NMOS’

Performance improvement
with the INMOS Dx314
ANSI C Toolset

INMOS Limited

vy SGS-THOMSON
Y/ (ICROELECTRONICS
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 354 00

October 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without
prior written consent of INMOS.

s ﬂmlmos®. IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

Ly7, S53:THONSON s a registered trademark of the SGS-THOMSON Microelectronics Group.

The C compilerimplementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft "C" Compiler.

INMOS Document Number: 72 TDS 354 00

Contents

Contents e i
Prefaceociiii e iii
Hostversions ...ttt i
Aboutthismanual iii
About the toolset documentationset iii
Otherdocuments ...ttt iv
occamand FORTRANtoolsetsccoiviiiiian... iv
Documentation conventions v

1 ntroduction il 1
1.1 Transputer architecture 1

1.2 Generalissuesooviiiiiie i 1

1.2.1 Space versustime 1

1.2.2 Processor classesandtypes 2

123 Full versus reduced libraries 2

1.24 Start-upcode, 2

1.3 Obtaining information il 3

2 Memorylayout ... e 5
21 Memory layout for configured programs 5

22 Memory layout for non—configured programs 7

23 Codelayout............iiiiiiiii it 8

24 Staticdatalayoutl 9
241 Local staticdatalayout 10

242 Constant staticobjects 10

25 Stacklayout 11

26 Layoutofstructuresl 12

27 Memory mapped devicesl 14

3 Improvingcodecciiiiiiiiiiiiiii i 15
3.1 General optimizationscooiiiia 15

3.2 Loopunrollingcoc i 15

33 Pointer update versus array subscripting 16

34 optimizing switch statements oL 17

35 Use ANSI function prototypes ...t 17

3.6 Use floating point in single precision where possible 18

37 Shortintegerso 19

ii Contents
3.8 Chars ... e e 19

3.9 Use ANSIC mem..functions 19

3.10 Keep variables as local as possible 20

311 Accesstostaticdatal 21

312 Largeobjects 21

3.13 Built-in, inlinedroutines L. 22

3.14 Channel communication 23

3.15 External functiondefinitions 23

4 Otherfeaturesccciiiiiiiiiiiiiaininan. 25
41 Arithmetic right shift of signed integers 25

4.2 Signedness of plainchars, 25

5 Runningbenchmarks.....................cccveent 27

5.1 Generalrules ...ttt 27

Preface

Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

¢ IMS D7314 - IBM PC compatible running MS-DOS
¢ |IMS D4314 — Sun 4 systems running SunOS.
¢ IMS D6314 — VAX systems running VMS.

About this document

‘Performance Improvement with the DX314 ANSI C Toolset’

This document provides advice about how to maximize the performance of the
toolset. It brings together information provided in other toolset documents particu-
larly from the Language and Libraries Reference Manual.

The document describes the layout of code and data in memory for programs
developed with the ANSI C Dx314 Toolset. It then goes on to describe methods
of improving code in order to:

¢ minimize the running time of the program;
¢ reduce the size of the program; either code or data or both.

Note: details of how to manipulate the software virtual through-routing mechanism
are given in the User Guide.

About the toolset documentation set
The documentation set comprises the following volumes:
e 72 TDS 345 01 ANSI C Toolset User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; ‘Basics’ which
describes each of the main stages of the development process and
includes a 'Gefting started tutorial. The ‘Advanced Techniques’ section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

e 72 TDS 346 01 ANSI C Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products i.e. the occam and FOR-

72 TDS 354 00 October 1992

TRAN toolsets and the documentation reflects this. Examples are given in
C. The appendices provide details of toolset conventions, transputer
types, the assembler, server protocol, ITERM files and bootstrap loaders.

e 72 TDS 347 01 ANSI C Language and Libraries Reference Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details are also provided about how to modify the run-
time startup system, although only the very experienced user should
attempt this.

e 72 TDS 348 01 ANSI C Optimizing Compiler User Guide

Provides reference and user information specific to the ANSI C optimizing
compiler. Examples of the type of optimizations available are provided in
the appendices. This manual should be read in conjunction with the refer-
ence chapter for the standard ANSI C compiler, provided in the Tools Ref-
erence Manual.

e 72 TDS 354 00 Performance Improvement with the DX314 ANSI C Toolset
(this document)

» 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. Itis provided for quick refer-
ence and summarizes information provided in more detail in the Tools Ref-
erence Manual and the Language and Libraries Reference Manual.

o 72 TDS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual, Optimiz-
ing Compiler User Guide and the Performance Improvement document.

Other documents

Other documents provided with the toolset product include:
 Delivery manual giving installation data, this document is host specific.
* Release notes, common to all host versions of the toolset.

occam and FORTRAN toolsets

At the time of writing the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are
subject to change. Users should consult the documentation provided with the cor-
responding toolset product for specific information on that product.

72 TDS 354 00 October 1992

Preface v

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces {} Used to denote optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the com-
mand line.

Ellipsis . .. In general terms, used to denote the continuation of a series. For
example, in syntax definitions denotes a list of one or more
items.

| In command syntax, separates two mutually exclusive alterna-
tives.

72 TDS 354 00 October 1992

vi

72 TDS 354 00

October 1992

1 Introduction

This document describes the layout in memory of C programs which have been
built with the INMOS Dx314 ANSI C toolsets and suggests ways in which the per-
formance of C programs may be improved.

This document assumes that the reader is familiar with the ANS| C toolset. The
accompanying user documentation should be read in conjunction with this docu-
ment.

