
.-- ®• lis,.
~

i I
I I

,; I'.. •[] .. IIlll!"l'

ANSI C
Optimizing Compiler
User Guide

INMOS Limited

~ SGS-1HOMSON
~.,I® ~o©oo@rn[brn©lJOO@~O©$
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 348 01 October 1992

© INMOS Limited 1992. This document may not be copied, in whole or in part, without prior
written consent of INMOS.

e®, ~rmmos®, IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

~I~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software ncnC9lTlpiler
and the Codemist Norcroft ncnCompiler.

INMOS Document Number: 72 TDS 348 01

I Contents

Contents .

Preface iii

Host versions iii
About this manual iii
About the toolset documentation set iii
Other documents . iv

occam and FORTRAN toolsets .. iv

Documentation conventions. v

User Guide 1

1 Introduction. 3

1.1 Overview . 3
1.1.1 Advantages of using the optimizing ANSI C compiler 3
1.1.2 When optimization should not be used 4

2 User Interface . 5
2.1 Command line options 5

2.1.1 Disable optimization 00 . 6
2.1.2 Enable local optimization 01 6
2.1.3 Enable local and global optimization 02 6
2.1.4 Optimize for time QT 6
2.1.5 Optimize for space QS . 6
2.1.6 Enable side effects information messages 7
2.1.7 Disable warning messages . 7
2.1.8 Compiler map files 7

2.2 Language considerations . 7
2.2.1 const keyword .. 8
2.2.2 volatile keyword 8
2.2.3 register keyword 8

2.3 Pragmas. 8
2.3.1 No side effects 8

2.4 Messages. 10
2.4.1 Severities . 10
2.4.2 Standard terms 10

abstract declarator 10
2.4.3 ANSI trigraphs . 12
2.4.4 Information messages. 12
2.4.5 Warning diagnostics. 12

ii Contents

2.4.6 Recoverable errors . 20
2.4.7 Serious errors ,. 27

Appendices .. 39

A Local optimization examples 41

A.1 Peephole optimization. 41
Example: 41

A.1.1 Summary of effects: 41
A.2 Flowgraph optimizations . 41

A.2.1 8ranch-ehaining optimization. 42
A.2.2 Dead code elimination 42
A.2.3 Summary of effects of flowgraph optimizations: 42

A.3 Redundant store elimination 43
Example: 43

A.3.1 Summary of effects: 43

B Global optimization examples .. 45
8.1 Common subexpression elimination 45

Example: 45
8.1.1 Summary of effects: 46

8.2 Loop-invariant code optimization 46
Example: 46

8.2.1 Summary of effects: 47
8.3 Global optimization example. 47

8.4 Tail--eall and tail recursion optimization 47
8.4.1 Example: (Tail--eall optimization) 48
8.4.2 Summary of effects: (Tail-eall optimization) 48
8.4.3 Example: (Tail-recursion optimization) 49
8.4.4 Summary of effects: (Tail-recursion optimization). 49

8.5 Workspace allocation by coloring 49

Preface
Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

• IMS 07314 -IBM PC compatible running MS-DOS

• IMS 04314 - Sun 4 systems running SunOS.

• IMS 06314 - VAX systems running VMS.

About this manual

This manual is the ANS/ C Optimizing Compiler User Guide to the ANSI C toolset.

The manual provides reference and user information specific to the ANSI C opti­
mizing compiler. It gives details of:

• command line options for invoking different levels of optimization;

• language considerations when using the optimizing compiler;

• details of pragmas which may be of use when optimizing;

• a list of error messages which may be generated by the optimizing com­
piler.

Examples ofthe local and global optimizations available are provided in the appen­
dices.

This manual should be read in conjunction with the reference chapter for the stan­
dard ANSI C compiler, provided in the Tools Reference Manual. This is because
details which are common to both compilers are not repeated in the Optimizing
Compiler User Guide, including details of command line options and compiler
prngmas. '

About the toolset documentation set

The documentation set comprises the following volumes:

• 72 TDS 345 01 ANS/ C Too/set User Guide

Describes the use of the toolset in developing programs for running on the
transputer. The manual is divided into two sections; 'Basics' which
describes each of the main stages of the development process and
includes a 'Getting starled' tutorial. The 'Advanced Techniques' section is
aimed at more experienced users. The appendices contain a glossary of
terms and a bibliography. Several of the chapters are generic to other
INMOS toolsets.

72TDS 348 01 October 1992

iv

• 72 TDS 346 01 ANSI C Toolset Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products i.e. the occam and FOR­
TRAN toolsets and the documentation reflects this. Examples are given in
C. The appendices provide details of toolset conventions, transputer
types, the assembler, server protocol, ITERM files and bootstrap loaders.

• 72 TDS 34701 ANSI C Language and Libraries Reference Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details are also provided about how to modify the run­
time startup system, although only the very experienced user should
attempt this.

• 72 TDS 348 01 ANSI C Optimizing Compiler User Guide (this manual)

• 72 TDS 354 00 Performance Improvement with the DX314 ANSI C Toolset

This document provides advice about how to maximize the performance
of the toolse1. It brings together information provided in other toolset docu­
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

• 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer­
ence and summarizes information provided in more detail in the Tools Ref­
erence Manual and the Language and Libraries Reference Manual.

• 72 TDS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide, Toolsel
Reference Manual, Language and Libraries Reference Manual, Optimiz­
ing Compiler User Guide and the Performance Improvement document.

Other documents

Other documents provide~ with the toolset product include:

• Delivery manual giving installation data, this document is host specific.

• Release notes, common to all host versions of the toolset.

occam and FORTRAN toolsets

At the time ofwriting the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are

72 TDS 34801 October 1992

v

subject to change. Users should consult the documentation provided with the cor­
responding toolset product for specific information on that product.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type

Teletype

Italic type

Braces {}

Brackets [1

Ellipsis ...

72 TDS 348 01

Used to emphasize new or special terminology.

Used to distinguish command line examples, code fragments,
and program listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.

Used in command syntax to denote optional items on the com­
mand line.

In general terms, used to denote the continuation ofa series. For
example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna­
tives.

october 1992

vi

72TDS 348 01 October 1992

User Guide

72 TDS 348 01 October 1992

2

72 TDS 34801

User Guide

October 1992

1 Introduction
This chapter introduces the INMOS ANSI C optimizing compiler ice which gener­
ates optimized code for all 32-bit transputer targets. The compiler supports most
options available on the standard ANSI C compiler provided with the ANSI C tool­
set, and has additional options to select and control optimization. The Tools refer­
ence manual should be consulted for details of standard C compiler options. Sec­
tion 2.1 of this manual identifies options not supported by the optimizing compiler.

1.1 Overview

The ANSI C optimizing compiler evaluates user's source code and converts it into
highly efficient object code. The purpose of optimization is to improve the execu­
tion time of object code as well as the program's use of memory Le. workspace or
stack or code-size. Compiler options enable the user to control whether the optimi­
zation performed is predominantly to improve execution time or memory use. Opti­
mization does not affect the functionality of the program.

The compiler implements both local and global levels of optimization:

• The global optimizations include: common subexpression elimination,
loop invariant code motion and tail-call optimization. The optimizer
examines each function as a single unit, enabling it to obtain as much
information as possible about that fundion, while performing the optimiza­
tion. Global optimization is more complex than local optimization; generally
the more information available to the optimizer the better chance the opti­
mizer has of improving code.

• The local optimizations include: flowgraph, peephole and redundant store
elimination. To perform these optimizations efficiently, the optimizer only
needs to operate on short sequences of code.

The ANSI C optimizing compiler supports a compiler pragma to enable the user
to provide the compiler with more information about individual functions. The
pragma·may optionally be included in the source code by the user and is described
in section 2.3.

1.1.1 Advantages of using the optimizing ANSI C compiler

The advantages of using the optimizing ANSI C compiler are that:

• It saves development time in producing efficient code because optimiza­
tion can be achieved automatically at compile time.

• There are some optimizations which cannot be performed by the user at
a source code level but can only be performed by the optimizing compiler
at compile time.

• The compiler is able to analyze the cosUeffectiveness ofpotential optimiza­
tions and will only apply an optimization where a saving can be made in
either execution time or space.

72TDS 348 01 Odober 1992

4

1.1.2 When optimization should not be used

There are a number of situations when the user is recommended to use the stan­
dard ANSI C compiler as opposed to the optimizing compiler:

• When programs have not been fUlly debugged.

• When developing programs targetted at 16-bit processors.

It should also be noted that compile times are slowerwhen a high level ofoptimiza­
tion is being performed.

