
ANSI C toolset 
user manual 

INMOS Limited 

72 TDS 224 00 August 1990 



•

Copyright © INMOS Limited 1990 

e ,ftnmos, IMS and occam are trademarks of INMOS Limited. 

INMOS is a member of the SGS-THOMSON Microelectronics Group. 

The C compiler implementation was developed from the Perihelion Software "C" 
Compiler and the Codemist Norcroft "C" Compiler. 

UNIX is a trademark of AT&T. 

INMOS document number: 72 TDS 224 00 



Contents overview
Contents 

Preface 

Differences from 3L Parallel C 

User Guide 

1 Introduction to 
transputers 

An introduction to transputers and transputer 
programming. 

2 Overview of the 
toolset 

Gives an overview of the ANSI C toolset, in­
cluding brief descriptions of each tool. 

3 Getting started Shows the command sequences to generate 
single and multitransputer C programs, using 
simple examples. 

4 Parallel processing Describes parallel processing using the 
toolset. Describes the concurrency functions 
and explains how to use them. 

5 Introduction to the 
ANSI C compiler 

Introduces the ANSI C compiler and its fea­
tures, and explains about transputer targets. 

6 Configuring 
transputer 
programs 

Describes the configuration language and 
how to use it to configure software on trans­
puter networks. 

7 Loading transputer 
programs 

Describes how to load programs onto trans­
puters and transputer networks, with brief de­
scriptions of the tools that are used. 

8 Debugging 
transputer 
programs 

Describes how to use the debugger to de­
bug transputer programs in post-mortem and 
breakpoint modes. 

9 Mixed language 
programming 

Describes how to mix C and occam code at 
source and configuration levels. 

10 Using the EPROM 
tools 

Describes how to use the EPROM support 
tools to develop ROM-based programs. 

72 TDS 22400 August 1990 



ii Contents overview 

Tools 

11 

12 

ice -ANSJ C 
compiler 

icconf ­
configurer 

13 icollect ­ code 
collector 

14 icvlink - file 
format convertor 

15 idebug ­ network 
debugger 

16 idump ­ memory 
dumper 

17 iemit ­ memory 
configurer 

18 

19 

ieprom ­ EPROM 
program convertor 

i 1 ibr - librarian 

20 ilink -linker 

21 ilist - binary 
lister 

22 imakef - Makefile 
generator 

23 iserver - host 
file server 

24 isim - T425 
simulator 

25 iskip - skip 
loader 

Describes the ANSI C compiler. 

Describes the configurer which generates 
configuration binary files from configuration 
descriptions. 

Describes the code collector which generates 
executable code from single linked units or 
configuration binary files. 

Describes the file format convertor which con­
verts object files created by earlier INMOS 
toolsets into TCOFF format. 

Describes the network debugger. Lists the 
symbolic functions and Monitor page com­
mands. at machine level. 

Describes the memory dumper tool which 
dumps root transputer memory for post­
mortem debugging. 

Describes the memory configurer tool which 
helps to configure the transputer memory in­
terface. 

Describes the EPROM formatter tool which 
creates executable files for loading into ROM. 

Describes the toolset librarian which creates 
libraries of compiled code. 

Describes the toolset linker which links com­
piled code and libraries into a single unit. 

Describes the binary Iister which displays bi­
nary files in a readable form. 

Describes the Makefile generator which cre­
ates Makefiles for toolset compilations. 

Describes the host file server which loads pro­
grams onto transputer hardware and provides 
host communication. 

Describes the transputer simulator which al­
lows programs to be run without hardware. 

Describes the skip loader tool which loads 
programs onto external subnetworks. 

72 TDS 224 00 August 1990 



iii Contents overview 

Appendices 

A Toolset standards Describes the conventions and standards of 
and conventions the toolset. 

e Transputer List instruction sets for INMOS transputers. 
instruction set 

C Configuration Defines the syntax of the transputer configu­
language definition ration language. 

D ISERVER protocol Describes the server protocol and describes 
ISERVER functions. 

E Bootstrap loaders Describes bootstrap loaders and lists the 
standard INMOS offering. 

F occam interface Describes a set of interfaces for object code 
code generated using previous INMOS toolsets. 

G 3L functions Describes functions supported from the ear-
supported Iier INMOS 3L Parallel C toolset. 

H ITERM Describes the format of ITERM files. 

I Glossary A glossary of terms. 

J Bibliography Lists literature and documentation for further 
reading. 

The Index 

72 TDS 224 00 August 1990 



iv Contents overview 

72 TDS 224 00 August 1990 



Contents 
Contents overview 

Contents v 

Preface xxv 

Differences from 3L Parallel C xxvii 

User Guide 

1 Introduction to transputers 3 
1.1 Overview 3 
1.2 Transputers 3 

1.2.1 Multitransputer systems 3 
1.2.2 Links 4 
1.2.3 Hardware parallel support 4 
1.2.4 Transputer products 5 

1.3 Transputers and C 5 
1.3.1 Programming model 6 
1.3.2 MUltitransputer programming 6 
1.3.3 Real time programming 6 

1.4 Program development 7 
1.4.1 Software design 7 
1.4.2 Programming 7 
1.4.3 Debugging 7 
1.4.4 Embedded systems 8 

2 Overview of the toolset 9 
2.1 Introduction 9 
2.2 Features of the toolset 9 

2.2.1 Standard object file format 9 
2.2.2 New configuration language 9 
2.2.3 Runtime library 10 
2.2.4 Concurrent programming 10 
2.2.5 Transputer targets 10 
2.2.6 Support for earlier toolsets 10 

2.3 Toolset summary 10 
2.4 ANSI C compiler - ice 12 
2.5 Generating executable code 12 

72 TDS 224 00 August 1990 



vi 

12 
13 
13 
13 
13 
14 
14 
14 
15 

Contents 

2.5.1 Llnker - ilink 
2.5.2 Configurer - icconf 
2.5.3 Code collector - icollect 

2.6 Loading and running programs 
2.6.1 Host file server - iserver 
2.6.2 Skip loader - iskip 

2.7 Program development and support 
2.7.1 Network debugger - idebuq 
2.7.2 Memory dumper - idump 
2:7.3 Librarian - ilibr # 15 
2.7.4 Binary lister - ilist 15 
2.7.5 Transputer simulator - isim 15 
2.7.6 Makefile generator - imakef 15 
2.7.7 File format convertor - icvlink 16 

2.8 EPROM programming 16 
2.8.1 EPROM programmer - ieprom 16 
2.8.2 Memory configurer - iemit 16 

2.9 Program development using the toolset 17 
2.10 Runtime library 18 

2.10.1 Header files 19 
2.11 Toolset file extensions 19 

File extension scheme required for imakef 21 
2.12 Error reporting 21 
2.13 Host dependencies 21 

Command line syntax 22 
2.13.1 Host-specific library 22 
2.13.2 Fllenames 22 
2.13.3 Search paths 23 
2.13.4 Environment variables 23 
2.13.5 Default command line arguments 24 

3 Getting started 25 
3.1 Outline procedure 25 
3.2 Running the examples 25 

3.2.1 Sources 25 
3.2.2 Example command lines 26 
3.2.3 Using the simulator 

3.3 A simple sequential program 
3.3.1 Compiling 
3.3.2 Linking 
3.3.3 Configuring 
3.3.4 Loading 

72 TDS 224 00 August 1990 

26 
26 
26 
26 
27 
27 



vii 

27 
28 
29 

31 
31 
31 
32 

Contents 

3.4 A parallel version 
3.5 Separate compilation 
3.6 A simple configuration example 

4 Parallel processing 31 
4.1 Introduction 
4.2 Abstract model 

4.2.1 Processes 
4.2.2 Channels 

4.3 Semaphores 33 
4.4 Parallel processing and transputers 33 

4.4.1 Multltransputer networks 33 
4.4.2 MUltltransputer programming 33 
4.4.3 Instruction set 34 

Process control 34 
Process selection 34 
Process timing 35 

4.5 ANSI C 35 
4.5.1 Library support 35 
4.5.2 New data types 35 

4.6 Concurrency functions 36 
4.7 Processes 36 

4.7.1 Unused process pointer 37 
4.7.2 Process initialisation 38 
4.7.3 Freeing stack and workspace 39 
4.7.4 Process execution 40 

Unsynchronised processes 40 
Synchronised processes 41 

4.7.5 Process timing and scheduling 42 
Process timing 42 
Process scheduling 43 

4.7.6 Clock time 43 
4.7.7 Input alternation 43 
4.7.8 Simple alternation 44 
4.7.9 Polling several inputs 44 
4.7.10 Timed Input 45 
4.7.11 Example of use 

4.8 Channel communication 
4.8.1 Transputer link addresses 
4.8.2 Channel allocation, initialisation, and reset 
4.8.3 Channel input and output 
4.8.4 Reliable channel protocols 

72 TDS 224 00 August 1990 

45 
45 
46 
46 
46 
47 



viii Contents 

4.8.5 Semaphores 48 
Use of semaphores by the library 49 

4.8.6 Semaphore allocation 49 
Examples 49 

4.8.7 Semaphore handling 50 
4.9 Parallel programming examples 50 -

5 Introduction to the ANSI C compiler 55 
5.1 Introduction 55 
5.2 Source and object code 55 

5.2.1 Object code format 56 
5.3 Transputer types and classes 56 

5.3.1 Single transputer type 56 
5.3.2 Creating a program which can run on a range of 

transputers 57 
5.3.3 Object file containing code compiled for differ­

ent targets 59 
5.3.4 Classes/instruction sets - additional information 60 

5.4 Error modes 62 
5.5 Preprocessor directives 62 

5.5.1 Include files 63 
5.5.2 Pragmas 63 
5.5.3 Compiler messages 63 

5.6 Runtime library 64 
5.6.1 Reduced library 65 

5.7 Low level programming 65 
5.7.1 Assembly code support 65 
5.7.2 Compiler predefines 66 

5.8 Mixed language programming 66 

6 Configuring transputer programs 67 
6.1 Introduction 67 
6.2 Configuration model 67 
6.3 Configuration language 68 

6.3.1 Identifiers 69 
6.3.2 Types 69 
6.3.3 Constants 70 
6.3.4 Booleans 70 
6.3.5 Expressions and arithmetic 70 
6.3.6 Arrays 71 
6.3.7 Conditional statement 71 e6.3.8 Replication 72 

72 TDS 224 00 August 1990 



ix 

73 
73 
74 
74 
75 
75 
75 
76 
76 

Contents 

6.3.9 Predefined functions 
6.4 Network definition 

6.4.1 Nodes 
6.4.2 New node types 
6.4.3 Connections 

Prohibited connections 
6.5 Software network description 

6.5.1 Process attributes 
6.5.2 Stack and heap size 
6.5.3 Interface 76 

Array parameters 77 
get_param function 77 
Host server channels 77 

6.5.4 Execution priority 78 
6.5.5 Segment ordering 78 
6.5.6 Defining new process types 79 
6.5.7 Input and output channels 79 
6.5.8 Edge connections 80 
6.5.9 Assigning code to processes 80 

6.6 Hardware network description 81 
6.6.1 Processor links 82 
6.6.2 Defining new processor types 82 
6.6.3 Links 82 
6.6.4 Edges 83 

6.7 Mapping description 83 
6.7.1 Placement of channels 84 

6.8 Software network example 84 
6.9 Terminating configured processes 85 
6.10 Checking the configuration 85 
6.11 Configuration examples 85 
6.12 Configuration language summary 88 

7 Loading transputer programs 91 
7.1 Introduction 91 
7.2 Tools for loading 91 
7.3 The loading mechanism 92 

7.3.1 Breakpoint debugging 
7.4 Boards and subnetworks 

7.4.1 SUbsystem wiring 
7.4.2 Connecting subnetworks 

7.5 Loading programs for debugging 
7.5.1 Board types 

72 TDS 224 00 August 1990 

92 
92 
93 
93 
94 
94 



x Contents 

7.5.2 Use of the root transputer 94 
7.5.3 Analyse and Reset 95 

7.6 Example skip load 95 
7.6.1 Target network 96 
7.6.2 Loading the program 96 e7.6.3 Clearing the network 96 

8 Debugging transputer programs 99 
8.1 Introduction 99 

8.1.1 Debugging with isim 99 
8.2 Programs that can be debugged 100 
8.3 Compiling programs for debugging 100 

8.3.1 Symbolic debug information 100 
8.3.2 Error modes 100 

8.4 Debugging configured programs 101 
8.5 Post mortem debugging 101 

Using abort to halt a program 101 
8.5.1 Program loading 102 

8.6 Breakpoint debugging 103 
8.6.1 Runtime kernel 103 
8.6.2 Hardware breakpoint support 104 
8.6.3 Compiling the program 105 
8.6.4 Loading the program 105 e 
8.6.5 Clearing error flags 105 
8.6.6 Breakpoint functions and commands 105 
8.6.7 Breakpoints 106 

8.7 Program termination 106 
8.8 Symbolic facilities 107 

8.8.1 Locating to source code 107 
8.8.2 Browsing source code 108 
8.8.3 Inspecting variables 108 

Jumping down channels 109 
8.8.4 Tracing procedure calls 109 
8.8.5 Modifying variabl~s 109 
8.8.6 Breakpointing 109 

8.9 Monitor page 110 
8.9.1 Startup display 110 

Process pointers 111 
Registers 112 
Error flags 113 
Clocks 113 e 
Memory map 113 

72 TDS 224 00 August 1990 



xi 

113 
114 
114 
114 
115 
115 
115 
115 
115 

Contents 

8.9.2 Monitor page commands 
Examining memory 
Locating processes 
Specifying processes 
Selecting processes 
Other processors 
Breakpoint commands 

8.10 A method for debugging halted programs 
8.10.1 Locating all processes 

Running on the processor 116 
Waiting on a run queue 116 
Waiting on a timer queue 116 
Waiting for communication on a link 117 
Waiting for communication on a channel 117 
Processes stopped, terminated or not started 117 

8.10.2 Locating functions 117 
8.11 Library functions 118 

8.11.1 Action when the debugger is not available 119 
8.12 Debugging with isim 119 

8.12.1 Command interface 120 
8.12.2 Using the simulator 120 
8.12.3 Program execution monitoring 120 

Breakpoints 121 
Single step execution 121 

8.12.4 Core dump file 121 
8.13 Debugging example 121 

8.13.1 The example program 121 
8.13.2 Compiling and loading the facs program 126 
8.13.3 Setting initial breakpoints 127 
8.13.4 Starting the program 127 
8.13.5 Entering the debugger 128 
8.13.6 Inspecting variables 128 
8.13.7 Backtracing 128 
8.13.8 Jumping down a channel 128 
8.13.9 Inspecting by expression 129 
8.13.10Modifying a variable 129 
8.13.11 Backtracing to main 
8.13.12Entering #include files 
8.13.13Quitting the debugger 

8.14 Points to note when using the debugger 
8.14.1 Abusing hard links 

72 TDS 224 00 August 1990 

129 
129 
129 
129 
130 



xii Contents 

8.14.2 Examining the active network (the network Is 
volatile) 130 

8.14.3 Selecting events from specific processors 130 
8.14.4 Invalid pointers 131 
8.14.5 INTERRUPT key 131 e 
8.14.6 Program crashes 131 
8.14.7 Undetected program crashes 131 
8.14.8 Debugger hangs when starting program 132 
8.14.9 Debugger hangs 132 
8.14.10Catchlng concurrent processes with breakpoints 

132 
8.14.11Arrays as arguments 133 
8.14.12Backtraclng with concurrent C processes 133 
8.14.13Phantom breakpoints 134 
8.14.14Errors generated by the full library 134 
8.14.15Errors generated by the reduced library 135 
8.14.16Shiftlng by large positive or negative values 135 
8.14.17Compller optimisatlons 135 
8.14.18Determlnlng connectivity and memory sizes 136 

9 Mixed language programming 137 
9.1 Introduction 137 
9.2 Mixing code at configuration level 137 

9.2.1 C and occam 138 
9.3 Calling occam processes 138 

9.3.1 Pragma IMS.-nolink 138 
9.3.2 Translating occam names 139 
9.3.3 Rules for Importing occam code 140 

9.4 Parameter passing 142 
9.4.1 Return values 144 
9.4.2 Example of passing parameters 145 

9.5 Mixing code using the occam 2 toolset 148 
9.5.1 Calling C from occam 148 

10 Using the EPROM tools 149 
10.1 Introduction 149 
10.2 Processing configurations 150 

10.2.1 Single process, single processor, run from ROM 150 
10.2.2 Multiple process, single processor, run from ROM 

150 
10.2.3 Single process, single processor, run from RAM 151 

72 TDS 224 00 August 1990 



xiii 

151 
151 

152 

Contents 

10.2.4 Multiple process, single processor, run from RAM 
151 

10.2.5 Multiple process, multiple processor, run from 
RAM 151 

10.2.6 Multiple process, multiple processor, root run 
from ROM, rest of network run from RAM 

10.3 The eprom tool: ieprom 
10.4 Using the configurer and collector to produce ROM­

bootable code 
10.5 Summary of EPROM steps for different processing con­

figurations 153 

Tools 155 

11 icc - ANSI C complier 157 
11.1 Introduction 157 
11.2 Running the compiler 158 

11.2.1 Transputer targets 161 
11.2.2 Error modes 161 
11.2.3 Default command line options 161 
11.2.4 File extension defaults 161 
11.2.5 Search paths 162 

11.3 Complier directives 162 
11.3.1 #include 162 

Relative directory names 162 
Backslash character in filenames 162 

11.3.2 #define 163 
11.3.3 #undef 163 
11:.3;4 #if 163 
11.3.5 #ifdef 164 
11.3.6 #ifndef 164 
11.3.7 #else 164 
11.3.8 #elif 164 
11.3.9 #endif 164 
11.3.10#line 165 
11.3.11 #pragma 165 

Pragma IMS-nolink 
11.3.12#error 168 

11.4 Optimised functions 
11.5 Compiler predefinitions 

11.5.1 Constants 
11.5.2 Functions 

72 TDS 224 00 August 1990 

168 

168 
169 
169 
170 



xiv 

11.5.3 Other predefines 
11.6 Fatal runtime errors 

11.6.1 Runtime error messages 
11.7 Transputer in-line code 
11.8 Compiler diagnostics 

11.8.1 Message format 
11.8.2 Severities 
11.8.3 Standard terms 
11.8.4 ANSI trigraphs 
11.8.5 Warning diagnostics 
11.8.6 Recoverable errors 
11.8.7 Serious errors 
11.8.8 Fatal Errors 

11.9 ice error messag,es 
11.9.1 Warnings 
11.9.2 Serious errors 
11.9.3 Fatal Errors 

12 icconf - configurer 
12.1 Introduction 
12.2 Configuration language implementation 
12.3 Running the configurer 

12.3.1 Default command line parameters 
12.3.2 Boot-from-ROM options 
12.3.3 Standard include files 
12.3.4 Configuration description examples 
12.3.5 Configurer library files 
12.3.6 Search paths 
12.3.7 Default memory map 

12.4 Configurer diagnostics 
12.4.1 Warning messages 
12.4.2 Error messages 
12.4.3 Serious messages 

12.5 icconf error messages 
12.5.1 Serious errors 
12.5.2 Fatal errors 

13 icollect - code collector 
13.1 Introduction 
13.2 Running the code collector 

13.2.1 Examples of use 
13.2.2 Input files 

Contents 

170 
171 
171 
172 
172 e173 
173 
173 
175 
176 
182 
190 
203 
203 
203 
204 
204 

207 
207 
207 
208 
209 
210 

e 
210 
210 
211 
211 
211 
212 
212 
213 
229 
230 
230 
232 

233 
233 
234 
236 
237 

e 
72 TDS 224 00 August 1990 



xv 

237 
237 
238 
239 
239 
239 
240 
240 
240 

Contents 

13.2.3 Output files 
13.2.4 Non-bootable files 
13.2.5 Boot-from-ROM options 
13.2.6 Debug data file 
13.2.7 Alternative bootstrap loaders 
13.2.8 Small values of IBOARDSIZE 

13.3 Error messages 
13.3.1 Warnings 
13.3.2 Serious errors 

14 icvlink - file format convertor 247 
14.1 Introduction 247 
14.2 Running the format convertor 249 

14.2.1 Default command line 251 
14.2.2 Input files 251 

Compiled object files 251 
Library files 251 
Linked object files 251 

14.2.3 Output files 251 
14.3 Transputer classes and error modes 252 
14.4 Summary of rules for using icvlink 252 
14.5 Error messages 253 

14.5.1 Serious errors 253 

15 idebug - debugger 255 
15.1 Introduction 255 

15.1.1 Post-mortem debugging 255 
15.1.2 Breakpoint debugging 255 

15.2 The root transputer 256 
15.2.1 Board wiring 256 
15.2.2 Post-mortem debugging R-mode programs 257 
15.2.3 Post-mortem debugging T-mode programs 257 
15.2.4 Post-mortem debugging from a network dump 

file 257 
15.2.5 Debugging a dummy network 258 
15.2.6 Methods for breakpoint debugging 258 

15.3 Running the debugger 
15.3.1 Environment variables 
15.3.2 Program termination 
15.3.3 Post-mortem mode invocation 

Reinvoking the debugger on single transputer 
programs 262 

72 TDS 224 00 August 1990 

258 
260 
260 
260 



xvi 

15.3.4 Breakpoint mode invocation 
Clearing error flags on transputer boards 
Program loading 

15.3.5 Function key mappings 
15.4 Debugging programs on different board types 

15.4.1 SUbsystem wiring 
15.4.2 Debugging commands 
15.4.3 Detecting the error flag in breakpoint mode 

15.5 Debugging programs on other boards 
15.6 Monitor page commands 

Command format 
Specifying transputer addresses 

15.6.1 Scrolling the display 
15.6.2 Commands mapped by ITERM 
15.6.3 Summary of main commands 
15.6.4 Symbolic-type commands and scroll keys 
15.6.5 Symbolic-type commands 

15.7 Symbolic functions 
15.7.1 Breakpoint functions 

15.8 Expression language for UNSPECTI and IMODIFYI 

15.8.1 C syntax not supported 
15.8.2 Extensions to C syntax 
15.8.3 Editing keys 
15.8.4 Types 

Type compatibility when using IMODIFYI 

15.9 Display formats for source code symbols 
15.9.1 Warnings 
15.9.2 ITOGGLE HEXI key 
15.9.3 Notation 
15.9.4 Basic Types 
15.9.5 Enumerated types 
15.9.6 Pointers 
15.9.7 Function Pointers 
15.9.8 Structs 
15.9.9 Unions 
15.9.10Addressof (&) operator 
15.9.11 Arrays 
15.9.12Channels 

15.10 Example displays 
15.11 Error messages

15.11.10ut of memory errors

Contents 

262 
262 
264 
264 
264 
264 
265 
265 
266 
267 
267 
267 
267 
268 
268 
270 
290 
290 
295 
296 
296 
296 
296 
297 
297 
298 
298 
298 
299 
299 
299 
300 
300 
301 
301 
301 
301 
302 
303 
305 e305 

15.11.2If the debugger hangs 305 

72 TDS 224 00 August 1990 



305 

315 
315 
316 
316 

Contents xvii 

15.11.3Error message list 

16 idump - memory dumper 315 
16.1 Introduction 
16.2 Running the memory dumper 

16.2.1 Example of use 
1S.3 Error messages 

17 iemit - memory configurer 319 
17.1 Introduction 319 
17.2 Running iemit 320 
17.3 Output files 322 
17.4 Interactive operation 323 

17.4.1 Page 0 323 
17.4.2 Page 1 323 
17.4.3 Page 2 328 
17.4.4 Page 3 330 
17.4.5 Page 4 331 
17.4.6 Page 5 331 
17.4.7 Page 6 332 

17.5 Example iemit display pages 332 
17.6 iemit error and warning messages 336 
17.7 Memory configuration file 337 
17.8 Memory interface conversion tool icvemit 340 
17.9 Running icvemit 340 
17.10 icvemit error messages 341 

18 ieprom - EPROM program convertor 343 
18.1 Introduction 343 
18.2 Prerequisites to using the hex tool ieprom 344 
18.3 Running ieprom 344 

18.3.1 Examples of use 345· 
18.4 ieprom control file 345 
18.5 What goes In the EPROM 350 

18.5.1 Memory configuration data 350 
18.5.2 Jump Instructions 
18.5.3 Bootable file 
18.5.4 Traceback Information 

18.6 ieprom output flies 
18.6.1 Binary output 
18.6.2 Hex dump 
18.6.3 Intel hex format 

72 TDS 224 00 August 1990 

351 
351 
351 
351 
352 
352 
352 



xviii Contents 

18.6.4 Intel extended hex format 352 
18.6.5 Motorola S-record format 353 

18.7 Block mode 353 
18.7.1 Memory organisation 353 
18.7.2 When to use block mode 353 e18.7.3 How to use block mode 354 

18.8 Example control files 354 
18.9 Error and warning messages 356 

19 ilibr - librarian 357 
19.1 Introduction 357 
19.2 Running the librarian 357 

19.2.1 Default command line 359 
19.2.2 Library indirect files 359 

19.3 Library modules 360 
19.3.1 Selective loading 360 

19.4 Library usage files 360 
19.5 Building libraries 360 

19.5.1 Rules for constructing libraries 361 
19.5.2 Hints for building libraries 361 
19.5.3 Optimising libraries 361 

Library build targeted at specific transputer types 
362 e 
Semi-optimised library build targeted at all trans­
puter types 362 
Optimised library 362 

19.6 Error messages 363 
19.6.1 Warning messages 363 
19.6.2 Serious errors 363 

20 ilink - linker 365 
20.1 Introduction 365 
20.2 Running the linker 366 

20.2.1 Default command line parameters 368 
20.3 Linker indirect files 369 

20.3.1 Linker directives 369 
20.3.2 Linker startup files 372 

20.4 Linker options 372 
20.4.1 Processor types 372 
20.4.2 Error modes - options H, S and x 373 
20.4.3 TCOFF and LFF output files - options T, LB, Le 373 e
20.4.4 Display information - option I 374 

72 TDS 224 00 August 1990 



374 
374 
374 
375 
375 
375 
375 
376 
376 

Contents xix 

20.4.5 Virtual memory - option KB 

20.4.6 Main entry point - option ME 

20.4.7 Link map filename - option MO 

20.4.8 Linked unit output file - option 0 
20.4.9 Permit unresolved references - option U 

20.4.10Disable interactive debugging - option Y 
20.5 Selective linking of library modules 
20.6 The link map file 
20.7 Using imakef for version control 
20.8 Error messages 376 

20.8.1 Warning messages 377 
20.8.2 Errors 378 

Serious errors 379 
20.8.3 Embedded messages 382 

21 ilist - binary lister 383 
21.1 Introduction 383 
24-.2 Data displays 383 
21.3 Running the lister 384 

21.3.1 Default command line parameters 386 
21.4 Specifying an output file - option 0 386 
21.5 Symbol data - option A 387 
21.6 Code listing - option C 388 
21.7 Exported names -option E 389 
21.8 Hexadecimal/ASCII dump - option H 390 
21.9 Module data - option M 391 
21.10 Library Index data - option N 392 
21.11 Procedural interface data - option P 393 
21.12 Specify reference - option R 393 
21.13 Full listing - option T 394 
21.14 File identification - option w 395 
21.15 External reference data - option x 396 
21.16 Error messages 397 

21.16.1 Warning messages 397 
21.16.2Serious errors 397 

22 imakef - Makefile generator 399 
22.1 Introduction 
22.2 How imakef works 
22.3 Target files 
22.4 File extensions for use with imakef 

22.4.1 Transputer types and error modes 

72 TDS 224 00 August 1990 

399 
400 
400 
400 
401 



xx 

402 
402 
403 
403 
403 
404 
405 
405 
406 

Contents 

Error modes In mixed language programs 
22.5 Llnker Indirect flies 
22.6 Running the Makeflle generator 

22.6.1 Example of use 
22.6.2 Disabling debug data 
22.6.3 Removing Intermediate flies 

22.7 imakef examples 
22.7.1 Single transputer program 
22.7.2 Multitransputer program 

22.8 Format of Makeflles 407 
22.8.1 Macros 407 
22.8.2 Rules 407 

Action strings 408 
22.8.3 Delete rule 408 
22.8.4 Editing the Makeflle 408 

Adding options 408 
22.9 Error messages 408 

23 iserver - host file server 411 
23.1 Introduction 411 

23.1.1 Loadable programs 411 
23.2 Running the server 411 

23.2.1 Examples of use 412 
23.2.2 Supplying parameters to.the program 413 
23.2.3 Checking and clearing the network 413 
23.2.4 Terminating the server 413 
23.2.5 Options to use when loading the program 414 
23.2.6 Specifying a link address - option SL 414 
23.2.7 Terminatil)g on error - option SE 415 

23.3 Server functions 415 
File system commands 416 
Host environment commands 416 
Server control commands 417 

23.4 Error messages 418 

24 isim - T425 simulator 421 
24.1 Introduction 421 
24.2 Running the simulator 

24.2.1 Example of use 
24.2.2 ITERM file 

24.3 Monitor page display 
24.4 Simulator commands 

72 TDS 224 00 August 1990 

421 
422 
423 
423 
424 



Contents xxi 

24.4.1 Specifying numerical parameters 424 
24.4.2 Commands mapped by ITERM 424 

24.5 Batch mode operation 428 
24.5.1 Setting up ISIMBATCH 428

e' 24.5.2 Input command files 429 
24.5.3 Output 429 
24.5.4 Batch mode commands 429 

24.6 Error messages 430 

25 iskip - skip loader tool 431 
25.1 Introduction 431 

25.1.1 Uses of the skip tool 431 
25.2 Running the skip tool 432 

25.2.1 Examples of use 433 
25.2.2 Monitoring the error status - option E 433 
25.2.3 Loading a program 434 
25.2.4 Clearing the error flag 434 

25.3 Error messages 435 

Appendices 437 

A Toolset standards and conventions 439 
A.1 Command line syntax 439 

A.1.1 General conventions 439 
A.1.2 Standard options 440 

A.2 Filenames 440 
A.3 Search paths 440 
A.4 Standard file extensions 441 

A.4.1 'Main path· source and object files 442 
A.4.2 Other outputs 442 
A.4.3 Indirect input files 443 
A.4.4 Miscellaneous files 443 

A.5 Extensions required for imakef 443 
A.6 Error handling 444 

A.6.1 Error displays 445 
A.6.2 Severities 445 
A.6.3 Runtime errors 446 

B Transputer instruction set 447 
8.1 Pseudo-instructi0 ns 447 
8.2 size option on __asm statement 448 
8.3 Prefixing instructions 448 

72 TDS 224 00 August 1990 



448 
449 

452 

455 

xxii Contents 

B.4 Direct Instructions 
B.5 Operations 
B.6 Additional instructions for T400, T414, T425 and TB 452 
B.7 Additional Instructions for IMS T800, T801 and T805 452 

B.7.1 Floating-point Instructions 
8.8 Additional Instructions for IMS T225, T400, T425, T800, 

T801, T805 454 
B.9 Additional Instructions for the IMS T225, T400, T425. 

