usage files, 257
using, 58

Library i/o
compiler option, 53
disabling, 53

Link, 5,257
addresses, 161
failure, 172
introduction, 3
long messages, 232
optimization, 230
prioritization, 231
recovery from failure, 174
reinitialize, 175
virtual,81

I/O devices, 199-204

IBM PC,9
386,37

IBOARDSIZE,39

icc,12

icollect, 30

ICOLLECTARG, 40

IEMITARG, 40

ieprom, 33, 179,182

IEPROMARG, 40

IF,64

ilibr,32

ILIBRARG, 40

ilink,28

ILINKARG, 40

ilist,32

ILISTARG,40

imakef, 21,32,58,86

imap, 32, 211

imem450, 185-204

lMEM450ARG, 40

Importing C functions, 138

Include file, 100, 257
occonf. inc, 64,114

Indirect instructions, 164

Information, provided by toolset, 210

init •heap, 140

init.static, 140

Initialization, memory interface, of T450, 90-91,
185-204

Initialize, link, 175

INLINE, 225
disadvantage, 228

Instruction prefixing, 205

INT,244

INT16,244
on 32-bit transputers, 226

INT32, 226, 244

INT64, 244

Intel extended hex format, 182

269------------ G;l~~i@nlf~~©'------------



270

link, 69

1 inkaddr • inc, 161

Linker, 28, 258
command line'options, 213
directives, 213
indirect files, 29, 258
information, 211
startup files, 29

clibs .lnk, 156
clibsrd.lnk, 156

Linking
mixed language programs, 137
simple example, 17

Linkops, 258

linkquota, 70,116,118

Lister, 32
information, 211

Little endian, 258

LOAD. BYTE. VECTOR, 167

LOAD. INPUT. CHANNEL,· 167

LOAD. INPUT. CHANNEL. VECTOR, 167

LOAD. OUTPUT. CHANNEL, 167

LOAD. OUTPUT. CHANNEL. VECTOR, 167

Loader, 258

Loading programs, 89-98
introduction, 31
methods, 90
onto boards and subnetworks, 91
tools, 89

LoadStarl, 107, 258

location, 107,210

location. code, 70, 214

location.vs, 70,214

location.ws, 70,214

Logical processor, 63

Loop unrolling, 219

Low-level programming, 157

M
MAIN. ENTRY; 147

procedure interface, 150

MAKE, 48

Makefile generator, 21, 32, 58

Makefiles, 258

Index

MAP,64

MAPPING, 63

Mapping
channels, 80
description, 78
examples, 82
processes, 78
software onto hardware, 61
with MAPPING, 80
without MAPPING, 82

Master transputer, of a system, 92

Maths, libraries, introduction, 11

Memfile, 185

Memory
allocation, 55, 210
banks,ofT450, 185-204
configuration

DRAM, 195-199
EPROM, 199
Flash ROM, 199-204
for T450, 185-204
I/O devices, 199-204
no memory, 191-192
ROM, 199
SRAM, 192-194
Video RAM, 195-199

cycle
DRAM, 189
non-DRAM, 190

default layout, configured programs, 107
initializing, 149
interface tool, for T450, 185-204
on-chip, 3
ordering code, 111
placing code, 109
refresh, 197
reserving, 107, 108
use by

software virtual routing processes, 119
virtual routing software, 114

Memory bootable, 201

Memory interface, of T450, initialize, 90-91,185

MemReqOut pin, 198

memsize,69

MemStart, 258

memstart, 69

MemWait, 189, 194

Message length, 232

Mis-aligned access, 259

Mixed language programming, 125
example, 237

-27-0-----------liii~~~@lr.'~YI------------



Index 271

heap area, 138 notMemRASO-3, 187
importing C code, 138 numlinks, 69
introduction, 13, 33
linking, 137
occam libraries, 145 0
reduced runtime library, 144
static area, 138 Object code, 259
vector space, 145
workspace, 145 Object file, format, 10, 27

Mostneg, 259 OCARG,40

MOSTNEG I NT, 158, 164 occam
array, 244

MOSTPOS I NT, 164 compiler libraries, 11,254

Motorola S-record format, 182 equivalent process, 146

Moving code and data areas, 111
extended data types, 256
function return values, 241, 245