Except where explicitly stated, all comments in this document apply to both the
non-optimizing and the optimizing ANSI C compilers supplied with the Dx314 ANSI
C toolsets. The transputer targets which this document applies to are the:

IMS T212, T222, T225, T400, T414, T425, T426, T800, T801, T805.

1.1 Transputer architecture

This document will not attempt to describe the transputer architecture. However,
the particular points to note about the transputer, when considering performance
maximization, are as follows:

¢ On-chip RAM.

Each transputer has a part of its address space implemented as on-chip
RAM, which means that it can be accessed very quickly. There is a notice-
able penalty in accessing external RAM. Much of this document describes
methods to ensure that best use is made of this on-chip RAM. Current
transputer variants have either 2K or 4K bytes of on-chip RAM.

* Instruction prefixing.

Transputers use a variable length instruction encoding, which is built up out
of lots of single byte instructions. It is useful to minimize the size of these
instructions, both to minimize the code space required, and to minimize the
time taken to fetch the instructions from memory.

In practice, the only instructions whose length can be easily controlled are
those which access local variables; hence it is the layout of local variables
which is important.

1.2 General issues

1.21 Space versus time

Most optimizations which are described are intended to minimize the running time
of a program; this is known as optimizing for time. In certain circumstances it is

72 TDS 354 00 October 1992

2 1.2 General issues

required to minimize the size of a program; either code size, or data size, or both.
This is known as optimizing for space. Often a particular optimization will produce
an improvement in both space and time.

1.2.2 Processor classes and types

The ANSI C compiler can create code which can execute on many different types
of transputer; these are known as transputer classes. This facility can be useful
to build libraries which can be used for any transputer type. However, compiling
for a particular transputer type will make best use of that transputer’s particular
instruction set, and therefore will make a program smaller and execute faster.

It is worth noting that you can create a library which contains, for example, both
TA and T425 code. The linker will automatically select the most specific modules
which exist in that library, depending upon the command line options supplied.

The rule to use is: always compile and link for the specific transputer type to get
the best performance.

1.2.3 Full versus reduced libraries

Two versions of the C run-time library are provided: a full library and a reduced
library. The full library provides all library functions documented in the ANS/ C Lan-
guage and Libraries Manual, the reduced library contains only those functions
which do not require support from the host server, iserver.

For each library function, the function description in the ANSI C Language and
Libraries Manual mentions if that function is not included in the reduced library: if
you write code which calls any of these functions, and then attempt to link with the
reduced libraries, you will get a linker error.

For programs which do not require host server support - for example, code
installed in embedded systems, or code on processors which only communicate
with neighboring processors, then linking with the reduced libraries is preferable
as the size of the resulting linked unit will be smaller.

1.2.4 Start-up code

The runtime start-up code for configured systems is supplied in source form, so
that you can tailor it to your exact requirements. For example, if your source code
doesn’t require heap or stack checking, then the relevant section of the start-up
code may be removed.

Tailoring the start-up code can reduce the library overhead so that, for instance,
the program may fit entirely in internal RAM.

Full details of the start-up code and how to modify it‘are given in the ANSI C Lan-
guage and Libraries Manual.

72 TDS 354 00 October 1992

Introduction 3

1.3 Obtaining information

Various tools provide information which can be useful when improving perfor-
mance.

Compiler information The compiler’s I command-line option displays the
number of bytes of code and static data in the module. The compiler’s P
command-line option produces a map file, which contains a map of the
code and static data for the source file, together with a map of the local
workspace for every function defined in the file.

Collector information The collector’s Pcommand-line option can be used
to produce a text file which indicates the memory layout of each processor
in the network. It also indicates the processor connectivity.

Memory map information The mapping tool, imap, will combine map files
produced by the collector, linker and compiler into one map which gives a
detailed description of the memory layout of each processor in the network.

ilist information The ilist program can examine any data file which
is created by the INMOS toolsets, and display a decoded form of its con-
tents. This may be useful if extra information is required which is not avail-
able by any of the previous methods.

72TDS 354 00 October 1992

4 1.3 Obtaining information

72 TDS 354 00 October 1992

2 Memory layout

For the purposes of this document, all diagrams of the transputer’s address space
have the most negative addresses at the bottom, and the most positive addresses
at the top. (Remember that the transputer has a signed address space.) The bot-
tom of the address space is the most negatively addressed memory location; and
one memory address is lower than another if it has a more negative address.

As a transputer’s memory map consists of areas of memory of widely varying
speeds, correct use of the fastest memory is crucial in order to make programs run
quickly. Usually, this is the single most important factor in speeding up programs.

The fastest area of memory is the on-chip RAM: this is located at the very bottom
of the address space. As a general rule of thumb, a program’s stack should be
placed onto the on-chip RAM if possible. This is because the transputer’s instruc-
tion encoding makes data accesses more frequent than instruction accesses,
therefore greatest benefit is gained, if the data resides in fast memory. If there is
space, then it is useful to put inner loops and other frequently used code subrou-
tines into on-chip RAM too.

Some TRAMSs, with memory of differing speeds, are constructed in such a way that
the faster memory is always at a lower address. Thus the bottom 4K might be on-
chip RAM, the next 32K might be 3-cycle external SRAM, followed by 2M of 4-cycle
external DRAM. So the general rule is to put the more crucial parts of a program
(code or data) at lower addresses.

21 Memory layout for configured programs

The usual way to build a program is to compile all the source files into object files,
link all the object files into linked units, configure the linked units into a configuration
data file, and then collect the configuration data file into a transputer executable
file. A program built in this way is a configured program.

Figure 2.1 illustrates the default memory layout for a configured C program.