T801 and T805 

c Configuration language definition 457 
C.1 Notation 457 

C.2 Implementation details 457 
C.3 Reserved words 458 

C.3.1 Keywords 458 
C.3.2 Pre-defined attributes 458 

Node attributes 458 
Processor attributes 458 
Process attributes 459 

C.4 Predefinitions 459 
C.4.1 Constants 460 
C.4.2 Types 460 

C.5 Language syntax 462 
C.5.1 Configuration 462 
C.5.2 Language features 462 
C.5.3 Expressions 463 
C.5.4 Replication and conditionals 464 
C.5.5 Numeric value declarations 464 
C.5.6 Network declarations 465 
C.5.7 Mapping declarations 466 

D 800tstrap loaders 467 
0.1 Introduction 467 

0.1.1 The example bootstrap 467 
Transfer of control 468 

0.1.2 Writing bootstrap loaders 468 
0.2 Example user bootstrap 
0.3 The INMOS Network Loader 

E ISERVER protocol 
E.1 The host file server iserver 
E.2 The server protocol 

72 TDS 224 00 August 1990 

469 
474 

481 
481 
481 



481 
482 
482 
482 
483 
483 
483 
484 
493 

Contents xxiii 

E.2.1 Packet size 
E.2.2 Protocol operation 

E.3 The server libraries 
E.4 Porting the server 
E.5 Server commands 

E.5.1 Notation 
E.5.2 Reserved values 
E.5.3 File commands 
E.5.4 Host commands 
E.5.5 Server commands 495 

F occam interface code 499 
F.1 Interface code 499 
F.2 Reserved channels 501 
F.3 Stack and heap requirements 501 

F.3.1 Stack overflow 502 
F.4 Parameters to C main 502 
F.5 Type 1 interface 503 

F.5.1 Type 1 procedural interface 503 
F.5.2 Building a type 1 process 504 

F.6 Type 2 interface definition 505 
F.6.1 Type 2 procedural interface 505 
F.6.2 Example type 2 wrapping 506 

F.7 Type 3 interface definition 507 
F.7.1 Type 3 procedural interfaces 507 
F.7.2 Example type 3 wrapping 508 

G 3L functions supported 511 
G.1 Code compatibility 511 

G.1.1 Source code 511 
G.1.2 Object code 511 

G.2 Parallel functions supported 511 
G.2.1 Header file 511 
G.2.2 Restrictions 511 

H ITERM 513 
H.1 Introduction 
H.2 The structure of an ITERM file 
H.3 The host definitions 

H.3.1 ITERM version 
H.3.2 Screen size 

H.4 The screen definitions 

72 TDS 224 00 August 1990 

513 
513 
514 
514 
514 
514 



515 
516 
517 
517 

527 

xxiv Contents 

H.4.1 Goto X V processing 
H.5 The keyboard definitions 
H.6 Setting up the ITERM environment variable 
H.7 An example ITERM 

Glossary 521 

J Bibliography 527 
J.1 Reference books 
J.2 INMOS publications 527 
J.3 INMOS technical notes 528 

72 TDS 224 00 August 1990 



Preface
About this Manual 

This manual is a User Guide to the ANSI C toolset. The manual is divided into 
two main parts, plus appendices: 

1 User Guide. Describes the toolset and shows how it is used to develop 
and run transputer programs. 

2 Tools. Detailed descriptions of the individual tools, with their syntax and 
options. 

3 Appendices. For technical reference. 

Differences from previous toolsets 

Differences from the 3L Parallel C toolset are listed immediately after this preface. 

Host versions 

The manual is designed to cover all host versions of the toolset: 

IMS 07214 - IBM and NEC PC running MS-DOS.
IMS 05214 - Sun 3 systems running SunOS
IMS 04214 - Sun 4 systems running SunOS
IMS 06214 - VAX systems running VMS

72 TDS 224 00 August 1990 



xxvi Preface 

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology. 

Teletype Used to distinguish command line examples, code fragments, 
and program listings from normal text. 

Italic type In command syntax definitions, used to stand for an argument 
of a particular type. Used within text for emphasis and for book 
titles. 

Braces { } Used to denote an optional items in command syntax. 

Brackets [] Used in command syntax to denote optional items on the com­
mand line. 

Ellipsis. . . In general terms, used to denote the continuation of a series. 
For example, in syntax definitions denotes a list of one or more 
items. 

In command syntax, separates two mutually exclusive alterna­
tives. 

72 TDS 224 00 August 1990 



Differences from 3L 
Parallel C 

This chapter lists the differences between ANSI C and the previous 3L Parallel 
C toolset. 

List of differences 

1 The ANSI C compiler implements ANSI standard C. The 3L Parallel C 
compiler was an implementation of basic K & R C. 

2 The ANSI C compiler is invoked by the ice command, which replaces 
the te series of commands in 3L Parallel C. Transputer targets are now 
specified using command line options. 

The compiler is completely new and command line options may have 
different meanings. 

3 The ANSI C toolset makes use of the new TCOFF object file format. 
This means that object files created with 3L Parallel C are not compatible 
with object files created using ANSI C. If possible 3L source should be 
recompiled. If this is not possible then the file conversion tool ievIink 
can be used to convert 3L object files to the new TCOFF format. 

4 3L Parallel C supported T4 and TB processor types. ANSI C compiles 
code for all currently supported transputer types. 

5 The Iinker ilink is completely new and command line options may have 
different meanings. 

6 The harness and the runtime library, previously required on the linker 
command line are not required in the ANSI C toolset and are replaced 
by the linker indirect file startup .Ink which references all the runtime 
and library code required. 

7 The default extensions for the binary object file output from the compiler 
and linker are. teo and .Iku respectively; in Parallel C they were. bin 
and. exx. 

Although the file name conventions used in 3L Parallel C can still be used 
a new set exists for the ANSI C toolset. See sections 2.11 and A.4. 

B The 3L configurer tool eonfiq is now defunct and is replaced by 
ieeonf. 

72 TDS 224 00 August 1990 



Differences from 3L Parallel C xxviii 

No equivalent to the 3L configurer tool fconfig exists in the ANSI C 
toolset. 

9 The configuration language is completely new. 

10 The iboot tool is now defunct and is replaced by icol.l.ect. 
icollect generates bootable files for single and multi-transputer pro­
grams from single linked units and configuration binary files respectively. 

11 The decode utility is not supplied with the ANSI C toolset. The binary 
lister tool ilist provides equivalent functionality. 

12 The librarian ilibr is completely new and command line options may 
have different meanings. 

13 Tools have been added for creating ROM-based programs. ieprom for­
mats bootable code for installing into EPROMs and iemit assists in 
creating memory configurations. The conversion tool icvemit is pro­
vided for converting memory configurations created by the earlier iemi 
tool. 

14 A comprehensive debugger idebug is provided which supports source 
level debugging, low level debugging, and breakpointing. 

15 An imakef tool is provided to assist with program building. 
t 

16 A transputer simulator tool isim is provided to run and test programs 
without transputer hardware. 

17 The ANSI C Runtime Library is an implementation of the ANSI standard 
library plus some INMOS specific extensions. Many extra functions have 
been added that were not present in 3L Parallel C and a new concurrency 
support library is providea. 

Most of the functions present in 31 Parallel C are also represented in 
ANSI C. Where functions have been omitted it is because they are either 
no longer required or there exists an equivalent ANSI C function. 

3L functions not included in ANSI Care: 

_inmess _outmess _outbyte _outword 
_tolower _toupper boot_poke boot_peek 
fdopen fileno index net_receive 
net_send putw rindex serv_filter 
cfree getw 

72 TDS 224 00 August 1990 



xxix Differences from 3L Parallel C 

Functions in the 3L packages thread, sema, timer, chan, and par 
are retained for compatibility but all the functions are now declared in 
the header file conndxll. h. The functions now simply call equivalent 
funptions in the new concurrency library and may operate slower than if 
the equivalent ANSI C functions were called directly. 

18 ANSI C, like Parallel C, provides a reduced version of the Runtime Library 
for modules which do not communicate with the host. This library is 
installed in the file libcred.lib and can be linked to a program by 
specifying the linker indirect file startrd.lnk on the linker command 
line. 

19 Mixed language programming can be achieved in the ANSI C toolset by 
configuring linked units created using TCOFF toolsets on any processor. 
Facilities are provided for calling occam from C. 

20 In line assembly code is now introduced with the keyword __asm. The 
transputer code facility is extended with additional syntax. 

Comparison of commands 

This section shows a comparison of the commands required to generate and run 
a program on a T8 series transputer. For simplicity in presentation the examples 
are given using the '-' option switch character only. 

3L Parallel C: 

t8e £1 
t8e £2 
ilink mainent.e8x £l.bin £2.bin ertl.lib -0 

main.c8x 
iboot main.e8x 
iserver -sb main.b8x 

ANSI C: 

ice £1 -t8 
ice £2 -t8 
ilink £l.teo £2.teo -£ startup.lnk -t8 -0 

main.lku 
ieolleet main.lku -t 
iserver -sb main.btl 

72 TDS 224 00 August 1990 



xxx Differences from 3L Parallel C 

72 TDS 224 00 August 1990 



User Guide

72 TDS 224 00 August 1990 



2 User Guide 

72 TDS 224 00 August 1990 



1 Introduction to
transputers

This chapter introduces transputers and concurrent programming. It describes 
how the transputer supports concurrent programming through on-chip hardware 
and introduces the concepts of parallel processing in C. 

1.1 Overview 

Parallel processing is a powerful way of increasing system performance and can 
be applied whatever the underlying architecture. The combination of hardware 
concurrency support and a compiler toolset which makes the hardware features 
easily accessible from software makes the transputer and toolset a powerful 
vehicle for the development of parallel applications. 

1.2 Transputers 

Transputers are high performance microprocessors that support parallel process­
ing through on-chip hardware. They can be connected together by their serial 
links in application-specific ways and can be used as the building blocks for 
complex parallel processing systems. 

The transputer is a complete microcomputer on a single chip. In addition to 
the hardware support for processor communications it contains a very fast (sin­
gle cycle) on-Chip memory and a programmable memory interface that allows 
external memory to be added with the minimum of supporting logic. 

Figure 1.1 shows the generalised architecture of the IMS T4 family of 32 bit 
transputers. 

1.2.1 MUltltransputer systems 

Multitransputer systems can be built very simply. The four high speed links 
allow transputers to be connected to each other in arrays, trees, and many other 
configurations. The circuitry to drive the links is all on the transputer chip and 
only two wires are needed to connect two transputers together. 

Some pO$sible arrangements of transputers are illustrated in figure 1.2. 

72 TOS 224 00 August 1990 



4 1 Introduction to transputers 

On-chip 
RAM 

Input 
Output 
Input 
Output 
Input 
Output 
Input 
Output 

Figure 1.1 Transputer architecture 

1.2.2 Links 

In addition to providing a communication and synchronisation path between pro­
cessors, transputer links allow memory to be examined directly by debugging 
programs and permit programs to be loaded onto whole networks of transputers 
down a single transputer link. Each individual transputer also supports communi­
cation between parallel processes through a system of internal links implemented 
as words in memory. 

1.2.3 Hardware parallel support 

Each transputer has a highly efficient built-in run-time scheduler for processes 
running in parallel on the same transputer and supports channel communica­
tion through single words in memory. Processes waiting for input or output, or 
waiting on a timer, consume no CPU resources, and process context switching 
time can be as little as one microsecond. The communication links between 
processors operate concurrently with the processing unit and can transfer data 
simultaneously on all links without the intervention of the CPU. 

72 TDS 224 00 August 1990 



1.3 Transputers and C 5 

Unked processors Pipeline 

Tree structure Square array 

Figure 1.2 Transputer networks 

1.2.4 Transputer products 

There is a complete family of transputer devices, including: 32 bit and 16 bit 
processors; a peripheral control processor; a link switch; and a parallel link 
adaptor. 

A wide range of transputer programming boards is supplied by INMOS and other 
vendors for several hosts. These boards can be used for: 

• Developing and debugging transputer software 

• Improving system performance (as accelerator boards) 

• Loading software onto embedded systems 

• Building specific transputer networks. 

1.3 Transputers and C 

The ANSl C toolset has been designed to reflect the parallel processing model 
of communicating sequential processes (CSP). The inherent flexibility of the C 
language, the capacity to mix code from different languages, and the ability to 

72 TDS 224 00 August 1990 



6 1 Introduction to transputers 

use the concurrency features of the transputer make ANSI C a powerful tool for 
programming concurrent systems. 

1.3.1 Programming model 

The parallel programming model consists of a number of independent processes 
executing simultaneously and communicating through channels. Channels are 
one-way communication paths that allow processes to exchange data. 

A process can be built from any number of other parallel processes, so that an 
entire software system can be described as a hierarchy of intercommunicating 
parallel processes. This model is consistent with many modern software design 
methods. 

Communication between processes is synchronised. When data is passed be­
tween two processes the output process does not proceed until the input process 
is ready. Buffered communication and multiplexing can be achieved by inserting 
a specific buffer or multiplexing process between the two processes. Ubrary 
functions are provided for the input and output of data on channels. 

1.3.2 MUltltransputer programming 

Processes are independently executable and will run on any processor in a 
network. A special configuration language is used to distribute processes over 
a network of transputers and can be used to program complex multiprocessor 
systems. 

1.3.3 Real time programming 

The concurrency features of the transputer provide direct support for real time 
programming. The key features are listed below. 

• Direct and efficient implementation of parallel processes in hardware 

• Prioritisation of parallel processes. 

• The ability to implement software interrupts as high priority processes 

• Easy programming of software timers, allowing close control of timing 
and non-busy polling 

• Placement of variables at specific addresses in memory, for accessing 
memory mapped devices. 

72 TDS 224 00 August 1990 



1.4 Program development 7 

Some of the technical issues in transputer programming are discussed in the 
INMOS series of Technical Notes. Selected titles in this series are listed in the 
bibliography towards the rear of this manual. 

1.4 Program development 

The compiler and its supporting tools run under standard operating systems, 
either on the host itself or on a transputer board attached to the host, and can 
be used in conjunction with existing text editing software and source control 
systems. For this reason, no editor is provided with the toolset. 

1.4.1 Software design 

The software designer can use ANSI C to specify the components of a system in 
terms of communicating processes. The overall design can be directly expressed 
in the parallel constructs of the language. 

Common'fnodules can be collected together into libraries for the purpose of code 
sharing within programming teams. 

1.4.2 Programming 

Code for single transputers is linked using the linker tool and loadable programs 
are generated using the collector tool. For multitransputer systems the collector 
tool reads and processes a configuration data file created by the configurer tool; 
for single transputer programs the collector adds bootstrap code for a single 
processor. Single processor bootstrapping by the collector is controlled by a 
command line option. 

Software processes and channels are allocated using the configuration language 
and loadable code ready for distribution on the network is generated using the 
configurer. 

1.4.3 Debugging 

Programs for multi-processor systems can be debugged at the symbolic level 
using the network debugger that allows a breakpointed or halted program to be 
analysed in terms of its source code. A low level debugging environment us­
ing direct memory display, instruction disassembly, and processor data is also 
provided. Breakpoint debugging allows programs to executed interactively, and 
post-mortem debugging allows stopped programs to be debugged from the con­
tents of the transputers' memory. The debugger inserts no additional code into 

72 TDS 224 00 August 1990 



8 1 Introduction to transputers 

the program, but rather reads data from a description file. This guarantees that 
the code generated when debugging is disabled will always run in the same way 
as the final version of the program. 

1.4.4 Embedded systems 

Programs for embedded systems can be loaded from the host directly onto the 
target hardware via a transputer link. If the program is to be held in ROM, 
special tools are provided to reformat the object code for loading into an EPROM 
or for processing by user-defined EPROM loader programs. A configuration 
tool is provided to assist with the evaluation and definition of specific memory 
configurations. 

72 TDS 224 00 August 1990 



2 Overview of the toolset
This chapter gives an overview of the ANSI C toolset. It briefly describes each 
tool, outlines its purpose, and explains how the tools are used together to de­
velop, configure, load and run transputer programs. The chapter also introduces 
the runtime library, outlines the standards for error reporting, and summarises 
host-specific characteristics. 

2.1 Introduction 

The ANSI C toolset is a software cross-development system for transputers, 
hosted on PC/MS-DOS, Sun 3/SunOS, Sun 4/SunOS and VAXNMS systems. 
It consists of a full ANSI C compiler with concurrency support, a multilanguage 
linker, a configurer for mapping programs onto transputer networks, a code col­
lector tool for generating directly loadable files, and a program loader and host 
server tool. The toolset also includes a fully interactive debugger, program build 
tools, and EPROM programming tools. Together, the compiler and its support­
ing tools form an integrated environment for the development of programs on 
transputers and transputer-based hardware. 

2.2 Features of the toolset 

The ANSI C toolset is an integrated development system for transputer programs 
incorporating a new standard object file format, a C-like configuration language, a 
comprehensive Runtime Library, and support for concurrent programming based 
on the communicating process model. It represents a broad enhancement of 
the approach to parallel programming in C and introduces standards for the 
generation of object code for transputers and transputer-based hardware. 

2.2.1 Standard object file format 

The ANSI C compiler generates object code in an intermediate form known as 
TCOFF (Transputer Common Object File Format). The adoption of a common 
format introduces a standard for the development of future transputer compilers 
and enables code generated by compatible compilers to be freely mixed in the 
same system. 

2.2.2 New configuration language 

The toolset incorporates a new configuration language that allows software and 
hardware networks to be described separately and joined by a software-to­

72 TDS 224 00 August 1990 



10 2 Overview of the toolset 

hardware description. The language is a simple declarative language that has 
the syntactic flavour of C and can be used on any size of network. A full range of 
high level language constructs including replicative and conditional statements 
make it easy to explore different configurations before committing to hardware. 

2.2.3 Runtlme library 

A comprehensive runtime library is supplied with the toolset providing full ANSI C 
support with additional support for concurrency and parallel programming. The 
library of concurrency functions provides the choice of either channel-based or 
semaphore-based communication. An optimised library with no server support 
is available for embedded code. 

2.2.4 Concurrent programming 

The abstract model used in ANSI C reflects the Communicating Sequential Pro­
cess (CSP) model of parallel programming. The model maps easily onto the 
transputer to provide efficient parallel code. Software is broken down into in­
dependent processes which exchange data and synchronize their activity via 
channels. Processes can be mapped onto one, several, or many transputers 
using the new configuration language. 

2.2.5 Transputer targets 

The ANSI C toolset can be used used to write programs targetted at IMS M212, 
T212, T222, T225, T400, T414, T425, T800, T801, and T805 transputers. Code 
can also be written to run on a group of processor types by compiling for a 
transputer class. 

2.2.6 Support for earlier toolsets 

A file convertor tool supplied with the toolset enables object code and libraries 
generated by earlier INMOS compilers and toolsets such as the 3L Parallel C 
and occam 2 toolsets to be incorporated into programs written with ANSI C. 
Specific support is provided for functions from the 3L Parallel C toolset. 

2.3 Toolset summary 

The tools provided in the toolset are summarised in Table 2.1 and briefly de­
scribed in the following sections. 

72 TDS 224 00 August 1990 



11 2.3 Toolset summary 

Tool 

ice e 
icconf 

icollect 

icvlink 

idebuq 

idump 

iemit 

e ieprom 

ilibr 

ilink 

ilist 

imakef 

iserver 

isim 

iskip 

Description 

The ANSI C compiler. A full ANSI standard compiler with con­
currency support. Generates object code for specific transputer 
targets. 

The configurer. Analyses the configuration description and pro­
duces a configuration data file for the code collector. 

The code collector. Collects linked units into a single file for 
loading on a transputer network. Takes as input a configuration 
data file or a single linked unit. 

The TCOFF file convertor. Converts object files generated by 
earlier toolsets to TCOFF format. 

The network debugger. Provides post-mortem and interactive 
debugging of transputer programs. 

The memory dumper. A debugging auxiliary tool used to debug 
programs that run on the root transputer. 

The transputer memory configuration tool. Used for evaluating 
and defining memory configurations for later incorporation into 
ROM programs. 

The EPROM program formatter tool. Formats transputer 
bootable code for input to ROM programmers. 

The toolset librarian. Builds libraries of compiled code in the 
same format as the C runtime library. 

The toolset linker. Resolves external references and links sep­
arately compiled code into a single file. 

The binary lister. Disassembles and decodes object code and 
displays information in a readable form. 

The Makefile generator. Generates Makefiles for input to MAKE 
programs. 

The host file server. Loads programs onto transputer hardware 
and provides runtime access to the host. 

The T425 simulator. Simulates program execution on an IMS 
T425 transputer and provides simple debugging facilities. 

The skip loader tool. Used with iserver to load programs onto 
external networks over the root transputer. 

Table 2.1 The ANSI C toolset 

72 TDS 224 00 August 1990 



12 2 Overview of the toolset 

2.4 ANSI C compiler - ice 

The compiler ice is an ANSI standard C compiler with additional support for 
concurrency. It conforms fully with ANSI standard X3.159 1989. 

The ANSI standard for C formalises the original implementation of C as described
in 'The C Programming Language' by Kernighan and Ritchie, and extends it to
include a runtime library, some language extensions already in common usage,
and many other improvements designed to standardise the language.

The original implementation of C will be referred to in the rest of this manual 
as 'K&R C' and ANSI standard C as 'ANSI C'. A summary of the differences 
between K&R C and the ANSI standard can be found in section .1. 

ANSI C supports concurrency through a series of C structures and a compre­
hensive set of process handling, channel communication, and semaphore ma­
nipulation functions. Some useful non-ANSI functions are also provided in the 
runtime library. 

The compiler produces compiled code for specific processor types or transputer 
classes. The compiled object file is in a standard intermediate code format which 
must be linked, configured, and made executable before the program can be run. 
The runnable file consists of code which can be directly loaded onto a transputer 
network. 

2.5 Generating executable code 

Three tools are used in sequence (or two for a single transputer program) to 
generate the loadable file from compiled object code: 

ilink - the toolset linker which links separately compiled program units 

icconf - the configurer tool which generates a configuration data file 
(multitransputer programs only) 

icollect - the code collector which generates a bootable file for a 
transputer network either from the configuration data file or a single linked 
unit. 

2.5.1 Llnker - ilink 

The toolset linker ilink links separately compiled modules and libraries into .­
a single code unit, resolving extemal references and generating a linked unit. • 
Linked units can be used in configuration descriptions to map software onto spe­

72 TDS 224 00 August 1990 



2.6 Loading and running programs 13 

cific arrangements of transputers, or can be bootstrapped for a single transputer 
using icollect. 

Library modules are linked in with the program by the the C startup file which 
must be specified on the linker command line. The correct startup file must be 
specified for the transputer type. 

2.5.2 Configurer - icconf 

The configurer icconf generates configuration information for transputer net­
works from a configuration description written in the transputer configuration lan­
guage. The tool prepares the program for configuring on a specific arrangement 
of transputers by analysing the configuration description and producing a data 
file for the code collector tool. 

2.5.3 Code collector - icollect 

The code collector tool icollect takes the data file generated by icconf 
and generates a single file that can be loaded and run on a transputer network. 
The file contains bootable code modules for all processors on the network along 
with distribution- information that is used by the loader to place the modules on 
each processor. 

icollect is also used to generate bootable code for single transputer pro­
grams from linked units by appending single transputer bootstrap code. The 
single transputer mode of operation is selected by a command line option. 

2.6 Loading and running programs 

Bootable code for single transputers and transputer networks is loaded onto the 
transputer hardware using the host file server tool iserver which both loads 
the program and starts up the runtime environment that supports interaction with 
the host. The auxiliary skip loading tool iskip can be used in combination with 
iserver to load a program onto an external network. 

2.6.1 Host file server - iserver 

The host file server iserver is a combined host server and loader tool. When 
invoked to load a program it both loads the code onto the transputer hardware 
and provides runtime services on the host (such as program i/o) for the transputer 
program. 

72 TDS 224 00 August 1990 



14 2 Overview of the toolset 

2.6.2 Skip loader - iskip 

The skip loader iskip forces a program to be loaded over the root transputer 
(the transputer connected to the host). It is used prior to invoking iserver 
for loading programs onto a transputer board without needing to use the root 
transputer as part of the network. The tool is useful when debugging programs 
that are configured to use the root transputer because it leaves the root transputer 
free to run the debugger and avoids the use of idump to save the program 
image. 

2.7 Program development and support 

Seven tools are provided to assist in program development: 

idebug - the interactive network debugger. 

idump - the memory dump tool for use with idebug when debugging 
programs on the root transputer. 

ilibr - the librarian which generates libraries of compiled code. 

ilist - the binary Iister which decodes and displays data from object 
files. 

isim - the T425 transputer simulator. 

imakef - the Makefile generator which creates Makefiles for toolset 
object files. 

icvlink - the file format convertor which allows object code to be 
imported from earlier INMOS toolsets. 