MS-DOS, 9, 37, 38, 39 interface code, 146

Multiplexed address, 195
libraries, 145
low-level programming, 157

Multiplexing, 12 maths libraries, 11
examples, 102 mixing with C code, 125
processes, 101 programming model, 10

~-

Multiprocessor, optimization, 230
programs, 49
standard libraries, 11

occam 2 toolset, introduction, 9

N occam2.1nk,29,138

occam450.1nk,29
NETWORK,63

occam8.1nk, 29, 138
Network, 259

occama.lnk, 29, 138configuration, 61
description, 71 occonf, 12,61

examples, 74-76 occonf. inc, 64,113,114
grid, 5

OCCONFARG, 40optimization, 230
'~ partitioning, 113, 119 On-chip memory, 3

pipeline, 5 use for program stack, 149
spanning tree, 117

On-chip RAM, 29, 54
Tree, 5

~.

nfix, 164
Operating systems

command lines, 38
NODE, 62,63 dependencies, 37

attributes, 68 MS-DOS, 37

Node,62
Solaris,37
SunOS,37

nodebug,70 apr, 164
non-DRAM, 189 Optimization

~ Non-DRAM memory cycle, 190 code size, 228

NOP, 248
links, 230
multiprocessor, 230

noprofile,70 of source code, 216

notMemBEO-3, 188
performed by compiler, 215
space versus time, 205

notMemCASO-3, 187 use of occam, 224

notMemPSO-3, 187 Options

6i SGS-1HOMSON 271
~£ liVAJo©oo@rn~@~O©$



272

prefix, 38
unsupported, 40

order, 107, 114

order. code, 70, 111, 210, 214

order. VS, 70,111,210,214

order.ws, 111,210,214

p

Page mode of memory, 195

Page.Address.Bits, 195

Page.Address.Shift, 195

PAR, 76

Parallel processing
example, 46
introduction, 6

Parameters
accessto,225
GSS, 138
occam and C equivalents, 237, 241
passing

by reference, 127
by value, 127
mixed language, 239-246

TIMER, 128
to KERNEL. RUN, 169

Peek, 259

Performance improvement, 205

pfix, 164,248

Phases, 190

Physical processor, 63

Pipeline, network, 5

Pipeline sorter, example configuration, 83

Pipelining processes, 103

PLACE, 54, 157
channels on links, 159
examples, 158
then abbreviate, 221
when not to use, 220