72 TDS 354 00 October 1992

6 2.1 Memory layout for configured programs

Top of memory
Heap
Static data
Code
Stack
........... o .
MemStart On—chip
memory
Bottom of memory

Figure 2.1 Default memory layout for a configured C program

This layout places the stack at the lowest address, followed by the code. This is
normally the best ordering to obtain fastest program execution.

The sizes of the stack and heap sections must be specified explicitly in the configu-
ration file. Take care not to specify too large a stack size: if this happens then it may
be that the lowest-addressed part of the stack area, that which resides in on-chip
memory, will never be used!

For example, if you specify a stack size of 6 Kbytes, but the program only actually
uses 2 Kbytes, then the lower 4 Kbytes of the stack space will never be used (as
the stack is a falling stack). If the stack area has been placed in the lowest memory,
this means that the lower 4 Kbytes of memory — the on-chip RAM, will never be
used.

When a program’s stack requirement is substantially larger than the on-chip RAM,
it may well be that, most of the time, the stack being used is off-chip. In this case,
it might be more useful to move the code on-chip, particularly time-critical code
sections, and leave the stack off-chip.

The configurer has several attributes which give greater control of the position and
ordering of the different sections. Full details are given in the chapter entitled
"Advanced use of the configurer” in the "INMOS ANSI C Toolset User Guide”, sup-
plied with the Dx314 foolset.

In summary, the attributes are:

reserved This is a processor attribute, which specifies an area of
memory on a processor, which the configurer will not use when placing
user and system processes.

72 TDS 354 00 October 1992

Memory layout 7

order This is a process attribute which allows you to control the order in
which the code, stack and heap sections for a given process are placed by
the configurer.

location This is a process attribute which allows you to specify absolute
addresses for the code, stack and heap sections for a given process, rather
than have the configurer place them automatically.

2.2 Memory layout for non—configured programs

For single-processor programs, it is possible fo skip the configuration stage and
run icollect directly on the output of the linker. In this case, the collector’'s T
command-line option must be used. A program built in this way is a non-configured
program.

Figure 2.2 illustrates the default layout for a non-configured C program.

Top of memory
CStack .
v
.......... | A
Heap
Static data
Code
MemStart On-chip
memory
Bottom of memory

Figure 2.2 Default memory layout for a non—configured C program

The advantage of this layout is that it places no restriction (apart from the amount
of available memory) upon stack size or heap size: the stack and heap can keep
growing until there is no free memory left. The disadvantage of this layout is that
it puts the stack into the slowest memory. As the stack is generally the most fre-
quently accessed memory, this can have a serious impact on program speed.

For a non-configured program, it is possible to use icollect’s command line
option S to place the stack in the lowest memory. Figure 2.3 illustrates the layout
in this case.

72 TDS 354 00 October 1992

8 2.3 Code layout

Top of memory
......... | S
Heap
Static data
Code
Stack
......... jo .
MemStart On-—chip
memory
Bottom of memory

Figure 2.3 Memory layout for non—configured C program with icollect s
option

The advantage of this layout is that it matches the guidelines given above for
obtaining the fastest program execution. As the stack works downwards, the stack
for the most nested routines will be in lower, and therefore faster, memory, which
is what we desire. There is no restriction (apart from the amount of available
memory) upon heap size.

2.3 Code layout

Within a file, code is generated for functions in the order in which they appear: the
code for the first function in the file will be placed at the lowest address.

The linker allows a programmer to control the relative ordering of different modules
in the linked object file. The output file will still be a single consecutive chunk of
code, but the relative order of object files can be controlled. Primarily this is done
by rearranging the order in which the files are listed on the command line. The
linker inserts all separately compiled units into the output code file in the same
order as they are encountered on the command line. It then adds library modules
as necessary.

The linker provides finer control than this if required. This is done by means of
#section directives in the linker’s input file. By default, the compiler places all
code in any compilation module into a ‘code section’ named “text%base”. This
may be overridden by use of the compiler’s #pragma IMS linkage (). If this
pragma is used, the code section is named “pri%texttbase”. If the pragma is
followed by a string parameter, that name is used for the code section.

72 TDS 354 00 October 1992

Memory layout 9

For example:
#pragma IMS_linkage (”"fastcode”)
names the current file’s code section “fastcode”.

The linker links all code modules in any particular named section, and then con-
catenates the sections. However, by naming different sections, a programmer can
control the overall order. Normally, the linker places the section named
“pristextsbase” at the beginning of the code, followed by “textsbase”, fol-
lowed by any other code sections in an arbitrary order. '

If the programmer supplies any #section directives in the linker's input file, the
ordering is different. The linker places the first named section first, followed by the
next named section, etc. Any sections which were not explicitly named are placed
at the end. (Note: that the #section directive should be followed by the section
name without enclosing quotes).

The map created by the mapping tool, imap, can be examined to confirm the rela-
tive placement of sections.

Note: that floating point support libraries used on T4 series transputers are auto-
matically placed into section “pri%textibase”, so that they are more likely to be
placed onto on-chip RAM.

2.4 Static data layout

The static data area comprises a local static area for each object file (or more spe-
cifically, each object file which uses static data) together with a module table. Fig-
ure 2.4 illustrates this.

local static for file 4
file 4 Isb
local static for file 3
file 3 Isb
local static for file 2
file 2 Isb —
local static for file 1
file 1 Isb
L module table ——1
gsb S— —

Figure 2.4 Static data layout

72 TDS 354 00 October 1992

10 2.4 Static data layout

The module table contains an entry for every file with a local static area, which con-
sists of a word containing a pointer to that file’s local static area.

The base of the module table is called the global static base, or gsb.

