
()

I I

, :: :I

11 ~
~ : .If

D[Jl)riios@

ANSI C Toolset
User Guide

INMOS Limited

~ SGS-11tOMSON
IJa,~,® ~o©oo@rn[brn©iMJ@~O©~
INMOS is a member of the SGS-THOMSON Microelectronics Group

72 TDS 345 01 October 1992

© INMOS Limited 1992. This document may not be copied. in whole or in part. without
prior written consent of INMOS.

e®. ~[]i)mOs ® • IMS and occam are trademarks of INMOS Limited.

INMOS Limited is a member of the SGS-THOMSON Microelectronics Group.

lifi.1~ is a registered trademark of the SGS-THOMSON Microelectronics Group.

The Ccompiler implementation was developed from the Perihelion Software "C" Compiler
and the Codemist Norcroft "c" Compiler.

INMOS Document Number: 72 TDS 345 01

Contents overview

Contents

Preface

Differences from previous issue

Basics

1 Introduction to trans- An introduction to transputers and transputer
pulers programming.

2 Introduction to the An introduction to the ANSI Ctoolset and its fea-
ANSI C toolset tures including a list of the tools provided.

3 Developing programs An overview of the program development cycle
for the transputer using the toolset.

4 Getting started Shows the command sequences to generate C
programs. using simple examples.

5 Parallel processing Describes parallel processing using the toolset.
Describes the concurrency functions and
explains how to use them.

6 Configuring trans- Describes the configuration language and how
puter programs to use it to configure software on transputer net-

works.
7 Loading transputer Describes how to load programs onto trans-

programs puter networks. with brief descriptions of the'
tools used.

8 Debuggmg uansputer Describes how to use the debugger to debug
programs transputer programs in post-mortem and

breakpoint modes.

Advanced techniques

9 Advanced use of the Describes advanced features of the configurer
configurer which can be used. for example. to partition net-

works.

10 Mixed language pro- Describes how to mix C and occam code at
gramming source and configuration levels.

11 EPROM Programming Describes howto use the EPROM support tools
to develop ROM-base programs.

12 Dynamic code loading Describes how to include dynamically loadable
code in your program.

72TDS 34501 October 1992

ii

Appendices

Contents overview

A Transputer instruction List instruction sets for INMOS transputers.
set

B Configuration lan- Defines the syntax of the transputer configura-
guage definition tion language.

C Glossary A glossary of terms.

0 Bibliography Lists literature and documentation for further
reading.

Index

72 TDS 345 01 October 1992

IContents

Contents overview .

Contents iii

Preface xvii

Host versions xvii
About this manual xvii
About the toolset documentation set xviii
Other documents . xix

occam and FORTRAN toolsets . xix
Documentation conventions. xix

Differences from previous release. xxi

Basics.. 1

1 Introduction to transputers 3
1.1 Transputers . 3

1.1.1 Transputer links............................... 3
1.1.2 Process scheduling 4
1.1.3 Real time programming 5
1.1.4 Multitransputer systems. 5

1.2 Programming models 6
1.2.1 Parallel processing model . 6

1.3 Transputer products 6
1.3.1 Toolset products 7

2 Overview of the toolset 9
2.1 Introduction . 9

2.1.1 Toolset features. 9
2.1.2 Transputer targets 10

2.2 ANSI C compiler - ice . 10
2.2.1 Concurrent programming 11
2.2.2 Standard object file format 11
2.2.3 Preprocessor directives . 11
2.2.4 Include files 11
2.2.5 Pragmas . 12
2.2.6 Error modes. 12

iv Contents

2.2.7 Transputer Program Execution. 12
2.3 Runtime library. 13

2.3.1 Reduced library. 13
2.3.2 Header files 14

2.4 Runtime system . 14
2.5 Dynamic code loading. 15
2.6 Low level programming 15

2.6.1 Assembly code support. 15
2.6.2 Compiler predefines 16
2.6.3 Assembly programming. 16

2.7 Configuration system 16
2.7.1 Configuration language. 16
2.7.2 Software routing and multiplexing 17
2.7.3 Code and data placement. 17

2.8 Mixed language programming. 17
2.9 Toolset summary. 18

3 Developing programs for the transputer 21
3.1 Introduction . 21
3.2 Program development using the toolsets 21

3.2.1 Compatibility with previous toolset releases 24
3.3 Compiling. 25
3.4 Tools for building executable code 25

3.4.1 Linker - ilink . 25
3.4.2 Configurer. 26
3.4.3 Code collector - icollecl . 26

3.5 Loading and running programs . 26
3.5.1 Host file server - iserver 26
3.5.2 Skip loader - iskip 26

3.6 Program development and support 27
3.6.1 Network debugger - idebug 27
3.6.2 Memory dumper - idump 28
3.6.3 Librarian - ilibr . 28
3.6.4 Binary lister - ilist 28
3.6.5 Makefile generator - imakef . 28
3.6.6 Memory map tool - imap . 28
3.6.7 T425 simulator- isim 29

3.7 EPROM programming.................................. 29
3.7.1 EPROM programmer - ieprom 29
3.7.2 Memory configurer - iemit . 29

3.8 File types and extensions. 30
File extensions required by imakef 31

3.9 Error reporting 33

Contents v

3.10 Host dependencies 33
Command line syntax 33

3.10.1 Filenames................................... 34
3.10.2 Search path 34
3.10.3 Environment variables 34
3.10.4 Default command line arguments 35

3.11 Linker startup and indirect files 36
3.11.1 ANSI C Toolset 36

cstartup.lnk 37
cstartrd.lnk . 37
cnonconf.lnk 37

3.11.2 occam 2 Toolset 38
3.11.3 Mixed language programs. 38
3.11.4 Other startup files supplied with the ANSI C Toolset 39

3.12 Unsupported options. 39

4 Getting started. .. 41
4.1 Outline procedure 41
4.2 Running the examples 41

4.2.1 Sources. 41
4.2.2 Example command lines 42
4.2.3 Using the simulator. 42

4.3 A simple sequential program 42
4.3.1 Compiling . 42
4.3.2 Linking. 42
4.3.3 Configuring. 43
4.3.4 Collecting . . . 44
4.3.5 Loading and Execution 44
4.3.6 A short cut 44
4.3.7 Separate compilation. 45

5 Parallel processing .. 47

5.1 Introduction . 47
5.2 Abstract model . 47

5.2.1 Processes. 48
5.2.2 Channels. 48
5.2.3 Semaphores. 48

5.3 Parallel processing and transputers . 48
5.3.1 Multitransputer networks 49
5.3.2 Instruction set 49

Process control . 49
Process selection 49
Process timing . 49

5.4 INMOS Concurrent C library 49

vi Contents

5.4.1 Library support 50
5.4.2 New data types . 50
5.4.3 Concurrency functions . 51

5.5 Processes . 51
5.5.1 Unused process pointer. 52
5.5.2 Process initialization. 53
5.5.3 Freeing stack and workspace 54
5.5.4 Process termination 54
5.5.5 Process execution (process.h) 54

Asynchronous processes 55
Synchronous processes 56
Synchronizing between processes 58

5.6 Channel communications (channeLh) 58
5.6.1 Channel initialization 58
5.6.2 Channel output 59
5.6.3 Channel Input 59
5.6.4 Reading from several channels 61

5.7 Semaphores (semaphor.h) 62
5.8 Timers and delays 63

5.8.1 Control of processes by timers. 63
5.9 Other process facilities. 64

6 Configuring transputer programs. 65

6.1 Configuration basics 65
6.1.1 Introduction to configuration 65
6.1.2 Hardware network description 67

Processor links. 67
Defining new processor types 68
Edges....................................... 68
Host edge. 69
The reserved attribute. 69
The router attribute . 69

6.1.3 Software network description 70
Process attributes . 70
Defining new process types 74
Input and output channels. 75
Edge connections . 75

6.1.4 Mapping description . 76
Placement of processes 76
Placement of channels 76
Predefined connection names 78
Assigning code to processes 78
Mapping example .. 79

6.1.5 Types of main program 80

Contents vii

6.1.6 Access to interface parameters 80
6.1.7 Example configuration 81

6.2 Configuration language 85
6.2.1 Introduction. 85
6.2.2 Statements. 85
6.2.3 Comments 85
6.2.4 Identifiers 86

Character set . 86
6.2.5 Types. 86
6.2.6 Constants . 86
6.2.7 Booleans. 87
6.2.8 Expressions and arithmetic . 87
6.2.9 Arrays . 88
6.2.10 Conditional statement 88
6.2.11 Replication. 89
6.2.12 Built-in functions. 90
6.2.13 Network definition . 90

Nodes....................................... 90
Node attributes 90
Defining new node types . 91
Connections . 92
Prohibited connections 92

6.2.14 Configuration language summary 93
Network data types. 93
Numeric data types 93
Language constructs 93
Definitions 94
Operators. 94
Predefinitions . 94
(Node types) 94
(Constants) 94
(Edges) 95
Built-in functions . 95

6.3 Further considerations 96
6.3.1 Runtime library 96
6.3.2 Reliable Channel Communications 97
6.3.3 Terminating configured processes 98
6.3.4 Checking the configuration 98
6.3.5 The effect of icconf on idebug 98

6.4 Configuration examples. 99
6.4.1 Example 1 - single processor configuration 100
6.4.2 Example 2 - Two processes configured on a

two-processor network. 102
6.4.3 Example 3 - using virtual channels 104
6.4.4 Example 4 - Virtual channel routing: 106

viii Contents

7 Loading transputer programs 109
7.1 Introduction .. 109
7.2 Tools for loading. .. 109
7.3 The boot from link loading mechanism 110
7.4 Boards and subnetworks 110

7.4.1 Subsystem wiring. .. 111
7.4.2 Connecting subnetworks .. 111

7.5 Loading programs for debugging 112
7.5.1 Breakpoint debugging 112
7.5.2 Board types. .. 112
7.5.3 Use of the root transputer .. 112
7.5.4 Analyse and Reset. .. 113

7.6 Example skip load. .. 113
7.6.1 Target network. .. 113
7.6.2 Loading the program 114
7.6.3 Clearing the network 114

8 Debugging transputer programs 115
8.1 Introduction .. 115

8.1.1 Post-mortem debugging 115
8.1.2 Interactive debugging. .. 116
8.1.3 Mixed language debugging .. 116
8.1.4 Debugging with isim 116

8.2 Programs that can be debugged. .. 116
8.3 Compiling programs for debugging 117

Minimal debugging information 117
occam channel communication 117
C channel communication. .. 118

8.3.1 Error modes. .. 118
8.4 Debugging configured programs. .. 118

8.4.1 Debugging with configuration level channels. 118
8.4.2 Debugging with the configurer reserved attribute .. 119

8.5 Debugging boot from ROM programs 119
8.6 Post-mortem debugging .. 119

8.6.1 C and FORTRAN programs 120
8.6.2 occam programs. .. 122
8.6.3 Interrupted programs 122
8.6.4 Parity errors .. 122
8.6.5 Debugging the root transputer 123

Skip loading. .. 123
8.7 Interactive debugging 123

8.7.1 Runtime kernel 124
8.7.2 Processors without hardware breakpoint support.. 125

Contents ix

8.7.3 Creating programs for debugging 125
8.7.4 Loading the program 126

Clearing error flags. .. 126
Parity-checked memory .. 126

8.7.5 Running the debugger .. 127
8.7.6 Interactive mode functions and commands. 128

Symbolic functions. 128
Monitor page commands. .. 128

8.7.7 Breakpoints. .. 128
8.8 Program termination. .. 128
8.9 Symbolic facilities 129

Help screen 129
8.9.1 Locating to source code 130
8.9.2 Browsing source code. .. 130
8.9.3 Inspecting source code and variables. 131
8.9.4 Jumping down channels 131
8.9.5 Tracing procedure calls. .. 131
8.9.6 Modifying variables. .. 132
8.9.7 Breakpointing. .. 132
8.9.8 Miscellaneous functions 132

8.10 Monitor page. .. 132
8.10.1 Startup display 133

Process Workspace or Stack. 134
Process Descriptors .. 134
Process pointers .. 135
Practical notes: 135
Registers 135
Error flags 135
Clocks.......... .. . 136
Parity errors .. 136
Memory map... 136

8.10.2 Monitor page commands. .. 137
Examining memory................ 137
Locating processes 137
Specifying processes .. 138
Selecting processes .. 138
Other processors 138
Breakpoint commands. .. 139
Changing to post-mortem debugging. 139

8.11 Locating processes .. 139
8.11.1 Running on the processor. .. 140
8.11.2 Waiting on a run queue 140
8.11.3 Waiting on a timer queue. .. 140
8.11.4 Waiting for communication on a link 140
8.11.5 Waiting for communication on a software virtual link 141

x Contents

8.11.6 Waiting for communication on a channel 141
8.11.7 Interrupted by a high priority process 141
8.11.8 Processes terminated or not started 141
8.11.9 Locating to procedures and functions. 141

8.12 Debugging support library 141
Example 142

8.12.1 Action when the debugger is not available. 143
8.13 Debugging with isim 144

8.13.1 Command interface 144
8.13.2 Using the simulator. .. 144
8.13.3 Program execution monitoring. 144

Breakpoints 144
Single step execution. 145

8.13.4 Core dump file. .. 145
8.14 Hints and further guidance. .. 145

8.14.1 Invalid pointers 145
8.14.2 Examining and disassembling memory 145
8.14.3 Scope rules ~..................... 145
8.14.4 Inspecting soft configuration channels 145
8.14.5 Locating to IF, ALT and CASE in occam 146
8.14.6 Analyzing deadlock 146

8.15 Points to note when using the debugger 149

8.15.1 Abusing hard links 149
8.15.2 Examining an active network (the network is

volatile) .. 149
8.15.3 Using with channel communications 150
8.15.4 Debugging in the presence of software virtual links 150
8.15.5 Selecting events from specific processors. 151
8.15.6 Minimal confidence check...................... 151
8.15.7 INTERRUPT key.............................. 151
8.15.8 Program crashes 152
8.15.9 Undetected program crashes. 152
8.15.10 Debugger hangs when starting program 152
8.15.11 Debugger hangs .. 152
8.15.12 Catching concurrent processes with breakpoints .. 152
8.15.13 Phantom breakpoints .. 153
8.15.14 Breakpoint configuration considerations 153
8.15.15 Determining connectivity and memory sizes 154
8.15.16 Long source code lines........................ 154
8.15.17 Resuming breakpoints on the transputer seterr

instruction .. 154
8.15.18 Arrays as arguments to C functions 154
8.15.19 Backtracing with concurrent C processes 155
8.15.20 Errors generated by the full C library. 155
8.15.21 Errors generated by the reduced C library 155

Contents xi

8.15.22 Shifting by large or negative values 156
8.15.23 C compiler optimizations 156

8.16 C debugging example. .. 157
8.16.1 The example program......................... 157
8.16.2 Compiling and loading the example 162
8.16.3 Setting initial breakpoints 163
8.16.4 Starting the program 164
8.16.5 Entering the debugger .. 164
8.16.6 Inspecting variables 164
8.16.7 Finding addresses of variables. 164
8.16.8 Backtracing. .. 164
8.16.9 Jumping down a channel. .. 165
8.16.10 Inspecting by expression .. 165
8.16.11 Modifying a variable 165
8.16.12 Backtracing to mainO .. 165
8.16.13 Entering #include files 166
8.16.14 Quitting the debugger 166

8.17 occam debugging example 166
8.17.1 ,The example program......................... 166
8.17.2 Compiling the facs program................ 169

Using imakef 170
Using the tools directly .. 170

8.18 Breakpoint debugging .. 170
8.18.1 Loading the program 170
8.18.2 Setting initial breakpoints 171
8.18.3 Starting the program 171
8.18.4 Entering the debugger .. 171
8.18.5 Inspecting variables. .. 171
8.18.6 Backtracing 172
8.18.7 Jumping down a channel .. ~ 172
8.18.8 Modifying a variable 172
8.18.9 Entering #INCLUDE files '.. 172
8.18.10 Resuming the program 172
8.18.11 Clearing a breakpoint .. 173
8.18.12 Quitting the debugger 173

8.19 Post-mortem debugging. .. 173
8.19.1 Running the example program 173
8.19.2 Creating a memory dump file 174
8.19.3 Running the debugger 174

Inspecting variables 174
Inspecting channels 175
Retracing and Backtracing 175
Displaying process queues. 176
Goto process .. 176

Advanced techniques 177

9 Advanced use of the configurer 179
9.1 Code and data placement 179

9.2.4

9.1.4

9.1.1
9.1.2
9.1.3

xii

9.2

Contents

Default memory map. .. 179
Other memory configurations 180
reserved processor attribute 181
Example: 181
location process attribute -........... 182
Example (on a 32-bit processor): 182

9.1.5 order process attribute. .. 183
9.1.6 location versus order attribute 183
Channel communication - configuration techniques 183

9.2.1 Optimizing important application channels. 184
9.2.2 Virtual communications - use of fast memory 185
9.2.3 Control of routing and placement. 185

Introduction to routing and placement attributes. .. 185
Summary of routing and placement attributes 189
Prevention of through-routing via critical processors 190
Use of additional processors for through-routing.. 190
Support for memory-eritical systems 190
Example - optimized filter test program. 192

10 Mixed language programming 197

10.1 Mixed language programs. .. 197

10.1.1 Declaring external routines..................... 198
10.1.2 Translating identifiers .. 198
10.1.3 Parameter passing 199

Parameter compatibility .. 199
Range checking 200
occam timers .. 200

10.1.4 Global static base parameter. 201
Method 1 - dummy GSB parameter. 201
Method 2 - nolink pragma .. 202
Method 3 - using call_without--9sb function 203

10.1.5 Function return values 203
Restrictions on functions that may be called 204

10.1.6 Linking the program 204
Calling occam from C .. 204
Calling C from occam .. 205

10.1.7 Allocating memory for C functions called from other
languages 205
The static area 205
The heap area .. 206
Providing static and heap 206
Deciding whether a static area is required. 206
Calling functions which do not require static or heap 206
Calling functions which do require static or heap.. 207
Example 209

Contents xiii

10.1.8 Restrictions and caveats. .. 212
General .. 212
Rules for importing C code. 212
Rules for importing occam code. 212

10.2 occam interface procedures 214
10.2.1 Interface code 214

Type 1 214
Type 2 214
Type 3 215
Channel arrays 215
Reserved channels. .. 216

10.2.2 Parameters to the C program 216
10.2.3 Stack and heap requirements. 217

Stack overflow detection 217
10.2.4 Type 1 interface definition. .. 218

Procedural interface. .. 218
Parameters to C program 218
Example. .. 219

10.2.5 Type 2 interface definition. .. 219
Procedural interface. .. 219
Parameters to C program 220
Example .. 221

10.2.6 Type 3 interface definition 221
Procedural interface .. 222
Parameters to C program 222
Example .. 223

10.2.7 Building the occam equivalent process. 223

11 EPROM programming 225
11.1 Introduction. .. 225
11.2 Processing configurations 226

11.2.1 Single processor, run from ROM 227
11.2.2 Single processor, run from RAM 227
11.2.3 Multiple process, multiple processor, run from RAM 227
11.2.4 Multiple process, multiple processor, root run from

ROM, rest of network run from RAM 227
11.3 The EPROM tool: ieprom .. 227

11.4 ~~~~~~t~~~:~j~ ~~~ ~.II~.C~~~ ~~ .~r~.~~~ 228

11.5 Summary of EPROM tool steps for different configurations .. 229
11.5.1 Using icconf .. 229
11.5.2 Single processor unconfigured occam program 229
11.5.3 Using occonf 230

12 Dynamic ~ode loading 231
12.1 Introduction. 231

xiv Contents

12.2 Overview. .. 231
12.3 8asic Parenthood 233
12.4 Childhood in INMOS ANSI C .. 237

12.4.1 The IMS_descriptor pragma 238
12.5 Advanced Parenthood 238

12.5.1 static. .. 242
12.5.2 stack. 242
12.5.3 heap. .. 242
12.5.4 inpuUoutput. .. 242

12.6 Childhood in INMOS occam 2 .. 248

Appendices 251

A Transputer instruction set 253
A.1 Prefixing instructions .. 253
A.2 Direct instructions 253
A.3 Operations. .. 254
A.4 Additional instructions for T400, T414, T425 and T8 257
A.5 Additional instructions for IMS T800, T801 and T805 . .. 257

A.5.1 Floating-point instructions 257
A.6 Additional instructions for IMS T225, T400, T425, T800,

T801, T805 259
A.7 Additional instructions for the IMS T225, T400, T425,

T801 and T805 .. 259

B Configuration language syntax 261
8.1 Notation .. 261
8.2 Implementation details 261
8.3 Reserved words. .. 261

8.3.1 Keywords .. 262
8.3.2 Pre-defined attributes 262

Node attributes 262
Processor attributes .. 262
Process attributes .. 263

8.4 Predefinitions. .. 264
8.4.1 Constants .. 264
8.4.2 Types. .. 265
8.4.3 Declarations. .. 265

8.5 Language syntax .. 266
8.5.1 Configuration .. 266
8.5.2 Language features 266
8.5.3 Expressions .. 266

Contents

8.5.4
8.5.5
8.5.6
8.5.7

xv

Replication and conditionals 268
Numeric value declarations. 268
Network declarations 268
Mapping declarations. .. 269

C Glossary 271

D Bibliography 279

0.1 Transputers .. 279
0.2 C programming 279

0.3 occam programming 280

0.4 INMOS technical notes. .. 281

0.5 Development systems. .. 282

0.6 References. .. 282

xvi Contents

Preface

Host versions

The documentation set which accompanies the ANSI C toolset is designed to
cover all host versions of the toolset:

• IMS D7314 - IBM PC compatible running MS-DOS

• IMS 04314 - Sun 4 systems running SunOS.

• IMS D6314 - VAX systems running VMS.

About this manual

This manual is the User Guide to the ANSI C toolset and is divided into two parts:
'Basics' and 'Advanced Techniques' plus appendices. In addition some chapters
are generic to other INMOS toolsets.

Differences from the previous release of the ANSI C toolset are listed immediately
after this preface.

The basic section introduces the transputer and the toolset; provides an overview
of the development cycle and then provides a chapter on each of the following:

• Getting started - a tutorial.

• Parallel programming using a single transputer.

• The configuration process.

• Loading programs onto a transputer network.

• Debugging programs with the toolset debugger idebug.

The advanced section is aimed at the more experienced user and covers the fol
lowing topics:

• Advanced use of the configurer including placing code and data at specific
memory locations and the software virtual through-routing mechanism.

• Mixed language programming.

• Developing programs for EPROM.

• Developing code which may be dynamically loaded.

The appendices provided in the User Guide include a glossary of terms and a bibli
ography.

72 TDS 345 01 October 1992

xviii About the toolset documentation set

About the toolset documentation set

The documentation set comprises the following volumes:

• 72 TDS 345 01 ANS/ C Too/set User Guide (this manual)

• 72 TDS 346 01 ANS/ C Too/set Reference Manual

Provides reference material for each tool in the toolset including command
line options, syntax and error messages. Many of the tools in the toolset
are generic to other INMOS toolset products i.e. the occam and FOR
TRAN toolsets and the documentation reflects this. Examples are given in
c. The appendices provide details of toolset conventions, transputer
types, the assembler, server protocol, ITERM files and bootstrap loaders.

• 72 TDS 34701 ANSI C Language and Libraries Reference Manual

Provides a language reference for the toolset and implementation data. A
list of the library functions provided is followed by detailed information
about each function. Details are also provided about howto modify the run
time startup system, although only the very experienced user should
attempt this.

• 72 TDS 348 01 ANSI C Optimizing Compiler User Guide

Provides reference and user information specific to the ANSI C optimizing
compiler. Examples of the type of optimizations available are provided in
the appendices. This manual should be read in conjunction with the refer
ence chapter for the standard ANSI C compiler, provided in the Tools Ref
erence Manual.

• 72 TDS 354 00 Performance Improvement with the DX314 ANS/ C Toolset

This document provides advice about how to maximize the performance
of the toolset. It brings together information provided in other toolset docu
ments particularly from the Language and Libraries Reference Manual.
Note: details of how to manipulate the software virtual through-routing
mechanism are given in the User Guide.

• 72 TDS 355 00 ANSI C Toolset Handbook

A separately bound reference manual which lists the command line
options for each tool and the library functions. It is provided for quick refer
ence and summarizes information provided in more detail in the Tools Ref
erence Manual and the Language and Libraries Reference Manual.

• 72 TDS 360 00 ANSI C Toolset Master Index

A separately bound master index which covers the User Guide, Toolset
Reference Manual, Language and Libraries Reference Manual, Optimiz
ing Compiler User Guide and the Performance Improvement document.

72 TDS 34501 October 1992

Preface

Other documents

xix

Other documents provided with the toolset product include:

• Delivery manual giving installation data, this document is host specific.

• Release notes, common to all host versions of the toolset.

occam and FORTRAN toolsets

At the time ofwriting the occam and FORTRAN toolset products referred to in this
document set are still under development and specific details relating to them are
subject to change. Users should consult the documentation provided with the cor
responding toolset product for specific information on that product.

Documentation conventions

The following typographical conventions are used in this manual:

Bold type

Teletype

Italic type

Braces {}
Brackets []

Ellipsis ..•

72TD8 345 01

Used to emphasize new or special terminology.
Used to distinguish command line examples, code fragments,
and program listings from normal text.

In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Used to denote optional items in command syntax.
Used in command syntax to denote optional items on the com
mand line.

In general terms, used to denote the continuation ofa series. For
example, in syntax definitions denotes a list of one or more
items.
In command syntax, separates two mutually exclusive alterna
tives.

October 1992

xx

72TDS 34501

Documentation conventions

October 1992

Differences from. .
prevIous Issue

This section provides a brief list of the differences between this and the previous
release of the ANSI C toolset; full details can be found in the relevant section of
the tool5et documentation.

New and changed features:

Host types:

• The host types supported by this toolset are: IBM PC 386, Sun 4 running
SunOS 4.1 or later and VAX under VMS.

• Bootable versions of hosted tools are no longer supplied and as a result
the sources of all tools are can be found in the tools directory. The
i tools and iserver directories found in previous releases, no longer
exist. See the accompanying delivery manual for details of source directo
ries.

Compiler

• A new optimizing C compiler is supplied which generates code for any
32-bit transputer. It does not support 16-bit transputers or debugging
information. See the Optimizing Compiler User Guide for details.

• A compiler command line option is provided for invoking the assembler,
see the appendices of the Toolset Reference Manual.

• A new compiler option Fe directs the compiler to treat plain chars as
signed chars, see the Toolset Reference Manual.

Compiler pragmas

• The following new compiler pragmas are supported:

Pragma Supported by: Description
IMS_nosideeffects Optimizing compiler Marks a function as

side effect free.
IMS_descriptor Both the standard Creates a TCOFF des-

compiler and the opti- criptor for C functions.
mizing compiler.

The pragmas are documented in the Toolset Reference manual and the
Optimizing Compiler User Guide.

Configura~ion

• The configurer supplied with this toolset supports virtual routing by using
software processes. If the user specifies the icconf 'lW' command line

72TDS 345 01 October 1992

xxii Collecting

option then the configuration will be similar to that produced by the pre
vious toolset. See chapter 6 of this manual.

• The virtual routing processes have certain implications for debugging. To
reproduce the results achieved using the previous toolset, use the confi
gurer command line:

icconf -g -nv

instead of:

icconf -g

• The configuration language has been extended to include attributes which
enable the user to specify actual addresses at which code and data is to
be loaded into memory. New attributes have also been added to enable the
configurer to selectively use particular routes though the network. See
chapter 9 of this manual.

Collecting

• The RO and RA collector command line options for specifying boot-from
ROM output no longer need to be specified for configured programs. This
is because configuration options should be used to specify ROM output.
See the Too/sel Reference Manua/.

Debugger - see chapter 8 of this manual.

• The debugger idebug may be used with programs which use software
virtual routing. Anew option has been introduced to display virtual links on
a processor.

• idebug can now debug boot-from-ROM, run in RAM programs.

Memory map

• A new tool imap has been provided which will produce a detailed memory
map for a collected program. Intermediate memory maps may also be pro
duced by the compiler, linker and collector tools. See the Too/sel Refer
ence Manual.

New iserver

• A completely new version of iserver has been supplied with this toolset.
See the Too/sel Reference Manual for details.

Dynamic code loading

• Aset of library functions is provided that enable an application to load and
execute a process that has been separately compiled and linked. The
loaded process is created as an •r8C file. See chapter 12 of this manual.

72 TDS 345 01 October 1992

Differences from previous issue xxiii

Bootstrap loaders

• The sources of the bootstrap loaders are supplied. The sources are fully
commented so that they can be tailored as required. See the appendices
of the Too/set Reference Manual.

Parallel process stacks

• The support for parallel process stacks has been extended in this release
to allow them to exist anywhere in the transputer address space except
nested within an existing parallel process stack.

Libraries

• Startup linker files: New versions of the startup linker files are supplied.
(See chapter 3 of this manual).

Use Link file Entry point
Configured programs using cstartup.lnk C.ENTRYD
full runtime system

Configured programs-using cstartrd.lnk C.ENTRYD.RC
reduced runtime system

Non~nfigured programs cnonconf.lnk C.ENTRY
using full runtime system

Note: that the configured and non-configured cases have been sepa
rated. In future toolsets, the non-configured case may not be supported.

The linker files supplied with the previous issue are maintained in a modi
fied format in the present toolset for compatibility purposes; they will be
omitted in future releases:

Use Link file Entry point
Programs using full runtime startup.lnk C.ENTRY
system
Configured programs using s tartrd. lnk C.ENTRYD.RC
the reduced runtime system

Note: that startup .lnk should only be used for non--eonfigured pro
grams and that the entry point has changed for the reduced linker file.

It is strongly recommended that all applications are configured and that the
new linker files cstartup .lnk and cstartrd.lnk are used for future
development.

In addition the following startup files are supplied which do not specify an
entry point. They can be used whenever the main entry point of a program
is not one of the standard C entry points. For example certain cases of

72 TOS 34501 October 1992

xxiv Libraries

mixed language programming, or when generating code which will be
dynamically loaded.

linker indirect file Comment

clibs.lnk Lists the library files required for the full library.

clibsrd.lnk Lists the library files required for the reduced
library.

• Reducing library entry overhead:

In order to provide flexibility for the user to tailor the runtime system to a
particular application, the source code of the startup routines is provided.
Guidance on how to modify the startup system is given in the ANSI C Lan
guage and Libraries Reference Manual.

• Channels:

The definition of type Channel is changed to provide the optimizer with
better information. If a program restricts its use of channels to the docu

--mented uses of the header files, then the program will continue to work.

• Library functions See the Language and Libraries Reference Manual for
full details.

o The library functions exit and exit terminate have been
modified with respect to when they termmate the server. They now
terminate the server for configured programs. A new function
exit noterminate has been added.
(Note:should startup . Ink be used, in the configured case, then
exi t will not terminate the server. This is compatible with the pre
vious release of the toolset).

o ProcIni t - the pointer to the stack space to be used may now
point anywhere within the transputer address space except into the
stack space of an existing parallel process.

o The functions ProcJoin and ProcJoinList have been added.
Both functions wait for a list of asynchronous processes to termi
nate. The first function takes a list of pointers to process structures
as a parameter; the second function accepts an array of pointers
to process structures.

o The function IMS HOST IBM370 has been added to support the
new host typeIBM-370. -

o ProcRun ProcRunHigh ProcrunLow ProcPar
ProcParList ProcPriPar give a fatal error message if they
detect that an attempt has been made to start a process which is
already running.

72 TOS 345 01 October 1992

Differences from previous issue xxv

o The header files fnload. hand hostlinJc .h have been added
to provide functions to support the dynamic loading of code at run
time.

o New functions have been added to the header file misc .h:

call without gsb,get details of free memory,
get_details_of_free_stack_space~halt:-processor

o The header file bootlinJc .h has been added for the newfunction
get_bootlink_channels.

o The following functions have been added and will be implemented
inline, provided the appropriate hardware support exists and the
appropriate header file is included in the source:

BlockMove BitCnt BitCntSum BitRevNBits
BitRevWord
Move2D Move2DNonZero Move2DZero
CrcByte CrcWord
DirectChanIn DirectChanInChar DirectChanInInt
DirectChanOut DirectChanOutChar DirectChanOutInt

In addition the functions: ProcGetPriority ProcReschedule
ProcTime are implemented inline where possible.

o In addition to the two new CRC inline functions, two further cyclic
redundancy support functions: CrcFromLsb and CrcFromMsb
have been added.

o The functions ChanInChar and ChanOutChar have had the type
of char changed to unsigned char.

o The type definition ofclock t, a parameter to the function clock,
has changed from an unsigned long to an unsigned into
CLOCKS PER SEC is nowsensitive to the priority of the calling pro
cess Le.lt is a-different value depending on whether the priority of
the process is high or low. In addition the two constants
CLOCKS PER SEC HIGH and CLOCKS PER SEC LOW have
been added tothe header file process. h-:-Care should be taken
when using the function clock on 1~bit transputers at high prior
ity.

o The library callc. lib provides four occam procedures for
assisting with mixed language programming. This library is not a
C library but is now supplied with this toolset rather than with the
INMOS occam 2 toolset.

Documentation

• The toolset documentation has been substantially reworked and restruc
tured. What used to constitute the •User Manuaf has now been split into

72 TDS 34501 october 1992

xxvi Features removed:

two volumes: the'Too/set User Guide' and the 'Too/set Reference Manuaf.
The 'Too/set Reference Manua! has been renamed the 'Language and
Ubraries Reference Manua!.

• Many of the chapters in the new 'Too/set User Guide' and the 'Too/set Ref
erence Manua! are generic to several INMOS Toolset products.

Featyres removed:

Tools

• The two file formatting tools icvlink and icvemit have been removed.

Common command line options

• The common command line options 'L', 'XM' and 'xo' to load transputer
hosted versions of the tools have been removed.

Libraries

• All 3L concurrency functions have been removed.

• The functions _memcpy and _strcpy have been removed.

• The feature which allowed the first array of input channels and first array
of output channels (found in the configuration interface description for a C
program) to be accessed from the main function argument list as in and
out is no longer supported.

Compiler pragmas

• The inline string ops parameter to IMS on and IMS off is no
longer supported. - --

r \

72 TDS 345 01 October 1992

Basics

72 TDS 34501 october 1992
"f

2

72 TDS 34501

Basics

October 1992

1 Introduction to
transputers

This chapter introduces transputers and the programming models which may be
adopted when designing programs for the transputer. It describes the main fea
tures of the transputer and transputer systems, and introduces the Communicat
ing Sequential Process (CSP) model of parallel processing.

1.1 Transputers

Transputers are high performance microprocessors that support parallel proces
sing through on-chip hardware and external communication links. They can be
connected one-to-another by their INMOS serial links in application-specific ways
and may be used as building blocks for complex parallel processing networks or
as powerful dedicated microprocessors.

The transputer is a complete microcomputer on a single chip. In addition to hard
ware support for concurrent programming and inter-processor communication it
contains:

• A very fast (single cycle) on-chip memory.

• A programmable memory interface that allows external memory and
memory mapped devices to be added with the minimum of supporting
logic.

• System services for integrating transputer systems.

• Real time clocks

• On the TB series, an integral floating point unit.

Figure 1.1 shows the generalized architecture of the INMOS family of32-bit trans
puters. 1~bit transputers are also available.

1.1.1 Transputer links

Links allow processes running on connected processors to exchange data and
synchronize their activity. Support for link communications is implemented in hard
ware on each transputer chip. Communications down links operate concurrently
with the processing unit and data can be transferred simultaneously on all links.
Most transputers have four links except the IMS M212 and T400 transputers which
have just two links.

72TOS 34501 October 1992

4 1.1 Transputers

Transputer links allow tools such as debugging programs to examine memory
directly, from a remote processor. Links also provide a means of loading programs
onto a network from the host down a single transputer link. Alternatively a network
can be loaded via its links from a ROM on a single transputer.

BootFromROM

Analyse
Reset
Error

System
services

32-bit
Processor

Application specific interface

Figure 1.1 Transputer architecture

1.1.2 Process scheduling

Each transputer has a highly efficient run-time scheduler for time-sharing user
application processes running on the same transputer. Within a single transputer
communication between processes is supported using single words in memory.
Processes waiting for input or output, or waiting for a time-slice, consume no CPU
resources, and process context switching time is often less than one microsecond.

72T08 34501 October 1992

1 Introduction to transputers 5

1.1.3 Real time programming

Features of the transputer provide direct hardware support for real time program
ming. The key features are:

• Direct and efficient implementation of parallel processes in hardware.

• Prioritization of parallel processes.

• Simple implementation of interrupt handling software.

• Easy programming of software timers, allowing dose control of timing and
non-busy polling.

• Placement of variables at specific addresses in memory, for accessing
memory mapped devices.

Direct support for these features can be found in the current range of INMOS lan
guage toolsets, which use a common code format to facilitate code compatibility.

1.1.4 Multitransputer systems

Multitransputer systems can be built very simply using the four high speed links;
only two wires are required to connect two links together. The circuitry to drive the
each link is on the transputer chip.

Transputers may be connected by their INMOS links in many configurations,
depending on the needs of the application. Some possible arrangements of net
works of transputers are illustrated in Figure 1.2.

Linked processors Pipeline

Tree Grid

72 TDS 345 01

Figure 1.2 Transputer networks

October 1992

6 1.2 Programming models

1.2 Programming models

Programs developed for running on a single transputer can be designed using
traditional sequential programming methods or they can be designed to exploit
parallelism.

Parallelism can be designed into a program at two levels by dividing the program
up into a number of independent communicating processes capable of operating
in parallel. Such processes can either be run on asingle transputer or on a network
of transputers. Programs designed for running on a network of transputers must
use the parallel processing model. See section 1.2.1.

Sequential programs can be run on a single transputer connected to a host. Such
programs can exploit the transputer architecture and software support provided
by INMOS toolsets and iq systems products, see section 1.3.

1.2.1 Parallel processing model

The abstract programming model which the transputer supports is the Communi
cating Sequential Process (CSP) model, based on the idea of independent parallel
processes communicating through channels. Channels are one-way, point-to
point communication paths that allow processes to exchange data and synchro
nize their activity. (Furtherdetails can be found in 'Communicating SequentialPro
cesses' - C.A.R. Hoare, published by Prentice Hall International).

Each process is built from any number of parallel processes, so that an entire soft
ware system can be described in the form of a hierarchy of intercommunicating
parallel processes. This model is consistent with many modem software design
methods.

Communication b~tween processes is synchronized. When data is passed
between two processes the output process does not proceed until the input pro
cess is ready and vice versa. Library functions are provided for channel-based
input and output.

Communication between software processes running on the same transputer
takes place through internal channels implemented as words in memory; commu
nication between processes running on connected processors is driven by the link
interfaces and takes place through the transputer links.

1.3 Transputer products

There is a complete family of transputer devices, including: 32-bit and 16-bit pro
cessors; a link switch; and an adaptor from a parallel port to a link.

72 TDS 345 01 October 1992

1 Introduction to transputers 7

A wide range of INMOS iq systems transputer programming boards is available
for a range of hosts. These boards can be used for:

• Developing and debugging transputer software

• Improving system performance (as accelerator boards)

• Loading software onto embedded systems

• Building specific transputer networks

• Specific applications such as SCSI interfacing.

1.3.1 Toolset products

The INMOS compiler toolsets are complete cross-development systems for trans
puters. They allow transputers to be programmed sequentially and in parallel
using high-level languages, making optimum use of the transputer's built-in paral
lel features. The combination of access to parallelism from a high level language
and a set of tools for configuring and loading programs on transputer-based sys
tems forms a powerful development system for all parallel and embedded software
applications.

72TDS 345 01 October 1992

8

72 TDS 34501

1.3 Transputer products

October 1992

2 Overview of the
toolset

This chapter introduces the INMOS ANSI Ctoolset. It briefly describes the features
of the compiler, provides an introduction to the runtime library and gives a sum
mary of the tools included in this toolset.

2.1 Introduction

The ANSI C toolset is a software cross-development system for transputers,
hosted on 386PC/MS-OOS, Sun 41SunOS and VAXNMS systems. It contains a
full ANSI C compiler with concurrency support, a multHanguage linker, a confi
gurer for mapping programs onto transputer networks, a code collector tool for
generating directly loadable files and a combined program loader/host server.

A number of tools are provided to assist with program development: an interactive
and post-mortem debugger, librarian and program build tools, an object code lister,
and EPROM programming tools. Together, the compiler and its supporting tools
form an integrated environment for the development of programs on transputers
and transputer-based hardware.

2.1.1 Toolset features

The ANSI C toolset features:

• An ANSI C compiler with concurrency support

• Standard object file format generated by the compiler and linker tools.

• An extensive Runtime Library providing support for concurrent program-
ming based on the communicating process model

• Modifiable runtime system.

• Dynamic code loading facility.

• Support for assembly programming.

• A generic configuration system which facilitates the mapping of software
to hardware. The system supports:

o Mixed language programming.

72TOS 345 01 october 1992

10 2.2 ANSI C compiler - icc

o Software routing and multiplexing.

o Placement of code and data at specific addresses.

• A comprehensive range of INMOS development tools as listed in table 2.1.

2.1.2 Transputer targets

The ANSI C tcolset supports all transputer types in the current range of INMOS
transputers. These are listed in appendix B in the ANS/ C Toolset Reference
Manual.

2.2 ANSI C compiler - ice

The compiler ice is an ANSI standard C compiler with concurrency extensions to
support parallel programming for transputers and transputer networks. The ANSI
C compiler implementation was developed from the Perihelion Software C Com
piler and the Codemist Norcroft C Compiler written by Ors. Arthur Norman and
Alan Mycroft.

The ANSI C compiler conforms fully with the X3. 159-1989 ANSI standard for the
C programming language. This standard has now been ratified as ISO/IEC
9899:1990 Programming languages - C. The standard specifies the content and
defines the interpretation of programs written in C, establishing standards of reli
ability and maintainability and enhancing portability of programs between sys
tems.

The ANSI standard for C formalizes the original implementation of C as described
in 'The C Programming Language' by Kemighan and Ritchie, and extends it to
include a runtime library, some language extensions already in common usage
and many other improvements designed to standardize the language.

The original implementation of C will be referred to in the rest of this manual as
'K&R C' and ANSI standard Cas 'ANSI C'.

The compiler produces compiled code for specific processor types or transputer
classes (generic groups of transputers). The compiled object file is in a standard
intermediate code format which must be linked, configured and made executable
before the program can be run. The executable file consists of code which can be
directly loaded onto an initialized network.

Advice about how to create libraries compiled for different processor types is pro
vided in the ANS/ C Toolset Reference Manual which accompanies this toolset.
Appendix Bin the ANS/ CToolset Reference Manualdescribes howto compile and
link code targeted at a single processor type or at a range of transputers.

Command line options for the compiler are described in the ANSI C Too/set Refer
ence Manual. Options are provided to control such facilities as the degree of com-

72 TOS 34501 October 1992

2 Overview of the toolset 11

piler checking, the suppression of error displays, the suppression of code genera
tion and the output of assembly data to a file.

2.2.1 Concurrent programming

The abstract model used in ANSI C reflects the Communicating Sequential Pro
cess (CSP) model of parallel programming. The model maps easily onto the trans
puter to provide efficient parallel code.

Concurrency is supported within a C main program using a series of predefined
data types and a comprehensive set of process handling, channel communication
and semaphore manipulation functions.

Software may be broken down into independent linked processes which exchange
data and synchronize their activity via channels. Such processes and channels
may be mapped onto one orseveral transputers and are declared within a configu
ration description.

2.2.2 Standard object file format

The current range of INMOS compilers generate object code in an intermediate
form known as TCOFF (Transputer Common Object File Format), that can be pro
cessed by other tools in the toolset. This standard has been adopted for the devel
opment of transputer toolsets and enables modules written in different languages
to be freely mixed in the same system.

2.2.3 Preprocessor directives

The ANSI C compiler incorporates an ANSI C preprocessor that allows source file
inclusion, conditional and unconditional definitions, and implementation depen
dent pragmas. The following directives are supported:

#include
#elif
'if
'pragma

#else
'undef
'line
'ifndef

define
#endif
'ifdef
'error

Details of compiler pragmas are given in the ANS/ C Too/set Reference Manua/
which accompanies this toolset.

2.2.4 Include files

Include files can contain declarations, definitions or code. Header files for the run
time library are imported using the 'include directive.

The search paths for files imported with the 'include directive are similar to
those for the toolset as a whole (see appendix A of the ANS/ C Too/set Reference

72TDS 345 01 October 1992

12 2.2 ANSI C compiler - ice

Manual) but differ in some important respects. Two forms of syntax can be used
to specify the filename, one of which allows the search path to be extended by
directories specified on the command line. For more details see the ANS/ C Too/set
Reference Manua/.

2.2.5 Pragmas

The Ipragma directive allows some compiler operations to be activated ordeacti
vated in specific sections, of code. Pragmas are defined for setting or overriding
compiler options, particularty those concerned with code checking, for defining the
size of linker code patches, and for allowing code written in other languages to be
called from C.

The pragmas provided with icc are listed below:

!MS on
!MS-linkage
!MS:translate

INS off INS nolink
INS-modpatchsize INS:codepatchsize
IMS:descriptor

Details of pragma syntax and options can be found in the ANS/ C Too/set Refer
ence Manua/.

2.2.6 Error modes

Transputer programs possess an attribute known as the errormode which sets the
runtime behavior of the transputer. icc generates object code in an error mode
called UNIVERSAL,which is compatible with error modes generated by other
INMOS TCOFF-based compilers.

The other two common modes, which may be encountered in mixed language pro
grams are: HALT which halts the transputer when the program generates a run
time error; and STOP, which stops the errant process but allows the rest of the pro
gram to continue. These two error modes are mutually exclusive.

Object modules for a whole program, including those aeated from different lan
guages, must be in compatible error modes. Error modes for a modular program
can be rationalized at link time using the appropriate command line option.

Further information about error modes can be found in the Too/set reference
manual.

2.2.7 Transputer Program Execution

There are two basic types of programs that can be executed on transputers. One
sort can use the full range of runtime library routines and is executed on a trans
puter network operating as a slave to the host system. The other type uses a
reduced subset of the library and can execute on a transputer network without any
support from a host system.

72TDS 345 01 October 1992

2 Overview of the tool.et 13

If a program requires access to a file system, or other host facilities, then it must
operate in the full mode. In order that the host can provide services to the trans
puter network, there is a program called the iserver which executes on the host
during the execution of the program on the transputer network.

Further information about the iserver can be found in the ANSI C Toolset Refer
ence Manual.

2.3 Runtime library

The runtime library is a library of compiled C functions that perform common prcr
gramming operations. The library contains a complete set of ANSI standard func
tions plus functions to support the use of the transputer's real time clocks, commu
nications, parallel programming and some non-ANSI extensions.

The concurrency functions are divided into three functional groups: process man
agement, channel communication and semaphore handling. The non-ANSI
extensions include a set of input/output (ilo) primitives, a set ofshort mathematical
functions, functions for retrieving information about the host system, and debug
ging functions.

Libraries are supplied in two forms. The full library contains the full set of functions;
the reduced library contains all functions except those requiring a~ss to the
server. The appropriate library is selected by the user by specifying the correct
startup file at link time.

Libraries are supplied as object code modules compiled for all transputer types
and classes; the correct code is selected by the linker according to the transputer
target. Versions are also supplied in different error modes.

Each library module contains either a single function or a few related functions, so
that only the minimum code is loaded. The libraries are indexed for quicker refer
ence by the compiler and linker.

2.3.1 Reduced library

The reduced library is available for linking with programs that do not use host sys
tem or file i/o or i/o-dependent functions. Examples of these are:

• Code installed in embedded systems

• Code that interacts only with other network processes and has no direct
communication with the host.

The reduced library omits all the object code associated with communication with
the server, for example, the code that ensures proper close-down of the host
server is not loaded. This reduces the size of the library object code that must be
linked in with the program. This feature is particularly useful in systems where
memory space is limited, such as embedded systems.

72TDS 345 01 october 1992

14 2.4 Runtime system

The reduced library contains all the functions (including concurrency functions)
that are in the full library, but omits those which require the host file server. Channel
routines are still included so that modules can still communicate with each other,
if not with the host. However, common ANSI functions such as printf and
getenv and ilo dependent functions such as host_info are not included,

A few functions from the standard Vo library, not true Vo functions, are available in
the reduced library. These are the functions sprintf, sscanf, and vsprintf,
which are used to format and de-format strings. These three functions are
declared in the header file s tdiored . h.

2.3.2 Header files

Library functions, like all C functions must be declared before use. Declarations
of library functions with associated constants, macros, and definitions are held in
a number of library header files to ensure that function declarations are of the cor
rect form and that supporting macros and constants are included. Header files are
given the suffix . h.

The library header files contain groups of routines collected together according to
common usage. For example, routines that control standard i/o operations are
grouped in the file stdio. h. Most header files also contain definitions ofconstants
and macros that are associated with the functions' use.

Many of the header files and function groupings are defined in the ANSI standard.
The library extensions which support concurrency and other non-ANSI operations
are also grouped for programming convenience; for example, functions for send
ing data down channels are grouped separately from those which manipulate
semaphores.

Some library functions are implemented as macros, and a few are implemented
as both functions and macros. The decision about which to use depends on the
programming style and personal choice.

2.4 Runtime system

In order to provide flexibility for the user to tailor the runtime system to a particular
application, the source code of the startup routines is provided. The source code
is written in C and is fully commented so that it can be changed by the user to
include only the functions that are actually required. Guidance on how to modify
the startup system is given in the ANSI C Language and Libraries Reference
Manual.

Note: this modifiable runtime system only supports programs which have been
configured.

72 TDS 345 01 October 1992

2 Overview of the toolset

2.5 Dynamic code loading

15

A set of library functions is provided that enable an application to load and execute
a process that has been separately compiled and linked. The loaded process is
created as a . rsc file, using the collector. Functions are provided that read the
. rsc file and extract crucial information about the process, such as the size of
static required and the location of the entry point. The application can then allocate
the space required, load the file and call it.

Similar functions are provided to access a . rsc file that has been placed into ROM
or RAM, or is provided down a channel.

By adapting the startup code (supplied in source form), the code loaded can be
tailored to accept any parameters required.

2.6 Low level programming

The compiler supports low level programming in a number of ways by providing:

• a machine code insertion facility;

• a set of functions which can be compiled inline as transputer instructions;

• a direct user interface to the assembler;

• predefined names which can be used to obtain a limited amount of low level
information about compiled code.

2.6.1 Assembly code support

The compiler provides support for inline transputer assembly code in C programs.
Sequences of transputer instructions can be embedded in Ccode using the asm
construct. -

_asm can be useful for implementing low level operations such as controlling
peripheral devices, and for optimizing the performance of critical sections of code.
It is not intended for the wholesale inclusion of large blocks of assembly code and
should not be used for this purpose.

Details of how to use the assembly code insertion facility, with examples illustrating
commonly performed operations, can be found in chapter 5 'Language extensions'
of the 'ANSI C Language and Libraries Reference Manuaf.

In addition a set of functions is provided which enable certain transputer instruc
tions to be compiled inline. The functions include: bit manipulation, block moves,
CRC calculation and channel ilo support. A list of the functions can be found in sec
tion 1.6.1 of the ANSI C Toolset Reference Manual; they are described in full in the
'ANSI C Language and Libraries Reference Manuaf.

72 TDS 345 01 October 1992

16 2.7 Configuration system

2.6.2 Compiler predefines

The two predefined names _lsb and ~rams can be used as variables, within
an aSID construct, to determine the position ofa compiled object file's static data
anda function's parameter block respectively. For further details see the ice
chapter in the ANSI C Toolset Reference Manual.

2.6.3 Assembly programming

Source code written entirely in assembly language can be assembled by ice into
TCOFF. The objed file may then be mixed freely with other objed modules and
processed by the toolset.

The assembly language uses a mixture of transputer instructions and assembly
directives and is described in appendix C ofthe ANSI CToolset Reference Manual.

2.7 Configuration system

Transputers can easily be joined together in networks, each transputer operating
as a computational node and communicating via its links to neighboring nodes.
The simplest possible network is a single transputer, which may be attached to a
host, or may be a stand alone system booted from an attached EPROM.

In order to prepare such a network to execute an application, it is necessary to
define which piece of the application is to be placed on which node of the network.
This process is called configuration and is performed using the configurer tool
icconf. The user provides a description of the hardware network (the 'hardware
network description'), the interconnection of the processes (the 'software network
description') and some information on how the software is to be mapped onto the
hardware. These descriptions are written in the configuration description file.

The configurer reads the configuration description file and checks that the pro
cesses have been compiled for the correct transputer type for the nodes where
they are to be placed. It also checks that the configuration can be realized in prac
tice on the hardware described and creates a binary description of the configura
tion. This is used by the collector tool to produce afile that can initialize the network
and execute the application.

Since there are only four physical links (at most) on a transputer, the hardware can
not be configured to connect each node to more than four others directly. However,
by adding special software processes the effect can be achieved whereby a pro
cess on one node can communicate with other processes on many other nodes
of the network, unconstrained by the physical topology of the network. In fact, they
do not have to be adjacent nodes. The configurer will add these extra processes
automatically, but the user has the ability to control to some degree how this is
done. This technique is known as 'software throug~routing'.

2.7.1 Configuration language

The e-like configuration language may be used to configure modules compiled
by any INMOS TCOFF compilers. This enables modules written in different pro
gramming languages to be combined at configuration time.

72 TOS 345 01 October 1992

2 Overview of the toolset 17

The configuration language allows software and hardware networks to be
described separately and joined by a software-ta-hardware description. The lan
guage is a simple declarative language incorporating a full range of high level
constructs including replicative and conditional statements.

2.7.2 Software routing and multiplexing

The configurer uses software routing and multiplexing software to implement
channel communication over virluallinks. This allows many virtual channels to use
a single physical link between processors and enables processes on non-adja
cent processors to communicate directly.

Future INMOS transputer devices will implement virtual channel communication
directly in hardware. The presence of a software virtual routing configurer in the
current toolset provides some of the functionality of future processors and is
intended to ease the transition to the next generation of transputer products.

2.7.3 Code and data placement

Normally, the configurer will use up the available memory accessible to a proces
sor by allocating the various parts of the application from the lowest address
upwards. However, it is sometimes necessary to specify exactly where a piece of
code or data should reside. The configurer allows the user to state where the code,
stack, heap and/or static of a C program must be placed in memory.

The transputer has some very fast RAM which the application may be required to
use in a special way. The configurer can also be told to avoid this area of memory
so that the user has free access to it.

2.8 Mixed language programming

The use of standard TCOFF format allows compiled modules from different lan
guage sources e.g. C and occam, to be mixed in the same system, with certain
restrictions. This method is described in chapter 10.

Calling modules written in other languages is also possible. C can call occam
using a 'nolink' pragma which directs the occam code to be compiled without a
static base parameter. (Or a dummy static base parameter can be declared in the
occam code). occam can call C by using library routines to set up and terminate
the static and heap areas.

In all mixed language calls, parameters and return values passed must be of the
correct type. Lists of type equivalents between C, and occam are given in chapter
10.

Where character sets differ between languages, 'translate' pragmas can be used
to create acceptable aliases in the calling code.

72TDS 345 01 October 1992

18 2.9 Toolsel summary

The compiled modules are then linked and configured in the normal way.

Mixed language programs can be constructed easily using the configuration sys
tem. Individual linked units written in different languages can be placed on any
transputer in the network; to the configurer all linked units are the same and can
be mixed in any combination. The method can also be used for mixing code on the
same, or a stand-alone, processor; in this case the processor is simply treated as
a single-node network and configured in just the same way.

2.9 Toolset summary

The components of the toolset are summarized in Table 2.1. The individual tools
are introduced in chapter 3 which describes the main stages of program develop
ment.

72TDS 34501 October 1992

2 Overview of the toolset 19

Tool Description

ice The ANSI C compiler. A full ANSI standard compiler with concur-
rency support. Generates object code for specific transputer tar-
gets.

icconf The toolset configurer. Enables the user to define which pro-
cesses (or main programs) are to be placed on which transputers
in a network of transputers. It checks the connections between
the processes and adds extra system support processes where
necessary.

icollect The toolset code collector. Collects linked units into a single file
for loading on a transputer network. Takes as input a configura-
tion data file or a single linked unit.

idebug The toolset network debugger. Supports post-mortem and inter-
active debugging of transputer programs.

idump The memory dumper. An auxiliary tool for use when debugging
programs on the root transputer.

iemit The transputer memory configuration tool. Used for evaluating
and defining memory configurations for later incorporation into
ROM programs.

ieprom The EPROM program formatter tool. Formats transputer boot-
able code for input to ROM programmers.

ilibr The toolset librarian. Builds libraries of compiled code.

ilink The toolset linker. Resolves external references and links sepa-
rately compiled units into a single file.

ilist The binary lister. Disassembles and decodes object code and
displays information in a readable fonn.

imakef The Makefile generator. Generates Makefiles for input to MAKE
programs.

imap The map tool which gives the addresses of functions and vari-
ables used by the program.

iserver The host file server. Loads programs onto transputer hardware
and provides runtime access to host services.

isim The T425 simulator. Simulates program execution on an IMS
T425 transputer and provides debugging functions.

iskip The skip loader tool. Used with iserver to load programs onto
external networks over the root transputer.

Table 2.1 The ANSI C toolset

72TDS 345 01 October 1992

20

72TDS 34501

2.9 Toolset summary

October 1992

3 Developing
programs for the
transputer

This chapter gives an overview of the program development cycle using INMOS
toolsets. It briefly describes the purpose of each tool and outlines howto use them
in developing, configuring, loading and running transputer programs from the host
system. The chapter also provides details of command line defaults, environment
variables and outlines some host dependencies.

3.1 Introduction

This toolset is one of a range of cross-development systems designed and devel
oped by INMOS for transputer applications. Toolsets which are available include
ANSI C, occam and FORTRAN products.

The toolsets have been designed to make program development as simple as pos
sible. Each toolset features a particular language compiler with full library support
and then uses a common set of tools for further development stages. Forexample,
tools are included for: creating libraries, linking code, configuring software to run
on transputer networks, producing the program beotable file and for loading the
application onto hardware. This means that one development methodology can
be used to develop programs using anumberofdifferent programming languages.
Indeed one of the features of the toolsets is that they facilitate mixed language pro
gramming.

The toolset includes support for the following functions:

• building executable code;

• loading and running code;

• debugging programs;

• preparing programs for ROM;

• obtaining information about object files.