PLACE name IN VECSPACE, 208, 220

PLACE name IN WORKSPACE, 208, 220

PLACED PAR, 76

Placement
at address, 157
channels, 158
code, 109, 111

variable in workspace, 159

PMI
configurable banks, 186
port width, 186

Pointer to channel, 160

Poke, 259

PORT, 244

Port, 158
place at address, 157

Port width, 186

PostScript, 259

Preamble, 259

precharge.Time, 190

Prefixing instructions, 164, 205

Primary operations, 164

Priority, 259
links, 232

PROC, 217, 225

PROC.ENTR~ 147
procedure interface, 151

PROC.ENTRY.RC, 147
procedure interlace, 154

Procedure parameters, 169

Process, 6,260
scheduling, 176

PROCESSOR, 62, 64

Processor, farms, 233

processor, 68

Program building, automated, 48

Program development, introduction, 23

Programmable memory interlace, 3

Programs, loading, 89-98

Protocol, 260
include files, 100
sharing, 56
SP,101

Pseudo operations, 164, 249

R
RAM, 181

external, configuring for, 108
on-chip

configuring for, 108
improve use of, 205, 206

Index

272_________ GiSGS-1HOMSON
•.1.® ~n©OO@rn~OO@IK!ID©$-------------



Index

not enough, 210
placing arrays in, 228
placing code in, 229

RAS, 196

RAS time, 196

Ras.Cycle.Time, 190, 196-198

Ras.Edge.Time,196

Real-time programming,S

REAL32,244

REAL64,244

Reduced library, 156

Refresh, 197-199

Reinitialise, 175

Reinitialize, link, 175

RESCHEDULE, 176, 227

reserved, 70,107,108,210,214

Reserved channels, in occam equivalent
processes, 148

Reserving memory, 108

Reset, 91, 260

Retyping
channels, 157, 161
to a byte array, 222

ROM,199

ROM bootable code, 179
processing configurations, 181

romsize,69

root,69

Root transputer, 260

routecost, 70,115,118,119

Run-time, checks, 228

Running programs
dynamically loaded, 167
introduction, 31
simple example, 19

s
Scheduling, 157,227

occam processes, 176

Scoping of variables, 223

Search path, 38

Secondary operations, 164

273

Selective loading, libraries, 59

Separate compilation, 56

Separate vector space, 54, 168

Sequence of memory accesses, 189

Sequential programming, 6

Serial links, 3

Server, 31,260

SET,64

seterr, 177

Skip load, example, 94

skipn.btl, 89

so.buffer, 103

so.exit, 101

so.multiplexor, 102

so. overlapped. buffer, 103

so. overlapped.multiplexor, 102

Soft channels, 80,260

Software description, 76
example, 77

Software virtual routing, disable, 81

Solaris,37

sortconf •pgm, 83

sortsw. inc, 83

SP,101

Spanning tree, network, 117

SRAM, 192-194

Stack, 149, 208
overflow detection, 149
placing in on-chip RAM, 149
position in memory, 107
space requirements, 119

Standard
error, 260
input, 261
output, 261

Standard error, 100

Standard input, 100

Standard output, 100

Static area, 138
pointer, 138
reqUirement, 139

STOP error mode, 50, 208

stapp, 177

_________ GiSGS-1HOMSON 273
·r.@ ~O©OO@~~IRlJO©~ ------------:...:....:..



274

Streamio library, 99

streamio.inc, 100

s treamio • 1 ib, 100

Strobes, 187, 190-191
timing, 190-191

Subsystem, 91,261
wiring, 91

Sun 4, 9, 37

SunOS, 9,37

Switch, 261

Synchronizing, 6

System services, 91

Systems
boot from link, 91
boot from ROM, 91

T
T450, memory interface, 90,185

T450 TRAM, memory configuration, 200

Target loading, 89-98

Target transputer, viii, 10,205,206,261

TCOFF, 10, 27

Temporaries, elimination of, 216

terminate.heap.use, 140

terminate. static.use, 140

Through-routing, 119, 121

Timeout, on links, 174

TIMER, 244
parameters, 128

TIMES, 222

Timing of memory, 190-191

tolerance, 70, 115,118

Toolset
development cycle, 23
documentation, vii-viii

conventions, viii
filename extensions, 34
program development, 23
summary, 13, 14

TRAM, 261

TRANSPUTER, 15, 93

Transputer
architecture, 4

attributes, 69
error flag, 96
in real-time programming, 5
introduction, 3
loading, 89-98
master, 92
module, 261
networks, 5
products, 6
root, 260
scheduler, 227
targets, viii, 205, 206, 261

Trap, 261
handler, 261

Tree, network topology, 5

TRUE, 226

type, 69

u
UART, 157

Unaligned access, 259

UNDEFINED error mode, 51, 52, 208

UNIVERSAL error mode, 50, 208

Unsupported options, 40

Up, SUbsystem wiring, 91

Usage check, 53, 262

Usage checking, 209
disable, 209

Usage files, libraries, 257

v
VAL, 64,244

Value attributes, 68

Variable
non-local, access to, 225
place in workspace, 159
scoping, 223
unused - elimination of, 215

VECSPACE, 54

Vector space, 54,208,220,262
disabling, 54
disadvantage, 228
in mixed language programming, 145
position in memory, 107

Video RAM, 195-199

Virtual channel, 81, 262

Index

_27_4 iifili~@ltWIcf~~~ -



Index

Virtual link, 81

Virtual routing, 119,207
controlling, 114
disable, 81
introduction, 12
use of memory, 114

w
Wait pin, 189, 194

Waveform diagrams, 185, 189

Wiring subsystem, 91

Word alignment, placed objects, 158

Word length, independence, 158

WORKSPACE, 54,159

Workspace, 208, 262

allocation, 216
in ASK code, 165
in dynamic loading, 168
in mixed language programming, 145