72 TDS 348 01 October 1992

2 User Interface
This chapter describes the use ofcompiler options and pragmas which enable and
control optimization by the ANSI Coptimizing compiler. The chapter also describes
features of the C language which influence optimization and provides a list of error
messages which may be generated by the compiler.

The compiler supports most of the options and features available on the standard
C compiler provided with the ANSI C toolset. The ANS/ C Too/set Reference
manual should be consulted for details of standard ANSI C compiler. The excep­
tions are described within the appropriate sections of this manual.

2.1 Command line options

The optimizing ANSI Ccompiler provides arange ofcommand line options to facili­
tate a flexible approach to optimization. In addition support is provided (in the form
of a compiler pragma) to exploit features of the C language in order to increase
optimization.

The options for invoking optimization enable the user to control the level of optimi­
zation performed rather than controlling individual optimizations. They are listed
in table 2.1 and described in subsequent sections.

Option Description
I'se Enable side effects information messages.
00 Disable optimization.
01 Enable local optimization. This is the default.
02 Enable both global and local optimization.
QT Optimize for time. This is the default.
QS Optimize for space.
ws Disable warning messages about side effects.

Table 2.1 Optimizing options

The few options which are available on the standard ANSI C compiler but which
are not supported by the optimizing compiler are listed in table 2.2.

Option Description
C Performs syntax checks only.
G Generate debugging data. The optimizer

should only be run on code which has been fully
debugged by the standard ANSI C compiler.

T2, T3, T212, T222, T225 Compile for a 16-bit transputer.

Table 2.2 Options not supported by the optimizing ANSI C compiler

72TOS 348 01 October 1992

6 2 User Interface

Note: assembler code inserts are treated the same way by both the standard and
optimizing compilers.

2.1.1 Disable optimization 00

This option disables all optimization which can be specifically enabled at the com­
mand line using the 01 and 02 options.

2.1.2 Enable local optimization 01

This option enables the following local optimizations:

• Flowgraph optimization, including dead code elimination.

• Peephole optimization.

• Redundant store elimination.

Local optimizations are described, with examples, in appendix A.

In addition, workspace allocation by coloring is enabled. This is in fact aglobal opti­
mization and is described in section 8.5.

2.1.3 Enable local and global optimization 02

This option, enables the following local and global optimizations:

• All optimizations enabled by option 01.

• Global common subexpression elimination.

• Loop invariant code motion.

• Tail-call optimization.

• Tail recursion optimization.

Global optimizations are described, with examples, in appendix 8.

2.1.4 Optimize for time QT

This option controls how optimization is applied once it has been enabled by either
the 01 or 02 options. The option instructs the compiler to only perform those opti­
mizations which will not reduce the speed of the program. Where a choice exists
between generating faster, but larger code over slower, more compact code, it will
generate the faster code. This option is enabled by default.

2.1.5 Optimize for space QS

As above, but does the reverse i.e. only performing those optimizations which will
not increase the size of the program. Where a choice exists between generating

72TDS 34801 October 1992

2.2 Language considerations 7

faster, but larger code over slower, more compact code, it will generate the more
compact code.

There is no definitive list for either the QT or QS options, as to which optimizations
will or will not be applied. This will vary depending on the code being optimized.

2.1.6 Enable side effects information messages

The FSC option enables the generation of information messages about the 'side
effect' characteristics offunctions as the compiler performs optimization. The mes­
sages report the actions of the compiler to give the user visibility of how functions
are treated with respect to side effects. The messages are purely informational and
do not signal any required response from the user.

Information messages are listed in section 2.4. Side effects are discussed in more
detail in sections 2.2 and 2.3.

2.1.7 Disable warning messages

The WS option disables messages warning users that functions marked as side
effect free may in fact still cause side effects. See section 2.3.

2.1.8 Compiler map files

The map file generated by the optimizing ANSI C compiler differs slightly from that
produced by the standard ANSI C compiler, in the following ways:

• The optimizing compiler may remove some local variables altogether. In
such cases the variable will not occupy any space in workspace. These
variables are listed at the end of the local variable map together with the
message "Not Allocated".

• The full list of compiler temporaries is provided.

The format of the compiler map file is described for ice in the Too/set Reference
manual.

2.2 Language considerations

Before the compiler can optimize afunction call it has to be sure that the optimiza­
tion is safe i.e. that it will not break the code. Therefore it will treat function calls
with caution, assuming that they may modify global non-local variables, unless it
can deduce with certainty their true behavior.

This section outlines language features which affect the implementation of optimi­
zation by ice.

72 TDS 348 01 October 1992

8 2 User Interface

2.2.1 const keyword

The const keyword states that after it is initialized, avariable cannot subsequently
be modified by the program. For const variables, the compiler does not have to
make worst case assumptions about its being modified when ambiguous modifica­
tions are seen. If a variable is never modified, then declaring it as const will, in
general, allow the compiler to do a better job of optimizing.

Note: when pointers to const objects are used e.g.

const char *p

the const keyword does not guarantee that the char will not be modified, just that
it will not be modified through pointer p.

2.2.2 volatile keyword

The volatile keyword states that a variable may change asynchronously, or
have other unknown side effects. The compiler will not move or remove any loads
or stores to a volatile variable. volatile should be used for variables shared
between parallel threads (or variables modified by interrupt routines), or variables
which are mapped onto hardware devices.

2.2.3 register keyword

The register keyword is taken as a hint to the workspace allocator to allocate
the variable at a small workspace offset.

2.3 Pragmas

The #pragma directive allows some compiler operations to be activated or deacti­
vated in specific sections ofcode. Compiler pragmas are optional; when used they
are inserted directly into the source code.

2.3.1 No side effects

The optimizing C compiler implements a compiler pragma to help the user maxi­
mize the degree of optimization performed.

The pragma enables the user to provide the compiler with more information about
functions, whose behavior could otherwise be ambiguous. Its syntax is as follows:

Ipragma IMS_nosideeffects (function)

where: function must have been declared but not defined or instanced before the
pragma is encountered. A warning is generated and the pragma ignored
if:

72TDS 348 01 October 1992

2.3 Pragmas 9

• the named function has been defined, part defined or instanced before
the pragma is encountered;

• its parameter is not a function identifier;

• it is given more than one parameter or none at all.

Fundions which are marked as side effect free enable the compiler to avoid mak­
ing worst;:ase assumptions about variables modified when the function is called.

A function is side effect free when, within the body of a function:

• there are no assignments to variables which are defined outside the func­
tion, including writing through a pointer where the pointer points to a vari­
able defined outside the function e.g. 1/0 or 'passing by reference' is not
allowed;

• there are no assignments to static variables (although initialization ofstatic
variables within definitions are allowed);

• there are no reads from or assignments to volatile variables;

• there are no calls to functions which may have side effects.

The user must ensure that a function meets the above criteria before marking it
with the pragma INS nosideeffects. If the pragma is used incorrectly, unde­
fined results may occur. Assembler inserts i.e. asm statements and pointers to
functions, are a particular risk area, as the user might unconsciously introduce a
function which does break the above criteria. For this reason, the compiler will
warn the user, each time assembler code or a pointer to a function is encountered.
Note: these warning messages may be disabled by using the ws command line
option.

The compiler may mark a function as side effect free, even though the user has
not applied the INS nosideeffects pragma. Use of the FSC command line
option will cause an mformation message to be generated should this occur.

The compiler will only mark those functions that it detects as unambiguously side
effect free and that are not already marked. It is possible for there to be functions
which are side effect free that the compiler does not detect; for such functions, only
the application by the user of the pragma INS_ nosideeffects will cause these
functions to be marked as side effect free.

If a function that is side effect free is externally visible, then it may be useful to put
the pragma INS nosideeffects into the header file before the prototype of the
function. This enables the compiler to generate better code for calls to that function
from other files.

72 TOS 348 01 October 1992

10 2 User Interface

2.4 Messages

This section lists the information, warning and error messages which may be gen­
erated~by ice when optimization is enabled.

2.4.1 Severities

Diagnostics are tagged with a severity level which indicates their effect on the com­
pilation. Severity levels are the same as those used in the toolset standard but
have slightly different meanings, which are described below.

Information messages provide the user with information about the functioning or
performance of the tool. They do not indicate an error and no user action is
required in response.

Warning severity diagnostics are generated whenever legal, but unorthodox pro­
gramming styles are detected. Compilation is unaffected and object code is gener­
ated normally.

Error severity diagnostics are generated whenever the compiler detects a pro­
gramming error from which it can recover. Compilation continues, but may abort
if more errors are detected subsequently. No object code is generated.