3.2 Program development using the toolsets

Programs may be developed on the user's host system before down-loading onto
either a single transputer or a network of transputers to run.

72 TDS 345 01 October 1992

22 3.2 Program development using the toolsets

Executable code is loaded onto a transputer either from ROM or from the host sys
tem via a single transputer link onto the 'roof transputer i.e. the transputer con
nected to the host. Loadable code is propagated to any other transputers in the
network via the interconnecting transputer links.

Creation of executable code for a transputer or transputer network takes several
stages involving the use of specific tools at each stage:

Software design.

The software designer can specify the components of a system in terms
ofcommunicating processes. The overall design can be directly expressed
in the parallel constructs of the language.

Alternatively conventional sequential programs can be developed for run
ning on a single transputer.

2 Write the source.

Source code can be written using any ASCII editor available on the host
system. Code can be divided between any number of source files. Source
code must conform to the syntax required by the particular language com
piler used. For C this is the ANSI standard; occam source code must con
form to the occam 2 language definition and FORTRAN source code to
FORTRAN-77 syntax.

3 Compile the source.

Each source file is compiled using the appropriate language compiler to
produce one or more compiled object files in TCOFF format. Each file must
be compiled for the same transputer type or for a transputer class covering
several compatible types. (More information about transputer types and
classes is given in the appendices of the accompanying Too/set Reference
Manual). Commonly used object code can be combined into libraries using
the librarian ilibr.

4 Link the compiled units.

The compiled object files and libraries are linked together using ilink.
This generates a single file called a linked unit in which all external refer
ences are resolved. The linking operation links in the library modules
required by the program, which are selected by transputer type from the
compiled library code. Object files for input to the linker can be generated
by any TCOFF compatible compiler.

Programs developed for the transputer may comprise one or more linked
units, created from separately compiled code and library modules. Linked
units are assigned to run on a single transputer or a network of transputers
during configuration. A linked unit is the smallest unit of code which may
be placed on a transputer.

72 TDS 345 01 October 1992

3 Developing programs for the transputer 23

5 Configure the program.

Configuration is the process of defining how the application is to be run on
hardware. It is achieved by writing a configuration description, assigning
linked units to specific processors and optionally connecting them by chan
nels. By changing the configuration description it is possible to run a pro
gram on either a single transputer or on different network topologies. The
description is processed by the configurer tool to produce a configuration
data file. Configuration is used for both single and multiprocessor trans
puter programs.

The language used to write the configuration description is determined by
the toolset. The C and FORTRAN toolsets provide a common configurer,
icconf which can be used to configure programs written in C, FOR
TRAN-77 or occam. Using icconf, modules written in different lan
guages can be mixed at configuration level, see chapter 6. The occam
toolset configurer occonf is designed to exploit the parallel programming
model of the language and is specific to the occam toolset.

6 Generate an executable file.

Before a program can be run it must be made 'bootable'. This involves
adding bootstrap information to make the program loadable and is
achieved using the collector tool.

The configuration binary file generated by the configurer is read by the
code collector icollect which generates a single executable file for a
transputer network. The collector can generate either a file which is suit
able for booting onto a transputer network via a transputer link or one for
booting from ROM. The default behavior of the tool is to produce a boot
from-link executable.

Whether a boot-from-ROM executable is generated is determined by
command line options specified to the configurer prior to creating the con
figuration binary file.

7 Load and run the program.

An executable boot-from-link file is loaded and run on the transputer net
work down a host link using iserver. Once loaded the code begins to
execute immediately. The server tool maintains the environment that sup
ports the program's communication with the host.

8 Place in ROM

Executable boot-from-ROM files for embedded systems, are processed
by the ieprom tool to produce an output file which is suitable for blowing
into ROM. Such files may be configured to run from ROM or from RAM.

Programs to be placed in ROM are often developed first as boot-from-link,
until they are error free. They are then prepared for ROM by re-submitting

72 TDS 345 01 October 1992

24 3.2 Program development using the toolsets

them to the configurer and collector, specifying different command line
options, prior to using the eprom tools to format them for ROM.

Program development is supported by additional tools which provide facilities for
debugging, aeating object code Hbraries, automating the program build, and
obtaining information about object files.

Figure 3.1 summarizes the main development stages.

IWrite source I

Figure 3.1 Main development stages

3.2.1 Compatibility with previous toolset releases

For single transputer programs the configuration stage of the development pro
cess can be omitted. Instead bootable code can be generated directly from the
linked unit by specifying a collector command line switch.

This mode of development is not recommended. however. and may not be sup
ported in future toolset releases.

72 TDS 34501 October 1992

3 Developing programs for the transputer

3.3 Compiling

25

INMOS compilers produce compiled code for specific processor types or for a
group of related processors called atransputer class. Each compiler has the same
set of options to select the target transputer; these are listed in the appendices to
the accompanying Toolset Reference Manual. The role of transputer types and
classes in compilation and program development is also described in these appen
dices.

The current range of INMOS compilers generate object code in an intermediate
form known as TCOFF (Transputer Common Object Ale Format). This standard
has been adopted for the development of transputer compilers and enables mod
ules written in different languages to be freely mixed in the same system.

Supplied with each compiler is a set of language specific libraries which provide
runtime support, inpuUoutput operations, mathematical functions etc. Support is
also provided for language extensions, concurrent programming and software
configuration of a network.

The compiler and libraries supplied with this toolset are introduced in chapter 2.
Detailed information about the compiler and libraries can be found respectively in
the Too/set Reference Manual and the Language and libraries manual supplied
with this toolset.

3.4 Tools for building executable code

Three tools are used in sequence to generate the loadable file from compiled
object code:

• ilink - the toolset linker which links separately compiled units

• icconf (orocconf in the occam toolset) - the configurer tool which gen
erates a configuration binary file.

• icollect - the code collectorwhich generates a bootable file for a trans-
puter network from the configuration data file.

The configurerworks on aconfiguration source file written by the programmer. The
output of the configurer is an information file which is processed by the collector
to generate an executable or beotable file. The executable file contains all the
information needed to distribute, load, and run the program on a specific network
of transputers.

3.4.1 Linker - ilink

The toolset linker ilink links separately compiled modules and libraries into a
single code unit, resolving external references and generating a single linked unit.
Unked units are referenced directly from configuration descriptions to map soft
ware onto specific arrangements of transputers.

72TDS 345 01 october 1992

26 3.5 Loading and running programs

Library modules are linked in with the program by the linker startup file (a form of
linker indirect file) which must be specified on the linkercommand line. The correct
startup file must be specified, depending which version of the compiler or runtime
libraries is required, see section 3.11 for further details.

3.4.2 Configurer

The configurer generates configuration information for transputer networks from
a textual configuration description. The tool prepares the application for configur
ing on a specific arrangement of transputers by analyzing the configuration
description and creating a configuration binary file for the code collector tool to
read.

Configuration descriptions are written using the transputer configuration language
appropriate to the configurer used, see above.

3.4.3 Code collector - icollect

The code collector tool icollect takes the binary file generated by the configurer
(which references the linked code) and generates a single file that can be loaded
and run on a transputer network. The collector generates bootstrap and loading
code. The output from the collector contains bootable code modules together with
distribution information that is used by the loading code to place the correct mod
ules on each processor.

The collector may also generate non-bootable output files which may be dynami
cally loaded or loaded onto ROM or RAM.

3.5 Loading and running programs

Boot-from-link code for single transputers and transputer networks is output from
icollect and is loaded onto the transputer hardware using the host file server
tool iserver. The iskip tool can be used in combination with iserver to load
a program onto an external network, skipping the root transputer (the transputer
connected to the host).

Boot-from-ROM code is processed by the eprom programming tools introduced
in section 3.7.

3.5.1 Host file server - iserver

The host file server iserver is a combined host server and program loader tool.
When invoked to load a program it both loads the code onto the transputer hard
ware and provides runtime services on the host for the transputer program such
as i10.

3.5.2 Skip loader - iskip

The skip loader iskip forces a program to be loaded over the root transputer (the
transputer connected to the host). iskip is loaded prior to invoking iserver for

72T08 345 01 October 1992

3 Developing programs for the transputer 27

loading user programs onto a transputer board and prevents the root transputer
being used as part of the configured network. It continues to run as long as the user
program and passes messages between the host and the network.

The tool is useful when debugging programs because it leaves the root transputer
free to run the debugger. This avoids the use of idump to save the program image
and allows the user program to run on a network that would not support the debug
ger e.g. because it has not enough memory.

3.6 Program development and support

Several tools are provided to assist in program development:

• idebug - the interactive network debugger.

• idump - the memory dump tool for use with idebug when debugging
programs on the root transputer.

• ilibr - the librarian which generates libraries of compiled code.

• ilist - the binary lister which decodes and displays object files.

• imakef - the Makefile generator which creates Makefiles for use with
MAKE programs.

• imap - the map tool which generates a memory map of the functions and
variables used by the program.

• isim-the T425 simulator tool which enables programs to be executed in
the absence of transputer hardware.

3.6.1 Network debugger - idebug

The network debugger idebug provides post-mortem and interactive debugging
for transputer programs. It allows stopped programs to be analyzed from their
memory image or from image dump files (post-mortem debugging) and supports
interactive execution of a program using breakpoints (breakpoint debugging).
Breakpoints can be set on source lines or memory addresses, variables can be
inspected and modified, and the program restarted with new values.

idebug provides two debugging environments: a symbolic environment which
allows a program to be debugged from source code; and the Monitorpage environ
ment which allows a program to be debugged at machine level.

The debugger inserts no additional code into the program, but uses parallel pro
cessing to monitor the program and display its state. This guarantees that the code
generated when debugging is disabled will always run in the same way as the final
version of the program.

72 TDS 345 01 october 1992

28 3.6 Program development and support

3.6.2 Memory dumper - idump

The special debugging tool idump is provided to assist with the post-mortem
debugging of programs that run on the root transputer. Since idebug executes
on the root transputer and overwrites the program image, idump must be used to
save the image to a file which is later read by the debugger.

3.6.3 Librarian - ilibr

The librarian ilibr creates libraries of compiled code for use in application pro
grams.

A library is a concatenation of compiled files called modules. The linker only links
in modules that are required.

Code compiled by compatible TCOFF toolsets can be mixed in the same library.

3.6.4 Binary lister - ilist

The binary lister ilist decodes object code files and displays data and informa
tion from them in a readable form. Command line options select the category and
format of data to be displayed.

Examples of the kind of information that can be displayed are symbolic names,
code listing, the modular structure and indexing of libraries and external reference
data.

3.6.5 Makefile generator - imakef

The Makefile generator imakef creates Makefiles for specific program compila
tions. Coupled with a suitable 'make' program it can automate building of execut
able code and greatly assist with code management and version control. Note: a
make program is not supplied.

imakef constructs· a dependency graph for a given object file and generates a
Makefile in standard format. In order to make use of the tool a special set of file
extensions for source and object files must be used throughout program develop
ment. imaltef uses these file extensions to deduce target transputer types and
other options. These extensions are described for imakef in the Toolset Refer
ence Manual.

3.6.6 Memory map tool - imap

The memory map tool imap takes the text output from the toolset compiler, linker
and cOllector and creates a map of the absolute addresses of the static variables
for functions. The memory map is output on the display screen or redirected to a
file as the user wishes.

72TDS 34501 October 1992

3 Developing programs for the transputer 29

3.6.7 1425 simulator - isim

The T425 simulator tool isim simulates the operation of the T425 transputer.
enabling programs to be executed in the absence of transputer hardware.

Run in interactive mode it provides low level debugging features such as the
inspection of variables. registers and queues. disassembly of memory. break
points. and single step execution.

Batch mode operation of the simulator allows programs to be executed without
entering the debugging environment.

3.7 EPROM programming

Two tools assist with the installation of programs into ROM. namely. the EPROM
programmer ieprom and the memory configurer iemit.

3.7.1 EPROM programmer- ieprom

The EPROM programmer ieprom converts ROM-bootable files generated by
icollect into a format suitable for input to ROM programmers. Files can be gen
erated for input to ROM loading programs provided for specific ROMs. or dumped
in straight hexadecimal or binary for input to the users' own ROM loaders.

iemit output can also be interpreted and the appropriate bit pattern included in
the ROM. see below.

3.7.2 Memory configurer- iemit

Some transputers have programmable memory interfaces which may be confi
gured for a particular memory design.

The memory interface configurer iemit allows specific transputer memory con
figurations to be evaluated and can output aconfiguration file for incorporation into
ROM by ieprom. The completed configuration file can be read by ieprom and
interpreted for inclusion in the ROM at the correct address. The transputer can
automatically read this data when it is reset and use it to configure its memory inter
face.

72 TOS 34501 October 1992

30 3.8 File types and extensions

3.8 File types and extensions

The current range of INMOS toolsets use, by default, a standard set of file exten
sions to identify specific files such as source, compiled object, linked units and
bootable files. Certain file extensions are assumed by the tools on input, and oth
ers generated by the tools on output, unless extensions are explicitly given on the
command line. For example the compiler adds the extension • teo to the output
file unless otherwise specified.

The adoption ofa standard system allows file extensions to be omitted on the com
mand line, and permits host file system utilities to be used. The system is designed
to form an integrated whole and reflects the architecture of toolset compilation.

The standard set of file extensions is not mandatory and may be modified accord
ing to personal choice, unless imakef is to be used to build the makefile. imakef
uses a special scheme to identify processor types and error modes, as described
below.

The standard system has the advantage of ready defaults but may not be readily
mapped onto existing development schemes. However, if it is decided to adopt a
personalized scheme then it should be reasonably formal and controlled, which
is especially important across development teams.

Some extensions recognized by the toolset are used for convention only and are
not interpreted by the tools in any special way. For example, the .lib suffix for
library files and the . ine suffix for include files are toolset programming conven
tions.

The main file extensions used in developing transputer programs are listed in
Table 3.1. A full list of all file extensions used by the toolset with descriptions of the
file types is given in the appendices to the accompanying Toolset Reference
Manual.

Figure 3.2 illustrates the program development process in terms of the file exten
sion defaults used by the toolsets. The extensions assumed on input and gener
ated on output are used to represent source and target files. Figure 3.2 highlights
the differences between the different language toolsets and shows how software
can be developed to be loaded onto transputer hardware directly via a transputer
link or held in ROM.

72 TDS 34501 October 1992

3 Developing programs for the transputer 31

Extension Description

.btl Bootable code file. Created by icollect.

.btr
Executable code minus bootstrap information. Used for input to
the EPROM tool. Created by icollect.

. c C source files. Assumed by icc, the ANSI C compiler.

. cfb Configuration data (binary) file. Created by the configurer.

.cfs
Configuration description (source) file, read by the C configurer
icconf.

.f77
FORTRAN source programs. Assumed by if77, the FOR-
TRAN-77 compiler.

. h Header files for use in C source code.

Include files named in 'INCLUDE compiler directives for
.inc occam, or 'include statements in configuration descrip-

tions or in FORTRAN-77 statements.

. lku Linked unit. Created by ilink.

. lbb Library build file. Input to ilibr.

. lib Library object file. Created by ilibr.

. liu Library usage files. Created and used by imakef.

. lnk Linker indirect file. Input to ilink.

. occ occam source files. Assumed by oc. the occam 2 compiler.

.pgm Configuration description (source) file. read by the occam confi-
gurer occonf.

. rsc Dynamically loadable code file. Created by icollect.

. tco Compiled code file. Created by all INMOS TCOFF compilers.

Table 3.1 Toolset main file extensions

File extensions required by imakef

The Makefile generator imakef requires a special set offile extensions to be used
for compiled and linked object files. The extensions define the architecture of tool
set compilation so that imakef can trace file dependencies and create the correct
sequence of build commands. They are also used to deduce the transputer type
and error mode for each unit.

For details of the file extensions that you must use with the imakef tool see the
appendices of the Toolset Reference Manual.

72 TDS 345 01 October 1992

W N • It :I a. i :I (I
) cS
"

:I (I
)w 00 ::!! .- ..

oc
ca

m

r-
--

--
--

--
--

--
--

--
--

--
--

--
,

1
L

o
a

d
o

n
to

n
e

tw
o

rk
I

~
b

e
rv

e
r
I

·G
=

V
I

1
I

L
J

--
--

--
--

--
--

--
--

--
-,

--
--

--
--

--
--

--
--

--
.

L
in

k
,
I

C
o

n
fi

g
u

re

I'
C

an
d

F
O

R
T

R
A

N
,
1

"
-
-

,
,

,
I ...

.
"r

"l ,
I

..,....
'

,
t.

.

Iili
b

r
rG

J
: I ,,

L_
__

__
__

__
__

__
__

__
__

_
~
-
-
-
-
-
-
-

_

F
O

R
T

R
A

N
:

*"-
"

/
.

1
\

.I
nC

'-
/

c: /*"
-"

\
.h

1 &
ic

e
~I ,

oc
ca

m
:

I
*"-

"
1

/
.

1
1

\
.I

nC
1

'-
/

~
o

c
~i

r-
--

--
--

--
--

-,
:

C
o

lle
ct

1
1

..
-
-

1

1 1 , 1 1
~
I

1
.b

tr
1

1
1

L
.

~
_
~

r
-
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
,

1
:

~
h

P
re

p
a

re
fo

r
E

P
R

O
M

1
:

1.
he

x
1

1
•

1
:

1 , ,
-

,
*"

"
,

,
/

1
\

.[
7

7
/

I.
..

..
..

M
ai

n
de

ve
lo

pm
en

t'
'-

-
'p

a
t
h

,
-
-
-
-
-
-
-
-
-
-
-
J
-
~
~
~
~
o
o
s

L
_

r-
--

--
--

--
--

C
o

m
p

ile

o ~ CD 0- "'
C 3 CD a ~ Q
..

CD'T
I

cC
·

£
: co U
)

~

o S
l o c CD ., ~ c.c c.c ~....

...
~ -
i o en ~ 0
1 o ~

3 Developing programs for the transputer 33

3.9 Error reporting

Ifa tool detects an error in its input, it is reported in a standard format. This contains
the name of the tool, a severity level, and some explanatory text explaining why
the error occurred. Errors found in files or the file system may also generate a file
name and line number. Standardization of the format is designed to improve error
reporting and to support automated error handling by host system utilities.

For example:

Serious-ilibr-mymod.txt-bad format: not a TCOFF file

where: mymod. txt is the name of the input file causing the problem.

Note: Messages that are part ofthe normal operation of the tool, for example, diag
nostic messages generated by the compiler, and messages from the debugger
and simulator tools, are not required to conform to the standard and may be dis
played in special formats appropriate to the tool. The formats will become familiar
with use of the tool.

Details ofthe standard format can be found jn the appendices ofthe accompanying
Toolset' Reference Manual.

3.10 Host dependencies

The toolset uses a host to develop code which is then down loaded onto a trans
puter or transputer network.

The toolset can be hosted on one of several different platforms, and the tools are
designed to blend in as far as possible with the operating system. Source and
object code is portable between all systems.

The toolset is available for the following host systems:

• IBM 386 PC (and compatibles) running MS-DOS

• Sun 4 running SunOS

• VAX running VMS.

Differences between the operation of the tools on the various platforms are minor
and reflect the 'flavor' of the particular operating system.

Host system dependencies are as far as possible made invisible to the user. The
few differences are some minor variations in command line syntax, host-specific
library routines, directory names, and environment settings such as search paths
and global variables. Each is described briefly below.

Command line syntax

The major difference between host implementations is the use of the host system
option prefiX. For Unix based toolsets (Sun 4) the prefiX character is the dash I_';

72TDS 345 01 October 1992

34 3.10 Host dependencies

for MS-DOS and VAXNMS based toolsets the prefix character is the forward slash
'I'.

For consistency between implementations, the case of options is not significant.

Other command line syntax conventions are identical in all implementations and
are described in the appendices of the accompanying Toolset R~ference Manual.

3.10.1 Filenames

Filenames, with or without a directory path, conform to the normal host system
conventions except that characters which can be interpreted as directory separa
tors (on any of the supported hosts) must not be used in filenames. This prohibits
the use of the following characters: colon ':', semi-colon ';', forward slash '/',
backslash '\' ('Y' for Japanese systems), square brackets' []', round brackets
, () " angle brackets '<>', exclamation mark'!',or the equals sign '='.

In addition the linker cannot handle filenames which begin with a hash 'I' or with
two dashes '--'. These are used to identify commands and comments within linker
indirect files.

Where the host operating system allows logical names to be used in place of file
names, such as with VMS, the toolset allows logical names to be used, but the
name must be followed by a dot' . '. This prevents the tool from adding an exten
sion, which would generate a host file system error.

3.10.2 Search path

All tools which use or generate filenames use a standard mechanism for locating
files on the host system. The same mechanism is used in all operating system ver
sions of the toolset. Briefly, the search mechanism is based on a list of directories
to be searched in sequence.

If a directory path is specified only this directory is searched. If the file is not found
on the path an error is generated. Relative pathnames are treated as relative to
the current directory, i.e. the directory from which the tool is invoked.

If no directory path is specified the current directory is searched followed by the
directories specified in the ISEARCH environment variable.

Details of how to set up a search path on your system can be found in the Delivery
Manual that accompanies the release.

Full details ofthe mechanism used in file searching can be found in the appendices
of the accompanying Tools Reference Manual.

3.10.3 Environment variables

The toolsets use a number of environment variables on the host system. Use of
these variables is optional but if defined they will influence the behavior of certain

72TDS 34501 October 1992

3 Developing programs for the transputer 35

of the tools on your system. Further information is given in the Tools Reference
Manual.

Variable Meaning
ICONDB Defines the connection database to be used by iserver.
ISESSION Defines the session manager configuration file to be used by

iserver. Defaults to session. cfg if not defined.
I SEARCH The search path; Le. the list of directories that will be

searched if a pathname is not specified. Pathnames must be
terminated by the standard directory separator character for
the system. Used by all tools that read and write files.

ISIMBATCH Used by isim to enable/disable batch mode. Values can be
VERIFYOrNOVERIF~

I TERM The file that defines terminal keyboard and screen control
codes. Used by idebug, isim and iemit.

IBOARDSIZE The size (in bytes) of memory on the transputer board. Used
when loading non-configured programs.

TRANSPUTER Defines the capability (user link name) to be used by the
server. Can be overridden by iserver command line option.

IDEBUGSIZE The size (in bytes) of memory connected to the root trans-
puter. Used by idebug.

toolnameARG Default command line arguments. Applies to certain tools
only. See section 3.10.4.

Table 3.2 Toolset environment variables

The exact commands used to define environment variables depend on the operat
ing system. For example, under MS-DOS they are defined using the set com
mand; on VAX systems running VMS they can be set up either as logical names
or as VMS symbols. Examples of how to set up environment variables can be
found in the Delivery Manual that accompanies the release.

For IBOARDSIZE and IDEBUGSIZE the value can be given in decimal or hexade
cimal fonnat. Hexadecimal numbers must be preceded by 'I' or '$'. Leading and
trailing spaces may not be given.

Note: If IBOARDSIZE is specified incorrectly, for example as a character or string,
the system defaults to a board size of 0 (zero) and the program cannot be run. If
IBOARDSIZE is explicitly set to a very small value a similar error may occur.

3.10.4 Default command line arguments

An environment variable can be defined on the system to specify a default set of
command line arguments for certain tools. The variable name must be defined in
upper case and is constructed from the tool name by appending the letters 'ARG'.
For example, the variable for ilink is ILINKARG.

Tools for which a default command line can be defined, and the variables used to
define them, are listed below.

72TDS 345 01 October 1992

36 3.11 Linker startup and indirect files

Tool Variable
ice ICCARG
if77 IF77ARG
ilink ILINKARG
icconf ICCONFARG
icollect ICOLLECTARG
ilibr ILIBRARG
ilist ILISTARG

Table 3.3 Environment variables for invoking tools

Command line parameters must be specified within each variable using the spe
cific syntax required by each tool.

3.11 Linker startup and indirect files

Linker indirect files are text files containing lists of input files and commands to the
linker.

A number of linker indirect files are supplied with each tooIset. The purpose of
these files is to reference various runtime libraries (or in the case of occam, com
piler libraries) required to link application programs. When specifying the program
modules to be linked, the appropriate linker indirect file must be included on the
linker command line, as described in the reference chapter for ilink. in the
accompanying Toolset Reference Manual.

3.11.1 ANSI C Toolset

For C the linker indirect files are known as 'linkerstartup' files. They reference run
time library files which provide the runtime environment for the program and define
which version of the C runtime initialization code is used by specifying a main entry
point. This is the name of the routine which is called by the transputer bootstrap
code or configuration system code, in order to start the C program executing.

Most C programs will require one of the three linker startUP files listed in table 3.4.
Two files are provided for use with configured programs; one with the full runtime
library and one with the reduced runtime library. The reduced library does not sup
port host I/O. (The runtime library is introduced in section 2.3 and described in
detail in the ANSI C Language and Libraries Reference Manual). It is recom
mended that all programs are configured.

The third file is provided for use with non-configured programs using the full run
time library.

Special linker startup files which do not specify a main entry point are described
in section 3.11.4 below.

72TDS 34501 October 1992

3 Developing programs for the transputer

5tartup file to support:
Configured programs Non-configured

programs
Full runtime library Reduced runtime Full runtime library

library
cstartup.lnk cstartrd.lnk cnonconf .lnk

Table 3.4 C startup files

37

cstartup .lnk

This linker startup file is used to create linked units which use the full C runtime
library and are to be configured using icconf. It also specifies a main entry point
of C •ENTRYD. This is the main entry point of the standard C startup code for confi
gured systems using the full runtime library. c. ENTRYD is the first of a sequence
of routines which are responsible for setting up the full version of the Cruntime sys
tem and eventually calling the main function. The source of this startup code is
supplied with this toolset and is described in section 3 of the ANSI CLanguage and
Libraries Reference Manual.

cstartup .lnk includes clibs .lnk (see 3.11.4). cstartup .lnk should only
be used if the configurer is also used. The effect of using this linker startup file to
create a linked unit which is then passed directly to icollect, without using the
configurer first, is undefined. It should only be used when the C linked unit created
is to have access to host link channels. The startup code assumes that a server
exists and will attempt to communicate with it. Thus the effect of its use in an envi
ronment where there is no access to the server is undefined.

cstartrd.lnk

This linker indirect file is used to create linked units which use the reduced C run
time library and are to be configured using icconf. It also specifies a main entry
point of C •ENTRYD •RC. This is the main entry point of the standard C startup code
for configured systems using the reduced runtime library. C •ENTRYD •RC is the first
of a sequence of routines which are responsible for setting up the reduced version
of the C runtime system and eventually calling the main function. The source of
this startup code is supplied with this toolset and is described in section 3 of the
ANSI C Language and Libraries Reference Manual.

cstartrd.lnk includes clibsrd.lnk (see 3.11.4). cstartrd.lnk should
only be used if the configurer is also used. The effect of using this linker indirect
file to create a linked unitwhich is then passed directly to icollect, without using
the configurerfirst, is undefined. It should be used in situations where the Clinked
unit created has or requires no access to the server. No host link channels are
defined.

cnonconf.lnk

This linker indirect file is used to create linked units which use the full C runtime
library and are suitable for passing directly to icollect thereby omitting the con-

72TDS 34501 October 1992

38 3.11 Linker startup and indirect files

figuration stage. Note: this method of program development is only applicable to
single processor programs and is not recommended for any new program devel
opment as it may be unsupported in future toolsets.

cnonconf .lnk specifies a main entry point ofC . ENTRY. This is a special version
of the C startup code which can derive for itself information which is normally sup
plied by the configurer (as such it is less efficient than the equivalent version of the
startup code for configured systems and so use of the configurer is recom
mended).

C ~ ENTRY is the first of a sequence of routines which are responsible for setting up
th~ full version of the C runtime system and eventually calling the main function.
cnonconf .lnk includes clibs . Ink (see 3.11.4). cnonconf . Ink should only
be used if the configuration stage is to be omitted. The effect of using this linker
indirect file to create a linked unit which is subsequently passed to the configurer
is undefined. It should only be used when the C linked unit created is to have
access to host link channels. The startup code assumes that a server exists and
will attempt to communicate with it. Thus the effect of its use in an environment
where there is no access to the server is undefined. Indeed, omission of the config
uration stage is only possible if the full library is used, therefore there is no equiva
lent reduced version of this linker indirect file.

3.11.2 occam 2 Toolset

For occam. one of three linker indirect files should be selected according to- the
target transputer type(s) used, see table 3.5.

Linker indirect file Target transputers
occam2.lnk T2121T2221T225/M212
occama.lnk T400IT414IT425IT426IT~B

occam8.lnk T800IT801IT805

Table 3.5 occam linker indirect files

Each file contains a list of occam library files which may be required to be linked,
but which are additional to those explicitly referenced by the program. These
include compiler libraries and support for interactive debugging. Depending on the
other inputs and options specified on the command line the linkerwill select which
libraries it requires from the supplied indirect file.

3.11.3 Mixed language programs

Mixed language programs require an appropriate linker indirect file for each lan
guage used.

Foroccam, one of the indirect files listed in table 3.5 is always used and when the
main program is written in C, one ofthe files listed in table 3.4 should be used. How-

72 TDS 34501 October 1992

3 Developing programs for the transputer 39

ever, if a non-e program calls in C modules, the standard C startup files are not
suitable because they define a C main entry point which would conflict with the
actual main entry point of the program. In this case one of the linkerfiles described
in section 3.11.4 should be used. These linkerfiles should also be used when incor
porating a C program into an occam program as if it were an occam process.

Further information about mixed language programming is given in chapter 10.

3.11.4 Other startup files supplied with the ANSI C Tool"set

Two additionallinker indirect files are supplied with the ANSI C Toolset:

Linker indirect file Comment

clibs.lnk Lists the library files required for the full library.

clibsrd.lnk Lists the library files required for the reduced library.

Table 3.6 Clinker indirect files referencing libraries only

Unlike the files listed in table 3.4, clibs .lnk and clibsrd . Ink do not specify
a main entry point. They can be used whenever the main entry point of the program
is not one of the standard C entry points, for example certain mixed language pro
grams and when producing code which will be dynamically loaded.

clibs . Ink should only be used when the C linked unit created is to have access
to host link channels. The effect of using in an environment where there is no
access to the server is undefined.

clibsrd . Ink should be used in situations where the C linked unit created has
or requires no access to the server. No host link channels are defined.

3.12 Unsupported options

A number of tools have various command line options beginning with ·z'. These
options are used by INMOS for development purposes and have not been
designed for users. As such they are unsupported and should not be used. INMOS
cannot guarantee the results obtained from such options nor their continued pres-
ence in future toolset releases.

72TDS 345 01 October 1992

40

72TDS 34501

3.12 Unsupported options

October 1992

Getting started
This chapter outlines how to compile, link and prepare a program for execution on
a transputer, using the sample programs in the subdirectory simple of the toolset
examples directory.

4.1 Outline procedure

In order to create an executable program, a number of things must be done:

The source files are compiled with the ANSI C compiler. The compiler
creates from each source file an object file.

2 The object files are linked together along with any libraries required to
create a file known as a linked unit. Each linked unit contains the code and
data necessary to execute as a main program.

3 The linked units are then configured onto a transputer network. In the case
of a single program on a single transputer, there is a short cut available
here. However, it is strongly recommended that development is made by
using the full facilities of the configurer. There are many advantages to this
which will become apparent as the procedures are described.

4 The program can then be loaded and run from the host by using the host
file server, iserver. A bootable program contains everything necessary
for execution on the transputer network and it will start automatically after
it has been loaded.

4.2 Running the examples

In the following examples, the programs are compiled and executed on a single
T425. If you have some other transputer, then you should make the necessary
changes to the command lines and configuration file as indicated.

The examples assume that the environment variable TRANSPUTER has been
defined to specify the name of a User Link to use for accessing the transputer net
work, and that a connection database file exists to define that User Link. See the
delivery manual which accompany this toolset and the iserver documentation
(chapter 13 of the ANSI C Toolset Reference Manual) for more detail.

(Command line options for specifying other transputer types, are listed in appendix
B of the ANSI C Toolset Reference Manual).

4.2.1 Sources

The sources of all the examples are held in the directory examplesI simple.

72 TDS 345 01 October 1992

42 4.3 A simple sequential program

4.2.2 Example command lines

In the examples below, the command lines are written in both the UNIX form with
the option character ,-, ,and in no~NIX form with the option character' /' for
MS-DOS and VAXNMS systems. Choose the one that is applicable to you.

4.2.3 Using the simulator

If there is no transputer available, then you can use the simulator isim to run the
bootable program, provided it is built for a single T425.

4.3 A simple sequential program

The following procedure shows how to build and run a simple "Hello World" pro
gram. The source for this program is in the file hello. e.

4.3.1 Compiling

To compile the program use the command line:

iee hello -t42S

or:

iee hello /t42S

for UNIX systems

for MS-DOS or ·VAXNMS

The compiler assumes an extension of . e if none is given.

If you have a different transputer, then supply the corresponding transputer type
(e.g. t800) instead of t42S. This is necessary for the compiler to generate the cor
rect code for the transputer that will execute it.

The object file that is produced will have the name hello. teo.

4.3.2 Linking

The compiled code must now be linked with the C runtime library. To do this use
the command line:

or:

ilink hello.teo -t42S -f estartup.lnk (UNIX)

ilink hello. teo /t42S If estartup .lnk (MS-DOS and VAXNMS)

The file estartup . lnk is known as a linker indirect file and contains the names
of the library files that must be searched for the functions that the program calls.
The linker will select from the library the correct ones for the transputer target.

72 TDS 34501 October 1992

4 Getting started 43

It is always good practice to specify to the linker what the transputer target is, since
it is possible to produce code that can execute on a range of transputers and the
linker must then be told which the actual target will be.

The linker creates a linked unit in the file hello .lku.

4.3.3 Configuring

In order to configure the program, a description is required of the network it is run
on. The file hello. cfs contains such a description.

You should look at this file and edit it if it does not correspond to the hardware you
actually have.

The file hello. cfs contains the following:

/* (c) Copyright INMOS Ltd 1992. All Rights Reserved. */

/* The configuration uses one processor, connected to the host, */
/* on which is placed a lone main program */

T425 (memory = ~) Single; /* A T425 with at least 1Mb of memory */

connect Single.link[O] to host; /* Connected to the host on link 0 */

/* Describe the program */
/* The interface of a normal C program is that the C file system */
/* needa access to the host file system. The host runs the iserver */
/* and is connected to the transputer network by an edge called */
/* 'host'. */

process (stacksize =4K, /* 4Kb of stack used */
heapsize =50K, /* 50 Kb of heap requested */
interface (input FromHost, output ToHost)
) Simple;

input Bostlnput; /* Define the edge from the host */
output BostOutput; /* Define the edge to the host */

connect Simple.FramHost to Bostlnput; /* connect the process to the */
connect Simple.ToHost to HostOutput; /* software edges */

/* Mapping description */

use "hello.lku" for Simple; /* name of the linked unit to use */
place Simple on Single; /* put the process on the processor */

place Bostlnput on host; /* say that the software edges are */
place BostOutput on host; /* mapped onto the hardware host edge */

In this file. there is one line:

use "hello.lku" for SiDple; /* name of the linked unit to use */

7210534501 October 1992

44 4.3 A simple sequential program

which includes the name of the file containing the linked unit.

In order to configure the application for the network, the configurer is invoked as
follows:

icconf hello.cfs

and it produces a file called hello. cfb which contains all the information about
where the different parts of the program are to be placed.

4.3.4 Collecting

The next stage is to collect all the parts of the program and combine them into a
file which can be loaded onto the transputer for execution. This file is known as a
bootable file. The collector is invoked by:

icollect hello.cfb

The result is a bootable file called hello. btl.

4.3.5 Loading and Execution

In order to load and execute the program, it must be placed in the transputer's
memory and started. This is done automatically by the iserver, a tool which
resides on the host, but loads a file onto a network, and then listens for any
requests the application may make for host services. The server is invoked by the
command line:

iserver -sb hello.btl

iserver Isb hello.btl

The greeting:

Hello World

(UNIX)

(MS-DOS and VAXNMS)

should then be displayed.

If the program has been built for a single T425 transputerthen it may be executed
on the simUlator instead of the transputer. The simulator is invoked by the com
mand line:

isim -bq hello.btl

isim Ibq hello.btl

4.3.6 A short cut

(UNIX)

(MS-DOS and VAXNMS)

When the application is fully debugged, then an alternative method can be used
to create a bootable file from a linked unit. This method can onlY be used if the

72 TDS 345 01 October 1992

4 Getting started 45

application consists of a single process running on a single processor and is to be
booted from a transputer link attached to a host. It is not applicable to stand alone
systems, nor to booting from a ROM. The advanced toolset debugger cannot be
used to debug such a program.

To make use of this facility, a different library is needed. The linker command line
becomes:

ilink hello.tco -t425 -f cnonconf.lnk (UNIX)

ilink hello. tco It425 /f cnonconf .lnk (MS-DOS and VAXNMS)

The configurercan be bypassed and a special option on the collector used to direct
it to build a bootable file from a linked unit.

The command line:

(UNIX)

(MS-DOS and VAXNMS)

icollect hello.lku -t425 -t

icollect hello.lku It425 It

will create the bootable file hello. btl.

This facility is provided for compatibility with previous versions of the toolset, but
it will be discontinued in future releases.

4.3.7 Separate compilation

In practice, programs consist of several modules that must be combined to form
a single program. An example in the directory examples/simple is contained
in the three files mainsep. c, hellosep. c and worldsep. c. These all need to
be compiled, one by one, using the command lines:

(UNIX)

ice mainsep -t425
ice hellosep -t425
ice worldsep -t425

(MS-DOS and VAXNMS)

ice mainsep /t425
ice hellosep It425
ice worldsep It425

The object modules can now be linked together using a single command line:

ilink mainsep.tco hellosep.tco worldsep.tco -t425 -f cstartup.lnk
(UNIX)

ilink mainsep.tco hellosep.tco worldsep.tco It425 If cstartup.lnk
(MS-COS and VAXNMS)

72 TDS 34501 October 1992

46 4.3 A simple sequential program

to create the file mainsep . lku.

An alternative method of linking is demonstrated using a linker indirect file called
mainsep . Ink and the command line:

ilink -t425 -f mainsep.lnk

ilink It425 If mainsep.lnk

to create the same file as before, viz. mainsep .lku.

(UNIX)

(MS-DOS and VAXNMS)

The configuration description file mainsep. efs which references the appropriate
linked unit i.e. mainsep .lku, is now input to the configurer to produce a configu
ration binary file for the collector:

ieeonf mainsep.efs
ieolleet mainsep.efb

and the program bootable is called mainsep .btl and is ready for execution:

iserver -sb hello.btl

iserver Isb hello.btl

to produce the greeting:

Hello World

72 TDS 34501

(UNIX)

(MS-DOS and VAXNMS)

October 1992

5 Parallel processing
5.1 Introduction

Parallel processing is widely accepted as an important way of improving software
performance on any given processor architecture. The transputer supports paral
lel processing directly by incorporating into its design a process scheduler which
is responsible for scheduling parallel tasks, and by providing the means for con
necting processors (transputer links) to create a multi-processor network.

Parallel programming is supported in the INMOS C toolset by extra library func
tions. These functions allow processes to be defined and created, to communicate
with one another via channels and to synchronize using semaphores.

5.2 Abstract model

Parallel processing in transputer based systems is based on the idea of Communi
cating Sequential Processes (CSP) developed by Professor C.A.R. Hoare. (See
'Communicating Sequential Processes' by C.A.R. Hoare, published by Prentice
Hall International).

CSP is an abstract generalized model of concurrency based on the idea of inde
pendently executing processes exchanging data by synchronized communica
tions. The model can be used to describe software applications in an intuitive way
reflecting the parallelism of the real world.

Concurrent processing in INMOS C conforms to the CSP model. Concurrent C
processes are independent, can be nested within each other, and are linked
together by channels. Any C function can be defined as a concurrent process using
a special set of functions provided in the runtime library.

Figure 5.1 illustrates the main elements of the CSP model. Processes can be
nested within one another, and can communicate either unidirectionally (one pro
cess passing data to another) or bi-directionally (two processes exchanging data
and working in a cooperative manner). In real applications processes normally
communicate with at least one other process in the system.

Figure 5.1 Communicating sequential processes

72TDS 34501 October 1992

48 5.3 Parallel processing and lranspulers

5.2.1 Processes

Processes are the main elements of the CSP model. A process desaibes the
behavior of a discrete, separable component of an application; it may consist of
other processes, sequential operations, or any combination of these. Applications
can be broken down into any number ofprocesses, and processes can be mapped
onto a network of transputers.

5.2.2 Channels

Channels facilitate the communication between processes through which
information and data are exchanged. Channels are point-to-point unidirectional
connections, that is; they connect only two processes, and the transfer of data is
one way. Processes which exchange messages and data with each other must do
so via a pair of channels. Channels in real systems are often paired in this way to
enable processes to cooperate in a task.

Channels have two functions. They provide the communication path between
independently executing processes, and serve to synchronize the communication
between the two processes. Processes which send data cannot do so until the
receiving process is ready. Neither process can continue until the communication
is completed. In this way synchronization between the two processes is assured;
no data is passed until both partners in the operation are ready.

5.2.3 Semaphores

Support for semaphores, though not a part of the CSP model, is provided in the
toolset for those who wish to develop parallel programs in the traditional manner.
Semaphores are efficiently implemented within the toolset using channel func
tions, and are therefore SUbject to a slightly greater overhead than if the intrinsic
synchronizing ability of channels were used directly.

5.3 Parallel processing and transputers

The transputer has been designed to support parallel processing and the
construction of multiprocessor environments. The device architecture and instruc
tion set refled the CSP model and make it easy to implement in high level lan
guages. INMOS C takes full advantage of this ability, providing a parallel program
ming environment optimized for the transputer, but retaining all the features of the
standard language.

Each transputer separately supports parallel processing. A scheduling system
built into the hardware of the processor automatically time-shares the CPU
between processes and requires no extra input from the programmer. Processes
can exchange data and synchronize their activity. Communication between pro
cesses is achieved via channels implemented as words in memory.

72 TOS 34501 October 1992

5 Parallel processing 49

5.3.1 Multitransputer networks

Processes can also run on separate transputers and communicate with each other
using channels implemented through transputer links. Each transputer contains
(at most) four INMOS communication links through which processors exchange
data and information. This ability to be cross-connected enables the transputer to
be used as the basic component in the construction of processor networks. Spe
cific arrangements of transputers can be designed for particular software tasks,
and large networks of transputers can be used to build distributed processing
supercomputers.

Compiled program and library modules are linked together to form 'linked units'.
Each linked unit is a C main program and is allocated to a particular transputer to
run, by the configuration. Each transputer may run one or more linked units in par
allel. The parallelism of the program as a whole is expressed by both the parallel
processes within each compiled and linked unit and the fact that different parts of
the program may be running in parallel on different transputers.

Chapter 6 explains how to write programs for a network of transputers and how
to map the linked program units onto processors. While this chapter concentrates
on the facilities available for utilizing several processes within a single Cmain pro
gram on a single processor.

5.3.2 Instruction set

Transputers have been designed to support the ideas of parallel processing and
make them easy to implement in high level languages. There is direct support in
the transputer instruction set for process control and management.

Process control

The transputer provides direct instructions for setting up, starting, pausing, and
terminating parallel processes. Processes run at one of two priorities - high or low;
high priority processes have priority access to the processor and will always be
executed in preference to any low priority process running concurrently on the
same processor.

Process selection

The transputer instruction set includes direct support for selection of the first ready
input from a series of inputs, making polling of data channels unnecessary.

Process timing

The transputer contains high and low priority clocks, which can be used to imple
ment delayed execution of processes. Specific instructions are provided to delay
execution of a process for a specified time period, or until a specified time.

5.4 INMOS Concurrent C library

INMOS C takes full advantage of the advanced concurrency features of the trans
puter and, like the high level transputer language occam, implements the CSP

72TDS 345 01 October 1992

50 5.4 INMOS Concurrent C library

model. Concurrency within a program is supported by library extensions consist
ing of three new data types and a set of library functions and macros. Together
these implement the parallel model. A set of routines for synchronizing processes
using semaphores is also provided.

The channel functions, provided by the library, support communication between
processes running on either a single transputer or on a network of transputers.

5.4.1 Library support

The concurrency functions are accessed in the same way as other C library func
tions by including the appropriate header file in the program. Process, channel,
and semaphore support functions are declared in three separate header files.

The concurrency functions are designed as a base set of functions which can
either be used in their basic form or as building blocks for higher level routines. For
example, a high level package might wish to implement features such as process
multiplexing and complex channel protocols using functions from the basic set.

5.4.2 New data types

Three newdata types complete the concurrency support. Data structures are used
to hold data about processes and semaphores, and a pointer type is used to imple
ment channels.

• Process. A structure type to hold information about a declared process.

• Channel. A data type used to implement channels. In accordance with the
CSP model, channel variables- represent unidirectional communication
links between two processes. Channel is implemented by a pointer to type
volatile const void.

• Semaphore. A structure type that holds information about a semaphore.

Parallel processes are created by linking a function definition to a pre-declared
process structure, and are then initialized, started, and run using routines from the
concurrency library. The header file process. h declares the process data type
and library functions.

Channels between processes are created simply by declaring a variable of type
Channel and initializing it by calling a library function. Channel input and output
functions are then used to pass data. It is the responsibility of the programmer to
ensure that data sent by one process is received by another; separate functions
exist for input and output and the two must be paired for communication between
two processes to take place. The header file channel. h declares the channel
data type and library functions.

Semaphores are declared using either the semaphore initialization function or a
macro that performs a similar action. Semaphores are then acquired and released

72 TDS 345 01 October 1992

5 Parallel processing 51

by calls to two separate functions. Semaphores can be used to synchronize the
activity of low with high priority processes. The header file semaphor . h declares
the semaphore data type and library functions.

5.4.3 Concurrency functions

The concurrency functions implement the following parallel processing opera
tions:

• Process setup, startup, and scheduling

• Select from several ready input channels

• Channel communication

• Semaphores.

The main parallel processing functions are declared in the two header files
process. h and channel. h. Declarations of functions for semaphore handling
can be found in semaphor . h. The following sections describe the process, chan
nel, and semaphore functions.

5.5 Processes

When a program starts, there is a single main process in execution. Other pro
cesses, or threads, can be started on the same processor as the program
executes. These other processes can be considered to execute independently of
the main process, but share the processing capacity of the processor by time slic
ing.

A C function can' be used as the entry point to a process provided that its first
parameter is a process pointer. This will contain the pointer to its own Process
structure. A process can share external data with other processes according to the
usual C scoping ~Ies.

The C function to be used as a parallel process must be defined with a given form
of interface. This interface is made up ofone fixed parameter followed by a number
of non-fixed user defined parameters. The fixed parameter is the first parameter
and is a pointer to a process structure (Process *). The non-fixed parameters
must be of types which are not subject to the default argument promotions (see
section 4.2.3 of the ANSI C Language and Libraries Reference Manual). In addi
tion the C function to be used as a parallel process may not take a variable argu
ment list (Le. an argument list terminated by ...).

For example:

void func(Process *p, int i, double d)
{

/* function body */

72 TDS 345 01 October 1992

52 5.5 Processes

Processes are created by one of the library functions ProcAlloc or Proclnit.
They are started by one of the library functions ProcRun, ProcPar or one of their
variants.

Here is an example ofa simple program that starts a process, waits for the process
to complete and then terminates. The sources for examples used in this chapter
can be found in the examples/simple subdirectory.

/* This proqram starts a process to put out a simple */
/* message to stdout */

'include <stdio.h>
'include <std1ib.h>
'include <process.h>

/* The process is declared as a function */
void hello-proc (Process * p)
{

p = p; /* suppress compiler warning message */
printf ("Bello, world.\n");
return;

int main (void)
{

Process * hello;

/* Set up the new process */
hello = ProcA1loc (hello-proc, 0, 0);
if (hello == NULL)
{

printf (WCould not allocate process.\n");
exit (EXIT_FAILURE);

/* Start it running */
ProcRun (hello);

/* Wait for the process.s to join up again */
ProcJoin (hello, HULL);

/* Clean up all the space it used */
ProcA1locClean (hello);

exit (EXIT_SUCCESS);

5.5.1 Unused process pointer

The compiler generates a warning message indicating an unused process pointer
each time a process pointer is declared as a parameter to a function, unless the
parameter is used in some way. To prevent the message being generated the pro-

72TDS 345 01 October 1992

5 Parallel processing 53

cess pointer can be assigned to itself within the function using a statement of the
form p = p;. Process code which does not assign the pointer in this way will still
compile and run normally but the 'unused variable' message will be generated as
the process is compiled.

Warning: The process pointer passed through to a function is used internally by
the concurrency software and must never be changed. If it is modified in any way
the results are undefined.

5.5.2 Process initialization

Two functions allocate and initialize parallel processes. A third function is provided
to allow parameters to be altered in an existing process. The three functions and
their parameters are listed below:

Function Parameters
Process ProcAlloc (void (*func) () , int size,

int nparam, ...)

int ProcInit (Process *p, void (*func) () ,
int *ws, int wssize,
int nparam, ...)

void ProcParam (Process *p, ...)

ProcAlloc reserves memory space for a process on the heap and initializes the
Process structure using the lower level routine Proclni t. Proclnit can also
be used directly to initialize a process for which the memory space has already
been reserved by the programmer.

ProcAlloc takes a pointer to the function code, allocates a stack frame for the
process, and sets up the function's parameters. The function is the code which will
be executed by the process when it is started. nparam is the number of parame
ters to be passed to the function, excluding the compulsory process pointer.

The stack size is specified in the size parameter. If size is specified as zero a
default stack size of 4K for 32-bit machines and 1K for 16-bit machines is used
instead. If insufficient stack space is allocated for the required number of parame
ters, the stack is extended. ProcAlloc returns a pointer to the process structure
(Process*).

Processes set up using ProcAlloc share the same global data space and there
fore access the same static and external variables. Private data space for a pro
cess must be allocated using auto variables. In addition ProcAlloc uses the
standard functions malloc and free to allocate and de-allocate space from the
heap and as a result all C processes share the same heap space.

All calls to ProcAlloc should be followed by a check for successful allocation,
and the NULL result (allocation unsuccessful) should be handled in an appropriate
way.

72 TOS 345 01 october 1992

54 5.5 Processes

The ancillary function ProcParam allows parameters to be changed in an existing
(previously initialized) process. It must not be called after the process has started
up.

ProcInit takes a pointer to an existing Process structure and a pointer to the
stack space to be used. It then initializes the process structure and workspace for
the function according to its workspace requirement and process parameters.
Note: the pointer to stack space must not point to an area of memory within the
stack space of an existing process, that is parallel process stacks must not nest.
Stack space will usually be allocated using the functions malloc, calloc,
realloc or will be declared as a static array.

ProcInit is the lower level routine used by ProcAlloc. ProcInit returns a
value indicating success or failure. The number of words of parameters indicated
by nparam excludes the compulsory process pointer.

Note: Processes must always be allocated before use. If this is not done the same
memory space may be referenced on behalf of the same process. In this context
allocation can be performed by ProcAlloc or Proclnit.

ProcParam can be used to modify the parameters of an already allocated pro
cess. It returns no result.

Note: Care should be taken when setting up processes and changing parameters
in concurrently executing processes. If ProcAlloc, Proclnit, or ProcParam
are used from two parallel processes to initialize the same process the results may
be unpredictable because there may be contention for the process struct4re.

5.5.3 Freeing stack and workspace

Two functions ProcAllocClean and ProclnitClean are provided to free
stack and workspace after a process has completed. The functions and their
parameters are listed below.

Function Parameters

void ProcAllocClean (Process *p)

void ProcInitClean (Process *p)

Function ProcAllocClean is used for processes initialized using ProcAlloc,
and ProcInitClean for processes initialized using ProcInit.

5.5.4 Process termination

A process terminates by returning from the function started as a process. The func
tion void ProcStop (void) will cause the process to wait indefinitely and
never terminate.

5.5.5 Process execution (process. h)

A process executes a sequence of statements starting at the function which was
associated with it via a ProcAlloc or Proclnit call and continues until it returns

72 TDS 345 01 October 1992

5 Parallel processing 55

from that function or calls the function ProcStop. A process cannot terminate the
whole program; only the main program can do that by means of the exi t function
or one of the INMOS extensions to exit.

Processes can be started asynchronously, or synchronously. Asynchronous initia
tion means that there is no implicitwaiting for the process to terminate and the pro
cess continues independently of the execution of the process which initiated it. It
might even outlast its initiator, although it is not recommended that it should con
tinue executing beyond the termination ofthe main program. When a main function
returns, or an exit function is executed, then the files are automatically closed
and other tidying up operations performed. Processes that have not completed by
this time can continue so long as they do not need access to the file system. The
user is responsible for ensuring that asynchronous processes terminate.

Synchronous processes are started by a library function call and must complete
before the library function will return. Hence, these processes cannot continue
beyond the initiator. Several processes can be started at one time, in which case,
they must all terminate before the initiator can continue. If the initiator continues
then all the processes it initiated are guaranteed to have terminated.

Once a process has been started, either asynchronously or synchronously, it can
not be started again until it has completed its current execution. Any attempt to do
this will result in the following fatal runtime error:

Fatal-e_Library-Attempt to start a process which is already running

Processes cannot be forcibly terminated during their execution; they can only ter
minate themselves.

Asynchronous processes

Asynchronous processes are started by one of the functions:

void ProcRun (Process * p);
void ProcRunBiqh (Process * p);
void ProcRunLow (Process * p);

Any process can start any other process. The given process must have been ini
tialized by either the ProcAlloc or Proclnit functions. ProcRun starts the pro
cess at the same priority as the currently executing process. ProcRunHigh starts
one at high priority and ProcRunLow starts one at low priority.

Another process can wait for the termination ofan asynchronous process by using
one of the the functions:

int ProcJoin (Process * pl, ...);
int ProcJoinList (Process * * plist);

Any process can wait for any other asynchronous process (except the main pro
cess) to complete. The function ProcJoin will not return until all of the given pro
cesses have terminated. After it has returned, any memory dynamically loaded or

72 TDS 345 01 October 1992

56 5.5 Processes

allocated from the heap and used for the processes' stacks can be freed. Also any
other resources that may have been held can be re-used. The list ofprocess point
ers in the parameter list is terminated by a NULL pointer.

ProcJoinList does an equivalent job when presented with a NULL terminated
array of pointers to processes. If the array is empty, the function returns immedi
ately.

Both these functions return zero if successful, and non-zero if the list ofprocesses
was empty.

A simple example of an asynchronous process was given in the previous section.

Synchronous processes

Synchronous processes are started by one of the functions:

void ProcPar (Process * pl, ...);
void ProcParList (Process * * plist);
void ProcPriPar (Process * phigh, Process * plo.);

These each start a number of processes and wait for their termination before
returning to the caller. ProcPar takes a list of process pointers ending in NULL
and starts them all off. There is no guarantee as to the order in which they are
started. All processes are started at the same priority as the caller.

ProcParList takes an array of process pointers, whose final entry is NULL. It
behaves otherwise just like ProcPar.

ProcPriPar starts exactly two processes, one at high and one at low priority. It
returns only after both have terminated. It is only possible to call ProcPriPar from
a low priority process; a runtime error is reported if an attempt is made to ca11 it at
high priority.

Here is a simple example of using two processes to put out messages to stdout
(standard out). The way the example is written does not specify the order in which
the messages are put out. A method of ensuring the order is described in the next
sections.

72TDS 34501 October 1992

5 Parallel processing

/* This program starts two processes, each of which */
/* writes a message. The processes are started twice, */
/* the second time swapping places in the parameter */
/* list of ProcPar. Bowever, the order of the results */
/* to stdout is undefined. */

'include <stdio.h>
'include <stdlib.h>
'include <process.h>

/* The first word */
void hello-proc (Process * p)
{

p = p;
printf ("Bello H);
return;

/* The second word */
void world-proc (Process * p)
{

p = p;
printf ("world\n");
return;

int main (void)
{

Process * hello, * world;

/* Set up the new processes */
hello = ProcAlloc (hello-proc, 0, 0);
world = ProcAlloc (world-proc, 0, 0);
if «hello == BULL) I I (world == BULL»
{

printf ("Could not allocate proce.s(es).\n");
exit (EXIT_F~LURB);

/* Execute them both */
ProcPar (hello, world, NULL);

/* Try executing them in a different order in the list
*/

ProcPar (world, hello, BULL);

/* Clean up all the space it used */
ProcAllocClean (hello);
ProcAllocClean (world);

exit (EXIT_SUCCESS);

57

72TDS 345 01 Odober 1992

58 5.6 Channel communications (channel. h)

Synchronizing between processes

Processes can synchronize their actions with each othereither by means ofsema
phores or channels. Semaphores are the traditional way of coordinating activity
in shared memory environments. Channels are used as a way of communicating
values between two processes, but can also be used to synchronize processes
because neither process can continue until the transfer has taken place.

Note: on transputers, there are special instructions that implement channels very
efficiently, and semaphores are implemented using channels. If coordination is
required between just two processes, then a channel is the fastest way to achieve
this.

5.6 Channel communications (channel. h)

Channels are away of transferring data from one process to another, or to provide
a way of coordinating the actions of processes. If one process needs to wait for
another to reach a particular state, then a channel is a suitable way of ensuring
that.

If one process has exclusive access to a particular resource and acts as a server
for the other processes, then channels can also act as a queuing mechanism for
the server to wait for the next of several possible inputs and handle them in turn.

Any data can be passed down a channel, but the user must ensure that the pro
cesses agree a protocol in order to interpret the data correctly.

Channels only operate in one direction. So if two processes need to talk to one
another, then two channels are needed, one in each direction.

Channels between processors are implemented by transputer links and will be
described in the chapter on configuration. Channels used by processes on the
same transputer are known as 'soft channels'. Links between transputers are also
known as 'hard channels'.

5.6.1 Channel initialization

Channels can be declared like variables ofany other data type, but in order to use
a channel, it must be correctly initialized. This is done automatically for channels
created by the configurer. For channels allocated by a C program this can be done
with either of the following functions:

Channel * ChanAlloc (void);
void Chanlnit (Channel *)

The function ChanAlloc allocates space for a channel from the heap and initial
izes the channel before returning. If the channel has already been allocated
memory, it can be initialized by the function Chanlnit.