Worm, 262

x
xlink.lib,173

v
Yoption, 53

z
Z, command line option, 40

275


	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	Transputer targets supported by this toolset
	Documentation conventions

	Part 1: Basics
	1 Introduction to transputers
	1.1 Transputers
	1.1.1 Transputer links
	1.1.2 Process scheduling
	1.1.3 Real time programming
	1.1.4 Multi-transputer systems

	1.2 Programming models
	1.2.1 Parallel processing model

	1.3 Transputer products
	1.3.1 Toolset products


	2 Overview of the toolset
	2.1 Introduction
	2.2 Toolset features
	2.3 Standard object file format
	2.4 occam 2.1 compiler
	2.4.1 Programming model
	2.4.2 Language extensions
	2.4.3 occam libraries
	2.4.4 Low level programming

	2.5 Multi-language linker
	2.6 Configuration system
	2.6.1 Software routing and multiplexing
	2.6.2 Code and data placement

	2.7 Mixed language programming
	2.8 Toolset summary

	3 Getting started
	3.1 Introduction
	3.2 Running the examples
	3.2.1 Sources

	3.3 The example program
	3.3.1 Compiling the program
	3.3.2 Linking the program
	3.3.3 Configuring the program
	3.3.4 Collecting the program
	3.3.5 Running the program on a transputer board
	3.3.6 A short cut to creating a bootable file

	3.4 Compiling and linking for other transputer types
	3.5 Using the Makefile generator

	4 Developing programs for the transputer
	4.1 Program development using the toolsets
	4.1.1 Compatibility with previous toolset releases

	4.2 Compiling
	4.3 Tools for building executable code
	4.3.1 Linker - ilink
	4.3.2 Configurer - occonf
	4.3.3 Code collector - icollect

	4.4 Loading and running programs
	4.4.1 Host file server
	4.4.2 Skip bootables

	4.5 Program development and support
	4.5.1 Librarian - ilibr
	4.5.2 Binary lister - ilist
	4.5.3 Makefile generator - imakef
	4.5.4 Memory map tool - imap

	4.6 EPROM programming
	4.7 Mixed language programming
	4.8 File types and filename extensions
	4.8.1 Filename extensions required by imakef

	4.9 Error reporting
	4.10 Host dependencies
	4.10.1 Filenames
	4.10.2 Search path
	4.10.3 Environment variables
	4.10.4 Default command line arguments

	4.11 Unsupported options

	5 An example program
	5.1 Overview of the program
	5.2 The channel protocol
	5.3 The sorting element
	5.4 The input/output process
	5.5 The calling program
	5.6 Compiling the program
	5.7 Linking the program
	5.8 Configuring and collecting the program
	5.9 Running the program
	5.10 Automated program building

	6 Programming in occam
	6.1 Host channels
	6.1.1 Interrupting programs

	6.2 occam error handling
	6.2.1 Error modes
	6.2.2 Error detection compiler options

	6.3 Library i/o
	6.4 Alias and usage checking
	6.5 Using separate vector space
	6.6 Sharing source between files
	6.7 Separate compilation
	6.7.1 Sharing protocols and constants
	6.7.2 Compiling and linking large programs

	6.8 Using imakef
	6.9 Libraries
	6.9.1 Selective loading
	6.9.2 Building libraries


	7 Configuring transputer networks
	7.1 Introduction to configuration
	7.1.1 What is configuration?
	7.1.2 Mixing languages

	7.2 Configuration model
	7.2.1 Configuration tools
	7.2.2 Configuration language
	7.2.3 Importing code and source files
	7.2.4 Overall structure of a configuration description

	7.3 Hardware description
	7.3.1 Declaring processors
	7.3.2 NODE attributes
	7.3.3 NETWORK description
	7.3.4 Declaring EDGEs
	7.3.5 Declaring ARCs
	7.3.6 Abbreviations
	7.3.7 Host connection
	7.3.8 Example - a single processor connected to the host
	7.3.9 Example - a simple pipeline
	7.3.10 Example - a square array with host interface processor