Serious severity diagnostics are generated when programming errors are
detected from which the compiler cannot recover. Compilation continues but code
has been lost. No object code is generated.

Fatal errors indicate internal inconsistencies in the software and cause immediate
termination of the operation with no output. Fatal errors are unlikely to occur but
if they do the fact should be reported to your local INMOS distributor or field
applications engineer.

Error, Serious, and Fatal diagnostic messages return error codes for handling by
system MAKE programs and batch files.

2.4.2 Standard terms

This section explains some of the standard terms and notation used in compiler
error messages.

abstract declarator

When using explicit casts or when passing an argument to sizeof () , a
data type must be specified. This can be done by declaring an object of the
correct type without specifying the name of the object. Declarations of this

72 TDS 348 01 October 1992

2.4 Messages 11

type are called abstract declarations, because they apply to no known
object.

Examples of abstract declarations are:

(int) a = b; /* 'int' is the abstract
declarator */

sizeof(int [3]); /* 'int [3]' is the abstract
declarator */

char

Stands for a single ASCII character.

context

Stands for a type, for example, 'character constant', 'integer constant', and
'string constant'.

deprecated declaration

This means that a function declaration is incomplete. Declarations should
specify the type of the function and the type of each formal parameter. If
there are no parameters then the function type void should be specified.

expression

Stands for a C expression.

filename

A file name.

function prototype

A function declaration which usually precedes the function definition. It
declares the function's type and the types of its parameters.

identifier

A C identifier, for example, a variable or function name.

initializer

An initial value which is assigned to an object at the time of its declaration.

message string

The string which follows a compiler directive.

op

An operator. Valid operators include: "++", "--", "->", "<=", and the unary
operators &, *, +and -.

72 TDS 34801 October 1992

12 2 User Interface

store dass

A C storage class. Valid classes are static or extern.

string

Any string of ASCII characters.

structlunion

A variable of type struct or union.

type

A type identifier.

void context

This can occur at any point in a program where a value is not expected, for
example, calling a function without using the returned number.

instruction

A transputer instruction, or a pseudo-instruction as accepted by the asm
construct. -

2.4.3 ANSI trigraphs

The ANSI specification includes a number of three character sequences that can
be used to represent certain ASCII characters that may not be present on all key­
boards. These sequences, known as trigraphs, are used in compiler error mes­
sages to stand for these characters.

ANSI standard trigraph sequences consist of a sequence of 2 question marks fol­
lowed by a third character. A complete list of ANSI trigraphs is given in the chapter
titled 'New features in ANSI C' of the accompanying ANSI C Language and
Libraries Manual.

2.4.4 Information messages

These messages are prefixed by the words 'Information -' ; they do not signal any
required response from the user.

Function identifier has been marked as side effect free

The compiler has checked that the named function is side effect free and
has marked it as such, from this point on in the compilation. Marking the
function as side effect free may improve the generated code.

2.4.5 Warning diagnostics

These messages are prefixed by the words Warning -' and indicate that unex­
pected results may occur.

72 TDS 34801 October 1992

2.4 Messages 13

#define macro identifier defined but not used

The named macro has been defined, but not referenced in the rest of the
program. This message is only generated ifspecifically enabled by the 'FM'
compiler option.

'&' unnecessary for function or array identifier

A pointer to a function or array is implied by use of the name alone; the','
operator is not required.

'int identifier ()' assumed - 'void' intended?

A function was defined without specifying its type. The compiler assumes
a function of type int if no type is specified.

identifier already has a descriptor defined, pragma ignored

The pragma 1MB descriptor has already been applied to identifier,
more than one application is invalid.

identifier has been called; pragma ignored

The pragma must be applied to identifier before the latter has been called.

identifier has been defined; pragma ignored

The pragma must be applied to identifier before the latter is defined.

identifier has not been declared; pragma ignored

The pragma must be applied to identifierafter the latter has been declared.

identifier is not a function; pragma ignored

The argument to the pragma must be a function name.

identifier is not externally visible; pragma ignored

The first argument to the 1MB descriptor pragma must be the name of
an externally visible function.-

identifier may be used before being set

The compiler has detected a use of a variable which may not have been
initialized.

identifier multiply translated, this translation ignored

The 1MB_translate pragma has been applied to identifier more than
once.

J'to immediately following label identifier will be removed

In an assembler insert, there is aj Oump) instruction to an immediately fol­
lowing label. This is effectively a no-op, and is removed.

If the user really requires a j 0 instruction, for breakpointing or deschedul­
ing purposes, he should write jOin the assembler insert.

72TDS 34801 october 1992

14 2 User Interface

number treated as number UL in 32-bit implementation

No type was specified for the number. The compiler assumes unsigned
long if no type was specified.

op: cast between function pointer and non-function object

The operation is performed upon two arguments, one of which is a func­
tion, and the other an object.

A very suspect way ofwriting through a pointer has been detected in function
which is marked as side effect free

The named function is marked side effect free and has some code in it to
write through a pointer either in an unportable manner or in a way that is
typically considered bad programming practice, e.g. *(int *)23 = ...; it is up
to the user to carefully check that the assignment is conformant with the
definition of side effect free.

actual type type mismatches format '%char '

The type of an argument to printf or scanf does not match that implied
by the control string.

ANSI 'char char char' trigraph for 'char' found - was this intended?

The specified three character sequence was found in the source program.
This has been treated as an ANSI trigraph and substituted for the character
shown.

argument and old-style parameter mismatch: expression

There is an old (non-prototype) style function definition in scope, and the
type of an argument (after default argument promotion has taken place)
does not agree with the type of the corresponding formal parameter.

Be sure that assignment through pointer in function is side effect free

The named function is marked side effect free and assigns through a
pointer; it is up to the user to carefully check that the assignment is confor­
mant with the definition of side effect free.

Be sure that functions pointed to in function are side effect free

The named function is marked side effect free and calls functions through
pointers to them; it is up to the user to carefully check that the functions
which may be called in this way are themselves side effect free.

Be sure that the assembler in function is side effect free

The named function is marked side effect free and uses assembly lan­
guage inserts; it is up to the user to carefully check that assembler is con­
formant with the definition of side effect free.

Cannot delete temporary file filename

Host file system error.

72 TDS 348 01 October 1992

2.4 Messages 15

Cannot generate stack check for function (pragma nolink applied)

A stack check requires a static link, and the function function has been spe­
cified not to receive a static link (using IMS nolink). ice compiles the
function with the stack check omitted. -

character sequence 1* inside comment

The start-of-comment character sequence was detected within a com­
ment. Check that the previous comment was terminated correctly.

Dangling 'else' indicates possible error

Within nested if ... else constructs, there is some ambiguity as to which
'if' relates to which 'else'.

Deprecated declaration identifier () - give arg types

In the prototype declaration of the named function, the argument's names
and/or their types were not specified.

division by zero: op

Division, or remainder, by zero, will cause overflow.

Expected ')'; perhaps you tried to give too many names - pragma ·ignored

A ')' was expected but not found in a pragma; it may be that too many
parameters have been given.

Expected integer as argument - pragma ignored

An integer argument was expected but not found in a pragma.

Expected string as argument - pragma ignored

The argument to the IMS_linkage pragma must be a string literal.

Expected string as fifth argument; pragma ignored

The fifth argument to the INS descriptor pragma must be a string lit-
eral. -

Expected string as second argument - pragma ignored

The second argument to the INS translate pragma must be a string
literal. -

extern 'main' needs to be lint' function

In a declaration ofmain(), the function should always be declared as type
into

extern identifier not declared in header

All objects must be declared before use. This message is only generated
if specifically enabled by the 'FM' compiler option.

72 TDS 348 01 October 1992

16 2 User Interface

floating point constant overflow: op

Floating point overflow occurred during addition, subtraction, multiplication
or division of two constants.

floating to integral conversion failed

Conversion (casting) from a floating point type to an integral type (such as
int) failed.

formal parameter identifier not declared - 'int' assumed

Aformal parameter has been listed in the parameter list of the function defi­
nition, but there is no entry for it in the declaration list; it is therefore
assumed to be of type into

Format requires count parameter(s), but count1 given

A call to printf or scanf was made with the incorrect number of argu­
ments. The control string indicated that count arguments are needed, but
count1 were provided. This warning is only generated if pragma IMS on
(pc) is active. The header file stdio. h includes this pragma. -

Global optimisation suppressed for function as it contains assembly code:

The user has attempted to globally-optimize a function which contains an
assembler insert: the compiler automatically turns the global optimizer off.
(This applied only to the named function: the global optimizerwill be turned
on again for subsequent functions.)