72 TOS 34501 October 1992

5 Parallel processing 59

The initial value for a channel is the constant named NotProcessy, which is
defined as a macro in channel. h. This value indicates that no process is waiting
on the channel, either to read from it or to write to it. A channel must be initialized
before any process attempts to read from or write to it. If it is to be passed as a
parameter to two processes, then it should be initialized before it is passed, rather
than letting one of the processes initialize it.

5.6.2 Channel output

To write a value to a channel, the following functions are provided:

void ChanOut (Channel *c, void *cp, int count);
void ChanOutChar (Channel *c, unsigned char ch);
void ChanOutInt (Channel *c, int n);
void DirectChanOut (Channel *c, void *cp, int count);
void DirectChanOutChar (Channel *c, unsigned char ch) ;
void DirectChanOutInt (Channel *c, int n);

The two functions ChanOutChar and ChanOutlnt transfer a char or int
respectively. ChanOut is a general transfer function that sends count bytes of
data from array cp and can be used for any type of data.

When operating on channels that connect processes on the same processor, the
functions with names beginning with 'Direct... ' are equivalent to the correspond
ing ones without: e.g. DirectChanOUt is equivalent to ChanOUt. There are dif
ferences, however, when used on channels that connect processes on different
processors in a network. These differences are described in the chapter on config
uration (chapter 6). The performance of channel functions is discussed in the doc
ument 'Performance improvement with the INMOS Dx314 ANSI C Toolsef.

Each of these functions represents a single communication. The process will not
continue until the transfer is complete.

5.6.3 Channel Input

To read a value from a channel, the following functions are available:

void ChanIn (Channel *c, void *cp, int count) ;
unsigned char ChanInChar (Channel *c);
int ChanlnInt (Channel *c);
void DirectChanIn (Channel *c, void *cp, int count);
unsigned char DirectChanInChar (Channel *c);
int DirectChanInInt (Channel *c);

The two functions ChanlnChar and Chanlnlnt read a char or int respectively
from a channel. Chanln is a general transfer function that reads count bytes into
the array cp and can be used for any type of data.

When operating on channels that connect processes on the same processor
together, the functions with names beginning with 'Direct... ' are equivalent to the

72TDS 345 01 October 1992

60 5.6 Channel communications (channel. h)

corresponding ones without. There are differences, however, when used on chan
nels that connect processes on different processors in a network. These differ
ences are described in chapter 6.

Each of these functions represents a single communication. The process will not
continue until the transfer is complete.

Here is the example from section 5.5.5 with a synchronization channel inserted in
order to ensure that the two message are printed in the same order every time it
is run.

/* Thi. proqram .tart. two processe., e.ch of which */
/* writes • word of a me••age. The fir.t one */
/* synchronises with the ••cond after it printed */
/* its word.*/

'include <stdio.h>
'include <stdlib.h>
'include <process.h>
'include <channel.h>

/* The fir.t word */
void hello-proc (Proce•• * p, Channel * c)
{

p = p;
printf ("Bello H);
ChanOutlnt (c, 1);
return;

/* tell the second part to go */

/* The second word */
void world-proc (Proce•• * p, Channel * c)
{

int k;

p = p;
k = Chanlnlnt (c);
printf ("world\n");
return;

int ..in (void)
{

Process * hello, * world;
Channel * .ync;

/* Set up the cOJlllllunication channel */
sync = ChaDAlloc ();

/* Set up the new proce•••• */
hello =: ProcAlloc (helloJ>roc, 0, 1, sync);
wodd :. ProcAlloc (worldJ>roc, 0, 1, sync);
if ((hello -- ROLL) I I (world" ROLL»
{

72TDS 34501 October 1992

5 Parallel processing

printf ("Could not allocate procee. (ee) . \n") ;
exit (EXIT_r~LURB);

1* Execute th.. both *1
ProcPar (hello, world, IIULL);

1* Try executinCJ th.. iD a different order in *1
1* the liet*1
ProcPar (world, hello, BULL);

1* Clean up all the epace it used *1
ProcAllocClean (hello);
ProcAllocClean (world);

exit (EXIT_SUCCESS);

61

5.6.4 Reading from several channels

There are many cases where a process listens to several channels and wishes to
detect which one has data ready first. This is done using one of the following func
tions that determine which alternative input to read:

int ProcAlt (Channel * cl, ...);
int ProcAltList (Channel * * clist);
int ProcSki~t (Channel * cl, ...);
int ProcSki~tLi8t (Channel * * clist);

These all take parameters that are lists of channel pointers, terminated by a NULL
pointer. ProcAlt and ProcAltList both return an index (starting at zero) of a
channel that is ready to transfer data.

A simple example of a server that converts its input to upper case and returns it
down the corresponding response channel is shown below.

void upserve (Process * p, Channel * ins[] , Channel * outs[])
{

size t i;
char-data;

p = p;
/* Loop forever, this process never terminates */
for (;;)
{

/* wait for an input */
i = ProcAltList (ins);

/ * read and convert data */
data = ChanlnChar (ins[i]);
data = toupper (data) ;

/* output it along corresponding channel */
ChanOUtChar (outs [i], data);

72TDS 34501 october 1992

62 5.7 Semaphores (semaphor. h)

A complete program that uses this is found in the directory examples/simple
under the name of 'upserve . c'.

ProcAlt and ProcAltList will wait until a channel is ready.

The variants ofthe functions ProcSkipAlt and ProcSkipAltList can be used
not only for selecting between alternate channels, but to detect whether any of
them are ready. They return with the value '-I' when none of the channels are
ready; they otherwise act like ProcAlt and ProcAltList respectively.

5.7 Semaphores (semaphor. h)

In C, all processes have access to all external and staticvariables that are in scope.
In order to prevent contention when updating these shared variables, semaphores
can be used. They are used, for example, by the C runtime library to protect access
to the heap and file system.

Semaphores can be defined to allow a given number of processes simultaneous
access to a shared resource. The number is determined when the semaphore is
initialized. When that number of processes have acquired the resource, the next
process to request access to it, will wait until one of those holding it relinquishes
it. Thus semaphores operate as a queuing mechanism, where the order ofacquisi
tion of the resource, is strictly the order of requesting it.

Semaphores can protect a resource only if all processes that wish to use the
resource also use the same semaphore. It cannot protect a resource from a pro
cess that does not use the semaphore and accesses the resource directly.

Typically, semaphores are set up to allow at most one process access to the
resource at any given time.

The semaphores can be used by either high or low priority processes for the same
resource. The priority does not affect the position the process will appear in the
waiting queue if it must wait. The order of access to the semaphore is strictly chro
nological.

Semaphores must first be created and initialized. The following are provided for
this purpose:

Semaphore * SemAlloc (int initvalue);
void SemInit (Semaphore * sem, int initvalue);
SEMAPBOREINIT (int initvalue);

SemAlloc allocates space for a semaphore from the heap and initializes it with
the number of simultaneous accesses it will allow. Semlni t is used when the
semaphore is obtained in some otherway, e.g. declaring it as avariable, but it must
be initialized before it can be used. The macro SEMAPHOREINIT can be used to
initialize a static variable of type Semaphore.

Access to a semaphore is controlled by the functions:

void SemWait (Semaphore *);
void SemSiqnal (Semaphore *);

72TDS 34501 October 1992

5 Parallel processing 63

When a process needs to acquire asemaphore, then SemWai t is used. Ifthe num
ber of processes that can simultaneously use it is exhausted, then the requesting
process will wait until the number drops below the maximum.

When a process has finished using a resource, then it must use SemSignal to
release it for another process. The fir:st waiting process (if any) will then be given
access to the semaphore.

5.8 Timers and delays

The transputer has two on-chip timers, one for low priority and one for high priority
processes. The low priority one runs at a rate of 15625 ticks per second, and the
high priority one at one million ticks per second. The machine instruction to read
a timer reads the timer whose priority is the same as the priority of the executing
process. Thus, high priority processes read the high priority timer; low priority pro
cesses read the low priority timer.

The value of a timer (or clock) can be held in an int, and there are a number of
functions that can manipulate these values:

int ProcTime (void);
int ProcTimePlus (const int tl, const int t2);
int ProcTimeMinus (const int tl, const int t2);
int ProcTimeAfter (const int tl, const int t2);

ProcTime reads the timer for the current priority. ProcTimePlus adds two timer
values together; ProcTimeMinus subtracts the second value from the first.

ProctimeAfter determines whether the first time is after the second time. One
time is considered to be after another if the one is not more than half a full timer
cycle later than the other. Half a full cycle is 231 ticks on a 32-bit transputer or 215

ticks on a 16 bit transputer. The function returns the int value '1' if t1 is after t2,
otherwise it returns zero.

5.8.1 Control of processes by timers

A process can be made to wait for a certain length of time as measured in ticks of
the timer. The functions:

void ProcA£ter (int t);
void ProcWait (int t);

Both functions wait for a period of time and then return; ProcAfter waits until the
given absolute reading of the timer is reached. If the requested time is not after the
present time, then the process does not wait.

ProcWait suspends the current process until the given time has elapsed, Le. it
delays execution for the specified number of timer ticks. If the time given is nega
tive, no delay takes place.

72TDS 345 01 October 1992

64 5.9 Other process facilities

There are also two functions that allowa process to select from a list of input chan
nels with a time-out. If no channel becomes ready within a given time, then the
function returns and the process can continue execution. These functions are:

int; Proc'l'iJDeAlt; (iDt; 'tiae, Channel *cl, ...);
int; Proc'l'iJDeAltLi.t; (iDt; u.., Channel * * clist;);

These functions return on the occurrence of the eartier ofeither an input becoming
ready on any of the channels or the expiry time. The time delay behaves like
ProcWait. The value •-1' is returned if the time expires with no channel becoming
ready.

5.9 Other process facilities

If a process needs to know whether it is running at high or low priority, it can use
the function:

int; ProcGetPriority (void);

which returns zero for high priority and one for low priority.

Sometimes, a process needs to forcibly give up control of the CPU so that another
process can execute, i.e. terminate the current time-slice. The function:

void ProcReschedule (void);

does just that. It provides aclean way ofsuspending execution ofa process in favor
of the next processor on the scheduling list, but without losing priority. The process
which executes ProcReschedule is added to the back of the scheduling list.

72TDS 34501 October 1992

6 Configuring
transputer programs

This chapter examines how to make use of more than one transputer in a single
application. If several transputers are used. it is possible to gain performance from
the fact that the individual processors execute in parallel.

This chapter describes how to configure programs to run on transputer networks;
the chapter is divided into four main sections as follows:

• Configuration basics

• Configuration language

• Further considerations

• Examples

In chapter 9. more advanced configuration techniques are described.

6.1 Configuration basics

This section introduces the concept of configuration and takes the user through
each stage ofconfiguration. ending with an example of the complete process. The
section covers the following topics:

• Introduction to configuration

• Hardware description

• Software description

• Mapping description

• Types of main program

• Access to interface parameters

• Example configuration

6.1.1 Introduction to configuration

Each transputer has up to four hardware links. These links can be connected to
one another to form communications links between transputers. When there are

72TDS 345 01 October 1992

66 6.1 Configuration basics

several such transputers connected in this way, they are known as a network, and
the individual transputers are called nodes of the network.

In order to make use of the network, the application must be divided into several
parts and these parts placed on the nodes of the network. C applications are bro
ken down into a numberofsmaller programs, each having a Cmain function. Each
program is then placed on a specified transputer. Programs communicate via
channels. The software channels, between processors, are implemented on the
hardware links.

To describe how the application is to be spread out among the nodes of the net
work, a language called the configuration language is used. The user must
describe:

• What the nodes of the network are and how they are connected.

• What the software looks like and how its various parts are connected via
channels.

• Which bits of the software are to be placed on which bits of hardware.

In this way, it is possible to control which parts of an application are to placed on
which nodes of the network, thus ensuring that, for example, computationally
expensive parts are on T805s and that device controllers are on T225s.

It is assumed here that a network is initialized by booting the application down one
of the links; the link connected to the host computer. This link is known as the 'OOot
link' and is typically also used for access to the host services by the application.
The connections between the network and the outside world e.g. the host or
peripheral devices are known as edges.

A diagrammatic representation of the configuration process is given in figure 6.1.

Processes

Channels

Mapping Processors

TO

Links

T1

E
D

E

H
o
S
T

Figure 6.1 The configuration model

72 TDS 34501 October 1992

6 Configuring transputer programs 67

6.1.2 Hardware network description

The first part of the configuration description is that for the hardware network. It
defines what nodes are present and how they are connected by means of their
links. A simple example was shown in 'Getting Started' - chapter 4, defining a
single node connected to the host.

Hardware networks consist of nodes of type processor connected by links. The
hardware description contains declarations of processors in the network together
with the connect statements that join them by their links.

Processors have the following user-definable attributes:

type The processor type. INMOS standard Mandatory. Must be
transputer types are predefined. specified before any

links can be used.
memory The amount of memory available to the Mandatory.

processor.
reserved Specifies the size of memory in bytes, which Optional.

cannot be used by the configurer to place
user and system processes.

router This attribute has the following sulrattrib- Optional.
utes: linkquota, routecost and
tolerance. It is used to determine virtual
routing criteria.

Attributes can be specified in the processordeclaration. A typical processordecla
ration could be:

processor(type = "T414", memory = 1N) root;

Processorattributes do not have to be specified in one declaration. Once a proces
sor has been declared, for example as above, further attributes can be added later
on in the hardware description, e.g.

root (reserved = 6K);

The configurerwill fail, however, ifany of the mandatory attributes are omitted from
the configuration description.

The order in which process attributes is dedared is also not significant, except that
the processor type attribute must be defined before the processor links can be
used.

Processors are connected to each other by processor links. The number of links
is defined by the processor type.

Processor links

Links are special attributes of processors that are predefined by the configurer.
Link attributes cannot be modified by the user.

72TDS 345 01 October 1992

68 6.1 Configuration basics

The number of links for each type of processor is predefined within the configurer
via the processor type attribute. The value ofthis attribute is defined for alllNMOS
transputer types listed in the configuration defaults include file setconf. inc
which is read by the configurer at startup. Definition of the type attribute therefore
defines the number of links available to a particular processor. Link numbers begin
at zero.

Links are referenced using the dot notation and can be treated as arrays. For
example, they can be subscripted as though they are arrays:

connect root.link[2] to transputerl.link[O]

and the size () function can be used to determine the number of links on a pro
cessor:

size (root. link)

Links can be connected to the links of other processors and mapped with software
channels. Links may only be connected to one other link (or network edge, see
below). Links can also be left unconnected.

Defining new processor types

Processor types can be defined for later use in a configuration. In the following
example the processor type T800 is first defined using the predefined type pro
cessor and then used to define a further processor type called B405 to be a T800
equipped with a set amount of memory. (The B405 definition corresponds to the
INMOS iq systems IMS 8405 TRAM product.)

define processor(type = "T800") TaOO;
define T800(memory = 8M) B405;

Certain processor types are predefined in the configuration by the automatic inclu
sion of the setconf . inc file at configurer invocation. The file provides definitions
of all transputer types manufactured by INMOS along with some other predefini
lions.

Predefined types can be used as though they are part of the language and do not
need to be referenced by an include statement. The definitions are listed in sec
tion 8.3.2.

.Edges

Edges are hardware network variables which bring transputer links out of the net
work for connection to the outside wor1d, that is, to external devices or 'other net
works. They are directly analogous to channel edges in software networks. Edges
have the same characteristics as processor links. Edges can only be connected
to other transputer links. -

72TDS 345 01 October 1992

6 Configuring transputer programs 69

In the following example an edge is declared which allows a processor in a hard
ware network to input data from an A-to-O convertor:

T414 data_handler;

Arrays of edges can be useful constructions. In the following example an array of
edges is declared for a series of sampling lines and then connected to three links
of a processor which logs the data from each line. The remaining link is used to
boot the processor.

edge samplers[3];

rep i :;= 0 to 2
connect data_Iogger.link[i] to samplers[i];

Host edge

A special edge called hos t is pre--declared in the configurer defaults file and can
be used without declaring it in the configuration. In all configurations that will be
loaded from a host system, there must be one, and only one, processor link con
nected to host.

The reserved attribute

Specifies the size of memory, in bytes to reserve from MOSlNEG 1Nl, which can
not be used by the configurer to place user and system processes. If no reserved
attribute is defined then the region of memory available to the configurer is defined
by the value of the memory attribute minus the LoadStart offset for the processor.

The syntax for the reserved attribute is as follows:

processor(reserved = exp) ;

where: processor is the name of a declared processor or processor type.

exp is an expression.

The syntax of the configuration language is given in appendix B.

The use of the reserved attribute is described in section 9.1.

The router attribute

The router attribute and its sub-attributes linkquota, routecost and tol
erance enable the user to partition a network and weight the use of particular

72 TOS 345 01 October 1992

70 6.1 Configuration basics

virtual routing paths through the network. The attributes are optional and do not
have to be used for virtual routing to be enabled. Their use is described in chapter
9.

6.1.3 Software network description

Typically, the software is described in manner very similar to the hardware. The
processes within an application can be thought of like the nodes of a network, and
the channels that connect them are akin to the hardware links. However, there are
many more possible variations for a given process than there are for transputers.

When preparing an application for a network, each software process is
constructed as though it were a separate program. All the source files for it are
compiled, the object modules are then linked to form a file known as a linked unit.
The linked unit embodies the program in a way that can be used as a process in
a network.

The software network is composed of nodes of the predefined type process con
nected by input and output channels. The software description consists ofa series
of process declarations that define the network's interface with the outside world,
and the connections between them. A separate statement is used to assign linked
modules to the software processes.

A typical process declaration would be as follows:

process (stacksize=2K, heapsize = 16K,
interface(int count, input in» p;

Process attributes

Each process possesses a set of attributes some of which must be given values
in the process declaration; others are optional with built-in defaults. The attributes
of a process are:

72 TDS 34501 October 1992

6 Configuring transputer programs 71

stacksize The size ofstack required for the process in bytes. Mandatory for
C programs

heapsize The size of heap required for the process in bytes. Mandatory for
C programs

interface The list of parameters to the process. Mandatory if
external com-
munications
are required.

priority The execution priority for the process. Priority can Optional
be defined HIGH or LOW. Default is LOW.

order The ordering of program segments in memory. Optional
Segments which can optionally be ordered are:
code, stack, static, heap, vector. The
default for each segment is O.

location The re-location of program segments in memory. Optional
Segments which can optionally be re--located are:
code, stack, static, heap, vector.

nodebug For use with the Advanced Too/set only. Indicates Optional
process is not to be debugged. Takes the value
TRUE or FALSE; the default is FALSE.

noprofile For use with the Advanced Too/set only. Indicates Optional
process is not to be profiled. Takes the value TRUE
or FALSE; the default is FALSE.

Process attributes do not have to be specified in one declaration. Once a process
has been declared e.g.

process (stacksize=2K, heapsize = 16K,
interface(int count, input in» p;

Further attributes can be added later on in the software description, e.g.

p (priority = HIGH);

The configurerwill fail, however, if any of the mandatory attributes are omitted from
the configuration description.

The order in which process attributes is declared is also not significant.

• Program segment sizes

For C programs stacksize and heapsize are mandatory. The sizes of
the code, vector, and static program segments are fixed by the com
piler or linker. For C programs the vector program segment is unused.

• Interface attribute

The interface attribute is mandatory if the process needs to communi
cate with another process or an edge. It defines the way in which the pro-

72TDS 345 01 October 1992

72 6.1 Configuration basics

cess interacts with the outside world and with other processes via a set of
parameters. The parameters can be read by a source program using the
library function get-param.

Parameters to the interface attribute can be input channels, output
channels, simple data types, or arrays of these. Permitted data types for
the parameters are int, char, float, and double. Strings are defined
as arrays of characters and may be initialized by a quoted string constant.

Each input channel can only be connected to an output channel on another
process. The rules for connecting channels to software network edges are
desaibed below under the heading 'Edge connections'.

Values can be defined for interface parameters either by assigning a value
in the process declaration or by a separate statement. For example:

process (interface (int count = 10,
input command,
output result» task;

/* count defined at declaration as 10 */

task (count = 100);

/* count redefined as 100; this value for count
remains in force until redefined again */

Values given to parameters may also be derived from a replicator count
using an expression including the index variable.

• Array parameters

When assigning parameters which are numeric arrays it is not possible to
assign individual elements of the array but only the complete array. For
example:

x(y = {0,1,2,3})

• get"param function

A special library function get""param is provided to receive the process
interface parameters within the C program. The function returns pointers
to the parameters and is used to retrieve them from the configuration code.

Details of the function's operation can be found under the function descrip
tion in the ANSI C Language and Libraries Reference Manual.

72 TDS 34501 October 1992

6 Configuring transputer programs

• Host server channels

73

For C programs which use the host file server, the first parameter must be
an input channel and the second parameter must be an output channel.
These two channels are used by the full C library to contact the host server.
They can be obtained by use of the get""param function call , but it is rec
ommended that you do not do so. The function server transaction
is provided if you wish to contact the server directly. -

• Execution priority attribute

Initial runtime priority for the process can be set high or low by specifying
priority =HIGH or priority =LOW. The default is LOW priority.

• Segment ordering attribute

The order in which the program segments are automatically placed in
transputer memory can be changed by specifying an ordering priority for
each or any of the segments. The default is no segment ordering.

The syntax for the order attribute is as follows:

process (order ({segment = value} »;

where: process is the name of a declared process or process type.

segment is one of: code stack vector static heap

value is the ordering priority and can take any integer value, the
default is '0'. Positive values indicate placement higher in memory
and imply lower speed access; negative values indicate lower
memory placement and imply higher speed access. The lower the
placement, the greater the chance that code or data will be placed
in on-chip RAM, which has the fastest access.

If no order is specified a default segment ordering is applied, see section
9.1.1. Further details about ordering can be found in chapter 9.

Example:

p (order (code =-1000»;

In this example the order attribute will override the default segment order
ing and cause the user's code segment to be placed lower in memory than
the stack segment. (Provided no further segment ordering overrides this
statement).

• Segment re-location attribute

The location attribute enables the userto specify astart address for indi
vidual program segments. All program segments not specifically

72TDS 345 01 October 1992

74 6.1 Configuration basics

addressed using the location attribute will be automatically placed by
the configurer.

The syntax for the location attribute is as follows:

process (location ({segment = address} »;

where: process is the name of a dedared process or process type.

segment is one of: code stack vector static heap

address is expressed as an integer value.

Code and data re-location is described in section 9.1.

• Support for the Advanced Toolset

Two attributes are included for use with the Advanced Too/set product only.
They are the nodebug and noprofile attributes. If set equal to TRUE for
a process, the advanced debugging and profiling tools supplied with the
Advanced Too/set will ignore that process. The attributes have no affect on
the functioning of idebug or any other tool supplied as part of the current
tooIset.

Defining new process types

Specific process types can be defined and used later in the program with different
actual parameters. For example, the following code defines a process type fil
ter which is later used to declare three filter processes with different values for
the cutoff parameter.

The processes are configured to form a pipeline starting and finishing at the host.
The connection statements linking interface channel variables to host channel
edges are shown for completeness. The host channel edges are assumed to have
been defined earlier in the program.

define process (stacksize = 2K, heapsize = 16K,
interface (input in, output out,

int cutoff» filter;

filter x, y, z;

x(cutoff = 10);
y(cutoff = 20);
z(cutoff = 10);

connect x.in to from_host;
connect y.in to x.out;
connect z.in to y.out;
connect z.out to to_host;

72 TDS 345 01 October 1992

6 Configuring transputer programs 75

Attributes can also be activated for specific instances of a type by specifying them
within the declaration. In the following example the priority is defined for a single
instance of the worker type; no other instances are affected and all other attrib
utes are unchanged:

worker (priority = HIGH) ant;

Extra attributes can also be supplied in process definitions or in attribute assign
ment statements. For example:

define worker (heapsize = 20K) small_worker;
small_worker drone;

worker bee;
bee (heapsize = 200K);

Input and output channels

Processes which cooperate with each other and exchange data are connected by
channels of types input or output. These channels are equivalent to channels
in source code programs.

To send or receive data processes must declare input and output channels. The
sending process must declare an output channel and the receiving process an
input channel. The configurer will automatically route channel communication
between processors provided input/output channels have been declared and con
nected correctly. It is also possible to specifically place channels on links by the
place statement.

In the following example a host monitor process hostyrocess sends data via
the output channel out to the application process P, which receives it on the input
channel in.

process (stacksize = 2K, heapsize = 16K,
interface (int count, input in» p;

process(stacksize = 2k, heapsize = 16K,
interface (output out» host-process;

connect p.in to host-process.out;

Further information about the use of channels is given in section 6.1.4.

Edge connections

The software network can be connected to the outside world by channel edges.
Channel edges are input and output channels dedared within the software
description and connected to input and output channels of a process. A process '

72TDS 345 01 October 1992

76 6.1 Configuration basics

can then import or export data from the software network. Edges are commonly
used for interfacing ilo processes to the host server.

Unlike channels between processes, connections between edges and process
channels must be of the same polarity, that is, an input edge must be connected
to an input channel and an output edge to an output channel. This preserves the
direction of the channel parameter. For example, the following code creates an
interface between p and the host server:

process (stacksize = 2K, heapsize = 16K,
interface (input in, output out» p;

input from_server;
output to_server;

connect p.in to from server;
connect p.out to to_server;

/* input edge */
/* output edge */

/* input path */
/* output path */

6.1.4 Mapping description

Having defined both the hardware and software networks, it is now necessary to
say which process is to be placed on which processor and to assign actual code
modules to processes.

The mapping description defines how an application, described as a software net
work of processes connected by channels, is mapped onto a hardware network
of processors. This assignment is performed by the place statement:

place process on processor;

place channel on link;

where: the placement of processes on processors and channel edges onto hard
ware edges is mandatory but placement of channels, which connect pro
cesses, on links is optional.

Placement of processes

The placement of processes is simply the assignment of application processes to
the target hardware processors on which they are required to run. It is mandatory
to make such an assignment for each process in the software network.

For example if the process fil ter is required to run on processor root, the fol
lowing place statement would be used:

place filter on root

Placement of channels

Channels are unidirectional, point-to-point connections which may be imple
mented in one of four ways:

72TDS 34501 October 1992

6 Configuring transputer programs n

• Soft channel - a channel which communicates between processes run
ning on the same processor.

• Channel edge - a channel which provides communication between the
network and the outside world.

• Direct channel - one of up to two channels (one in each direction) placed
on a single link between adjacent processors.

• Virlual channel - a channel placed on on a virlua/link.

No further action is required at configuration time to define or place the soft chan
nels within an application; they are fully defined by the software itself.

Channel edges must be placed on a hardware edge. This involves specifying the
name ofthe channel connection which is the be placed on a named hardware edge
e.g.

place from_server on host;

All other channels on a network may be implemented as either direct channels or
virtual channels. By default the configurer automatically places software channels
on links using the placement of processes on processors and channel edges on
hardware edges as a guide.

The configurer can implement many channels over a single hardware link as well
as channels between non-adjacent processors; channels implemented in this way
are known as virtual channels. They are implemented by software virtual routing
processes added automatically, as required, by the configurer.

Direct channels occur when only one or two channels (one in each direction) are
placed on a link between adjacent processors. Direct channels may be automati
cally allocated by the configurer or the user may specifically place up to two chan
nels on a named link. For example, a channel edge is an example of a mandatory
direct channel. Note: when software virtual routing is required by the configura
tion, the configurer may override the user's specification of a direct channel, pro
vided that it is not an edge channel.

Virtual channels enable an application program to run on most network topologies
irrespective of the number of physical links connecting processors. The configurer
can form virtual channels that span up to 24 hops across the target network. (A
'hop' is when a processor is required for routing a channel, zero hops implies that
no processors were required to route the channel). Should the configurer fail to
implement a long distance connection in a very large network, it will generate an
error message. Chapter 9 provides further information about routing channels.

Virtual channels are unidirectional and synchronized and are implemented by
means of virtual links. A virtual link can be thought of as a bi-directional virtual con
nection between two processors, providing a communication path sufficient for
two channels (one in each direction) and the appropriate synchronization signals.

72TDS 345 01 October 1992

78 6.1 Configuration basics

Explicit placement ofchannels on links using direct channels is only required when
connecting channels to hardware edges or where links are used for special pur
poses. For example, connection to a device, or where an application uses input
and output channels separately, as in software implementations of high-speed
links. In certain performance critical applications it may also be important to avoid
the overhead incurred when using virtual channels.

A link may carry both explicitly placed channels as well as virtual channels and a
pair of virtual channels (one in each direction) may be routed by the configurer via
different physical links.

The configurer also performs automatic placement of one end of a channel con
nection if the other end is explicitly placed.

In general channels should not be explicitly placed on links, unless they are edge
connections. This enables the configurerto implement channels where applicable
using routing and multiplexing software.

Attention: Ifitis essential that the configuration does not use anyvirtual routing,
e.g. for performance reasons, the icconf 'w' command line option should be
used. This disables the configurer from using the virtual routing processes. (The
configurer will fail ifconfiguration is not possible, in which case the configuration
should be modified to ensure that all channels can be placed). The bootable file
generated will be smaller when the virtual routing processes are not included.

Predefined connection names

Predefined connection names can also be used to place named channels on
named links. For example:

connection root linkO host;
connect root.liDk[O] to host by root_linkO_host;

connection master ts to server, mastet fs from server;
connect master.ts-to-to-server by mast;r ts to-server;
connect master.fs to fr~_server by mast;r_fs_from_server;

place master ts to server on root linkO host;
place master:fs:from_server on root_linkO_host;

Assigning code to processes

Code is assigned to specific processes by means of the use statement. This
associates a specific object file with a process. The object file must be a linked unit,
for example:

use "filter.lku" for filter

72 TDS 345 01 October 1992

6 Configuring transputer programs 79

Note: for C applications, each linked unit must be a complete C program contain
ing a C main function.

In the following example a linked unit fil ter .lku is assigned to each of three
processes:

filter x, y, z;

use "filter.lku" for x;
use "filter.lku" for y;
use "filter.lku" for z;

Linked units can also be associated with process types. This allows the same code
to be assigned to several processes in a single statement. For example:

filter x, y, z;

use "filter.lku" for filter;

Mapping example

In the following example the software network consists of an i/o process
hostyrocess and a worker process task connected by the channels in and
out. Two processors root and servant joined by a single link connection form
the hardware network. The root processor is assumed connected to the host via
link zero (in the hardware description). The code for the application comprises the
two linked units master .lku and slave .lku.

The following mapping description places each process on one of the processors
and assigns host server channel edges to the host edge link:

place fs on host;
place ts on host;

place host-process on root;
place task on servant;

If it was required to explicitly place the channels in and out, and given the follow
ing channel and link connections:

connect host-process.out to task. in;
connect host-process.in to task.out;

connect root.link[l] to servant.link[O];

the mapping would be as follows:

72 TDS 34501 October 1992

80 6.1 Configuration basics

place task.in on ••rvant.link[O);
place ta.k.out on ••rvant.link[O);

place host-Proc•••. in on root.link[l);
place ho.t-Proc•••.out on root.link[l);

The mapping is completed by assigning the linked units to the software processes:

us. Wmaster.lku" for ho.t-proc.s8;
use walave.ltu" for task;

6.1.5 Types of main program

The C language has prEHiefined functions that require access to a host system,
e.g. to use a file system. A transputer, however, is just a node in a network and can
communicate only along its links. Thus, in order to provide access to host system
facilities the C program must have some means ofaccessing the host system. This
is done by means of host channels which must be supplied to the C program via
the int.rfac. attribute of the process.

In the simplest scenario, a program is booted down a link by the iserver, a pro
gram that executes on the host. The i s.rver, after loading the network, waits for
a response from the application and performs the services it is asked for.

Typically, however, only one of the processes in a network can be connected to the
host, and hence to the iserver. So only this process can have access to the
host's facilities. This process must be linked with the full library, by using the file
cstartup .lnk when linking, which incorporates all the host access functions
and can implement the full range of functions in the C language.

Without access to a host system a process cannot use any functions that require
host facilities, e.g. those functions using the FILE type in C. In order to pick up a
suitable library (the reduced library) for this case, the program must be linked with
the file cstartrd.lnk, which incorporates a reduced set of library functions. In
this case, the runtime system does not attempt to access a server.

In the reduced case, all communications with the environment are through chan
nels, via the parameters that are passed in through the interface attribute of the
process.

6.1.6 Access to interface parameters

When writing a program for a network node, the parameters from the configurer
are made available by means of the function:

void * get-param (int n);

This function returns the n'th parameter as a pointer to the value (starting from 1).
If the parameter is a channel, then it can be converted directly to a value of type

72 TOS 345 01 October 1992

6 Configuring transputer programs 81

Channel *. The details of this function are provided in the ANSI CLanguage and
Libraries Reference Manual.

In the case of a full library, there must be two channels for communicating with the
server. These are the first two parameters in the interface description. The first is
the input channel from the server to the program and the second is the output
channel from the program to the server. The results are undefined if these are not
provided.

Note: that the main function in a C program has parameters that are defined by
the C language. In the full case, these parameters are acquired from the host's
command line. In the reduced case, the value of argc is zero. These parameters
to main are not related to the parameters available from the configurer by means
of the get""param function.

6.1.7 Example configuration

The following example prints the 'Hello World' greeting. The first word comes from
a process running on the root processor attached to the host directly. The second
word is derived from a process running on another processor attached only to the
root. The source for the example can be found in the examples/simple subdi
rectory.

The controlling process is as follows:

'include <stdio.h>
'include <channel. h>
'include <misc.h>

/* This program is loaded onto the root processor of a */
/* two-proc network It puts out the first word of a message, */
/* and then acquired the second word frOlD a channel, and */
/* then prints it. */

int mainO
(

int i;
Channel * in chan;
char bUffer[I01];

/ * channel to get second word from */
/* buffer to hold second word */

in chan = (Channel *) get.,..param (3); /* get the channel */
prIntf("\nHello H); /* output first word */

for (i =0; i < 100; ++i)
(

buffer [i] = ChanInChar (in_chan);
if (buffer[i] == '\0')

break;
)
printf ("%s\n", buffer);

This program is converted to a linked unit by following standard toolset develop
ment steps as demonstrated in the 'Getting Started' chapter. e.g.

72TDS 345 01 Odober 1992

82

(UNIX)

6.1 Configuration basics

icc hello.c -tS -0 hello.tco
ilink -tS hello.tco -f cstartup.lnk -0 hello.lku

(MS-DOS and VAXNMS)

icc hello.c ItS 10 hello.tco
ilink ItS hello.tco If cstartup.lnk 10 hello.lku

The transputerclass T5 enables the program to run on aT400, T425 orT426 trans
puter. (Further information about transputer targets can be found in appendix B of
the ANS/ C Too/set Reference Manual).

The secondary process just writes down a channel, thus:

'include <string.h>
'include <channel.h>
'include <misc.h>

1* This program is loaded onto a second node and merely *1
1* transfers a single word to another process for printing. *1

int main()
{

int i;
Channel * out chan;
static char *-word = "World";

1* channel for output *1

out_chan = (Channel *) getyaram (1); 1* get the channel *1
for (i = 0; i <= strlen(word); ++i)
{

ChanOutChar (out_chan, word[i]);

The secondary process has no access to the host server; hence it is linked with
the reduced library by using the startup file estartrd . Ink e.g.

(UNIX)

icc world.c -t8 -0 world.tco
ilink -t8 world.tco -f cstartrd.lnk -0 world.lku

(MS-DOS and VAXNMS)

icc world.c Its 10 world.tco
ilink Its world.tco If cstartrd.lnk 10 world.lku

In this case transputer class T8 is used, enabling the program to run on a T800,
T801 or T805 transputer.

The configuration file, which can be found in the examples directory under the
name 'twin. efs' is as follows:

72 TDS 34501 October 1992

6 Configuring transputer programs

'* (c) Copyright INMOS Limited 1992. *'

'* This defines a network of two processors:

HOST ---- T425+~ ---- T800+32K

'' Define the root processor *'

T425 (memory = ~) root;

'* and the servant processor *'

T800 (memory = 32K) servant;

'* and their connections *'

connect host to root.link[O];
connect root.link[2] to servant.link[l];

'* The software is similar *'

'* The controller will reside on the root, and it has access *'
'* to the host's services. Hence, it must have as its first *'
'* parameter the channel for input from the host, and as its *'
'* second parameter the channel for output to the host. *'

process (stacksize = 10K, heapsize = lOOK,
interface (input host_in, output host_out, input secondary)
) controller;

'* The subordinate will reside on a node remote from the host.*'
'* It will not have access to the host's services, and so *'
'* should not have those connections defined *'

process (stacksize = 2K, heapsize = 4K,
interface (output result)
) subordinate;

'* The network has two edges; and these will be mapped onto *'
'* the host *'

83

input HostInput;
output HostOutput;

'* Define the edge fram the host *'
'* Define the edge to the host *'

connect HostInput to controller.host in;
connect HostOutput to controller.host_out;

connect controller.secondary to subordinate. result;

'* These can now be mapped - the controller on the root, and *'
'* the subordinate on to the other one. *'

place controller on root;

place subordinate on servant;

'* And the edge connections placed on the host connection *'

72 TDS 345 01 October 1992

84 6.1 Configuration basics

place BostInput on host; 1* say that the software edges are *1
place BostOuqput on host; 1* mapped onto the hardware *1

1* host edge *1

use "hello.lku" for controller;
use "world.lku" for subordinate;

Schematically the configuration is as follows:

Software

H aoatlnput controller.ho.t_

o
S
T aoa~tput controller.hoat_out

Edge Channels Process Channels Process

root .ervant

....0 T425 + 1)(2 1 '1'800 + 321:

Mapped to

Hardware

H
o
S
T

Edge Link Processor Link Processor

Note: inter-process channels between controller and subordinate will
automatically be placed by the configureron the link between root and servant.

To complete the construction of the application, the programs must be configured
and collected:

/J-

(UNIX)

icconf twin.cfs -0 twin.cfb
icollect tWin.cfb -0 twin.btl

(MS-OOS and VAXNMS)

icconf twin.cfa 10 twin.cfb
icollect twin.cfb 10 twin.btl

This produces the file twin. btl, which can be booted from the host and will print:

Bello World

72TOS 34501 October 1992

6 Configuring transputer programs 85

6.2 Configuration language

This section describes various aspects of the configuration language and ends
with a language summary. The syntax of the configuration language is given in
appendix B.

6.2.1 Introduction

The network configuration language is a special purpose language that allows
linked object code to be connected to other linked units and placed on any physical
arrangement of transputers. The language has been designed to be compatible
with INMOS toolsets and allows linked modules from these toolsets to be mixed
on the same network.

The main features of the language are listed below.

• The language is declarative.

• Software and hardware networks are described using a common syntax.

• Identifiers have global scope (except replication counters).

• Arrays can be declared ofany symbolic element, including processes, pro
cessors, channels, and edges.

• Replicative and conditional statements allow easy declaration of regular
networks and exceptions within them.

• New node types can be defined.

• Source files can be included.

• Comments can be inserted at any point.

A formal description of the language can be found in appendix B. The following
sections describe the main features of the language and explain each of the lan
guage statements.

6.2.2 Statements

All statements, except the conditional statement if and the replication statement
rep, must be terminated by a semicolon. Blocks of statements must be enclosed
in braces '{' and '}'.

Indentation may be used to indicate structure in conditional and replicative state
ments. However, indentation is not required by the syntax.

6.2.3 Comments

Comments can appear anywhere in the configuration text and may extend over
any numberof lines. Comments must be preceded by the character sequence'/*'
and followed by the character sequence '* / I. For example:

72 lOS 345 01 October 1992

86 6.2 Configuration language

process worker; 1* declare s/w process "worker" *1

Comments may not be nested.

6.2.4 Identifiers

Identifiers are symbolic names for configuration elements such as processors,
processes, channels, and edges. Identifiers can be undefined or can be
associated with a type (see below) in a typed statement. Identifiers may be fol
lowed by dimensions to create array types.

Character set

Identifiers can contain any letter, digit, or the underscore character; they must
begin with a letter or underscore. All characters in the name are significant and
characters are case-sensitive.

6.2.5 Types

Six base types are defined in the language:

node input output edge connection numeric value

Hardware and software networks are described as collections of interconnected
nodes. Each node has a set of attributes defined by the node type. The node
types processor (hardware) and process (software) are predefined from a
defaults file that is read when the configurer is invoked on the configuration
description file.

Numeric values can have the following types:

char int float double

char represents the signed 8-bit integer value of a character's ASCII code. int
is a signed 32-bit integer, float is a 32-bit IEEE 754 single length real, and
double is a 64-bit IEEE 754 double length real. Types for constants are implied
by the form of the numeric value.

6.2.6 Constants

Numeric and character constants can be defined using the val statement. The
type of the constant will be deduced from the expression. For example:

val gridsize 4;
val x coord 2.0f;
val y-(x * 23.2e3)

72 TDS 34501

/* integer assumed *1
1* single length real *1
/* expression */

October 1992

6 Configuring transputer programs 87

Integers can be expressed in decimal, octal, or hexadecimal. The suffixes K and
Mcan be used as fixed multipliers to indicate 'Kilo' (21~ and 'Mega' (22~ values.
Single length floating point numbers must be suffixed with the letter F or f.

Character constants must be enclosed within single quotes and string constants
within double quotes. Standard escape sequences can be used to specify control
characters such as Tab and EOl ('end-of-line'). For example:

val c 'c'; /* character constant */
val greeting "Hello\n"; /* string constant */

Note: Any string constant that is to be passed to a C program must be explicitly
terminated by the null character escape sequence \0. This is because the confi
gurer does not automatically terminate strings with \0.

Escape sequences are defined in appendix B.5.3.

Constant arrays can be defined by enclosing the sequence of values in braces.
Multidimensional constant arrays are also allowed. For example:

val pow2 {I, 2, 4, 8, 16, 32, 64, 128};
val powers {{ 1, 1, 1}, {2, 4, 8}, {3, 6, 9}};

6.2.7 Booleans

The boolean constants TRUE and FALSE are predefined as integer constants with
values one and zero respectively. In conditional statements any non-zero expres
sion counts as TRUE.

6.2.8 Expressions and arithmetic

Expressions follow the syntax used in the C programming language. Operator pre
cedence determines the order of evaluation, and brackets can be used to override
the normal ordering.

Operators supported are as follows:

Unary: " ,"- + #Ill

Binary: + - * / % & 1 A && 11 « » < <= > >= == !=

Ternary: ?:

All integer arithmetic is carried out to 32 bit precision.

Strings and arrays can be tested for equality in the same way as integer expres
sions by using the == and != operators.

72TDS 345 01 October 1992

88 &.2 Configuration language

&.2.9 Array.

Arrays can be dedared for any base type or user-defined node type. For all array
dedarations except constant arrays, the dimensions are specified after the array
name using the square bracket convention for subsaipts. Subsaipts are num
bered from zero and values are stored in row order.

For constant array dedarations all elements must be of the same type. In multidi
mensional constant arrays the dimension sizes of all the subarrays must be the
same.

Elements of constant arrays can be referenced by specifying the subscript either
after the array name or after the array declaration. For example:

val y xli];
val x (1,2, 3)[i];

Arrays are commonly used to define the basic elements of the hardware and soft
ware networks. For example:

processor grid[4];
process slave[4];

6.2.10 Conditional statement

The if ... else statement controls the execution of the statement that immedi
ately follows it. The syntax of the statement is as follows:

if exp statement [else statement]

where: exp is any valid expression;

statement can be a single statement or a group of statements.

if is commonly used to exclude part of a network from a replicated declaration.
For example:

T425 (memory=lM) grid[4];
edge freelink[4];

rep i = 0 to 3
(
connect grid[i] .link[2] to grid[i] .link[3];
if (i = 0)

connect grid[i].link[l] to host;
el••

connect grid[i] .1ink[1] to freelink[i];

72 TDS 34501 October 1992

6 Configuring transputer programs 89

if can also be used to conditionally place a process on a specific processor, for
example, to place a process on a remote processor in a network only if it is
equipped with enough memory:

if remote.memory >= 2M
place master on remote;

else
place master on root;

6.2.11 Replication

The rep statement replicates the following statement or group ofstatements. rep
is a counted loop in which the control bounds can be integers or integer expres
sions.

rep has two syntactic forms in which the number of iterations can be specified by
a range or by an initial value followed by a count:

rep index = exp1 to exp2 statement

rep index = exp1 for exp2 statement

For example:

rep i = o to 9
{
}

rep i = o for 10
{
}

If the range or count is zero the succeeding statement or group of statements is
not executed.

Replication is commonly used to define regular networks such as grids, rings, and
hyper-cubes and to place processes on them. Itcan be used for both hardware and
software networks.

The following example connects four T425 transputers in a square array and
places the same process on each. The processors are connected to their neigh
bors via links 2 and 3; links 0 and 1 of the processor are left unconnected:

72TDS 345 01 October 1992

90 6.2 Configuration language

T425 (memory=lM) grid[4];

rep i = 0 to 3
connect grid[i].link[2] to grid[i].link[3];

process slave[4]

rep i = 0 for 4
place slave[i] on grid[i];

6.2.12 Built-in functions

The function size (array) is built-in. size returns the number of elements in an
array. If the argument is not an array then size returns the value 1 (one).

6.2.13 Network definition

Software and hardware networks are defined using a common syntax based on
the declaration of nodes and their connections.

Nodes

Nodes are a generic network type from which hardware and software nodes can
be defined. Node types processor and process are predefined in the configurer
startup file.

Nodes are associated with a number of attributes,the exact number and nature of
which depends on the value given to the element attribute ofa node i.e. process
or processor. Nodes with element type processor include attributes such as
type and memory, whereas nodes oftype process have aset of runtime process
attributes such as the process interface, priority of execution, memory require
ments, and code segment ordering.

The software node type process and the hardware node type processor,
although not part of the formal language syntax, are predefined in a configuration
defaults file which is read each time the configurer is invoked. This means that they
can be used as though they are part of the language. Definitions of predefined
types can be found in section 8.3.2.

Node attributes

Node attributes can be accessed in expressions using the dot convention. For
example, they can be used to control the placing of processes:

if (remote.memory >= 2M)
place p on remote;

else
place p on root;

72 TDS 34501 October 1992

6 Configuring transputer programs 91

When assigning values to sutr-attributes open and closed brackets (() , are used
in place of the dot. For example, the statements:

process (order (code= ...)) ;
process. order (code=. . .) ;
process (code= ...) ;

are equivalent. (Where process is the name of a declared process or process
type).

Sutr-attributes can be specified without specifying the parent attribute. Because
all attributes are unique for node type processor, ambiguity is not a problem. This
is not the case for process nodes. For example, the statements:

process (location (code=)) ;
process. location (code=) ;

are equivalent, however, the statement:

process (code=. . .) ;

is the same as:

process(order(code= ... »;

The order and location attributes associated with the process node type
have the same sutr-attributes. In cases where the parent attribute (Le. order or
location) is not specified, the configurer will assume that an order attribute is
intended.

Process and processor attributes are described in detail in sections 6.1.2 and 6.1.3
respectively.

Defining new node types

Refinements ofexisting node types can be created by using the define statement
to specify nodes with specific attributes. As an example, consider the definitions
of the node types process and processor which are in the configurer startup
file:

define node(element="processor") processor;
define node{element="process") process;

Once defined, node types can be used to define other node types. For example,
the processor type can be used to define a specific transputer type which can
then be refined into a TRAM definition:

define processor{type = "T42S") T42S;
define T42S(memory = lM) B411;

72TDS 345 01 October 1992

92 6.2 Configuration language

New software node types can be defined in the same way. For example:

define process (stacksize = 10K,
interface(int count,

input command,
output result}} workpackage;

Once defined, new types can be used to declare variables in the same way as base
types. For example:

T425 worker;

B411 root;

workpackage slave[4];

Connections

Nodes are connected by the connect statement which can be used to join soft
ware channels (unidirectional), transputer links (bi-directional), or network edges
(bi-directional for hardware and uni--directional for software). The statement has"
two syntactic forms:

connect item to item [by connection]

connect item, item [by connection] ;

Connections can also be named for later use in the configuration, using a name
of the connection type.

Prohibited connections

The following connections are disallowed and generate a configurer error:

• Processes to processors

• Inputs to inputs (except channel to edge connections)

• Outputs to outputs (except channel to edge connections)

• Network edge to network edge

72T08 34501 October 1992

6 Configuring transputer programs

6.2.14 Configuration language summary

Network data types

93

node A point in a software or hardware network. Has the general
attribute element (defined as process for a software net-
work and processor for a hardware network), and other
attributes defined by the value given to element.

connection A named connection between links or channels.
edge Declares a network edge.
input Declares a software process input channel or edge.
output Declares a software process output channel or edge.

Numeric data types

int Integer type.

char Character type.
float Single length floating point type (IEEE 754).

double Double length floating point type (IEEE 754).

Language constructs

if if exp statement [else statemenq
Simple conditional construct. exp can be any valid integer
expression and statement can be the single succeeding state-
ment or a group of statements. else statement is optional.

rep rep index = exp1 to exp2 statement
rep index = exp1 for exp2 statement
Simple replication construct. Can be controlled by a range or a
count.

connect connect item to item by connection;
connect item, item by connection;
Joins channels to channels, links to links, channels to software
edges, and links to hardware edges. by connection is optional.

place place process on processor;
place channel on link;
Assigns a software process to a processor, a channel to a link, a
software edge to a hardware edge or a named channel connec-
tion to a named link connection.

use use filename for process;
Assigns a linked unit to a process.

'include 'include filename
Includes another source file.

72TDS 34501 October 1992

94

Definitions

6.2 Configuration language

val val identifier exp;
Defines a numeric constant. The type is deduced from the type
of the expression.

define define type (attributes) identifier;
Defines a node type. A list of attributes is optional.

Operators

Unary: + - ","'"
Binary: + - * I % , 1 A « » " 11 < > <= >= == !=
Ternary: ?:

Predefinitions

(Node types)

process Software process node type.
PROCESS

lowprocess Software low priority process node type.
LOWPROCESS
highprocess Software high priority process node type.
HIGHPROCESS

processor Hardware processor node type.
PROCESSOR

T2l2 t2l2 T222 t222 IMS T2 processor series.
T22S t22S M2l2 m2l2

T400 t400 T4l4 t4l4 IMS T4 processor series.
T42S t42S T426 t426

T800 t800 T80l t80l IMS TB processor series.
Teos t80S

(Constants)

HIGH, high The integer constant 0 (zero). Used to indicate a high
priority process.

LOW, low The integer constant 1 (one). Used to indicate a low prior-
ity process.

TRUE,true The integer constant 1 (one).
FALSE,false The integer constant 0 (zero).

72 TDS 345 01 October 1992

6 Configuring transputer programs 95

MIN COST The integer constant 1. Used by the routecost pro-
min-cost cesser attribute.

MAX COST The integer decimal constant 1000000. Used by the
max-cost routecost processor attribute.

DEFAULT COST The integer decimal constant 1000. Used by the
default-cost routecost processor attribute.

INFINITE COST The integer decimal constant 1000001. Used by the
infinite:cost routecost processor attribute.

ZERO TOLERANCE The integer constant 0 (zero). Used by the tolerance
zero-tolerance processor attribute.

DEFAULT TOLERANCE The integer constant 1. Used by the tolerance pro-
default-tolerance cessor attribute.

MAX TOLERANCE The integer decimal constant 1000000. Used by the
max-tolerance tolerance processor attribute.

ROUTER ORDER The integer decimal constant -20000. Weights the rel-
router-order ative position of virtual routing system processes in

memory.

MUXER ORDER The integer decimal constant -10000. Weights the rel-
muxer-order ative position of software multiplexing system pro-

cesses in memory.

Note: use of this second block of constants is described in chapter 9 - 'Advanced
use of the configurer.

(Edges)

IThe host link or channel.

Built-in functions

Isize IReturns the size of an array.

72 TDS 345 01 October 1992

96 6.3 Further considerations

6.3 Further considerations

Now that the basic structure of the configuration process and language has been
described, some further considerations need to be addressed. This section dis
cusses the following topics:

• Runtime library

• Reliable channel communication

• Terminating configured processes

• Checking the configuration

• Debugging configured programs with idebug.

6.3.1 Runtime library

As mentioned above, in section 6.1.4, the channels are mapped automatically onto
the available hardware links. If channels are between processes on adjacent pro
cessors, then they can be placed directly onto the link that joins the processors.
If there are no other channel connections that wish to use that link connection,
then the channel is a direct channel. The channel can also be termed direct if it
connects processes that are on the. same processor (i.e. a soft channel).

If more than one channel pair connection is to use a link, then all those channels
are virlual.

There is a special case when the interactive debugger idebug is in use. In this
case, it should be assumed that all channels that connect processes on different
processors are virtual, because the debugger will insert its own routing require
ments on top of those for the application.

The library functions for channel communication, Chanln, Chanlnlnt, Chanln
Char, ChanOut, ChanOutlnt, ChanOutChar can all be used on any type of
channel. They will adapt to whether the communication is direct or virtual.

However, the functions whose names begin 'DirectChan ... ' must not be used
on virtual channels. They will only work for direct or soft channels. Typically, they
should be reserved for the two cases:

Communication between processes in the same C program, i.e. the same
linked unit. In this case the channel is known to be a soft channel.

Or:

Communication on a link to a device outside the network, Le. on an edge
that is not the host connection.

It is important to remember that any process could be incorporated by anothercon
figuration in a different way Le. when software is run on different hardware or when

72 TDS 345 01 October 1992

6 Configuring transputer programs 97

different configuration options are specified. The manner in which a process uses
a channel is part of its specification. It may not be appropriate to assume that it will
always be implemented as a direct or soft channel.

6.3.2 Reliable Channel Communications

There are a number of library functions that can be used to handle faults in the
communication network. These can be used only on direct channels. They must
not be used on virtual channels, nor during debugging.

The functions are:

int ChanlnTimeFail (Channel ·chan, void *cp, int ent,
int time)

int ChanOutTimeFail (Channel ·chan, void .cp, int ent,
int time)

int ChanlnChanFail (Channel ·chan, void .cp, int cnt,
Channel • failchan)

int ChanOutChanFail (Channel ·chan, void *cp, int ent,
Channel • failchan)

The functions attempt a transfer ofdata on a channel. They return zero if the com
munication succeeded normally, and they return one if the communication was
aborted.

Tile first three parameters are similar to the normal versions of these functions.
The last parameterdefines either the time to wait for completion of the communica
tion, or a channel which will be used to terminate the communication if it has not
succeeded.

These functions are not intended as the normal mode of communications. They
have a higher overhead than other methods.

A further function is available to reset a channel that has gone awry in its commu
nications. This is:

int ChanReset (Channel • chan)

When a hard link is quiescent, then it can be reset by this function.

Important note: These functions should not be used forchecking the communica
tions within a network if there is any doubt as to whether the data might not have
transferred in a given amount of time. In general, you should be absolutely sure
that the failure is due to a hardware failure, and not to the receiving or sending
device being very busy. If the communication is terminated while data is actually
being transmitted, then the results are undefined,··and could stop one or both of
the processors.

72 TDS 34501 October 1992

98 6.3 Further considerations

There is no point in using these functions on soft channels, because the commu
nication in that case can be assumed to be secure.

6.3.3 Terminating configured processes

Configured processes (processes that have been configured on a processor by
icconf) should use exit to terminate the program and iserver.

When it is required to terminate the program without terminating the server, the
function exit noterminate should be used. In addition the program must be
linked with thelull runtime system, by using cstartup . Ink.

Note: The behavior of exit has changed since previous issues of the toolset
e.g. the 07214, 06214, 05214 and 04214 products. In these products using
exit in the configured case would not have terminated the server.
exit terminate is retained for compatibility with earlier issues, it has the
sameaction as exit.

Oetails of the functions can be found in chapter 2 of the ANSI C Language and
Libraries Reference Manual.

Configured processes which use the reduced library cannot terminate the server
(even by using exit_terminate) because they have no link with the server.

6.3.4 Checking the configuration

Configurations may be checked against the hardware on a transputer board using
a network check program such as ispy. The ispy program is supplied as part of
the support software for some INMOS iq systems products. These products are
available separately from your local INMOS distributor.

6.3.5 The effect of icconf on idebug

The use of icconf has adirect effect on the way in which the interactive/post mor
tem debugger idebug can be used to debug the program.

There are three main ways of using icconf:

• No special command line options, (the default) - this is not compatible with
the debugger.

• With the q command line option - this is compatible with either the interac
tive or postmortem debugger. However, the real time performance of the
bootable produced may be significantly different to that produced by
default, if there is a high incidence ofchannel communication between pro
cessors.

• With the gp command line option - this is compatible with the postmortem
debugger only. The real time performance of the bootable produced will
only be slightly different to that produced by default.

72 TOS 345 01 October 1992

6 Configuring transputer programs 99

Important note: when virtual routing processes are used, idebuq cannot jump
down channels between adjacent processors. If this is required, the configurer 'NV'
option should be used to disable virtual routing.

Table 6.1 summarizes the use of the relevant options.

icconf command options Effect
'q' and 'nv' Interactive and post-mortem debugging enabled.

Virtual routing disabled.
Possible to jump down channels between adja-
cent processors.

'q' Interactive and post-mortem debugging enabled.
Virtual routing enabled and forcibly used.

Not possible to jump down channels between
adjacent processors.

'gp' and 'nv' Post-mortem debugging enabled.
Virtual routing disabled.
Possible to jump down channels between adja-
cent processors.

'gp' Post-mortem debugging enabled.

Virtual routing enabled and may be used.
May be possible to jump down channels between
adjacent processors.

Table 6.1 Effect of icconf options on debugging

6.4 Configuration examples

The examples presented here are intended to illustrate the syntax of configuration
language statements and how they are used to form a configuration description.
They are not intended as tutorial examples although examples 3 and 4 are pro
vided in the toolset examples/router directory.

Further examples illustrating how to use the configuration language and configure
software on various network topologies can be found in the icconf examples
subdirectory. This subdirectory contains the program configuration source files
and a number of Makefiles and batch files to assist with program building. A 'read
me' file provides a summary of the directory contents, describes the prerequisite
hardware, and gives instructions for building the programs.

Knowledge of the way the configuration language defines software and hardware
networks and links them by mapping statements is aprerequisite to understanding
the configuration model. Readers are recommended to study the examples at
length and be thoroughly familiar with the language before attempting to write
complex configurations.

72TDS 345 01 October 1992

100 6.4 Configuration examples

6.4.1 Example'1 - single processor configuration

This example is almost identical to the example given in chapter 4, it is included
here for completeness. The example configures the 'Hello World' program for a
single T425 processor. Chapter 4 describes how to build and run a single proces
sor program.