	7.4 Software description
	7.4.1 Libraries of linked units
	7.4.2 Example

	7.5 Mapping description
	7.5.1 Mapping processors
	7.5.2 Mapping channels
	7.5.3 Mapping without a MAPPING section
	7.5.4 Mapping example - pipeline sorter on a single processor
	7.5.5 Mapping example - pipeline sorter on a ring of processors

	7.6 Example - a pipeline sorter on four transputers
	7.6.1 Building the program
	7.6.2 Running the program
	7.6.3 Automated program building
	7.6.4 Other configuration examples

	7.7 Summary of configuration steps

	8 Loading application programs
	8.1 Introduction
	8.2 Tools for loading
	8.3 The boot from link loading mechanism
	8.3.1 Initializing the ST20450 memory interface

	8.4 Boards and subnetworks
	8.4.1 System services wiring
	8.4.2 Connecting subnetworks

	8.5 AServer and the AServer database
	8.5.1 AServer
	8.5.2 AServer database

	8.6 Skip loading
	8.6.1 Invoking skip bootables

	8.7 Clearing error flags

	9 Access to host services
	9.1 Introduction
	9.2 Communicating with the host
	9.2.1 The host file server
	9.2.2 Library support
	9.2.3 File streams

	9.3 Accessing the host from a program
	9.4 Multiplexing processes to the host
	9.4.1 Buffering processes to the host
	9.4.2 Pipelining


	Part 2: Advanced techniques
	10 Advanced use of the configurer
	10.1 Support for INQUEST
	10.2 Code and data placement
	10.2.1 Default memory map
	10.2.2 Other memory configurations
	10.2.3 Reserving memory
	10.2.4 Absolute address code placement
	10.2.5 Ordering code and data segments

	10.3 Channel communication - configuration techniques
	10.3.1 Routing and placement constants
	10.3.2 Optimizing important application channels
	10.3.3 Virtual communications - use of fast memory

	10.4 Control of routing
	10.4.1 Routing cost
	10.4.2 Tolerance
	10.4.3 Link quota
	10.4.4 The minimal spanning tree
	10.4.5 Summary of routing attributes
	10.4.6 Prevention of through-routing via critical processors
	10.4.7 Use of additional processors for through-routing
	10.4.8 Support for memory-critical systems

	10.5 Example - optimized filter test program

	11 Mixed language programming
	11.1 Mixed language programs
	11.1.1 Declaring external routines
	11.1.2 Translating identifiers
	11.1.3 Parameter passing
	11.1.4 Global static base parameter
	11.1.5 Function return values
	11.1.6 Passing array parameters
	11.1.7 Linking the program
	11.1.8 Allocating memory for C functions called from occam
	11.1.9 Restrictions and caveats

	11.2 occam interface procedures
	11.2.1 Interface code
	11.2.2 Parameters to the C program
	11.2.3 Stack and heap requirements
	11.2.4 Type 1 interface definition
	11.2.5 Type 2 interface definition
	11.2.6 Type 3 interface definition
	11.2.7 Building the occam equivalent process


	12 Low level programming
	12.1 Allocation
	12.1.1 The PLACE statement
	12.1.2 Allocating specific workspace locations
	12.1.3 Allocating channels to links

	12.2 Retyping channels and creating channel array constructors
	12.3 Code insertion
	12.3.1 Using the code insertion mechanism
	12.3.2 Special names
	12.3.3 Labels and jumps
	12.3.4 Workspace zero
	12.3.5 Below workspace slots
	12.3.6 Channels
	12.3.7 Programming notes

	12.4 Dynamic code loading
	12.4.1 Calling code
	12.4.2 Loading parameters
	12.4.3 Examples

	12.5 Extraordinary use of links
	12.5.1 Programming concerns
	12.5.2 Input and output procedures
	12.5.3 Recovery from failure
	12.5.4 Example - unreliable connections

	12.6 Scheduling
	12.7 Setting the error flag

	13 EPROM programming
	13.1 Introduction
	13.2 Processing options
	13.2.1 Single processor, run from ROM
	13.2.2 Single processor, run from RAM
	13.2.3 Multi-processor, run from RAM
	13.2.4 Multi-processor, root run from ROM, rest of network run from RAM