Illegal format conversion '%char'

The character sequence '%char' is not a legitimate conversion character
for printf or scanf. This warning is only generated if pragma IMS_on
(pc) is active. The header file s tdio .h includes this pragma.

Illegal language type string; replaced by string

The language type given for the interface descriptor-string is not a valid
one, and has been overridden by a known type.

implicit cast (to type) overflow

Overflow occurred when casting an expression.

implicit narrowing cast: op

The result of an operation performed at higher precision is immediately,
and implicitly, cast to lower precision, thus losing the extra precision: if the
extra precision is not required, the operation ought to be performed at the
lower precision.
If the narrowing cast is really required, the warning may be suppressed by
writing the cast explicitly.

implicit return in non-void identifier ()

The function does not contain a return statement, even though it is
defined to return a value.

72TDS 34801 October 1992

2.4 Messages 17

Incomplete fonnat string

The control string for use with printf or scanf is incomplete. This warn­
ing is only generated if pragma INS on (pc) is active. The header file
stclio. h includes this pragma. -

Integer too large to be represented - pragma ignored

An integer parameter to a pragma has been given with a value too large
to be able to be dealt with by the compiler.

inventing 'extern int identifier ();'

No declaration exists for the function; it will be defined by default as
extern into

label identifier was defined but not used

The named label was set, but not used.

Linkage already set - pragma ignored

The INS_linkage parameter has been specified more than once.

lower precision in wider context: op

The result of an operation performed at lower precision is immediately cast
to a higher precision; it may be that the user was expecting the operation
to be performed at the higher precision.

Missing comma in pragma argument list - pragma ignored

Multiple arguments to a pragma must be separated by commas.

Negative value given for vectorspace - pragma ignored

Vectorspace values in the INS_descriptor pragma must be ~ o.
Negative value given for workspace - pragma ignored

Workspace values in the INS_descriptor pragma must be ~ o.
No pragma name given in pragma directive - was this intended?

The compiler has detected a pragma directive which does not have a
name. This is not illegal, however, it has no effect.

no side effect in void context: identifier

The value which has been returned by an expression is not being used e.g.

int a;
a;

non-portable - not 1 char in ' ... '

The characters enclosed by single quotes represent more than one char­
acter. The compiler will read the first character only, for example, 'AB' will
be read as lA'.

72 TDS 348 01 October 1992

18 2 User Interface

Non-positive values for patch size are meaningless - pragma ignored

Patch size values must be > O.

non-value return in non-void function

A function which should return a value has terminated without using a
return statement or with a return statement that has no arguments. The
value received from the function by the calling routine is undefined.

odd unsigned comparison with 0 : op

a~ comparison of an unsigned integerwith zero, or a~ comparison ofzero
with an unsigned integer, is always true.

omitting trailing '\0' for char [count]

The char array is fully occupied by characters and there is no room to
append the string terminator (\0). count is the full length of the character
array.

repeated definition of #define macro identifier

The named macro has been defined more than once. The definitions are
identical.

Shift of type by count undefined in ANSI C

A shift of more than the number of bits in type, or less than zero was
requested, undefined in ANSI C.

signed constant overflow: op

Overflow occurred when performing op upon signed, constant operands.

spurious {} around scalar initialiser

A scalar can take only one initializer, so there is no need to use braces as
are required with aggregate types such as arrays.

static identifier declared but not used

The named static object was declared but not used.

struct has no named member

A structure has been declared without any members.

Too many assembler arguments
Too many compiler arguments

There are too many options on the command line. The extra options are
ignored.

typedef identifier declared but not used

The named identifier has been declared, but is not used in the program.

72 TDS 34801 October 1992

2.4 Messages 19

Undefined macro string in #if - treated as 0

This error occurs when enumeration or undefined constants appear after
the preprocessor 'if directive. For example, if 'ab' and 'cd' are enumera­
tion constants of the enumerated type 'abcd', the statement lif ab = cd
would generate this error.

union has no named member

A union has been declared without any members.

unnamed bit field initialised to 0

A static declaration of a structure or union containing an unnamed bit field,
the compiler has initialized that field to zero.

Unrecognised #pragma (no '(')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma (no ')')

The arguments to a pragma are not correctly enclosed in parentheses.

Unrecognised #pragma identifier

identifier is not a pragma recognized by this compiler.

unsigned constant overflow: op

Overflow occurred when performing op upon unsigned, constant oper­
ands.

unused earlier static declaration of identifier

There is a forward declaration of identifier which is not necessary as the
definition of identifier appears before identifier is referenced.

use of op in condition context

Generated when the invalid operators '=' (assignment) or '~' (bit-not) are
used in a condition statement.

This message is given for. use of the assignment operator in condition con­
text, e.g.

if (a = b)

as this is often due to mistyping the equality operator, Le. the desired code
is:

if (a = b)
If you really wish to perform the assignment in condition context, the warn­
ing message may be suppressed using the form:

if «a = b) != 0)

wrong number of parameters to function

A function declared without a prototype was called with the wrong number
of arguments. (An error is given if a function declared with a prototype is
called with the wrong number of arguments.)

72 TDS 348 01 October 1992

20 2 User Interface

variable identifier declared but not used

The variable was declared, but not used anywhere in the program.

(possible error): >= number lines of macro arguments

There are a surprisingly large number of lines ofarguments to a macro; this
may indicate a syntax error.

2.4.6 Recoverable errors

These messages are prefixed by the words 'Error -' .

#ident is not in ANSI·C

#ident is not a recognized preprocessor directive.

first or last token in #define body

The II preprocessor operator must be preceded by a preprocessor token,
and succeeded by a preprocessor token.

I,' (not I;') separates formal parameters

A semicolon has been used to separate the formal parameters in a function
definition (as in Pascal) instead of a comma.

'register' attribute for identifier ignored when address taken

An attempt was made to take the address of a variable with 'register' stor­
age class. The register attribute will be ignored allowing the address to be
taken.

<int> op <pointer> treated as <int> op (int) <pointer>

The expression involving a integer and a pointer will result in the pointer
being converted (cast) to an integer.

function marked as side effect free assigns to a global variable

An assignment to a global variable is a side effect.

function marked as side effect free assigns to static

An assignment to a static variable, other than an initialization, is a side
effect.

function marked as side effect free calls function which is not side effect free

The call of a function which is not side effect free is a side effect.

function marked as side effect free uses volatile variable

The read of or write to a volatile variable is a side effect.

instruction may not have a size specified

An _asm pseudo-instruction may not be explicitly sized.

72 TDS 348 01 October 1992

2.4 Messages 21

object identifier may not be function - assuming pointer

An attempt was made to use a function where it was not expected, typically
when a function is included as a component within a structure.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

op : implicit cast of type to lint'

A non-integer object has been used where an int was expected, for
example, attempting to use a double as an argument to a switch state­
ment (which requires an integer type).

op : implicit cast of non-O int to pointer

Evaluation of the expression will result in the cast of an integer to a pointer.

op : implicit cast of pointer to lint'

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

op : implicit cast of pointer to non-equal pointer

Evaluation of the expression will result in the cast of one pointer type to
another.

op may not have whitespace in it

Two-character operators such as '+=' must not contain spaces.

<pointer> operator <int> treated as (int) <pointer> operator <int>

Evaluation of the expression will result in the cast of the pointer to an inte­
ger.

Ancient form of initialisation, use '='
A } , rather than =, was used to introduce an initializer, this is no longer legal
c.

ANSI C does not support 'long float'

An object has been declared of type long float, this is illegal in ANSI e,
which supports float, double, or long double.

Array of type illegal - assuming pointer

An array of functions or void objects has been declared. The compiler
treats this as an array of pointers to functions or void objects.

72TDS 348 01 October 1992

22 2 User Interface

Array [0] found

An empty array has been defined and will be set up instead as an array with
one element.

assignment to 'const' object identifier

The expression contains an assignment to a constant. The assignment will
be carried out.

const typedef identifier has const respecified

A typedef which is already qualified with const, has been qualified with
const.

comparison op of pointer and int: literal 0 (for == and 1=) is only legal case.

The specified operatorwas used to compare an object oftype int and one
of a type pointer. The only legal comparison of this type is between a
pointer and 0 using either = or ! =.

declaration with no effect

No name has been declared for the object. Specifying only the type of an
object generates this error.

differing redefinition of #define macro identifier

The named macro has been defined more than once. The definitions are
not identical.