The configuration description first defines hardware data such as the processor
type and network topology. In this case all that is required is to define the memory
size of the processor and connect a link to the host edge.

Next it defines the software topology. Processes are named, channels are defined
as input and output interface parameters, and connected as required. In this case
the process channels are simply connected to server channels. Stack and heap
sizes must be defined as parameters to the process.

Finally, the configuration names the linked file to use for each process and defines
the mapping of processes to processors, and channels to links or edges.

Schematically the configuration is as follows:

h
o
s
t

Edge

Software

to_server

Channels

Process

mapped
to
I
I

'[]Ipl~ :
I t
I
I
I Edge

hardware

Processor

72 TDS 34501 October 1992

6 Configuring transputer programs

The configuration descrip_tion is as follows:

/* Hardware description:
declare processor memory size;
connect link 0 to host edge */

T425 (memory = iN) root;

101

connect host to root.link[O); /* Link 0 connected */
/* to iserver * /

/* Software description: declare Channels;
declare process and interface params;
connect interface to inputs and outputs */

input from_server;
output to_server;

process (stacksize =_lOOK, heapsize = lOOK,
interface (input fs, output ts» program;

/* connect server Channels to program * /
connect from_server to program.fs;
connect to_server to program.ts;

/* Mapping description:
define object file;
place process on processor;
place channels on predefined edge host */

use "hello.lku" for program;

place program on root;

place from_server on host;
place to_server on host;

72T08 345 01 October 1992

102 6.4 Configuration examples

6.4.2 Example 2 - Two processes configured on a two-processor network.

The program consists of two processes. One process acts as the interface to the
host (the ilo process) and the other performs a complex numerical calculation.

The hardware consists of a T425 and a T800 transputer connected together by a
single link. The T425 acts as the root transputer. The ilo process is to be executed
on the T425 and the numerical process on the T800.

h
o
s
t

o Process --. Channel

Figure 6.2 Example two process program with four channels

...---

h T425 TaOO
0 root worker- :---1 2 - - 1s - - -
t 1M 2M

~

........ Link

Figure 6.3 Example two processor network, two links connected

72 TDS 34501 October 1992

6 Configuring transputer programs

The configuration description is listed below:

/* Hardware description: */

T425 (memory = IN) root;
T800 (memory = 2M) worker;

connect root.link[l] to host;

/* Software description: */

103

input fs;
output ts;

/* input edge */
/* output edge */

process (stacksize = SK, heapsize = SOK,
interface (input fs,

output ts,
output feed,
input response» controller;

process (stacksize = 16K, heapsize = 512K,
interface (input feed,

output response» task;

connect fs to controller.fs;
connect ts to controller.ts;
connect controller. feed to task. feed;
connect controller. response to task. response;

/* Mapping description: */

use "control.lku" for controller;
use "compute.lku" for task;

place controller on root;
place task on worker;

place fs on host;
place ts on host;

72 TDS 345 01 October 1992

104 6.4 Configuration example.

6.4.3 Example 3 - using virtual channel.

The program consists of two processes Procl and Proc2 with two eight-dlannel
wide sets of connections between them. Procl also acts as the interface to the
host and requires access to the host Unk supported by i.erver.

The hardware consists of an array of two T800 processors (PROC [0] and
PROC [1]) each with 2 Mbytes of memory. The two processors are connected
together by three links. PROC [1] is also attached to an edge by its fourth link.

Figures 6.4 and 6.5 desaibe the software and hardware networks respectively, the
source for the example is supplied in the examples/router subdirectory.

H
o------11.,
S ..--__~

t

o Process -... Channel o/Width

Figure 6.4 Example two process program with many channels

H
o
s
t

O~----~3

Proc[O] Proc[l]
1 2~----~1 2

3 0

E
d
q
e

D T800 + 2MB Link

Figure 6.5 Example fully connected two processor network

As can be seen there are not enough links for each link to be dedicated to a single
pair of opposing channels. It is therefore necessary for the configurer to share the
links between the application channels using multiplexing and demultiplexing soft
ware.

The configuration description is as follows:

72 TDS 34501 October 1992

6 Configuring transputer programs 105

/* Hardware description for two B404-3 module subsystem */

define T800 (memory = 2M) B404_3;

B404_3 PROC[2];

edge pipe_down;

connect host to PROC[O].link[l];
connect PROC[0].link[2] to PROC[l].link[l];
connect PROC[l] .link[2] to pipe_down;

connect PROC[O].link[O] to PROC[1].link[3];
connect PROC[l].link[O] to PROC[0].link[3];

/* Software description for highly connected two processes */

val BusWidth 8;

input fs;
output ts;

process (stacksize = 2k, heapsize = 16k,
interface(input fs, output ts,

input In [BusWidth],
output Out[BusWidth]» Procl;

process (stacksize = 2k, heapsize = 16k,
interface(input In [BusWidth],

output Out[BusWidth]» Proc2;

rep i = 0 for BusWidth
{

connect Procl.Out[i] to Proc2.In[i];
connect Proc2.Out[i] to Procl.ln[i];

connect Procl.fs to fs;
connect Procl.ts to ts;

/* Mapping description */

place Procl on PROC[O)';
place Proc2 on PROC[l];

use "procl.lku" for Procl;
use "proc2.lku" for Proc2;

place £8 on host;
place ts on host;

72TDS 345 01 October 1992

106 6.4 Configuration examples

6.4.4 Example 4 - Virtual channel routing:

The program is the same as described in figure 6.4, however, it is loaded onto two
non-adjacent processors in a three processor network (see figure 6.6). In this case
no link directly connects the processors used. This example shows how icconf
can utilize otherwise unused processors in the target network for through-routing
channels ofother processors. The source for the example is supplied in the exam
ples/router subdirectory.

H
o
s
t

Proc[O]
1 2

Proc[l]
1 2

Proc[2]
1 2

E
d
9
e

D Taoo + 2MB ~Link

Figure 6.6 Example sparsely connected three processor network

For this example a new hardware description is required but the software descrip
tion is the same as that used in the previous example. The mapping description
'also requires very little modification. The configuration description is as follows:

72TDS 34501 October 1992

6 Configuring transputer programs 107

/* Hardware description for three B404-3 module subsystem */

define T800 (memory = 2M) B404_3;

B404 3 PROC[3];

edge pipe_down;

connect host to PROC[O] .link[l];
connect PROC[O] .link[2] to PROC[l] .link[l];
connect PROC[l] .link[2] to PROC[2] .link[l];
connect PROC[2] .link[2] to pipe_down;

/* Software description for highly connected two processes */

val BusWidth 8;

input fs;
output ts;

process (stacksize = 2k, heapsize = 16k,
interface(input fs, output ts,

input In [BusWidth],
output Out[BusWidth]» Procl;

process (stacksize = 2k, heapsize = 16k,
interface(input In [BusWidth],

output Out[BusWidth]» Proc2;

rep i = 0 for BusWidth
{

connect Procl.Out[i] to Proc2.In[i];
connect Proc2.Out[i] to Procl.ln[i];

connect Procl.fs to fs;
connect Procl.ts to ts;

/* Mapping description */

place Procl on PROC[O];
/* No application software on PROC[l] */
place Proc2 on PROC[2];

use "procl.lku" for Procl;
use "proc2.lku" for Proc2;

place fs on host;
place ts on host;

72TDS 345 01 October 1992

108

72T08 34501

6.4 Configuration examples

October 1992

7 Loading transputer
programs

This chapter explains howto load programs onto single transputers and transputer
networks. It briefly d~scribes the format of loadable programs and introduces the
program loading tools iserver and iskip. The chapter goes on to explain how
to load programs for debugging and ends with an example of skip loading.

7.1 Introduction

Transputer programs are loaded onto transputer boards with the iserver tool
which installs code on each processor using processor and distribution information
embedded in the executable file. The executable file consists of code to which
bootstrap information has been added to make the program self-booting on the
transputer. Self-booting executable code is also known as bootable code.

Bootable files are generated by icollect from configuration data files (network
programs) or linked units (single transputer programs). Bootable files are gener
ated with the default extension .btl (for loading onto boot from link boards), or
.btr (for loading onto boot-from-ROM boards). Note: a bootable file is
constructed such that copying it to a link will boot the network automatically.

7.2 Tools for loading

Two tools are provided to load programs onto transputers and transputer networks:

• iserver - the file server and loader tool.

iserver loads the bootable file onto the single transputer or transputer
network and activates the host file server that provides communication with
the host.

• iskip - the skip loading tool.

iskip allows a program to be loaded over the root transputer onto an
external network. The tool is used prior to invoking iserver to start up
a special route-through process on the root transputer that transfers data
between the the network and the host system.

Skip loading is useful for the post-mortem debugging of programs that do not use
the root transputer. The root transputer in the network is omitted from the logical
network and the program is loaded onto the first processorafterthe root transputer,

72TDS 345 01 October 1992

110 7.3 The boot from link loading mechanism

leaving it free to run the debugger. This avoids having to debug the code from a
memory dump file.

Programs loaded using iskip always require one extra processor on the network
in addition to those required to run the program. For example, a program written
for a single transputer requires at least two processors, one to act as the root trans
puter and one to run the program.

7.3 The boot from link loading mechanism

iserver loads programs onto transputer networks, via the host link connection.
It does this by simply copying the contents of the bootable file to the link. The boot
able file contains all the bootstrap and loader code to ensure that the program is
loaded onto the network and starts running.

The server has to be told which link connection to use and how to access it. This
is done by specifying the name of a User Link on the command line or in the envi
ronment variable TRANSPUTER. The server gets information about the specified
User Link from a connection database file. See the iserver documentation in
chapter 13 of the Toolset Reference Manual.

The bootstrap code for the transputers in the network is sent first. The code is prop
agated through the network as individual processors load neighboring processors.
After all of the transputers in the network have been booted, program code is
loaded onto individual processors. For a multitransputer network the allocation of
processes to processors is determined by the configuration file. For single trans
puter programs code is loaded onto the first processor on the network.

When all of the code-is loaded into the transputer's memory, the program starts
running and can communicate with the host using the standard library routines for
input and output. The libraries actually communicate with the host via the server
using a predefined communication protocol known as the 'SP' protocol. This proto
col is defined in the iserver documentation.

The program continues to run until: an error occurs, the server is terminated by
pressing the iserver interrupt key (usually CTRL-C or CTRL-BREAK), orthe pro
gram terminates naturally. Note: terminating the server will not stop the program
running on the transputer. However, any processes on the transputer which
attempt to communicate with the server will deadlock. This may eventually cause
the whole program to stop as other processes become dependent on this commu
nication. The program may be able to continue if the server is restarted.

If iskip is used, the first transputer in the network is bypassed. Therefore the net
work must contain one additional transputer to the number required to run the pro
gram.

7.4 Boards and subnetworks

There are two basic types of transputer evaluation board: those that boot from link
and those that boot from ROM.

72 TDS 34501 October 1992

7 Loading transputer programs 111

Boot from link TRAM boards form the majority of transputer boards in general use.
They are loaded down the link that connects the root transputer to the host using
the iserver tool. Programs intended to run on boot from link boards must consist
of bootable code, such as that generated by icollect.

Examples of boot from link boards supplied by INMOS are the IMS B008 PC
motherboard (with appropriate TRAMs) and the IMS B014and IMS B016 VME bus
standard interface boards.

Boot from ROM TRAM boards are intended for stand-alone applications such as
embedded systems.

7.4.1 Subsystem wiring

Subsystem wiring is the way in which boards are connected together, and deter
mines the manner in which transputer subnetworks are controlled.

Three signals are used to control transputers mounted in a system, namely Reset,
Analyse, and Error. Together these are known as the system services. AIIINMOS
transputer boards use a common scheme for propagating these signals to other
subnetworks. The scheme is as follows.

Each transputer board has three ports for communicating system services from
one board to another. These are Up, Down, and Subsystem. Up is the input port,
used to control the board from an external source; Down and Subsystem are both
output ports and are used to propagate the Up signals to other boards or subnet
works.

The Down and Subsystem ports work in the following ways:

Down propagates the Up signal unchanged to the next board or subnetwork. This
allows multiple boards to be chained together by connecting successive Up and
Down ports and the whole network can be controlled by a single signal.

Subsystem propagates the Reset and Analyse signals but also allows control by
the board, enabling subnetworks downstream of the board to be independently
reset, analyzed, and their error flags read, under the control of the transputer to
which the subsystem is attached.

7.4.2 Connecting subnetworks

Multiple transputer systems can either be controlled by the host compu.ter or by a
master transputer controlled by the host computer.

In a typical multitransputer system the root transputer's Up port is connected to the
host computer so that the host can control the loading of programs and monitor
errors on the network. The first processor in the subnetwork is connected to either
Down or Subsystem depending on the application, and other processors on the
network are chained together via their Up and Down ports.

72 TDS 345 01 October 1992

112 7.5 Loading programs for debugging

In a simple application requiring multiple transputers, the subnetwork would nor
mally be connected to Down on the root transputer. This would allow the host com
puterto reset the whole network in asingle operation and to monitor the errorsignal
on any transputer in the network.

Amore complicated application may require several programs to be loaded onto
the subnetwork underthe control of the root transputer. Here the subnetworkwould
be connected to Subsystem so that the root transputer could repeatedly reset and
re-load the subnetwork. Any errors in the subnetworkwould be detected by the root
transputer through its Subsystem port, and the error would not be propagated
through the Up port to the host computer. Reset and Analyse signals are propa
gated through to the Subsystem port, but the errorsignal is not relayed back. (Note
some boards do not conform to this system of signal propagation - see section
7.5.2).

7.5 Loading programs for debugging

Special debugger and server options must be used for the debugging of programs
running on transputer boards. The options vary with the subsystem wiring, the
board type, and whether or not the program uses the root transputer. The effects
of subsystem wiring are described above; the effects of board type and program
mode are described in the following sections.

Commands to use for various combinations of subsystem wiring, board type, and
program mode, are listed in the debugger reference documentation.

7.5.1 Breakpoint debugging

Programs are loaded for breakpoint debugging using the idebug command.
When invoked in interactive mode this command incorporates a skip load and
iserver is not required. Because it uses a skip load, breakpoint debugging
requires at least two processors on the network.

7.5.2 Board types

Some early INMOS boards of the BOO4 type, unlike later TRAM-based boards, do
not propagate Reset through to the Subsystem port. On these boards the 'IJ:
debugger option must be supplied on the debugger command line to reset the net
work.

7.5.3 Use of the root transputer

The use made of the root transputer by the program changes the pn~~dures you
must use in post-mortem debugging. This is because the debugger program
executes on the root transputer and any application code becomes overwritten
when the tool is invoked. Two procedures can be used to load and debug code run
ning on the root transputer:

72 TDS 345 01 October 1992

7 Loading transputer programs 113

Programs can be loaded in the normal way using iserver, and the pro
gram image in the root transputer's memory saved to a file. The code run
ning on the root transputer is then debugged from the dump file. Code run
ning on the rest of the network is debugged in the normal way by reading
the transputer memory direcUy down the transputer links. The dump file is
created by invoking idump. The debugger is subsequently invoked using
the debugger 'R' option that directs it to read the dump file.

Note: On boards that contain only one transputer this method must be
used.

2 Programs can be loaded over the top of the root transputer by invoking the
iskip tool before running iserver. This leaves the root transputer free
to run the debugger. The program can then be debugged down the root
transputer link in the normal way.

If iskip is used an extra processor is required over and above those
required to run the application program.

Programs configured for a subnetwork that does not include the root transputer
can be loaded with iskip and iserver and debugged down the root transputer
link using the debugger 'T' option.

Details of the procedures to use for loading and debugging all types of transputer
programs can be found in the debugger documentation.

7.5.4 Analyse and Reset

Care must be taken that Analyse or Reset are only asserted once on a network
that is to be debugged, or incorrect data will be obtained. To ensure this the debug
ger should be invoked using the standard command sequences given in the
debugger reference documentation.

7.6 Example skip load

This section shows how to load a program into a networK over the root transputer
using the iskip tool.

7.6.1 Target network

The program to be loaded is configured for a target network consisting of two T800
processors mounted on a B008 motherboard. A T414 processor in slot zero acts
as the root .transputer, and the target network is connected to link 2 on the root
transputer via one of the links on processor 1. The two T800 processors are con
nected by a single link.

The target network and its connections are shown schematically below.

72TDS 345 01 October 1992

host computer

114 7.6 Example skip load

link 2 processor processor
1 2

7.6.2 Loading the program

The file twinprog .btl contains the bootable program.

To prepare the board for running the program on the target network, invoke iskip
using one of the following commands:

iskip 2 -r -e
iskip 2 /r /e

(UNIX)
(MS-DOS and VMS)

This sets up the system to direct the program to the target network over the top of
the root transputer and starts the route-through process on the root transputer.
Options 'R' and 'E' respectively reset the target network and direct the host file
server to monitor the halt-on-errorflag. The program can then be loaded using one
of the following commands:

iserver -ss -se -se twinprog.btl
iserver /ss /se /sc twinprog.btl o.

(UNIX)
(MS-DOS and VMS)

Note: these examples assume that the environment variable TRANSPUTER has
been defined to specify the name of the User Link to ~se to access the transputer
network, and that a connection database file exists to define that User Link. See
the iserver documentation (chapter 13 of the Toolset Reference Manual) for
more detail.

See chapter 15 of the Toolset Reference Manual for more information on the
iskip tool.

7.6.3 Clearing the network

On transputer boards error flags can be cleared using a network check program
such as ispy. (Error flags can become set when the board is powered up).

The ispy program is provided as part of the support software for some INMOS iq
systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program to clear the network is to load a
dummy process onto each processor. In the act of loading the process code the
error flag is cleared.

72 TDS 34501 October 1992

8 Debugging
transputer programs

This chapter describes how to debug transputer programs. It describes the facili
ties of the toolset debugger idebuq and shows how they can be used to debug
transputer programs in a systematic manner. It explains how the debugger can be
used in two modes (post-mortem and interactive) to analyze transputer programs
and describes the two debugging environments (source code symbolic and low
level monitorpage). The chapterends with some hints about debugging transputer
programs and a list of points to note when using the debugger.

Worked examples are given at the end of this chapter.

Chapter 4 of the Toolsel Reference Manual provides detailed information about
idebuq, including command line syntax, and full descriptions of the symbolic
debugging and monitor page commands.

8.1 Introduction

The network debugger idebug is a symbolic debugger for transputers and trans
puter networks. It can be used to examine stopped programs (post-mortem debug
ging) or to debug programs interactively (breakpoint debugging). It can be used
with INMOS FORTRAN-77, ANSI C, and occam programs, and with mixed lan
guage systems.

Programs can be analyzed using the symbolic functions which operate using
source code symbols or the monilor page commands which operate at memory
and processor level.

Symbolic functions allow files to be examined, variables inspected, and proce
dures traced, from source code level. Monitor page commands allow transputer
memory to be examined and processor state to be determined anywhere on the
network. Symbolic and monitor page environments are separate but can be
switched between at will.

idebug can be used to debug mixed language programs, although certain facili
ties are available for some languages and not others. For example, a comprehen
sive expression language exists for C but not for occam. The exact usage ofsome
of the facilities may also differ slightly between languages.

8~1.1 Post-mortem debugging

Post-mortem mode debugging allows stopped programs to be analyzed from the
residual contents of transputer memory or from a network dump file. Programs that

72TDS 345 01 October 1992

116 8.4 Debugging configured programs

run on the root transputer must be debugged from a memory dump file because
the debugger overwrites the root transputer's memory. The memory dump file is
created using the idump tool (see chapters 4 and 5 of the Too/sel Reference
Manual).

8.1.2 Interactive debugging

Interactive debugging (also known as breakpoint mode debugging) allows trans
puter programs to be executed interactively using breakpoints set in the code.

Breakpoints can be set symbolically on lines ofsource text orat transputer memory
addresses, and values can be modified in transputer memory to show the effect
ofchanging variables. Breakpoint mode debugging requires the use of two or more
.transputers, because the debugger tool runs on the root transputer.

Certain symbolic functions and monitor page commands are only available in
breakpoint debugging mode.

8.1.3 Mixed language debugging

When debugging programs constructed from a mixture of languages from different
INMOS toolsets, you should always use the version of idebug with the highest
version number (as displayed in the help or monitor pages). This is true for all ver
sions of idebug with a version number greater than V2. 00.00. This will help
ensure that no toolset incompatibilities occur.

8.1.4 Debugging with isim

The transputer simulator tool isim can also be used to debug transputer pro
grams from a low level environment. Using a similar environment to the debugger
monitor page transputer memory can be examined, breakpoints set, and pro
grams executed by single stepping.

The debugging facilities of the simulator are briefly described in this chapter (sec
tion 8.13). Details of how to use the simulator tool can be found in chapter 14 of
the Too/set Reference Manual.

8.2 Programs that can be debugged

The debuggercan analyze programs running on transputers that are eitherdirectly
attached to a host through a server program, or connected to the host via a root
transputer.

The roottransputer is the processorthat is directly connected to the host computer.
In a transputer networkthat is conneded to the host it forms the root ofthe network.
The debugger always runs on the root transputer, which must be a 32-bit trans
puter with at least one megabyte of memory (preferably two or more).

72TDS 34501 October 1992

8 Debugging transputer programs 117

The relationship of the root transputer to t~e host computer and the rest of the net
work is illustrated in figure 8.1.

host computer

from server

to server

root transputer

Link(s) Other
transputers

Figure 8.1 Debugging a transputer network

If breakpoint debugging is used the transputer network must contain at least two
processors because the root transputer is dedicated to running the breakpoint
debugger in parallel with the user's program.

8.3 Compiling programs for debugging

Programs to be debugged should be compiled with full symbolic debugging
information enabled. ForC and FORTRAN, this is achieved by specifying the com
piler 'G' option when the program is compiled. The occam compiler generates
object files containing full debugging information by default. Two command line
options may be used to limit the debugging information produced by the compiler.

Minimal debugging information

Bydefault the Cand FORTRAN compilers generate object files containing minimal
symbolic debug information so that object modules, especially those to be used
as libraries, are kept as small as possible. Minimal debug information enables the
debugger to backtrace out ofa library function to a module compiled with full debug
information.

occam programs can be compiled with minimal debug information by using the
compiler 'D' option.

Note: The object code produced by the C and FORTRAN compilers with minimal
debug information contains certain optimizations that are absent in code gener
ated with full debugging information enabled. As a consequence the object code
produced may differ slightly from code compiled with full debugging information
enabled.

occam channel communication

The 'y' option to the occam compiler disables channel communication via library
routines and, instead, produces optimal in-line code for channel i10. Interactive

72TD8 345 01 October 1992

118 8.4 Debugging configured programs

debugging requires all communications to be done by means of the library rou
tines, so this option also disables interactive debugging.

C channel communication

Use of the C libraryDirectChan functions on channels provided by the configurer
will interfere with and corrupt interactive debugging. Note that the DirectChan
functions can be safely used with edges passed from the configurer, and with inter
nal (soft) channels declared in C source files.

8.3.1 Error modes

Programs to be debugged should be generated in HALT mode, which is the linker
default. The behavior of a program when an error occurs depends on the mode
in which the program was compiled and linked, as follows:

• In HALT mode any error during program execution halts the transputer
immediately.

• In STOP mode, errors do not halt the program, rather they stop the errant
process allowing other processes executing on the same transputer to
continue. Programs compiled in this mode can only be debugged if they
are halted explicitly.

• Programs compiled in UNIVERSAL mode will adopt the error mode
selected at link time i.e. HALT or STOP mode. If UNIVERSAL mode is
selected at both compile and link time, then the error behavior will default
to HALT mode.

By default, C and FORTRAN programs are compiled in UNIVERSAL error mode
and linked in HALT mode. By default, occam programs are compiled in HALT
mode and linked in HALT mode.

8.4 Debugging configured programs

Programs configured with the C-style configurer, icconf, must have debugging
enabled by means of the appropriate icconf command line options. Table 8.1
summarizes the use of the relevant options.

In mixed language programs incorporating occam modules, the occam code
should be compiled and linked with interactive debugging enabled (the default).

8.4.1 Debugging with configuration level channels

idebug cannot locate to a process waiting on a transputer link, or locate to a pro
cess (on a different processor) waiting on a channel mapped onto a link, if that link
is used by the configurer for software virtual channels.

72 TDS 34501 October 1992

8 Debugging transputer programs 119

idebuq is able to locate to a process waiting on a transputer link or jump down
a channel between two processes (which may be on different processors) if the
channel is one of the following:

• An internal (soft) channel between processes on the same processor.

• An external (hard) channel between processes on different processors
which is not used by the configurer for software virtual links.

8.4.2 Debugging with the configurer reserved attribute

The reserved attribute should not be specified to the configurer in order to reserve
on-chip memory if you wish to interactively breakpoint debug the program. This is
because the runtime kernel (see section 8.7.1) which the debugger places on each
processor reserves the first 11K - 15K of memory for its own use (regardless of
the reserved attribute being specified to the configurer).

8.5 Debugging boot from ROM programs

Programs configured using the configurer 'GP' option (see table 8.1) may also be
debugged in boot from ROM run in RAM systems (configurer 'RA' option).

icconf command options Effect

'q' and 'nv' Interactive and post-mortem debugging enabled.

Virtual routing disabled.

Possible to jump down channels between adja-
cent processors.

'q' Interactive and post-mortem debugging enabled.

Virtual routing enabled and will be used.

Not possible to jump down channels between
adjacent processors.

'gp' and 'nv' Post-mortem debugging enabled.

Virtual routing disabled.

Possible to jump down channels between adja-
cent processors.

'gp' Post-mortem debugging enabled.

Virtual routing enabled and may be used.

Only possible to jump down channels between
adjacent processors if they are not used for virtual
routing.

Table 8.1 Effect of icconf options on debugging

8.6 Post-mortem debugging

Post-mortem debugging is the analysis of stopped programs, that is, programs
that have failed to run correctly and have set the transputer error flag (or have

72 TDS 345 01 October 1992

120 8.4 Debugging configured programs

deteded a hard parity error). Programs that are to be debugged in this mode
should be compiled and linked in HALT mode (HALT is the linker default) so that
the processor halts when the flag is set. They should be loaded by iserver using
the 'SE' option, so that the error flag is monitored and the server terminated if the
error flag is set.

The conditions in which the transputer error flag may be set depend on the lan
guage being used. C and FORTRAN provide little or no automatic checking of
errors whereas occam provides comprehensive error checking by default.

C programs can also set the error flag and halt the processor when the program
is terminated by functions such as hal t "'processor, abort, assert,
debug_stop or debug_assert.

8.6.1 C and FORTRAN programs

Little automatic error checking is provided in C or FORTRAN - this can make it
difficult to cause a program to halt when an error occurs. This rather restricts the
usefulness of post-mortem debugging, but it can be used if programs are halted
explicitly using the debugging support functions such debug assert ()
(DEBUG ASSERT () in FORTRAN) etc. These functions are described more fully
in the appropriate Language and libraries manual and in the debugging examples.

Breakpoint debugging, with its associated debugging support functions, is a more
flexible approach and is the recommended method when debugging C and FOR
TRAN programs.

The C library abort () function can be enabled to halt the processor by calling the
auxiliary function set abort action (). This enables a backtrace to be per
formed to the point in-a program where the error occurred without the need to
modify any of the assert () statements contained in the program.

72 TOS 34501 October 1992

8 Debugging transputer programs . 121

This technique is illustrated with the following example (which is contained in the
C toolset debugger examples directory):

1***************************************
*
*
*
*
*
*
*

Debugger example: abort. c

Example of forcing a C program to HALT the
processor for post~rtem analysis regardless
of the error mode it has been configured in.

* Use of the debug support functions is encouraged
* as an alternative (see debugger example file debug.c
* for further details).
*
***************************************/

'include <stdio.h>
'include <stdlib.h>
'include <misc.h>
'include <assert.h>

int
main (void)

/* 0 will cause assert() to fail assertion test */
int x = 0;

printf ("Program started\n");

/* override normal abort action */
set_abort action (ABORT HALT);

printf ("Program being halted by assert ()\n");
assert (x);

printf ("Program being halted by abort () \n") ;
abort ();

exit (EXIT_SUCCESS);

72TDS 345 01 October 1992

122 8.4 Debugging configured programs

8.6.2 occam programs

The runtime errors that can cause an occam program to set the error flag and halt
include:

• An arithmetic error. such as overflow or divide by zero. has occurred.

• An array index is out of range.

• A value is out of range in a type conversion.

• An alignment error has occurred in a type conversion or abbreviation

• An array element is being 'aliased' at run-time - that is, being referred to
by more than one name within a given scope.

• A STOP process, or a process which behaves like STOP (e.g. an IF with
no TRUE guards, or an ALT with no enabled guards), being executed.

When a run-time error occurs, the program halts the processor and allows the
debugger to enter the program for post-mortem debugging.

In addition, some debug support functions (e.g. DEBUG. ASSERT ()) are provided
to aid debugging of programs by implementing an explicit program error; details
of these functions can be found in the occam language and libraries manual and
in the debugging examples.

8.6.3 Interrupted programs

Post-mortem debugging can also be used to debug programs that have been
explicitly interrupted with the host system BREAK key. To interrupt a program, for
example when a program 'hangs', press the BREAK key, which stops the server
but not the program, and then run idump to take a snapshot of the running pro
gram. Running idump stops the program by sending an Analyse signal to the
transputer in order to take a snapshot of its current activity.

8.6.4 Parity errors

The T426 will detect two types of parity errors, hard and soft. A soft error is one
which disappears on retry; it does not stop the processor but sets, and resets, the
SoftParityError pin. This allows soft errors to be monitored externally (or inter
nally if SoftParityError is connected back to the Event input). A hard error occurs
ifa location still causes a parity error on retry; in this case the processor is stopped
immediately and the HardParityError pin is asserted.

After a hard parity error has been detected the debugger can be started in post
mortem mode. If the debugger fails to find a processor which has halted with the
error flag set, it will try to find a T426 processor which has had a hard parity error.

72 TDS 34501 October 1992

8 Debugging transputer programs 123

It will then display this as the first processor in error. The debugger does not auto
matically locate to the program source if a parity error has occurred - the debug
ger will instead display the monitor page to allow the parity registers to be
examined.

The parity registers are displayed on the monitor page at the bottom left of the dis
play below the clock registers. These registers are not displayed in interactive
mode. This is because the registers are volatile and reading the registers would
interfere with any user code attempting to handle soft parity errors.

8.6.5 Debugging the root transputer

Programs which run on the root transputer, or which use the root transputer to run
part of a multiprocessor program, must be debugged 'off-line' from a separately
created memory image file. This is necessary because the debugger executes on
the root transputer and overwrites the code in its memory. The memory dump is
performed using the idump tool after the program has failed and before the debug
ger is started with the 'R' option. Details of how to use the idump tool can be found
in chapter 5 of the Toolset Reference Manual.

Skip loading

As an alternative to using the idump tool, the application program can be skip
loaded onto the next processor on the network, avoiding the root transputer. This
leaves the root transputer free to run the debugger. Adisadvantage of this method
is that it requires one extra processor on the network in addition to those needed
for the program.

If only one transputer is available, for example 'on single-transputer boards, the
memory dump method must be used. If more than one transputer is available skip
loading is the recommended method since it enables the program to be directly
debugged from transputer memory.

Use of the skip loader is described in chapter 7 of this manual and chapter 15 of
the Toolset Reference Manual.

8.7 Interactive debugging

Interactive debugging allows programs to be executed under interactive control
using breakpoints set in the code. Breakpoints can be set on any line of source.
Symbolic and monitor page facilities can be used to examine code, inspect vari
ables, jump down channels to other processes or processors, and determine the
state of the network. Special symbolic functions and monitor page commands,
only available in breakpoint mode, support the modification of variables and
memory locations and the restarting of programs from the breakpoint or from other
points in the code.

Programs that communicate to the host must use iserver protocol, as used by
the standard I/O libraries, when being debugged interactively.

72TDS 345 01 October 1992

124 8.4 Debugging configured programs

8.7.1 Runtime kernel

The breakpoint debugger places a special runtime kernel on each processor in
addition to the application bootable code. This kernel provides a communication
network to enable the debugger to transparently share transputer links with the
application in addition to providing a breakpoint handler to deal with breakpoints,
errors, inspection of processor state etc. The scheme is illustrated in Figure 8.2.

Note: The debugging kernel places the transputer into Halt-On-Error mode
regardless of the error mode of the program. This means that during breakpoint
debugging a transputer will always HALT when an error occurs.

Without debugging
kernel

o

With debugging
kernel

o

3

2
Transputer

3

Transputer

Figure 8.2 Oebugger runtime kernel

The runtime kernel requires a certain amount of memory on each processor, the
exact amount differing slightly between processor types. Kernels on processors
with hardware support require slightly more memory because they retain more
state information. The size of the kernel on each transputer type is given in
table 8.2.

Apart from the extra memory required, the kernel is transparent to the application
program if processes on different processors communicate with each other in the
normal way, using channels supplied by the configurer.

Note: To allow breakpoint debugging to function correctly a program must not
place channels explicitly onto processor link addresses. Programs that do so may
introduce conflict with the runtime kernel, which also uses the links. Programs cur
rently coded in this way should be re-coded to pass in hard channels, or edges,
from the configurer, otherwise breakpoint debugging may not be used.

72T08 34501 October 1992

8 Debugging transputer programs

Processor Kernel size HIW support
M212 11.25K No
T212 11.25K No
T222 11.25K No
T225 12.75K Yes
T414 13.5K No
T800 13.5K No
T400 15.25K Yes
T425 15.25K Yes
T426 15.25K Yes
T801 15.25K Yes
T805 15.25K Yes

Table 8.2 Runtime kernel size and processor breakpoint support

125

8.7.2 Processors without hardware breakpoint support

Certain transputers have built-in instructions to aid breakpointing (see table 8.2).
For those processors without hardware breakpoint support, breakpoints should
not be set within high priority processes because the mechanism used to imple
ment breakpoints causes such processes to lock the processor and disables all
communications to the processorvia the runtime kernel. To help safeguard against
this problem, the debugger monitor page breakpoint option will only set break
points at high priority process entry points ormain () on processors with hardware
breakpoint support.

The exact effect on the network of encountering such a breakpoint will depend on
the position of the processor in the network hierarchy but the the possibility should
be avoided. Since the debugger is, in general,unable to check the validity of break
points it is the programmer's responsibility to ensure correct operation on proces
sors without direct hardware breakpoint support.

8.7.3 Creating programs for debugging

Programs to be debugged using breakpoint debugging should be compiled with
full debug information enabled, using the C and FORTRAN compilers 'G' option
and the occam compilers default.

All modules in the program must be compiled in the same, or a compatible, mode.
Modes are checked at link time and if incompatible modes are found then the link
is aborted.

The code must be produced without using the 'y' option with any of the tools if inter
active debugging is to be done.

72TDS 34501 October 1992

126 8.4 Debugging configured programs

8.7.4 Loading the program

Breakpoint debugging does not require special loading or memory dump proce
dures because the program is automatically skip loaded by the breakpoint debug
ger. However. breakpoint debugging does require one extra processor in the net
work because the root processor is dedicated to running the debugger.

Clearing error flags

Ifeither iserver or idebug detect that the error flag is set immediately a program
begins to run. it is likely that the network contains more processors than you are
currently using. and that one or more of the unused processors has its error flag
set. The error flag may be randomly set when the transputer is powered up - it
is normally cleared by the bootstrap code.

The error flags of all the processors in a network can be cleared by running a net
work check program such as ispy. This ensures a clean network on which to load
the program. This generally only needs to be done once. after the system is first
turned on.

The ispy program is provided as part of the support software for some INMOS
iq systems products. These products are available separately through your local
INMOS distributor.

An alternative way of clearing all the error flags in the network is to load a dummy
program which is configured to use every processor in the network. In the act of
loading the dummy code the processor error flag is cleared.

Parity-checked memory

In system that include some processors which have external memory with parity
checking (e.g. systems built with the T426) it is necessary to initialize the contents
of memory before the application code is run. This is because a read from un-ini
tialized memory could cause a parity error to be reported.

Normally. when not breakpoint debugging. the contents of memory are initialized
by the bootstrap loader code. This is controlled by the collector CM option (see
chapter 3 of the Too/set Reference Manual).

The debugger has two command line options which can be used for for memory
initialization - both of these are followed by a hexadecimal number representing
the pattern to be written to memory. The 'J' option writes the given pattern to all
of the data areas (stack, workspace, static, heap and vectorspace as appropriate)
in each processor. The 'K' option writes to the same areas of memory as the 'J'
option and also to the 'freespace' area.

In general, the 'J' option should be used for configured programs and the 'K' option
for non-configured programs (i.e. programs for a single processor produced using
the collector's 'T' option). The memory initialization is performed on all processors
in the network, not just T426s.

72TDS 34501 October 1992

8 Debugging transputer programs 127

These options can also be useful for seeing where data has been written to
memory. For example, they can be used to determine the size of stack or heap
used by a program when it runs, or to detect data written to unexpected areas of
memory. Note that the bootstrap phase of a program may use a small part of the
program data and freespace areas for its own purposes, consequently the pattern
of data may have some holes in it.

8.7.5 Running the debugger

The command idebug starts the host file server program, iserver, to load the
debugger onto the root transputer and provide it with host services. Different
options need to be given to idebug depending on the type of debugging being
done (e.g. breakpoint or post-mortem) and the details of the transputer network
being used (e.g. is the code to be debugged running on the root processor or is
that transputer available for the debugger. Some basic examples are given here.

Note that the transputer network is not reset or analyzed by default so, generally,
one of the iserver options must be specified for this (e.g. 'SR' or'SA'). This is true
even if the 'D' option is being used to run the debugger without using transputers
(because the processor running the debugger must be reset).

When doing breakpoint debugging, the 'SR' option is used to cause the iserver
to reset the transputer network and the 'B' option to specify which link from the root
transputer is connected to the processors running the application code - for
example:

idebug -sr -b 2 program.btl (UNIX)
idebug Isr Ib 2 program.btl (MS-DOS and VMS)

As another example, when using the debugger in post-mortem mode to debug a
program which does not use the root transputer, the 'SA' option would be used to
make the server put the network into Analyse mode with the 'T' option to specify
the link from the root processor to the transputer running the program to be
debugged:

idebug -sa -t 2 program.btl (UNIX)
idebug /sa It 2 program.btl (MS-DOS and VMS)

Finally, when debugging a program running on the root transputer in post-mortem
mode, the idump command is first used to create a file containing a dump of the
transputer's memory and then idebug is run with the 'R' option to specify the core
dump filename - for example:

idump core.dmp '100000

idebug -r core.dmp program.btl (UNIX)
idebug /r core.dmp program.btl (MS-DOS and VMS)

Complete details ofwhich options to use in different circumstances are given in the
Toolset Reference Manual, chapter 4.

72 TDS 345 01 October 1992

128 8.4 Debugging configured programs

8.7.6 Interactive mode functions and commands

Several symbolic debugging functions and monitor page commands are only
available in interactive mode. The commands available are summarized below.

Symbolic functions

I TOGGLE BREAK I Set or clear a breakpoint on the current line.

I RESUME I Restart a process stopped at a breakpoint.

I CONTINUE FROM I Restart a stopped process from the current line.

IMODIFY I Change the value of a variable in memory.

Monitor page commands

[!] Breakpoint menu.

o Execute program.

[!] Show debugging messages.

@] Update register display.

~ Write to memory.

8.7.7 Breakpoints

Breakpoints can be set, deared, and listed using monitor page commands, and
set/cleared using symbolic functions.

Breakpoints can be set at any point in a process running on any processor. At each
breakpoint, or on program error, the process pauses and the source code may be
displayed.

Note: When a process is stopped at a breakpoint or by one of the debugging func
tions (e.g. debug_stop) other parallel processes in the program continue to run.
A side effect of pausing is that the debugger suspends iserver communications
in order to preserve the debugger's screen display.

Breakpoints can be set at code entry points, or on any line of source code. Vari
ables within scope at the breakpoint can be modified and the process restarted.
Breakpoints can also be set at the monitor page but care should be taken not to
set breakpoints at addresses that do not correspond to the start of a source code
statement, otherwise the behavior is undefined.

Setting breakpoints at symbolic level is the recommended method.

8.8 Program termination

Program termination is signalled to the debugger by the termination of iserver.
This is performed automatically by the C and FORTRAN runtime systems, and

72 TOS 34501 October 1992

8 Debugging transputer programs 129

must be done explicitly by the user in occam code. If the program contains inde
pendently executing processes which do not require communication with the
server the debugger may be resumed to interact with these processes.

To run or debug the program again it must be reloaded onto the transputer using
iserver, or idebug in breakpoint mode.

8.9 Symbolic facilities

Symbolic debugging is debugging at source code level using the symbols defined
in the program for variables, constants and channels. Features provided in sym
bolic debugging include the examination of source code, the inspection of vari
ables and channels, and the backtracing of procedure calls. A number of special
breakpoint functions are available if the debugger is run in breakpoint mode.

Source level debugging is accessed through symbolic functions mapped to spe
cific keyboard function keys (e.g. I INSPECT I) by an 'ITERM' file. Keyboard layouts
for specific terminal types can be found in the Delivery Manual that accompanies
this release. Alternatively, the comments in the ITERM file can be read to find the
mapping of functions to keys.

Help screen

A help page can be displayed by pressing either [I] or I HELP I, this displays the
following information:

idebug Symbolic Help Summary
**** **** **** **** ** ****** *** *

1-INSPECT 2-CHAN 3-TOP 4-RETRACE 5-RELOC 6-INFO 7-MOD 8-RESUME 9-MONITOR O-BACK

The above list summarises the commonly used functions available in symbolic
mode. For a complete list of all symbolic functions available please refer to
the idebug documentation. The mapping of a symbolic function to a particular
key may be found in the file defined by the ITERM environment variable.

INSPECT - Display the type and value of a variable
CHANNEL - Locate the proces s waiting on a channel
TOP - Locate back to the error or last source code location
RETRACE - Undo a BACKTRACE
RELOCATE - Locate back to the last location line
INFO - Display process information (eg. Iptr, Wdesc, process name)
MODIFY - Change the value of a variable in memory
RESUME - Resume a process stopped at a breakpoint
MONITOR - Change back to the Monitor page
BACKTRACE - Locate to the calling function or procedure
HELP or? - This help summary

======================== Hit any key to continue ~=======================

The main symbolic debugging activities and the functions that are used to access
them are described in the following sections.

72TDS 345 01 October 1992

130 8.4 Debugging configured programs

8.9.1 Locating to source code

Locating to the source code for a particular process is a crucial procedure in the
debugging process on which other operations depend. For each required location
the debugger must be given a memory address which it uses to locate to the
source. When the required code is located, symbolic functions can be used to
browse the code and inspect variables. Where the source code is unavailable, for
example, libraries supplied as object code with minimal debug information, the line
containing the library call is located to instead.

When first started in post-mortem mode, the debugger determines the address of
the last instruction executed, which it uses to automatically locate to the relevant
source code. Subsequently for each new point to locate to in the code the debug
ger requires a new address which can be supplied by the programmer.

Process addresses can be determined using the monitor page [BJ, [!], and[g
commands that display the processes waiting on the run queues, the timer
queues, and the transputer links. To locate to a process displayed by one of these
commands, use the~ command. Code corresponding to any memory address
can be located using the monitor page~ command.

Certain addresses are already known to the debugger and can be located to using
symbolic functions without specifying the address or switching to monitor page
commands. Many of the common operations used during source code debugging
can be performed directly with symbolic functions. They include relocating to the
previous location, locating to the original error, and locating to a process waiting
on a channel.

The symbolic functions that can be used directly for locating to specific locations
and sections of source code are listed below.

I RELOCATE I Locate back to the last location 'line.

~ Locate back to the error or last source code location.

ICHANNEL I Locate to the process waiting on a channel.

The ICHANNEL Ifunction is described more fully in section 8.9.4.

Other functions which locate to specific sections ofcode are theI BACKTRACE Iand
IRETRACE Ifunctions. These are used to trace subprogram calls and do not require
a specified address. The functions are described in section 8.9.4.

A strategy for locating processes in multi-process programs is presented in sec
tion 8.11.

8.9.2 Browsing source code

Several functions are available for browsing source files once they have been
located. They include functions for navigating files, changing to included or new
files, and string searching. The functions are listed below.

72 TDS 345 01 October 1992

8 Debugging transputer programs 131

TOP OF FILE ,

END OF FILE ,
GOTO LINE ,

SEARCH I

ENTER FILE'

EXIT FILE ,

, CHANGE FILE'

Go to the first line.

Go to the last line.

Go to a specified line.

Search for a specified string.

Enter an included source file.

Exit an included source file back to the enclosing source
file.

Display a different source file.

8.9.3 Inspecting source code and variables

The values of constants, variables, parameters, arrays, and channels can be
inspected at any point in the code. A special inspect function for channels allows
the debugger to locate to the process waiting at the end of the channel. Symbols
to be inspected must be in the scope of the source line last located to.

'INSPECT'

I CHANNEL'

I TOGGLE HEX'

I GET ADDRESS I

Display the type and value of a source code symbol.

Locate to the process waiting on a channel.

Enables/disables Hex-oriented display of constants and
variables. Selects the display of source code symbols in
hexadecimal form for C and FORTRAN.

Displays the start address of the sequence of transputer
instructions corresponding to the selected source line.

Displays low-level information about the selected process.

8.9.4 Jumping down channels

The ICHANNEL' function can be used to locate to a process waiting on a channel.
This is known as 'jumping down' a channel and works for channels on the same
processor (internal or soft channels) or channels assigned in the configuration to
transputer links (external or hard channels which connect processes on different
processors together). It cannot be used to jump down software virtual links pro
vided by the configurer. Debugging can then continue at the waiting process. If no
process is waiting on a channel the channel is reported as 'Empty'.

8.9.5 Tracing procedure calls

Two functions assist in the tracing of procedure and function calls. They can be
used even if the source of the called routine is not present, for example, libraries

72 TDS 345 01 October 1992

132 8.4 Debugging configured programs

supplied as object code with minimal debug information. In this case the line con
taining the function call is displayed rather than the library code itself. Where pro
cedures are nested, successive backtrace operations will locate to the original call.
Variables and other symbols can be inspected at any stage. The two functions are
listed below.

IBACKTRACE I
I RETRACE 1

Locate to the calling procedure or function.

Undo a IBACKTRACE I.

8.9.6 Modifying variables

The I MODIFY Ifundion allows variables to be changed in transputer memory and
the program continued with the new values. For C and FORTRAN it supports the
same expression language as I INSPECT I. For further details see chapter 4 in the
Toolset Reference Manual.

8.9.7 Breakpointing

Symbolic functions are provided for setting and clearing breakpoints, for modifying
the value of a variable, and for continuing the program.

TOGGLE BREAK 1 Set or clear a breakpoint on the current line.

RESUME I Restart a process stopped at a breakpoint.

CONTINUE FROM 1 Restart a stopped process from the current line.

INTERRUPT I

I MODIFY I

Force the debugger into the monitor page (without neces
sarily stopping the program).

Change the value of a variable in memory.

8.9.8 Miscellaneous functions

The following extra functions are available at symbolic level:

I MONITOR I
I FINISH I

Change to the monitor page.

Quit the debugger.

8.10 Monitor page

The debugger monitor page is a low level debugging environment which gives
direct access to machine level data. It allows memory to be viewed and disas
sembled and gives access to information about the processor's activity through
the display oferror flag status and pointers to process queues. Specific debugging

72TOS 34501 October 1992

8 Debugging transputer programs 13S

operations are selected by single letter commands typed after the 'Option'
prompt.

8.10.1 Startup display

When first started in interactive mode. or in post-mortem mode with an invalid Iptr
or Wdesc (see below). the debugger enters the monitor page environment and
displays information such as the addresses of instruction and workspace pointers.
status oferror flags. and information about the processor run queues. The memory
map is also displayed.

If an Iptr or Wdesc is invalid at startup it is indicated by an asterisk (,*'). A double
asterisk ('**') is used to indicate an Iptr or Wdesc which is outside the defined
memory on a processor (i.e. beyond the 'freespace').

The monitor page display differs slightly between post-mortem and breakpoint
modes. In post-mortem mode the display includes the saved pointers for the low
priority process if the processor was running at high priority when analyzed; in
breakpoint mode the display does not include these pointers but does include the
contents of the registers Areg. Breg. and Creg. if known. At startup in breakpoint
mode. no machine pointers or register values are available (the program has not
yet started) and so no values are displayed.

A typical startup display is shown in Figure 8.3.

Toolset Debugger : V2.05.00 Processor 0 "" (T426)

Processor State Memory map (Postmortem Mode)
rptr ,8000010C * Configuration code '80000010 - ,8000014F (224)
Wdesc NotProcess Stack .80000150 - ,800008BF (1904)
Error Clear Program code .800008CO - '80004513 (16K)
Halt On Error Set Static area '80004514 - ,80004E21 (2228)
Fptr1 (low Empty Configuration code ,80004E28 - ,80004FE1 (448)
Bptr1 queue) Freespace .80004FE8 - .800FFFFF (1005K)
FptrO (high Empty
BptrO queue) Total memory usage 23912 bytes (24K)
Tptr1 (timer Empty
TptrO queues) Empty On-chip memory (4K) .80000000 - ,80000FFF
Clock1 (low) ,000C2DD6 MemStart '80000010
ClockO (high) ,030B151C
ParityError Hard 1011 Debugger has enough memory for 283 processors
ParityAddr ,80005DFO

Last instruction was : in

Option (? for help) (A,C,D,E,F,G,H,r,K,L,M,N,O,P,Q,R,T,V,X,?)

Figure 8.3 Example post-mortem startup display for a T426 processor

Items displayed on the startup page and their meanings are summarized in
table 8.3. Most of the data displayed is common to all transputer types. Where the
display differs for specific processor types and debugging modes, this is indicated
in the table.

72TDS 34501 october 1992

134 8.4 Debugging configured programs

Item displayed Description
Iptr Instruction pointer (address of the last instruction

executed).

Wdesc Process descriptor (process priority and workspace
pointer).

IptrIntSavet Saved low priority instruction pointer. if applicable.
WdesclntSavet Saved low priority process descriptor. if applicable.
A Register:t: Contents of A register. if known.
B Register:t: Contents of B register. if known.

C Register:t: Contents of C register. if known.

Error Status of transputer error flag.

FPU Error Status of FPU error flag (T80x series only).
Halt On Error Status of halt on error flag.

Fptrl Front pointer to low priority process queue.
Bptrl Back pointer to low priority process queue.
FptrO Front pointer to high priority process queue.
BptrO Back pointer to high priority process queue.

Tptrl Pointer to low priority timer queue.
TptrO Pointer to high priority timer queue.

Clockl Value of low priority transputer clock.

ClockO Value of high priority transputer clock.
ParityErrort Status of parity error register. if applicable.
ParityAddrt Address of parity error. if applicable.

t Not available in breakpoint mode.

:t: Not available in post-mortem mode. Not known to the debugger in break-
point mode on processors with no hardware support for breakpointing.

Table 8.3 Data displayed at the monitor page

Process Workspace or Stack

A process workspace (or stack) consists of a vector ofwords in memory. It is used
to hold local variables of the process. The workspace is organized as a falling
stack. with 'end of stack' addressing; that is the local variables of a process are
addressed as positive offset from the workspace pointer (Wptr).

Process Descriptors

Inorder to identify a process completely, it is necessary to know both its workspace
pointer Wptr (in which the byte selector is always 0), and its priority (which is 0 for
high priority and 1 for low priority). A process descriptor, Wdesc, is the sum of the
process's workspace pointer, Wptr, and its priority.

72 TDS 345 01 October 1992

8 Debugging transputer programs 135

Process pointers

Iptr points to the last instruction executed and Wdesc contains the process des
criptor. The saved low priority Iptr and Wdesc are also displayed if the processor
was running a high priority process when it was halted. An asterisk placed next to
either an Iptr or Wdesc indicates an invalid memory location for the process. A
double asterisk indicates that the address is outside the defined memory map of
the processor. A Wdesc value of 'NotProcess' indicates that no process was
executing on the processor when it halted

Practical notes:

• IfWdesc contains the value 'MemStart' it is likely that the Analyse signal
has been asserted more than once on the network. This can occur on
transputer boards where the subsystem signal is asserted on analyze, as
on the IMS 8004. For further guidance on the use of such boards refer to
chapter 4 in the Toolset Reference Manual.

• IfWdesc contains the word 'NotProcess' it means that there were no run
nable processes at that instant on the transputer (check timer and external
links for any waiting processes) - this may also occur in the presence of
deadlock.

• IfWdesclntSave contains the word 'NotProcess' it means that a low prior
ity process was not interrupted when the high priority process started run
ning.

Fptr and Bptr point to the process run queues, which hold information about pro
cesses awaiting execution. The suffix 0 indicates the high priority queue and the
suffix 1 indicates the low priority queue.

If the front and back pointers are the same then only one process is waiting; if there
are no processes waiting the pointers have no value and the queue is shown as
'Empty'.

TptrO and Tptr1 are pointers to the high and low priority timer queues respectively.

Registers

In breakpoint mode only, the contents of the transputer registers Areg, Breg, and
Creg are displayed for those processors which have built in instructions for break
point handling (see table 8.2). Values displayed are those which were current
when the process stopped.

Error flags

Two flags are displayed for all processors: Error and HaltOnError. The FPError
flag is also displayed for transputers with an integral floating point unit (IMS T80x
series).

72 TDS 34501 October 1992

136 8.4 Deb~gging configured programs

Clocks

ClockO and Clock1 display the values of the high and lowpriority clocks when the
process was stopped. In breakpoint mode the clock values, queue pointers and
link information can be updated using the monitor page @] command.

Parity errors

ParityError and ParityAddr are only displayed for a T426 processor in post-mar
tem mode. ParityError is the state of the ParityErrorReg and can contain one of
the following:

Soft xxxx A soft parity error has occurred

Hard xxxx A hard parity error has occurred

The value xxxx shows the byte selector bits of the error registers; the value
is in binary with byte 3 on the left through to byte 0 on the right. Thus, the value
1011 would show that bytes 3,1, and 0 are in error.

NollnMem The memory in a dump file does not include the parity registers

Clear No parity error has occurred

ParityAddr shows the state of the ParityErrorAddressReg and can contain one
of the following:

#hhhhhhhh Word address, in hexadecimal, of location where error occurred

NollnMem The memory in a dump file does not include the parity registers

Undefined No parity error has occurred

Memory map

The memory map display is included on the standard startup display - this is the
same memory map as displayed by the monitor page~ command. Any or all of
the following memory segments may be displayed, depending on the application
program and its configuration:

Runtime kernel
Reserved memory
Configuration code
Stack (Workspace)
Program code
Vectorspace
Static area
Heap area
Configuration code
Freespace

72 TOS 34501 October 1992

8 Debugging transputer programs 137

Postmortem Mode

Interactive Mode

When the memory map is displayed, the mode that the debugger is running in is
shown. This will be one of:

When interactively debugging a program.

When debugging a program in post-mortem
mode.

Interactive Postmortem When post-mortem debugging a program
which was previously debugged interactively.

Dummy Session When the debugger is started with the D com
mand line option.

8.10.2 Monitor page commands

Most monitor page commands are single-letters that are typed at the monitor page
Option prompt. A few commands are mapped onto specific function keys. The
commands that support breakpoint debugging are only available when the debug
ger is run in interactive mode.

The main monitor page commands allow you to disassemble and display trans
puter memory, locate and debug processes, and examine the network processor
by processor.

The main commands for common debugging operations are introduced in the fol
lowing sections. Full details of all the commands can be found in chapter 4 of the
Toolset Reference Manual.

Examining memory

Specific segments oftransputer memory can be displayed in hexadecimal, ASCII,
any high level language type, or disassembled into transputer instructions. The
segment of memory to be displayed is specified by a starting address. A map of
the transputer's memory can be displayed giving the positions of code and work
space. Commands for examining transputer memory are summarized below.

Display memory in ASCII.

Disassemble into transputer instructions.

Display memory in hexadecimal.

Display memory in selected data type.

Memory map.

Locating processes

Locating to code for specific processes is one of the major functions available
through the monitor page. The commands available allow processes other than

72TDS 345 01 October 1992

138 8.4 Debugging configured programs

the stopped or current process to be located and examined anywhere on the net
work. Processes can be located on the current processor by examining run
queues, and on other processors by jumping down transputer links.

Four commands are used, three to display waiting processes and one to jump to
the selected code of a process displayed by the other three.

Display processes waiting on Run queues.

Display processes waiting on Timer queues.

Display processes waiting on transputer Links.

Display processes waiting on software virtual links.

Goto symbolic debugging for the selected process.

These commands can be used to trace all processes on a network and determine
the cause of program failure. The method is explained in more detail in sec
tion 8.11.

Specifying processes

The @] command allows a specific process to be selected for symbolic debug
ging, providing the address is known.

Specify a process for·symbolic debugging.

This command is useful for switching directly to symbolic debugging for a process
whose instruction pointer and process descriptor you have already noted, ear1ier
in the debug session.

Selecting processes

The IT] command enables a source file to be selected for symbolic display using
the filename of the object module produced for it.

Select a source file to be displayed.

This option enables symbolic locating (for setting breakpoints etc.) without need
ing to know Iptr and Wdesc process details (as the @] and @] commands do).

Other processors

Two commands and two cursor keys allow other processors to be selected.

72 TDS 345 01

Go to next halted processor.

Go to specified processor.

Go to the next lowest numbered processor.

October 1992

8 Debugging transputer programs 139

[E Go to the next highest numbered processor.

The sequence of processors used by the [!] and cursor key commands is an
internal sequence read by the debugger. Processor numbers corresponding to vis
ible names in the configuration file can be determined by using the [K] command.

Breakpoint commands

The following commands support breakpointing. To use these commands the
debugger must be run with the 'B' command line option.

[[] Breakpoint menu.

CD or I RESUME Jump into and run application program.

~ Show debugging messages and prompts menu.

@] Update processor status display.

~ Write value to memory.

Changing to post-mortem debugging

When a program crashes during interactive debugging you are able to change to
post-mortem debugging using the following command:

m Postmortem debug current breakpoint session.

8.11 Locating processes

Most transputer programs consist of several processes running in parallel, either
on the same transputer or on separate processors connected by their INMOS
links.

If a program error halts the transputer then the debugger automatically locates to
the stopped process, which can then be examined directly. If the program runs
incorrectly but does not halt the processor, a good approach is to locate to and
examine each process in turn.

There may be many processes running on the transputer when it is interrupted
from the keyboard, or the idump tool is run to create a dump file for debugging.
Each process exists in one of a number of possible states:

• Not yet started.