2.7.1 Network debugger - idebug 

The network debugger idebug provides post-mortem and interactive debugging 
for transputer programs. It allows stopped programs to be analysed from their 
memory image or from image dump files (post-mortem debugging) and supports 
interactive execution of a program using breakpoints (breakpoint debugging). 
Breakpoints can be set on source lines or memory addresses, variables can be 
inspected and modified, and the program restarted with new values. 

idebug provides two debugging environments: a symbolic environment which 
allows a program to be debugged from source code; and the Monitor page which 
allows a program to be debugged at machine level. 

72 TDS 224 00 August 1990 

a
• 

_ 
• 



2.7 Program development and support 15 

2.7.2 Memory dumper - idump 

The special debugging tool idump is provided to assist with the post-mortem 
debugging of programs that run on the root transputer. Since idebug executes 
on the root transputer and overwrites the program image, idump must be used 
to save the image to a file which is later read by the debugger. 

2.7.3 Librarian - ilibr 

The librarian ilibr creates libraries of compiled code for use in application 
programs. Modules generated by ilibr are in the same format as code in the 
standard runtime library and can be used in exactly the same way. 

Code written using other compatible toolsets can be mixed with C code in the 
same library. 

2.7.4 Binary IIster - ilist 

The binary lister ilist decodes object code files and displays data and infor­
mation from them in a readable form. Command line options select the category 
and format of data displayed. 

Examples of the kind of information that can be displayed are symbolic names 
and attributes, code listing, index data and modular breakdown of libraries, and 
external reference data. 

2.7.5 Transputer simulator - isim 

The transputer simulator isim provides software emulation of an IMS T425 
transputer. Programs configured for single transputers can be run and debugged 
on the simulator before transferring them to hardware. The debugging environ­
ment is similar to that provided by the debugger Monitor page. 

Batch mode operation is also supported. 

2.7.6 Makeflle generator - imakef 

The Makefile generator imakef creates Makefiles for specific program compi­
lations. Coupled with a suitable MAKE program it can greatly assist with code 
management and version control. 

imakef constructs a dependency graph for a given toolset object file and gener­
ates a Makefile in standard format. To allow the tool to work with mixed processor 

72 TDS 224 00 August 1990 



16 2 Overview of the toolset 

networks and mixed code programs a standard set of file naming conventions is 
used during program development. 

2.7.7 File format convertor - icvlink 

The file format convertor icvlink converts LFF object files generated by earlier 
INMOS toolsets to standard TCOFF format. TCOFF is a standardised interme­
diate object file format for transputer programs. 

icvlink allows existing object code to be used with the INMOS family of 
TCOFF compilers and toolsets. Files to be converted must be compiled files or 
linked object files. The tool is intended to support the importation of code where 
the source is unavailable and should not be used where code can be recompiled 
with one of the new compilers. 

2.8 EPROM programming 

Two tools allow transputer programs to be installed into ROM. These are the 
EPROM programmer ieprom and the memory configurer iemit. An auxiliary 
tool icvemit is provided with iemit for importing memory configuration files 
generated by the previous INMOS memory configurer tool iemi. 

2.8.1 EPROM programmer - ieprom 

The EPROM programmer ieprom converts ROM-bootable files generated by 
icollect into a format suitable for input to ROM programmers. Files can be 
generated for input to ROM loading programs provided for specific EPROMs, or 
dumped in straight Hex or binary for input to users' own ROM loaders. 

2.8.2 Memory configurer - iemit 

The memory configurer iemit allows specific memory configurations to be eval­
uated before running them on hardware. The completed configuration can be 
included in the ieprom output file for automatic installation into processor mem­
ory. The iemit support tool icvemit can be used to convert memory config­
uration files generated by iemi (a tool supplied in previous toolsets) to iemit 
format. 

72 TDS 224 00 August 1990 



2.9 Program development using the toolset 17 

2.9 Program development using the toolset 

The ANSI C toolset is a cross-development system for transputers. Creation of 
executable code for a transputer or transputer network takes several stages 
involving the use of specific tools at each stage. Program development is 
supported by tools which provide facilities for debugging, creating object code 
libraries, automating the program build, and for importing code from earlier 
toolsets. 

The main stages in developing a program and the tools to use at each stage are 
listed below. 

1 Write the source. 

Source code can be written using any ASCII editor available on the sys­
tem. Code can be divided between any number of source files. Source 
code must conform to the ANSI standard. Source code syntax can be 
checked prior to compilation by invoking the compiler with the check op­
tion. 

2 Compile the source. 

Each source file is compiled using the ANSI C compiler ice to produce 
one or more compiled object files in TCOFF format. Each file must be 
compiled for the same transputer type or for a transputer class covering 
several compatible types. Commonly used object code can be combined 
into libraries using ilibr. 

3 Link the complied units. 

The compiled source files are linked together using ilink. This gener­
ates a single file called a linked unit in which all external references are 
resolved. The linking operation also links in the library modules required 
by the program, which are selected by transputer type from the compiled 
library code. Compiled source files can be generated by any TCOFF 
compatible compiler. 

4 Conflgure the program. 

For multitransputer programs a configuration description must be con­
structed in order to assign linked units to specific nodes on the transputer 
network and link them by channel variables. The description is processed 
by the configurer tool icconf to produce a configuration data file. 

Single transputer programs can also be configured. 

5 Generate a runnable file. 

72 TDS 224 00 August 1990 



18 2 Overview of the toolset 

The configuration data file generated by icconf is read by the code 
collector icollect which generates a single executable file for a trans­
puter network. The same tool is used to generate bootable files for single 
transputer programs directly from linked units. 

6 Load and run the program. 

The executable or bootab/e file is loaded and run on the transputer net­
work down a host link using iserver. Once loaded the code begins 
to execute immediately. The server tool also starts up and maintains the 
environment that supports the program's communication with the host. 

Figure 2.1 illustrates the development process in terms of the architecture of 
the toolset. The default file extensions assumed and generated by the tools are 
used to represent source and target files. 

Figure 2.1 Toolset compilation architecture 

2.10 Runtime library 

The runtime library is a library of compiled C functions that perform common 
programming operations. The library contains the complete set of ANSI standard 
functions plus functions to support parallel programming and some non-ANSI 
extensions. 

The concurrency functions are divided into three functional groups: process 

72 TDS 224 00 August 1990 



2.11 Toolset file extensions 19 

management, channel communication, and semaphore handling. The non-ANSI 
extensions include a set of ilo primitives, a set of short maths functions, functions 
for retrieving information about the host system, and debugging functions. 

A reduced library is available for linking with programs that do not use ilo or ilo 
dependent functions, for example, code for embedded systems or code that only 
communicates with other processes on the network and has no direct interaction 
with the host. The reduced library contains no calls to ISERVER. 

2.10.1 Header flies 

Library functions, like ail C functions, .must be declared before use. Declarations 
of library functions with associated constants, macros, and definitions are held 
in a number of library header files to ensure that function declarations are of the 
correct form and that supporting macros and constants are included. Header 
files are given the suffix •h. 

The library header files contain groups of routines collected together according 
to common usage. For example, routines that control standard ilo operations 
are grouped in the file stdio. h. Most header files also contain definitions of 
constants and macros that are associated with the functions' use. 

Many of the header files and function groupings are defined in the ANSI stan­
dard. The library extensions which support concurrency and other non-ANSI op­
erations are also grouped for programming convenience, for example, functions 
for sending data down channels are grouped separately from those which manip­
ulate semaphores. Similarly, non-ANSI functions such as short maths functions 
and low level ilo functions are grouped separately. Concurrency functions are in 
fact grouped into three files covering process handling, channel communication, 
and semaphore handling. 

Some library functions are implemented as macros, and a few are implemented 
as both functions and macros. The decision about which to use depends on the 
programming style and personal choice. 

2.11 Toolset file extensions 

The toolset uses a standard set of file extensions to identify specific source, 
intermediate, and object files. Certain file extensions are assumed on input, and 
generated on output if extensions are not specified on the command line. For 
example, the compiler assumes the suffix •c for the input source file and adds 
the extension •tco to the output file unless otherwise specified. The adoption of 
a standard system allows file extensions to be omitted on the command line and 
permits host file handling systems to be use manipulate the files. The system 

72 TDS 224 00 August 1990 



20 2 Overview of the toolset 

Extension Description 

.btl Bootable code file. Created by the colledor tool. 

.btr Executable code minus bootstrap information. Used for 
input to the EPROM tool. Created by the collector tool. 

. c C source files. Assumed by icc. 

. cfb Configuration data file. Created by icconf. 

. cfs Configuration description. Assumed by icconf. 

. lku Linked unit. Created by ilink.. 

. lbb Library build file. Assumed by ilibr. 

. lib Library file. Created by ilibr. 

. lnk Linker indirect file. Assumed by ilink. 

.rsc Dynamically loadable code file. Used for calling object 
modules from source code. 

. teo Compiled code file. Created by icc. 

Table 2.2 Toolset main file extensions 

forms an integrated whole and is designed to reflect the architecture of toolset 
compilation. 

The standard set of default file extensions used by the toolset is not mandatory 
and may be modified according to personal choice (unless imakef is to be used 
to build the program, where a special scheme must be used for mixed processor 
types and error modes, see below). The standard system has the advantage 
of ready defaults but may not be readily mapped onto existing development 
schemes. If you decide to use your own scheme the system should be formal and 
controlled, particularly where systems are being written by teams of developers. 

Some extensions recognised by the toolset are used for convention only and are 
not interpreted by the tools in any special way. For example, the •h suffix for 
library header files is a C programming convention that has been adopted by the 
toolset. 

The main file extensions are listed in Table 2.2 A full list of all file extensions 
used by the toolset can be found in appendix A. 

The use of default extensions in program development is illustrated in figure 2.1. 

72 TDS 224 00 August 1990 



21 2.12 Error reporting 

File extension scheme required for imakef 

The Makefile generator imakef requires a special set of file extensions to be 
used for compiled and linked object files in order to account for mixed trans­
puter networks and code configured in different error modes. The extensions 
define the architecture of toolset compilation for imakef so that it can trace file 
dependencies and construct the proper commands for making target files. 

For details of the file extensions that you must use with the imakef tool see 
section 22.4. 

2.12 Error reporting 

All errors are reported in a standard format containing the name of the tool, 
a severity level, and some explanatory text explaining why the error occurred. 
Errors found in files or the file system may also generate a filename and line 
number. Standardisation of the format is designed to improve error reporting 
and to support automated error handling by host system utilities. 

For example: 

Warning-icc-prog.c (25) inventing 'extern int fooO;' 

Note: Messages that are part of the normal operation of the tool, for example, 
syntax errors generated by the compiler and messages from the debugger and 
simulator tools, are not required to conform to the standard and may be displayed 
in special formats. The formats are designed to be appropriate for the tools' 
purpose and will become familiar with use. 

Details of the standard format can be found in appendix A. 

2.13 Host dependencies 

The ANSI C toolset can be hosted on several platforms, and is designed to blend 
in as far as possible with each host operating system. Source and object code 
is portable between all systems. 

The toolset is available for the following systems: 

• IBM PC and NEC PC running MS-DOS 

• VAX running VMS 

• Sun 3 running SunOS 

72 TDS 224 00 August 1990 



22 2 Overview of the toolset 

• Sun 4 running SunOS 

Differences between the various platforms are minor and reflect the 'flavour' 
of the particular operating system. This leads to minor differences between 
them in the areas of command line syntax and characters allowed in filenames. 
Some installation issues are also host dependent, for example the setting of 
environment variables and the definition of search paths. These are covered 
in detail in the Delivery Manual that describes product installation and system 
setup, and are only described briefly here. 

Host system dependencies are as far as possible made invisible to the user. The 
few differences are some minor variations in command line syntax, host-specific 
library routines, directory names, and environment settings such as search paths 
and global variables. Each is described briefly below. 

Command line syntax 

The major difference between the various host implementations is the use of 
the host system option prefix. For UNIX based toolsets the prefix character is 
the dash '-'; for IBM PC and VAXNMS based toolsets the prefix is the forward 
slash '/'. For consistency between implementations, the case of options is also 
not significant. Other command line syntax conventions are identical in all four 
implementations and are described in appendix A. 

2.13.1 Host-specific library 

All library functions supplied with the toolset are host independent except for the 
functions declared in dos. h which are specific to DOS. The DOS functions are 
supplied with all host versions of the toolset. 

Care should be taken in the use of these functions in application programs. 
Programs which use them will not be portable across all four systems. 

2.13.2 Filenames 

Filenames, with or without the full directory path, conform to the normal host 
system conventions except that characters which can be interpreted as directory 
separators must not be used in the filename part. Prohibited characters are: 
colon :, forward slash /, backslash \, and closing square bracket ]. 

72 TDS 224 00 August 1990 



2.13 Host dependencies 23 

2.13.3 Search paths 

All tools which use or generate filenames use a standard mechanism for locating 
files on the host system. The same mechanism is used in all operating system 
versions of the toolset. Briefly, the search mechanism is based on a list of di­
rectories to be searched in sequence. If a directory path is specified only this 
directory is searched. Relative pathnames are treated as relative to the current 
directory. If no directory path is specified the current directory is searched fol­
lowed by the directories specified in the ISEARCH environment variable. Details 
of how to set up environment variables on your system can be found in the 
Delivery Manual that accompanies the release. 

Details of the mechanism can be found in appendix A. 

2.13.4 Environment variables 

The toolset uses a number of environment variables on the host system. Use 
of these variables is optional but if defined they will affect the behaviour of the 
tools on your system. 

Variable 
I SEARCH 

I TERM 

IBOARDSIZE 

TRANSPUTER 

IDEBUGSIZE 

too/name ARG 

Meaning 
The search path Le. the list of directories that will be searched 
if a full pathname is not specified. Pathnames must be ter­
minated by the standard directory separator character for the 
system. Used by all tools that read and write files. 
The file that defines terminal keyboard and screen control 
codes. Used by idebuq to define symbolic function keys. 
The size (in bytes) of memory on the transputer board. Used 
by iserver.
The address at which the transputer board is connected to
the host. Used by iserver.
The size (in bytes) of memory connected to the root trans­
puter. Used by idebuq.
Default command line arguments. (Applies to certain tools
only. See section 2.13.5.)

The exact commands used to define environment variables depend on the op­
erating system. For example, on the IBM PC they are defined using the set 
command; on VAX systems running VMS they can be set up either as logical 
names or as VMS symbols. Examples of how to set up environment variables 
can be found in the Delivery Manual that accompanies the release. 

For IBOARDSIZE and IDEBUGSIZE the value can be given in decimal or 
hexadecimal format. Hexadecimal numbers must be preceded by '#' or '$'. 

72 TDS 224 00 August 1990 



24 2 Overview of the toolset 

Leading and trailing spaces are prohibited in both variables. 

Note: If IBOARDSIZE is specified incorrectly, for example as a character or 
string, the system defaults to a board size of 0 (zero) and the program cannot 
be run. If IBOARDSIZE is explicitly set to a very small value a similar error may 
occur. 

2.13.5 Default command line arguments 

An environment variable can be defined on the system to specify a default set of 
command line arguments for certain tools. The variable name must be defined 
in upper case and is constructed from the tool name by appending the letters 
IARG'. For example, the variable for ice is ICCARG. 

Tools for which a default command line can be defined, and the variables used 
to define them, are listed below. 

Tool Variable 
ice:: ICCARG 
ilink ILINKARG 
icc:onf ICCONFARG 

Tool Variable 
ilibr ILIBRARG 
ilist ILISTARG 
icvlink ICVLINKARG 

Command line parameters must be specified within each variable using the spe­
cific syntax required by each tool. 

72 TDS 224 00 August 1990 



3 Getting started
This chapter outlines how to compile. link. and run simple C programs on a 
transputer. using sample programs provided in subdirectories of the toolset 
examples directory. 

3.1 Outline procedure 

In order to create a program that will run on a transputer or transputer network 
you must: 

1 Compile each source file using the ANSI C compiler ice. By default the 
compiler codes for a T414 transputer. 

2 Link the separately compiled object files with each other. and with the 
libraries that they use. using the linker ilink. 

3 Genfigure the program for the transputer or transputer network. For mul­
titransputer programs a configuration description must be written for pro­
cessing by the configurer and the resulting configuration data file passed 
to the collector in order to generate a loadable or bootable file. For sin­
gle transputer programs the collector is used to bootstrap the linked unit 
directly by invoking it with a special option. 

4 Load the bootable program onto the network using the host file server 
tool iserver. Bootable programs are self-starting and begin to run 
immediately they are loaded into transputer memory. 

3.2 Running the examples 

In the following examples programs are compiled for the default processor type 
T414. For other transputer types. for example. processors in the IMS T8 group. 
the program must be compiled for the specific transputer target or a transputer 
class by giving the appropriate option on the compiler command line. Details 
of transputer types and the cross compatibilities of processor types and classes 
can be found in section 5.3. 

3.2.1 Sources 

The sources of all the examples are held on the toolset examples subdirectory. 
To use the example command lines either move to this directory or place a copy 
of the file in your current directory. 

72 TDS 22400 August 1990 



26 3 Getting started 

3.2.2 Example command lines 

Where necessary, example command lines are duplicated for different host ver­
sions of the toolset; the '-' switch character is used in command lines for UNIX­
based toolsets and the'I' character is used in commands for MS-DOS and VMS 
based toolsets. When reproducing the examples you should use the appropriate 
command line for your host system. 

3.2.3 Using the simulator 

If no transputer hardware is available the examples can be run using the T425 
simulator isim. If the simulator Is used the appropriate isim command line 
should be substituted for the iserver command line in all example procedures. 
Details of how to invoke the simulator tool can be found in chapter 24. 

3.3 A simple sequential program 

The fotlowing procedure shows how to build and run a simple 'Hello World' pro­
gram. The program is held in the source file hello. c on the simple examples 
subdirectory. 

3.3.1 Compiling 

To compile the program type: 

icc hello 

The compiler assumes a •c extension. If the source file contains no errors, the 
compiled object file hello. tco. is produced. 

3.3~2 Linking 

The compiled object file must be linked with the runtime library and startup code 
using the linker tool ilink. Use one of the following commands: 

ilink hello.tco -f startup.lnk (UNIX) 
ilink hello.tco If startup.lnk (MS-DOS and VMS) 

This produces the linked unit hello .lku. As no output file is specified the file 
is named after the input file and the default link extension • lku is added. 

The 'f' option specifies the standard C startup file containing commands and 
directives to ilink. The file is in standard linker indirect file format and contains 

72 TDS 224 00 August 1990 



3.4 A parallel version 27 

all the startup information required for a C program using the full runtime library. 
This includes access points for the library, and no libraries need be specified on 
the command line. 

3.3.3 Conflgurlng 

The linked unit must now be configured for the transputer. Because the program 
is to be run on a single processor the configurer is not required and icollect 
can be used directly. To bootstrap a single linked unit the 't' option must be 
specified: 

icollect heilo.lku -t (UNIX) 
icollect hello.lku It (MS-DOS and VMS) 

This creates the file hello. btl which can be loaded and run on a single 
transputer. 

3.3.4 Loading 

iserver is used to load the bootable file down the host link into transputer 
memory where it begins to execute immediately: 

iserver -sb hello.btl (UNIX) 
iserver Isb hello.btl (MS-DOS and VMS) 

The program runs and displays the greeting "Hello World". 

3.4 A parallel version 

The example program parhello. c on the simple examples subdirectory is 
a parallel version of the "Hello world" program, using separate parallel processes 
to output each word of the greeting. A time delay is built into one of the processes 
to demonstrate their independence. 

The example produces the same output as the sequential program and is in­
cluded here in order to introduce a simple working example of a parallel C pro­
gram. Parallel programming is described in greater detail in chapter 4. 

To run the example parallel program compile, link, configure, and load the pro­

72 TDS 224 00 August 1990 



28 3 Getting started 

gram in the normal way: 

ice parhello 

ilink parhello.teo -f startup.lnk (UNIX) 
ilink parhello.teo If startup.lnk (MS-DOS and VMS) 

ieolleet parhello.lku -t (UNIX) 
ieolleet parhello.lku It (MS-DOS and VMS) 

iserver -sb parhello.btl (UNIX) 
iserver Isb parhello.btl (MS-DOS and VMS) 

The program prints the word "Hello" followed after a short delay by "world". 

The overall construction of the program can be deduced from the program listing. 
Briefly, processes to be run in parallel are defined as separate C functions, 
space is allocated for the process structures, and the functions are started up in 
parallel. A comparison of the source code for sequential and parallel versions 
can be instructive. 

3.5 Separate compilation 

Larger programs are often built from a number of separately compiled source 
files. The following example shows how to build and run the parallel "Hello World" 
program from three source files. The program sources are held on the simple 
examples subdirectory. 

The main program in main. e calls two independently compiled parallel pro­
cesses hellof and worldf which each print one word of the greeting. 

To run the program first compile each source file: 

ice main

ice hellof

ice worldf

This creates three compiled object (. teo) files. These are then linked with each 

72 TDS 224 00 August 1990 



29 3.6 A simple configuration example 

other to produce the single linked unit main. lku: 

• 
ilink main.teo hellof.teo worldf.teo -f startup.lnk 
(UNIX) 
ilink main.teo hellof.teo worldf.teo If startup.lnk 
(MS-DOS and VMS) 

The linked unit is then bootstrapped in the normal way for a single transputer 
using icollect, and loaded into transputer memory using iserver: 

icollect main.lku -t (UNIX) 
icollect main.lku It (MS-DOS and VMS) 

iserver -sb main.btl (UNIX) 
iserver Isb main.btl (MS-DOS and VMS) 

3.6 A simple configuration example 

Linked units can be configured on processor networks by processing a configura­
tion description with icconf. The file hello. cfs on the config examples 
subdirectory contains a configuration description for a "Hello World" program 
along with the source file. (The source file is not the same as the one used in 
the non-configured examples). 

The description configures the program for a single processor, which is treated 
by icconf in the same way as any multiprocessor network. 

Either move to the confiq examples subdirectory or copy the "Hello World" 
source file hello. c and the "Hello World" configuration description hello. cfs 
from the directory into a working directory. 

Compile and link the source file as in the previous examples to produce a linked 
unit. Now run icconf on the hello. cfs file. This produces the configuration 
binary file hello. cfb. Run the collector on this file, this time omitting the 't' 
option (only required when the input file is a linked unit). Then load the program 
in the normal way using iserver. 

72 TDS 224 00 August 1990 



30 3 Getting started 

The sequence of commands is illustrated below. 

ice hello 

ilink hello.tco -f startup.lnk 
ilink hello.tco If startup.lnk 

icconf hello.cfs 

icollect hello.cfb 

iserver -sb hello.btl 
iserver Isb hello.btl 

(UNIX) 
(MS-DOS and VMS) 

(UNIX) 
(MS-DOS and VMS) 

•

72 TDS 224 00 August 1990 



4 Parallel processing
4.1 Introduction 

Parallel processing is widely accepted as an important way of improving soft­
ware performance on any given processor architecture. The transputer supports 
parallel processing directly by incorporating into its design a process scheduler 
which is responsible for scheduling parallel tasks, and by providing the means 
for connecting processors (transputer links) to create a processor network. 

ANSI C supports concurrent programming by runtime library extensions which 
allow C functions to run in parallel and communicate via channels. The exten­
sions provided consists of new type definitions for processes and channels and 
a set of library functions for process, channel, and semaphore handling. 

Semaphore-based communication is also supported. 

4.2 Abstract model 

Parallel processing in transputer based systems is based on the idea of Commu­
nicating Sequential Processes (CSP) developed by by Professor C.A.R. Hoare. 

CSP is an abstract generalised model of concurrency based on the idea of 
independently executing processes exchanging data with each other via one 
way connections called channels. The model can be used to describe software 
applications in an intuitive way reflecting the parallelism of the real world. 

Concurrent processing in ANSI C conforms to the CSP model. Concurrent C 
processes are independent, can be nested within each other, and are linked 
together by channels. Any C function can be defined as a concurrent process 
using a special set of functions provided in the runtime library. 

Figure 4.1 illustrates the main elements of the CSP model. Processes can be 
nested with one another, and can communicate either unidirectionally (one pro­
cess passing data to another) or bidirectionally (two processes exchanging data 
and working in a cooperative manner). In real applications processes normally 
communicate with at least one other process in the system. 

4.2.1 Processes 

Processes are the main elements of the CSP model. A process describes the 
behaviour of a discrete, separable component of an application; it may consist 
of other processes, sequential operations, or any combination of these. Appli­

72 TDS 224 00 August 1990 



32 4 Parallel processing 

Figure 4.1 Communicating sequential processes 

cations can be broken down into any number of processes, and processes can 
be mapped onto any network of transputers. 

4.2.2 Channels 

Channels are the connections between processes through which information 
and data are exchanged. Channels are point-to-point unidirectional connections, 
that is, they connect only two processes, and the transfer of data is one way. 
Processes which exchange messages and data with each other must do so via 
a pair of channels. Channels in real systems are often paired in this way to 
enable processes to coopera~e in a task. 

_ 
• 

An item of data is always acknowledged by the receiving process before the next 
item is passed. 

In CSP, channels have two functions. They provide the communication path 
between independently executing processes, and serve to synchronise the com­
munication between the two processes. Items of data must always be acknowl­
edged by the receiving process and the sending process always waits for the 
acknowledgement. In the same way processes which send data cannot do so 
until the receiving process is ready. In this way synchronisation between the two 
processes is assured; no data is passed until both partners in the operation are 
ready. 

72 TDS 224 00 August 1990 



4.3 Sernaphores 33 

4.3 Semaphores 

Support for semaphores, though not a part of the CSP model, is provided in the 
toolset for those who wish to develop parallel programs in the traditional manner 
using semaphores. Semaphores are efficiently implemented within the toolset 
using channel functions, and are therefore subject to a slightly greater overhead 
than if the intrinsic synchronising ability of channels were used directly. 

4.4 Parallel processing and tran"sputers 

The transputer has been designed to support parallel processing and the con­
struction of multiprocessor environments. The device architecture and instruction 
set reflect the CSP model and make it easy to implement in high level languages. 
ANSI C takes full advantage of this ability, providing a parallel programming en­
vironment optimised for the transputer, but retaining all the features of the C 
language. 

Each transputer separately supports parallel processing. Processes can ex­
change cata and synchronise their activity by a scheduling system built into the 
hardware of the processor and requiring no complex programming. The system 
automatically time shares the CPU between processes and requires no extra 
input from the programmer. Communication between processes is achieved via 
channels implemented as words in on-ehip memory. 

4.4.1 MUltltransputer networks 

Processes can also run on separate transputers and communicate with each 
other using channels implemented through processor links. Each transputer 
contains four INMOS communication links through which processors exchange 
data and information. This ability to be cross-connected enables the transputer to 
be used as the basic component in the construction of processor networks. Spe­
cific arrangements of transputers can be designed for particular software tasks, 
and large networks of transputers can be used to build distributed processing 
supercomputers. 

4.4.2 Multltransputer programming 

Software processes can communicate as readily down transputer links as they 
can across channels on the same processor. This allows applications to be writ­
ten without being constrained by a fixed topology; a program can be developed 
on a single transputer and ported to the target network when the program is fully 
developed and bug-free. The final code can be reinstalled on a new target sim­
ply by writing a new configuration description, generating an executable file, and 

72 TDS 224 00 August 1990 



34 4 Parallel processing 

loading it onto the network. No modification of the original code or recompilation 
of source is required. 

Figure 4.2 shows how three software processes, separately compiled and linked, 
could be configured to run on a single processor or on several processors linked 
together in a simple linear network. 

a 
• 

Three processes on 
one transputer 

_ =channel Distributed processes 
~ = transputer link 

Figure 4.2 Distributing processes 

4.4.3 Instruction set 

Transputers have been designed to support the ideas of parallel processing and 
make them easy to implement in high level languages. There is direct support 
in the transputer instruction set for process control and management. 

Process control 

The transputer provides direct instructions for setting up, starting, pausing, and 
terminating parallel processes. Processes run at one of two priorities - high or 
low; high priority processes have priority access to the processor and will always 
be executed in preference to any low priority process running concurrently on 
the same processor. 