Digit 8 or 9 found in octal number

8 and 9 are meaningless in an octal number.

duplicate macro formal parameter: 'identifier'

The function macro has two formal parameters with the same name.

duplicate member identifier1 of identifier2

Two fields of structure or union identifier2 have the name identifier1.

ellipsis (...) cannot be only parameter

A function declared to take a variable number of parameters must have at
least one known parameter.

enumeration constant identifier too large to represent as lint' - 0 assumed

The value of an enumeration constant has overflowed the range of ints.

extern identifier mismatches top-level declaration

An extern declaration of identifier within a function definition does not
match an extern declaration of identifier at the top level.

72TDS 34801 October 1992

2.4 Messages 23

expected symbol1 or symbol2 -inserted symbol1 before symbol3

symbol1 or symbol2 was expected before symbol3, but neither was found.
symbol1 is suggested as the most appropriate choice and the compiler has
changed the code accordingly.

formal name missing in function definition

The type of a formal parameter has been omitted in a function definition.

function identifier may not be initialised -assuming function pointer

Initializers cannot be used in function declarations or definitions.

function prototype formal identifier needs type or class - 'int' assumed

The type of a formal parameter has been omitted in a function declaration
and int has been assumed.

function returning type illegal - assuming pointer

The user has appeared to declare a function which returns a function or an
array.

hex number cannot have exponent

A hex numberending in e may not be immediately followed by +or -; sepa­
rate the number and the additive operator with white space.

illegal bit field type type - 'int' assumed

Bit fields cannot be setwithin non integral variables. The compiler assumes
an int instead.

illegal option -0 identifier identifier

The compiler D option must be specified for each assignment.

illegal string escape '\char' - treated as char

The character following \ does not form part of a valid string escape. The
compiler treats the sequence \char as char.

illegal [] member: identifier

An open array may not be a member of a structure or union.

junk at end of #identifier line - ignored

The text following the directive is invalid and will be ignored.

linkage disagreement for identifier - treated as store class

The storage class of a previously defined static or extern object or
function disagrees with the current declaration. The object will be treated
as though it is in storage class store class.

L'...' needs exactly 1 wide character

A wide character constant should contain exactly one wide character.

72 TDS 348 01 October 1992

24 2 User Interface

Missing newline before EOF - inserted

A blank line should have been inserted before the end-of-file character.

Missing type specification - 'int' assumed

A type specification is missing. The object will be assumed to be of type
into

more than 4 chars in character constant

More than 4 ASCII characters were used to represent a character
constant. When using the single quote syntax for character constants a
maximum number of 4 characters is permitted in order to accommodate
the octal representation of a character. The first 4 characters will be used.

Negative numbers and zero are not allowed in #line

ANSI C forbids negative numbers or zero in a #Iine directive.

no chars in character constant"

No characters or character codes have been specified for the character
constant. A NULL character is assumed.

no initializer list in braced initializer

There must be at least one entry in the initializer list of a braced initializer.

number illegally followed by letter

A numerical constant may not be followed immediately by a letter.

number missing in #line

There is no line number following the preprocessor 'line directive.

Numbers greater than 32767 are not allowed in #line

ANSI C forbids numbers greater than 32767 in a #line directive.

objects that have been cast are not I-values

An object that has been cast in I-value context; ANSI has made this illegal.

Omitted type before formal declarator - 'int' assumed

No type was specified; type int will be assumed.

operand of # not macro formal parameter: 'identifier'

The operand to the It preprocessor operator must be a formal parameter
of the function macro containing it.

overlarge escape '\number1' treated as '\number2'

An octal number in an escape sequence is too large to be represented in
the target architecture.

72 TDS 34801 October 1992

2.4 Messages 25

overlarge escape '\xnumber1' treated as '\xnumber2'

A hexadecimal number in an escape sequence is too large to be repre­
sented in the target architecture.

parentheses (...) inserted around expression following text

Parentheses were expected after the specified text, for example, around
a conditional expression such as an if statement.

prototype and old-style parameters mixed

It is illegal to mix new (prototype) and old-style parameter declarations.

return expression illegal for void function

A return statement with an expression was found within a void function.
The return statement is ignored.

signed constant overflow: op

Overflow occurred when performing op upon signed, constant operands.

size of 'void' required - treated as 1

'void' was used as an argument to sizeof. The compiler assumes the size
of void to be 1.

size of a [] array required, treated as [1]

The array is of unspecified size. In these circumstances sizeof return the
size of the array type.

size of function required - treated as size of pointer

A function name was passed to the sizeof function. In these circum­
stances sizeof returns the size of the pointer to the function.

sizeof bit field illegal - sizeof(int) assumed

A bit field was passed to the sizeoffunction.ln these circumstances sizeof
casts the bit field to an integer and then returns its size.

Small (single precision) floating value converted to 0.0

The number is too small to represent in a single word (32 bit) floating point
format, and has been rounded to 0.0.

Small floating point value converted to 0.0

The number is too small to represent in a double word (64 bit) floating point
format, and has been rounded to 0.0.

Spurious #elif ignored

The #elif directive could not be matched with a corresponding if direc­
tive and has been ignored.

72 TDS 34801 October 1992

26 2 User Interface

Spurious #else ignored

The 'else directive could not be matched with a corresponding if direc­
tive and has been ignored.

Spurious #endif ignored

The 'endif directive could not be matched with acorresponding if direc­
tive and has been ignored.

static function identifier not defined -treated as extern

A function was defined as static in the function prototype, but the com­
piler was unable to find the function definition. An extern function is
assumed.

string initialiser longer than char [count]

A character array has been initialized with more characters than the array
can accommodate. Since the compiler adds a terminating NULL character
to strings, string initializers should always contain one less element than
the array.

struct has no members

A structure definition must contain at least one member.

struct member identifier may not be function - assuming pointer

A structure member was declared of function type; the compiler treats this
as pointer to function type.

struct tag identifier not defined

A structure has been referenced before being defined.

Translation unit contains no external declarations

A translation unit must contain at least one external declaration.

type or class needed (except in function definition) -lint' assumed

The type or storage class has been omitted from the function declaration.

Undeclared name, inventing 'extern int identifier'

An undeclared identifier was encountered and will be given the storage
class extern.

union has no members

A union definition must contain at least one member.

union member identifier may not be function - assuming pointer

A union member was declared of function type; the compiler treats this as
pointer to function type.

72 lOS 34801 October 1992

2.4 Messages 27

union tag identifier not defined

A union has been referenced before being defined.

unprintable char number found - ignored

An unprintable character was found in the source text.

volatile typedef identifier has vola-tile respecified

A typedef which is already qualified with volatile, has been qualified
with volatile.

wrong number of parameters to function

A function was called with the wrong number of arguments.

2.4.7 Serious errors

These messages are prefixed by the words 'Serious -' .

\space and \tab are invalid string escapes

Whitespace ('\space' or '\tab') was found within a string. All characters up
to the first non-whitespace character are ignored; if the first non-white­
space character is a newline character, this will also be ignored.

{} must have 1 element to initialise scalar or auto

When initializing a scalar quantity or auto variable only one initializer
should be specified within the enclosing braces.

#error encountered string

The 'error directive was found.

#include file filename wouldn't open

The file filename could not be opened.

op : cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

op : illegal cast of type to pointer

A variable has been cast into a pointer type. The cast is illegal and will be
ignored.

op : illegal cast to type

An illegal cast has been attempted. The cast is illegal and will be ignored.

context: illegal use in pointer initialiser

An object of type auto, or its address, cannot be initialized.

72 TDS 348 01 October 1992

28 2 User Interface

(...) must have exactly 3 dots

An ellipsis must consist of three dots.

'break' not in loop or switch - ignored

A break statement was encountered outside the scope of a loop or switch
statement. A break at this point is illegal and will be ignored.

'case' not in switch - ignored

A case prefix has been encountered outside the body of a switch state­
ment. A case statement at this point is illegal and will be ignored.

'continue' not in loop - ignored

A continue statement has been encountered outside the body of a loop. A
continue statement at this point is illegal and will be ignored.

'default' not in switch - ignored

A default prefix has been encountered outside the body of a switch state­
ment. A default prefix at this point is illegal and will be ignored.

'goto' not followed by label - ignored

The text following a goto statement does not represent a label.

'void' values may not be arguments

Formal parameters in function definitions or declaration cannot be of type
void.

'while' expected after 'do' - found text

The while statement is missing from ado ... while construct. text marks
the position.

'f of function body expected - found text

The opening brace in the body of a function is missing.

'{' or <identifier> expected after type, but found text

The opening brace following a struct, union or enum is missing. text
marks the position.