2.4.1 Local static data layout

Usually, static data objects defined in a file are allocated space in that file’s local
static area. However, under certain conditions, a static data object may be placed
in the text section (i.e. the section which contains the code) for that file (see section
24.2).

Local static data is allocated to increasing addresses in the local static area, in the
same order as it appears in the source code.

The global static base (gsb), is passed as a hidden first parameter to every routine.

To access a piece of static data, the compiler loads the gsb, then does an indirect
load to pick up the entry in the module table for the current file, this gives a pointer
to the local static area (the local static base, or Isb). If the static data required is
in the local static area, it may be accessed using the Isb; but if it is in another file's
static area, then another level of indirection is required.

If a function makes frequent access to the local static area, then the Isb is cached
into a temporary in local workspace before it is first used (usually, this is on entry
to the function).

24.2 Constant static objects

If a static data object can be guaranteed to be non-modifiable, then the C compiler
is sometimes able to allocate it in in the text section (i.e. the section which contains
the code) for the file in which it is defined. The object must be non-modifiable, as
the text section must be ROMable.

This can be useful as it can reduce the amount of memory required for that object:
if the object is placed in the static data area then it must be initialized at program
start-up and the value of the initializer is held in the text section. By allocating the
object directly in the text section, no initializer is necessary. Note: that this will not
reduce the size of the text section (and hence the size of the bootable file), but it
will reduce the size of the static data area.

The exact conditions which must be satisfied for the object to be placed in the text
section are:

1 The static data object must be declared as const.
2 The static data object must not be declared as volatile.

3 The static data object must have an initializer.

72TDS 354 00 October 1992

Memory layout 11

4 The initializer must contain no pointers to data or functions (absolute
pointer values cannot be put into the text section as they are only known
at run-time).

5 The static data object must not be externally visible (references to external
objects have to know whether the object they are referencing is in the text
section or the data section).

This can be useful if a program contains a very large table of constants or constant
data.

For example:

static const char data[] = { 1, 27, 34, 52, ...

.1 5, 4, 0};
will be allocated in the text section.

Note: that the conditions above require that the constant static data object must
not be visible in any other files. This can be worked around by defining a pointer
to the constant static object and making the pointer externally visible. For the
above, we can define:

extern const char *datap = &data[0];
and then other files may access data indirectly through datap.

If you wish to ensure that a data object is not allocated in the text section then do
not declare it as const.

2,5 Stack layout

Local workspace is allocated as a falling stack. It is not possible for the compiler
to determine the maximum stack size; however, the Ks option directs the compiler
to insert a call to a stack checking routine on entry to every function. The stack
checking routine will ensure that there is enough stack available to execute the
function. (The optimizing C compiler will suppress the call to the stack checking
routine for leaf2 functions, when it can determine that enough stack is available.)

If stack checking is turned on, then at the end of a program the library routine
max_stack_usage may be called; this returns the number of bytes of stack space
used by the program. This value is the maximum value of stack size at each call
to the stack checking function; so it must be treated with care if there are parts of
the program running without stack checking.

As the runtime library never runs with stack-checking turmmed on,
max_stack_usage always adds 150 words to the stack usage, as this allows for
the largest stack required by the runtime library.

2. A 'leaf function is a function that calls no other function.

72 TDS 354 00 October 1992

12 2.6 Layout of structures

2.6 Layout of structures

Layout of structures is very much dependent upon the particular compiler and the
architecture of the target processor. The rules described here are very specific to
the INMOS ANSI C compiler and the transputer, they should not be treated as gen-
eral rules for laying out structures.

The compiler uses the following rules when laying out the fields within a structure:

1 Crequires that structure fields are laid out in memory in the same order as
they are specified in the source code.

2 chars (which are represented in one byte) may have any alignment.

3 shorts (which are represented in two bytes) are aligned on an even
boundary.

4 word-sized or larger objects are aligned on a word boundary.
5 structures, unions and arrays are aligned on a word boundary.

char and short fields will be packed into the same word where possible, without
breaking any of the above rules.

For example, on a 32-bit processor,

struct d {

char hid[8]; The first byte of hid is on a word boundary (as
the first byte of structure is on a word boundary),
it occupies 8 bytes (2 whole words).

unsigned short inuse; |This occupies the lower two bytes of the follow-

ing word.

char flagsl; This is packed into byte 2 of the same word as
inuse.

char flags2; This is packed into the upper byte of the same

word as inuse and flagsl.
unsigned long tkey; This occupies the following word.

unsigned short tfil; |This occupies the lower two bytes of the follow-
ing word.

long npos; This has to be allocated on the next word bound-
ary, so two bytes are left unused.

unsigned short kmod; |This occupies the lower two bytes of the follow-
ing word.

unsigned short kbhz; |This is packed into the upper two bytes of the
same word as kmod — 16-bit objects are placed
at even addresses (rule 2), not word—addresses.

unsigned short rmod; |This occupies the lower two bytes of the follow-
ing word.

} structure; Two bytes are left unused.