Process selection 

The transputer instruction set includes direct support for selection of the first e 
ready process from a series of of inputs, making polling of data channels easy. 

72 TDS 224 00 August 1990 



4.5 ANSI C . 35 

Process timing 

The transputer contains high and low priority clocks, which can be used to im­
plement delayed execution of processes. Specific instructions are provided to 
delay execution of a process for a specified time period, or until a specified time. 

4.5 ANSI C 

ANSI C takes full advantage of the advanced concurrency features of the trans­
puter and like the high level transputer language occam implements the CSP 
model. Concurrency is supported by library extensions consisting of three new 
data types and a set of library functions and macros. Together these imple­
ment the parallel model. A set of routines for synchronising processes using 
semaphores is also provided. 

4.5.1 Library support 

The runtime library functions are accessed in the same way as all other C li­
brary functions by including the appropriate header file in the program. Process, 
channel, and semaphore support functions are declared in three separate header 
files. 

The concurrency functions are designed as a base set of functions which can 
either be used in their basic form or as building blocks for higher level routines. 
For example, a high level package might wish to implement features such as 
process multiplexing and complex channel protocols using functions from the 
basic set. 

4.5.2 New data types 

Three new data types complete the concurrency support. Data structures aare 
used to hold data about processes and semaphores, and a pointer type is used 
to implement channels. 

• Process. A structure type that holds information about each declared 
process. 

• Channel. A pointer type used to implement channels. In accordance 
with the CSP model, channel variables represent unidirectional commu­
nication links between two processes. Channel is a pointer to type 
void 

• Semaphore. A structure type that holds information about a semaphore. 

72 TDS 22400 August 1990 



36 4 Parallel processing 

Parallel processes are created by linking a function definition to a predeclared 
process structure, and are then initialised, started, and run using routines from 
the concurrency library. 

Channels between processes are created simply by declaring a variable of type 
Channel* at an appropriate point in the program. Channel input and output 
functions are then used to pass data. It is the responsibility of the programmer to 
ensure that data sent by one process is received by another; separate functions 
exist for input and output and the two must be paired for communication between 
two processes to take place. 

Semaphores are declared using either the semaphore initialisation function or 
a macro that performs a similar action. Semaphores are then acquired and 
released by calls to two separate functions. Semaphores can be used to syn­
chronise the activity of low with high priority processes. 

4.6 Concurrency functions 

The concurrency functions implement the following parallel processing opera­
tions: 

• Process setup, startup, and scheduling 

• Ready input selection 

• Channel communication 

• Semaphores. 

The main parallel processing functions are declared in the header files 
process. h and channel. h. Declarations of functions for semaphore han­
dling can be found in semaphor. h. 

The following sections describe the process, channel, and semaphore functions. 

4.7 Processes 

Processes are defined in the same way as regular C functions, but with a fixed 
first parameter. The first parameter to a new function which will be started as 
a process must be a pointer to its own Process structure. Parameters to the 
function follow the fixed process pointer in the normal way. 

Processes are instantiated by a call to ProcAlloc, using the function name e 
as the link to the process structure. Once allocated, the process is started 

72 TDS 224 00 August 1990 



4.7 Processes 37 

using ProcRun or one of its variants, ProcPar or one of its variants, or 
ProcPriPar. 

An example of the creation and instantiation of a process is shown below. 

void newproc(Process *p, int argl, int arg2, int arg3) 
{

p = p;

/* ... process code */ 

int main () 
{ 

/* Declare pointer to process structure */ 

Process *x; 

/* Declare parameters */ 

int pal, pa2, pa3; 

/* Allocate process; check for non-allocation */ 

if «x = Pro~loc(newproc,O,3,pal,pa2,pa3» == NULL) 
abort(); 

/* Start process running */ 

ProcRun(x); 

/* Rest of code executes 
in parallel with 'newproc' */ 

4.7.1 Unused process pointer 

The compiler generates a warning message indicating an unused process pointer 
each time a process pointer is passed to a function. To prevent the message be­
ing generated the process pointer should be assigned to itself within the function 
using a statement of the form P = pi. Process code which does not assign 
the pointer in this way will still compile and run normally but the 'unused pointer' 
message will be generated as the process is compiled. 

Warning: The process pointer passed through to a function is used internally 
by the concurrency software and must never be changed. If it is modified in any 

72 TDS 224 00 August 1990 



38 4 Parallel processing 

way the results are undefined. 

4.7.2 Process Initialisation 

Two functions allocate and initialise parallel processes. A third function is pro­
vided to allow parameters to be altered in an existing process. The three func­
tions and their parameters are listed below. 

Function 

Process ProcAlloc 

int Proclnit 

void ProcParam 

Parameters 

(void (*func) () , int size, 
int nparam, ... ) 

(Process *p, void (*func) () , 
int *ws, int wssize, 
int nparam, ... ) 
(Process *p, ... ) 

ProcAlloc reserves memory space for a process and initialises the Process 
structure using the lower level routine Proclnit. Proclnit can also be used 
directly to initialise a process for which the memory space has already been 
reserved by the programmer. 

The ancillary function ProcParam allows parameters to be changed in an ex­
isting (previously allocated) process. It must be called before the process is 
started up. 

ProcAlloc takes a pointer to the function code, allocates a stack frame for 
the process, and sets up the function's parameters. A pointer to the process 
structure is returned. 

The stack size is specified in the size parameter. If size is specified as zero 
a default stack size of 4K for 32-bit machines and 1K for 16-bit machines is 
used instead. If insufficient stack space is allocated for the required number of 
parameters, the stack is extended. ProcAlloc returns a pointer to the process 
structure (Process*). 

Processes set up using ProcAlloc share the same global data space and 
therefore access the same static and external variables. Private data space 
for a process must be allocated using auto variables. In addition ProcAlloc 
uses the standard functions malloc and free to allocate and deallocate space 
from the heap and as a result all C processes share the same heap space. If 
an attempt is made to allocate stack space from an array of type auto, an error 
is reported. 

72 TDS 224 00 August 1990 



4.7 Processes 39 

All calls to ProcAlloc should be followed by a check for successful allocation, 
and the NULL result (allocation unsuccessful) should be handled in an appropri­
ate way. 

ProcI:nit takes a pointer to an existing Process structure and a pointer to the 
stack space to be used. It then initializes the process structure and workspace 
for the function according to its workspace requirement and process parameters. 
Proclnit is the lower level routine used by ProcAlloc. Proclnit returns 
a value indicating success or failure. The number of parameters indicated by 
nparam excludes the compulsory process pointer. 

Note: Processes must always be allocated before use. If this is not done the 
same memory space may be referenced on behalf of the same process. In this 
context allocation can be performed by ProcAlloc or Proclnit. 

ProcParam can be used to modify the parameters of an already allocated 
process. It returns no result. 

Note: Care should be taken when setting up processes and changing param­
eters in concurrently executing processes. If ProcAlloc, Proclnit, or 
ProcParam are used from two parallel processes to initialise the same pro­
cess the results may be unpredictable because there may be contention for the 
process structure. 

4.7.3 Freeing stack and workspace 

Two functions ProcAllocClean and ProclnitClean are provided to free 
stack and workspace after a process has completed. The functions and thei r 
parameters are listed below. 

Function Parameters 

void ProcAllocClean (Process *p) 

void ProclnitClean (Process *p) 

ProcAllocClean is used for processes initialised using ProcAlloc, and 
ProclnitClean for processes initialised using Proclnit. 

Note: For both functions the process must have been started synchronously (by 
ProcPar or ProcParList), and must have already terminated (ProcPar or 
ProcParList must have returned). 

72 TDS 224 00 August 1990 



40 4 Parallel processing 

4.7.4 Process execution 

A set of functions is provided for executing processes asynchronously (ProcRun 
and related functions) or synchronously (ProcPar and others). Functions are 
provided in the first group to start processes at high or low priority, and in the sec­
ond group to start many processes in a single call or to start a pair of processes 
at high and low priority. 

Note: A process may only be started once. If the same process pointer is passed 
as an argument to more than one function running as a process unpredictable 
effects can occur. 

Function 

void ProcRun 

void ProcRunHigh 

void ProcRunLow 

void ProcPar 

void ProcParList 

void ProcPriPar 

Parameters 

(Process *p) 

(Process *p) 

(Process *p) 

(Process *pl, Process *p2, ... ) 
(Process **plist) 

(Process *phigh, Process *plow) 

Unsynchronlsed processes 

ProcRun, ProcRunHigh and ProcRunLow start processes which execute 
independently of the process from which they are called. The initiating process 
cannot determine or alter the state of the process except through an explicit 
communication path (usually a channel) that the programmer establishes. 

ProcRun starts a process at the same priority as the calling process. 
ProcRunHigh and ProcRunLow start processes at high and low priority re­
spectively. 

Unsynchronised processes (those started with the ProcRun, ProcRunHiqh, 
and ProcRunLow functions) run independently of the main program and may 
continue when the main program terminates. To ensure that processes do not 
access the server when it has already been terminated, processes can be cou­
pled to the main program using channels. The main program will then wait until 
all other processes are finished before it terminates the server. Alternatively, 
ProcPar can be used to force synchrony on a group of processes. 

Synchronization channels are channels on which an output to the main program 

72 TDS 224 00 August 1990 



4.7 Processes 41 

is performed as the last action in a process. This forces the main program to 
wait until all other processes are completed and ensures clean termination of a 
program. An example of how to use synchronisation channels is shown below. 

'include <process.h>
'include <channel.h>

void p1(Process *p, Channel *synch) 
{
p • p;
/* ...process code */

ChanOUtlnt(synch, 1); 
/* 

Sends integer to main program to signal 
completion 

*/ 
} 

iM- main() 
{ 
Process *p;
Channel *synch; /* Synchronization channel */

if «synch - Cha~loc(» == NULL 
{ 
/* Call channel error handler */ 

} 

if «p = ProcAlloc(p1, 0, 1, synch» == NULL) 
{ 
/* Call process error handler */ 

} 

ProcRun (p) ; 

Chanlnlnt(synch); 
/* 

Receives completion signal from process p1 
*/ 

} /* Program can terminate safely */ 

Synchronised processes 

ProcPar, ProcParList, and ProcPriPar each start a group of processes. 

72 TDS 224 00 August 1990 



42 4 Parallel processing 

Control is returned to the process from which the function was called when all 
processes in the group have terminated. 

ProcPar executes a group of processes at the current priority. The list of pro­
cesses must be terminated by NULL. ProcParList takes an array of pointers 
to processes and executes them at the current priority. The list must be termi­
nated by NULL. ProcPriPar takes two processes and executes them at high 
and low priority. The first process in the list is executed at high priority. 

Note: ProcPriPar can only be called from a low priority process; if the function 
is called from a high priority process a runtime error occurs and the program is 
aborted. 

4.7.5 Process timing and scheduling 

Routines are provided for delayed execution, the timed suspension and reschedul­
ing of processes, and the termination of processes before normal completion. 

Function 

void ProcAfter 

void ProcWait 

void ProcReschedule 

int ProcGetPriority 

void ProcStop 

int ProcTime 

int ProcTimePlus 

int ProcTimeMinus 

int ProcTimeAfter 

Process timing 

Parameters 

(int time)

(int time)

(void)

(void)

(void)

(void)

(const int timel,
time2)

(const int timel,.time2) 

(const int timel, 
time2) 

Execution of a process can be delayed until a specified 

const int 

const int 

const int 

time using the 
ProcAfter function, and suspended for a specified time using ProcWait. 

72 TDS 224 00 August 1990 



4.7 Processes 43 

Process scheduling 

ProcReschedule reschedules a process, that is, places it at the end of the 
process queue. This can be used to implement a 'busy wait' on a resource. 

ProcGetPriority returns the execution priority of a process (1 for a low 
priority process and 0 for a high priority process. Macros PROC-LOW (1) and 
PROC-BIGB (0) are defined within the process library.). 

ProcStop permanently deschedules a prpcess. It is used to stop a process 
before normal completion. Stoppett processes cannot be restarted. 

4.7.6 Clock time 

ProcTime returns the current value of the clock. The selection of the high or 
low priority clock depends on the priority of the process from which the function 
is called. 

ProcTimePlus ~­

turns the result of adding timel to time2. ProcTimeMinus returns the 
result of subtracting time2 from timel. Both functions use modulo arithmetic 
- there is no overflow checking and the values are cyclic. 

ProcTimeAfter determines the relationship of one transputer clock value to 
another. It returns 1 if timel is after time2, otherwise 0 (zero). 

4.7.7 Input alternation 

Six routines are prQvided to allow for the selection of a ready channel from 
multiple parallel inputs. Separate versions of the routines are provided to deal 
with lists of channels. 

72 TDS 224 00 August 1990 



44 4 Parallel processing 

function 

int ProcAlt 

int ProcAltList 

int ProcSkipAlt 

int ProcSkipAltList 

int ProcTimerAlt 

int ProcTimerAltList 

Parameters 

(Channel *cl, 
Channel *c2, · ... ) 
(Channel **clist) 

(Channel *cl, 
Channel *<::2, · ... ) 
(Channel **clist) 

(int time, Channel *cl, 
Channel *c2, · ... ) 
(int time, Channel **clist) 

ProcAlt. ProcSkipAlt. and ProcTimerAlt take as input a list 
of pointers to channels terminated by NULL. Similarly. ProcAltList. 
ProcSkipAltList. and ProcTimerAltList take as input an array of 
channel pointers terminated by NULL. 

4.7.8 Simple alternation 

ProcAlt and ProcAltList suspend the current process until one of the tit 
channel arguments is ready to input. On completion. the functions return an 
index into the parameter list indicating the ready channel. 

For example. the following code sets i to O. 1. or 2. according to which of the 
three channels becomes ready first: 

int i;
Channel *cO, *c1, *c2;

i = ProcAlt(cO, cl, c2, NULL); 

Both ProcAlt and ProcAltList require at least one input parameter; if the 
parameter list is empty an error is generated. 

4.7.9 Polling several Inputs 

ProcSkipAlt and ProcSkipAlt:List check a series of channels without 
blocking the current process. If one of the channels is ready to input an index into 
the parameter list is returned. Both functions return immediately with a special 
code value and do not wait for a channel to become ready. 

72 TDS 224 00 August 1990 



4.8 Channel communication 45 

4.7.10 Timed Input 

ProcTimerAlt and ProcTimerAltList block the current process until 
one of the channels is ready for input or until a specified time is reached. If a 
channel becomes ready before the timeout occurs an index into the parameter 
list is returned, otherwise the timeout code is returned. 

4.7.11 Example of use 

All six alternation routines return an index to the ready channel rather than the 
data itself and must be followed by a statement which performs the input. 

int i;
char buffer[LENGTH];
Channel *cO, *cl, *c2;

i = ProcAlt(cO, cl, c2, NULL);
8witch(i)

{
case 0: /* channel cO ready */
Chanln(cO, buffer, LENGTH); breakj;

case 1: /* channel cl ready */ 
Chanln(cl, buffer, LENGTH); breakj; 

case 2: /* channel c2 ready */ 
Chanln(c2, buffer, LENGTH); breakj; 

default:
error handler(); breakj;

} ­

4.8 Channel communication 

Routines are provided for the passing of bytes and integers on channels 
(Chanln, ChanOut, and others), for implementing safe channel protocols (ex­
traordinary link handling), and for allocating and resetting channels. 

Communication between processes is effected by passing data on variables of 
type Channel. Functions are provided to allocate, initialise, and reset channels, 
to support input and output of characters, integers, and untyped data, and to 
assist with establishing reliable protocols (extraordinary link handling). 

Channel input and output functions must be paired for two processes to commu­
nicate and exchange data. 

72 TDS 224 00 August 1990 



46 4 Parallel processing 

4.8.1 Transputer link addresses 

Each link on a transputer is associated with an input and an output chan­
nel address. Transputer link addresses are defined in the library header file 
channel.h. 

4.8.2 Channel allocation, initialisation, and reset 

Function 

Channel *ChanAlloc 

int ChanReset 

void Chanlnit 

Parameters 

(void) 

(Channel *c) 

(Channel *c) 

ChanAlloc reserves space from the heap for the channel, initialises the chan­
nel and returns a pointer to it. If space cannot be allocated ChanAlloc returns 
NULL. 

Note: All calls to ChanAlloc should be followed by a check for successful 
allocation, and any NULL result (allocation unsuccessful) handled appropriately. 

ChanReset resets a channel to its tluiescent (non-communicating) state, re­
turning either a descriptor to the process waiting to communicate, or the value 
NotProcess_p which indicates the previous communication completed suc­
cessfully and the channel is free. NotProcess_p is a macro defined in the 
header file channel. h. 

A 
• 

Chanlnit initialises a channel by writing the the value NotProcess_p into 
the channel word. 

Note: Channels between processes running on the same transputer (soft chan­
nels) must always be allocated before use. If this is not done the same memory 
space may be referenced on behalf of the same channel. In this context alloca­
tion can be peformed by ChanAlloc or Chanlnit. 

4.8.3 Channel input and output 

ChanOut and Chanln perform the basic operation of passing bytes on a chan­
nel. The data can be of any type or size but the number of bytes must be spec­
ified. Typed data should be broken down into individual bytes for transmission 
and retyped on input. 

A 
• 

72 TDS 224 00 August 1990 



4.8 Channel communication 47 

ChanOutChar and ChanlnChar are similar except that they pass single char­
acters and no byte count is required. ChanOutlnt and Chanlnlnt are similar 
except that they pass single integers. 

Function 

void ChanOut 

void Chanln 

void ChanOutChar 

char ChanlnChar 

void ChanOutlnt 

int Chanlnlnt 

Parameters 

(Channel *c, void *cp, int cnt)

(Channel *c, void *cp, int cnt)

(Channel *c, char ch)

(Channel *c)

(Channel *c, int n)

(Channel *c)

ChanOut and Chanln are used to transfer data of any type. Each take as 
parameters the channel to be used, a pointer to the data to be passed, and the 
number of bytes of data. 

4.8.4 Reliable channel protocols 

The standard input and output channel functions do not attempt to recover from 
physical link failure. If there is a faulty connection between two processors, pro­
cesses waiting for communication on that link can never complete successfully. 

Four functions are provided to allow recovery from link failure. The functions 
can be used as they are, or in the definition of higher level functions for reliable 
channel protocols. 

72 TDS 224 00 August 1990 



48 4 Parallel processing 

Function 

int ChanOutTimeFail 

int ChanOutChanFail 

int ChanlnTimeFaill 

int ChanlnChanFail 

Parameters 

(Channel *ehan, void *ep, 
int ent, int time) 

(Channel *ehan, void *ep, 
int ent, Channel 

*failehan) 

(Channel *ehan, void *ep, 
int ent, int time) 

(Channel *ehan, void *ep, 
int ent, Channel 

*failehan) 

The functions are essentially the same as ChanOut and Chanln except that the 
communicating process becomes rescheduled after a specified timeout (...Time­
Fail functions) period or after receiving a communication on a special reset chan­
nel (...ChanFail functions). The ...ChanFail functions allow a communication to 
be aborted by a separate process set up to monitor the integrity of the link. 

The reliable channel functions offer somewhat more overhead than their Chanln 
and ChanOut counterparts. They are designed for establishing the integrity of .­
a link between two unfamiliar processors rather than as the standard method of • 
communicating data. 

The reliable communication routines do not attempt to reestablish communication 
between two processes. This is a problem which is properly addressed at the 
application level. 

4.8.5 Semaphores 

Semaphore handling routines are provided for programmers who wish to write 
traditional parallel code based on the acquisition and release of tokens. The 
routines are used within the implementation of INMOS C to parallelize certain 
functions in the standard i/o library. 

Semaphore support is included for implementing special operations rather than 
for implementing normal parallelism, for which the concurrency functions are 
provided. The standard process and channel functions provide the best way of 
using the transputer hardware to execute parallel code. 

Semaphores can be used to synchronise high with low priority processes. e 
72 TDS 224 00 August 1990 



49 4.8 Channel communication 

Note: Semaphores are mapped by the compiler onto standard channel pro­
cessing functions. This involves some overhead and for maximum efficiency the 
functions can be used directly. 

tit Use of semaphores by the library 

Semaphores are used in the language implementation to parallelize some library 
routines. For instance, they are used in the implementation of malloc, free, 
and realloc to prevent the heap being corrupted by simultaneous calls from 
concurrently executing processes. 

File descriptors used internally by the compiler also use semaphores. 

4.8.6 Semaphore allocation 

Two functions and a macro are provided to set up and initialise semaphores. 
All perform the same basic operation of creating a semaphore and their use 
depends on personal choice. 

Function 

Semaphore *SemAlloc 

void Semlnit 

SEMAPHOREINIT 

Parameters 

(int initvalue) 

(Semaphore *sem, int 
initvalue) 

(int initvalue) 

In all three cases x is the value of the semaphore on creation. 

If SemAlloc fails to allocate space for the semaphore a NULL result is returned. 
All calls to SemAlloc should be followed by a check for successful allocation, 
and the NULL result (allocation unsuccessful) should be handled appropriately. 

SEMAPHOREINIT can be used to initialise the semaphore at declaration time. 
It is particularly useful for static semaphores. 

Examples 

1 #include <semaphor.h>
Semaphore *newsemi
newsem = SemAlloc(X)i

2 #include <semaphor.h>
Semaphore semi

72 TDS 224 00 August 1990 



50 4 Perallel processing 

SemInit ('aem, X)i 

3 'include <aemaphor.h>
Semaphore aem = S~BOREINIT(z)i

4.8.7 semaphore handling

Two routines synchronise the acquisition and release of semaphores:

function Parameters 

void SemWait (S8Jtlaphore *aem) 

void Semsignal (Semaphore *aem) 

SemWait allows the calling process to acquire the semaphore. If the semaphore 
is already in use (that is, has the value 0), the current process is suspended 
and placed on a semaphore queue; if the semaphore is free the semaphore is 
acquired, that is, incremented, and the process continues to execute. 

Semsignal· releases the semaphore and runs the first process waiting on the 
semaphore queue. If there is no process waiting the semaphore is incremented. 

4.9 Parallel programming examples 

The following three examples are parallelized versions of the "Hello World" pro­
gram. They are designed to demonstrate: 

• How to set up parallel processes 

• How to bind processes together using a synchronisation channel 

• How to couple processes together for the exchange of data. 

The examples include checks for successful allocation of processes and chan­
nels. It is recommended that similar checks be included in all application pro­
grams to ensure correct error handling when process or channel space fails to 
be allocated. 

The p = Pi statement at the start of the code for each process disables the 
generation of a compiler warning message and has no operational effect in the 
code. For further details see section 4.7.1. 

Example 1 - Unsynchronised parallel processes. 

72 TDS 224 00 August 1990 



4.8 Parallel programming example. 51 

This example shows how to declare and run basic parallel processes in C. A time 
delay is introduced into one of the processes to demonstrate their independence 
from each other. 

'include <stdio.h>
'include <stdlib.h>
'include <process.h>

void hello(Process *p) 
{

P p;11: 

ProcWait(10000);
printf("\nBello,\n");

void world(Procesa *p) 
{

p = p;
printf("\nWorld\n");

int main()
{

Process *pi, *p2; 

pi = ProcAlloc(hello,O,O);
if (pi == NULL)

abort();
p2 = ProcAlloc(world,O,O);
if (p2 == NULL)

abort(); 

ProcPar(pi,p2,NULL); 

Example 2 - Processes synchronised by a channel. 

This example shows how the two processes in example 1 can synchronise their 
activity using channel communication. Using a channel to connect the two pro­
cesses forces process world to wait until hello has completed its output, 
and makes the processes interdependent. No status polling is required because 
synchronization is implicit in the channel reference. 

72 TDS 224 00 August 1990 



52 4 Parallel processing 

The integer channel functions are used for convenience. In this instance any 
pair of channel functions will do the job providing the communication protocols 
agree. The channel simply ties the two processes together, and communicates 
no real data. 

'include <stdio.h>
'include <stdlib.h>
#include <process.h>
'include <channel.h>

void hello(Process *p, Channel *ready) 
{

p = Pi
ProcWait(10000)i
printf(n\nHello,\nn)i
ChanOutInt(ready, 1);

void world(Process *p, Channel *ready) 
{ 

p = Pi
ChanInInt(ready);
printf(n\nWorld\nn);

int main () 
{ 

Process *p1, *p2i
Channel *readYi

ready = ChanAlloc()i
if (ready == NULL)

abort ();

p1 = ProcAlloc(hello,O,l,readY)i 
if (p1 == NULL) 

abort (); 
p2 = ProcAlloc(world,O,l,readY)i 
if (p2 == NULL) 

abort()i 

ProcPar(p1,p2,NULL)i 

72 TDS 22400 August 1990 



4.9 Parallel programming examples 53 

Example 3 - Communicating data over a channel. 

This example shows how two processes can both synchronise their behaviour 
and communicate data by the use of channels. 

In the example the process input prompts the user for a name and passes it 
to a second process display which adds it to a predefined string and displays 
a personalized greeting. 

'include <std1o.h>
'include <string.h>
'include <stdlib.h>
'include <process.h>
'include <channel.h>

void input(process *p, Channel *chan) 
{ 

char message[20];

p = p;
printf(n\nPlease type your name (20 letters max): n);
gets(message);
ChanOut(chan, message, 20);

void display(Process *p, Channel *chan) 
{ 

char name[20]; 

p = p;
Chanln(chan, name, 20);

printf("\nHello %s\n", name); 

int main () 
{ 

Process *p1, *p2;
Channel *chan;

chan = Ch~loc();
if (chan == NULL)

abort();

p1 = ProcAlloc(input,0,1,chan);
if (pI == NULL)

72 TDS 224 00 August 1990 



54 4 Parallel processing 

abort(); 
p2 = ProcAlloc(display,O,l,chan); 
if (p2 == NULL) 

abort(); 

ProcPar(pl,p2,NULL); 

72 TDS 224 00 August 1990 



5 Introduction to the
ANSI C compiler

This chapter provides an introduction to the ANSI C compiler and describes its 
main sequential and concurrent features. It describes the meaning of transputer 
types and transputer classes and how they can be used to generate common 
code for groups of processors. The chapter also provides a short introduction 
to the Runtime Library and outlines the support provided for low level and mixed 
language programming. 

5.1 Introduction 

The ANSI C compiler is an ANSI standard C compiler with concurrency exten­
sions to support parallel programming for transputers and transputer networks. 
The ANSI C compiler implementation was developed from the Perihelion Soft­
ware "CH Compiler and the Codemist Norcroft "C'· Compiler written by Drs. Arthur 
Norman and Alan Mycroft. 

The ANSI C compiler implements fully the X3.159-1989 ANSI standard for the 
C programming language. This standard is expected to be ratified as ISO stan­
dard ISO 9899 and to become the internationally recognised standard for the 
C programming language. The standard specifies the content and defines the 
interpretation of programs written in C, establishing standards of reliability, and 
maintainability and enhancing portability of programs between systems. 

ANSI C supports a standard model of parallel processing based on processes 
which interact via channels. The system is based on a set of predefined data 
types and structures and a set of library functions for creating processes and 
synchronising data transfer down channels. Semaphores are also supported 
using data types and library functions. 

5.2 Source and object code 

The C compiler takes as input an ANSI standard C source file and compiles it 
into an intermediate object file in standard format for linking with the linker tool 
ilink. The compiled object code is compatible with code generated by other 
INMOS compiler toolsets that generate TCOFF object code. Once linked, the 
code is converted to an executable program binary file using the configurer and 
collector tools. 

e Command line options control the target processor type and other facilities such 
as the degree of compiler checking, the format of error displays, and the output 

72 TDS 224 00 August 1990 



56 5 Introduction to the ANSI C complier 

file format. An option is available to disable code generation and output assembly 
code to a file. 

5.2.1 Object code format 

The compiler generates intermediate object code (TCOFF) that can be pro­
cessed by other tools in the toolset and when linked can be mixed with code 
written using other compatible INMOS toolsets. 