<asm-directive> expected but found a text

text indicates where the _asm directive was expected.

<command> expected but found a text

Statements such as swi tch or if should be followed by a command. text
indicates where the command was expected.

<expression> expected but found text

text indicates where the expression was expected.

72 TDS 348 01 October 1992

2.4 Messages 29

<identifier> expected but found text in 'enum' definition

The compiler was expecting to read an enumeration constant when it
found symbol. This may be because there is a spurious comma at the end
of a list of enumeration constants.

function has pragma nolink specified, but accesses static data

The specified function has been specified not to receive a static link (via
INS nolink), but attempts to use static data. It is only possible to use
static data when a static link is available.

identifier is not a label-Idlabeldiff ignored

The operands to the Idlabeldiff pseudo-instruction must be labels.

identifier1 has pragma nolink specified, but accesses static identifier2

Function identifier1 has had the INS nolink pragma applied to it, which
means it cannot access static data. -

identifier1 has pragma nolink specified, but addresses static identifier2

Function identifier1 has had the INS nolink pragma applied to it, which
means it cannot address static data:-

instruction not followed by label- ignored

A load or store _asm instruction must have a constant or label operand.

store class variables may not be initialised

Some types of C variables, such as those decloared as extern, cannot be
initialized.

Array size count illegal - 1 assumed

Arrays cannot be larger than Oxflfflf on a 32-bit target, or 65535 on a 16-bit
target.

attempt to apply a non-function

A name notdeclared as afunction has been used in acontext where afunc­
tion should be.

attempt to include struct/union identifier object/member within itself

A structure or union declaration may not contain a field of the structure or
union type, or a field which references another field.

bit fields do not have addresses

Elements of type bit field in C structures cannot be addressed.

Bit size size illegal - 1 assumed

Bit sizes greater than 32 are set to 1.

72 TDS 348 01 october 1992

30 2 User Interface

Cannot address built-in variable identifier

identifier is a built-in name, such as _Isb or ""params, which cannot be
addressed.

Cannot call function (it requires a static link)

An attempt has been made to call the specified function which requires a
static link, from a function which has been specified not to receive a static
link (via IMS_DoIink).

Cannot do indirect call (it requires a static link)

An attempt has been made to call a function from afunction which has been
specified not to receive a static link (via IMS DoIink). All calls through
function pointers are assumed to require a static link.

Cannot write to built-in variable identifier

identifier is a built-in name, such as _Isb or ""params, which cannot be
assigned to.

char and wide (L"...") strings do not concatenate

A char string and a wide char string appear adjacently in the source text.
NormallY,adjacent strings in the source text are concatenated; however,
this is not possible here, as they have different types.

Digit required after exponent marker

Exponents of floating point numbers must be followed by a numeric char­
acter. The numeric character may be preceded by '+' or '_'.

duplicate 'default' case ignored

The default prefix has already been specified for the switch construct. The
original definition will be used.

duplicate definition of identifier

The named identifier has already been defined.

duplicate definition of structlunion tag identifier

The named structure or union identifier has already been used.

duplicate definition of label identifier - ignored

The specified identifier has already been used. The original definition will
be used.

duplicate type specification of formal parameter parameter

The specified parameter has been listed more than once in the function's
formal parameter list.

duplicated case constant: constant

The constant has been specified more than once in the same case state­
ment.

72TDS 34801 October 1992

2.4 Messages 31

EOF in comment

The end-of-file was detected inside a comment.

EOF in string

The end-of-file was detected within a string.

EOF in string escape

The end-of-file was detected within a string escape sequence.

EOF not newline after #if ...

The end-of-filewas found after the 'Iif' directive; a newline character was
expected.

expected symbol

symbol was expected.

expected symbol1 - inserted before symbol2

symbol1 was expected before symbol2 and the compiler has changed the
code accordingly. For example, in the code "if (TRUE printf () ;" the
compiler would expect to find ')' before 'printf'.

expected symbol1 or symbol2

Either symbol1 or symbol2 was expected.

Expected <identifier> after operator but found text

The specified operator must be followed by an identifier. This error may
occur after the structure member operator'.' and the structure pointer
operator '->'.

Expecting <declarator> or <type>, but found text

An identifier or type was expected at text. For example, the declaration
'typedef int * [3] test;' generates this error.

Grossly over-long floating point number

There are too many digits in the floating point number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long hexadecimal constant

There are too many digits in the hexadecimal number. The compiler reads
the maximum number of digits allowed and discards the rest.

Grossly over-long number

There are too many digits in the decimal number. The compiler reads the
maximum number of digits allowed and discards the res!.

Hex digit needed after Ox or OX

The hexadecimal specifier Ox must be followed by a valid hexadecimal
digit. The compiler assumes a zero digit.

72 TDS 34801 October 1992

32 2 User Interface

Identifier (name) found in <abstract declarator> - ignored

An identifier should not be used in an abstract declarator. This error is gen­
erated, for example, if sizeof (int *test [3]) ;is used instead of the
correct form sizeof (int * [3]) ;.

illegal character (number = 'char ') in source
illegal character (hex code number) in source

An unexpected character was found in the source code. The ASCII code
of the character (if printable), and the character itself, are given.

illegal in context: error

Illegal expressions such as those involving division by zero generate this
error.

illegal in expression: non constant identifier

A constant is required in certain expressions, for example after a case
prefix.

Illegal in I-value: 'enum' constant identifier

Enumeration constants cannot be used as I-values in an expression.

Illegal in Ivalue: function or array identifier

Arrays and function declarators cannot be used as I-values. This error
would be generated, for example, by attempting to assign a value to a func­
tion declarator.

Illegal in the context of an I-value: op

The operator op cannot appear in I-value context.

Illegal types for operands: operator

The operator has been used with an invalid type. For example, it is illegal
to use the structure member operator I.' with a variable of type into

Illegal 'void' member/object: identifier

An object or member of a structure or union cannot be declared as being
of type void.

incomplete tentative declaration of identifier

The declaration of identifier has gone out of scope before the declaration
has been completed.

Invalid command line option (text)

text is not ~ recognized command line option.

Invalid source file name (fi/ename)

fi/ename is not a valid source file name. (Source file names may not contain
hyphens.)

72 TDS 34801 October 1992

2.4 Messages 33

1/0 error writing filename

An error occurred when writing to the named file.

Junk after #if expression

The 'if directive must be terminated by a newline character.

Junk after #include filename

The 'include directive must be terminated by a newline character.

label identifier has not been set

A label has been referenced but not set. This message will be generated
if goto is used with an undefined label.

Idlabeldiff not followed by label • ignored

The operands to the ldlabeldiff pseudo-instruction must be labels.

Misplaced 'else' ignored

An else statement was found where it was not expected. Itwill be ignored.

Misplaced '{' at top level - ignoring block

An opening brace was found at the top level of a program when it was not
expected, for example when not used as part of a function or structure defi­
nition.

Misplaced preprocessor character char

A preprocessor directive character (' or \) was found where it was not
expected. .

Missing #endif at EOF

An 'endif directive is missing. This error will not be generated until the
last of the currently open files is about to be closed (ANSI standard does
not require 'if and 'else statements to match in included files).

Missing char in preprocessor command line

A 'quote' character is missing from a preprocessorcommand line. The mis­
sing character could be " <, >, or ".

Missing I)' after identifier (... on line number

A closing parenthesis is missing from the macro which will be substituted
at line number.

Missing ',' or I)' after #define identifier (...

The list of parameters in a macro definition is either incomplete or has not
been correctly terminated by a closing parenthesis.

Missing < or " after #include

The opening 'quote' character which introdUces the filename is missing.

72TDS 348 01 October 1992

34 2 User Interface

Missing hex digit(s} after \x

The hexadecimal introducer sequence \x was found, but no hexadecimal
digit was specified. The compiler assumes that the letter x was intended.

Missing identifier after #define

The definition is empty. 'define must be followed by an identifier.

Missing identifier after #ifdef

'ifdef must be followed by an identifier.

Missing identifier after 'ifndef

'ifndef must be followed by an identifier

Missing identifier after #undef

'undef must be followed by an identifier.

Missing include directory name

The J command line option must be followed by a directory name.

Missing map file name

The P command line option must be followed by a map file name.

Missing object file name

The 0 command line option must be followed by an object file name.

Missing parameter name in #define identifier (...

A parameter is missing from the specified macro definition. This error
would be generated by a definition of the form 'define tes t (arg ,) .

Newline or end of file within string

A newline or end-of-file character was encountered within a string.

No I}' after #if defined(...

The closing parenthesis is missing from the directive.