72 TDS 354 00 October 1992

Memory layout 13

Or, more graphically:

Byte 0 1 2 3

Word

0 hid[0] hid[1] hid[2] hid[3]
1 hid[4] hid([5] hid[6] hid[7]
2 <—— inuse —* flagsl flags2
3 tkey

4 -« tfil — <— unused —*
5 npos

6 <«— kmod — -— kbhz —
7 <— rmod — <—— unused —*

If the structure fields are reordered, then a more efficient packing could be
obtained.

struct d {
char hid[8];
unsigned short inuse;
char flagsl;
char flags2;
unsigned long tkey;
long npos;
unsigned short kmod;
unsigned short kbhz;
unsigned short rmod;
unsigned short tfil;
} structure;

would give:
Byte 0 1 2 3

Word -

0 hid[0] hid[1] hid[2] hid[3]
1 hid[4] hid[5] hid[6] hid[7]
2 <— inuse —* flagsl flags2
3 <+———— tkey

4 <—— npos

5 <+—— kmod — -— kbhz —
6 <— rmod —*> -— tfil —

Note: the INMOS C compiler will generate more efficient code to load a short if
it is word-aligned, so this new packing means that more code will be needed to
access tfil, asitis no longer word-aligned. (Again, this is very dependant upon
the way the INMOS ANSI C compiler currently handles structures.)

72 TDS 354 00 October 1992

14 2.7 Memory mapped devices

A general rule for obtaining the smallest structure size possible is to order the fields
in increasing order of size.

2.7 Memory mapped devices

Memory-mapped devices can be accessed by declaring a structure which
describes the registers of the device, and then declaring a pointer to the structure,
which is initialized to the absolute address of the device.

For example, a memory mapped UART at absolute address #40000000:

typedef struct IODevice
{ int datareg;
union
{ int controlreg;
int statusreg;
} u;
} IODevice;

Then declare:

volatile IODevice *keyboard = (IODevice *)0x40000000;
Alternatively, you can use:

#define keyboard ((IODevice *)0x40000000)

For fastest access to the memory-mapped device, use the first method of declar-
ing keyboard, and ensure that keyboard s alocal variable. Access to static data
is slower than access to local data, so for fast access, don't declare keyboard as
a static variable; if you really want keyboard to be visible across multiple func-
tions, then use the second (#define) method of declaring keyboard.

Then for example, to read the data register and write to the control register:

v = keyboard->datareg;
keyboard->u.controlreg = 1;

For a memory-mapped device at address zero, special care must be taken, as a
cast of constant 0 to a pointer type is specially defined in C to produce the NULL
pointer constant, which may or may not be zero. (On a 32-bit transputer it is 0 but
on a 16-bit transputer, the NULL pointer constant has the value 0x8000.)

To obtain a pointer to memory location zero, use:

union { int v; void *p; } ZeroPointer = { 0 };
IODevice *keyboard = ZeroPointer.p;

Note: that this method assumes that the size of int and pointer are equivalent
(which is true on all current transputer C implementations); also, this declaration
of keyboard cannot be initialized statically.

72 TDS 354 00 October 1992

3 Improving code

This section describes some techniques which can be used to improve C code in
terms of code speed, size, or both.

3.1 General optimizations

There are many standard program optimizations, such as common subexpression
elimination, and loop invariant code motion, which are all applicable to transputer
C programs.

The INMOS optimizing ANSI C compiler contains a global optimizer which per-
forms a number of transformations, when optimization is selected using a com-
mand-line option. Further details of these are given in the ANS/ C Optimizing Com-
piler User Guide.

3.2 Loop unrolling

Unrolling loops can speed up execution considerably. Take the following piece of
C, a simple vector addition:

0; i < 2000; i++)
bli] + c[i];

for (i
ali]

The transputer performs addition in one cycle, whereas the loop overhead is
approximately 18 cycles. To increase performance we can increase the number
of adds per loop:

for (i = 0; 1 < 2000; i += 16)
{

int *const aslice = &a[i];

int *const bslice = &b[i];

int *const cslice = &c[i);

aslice[0] = bslice[0] + cslice[0];
aslice[l] = bslice[l] + cslice[l];
aslice[2] = bslice[2] + cslice[2];
aslice[14] = bslice[14] + cslice[14];
aslice[15] = bslice[15] + cslice[15];
}
/* do the last few ... */
for (i =i - 16; i < 2000; i++)
a[i] = b[i] + c[i];

72 TDS 354 00 October 1992

16 - 3.3 Pointer update versus array subscripting

Obviously, loops can be opened outin any language, on any processor, and perfor-
mance will tend to be improved at the expense of increased code size. However,
opening loops out in slices of 16 has an additional benefit on the transputer, as opti-
mal code with no prefix instructions is generated for each addition statement.
Compare the code generated for the two statements:

1dl i
1dl b
wsub
ldnl O
1dl i
a[i] = b[i] + c[i]; 1dl ¢
wsub
ldnl O
add
1dl a
1dl i
wsub
stnl 0
1dl bslice
ldnl 15
1dl ecslice
aslice[15] = bslice[15] + cslice[l15]; 1ldnl 15
add
1dl aslice
stnl 15

The second piece of code is just over half the size of the first, and the amount of
loop overhead is reduced by a factor of 16. ’

3.3 Pointer update versus array subscripting
Some C programming styles tend to favour pointer update over array subscripting.
For example, take the following piece of C, a simple vector addition:

int *a, *b, *c;

for (i = 0; i < 2000; i++)
ali] b[i] + c[i];

A C programmer may more naturally write this as

0; 1 < 2000; i++)
*b++ + *c++;

for (i =

*att+ =
This removes the need for three array subscriptions at the expense of updating
three pointers. On some architectures, the pointer increment comes for free, and
so the second version would run more quickly. However, on the transputer, itis con-

72TDS 354 00 October 1992

Improving code 17

siderably more expensive to update the pointer than to perform the array subscrip-
tion, and the second version actually takes 30 % more time than the first.

3.4 optimizing switch statements

The ANSI C compiler will attempt fo make a swi tch statement as fast as possible,
assuming that all the values are equally likely, and may use a combination of tech-
niques to select the correct branch. This compiler uses a combination of jump
tables, binary switches and explicit tests, depending upon the relative values and
density of the target values (i.e. whether there are any ‘gaps’).