Unlike the standard UNIX C compiler ice does not automatically link the pro­
gram or generate an executable module. Code generated by ice must be linked 
transputer bootstrap information added before it can be run on a transputer. Mul­
titransputer programs must also include a configuration stage which describes 
how the software is to be placed on the transputer network. 

The steps involved in generating transputer executable code are described in 
chapter 3. Briefly, the compiler produces an object code file in the standard 
TCOFF format. This compiled object file must then be linked with all other code 
modules and libraries using the Iinker tool. Once the code is linked the final 
stages which generate loadable transputer code differ for single and multitrans­
puter programs. 

For multitransputer programs the linked unit is configured on a network with other 
linked units by the configurer tool, and subsequently processed by the collector _ 
tool. For single transputer programs the collector is used directly to append • 
bootstrap code to the linked unit. In both cases the file generated is one that 
can be loaded onto transputer hardware using the iserver tool. 

5.3 Transputer types and classes 

This section describes the meaning of transputer types and classes and how 
selection of the target processor affects the compilation and linking stages of 
program development. The section describes how to compile and link code 
targetted at a single processor type and then describes how to compile and link 
programs so that they can be executed on different processor types. 

5.3.1 Single transputer type 

For those users who have a single transputer or indeed a network of transputers 
all of the same type, the compilation and linking stages of program develop­
ment are very straightforward. Simply compile and link all your modules for the 
required processor. 

72 TDS 224 00 August 1990 



5.3 Transputer types and classes 57 

The compiler and linker both support command line options to select the following 
processor types: 

16-bit processors T212, M212, T222, T225 
32-bit processors T400, T414, T425, T800, T801, T805 

Example: to compile and link for a T800: 

iee hello -t800 
ilink hello.teo -t800 -f startup.lnk (UNIX) 

iee hello It800 
ilink hello.teo It800 
VMS) 

If startup.lnk (MS-DOS and 

The default target processor for both the compiler and linker is a T414, so if you 
are using this processor type the steps are even simpler: 

iee hello
ilink hello.teo -f startup.lnk (UNIX)

iee hello
ilink hello.teo If startup.lnk (MS-DOS and VMS)

5.3.2 Creating a program which can run on a range of transputers 

The compiler and linker use the concept of transputer class to enable programs 
to be developed which may be run on different transputer types without the need 
to recompile. 

A transputer class identifies an instruction set which is common to all the pro­
cessors in that class. When a program is compiled and linked for a transputer 
class it may be run on any member of that class. 

Note: Code created for a transputer class will often be less efficient than code 
created for a specific processor type. Therefore, creating code for a transputer 
class is discouraged in situations where program efficiency is a primary concern; 
it should only be performed where there is a genuine need to produce code 
which will run on a range of transputers or to reduce the size of a support library, 
where program efficiency is not a major concern. 

Table 5.1 lists all the transputer classes which the compiler and linker support 
and indicates which processors the program can be run on. 

In order to develop a program which will run on different processor types, perform 
the following steps: 

72 TDS 224 00 August 1990 



58 5 Introduction to the ANSI C complier 

Transputer 
class 

Processors which class can be run on 

T2 

T3 

T4 

T5 

T8 

T9 

TA 

TB 

T212,M212, T222, T225 

T225 

T414, T400, T425 

T400, T425 

T800, T801, T805 

T801, T805 

T400, T414, T425, T800, T801, T805 

T400, T414, T425 

Table 5.1 Transputer classes and target processor 

Identify the processors on which the program is to run. 

2 Using table 5.1 select the class which may be run on all the target pro­
cessors. 

3 Compile and link all the program modules for this class. 

For example to create a program which will run on both a T400 and a T425, 
compile and link for transputer class T5: 

ice hello -t5
ilink hello.tco -t5 -f startup.lnk (UNIX)

ice hello ItS
ilink hello. tco ItS If startup. lnk (MS-DOS and VMS)

Alternatively to create a program which will run on a T400, T425 or a T800, 
compile and link for transputer class TA. 

ice hello -ta
ilink hello.tco -1:a -f startup.lnk (UNIX)

ice hello Ita
ilink hello. tco Ita I st,artup .lnk (MS-DOS and VMS)

Programs compiled for the T212, M212 or T222 transputers, which make up 
class T2, can be run on a T225 (class T3) because a T225 has a similar but 
larger instruction set than class T2 transputers. Similarly code compiled for a 
T414 (class T4) may be run on a T400 or T425, which form class T5. The 
T400 and T425 have additional instructions to those of the T414. Likewise, code 
compiled for a T800 (class T8) may be run on a T801 or T805, which form class 

72 TDS 224 00 August 1990 



5.3 Transputer types and classes 59 

T9. Again the T801 and T805 have additional instructions to those of the T800. 

5.3.3 Object file containing code complied for different targets 

This section describes how object code compiled for one target processor or 
transputer class can be linked with code compiled for different transputer types 
or classes. 

The ability to do this provides the user with greater flexibility in the use of program 
modules: 

• An individual module can be compiled once e.g. for class T4, and then 
linked with separate programs to run on different processor types e.g. 
T414 and T425. 

• When the user is preparing a library for use by programs intended to 
run on different processor types, a single copy of code compiled for a 
transputer class can be inserted instead of multiple copies for specific 
transputers. 

When linking a collection of compiled units together into a single linked unit, 
the user must select a specific transputer type or transputer dass on which the 
linked unit is to run. As before, this determines the set of transputer types on 
which the code will run. When linking for a particular type or class, the linker 
will accept compilation units compiled for a compatible dass. Table 5.2 shows 
which transputer classes the linker will accept when linking for a particular class. 

Link 
class 

Transputer classes which 
may be linked 

T2 

T3 

T4 

T5 

T8 

T9 

TB 

TA 

T2 

T3, T2 

T4, TB, TA 

T5, T4, TB, TA 

T8 

T9, T8 

TB, TA 

TA 

Table 5.2 Unking transputer classes 

For example if the target processors are a T400 and a T425 the user may compile 
for classes T5 and TB and link the code for for class T5. 

72 TDS 224 00 August 1990 



60 5 Introduction to the ANSI C complier 

Code for a different transputer class can be included in the final linked unit, as 
long as : 

- it uses the instruction set or a subset, of the instruction set of the link 
class. 

- the calling conventions are the same. 

Classes T8 and T9 cannot be linked with class TA. This is a change from the 
previous issue of the toolset. The reason why these classes cannot be linked 
together is explained in section 5.3.4, which gives details of the differences be­
tween the instruction sets, as additional information.. 

A library can be made, consisting of the same modules compiled for different 
transputer types or classes. The user. then needs only to specify the library file 
to the linker, and the linker will choose a version of a required routine which is 
suitable for the system being linked. 

The linker uses the rules given in table 5.2 to determine whether a compiled 
module, found in a library, is suitable for linking with the current system. So, for 
example, to create a library which may be linked with any transputer class or 
specific transputer type, all routines could be compiled for classes T2, TA and 
T8. 

If there are a number of possible versions of a module in a library the best one 
(Le. the most specific for the system being linked) is chosen. 

-
• 

5.3.4 Classes/Instruction sets - additional Information 

The instruction sets of the transputer classes differ in the following ways: 

• Classes T2 and T3 support 16-bit transputers whereas all the other trans­
puter classes support 32-bit transputers. 

• Class T3 is the same as class T2 except that T3 has some extra instruc­
tions to support CRC and bit operations, special debugging functions and 
includes the dup instruction. 

• Class T5 is the same as class T4 except that T5 has extra instructions to 
perform CRC, 20 block moves, bit operations, special debugging func­
tions and also includes the dup instruction. 

• Class T9 is the same as class T8 except T9 has additional debugging 
instructions. 

72 TOS 224 00 August 1990 



5.3 Transputer types and classes 61 

• The T800, T801 and T805 processors use an on-chip floating point pro­
cessor to perform REAL arithmetic. Thus a large number of floating point 
instructions are available for these transputers and for their associated 
classes T8 and T9. These instructions are listed in section B.7. 

• For the T414, T400 and T425 processors Le. transputer classes T4 and 
T5 the implementation of REAL arithmetic is in the software. These trans­
puters make use of a small number of floating point support instructions 
listed in section B.6. 

• The instruction set of class TA only uses instructions which are common 
to the T400, T414, T425, T800, T801 and T805 transputers. Therefore 
it does not use the floating point instructions, the floating point support 
instructions or the extra instructions to perform CRC, 20 block moves or 
special debugging or bit operations and it does not use the dup instruc­
tion. 

• The instruction set of class TB only uses instructions which are common 
to the T400, T414 and T425 processors. Therefore it uses the floating 
point support instructions, but does not use the extra instructions to per­
form CRC, 20 block moves or special debugging or bit operations and it 
does not use the dup instruction. 

When considering the similarities and differences in the instruction sets of differ­
ent transputer classes it helps to divide them into the three separate structures 
as shown in figure 5.1. 

By comparison with Table 5.2 it can be seen that a module may only be linked 
with modules compiled for a transputer class which belongs to the same struc­
ture. 

Classes T2 and T3 which form the first structure are targetted at 16-bit transput­
ers so it is obvious that they cannot be linked with the other classes which are 
all targetted at 32-bit transputers. 

The reason why classes T8 and T9 cannot be linked with classes TA, TB, T5 
or T4 is because floating point results from functions are returned in a floating 
point register for T8 and T9 code and in an integer register for all other 32-bit 
processors. Even if your code does not perform real arithmetic, linking code 
compiled for a T9 or T8 with code compiled for any of the other classes is not 
permitted. 

To summarise, compiling code for the transputer classes TA and TB enables it 
to be run on a large number of transputer types, however, the code may not 
be as efficient as code compiled for one of the other transputer classes or for a 
specific transputer type. For example compiling code for class T5 enables the 

72 TOS 224 00 August 1990 



62 5 Introduction to the ANSI C complier 

Figure 5.1 Structures for mixing transputer types and classes 

CRC and 20 block move instructions to be used, whereas these instructions are 
not available to code compiled for classes TA and TB. 

5.4 Error modes 

The compiler generates object code in a single error mode known as UNIVER­
SAL. Other types of error modes can be generated by other INMOS compilers, 
for example, the occam 2 compiler OC, and may be encountered in mixed lan­
guage programs. The other two common modes are: HALT, which halts the 
transputer when the program generates a runtime error; and STOP, which stops 
the errant process but allows the rest of the program to continue. 

The linker requires all modules to be in the same error mode. Command line 
options are prOVided for setting all program modules to the same mode and 
should be used in mixed language programs containing code compiled in HALT 
or STOP modes, so that all C modules are converted to the correct mode. 

5.5 Preprocessor directives 

The ANSI C compiler incorporates an ANSI standard C preprocessor that allows 
source file inclusion, conditional code, conditional and unconditional definitions, ­
and implementation dependent pragmas. The following directives are supported: • 

72 TOS 224 00 August 1990 



5.5 Preprocessor directives 63 

#include #else #define
#elif #undef #endif
#if #line #ifdef
#pragma #ifndef terror

Detai,ls of the compiler directives can be found in chapter 11. 

5.5.1 Include flies 

Include files can contain declarations, definitions, or code. Header files for the 
runtime library are imported using the #include directive. 

The search paths for files imported with the #include directive are similar to 
those for the toolset as a whole (see section A.3), but differ in some important 
respects. Two forms of syntax can be used to specify the filename, one of which 
allows the search path to be extended by directories specified on the command 
line. For more details see section 11.3.1. 

5.5.2 Pragmas 

The #pragma directive allows some compiler operations to be activated or deac­
tivated in specific sections of code. Pragmas are defined for setting or overriding 
compiler options, particularly those concerned with code checking, for defining 
the size of linker code patches, and for allowing code written in other languages 
to be called from C. 

The pragmas provided with icc are listed below. 

INS_on INS_off INS-nolink 
INS_linkage INS....modpatchsize INS_codepatchsize 
INS_translate 

Details of pragma syntax and options can be found in section 11.3.11. 

5.5.3 Complier messages 

Compilation errors are displayed to the user by compiler messages. The format 
used for compiler messages is the same as the standard format used by all of 
the tools for error messages and is described in section A.6.1. 

Compiler messages are generated at four different severity levels: Warning; 
Error, Serious; and Fatal. 

72 TDS 224 00 August 1990 



64 5 Introduction to the ANSI C complier 

Errors which indicate non-compliance with ANSI C are generated at severity
levels Error and Serious. It may be possible to compile non-compliant code
by using the 'E*' series of compiler options which disable certain ANSI checks.
Severities greater than Warning prevent the generation of object code.

The display format for compiler messages starts with the error severity, gives the 
filename and line number where the error was found (if appropriate), and then 
gives a short reason for the error. 

Compiler options can be used to suppress certain types of error messages. If 
these options are specified on the command line the corresponding error mes­
sages are not generated. 

A complete list of compiler messages and their meanings can be found in chap­
ter 11. 

5.6 Runtime library 

The ANSI C runtime library contains the full set of ANSI functions, a set of 
concurrency functions, and some other miscellaneous non-ANSI functions. The 
library is supplied as compiled code for all transputer types and classes; the cor­
rect library code is selected at link time, based on the transputer target specified 
at compilation. A reduced form of the library is supplied for programs which re- _ 
quire no server-based communications, for example in embedded systems. The • 
correct library is linked into the program using separate linker command files for 
the full and reduced libraries. 

Access to the functions is via header files which are included at the start of 
a program. These contain function declarations, constants, and common vari­
ables. The ANSI library uses the standard ANSI set of header files, the con­
currency library is split over three files dealing with process control, channels, 
and semaphores, and the miscellaneous functions are divided into several files 
containing related groups. 

The library is installed on the system as two files, one containing the full set of 
functions, and the other containing all functions except those that require access 
to the host file server. The two libraries are known as the full and reduced 
libraries respectively. 

The library files are modular, with a fine granularity. Each module contains either 
a single function, or a few related functions, so that only the minimum amount 
of code is loaded. The library is indexed for quick look-up by the compiler and 
linker. 

72 TDS 224 00 August 1990 



5.7 Low level programming 65 

5.6.1 Reduced library 

Code which does not communicate with the host file server, that is, does not 
use any of the server-based functions, can be linked with the reduced runtime 
library. Using the reduced library ensures that code that is not required, such as 
the code that ensures proper closedown of the i/o system, is not loaded with the 
program. 

The reduced library contains all the functions (including concurrency functions) 
that are in the full library, but omits those which require the host file server. 
This includes common ANSI functions such as printf and qetenv and Vo 
dependent functions such as host_info. 

The reduced library can be used to limit the size of code in systems where 
memory space is limited, such as embedded systems. It can also be used to 
generate code for remote nodes in a transputer network, that is, those that have 
no direct dialogue with the host. (Nodes can still communicate with each other 
using the channel functions, which are included in the reduced library.) 

A few functions from the standard i/o library, not true i/o functions, are avail­
able in the reduced library. These are the functions sprintf, sscanf, and 
vsprintf, which are used to format and deformat strings. The three functions 
are declared in the header file stdiored. h. 

5.7 Low level programming 

ice incorporates support for low level programming in the form of a machine 
code insertion facility and somepredefined names which can be used to obtain 
a limited amount of low level information about compiled code. 

5.7.1 Assembly code support 

The compiler provides support for in line transputer assembly code in C pro­
grams. Sequences of transputer instructions can be embedded in C code using 
the __asm construct. 

__asm can be useful for implementing low level operations such as controlling 
peripheral devices, and for optimising the performance of critical sections of 
code. It is not intended for the wholesale inclusion of large blocks of assembly 
code and should not be used for this purpose. 

Details of how to use the assembly code insertion facility, with examples illus­
trating commonly performed operations, can be found in chapter 4 I Language 
extensions' of the accompanying Reference Manual. 

72 TDS 22400 August 1990 



66 5 Introduction to the ANSI C complier 

5.7.2 Complier predeflnes 

The two predefined names _lab and _params can be used as variables to 
determine the position of a file's static data and a function's parameter block 
respectively. For further details see section 11.5.3. 

5.8 Mixed language programming 

Code written using other INMOS language compilers that generate TCOFF stan­
dard file format (such as the occam 2 compiler oc) can be incorporated into 
C programs, with certain restrictions, by defining them as external functions and 
then linking them in the normal way. The compiler pragma IMS..nolink is then 
used to compile the function in the C program without a static link parameter. 

Mixed language programs can be constructed easily using the configuration sys­
tem. Individual linked units written in different languages can be placed on any 
transputer in a network; to the configurer all linked units are the same and can 
be mixed in any combination. The method can also be used for mixing code 
on the same, or a standalone, processor; in this case the processor is simply 
treated as a single-node network and configured in just the same way. 

Chapter 9 explains how to create mixed language programs using the configurer, 
how to import occam code into C programs, and how to call C functions from _ 
occam. ., 

72 TDS 224 00 August 1990 



6 Configuring transputer 
programs 

This chapter describes the configuration language in detail and shows how it is 
used to map software programs onto transputer networks. The chapter includes 
examples of some simple configuration descriptions for single and two-processor 
networks. 

6.1 Introduction 

Transputer programs can be configured to execute on any physical arrangement 
of transputers. The assignment of independent but communicating program units 
to a specific transputer network is known as configuration. 

Configuration is achieved by first writing a configuration description in the network 
configuration language. The configuration description is then processed by the 
configurer tool to generate a configuration data file, and then by the collector 
tool to generate a transputer loadable file, which can be loaded directly onto the 
network. 

Within the configuration description software and hardware networks are defined 
independently and married together using a mapping description. The mapping 
description assigns software modules to specific processors and places channel 
inputs and outputs on transputer links. The software modules referenced in the 
configuration description must be Iinked units. 

6.2 Configuration model 

The configuration model consists of a software network consisting of processes 
joined to a hardware network of processors by a mapping description. 

The software network is a description of the way in which processes interact; 
processes are defined with specific interface parameters and connected to each 
other using input and output channels defined in the configuration language. 
Configuration channels, like channels in source programs, are unidirectional, 
point-to-point connections. The number of channels is unlimited. Connections to 
the outside world are made via channels declared outside the processes known 
as channel edges. Channel edges can be connected to channels defined within 
a process to enable connections to be made to other software networks. 

The hardware network describes the processors on the network and the physical 
link connections between them. The number of links available on each processor 

72 TDS 224 00 August 1990 



68 6 Conflgurlng transputer programs 

is determined by the processor type. The hardware network interfaces to the 
outside world via a special configuration type called an edge. 

The main elements of the configuration model are illustrated below. 

Processes Mapping Processors 

TO 

Links 

T1 
E H 
o 0 
G s 
E t 

Software and hardware networks are built up from generic network types called 
nodes. Definitions of software nodes (processes) and hardware nodes (pro­
cessors) that form the basic elements of softWare and hardware networks are 
configuration defaults which are read from a file of predefinitions when the con­
figurer is invoked. 

6.3 Configuration language 

The network configuration language is a special purpose language that allows 
linked object code to be connected to other linked units and placed on any 
physical arrangement of transputers. The language has been designed to be 
compatible with several language toolsets and allows linked code to be mixed 
on the same network. The main features of the language are listed below. 

• The language is C-like. Declarations and expressions use C notation. 

• Software and hardware networks are described in a simple declarative 
way using a common syntax. 

• Replication and conditional statements make it easy to describe regular 
networks, and to define irregularities within them. 

• New nodes types can be created from existing node types. 

• Identifiers have global scope (except replication counters). 

72 TDS 224 00 August 1990 



6.3 Configuration language 69 

• Arrays can be declared of processes, processors, channels, and edges. 

• Source files can be included. 

• Comments can be inserted at any point. 

• All statements except if and rep must be terminated with a semicolon. 

A formal description of the language can be found in appendix C. The following 
sections describe the main features of the language and explain each of the 
language statements. 

6.3.1 Identifiers 

Identifiers represent elements used in the configuration, for example proces­
sors, processes, and channels. Most identifiers will be associated with a type, 
although untyped constant identifiers are also permitted. 

Symbolic names can consist of any alphabetic character, any decimal digit, or the 
underscore character but must begin with a letter or underscore. All characters 
in the name are significant and case sensitive. 

6.3.2 Types

Six base types are defined within the language:

node input output edge 
connection numeric value 

The predefinitions process and processor derived from the node type are 
contained in a file that is read by the configurer at startup. 

numeric value can have the following subtypes: 

char (character) int (32-bit integer) 
float (32-bit IEEE real) double (64-bit IEEE real) 

The char subtype represents the integer value of a character's ASCII code. 
The default subtype for a numeric constant if none is implied, is into 

Node types are associated with a number of attributes. The element attribute 
is common to software and hardware nodes and depending on its value defines 
attributes which are specific for software and hardware nodes. 

72 TDS 224 00 August 1990 



70 6 Configurlng transputer programs 

6.3.3 Constants 

Numeric and character constants are defined using the val statement. A sub­
type can be specified but if it is not it will be deduced from the expression. For 
example: 

val gridsize 4; - integer 
val x_coord 2.0£; - single length real 

Integers can be expressed in decimal, octal, or hexadecimal. Suffixes K and M 
can be used to indicate 'Kilo' (210) and 'Mega' (220) values for example, when 
defining processor memory size. 

Character constants must be enclosed within single quotes and string constants 
within double quotes. Standard C escape sequences can be used to specify 
control characters such as Tab and EOl ('end-of-Iine'). For example: 

val c ' c' ; - character constant 
val greeting "Hello\nU 

; - string constant 

Note: Any string constant that is to be passed to a C program must be explicitly 
terminated by the NUll character escape sequence \ O. 

For a full list of escape sequences supported in the configuration language see 
section C.4.3. 

Constant arrays can be defined by enclosing the sequence of values in braces. 
Multidimensional constant arrays are permitted. For example: 

val pow2 {1, 2, 4, 8, 16, 32, 64, 128}; 

val powers {{1, 1, 1}, {2, 4, 8}, {3, 6, 9}}; 

6.3.4 Booleans 

The boolean constants TRUE and FALSE are predefined as integer constants 
with values one and zero respectively. In conditional statements any non-zero 
expression counts as TRUE. 

6.3.5 Expressions and arithmetic 

Expressions follow the syntax of the C language. Standard C operator prece­
dence determines the order of evaluation, and brackets can be used to override 
the normal ordering. Operators supported are as follows: 

72 TDS 224 00 August 1990 



6.3 Configuration language 71 

Unary: - + ­

Binary: + - * / % & I A && 11 « » < <= > >= -- != 

Ternary: ?: 

All integer arithmetic is carried out to 32 bit precision and also passed as 32 bit 
integer values regardless of the processor type, that is, it is independent of the
word length of the processor.

Strings and arrays can be tested for equality in the same way as integer expres­
sions using the == and ! = operators. 

6.3.6 Arrays 

Arrays can be defined of any base or user-defined type. The size and dimen­
sions are specified after the symbol name using the square bracket convention. 
Subscripts are numbered from zero. Values are stored in row order. 

All elements in constant arrays must be of the same type and for multidimensional 
constant arrays the dimension size of all the subarrays must be consistent. 

Arrays are commonly used to define the basic elements of the hardware and 
software networks. For example: 

processor qrid[4];

process slave[4];

Elements of arrays can be referenced by specifying the subscript either after the 
array name or after the array declaration. For example: 

val y x[i]; 

val x {1, 2, 3}[i]; 

6.3.7 Conditional statement 

The if ... else statement controls the execution of the succeeding statement. 
The syntax of the statement is as follows: 

i ~ exp statement I 81S8 statement J; 

where: exp is any valid expression. 

72 TDS 224 00 August 1990 



72 6 Configuring transputer programs 

statement can be a single statement or a group of statements. 

if is commonly used to exclude part of a network from a replicated declaration. 
For example: 

T414 (memory=lM) grid[4]; 

edge freelink[4]; 

rep i = 0 to 3 
{ 
connect qrid[i] .link[2] to grid[i] .link[3]; 

if (i == 0) 
connect grid[i] .1ink[1] to host; 

else 
connect grid[i] .1ink[1] to freelink[i]; 

if can also be useful to selectively place processes on specific types of pro­
cessors, for example: 

if remote.memory >= 2M
place master on remote;

else
place master on root;

This places the master process on processor remote only if the processor is 
equipped with at least 2 Megabytes of memory. 

6.3.8 Replication 

The rep statement replicates the succeeding statement or group of statements. 
rep is a counted loop in which the control bounds are integers or integer ex­
pressions. 

The rep statement has two syntactic .forms in which the number of replications 
is specified either by a range of values or by an initial value followed by a count: 

rep index = exp to exp statement 

rep index = exp for exp statement 

72 TDS 224 00 August 1990 



6.4 Network definition 73 

For example: 

rep i - 0 to 9
{
}

rep i - 0 for 10
{
}

If the range or count is zero the succeeding statement or group of statements is 
not executed. 

Replication is commonly used to define regular networks such as grids, rings, 
and hyper-cubes and to place processes on them. It can be used for both 
hardware and software networks. 

The following example of the use of rep connects four T414 transputers in 
a square--array and places the same process on each. The processors are 
connected to their neighbours via links 2 and 3; links 0 and 1 processor are left 
unconnected: 

T414(memory==lM) grid[4]; 

rep i == 0 to 3 
connect grid[i].link[2] to grid[i] .link[3]; 

process slave[4] 

rep i == 0 for 4
place slave[i] on grid[i];

6.3.9 Predefined functions 

The function size (array) is predefined. size returns the number of elements 
in its array argument. If the argument is not an array then size returns the 
value 1 (one). 

6.4 Network definition 

Software and hardware networks are defined using a common syntax based on 
the declaration of nodes and their interconnection by language statements. 

72 TDS 224 00 August 1990 



74 6 Conflgurlng transputer programs 

6.4.1 Nodes 

Nodes are a generic network type from which the software node type process 
and hardware node type processor are derived. Although not a formal part 
of language syntax, process and processor types are predefined in a configu­
ration defaults file input by the configurer and can be used as though they are 
defined in the language. Definitions of all the predefined types can be found in 
section C.3.2. 

Nodes are associated with a number of attributes, the exact number and na­
ture of which depends on the common attribute element. Elements of type 
processor imply the presence of the type and memory attributes, and ele­
ments of type process imply the existence of a set of runtime process attributes 
such as interface parameters, priority of execution, memory requirements, and 
program memory segment ordering. 

Node attributes can be accessed in expressions using the dot convention and 
can be used to control the configuration. For example: 

if (remote.memory >- 211)
place p on remote;

else
place p on root;

Process and processor attributes are described in more detail below. 

6.4.2 New node types 

Refinements of existing node types can be created by using the define state­
ment to specify nodes with specific attributes. For example, the predefined node 
types process and processo:t are defined in the following way: 

define node(element="processor") processor; 

define node(element="process") process; 

Node types can be used to define other types. For example, the base type 
processor can be refined into a TRAM definition in the following way: 

define processor(type • "T414") T414; 

define T414 (memory - 111) B403; 

New software node types can be defined in the same way. For example: 

72 TDS 224 00 August 1990 



6.5 Software network description 75 

de~in. process(stackaize • 10X, 
interface (int count, 

input command, 
output result» workpackage; 

Once defined, new types can be used to declare variables in the same way as 
base types. For example: 

'1'414 worker; 

B403 root; 

workpackaqe slave[4]; 

6.4.3 Connections 

Nodes are connected by the connect statement which can be used to join soft­
ware channels (unidirectional), transputer links (bidirectional), or network edges 
(bidirectional). The statement has two equivalent syntactic forms: 

connect item to item [ by connection ] 

connect item, item [ by connection ] 

Examples of the use of connect can be found in succeeding sections. 

Prohibited connections 

Connecting processes to processors, inputs to inputs, and outputs to outputs 
(except channel to edge connections) is prohibited and generates a configurer 
error. 

Connections can also be named for later use in the configuration, using the 
connection type. 

6.5 Software network description 

The software network is composed of nodes of the predefined type process 
connected by input and output channels. The software description consists of a 
series of process declarations along with the program statements that connect 
processes together and define the network's interface with the outside world. 
A separate statement is used to assign compiled and linked modules to the 
software processes. 