No file name given

No source file was specified on the command line.

No identifier after #if defined

'if defined must be followed by an identifier.

Non-formal identifier in parameter-type-specifier

The parameter identifierwas included in the declarator list ofa function, but
not in the parameter list. For example, a definition such as int foo () int
x; {} would generate this error.

72 TDS 348 01 October 1992

2.4 Messages 35

non-static address identifier in pointer initialiser

Pointers cannot be initialized with the address of an object of type auto.

Number number too large for 32-bit implementation

The specified number is too large to be represented in 32 bits.

objects of type 'void' can not be initialised

Initializing objects of type void is illegal.

only const and volatile can qualify a pointer: found type

The only type qualifiers ofa pointer are const and volati le but type was
found instead.

Operand number to instruction is larger than a word

The arguments to an asm load or store pseudo-instruction must fit in a
machine word. -

Operand number to instruction is not word-sized

The arguments to an asm store pseudo-instruction must fit exactly in a
machine word. -

Operand to instruction must be a constant or local variable

An illegal operand has been given to an _asm Idl or stl instruction.

Operand to instruction is larger than a word

The operand to a primary instruction inside asm must fit in a machine
word. -

Out of memory
Out of store (for error buffer)
Out of store (in cc_ alloc)

The compiler ran out of available memory.

Overlarge (single precision) floating point value found

The number is too large to represent in single word (32 bit) floating point
format.

Overlarge floating point value found

The number is too large to represent in double-word (64 bit) floating point
format.

quote (char) inserted before newline

The specified quote character was found before a newline character. This
may indicate a a spurious character or a missing closing quote.

re-using structJunion tag identifier as union/struct tag

The named identifier has been used to identify two different types ofobject.

72TDS 34801 October 1992

36 2 User Interface

size of struct identifier needed but not yet defined
size of union identifier needed but not yet defined

The size of the structure/union has not yet been defined. This error can
occur when an undefined structure/union is used as an argument to the
sizeof function and when an undefined structure/union is used in the
dedaration of a variable. In the second case the error occurs because the
compiler attempts to determine the size of the structure/union for memory
allocation purposes.

storage class store class incompatible with store class - ignored

Two incompatible storage dasses have been used in a declaration. For
example, extern static foo; generates this error because extern
and static are incompatible types.

storage class store class not pennitted in context context - ignored

The specified storage class is not permitted in the context in which it has
been used. This error would be generated, for example, if storage class
auto were to be used at the top level.

struct identifier has no identifier field

The structure contains no field of that name.

struct identifier must be defined for (static) variable declaration

An undefined structure has been used in a variable declaration.

struct identifier not yet defined -cannot be selected from

A reference was made to an undefined structure.

Too few operands for instruction

A load or store _ asm pseudo-instruction has too few arguments.

Too few arguments to macro identifier(. .. on line number

There are too few arguments to the macro which will be substituted at line
number.

Too many operands for instruction

A load or store _asm pseudo-instruction has too many arguments.

Too many arguments to macro identifier(. .. on line number

There are too many arguments to the macro which will be substituted at
line number.

Too many errors

After 100 Serious errors, the compilation aborts.

too many initialisers in {} for aggregate

An aggregate type, for example an array, has been initialized with more val­
ues than can be accommodated.

72 TDS 34801 October 1992

2.4 Messages 37

type type1 inconsistent with type2

Two incompatible type identifiers are being used in the declaration of a
single object. For example, the declaration double int x; would gener­
ate this error.

type disagreement for identifier

The specified identifier has already been assigned a different type.

typedef name type used in expression context

A type definition has been used in an expression.

type qualifier type qualifier not allowed to qualify type qualifier type

'const' may not be repeated in the qualifying list of a type, and similarly
for 'volatile'.

undefined structlunion identifier1 member/object: identifier2

The structure or union is, at present, undefined.

Uninitialised static [] arrays illegal

Static arrays of unspecified size must be initialized.

union identifier has no identifier field

The union contains no field of that name.

union identifier must be defined for (static) variable declaration

An undefined union has been used in a variable declaration.

union identifier not yet defined ~annot be selected from

A reference was made to an undefined union.

Unknown directive: #identifier

identifier is not a valid preprocessor directive. Check spelling and/or syn­
tax.

unknown instruction instruction

instruction is not a defined transputer instruction.

zero width named bit field - 1 assumed

Named bit fields must be at least one bit wide.

72 TOS 348 01 - October 1992

38

72 TDS 348 01

2 User Interface

October 1992

Appendices

- 72 TDS 348 01 October 1992

40

72TDS 348 01

Appendices

October 1992

A Local optimization
examples

This appendix briefly describes each of the local optimizations available.

A.1 Peephole optimization

This optimization is performed by the compiler at assembly code level. The com­
pilerscans the assembly code for sequences of instructions which may be reduced
to a single instruction.

Example:

If a source code instruction generated the following assembly code instructions:

ldc x
ldc y
and

then they could be reduced to the following single instruction:

Idc x , y

where: the expression x , y is evaluated by the compiler (since x and y are
constants).

In a similar manner, the sequence:

Idl n
stl n

could be removed altogether.

A.1.1 Summary of effects:

• Slight improvement to execution time: some instructions are no longer
executed.

• Slight improvement to code size: some instructions are no longer coded.

A.2 Flowgraph optimizations

Flowgraph optimizations cover a wide range of local optimizations which are per­
formed on short sequences of code.

72 TOS 348 01 October 1992

42 A.2 Flowgraph optiniizations

The following examples describe typical optimizations of this type.

A.2.1 Branch-ehaining optimization

When the destination of one jump is to anotherjump, then the first jump is replaced
with a jump to the destination of the second jump.

This optimization cannot be performed at source code level and is best demon­
strated in assembly code:

j L1

L1: j L2

becomes:

j L2

L1: j L2

A.2.2 Dead code elimination

Dead code elimination is the removal of statements which cannot be reached and
is another type of flowgraph optimization. For example:

void p(void)
{

while (1)
...Ioop body - contains no break statements
s; /* This statement cannot be reached*/

With dead code elimination, this code segment would be transformed to:

void p(void)
{

while (1)
...Ioop body - contains no break statements

The statement IS' is deleted.

A.2.3 Summary of effects of flowgraph optimizations:

The effect on both execution time and code size varies on the particular optimiza­
tion performed. For the examples shown above the results are:

• Branch-ehaining -Improved execution time and a slight reduction in code
size.

72 TDS 348 01 October 1992

A Local optimization examples

• Dead code elimination - code size is improved.

A.3 Redundant store elimination

43

Assignments to variables which are not subsequently used, are deleted by an opti­
mization called redundant store elimination.

Example:

void p(void)
{

int X;
... some code
X = 27;
... some more code which does not read x

With redundant store elimination, this segment of code would be transformed to:

void P (void)
{

int X;
... some code
... some more code which does not read x

The assignment of a value to x is removed.

A.3.1 Summary of effects:

• Slight improvement to execution time.

• Slight improvement in code size.

72 TOS 348 01 October 1992

44

72TDS 34801

A.3 Redundant store elimination

October 1992

B Global optimization
examples

This appendix briefly describes each of the global optimizations available.

B.1 Common subexpression elimination

The purpose ofcommon subexpression elimination is to remove from the program
any redundant computations. An expression is redundant where it is identical to
and computes the same value as another expression whose value is still available
for use.

Such commonality is not restricted to explicit computations in the source code but
may include implicit computations such as array element address calculation.
Subscripted expressions often repeat in blocks of code. Where this happens it is
often more efficient to extract expressions which occur more than once so that they
are evaluated once only.

Example:

Code segment before common subexpression elimination is applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i] [j] = a[i] [j] + t;

}

Code segment after common subexpression elimination is applied:

int a[10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
{

int *temp3 = &a[i] [j];
*temp3 = *temp3 + t;

Notice that the subscripted variable in the summation has been replaced by a
single variable *temp3 .

Common subexpression elimination is achieved by saving the result ofa computa­
tion in a temporary location rather than recomputing the expression.

72 TDS 348 01 october 1992

46

B.1.1 Summary of effects:

B.2 Loop-invariant code optimization

• Improvement to execution time: expressions which were evaluated sev­
eral times are now only evaluated once.

• Improvement to code size: expressions which were coded several times
are now only coded once.

• Increase in workspace size: expressions which were evaluated several
times now have their value stored in a temporary variable in workspace.

The compiler evaluates each potential case and only applies the optimization if it
is worthwhile.

B.2 Loop-invariant code optimization

This optimization removes expressions which remain constant during the execu­
tion of a loop, to outside the loop so that they are executed once only. Invariant
expressions often include subscripting calculations as well as computations in the
source code.