A combination of if statements and a swi tch may be the best solution where a
few values are particularly common, but where there may be many other possibili-
ties.

temp = complicated_expression;

if (temp == most_frequent_value)
.. process most frequent value
else if (temp = next_most_frequent value)
. process next most frequent value
else
switch (temp)
{

case infrequent value 1:
process infrequent value 1
break;
case infrequent_value 2:
process infrequent_value 2
etc.

3.5 Use ANSI function prototypes

As well as providing a certain amount of type-checking, the use of ANSI function
prototypes can improve the code generated by the compiler.

In the absence of a function prototype, actual parameters have the default argu-
ment promotions performed on them: char and short arguments are widened
to int; and f£loat arguments are widened {0 double.

On entry to a function declared in the old (Kernighan and Ritchie) style, char and

short formal parameters are narrowed down from int to the appropriate type,
and float formal parameters are narrowed from double.

72 TDS 354 00 October 1992

18 3.6 Use floating point in single precision where possible

For example:

func(£fl)
float f£1;

{...
}

g()
{ float £2;

func (£2) ;
}

Here £2 is widened from £loat to double at the call to func; and immediately
narrowed back down from double to £loat on entry to func.

If the function is defined in prototype-format, actual parameters are converted
directly to the type of the formal parameters, as if by assignment.

So, by changing the function definitions to prototype-format in the above example,

void func(float f1)
{ ...
}

void g(void)
{ float £2;

func (£2) ;
}

Now £2 is passed as an argument without any type conversion at all.

3.6 Use floating point in single precision where possible

On the transputer, single-precision floating-point arithmetic is faster than double-
precision, so where the greater accuracy of double-precision is not required, it can
be beneficial to use single-precision.

In Kernighan and Ritchie C, floating-point arithmetic is always performed in double
precision, for example to add two float variables, each is widened to double,
the addition is performed, and then the result is narrowed back down to single-pre-
cision.

In ANSI C, however, floating-point arithmetic upon single precision values is per-
formed in single precision: two £loats are added in single precision. Therefore,
only declare double variables when you really want double precision arithmetic.

The Dx314 toolset also provides a set of single-precision mathematical functions.
The prototypes for these functions are declared in the header file math£.h, the

72 TDS 354 00 October 1992

Improving code 19

names of the functions are formed by appending an £ onto the name of the corre-
sponding double-precision function. For instance, cos performs cosine in double
precision, so cos £ performs cosine in single precision.

3.7 Shortintegers

On the currentrange of 32-bit transputers (see the start of chapter 1 for a list), load-
ing and storing short integers is much less efficient than loading or storing int,
so use int wherever possible.

A genuine use for short integers is for saving space in structures or arrays, as
they are only two bytes long, whereas ints are four bytes long (on a 32-bit trans-
puter).

Care must be taken when shorts are packed into structures as the compiler can
generate better code to load a word-aligned short field of a structure than a non-
word-aligned one. This is a tradeoff: the space saved by packing the structure ver-
sus the extra code introduced to extract the packed fields; you must decide which
is more critical.

3.8 Chars

By default, chars are unsigned: the ANSI standard leaves this as implementation
defined, and provides a new type signed char for explicitly signed characters.

However, many UNIX C programs expect char to be signed by default, so the
compiler provides a command-line option, FC, which directs the compiler to treat
the type char as signed.

Care must be taken in the use of FC and signed char, as loading and storing
a signed char is less efficient than loading and storing an unsigned char.

3.9 Use ANSI C mem. . functions

ANSI C provides a number of memory manipulation functions as standard library
functions. These routines have been carefully coded in the libraries to execute
quickly on the transputer.

* memcpy copies a block of memory. The compiler will inline a call to memcpy
as a block move instruction.

* memmove also copies a block of memory, but correctly handles an overlap-
ping source and destination. It uses block move to copy the non-overiap-
ping parts.

* memset is used to initialize a block of memory to a particular value. it uses
the block move instruction to copy ever-increasing blocks of memory.

72 TDS 354 00 October 1992

20 3.10 Keep variables as local as possible

¢ memcmp is used to compare two blocks of memory; it uses a word-at-a-
time comparison.

* memchr is used to search a block of memory for a given byte value.

3.10 Keep variables as local as possible

This section mainly relates to the non-optimizing C compiler: the INMOS optimiz-
ing ANSI C compiler uses a sophisticated "variable liveness” algorithm to deduce
where to allocate variables in local workspace. However, keeping variables as
local as possible can, in some cases, also help the optimizing C compiler, and it
is, of course, good programming practice.

The non-optimizing C compiler allocates local workspace to variables by their
scope.

More nested variables are allocated at smaller workspace offsets.

If two variables are in scope at the same time, they are allocated disjoint work-
space slots. The compiler estimates a run-time usage for each local variable and
allocates the variable with the greater estimated usage at a lower workspace posi-
tion.

The run-time usage is currently calculated as follows:
* Every load or store of the variable counts as one use
¢ Every load or store within a loop counts as eight uses

« Every load or store within the inner of two nested loops counts as 64 uses,
etc.

¢ [f the variable is declared with a register storage class specifier, fifty
uses are added to the sum of the load and store uses.

To reduce the size of workspace, it is best to keep variable declarations as local
as possible to the code which uses them. For example, the compiler allocates two
words of workspace for:

{ int a, b;
. use a
. use b

}
but only one word of workspace for

{ int a;
. use a
}

{ int b;
. use b
}

72 TDS 354 00 October 1992

Improving code 21

3.11 Access to static data
Access to local static data is less efficient than access to local automatic data.

Access to another file’s static data is less efficient than access to the current file's
static data.