72 TDS 224 00 August 1990 



76 6 Conflgurlng transputer programs 

A typical process declaration would be as follows: 

proce•• (8tacksize~2K,
interface(int count, input in» p;

6.5.1 Process attributes 

Each process possesses a set of attributes some of which must be given val­
ues in the process declaration; others are optional with built-in defaults. The
attributes of a process are as follows:

stacksize The size of stack required for the process in bytes. Must be
specified.

heapsize The size of heap required for the process in bytes. Must be
specified.

interface The list of parameters to tha process. Should be specified
if external communications are required.

priority The execution priority for the process. Priority can be HIGH
or LOW. Optional.

order The ordering of program segments in memory. Segm~nts

which can be ordered are code, stack, static, heap,
and vector. Optional.

6.5.2 Stack and heap size 

For C programs stacksi2:e and heapsize are mandatory. The sizes of the 
program segments code, vector, and static are fixed by the compiler and 
linker. 

6.5.3 Interface 

The interface attribute is mandatory and defines the way in which the process 
"in.teracts with the outside world or other processes via a set of parameters. The 
parameters can be read by a source program using the runtime library function 
qet_param. 

Parameters can be input channels, output channels, simple datatypes, and ar­
rays of these. Permitted datatypes for the parameters are int, char, float, 
and double. Strings are defined as arrays of characters and may be initialised _ 
by a quoted string constant. • 

72 TDS 224 00 August 1990 



6.5 Software network description 77 

Each input channel can only be connected to an output channel on another 
process and vice versa for output channels. The rules for connecting channels 
to software network edges is described in section 6.5.8. 

Values can be defined for interface parameters either by assigning a value in the 
process declaration or by a separate statement. For example: 

process (interface (int count = 10,
input command,
output result» task;

\* count defined at declaration as 10 *\ 

task (count = 100); 

\* count redefined as 100; this value for count 
remains in force until redefined again *\ 

Values given to parameters may also be derived from a replicator count using 
an expression including the index variable. 

Array parameters 

When assigning parameters which are numeric arrays it is not possible to assign 
individual elements of the array but only the complete array. For example: 

x(y = {0,1,2,3}) 

qet_param function 

A special library function qet_param is provided to receive the process interface 
parameters within the C program. The function returns pointers to the parameters 
and is used to retrieve them from the configuration code. 

Details of the function's operation can be found under the function description in 
the accompanying Reference Manual. 

Host server channels 

For C programs which use the host file server the first scalar input channel and 
the first scalar output channel in the list of parameters must be the host server 
channels. It should be noted that it is the programmer's responsibility to ensure 
the channels are constructed correctly and declared in the configuration. The 

72 TDS 224 00 August 1990 



78 6 Conflgurlng transputer programs 

server channels, like other interface parameters, can be accessed by calling 
qet-param. 

For programs linked with the reduced library there is no access to the server 
and therefore the server channels are not required. In this case all channels 
declared in the interface definitioh are those defined for use in the program. 

Note: The first arrays of input and output channels defined in the interface def­
inition are passed into the main entry point as arrays of pointers to channels. 
However, they are still accessible through qet_param and this is the recom­
mended way of retrieving them. 

6.5.4 Execution priority 

Runtime priority for the process can be set high or low by specifying 
priority=HIGH or priority=LOW. The defaUlt is LOW priority. 

6.5.5 Segment ordering 

The order in which the four program segments are placed in transputer memory 
can be changed by specifying an ordering priority for each or any of the four 
code segments. The default is no segment ordering. 

The syntax for the order attribute is as follows: 

order ( {segment = value} ) 

where: segment is one of: code stack vector static heap 

value is the ordering priority and can take any integer value. Positive val­
ues indicate placement higher in memory and imply lower speed access; 
negative values indicate lower memory placement and imply higher speed 
access. The lower the placement, the greater the chance that code will 
be placed in on-ehip RAM, which has the fastest access. 

If no order is specified a default segment ordering is applied. Details of the 
ordering can be found in section 12.3.7. 

72 TDS 224 00 August 1990 



6.5 Software network description 79 

6.5.6 Defining new process types 

Specific process types can be defined and used later in the program with dif­
ferent actual parameters. For example, the following code defines a process 
type fil.terwhich is later used to declare three filter processes with differ­
ent values for the cutoff parameter. The processes are configured to form 
a pipeline starting and finishing at the host. The connection statements linking 
interlace channel variables to host channels are shown for completeness. The 
host channels are assumed to have been defined earlier in the program. 

process (stacksize - 200,
interface (input in,
output out, int cutoff» filter:

filter x, y, z; 

x(cutoff = 10);
y(cutoff = 20);
z(cutoff = 10);

connect x.in to from host;
connect y.in to x.out;
connect z.in to y.out;
connect z.out to to_host;

Attributes can also be activated for specific instances of a type by specifying 
them within the declaration. In the following example a heap size is defined for 
a single instance of the worker type; no other instances are affected and all 
other attributes are unchanged: 

worker (heapsize = SOK) ant; 

Extra attributes can also be supplied in process definitions or in attribute assign­
ment statements. For example: 

define worker (heapsize = 20K) small_worker; 
small_worker drone; 

worker bee:
bee (heapsize 200K);

6.5.7 Input and output channels 

Processes which cooperate with each other and exchange data are connected 
by channels of types input or output. These channels are equivalent to 
channels in source code programs. 

72 TDS 224 00 August 1990 



80 6 Conflgurlng transputer programs 

To send or receive data processes must declare input and output channels. The 
sending process must declare an input channel and the receiving process an 
output channel. The two channels are then connected by a connect statement. 

In the following example a host monitor process host_process sends data 
via the output channel from..host to the application process p, which receives 
it on the input channel in. 

process(stacksize = 200, 
interface (int count, input in» p; 

process(stacksize = 200, 
interface (output from_host» host-process; 

connect p.in to host-process.from_host; 

6.5.8 Edge connections 

The software network can be connected to the outside world by channel edges. 
Channel edges are input and output channels declared within the software de­
scription and connected to input and output channels of a process. A process 
can then import or export data from the software network. Edges are commonly 
used for interfacing i/o processes to the host server. 

Unlike channels between processes, connections between edges and process 
channels must be of the same polarity, that is, an input edge must be connected 
to an input channel and an output edge to an output channel. This preserves 
the direction of the channel parameter. For example, given the process p in the 
above example, the following code creates an interface between p and the host 
server: 

input from_server; /* input edge */ 
output to_server; /* output edge */ 

connect p.in to from_server; /* input path */ 
connect p.out to to_server~ /* output path */ 

6.5.9 Assigning code to processes 

Code is assigned to specific processes by means of the use statement. This 
associates a specific object module with a process. The module must be a 
linked unit. In the following example the same linked module filter .lku is 

a 
• 

e
72 TDS 224 00 August 1990 



6.6 Hardware network description 81 

assigned to each of three processes: 

filter x, y, z; 

use "filter.lku" for x; 
use "filter.lku" for y; 
use "filter.lku" for z; 

Linked units can also be associated with process types. This allows the same 
code to be assigned to several processes in a single statement. For example: 

filter x, y, z; 

use "filter.lku" for filter; 

6.6 Hardware network description 

Hardware networks consist of nodes of type processor connected by pro­
cessor links. The hardware description contains declarations of processors on 
the network along with the connect statements that join them by their processor 
links. 

Processors have two user-definable attributes: 

type The processor type. INMOS standard transputer types are 
predefined. 

memory The amount of memory available to the processor. 

All attributes can be specified when the processor is declared. 

Links are special attributes of processors that predefined within the language. 
Once the type is defined all processors declared using that name acquire the 
appropriate number of links. Link attributes cannot be changed. 

Links can be connected to links on other processors or mapped onto software 
channels. 

A typical processor declaration would be: 

processor(type = "T414", memory = 114) root; 

72 TDS 224 00 August 1990 



82 6 Conflgurlng Iransputer programs 

6.6.1 Processor links 

The number of links on each processor type is predefined within the configurer 
via the processor type attribute. The value of this attribute is defined for a11 
INMOS transputer types listed in the standard include file seteonf. ine. 

Links are referenced using the dot notation and cah be treated as arrays. For
example, the size () function can be used to determine the number of links on
a processor:

size ('1'414. link) 

6.6.2 Defining new processo.r types 

Processor types can be defined for later use in a program. In the following
example the processor type 'laoo is first defined and then used to define a
further processor type called B405 which is a T800 with a set amount of memory.
This definition corresponds to the INMOS iq systems IMS 8405 TRAM product.

define proeessor(type = "'laOO") 'laOO; 

define 'laOO(memory = aM) B405; 

Certain processor types are predefined in the configurer hy the automatic in- e 
elusion of the seteonf. inc file at startup. The file provides definitions of all 
transputer types manufactured by INMOS along with other predefinitions. 

Predefined types can be used as though they are part of the language and do 
not need to be referenced by an include statement. 

The definitions are listed in section C.3.2. 

6.6.3 Links 

Processors are connected to each other by processor links. The number of links 
is defined by the processor type. Unk numbers begin at zero. 

Links can only be connected to one other link (or network edge, see below). 
Links can be left unconnected. 

Links are specified using the dot convention as in C structures. They can also 
be subscripted as though they are arrays. For example: 

connect root.link[2] to transputerl.link[O] 

72 TDS 224 00 August 1990 



6.7 Mapping description 83 

6.6.4 Edges 

Edges are hardware network variables which bring transputer links out of the 
network for connection to the outside world, that is, to external devices or other 
networks. They are directly analogous to channel edges in software networks. 
Edges have the same characteristics as processor links. Edges can only be 
connected to other transputer links. 

In the following example an edge is declared which allows a processor in a 
hardware network to input data from an A-to-D convertor: 

T414 data_handler; 

connect data_handler.link[l] to a_to_d; 

.A special edge called host is predefined in configurer defaults file and can be 
used without defining it in the program. In networks that will be loaded from 
a host system, there must be one, and only one, processor link connected to 
host. 

Arrays of edges can be useful constructions. In the following example an array 
of edges is declared for a series of sampling lines and then connected to three 
links of a processor which logs the data from each line. The remaining link is 
used to boot the processor. 

edge samplers[3]; 

rep i =. 0 to 2 
connect data_logger.link[i] to samplers[i]; 

6.7 Mapping description 

The mapping description defines how processes and channels declared in the 
software description should be assigned to processors and links defined in the 
hardware description. Assignment is performed in both cases by the place 
statement: 

place process on processor; 

place channel on link; 

72 TDS 224 00 August 1990 



84 6 Conflgurlng transputer programs 

6.7.1 Placement of channels 

The configurer automatically places software channels on links using the place­
ment of processes processors as a guide. Explicit placement of channels on 
links is only required where links are used for special purposes, for example, 
connection to a device, or where an application uses input and output channels 
separately, as in software implementations of high-speed links. 

The configurer also performs automatic placement of one end of a connection if 
the other end is explicitly placed. 

Predefined connection names can also be used to place named channels on 
named links. For example: 

connect root.link[O] to host by root_linkO_host; 

connect master.ts to to server by master ts to server; 
connect master.fs to from_server by master_fs_from_server; 

place master ts to server on root linkO host; 
place master:fs:from_server on root_linkO_host; 

Note that the order of automatic channel placements is defined by the order of 
the elements in the connect statements. In the above example the placements 
would be as follows: 

place master.ts on root.link[O]; 
place master.fs on root.link[O]; 

place to server on host;
place from_server on host;

6.8 Software network example 

In the following example the software network consists of an i/o process 
host_process and a worker process task connected by the channels in 
and out. Two processors root and processorl joined by a single link con­
nection form the hardware network. The root processor is already connected to 
the host via link zero. The mapping description places each process on one of 
the processors and assigns channels between the processes to the appropriate 
links: 

connect host-process.out, task. in;
connect host-process.in, task. out;

72 TDS 224 00 August 1990 



6.9 Terminating configured processes 85 

connect root.link[l] to processorl.link[O]; 

place host-process on root;
place task on processorl;

6.9 Terminating configured processes 

Configured processes (processes that have been configured on a processor by 
icconf) cannot use exit to terminate the program. In the case of configured 
processes exit merely terminates the process from which it is called; it does 
not affect the server and other processes will continue to run. 

To terminate the server from a configured process use exit_terminate, 
which shuts down the server and terminates the program. Details of the function 
can be found in chapter 2 of the accompanying Reference Manual. 

Configured processes which use the reduced library cannot terminate the pro­
gram (even by using exit_terminate) because they have no link with the 
server. In these cases a call to exit_terminate has the same effect as 
exit. 

6.10 Checking the configuration 

Configurations may be checked against the hardware on a transputer board using 
a network check program such as ispy. The ispy program supplied as part 
of the board support software for INMOS iq systems products. These products 
are available separately from your local INMOS distributor. 

6.11 Configuration examples 

Note: The examples presented here are simply intended to illustrate the syntax 
of configuration language statements and how they are used to form a config­
uration description. They are not intended to be tutorial examples and are not 
provided on the toolset examples directory. 

Further examples illustrating how to use the configuration language and configure 
software on various network topologies can be found on the confiq examples 
subdirectory. This subdirectory contains the program configuration source files 
and a number of Makefiles and batch files to assist with program building. A 
READ ME file provides a summary of the directory contents, describes the pre­
requisite hardware, and gives instructions on how to build the programs. 

72 TDS 224 00 August 1990 



86 6 Conflgurlng transputer programs 

Note: A thorough knowledge of the way the configuration language defines 
software and hardware networks and links them by mapping statements is a pre­
requisite to understanding the configuration model. Readers are recommended 
to study the examples at length and be thoroughly familiar with the language 
before attempting to write complex configurations. 

Example 1 - Single process configured on one transputer. 

The following example shows how to configure a program consisting of a single 
process on one- transputer. The single process contains all the code in the 
program including that required for host communication. 

/* Hardware description:
declare processor memory size;
connect link 1 to host edge */

T800 (memory = 1N) root; 

connect host to root.link[l); 

/* Software description: declare channels; 
declare process and interface params; 
connect interface to inputs and outputs */ 

input from_server;
output to_server;

process (stacksize = 8K, heapsize = SOK,
interface (input command,

output reply» job;

connect from server to job. command;
connect to_server to job. reply;

/* Mapping description:
define object file;
place process on processor;
place channels on edge "host" */

use "job.lku" for job; 

place job on root; 

place from server on host;
place to_server on host;

72 TDS 224 00 August 1990 



6.11 Configuration examples 87 

Example 2 - Two processes configured on a two-processor network. 

The program consists of two processes. One process acts as the interface to the 
host (the i/o process) and the other performs a complex numerical calculation. 

The hardware consists of a T425 and a T800 transputer connected together by 
a single ~link. The T425 acts as the root transputer. The i/o process is to be 
executed on the T425 and the numerical process on the T800. 

/* Hardware description: */ 

T425 (memory lM) root;
TSOO (memory 2M) worker;

connect root.link[l] to host;
connect root.link[2] to worker.link[l];

/* Software description: */ 

input from_server; /* input edge */
output to_server; /* output edge */

process (stacksize SK, heapsize = 50K, 
interface (input command, 

output reply, 
output feed, 
input response» controller; 

connect from server to controller. command;
connect to_server to controller. reply;

process (stacksize 16K, heapsize = 512K, 
interface (input feed, 

output response» task; 

connect controller. feed to task. feed; 
connect task. response to controller. response; 

/* Mapping description: */ 

use "control.lku" for controller;
use "compute.lku" for task;

place controller on root;
place task on worker;

place from_server on host;
place to_server on host;

72 TDS 224 00 August 1990 



88 6 Configuring transputer programs 

6.12 Configuration language summary 

Numeric types 

int Integer type. 

char Character type. 

float Single length floating point type (IEEE 754). 

double Double length floating point type (IEEE 754). 

Configuration types 

node A point in a software or hardware network. Has the general 
attribute element (process or processor) and other 
specific attributes for software and hardware nodes. 

connection A defined connection type between links or channels. 

edge Declares a network edge. 

input Declares a software process input channel or edge. 

output Declares a software process output channel or edge. 

Language constructs 

if 

rep 

connect 

place 

use 

#include 

if exp statement else statement 

Simple conditional construct. exp can be any valid integer 
expression and statement can be the single succeeding 
statement or a gtoup of statements. else is optional. 

rep index = exp to exp statement 
rep index = exp for exp statement 

Simple replication construct. Can be controlled by a range
or a count.

connect item to item by connection;
connect item, item by connection;

Joins channels to channels, links to links, channels to soft­
ware edges, and links to hardware edges. by is optional.

place process on processor; 
place channel on link; 

Assigns a software process to a processor, or a channel to 
a link. 

use filename for process; 

Assigns a linked unit to a process. 

#include filename 

Includes another source file. 

e

e

72 TDS 224 00 August 1990 



89 6.12 Configuration language summary 

Definitions 

val identifier exp; val 

Defines a numeric constant. The type is deduced from the type 
of the expression. 

define type ( attributes) identifier; 

Defines a node type. A list of attributes is optional. 

Operators 

Unary: + - ! ­
Binary: + - / % & 1 t< » && 11 < > <= >= 

define 

* -- != 
Ternary: ?: 

Functions 

size Returns the size of an array. 

Node ~pes

process PROCESS Software process node type. 

processor Hardware processor node type. 
PROCESSOR 

T2l2 t2l2 T222 IMS T2 series. 
t222 
T22S t22S M2l2 
m2l2 

T400 t400 IMS T4 series. 
T4l4 t4l4 
T42S t42S 

T800 t800 IMS TB series. 
T80l t80l 
TeOS teOS 

Constants 

HIGH,high The integer constant 0 (zero). Used to indicate 
a high priority process. 

LOW, low The integer constant 1 (one). Used to indicate 
a low priority process. 

TRUE, true The integer constant 1 (one). 

FALSE,false The integer constant 0 (zero). 

Edges 

host The host link or channel. 

72 TDS 224 00 August 1990 



90 6 Conflgurlng transputer programs 

72 TDS 224 00 August 1990 



7 Loading transputer 
programs 

This chapter explains how to load programs onto single transputers and trans­
puter networks. It briefly describes the format of loadable programs and intro­
duces the program loading tools iserver and iskip. The chapter goes on to 
explain how to load programs for debugging and ends with an example of skip 
loading. 

7.1 Introduction 

Transputer programs are loaded onto transputer boards with the iserver tool 
which installs code on each processor using processor and distribution informa­
tion embedded in the executable file. The executable file consists of code to 
which bootstrap information has been added to make the program self-booting 
on the transputer. Self-booting executable code is also known as bootable 
code. 

Bootable files are generated by icollect from configuration data files (network 
programs) or linked units (single transputer programs). Bootable files are gen­
erated with the default extension •btl (for loading onto boot from link boards), 
or •btr (for loading onto boot from ROM boards). 

7.2 Tools for loading 

Two tools are provided to load programs onto transputers and transputer net­
works: 

• iserver - the file server and loader tool. 

iserver loads the bootable file onto the single transputer or transputer 
network and activates the host file server that provides communication 
with the host. 

• iskip - the skip loading tool. 

iskip allows a program to be loaded over the root transputer onto an 
external network. The tool is used prior to invoking iserver to start up 
a special route-through process on the root transputer that transfers data 
between the the network and the host system. 

72 TDS 224 00 August 1990 



92 7 Loading transputer programs 

Skip loading is useful for the post-mortem debugging of programs that use 
the root transputer. The root transputer in the network is omitted from 
the logical network and the program is loaded onto the first processor 
after the root transputer, leaving it free to run the debugger. This avoids 
having to debug the code from a memory dump file. 

Programs loaded using iskip always require one extra processor on the 
network in addition to those required to run the program. For example, a 
program written for a single transputer requires at least two processors, 
one to act as the root transputer and one to run the prog ram. 

7.3 The loading mechanism 

In single transputer programs code is loaded onto the first processor on the 
network and the program code is then loaded down the host link byte by byte. 
If iskip has been used the program is loaded onto the second processor on 
the physical network. In multitransputer programs the process is repeated for all 
processors on the network until all the code is loaded. 

When the code is copied into the transputer's memory the process boots auto­
matically and the program continues to run until an error occurs or the server 
is terminated by pressing the ISERVER interrupt key, usually CTRL-C or CTRL­
BREAK. 

7.3.1 Breakpoint debugging 

Programs are loaded for breakpoint debugging using the idebug command. 
When invoked in breakpoint mode this command incorporates a skip load and 
iserver is not required. Because it uses a skip load, breakpoint debugging 
requires at least two processors on the network. 

For more information about breakpoint debugging and details of the command 
syntax see section 15.3.4. 

7.4 Boards and subnetworks 

There are two basic types of transputer evaluation board: those that boot from 
link and those that boot from ROM. 

Boot from link boards form the majority of transputer boards in general use. They 
are loaded down the link that connects the root transputer to the host using the 
iserver tool. Programs intended to run on boot from link boards must consist 
of bootable code. 

72 TDS 224 00 August 1990 



7.4 Boards and subnetworks 93 

Examples of boot from link boards supplied by INMOS are the IMS B008 PC 
motherboard and the IMS B014 and IMS B016 VMEbus standard interface 
boards. 

Boot from ROM TRAMs boards are intended for standalone applications such 
as embedded systems. 

Examples of boot from ROM products are the INMOS iq systems IMS 8418 
Flash ROM TRAM and the IMS B016 VME board operating in boot-from-ROM 
mode. 

7.4.1 Subsystem wiring 

Subsystem wiring is the way in which boards are connected together, and de­
termines the manner in which transputer subnetworks are controlled. 

Three signals are used to control transputers mounted in a system, namely Re­
set, Analyse, and Error. Together these are known as the System Services. All 
INMOS transputer boards use a common scheme for propagating these signals 
to other subnetworks. The scheme is as follows. 

Each transputer board has three ports for communicating system services from 
one board to another. These are Up, Down, and Subsystem. Up is the input 
port, used to control the board from an external source; Down and Subsystem 
are both output ports and are used to propagate the Up signal to other boards 
or subnetworks. 

The Down and Subsystem ports work in the following ways: 

Down propagates the Up signal unchanged to the next board or subnetwork. 
This allows multiple boards to be chained together by connecting successive Up 
and Down ports and the whole network can be controlled by a single signal. 

Subsystem transfers control to the board, allowing subnetworks downstream of 
the board to be independently reset, analysed, and their error flags read, under 
the control of the root transputer on that board. 

7.4.2 Connecting subnetworks 

Multiple transputer systems can either be controlled by the host computer or by 
a master transputer controlled by the host computer. 

In a typical multitransputer system the root transputers Up port is connected to 
the host computer so that it can control the loading of programs and monitor 

72 TDS 224 00 August 1990 



94 7 Loading transputer programs 

errors on the network. The first processor in the subnetwork is connected to 
either Down or Subsystem depending on the application, and other processors 
on the network are chained together via their Up and Down ports. 

In a simple application requiring multiple transputers, the subnetwork would nor­
mally be connected to Down on the root transputer. This would allow the host
computer to reset the whole network in a single operation and to monitor the
error signal on any transputer in the network.

A more complicated application may require several programs to be loaded onto
the subnetwork under the control of the root transputer. Here the subnetwork
would be connected to Subsystem so that the root transputer could repeatedly
reset and re-load the subnetwork. Any errors in the subnetwork would be de­
tected by the root transputer through its Subsystem port, and the error would not
be propagated through the Up port to the host computer. Reset and Analyse
signals are propagated through to the Subsystem port, but the error signal is not
relayed back.

7.5 Loading programs for debugging 

Special debugger and server options must be used for the debugging of pro­
grams running on transputer boards. The options vary with the subsystem wiring,
the board type, and whether or not the program uses the root transputer. The ..
effects of subsystem wiring are described above; the effects of board type and •
program mode are described in the following sections.

Commands to use for various combinations of subsystem wiring, board type, and
program mode, are listed in Table 15.2.

7.5.1 Board types 

Some early INMOS boards of the 8004 type, unlike later TRAM-based boards, 
do not propagate Reset through to the Subsystem port. On these boards the 
'SA' iserver option must be supplied on the debugger command line to reset the 
network. 

7.5.2 Use of the root transputer 

The use made of the root transputer by the program changes the procedures 
you must use in post-mortem debugging. This is because the debugger program 
executes on the root transputer and any application code becomes overwritten _ 
when the tool is invoked. • 

72 TDS 224 00 August 1990 



7.6 Example skip load 95 

Two procedures can be used to load and debug code running on the root trans­
puter: 

1 Programs can be loaded in the normal way using iserver and the 
program image in the root transputer's memory saved to a file. The 
code running on the root transputer is then debugged from the dump file. 
Code running on the rest of the network is debugged in the normal way 
by reading the transputer memory directly down the transputer links. 

The dump file is created by invoking idwnp. The debugger is subse­
quently invoked using the debugger 'R' option that directs it to read the 
dump file. 

Note: On boards that contain only one transputer this method must be 
used. 

2 Programs can be loaded over the top of the root transputer by invoking 
the iskip tool before iserver. This leaves the root transputer free 
to run the debugger. The program can then be debugged down the root 
transputer link in the normal way. 

If iskip is used an extra processor is required over and above those 
required to run the application program. 

Programs configured for a subnetwork that does not include the root transputer 
can be loaded with iserver and debugged down the root transputer link using 
the debugger 'T' option. 

Details of the procedures to use for loading and debugging all types of transputer 
programs can be found in section 15.2. 

7.5.3 Analyse and Reset 

Care must be taken that Analyse or Reset are only asserted once on a network 
that is to be debugged, or incorrect data will be obtained. To ensure this the 
debugger should be invoked using the standard command sequences given in 
Table 15.2. 

7.6 Example skip load 

This section shows how to load a program into a network over the root transputer 
using the' iskip tool. 

72 TDS 224 00 August 1990 



96 7 Loading transputer programs 

target network 

t t 

link 2 processor processor 
1 2 

7.6.1 Target network 

The program to be loaded is configured for a target network consisting of two
T800 processors mounted on a B008 motherboard. The target network is con­
nected to a T414 processor in slot zero acting as the root transputer, and the _
two T800 processors are connected by a single link. .,

The target network and its connections are shown schematically below. 

host computer root transputer

host linkhost skip 
process

server
file 

7.6.2 Loading the program 

The file twinprog .btl contains the bootable program. 

To prepare the board for running the program on the target network, invoke e 
iskip using one of the following commands: 

iskip 2 -r -e
iskip 2 Ir le

This sets up the system to direct the program to the target network over the top 
of the root transputer and starts the route-through process on the root transputer. 
Options 'r' and le' respectively reset the target network and direct the host file 
server to monitor the halt-on-error flag. 

The program can then be loaded using one of the following commands: 

iserver -ss -se -se twinprog.btl (UNIX) 
iserver Iss Ise Isc twinprog.btl (MS-DOS and VMS) 

7.6.3 Clearing the network 

On transputer boards error flags can be cleared using a network check program _ 
such as ispy. (Error flags can become set when the board is powered up). ., 

72 TDS 224 00 August 1990 



7.6 Example skip load 97 

The ispy program is provided as part of the board support software for INMOS 
iq systems products. These products are available separately through your local 
INMOS distributor. 

An alternative to using a network check program is to load a dummy process 
onto each processor. In the act of loading the process code the error flag is 
cleared. This method is described in section 15.3.4. 

72 TDS 224 00 August 1990 



98 7 Loading transputer programs 

72 TDS 224 00 August 1990 



8 Debugging transputer 
programs 

This chapter describes the facilities of the toolset debugger idebug and shows 
how they can be used to debug transputer programs in a systematic way. It 
explains how the debugger can be used in two ways (post-mortem and interac­
tive) to analyse transputer programs and describes the two levels of debugging 
(symbolic and Monitor page). The chapter includes examples to illustrate the 
debugging facilities and demonstrats debugging techniques, and ends with a list 
of points to note when using the debugger. 

8.1 Introduction 

The network debugger idebug is a comprehensive debugging tool for transputer 
programs. It can be run in post-mortem mode to determine the cause of failure 
in a halted program, or in interactive mode to execute a program stepwise by 
setting breakpoints in the code. In either mode programs can be debugged from 
source code using the symbolic functions or from the machine code using the 
Monitor page commands. The two environments can be invoked from each other 
at will. 