Example:

Code segment before loop-invariant code optimization is applied:

int a[10] [10], i, j;
for (i = 0; i < 10; i++)

for (j = 0; j < 10; j++)
a[i] [j] = a[i] [j] + t;

Code segment after loop-invariant code optimization is applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

{
int *temp1
int *temp2
for (j = 0

temp1[j]

= &a[i];
= &a[i];

j < 10; j++)
= temp2[j] + t

In this example the value of i remains constant during iterations of the inner loop
which increments j. The calculation of &a [i] can therefore be moved outside the
inner loop.

72 TDS 34801 October 1992

8 Global optimization examples

8.2.1 Summary of effects:

47

• Improvement to execution time: expressions which were evaluated on
every loop iteration are now only evaluated once.

• Slight increase in code size: extra code has to be inserted to store the result
of an expression in a temporary.

• Increase in workspace size: expressions which were evaluated on every
loop iteration are now evaluated into a temporary variable outside of the
loop.

B.3 Global optimization example

This example is based on the source code used in the previous two sections and
shows what happens when both global subexpression elimination and loop-in­
variant code optimization are applied:

int a [10] [10], i, j;
for (i = 0; i < 10; i++)

{
int *temp1 = &a[i];
for (j = 0; j < 10; j++)

{
int *temp3 = temp1[j];
*temp3 = *temp3 + t;

B.4 Tail-call and tail recursion optimization

The purpose of these optimizations is to make function calls more efficient. When
the last operation performed by a function is to call another function, tail--call opti­
mization may be applied. In C programs a function may in fact, call itself, in which
case the optimization is called tail recursion optimization.

The optimization is achieved by substituting a jump instruction instead of the call
instruction. This optimization cannot be performed at source code level.

When a jump instruction is used, the return from the other function will return the
caller to the caller of the current function, thereby saving one return sequence. The
called function's workspace is also laid on top of the current function's workspace,
thus saving stack size.

72TDS 348 01 October 1992

48 8.4 Tail-eall and tail recursion optimization

8.4.1 Example: (Tail-eall optimization)

Take the following code segment:

void p(int x)
{

...body ofp
q(x+l);

}

Without optimization the code generated for routine 'p' would be:

p:
ajw -3
... body of p
ldl 2 -x
adc 1
ldl 1 -<static_link>
call $q
ajw 3
ret

After tail-eall optimization, the code generated is:

p:
ajw -3
... body of P
ldl 2 ~x

adc 1
stl 2 -x
ajw 3
j $q

Note: that the workspace for routine 'q' is overlaid on the workspace for routine
'p'.

8.4.2 Summary of effects: (Tail-eall optimization)

• Little effect on execution time.

• Workspace requirements are reduced as the called function's workspace
is overlaid on the calling function's workspace.

72 TDS 348 01 October 1992

8 Global optimization examples 49

8.4.3 Example: (Tail-recursion optimization)

void p (int x)
(

...body of p
p(x+l);

)

This code segment when compiled without optimization would cause the following
code to be generated for routine p.

p:
ajw -3
... body of p
Id!.
adc
ldl
call
ajw
ret

2
1
1
$p
3

-x

-<static_link>

After tail-recursion optimization. the code generated is:

p:

.. 3:
ajw -3

... body of P
ldl 2 -x
adc 1
stl 2 -x
j .. 3

Note: that the workspace for the second invocation of cp' is laid on top of the work­
space for the first invocation of cp'. Also note that the second invocation of cp' does
not re-execute the routine entry code (in this example. an Cajw -3' instruction).

8.4.4 Summary of effects: (Tail-recursion optimization)

• Execution time is improved as the called function's entry sequence is
already evaluated. In addition. it may not be necessary to assign the actual
parameters to the formal parameters of the function called.

• Workspace requirements are reduced as the called routine's workspace
is overlaid on the calling routine's workspace.

8.5 Workspace allocation by coloring

This method of workspace allocation can be performed when the lifetimes of two
variables. ca' and Cb' do not overlap. When this is the case ca' and Cb' may be allo-
cated in the same workspace slot.

72TDS 348 01 October 1992

50 8.5 Workspace allocation by coloring

For example, in the following segment of code, variables 'a' and 'b' can be placed
in the same workspace slot because their values are never required at the same
time:

int a, b:
a = funcl(27);
procl(a);
procl(a);
/* 'a' is not used after this point, 'b' is not

used before this point */
b = func2(34);
proc2(b);

When optimization is enabled, the compiler will use this method of workspace
allocation, provided the code is suitable.

If workspace is allocated by coloring, then the compiler calculates a usage count
for each variable, and places the most frequently used variables at lower work-
space positions. '

When the command line option '00' is used Le. when optimization is disabled, all
variables are allocated their own unique workspace slot.

72 TDS 34801 October 1992

Index

Symbols

#pragma, 8
IMS_nosideeffects,8

_asm, use when optimizing, 9

A
ANSIC

compiler, optimizing, 3
language, use when optimizing, 7
trigraphs, 12

B
Branch-ehaining optimization, 42

c
Command line options, optimizing

compiler, 5

Common subexpression elimina­
tion,45

Compiler
diagnostics, terminology, 10
optimizing, 3

command line options, 5
global optimizations, 45
information messages, 7
language considerations, 7
local optimizations, 41
messages, 10
running, 5

const,8

D
Dead code elimination, 42

72TDS 348 01

E
Error messages, optimizing com­

piler,10

F
Flowgraph optimization, 41

G
Global compiler optimizations, 45

H
Host, versions, iii

ice, optimizing compiler, 3
command line options, 5
global optimizations, 45
information messages, 7
language considerations, 7
local optimizations, 41
messages, 10
running, 5

L
Local compiler optimizations, 41
Loop-invariant code, optimization,

46

M
Messages. See Error messages

o
Object code, optimizing, 3

October 1992

52

Optimizing object code
for space, 6, 45
for time, 6, 45
global optimizations, 45
language considerations, 7
local optimizations, 41
using icc, 3

p

Peephole optimization, 41

Performance improvement, using
optimizing compiler, 3

Pragmas, optimizing compiler, 8

R
Redundant store elimination, 43

register, 8

5
Space, optimizing .compilation,; 6

T
Tail recursion optimization, 47

Tail-eall optimization, 47

Time, optimizing compilation, 6

Toolset, documentation, iii
conventions, v

Trigraphs, 12

v
volatile,8

w
Warnings. See Error messages

Workspace, allocation,
optimizing, 49

72 TOS 348 01

Index

October 1992

	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	occam and FORTRAN toolsets
	Documentation conventions

	User Guide
	1 Introduction
	1.1 Overview
	1.1.1 Advantages of using the optimizing ANSI C compiler
	1.1.2 When optimization should not be used

	2 User Interface
	2.1 Command line options
	2.1.1 Disable optimization O0
	2.1.2 Enable local optimization O1
	2.1.3 Enable local and global optimization O2
	2.1.4 Optimize for time QT
	2.1.5 Optimize for space QS
	2.1.6 Enable side effects information messages
	2.1.7 Disable warning messages
	2.1.8 Compiler map files

	2.2 Language considerations
	2.2.1 const keyword
	2.2.2 volatile keyword
	2.2.3 register keyword

	2.3 Pragmas
	2.3.1 No side effects

	2.4 Messages
	2.4.1 Severities
	2.4.2 Standard terms
	abstract declarator

	2.4.3 ANSI trigraphs
	2.4.4 Information messages
	2.4.5 Warning diagnostics
	2.4.6 Recoverable errors
	2.4.7 Serious errors

	Appendices
	A Local optimization examples
	A.1 Peephole optimization
	Example
	A.1.1 Summary of effects

	A.2 Flowgraph optimizations
	A.2.1 Branch-chaining optimization
	A.2.2 Dead code elimination
	A.2.3 Summary of effects of flowgraph optimizations

	A.3 Redundant store elimination
	Example
	A.3.1 Summary of effects

	B Global optimization examples
	B.1 Common subexpression elimination
	Example
	B.1.1 Summary of effects

	B.2 Loop-invariant code optimization
	Example
	B.2.1 Summary of effects

	B.3 Global optimization example
	B.4 Tail-call and tail recursion optimization
	B.4.1 Example: (Tail-call optimization)
	B.4.2 Summary of effects: (Tail-call optimization)
	B.4.3 Example: (Tail-recursion optimization)
	B.4.4 Summary of effects: (Tail-recursion optimization)

	B.5 Workspace allocation by coloring

	Index