• Running on the processor.

• Waiting on a process execution queue (Run queue).

• Waiting on a timer queue.

• Waiting for communication from another process on the same processor.

• Waiting for communication on a transputer link (Link information).

• Interrupted by a high priority process.

• Already stopped or terminated.

72TDS 345 01 October 1992

140 8.4 Debugging configured programs

8.11.1 Running on the processor

One, and only one, process may execute on the transputer at any instant. The
debugger will automatically locate to this process (if there was one) when the
debugger is executed. All other processes are either waiting, stopped, or not yet
started.

8.11.2 Waiting on a run queue

Processes on the run queues (i.e. waiting to be executed) can be located by first
using the monitor page [B] command to display the list of waiting processes. A
process can be selected from the list by pressing @] (for 'Goto process'), moving
the cursor to the appropriate address, and then pressing I RETURN I. Processes
can also be located to by specifying the displayed Iptr and Wdesc with the @]
command.

The values displayed with the [B] command can be used to determine the overall
status of run queues. If no processes are waiting then the content of the queue is
shown as 'Empty'. If pointer addresses are displayed then there are processes
waiting; if the front and back pointers have the same value then there is only one
process waiting.

8.11.3 Waiting on a timer queue

Processes waiting for a specified time are placed on the high and low priority timer
queues. These are similar to the run queues except that they are controlled by the
transputer clocks.

In a similar way to processes on the Run queues, processes on the timer queues
can be located by using the monitor page [!] command to display a list of pro-
cesses and then using the @] command, or by specifying the process address.
Pointers to the timer queues indicate overall queue status in a similar way to the
run queues.

8.11.4 Waiting for communication on a link

Processes waiting for a hardware communication (input or output on a transputer
link, or an input on the Event pin) can be located by using the monitor page IT]
command to display a list ofwaiting processes, and then using the @] command
to locate to the process. Links where no processes are waiting are shown as
'Empty'.

At most 9 processes can be waiting for a hardware communication, two for each
of the four links and one on the Event pin.

See section 8.4.1 for information on the restrictions on locating down hard chan
nels.

72TOS 34501 OCtober 1992

8 Debugging transputer programs 141

8.11.5 Waiting for communication on a software virtual link

Processes waiting for a communication on a software virtual link (as provided by
the configurer) can be located by using the monitor pagern command to display
a list of waiting processes, and then using the @] command to locate to the pro
cess. Virtual links where no processes are waiting are shown as 'Empty'.

This is the preferred method for locating processes waiting on external commu
nications when software virtual links are present.

8.11.6 Waiting for communication on a channel

Processes waiting for a communication on a channel can be located from source
level using the ICHANNEL Ifunction. This function works for both internal (or soft)
channels and external (or hard) channels (channels mapped onto processor
links).

Only one process can be waiting on achannel. If no process is waiting, the channel
is shown as 'Empty'.

8.11.7 Interrupted by a high priority process

A low priority process may have been interrupted by a high priority process. Such
a process may be selected using the@] or@] commands and the values stored
in the WdesclntSave location.

8.11.8 Processes terminated or not started

Processes which have stopped executing, or not yet started, do not have process
descriptors and so they cannot be examined by the debugger. If the currently run
ning process and all the waiting processes have been found (not forgetting all
those processes waiting on all the internal channels) then any processes still unac
counted for must either have already finished or failed to start.

8.11.9 Locating to procedures and functions

When a procedure is called, the workspace pointer is moved. If the debugger
locates inside any code ofdefined scope (such as a procedure) then only local vari
ables, and variables declared globally, are in scope and available for inspection.

To inspect variables or channels not in scope within the procedure or function, use
I BACKTRACE I to locate to a position where the desired variable or channel is in
scope. To relocate back into the procedure or function use I RETRACE Ito undo
each backtrace, or I TOP Ito return to the initial location.

8.12 Debugging support library

Three routines are provided in the libraries to assistwith debugging. These provide
the functions stop, assert, and message. The routines have different names for

72 TOS 34501 october 1992

142 8.4 Debugging configured programs

each language and are described in more detail in the appropriate Language and
libraries manuals. Table 8.4 summarizes the routines for each language. The
descriptions and examples below use the C versions of these functions.

Routine Description

debug_assert C

DEBUG. ASSERT occam If the parameter evaluates to false then stop
the process and inform the debugger.

DEBUG ASSERT FORTRAN

debug_stop C

DEBUG. STOP occam Stop the process and inform the debugger.
DEBUG_STOP FORTRAN

debug_message C

DEBUG.MESSAGE occam Insert a debugging message in the program.
DEBUG MESSAGE FORTRAN

Table 8.4 Debug support functions

The stop and assert routines are used to stop a process, the latter on the failure
to meet a specified condition; such events are treated as a program error by the
debugger. The message is used to insert messages that will only be displayed
when the program is run under the interactive debugger.

For C and FORTRAN the procedures are included in the standard library that is
incorporated at link time and are directly accessible from the program without fur-
ther action by the programmer. For occam programs, the library debug. lib
must be referenced with a 'USE in the source code and also included as an input
to the linker.

debug assert () and debug stop () allow a process to be stopped at any
point inthe code, where it can then be debugged using the symbolic functions and
Monitor page commands. debug stop () always stops the process whereas
debu9_assert () only stops theprocess if the parameter evaluates to false.

debug message () is used to insert debugging messages into the code. Mes
sages are relayed back to the terminal from any point in the program, even from
code running on distant processors of a network. It can be used to monitor the
activity ofoutlying processors which are not directly connected to the host. The dis
play of debug messages at the terminal is controlled by an option on the Monitor
page Breakpoint Menu (the default is to display them).

Note: Only the first 80 characters of a message will be displayed.

Example

The use of the debug support functions is illustrated in the example below. There
is an occam version with a similar structure. Both examples may be found in the
debugger examples directory.

72 TDS 345 01 October 1992

8 Debugging transputer programs

, .
•
• Debugger example: debug. c
•

143

•
•
•

Example of debug support functions when used with
and without the debugger.
(see also debugger exampl~ file abort.c)

•......................................./

'include <stdio.h>
'include <stdlib.h>
'include <misc.h>

int
main (void)

/* 0 will cause assertion to fail */
int x = 0;

printf ("Program started\n") ;

debug_message ("A message only within the debugger");

printf ("Program being halted by debug_assert()\n");
debug_assert (x);

printf ("Program being halted by debug_stop()\n");
debug_stop ();

exit (EXIT_SUCCESS);

In this examp~e~ if ~ ~s 1 debug assert evaluates to true and the program runs
until it encounters debug stop~lfx is 0 (as in the example) debug assert eval
uates to false and the "process stops before it reaches debug stop. Code
stopped by debl!g assert and debug stop may be resumed from the line fol
lowing the call of the debug function using the I CONTINUE FROM Ikey.

8.12.1 Action when the debugger is not available

If the debugger is not available on the system the debug library procedures have
the following actions:

debug_assert If the parameter evaluates to false then stop the process
(also stops the processor if configured in HALT mode).

debug_stop Stop the process (also stops the processor if configured in
HALT mode).

debug_message No action.

72 TDS 345 01 October 1992

144

8.13 Debugging with isim

8.4 Debugging configured programs

The T425 simulator i.a provides a single processor interactive simulation of a
program running on an IMS T425 transputer, on a boot from link transputer board
connected to a host computer through the host file server i ••rver. The interac
tive environment provides a machine level (non-symbolic) environment, similar to
the debugger monitor page, for debugging programs and monitoring program
execution.

The simulatorallows any single processor program to be run and analyzed without
a transputer board. All the component parts of a program to be simulated, must
be compiled for the T425 transputer type (or compatible class - see appendix B
of the Toolset Reference Manual.).

Note: The simulator can only be used to simulate single transputer programs.

8.13.1 Command interface

The simulator has a single command interface which corresponds to the debugger
monitor page. Most commands are single letter commands and can be executed
with a single key press. For a list ofcommands see chapter 14 in the Toolset Refer
ence Manual.

8.13.2 Using the simUlator

The simulator can be used in two ways:

• To debug programs by inspection of the transputer and memory, in the
same way as with the debugger. Registers, memory, and machine state
can be examined directly at the monitor page.

• To monitor the execution of programs using machine level single step
execution and the setting of break points at specific memory locations.
Code can be executed by stepping single transputer instructions.

8.13.3 Program execution monitoring

The simulator provides a number of functions that can be used interactively to
monitor and control the behavior of a program. These are:

• Breakpoints

• Single step execution of a program

Breakpoints

Breakpoints can be set, displayed, and cancelled using the 'B' command to display
the Breakpoint Options Page.

72 TOS 34501 October 1992

8 Debugging transputer programs 145

Single step execution

A program can be stepped a single transputer instruction at a time using the's'
command.

8.13.4 Core dump file

isim may be used to produce a core dump file that can be read by the debugger
(as if the code had been executed on a real transputer and the memory dumped
using the idump tool).

8.14 Hints and further guidance

This section gives some further guidance on some specific points related to use
of the debugger.

8.14.1 Invalid pointers

The debuggerchecks process instruction pointers (Iptr) and process descriptors
(Wdesc) for the correct code and data limits. Invalid pointers are flagged by an
asterisk (*) on the screen. Invalid pointers outside the processor's memory are
flagged with a double asterisk C**').

Invalid pointers can indicate a major problem with the program. They may also be
caused by specifying an incorrect dump file.

8.14.2 Examining and disassembling memory

Within the monitorpage environment, the debugger keeps a record of two memory
addresses; the start address of the last disassembly, used as the default by the[[]
command, and the address of the last region of memory to be displayed, used by
the 0,~ and DJ commands.

This allows you to switch easily between code disassembly and memory display.
You can, for example, disassemble a portion of memory using the [[] command,
examine its workspace in hex using the~ command, and then return to the origi
nal address by using the [[] command once again.

8.14.3 Scope rules

The debugger can only display variables that are in scope at its current location
point in the source code.

8.14.4 Inspecting soft configuration channels

Soft channels declared at the configuration level (i.e. those internal to a processor
which are not placed on its external links) may be inspected from the monitor page

72TDS 345 01 october 1992

146 8.4 Debugging configured programs

by knowing that they are located near the beginning of the Configuration code area
which appears after the userProgram code area (as displayed by the monitor page
Memory map command).

8.14.5 Locating to IF, ALT and CASE in occam

IF and ALT constructs with no TRUE guards, and CASE constructs where no selec
tions are matched, stop the program as though a STOP statement had been
encountered. In cases like these there is no obvious statement to locate to and the
debugger locates instead to the start of the construct.

When using these constructs it is good practice to always define the default case.
The debugger can then locate directly to the STOP statement where the error
occurred.

8.14.6 Analyzing deadlock

Deadlocks that occur in multitransputer networks can be debugged by using the
Monitor page 'L' command to examine processes on the transputer links. Dead
locks in single transputer programs are more difficult to debug because there is
no way to enter the program; there are no active processes from which to inspect
channels, and no links to other transputers to provide an alternative entry point.

In practice, it is often obvious to the programmer which channel or channels are
causing deadlock, and a dummy process can be added to the program to provide
an entry point for the debugger. This is illustrated below using occam code for
brevity; similar programs could be written in C or FORTRAN.

72 TDS 345 01 October 1992

8 Debugging transputer programs

Consider the following code which creates a deadlock:

Debugger example: deadlock.occ

Example of deadlock.

'INCLUDE "hostio.inc"
'USE "hostio.lib"

PROC deadlock.entry (CHAN OF SP fs, ts, [lINT
free. memory)

PROC deadlock ()
CHAN OF INT c :
PAR

SEQ
c 99
c 101

INT x
SEQ

c ? x
-- <== Missing second input

SEQ
deadlock ()
so.exit (fs, ts, sps.success)

147

The program can be debugged by adding a process that will remain idle (here,
waiting on a TIMER) while the program is debugged. An example of the type of
code that is required is illustrated below.

72TDS 345 01 October 1992

148 8.4 Debugging configured programs

Debugger example: deadfix. occ

Example of deadlock and how to provide
~ebugging support.

'INCLUDE "hostio.inc"
'USE "hostio.lib"
'USE "debug. lib"

PROC deadfix.entry (CHAN OF SP fs, ts, [lINT free.memory)

PROC deadlock. debug ()
CHAN OF INT c :
CHAN OF INT stopper :
PAR

DEBUG. TIMER (stopper)
SEQ

PAR
SEQ

c 99
c 101

-- Hook for debugger

INT x
SEQ

c ? x
-- <== Missing second input

stopper! 0 terminate debug. timer

SEQ
deadlock. debug ()
so.exit (fs, ts, sps.success)

The procedure DEBUG. TIMER is supplied in the occam debugging library. Similar
routines could be written for other languages, and the principle of operation is the
same - the process lies dormant on the processor's timer queue waiting for a time
as far into the future as the processor can provide. When the timeout expires, the
process places itselfback on the timerqueue. Such a process provides a hook into
the program for locating deadlocked processes because the process is always

72TDS 34501 October 1992

8 Debugging transputer programs 149

accessible to the debugger on the timer queue. By locating to it you can access
variables which are in scope at the point of its execution and thereby detect the
deadlock. In the modified program adeadlockstill forms in the procedure, but there
is now a way to enter the program.

To enter the program and inspect the deadlock, first invoke the Monitor page envi
ronment, and use the Monitor page 'T' command to inspect the transputer's timer
queue, on which there will be a process waiting. Use the 'G' command to go to that
waiting process, and the debugger will locate to the call of DEBUG. TIMER.

You can then use I INSPECT Ito examine the channel c where the program has
deadlocked, and which will therefore contain the process that is waiting for com
munication. Finally you can use ICHANNEL Ito jump to the deadlocked process.

The compiler does not insert this kind ofdebugging code automatically, for several
reasons. Firstly, it is the philosophy of the toolset that the runtime code should not
be needlessly altered. Secondly, most programs use many channels, and the
execution overheads and code size could become unacceptably large. Again for
the above example code this would be unimportant because the process con
sumes no CPU time, but this may not always be true. Lastly, it could be difficult to
distinguish the true deadlocked process from the many idle debug processes wait
ing on the timer queues.

8.15 Points to note when using the debugger

This section contains some extra information which may be of use when using the
debugger.

8.15.1 Abusing hard links

Current generation transputers permit unsynchronized transfer of messages on
external channels (links). This allows, for example, two 4-byte messages to be
sent and for them to be received as asingle a-byte message on the receiving trans
puter. This is not consistent with the communication of messages between pro
cesses on the same processor where the transfer of messages is synchronized.

When breakpoint debugging, external communications are handled by the debug
ger's virtual link system; this involves an internal transfer which will function incor
rectly if user code is relying on unsynchronized transfers. Unsynchronized data
transfer should not be used where breakpointing is used to debug a program. It
is bad practice anyway and will certainly cause the virtual link system (used by both
the debugger and the virtual-routing configurer) to crash.

8.15.2 Examining an active network (the network is volatile)

When a process stops at a breakpoint you should remember that all of the other
processes are still running (unless they hit a breakpoint, terminate etc.). This

72TDS 34501 October 1992

150 8.4 Debugging configured programs

means that data displayed by any of the monitor page commands that display pro
cess queues, etc. (e.g. [B], [!], [!] etc.) may change if they are re-displayed
(e.g. by using the same command again or the @], Update, command to update
the displayed information).

When in symbolic mode the same is true for channels which may appear empty
when first inspected only to change to a waiting process when inspected again.
The only way to effectively freeze all processes is to flip to post-mortem mode by
using the monitor page [!] (Enter Postmortem Mode) command. You should
remember that when you use this command that all processes that have hit a
breakpoint will not appear in the runtime queues. If this is a problem, you should
note the Iptr and Wdesc values of the processes and, when in post-mortem
mode, use the monitorpage@] (Select Process) command to locate to them sym-
bolically.

8.15.3 Using 'INSPECT Iwith channel communications

When debugging a program compiled for interactive debugging it should be
remembered that channel communication is achieved via library calls. As a conse
quence, the' INSPECT Ikey may display an Iptr relating to code in the debugging
kernel system rather than the Iptr of a user process waiting on the channel. This
may lead to several channel communications appearing to having the same pro
cess Iptr (the Wdesc will be valid and unique). In order to correctly establish the
Iptr of the process waiting at the other end, you should use the, CHANN~L Ikey
to locate to the process followed by the' INFO Ikey to obtain process details.

8.15.4 Debugging in the presence of software virtual links

When the configurer creates software virtual links it places additional processes
onto the processor in order to provide the virtual link services. These processes
will be displayed by the debugger - it displays all processes it finds on the run
queue, links etc. A consequence of this is that, occasionally, a process will be dis
played which forms part of the software virtual link system. It is not possible locate
to these processes (as they are is not part of the program being debugged). These
processes may be identified by noting the Iptr and Wdesc values and using the
~ command to search for a process with a code area which contains the Iptr
value, and a stack area which contains the Wdesc value. If the name of the process
is "%ROUTER [] " then it is a software virtual link process which you may not locate
to.

A similar problem occurs when attempting to locate to a process waiting on a trans
puter link which is used by the software virtual link system - the debugger will
complain that it cannot find a file with a name such as "vrdebXX. tco" (where xx
is a sequence of digits).

Another problem encountered with using software virtual links and idebug is that
low priority user processes are promoted, temporarily, to high priority when they

72 TDS 345 01 October 1992

8 Debugging transputer programs 151

communicate on software virtual links The debugger cannot tell if they were origi
nally at high or at low priority: it will locate to what it believes is a high priority pro
cess. In general, this is not a problem if you wish to inspect variables etc. If this
does present a problem and you know that a particular process is a low priority pro
cess, you should use the @] command and specify a low priority Wdesc when
prompted, by setting the least significant bit of the Wdesc value of the process (e.g.
%1234 becomes %1235).

In general, the preferred method for locating processes waiting on external com
munications when software virtual links are present is the Monitor page rn com
mand. If however, you know that a transputer link is not used for software virtual
routing, you should use the Monitor page [IJ command to locate to such pro-
cesses.

8.15.5 Selecting events from specific processors

The debugger provides no guarantee that debugging events, such as breakpoints
and debugging messages, from processes running on different processors are
presented in the same that order they occur in. Events on processors which are
closer, in terms of connectivity, to the root transputer (where the debugger is run
ning) are usually displayed before events on more distant processors.

If it is important that you encounter a debugging event on a specific processor
before events on other processors, you can usually achieve this by changing to
the processor of interest (using the monitor page~ command or left and right
cursor keys) before resuming via the IT] or I RESUME Icommand.

8.15.6 Minimal confidence check

A first level confidence check to perform with a program which is misbehaving is
to perform a 'compare memory' check using the monitor page @] command. This
will help to highlight any memory corruption problems which may occur due to
faulty memory or faulty program logic. If using occam, you can prevent out of
range accesses to memory by ensuring that no compiler checks have been dis
abled.

8.15.7 INTERRUPT key

The debugger can be diverted from the running program to return to the monitor
page by the use of the I INTERRUPT Ikey. However, problems can arise if the run-
ning program is simultaneously trying to read from the keyboard; the debugger is
then unable to intercept the interrupt key. (Sometimes it is possible to force the
interrupt to be recognized by repeating the key quickly.)

A similar problem arises when there are existing keystrokes buffered before the
interrupt key; if the application program does not read these buffered keystrokes
the debugger will never have a chance to see the interrupt key.

72 TDS 345 01 October 1992

152 8.4 Debugging configured programs

Note: The I INTERRUPT I key will disable all iserver requests to the application
until the debugger is directed to resume the application.

8.15.8 Program crashes

If the debugger detects that the program has aashed immediately after starting
program execution (i.e. after the rn, Jump into application, command), you
should use the post-mortem debug command, [!], to determine the cause. How
ever, if no error flags are set on the network that is running the program then it is
likely that an error flag is set on a transputer that is not in use. This may occur on
boards where the subsystem services are wired to propagate all error flags to the
root transputer.ln this instance you need to dear all the errorftags in the network
(see section 8.7.4).

8.15.9 Undetected program crashes

When operating in breakpoint mode and a program overwrites the debugging ker
nel or you have set a breakpoint in a high priority process on a processor without
hardware breakpoint support, the debugger canno~ fully recover and is unable to
indicate that the program has crashed. In this situation the debuggerfails to update
the screen other than to put the following message at the top of the screen when
it attempts to display the monitor Page:

Toolset Debugger : V2.05.00 Processor n "name" (Txxx)

In such instances you should use the host BREAK key in order to terminate the
debugger and restart the debugger using the command line 'N' option to post-mor
tem debug the session.

8.15.10 Debugger hangs when starting program

If the debugger hangs immediately after you have supplied the command line
arguments when starting execution of a program you have probably set a break
point in a configuration-level, high priority process on a processor without hard
ware breakpoint support.

8.15.11 Debugger hangs

If the debuggerhangs when attempting to flip to post-mortem mode using the mon
itor page[!] command, orwhen trying to quit, you should terminate the debugger
manually using the host BREAK key. If you were trying to switch to post-mortem
mode you should restart the debugger using the command line 'M' option to resume
debugging in post-mortem mode.

8.15.12 Catching concurrent processes with breakpoints

Sometimes a concurrent process is executing in a program (often in a loop) and
you would like to be able to control it better by using breakpoints. If the process

72 TOS 34501 October 1992

8 Debugging transputer programs 153

is communicating with other processes via channels, and you have set break
points in these other processes, then breakpoints can be set on a communication
and, when you hit that breakpoint, the channel can be jumped down to debug the
executing process.

However, if the process has entered a non-communicating loop oryou are not sure
where exactly it is in your program code, you must use a different approach. In
order to set a breakpoint, you should use the I INTERRUPT I key to return to the
monitor page and then, by using the [!] (Run queues) command and/or the [!]
(Timer queues) command, list the Iptrs and Wdescs of the processes currently
executing. (Often, this will indude the debugging kernel processes but these are
easy to detect because they are marked as kernel processes.)

Use the @] (Goto process) command to select the Iptr and Wdesc to locate
symbolically to the process. You can then set a breakpoint on that line, return to
the monitor page and resume the program using the[}] orl RESUME Icommand;
when the process hits the breakpoint you may continue to debug it. If there are no
processes on either the run or timerqueues and there are no external communica
tions, it means that your program has either deadlocked or terminated.

8.15.13 Phantom breakpoints

Because of the mechanism used for breakpoints on those transputers without
hardware breakpoint support (see table 8.2) it is possible for the output from the
INMOS compilers to contain code that fools the debugger into thinking it is a break
point (a phantom breakpoint). This happens when the code contains an empty
loop that does not terminate. The following code examples will generate phantom
breakpoints:

C FORTRAN occam
while (1){ DO WHILE TRUE WHILE TRUE

; END DO SKIP
}

for (; ;) { 100 GOTO 100
;

}

If you encounter a phantom breakpoint and you wish to continue execution, you
must set a breakpoint at the same address and then resume execution. To do this
use the I GET ADDRESS Ikey to obtain the start address of the empty loop when in
symbolic mode, change to the monitor page and use the Set Breakpoint option on
the Breakpoint menu to set a breakpoint at the loop address.

8.15.14 Breakpoint configuration considerations

When breakpoint debugging you should remember that the root transputer of a
network is used by the debugger for its own purposes. On some transputer

72TOS 345 01 October 1992

154 8.4 Debugging configured programs

motherboards with an built-in pipeline, the root transputer is normally booted down
link 0; subsequent transputers in the pipeline boot down link 1. This may (acciden
tally) be a problem if you simply take a network configuration which was not confi
gured with -breakpoint debugging in mind (e.g. a pipeline configuration) and
attempt to breakpoint debug it. The debugger will in effect, attempt to skip load it
onto the rest of the network; the program may load (if by chance the right link con
nections are available) but, if the boot link is different, it will not be able to talk to
the host (via iserver) when it executes.

Such a problem may easily be checked for by using the monitor page [I] com
mand when positioned on processor O. This will indicate whether the root trans
puter was booted from a different link to that specified in the configuration file.

When breakpoint debugging, the debugger will warn you if the boot link is different
from that expected for the root processor before the network is loaded.

8.15.15 Determining connectivity and memory sizes

In order to establish the connectivity and memory map range for each processor
in a program you should use the icollect 'p' option. Alternatively you may use
the debugger command line option 'D' (dummy debug).

8.15.16 Long source code lines

Source code lines longer than 500 characters cause the symbolic source code
browser to treat them as multiple lines and subsequently it will loose line synchro
nization; (Le. it displays incorrect line number information).

8.15.17 Resuming breakpoints on the transputer seterr instruction

If an attempt is made to resume from a breakpoint which is at the address of a set
err instruction, the debugger does not continue with the original (correct) Iptr (it
resumes with an Iptr within the kernel area). Because the debugger operates in
Halt-on-Error mode, the seterr instruction will halt the processor.

The effect ofthe incorrect Iptr is only apparent ifyou subsequently switch to post
mortem debugging whereupon the debugger will complain that it is unable to
locate to an Iptr within the kernel area. If this is a problem, you should note the
Iptr before resuming from the breakpoint.

Setting and resuming breakpoints on an occam STOP statement compiled in
HALT mode, will cause this problem.

8.15.18 Arrays as arguments to C functions

Because C requires a declaration of a parameter as array of type to be adjusted
to pointer to type the debugger must treat all array parameters as pointers. This

72TDS 34501 October 1992

8 Debugging transputer programs 155

means that it cannot automatically display the contents of an array passed as a
parameter.

In order to display the contents of arrays you should use specify the range of the
array to be displayed. This is illustrated in the following example.

void foo (int p[4]) {
debug_stop ();

The argument p will be treated as a pointer to int rather than an array of int by
the C compiler. Using the I INSPECT Ifunction on p will cause the address of p to
be displayed. In order to see the contents of the array, the inspect command should
be given an array range, for example: p [0 ; 3] .

8.15.19 Backtracing with concurrent C processes

idebug supports backtracing from a parallel process to the parent process (where
the parallel process was started via a C library call). However, for processes
started asynchronously via ProcRun, ProcRunHigh, or ProcRunLow, idebug
merely enables you to backtrace and does not allow operations such as inspection
of variables after a backtrace. This is because the parent process which started
the asynchronous processes may no longer exist, in which case inspection is
meaningless.

8.15.20 Errors generated by the full C library

Generally, the full C runtime library is able to detect when there is insufficient
memory for it to function correctly; in such instances it displays an error message
at startup.

In rare circumstances the library is able to detect that there is insufficient memory
but it does not have enough memory to display the startup error message. In such
instances, it sets the error flag and terminates execution. If a program sets the
error flag and the debugger is unable to backtrace when the last instruction
executed was seterr (error explicitly set), and the following error message is dis
played by the debugger then it is highly likely that insufficient memory is available
for either the static or the heap area:

Error: Not compiled with debugging enabled "libc.lib"

8.15.21 Errors generated by the reduced C library

Because the reduced C runtime library has no host to communicate with, if a run
time error occurs the reason for the error is not readily apparent. If a program sets
the error flag and the debugger is unable to backtrace when the last instruction
executed was seterr (error explicitly set), and the following error message is dis
played by the debugger then it is highly likely that insufficient memory is available
for either the static or the heap area:

Error: Not compiled with debugging enabled "libcred.lib"

72 TDS 345 01 October 1992

156 8.4 Debugging configured programs

8.15.22 Shifting by large or negative values

The shift instructions on current transputers take time proportional to the number
of places shifted - as this number is unsigned, negative values will be treated as
large positive values. Large shifts will cause current transputers to temporarily
'lock' for a numberofcycles equal to the numberofplaces shifted - on 32 bit trans
puters this can cause the device to hang-up for up to 232 cycles (approximately 31/2
minutes for a 20 MHz device).

Some languages, such as C, performs no runtime checks for invalid shift values
and so do not protect you against their consequences. Other languages, such as
occam, do perform such checks.

If the debugger, in post-mortem mode, locates to a source line containing a shift
operator and the error flag has not been set then it is likely that a shift by a large
value is taking place - this can be verified by using the I INSPECT Ikey to check
the shift count.

8.15.23 C compiler optimizations

The INMOS compilers perform some code optimizations. If an external variable
is optimized out from a module because it is never used then the debugger is
informed of this and is able to relay the information to the user.

However, for some optimizations the debugger is not informed and consequently
it may provide misleading information. The following code illustrates this:

int main (void){

int a = 0;
int b = 0;

while (1) {/* or 'for (;;)' */

/* following code optimized out by compiler
* as it can never be reached
*/

a =42;
b = • + 1;
a = b * b

In these cases the debugger may show the discrepancy in either of the following
ways:

1 If a function follows the optimized code, the debugger associates the
address of the optimized lines with the address of the start of the function.

72TDS 34501 October 1992

8 Debugging transputer programs 157

2 If no function follows the optimized code then the debugger indicates that
it is unable to find the address for any of the optimized lines.

8.16 C debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is run in interactive mode.

8.16.1 The example program

The example program facs . c calculates the sum of the squares of the first n fac
torials, using a rather inefficient algorithm. It has been structured this way for clarity
in process structure and to demonstrate parallel processing and debugging meth-
ods. The same program coded in occam is supplied with the occam 2 toolset.
The program incorporates five processes, each coded as a separate function. The
five processes in turn input n, calculate factorials, square the fadorials, sum the
squares, and output the result. The program is listed below.

/***************************************
*

Plumbing:

idebug (and parallel C) example based on similar program
in occam toolset.

Uses 5 processes to compute the sum of the squares of the
first N factorials using a rather inefficient algorithm.

- > feed -> facs -> square -> sum -> control <--> User I/O
I I

facs.cDebugger example:*
*
*
*
*
*
*
*
*
*
*
*
*
*
***************************************/

'include <stdio.h>
'include <stdlib.h>
'include <process.h>
'include <channel.h>

const double
const int

stop real = -1.0;
stop:integer = -1;

72TDS 34501 Odober 1992

158 8.4 Debugging configured programs

/* output a double down a channel */
void
ChanOutDouble (Channel *out, double value)

ChanOut (out, (void *) &value, sizeof (value»;

/* input a double from a channel */
double
ChanlnDouble (Channel *in)

double value;

Chanln (in, (void *) &value, sizeof (value»;
return value;

/* compute factorial */
double
factorial (int n)

double result;
int i;

result = 1.0;
for (i = 1; i <= n; ++i)

result result * i;
}
return result;

/* source stream of ints */
void
feed (Process *p, Channel *in, Channel *out)

int n, i;

(void) p; /* stop compiler usage warning */

n = Chanlnlnt (in);
for (i = 0; i < n; ++i) {

ChanOutlnt (out, i);
}
ChanOutlnt (out, stop_integer);

72 TDS 345 01 October 1992

8 Debugging transputer programs

/* generate stream of factorials */
void
facs (Process *p, Channel *in, Channel *out)

int X;
double fac;

159

(void) p; /* stop compiler usage warning */

X = Chanlnlnt (in);
while (x != stop integer) {

fac = factorial (x);
ChanOutDouble (out, fac);
x = Chanlnlnt (in);

}
ChanOutDouble (out, stop_real);

/* generate stream of squares */
void
square (Process *p, Channel *in, Channel *out)

double x, sq;

(void) p; /* stop compiler usage warning */

x = ChanlnDouble (in);
while (x != stop real)

sq = x *-x;
ChanOutDouble (out, sq);
x = ChanlnDouble (in);

}
ChanOutDouble (out, stop_real);

72 TDS 345 01 October 1992

160 8.4 Debugging configured programs

/* sua input */
void
SUID (Proc.ss *p, Channel *iD, ChaDDel *out)

clouble total, x ;

(void) p; /* stop compiler usage warning */

total = 0.0;
x = ChanlnDouhle (iD);
while (x != stop real)

total = total + x;
x = ChanlnDouble (in);

}
ChanOutDouble (out, total);

/* user interface and control */
void
control (Process *p, Channel *in, Channel *out)

double value;
int n;

(void) p; /* stop compiler usage warning */

printf ("Sum of the first n squares of factorials\n")

do
printf ("Please type n : ");

} while (scanf ("%d", 'n) != 1);
printf ("n = %d\n", n);
printf ("Calculating factorials ... ");

Chanoutlnt (out, n);
value = ChanlnDouble (in);

printf ("\nThe result was: %g\n", value);

72 TDS 34501 October 1992

8 Debugging transputer programs

Channel *
Checked ChanAlloc ()

Channel *chan;

if «chan = ChanAlloc (» = ROLL) {
fprintf (stderr, "ChanAlloc () failed\n");
exit (EXIT_FAILURE);

}
return chan;

Process *
Checked_ProcAlloc (void (*func) (), int sp, int nparam,

Channel *cl, Channel *c2)

Process *proc;

proc = ProcAlloc (func, sp, nparam, cl, c2);
if (proc = NULL) {

fprintf (stderr, "ProcAlloc () failed\n");
exit (EXIT_FAILURE);

}
return proc;

161

72TDS 345 01 October 1992

162 8.4 Debugging configured programs

int
main (void)

Channel *facs to square, *square to sum;
Channel *sum to control, *feed to facs;
Channel *control_to_feed; --

Process *p feed, *p facs, *p square;
Process *p:sum, *p_control; -

facs to square Checked ChanA1loc ();
square to sum Checked-ChanA1loc ();
sum to-control Checked-ChanA1loc ();
feed to facs Checked-ChanA1loc ();
control-to feed = Checked-ChanA1loc ();

p_feed = Checked ProcAlloc (feed, 0, 2,
control to feed, feed to facs);

p_facs = Checked ProcAlloc-(facs, 0, 2, -
feed to facs, facs to square);

p_square = Checked Prociiloc (square ,-0 , 2,
facs to square, square to sum);

p sum = Checked Prociiloc (sum, 0, 2, - -
- -square to sum, sum to control);

p control = Checked ProcA!loc (control, 0, 2,
- sum:to_control, control_to_feed);

ProcPar (p_feed, p_facs, p square, p sum,
- p_control, NULL);

exit (EXIT_SUCCESS);

8.16.2 Compiling and loading the example

The source of the program is provided in the toolset debugger examples subdi
rectory.ltshould be compiledfortransputerclass TA with debugging enabled, then
linked with the appropriate library files and made bootable using icollect with
the 'T' option to create single transputer bootable code.

32 bit 2 v

HOST~ root l----- T425
transputer

Figure 8.4 Hardware configuration for the example

72 TDS 34501 October 1992

8 Debugging transputer programs 163

The example is intended for running on a B008 board wired subs. See section 4.7
in the Toolset Reference Manual debugger chapter if your system is different.

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The 'I' option on the linker command line is optional but provides
useful information on the progress of the linking operation.

Command sequences are shown for UNIX-based and MS-DOSNMS-based tool
sets. Use the appropriate set of commands for your system.

UNIX:

ice facs.c -g -ta -0 facs.tax
ilink facs.tax -f cnonconf.lnk -ta -0 facs.cah -i
icollect facs.cah -t

MS-DOSNMS:

ice facs.c Ig Ita 10 facs.tax
ilink facs.tax If cnonconf.lnk Ita 10 facs.cah li
icollect facs.cah It

The program is loaded for breakpoint debugging by running idebug with in inter
active mode using one of the following commands:

idebug -sr -si -b2 facs.btl -c t425

idebug Isr Isi Ib2 facs.btl le t425

This command starts up the debugger and displays the Monitor page but does not
start the program. The iserver 'SI' switch i~ optional.

Note: If your transputer is not a T425 you should change the t425 option to the
appropriate transputer type. You may also need to change the number specified
after the's' option to the number of the root transputer link to which the network
is connected. See table 4.4 in chapter 4 of the Toolset Reference Manual for more
details about the options to use, if in doubt.

8.16.3 Setting initial breakpoints

Initial breakpoints can often be set by using the Monitor page [!] command and
specifying a breakpoint at the start of main () . In this example we use a different
method based on setting specific breakpoints in the source code before the pro
gram is started.

At the Monitor page select [£] to display the source file. At the object module file
name prompt specify the compiled object file facs. tax. The debugger uses
debug information within the object module to select the source file.

The source file is displayed with the cursor positioned at the first function definition.
At this point the program is still waiting to be started.

72 TDS 345 01 October 1992

164 8.4 Debugging configured programs

Set a breakpoint at the beginning of the ChanOutDouble () function
using I TOGGLE BREAK I. The debugger confirms the breakpoint is set and gives
the breakpoint a unique identification number (note that the breakpoint is set on
the first executable line of the function).

8.16.4 Starting the program

Return to the Monitor page using the I MONITOR Ikey and start the program by
selecting the 0 command. Press I RETURN Iat the 'Command line' prompt (no
command line is required) and give a small positive number (e.g. 12) when the pro
gram prompts for input. The program runs until it reaches the breakpoint.

8.16.5 Entering the debugger

At the breakpoint the debugger displays the number of the breakpoint and the
number of times it has been encountered (or hit) and then requests confirmation
to continue the stopped process. Press any key except[!] orC!] to enter the sym
bolic debugging environment. The debugger locates to the breakpoint and dis
plays the source code.

8.16.6 Inspecting variables

Variables and channels in ChanOutDouble () can now be examined. For exam
ple, to examine the variable value press I INSPECT Iand specify its name at the
prompt. The debugger displays the value 1.0 and labels it as a double. Press
ing I INSPECT Iwith the cursor positioned on value has the same effect.

Note that only variables in scope at the debugger's current location point can be
inspected, although the rest of the file can be displayed with the cursor keys. The
current location point is at the start of function ChanOutDouble () .

8.16.7 Finding addresses of variables

The debugger provides a comprehensive C expression language which may be
used with INSPECT and MODIFY. To obtain the address ofa variable, you use the
same expression as you would in a C program. Press I INSPECT I and specify
'value to display the address of value. Notice that addresses are displayed in
hex notation by default. I TOGGLE HEX Imay be used to display the values ofvari-
abies in hex notation if required.

8.16.8 Backtracing

ChanOutDouble () is called from function fac8 () to output the factorial it calcu
lates for each integer received from feed () . To confirm this press I BACKTRACE I

72TOS 345 01 October 1992

8 Debugging transputer programs 165

and the debugger locates to the line in facs () where ChanOutDouble () is
called. Press I TOP I to return to where the breakpoint occurred. Now press
I TOGGLE BREAK Ito remove the breakpoint on this line.

8.16.9 Jumping down a channel

Within facs () the variable fac is the first in a sequence ofoutputs on the channel
out. To trace the destination process for fac first use I INSPECT Ito see the value
of the channel out, which is declared to be a channel pointer. Use I INSPECT I
again but this time specify *out, which de-references the channel pointer. The
debugger displays an Iptr and Wdesc, indicating that there is a low priority pro
cess waiting at the other end of the channel.

Now press , CHANNEL I and again specify *out to de-reference the channel
pointer. The debugger jumps down the channel connecting the two processes and
locates to ChanlnDouble (). Now backtrace to the function which called
ChanlnDouble() to input a value, namely function square () . Variables in scope
now become available for inspection (at this stage they have not been initialized).

While still in function square () move the cursor to the first line containing
ChanOutDouble () and set a breakpoint. Then press' RESUME Iin order to run
the program up to the breakpoint just set.

8.16.10 Inspecting by expression

In function square () inspect the variable sq and check the computation by
I INSPECT Iand specifying the expression x * x. Note how I INSPECT Ican be
used to perform arithmetic on any variable in scope. Expressions can also include
numbers and other variables and constants in scope at the location point.

Press 'INSPECT Iand type x != stop_real in order to see the value used to
control the while loop.

8.16.11 Modifying a variable

In breakpoint debugging any program variable may be modified. To modify a vari
able x press I MODIFY Iand specify x at the 'Destination' prompt. The debugger
now requests the new value by display the 'Source' prompt. Enter any value and
check the value has changed by inspecting x once again.

8.16.12 Backtracing to main ()

While still in square () , press' BACKTRACE Ito locate back to where the function
was called. The debugger locates to ProcPar () in function main () where the
five major processes are started in parallel. If the call to function square () had

72 TOS 345 01 October 1992

166 8.4 Debugging configured programs

been nested in other calls, successive I BACKTRACE Ioperations might have been
necessary but would have eventually located to the call in the program main func
tion.

8.16.13 Entering 'include files

Press I GaTa LINE I and select line 20. This will locate you to the line
'include <stdio. h>. By using the I ENTER FILE I key you may now enter the
'include file (and then any nested files within it); the I EXIT FILE Ikey will bring
you out again into the enclosing file.

8.16.14 Quitting the debugger

Finally, to quit the debugger use theI FINISH Ikey (you may also quit the debugger
from the Monitor page using the @] command). If the debuggerwas run with the
'XQ' option, then it will prompt for confirmation before exiting.

8.17 occam debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is run in interactive mode.

8.17.1 The example program

The example program facs . occ calculates the sum of the squares of the first n
factorials, using a rather inefficient algorithm. It has been structured this way for
clarity in process structure and to demonstrate parallel processing and debugging
methods. The same program coded in C is supplied with the C toolset. The pro
gram incorporates five processes, each coded as a separate procedure. The five
processes in turn input n, calculate factorials, square the factorials, sum the
squares, and output the result. The program is listed below.

Note: Triple braces ({ { { and} } }) in the listing indicate fold marks in the program.
They are retained for compatibility with the folding editors often used for writing
occam programs.

72 TDS 345 01 October 1992

8 Debugging transputer programs

Debugger example: facs . occ

Uses 5 processes to compute the sum of the squares
of the first N factorials using a rather inefficient
algorithm.

Plumbing:

feed-> facs-> square-> sum-> control <--> User 10
I I

'INCLUDE "hostio.inc"
'USE "hostio.lib"

PROC facs.entry (CHAN OF SP fs, ts, [lINT free.memory)

VAL stop.real IS -1.0 (REAL64)
VAL stop. integer IS -1

--{{{ FUNC factorial compute factorial
REAL64 FUNCTION factorial (VAL INT n)

REAL64 result :
VALOF

SEQ
result := 1.0 (REAL64)
SEQ i = 1 FOR n

result := result * (REAL64 ROUND i)
RESULT result

--I}}

--{{{ PROC feed source stream of integers
PROC feed (CHAN OF INT in, out)

INT n :
SEQ

in ? n
SEQ i 0 FOR n

out i
out! stop. integer

--}} }

167

72 lDS 345 01 October 1992

168 8.4 Debugging configured programs

--(((PROC facs - qanerate stream of factorials
PROC fac. (CBAN OF IN'!' in, CBAN OF REAL64 out)

IN'!' x :
REAL64 fac
SEa

in ? x
WILE x <> stop. inteqer

SEa
fac := factorial (x)
out ! fac
in ? x

out ! stop. real

--}} }

--(((PROC square - qanerate stream of squares
PROC square (CBAN OF REAL64 in, out)

REAL64 x, sq
SEQ

·in ? x
NBILE x <> stop. real

SEQ
sq := x * x
out ! sq
in ? x

out ! stop. real

--}} }

--{ {{ PROC sum sum input
PROC sum (CBAN OF REAL64 iD, out)

REAL64 total, x :
SEQ

total := 0.0 (REAL64)
in ? x
NBILE x <> stop. real

SEQ
total := total + x
in ? x

out ! total

--}}}

72 TDS 34501 October 1992

8 Debugging transputer programs

--{{{ PROC control - user interface and control
PROC control (CHAN OF SP fs, ts,

CHAN OF REAL64 result. in,
CHAN OF INT n.out)

REAL64 value
INT n :
BOOL error :
SEQ

so.write.string.nl (fs, ts,
Sum of the first n squares of factorials")

error := TRUE
WHILE error

SEQ
so.write.string (fs, ts, "Please type n: ")
so.read.echo.int (fs, ts, D, error)
so.write.nl (fs, ts)

so.write.string(fs, ts, "Calculating factorials ... ")

n.out ! n
result.in ? value

169

so.write.nl (fs, ts)
so. write. string (fs, ta, "The result was: ")
so.write.rea164 (fs, ts, value, 0, 0) -- free format
so.write.nl (fs, ts)
so.exit (fs, ts, sps.success)

--}}}

CRAN OF REAL64 facs.to.square, square.to.sum
CHAR OF REAL64 sum.to.control :
CHAR OF INT feed.to.facs, control.to.feed

PAR
feed (control. to. feed, feed. to. facs)
facs (feed.to.facs, facs.to.square)
square (facs.to.square, square. to. sum)
sum (square. to. sum, sum.to.control)
control (fs, ts, sum. to. control , control. to. feed)

8.17.2 Compiling the facs program

The source of the program is provided in the toolset examples subdirectory. It
should be compiled for transputer class TA with debugging enabled, then linked
with the appropriate library files and made bootable using icollect with the 'T'
option to create single transputer bootable code. The example is intended for run
ning on a B008 board wired subs. See section 4.7 in the Too/set Reference Manua/
debugger chapter if your system is different.

72TDS 345 01 October 1992

170 8.4 Debugging configured programs

(UNIX)
(MS-DOSNMS)

Using imakef

Ifyoursystem has amake utilityyou may use imakef to generate asuitable make
file to help build the program:

imakef facs.bah

make -f facs.mak
make If facs.mak

Using the tools directly

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The 'I' option on the linker command line is optional but does pro
vide useful information on the progress of the linking operation.

Command sequences follow for UNIX-based and MS-DOSNMS-based toolsets.
Use the appropriate set of commands for your system.

UNIX:

oc -ta facs.occ -0 facs.tah
ilink -ta facs.tah hostio.lib convert. lib -f occama.lnk

-0 facs.cah
icollect -t facs.cah -0 facs.bah

MS-DOSNMS:

oc Ita facs.occ 10 facs.tah
ilink Ita facs.tah hostio.lib convert. lib If occama.lnk

10 facs.cah
icollect It facs.cah 10 facs.bah

8.18 Breakpoint debugging

The following section demonstrates howto debug the example program in interac
tive mode.

32 bit 2
HOST - root - T425

transputer

Figure 8.5 Hardware configuration for breakpoint example

8.18.1 Loading the program

The program is loaded for breakpoint debugging by running idebug in interactive
mode using one of the commands given below. Use the appropriate command for
your system.

idebug -sr -si -b2 facs .bah -c t425 (UNIX)

idebug Isr Isi Ib2 facs .bah Ic t425 (MS-DOSNMS)

72 TDS 34501 October 1992

8 Debugging transputer programs 171

This command starts up the debugger and displays the Monitor page but does not
start the program. The iserver 'SI' switch is optional.

Note: If your transputer is not a T425 you should change the t425 option to the
appropriate transputer type. You may also need to change the number specified
after the 'B' option to the number of the root transputer link where your network is
connected. See table 4.4 in chapter 4 of the Toolset Reference Manual for more
details about the options to use if in doubt.

8.18.2 Setting initial breakpoints

Initial breakpoints can often be set with the Monitor page[!] command and speci
fying an entry point breakpoint (this would set a breakpoint at facs . entry). In this
example a different method is used based on setting specific breakpoints in the
source code before the program is started.

At the Monitor page select option [£] to display the source file. At the object mod
ule filename prompt specify the compiled object file facs. tah. The debugger
uses debug information within the object module to select the source file. The
source file facs . occ is displayed with the cursor positioned at the first procedure
definition, namely facs. entry. At this point the program is still waiting to be
started.

Use I GOTO LINE I to move the cursor to line 56 (out ! fac) and set a break
point there using ITOGGLE BREAK I. The debugger confirms the breakpoint is set
and gives the breakpoint a unique identification number.

8.18.3 Starting the program

Return to the Monitor page using the I MONITOR 1 key and start the program by
selecting the Q] command. Press I RETURN 1at the 'Command line' prompt (no
command line is required) and give a small positive number (e.g. -12) when the pro
gram prompts for input. The program runs until it reaches the breakpoint.

8.18.4 Entering the debugger

At the breakpoint the debugger displays the number of the breakpoint and the
number of times it has been encountered (or hit) and then requests confirmation
to continue the stopped process. Press any key except[!] orC!] to enter the sym
bolic debugging environment. The debugger locates to the breakpoint and dis
plays the source code.

8.18.5 Inspecting variables

Variables and channels in facs can now be examined. For example, to examine
the variable fac move the cursor to fac and press I INSPECT I. The debuggerdis-

72 TDS 345 01 October 1992

172 8.4 Debugging configured programs

plays the value as REAL64 1. 0 and gives its address. Pressing I INSPECT 1with
the cursor positioned on a space causes the debugger to prompt you for a symbol.
Note that only variables in scope at the debugger's current location point can be
inspected, although the rest of the file can be displayed with the cursor keys. The
current location point is line 56 in the procedure facs.

8.18.6 Backtracing

facs is called in parallel by facs. entry to output the factorial it calculates for
each integer received from feed. To confirm this press I BACKTRACE 1 and the
debugger locates to the line in facs . entry where facs is called. Press I TOP I
to return to where the breakpoint occurred. The current location point is line 56 in
the procedure facs.

8.18.7 Jumping down a channel

Within facs the variable fac is the first in a sequence of outputs on the channel
out. To trace the destination process for fac first I INSPECT 1the channel out. The
debugger displays an Iptr and Wdesc, indicating that there is a low priority pro
cess waiting at the other end of the channel.

Now press ICHANNEL I and again specify out. The debugger jumps down the
channel connecting the two processes and locates to the corresponding channel
input in procedure square (the statement in ? x). Variables in scope within
square now become available for inspection (at this stage they have not been ini
tialized).

8.18.8 Modifying a variable

In breakpoint debugging program variables may be modified. Start by first inspect
ing x in order to ensure that the new value will be different. To modify the variable
x position the cursor on x and press t MODIFY I. At the modify value prompt specify
the value to be placed in x. Note that the modify prompt reminds you of the type
of x. Enter any valid value and check the value has changed by inspecting x once
again.

8.18.9 Entering 'INCLUDE files

Press I GOTO LINE I and select line 17. This will locate you to the line
'INCLUDE "hostio. inc". By using the I ENTER FILE Ikey you may now enter
the 'INCLUDE file (and any then nested files within it); thet EXIT FILE Ikeywill bring
you out again into the enclosing file.

8.18.10 Resuming the program

To resume execution of the program from the current breakpoint press
the I RESUME Ikey. This will cause the program to continue running until it encoun-

72TDS 34501 October 1992

8 Debugging transputer programs 173

ters the breakpoint again. Press an appropriate key to enter the symbolic debug
ging environment. This will cause the debugger to locate to line 56.

8.18.11 Clearing a breakpoint

To clear the breakpoint already set at line 56 use the I TOGGLE BREAK I key. The
debugger will confirm that the breakpoint has been cleared. Press I RESUME Ito
resume execution and cause the program to display its result. The debugger will
confirm that the program has finished and will pause in order to enable you to read
the output from the program. Press any key as indicated to enter the Monitor page.
Note that the Monitor page displays the exit status from the program.

8.18.12 Quitting the debugger

Finally, to quit the debuggeryou can use the Monitorpage@] command. You may
also quit the debugger from symbolic mode by using the I FINISH I key. If the
debugger was run with the 'xQ' option, then it will prompt for confirmation before
exiting.

8.19 Post-mortem debugging

The following section demonstrates how to debug the example facs program in
post-mortem mode.

HOST~ T425 root
transputer

Figure 8.6 Hardware configuration for post-mortem example

8.19.1 Running the example program

When you have built an executable code file you can run the program by typing
one of the following commands:

iserver -se -sb facs.bah

iserver Ise Isb facs.bah

(UNIX)

(MS-OOSNMS)

The program immediately prompts you for a value. For correct execution the num
ber must be less than 100. To create an error for the purpose of this example, enter
the value 101 and press I RETURN I. The program will fail with the message:
Error - iserver - Error flag raised by transputer.

72 TOS 34501 October 1992

174 8.4 Debugging configured programs

8.19.2 Creating a memory dump file

To create a memory dump file for the debugger to read, type:

idump faes 15000

This creates a file called faes . dmp containing the transputer's register contents
and the first 15000 bytes ofmemory. You are then returned to the operating system
prompt.

8.19.3 Running the debugger

To debug the example program, use one of the following commands:

idebug -si faes .bah -r faes -e t425 (UNIX)

idebug Isi faes .bah Ir faes le t42S (MS-DOSNMS)

The iserver 'SI' switch is optional. The 'a' option identifies the program as one
that was executed on the root transputer and specifies the memory dump file to
be read.

Note: If your transputer is not a T425 you should change the t42S option to the
appropriate transputer type.

Should you wish to run the debuggera second time on this single processor exam
ple, without an intervening idump command, you will need to add the iserver
'SR' option to the command line to reset the network.

The debugger first displays its version number, then some processing information,
and eventually locates to the source line from which the error was generated:

sq := x * x

You can now begin to debug the program. You can use the symbolic facilities to
browse the source, locate to specific lines and areas ofcode, inspect variables and
channels, and trace procedure calls, and you can inspect and disassemble
memory using the Monitor page commands.

The following sections illustrate some of the debugging operations you can per
form on the example program. For furlher details about any of the debugging func
tions described in these sections, see chapter4 of the Toolset Reference Manual.

Inspecting variables

When the debugger is displaying source code, you may inspect any variable by
placing the cursor on the variable and pressing I INSPECT I.
For example, to display the value of x, place the cursor over x in the source code
and press I INSPECT I. x is displayed in both decimal and hexadecimal forms, and
its address in memory is given in hexadecimal. For example:

REAL64 'x' has value ...
9.332621S443944096E+1S5 ('605166C69SCF1S3S) (at 'S0000464)

72 TDS 345 01 October 1992

8 Debugging transputer programs 175

In the same way you can inspect the values of sq, square, stop. integer,
stop. real, and any other variable or constant that is in scope. Use the cursor
keys to scroll through the code. To return to the source of the original error, use the
IRELOCATE Ifunction. You can also use the I INSPECT Ifunction to examine proce
dures and functions. If you place the cursor on a procedure or fundion name and
pressI INSPECT I, the debuggerdisplays its address and workspace requirements.
You can also examine any symbol in the source by specifying its name. To do this,
move the cursor to a blank area and pressI INSPECT ,. The debugger then prompts
for the symbol name.

Inspecting channels

The debugger can also examine processes on channels within the scope of the
original error. If you place the cursor on channel out and press I INSPECT),

information about the channel is displayed. For example:

CHAR 'out' has Iptr:#800022F8 and Wdesc:#80000381 (La) (at
#8000063C)

This indicates that there is a process waiting for communication on channel out,
and that it is a low priority process. To find out which occam process is waiting,
press ICHANNEL I. The cursor will be placed on the line corresponding to the other
process, which in this example is inside the procedure sum, on the following line:

in ? x

Within procedure sum, you can examine any symbol using 1INSPECT I. Within the
sum procedure you can inspect the channel out and use I CHANNEL 1 to jump to
the waiting process, which is the procedure control that is,.waiting for the final
result. Again you can use I INSPECT 1 to examine any symDol.'-~

Retracing and Backtracing

So far the debugger has located three of the five processes that compose the pro
gram. What about the others? First use the I RETRACE Ikey to retrace your steps
back to procedure square. When in procedure square, inspect channel in,
which is connected to the facs procedure. It is empty, which means that no pro
cess is waiting to communicate.

Next try I BACKTRACE I. This function backtraces down nested procedure calls.
Each time the function is used the debugger locates to the line in the enclosing
code from which the procedure was called.

In this example, I BACKTRACE 1 moves the cursor to the line where procedure
square is called. Again, you can inspect any symbol which is in scope at this line.
For example, you can inspect the channels feed. to. facs and
facs . to. square. Both should be empty, which means that the remaining pro-

72 TDS 345 01 October 1992

176 8.4 Debugging configured programs

cesses were actively executing, rather than waiting to communicate, when the pro
gram halted.

To find the active processes, you need to examine the transputer's process
queues using the Monitor page facilities, as described below.

Displaying process queues

To display the process queues, first enter the debugger Monitor page from the
symbolic environment by pressing theI MONITOR Ikey. Lowlevel information is dis
played for the current processor, along with a list of Monitor page commands.

To display the process queues, use the Monitor page[[] command. This displays
two active processes, identified by their respective Iptr and Wdesc. When you
have identified the processes to examine, you can use the Monitor page @] com-
mand to jump to those processes and inspect the code. Other ·commands to try
from the Monitor page areDJ, which displays the processes waiting on the trans-
puter's timers; and [I], which displays processes waiting for communication on
the transputer's links.

Goto process

When you press @], the following message is displayed:

[CURSOR] then [RETURN], or 0 to F, (I)ptr, (L)o, or (Q)uit

To display the first active process1, type [!] (zero). The cursor will be placed on
the following source line (in procedure -feed'):

out ! i

Because this process is on the queue and not waiting, it must have already per
formed the communication and is about to resume executing. You can examine
variables within the procedure as before.

To display the last remaining process in the program, pressI MONITOR Iagain, and
type @] followed by DJ to locate to the second process in the queue. This pro
cess will either be executing code within the compiler libraries or within the repli
cated SEQ. If it is executing code within a library, the debugger displays the call to
the library routine rather than the source itself, because the source is not supplied.
For example:

result := result * (REAL64 ROUND i)

Again, you may inspect variables within the process. For example, by inspecting
the variable -i', you can determine how many times the loop has been executed.
Or you can use I BACKTRACEI to determine where the function was called from.

1. For a full explanation of the possible responses see the definition ofthe Goto Process command
in~ idebug reference chapter (chapter 4 of the Too/set Reference Manual).

72 TDS 34501 October 1992

Advanced techniques

7210834501 october 1992

178

72TDS 345 01

Advanced techniques

October 1992

9 Advanced use of the
configurer

This chapter describes the advanced use of icconf and is aimed at users who
wish to override certain configuration defaults. The chapter deals with two topics:

• Memory usage by the configurer.

• Channel communications.

The chapter describes how to override the default allocation of user's code and
data in memory and how to refine the channel communication for the target net
work using advanced virtual routing techniques. An example configuration using
virtual routing is provided at the end of the chapter.

9.1 Code and data placement

The configuration language provides one processor attribute (reserved) and two
classes of process attributes (location and order), for influencing the use of
memory. The syntax of these attributes is described in sections 6.1.2 and 6.1.3
respectively. This section describes the circumstances in which the attributes
should be used.

Note: when the location or order attributes are used, debugging using the
toolset debugger idebug is not supported.

9.1.1 Default memory map

By default the configurer maps code and data into memory in the following order
beginning at LoadStart: stack; code; vector space; static; heap and system data.
The memory segments are contiguous. The upper limit of the memory available
to the configurer is defined by the memory attribute specified for the processor
nodes.

By default, the configurer only knows about this continuous block of memory,
whose upper and lower limits are set by the value ofmemory minus the LoadStart
offset for the processor. The default memory map is illustrated in Figure 9.1.