	13.3 The EPROM tool: ieprom
	13.4 Producing ROM-boatable code
	13.5 Summary of EPROM tool steps for different configurations
	13.5.1 Using icconf
	13.5.2 Using occonf


	14 ST20450 memory interface configuration
	14.1 The memory interface
	14.2 General parameters
	14.2.1 Waveform diagrams

	14.3 Timing
	14.3.1 Strobes
	14.3.2 Timing skews

	14.4 Configuring for no external memory
	14.5 Configuring for SRAM
	14.5.1 Timings

	14.6 Configuring for DRAM and Video RAM
	14.6.1 Timings
	14.6.2 Refresh

	14.7 Configuring for ROM
	14.7.1 EPROM
	14.7.2 Flash EPROM

	14.8 Configuring for non-memory devices
	14.9 Building and using memory configuration code
	14.9.1 Booting from link
	14.9.2 Booting from an application code ROM
	14.9.3 Booting from a memory configuration ROM


	15 Performance improvement
	15.1 Introduction
	15.1.1 Transputer architecture

	15.2 Trade-offs and issues
	15.2.1 Space versus time
	15.2.2 On-chip RAM
	15.2.3 Basic code generation techniques
	15.2.4 Processor classes and types
	15.2.5 Interactive debugging
	15.2.6 Virtual routing
	15.2.7 Error modes
	15.2.8 Vector space
	15.2.9 Alias checking
	15.2.10 Usage checking
	15.2.11 Memory layout
	15.2.12 When there is not enough on-Chip RAM

	15.3 Obtaining information
	15.4 Command line switches
	15.4.1 Compiler command line switches
	15.4.2 Linker command line switches
	15.4.3 Linker directives
	15.4.4 Configurer command line switches
	15.4.5 Configuration language attributes for optimizing memory
	15.4.6 Collector command line switches

	15.5 Compiler optimizations
	15.6 Source code optimizations
	15.6.1 Compiler workspace layout
	15.6.2 Compiler code layout
	15.6.3 Abbreviations
	15.6.4 Vector space
	15.6.5 Beware the PLACE statement
	15.6.6 Abbreviating PLACED objects
	15.6.7 Block move
	15.6.8 Use TIMES
	15.6.9 Retyping - accelerating byte manipulation
	15.6.10 Scoping of variables
	15.6.11 Use the whole language
	15.6.12 INLINE procedures and functions
	15.6.13 Access to non-local variables
	15.6.14 Access to formal parameters
	15.6.15 Pre-evaluate expressions
	15.6.16 Conditional expressions
	15.6.17 Array SUbscripts
	15.6.18 INT16s
	15.6.19 ALTs
	15.6.20 Use of ASSERT( )
	15.6.21 Transputer scheduler

	15.7 Summary
	15.7.1 Optimizing for code size
	15.7.2 Removing run-time checks
	15.7.3 Placing arrays in on-chip RAM
	15.7.4 Placing code in on-chip RAM
	15.7.5 Building benchmarks

	15.8 Maximizing multiprocessor performance
	15.8.1 Maximizing link performance
	15.8.2 Large link transfers

	15.9 Dynamic load balancing and processor farms

	Appendices
	A Equivalent data types
	A.1 occam as the calling language
	A.1.1 Example of passing parameters from occam to C
	A.1.2 Parameter passing
	A.1.3 Return values
	A.1.4 typedef types

	A.2 C as the calling language
	A.2.1 Example of passing parameters
	A.2.2 Parameter passing
	A.2.3 Return values
	A.2.4 Named types


	B Transputer code insertion
	B.1 Inline transputer code insertion
	B.1.1 Sequential code insertion
	B.1.2 Full code insertion

	B.2 ASM construct
	B.2.1 Syntax
	B.2.2 ASM instructions
	B.2.3 Pseudo operations

	B.3 Instructions supported by sequential code insertion

	C Glossary
	D Bibliography
	D.1 Transputers
	D.2 C programming
	D.3 occam programming
	D.4 Technical notes
	D.5 Development systems
	D.6 References

	Index