Table 3.1 lists the code sequences used to load an integer variable n from the dif-
ferent areas of data.

Data area Code sequence to load integer variable n
from data area

local (automatic) Idi n

static defined in this file Idl Isb; Idni n

static defined in another file Idl Isb; Idni n.ptr; Idnl 0

Table 3.1 Accessing static data
It is therefore recommended that you:
« make data automatic where possible,

» define static data in the file which accesses it most.

3.12 Large objects

Automatic arrays and structures are always allocated in local workspace. This
means that the workspace can get quite large, which is undesirable if you are trying
to fit it onto on-chip RAM.

To avoid placing a large object (array or structure) in workspace,

1 Put the large object in static space and declare a local pointer to it. This
gives good efficiency of access, but unfortunately it is not re-entrant: only
one copy of the object exists no matter how many times the function using
itis called; also, it means that the object exists throughout the entire lifetime
of the program, rather than just when the function which uses it is called.

2 Use malloc to obtain space on the heap for the object. Again, this gives
good efficiency of access, and preserves re-entrancy. The memory used
by the object can be freed up when no longer needed using £ree. The dis-
advantage is that calls to malloc and £ree can be time consuming.

Afile's local static area is allocated in the order in which the static data definitions
appear in the source code; to reduce the number of prefixes required to access
an item of static data, it is best to order the static data definitions so that smaller
objects appear first.

72 TDS 354 00 October 1992

22 3.13 Built—in, inlined routines

3.13 Built-in, inlined routines

The Dx314 ANSI C compiler supports a number of built-in routines. Any calls to
these routines will be compiled directly inline where possible.

Each of these routines have prototypes in an INMOS-supplied header file. The
automatic inlining will only happen if this header file has been #included in the
user source.

Each of the built-in routines is designed to allow access to a transputer instruction
which is not directly accessible from the C source level. Table 3.2 lists the routines
and the instructions they support.

Function Instruction supported |Header file
BlockMove move misc.h
BitCnt bitcnt misc.h
BitCntSum bitent misc.h
BitRevNBits bitrevnbits misc.h
BitRevWord bitrevword misc.h
Move2D moveZ2dall misc.h
Move2DNonZero move2dnonzero misc.h
Move2DZero move2dzero misc.h
CrcByte crcbyte misc.h
CrcWord creword misc.h
DirectChanIn in channel.h
DirectChanInChar in channel.h
DirectChanInInt in channel.h
DirectChanOut out channel.h
DirectChanOutChar |outbyle channel.h
DirectChanOutInt outword channel.h
ProcGetPriority Idpri process.h
ProcTime ldtimer process.h
ProcReschedule - process.h
Table 3.2 Inlined functions

Further information on these routines may be found in the "ANS/ C Language and
Libraries ManuaP supplied with the Dx314 toolset.

72 TDS 354 00

October 1992

Improving code 23

3.14 Channel communication

The normal channel input and output routines in the C run-time library (Chan1In,
ChanInChar, ChanInInt, ChanOut, ChanOutChar and ChanOutInt) run on
top of a virtual channel system to enable interactive debugging, and to allow the
virtual configuration system to work. However, the virtual I/O is slower than direct
channel [/O, and so if it is not required, and

 interactive debugging is not required, and

« the channel is either not declared in the configuration description file, or
is placed on a specific hardware link in the configuration description file

then it is possible to replace calls to the normal channel input and output routines
with calls to the 'direct' channel input and output routines: (DirectChanln,
DirectChanInChar, DirectChanInlInt, DirectChanOut, DirectCha-
nOutChar and DirectChanOutInt).

Each of the direct routines has an equivalent prototype to the corresponding nor-
mal routine, all that changes is the name of the routine.

To enable rapid switching between interactively-debuggable and fast code, some-
thing like the following could be placed in a header file:

#include <channel.h>

#ifdef FAST_IO

#define ChanIn(C,P,L) DirectChanIn((C),(P), (L))

#endif
then all calls to ChanIn will be converted into calls to DirectChanIn when
FAST_I0is defined.

3.15 External function definitions

Calling functions defined in another file is less efficient than calling functions
defined in the same file as the external call has to go through a stub.

For example:
extern function();
function() ;

is compiled as:

call function_stub

function_stub: j function

72 TDS 354 00 October 1992

24 3.15 External function definitions

But if function is defined in the current file, the compiler will call it directly. It is
possible to avoid all external calls by compiling the whole program in one go: for
example, if a program consists of fwo files filel.c and £file2.c, then create
afile all.c which includes filel.c and file2.¢, i.e.

#include ”“filel.c”
#include ”“file2.c”

and compile all.c instead.

(Note: that this trick doesn’t work if there are name clashes between local static
items defined in filel.c and file2.c.)

72 TDS 354 00 October 1992

4 Other features

This section describes other features of the ANSI C compiler which may be useful
when compiling C code.

4.1 Arithmetic right shift of signed integers

The ANSI C standard states that if a signed integer is shifted right n bits, then the
resulting value of the upper n bits of the integer is undefined. For the transputer,
the ANSI C compiler will generate a logical right shift in these situations. Many C
programmers, however, assume an arithmetic right shift, and consequently their
code breaks.

The Dx314 ANSI C compiler provides a command line option, FS, which directs
the compiler to generate arithmetic right-shifts on signed integers.

Right-shifts on unsigned integers are always logical shifts.

4.2 Signedness of plain chars
As mentioned in section 3.8, plain chars are unsigned by default. As some exist-

ing C code assumes that plain chars are signed, the compiler provides a com-
mand-line option, FC, which directs the compiler to treat the type char as signed.