72TDS 34501 October 1992

180 9.1 Code and data placement

memory ---.:
: Free Space

Minlnt =
MOSTNEG IN1: ---.

System data

Heap
Data Segments

Static
Data Segments

Vector
Data Segments

Code
Data Segments

Stack
Data Segments

Reserved by
transputer
architecture

...- FreeStart

Contiguous
memory

...- LoadStart

...- MemStart

Figure 9.1 icconf default memory map

The first 2 or 4 Kbytes of memory above MOSTNEG INT is implemented as on
chip RAM. and includes a few words which are reserved by the transputer hard
ware for the implementation of links and other hardware registers.

LoadStart is either just above or coincident with MemStart, see section 2.3.11 of
the ANSI C Toolset Reference Manual.

9.1.2 other memory configurations

Figure 9.2 illustrates a memory configuration with additional requirements to those
provided by the configurer in default mode. To cater for such situations the
reserved and location attributes are supported by the configuration language.

Figure 9.2 illustrates two different sets of possible requirements:

• The first is where the available memory is discontinuous and the lowest
block of memory is not sufficiently large enough to hold all the code and
data.

• The second is where a block of memory is available outside the default
range of memory addressed by the configurer. (see above).

72T0834501 October 1992

9 Advanced use of the configurer 181

I
I-locationDua~rted

RAM

memory~ -

DRAM

~ order (May only be used
in this region).

SRAM

reserved~ ...- LoadStart

On-ehip
RAM ..- location

Minlnt = ~~"""""'"
MemStart

MOSTNEG INT

Figure 9.2 Example discontinuous memory map

9.1.3 reserved processor attribute

This attribute is used to specify the size of memory, in bytes, to reserve from
MOSlNEG 1Nl which cannot be used by the configurerto place user and system
processes. It will be possible for the user, using the location attributes to place
the code and data segments of user processes into the reserved memory.

Checks are performed to ensure that the reserved memory size is greater than
the default LoadStart offset for the processor and less than the memory size spe
cified by the memory attribute. The configurer will also ensure that the size is word
aligned by rounding the size up to the nearest word boundary. Note: the value of
the default LoadStart is variable, see section 2.3.11 of the ANS/ C Too/set Refer
ence Manua/.

Example:

processor (reserved = SK);

In figure 9.2 the reserved attribute has been used to force the configurer to place
system and user code into the second block of memory and to ignore the on-ehip
RAM.

When the reserved attribute is used, the region of memory available to the confi
gurer for automatically placing the non-addressed code and data segments of
processes is defined as being:

72 TDS 345 01 October 1992

182 9.1 Code and data placement

the top of memory as specified by the memory attribute minus the memory
size specified by the reserved attribute.

If no reserved attribute is defined then the region of memory available to the con
figurer is:

the top of memory as specified by the memory attribute minus the default
LoadStart offset for the processor.

9.1.4 location process attribute

The location attributes are optionally used to specify absolute addresses for the
code and data segments of a process. The location attribute has the sub-attrib
utes stack, code, vector, static and heap for process nodes and types.
These attributes override the equivalent order attributes if specified.

Checks are performed to ensure that any code and data segments that have been
absolutely addressed using the location attributes are not placed into an illegal
region of memory, such as the:

• memory used by the configurer for automatically placing code and data
segments i.e. the region defined by Loadstart and the memory attribute.
(See section 2.3.11 of the ANSI C Toolset Reference Manual for more
information about Loadstart).

• address locations that exceed the highest possible memory address loca-
tion for the processor.

The configurer will fail with an error message if either of the above occur. An error
will also be received if the addresses specified are not word aligned.

A further check is made that the addresses are non-overlapping and a warning will
be generated if they are. It is not illegal to have overiapping regions of memory
within the permitted regions for configuration code, as described above. However,
it is user's responsibility to ensure there is no conflict in the use of overlapping
regions at runtime.

A warning will also be generated if the location attributes place code or data at
address locations that exist below MemStart.

If the location attributes are not specified then the configurer will automatically
place non-addressed code and data segments.

Example (on a 32-bit processor):

process (location (code = Ox80000100)

This example specifies the start address for the process code segment. It
assumes that LoadStart has been redefined, using the reserved attrib
ute.

72TDS 34501 October 1992

9 Advanced use of the configurer 183

Figure 9.2 indicates how the location attributes can be used to access memory
below LoadStart (which has been changed from its default value by the
reserved attributes) or spare memory locations available on external RAM.

9.1.5 order process attribute

The order process attributes, described in section 6.1.3, can still be used in con
junction with the reserved and location attributes. The order attributes are
used to change the ordering priority of those process segments automatically
placed by the configurer Le. non-addressed code and data segments. They only
operate within the memory region delimited by LoadStart and the value of the
memory attribute.

9.1.6 location versus order attribute

The location and order attributes have the same sub-attributes, namely:

stack, code, vector, static and heap

As stated in section 9.1.4 if both the location and order attributes are specified
for a. particular segment, e.g. stack, then the location attribute will override the
order attribute.

However, if an ambiguous process declaration is made, it will be assumed that the
order attribute is intended. For example:

process (code = n) ;

is the same as:

process (order (code = n»;

Section 6.2.13 gives details of the syntax of process node declarations.

9.2 Channel communication - configuration techniques

When software virtual routing is required, the configurer works by adding multi
plexing and de-multiplexing processes to implement a number of virtual channels
over a single hardware link. It will also add routing processes to through-route data
between processors which are not directly connected. In doing so it assumes by
default that:

• any link to link connections in the target network can be used for imple
menting virtual channel traffic.

• any of the processors can be used for through-routing.

• where multiple routes of the same length exist between two processors,
the virtual channels between these processors should be shared out
between these routes as much as possible.

72 TDS 345 01 October 1992

184 9.2 Channel communication - configuration techniques

While these are, in general, reasonable assumptions, ··users may require more
control over how processors and links are used for implementing virtual channels
in specific networks. The configurer permits users to control its routing decisions
by means of processor attributes and channel placements which can be defined
in the configuration source file. These are designed to supply the following capabil
ities:

• A channel may be placed on a specific hardware link between processors.
This instructs the configurer to implement the channel directly using the
hardware link rather than as a virtual channel. Only two channels may be
placed (one in each direction) on a hardware link. This can be used to
ensure that a limited number of aitical channels are directly implemented
by hardware links.

• It is possible to prevent specific processors from being used as pathways
for virtual channels required by other processors. This ensures that certain
mical processors within the target system are not used for through-routing
virtual channels for less critical processors.

• It is possible to ensure that all virtual channels are routed via a group of
processors specifically placed in the target network to support them.
Hence a group of small inexpensive processors may be placed in the
middle of a network of processors to provide the communications require
ments at little cost to the other processors.

• It is possible to control the number of virtual channel support processes
that are added to particular processors~ and also whether they are given
use of internal memory in preference to application processes. This pre
serves the performance of critical processors in the target network and
allows virtual channel support on processors with limited memory capacity.

The following sections describe the use of the place statement and the order
attribute to optimize important channels and to make the best use of fast memory.
Section 9.2.3 introduces the additional attributes used to control the configurer's
routing system and describes how to use them to meet the requirements identified
above. An example is included in section 9.2.4.

9.2.1 Optimizing important application channels

By placing an internal application channel on a hardware link (at either end or both
ends) it is possible to reserve the hardware link solely for the use of the application
(channel concerned.

With this technique a sub-set of the channels used by an application can be placed
on asub-set of the hardware links available within the target system. This then opti
mizes the performance of the placed data paths.

When doing the placement the user must be careful to leave at least enough free
'" links to form a minimal spanning tree between each sub-set of processors in the

72 TDS 34501 October 1992

9 Advanced use of the configurer 185

target network that require through-routed virtual channels to connect them. (See
section 9.2.3).

9.2.2 Virtual communications - use of fast memory

Normally the stacksegment ofvirtual channel support processes (added to the tar
get network by the configurer) is allocated within fast memory (Le. at the most neg
ative addresses) before the user process code and data segments are allocated.

User process code and data segments can, however, be allocated from internal
store before the stack of the virtual channel support processes is allocated. This
is done by setting order attributes for the relevant userprocesses to lowervalues
than those automatically given to the stack segments of the virtual channel support
processes.

The stack segments ofvirtual channel support processes placed by the configurer
are all given the order value -20000 or (as defined in setconf. inc)
ROUTER ORDER The stack segments of multiplexing and de-multiplexing pro
cesses placed by the configurer are all given the order value -10000 or
MUXER ORDER.

If order values on the code and data segments of user processes are less than
ROUTER ORDER the segments concerned will be allocated from internal store
before any of the virtual channel support processes' stacks are allocated.

If order values on user processes are less than MUXER ORDER and greater than
ROUTER ORDER, only the stack segments required by virtual channel support pro
cesses will be allocated before the configurer allocates space for the user pro
cesses concerned.

If the stack segments of heavily-used virtual channel support processes are
pushed out of internal store by giving priority to user processes, the impact on the
performance of the virtual links and the processor will be quite noticeable. User
process1es should only be given priority over the virtual channel support processes
on a prQcessor if the amount of data through-routed by the processor during nor
mal operation is likely to be small.

Giving userprocesses priority use offast memory will only impact the performance
of those virtual channels used by processes on the processor. The CPU cost of
supporting those virtual channels will only be slightly increased.

9.2.3 Control of routing and placement

This section describes how the allocation of a virtual routing system across a net
work can be controlled. Forexample, particular routes can be avoided or promoted
as required.

Introduction to routing and placement attributes

User control of routing and placement is done by means of an extra processor
attribute, which has three sub-attributes and is specified using the configuration
language. The syntax of the attributes is as follows:

72TDS 345 01 October 1992

186 9.2 Channel communication - configuration techniques

processor (router (routecost = exp»;
processor (router (tolerance = exp»;
processor (router (linkquota = exp»;

The router attribute introduces the sub-attributes which influence different
aspects of the routing algorithm. These sub-attributes are described, in turn,
below.

Routing cost

The first of the attributes - routecost - can be used to make the confi
gurer choose one processor over another when deciding how to route
channels in the network. In the default case, all processors and links in the
network are assumed to be equally usable. When deciding how to route
a channel between two processors, the configurer works out the routes
between the two points, and then calculates the "cost" of each route by
counting the number of processors on each route. The "best" of these (the
one with the least number of processors) is t~en chosen to implement the
channel, and the appropriate through-routing processes are placed on
each intermediate processor on the route. If there are a number of chan
nels to be implemented between the two ends, and there is more than one
route of the same ("best") length available, then the channels are shared
between the available routes.

The routecost attribute allows a routing cost to be explicitly allocated to
one or more processors in the network. The cost of a route between two
processors is then determined not simply by the number of intermediate
processors, but by the sum of the routing costs of all the intermediate pro
cessors. There is a default routing cost for processors which have not had
one explicitly allocated. So by giving a high routing cost value to a proces
sor, this will discourage the configurer from using it as an intermediate
node when routing channels. Similarly by giving it a lowcost compared with
other processors in the network, this will encourage the configurer to use
it for through-routing.

Tolerance

The second attribute - tolerance - controls how the configurer decides
to share out channels between available routes. If there are a number of
channels to be implemented between two processors, then the configurer
normally calculates the cost of each possible route, and then shares out
the channels between available "best" routes with the least cost. If there
is only one "best" route then all the channels will go via that one. In some
circumstances it may be better to share out the channels more evenly, to
prevent bottlenecks in the system, even if this results in some channels
being implemented on slightly higher cost routes. The tolerance attrib
ute for a processor is designed to allow this.

When calculating whether to use a route for channel sharing, the confi
gurer uses the minimum of the tolerance values of the processors on

72 TDS 34501 October 1992

9 Advanced use of the configurer 187

that route. It subtracts that tolerance from the route cost; if the result is less
than the cost of the "best" route, then this route, as well as the "best"
routes, may be used for load-sharing ofchannels. As an example, consider
a network in which all processors have been given the same routing cost
(say 1000). Normally, this would result in load-sharing of channels only
when the routes are the same length. However, if the tolerance of all the
processors were set to twice the routing cost value (2000), then the confi
gurer would also include routes with one more processor on them than the
"best" route for channel load-sharing.

When setting up a network, the routecost attributes should be set first
to indicate which processors are preferred for through-routing. Then the
tolerance attribute can be set, for all processors in the network, to influ
ence the load-sharing strategy. In general a set of processors in a network
(or in part of a network) would be given the same tolerance value to indi
cate the load-sharing strategy required for that network (or part of the net
work). The likely cases are:

• A zero tolerance value indicates that virtual channels should only be
placed on a route if it is the only "best" route between two processors.
Ifall "best" routes have zero tolerance, then one will be picked arbitrarily
and all virtual channels will be routed on that one.

• A default tolerance value indicates that channels may be shared
between the "best" routes between two processors.

• A tolerance value which is some multiple of the routing cost values
in the network indicates that channels should be shared between the
"best" routes and those routes with a higher cost but with tolerance val
ues indicating that they are also acceptable.

• The maximum tolerance value indicates that all routes between two
processors can be used for channels. This might lead to some very long
routes being chosen.

Link quota

The third attribute -linkquota - controls how many links on a processor
may be used to carry virtual channels to the processes on that processor.
In the default case any of the links may be used. For each link which is
used, a small additional memory overhead is incurred. On processors with
very small amounts of memory it may be important to keep the memory
overhead as low as possible.

The linkquota attribute can be set to avalue in the range 0 to 4 inclusive.
It should only be set to 0 if no virtual channels will be required by the pro
cesses on that processor. If it is set to 1, then the processes on the proces
sor may use virtual channels, but it should be possible for the configurer
to implement them all via one of the processor's links. Similarly for values
of 2, 3, and 4 (although, obviously, setting the quota to 4 on a processor
with four links has no effect).

72TDS 345 01 October 1992

188 9.2 Channel communication - configuration techniques

The linkquota attribute is a guide to the configurer rather than an abso
lute directive. Ifa processor has a linkquotavalue of 1, but the processor
provides the only route available for the implementation of a particular
channel in the network, then the configurer will choose to route data
through that processor, even though this will cause the link quota to be
exceeded.

The linkquota is not intended as a method of avoiding routing through
a processor; the routecost attribute should be used for that. Instead it
is intended to indicate, on memory-aitical processors, that the minimum
overhead should be placed on them. The quota should reflect the require
ments of the processes placed on that processor, and the routing costs in
the network should be chosen so that other processors are used for
through-routing. The link quotas will then be checked by the configurer as
it sets up the multiplexing and routing processes. The configurerwill output
a warning message if it has exceeded a quota. The network can then be
re-examined to see why this is happening.

The minimal spanning tree

There is one aspect of the implementation of virtual channels which may
become evident when constraints are placed on how the configurer may
route channels in the network. Normally the configurer can use any of the
links in the network for virtual channels, so if the network is connected, then
virtual channels can be routed from any processor to any other. However,
(as desaibed in section 9.2.1) it is possible to place a pair of opposing
channels on a link in the network; in this case the link is used directly to
implement those two channels, and cannot be used for virtual channels.
Also the routecost attribute on selected processors in the network may
prevent the use of some processors (and hence links) in the network for
through-routing. If too many links are removed from the network in this way
then it may become impossible to implement some of the virtual channels
required.

So it is important to ensure that, for a set of processors in a network requir
ing virtual channels to be connected between them, there is a set of links
connecting the processors over which virtual channels is allowed. This set
of links will then be used by the configurer to construct a minimal spanning
tree of links to ensure that it can always implement the virtual channels
between these processors. Any additional links available for virtual chan
nels will also be used to provide better routes between processors. If the
configurer is unable to construct the route necessary to implement a
requested virtual channel, it will give an error message.

A network may not require a single minimal spanning tree to cover the
whole network; it depends on the virtual channel requirements of the con
figuration. For example, it might be possible to divide a configuration into
two separate parts, each requiring virtual channels internally, but with a
single pair of channels (which can be directly mapped onto a link) joining

72TDS 345 01 October 1992

9 Advanced use of the configurer 189

the two parts. In this case a minimal spanning tree of links is required for
each of the two parts. These are known as sub-networks.

Summary of routing and placement attributes

The attributes are defined in more detail as follows:

• routecost - defines within the range NIN COST =1 to MAX COST =
1000000 inclusive, the associated cost of routing virtual channelS-through
a particular processor.

If a value greater than MAX COST (e.g. INFINITE COST =1000001) is
specified then no through-routing will be permittedon that processor.

If this attribute is not defined for a particular processor then the cost value
DEFAULT_COST =1000 will be assumed.

MAX COST, MIN COST, INFINITE COST, and DEFAULT COST are prede
fined constants-that can be used in any configuration source file for
icconf (see appendix B).

• tolerance - controls with any value in the range ZERO TOLERANCE =
oto MAX TOLERANCE =1000000 inclusive, how much a particular proces
sor can be used to provide load-sharing routing paths for other processors.

The default value for this attribute is DEFAULT TOLERANCE =1. This
allows the processor to implement alternate routes for through-routed
channels with exactly the same total cost as the "best" route found
between any two other processors.

If the value ZERO TOLERANCE is specified then the processor will only be
used for through:routing if it lies on the "best" route found to implement
virtual channels.

If tolerance is set to MAX TOLERANCE on all processors in the target net
work almost every possibleroute will be used to share the cost of carrying
data between any pair of non-adjacent processors.

MAX TOLERANCE, ZERO TOLERANCE, and DEFAULT TOLERANCE are
predefined constants thafcan be used in any configuration source file for
icconf (see appendix B).

• linkquota - suggests the maximum number of links on the processor
that should be used by the virtual channel routing system.

linkquota can have the values 0 to 4 inclusive.

A warning will be produced if the suggested linkquota for a node is
exceeded. The linkquota will only be exceeded because of the require
ments of through-routing data for other processors.

72 TDS 34501 October 1992

190 9.2 Channel communication - configuration techniques

Prevention of through-routing via critical processors

If there are processors within the target network that are likely to be CPU-limited
by the application, then it may be undesirable to allow virtual channels from sur
rounding processors to be routed through the performance-critical processors. In
this case the routecost attribute for the critical processors should be set to
INFINITE COST. If this is done then no virtual channels can be through-routed
via these processors.

Care must be taken to ensure that a minimal spanning tree of links is provided by
the other processors in the network. If a particular processor should only be used
for through-routing channels when absolutely necessary, then the routecost
attribute on the processor can be set to some multiple ofDEFAULT COST. Alterna
tively the cost value can be explicitly set on the other processorslf for example,
the multiple concerned is larger than the number of lower cost processors in the
network then any route via those processors will be chosen in preference to a route
via one of the high cost processors.

Use of additional processors for through-routing

There may be situations when the configurer is required to route all communica
tions via a particular set of processors. For example:

• to emulate closely the communications structure that would be provided
by dedicated hardware routing devices, or

• when a block of low performance processors is provided in the target net
work solely for the purposes of through-routing data for other processors.

This can be achieved in one of two ways;

• If the routecost of all processors, other than those intended as routers,
is set to INFINITE COST then the only processors that the configurer can
use for through-roUting are those left with the default routing cost. This
technique has the advantage of guaranteeing that no through-routing will
be done via the standard processors.

• If the routecost of all the routing processors are set to a small value e.g.
MIN COST, then any route via these processors will be used in preference
to routes via processors with the default routing cost. This technique has
the advantage that the normal processors can still be used by the confi
gurer for routing channels that cannot be implemented by the nominated
routing processors. Hence the nominated routing network need not pro
vide full connectivity.

Generally the second method is preferred as it preserves the ability of the confi
gurer of mapping an arbitrary application onto the target hardware.

Support for memory-critical systems

It may be desirable to ensure that for a particular processor the additional run-time
overhead added by the configurer is kept to a minimum.

72 TOS 345 01 October 1992

9 Advanced use of the configurer 191

Normally the configurer spreads virtual channels running between a pair of pro
cessors across all routes that have equal cost. For each additional route employed
additional support processes may be required and hence additional memory con
sumed on the target system.

This should not normally be a problem as the total cost of the maximal set of run
time processes that can be placed on the target system by the configurer con
sumes only a few thousand bytes more than the minimal set.

Some example figures of the minimum and maximum costs of both through-rout
ing and multiplexing software on different word length transputers are shown
below. (All sizes are in bytes):

Word Size Function Code Min Stack Max Stack

32 bits Through-routing 716 768 2112

Multiplexing 2104 784 2056

16 bits Through-routing 724 512 1568

Multiplexing 2118 524 1556

Multiplexing software is needed whenever a processor has virtual channels termi
nating on it. In the current system each opposing pair of virtual channels forming
a virtual link will require approximately 120 bytes of local storage on a 32-bit pro
cessor and 80 bytes of storage on a 16-bit processor. Note: that extra overheads
will be incurred if the G option is given to the configurer to allow interactive debug
ging of the application.

A particular case of the critical memory problem comes when the set of user pro
cesses on a particular processor do not in themselves require virtual channels at
all, because the channels they use can be mapped directly onto the hardware links
available. However, if the configurer decides to use through-routing then through
routing support processes will be added to the processor. In addition, to enable the
available hardware links to be shared, some of the channels used on the processor
may be implemented as virtual channels. In this case multiplexing software will
also be required. In this special case the processor can be completely protected
from run-time overheads by using the techniques described above for the 'Preven
tion of through-routing via critical processors '.

A linkquota attribute can be specified on each processor in the target network.
If the linkquota of a particular processor is specified as 1 and the routecost
set to INFINITE COST, then only a single hardware link will be used on the pro
cessor to provideall the virtual channels it uses. In addition the memory overheads
of the virtual link system will be reduced to a minimum (minimal multiplexer only).

If linkquota is set to 1 on all processors in the target system then the minimal
spanning tree of links will be used to support all virtual channels required. Warn
ings will be produced in this case for all processors that have had more than
linkquota links used on them; this is because all processors cannot be chosen
as "leaves" in the spanning tree.

72 TDS 345 01 October 1992

192 9.2 Channel communication - configuration techniques

Ifboth performance and memory size are aproblem in aparticularsystem it is likely
that the user will have to tune the linkquota and tolerance parameters of
many processors in order to get the best result.

9.2.4 Example - optimized filter test program

Figure 9.3 describes an example configuration that needs to be placed onto a net
work of six processors (figure 9.4). The function of the program is to test the two
filter components which are limited by the speed of the processors concerned. The
source for the example is supplied in the examples/router subdirectory

o
----. Channel HOST

Figure 9.3 Example filter test program

3 0 3
FILTERA GENERATE FILTERB

0 2 1 2 1 0
T425 + 128K T800 + 16K T425 + 128K

1 3 2

2 0 1
RESULTA I«>NITOR RESULTB

3 1 2 3 0 3

T425 + 128K T425 + 2M T425 + 128K
1 2

0 Transputer :
...-.. Link HOST

Figure 9.4 Example filter test hardware

72 lOS 34501 October 1992

9 Advanced use of the configurer 193

This is not a real program but has been constructed to demonstrate many of the
features for optimization described in the previous sections, within acomparatively
small and simple system. The basic configuration description is as follows:

/* Hardware description for specialised sub-system */

T800 (memory = 32K) GENERATE;
T425 (memory = l28K) FILTERA;
T425 (memory = l28K) FILTERS;
T425 (memory = l28K) RESULTA;
T425 (memory = l28K) RESULTB;
T425 (memory = 2M) MONITOR;

edge portl, port2;

connect host to MONITOR.link[l];
connect MONITOR. link [2] to RESULTA.link[l];
connect RESULTA.link[2] to FILTERA.link[l];
connect FILTERA.link[2] to GENERATE.link[l];
connect GENERATE. link [2] to FILTERB.link[l];
connect FILTERB.link[2] to RESULTB.link[l];
connect RESULTB.link[O] to MONITOR.link[3];

connect RESULTA.link[3]
connect RESULTB.link[3]

connect MONITOR.link[O]

to FILTERA.link[O];
to FILTERB.link[O];

to GENERATE.link[3];

connect GENERATE. link [0] to RESULTB.link[2];
connect FILTERA.link[3] to portl;
connect FILTERB.link[3] to port2;

/* Software description for filter test program */

input fs;
output ts;

process (stacksize = 2k, heapsize = l6k,
interface(input f8, output ts, input Res[2] ,

output Cntl[4]» Monitor;

process (stacksize =2k, heapsize = l6k,
interface(input In, output Out,

input Cntl» Result[2];

process (stacksize = 2k, heapsize = l6k,
interface(input In, output Out,

input Cntl» Filter[2];

process (stacksize = It, heapsize = 4k,

72TDS 345 01 October 1992

194 9.2 Channel communication - configuration techniques

interface(output Out[2]» Generate;

rep i = 0 for 2
{

connect Monitor.Cntl[i] to Result[i] .Cntl;
connect Monitor.Cntl[i+2] to Filter[i] .Cntl;

connect Result[i].Out

connect Filter[i] .Out

connect Generate.Out[i]

connect Monitor.fs to fs;
connect Monitor.ts to ts;

/* Mapping description */

to Monitor.Res[i];

to Result[i] .In;

to Filter[i].In;

place Generate on GENERATE;
place Filter[O] on FILTERA;
place Filter[l] on FILTERB;
place Result[O] on RESULTA;
place Result[l] on RESULTB;
place Monitor on MONITOR;

use "generate.lku" for Generate;
use "filter.lku" for Filter[O];
use "filter.lku" for Filter[l];
use "result.lku" for Result[O];
use "result.lku" for Result[l];
use "monitor.lku" for Monitor;

place fs on host;
place ts on host;

However, for this real-time program to actually work correctly a number of optimi
zation features of the configurer have to be exploited to ensure the right routing
decisions are made:

• GENERATE has no memory space available to carry the overheads of
routing software and requires no virtual channels itself, so setting
routecost to INFINITE COST prevents routing software being placed
on it. -

• FILTERA and FILTERB must be operated in a state as close as possible
to the real case, where all their channels are placed onto hardware links.
The main data path through the Filter component must operate at hard
ware data rates, so the In and Out channels must both be placed onto
hardware links to guarantee the required performance. The Cntl channel

72TDS 34501 October 1992

9 Advanced use of the configurer 195

which carries a small amount of parameterization data can, however, be
implemented as a virtual channel without significant effect.

Hence the following text is added to the basic configuration source:

/* Mapping optimisation */

/* Prevent through routing via GENERATE */
GENERATE (routecost = INFINITE_COST);

/* Ensure minimum overhead on FILTERA */
FILTERA (routecost = INFINITE_COST, linkquota = 1);

/* Ensure minimum overhead on FILTERB */
FILTERB (routecost = INFINITE_COST, linkquota = 1);

/* Optimise Generate to Filter 0 Path */
place Generate.Out[O] on GENERATE.link[1];
place Filter[O] .In on FILTERA.link[2];

/* Optimise Generate to Filter 1 Path */
place Generate.Out[1] on GENERATE.link[2];
place Filter[1] .In on FILTERB.link[1];

/* Optimise Filter to Result 0 Path */
place Filter[O] .Out on FILTERA.link[1];
place Result[O] .In on RESULTA.link[2];

/* Optimise Filter to Result 1 Path */
place Filter[1] .Out on FILTERB.link[2];
place Result[1] .In on RESULTB.link[1];

/* Use otherwise unspecified linkquotas to check
overheads on GENERATE, RESULTA, and RESULTB */

GENERATE (linkquota = 0);
RESULTA (linkquota = 2);
RESULTB (linkquota = 2) ;

72 TDS 345 01 Odober 1992

196

72 TDS 34501

9.2 Channel communication - configuration techniques

October 1992

10 Mixed language.
programming

This chapter describes the mechanisms for mixing code modules written in differ
ent high level languages. It is divided into two parts. The first part discusses how
to call procedures and fundions written in one language from another language.
This includes details of the library procedures provided to allow occam programs
to call C functions which require use of static or heap memory.

The second part describes how complete C programs can be called as if they were
occam processes with a standard channel interface.

10.1 Mixed language programs

For many applications it is appropriate to write the software using more than one
programming language. For example, a particular algorithm may be better
expressed in a specific language, or application modules may already exist in par
ticular languages. In either case a well defined mechanism for mixing languages
within a single system is desirable.

The toolset provides a clean and simple basis for mixing languages on transputer
networks. Independent software processes can be written in different languages,
compiled and linked using a common set of tools, and the linked modules placed
anywhere on a network oftransputers using a configuration description. Compiler
pragmas are provided to allow code to be imported with the correct calling conven
tions, and to translate names so they are valid in the calling language.

Code written in other languages can be used as external routines in a program,
providing the language calling conventions are honored, and no conflicts of name
occur.

There are a numberof issues to be considered when mixing languages. These are:

• The declaration of the external routine - in order for the calling program
to be able to correctly call an external routine, it must have a description
of the interface to the routine. The way in which this is done depends on
the language being used.

• The translation of names - programming languages differ in the legal
character set for identifiers and symbolic names. Thus, names acceptable
in one language may not be valid in another. To avoid these problems com
piler pragmas are provided to perform name translations.

72 TDS 345 01 October 1992

198 10 1 Mixed language programs

• The calling conventions of the languages - including passing the address
of the static area and the types of the parameters in the two languages.

• The types returned by functions.

• The presence, or otherwise, of a static area in each language (this is dis
cussed in more detail below).

• The libraries to be used when linking the complete program.

These issues are discussed in more detail in the the following sections.

Note: When mixing languages, the external procedures must not do any host com
munications. All ilo should be performed by the calling program. The external pro
cedures can however perform channel communications with other processes.

10.1.1 Declaring external routines

In order to properly call a separately compiled procedure or function, the compiler
needs to be given information about the external routine. In Cthis is done by declar
ing the function as external, for example:

extern int f (int a, int b);
extern void p1 (char c);

The functions should be declared as prototypes, including the types ofparameters,
to ensure that the actual parameters are converted to the specified types. If the
functions are declared without the parameter types then the default C argument
type promotions will take place.

The occam compiler uses a pragma to provide information about external proce
dures and functions. The syntax of this is:

#PRAGMA EXTERNAL "formal declaration = workspace [, vectorspace]"

The optional parameter vectorspace is not required for C functions.

For example:

#PRAGMA EXTERNAL "PROC p1 (VAL BYTE c) = 20"
#PRAGMA EXTERNAL "PROC p2 (BYTE x, y) = 40, 100"
#PRAGMA EXTERNAL "INT FUNCTION f (VAL INT a, b) = 50"

A void function in C is equivalent to a procedure in occam.

10.1.2 Translating identifiers

Because the syntaxofvalid identifiers can vary from one language to another, com
piler pragmas are provided in C and occam to allow the names used in a source
file to differ from those used externally.

72TDS 34501 October 1992

10 Mixed language programming 199

The pragma can be used to change the name which is used in the object code to
reference an external routine. For example, a C program which needs to call an
occam function called 'get. next' could use the following to convert the name
into a valid C identifier:

extern void get_next(int *n, Channel *in);

Alternatively the pragma could be used to change the name 'exported' from the
occam code:

'PRAGMA TRANSLATE(get.next, "get_next")

PROC get. next (INT next, CHAN input)

In this case, the object file will contain the name 'get next' and the procedure can
only be called by this name. -

10.1.3 Parameter passing

The two issues in passing parameters between languages are, firstly, the types of
the formal and actual parameters (including whether they are passed by value or
by reference) and, secondly, the use of a static area by each language. These are
described in more detail below.

Parameter compatibility

Correct parameter passing depends on the compatibility of data types between
languages. See the language implementation chapters of the appropriate Lan
guage and libraries manuals for details of the implementation of types and how
parameters are passed.

The way in which parameters are passed - either as a copy of the data (by value)
or a pointer to the data (by reference) - involves two issues: the semantics of the
language, and the actual implementation.

C: All parameters are passed by value. Arrays are passed as pointers to
the base type of the array. It is possible to pass pointers to variables which
gives the effect of passing by reference.

occam: parameters are either VAL parameters or non-VAL parameters.
VAL parameters may be implemented by passing by value, or by passing
a pointer. The latter will happen when the size of the parameter is larger
than the word length of the processor and will therefore depend on the data
type and the processor type.

72 TDS 345 01 October 1992

200 10.1 Mixed language programs

Types can be considered to be compatible ifthey have the same interpretation, are
the same size and are passed in the same way. Forexample, aCparameteroftype
int is compatible with an occam VAL IHT parameter. Similarty, as an occam
INT parameter is passed as a pointer it is compatible with a C int * parameter.

Partial lists of type compatibilities are shown in tables 10.1 and 10.2.

occam type Ctype

VAL BYTE
char
unsigned char

BYTE char *
unsigned char *

VAL INTl6 short int

INTl6 short int *
VAL INT int

INT int *
INT32 long int *
REAL32 float *
VAL REAL64 double *REAL64

CBAN Channel *
TIMER No parameter required

Table 10.1 Type equivalents for all processors

occam type
Ctype

16 bit processor 32 bit processor

VAL INT32 long int * Ilong int

VAL REAL32 float * ffloat

Table 10.2 Type equivalents dependent on processor word length

Range checking

It is important to ensure that parameters passed to occam procedures and func
tions have values within the legal range for the type. For example, when passing
to a formal parameter of type BYTE the value must be in the range 0 through 255.

Violation of this rule is liable to cause a runtime range check error in the occam
code.

occam timers

An occam TIMER parameter should have no associated actual parameter. For
example, the procedure PROC p (VAL INT pi, TIMER t, VAL INT p2)

72 TDS 345 01 October 1992

10 Mixed language programming 201

could be called from C simply as: p (pi, p2) (assuming the nolink pragma
has been used - see below).

10.1.4 Global static base parameter

C uses an area of memory for static data. This requires a parameter to be passed
to the called function to enable it to access the static area - this parameter is
known as the Global Static Base or GSB. This parameter is added automatically
by the compiler and is not normally visible to the programmer.

occam differs from C in that it does not use a static or heap area and so does not
expect a GSB parameter to be passed to procedures. Similarly, occam programs
do not pass a GSB pointer when procedures are called. In order to allow calls to
work correctly between languages the presence of the GSB parameter must be
taken into account.

There are two possible solutions to this problem:

1 A dummy GSB parameter can be provided in occam.

2 A compiler pragma can be used in the C program to specify that a function
does not require a GSB parameter.

3 When calling occam from C, make use of the call vithout gsb func-
tion (see chapter 2 of the C Language and libraries-manual). -

The first two techniques can be used either on the routine being called or in the
calling program, whichever is more appropriate.

In the examples below which show C functions called from occam, it is assumed
that the C code does not use any static or heap memory. However, it will often be
necessary for the occam calling program to allocate some memory for use by the
C code as the static or heap area; a pointer to this memory is then passed as the
first parameter when the function is called. This technique is described in more
detail in section 10.1.7 below.

Method 1 - dummy GSB parameter.

A dummy parameter can be used either as a formal parameter for procedures
which are to be called from C, or as an actual parameter for C functions which are
being called from occam. For example the following occam function can be
directly called from a C program:

INT FUNCTION ocfunc(VAL INT GSB, argi, arg2)
-- Note: dummy parameter GSB is not used
INT return:
VALOF

RESULT return

Note: because the dummy parameter is not used, the occam compilerwill gener
ate a warning message but correct object code is still generated.

72 TDS 345 01 October 1992

202 10.1 Mixed language programs

To call this version of ocfunc from a C program it is declared as an extern func
tion (without the GSB parameter) and then called normally:

/* declare function as external */
extern int ocfunc(int argl, int arg2);

/* call function */
ret = ocfunc(x, y);

The same method can be used to call a C function from occam by passing a
dummy first parameter of type INT. For example the C function:

void cfun(int a)
{

Could be called from occam in the following way:

'PRAGMA EXTERNAL "PROC cfun (VAL INT GSB, x) = 20"

VAL INT GSB IS 0:
cfun(GSB, 42)

Method 2 - nolink pragma

In order to simplify mixing occam and C, the INMOS C compiler provides the
INS nolink pragma which directs the specified function to be compiled without
the Static link parameter. Any calls of the function, within the scope of the pragma,
will not have the GSB added to the parameter list. If the function is defined within
the scope ofthe pragma then it will be compiled without the requirement for a static
link parameter (the compiler will flag a serious error if the function requires access
to static data).

As an example, consider the occam function ocfunc below:

INT FUNCTION ocfunc(VAL INT argl, arg2)
INT ret
VALOF

RESULT ret

72TDS 34501 October 1992

10 Mixed language programming 203

To call ocfunc from a C program it must first be declared as an extern function
and then specified as not requiring the GSB parameter:

/* declare function as external */
extern int ocfunc(int argl, int arg2);

/* specify that function has no GSB parameter */
#pragma IMS_nolink(ocfunc)

/* call function */
ret = ocfunc(x, y);

The same technique can be used to compile a C function which does not require
a GSB parameterso that it can be called directly from occam. As an example, con
sider the C function below:

/* declare function before referencing */
void cfun(int a);

/* specify that function has no GSB parameter */
'pragma IMS_nolink(cfun)

/* define the function */
void cfun(int a)
{

This can be called from occam in the following way:

'PRAGMA EXTERNAL "PROC cfun (VAL INT x) = 20"

cfun(42)

Method 3 - using call_without_gsb function

This method is applicable only when dynamically loading code using the ANSI C
Toolset. It is described in chapter 12 and an example is given in section 12.6 of the
ANSI C Too/set User Guide.

10.1.5 Function return values

When functions are being called it is also necessary for the return types to be com
patible.

The definition of compatibility for function return types is stricter than that for
parameters. It is possible (though probably not sensible) to pass any type of the
correct size as a parameter. However, floating point and integerfunction results are
returned in different ways (depending on the processor type) and so it is essential

72 TDS 345 01 October 1992

204 10.1 Mixed language programs

to ensure that the types of function return values are strictly equivalent. A partial
list of equivalents is given in table 10.3 for guidance.

occam function C function type
type

BYTE char
unsigned char

INT32 long int

INT int

REAL32 float

REAL64 double

Table 10.3 Function return types

Note: a Cfunction of type void must be called from occam as a procedure. Simi
larly an occam procedure must be called from C as a void function.

Restrictions on functions that may be called

Because occam functions can only have VAL parameters, and these do not
always have C equivalents, there are restrictions on the types ofoccam functions
that can be called from C and vice-versa. For example, there are no equivalents
of the occam BOOL type and so functions which require this type ofparametercan
not easily be called.

Similarly, because C functions can only return a single value, only occam func
tions with a single return value can be called from C.

occam cannot call C functions which return structure types.

10.1.6 Linking the program

After all the component parts of the program have been compiled, they must be
linked together with any libraries required. The libraries that are required will
depend on a number of factors such as the language that the main (calling) pro
gram is written in, whether the program communicates with the host, which library
routines are used by the different language modules. Some guidelines for various
configurations are given below.

Calling occam from C

When calling occam code from a C program, then the following library files must
be linked with the compiled occam and C code.

72TOS 34501 October 1992

10 Mixed language programming 205

• The C runtime library

If the program uses the host file server then the full runtime library must be
used. This can be linked in by using the linker indirect file cstartup .lnle.

If the program does not use the host file server then the reduced runtime
library must be used. This can be linked in by using the linker indirect file
cstartrd.lnk.

• The standard occam compiler libraries will be required by most occam
code. These libraries can be linked in by using the appropriate
occamx. lnk linker indirect file.

• Any other C or occam modules or libraries referenced by the program
must also be linked in.

Calling C from occam

When calling Ccode from an occam program. then the following library files must
be linked with the compiled C and occam code.

• The standard occam compiler libraries can be linked in by using the
appropriate occamx.lnk linker indirect file.

• If the main program is written in occam and allocates static or heap
memory for C functions using the library procedures described in section
10.1.7. then the library callc . lib must be linked in.

• Any other C or occam libraries used must also be linked in.

• The reduced C library must be used as the called functions cannot make
any host file server requests. The reduced runtime library can be linked in
by using the clibsrd.lnk linker control file.

10.1.7 Allocating memory for C functions called from other languages

The C runtime environment automatically provides C programs with a static area
(for holding static data and external variables) and a heap area (for memory alloca-
tion). However occam does not provide these and so this memory must be explic
itly allocated by the calling program before C functions are called. Four routines
in the occam library callc. lib are used to set up and terminate C static and
heap areas from occam for C functions that require them.

The static area

C static data is stored in a reserved area of memory called the static area which
must be set up by the system and initialized. Each Cfunction which uses static data

72 TOS 345 01 October 1992

206 10.1 Mixed language programs

needs to be able to find this area. In order to do this, every C function is passed,
as the first parameter, a pointer to the start of the static area, the global static base
(GSB). The static area must be set up and the GSB parameter passed explicitly
by the calling occam code. This means that acall to a C function from occam will
have one extra parameter compared to an equivalent call from C.

The heap area

The heap area is that area of memory from which the C memory allocation func
tions reserve their memory space. It is separate from the static area and requires
a static area to be previously allocated because information about the heap is held
in static variables.

The heap need not be set up if it is not required, but remember that it may be used
implicitly by a library call.

Providing static and heap

Some simple C functions may not require static or heap areas and may be called
more easily without using the special library routines. When calling a C function
therefore, the first step is to decide whether static and heap areas are required.

Deciding whether a static area is required

For many C functions it may not be immediately obvious whether static or heap is
required (the heap area requires a previously set-up static area). For example,
some, but not all, library functions require static and heap areas and so, because
it would be difficult to distinguish those that do, a static and heap area should be
assumed whenever a library function is called.

Because of the difficulty in covering all types of functions, the following series of
rules is offered as a way ofdetermining whether a function requires static or heap.
The rules include the most common reasons for a C function requiring static or
heap memory.

• If the function uses static variables then static is required.

• If the function accesses external variables then static is required.

• If the function includes an automatic structure or union initializer then static
is required.

• If the function uses any functions from the runtime library then static and
heap may be required.

Functions which fail all the above tests will probably not require static or.heap, and
can be called without using any of the static or heap library functions.

Calling functions which do not require static or heap

C functions which do not require static or heap can be called as described in sec
tion 10.1.4.

72TDS 345 01 October 1992

10 Mixed language programming 207

Calling functions which do require static or heap

For C functions which require static and/or heap the space must be set up in the
occam code before the fundion is called, and terminated when no longer
required. These operations are performed by procedures supplied in the library
callc . lib. This library is supplied as part of the ANSI C toolset - do not use any
previous version of the library which ·was supplied as part of an occam toolset.

The library callc . lib provides four occam procedures for initializing static and
heap areas and terminating them after use. The routines are summarized in table
10.4 and described in more detail below.

Procedure Description

init.static Initializes an area of memory for use as the
static area.

init.heap Initializes an area for use as the heap area.

terminate.heap.use Terminates heap usage.

terminate. static. use Terminates static usage.

Table 10.4 Library procedures to support memory allocation

PROC init.static([]INT static.area, INT required.size, GSB)

init. static is used to set aside and initialize an area of memory for use as a
C static area before any C functions are called. The static area is declared as an
integer array in the calling occam program.

Two integer values are returned in the procedure parameters:

required. size
GSB

The number of words of static space required.
A pointer to the base of the array which will act as
the global static base.

Note: the size of the integer array is equivalent to the number of words of static
space required. One element of the integer array is equivalent to one word of
memory. If an error occurs on initializing the static area the value MOSTPOS INT
is returned instead of the required size.

72 TDS 345 01 October 1992

208 10.1 Mixed language programs

The procedure can be used to check the size of static area required by checking
the value returned in the second parameter. For example:

'USE "callc.lib"

INT required. size, GSB:
[STATIC.SIZE]INT static. area:

SEQ
init.static(static.area, required. size, GSB)
II'

required. size > STATIC.SIZE
not enough space reserved

TRUE
array is big enough

Another possible way of using init. static is to reserve a large amount of
memory for use by the C function. To do this an initial call to init. static would
be made with an array size ofzero to obtain the required size, followed by asecond
call which would set up a segment of memory as the static area. The rest of the
memory could be used by the occam program for its own purposes, perhaps to
allocate the C heap. For example:

'USE "callc.lib"

INT required, GSB:
[VERY. BIG. NUMBER] INT memory

SEQ
check the static requirement

init.static([memory FROM 0 FOR 0], required, GSB)

-- allocate required amount of memory for static
static.area IS [memory FROM 0 FOR required] :
-- rest is available for other purposes
memory . left IS [memory FROM required FOR

(VERY.BIG.NUMBER - required)]:
SEQ

-- now use allocated memory as static
init.static(static.area, required, GSB)

rest of program

PROC init.heap(VAL INT GSB, []INT heap.area)

init .heap is used to set aside an area of memory for use as a C heap before any
C functions are called. The first argument is the GSB pointer returned by
init.static, which is required because the memory allocation routines make
use of static data.

Like the static area, the heap area is declared as an integer array. This array must
be large enough to accommodate all calls to the C memory allocation functions.

72 TOS 345 01 October 1992

10 Mixed language programming 209

The size of the integer array is equivalent to the number of words of heap area
required. One element of the integer array is equivalent to one word of memory.

If the heap is used by afunction before init. heap has been called the C memory
allocation functions will fail with their normal error returns.

PROC terminate.heap.use(VAL INT GSB)

terminate. heap. use should be called when the heap is no longer required, i.e.
when no more Cfunctions will be called. It provides a dean way of terminating the
use of the heap.

Once the heap terminate procedure has been called, the state of the heap is unde
fined.

terminate. heap. use must be called before terminating the static area
because the heap is accessed using static variables.

PROC terminate.static.use(VAL INT GSB)

terminate. static.use should be called when the static area is no longer
required, i.e. when no furthercalls to Cwill be made. It provides aclean way ofend
ing the use of the C static area.

Once the static terminate procedure has been called, the state of the static area
is undefined.

Example

The following example illustrates how these library procedures can be used to set
up and terminate the static and heap areas for a C function. The C function to be
called is:

'include <stdlib.h>

int c_func(int n, int release) (

static int *ptr =NULL;
int i;

if (ptr = HULL) {
ptr = (int *) malloc(n);

if (ptr = NULL)
return 1;

for (i =0; i < n I aizeof(int); i++)
ptr[i] = i;

if (release){
free (ptr);
ptr = troLL;

return 0;

72TDS 345 01 October 1992

210 10.1 Mixed language programs

The occam code to call this function (on a 32 bit transputer) is shown below:

'INCLUDE "hostio.inc"
'OSE "hostio.lib"
'OSE "callc.lib" -- the 'callinq C' functions.

'PRAGMA TRANSLATE C "c func"

-- declare the C function as an occam descriptor.

'PRAGMA EXTERNAL "INT FUNCTION C(VAL INT GSB,x,free) 200"

PROC mixed (CHAN OF SP fs, ts, []INT freemem)

INT GSB, required. size :

-- Allow very larqe static and heap area sizes
VAL static. size IS 4000 :
VAL heap. size IS 4000 :
[static.size]INT static.area
[heap.size]INT heap.area:

SEQ
set up static. area as the static area

init.static(static.area, required. size, GSB)
-- now check for error
IF

required. size > static. size
so.write.strinq(fs, ts,

"error initialisinq static*n")
TRUE

INT fail:
SEQ

-- Set up the heap area.
-- Note that GSB is the first parameter
init.heap(GSB, heap. area)

-- Call the C function. Note that the GSB
-- is passed as the first parameter.
fail := C (GSB, 20000, 0)
IF

fail = 0
so.write.strinq(fs, ts, "malloe OK*n")

TRUE
so.write.strinq(fs, tB, "malloe failed*n")

-- now tidy up the stack and heap allocated
termdnate.heap.use(GSB)
termdnate.statie.use(GSB)
-- and exit
so.exit(fs, ta, sps .•uee.ss~

72 TOS 345 01 October 1992

10 Mixed language programming 211

The occam program must be compiled and then linked with the compiled C func
tion, the memory allocation library, the reduced C runtime library, the occam host
i/o library, and the standard occam libraries. In this example (assuming that the
C source code is in a file called efune. e and the occam source is in a file called
mixed.oee) the set of files to be linked is:

mixed.teo

efune.teo
elibsrd.lnk
hostio.lib

ealle.lib
oeeama.lnk

compiled occam program
compiled C function
linker indirect file for the C reduced runtime library

occam ilo library
call C library

linker indirect file listing standard occam libraries for
code compiled for transputer class TA

The linkerallows files to either be specified on the command line or listed in an indi
rect file. Because there are several files required in this instance, it may be easier
to supply a linker indirect file. This file can also include a 'mainentry directive
to define the entry point ofthe program, in this case the top level occam procedure
"mixed". To do this create a text file called ealle. Ink, containing the following
lines:

mixed.teo
efune.teo
'include elibsrd.lnk
hostio.lib
ealle.lib
'include oeeama.lnk
'mainentry mixed

The correct linker command line (using the default processor T414 in HALT mode)
would be as follows:

ilink -f ealle.lnk

ilink If ealle.lnk

(UNIX)

(MS-DOSNMS)

Details of the operation of the linkercan be found in chapter 9 in the Toolset Refer
ence Manual.

72TDS 345 01 October 1992

212

10.1.8 Restrictions and caveats

General

10.1 Mixed language programs

A numberof restrictions must be observed when calling routines written in one lan
guage from a program in a different language:

The formal and actual parameters (and function return types) must be com
patible. See sections 10.1.3 and 10.1.5 for more detail.

2 As occam does not have 'external' variables, there can be no common
data between the calling program and the called routine. Therefore, the
only way that data can be transferred between them is by means of param
eters (and return values). The called procedure may also use channels to
communicate with other parts of the program that are running in parallel.

3 No function or procedure which requires direct communication with the
host file server may be called.

Rules for importing C code

The following restrictions apply to C functions which are to be called from an
occam program:

Slack checking should not be enabled in any C function to be called from
occam.

2 Only C functions linked with the reduced C runtime library, can be called
from occam, i.e. those which do not require any server communication.

3 The following functions cannot be called in the imported C code:

clock ()

exit()

exit_terminate ()

exit_Doterminate()

exit_repeat ()

get_detail_of_free_stack_space()

Rules for importing occam code

There are certain rules which govern the calling of occam code from C:

72TDS 34501 OCtober 1992

10 Mixed language programming 213

occam functions that return more than a single value may not be called.

2 The occam procedure or function to be called must be at the outer level
of a compiled module.

3 INLlNE procedures and functions cannot be called from C.

4 The occam code must not use vector space. or call any other occam
code which uses vector space. Arrays. if used. should be expliciUy placed
within workspace or the code should·be compiled with the v option to dis
able the use of separate vector space.

Some occam libraries supplied with the occam 2 toolset use vector
space and therefore cannot be called from C. These are:

h08no . lib atreamio . lib
.adoa . lib atreaJDCO . lib

5 There must be enough workspace for the called procedures or functions
on the stack of the calling program. It is the programmer's responsibility to
ensure that this is the case.

6 There must be no aliasing between the parameters to occam functions or
procedures and the destination of the result. In other words the same vari
able must not be used as both a parameter which will be read, and as a
result. The occam compiler checks that this is so for occam procedures
and functions called within an occam program.

The presence or absence of alias checking when the occam code is com
piled has no effect on this rule.

As an example consider the occam function:

IN'l' I'tJNCTION aucc (VAL IN'l' n) IS D + 1

If this is called from within an occam program, the compiler will check to
see whether the parameter and result are aliased; if they are then the com
piler will generate temporary variables as necessary. So, for example, the
occam call i : = succ (i) may be compiled with a temporary variable
for the function result. which is then copied to the variable i. The C compiler
is not able to perform these checks and so, if this function is called from C,
it is up to the programmer to ensure that there is no aliasing. A suitable call
ing sequence could be:

int tmp;

tmp = 8ucc(i);
i = tmp;

Note that there may be mutual aliasing between VAL parameters as these
are only read. not written.

72TDS 345 01 October 1992

214 10.2 occam interface procedures

10.2 occam interface procedures

The following sectionsdescribe a set of interfaces provided to allow complete pro
grams written in C to be called from occam. This might be done for various rea
sons, for example to allow a C program to be used with the occam configurer
occonf, or to provide some simple modification of the runtime environment of the
program - e.g. initializing some external hardware before the application code
starts, or intercepting the program's communications with the host file server.

By specifying the appropriate entry point for a C program, it is given an occam-like
procedural interface allowing the program to be called from an occam program.
The code produced in this way is known as an occam equivalent process as it
makes the program look like an occam process with channels for input and output.

10.2.1 Interface code

The occam interface code described here provides a number of fixed interfaces
to a C program. There are three types of interface code, known as types 1,2, and
3. Descriptions and process diagrams for the three interfaces are given below.

Type 1

This interface is used when the C program runs on a single transputer and commu
nicates only with the host file server. This interface is used with the full version of
the C runtime library.

fs

ts

Figure 10.1 Type 1 interface

Type 2

This interface is used when the C program communicates with other processes as
well as the host file server. This interface is used with the full version of the C run
time library.

72 TDS 345 01 October 1992

10 Mixed language programming 215

fs

ts

in[]

out[]

Figure 10.2 Type 2 interface

Type 3

This interface is similar to the type 2 interface except that there is no access to the
host file server. The interface must be used with the reduced version of the runtime
library, which does not contain any functions which require access to iserver
facilities such as the host file system.

in[]

out[]

Figure 10.3 Type 3 interface

Channel arrays

The Type 2 and type 3 interfaces have arrays of channels which enable the C pro
gram to communicate with other processes in the program. These arrays are
mapped directly onto the channel arrays which form part of the standard parameter
list of the C main function (see section 10.2.7).

These channel arrays actually appear as arrays of integers in the occam parame
ter lists - this allows pointers to channels to be passed to the C program which
provides a more flexible way of mapping channels onto the arrays. Because
occam does not support pointers directly, two library procedures are provided to
assign channel pointers to array elements (for more information on these, see the
examples below and the occam language and libraries manual).

72 TDS 345 01 October 1992

216

Reserved channels

10.2 occam IDled.ce procedurel

Two of the input channels and two of the output channels in the Type 2 and Type
3 occam interface procedures (i.e. in[O], in[l], out[O] and out[l]) are
reserved. No program should use these channels. They are reserved as follows:

out[O]
in[O]
out[l]
in[l]

Reserved for diagnostic output.
Reserved for diagnostic input.
Messages from the runtime library to the host file server.
Responses from the host file server to the runtime library.

10.2.2 Parameters to the C program

Parameters to the C main function are desaibed by the following function proto
type:

'include <channel.h>

int main (int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

Where:

• argc - the number of arguments passed to the program from the com
mand line, including the program name.

• argv - an array of pointers to those arguments.

Note: for programs linked with the reduced runtime library (i.e. using the
Type 3 interface), argc is set to 1and the first element ofargv is a pointer
to an empty string.

• envp - included for compatibility with previous toolsets - in this imple-
mentation. this parameter is always set to NULL.

• in - an array of input channels.

• inlen - the size of the array in.

• out - an array of output channels.

• outlen - the size of the array out.

The channel arrays in and out in the C program are passed from the interface
procedures. and can be set up as described below. Where applicable. these chan
nels can be used by the C code to communicate via channels passed in from the
calling occam program. Note, however, that the first two elements in the arrays
are reserved for use by the C program's runtime system and cannot be used by
the application program.

72 TOS 34501 October 1992

10 Mixed language programming 217

10.2.3 Stack and heap requirements

Data storage (workspace) requirements for C programs are provided by arrays in
the occam code. Stack, static and heap requirements vary from program to pro
gram. The workspace arrays passed to the program must be large enough to
accommodate:

• the stack needed by the program when it runs

• all the static data required by the program

• the heap used by the program and the runtime libraries.

Stack overflow may lead to unpredictable behavior by the program. For this reason
it is best to run a program initiallywith a large combined stackand heap. Later, after
the program has been run to determine stack and heap usage, it can be modified
to use a separate stack and heap of the appropriate sizes. The use of a separate
array for the stack allows the stack to be placed in the transputer's internal memory
to optimize the performance of the program. Methods for optimizing memory
usage are described in two INMOS technical notes: number 17 Performance maxi-
mization, and number55 Using the occam toolsets with non-OCCam applications.
A minimum stack size of 512 words is recommended.

Stack overflow detection

Failure or unpredictable behavior of programs may be due to stack overflow. To
obtain an estimate of the amount of stack used by a program:

Build all C code with stack checking enabled.

2 Call the function max stack usage at the end of the program, this will
return an approximatIOn of theamount of stack used by the program.

A test for stack overflow in a program is to use the procedure outlined below:

Initialize the bottom few words of the stack (a falling stack is used) to some
easily recognizable pattern of values.

2 Run the program and, after it crashes, use the debugger to examine the
values in the stack. If the values you initialized have been changed then
stack overflow is likely.

3 Increase the stack size and try again.

A similar method can be used to determine static data and heap requirements,
except that these are allocated upwards in memory. The following occam frag
ment gives an example of initializing the bottom of the stack:

SEQ i = 0 FOR SIZE ws1
wsl[i] := 'DEFACED

72TDS 345 01 Odober 1992

218 10 2 occam interface procedures

Stack overflow in the C parts of the program can also be detected by using the
stack checking mechanism built into the C compiler and libraries.

10.2.4 Type 1 interface definition

The Type 1 interface is used when the C program does not communicate with any
other process apart from the host file server.

The parameters for the Type 1 procedure are: a pair of channels to communicate
with the host file server; and two arrays to provide the C program's heap, static and
stack space.

Procedural interface

The Type 1 occam interface is defined as follows:

PROC MAIN.ENTRY (CHAN OF SP fs, ts,
[]INT free.memory,
[] INT stack.memory)

The parameters to this procedure are:

• fs - a channel from the host file server to the C program.

• ts - a channel from the C program to the host file server.

The channels fs and ts are connected to the channels in [1] and
out[l] which are passed as parameters to the C program - these are
provided for the use of the C runtime libraries only, and should not be used
by the application code.

• free. memory - used by the C program for its heap and static areas.

This array is generally used to pass the free memory which is available to
the C program after the all the code has been loaded.

• stack. memory - used by the C program for its runtime stack (if the size
of the array is non-zero).

If the size of the stack.memory array is zero then the free.memory
array is used for the program's runtime stack as well as for the static and
heap data areas.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

• inlen and outlen are set to 2

• in[O] and out[O] are set to NULL

72TDS 345 01 October 1992

10 Mixed language programming 219

• in [1] is a pointer to the fs channel and is used by the C runtime system
to communicate with the host

• out [1] is a pointer to the ts channel and is used by the C runtime system
to communicate with the host

Example

The following example is an occam procedure, call. prog1, which calls aCpro
gram via the MAIN. ENTRY procedure interface:

'INCLUDE "hostio.inc"

PROC call.prog1 (CHAN OF SP fs, ts)

IUSE "centry.lib"

[lOOOOO]INT heap:
[1024]INT stack:
PLACE stack IN WORKSPACE

C interface code

static and heap space
stack for program
Put on chip

-- call program
MAIN. ENTRY (fs, ts, heap, stack)

10.2.5 Type 2 interface definition

The Type 2 interface is used when building a program that will communicate with
other processes as well as with the host file server.