Post-mortem debugging allows programs to be examined for the cause of failure 
after halting the transputer on error. The debugger locates the errant process 
in the program either by direct examination of the program image in transputer 
memory or by reading memory dump files. Processes running in parallel with 
the errant process can be examined anywhere on the network. 

Breakpoint debugging allows programs to be executed in a stepwise manner 
under interactive control. Breakpoints can be set within the code to cause the 
program to pause for the inspection of variables, channels, and processes; vari­
ables can be modified and the program continued with the new values. 

The debugger can also be invoked on a dummy network to examine the static 
features of a program. The dummy network simulates the contents of memory 
locations and registers, and can also be used to explore the features of the 
debugger without running a real program. 

8.1.1 Debugging with isim 

The transputer simulator tool isim can also be used to debug transputer pro­
grams from a low level environment. Using a similar environment to the de­
bugger Monitor page transputer memory can be examined, breakpoints set, and 

72 TDS 224 00 August 1990 



100 8 Debugging transputer programs 

programs executed by single stepping. 

The debugging facilities of the simulator are briefly described in this chapter 
(section 8.12). Details of how to use the simulator tool can be found in chapter 24. 

8.2 Programs that can be debugged 

The debugger can analyse programs running on transputers that are either di­
rectly attached to a host through a server program, or connected to the host 
via a root transputer. The debugger runs on the root transputer and networks 
to be debugged must incorporate a 32-bit transputer at the root. If breakpoint 
debugging is used the transputer network must contain at least two processors, 
because the root transputer is dedicated to running the breakpoint debugger. 

8.3 Compiling programs for debugging 

Programs to be debugged should be compiled with full debugging information 
enabled. 

8.3.1 Symbolic debug Information 

Full debugging information, necessary for debugging, is selected by specifying e 
the compiler 'G' option when the program is compiled. 

By default ice generates object files containing minimal symbolic debug infor­
mation. This is in order that object modules, especially those intended to form 
libraries, are kept as small as possible. Minimal debug information enables the 
debugger to backtrace out of a library function to a module compiled with full 
debug information. 

Note: The object code produced with minimal debug information contains certain 
optimisations that are absent in code generated with full debugging information 
enabled. As a consequence the object code produced may be different. 

8.3.2 Error modes 

C programs are compiled in toolset error mode UNIVERSAL, which enables 
them to be mixed freely with modules compiled in other modes (HALT or STOP) 
using other INMOS language toolsets. The programmer need take no special 
action to ensure complete compatibility with other INMOS compilers. 

The error mode of a mixed language program may be changed at link time; the 

72 TDS 224 00 August 1990 



8.4 Debugging configured programs 101 

linker default is to generate HALT code, which is the recommended mode for 
debugging. 

Further information about link error modes can be found in section 20.4.2. 

8.4 Debugging configured programs 

Configured programs (programs created from a configuration description by 
icconf), must be processed using the configurer 'G' option to generate de­
bugger compatible information. 

8.5 Post mortem debugging 

Post-mortem debugging refers to the analysis of stopped programs, that is, pro­
grams that have failed to run correctly and set the transputer error flag. Programs 
that are to be debugged in this mode should be configured in HALT mode so that 
the processor halts when the flag is set, and they should be loaded by iserver 
so that the error flag is monitored, by specifying the 'SE' option. 

Post-mortem debugging can also be used to debug programs that have been 
explicitly interrupted by the host system BREAK key. To interrupt a program, for 
example when a program 'hangs', press the BREAK key, which stops the server 
but not the program, and then invoke idump to take a snapshot of the running 
program. Invoking idump stops the program by sending an Analyse signal to 
the transputer in order to take a snapshot of its current activity. 

Automatic error checking, for example of array indices, is not provided in C and 
this makes it difficult to cause a C program to HALT when an error occurs. This 
restricts somewhat the usefulness of post-mortem debugging in C, but can be 
used if programs are halted explicitly by using the debugging support functions 
(see section 8.11) or the library functions abort and assert (see below). 

Breakpoint debugging with its associated debug support functions is a more 
flexible approach and is the recommended method for debugging C programs if 
possible. 

Using abort to halt a program 

The abort function can be enabled to halt the processor by calling the auxiliary 
function set_abort_action. This enables a backtrace to be performed to 
the point in a program where the error occurred, without the need to modify all 
of the assert statements in a program. 

72 TDS 224 00 August 1990 



102 8 Debugging transputer programs 

The technique is illustrated in the following example: 

/*************************************** 
* * Debugger example: abort.c

** Example of forcing a C program to HALT the 
* processor for post-mortem analysis regardless
* of the error mode it has been configured in.

* * Use of the debug support functions is encouraged
* as an alternative (see debugger example file debug.c
* for details).

*
***************************************/ 

'include <stdio.h>
'include <stdlib.h>
'include <misc.h>
#include <assert.h>

int 
main (void) 

/* 0 will cause assert () to fail assertion test */
int x = 0;

printf ("Program started\n"); 

1* override normal abort action */
set_abort_action (ABORT_HALT);

printf ("Program being halted by assert ()\n");
assert (x);

printf ("Program being halted by abort ()\nn);
abort ();

8.5.1 Program loading 

Programs which run on the root transputer, or which use the root transputer to
run part of a multiprocessor program, must be debugged from an memory image ~
of the transputer. This is necessary because the debugger executes on the root ~
transputer and overwrites the code in the transputer's memory.

72 TDS 224 00 August 1990 



8.6 Breakpoint debugging 103 

The memory dump is performed using the idump tool after the program has 
failed and before the debugger is invoked with the 'R' option. Details of how to 
invoke the idump tool can be found in chapter 16. 

Alternatively the program can be skip loaded onto the next processor on the 
network, avoiding the root transputer. This requires one extra processor on the 
network over and above the number needed to run the program. Skip loading is 
described in chapter 25. 

If only one transputer is available, for example on single-transputer boards, the 
memory dump method must be used. If more than one transputer is available 
skip loading is the recommended method since it is a quicker operation. 

8.6 Breakpoint debugging 

Breakpoint debugging allows programs to executed under interactive control us­
ing breakpoints set in the code. Breakpoints can be set on any line of source. 
Symbolic and Monitor page facilities can be used to examine code, inspect vari­
ables, jump down channels to other processes or processors, and determine 
the state of the network. Special symbolic functions and Monitor page com­
mands, only available in breakpoint mode, support the modification of variables 
and memory locations and the restarting of programs from the breakpoint or from 
other points in the code. 

8.6.1 Runtime kernel 

The breakpoint debugger places a special runtime kernel on each processor in 
addition to the application bootable code. This kernel provides a virtual commu­
nication network to enable the debugger to transparently share transputer links 
with the application in addition t9 providing a breakpoint handler to deal with 
breakpoints, errors, inspection of processor state etc. The scheme is illustrated 
in Figure 8.1. 

Note: The debugging kernel places the transputer into Halt-On-Error mode re­
gardless of the error mode of the program. This means that during breakpoint 
debugging a transputer will always HALT when an error occurs. 

The runtime kernel requires a certain amount of memory on each processor, the 
exact amount differing slightly between processor types. The size of the kernel 
on each transputer type is given in Table 8.1. 

Apart from the extra memory required, the kernel is transparent to the application 
program if processes on different processors communicate with each other in the 

72 TDS 224 00 August 1990 



104 8 Debugging transputer programs 

Without debugging 
kernel 0 

3 

2 Transputer 

With debugging 
kernef 0 

3 

2 

Transputer 

Figure 8.1 Debugger runtime kernel 

Processor Kernel size HIW support 
M212 10K No 
T212 10K No 
T222 10K No 
T225 12K Yes 
T414 12K No 
T800 12K No 
T400 14K Yes 
T425 14K Yes 
T801 14K Yes 
T805 14K Yes 

Table 8.1 Runtime kernel size and processor breakpoint support 

normal way using channels supplied by the configurer (maximum of four input 
and four output per processor). 

Note: To allow breakpoint debugging to function correctly a program must not 
place channels explicitly onto processor link addresses. Programs that do so 
may introduce conflict with the runtime kernel, which also uses the external links. 
Programs currently coded in this way should be recoded to pass in external 
channels, otherwise breakpoint debugging may not be used. 

8.6.2 Hardware breakpoint support 

Certain transputers have built-in instructions for breakpointing (see Table 8.1). 
For those processors without hardware breakpoint support, breakpoints should 
not be set within high priority processes because the mechanism used to im­
plement breakpoints causes high priority processes to lock the processor and 
disable all communications to the processor via the runtime kernel. 

The effect on the network of setting such a breakpoint will depend on the position 

72 TDS 224 00 August 1990 



8.6 Breakpoint debugging 105 

of the processor in the network hierarchy but in any event should be avoided. The 
debugger is unable to check the validity of breakpoints and it is the programmer's 
responsibility to ensure correct operation on processors without direct hardware 
breakpoint support. 

8.6.3 Compiling the program 

All modules in the program must be compiled in the same or a compatible mode. 
Modes are checked at link time and if incompatibilities are found the link is 
aborted. 

8.6.4 Loading the program 

Breakpoint debugging does not require special loading or memory dump proce­
dures because the program is automatically skip loaded by idebuq. However, 
breakpoint debugging does require one extra processor on the network because 
the root processor is dedicated to running the breakpoint debugger program. 

8.6.5 Clearing error flags 

If either iserver or idebuq detect that the error flag is set immediately a 
program starts executing it is likely that the network consists of more processors 
than you are currently using and that one or more of the unused processors 
has its error flag set. (Error flags can become set when transputer boards are 
powered up). 

On transputer boards error flags can be cleared by running a network check 
program such as ispy. This ensures a clean network on which to load the 
program. 

The ispy program is provided as part of the board support software for INMOS 
iq systems products. These products are available separately through your local 
INMOS distributor. 

An alternative to using a network check program to clear the network is to load 
a dummy process onto each processor. In the act of loading the process code 
the error flag is cleared. This method is described in section 15.3.4. 

8.6.6 Breakpoint functions and commands 

Several symbolic debugging functions and Monitor page commands are only 
available in breakpoint mode. The commands available are summarised below. 

72 TDS 224 00 August 1990 



106 8 Debugging transputer programs 

Symbolic functions Monitor page commands 

ITOGGLE BREAKI Set/clear breakpoint. 

Execute from breakpoint. 

Execute from current line. 

Modify variable. 

[[] 
QJ 
~
[ill 

~

Breakpoint menu. 

Execute program. 

Show debug messages. 

Update register di~play.

Write to memory. 

IRESUMEI 

ICONTINUE FROMI 

IMODIFYI 

8.6.7 Breakpoints 

Breakpoints can be set, cleared, and listed using Monitor page commands, and 
set/cleared using symbolic functions. 

Breakpoints can be set at any point in a process running on any processor. At 
each breakpoint (or on error) the process pauses and the source code may be 
displayed. 

Note: When a process is paused at a breakpoint or error other parallel processes 
in the program continue to run. 

Breakpoints can be set at code entry points, or on any line of source code. Vari- _ 
abies within scope at the breakpoint can be modified and the process restarted. • 
Breakpoints can also be set at the Monitor page but care should be taken not 
to set breakpoints at addresses that do not correspond to the start of a source 
code statement, otherwise the behaviour is undefined. 

Setting breakpoints at symbolic level is the recommended method. 

8.7 Program termination 

Program termination is signalled to the debugger by the termination of iserver. 
This is performed automatically by the C runtime system. If the program contains 
independently executing processes which do not require communication with the 
server the debugger may be resumed to interact with these processes. 

To run or debug the program again it must be reloaded onto the transputer using 
iserver, or idebuq in breakpoint mode. 

72 TDS 224 00 August 1990 



8.8 Symbolic facilities 107 

8.8 Symbolic facilities 

Symbolic debugging is debugging at source code level using the symbols defined 
in the program for variables, constants, and channels. Features provided in 
symbolic debugging include the examination of source code, the inspection of 
variables and channels, and the backtracing of procedure calls. A number of 
special breakpoint functions are available if the debugger is invoked in breakpoint 
mode. 

Source level debugging is accessed through symbolic functions mapped to spe­
cific keyboard function keys. Keyboard layouts for specific terminal types can be 
found in the Delivery Manual that accompanies this release. 

The main symbolic debugging activities and the functions that are used to access 
them are described in the following sections. 

8.8.1 Locating to source code 

Locating to the source code for a particular process is a crucial procedure in 
the debugging process on which other operations depend. For each required 
location the debugger must be given a memory address which it uses to locate to 
the source. When the required code is located, symbolic functions can be used 
to browse the code and inspect variables. Where the source code is unavailable, 
for example, libraries supplied as object code with minimal debug information; 
the line containing the library call is located to instead. 

When first invoked in post-mortem mode the debugger is given the address of 
the last instruction executed, which it uses to automatically locate to the relevant 
source code. Subsequently for each new point to locate to in the code the 
debugger requires a new address which can be supplied by the programmer. A 
default address is available by pressing IRETURN/; normally the default address 
is the address of the previous location. 

Addresses of important segments of code can be determined using the Moni­
tor page commands that display lists of processes waiting on the run queues, 
the timer queue, and on the transputer links. Any address in memory can be 
specified using the Monitor page '0' command. 

Certain addresses are already known to the debugger and can be located to 
using symbolic functions without specifying the address or switching to Monitor 
page commands. Many of the common operations used during source code 
debugging can be performed directly with symbolic functions. They include re­
locating to the previous location and locating to the original error. 

The symbolic functions that can be used directly for locating to known areas of 

72 TDS 224 00 August 1990 



108 8 Debugging transputer programs 

code are listed below. 

Locate back to the error, or last source code location.

IRELOCATEI Locate back to the last location line.

A strategy for debugging multiprocess programs by locating each process in turn 
is described later in this chapter in section 8.10. 

8.8.2 Browsing source code 

Several functions are available for browsing source files once they have been 
located. They include functions for navigating files, changing to included or new 
files, and string searching. The functions are listed below. 

ITOP OF FILEI Go to the first line.

IBOTTOM OF FILEI Go to the last line.

IGOTO L1NEI Go to a specified line.

ISEARCHI Search for a specified string.

IENTER FILEI Enter an included file (one incorporated by #include).

IEXIT FILEI Exit to the enclosing file.

ICHANGE FILEI Display a different file.

8.8.3 Inspecting variables 

The values of constants, variables, parameters, arrays, and channels can be 
inspected at any point in the code. A special inspect function for channels only 
allows the debugger to locate to the process at the end of the channel. Symbols 
to be inspected must be in scope with the source line last located to. 

Expressions can be used to inspect subsets of an array and to calculate val­
ues involving the inspected item. If the debugger is used in breakpoint mode 
variables can also be modified. 

For C functions the debugger returns an address and for channels the debugger 
checks the channel's status and displays information about waiting processes. 
If no processes are waiting the channel is given as 'Empty'. 

The two inspect functions are listed below. 

UNSPECTI Display the value and type of a source code symbol.

ICHANNELI Locate to the process waiting on a channel.

72 TDS 224 00 August 1990 



8.8 Symbolic facilities 109 

Jumping down channels 

The ICHANNELI function can be used to locate to a process waiting on a channel. 
This is known as 'jumping down' a channel and works for channels on the same 
processor (internal or soft channels) or channels assigned in the configuration to 
transputer links (external or hard channels which connect processes on different 
processors together). Debugging can then continue at the waiting process. If 
no process is waiting on a channel the channel is given as 'Empty'. 

8.8.4 Tracing procedure calls 

Two functions assist in the tracing of function calls. They can be used even if 
the source is not present, for example, libraries supplied as object code with 
minimal debug information, but in this case the line containing the function call 
is displayed rather than the library code itself. Where procedures are nested 
successive backtrace operations will locate to the original call. Variables and 
other symbols can be inspected at any stage. The two functions are listed 
below. 

IBACKTRACEI Locate to the procedure or function call. 

IRETRACEI Reverse the last IBACKTRACEL 

8.8.5 Modifying variables 

The IMODIFYI function allows variables and constants to be changed in transputer 
memory and the program continued with the new values. It supports the same 
expression language as UNSPECTL For further details see chapter 15. 

8.8.6 Breakpointing 

Symbolic functions are provided for setting and clearing breakpoints, for modify­
ing the value of a variable, and for continuing the program. 

ITOGGLE BREAKI Set or clear a breakpoint on the current line. 

~ Change the value of a variable in memory. 

IRESUMEI Resume the program from the breakpoint. 

ICONTINUE FROMI Resume the program from the current line. 

72 lDS 224 00 August 1990 



110 8 Debugging transputer programs 

8.9 Monitor page 

The debugger Monitor page is a low level debugging environment which gives 
direct access to machine level data. It allows memory to be viewed and disas­
sembled and gives access to information about the processor's activity through 
the display of error flag status and pointers to process queues. Specific debug­
ging operations are invoked by mainly single letter commands typed after the 
Option prompt. 

8.9.1 Startup display 

When first invoked in breakpoint mode, or in post-mortem mode with an invalid 
Iptr or Wdesc (see below), the debugger enters the Monitor page environment 
and displays information such as the addresses of instruction and workspace 
pointers, status of error flags, and information about the processor run queues. 
The memory map is also displayed. 

If an Iptr or Wdesc is invalid at startup it is marked as invalid. 

The Monitor page display differs slightly between post-mortem and breakpoint 
modes. In post-mortem mode the display includes the saved pointers for the low 
priority process if the processor was running at high priority when analysed; in 
breakpoint mode the display does not include these pointers but does include 
the contents of the A, B, and C registers, if known. At startup in breakpoint mode ­
no machine pointers or register values are available (the program has not yet • 
started) and so no values are displayed. 

A typical post-mortem startup display is shown in figure 8.2. 

72 lOS 224 00 August 1990 



8.9 Monitor page 111 

Tool.et Oebugger : V2. 00.00 Proce.sor 0 "example" ('1'800) 

Proce.sor State Memory map 
Iptr '80003B7A Configuration code : '80000070 - '80000141' ( 224) 
Wdesc '801FFE30 Stack : '80000150 - '80000761' ( 1568 ) 
Error Set Program oode : '80000770 - '80005A81' ( 21K) 
FPU Error Clear Configuration oode : '80005A90 - '80006293 ( 2052 ) 
Halt On Error Set Free.pace : '80006294 - '80lFl'FFF ( 2024K) 
Fptr1 (low Empty 
Bptr1 queue) Total memory u.age : 25236 byte. (25K) 
FptrO (high Empty 
BptrO queue) On-chip memory (4K) : '80000000 - '80000FFF 
Tptr1 (timer Empty MelDStart : '80000070 
TptrO queue.) Empty 
Clock1 (low) ,000234C5 Oebugger ha. enough memory for 805 processors 
ClockO (high) '00803152 

Error explioitly .et, Last instruotion wa. : .eterr 

Option (? for help) (A,C,O,E,F,G,H,I,K,L,IC,N,O,P,Q,R,'1',V,X,?) ? 

Figure 8.2 Example post-mortem Monitor page display for a T800 processor 

Items displayed on the startup page and their meanings are summarised in Ta­
ble 8.2. Most of the data displayed is common to all transputer types. Where 
the display differs for specific processor types and debugging modes, this is 
indicated in the table. 

Process pointers 

Iptr points to the last instruction executed and Wdesc to the process 
workspace. Low priority Iptr and Wdesc are also displayed if the processor 
was running in high priority mode when it was halted. An asterisk placed next to 
either an Iptr or Wdesc indicates an invalid memory location for the process. 
'Invalid' Wdesc indicates that no process was executing on the processor when 
it halted, which may occur in the presence of deadlock. 

Practical note: If Wdesc contains the address of 'Memstart' it is likely that the 
Analyse signal has been asserted more than once on the network. This can 
occur on transputer boards where the subsystem signal is asserted on analyse, 
as on the IMS 8004. For further guidance on the use of such boards refer to 
section 15.4. 

Fptr and Bptr point to the process run queues, which hold information about 
processes awaiting execution. The suffix 1 indicates the high priority queue and 
o the low priority queue. If the front and back pointers are the same then only 
one process is waiting; if there are no processes waiting the pointers have no 
value and the queue is given as 'empty'. 

72 TDS 224 00 August 1990 



112 8 Debugging transputer programs 

Item displayed Description 

Iptr Instruction pointer (address of the last instruction ex­
ecuted). 

Wdesc Workspace descriptor (pointer to process workspace). 

IptrlntSavet Saved low priority instruction pointer, if applicable. 

WdesclntSavet Saved low priority workspace descriptor, if applicable. 

A Reqistert Contents of A register, if known. 

B Reqistert Contents of B register, if known. 

C Reqistert Contents of C register, if known. 

Error Status of transputer error flag. 

FPU Error Status of FPU error flag (T800 series only). 

Halt On Error Status of halt on error flag. 

Fptrl Front pointer to low priority process queue. 

Bptrl Back pointer to low priority process queue. 

FptrO Front pointer to high priority process queue. 

BptrO Back pointer to high priority process queue. 

Tptrl Pointer to low priority timer queue. 

TPtrO Pointer to high priority timer queue. 

Clockl Value of low priority transputer clock. 

ClockO Value of high priority transputer clock. 

t Not available in breakpoint mode.
t Not available in post-mortem mode. Not known in breakpoint mode on
processors with no hardware support for breakpointing.

Table 8.2 Items displayed at the Monitor page 

Tptrl and TptrO are pointers to the high and low priority timer queues re­
spectively. 

Registers 

In breakpoint mode only, the contents of the transputer registers Areg, Breg, 
and Creg are displayed for those processors which have built in instructions for 
breakpoint handling. Values displayed are those which were current when the 
process stopped. 

72 TDS 224 00 August 1990 



8.9 Monitor page 113 

Error flags 

Two flags are displayed for all processors: Error and Halt-on-error. The FPU 
Error flag is also displayed for transputers with an integral floating point unit (IMS 
T800 series). • 

Clocks 

Clockl and ClockO display the values of the low and high speed transputer 
clocks when the process was stopped. In breakpoint mode the clock values (and 
queue pointers) can be updated using the Monitor page '0' command. 

Memory map 

The memory map display is included on the standard startup display, as though 
the Monitor page 'M' option had been automatically invoked. Any or all of the 
following memory segments may be displayed, depending on the application 
program and its configuration: 

Runtime kernel/Configuration code
Stack
Program code
Vectorspace
Static area
Heap area
Configuration code
Freespace

8.9.2 Monitor page commands 

Most Monitor page options are single-letter commands that you type in at the 
Monitor page Option prompt. A few commands are mapped onto specific func­
tion keys. The commands that support breakpoint debugging are only available 
when the debugger is invoked in breakpoint mode. 

The main Monitor page commands allow you to disassemble and display trans­
puter memory, locate and debug processes, and examine the network processor 
by processor. 

The main commands for common debugging operations are introduced in the 
following sections. Full details of all the commands can be found in chapter 15. 

72 TDS 224 00 August 1990 



114 8 Debugging transputer programs 

Examining memory 

Specific segments of transputer memory can be displayed in hexadecimal, ASCII,
or any high level language type, or disassembled into transputer instructions.
The segment of memory to be displayed is specified by a starting address. A _
map of the transputer's memory can be displayed giving the positions of code .,
and workspace. Commands for examining transputer memory are summarised
below.

~ Display memory in ASCII. 

@] Disassemble into transputer instructions. 

[ill Display memory in hexadecimal. 

[] Display memory in selected data type. 

[0 Memory map. 

Locating processes 

Locating to code for specific processes is one of the major functions available 
through the Monitor page. They allow processes other than the stopped or cur­
rent process to be located and examined anywhere on the network. Processes 
can be located on the current processor by examining run queues, and on other 
processors by jumping down transputer links. 

Four commands are used, three to display waiting processes and one to jump 
to the selected code of a process displayed by the other three. 

[B] Display processes waiting on Run queues. 

ITJ Display processes waiting on Timer queues. 

[] Display processes waiting on Links. 

[Q] Goto symbolic debugging for the selected process. 

These commands can be used in a systematic way to trace all processes on a 
network and determine the cause of program failure. The method is explained 
in more detail in section 8.10. 

Specifying processes 

One command allows a specific process to be selected for symbolic debugging. 

Specify a process for symbolic debugging. 

The '0' command is useful for going directly to symbolic debugging for a specific 

72 TDS 224 00 August 1990 



8.10 A method for debugging halted programs 115 

process whose details you have already noted earlier in the debug session. 

Selecting processes 

The 'F' command enables you to select a source file for symbolic display using 
the filename of the object module produced for it. This option enables symbolic 
locating (for setting breakpoints etc.) without needing to know Iptr and Wdesc 
process details (as the 'G' and '0' options do). 

Other processors 

Two commands allow other processors on the network to be examined: 

[ID Go to next halted processor. 

~ Go to specified processor. 

Breakpoint commands 

The following commands support breakpointing. To use the commands the de­
bugger must be invoked with the 'B' command line option. 

[ill Breakpoint menu. 

Q] Jump into and run application program. 

[§] Show debugging messages and prompts menu. 

[[] Update processor status display. 

~ Write value to memory. 

8.10 A method for debugging halted programs 

Most transputer programs consist of several processes running in parallel, either 
on the same transputer or on a multitransputer network. The following technique 
is offered as a way of debugging halted programs using a systematic method 
based on the tracing of all processes in the network. The method can be used 
whether the program is running on a single transputer board or on a network of 
many processors. 

8.10.1 Locating all processes 

Processes are located by the debugger using the process Wdesc (Workspace 
Descriptor), which is a base pointer for the data and variables that make up the 

72 TDS 224 00 August 1990 



116 8 Debugging transputer programs 

process. 

Each process running on a transputer exists in one of several states. In the 
systematic method each possibility is explored in turn until the errant process is 
found. The possible states for a process are: 

• Not yet started. 

• Running on the processor. 

• Waiting on a processor execution queue (Run queue). 

• Waiting on a timer execution queue (Timer queue). 

• Waiting for communication from another process on the same processor. 

• Waiting for communication on a transputer link (Link information). 

• Already stopped or terminated. 

Running on the processor 

For the stopped process the debugger automatically locates to the area of source 
code where the error occurred. 

Waiting on a run queue 

Processes on the run queues can be located by first using the Monitor page IR' 
command to display the list of waiting processes. A process can then be selected 
by pressing IG' (for 'Goto process'), positioning the cursor on the desired process 
and pressing IRETURNI. 

Pointers to the run queues are displayed on the Monitor page and can be used 
to determine the overall status of the queue. If pointer addresses are displayed 
there are processes waiting. If only a single process is waiting the front and 
back pointers have the same value. If no processes are waiting the queue is 
given as 'Empty'. 

Waiting on a timer queue 

Processes waiting for a specified time are placed on the high and low priority 
timer queues. These are similar to the run queues except that they are controlled 
by the transputer clock. 

Processes on the timer queues can be located by using the Monitor page IT' 

72 TDS 224 00 August 1990 



8.10 A method for debugging halted programs 117 

command to display a list of processes and invoking the 'G' command to locate 
to the required process. Pointers to the timer queues are displayed on the 
Monitor page and can be used to determine overall queue status. 

Waiting for communication on a link 

Processes waiting for a hardware communication (input or output on a transputer 
link, or an input on the Event pin) can be located by using the Monitor page 'L' 
command to display a list of waiting processes, and invoking the 'G' command 
to locate to the process. Links where no processes are waiting are given as 
'Empty'. 

At most 9 processes can be waiting for a hardware communication, two for each 
of the four links and one for the Event pin. Pointers to these processes are held 
at special addresses at the bottom of the memory space and are not given on 
the Monitor page. 

Waiting for communication on a channel 

Processes waiting for a internal communication can be located from source level 
using the /CHANNELL If there are no processes waiting on a channel the channel 
is given as 'empty'. 

Processes stopped, terminated or not started 

If the running process and all the waiting processes have been found, not forget­
ting all those processes waiting on all the internal channels, then any processes 
still unaccounted for must either have finished or failed to start. These remain­
ing processes cannot be located to because there are no Wdescs for them, and 
they must be accounted for by a process of elimination. 