72 TDS 354 00 October 1992

26 4.2 Signedness of plain chars

72 TDS 354 00 October 1992

9 Running

benchmarks

5.1

General rules

The following are very general rules for running benchmarks. They may not apply
to a particular benchmark.

If using the optimizing compiler, compile the program at the highest optimi-
zation level (02).

Compile the program without debugging information (i.e. without the G
command line option). Enabling debug information can marginally
increase the size of, and decrease the speed of code.

Choose the most restricted startup code suitable to the needs of the pro-
gram.

Order the list of object files presented to the linker so that the most fre-
quently executed files appear first on the list.

For non-configured programs, use the collector’s S option to place stack
on-chip; and the M option to specify the memory size in advance. Make the
size of the stack (the parameter to the collector’s S option) as small as pos-
sible.

For configured programs, use the configurer's default segment ordering
(which will place the stack in internal RAM), and make the size of the stack
segment as small as possible.

72 TDS 354 00 October 1992

28 5.1 General rules

72 TDS 354 00 October 1992

Index

Symbols

#pragma, IMS linkage, 8

fisection, 8

A

ANSIC
compiler, optimizing, 15
function prototypes, performance
considerations, 17
toolset
performance improvements, 1
running benchmarks, 27

Arguments, ANSI C, default promo-
tions, 17

Arithmetic right shift, 25

Array subscripting, or..., pointer
update, performance consider-
ations, 16

Arrays, avoiding workspace, 21

B

Benchmarks, 27
Block move, 19, 22
Built—in functions, 22

C

Calling functions, performance con-
siderations, 23

Channel, communication, 23

char, 17
signedness, 19, 25

72TDS 354 00

Code, position in memory, 6, 7, 8
Communication. See Channel

Compiler
optimizations, general techniques,
1

optimizing, 15
Configurer, memory map, 6

const, 10

D

Default, argument promotions, 17
double, 17, 18

E

External calls, 23

F

float, 17,18

Floating point
improving speed, 18
precision, 18

Full library. See Library
Function, prototypes, 17

G

Global static base, 10

H

Heap area, position in memory, 6, 7
Host, versions, iii

October 1992

30 Index
| Optimizing object code
compact code, 1
ice performance techniques, 1

optimizing compiler, 15
performance improvements, 1

imap, 3

Implementation, structures, 12
Information, facilities, 3

Inline functions, 22

Instruction prefixing, 1

int, 17

L

Library, runtime, performance con-
siderations, 2

location, 7
Loop unrolling, 15

max_stack_usage, 11
memchr, 20

memcmp, 20

memcpy, 19

memmove, 19

Memory, improving use of, 5

Memory map, 3
configurer, 6
single processor program, 7

Memory mapped devices, access,
14

memset, 19
MemStart, 6, 7

0)

Object code, optimizing, 15
On—chip memory, 1,5

72 TDS 354 00

run faster, 1
using icc, 15

order, 7

P

Performance improvement
techniques, 1
using optimizing compiler, 15

Pointer update, versus, array sub-
scripting, 16

Prefixing instructions, 1
Processor, types, 1, 2
Prototypes, 17

R

RAM, on—chip, improve use of,
1,5

Reduced library, performance
considerations, 2

reserved, 6
Right shift, 25

Runtime, startup system,
performance considerations, 2

S

Shift right, 25

short, 17, 19

Signedness of char, 19, 25

Single processor program,
memory map, 7

Stack
checking, 11
layout, 11, 20
placing in on—chip RAM, 8
position in memory, 6, 7
Static area, position in
memory, 6, 7

October 1992

Index

31

Static data, access, 21

Static data layout, 9
constant, 10
local, 10

Structures
avoiding workspace, 21
implementation, 12

Switch statement, optimizing, 17

T

Target transputer, 2

Toolset
documentation, iii
conventions, v
performance techniques, 1
running benchmarks, 27

Transputer
instructions, prefixing, 1
targets, 2

V'

Variables, performance consider-
ations, 20

volatile, 10

w

Workspace. See Stack

72 TDS 354 00

October 1992

32 Index

72 TDS 354 00 October 1992

	Contents
	Preface
	Host versions
	About this document
	About the toolset documentation set
	Other documents
	occam and FORTRAN toolsets
	Documentation conventions

	1 Introduction
	1.1 Transputer architecture
	1.2 General issues
	1.2.1 Space versus time
	1.2.2 Processor classes and types
	1.2.3 Full versus reduced libraries
	1.2.4 Start-up code

	1.3 Obtaining information

	2 Memory layout
	2.1 Memory layout for configured programs
	2.2 Memory layout for non-configured programs
	2.3 Code layout
	2.4 Static data layout
	2.4.1 Local static data layout
	2.4.2 Constant static objects

	2.5 Stack layout
	2.6 Layout of structures
	2.7 Memory mapped devices

	3 Improving code
	3.1 General optimizations
	3.2 Loop unrolling
	3.3 Pointer update versus array subscripting
	3.4 Optimizing switch statements
	3.5 Use ANSI function prototypes
	3.6 Use floating point in single precision where possible
	3.7 Short integers
	3.8 Chars
	3.9 Use ANSI C mem.. functions
	3.10 Keep variables as local as possible
	3.11 Access to static data
	3.12 Large objects
	3.13 Built-in, inlined routines
	3.14 Channel communication
	3.15 External function definitions

	4 Other features
	4.1 Arithmetic right shift of signed integers
	4.2 Signedness of plain chars

	5 Running benchmarks
	5.1 General rules

	Index