The parameters for the Type 2 procedure are: a pair of channels to communicate
with the host file server; a flag value to control the use ofmemory by the Cprogram;
two arrays to provide the C program's heap, static and stack space; and a pair of
channels for passing channel pointers to the C program.

Procedural interface

The Type 2 occam interface is defined as follows:

PROC PROC.ENTRY (CHAN OF SP fs, ts,
VAL INT flag,
[]INT 1Is1, 1Is2,
[] INT in, out)

The parameters are described below:

• fs - a channel from the host file server to the C program.

• ts - a channel from the program to the host file server.

The channels fs and ts are connected to the channels in [1] and
out[l] which are passed as parameters to the C program - these are
provided for the use of the C runtime libraries only, and should not be used
by the application code.

72TDS 345 01 October 1992

220 10.2 occam interface procedures

• flag - indicates whether one or two workspaces are to be used.

If the value of flag is set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the
value of flag is set to 1 then the program will run with a single combined
workspace.

• vsl - used by the C program for its workspace.

If flag is 0 then this array is used only for the runtime stack, if flag is 1
then it is used as the program's combined workspace (static, heap and
stack).

• vs2 - used by the C program as its static/heap workspace when flag is
set to zero, otherwise unused.

• in - an array of pointers to occam channels going to the C program.

• out - an array ofpointers to occam channels going from the C program.

Note: The first two elements in the channel pointerarrays in and out are reserved
for use by the C program's runtime system and cannot be used by the program.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

• inlen and outlen are set to the number ofelements in the occam arrays
in and out

• in [0] and out [0] are set to NULL

• in [1] is a pointer to the f s channel and is used by the C runtime system
to communicate with the host

• out [1] is a pointer to the ts channel and is used by the C runtime system
to communicate with the host

• The remaining elements of the arrays in and out are set to the values in
the corresponding elements of the occam arrays

72 TDS 345 01 October 1992

10 Mixed language programming 221

Example

The following example is an occam procedure, call. prog2, which calls aCpro
gram via the PROC. ENTRY procedure interface:

'INCLUDE "hostio.inc"

PROC call.prog2 (CHAR or SP fs, ta,
CHAR or COMM to.process,
CHAN OF COMM from. process)

'USE "hostio.lib"
'USE "centry.lib"

VAL flag IS 1 :
[100000]INT "sl
[l]INT ws2
[3]INT in, out:

SEQ

-- C interface code

-- combined heap and stack
stack and heap for program
dummy workspace for program
channel pointers (not used)

set up user output channel
LOAD.OUTPUT.CHANNEL(out[2], from. process)

-- set up user input channel
LOAD.INPUT.CHANNEL(in[2], to.process)

-- call program
PROC.ENTRY(fs, ts, flag, ws1, "s2, in, out)
so.exit(fs, ts, sps.success)

Two channels are declared of type COMM, the first being an input channel to the pro
cess, the second an output channel from the process. (The declaration of protocol
type COMM is assumed.)

10.2.6 Type 3 interface definition

The Type 3 interface is used to run programs which communicate with other pro
cesses on the same processor or in a network of processes, but which do not
require access to host services. Processes built with the Type 3 interface can com
municate with other processes through channels in the same way as Type 2 pro
cesses.

Programs using the Type 3 interface must be linked with the reduced C runtime
library.

The parameters for the Type 3 procedure are: a nag value to control the use of
memory by the C program; two arrays to provide the C program's heap, static and
stack space; and a pair ofchannels for passing channel pointers to the C program.

72TDS 34501 october 1992

222

Procedural interface

102 occam interface procedures

The interface for Type 3 equivalent occam processes is defined below:

PROC PROC. ENTRY. RC (VAL INT flag,
[]INT wsl, ws2,
[] IMT in, out)

The parameters are described in the following list.

• flag - indicates whether one or two workspaces are to be used.

Ifthe value of flag is set to 0 then the program will run with two workspace
areas; one for static and heap data, the other for the runtime stack. If the
value of flag is set to 1 then the program will run with a single combined
workspace.

• wsl - used by the C program for its workspace.

If flag is 0 then this array is used only for the runtime stack, if flag is 1
then it is used as the program's combined workspace (static, heap and
stack).

• ws2 - used by the C program as its static/heap workspace when flag is
set to zero, otherwise unused.

• in - an array of pointers to occam channels going to the process.

• out - an array of pointers to occam channels coming from the process.

Note: The first two elements in the channel pointerarrays in and out are reserved
for use by the C program's runtime system and cannot be used by the occam pro
gram.

Parameters to C program

The channel array parameters to the C main function are set up as follows:

• inlen and outlen are set to the numberofelements in the occam arrays
in and out

• in[O], in[l], out[O] and out[l] are are set to NULL

• The remaining elements of the arrays in and out are set to the values in
the corresponding elements of the occam arrays

72 TDS 345 01 October 1992

10 Mixed language programming

Example

223

The following shows how to call a Type 3 equivalent occam process from occam
source, and how to set up the parameters required. The example consists of an
occam procedure ·call. proq3' within which a C program is called.

PROC call.proq3 (CHAN or COMM to.process,
CHAN OF COMM from. process)

'USE "centry.lib"

VAL flaq IS 0 :

[1000]INT ws1 :
[40000]INT ws2
[3]INT in, out:

C entry point library

separate heap and stack

stack for proqram
-- heap for proqram
-- pointers to inputs/outputs

SEQ
-- set up user output channel
LOAD.OUTPUT.CHANNEL(out[2], from. process)

-- set up user input channel
LOAD. INPUT. CHANNEL (in[2], to.process)

-- call proqram
PROC.ENTRY.RC(flaq, vs1, vs2, in, out)

Two channels are declared of type COMM, the first being an input channel to the pro
cess, the second an output channel from the process. (The declaration of protocol
type COMM is assumed.)

The first statement sets up a pointer to the output channel, using the procedure
LOAD. OUTPUT. CHANNEL. The second statement sets up a pointer to the input
channel, using the procedure LOAD . INPUT. CHANNEL. Note that the first two input
and output channels are reserved by the runtime system even though there is no
host communication taking place.

10.2.7 Building the occam equivalent process

The occam equivalent processes built from these interfaces can be called from
an occam program in the same way as any other occam procedure. Note that,
because the interface procedures have fixed names, there can only be one pro
cess of a particular type in each linked unit. However, multiple C programs called
in this way may be placed on a processor by the configurer.

Once all the component C and occam code for the complete program has been
compiled, it is linked with the C runtime libraries, the occam entry points library

72 TDS 345 01 October 1992

224 10.2 occam Intedace procedurel

and any other occam libraries required. The program is then configured and a
bootable code file produced.

The occam interface code is supplied in the library eentry . lib. The C libraries
can be linked by using the linkercontrol file elibs . Ink, for the full runtime library,
or elibsrd.lnk, for the reduced runtime library. For example, consider a pro
gram that consists of the following compiled files:

• main. teo - the compiled C program to be called from occam

• wrap. teo - the compiled occam code that calls the interface procedure

This program can be linked with the full run-time libraries, for a 32 bit transputer,
using the following command:

ilink wrap. teo main. teo -f elibs . Ink -f occama . Ink
(UNIX toolset5)

ilink wrap.teo main.teo If elibs.lnk If occama.lnk
(MS-oOSNMS toolset5)

72 TOS 345 01 October 1992

11 EPROM
programming

INMOS EPROM software is designed so that programs can be developed and
tested using the INMOS toolset, and once they are working, can be placed in ROM
with only minor change.

11.1 Introduction

During development, software is booted onto a network from a link connecting the
network to the host computer. Then the software is prepared for a ROM, which is
attached to the root transputer in the network.

Figure 11.1 shows how a network of five transputers would be loaded from a ROM
accessed by the root transputer.

Boot from link Boot from link

Figure 11.1 Loading a network from ROM

To prepare software to be booted from ROM, rather than to be booted from link,
the following two steps must be taken:

1. Give different options to the configurer and collector tools so that they pro
duce ROM-bootable code.

2. Run the ieprom tool to produce afile orset offiles suitable for blowing into
EPROM.

Figures 11.2 and 11.3 illustrate the stages of preparing ROM-bootable software.
Figure 11.2 shows an occam program, compiled and linked for a single processor.
Figure 11.3 shows a configured program, consisting of one or more linked units,

72TDS 345 01 October 1992

226 11.2 Processing configurations

connected Jogether and allocated to processors as described in a configuration
file.

----.. InpuUoutput
- -.. References

Figure 11.2 Preparation of ROM-bootable software (single occam program)

G
+

----.. InpuUoutput
--.. References

Figure 11.3 Preparation of ROM-bootable software (configured program)

11.2 Processing configurations

The processing configuration used will depend on the number of software pro
cesses. the number of transputers available to run the code and whether the code
is to run from ROM or RAM. The following sections outline the possible configura
tions.

When preparing FORTRAN or C code to be booted from ROM the configurer must
be used in order to specify the size of stack and heap. This applies even when the

72TDS 34501 October 1992

11 EPROM programming 227

application consists of a single process running on a single processor. A single
occam process can be configured or prepared as a single, linked program.

11.2.1 Single processor, run from ROM

The application process is prepared as one or more processes, connected as
described in a configuration file. If the application consists of a single occam pro
gram then it can be prepared without using the configurer. It is then run on a single
processor, with the code in ROM, and the RAM is used as the data area.

11.2.2 Single processor, run from RAM

The application process is prepared as one or more processes, connected as
described in a configuration file. If the application consists of a single occam pro
gram then it can be compiled and linked without using the configurer. When booted
from ROM, the processor copies the code into RAM and runs it, using the RAM for
the data area.

11.2.3 Multiple process, multiple processor, run from RAM

The application is prepared as a collection of processes, connected and allocated
to processors as described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads its own code into RAM, and loads the rest of the
network via its links. Each processor then sets off its own processes, and the
application runs. (This is the configuration shown in figure 11.1).

11.2.4 Multiple process, multiple processor, root run from ROM, rest of net
work run from RAM

The application is prepared as a collection of processes, connected and allocated
to processors as described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor. When booted from
ROM, the root processor loads the rest of the network via its links, and then contin
ues to run its own code from the ROM.

11.3 The EPROM tool: ieprom

The EPROM tool ieprom takes the output of the collector, and produces a file or
set of files suitable for blowing into an EPROM. The following output formats are
supported:

- Binary

- Hex

- Intel hex format

- Intel extended hex format

- Motorola S-record format

72TDS 345 01 October 1992

228 11.4Usingtheconfigurerand collectortoproduceROM-bootablecode

ieprom supports the production ofcode files in blockmode, which allows the code
to be placed in a set ofdifferent files. This is useful to program EPROMS organized
as separate byte-wide devices, or where the EPROM programming device does
not have enough memory to hold the entire image.

ieprom also supports the inclusion in the EPROM image of a memory configura
tion. Some 32-bit transputers have a configurable memory interface which can be
initialized from a fixed area in the ROM, when the transputer is reset. A particular
memory configuration can be specified to ieprom in a text file. These files are
known as memory configuration files and normally have the file extension .memo
The format of these files, and the facility to edit them using an interactive tool called
iemi t is described in chapter 6 of the Too/set Reference Manua/.

ieprom is driven by a control file which normally has the file extension .epr. A
detailed description of iepromand its control file is given in chapter 7 ofthe Toolset
Reference Manual.

11.4 Using the configurer and collector to produce ROM-boot
able code

To produce code suitable for running in ROM or RAM, the configurer and collector
tools must be specified with the appropriate command line options. The following
options are used to configurer single and multi-processor programs and to collect
unconfigured single processor programs:

• The ro option specifies that the code is to run in ROM.

• The ra option specifies that the code is to run in RAM.

• The rs option specifies the ROM size (if not specified in configuration file).
This option does not apply to the occonf, see below.

In addition, if using icconf, the P option must be used with the configurer, in order
to specify the root processor name.

If using occonf, the NETWORK description in the configuration file should indicate:

• which processor is the root processor, by setting its root attribute to TRUE

• the size of the ROM on that processor, by setting its rOlll8ize attribute to
the appropriate value, in bytes.

The collector will add the appropriate ROM bootstrap to the application code and
the output file will be given the extension .btr.

72TDS 34501 october 1992

11 EPROM programming 229

11.5 Summary of EPROM tool steps for different configurations

11.5.1 Using icconf

Compile and Configure Collect EPROM
link

Single pro- Compile and Configure Collect Run EPROM
cesser, run link a set of with the ro, tool to add

from ROM. units, one per rs and p memory interface
(if necessary),

process. options. and produce
EPROMfiles.

Single pro- Compile and Configure Collect Run EPROM
cessor, run link a set of with the ra, tool to add

from RAM. units, one per rs and p memory interface
(if necessary),

process. options. and produce
EPROMfiles.

Multiple pro- Compile and Configure Collect Run EPROM
cessor, run link a set of with the ra, tool to add

from RAM. units, one rs and p memory interface
(if necessary),

per process. options. and produce
EPROMfiles.

Multiple pro- Compile and Configure Collect Run EPROM
cessor root link a set of with the ro, tool to add

runs from units, one rs and p memory interface
(if necessary),

ROM, rest of per process. options. and produce
network runs EPROMfiles.
from RAM.

11.5.2 Single processor unconfigured occam program

Compile and Configure Collect EPROM
link

Run from Compile and Not needed. Collect with Run EPROM

ROM. link program. the ro and t tool to add

options. memory interface
(if necessary),
and produce
EPROMfiles.

Run from Compile and Not needed. Collect with Run EPROM

RAM. link program. the ra and tool to add

t options. memory interface
(if necessary),
and produce
EPROMfiles.

72TDS 34501 October 1992

230 11.5 Summary of EPROM tool steps for different configurations

11.5.3 Using occonf

Compile and Configure Collect EPROM
link

Single pro- Compile and Configure Collect Run EPROM
cessor, run link a set of with the ro tool to add

from ROM. units. option. memory interface
(if necessary),
and produce
EPROMfiles.

Single pro- Compile and Configure Collect Run EPROM
cesser, run link as a set with the ra tool to add

from RAM. of units. option. memory interface
(if necessary),
and produce
EPROMfiles.

Multiple pro- Compile and Configure Collect Run EPROM
cessor, run link a set of with the ra tool to add

from RAM. units. option. memory interface
(if necessary),
and produce
EPROMfiles.

Multiple pro- Compile and Configure Collect Run EPROM
cessor, root link a set of with the ro tool to add

runs from units. option. memory interface
(if necessary),

ROM, rest of and produce
network runs EPROMfiles.
from RAM.

72 lDS 345 01 October 1992

12 Dynamic code
loading

12.1 Introduction

This document describes the dynamic code loading facility provided by the INMOS
ANSI Ctoolset. This facility allows code to be loaded and executed at runtime. This
can be ofuse to keep internal memory requirements down. Code might be dynami
cally loaded, when for example, it is known to be used only rarely, or if it cannot
be determined until runtime what code is required. Dynamically loading and
executing the code, followed by freeing up the space that it required, circumvents
the need to have code (that may never be run or run only rarely) taking up space
in internal memory.

Only users who are knowledgeable about the implementation of ANSI C and are
familiar with the construction of C runtime systems in general, should attempt to
use this facility.

12.2 Overview

Functions are provided in the C library to dynamically load code from:

a . rsc file,

2 the image of a . rsc file in ROM or RAM,

3 a . rsc file transmitted over a channel.

A . rsc file is the output of the collector when used with the 't' and 'k' options
together. The format of a . rsc file is described in chapter 3 of the ANSI C Toolset
Reference Manual.

Within this chapter, the code in the . rsc file is referred to as the 'child', and the
code that loads and calls the code in the . rsc file is referred to as the 'parent'. To
the parent the child is a function and is known only by a pointer to that function.
The parent can thus call the child either as a parallel process or by de-referencing
the pointer to it.

The child can be code that is compiled (for the transputer), linked and collected
from source in any programming language. However, each language implementa
tion has its own runtime model requirements. For example, if a static area is pres
ent then it will need to be initialized. A . rsc file only gives one entry point, as shown
in figure 12.1.

72 TDS 345 01 October 1992

232

Entry point

~Exit

12.2 Overview

Initialization
code

Application
code

Clean up
code

Figure 12.1 Structure of child

For some language implementations it may be that no initialization or clean up
need be done. For INMOS ANSI C, initialization and clean up code is needed, but
just how much depends on what the application code does. Full initialization and
dean up code for INMOS ANSI C is provided in two harness files that have to be
edited to be appropriate to the application code.

It is suggested that this chapter is read in conjunction with the supplied source files,
fnloadl . c and fnload2 . c which are fully commented. The files can be found
in the runtime startup system source directory. See the accompanying Delivery
Manual for details.

Having the initialization and clean up code under one's own control means that
there is no restriction on the interface of the application code, e.g. there need not
be a function called main.

The memory requirements of the child, e.g. static and heap, must be allocated by
the parent. The parent passes over their details to the child via the parent-child
interface. When the child has finished its work, the parent can free up these areas.
How this is done is explained in the next sections.

72 TDS 34501 October 1992

12 Dynamic code loading

12.3 Basic Parenthood

233

The parent will have to obtain some details of the child from the . rsc file so that
it can take appropriate action. It obtains this information by calling one of the follow
ing functions, depending on where the •rsc file is found:

• get_code_details_from_file

• get_code_details_from_memory

The specifications of these functions are given in chapter 2 of the ANSI C Lan
guage and Libraries Reference Manual.

Each of these functions takes as one of their parameters a pointer to a structure
that will be initialized with details of the child, as long as the function succeeds. The
structure, given in the header file fnload. h, is:

struct fn data
{ -

int target-processor_type; /* as given in the .rsc file */
size t stack size; /* in bytes */
size-t vectorspace size; /* in bytes */
size-t static size; /* in bytes */
size:t entry-PQint_offset; /* in bytes */
size t code size; /* in bytes */

}; - -
typedef struct fn_data fn_info;

where:

target-processor_type gives the processor type for which the code
in the . rsc file is compiled. The processor type is encoded as an integer
the values ofwhich are given in chapter 3 of the ANSI C Toolset Reference
Manual.

stack size gives the required size in bytes of the stack. Note: for some
languages, e.g. C, it may not be possible for this value to be calculated.
Hence one may not always be able to rely on this value. Checkwith the doc
umentation associated with the implementation of the tools used to gener
ate the . rsc file. (e.g. In the INMOS occam toolsets Dx205 and Dx305,
the occam compiler calculates the size of the stack exactly).

vectorspace size gives the required size in bytes of the vectorspace.
Ifthe child iswritten in a programming language which does not use vector
space then this value will be zero.

static size gives the required size in bytes ofthe staticarea. Ifthe child
is writtenin a programming language which does not use static data then
this value will be zero.

72TDS 345 01 October 1992

234 12.3 Basic Parenthood

entrYJOint_offset is the size (in bytes) of the difference in position,
of the entry point of the code and the start of the code block in the . rsc
file. This value is used by the load_code_ functions mentioned below.

code_size is the size in bytes of the code block in the .rsc file.

The parent will need to claim enough space for the child's needs using, say,
malloc or part ofastatic array. The parent, however, will need to know more about
the child than is given in a . rsc file. If the child is written in ANSI C then heap may
be required, and no heap size value is given in the. rsc file. Further, the stack
value given in the . rsc file will not, in general, be exact:

• because C has dynamic memory allocation, the amount of heap required
cannot be known in advance, and as such the parent will have to estimate
how much space to claim for it;

• because C has recursion the amount of stack required cannot be known
in advance. However, if the child is not called as a parallel process then it
will share its parent's stack, and so in this case the parent need not set
aside specific stack space for the child. If, on the other hand, the child is
called as a parallel process, then it will run in its own stack, the size of
which, as with the heap size, must be estimated.

For the parent to load the child into the code space that has been set aside for it
(of size code size bytes), it calls one of the following functions, depending on
where the . rsc file is found:

• load code from file- - -
• load_code_from_memory

• load_code_from_channel

The specifications of these functions are given in chapter 2 of the ANSI C Lan
guage and Libraries Reference Manual.

These functions return a pointer to the start of the child, in the form of a pointer to
a function taking no parameters and returning void. If the child has been set up
to run as a parallel process then this pointer can be used directly in Proclnit or
ProcAlloc. Otherwise, this pointerwill need to be cast into a pointer to a function
of the type of the child's interface before being called with appropriate parameters.

There is one case in which the load code from memory function may not
need to be called. The get code details- from-memory function returns a
pointer to the start of the child, though, in contrast tothe load code functions,
the pointer is returned via the parameter list. If it is possible to run the Child where
it is in memory then there is no need to waste time by calling the function
load code from memory. This function simply copies the code block of the
. rscfile from one part of memory to another. Where load code from memory
would be of use is when the. rsc file is in ROM and it is desiredto runthe code
from RAM for performance reasons.

72TDS 34501 October 1992

12 Dynamic code loading 235

Before we go into further details about parents, it would be best to see an actual
example of dynamic code loading in action. The child is written in INMOS ANSI e,
and is chosen to be as simple as possible because we have not yet discussed the
details ofthe e harness files for children. The source code for the child is as follows:

1*
* This example function does not require any static, heap or i/o.
* Hence it needs no harness, but the descriptor pragma is, as
* always, necessary.
*1

int add3(int);
tpragma INS_descriptor(add3, ansi_c, 0, 0, "")

int add3(int i)
(

return(i + 3);

The pragmas are explained as below, details ofalllNMOS e compiler pragmas are
given in chapter 1 of the ANSI C Too/set Reference Manual.

Without setting up stack checking variables in the static area, stack checking will
not work for the child and so the 1MS off pragma is included for safety as it will
override selecting stack checking on the compiler command line. Details of setting
up stack checking are given in section 12.5.2. The 1MS_deseriptor pragma is
necessary in all children written in INMOS ANSI e for implementation reasons. It
is described in more detail in section 12.4.1.

If the child's source code is in a file called add3 . e, then to turn the child into a . rse
file, the following commands should be used, if the code is to run on a TA class
transputer:

UNIX based toolsets:

icc add3.c -ta
ilink add3.tco -ta ~ add3
icollect add3.lku -t -k

MS-DOSNMS based toolsets:

icc add3. c Ita
ilink add3. tco Ita lme add3
icollect add3.lku It Ik

(Options for specifying other transputer types, are listed in appendix B of the ANSI
C Toolset Reference Manual).

Nowfor the parent. We know that the child does not need static, heap, vectorspace
or input/output, so the parent need only set aside enough space for the code of the
child. Assume that the. rse file resides on disc:

72TDS 34501 October 1992

236

1*
*
*
*
*
*
*1

12.3 Basic Parenthood

Exauple program which dynamically loads from a file a simple
function that adds 3 to its parameter; the function does not
require any static, heap or i/o.
The function is expected already to be in a .rsc file called
"ac:ld3.rsc".

'include <stdio.h>
'include <stdl.ib.h>
'include <fnload.h>

in t main (void)
{

char* rsc filename = "add3.rsc";
fn info fIle details;
size_t header_size;

printf("Main program started.\n" };
if (get code details from file(rsc filename,

- - - - 'file_details, 'header_size) != O}
printf(

"Details were not successfully retrieved from the .rsc file.\n"};
else

{

if «code area base =ma1loc(file details.code size)} == NULL}
printf("Malloc failed to allocate enough space for code.\n"};

else
{

loaded_fn-ptr fn-ptr ;

if «fn-ptr = load code from file (rsc filename,
- - - 'fil. details,

header size,
code_area_base)} == NULL)

printf(
"~was not succe.sfully loaded fram the .rsc file.\n");

else
{

typedef int (*loaded_code_fn-ptr) (int) ;

if ((*«loaded_code_fn-ptr)fn-ptr)) (71) == 74)
printf("\n***Dynamically loaded code gave correct"

"value. ***\n\n" };
else

printf ("\n«<Dynamically loaded code gave wrong "
"answer.»>\n\n");

}
fr_ (code_area base);

}
printf ("Ending main program. \n");
return 0;

72TDS 34501 October 1992

12 Dynamic code loading 237

The parent had to know the interface of the child so that it could type cast fn....ptr
to the correct type for correct calling of the child.

Before going on to look at more complicated parents, we need to become more
familiar with children.

12.4 Childhood in INMOS ANSI C

The discussion in this section is specific to the INMOS ANSI C toolset, Ox314.

To attend to necessary initializations and tidying up, children will, in general,
require two harness files. (There are two files rather than one because there is no
other way to bootstrap the global static base (gsb).) These two files are provided
for the user to edit as appropriate to their application code.

The harness files are very similar to those used in the modifiable C runtime startup
system, see chapter 3 of the ANSI C Language and Libraries Reference Manual.
This is no coincidence - the child is basically a full C program, except that it need
not start with a function called main. It is worth keeping in mind the idea that the
child is a program in its own right when determining what some functions do when

. called in the child. For example, exit and abort return control to the parent, and
max stack usage refers to the child, only if called by the child, and refers to the
parent, onlyIf called by the parent. However, the parent and the child can share
the facilities of the host, and use of common facilities must be performed with care
by the programmer as there is no built-in protection.

There are two editing tasks to attend to in the harness files. One is to ensure that
the harness interfaces properly with the application code. The parameters of, and
possibly the return value from, the application code's interface, need to be con
nected from the parent to the application through the two harness files. The other
task is to edit or comment out unused parts of the harness.

For example, if the function clock is not called by the application code then there
is no need to leave the lines:

_IMS_clock-priority = ProcGetPriority();
_IMS_StartTime = (clock_t)ProcTime();

in the second file of the harness. Removing these lines would reduce the size and
increase the speed of the child. There is, however, no harm in leaving the lines in,
even if it is known that they are superfluous.

When library routines are used it is sometimes not clear when heap or static is
required, so here are some simple guidelines:

• input/output (ito) and concurrency require heap;

• use of anything in the second file of the harness requires static. (Hence,
as heap requires static, ilo and concurrency require static too.)

The two harness files are highly commented to indicate when a statement is or is
not required. For further details about the meaning of the variables and functions

72TOS 34501 october 1992

238 12.5 Advanced Parenthood

used in the harness files see chapter 3 of the ANSI C Language and Libraries Ref
erence Manual.

The procedure for obtaining a . rsc file for the child is always compile, link, collect.
The system is not set up for the configurer to be used on a child. Linking should
be done with the linker indirect file clibs . Ink or, for a reduced system,
clibsrd . Ink, and the main entry point identifier must be given using the 'me'
option. Collecting should be done with the 't' and 'k' options together.

12.4.1 The IMS_descriptor pragma

In the first file of a child there must appear the pragma IMS descriptor. The
need for it stems from the implementation of INMOS ANSI c. Not all of its function
ality is required for dynamic code loading; only its first two parameters really mat
ter.

The first parameter is the identifier of the function which is to be the entry point of
the. rsc file. The second parameter should be ansi_c.

The third parameter is the amount of workspace required by the child, in words.
This value becomes stack size in the structure that the get code details
functions return, after having been transformed into the amount in b~es. (Use Of
the's' option on the collector allows you to add an amount to this value.) If this
value can be worked out then putting it as this third parameter would save the par
ent estimating the value; if it cannot be worked out, then specify zero for this
parameter and leave the parent to estimate the requirement.

The fourth parameter is the amount ofvectorspace required by the child, in words.
Vectorspace is not used by INMOS ANSI C and so should always be zero.

The last parameter is a string which serves no purpose in dynamic code loading
and so should be set to the empty string: ,n,.

Further details of the IMS descriptor pragma can be found in chapter 1 of the
ANSI C Toolset Reference Manual.

12.5 Advanced Parenthood

Let us now look at what to do in a parentwhose child requires static, heap, i/o, stack
checking and the ability to call the functions max_stack_usage and
get_details_of_free_stack_space.

We choose a specific child in INMOS ANSI C to darify the discussion. The child
consists of three files, the first two of which are edited versions of the source har
ness files. The third file is the application code which, for this example, simply
causes stack eOverflow. The files of the child are shown below:

72 TDS 345 01 October 1992

12 Dynamic code loading

stack1.c

239

,.
•
•
•
•
•
•
•
•
•.,

This file contains the first stage of the dynamic loading of a C
function which requires static, heap, i'o, stack checking and
to be able to call lIUlX_stack_usage().

This source is used to build the entry point c_fnload_stagel.

STAGE 1 : a) initialise the static area.
b) call stage 2 and bootstrap the gab.

'include <channel.h>
'include <stddef.h>

,. for type Channel·'
,. for size_t .,

Ipragma IMS translate(initialise static, "initialise static%c")
extern int Initialise static(void ·hidden gsb, char .area start,

- unsigned int-area size,
unsigned int available size);

'pragma IMS_nolink(initialise_static) -

extern int c fnload stage2(void· hidden_gsb,
- - void· stack addr,

size t stack size in bytes,
void. heap addr, - -
size t heap size in bytes,
Channel· in-; - Channel· out);

Ipragma IMS_nolink(c_fnload_stage2)

int c_fnload_stagel(void· static addr, size t static size in bytes,
void· stack addr, size:=t stack size In bytes,
void· heap addr, size t heap size In bytes,
Channel· iD, Channel· out); - -

Ipragma IMS_descriptor(c_fnload_stagel, ansi_c, 0, 0, "")

int c_fnload_stagel(void· static addr, size t static size in bytes,
void· stack_addr, size-t stack size In bytes,
void· heap addr, size t heap size In bytes,
Channel· in, Channel· out) - -

initialise static(static addr, (char ·)static addr,
- (unsigned int)static size in bytes,

(unsigned int)static:=size:=in:=bytes);

return c_fnload_stage2(static addr,
stack addr,
heap_addr,
in,

72 TDS 345 01

stack size in bytes,
heap size In bytes,
out); --

october 1992

240

stack2.c

12.5 Advanced Parenthood

1*
*
*
*
*
*
*
*
*
*/

Thi. file contains the second .tage of the dynamic loading of a
C fUDctiOD which requires .tatic, heap, i/o, .tack checking and
to be able to call JDaZ_.tack_u.age() .

This source i. used to build the entry poiDt C_fDload_stage2.

Note that this code relies OD the presence of • static area.

'include <.etjmp.h>
'include <chaDDel. h>
'include <stdlib.h>
'include "uglObal.h"
'include "startup.h"
*/

/* for .etjmp */
/* for Channel */
/* for exit */
/* for globals */
/* for set_host_link and io_and_hostinfo_init

int stack_overflow (void) ;

int c_fnload_stage2 (void* stack_addr,
void* heap addr,
Channel* iD,

size t stack size in bytes,
size-t heap size In bytes,
Channel* out) - -

(int *) staet addr;
(int *) «size_t) stack_addr +

IMS stack limit
-IMS-stack-base

stack_;ize_~_byte8);

IMS heap start = (int *)heap addr;
-IMS-heap-init implicit = TRUE; -
-IMS-heap-size- (unsigned int)heap size in bytes;
:IMS:sbrk:alloc_request SBRK_REQUEST; - --

set host link (in, out);
io_and_hostinfo_init();

if (setjmp (INS startenv) 0)
{ --

exit(stack_overflow(»;
)

return _IMS_retval;

72 TDS 34501 October 1992

12 Dynamic code loading

stack3.c

1*
* Third stage of example of overflowing the stack and
* having this reported by the runtime library.
*1

I * ensure that s tack checking is switched on *I
Ipragma INS_onC stack_checking

'include <stdio.h>
'include <misc.h>

void foo C int a)
{

241

stack eating array[4] = 's';
print1C "max-stack usage() gives %ld bytes\n", max_stack_usage());
foo Ca); - -

int stack overflowC void)
{ -

printfC "stack_overflow: started\n");

foo (42);

printfC "stack overflow: finished\n");
return 0; -

To obtain a . rsc file from these files for a TA class transputer use the following
commands:

UNIX based toolsets:

icc stackl.c -ta
icc stack2.c -ta
icc stack3.c -ta -ks
ilink -ta -f child.lnk
icollect stackl.lku -t -k

where child. Ink is:

lmainentry e fnload stagel
'include elibs.lnk
stackl.teo
stack2.teo
stack3. teo

MS-DOSNMS based toolsets:

icc stackl. c Ita
icc stack2.c Ita
icc stack3.c -ta Iks
ilink Ita If child.lnk
icollect stackl.lku It Ik

Note: that we have to give the main entry point identifier to the linker and that we
use the tinker indirect file clibs . Ink. If the child did not require the server on the
host then we would use the tinker indirect file clibsrd.lnk.

72TDS 345 01 October 1992

242 12.5 Advanced Parenthood

From the interface of the function in stackl. c above, one sees that the parent
must pass static, stack, heap and i/o details to the child. The methods by which the
parent obtains these details follows:

12.5.1 static

A call to a get code details function will give details of how much static is
required and thiS value can be used directly in malloc. The pointer returned by
the call to malloc is passed for static addr and the amount of static that was
claimed in the call to malloc is passedfor static_size_in_bytes.

12.5.2 stack

The stack formal parameters are required if any of the following are desired in the
child: stack checking, parallel processing, the ability to call max_stack_usage or
get_details_of_free_stack_space.

If the child is not going to be called as a parallel process then the function
get details of free stack space, will provide values that can be passed
for s-tack_addr and stack_siz;_in_bytes.

If the child is going to be called as a parallel process and ifthe stack formal parame
ters are required, then Proclnit rather than ProcAlloc must be used. Because
for Proclnit you must provide a stack (which would typically be obtained by
using an estimated value for the size of the stack in a call to malloc), you would
therefore have the values ready to pass over for stack_addr and
stack_size_in_bytes.

(Note: that if you do provide this separate stack, then for word alignment its size
should be such that (stack size in bytes % sizeof (int» = 0.) If the
stack formal parameters arenot required, then both ProcAlloc and Proclnit
are valid for use.

12.5.3 heap

The amount of heap required must be estimated. This amount can then be used
in a call to malloc. The pointer that is returned from the call to malloc is passed
for heap addr, and the amount of heap that was requested in the call to malloc
is passedforheap_size_in_bytes.

12.5.4 inpuUoutput

For the child to communicate with the server running on the host it must be given
channels to transmit its requests over. There are two functions in the C library pro
vided, that the parent can call to determine what these channels are:

• from_host_link (): returns a pointer suitable to be passed for in.

72TDS 34501 October 1992

12 Dynamic code loading 243

Example program which dynamically loads code from a file where
that code is to be stack checked and use max stack usage (). The
dynamically loaded code is called directly from the main program,
rather than from a parallel process or as a parallel process.
The dynamically loaded code requires static, heap, i/o,
stack checking and to call max_stack_usage().

•
•
•
•
•
•

• to_hoat_link (): returns a pointer suitable to be passed for out.

Alternatively, the parent may pass to the child, channels which first go through a
multiplexor before reaching the server. This latter situation would be desirable if
the parent were to dynamically load several children all needing to communicate
with the server.

We can now give the source of a parent which calls the above child (sequentially):

stack.c

/.
•

• The child code is expected already to be in a .rsc file called
• "stack1.rsc" ../

'include <stdio.h>
'include <stdlib.h>
'include <fnload.h>
'include <hostlink.h>
'include <misc.h>
'define CBILD_HEAP_SIZE_IN_BYTES (size_t) 9216 /. 9K ./

int main (void)
(

char· rsc filename = "stack1.rsc";
fn info fIle details;
size_t header_size;

printf("Main program started.\n");
if (get_code_details_fram_file(rsc_filename, 'file details,

'header_size) != 0)
printf(

"Details were not successfully retrieved from the .rsc file.\n");
else

{

if «code area base =malloc(file details.code size » == NULL)
printf(-"Malloc failed to allocate enough space for code.\n");

else
{

if «static area base =malloc(file details.static size»
- ..:: NULL)

printf(
"Malloc failed to allocate enough space for static.\n");

else
(

72TDS 345 01 October 1992

244 12.5 Advanced Parenthood

if ((heap area base = malloc (CHILD HEAP SIZE IN BYTES»
- - - - - ..:: NULL)

printf("Malloc failed to allocate enough"
" space for the heap.\n");

else
{

loaded_fn....ptr fn....ptr ;

if ((fn....ptr = load_code_fram_file(rsc filename,
'file details,
header size,
code area base»
= NULL)-

printf("Code vas not successfully loaded"
" fram the .rsc file.\n");

else
{

void ·child stack addr;
size t child stack size in bytes;
typ8def int (·loaded_cOde_fn....Ptr) (void·, size t,

void·, size:=t,
void·, size t,
Channel· ,
Channel·) ;

get details of free stack space ('child stack addr,
- - - - 'child_stack_size:=in_bytes) ;

/.
•./

(void) (

call the dynamically loaded code

·«loaded_code_fn....Ptr)fn....Ptr)
(static area base,
file details. static size,
child .tack addr,
child-.tack-.ize in bytes,
heap area bise, -
CHILD HEAP SIZE IN BYTES,
from host link(l,
to_host_IInkO);

}
free (heap_area_base);

}
free(static_area_bas.);

}
free (cocle_area_base);

}
printf ("Ending main program. \n");
return 0;

The commands to generate a bootable for the parent are standard. For example,
to generate a bootable for a TA class transputer, use the following commands:

72TDS 34501 October 1992

12 Dynamic code loading

UNIX based toolsets:

icc stack.c -ta -0 stack.tab
ilink -f stack. Ink -ta -0 stack.cab
icollect stack.cab -t

MS-DOSNMS based toolsets:

icc stack.c Ita 10 stack.tab
ilink If stack.lnk Ita 10 stack.cab
icollect stack.cab It

where stack . Ink is:

stack. tab
'include cnonconf.lnk

245

Alternatively, as long as the stack . Ink file exists, the tool imakef can be used
to generate a makefile for the parent:

imakef stack.bah -c

If we wanted to set the child off as a parallel process, then the parent and the first
file of the child would have to change slightly - the parent uses Proclnit and the
child has a Process* parameter as its first parameter (and the child also ensures
that each of its parameters occupies one word to make the call to Proclni t sim
pler):

stack1.c

1*
* This file contains the first stage of the dynamic loading of a C
* function which requires static, heap, ilo, stack checking and
* to be able to call DLaX_stack_usage 0 .
*
* This source is used to build the entry point c fnload stagel, and
* is suitable for calling as a parallel process.- -
*
* STAGE 1 : a) initialise the static area.
* b) call stage 2 and bootstrap the gsb.

*'
'include <process.h>
'include <channel.h>
'include <stddef.h>

1* for Process *1
1* for type Channel *1
1* for size_t *1

tpragma IMS_translate(initialise_static, "initialise_static%c")
extern int initialise static(void *hidden gsb, char *area start,

- unsigned int- area size,
unsigned int available size);

fpragma IMS_nolink(initialise_static) -

extern int c fnload stage2(void* hidden gsb,
- - void* stack_addr,

72TDS 345 01 October 1992

246 12.5 Advanced Parenthood

size t stack size in bytes,
void. heap addr, - -
size t heap size in bytes,
Channel* in-; --
Channel* out) i

fpragma rMS_nolink(c_fnload_stage2)

void c_fnload_stagel(Process* p,
void* stack addr,
size_t* S tack_size_in_bytes"'ptr ,
void* static addr,
size_t* statIc_size_in_bytes"'ptr,
void* heap addr,
size_t* heap_size_in_bytes"'ptr,
Channel* in,
Channel* out)i

'pragma INS_descriptor(c_fnload_stagel, ansi_c, 0, 0, "")

void c_fnload_stagel(Process* p,
void* stack addr,
size_t* stack_size_in_bytes"'ptr,
void* static addr,
size_t* statIc_size_in_bytes"'ptr,
void* heap addr,
size_t* heap_size_in_bytes"'ptr,
Channel* in, Channel* out)

p =Pi /* to prevent compiler warning of unused variable */

initialise static(static addr, (char *)static addr,
- (unsigned int)*static_size_In_bytes...ptr,

(unsigned int)*static_size_in_bytes...,ptr)i

(void)c_fnload_stage2(static addr,
stack addr,
heap addr,
in, out)i

stack.c

*stack_size_in_bytes"'ptr,
*heap_size_in_bytes"'ptr,

/*
*
*
*
*
*
*
*
*
*
*
*/

Example program which dynamically loads code from a file.
The child code requires static, heap, i/o, stack checking and to
call max_stack_usage().

The child is called as a parallel process, thus not needing a cast
of the loaded_fn...ptr variable returned by load_code_fram_file.

The child code is expected already to be in a .rsc file called
"stackl.rsc".

'include <stdio.h>

72 lOS 34501 October 1992

12 Dynamic code loading

'include <stdlib.h>
'include <process.h>
'include <channel.h>
'include <misc.h>
'include <fnload.h>
'include <hostlink.h>

int main (void)
(

char* rsc filename = "stackl.rsc";
fn info file details;
size t header size;
const size t Child heap size in bytes = 4096;
const size=t child=stack_size_in_bytes = 4096;

/* 4K */
/* 4K */

247

printf("Main program started. \n");
if (get code details fram file(rsc filename, 'file details,

- - - - 'header_size)!= 0)
printf(
"Details were not successfully retrieved fram the .rsc file.\n");

else
{

if ((code area base = malloc(file details.code_size »
= NULL)-

printf("Malloc failed to allocate enough space for code.\n");
else

{

if ((static area base = malloc(file details.static size »
=NUi:"L)- - -

printf(
"Malloc failed to allocate enough space for static.\n");

else
(

if((heap area base = malloc(child_heap_size_in_bytes»
-NULL-)

printf("Malloc failed to allocate enough space for"
"the heap.\n");
else

{
void* child_stack;

if ((child stack = malloc(child stack size in bytes»
=NULL) - ---

printf("Malloc failed to allocate enough"
" space for the stack.\n");

else
{

if ((fn-ptr = load code fram file(rsc filename,
- - - 'file details,

header size,
code_area_base))

72 TDS 345 01 October 1992

248 12.6 Childhood in INMOS occam 2

= HOLL)
printf("coc:t. "a. not .ucce••fully loaded"

" fram the .rsc fil•. \n");
.ls.

(

if ((dynamic-proces. =
(Proca••*)malloc(.izeof(ProC8ss»)

= HOLL)
printf("Malloc failed to allocate enough"

" .pace for the process.\n");
else

if (ProclDi.t (dynamic-process,
fn-ptr ,
child .tact,
child-.tack size in bytes,
8, - - --
child stack,
'child stack size in bytes,
static-ar•• base,- -
'file details. static size,
heap area base, -
'child heap size in bytes,
from host lInk () :-
to_host_lInk()) != 0)

printf(
"Could not initialise process.\n");

else
(

ProcRun(dynamic-process);
ProcJoin(dynamic-process, NULL);

}
free(child_stack);

}
free(heap_areA_base);

}
free(static_area_base);

}
free(code_area_base);

}
printf ("Ending main program. \n");
return 0;

Although the examples have used the get code details from file and
load code from file functions, the prinCiples are the same for the cases of
the . ;sc file-residing in memory or being transmitted over a channel.

12.6 Childhood in INMOS occam 2

The discussion in this section is specific to the child being written with the INMOS
occam 2 (TCOFF) toolset.

72 TDS 345 01 October 1992

12 Dynamic code loading 249

occam does not use static or heap areas and so the runtime startup is much sim
pler than that of C. Also, the occam compiler calculates the exact amount ofstack
and vectorspace required, so there is no estimating involved in claiming space for
the child's needs.

No harness files are required by the occam system, but attention must be given
to the interface of the entry point. Firstly, a pointer to the base of the vectorspace
area is expected as a hidden parameterafter the last visible parameter of the inter-
face. Secondly, occam does not use a static area and so an occam subroutine
does not expect a gsb. This means that either a dummy parameter of type VAL
INT has to be declared in the interface to absorb the gsb that the C system will
pass, or the parent uses the provided function call_without_gsb to call the
child, in which case no dummy parameter is necessary in the occam interface.

To be specific, for an occam interface of

PROC occam.proqram(VAL INT dummy.gsb, CHAN OF SP fs, ts)

the call from INMOS ANSI C would be

'include <channel.h>
'include <hostlink.h>

typedef void (*loaded_code_fn...ptr) (Channel* , Channel* , void*);
* «loaded_code_fn...ptr)fn...ptr)) (fram_host_link(),

to host link() ,
vectorspace_area_base);

where vectorspace area .base was initialized by, say, a call to malloc, and
fn....ptr was initialized by acall to one of the load_code_ functions or to
get_code_details_from_memory.

Alternatively, for an occam interface of:

PROC occam.program(CHAR OF SP fs, ts)

the call from INMOS ANSI C would be:

'include <hostlink.h>

call_without_gsb(fn-ptr ,
3,
fram host link() ,
to host lInk() ,
vectorspace_area_base);

There are some further details that the programmer should be aware of when
attempting this form of mixed language programming.

If the occam code is required to be run as a parallel process then the interface
of the occam code should declare a dummyVAL INT parameterafter the dummy
gsb parameter, or as first parameter if it is known that the gsb will not be passed.
This VAL INT parameter performs the function of the Process* parameter in C
functions that are to be run as parallel processes.

72TOS 345 01 October 1992

250 12 6 Childhood in INMOS occam 2

If the occam will not be called as a parallel process then it will share the stack of
its parent. It is up to the programmerto ensure that there is enough stack left before
calling the child. This could be done by comparing the required stack size, as given
in the . rsc file, with the amount of stack left, as given by the function
get_details_of_free_stack_space. .

A call to the occam procedure so. exi t terminates the server. Typically it is highly
unlikely that the child would ever want to bypass the parent and terminate the
server.

For C and occam to pass values between them, we must be sure that the types
of the parameters correspond. This and the calling conventions place restrictions
on what forms of interface can be used:

• type mapping is given in chapter 10 of this manual;

• only occam functions returning a single value, and occam procedures
may be called;

• non-VAL occam parameters should be passed as pointers from C;

• where the formal parameter to an occam procedure or function is an array
(VAL or non-VAL) the calling C program should always pass a pointer to
the array. For an occam array parameter with unspecified array bounds,
the actual sizes of the bounds should be passed immediately following the
array parameter; for multidimensional arrays the bounds should be passed
in the same order as they appear in the declaration.

72TDS 34501 October 1992

Appendices

72TDS 345 01 October 1992

252

72TDS 34501

Appendices

October 1992

A Transputer
instruction set

This appendix provides a reference for the transputer instruction set as supported
by assembly code. For a detailed specification ofeach ofthe instructions available.
refer to 'Transputer instruction set: a compiler writer's guide' .

A.1 Prefixing instructions

The transputer instruction set is built up from 16 direct instructions. each with a
4-bit argument field. The direct instructions include prefix instructions which aug
ment the 4-bit field in adirect instruction which follows them by their own 4-bit argu
ment field. effectively allowing the argument to be extended to 32 bits. Normally.
the assembler will compute the prefix instructions required- for operand values
greater than 4 bits automatically.

pfix prefix
nfix negative prefix

A.2 Direct instructions

The direct instructions form the core of the transputer instruction set. Each direct
instruction has a single operand. normally an integer constant. which will be
encoded in the instruction itself and. if it is larger than will fit into the 4-bit argument
field of the direct instruction. into a series of pfix and nfix instructions as well.

The transputer architecture is based around a three-register evaluation stack and
a single base registerWreg. The load and store 'local' instructions access a word
in memory at adisplacement from Wreg given by the operand value used. The dis
placement is scaled by the word size. The load and store 'non-local' instructions
use the top evaluation stack register (Areg) as the base instead ofWreg. allowing
computed base addresses to be used.

The operand of the j •cj and call instructions is interpreted as a byte displacement
from the instruction pointer (program counter) register Iptr. Idpi is similar but takes
its operand from Areg.

72 TDS 345 01 October 1992

254 A.3 Operations

adc Add constant operand value to Areg.

ajw Adjust workspace pointer Wreg by constant operand value (scaled
by word length).

call Call.
cj Conditional jump i.e. 'jump if zero otherwise pop Areg'. As with

jump, a label identifier may be used as argument to this instruction.
eqc Test ifAreg equals constant; (result 'true' or 'false', placed in Areg).
j Jump: the argument may be an identifier indicating a label for the

jump to go to; the assembler will compute the displacement
required.

Idc Load constant.
Idl Load local word
Idlp Load pointer to local word
Idnl Load non-local word
Idnlp Load pointer to non-local word
opr 'operate': the argument to this instruction is a code indicating a

zero-operand indirect instruction to be executed. Most of the trans
puter instruction set is made up of these indirect instructions. Nor
mally you would use the mnemonic for the specific indirect instruc
tion which you require: the assembler will encode this as an opr
instruction on your behalf. However, it is possible to use oprexplic
itly, for example to synthesize the instruction sequence for a new
indirect instruction not supported by the T414 and T800 transput
ers.

stl Store local word
stnl Store non-local word

A.3 Operations

The instructions in this section are all indirect instructions built out of the opr
instruction. None of these instructions take an argument; instead, they work solely
with the transputer evaluation stack.

The arithmetic instructions take their operands from the top of the evaluation stack
(Areg, Breg) and push the result value back on the stack in Areg.

add

alt

altend

altwt

and

bcnt

Add
Alt start
Alt end
Alt wait

Bit-wise and
Byte count

72 TDS 345 01 October 1992

A Transputer instruction set 255

bsub

cent1
elrhalterr

esngl

esubO

eword

diff

disc

diss

dist

div

enbe

enbs

enbt

endp

(mul

gajw

geall

gt

in

ladd

Ib

Idiff

Idiv

Idpi

Idpri

Idtimer

lend

Imul

Ishl

Ishr

Isub

Isum

mint

move

mul

Byte subscript (Areg =Areg + Breg)

Check count from 1

Clear halt-on-error

Check single

Check subscript from. 0

Check word

Difference

Disable channel

Disable skip

Disable timer

Divide

Enable channel

Enable skip

Enable timer

End process

Fractional multiply (32-bit processors only)

General adjust workspace

General call (swap Areg++lptr)

Greater than (result 'true' or 'false', placed 'in Areg)

Input message

Long add

Load byte

Long difference

Long divide

Load pointer to instruction (Areg is byte displacement from Iptr)

Load current priority

Load timer

Loop end

Long multiply

Long shift left

Long shift right

Long subtract

Long sum

Minimum integer

Move block of memory (src: Creg dest: Breg len: Areg)

Multiply

72 TDS 345 01 October 1992

256 A.3 Operations

norm Nonnalize
not Bit-wise not

or Bit-wise indusive or
out Output message
outbyte Output byte
outword Output word

prod Product

rem Remainder
resetch Reset channel

ret Return

rev Reverse top two stack elements
runp Run process

saveh Save high priority queue registers

savel Save low priority queue registers

sb Store byte
seterr Set error

sethalte" Set halt-on-error

shl Shift left
shr Shift right
startp Start process

sthb Store high priority back pointer

sth' Store high priority front pointer

stlb Store low priority back pointer

stlt Store high priority back pointer

stope" Stop on error

stopp Stop process
sttimer Store timer

sub Subtract

sum Sum

talt Timer alt start

taltwt Timer alt wait

teste" Test error false and clear
testhalterr Test halt-on-error

testpranal Test processor analyzing

tin Timer input

went Word count

72 TOS 34501 October 1992

A Transputer instruction set 257

wsub
xdble

xor
xword

A.4

Word subscript (Areg =Areg + 4*Breg)
Extend to double

Bit-wise exclusive or
Extend to word

Additional instructions for T400, T414, T425 and TB

The indirect instructions in this section may only be executed on a T400, T414 or
T425 processor, although the compiler will accept them in assembly code even
when compiling for a different processor.

et/err
Idinf
postnormsn
roundsn
unpaeksn

Check single-length floating-point infinity or not-a-number
Load single-length infinity
Post-normalize correction of single-length floating-point number
Round single-length floating-point number
Unpack single-length floating-point number

A.5 Additional instructions for IMS 1800, 1801 and 1805

The instructions in this section may only be executed on T800, T801 and T805 pro
cessors, although the compilerwill accept them in assembly code even when com
piling for a different processor.

A.5.1 Floating-point instructions

The indirect instructions in this section provide access to the T8 series built-in float
ing-point processor. Note that the instructions beginning with 'fpu ...' are doubly
indirect: they are accessed by loading an entrycode constant with a Ide instruction,
then executing an fpentry instruction, which is itself indirect. As with ordinary indi
rect instructions, this indirection is handled transparently by the assembler,
although the fpentry instruction is also available.

The floating-point load and store instructions use the integer Areg as a pointer to
the operand location.

fpadd
fpb32tor64

fpehke"
fpdiv

fpdup
fpentry

72TDS 345 01

Floating-point add

Convert 32-bit unsigned integer to 64-bit real

Check floating error
Floating-point divide

Floating duplicate
Floating-point unit entry: used to synthesize the 'fpu . ..' instruc
tions.

October 1992

258

fpeq

fpgt

fpi32tor32

fpi32tor64

fpint

fp/dn/adddb

fp/dn/addsn

fp/dn/db

fp/dn/dbi

fp/dn/mu/db

fp/dn/mulsn

fpldn/sn

fp/dn/sni

fp/dzerodb

fp/dzerosn

fpmu/

fpnan

fpnotfinite

fpordered

fpremfirst

fpremstep

fprev

fprtoi32

fpstn/db

fpstnli32

fpstn/sn

fpsub

fptesterr

fpuabs

fpuchki32

fpuchki64

fpuc/rerr

fpudivby2

fpuexpdec32

fpuexpinc32

fpumu/by2

72 TDS 345 01

A.5 Additional instructions for IMS 1800, 1801 and 1805

Floating-point equality

Floating-point greater than

Convert 32-bit integer to 32-bit real

Convert 32-bit integer to 64-bit real

Round to floating integer

Floating load non-local and add double

Floating load non-local and add single
Floating load non-local double

Floating load non-local indexed double

Floating load non-local and multiply double

Floating load non-local and multiply single

Floating.Ioad non-local single

Floating load non-local indexed single

Floating load zero double

Load zero single

Floating-point multiply

Floating-point not-a-number
Floating-point finite

Floating-point orderability

Floating-point remainder first step

Floating-point remainder iteration step

Floating reverse

Convert floating to 32-bit integer

Floating store non-local double
Store non-local int32

Floating store non-local single

Floating-point subtract

Test floating error false and clear

Floating-point absolute

Check in range of 32-bit integer

Check in range of 54-bit integer

Clear floating error
Divide by 2.0

Divide by 232

Multiply by 232

Multiply by 2.0

October 1992

A Transputer instruction set 259

fpunoround

fpur32tor64

fpur64tor32

fpurm

fpum

fpurp

fpurz

fpuseterr

fpusqrtfirst

fpusqrtlast

fpusqrtstep

Convert 64-bit real to 32-bit real without rounding

Convert single to double

Convert double to single

Set rounding mode to round minus

Set rounding mode to round nearest

Set rounding mode to round positive

Set rounding mode to round zero

Set floating error

Floating-point square root first step

Floating-point square root end

Floating-point square root step

A.6 Additional instructions for IMS T225, T400, T425, T800, T801 ,
1805

The indirect instructions in this section supplement the T414's integer instruction
set.

bitcnt Count the number of bits set in a word

bitrevnbits Reverse bottom n bits in a word

bitrevword Reverse bits in a word

crcbyte Calculate CRC on byte

crcword Calculate Cyclic Redundancy Check (CRC) on word

dup Duplicate top of stack

wsubdb Form double-word subscript

The following 2-dimensional block move instructions apply to the IMS T400, T425,
T800, T801 and T805 only:

move2dall 2-dimensional block copy

move2dinit Initialize data for 2-dimensional block move

move2dnonzero 2-dimensional block copy non-zero bytes

move2dzero 2-dimensional block copy zero bytes

A.7 Additional instructions for the IMS 1225, T400, T425, T801
and 1805

The indirect instructions listed in this section provide debugging and general sup
port functions.

clrjObreak

setjObreak

72TDS 345 01

Clear jump 0 break enable flag

Set jump 0 break enable flag

October 1992

260 A.7Additional instructionsforthe IMST225, T400,T425,T801 andT805

testjObreak
timerdisableh

timerdisablel

timerenableh
timerenablel
Idmemstartval

pop

Iddevid

72 TDS 34501

Test if jump 0 break flag is set
Disable high priority timer interrupt

Disable low priority timer interrupt
Enable high priority timer interrupt
Enable low priority timer interrupt
Load value of MemStart address
Pop processor stack
Load device identity

October 1992

B Configuration
language syntax

This appendix defines the syntax of the configuration language. A full description
of the language and how to use it can be found in Chapter 6.

B.1 Notation

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly,
the form is as follows:

• Terminal strings of the language - those not built up by rules of the lan
guage - are printed in teletype font e.g. node.

• Each phrase definition consists of an equality expression built up using a
double colon and an equals sign to separate the two sides e.g. '::='.

• Alternatives are separated by vertical bars C/').

• Optional sequences are enclosed in square brackets cr and 'f).

• Items which may be repeated zero or more times appear in braces (' rand
'}').

• b, x} represents a list of zero or more items of type 'x' separated by com
mas.

• {1' x} represents a list of one or more items of type 'x' separated by com
mas.

B.2 Implementation details

• Subscript ranges for arrays are dependent on the word length of the
machine running the configurer. For 16-bit machines the range is 0 to
215_1, for 32-bit machines the range is 0 to 231_1.

• Each line in the source configuration file should not exceed 1024 charac
ters, not including leading and following white space.

• The maximum number of dimensions for an identifier or array constant is
64.

B.3 Reserved words

This section defines the set of reserved words, and predefined types, attributes
and constants, that are defined in the configuration language.

72TDS 345 01 October 1992

262 B.3 Reserved words

8.3.1 Keywords

Reserved words cannot be used by the programer as identifiers in the configura
tion description.

The reserved words are as follows:

by
define
float
int
place
use

char
double
for
node
rep
val

connect
edqe
if
on
size

connection
else
input
output
to

8.3.2 Pr~efined attributes

Node attributes

The element attribute used for defining the type of a node can take the following
values:

• processor - the node is a processor in a hardware network.

• process - the node is a process in a software network.

Note: The names ofnode attributes are not reserved words and can be freely used
as general purpose identifiers by the programmer.

Processor attributes

The attributes defined for nodes of type processor are as follows:

• 1 ink - used by processor nodes to define interconnection. Only defined
if the type attribute has already been defined.

• memory - used by processor nodes to define memory size.

• reserved - used by processor nodes to reserve memory.

• router - used by processor nodes to control the virtual routing decisions
of the configurer. The router attribute can take the following sub-attrib
utes: linkquota, routecost and tolerance.

o linkquota - suggests the maximum number of links on the
associated processor that should be used by the virtual channel
routing system.

o routecost - defines within the range MIN COST to MAX COST
inclusive the associated cost of through-routing data through this
processor for other processor's virtual channel traffic.

o tolerance - controls with any value between ZERO TOLERANCE
and MAX_TOLERANCE inclusive how much the particUlar processor

72 lDS 345 01 October 1992

B Configuration language syntax 263

concerned can be used for the provision of load-sharing through
routing paths for other processors.

• type - used by processor nodes to define processor type. Processor types
predefined in standard include files are as follows:

T400
T800
T212
M212

Process attributes

T414
T801
T222

T425
T805
T225

T426

The attribute names currently defined for nodes of type process are:

• heapsize - used by the process nodes to specify the size of the heap data
segment used by the process.

• interface - used by process nodes to define the type and the default val
ues of parameters to be passed into the process when the process starts
executing.

• location - used by process nodes to specify the absolute locations of
their code and data segments. The location attribute can take the fol
lowing sub-attributes:

code stack static heap vector

• nodebug - used by process nodes to notify the advanced too/set debugger
not to debug the process.

• noprofile - used by process nodes to notify the advanced too/set profiler
not to profile the process.

• order - used by process nodes to specify the ordering of their code and
data segments. The order attribute can take the following sub-attributes:

code stack static heap vector

• priori ty - used by process nodes to specify the priority of the process.

• stacksize - used by the process nodes to specify the size of the stack
data segment used by the process.

72 TDS 345 01 October 1992

264 8.4 Predefinitions

8.4 Predefinitions

The following definitions are read by the configurer from the standard include file
seteonf . ine at invocation.

8.4.1 Constants

val FALSE 0;
val TROB 1;

val fu•• 0;
val true 1;

val BIGB 0;
val LOW 1;

val high 0;
val low 1;

val KIN COST
val DEFAULT COST
val MA][COST
val INFINITE_COST

1;
1000;
1000000;
1000001;

val ZERO TOLERANCE 0 ;
val DEFAULT TOLERANCE 1;
val MAX_TOLiRANCZ 1000000;

val ROUTER ORDER
val MOXER_ORDER

val min cost
val default cost
val max cost
val infInite_cost

-20000;
-10000;

1;
1000;
1000000;
1000001;

val zero tolerance 0 ;
val default tolerance 1;
val max_tolerance 1000000;

val router order
val muxer_order

-20000;
-10000;

TRUE, true, FALSE, and false are used in expressions where a boolean value
is needed.

HIGH, high, LOW, and low can be used to define the execution priority for a pro
cess.

The remaining constants are used to influence the performance of the virtual rout
ing network. See chapter 9.

72 TDS 34501 October 1992

B Configuration language syntax 265

B.4.2 Types

define node (element "processor") processor;

define node (element "processor", type "T80S") t80S;
define node (element "processor", type "T801") t801;
define node (element "processor", type "T800") t800;
define node (element "processor", type "T426") t426;
define node (element "processor", type "T42S") t42S;
define node (element "processor", type "T414") t414;
define node (element "processor", type "T400") t400;
define node (element "processor", type "T22S") t22S;
define node (element "processor", type "T222") t222;
define node (element "processor", type "T212") t212;
define node (element "processor", type "11212") m212;

define node (element "processor") PROCESSOR;

define node (element "processor", type "T80S") T80S;
define node (element "processor", type "T801") T801;
define node (element "processor", type "T800") T800;
define node (element "processor", type "T426") T426;
define node (element "processor", type "T42S") T42S;
define node (element "processor", type "T414") T414;
define node (element "processor", type "T400") T400;
define node (element "processor", type "T225") T225;
define node (element "processor", type "T222") T222;
define node (element "processor", type "T212") T212;
define node (element "processor", type "11212") M212;

define node (element "process") process;
define node (element "process" , priority high) highprocess;
define node (element "process" , priority low) lowprocess;

define node (element "process") PROCESS;
define node (element "process", priority HIGB) BIGHPROCESS;
define node (element "process", priority LOW) LOWPROCESS;

B.4.3 Declarations

One declaration is defined within seteonf. ine:

edge host;

72TDS 345 01 Odober 1992

266 8.5 Language syntax

8.5 Language syntax

8.5.1 Configuration

configuration

config-item

declaration

compound-decl

- config-item {config-item}

- declaration
replicator
conditional
directive

- node-decl
node-attr-decl
nodedef-decl
connect-decl
edge-decl
connector-decl
mapping-decl
numeric-value-decl
compound-decl
use-decl

- {config-item {config-item} }

8.5.2 Language features

letter - AIBI···IZlalbl···lz

digit - 011121···19

id-char - letter Idigit I_

identifier - letter {id-char} 1_ {id-char}

comment - / * any characters except *j sequence */

directive - # file-include

file-include - include string

8.5.3 Expressions

octal-digit

hex-digit

octal

decimal

72 lOS 345 01

- 011121···17

- digit 1A 1B 1... 1F I a 1 b 1... 1f

- 0 octal-digit {octal-digit}

- digit {digit}

October 1992

B Configuration language syntax 267

./

hex

character-const

char

escape-sequence

string

string-char

scale-size

int-const

sign

exponent

real-size

real-const

array-const

subscript

const

numeric type

monadic-op

dyadic-op

element

72 'TDS 345 01

- Ox hex-digit {hex-digit} I ox hex-digit {hex-digit}

, char'

- any character except end of line and quote mark
escape-sequence

\' I \" 1 \ \ I \?
\al\bl\fl\nl\rl\tl\v
\ octal-digit [octal-digit] [octal-digit]
\x {hex-digit}

" {string-char} "

- any character except end of line and double quote
mark
escape-sequence

- klKI1IL

- decimal[scale-size] I octal I hex

- + I -

- E [sign] decimal I e [sign] decimal

- flFll IL

- decimal. [decimal] [exponent] [real-size]
decimalexponent~ea~size]

. decimal [exponent] [real-size]

{ {1, exp}} 1 string

[exp] {[exp] }

- int-const
real-const
character-const
array-const [subscript]

- int I float I double Ichar

- + I - 1 ! 1 ~

(numeric-type)

- +1-1 *1/1 %
, 1I 1A 1« 1»
" III
<1>1<=1>=1==1 !=

- identifier {[subscript] . identifier} [subscript]

October 1992

268

function-call

exp

size (element)

const
element
monadic-op exp
exp dyadic-op exp
exp ? exp : exp
(exp)
function-call

8.5 Language syntax

8.5.4 Replication and conditionals

replicator

conditional

- rep identifier = exp to exp config-item
rep identifier = exp for exp config-item

if exp config-item [else config-item]

8.5.5 Numeric value declarations

numeric-value-decl ::= val identifier exp ;

8.5.6 Network declarations

node-decl .. - node-type [({ 1, aftributes } }] {1, identifier [subscript]} ;

node-type - node
identifier

aftributes - general-aftr
node-aftr
processor-aftr
process-aftr

general-aftr - identifier = exp
identifier ({1, general-aftr} }
identifier ({1, formal-aftr} }

node-aftr - element = element-type

element-type - "processor"
"process"

processor-aftr - type = processor-type
memory = exp
reserved = exp
router ({1, router-aftr}

router-aftr - linkquota =exp
routecost =exp
tolerance =exp

72 TDS 34501 October 1992

B Configuration language syntax 269

processor-type - "M2l2"
"T2l2"
"T222"
"T22S"
"T400"
"T4l4"
"T42S"
"T426"
"Teoo"
"TeOl"
"Teos"

process-attr - stacksize =exp
heapsize =exp
priority =exp
nodebug =exp
noprofile =exp
interface ({1, fonnal-att})
order ({11 segment-aft})
location ({11 segment-att})

segment-attr - code =exp
heap =exp
stack =exp
static = exp
vector =exp

formal-aftr - formal-type {1, identifier [subscript] [= exp]}

formal-type - numeric-type
input
output

node-attr-decl - element ({ 11 attributes})

nodedef-decl - define node-type [({ 11 attributes})] identifier;

connector-decl - connection { 11 identifier [subscript]} ;

connect-decl - connect element, element {by identifier [subscript]] ;
connect element to element {by identifier [subscript]] ;

edge-decl - edge {11 identifier [subscript]} ;
input {11 identifier [subscript]}
output {1, identifier [subscript]} ;

use-dec - use string for element ;

B.5.7 Mapping declarations

mapping-decl

72TDS 34501

- place element on element ;

october 1992

270

72 TDS 345 01

8.5 Language syntax

October 1992

C Glossary

Alias

If two or more expressions denote the same memory address, then the
expressions are aliases or one another.

Alias check

A program compilation check that ensures that names are unique within a
given scope.

Analyse

A transputer input pin which forces the processor to halt at the next de
scheduling point, to allow the state of the processor to be read. To assert
the Analyse input on a transputer. In the context of 'analyzing a network',
to analyze all transputers in that transputer network.

Backtrace

Within the debugger an simulator tools, to move from a position within a
procedure or function body to the call of that procedure or function.

Big endian

The opposite of little endian - see below.

Bootable code

Self-starting program code that can be loaded onto a transputer or trans
puter network down a user link and run. Bootable code is produced by
icollect from linked units (single transputer programs) or configuration
binary files (for configured programs).

Bootstrap

A transputer program, loaded from ROM or over a link after the transputer
has been reset or analyzed, which initializes the processor and loads a pro
gram for execution (which may be another loader).

72 TDS 345 01 October 1992

272 Capability

Capability

A text string which identifies a transputer resource (or resources).

Compiler library

A group of occam library routines that are used by the compiler to imple
ment extended arithmetic and transputer system operations.

Configuration

The association of components of a program with a set of physical
resources. Used in this manual to refer to the specific case of allocating
software processes to processors in a network, and channels to links
between processors. The term is also used, depending on the context, to
describe the act ofdeciding on these allocations for aprogram, the configu
ration code which describes such a set of allocations, and the act of apply
ing the configurer to a configuration description.

Configurer

The tool which assigns processes and channels on a specified configura
tion of transputers. The output from the tool is a configuration binary file for
input to icollect.

Connection manager

The functionality provided by the Linkops part of the host file server. Pro
vides and maintains connections to transputer systems across a network .
and is used by the session manager to select a transputer system and
maintain unique access to that system.

Core dump

Amemory dump. Core dumps are required as part of the process ofdebug
ging multitransputer programs that incorporate the root transputer.

Communicating Sequential Processes (CSP)

A theory and notation, developed by Professor Tony Hoare, for describing
systems made up of concurrent processes which communicate via chan
nels. The occam model of concurrency is based on CSP.

Deadlock

A state in which one or more concurrent processes can no longer proceed
because of a communication interdependency.

72 TDS 34501 October 1992

C Glossary 273

Error modes

The compilation mode of a program that determines what happens when
a program error (such as an array bounds violation) occurs. Programs are
compiled by ice in UNIVERSAL mode, which is the mode that can be
mixed with HALT and STOP code generated by other INMOS compilers.

Error signal (or error flag)

In the transputer, an external signal used to indicate that an error has
occurred in a running program. Also refers to one of the system control
functions on transputer networks. Error signals can be OR-ed together on
transputer boards to indicate that an error has occurred in one of the trans
puters in a network.

Ethernet

A LAN technology based on a passive coaxial cable. It is a 10 Mbps 'best
effort' delivery system.

Extended data types

The occam data types INT16, INT32, INT64, REAL32 and REAL64.

External memory interface (EMI)

The signals which conned a transputer to external memory, consisting of
address and data buses and a number of control signals. Most of the 32
bit transputers (T4xx and Taxx) have a programmable EMI which can be
configured for different types and speeds of external memory device.

Event

An input signal to the transputer which can be used an external interrupt.
The event input can be treated by a process as a (zero length) communica
tion.

Free variables

Variables which are referred to in afunction or procedure, but declared out
side of it.

Gateway

A dedicated computer that connects two or more networks, and routes
messages between them.

72TDS 345 01 Odober 1992

274 Hard channels

Hard channels

Channels which are mapped onto links between processors in a trans
puter network (see also soft channels).

Host

The computer to which a transputer system is connected and which possi
bly also provides file system access and terminal 110.

Host file server

A server which provides access to the filing system and terminal 110 of a
host operating system.

Include file

A file containing source code which is incorporated into a program using
the C 'include ('INCLUDE for occam) directive. Include files are, by
convention, given the. h extension in C; occam include files are given the
extension . inc.

LAN (Local Area Network)

Any computer network that works over short distances at high speeds.

Library

A collection of separately compiled procedures or functions, created by the
toolset librarian ilibr, which may be shared between parts of a program
or between different programs.

Library build file

A file containing a list of input files for the librarian tool ilibr. Each file
forms a separately loadable module in the library. Library build files should
have the .lbb extension.

Library usage file

A file listing the libraries and separately compiled units used by another
library. Library usage files must have the .liu extension.

Link

In the context of transputer hardware, the serial communication link
between processors.

72 TDS 34501 October 1992

C Glossary 275

In the context of program compilation, collecting together all the compiled
code for a program, resolving all references and placing the collected code
into a single file.

Linker

The program or tool which links a program or compilation unit.

Linkops

The recommended INMOS link interface, used by iserver 1.5.

Little endian

The transputer is totally 'little endian', Le. less significant data is always
held in lower addresses. This applies to bits in bytes, bytes in words and
words in memory.

Loader

Depending on the context, refers to the part of the host file server which
loads a transputer network or to a small program which is loaded into a
transputer, and which then distributes code to other transputers and loads
a larger program on top of itself.

Makefile

An input file for a 'make' program. A makefile contains details offile depen
dencies and directions for rebuilding the object code. Makefiles are created
for the toolset using imakef.

Network

Depending on context may refer to a conventional computer network or a
set of interconnected transputers.

Object code

Intermediate code between source and bootable code. Object code can
not be directly loaded onto a transputer and run. The compiler and linker
tools generate object code.

72TDS 345 01 October 1992

276 Peek and poke

Peek and poke

To read (peek) and write (poke) locations in a transpuler's memory via a
link, while the transputer is waiting to be booted.

PostScript

PostScript is a device-independent, interpreted language for describing
the layout of text and graphics on a page. It is used by a large number of
printers and software applications as the standard means of transferring
graphics data.

Preamble

The part of a transputer loader program that initializes the state of the pro
cessor.

Priority

In the transputer, the priority level at which the currently executing process
is being run. INMOS transputers support two levels of priority, known as
'high' and 'Iow'.

Process

Self-contained, independently executable code.

Protocol

The pattern (type, etc.) of communications between two processes, often
including communications on more than one channel. Protocols can be
defined in occam and must be specified when a channel is declared.

Reset

The transputer system initialization control signal.

Root transputer (or root processor)

The processor in a transputer network which is physically connected to the
host computer, and through which the transputer network is loaded.

Separate compilation

A self-contained part of a program may be separately compiled, so that
only those parts of a program which have changed since the last compila
tion need to be re-compiled (see also makefile).

72TDS 34501 October 1992

C Glossary

Server

A program running on a host computer which provides access to the filing
system and terminal 1/0 of the host for the transputers, or access to the
transputer system from the host. The server can also be used to load the
program onto the network.

Session manager

That part of the server which maintains unique access (a session) to a
transputer system when requested by a user.

Soft channels

Channels declared and used within a process running on a single trans
puter (see also hard channels). Soft channels are implemented by a
single word in memory.

Standard error

The host system error handler. Errors directed to standard error are dis
played in a host-defined way, for example, on the terminal screen. For
details of howto modify standard error on the system, consult the operating
system documentation.

Standard input

The host system input handler. Specifies the standard input device, for
example the terminal keyboard or a disk file. For details of how to modify
standard input on the system, consult the operating system documenta
tion.

Standard output

The host system output handler. Specifies the standard output device, for
example, the terminal screen ora disk file. Fordetails ofhowto modifystan
dard input on the system, consult the operating system documentation.

Subsystem

In transputer board architecture, the combination of the Reset, Analyse
and Error signals which allows one board to control another board con
nected to its subsystem port.

Target transputer

The transputer on which the code is intended to run. The transputer type,
or a restricted set of types defined in a transputer class, is defined when
the program is compiled, using command line options.

72 TDS 34501 October 1992

278 Transputer Module (TRAM)

Transputer Module (TRAM)

A range of small printed circuit boards which typically hold a transputer,
some memory and, optionally, some other application specific hardware.
TRAMs can be interconnected via links to build systems based on a num
ber ofmotherboard architectures. For more information see the iq systems
databook.

Usage check

A compilation check that ensures no variables are shared between parallel
processes, and that enforces rules about the use of channels as unidirec
tional, point-to-point connections.

User link

The connection of a transputer resource to a host computer.

Vector space

The data space required for the storage of arrays within occam code (see
also workspace).

Worm

A program that distributes itself through a network of transputers (perhaps
with an unknown topology) and allows all the processors in the network to
be loaded, tested or analyzed.

Workspace

The data space required by an occam process. When used in contrast to
vector space, refers to the data space required for scalars within the
occam code.

72 TDS 34501 October 1992

D Bibliography

0.1 Transputers

The transputer databook (Third Edition 1992)

INMOS Ltd, July 1992
INMOS document number 72 TRN 203 02

The military and space transputer databook (First Edition 1990)

INMOS Ltd, July 1990
INMOS document number 72 TRN 224 00

Transputer instruction set: A compiler writer's guide

INMOS Ltd
Prentice Hall 1988

Transputer Hardware and systems design

JC Hinton and AL Pinder
Prentice Hall 1993

The transputer handbook

lan Graham and Tim King
Prentice Hall 1990

0.2 C programming

The C programming language (First Edition)

Brian W Kernighan &Dennis M Ritchie
Prentice Hall 1978

72 TDS 34501 October 1992

280 0.3 occam programming

The C programming language (Second Edition - ANSI C)

Brian W Kemighan and Dennis M Ritchie
Prentice Hall 1988

C: A reference manual (Second Edition - ANSI C)

Samuel P Harbison and Guy L Steele
Prentice Hall 1987

American National Standard for Information Systems
Programming Language C

American National Standards Institute 1990
Ref. Doc. X3J11/88-159

0.3 occam programming

occam 2 reference manual

INMOS Ltd
Prentice Hall 1988

A tutorial introduction to occam programming

D Pountain and D May
Blackwell Scientific 1987

An introduction to occam 2 programming

KC Bowler, RD Kenway, GS Pawley and D Roweth
Chartwell-Bratt 1987

Programming in occam 2

A Bums
Addison-Wesley 1988

occam 2

A Gallently
Piman 1989

72 TDS 34501 October 1992

D Bibliography

Programming in occam 2

G Jones and M Goldsmith
Prentice Hall 1988

Concurrent programming in occam 2

J Wexler
Ellis Horwood 1989

0.4 INMOS technical notes

The transputer applications notebook:
Architecture and software (First Edition 1989)

INMOS Ltd, May 1989
INMOS document number 72 TRN 206 00

The transputer applications notebook:
Systems and performance (First Edition 1989)

INMOS Ltd, June 1989
INMOS document number 72 TRN 205 00

IMS B004 IBM PC add-in board

Technical note 11
INMOS document number 72 TCH 011

281

Notes on graphics support and performance improvements on the IMS T800

Technical note 26
INMOS document number 72 TCH 026

Security aspects of occam 2

Technical note 33
INMOS document number 72 TCH 033

Simple real-time programming with the transputer

Technical note 51
INMOS document number 72 TCH 051

72TDS 345 01 October 1992

282 D 5 Development systems

Using the occam toolsets with non-Occam applications

Technical note 55
INM08 document number 72 TCH 055

D.5 Development systems

The transputer development and iq systems databook (Second Edition 1991)

INMOS Lld, 1991
INMOS Document Number 72 TRN 219 01

IMS 8300 TCPlink hardware manual

INMOS Limited, June 1991
INMOS Document Number 72 TRN 229 01

ANSI c~-~~~~'~-~-'7=~7~(8*~~)
(D 4 2 1 4 B.. D 5 2 1 4 B.. D 7 2 1 4 C)\ - Y :I /')

~~: ~B*~~(~)Iv?~O=?A~~ffl~T~ATk~~$

~*~ .. mR~~ .. *.~A .. ~T~~ ...~~*
SGS~kY/"71?OIv?~O=?A(~)

.*~g

~fiJiJT: 8fJJI~JTrm:tt (~)

D.6 References

Software manual for the elementary functions

WJ eody and WM Waite
Prentice Hall 1980

The ari of computer programming
2nd edition, Volume 2: Seminumerical algorithms

DE Knuth
Addison Wesley 1981

72TD8 345 01 October 1992

D Bibliography

IEEE Standard for binary floating-point arithmetic

ANSI-IEEE Std 754-1985

Communicating sequential processes

CAR Hoare
Prentice Hall

72 TDS 34501

283

October 1992

284

I

.72 TDS 345 01

0.6 References

October 1992

Index

Symbols

'PRAGMA
EXTERNAL, 198
TRANSLATE, 199

'pragma
IMS descriptor, for dynamic

code loading, 235, 238
IMS nolink, 202
IMS-translate, 199
introduction, 12

A
abort, for dynamic code loading,

237

Alias, 271
check, 271

Allocate
channels to links, 76
software to hardware, 76

Analyse, 111,135,271
use when debugging, 113

ANSIC
compiler, introduction, 10
concurrency, libraries, 50
standard, 10
toolset, development cycle, 21
toolset introduction, 9

Areg, 134

Arithmetic, configuration language,
87

Arrays
as arguments to C functions, 154
as parameters, in configuration,

72
constant, in configuration, 87
in configuration language, 88

72 TOS 345 01

Assembly code, 253
asm statement, 253

opcodes,253

Assigning code to transputers, 22,
78

Asynchronous process, 55

Attributes, configuration, 86, 90

B
B004,112

B008,113
motherboard, 111

B014, motherboard, 111

B016, motherboard, 111

Backtrace,271

Backus-Naur Form, configuration
language, 261

Big endian, 271

Binary output, ieprom, 227

BNF, 261

Boards
boot from link, 111
boot from ROM, 111
connections, 111
IMS B008, 111
IMS 8014, 111
IMS 8016, 111
types, 112

Booleans, in configuration lan
guage,87

Boot from link, 80
boards, 111
loading mechanism, 110

Boot from ROM
boards, 111
code, debugging, 119

October 1992

286

Bootable code, 271

Bootstrap,271

BptrO, 134

Bptr1,134

Breakpoint debugging. See Debug
ging; Interactive debugging

Breakpoints, 144
hardware support, 125
phantom, 153
setting and clearing, 128

Breg,134

Build files, libraries, 274

c
C main program, 49, 66, 79, 80, 81

C runtime libraries
full, 224
reduced, 224

C.ENTRY,38

C.ENTRYD,37

C.ENTRYD.RC,37

call_without_gsb,249

callc.lib,205

Capability, 272

CASE, debugging occam, 146

ChanAlloc,58

Chanln,59,96

ChanlnChanFail,97

ChanlnChar,59,96

Chanlnlnt,59,96

Chanlnit,58

ChanlnTimeFail,97

Channel, data type, 50

Channel, 6, 48, 58, 70
direct, 77, 96
edge, 77
fault handling, 97

72 TDS 345 01

Index

hard, 274
host server, in configuration, 73
initialization, 58
input, 59
input and output, 75
output, 59
placement, 76, 184
reserved, 216
reset, 97
soft, 77,277
virtual, 77

advanced techniques, 183

channel.h,50,58

ChanOut,59,96

ChanOutChanFail,97

ChanOutChar,59,96

ChanOutlnt,59,96

ChanOutTimeFail,97

Clearing error flags, 114, 126

clibs.lnk,39

clibsrd.lnk,39

Clock, 134
See also TImer
rate, 63

ClockO,134

Clock1,134

Clocks, displayed on Monitor
page, 136

cnonconf.lnk,37

Code
place in memory, configuration

statements, 179
position in memory, 71, 179

Collector, 26
example, 44, 45

Communicating Sequential Pro
cesses, 6,47, 272, 283

Communication. See Channel

Compiler
error modes, 12
introduction, 10
libraries, occam, 205, 211, 272

October 1992

Index

optimizations, in debugging, 156
predefines, 16

Compiling, 25
example, 42, 45
for debugging, 117
for dynamic loading, 235

Concurrency,47
functions, 51
hardware support, 4
library support, 49
model, 11

Conditionals, in configuration lan
guage,88

Configuration, 272
assigning code to processes, 78
checking, 98
code & data, placement in RAM,

179
code &data placement, 17
constants, 264
debugging considerations, 96, 98,

99
description, 65
examples, 43, 81, 99
hardware description, 67
introduction, 16, 65
language, 85

arrays, 88
booleans, 87
character set, 86
comments, 85
conditionals, 88
connections, 92
constants, 86
definition, 261
expressions and arithmetic, 87
identifiers, 86
implementation, 261
introduction, 16
keywords, 262
network definition, 90
predefinitions, 90, 262
replication, 89
reserved words, 261
statements, 85
summary, 93

72 lDS 345 01

287

syntax, 266
syntax notation, 261
types, 86

mapping description, 76
model, 66
parameters. See get"'param
process termination, 98
software description, 70
software multiplexing, 17
software routing, 17

Configurer, 26, 272
producing debuggable programs,

118

Configuring, for debugging, 153

connect statement, in configura
tion description, 92

Connecting
boards, 111
subnetworks, 111

Connection manager, 272

Connections, in configuration
description, 92
edge, 75
prohibited, 92

Constants
arrays, in configuration, 87
configuration predefinitions, 264
in configuration language, 86

Core dump, 272

Creq, 134

CSP, 6,11,47,272,283

cstartrd.lnk,37,80

cstartup.lnk,37,80

D
Data, place in memory,

configuration statements, 179

Deadlock, 146,272

Debuggable programs, 116

Debugger, 27
hints, 145

October 1992

288

kernel, 124

Debugging, 115
See also Interactive debugging;

Monitor page; Post-mortem
debugging

abusing harcllinks, 149
arrays as arguments, 154
boot from ROM code, 119
breakpoint, 123
catching concurrent processes,

152
commands, only available in inter-

active mode, 128
compiler optimisations, 156
confidence check, 151
configuration, 153
configured programs, 118
deadfix.occ, 148
deadlock.occ,147
direct channel functions, 118
error modes, 118
errors in the full library, 155
errors in the reduced library, 155
examining the active network, 149
example, C, 157
goto process, 176
hard parity errors, 120, 122
important points, 149
information, 117
I INSPECT I, 150
inspecting channels, 175
inspecting variables, 174
I INTERRUPT Ikey, 151
invalid pointers, 145
large shift values, 156
library functions, in absence of

idebu9,143
loading programs, 112
low level, 132
memory size, 154
monitor page, 132
post-mortem, 119
program crashes, 152
program hangs, 152
root transputer, 123
seterr,154
soft configuration channels, 145

72TDS 345 01

Index

tracing processes, 175
undetected program crashes, 152
use of isim, 116

Default
command line arguments, 35
error modes, 118

Direct channels, 59, 77, 96, 97

Direct instructions, 253

DirectChanln,59

DirectChanlnChar,59

DirectChanInInt,59

DirectChanOUt,59

DirectChanOUtChar,59

DirectChanOUtInt,59

Directives, preprocessor, 11

Down, 111

Dynamic code loading
initialization, 232
input/output, 242
introduction, 15, 231
occam, 248

E
Edge, 75

channels, 77
host, 69
in configuration, 68

edge, 75

element, 90

EMI, 273

Empty,135

Entry points
C.ENTRY,38
C.ENTRYD,37
C.ENTRYD.RC,37
for dynamic code loading,
23~,237

Environment variables, 34

t=PROM programming, 29, 225
collecting, 228

October 1992

Index

configuring, 228
tools, introduction, 29

Error, 111, 273

Error
modes, 12,273

HALT, 273
in debugging, 118
STOP, 273
UNIVERSAL, 273

reporting, 33

Error flag
clearing in a network, 114, 126
displayed on Monitor page,

134, 135
of a subsystem, 111

Ethernet, 273

Event, 273

Example, mapping description, 79

Examples
analysing deadlock, 147
collecting, 44, 45
compiling, 42
configuration, 43,81,99
debugger monitor page, 133
debugging e, 157
debugging in post-mortem mode,

173
debugging support functions, 142
debuging occam, 166
dynamic code loading, 236
linking, 42, 45
linking equivalent occam process,

224
loading a program, 44
multi-process program, 57
phantom breakpoints, 153
separate compilation, 45
single process program, 52
skip load, 113
through-routing, 192
type 1 interface, 219
type 2 interface, 221
type 3 interface, 223
virtual channels, 104, 106

72 TDS 345 01 .,

289

Executable code, 25
exit, 55, 98

for dynamic code loading, 237
exit_noterminate, 98
Expressions, in configuration lan-

guage,87
Extended data types, occam, 273
Extensions, file, 30
External memory interface, 273

F
facs.c, 157

compiling and loading, 162
facs.occ, 166

compiling and loading, 169
File, extensions, 30

imakef,31
Floating point, instructions, 257
fnload.h, 233
FPError, 134
FptrO,134

Fptr1, 134

Free variables, 273
from_host_link, 242
Full library. See Library

G
Gateway, 273
get code details from channel,
233- --

get code details from file,
233 - --

get code details from memory,
233 - --

get details of free stack space,
238, 242 - - - -

get-param, 72, 80
Global static base, 201, 206

dynamic code loading, 237, 249

October 1992

290

Grid, network topology, 5

H
HALT error mode, 118

debugging, 118

HaltOnError, 134

Hard channels, 274

Hardware support
for breakpointing, 125
for concurrency, 4

Harness, dynamic code loading,
forC,232

Heap area
for dynamic code loading, 242
mixed language programs,

205,217
position in memory, 71, 179
size of, 71

Help, page in debugger, 129

Hexadecimal format
for environment variables, 35
for EPROM, 227
syntax, 35

High priority process, 63, 64, 71

Host, 274
dependencies, 33

command line syntax, 33
filenames, 34
search paths, 34

edge, 69
environment variables, 34
versions, xvii

host, 69

Host file server, 274

Host services, 80

IBM PC, 9
386,33

IBOARDSIZE,35

72 TDS 34501

Index

ice, introduction, 10

icconf, introduction, 16

icollect,26

ICONDB,35
idebug,27

help page, 129

IDEBUGSIZE,35
Identifiers, in configuration lan-

guage,86

idump,28·

IEEE 754,93

iemit,29

ieprom, 29, 225, 227

IF, debugging occam, 146

if, 88

if... else, 88

ilibr,28

ilink,25

ilist,28

imakef,28

imap,28

Implementation, configuration lan-
guage,261

Importing C functions, 205

IMS B405, 68

IMS T800, 135

IMS_ descriptor, for dynamic
code loading, 235, 238

Include file, 274

init.heap,207

init.static,207

Initialization
channel, 58
for dynamic code loading, 232
process, 53
semaphores, 62

INMOSC
concurrency, 49
introduction, 10

October 1992

Index

I INSPECT I, 174

Instruction pointer, 134
invalid, 145

Instruction set, 49

Intel extended hex format, 227

Intel hex format, 227

Interactive debugging,
116, 123, 129
See also Debugging
addresses of variables, 164
backtracing, 164, 172
backtracing to main () , 165
breakpoint commands, 132
browsing source code, 130
clearing a breakpoint, 173
entering 'include files, 166
inspecting by expression, 165
inspecting variables,

131, 164, 171
jumping down a channel,

165, 172
jumping down channels, 131
locating to code, 130
modifying a variable, 165, 172
modifying variables, 132
program loading, 126
program termination, 128
quitting, 166, 173
resuming program, 172
runtime kernel, 124
setting breakpoints, 163, 171
starting a program, 164, 171
tracing procedure calls, 131

interface, 71

Invalid pointers, 145

Iptr,134

IptrlntSave,134

I SEARCH, 35

iserver, 26, 80, 109

ISESSION,35

isim,29,144

ISIMBATCH,35

72TDS 345 01

291

iskip,26,109

ISO/lEe 9899:1990, standard, 10

ispy,98, 114,126

I TERM, 35

K
Kemighan &Ritchie, 10

Keywords, configuration language,
262

L
LAN,274

Large shift values, 156

Librarian, 28

Library, 274
build files, 274
full, 80
header files, 14
linking supplied libraries, 36
occam,213
reduced, 80
usage files, 274

Link, 274

Linker, 25, 275
indirect files, 36
startup files, 36

clibs.lnk,224
clibsrd.lnk,224

Linking
example, 42, 45
mixed language programs, 204

Linkops, 275

linkquota, 67, 69, 187,189

Links, 5
introduction, 4

Lister,28

Little endian, 275

load_code_from_channel,234

load_code_from_file,234

October 1992

292

load_code_from_memory,234

Loader, 275

Loading programs, 109
example, 44
for breakpoint debugging, 112
for debugging, 112
for interactive debugging, 126
introduction, 26
methods, 110
onto boards and subnetworks,

110
tools, 109

LoadStart, 179

location, 71, 74,179,182

Low priority process, 63, 64, 71

M
main function, 49, 66, 79, 80, 81

MAIN. ENTRY, 214
procedure interface, 218

Makefile generator, 28

Makefiles, 275

Master transputer, of a system,
111

max_stack_usage, 237, 238

Memory
default layout, configured pro-

grams, 179
initializing, 126,217
on-chip,3
reserved words

IptrlntSave, 134
WdesclntSave,134

reserving, 179
reserving on-chip. See

reserved
segment ordering, 73
segment re-location, 73
use by

software virtual routing pro
cesses, 190

virtual routing software, 185

72TDS 345 01

Index

memory, 67, 90

Memory dump, 123
example, 174

Memory dumper, 28

Memory map, displayed on monitor
page, 136

MemStart, 135, 180

Mixed language programming, 197
heap area, 205
importing C code, 205
introduction, 17
linking, 204
occam libraries, 213
reduced runtime library, 212
static area, 205
vector space, 213
workspace, 213

Monitor page, 132
See also Debugging
breakpoint commands, 139
command format, 137
data displayed, 134
examining memory, 137
locating processes, 137
selecting process, 138
specifying process, 138
startup display, 133
switching processor, 138

Motorola 5-record format, 227

MS-DOS, 9, 33, 34, 35

Multiprocessor networks, 49

MUXER_ORDER, 185

N
Network, 275

configuration, 65
control of, software virtual

routing, 185
definition, 90 .
grid, 5
hardware description, 67
mapping description, 76
partitioning, 184, 190

October 1992

Index

pipeline, 5
software description, 70
spanning tree, 188
Tree, 5

Node, 66, 90
types, 91

nodebug, 71

Non-bootable files, dynamic
code loading, 231

Non-eonfigured programs.
See cnonconf .lnk

noprofile, 71

NotProcess, 135

o
Object code, 275

Object file, format, 11, 25

occam
compiler libraries, 272
dynamic code loading, 248
equivalent process, 214
extended data types, 273
interface code, 214
libraries, 213
mixing with Ccode, 197

occam2.lnk,38

occamB.lnk,38

occama.lnk,38

On-chip memory, 3
use for program stack, 217

Operating systems
command lines, 33
dependencies, 33
MS-DOS, 33
SunOS,33
Unix, 33
VMS, 33

Operations, 254

Operators, 87

72TDS 345 01

293

Options
prefix, 33
unsupported, 39

order, 71, 73, 179, 183, 185

p
Parallel processing

data types, 50
functions, summary, 51
introduction, 6, 47
model, 47
on transputers, 48

Parameters
from configurer. See get.J>aram
GSB, 206 .~.

passing by reference, ~t99
passing by value, 199
TIMER, 200

Parity checked memory, initializing,
126

Parity error registers, displayed on 'I

Monitor page, 136

Parity errors, post-mortem debug-
ging, 120, 122

ParityAddr, 134

ParityError, 134

Peek,276

Phantom breakpoints, 153

Pipeline, network, 5

place, 184
in configuration, 76

Placement
channels, 76
processes, 76

Poke, 276

Post-mortem debugging,
115,119
See also Debugging
communication on channels,

141
communication on links, 140
communication on virtual links,

141

October 1992

294

hard parity errors, 120, 122
locating procedures and

functions, 141
outline of method, 139
stopped process, 141
stopped process location, 140
waiting on run queue, 140
waiting on timer queue, 140

PostScript, 216

Preamble, 276

Predefines, in configuration
language, 90

Prefixing instructions, 253

Priority, 276
of execution, 73

priori ty, 71

PROC.ENTRY,215
procedure interface, 219

PROC.ENTRY.RC,215
procedure interface, 222

ProcAfter, 63

ProcAlloc,53
use with, dynamic code

loading, 234

ProcAllocClean,54

ProcAlt,61

ProcAltList, 61

Process, structure type, 50

Process, 6,48, 276
asynchronous, 55
configuration attributes, 70
control, 49
creation, 51
defining new types, 74
descriptor, 134

invalid, 145
execution, 54
freeing workspace, 54
initialization, 53
interface, 71
pointers, in debugging, 135
prioritizing, 71

72 lDS 345 01

Index

queue, 135
displaying, 176

rescheduling, 64
selection, 49
synchronous, 56
termination, 54, 98
timing, 49
unused pointer, 53

process, 70, 90
process.h,50,54

Processes, synchronising, 48,58

Processor, links, 67

processor, 67, 90
defining new types, 68

ProcGetPriority,64

Proclnit,53
use with, dynamic code loading,

234

ProclnitClean,54

ProcJoin,55
ProcJoinList,55

ProcPar,56
ProcParam,53
ProcParList,56

ProcPriPar,56

ProcReschedule,64
ProcRun,55
ProcRunHigh,55
ProcRunLow,55

ProcSkipAlt,61
ProcSkipAltList,61
ProcStop,54

ProcTime,63
ProcTimeAfter,63

ProcTimeAlt,64

ProcTimeAltList,64
ProcTimeMinus.63
ProcTimePlus,63

October 1992

Index

ProcWait,63

Program development
getting started, 41
introduction, 21

Program hangs, debugging, 152

Program termination, interactive
debugging, 128

Programmable memory
interface, 3

Programs, loading, 109

Protocol, 276
iserver, 110

in debugger, 123
SP, 110
used by standard libraries, 123

Q
Queues, process, 176

R
RAM, 226

external, configuring for,
181, 182

on-ehip, configuring for,
181, 182

Real-time programming, 5

Reduced library, 224

Registers
Areg, 134
BptrO, 134
Bptr1,134
Breg, 134
ClockO,134
Clock1, 134
Creg,134
displayed on Monitor page, 135
Error, 134
FPError, 134
FptrO,134
Fptr1, 134
HaltOnErrof, 134

72 TDS 34501

295

Iptr,134
ParityAddr, 134
ParityError, 134
TptrO, 134
Tptr1, 134
Wdesc, 134

rep, 89

Replication, in configuration lan
guage,89

reserved, 67, 69, 179,181

Reserved channels, in occam
equivalent processes, 216

Reserved words, configuration lan
guage, 261

Reset, 111, 276
use when debugging, 113

ROM bootable code, 225
processing configurations, 226

Root transputer, 276
and debugger, 112

routecost, 67, 69, 186,189,190

router, 67, 69

ROUTER_ORDER, 185

Run queues, 135

Running programs, introduction, 26

Runtime
dynamic code loading, 231
library, 80, 96

introduction, 13
startup system, introduction, 14

5
SctleC1aling lists. See Process

queues; Run queues

Scope rules, 145

Search path, 34

Segment ordering, 73

Segment re-location, 73

SemAlloc,62

semaphor.h,51,62

October 1992

296

Semaphore, structure type, 50

Semaphore, 48

Semlnit,62

SemSignal,62

SemWait,62

Separate compilation, 276

Sequential programming, 6

Serial links, 3

Server, 26, 277

Session manager, 277

setconf.inc,68

Simulator, 29
use in debugging, 144

Single step execution, 145

size, 68, 90

Skip load
example, 113
in debugging, 123

Skip loader, 26

Soft channels, 77, 277

Software virtual routing, 77
control of, 185
disable, 78

Source level debugging, 129

Spanning tree, network, 188

Stack, 217
for dynamic code loading, 242
freeing, 54
overflow detection, 217
placing in on-ehip RAM, 217
position in memory, 71, 179
size, 71

Standard error, 277

Standard input, 277

Standard output, 277

s tartrd . Ink, xxiii

s tartup . Ink, xxiii

72 TDS 34501

Index

Static area, 205
pointer, 206
position in memory, 71, 179
requirement, 206

dynamic code loading, 242
STOP error mode, debugging, 118

Subsystem, 111,277
wiring, 111

Sun 4,9,33

SunOS, 9, 33

Symbolic debugging, 129
See also Debugging
information, 117

Synchronised communication, 6

Synchronising processes, 48, 58

Synchronous process, 56

Syntax, configuration language,
266

System services, 111

T
Target transputer, 10, 277

TCOFF, 11, 25

Terminate
configured processes, 98
process, 54

terminate.heap.use,207

terminate. static. use, 207

Through-routing, 190, 192
example, 106

TIMER, parameters, 200

Timer, 63, 134
See also Clock

Timer queues, 135
displaying, 176

to_host_link,243

tolerance, 67, 69, 186,189

Toolsel
development cycle, 21

October 1992

Index

documentation, xviii
conventions, xix

features, 9
file extensions, 30
getting started, 41
list of tools, 19
program development, 21

TptrO, 134
Tptr1, 134

TRAM, 68, 112, 278

TRANSPUTER, 35

Transputer
architecture, 4
clock, 134, 136
in real-time programming, 5
instructions, 49
introduction, 3
loading, 109
master, 111
module, 278
networks, 5, 49
parallel processing, 48
products, 6
root, 276
targets, 277
timer, 134

Tree, network topology, 5
Type

in configuration language, 86
nodes, 91

type, 67, 90

u
UNIVERSAL, 12

debugging, 118

Unix, 33

Unsupported options, 39

Unused process pointer, warnings,
52

Up, 111
Usage checks, 278

Usage files, libraries, 274

72TDS 345 01

297

use, 78

User link, 278

v
VAXNMS, 9, 33, 34, 35

Vector space, 278
in mixed language programming,

213
position in memory, 71, 179

Virtual channel, 77
example, 104

Virtual link, 77

Virtual routing, 77, 190
control of, 185
disable, 78
example, 106
use of memory, 185

VME bus, motherboard, 111

VMS, 33, 35

w
Wdesc, 134

WdesclntSave, 134

Wired down, 111

Wired subs, 111

Workspace, 278
See also Stack
freeing, 54
in mixed language

programming, 213

Worm,278

z
Z, command line option, 39

October 1992

298

72TDS 345 01

Index

October 1992

	Contents overview
	Contents
	Preface
	Host versions
	About this manual
	About the toolset documentation set
	Other documents
	occam and FORTRAN toolsets
	Documentation conventions

	Differences from previous issue
	Basics
	1 Introduction to transputers
	1.1 Transputers
	1.1.1 Transputer links
	1.1.2 Process scheduling
	1.1.3 Real time programming
	1.1.4 Multitransputer systems

	1.2 Programming models
	1.2.1 Parallel processing model

	1.3 Transputer products
	1.3.1 Toolset products

	2 Overview of the toolset
	2.1 Introduction
	2.1.1 Toolset features
	2.1.2 Transputer targets

	2.2 ANSI C compiler - icc
	2.2.1 Concurrent programming
	2.2.2 Standard object file format
	2.2.3 Preprocessor directives
	2.2.4 Include files
	2.2.5 Pragmas
	2.2.6 Error modes
	2.2.7 Transputer Program Execution

	2.3 Runtime library
	2.3.1 Reduced library
	2.3.2 Header files

	2.4 Runtime system
	2.5 Dynamic code loading
	2.6 Low level programming
	2.6.1 Assembly code support
	2.6.2 Compiler predefines
	2.6.3 Assembly programming

	2.7 Configuration system
	2.7.1 Configuration language
	2.7.2 Software routing and multiplexing
	2.7.3 Code and data placement

	2.8 Mixed language programming
	2.9 Toolset summary

	3 Developing programs for the transputer
	3.1 Introduction
	3.2 Program development using the toolsets
	3.2.1 Compatibility with previous toolset releases

	3.3 Compiling
	3.4 Tools for building executable code
	3.4.1 Linker - ilink
	3.4.2 Configurer
	3.4.3 Code collector - icollect

	3.5 Loading and running programs
	3.5.1 Host file server - iserver
	3.5.2 Skip loader - iskip

	3.6 Program development and support
	3.6.1 Network debugger - idebug
	3.6.2 Memory dumper - idump
	3.6.3 Librarian - ilibr
	3.6.4 Binary lister - ilist
	3.6.5 Makefile generator - imakef
	3.6.6 Memory map tool - imap
	3.6.7 T425 simulator - isim

	3.7 EPROM programming
	3.7.1 EPROM programmer - ieprom
	3.7.2 Memory configurer - iemit

	3.8 File types and extensions
	File extensions required by imakef

	3.9 Error reporting
	3.10 Host dependencies
	Command line syntax
	3.10.1 Filenames
	3.10.2 Search path
	3.10.3 Environment variables
	3.10.4 Default command line arguments

	3.11 Linker startup and indirect files
	3.11.1 ANSI C Toolset
	cstartup.lnk
	cstartrd.lnk
	cnonconf.lnk

	3.11.2 occam 2 Toolset
	3.11.3 Mixed language programs
	3.11.4 Other startup files supplied with the ANSI C Toolset

	3.12 Unsupported options

	4 Getting started
	4.1 Outline procedure
	4.2 Running the examples
	4.2.1 Sources
	4.2.2 Example command lines
	4.2.3 Using the simulator

	4.3 A simple sequential program
	4.3.1 Compiling
	4.3.2 Linking
	4.3.3 Configuring
	4.3.4 Collecting
	4.3.5 Loading and Execution
	4.3.6 A short cut
	4.3.7 Separate compilation

	5 Parallel processing
	5.1 Introduction
	5.2 Abstract model
	5.2.1 Processes
	5.2.2 Channels
	5.2.3 Semaphores

	5.3 Parallel processing and transputers
	5.3.1 Multitransputer networks
	5.3.2 Instruction set
	Process control
	Process selection
	Process timing

	5.4 INMOS Concurrent C library
	5.4.1 Library support
	5.4.2 New data types
	5.4.3 Concurrency functions

	5.5 Processes
	5.5.1 Unused process pointer
	5.5.2 Process initialization
	5.5.3 Freeing stack and workspace
	5.5.4 Process termination
	5.5.5 Process execution (process.h)
	Asynchronous processes
	Synchronous processes
	Synchronizing between processes

	5.6 Channel communications (channel.h)
	5.6.1 Channel initialization
	5.6.2 Channel output
	5.6.3 Channel input
	5.6.4 Reading from several channels

	5.7 Semaphores (semaphor.h)
	5.8 Timers and delays
	5.8.1 Control of processes by timers

	5.9 Other process facilities

	6 Configuring transputer programs
	6.1 Configuration basics
	6.1.1 Introduction to configuration
	6.1.2 Hardware network description
	Processor links
	Defining new processor types
	Edges
	Host edge
	The reserved attribute
	The router attribute

	6.1.3 Software network description
	Process attributes
	Defining new process types
	Input and output channels
	Edge connections

	6.1.4 Mapping description
	Placement of processes
	Placement of channels
	Predefined connection names
	Assigning code to processes
	Mapping example

	6.1.5 Types of main program
	6.1.6 Access to interface parameters
	6.1.7 Example configuration

	6.2 Configuration language
	6.2.1 Introduction
	6.2.2 Statements
	6.2.3 Comments
	6.2.4 Identifiers
	Character set

	6.2.5 Types
	6.2.6 Constants
	6.2.7 Booleans
	6.2.8 Expressions and arithmetic
	6.2.9 Arrays
	6.2.10 Conditional statement
	6.2.11 Replication
	6.2.12 Built-in functions
	6.2.13 Network definition
	Nodes
	Node attributes
	Defining new node types
	Connections
	Prohibited connections

	6.2.14 Configuration language summary
	Network data types
	Numeric data types
	Language constructs
	Definitions
	Operators
	Predefinitions
	(Node types)
	(Constants)
	(Edges)
	Built-in functions

	6.3 Further considerations
	6.3.1 Runtime library
	6.3.2 Reliable Channel Communications
	6.3.3 Terminating configured processes
	6.3.4 Checking the configuration
	6.3.5 The effect of icconf on idebug

	6.4 Configuration examples
	6.4.1 Example 1 - single processor configuration
	6.4.2 Example 2 - Two processes configured on a two-processor network
	6.4.3 Example 3 - using virtual channels
	6.4.4 Example 4 - Virtual channel routing

	7 Loading transputer programs
	7.1 Introduction
	7.2 Tools for loading
	7.3 The boot from link loading mechanism
	7.4 Boards and subnetworks
	7.4.1 Subsystem wiring
	7.4.2 Connecting subnetworks

	7.5 Loading programs for debugging
	7.5.1 Breakpoint debugging
	7.5.2 Board types
	7.5.3 Use of the root transputer
	7.5.4 Analyse and Reset

	7.6 Example skip load
	7.6.1 Target network
	7.6.2 Loading the program
	7.6.3 Clearing the network

	8 Debugging transputer programs
	8.1 Introduction
	8.1.1 Post-mortem debugging
	8.1.2 Interactive debugging
	8.1.3 Mixed language debugging
	8.1.4 Debugging with isim

	8.2 Programs that can be debugged
	8.3 Compiling programs for debugging
	Minimal debugging information
	occam channel communication
	C channel communication
	8.3.1 Error modes

	8.4 Debugging configured programs
	8.4.1 Debugging with configuration level channels
	8.4.2 Debugging with the configurer reserved attribute

	8.5 Debugging boot from ROM programs
	8.6 Post-mortem debugging
	8.6.1 C and FORTRAN programs
	8.6.2 occam programs
	8.6.3 Interrupted programs
	8.6.4 Parity errors
	8.6.5 Debugging the root transputer
	Skip loading

	8.7 Interactive debugging
	8.7.1 Runtime kernel
	8.7.2 Processors without hardware breakpoint support
	8.7.3 Creating programs for debugging
	8.7.4 Loading the program
	Clearing error flags
	Parity-checked memory

	8.7.5 Running the debugger
	8.7.6 Interactive mode functions and commands
	Symbolic functions
	Monitor page commands

	8.7.7 Breakpoints

	8.8 Program termination
	8.9 Symbolic facilities
	Help screen
	8.9.1 Locating to source code
	8.9.2 Browsing source code
	8.9.3 Inspecting source code and variables
	8.9.4 Jumping down channels
	8.9.5 Tracing procedure calls
	8.9.6 Modifying variables
	8.9.7 Breakpointing
	8.9.8 Miscellaneous functions

	8.10 Monitor page
	8.10.1 Startup display
	Process Workspace or Stack
	Process Descriptors
	Process pointers
	Practical notes
	Registers
	Error flags
	Clocks
	Parity errors
	Memory map

	8.10.2 Monitor page commands
	Examining memory
	Locating processes
	Specifying processes
	Selecting processes
	Other processors
	Breakpoint commands
	Changing to post-mortem debugging

	8.11 Locating processes
	8.11.1 Running on the processor
	8.11.2 Waiting on a run queue
	8.11.3 Waiting on a timer queue
	8.11.4 Waiting for communication on a link
	8.11.5 Waiting for communication on a software virtual link
	8.11.6 Waiting for communication on a channel
	8.11.7 Interrupted by a high priority process
	8.11.8 Processes terminated or not started
	8.11.9 Locating to procedures and functions

	8.12 Debugging support library
	Example
	8.12.1 Action when the debugger is not available

	8.13 Debugging with isim
	8.13.1 Command interface
	8.13.2 Using the simulator
	8.13.3 Program execution monitoring
	Breakpoints
	Single step execution

	8.13.4 Core dump file

	8.14 Hints and further guidance
	8.14.1 Invalid pointers
	8.14.2 Examining and disassembling memory
	8.14.3 Scope rules
	8.14.4 Inspecting soft configuration channels
	8.14.5 Locating to IF, ALT and CASE in occam
	8.14.6 Analyzing deadlock

	8.15 Points to note when using the debugger
	8.15.1 Abusing hard links
	8.15.2 Examining an active network (the network is volatile)
	8.15.3 Using INSPECT with channel communications
	8.15.4 Debugging in the presence of software virtual links
	8.15.5 Selecting events from specific processors
	8.15.6 Minimal confidence check
	8.15.7 INTERRUPT key
	8.15.8 Program crashes
	8.15.9 Undetected program crashes
	8.15.10 Debugger hangs when starting program
	8.15.11 Debugger hangs
	8.15.12 Catching concurrent processes with breakpoints
	8.15.13 Phantom breakpoints
	8.15.14 Breakpoint configuration considerations
	8.15.15 Determining connectivity and memory sizes
	8.15.16 Long source code lines
	8.15.17 Resuming breakpoints on the transputer seterr instruction
	8.15.18 Arrays as arguments to C functions
	8.15.19 Backtracing with concurrent C processes
	8.15.20 Errors generated by the full C library
	8.15.21 Errors generated by the reduced C library
	8.15.22 Shifting by large or negative values
	8.15.23 C compiler optimizations

	8.16 C debugging example
	8.16.1 The example program
	8.16.2 Compiling and loading the example
	8.16.3 Setting initial breakpoints
	8.16.4 Starting the program
	8.16.5 Entering the debugger
	8.16.6 Inspecting variables
	8.16.7 Finding addresses of variables
	8.16.8 Backtracing
	8.16.9 Jumping down a channel
	8.16.10 Inspecting by expression
	8.16.11 Modifying a variable
	8.16.12 Backtracing to main()
	8.16.13 Entering #include files
	8.16.14 Quitting the debugger

	8.17 occam debugging example
	8.17.1 The example program
	8.17.2 Compiling the facs program
	Using imakef
	Using the tools directly

	8.18 Breakpoint debugging
	8.18.1 Loading the program
	8.18.2 Setting initial breakpoints
	8.18.3 Starting the program
	8.18.4 Entering the debugger
	8.18.5 Inspecting variables
	8.18.6 Backtracing
	8.18.7 Jumping down a channel
	8.18.8 Modifying a variable
	8.18.9 Entering #INCLUDE files
	8.18.10 Resuming the program
	8.18.11 Clearing a breakpoint
	8.18.12 Quitting the debugger

	8.19 Post-mortem debugging
	8.19.1 Running the example program
	8.19.2 Creating a memory dump file
	8.19.3 Running the debugger
	Inspecting variables
	Inspecting channels
	Retracing and Backtracing
	Displaying process queues
	Goto process

	Advanced techniques
	9 Advanced use of the configurer
	9.1 Code and data placement
	9.1.1 Default memory map
	9.1.2 other memory configurations
	9.1.3 reserved processor attribute
	Example

	9.1.4 location process attribute
	Example (on a 32-bit processor)

	9.1.5 order process attribute
	9.1.6 location versus order attribute

	9.2 Channel communication - configuration techniques
	9.2.1 Optimizing important application channels
	9.2.2 Virtual communications - use of fast memory
	9.2.3 Control of routing and placement
	Introduction to routing and placement attributes
	Summary of routing and placement attributes
	Prevention of through-routing via critical processors
	Use of additional processors for through-routing
	Support for memory-critical systems

	9.2.4 Example - optimized filter test program

	10 Mixed language programming
	10.1 Mixed language programs
	10.1.1 Declaring external routines
	10.1.2 Translating identifiers
	10.1.3 Parameter passing
	Parameter compatibility
	Range checking
	occam timers

	10.1.4 Global static base parameter
	Method 1 - dummy GSB parameter
	Method 2 - nolink pragma
	Method 3 - using call_without_gsb function

	10.1.5 Function return values
	Restrictions on functions that may be called

	10.1.6 Linking the program
	Calling occam from C
	Calling C from occam

	10.1.7 Allocating memory for C functions called from other languages
	The static area
	The heap area
	Providing static and heap
	Deciding whether a static area is required
	Calling functions which do not require static or heap
	Calling functions which do require static or heap
	Example

	10.1.8 Restrictions and caveats
	General
	Rules for importing C code
	Rules for importing occam code

	10.2 occam interface procedures
	10.2.1 Interface code
	Type 1
	Type 2
	Type 3
	Channel arrays
	Reserved channels

	10.2.2 Parameters to the C program
	10.2.3 Stack and heap requirements
	Stack overflow detection

	10.2.4 Type 1 interface definition
	Procedural interface
	Parameters to C program
	Example

	10.2.5 Type 2 interface definition
	Procedural interface
	Parameters to C program
	Example

	10.2.6 Type 3 interface definition
	Procedural interface
	Parameters to C program
	Example

	10.2.7 Building the occam equivalent process

	11 EPROM programming
	11.1 Introduction
	11.2 Processing configurations
	11.2.1 Single processor, run from ROM
	11.2.2 Single processor, run from RAM
	11.2.3 Multiple process, multiple processor, run from RAM
	11.2.4 Multiple process, multiple processor, root run from ROM, rest of network run from RAM

	11.3 The EPROM tool: ieprom
	11.4 Using the configurer and collector to produce ROM-bootable code
	11.5 Summary of EPROM tool steps for different configurations
	11.5.1 Using icconf
	11.5.2 Single processor unconfigured occam program
	11.5.3 Using occonf

	12 Dynamic code loading
	12.1 Introduction
	12.2 Overview
	12.3 Basic Parenthood
	12.4 Childhood in INMOS ANSI C
	12.4.1 The IMS_descriptor pragma

	12.5 Advanced Parenthood
	12.5.1 static
	12.5.2 stack
	12.5.3 heap
	12.5.4 input/output

	12.6 Childhood in INMOS occam 2

	Appendices
	A Transputer instruction set
	A.1 Prefixing instructions
	A.2 Direct instructions
	A.3 Operations
	A.4 Additional instructions for T400, T414, T425 and TB
	A.5 Additional instructions for IMS T800, T801 and T805
	A.5.1 Floating-point instructions
	A.6 Additional instructions for IMS T225, T400, T425, T800, T801, T805
	A.7 Additional instructions for the IMS T225, T400, T425, T801 and T805

	B Configuration language syntax
	B.1 Notation
	B.2 Implementation details
	B.3 Reserved words
	B.3.1 Keywords
	B.3.2 Pre-defined attributes
	Node attributes
	Processor attributes
	Process attributes

	B.4 Predefinitions
	B.4.1 Constants
	B.4.2 Types
	B.4.3 Declarations

	B.5 Language syntax
	B.5.1 Configuration
	B.5.2 Language features
	B.5.3 Expressions
	B.5.4 Replication and conditionals
	B.5.5 Numeric value declarations
	B.5.6 Network declarations
	B.5.7 Mapping declarations

	C Glossary
	D Bibliography
	D.1 Transputers
	D.2 C programming
	D.3 occam programming
	D.4 INMOS technical notes
	D.5 Development systems
	D.6 References

	Index