8.10.2 Locating functions 

When a procedure is called, the works~ace pointer is moved. If the debugger 
locates inside a function then only local variables, and variables declared globally, 
are in scope and available for inspection. 

To inspect variables or channels not in scope within the function use 
the ISACKTRACEI key to locate to a position where the desired variable or channel 
is in scope. To relocate into the function again use the /RETRACEI key. 

72 TDS 224 00 August 1990 



118 8 Debugging transputer programs 

8.11 Library functions 

Three functions are provided in the runtime library to assist with debugging. 
debug_stop and debug_assert are used to stop a process, the latter on 
a specified condition, and debug-message is used to insert debugging mes­
sages. The functions are accessed by including the header file mise. h. 

Function Action 

debug_assert 

debug_stop 

debug-message 

Stops the process and alerts the debugger if the param­
eter condition evaluates FALSE (0). 

Stops the process and alerts the debugger. 

Inserts debugging messages in the program. 

Details of each of the functions can be found under the function descriptions in 
the accompanying Reference Manual. 

debug_assert and debug_stop allow a.process to be stopped at any point 
in the code, where it can then be debugged using the symbolic functions and 
Monitor page commands. debug_stop always stops the process whereas 
debug_assert only stops the process if the parameter condition evaluates to 
FALSE. 

The following short example illustrates their use: 

/******************* 
* * Example of debug support functions when used with 
* and without the debugger.
* (see also example file abort.c) 

* 
*******************/ 

'include <misc.h> 
'include <stdio.h> 

int 
main (void) 

/* 0 will cause debug_assert to fail assertion test */ 
int x - 0; 

printf ("Program started\n"); 

72 TDS 224 00 August 1990 



119 8.12 Debugging with isim 

debug message(nA debug message only within the 
debuqgern) ; 

printf (nproqram being halted by debug assert ()\nn); 
debug_assert (x); ­

printf (nprogram being halted by debug_stop () \nn); 
debug_stop (); 

In this example if x is 1 debug-assert evaluates to TRUE and the pro­
gram runs until it encounters debug_stop. If x is set to 0 (as in the ex­
ample) debug-assert evaluateS to FALSE and the process stops before it 
reaches debug_stop. Code stopped by debug_assert and debug_stop 
may be resumed from the line following the call of the debug function by using 
the ICONTINUE FROMI key. 

debug..message is used to insert debuggin.Q messages into the code. Mes­
sages are relayed back to the terminal from any point in the program, even from 
code running on distant processors of a network. It can be used to monitor 
the activity of outlying processors which are not directly connected to the host. 
The display of debug messages at the terminal is controlled by an option on the 
Monitor page Breakpoint Menu. 

8.11.1 Action when the debugger Is not available 

If the debugger is not available on the system the debug library functions have 
the following actions: 

Function Action 

debug_assert 

debug_stop 

debug..message 

Stops the process (also stops the processor if configured 
in HALT mode) if the parameter evaluates to FALSE. 

Stops the process (also stops the processor if configured 
in HALT mode). 

No action. 

8.12 Debugging with i~im

The T425 simulator isim provides a single processor interactive simulation of a 
program running on an IMS T425 transputer, running on a 2 Mbyte boot from link 
transputer board, and connected to a host computer through the host file server 
iserver. The interactive environment provides a machine level (non-symbolic) 

72 TDS 224 00 August 1990 



120 8 Debugging transputer programs 

environment similar to the debugger Monitor page for debugging programs and 
monitoring program execution. 

The simulator allows any single processor program to be run and analysed with­
out a transputer board. 

All the component parts of a program to be simulated, must be compiled for 
the T425 transputer type (or compatible targets), linked together using ilink 
(including libraries), and made bootable using icollect. 

Note: The simulator can only be used to simulate single transputer programs. 

8.12.1 Command Interface 

The simulator has a single command interface which corresponds to the de­
bugger Monitor page. Most commands are single letter commands and can be 
invoked with a single key press. For a list of conimands see chapter 24. 

8.12.2 Using the simulator 

The simulator can be used in two ways: 

• To debug programs by inspection of the transputer and memory, in the 
same way as with the debugger. Registers, memory, and machine state 
can be examined directly at the Monitor page. 

• To monitor the execution of programs using machine level single step 
execution and the setting of break points at specific memory locations. 
Code can be executed by stepping single instructions. 

8.12.3 Program execution monitoring 

The simulator provides a number of functions that can be used interactively to 
monitor and control the behaviour of a program. These are: 

• Breakpoints 

• Single step execution of a program 

A program can be stepped a single instruction at a time using the ·s' command. 

72 TDS 224 00 August 1990 



121 8.13 Debugging example 

Breakpoints 

Breakpoints can be set, displayed, and cancelled using the 'B' command to 
display the Breakpoint Options Page. . 

Single step execution 

A program can be stepped a single instruction at a time using the'S' command. 

8.12.4 Core dump file 

isim may be used to produce a core dump file that can be read by the debugger 
(as if the code had been executed on a real transputer). 

8.13 Debugging example 

This example illustrates some of the post-mortem and breakpoint features of the 
debugger. The debugger is invoked in breakpoint mode. 

8.13.1 The example program 

The example program facs. c calculates the sum of the squares of the first n 
factorials, using a rather inefficient algorithm. It has been structured this way for 
clarity in process structure and to demonstrate parallel processing and debugging 
methods. The same program coded in occam is supplied with the occam 2 
toolset. 

The program incorporates five processes, each coded as a separate function. 
The five processes in turn input n, calculate factorials, square the factorials, sum 
the squares, and output the result. The program is listed below. 

72 TDS 224 00 August 1990 



122 8 Debugging transputer programs 

/*•••••••••••••••*•••••••••••*•••**.*••* 
•
* Debugger example: facs.c

** idebug (and parallel C) example based on similar program
* in occam toolset. 
• 
• Uses 5 processes to compute the sum of the squares of
the
• first N factorials using a rather inefficient algorithm.
• 
• Plumbing:
• 
• - > feed -> facs -> square -> sum -> control <-> User
I/O
* I
* ---------------------------------------­
• ....................................... /

'include <stdio.h>
'include <stdlib.h>
'include <process.h>
'include <channel.h>

const double stop real -1.0;
const int stop:integer -1;

void
ChanOUtDouble (Channel .out, double value)

ChanOut (out, (void.) 'value, sizeof (value»; 

double
ChanInDouble (Channel .in)

double value; 

ChanIn (in, (void.) 'value, sizeof (value»; 
return value; 

72 TDS 224 00 August 1990 



123 8.13 Debugging example 

/* compute factorial */
double
factorial (int n)

double result;
int i;

result = 1.0; 
for (i - 1; ..1 <= n; ++i) { 

result result * i; 
} 
return result; 

/* source stream on ints */
void
feed (Process *p, Channe1 *in, Channel *out)

int n, i; 

n = Chanlnlnt (in); 
for (i = 0; i < n; ++i) { 

ChanOutlnt (out, i); 
} 
ChanOutlnt (out, stop_integer); 

/* generate stream; of factorials */
void
facs (Process *p, Channel *in, Channel *out)

int x;
double fac;

x = Chanlnlnt (in); 
while (x != stop_integer) { 

fac = factorial (x); 
ChanOutDouble (out, fac); 
x = Chanlnlnt (in); 

}
ChanOutDouble (out, stop_real);

72 TDS 224 00 August 1990 



124 8 Debugging transputer programs 

/* generate stream of squares */
void
square (Process *p, Channel *in, Channel *out)

double x, sq; 

x = ChanlnDouble (in); 
while (x !- stop real) 

sq = x *-x; 
ChanOutDouble (out, sq); 
x = ChanlnDouble (in); 

} 
ChanOUtDouble (out, stop_real); 

/* sum input */
void
sum (Process *p, Channel *in, Channel *out)

double total, x; 

total = 0.0;
x = ChanlnDouble (in);
while (x != stop real)

total = total + X; 
X = ChanlnDouble (in); 

} 
ChanOutDouble (out, total); 

/* user interface and control */
void
control (Process *p, Channel *in, Channel *out)

double value;
int n;

printf ("Sum of the first n squares of 
factorials\n"); 

do { 
printf ("Please type n : It); 

} while (scanf ("%d", &n) != 1); 
printf ("n = %d\n", n); 

72 TDS 224 00 August 1990 



125 8.13 Debugging example 

printf ("Calculating factorials ... "); 

ChanOutInt (out, n);
value = ChanInDouble (in);

printf ("\nThe result was: %g\n", value); 

Channel *
Checked_Cha~loc ()

Channel *chan; 

if «chan = ChanA1loc (» == NULL) { 
fprintf (stderr, "ChanAlloc () failed\n"); 
exit (EXIT_FAILURE); 

}
return chan;

Process * 
Checked_ProcAlloc (void (*func) (), int sp, int nparam, 

Channel *c1, Channel *c2) 

Process *proc; 

proc = ProcAlloc (func, sp, nparam, cl, c2); 
if (proc == NULL) { 

fprintf (stderr, "ProcAlloc () failed\n"); 
exit (EXIT_FAILURE); 

}
return proc;

int 
main (void) 

Channel *facs to square, *square to sum; 
Channel *sum to control, *feed to facs; 
Channel *control_to_feed; -­

Process *p feed, *p facs, *p square;
Process *p:sum, *p_control; ­

72 TDS 224 00 August 1990 



126 8 Debugging transputer programs 

facs_to_square = Checked Cha~loc ();
square to sum Checked-Cha~loc ();
sum_to:control Checked-Cha~loc ();
feed to facs Checked-Cha~loc ();
control:to_feed = Checked:Cha~loc ();

p_feed = Checked ProcAlloc (feed, 0, 2, 
control to feed, feed to facs); 

p_facs = Checked ProcAlloc-(facs, 0, 2, ­
feed to facs, facs to square); 

p square = Checked Prociiloc (square, -0, 2, 
- facs to square, square to sum); 

p sum = Checked prociiloc (sum, 0, 2, - ­
- -square to sum, sum to control); 

p control = Checked ProaAlloc (control, 0, 2, 
- sum:to_control, control_to_feed); 

ProcPar (p_feed, p_facs, p square, p sum, 
- p_control, NULL); 

exit (EXIT_SUCCESS); 

8.13.2 Compiling and loading the facs program 

The source of the program is provided on the toolset debugger examples sub­
directory. It should be compiled for transputer class TA with debugging enabled, 
then linked with the appropriate library files and made bootable using icollect 
using the 'T' option to create single transputer bootable code. 

The example is intended for running on a B008 board wired subs. See sec­
tion 15.4 if your system is different. 

A typical sequence of commands for compiling, linking, and booting the program 
is shown below. The 'i' option on the Iinker command line is optional but provides 
useful information on the progress of the linking operation. 

Command sequences are shown for UNIX-based and MS-DOSNMS-based 
toolsets. Use the appropriate set of commands for your system. 

ice facs.c -g -ta -0 facs.tax 
ilink facs.tax -f startup.lnk -ta -0 facs.cah -i 
icollect facs.cah -t 

ice faes.e Ig Ita 10 faes.tax 

72 TDS 224 00 August 1990 



127 8.13 Debugging example 

ilink faes.tax If startup.lnk Ita la faes.eah li 
ieolleet faes.eah It 

• The program is loaded for breakpoint debugging by invoking idebuq with the 
Breakpoint option using one of the following commands: 

idebuq -sr -si -b2 faes.btl -e t425 

idebuq Isr Isi Ib2 faes.btl le t425 

This command starts up the debugger and displays the Monitor page but does 
not start the program. The iserver 'si' switch is optional. 

Note: If your transputer is not a T425 you should change the T425 option to the 
appropriate transputer type. You may also need to change the number specified 
after the 'b' option to the number of the root transputer link where your network 
is connected. 

See Table 15.2 for more details about the options to use if in doubt. 

8.13.3 Setting initial breakpoints 

Initial breakpoints can often be set by invoking the Monitor page's' command 
and specifying a breakpoint at the start of main ( ). In this example we use a 
different method based on setting specific breakpoints in the source code before 
the program is started. 

At the Monitor page select option 'F' to display the source file. At the object mod­
ule filename prompt specify the compiled object file faes. tax. The debugger 
uses debug information within the object module to select the source file. 

The source file is displayed with the cursor positioned at the first function defini­
tion. At this point the program is still waiting to be started. 

Set a breakpoint at the beginning of the ChanOutDouble function us­
ing ITOGGLE BREAKL The debugger confirms the breakpoint is set. (Note that 
the breakpoint is set on the first executable line of the function.) 

8.13.4 Starting the program 

Return to the Monitor page using the IMONITORI key and start the program by se­
lecting the 'J' option. Press IRETURNI at the 'Command line' prompt (no command 
line is required) and give a small positive number (e.g. 12) when the program 
prompts for input. The program runs until it reaches the breakpoint. 

72 TDS 224 00 August 1990 



128 8 Debugging transputer programs 

8.13.5 Entering the debugger 

At the breakpoint the debugger requests confirmation to continue. Press any key 
except IC' or le' to enter the symbolic debugging environment. The debugger • 
locates to the breakpoint and displays the source code. 

8.13.6 Inspecting variables 

Variables and channels in ChanOutDouble can now be examined. For ex­
ample, to examine the variable value press UNSPECTI and specify its name at 
the prompt. The debugger displays the value 1.0 and labels it as a double. 
Pressing UNSPECTI with the cursor positioned on value has the same effect. 

Note that only variables in scope at the debugger's current location point can 
be inspected, although the rest of the file can be displayed with the cursor keys. 
The current location point is at the start of function ChanOutDouble. 

8.13.7 Backtraclng 

ChanOutDouble is called from function faes to output the factorial it calcu­
lates for each integer received from feed. To confirm this press ISACKTRACEI 
and the debugger locates to the line in faes where ChanOutDouble is called. 

8.13.8 Jumping down a channel 

Within faes the variable fae is the first in a sequence of outputs on the channel 
out. To trace the destination process for fae first inspect the channel out, 
which is declared to be a channel pointer. Reinvoke UNSPECTI but specify *out, 
which dereferences the channel pointer. The debugger displays an Iptr and 
Wdese, indicating that there is a low priority process waiting at the other end of 
the channel. 

Now press ICHANNELI and again specify *out to dereference the channel pointer. 
The debugger jumps down the channel connecting the two processes and lo­
cates to ChanlnDouble. Now backtrace to the function which inputs and uses 
ChanlnDouble, namely function square. yariables in scope with square 
now become available for inspection (at this stage they have not been initialised). 

While still in function square move the cursor to the first line containing 
ChanOutDouble and set a breakpoint. Then press IRESUMEI successively in 
order to run the program up to the breakpoint just set. 

72 TDS 224 00 August 1990 



129 8.14 Points to note when using the debugger 

8.13.9 Inspecting by expression 

• 
In function square inspect the variable sq and check the computation by rein­
voking UNSPECTI and specifying the expression x * x. Note how UNSPECTI can 
be used to perform arithmetic on any variable in scope. Expressions can also 
include numbers and other variables and constants in scope at the location point. 

8.13.10 Modifying a variable 

In breakpoint debugging any program variable (or even constant) may be mod­
ified. To modify a variable x press IMODIFYI and specify x at the 'Destination' 
prompt. The debugger now requests the new value by display the 'Source' 
prompt. Give any value and check the value has changed by inspecting x once 
again. 

8.13.11 Backtracing to main 

While stil1-in square, press ISACKTRACE/ to locate back to where the function 
was called. The debugger locates to ProcPar in function main where the 
five major processes are started in parallel. If the call to function square had 
been nested in other calls, successive ISACKTRACE/ operations might have been 
necessary but would have eventually located to the call in the program main 
function. 

8.13.12 Entering #include flies 

Press IGOTO LINE/ and select line 20. This will locate you to the #include 
<stdio. h> line. By using the IENTER FILE/ key you may now enter the 
#include file (and any nested files within it); the IEXIT FILE/ key will bring you 
out again into the enclosing file. 

8.13.13 QUitting the debugger 

Finally, to quit the debugger you should use the IFINISH/ key. (You may also quit 
the debugger from the Monitor page using the 'Q' command). 

8.14 Points to note when using the debugger 

This section contains some extra information which may be of use when debug­
_ ging parallel multiprocessor programs written in C. 

72 TDS 224 00 August 1990 



130 8 Debugging transputer programs 

8.14.1 Abusing hard links 

Current generation transputers permit unsynchronised transfer of messages on 
external channels (links). This allows, for example, two 4-byte messages to be 
sent and for them to be received as a single a-byte message on the receiving 
transputer. This is not consistent with the communication of messages between 
processes on the same processor where the transfer of messages is synchro­
nised. 

When breakpoint debugging, external communications are handled by the de­
bugger's virtual link system; this is an internal transfer which is liable to function 
incorrectly if user code is relying on unsynchronised transfers. 

Unsynchronised transfer of data should not be used where breakpointing is used 
to debug a program. It is bad practice anyway and will certainly cause the 
debugging virtual link system, on which breakpointing depends, to crash. 

8.14.2 Examining the active network (the network Is volatile) 

When a process stops at a breakpoint you should remember that all of the other 
processes are still running (unless they hit a breakpoint, terminate etc.). This 
means that any of the Monitor page commands that display process queues 
(eg. R, L, T etc.) may change if you invoke them again (or use the '0' (Update) 
command to update the state information). When in symbolic mode the same is 
true for Channels which may appear empty when first inspected only to change 
to a waiting process when inspected again. 

The only way to effectively freeze all processes is to flip to post-mortem mode by 
using the Monitor page 'Y' (Enter postmortem) command. You should remember 
that when you use this command that all processes that have hit a breakpoint 
will not appear in the runtime queues. If this is a problem, you should note the 
Iptr and Wdesc values of the processes and use the Monitor page '0' (Select 
Process) command to locate to them symbolically. 

8.14.3 Selecting events from specific processors 

The debugger provides no guarantee that debugging events such as breakpoints 
and debugging messages from processes running on different processors are 
presented in the same order in which they occur. Events on processors which 
are closer in terms of connectivity to the root transputer (where the debugger is 
running) are usually displayed before events on distant processors. 

If it is important that you encounter a debugging event on a specific processor 
before events on other processors you can usually achieve this by changing to 

72 TDS 224 00 August 1990 

•

_
•

_ 
., 



131 8.14 Points to note when using the debugger 

the processor of interest (using the Monitor page 'P' command or left and right 
cursor keys) before resuming via the '.r command. 

8.14.4 Invalid pointers 

The debugger checks instruction pointers (Iptrs) and workspace descriptors 
(Wdescs) for the correct code and data limits. Invalid pointers are flagged by 
an asterisk (*) on the screen. 

Invalid pointers indicate a major problem with the program. They may also be 
caused by specifying an jncorrect dump file. 

8.14.5 INTERRUPT key 

The debugger can be diverted from the running program to return to the Monitor 
page by the use of the UNTERRUPTI key. However, 'problems can arise if the 
running program is trying to simultaneously read keystrokes from the keyboard; 
the debugger is then unable to intercept the interrupt key. (Sometimes it is 
possible to force the interrupt to be recognised by repeating the key quickly.) 

A similar problem arises when there are existing keystrokes buffered before the 
interrupt key; if the application program does not read these buffered keystrokes 
the debugger will never have a chance to see the interrupt key. 

8.14.6 Program crashes 

If in breakpoint mode the debugger detects that the program has crashed im­
mediately after starting program execution (Le. after invoking the 'J' (Jump into 
application) command), you should use the post-mortem breakpoint option ('Y') 
to determine the cause. However, if no error flags are set on the network that is 
running the program then it is likely that the an error flag is set on a transputer 
that is not in use. This may occur on boards where the subsystem services are 
wired to propagate all error flags to the root transputer. In this instance you need 
to clear the network (see section 15.3.4 for more details). 

8.14.7 Undetected program crashes 

When operating in breakpoint mode and a program overwrites the debugging 
kernel or you have set a breakpoint in a high priority process on a processor 
without hardware breakpoint support, the debugger cannot fully recover and is 
unable to indicate that the program has crashed. This situation is indicated by 
the following message appearing at the top of the screen when the debugger 
attempts to display the Monitor Page: 

72 TDS 224 00 August 1990 



132 8 Debugging transputer programs 

'I'oolset Debugger: V2 . 00.00 Processor n "name" ('I'm) 

In such instances you should use the host BREAK key in order to terminate 
the debugger and restart the debugger using the command line 'M' option to 
post-mortem debug the session. 

8.14.8 Debugger hangs when starting program 

If the debugger hangs immediately after you have supplied the command line
arguments when starting execution of a program you have probably set a break­
point in a configuration level High priority process on a processor without hard­
ware breakpoint support.

8.14.9 Debugger hangs 

If the debugger hangs when attempting to flip to post-mortem using the Monitor 
page 'y' command or when trying to quit, you $hould terminate the debugger 
manually using the host IBREAKI key. 

If you were trying to flip to post-mortem mode you should restart the debugger 
using the command line 'M' option to resume debugging in post-mortem mode. 

8.14.10 Catching concurrent processes with breakpoints 

Sometimes a concurrent process is executing in a program (often in a loop) 
and you would like to be able to control it better by use of breakpoints. If the 
process is communicating with other processes via channels and you have set 
breakpoints in the other processes, breakpoints can be set on a communication 
and the channel can be jumped down to the executing process when you hit the 
breakpoint. 

However, if the process has entered a non-communicating loop or you are not 
sure where exactly it is in your program code you must use a different approach. 
In order to set a breakpoint, you should use the UNTERRUPTI key to return to the 
Monitor page and then, by using the 'R' (Run queues) command and/or the 'T' 
(Timer queues) command, list the Iptrs and Wdescs of the processes currently 
executing. (Often, this will include the debugging kernel processes but these are 
easily detected and ignored because they are marked by an asterisk.) 

Use the 'G' (Goto process) command to select the Iptr and Wdesc of the 
process to locate symbolically to the process and set a breakpoint on that line. 
Then return to the Monitor page and resume the debugger using the 'J' com- _ 
mand; when the process hits the breakpoint you may continue to debug it. If • 

72 TDS 224 00 August 1990 



133 8.14 Points to note when using the debugger 

there are. no processes on either the runtime or timer queues and there are no 
external communications, it means that your program has either deadlocked or 
terminated. 

8.14.11 Arrays as arguments 

Because C requires a declaration of a parameter as array of type to be adjusted 
to pointer to type the debugger must treat all array parameters as pointers. This 
means that it cannot display the contents of an array of arithmetic type passed 
as a parameter automatically. 

In order to display the contents of arithmetic arrays you should use array sub­
ranging. This is illustrated in the following example: 

#include <misc.h> 

void
foo (int p[4])

/* inspect p and p[O;3] here */ 
debug_stop (); 

int
main (void)

int p[4] {O, 1, 2, 3}; 

foo (p); 

8.14.12 Backtraclng with concurrent C processe-s 

idebug supports backtracing from a parallel process to the parent pro­
cess (where the parallel process was started via a C library call). How­
ever, for processes started asynchronously via ProcRun, ProcRunHigh, or 
ProcRunLow, idebug merely enables you to backtrace and does not allow 
operations such as inspection of variables after a backtrace. This is because the 
parent process which started the asynchronous processes may no longer exist, 
in which case inspection is meaningless. 

72 TDS 224 00 August 1990 



134 8 Debugging transputer programs 

8.14.13 Phantom breakpoints 

Because of the mechanism used for breakpoints on those transputers without 
hardware breakpoint support (see Table 8.1) it is possible for code produced by 
INMOS compilers to contain code that fools the debugger into thinking it is a .­
breakpoint (a phantom breakpoint). This may occur with ice and other TCOFF • 
compatible INMOS compilers such as oc. 

The following two fragments of code generate phantom breakpoints. 

for (ii) 

while (1) 

If you encounter a phantom breakpoint and you wish to continue execution, you 
must set a breakpoint at the same address and then resume execution. 

To do this use the IGET ADDREssl key to obtain the start address of the empty 
loop when in symbolic mode, change to the Monitor page and use the Breakpoint 
Set option to set a breakpoint at the loop address. e 
8.14.14 Errors generated by the full library 

Generally, the full C runtime library is able to detect when there is insufficient 
memory for it to function correctly; in such instances it displays an error message 
at startup. 

In rare circumstances the library is able to detect that there is insufficient memory 
but it does not have enough memory to display the startup error message. In 
such instances, it sets the error flag and terminates execution. 

If a program sets the error flag and the debugger is unable to backtrace when 
the last instruction executed was seterr (error explicitly set), and the following 
error message is displayed by the debugger: 

Error: Not compiled with debugging enabled "libc.lib" 

then it is highly likely that insufficient memory is available for either the Static or 
Heap area. e 
72 TDS 224 00 August 1990 



8.14 Points to note when using the debugger 135 

8.14.15 Errors generated by the reduced library 

Because the reduced C runtime library has no host to communicate with, if a 
runtime error occurs the reason for the error is not readily apparent. 

If a program sets the error flag and the debugger is unable to backtrace when 
the last instruction executed was seterr (error explicitly set), and the following 
error message is displayed by the debugger: 

Error : Not compiled with debugging enabled "libcred.lib" 

then it is highly likely that insufficient memory is available for either the Static or 
Heap area. 

8.14.16 Shifting by large positive or negative values 

Current transputers will temporarily 'lock' (for a time proportional to the shift value 
which is treated as unsigned) if you shift by large positive values or negative 
values. C performs no runtime checks for invalid shift' values and does not 
protect you against their consequences. (Certain transputer languages such as 
occam do perform these checks). 

If the debugger when used in post-mortem mode locates to a source line con­
taining a shift operator and the error flag has not been set then it is likely that 
you have shifted by an invalid value. 

8.14.17 Complier optlmlsatlons 

ice performs some code optimisations, If an external variable is optimised out 
from a module because it is never used the debugger is informed of this and is 
able to relay this information to the user. 

72 TDS 224 00 August 1990 



136 8 Debugging transputer programs 

However, for some optimisations the debugger is not informed and consequently 
it may provide misleading information. The following code illustrates this: 

int
main (void)

int a = 0;
int b = 0;

while (1) /* or for (;;) */

/* following optimised out by compiler */
a = 42;
b = a + 1;
a = b * b

In these cases the debugger may show the discrepancy in either of the following 
ways: 

If a function follows the optimised code the debugger associates the 
address of the optimised lines with the address of the start of the function. 

2 If no function follows the optimised code the debugger indicates that it is 
unable to find the address for any of the optimised lines. 

8.14.18 Determining connectivity and memory sizes 

In order to establish the connectivity and memory map range for each processor 
in a program you should use the debugger command line dummy debug session 
'D' option. 

You should remember for non-configured programs that the memory map re­
quirements may be larger than those indicated because of initialisation processes 
which are overlayed. 

72 TDS 224 00 August 1990 



9 Mixed language.
programming 

This chapter describes the mechanisms supplied with the toolset for mixing code 
modules written in different high level languages. It describes both the gener­
alised system for mixing code at configuration level and the special facilities that 
support the incorporation of occam code into C programs. 

9.1 Introduction 

For many applications it is appropriate to write the software using more than 
one programming language. For example, a particular algorithm may be better 
expressed in a specific language or applications software may already exist in 
particular languages. In either case a well defined mechanism for mixing lan­
guages within a single system is desirable. 

The communicating process programming model provides a clean and simple 
basis for mixing languages. The model consists of independent processes, com­
municating via channels, which can be distributed in any way to a network of 
transputers using a configuration description. Programs can be written in differ­
ent languages, compiled and linked using a common set of tools, and the linked 
units placed anywhere on a network of transputers. 

Programs written using any of the INMOS compilers and toolsets which generate 
code in compatible TCOFF format can be freely mixed in the same configuration 
as linked modules. 

A special mechanism supports the importation of occam procedures and func­
tions into C programs, based on a C compiler pragma. A pragma is also provided 
for translating occam names into valid C names. 

A set of interfaces is also provided for incorporating code written using earlier IN­
MOS 3L toolsets. The interfaces use a series of occam harnesses for different 
types of C program and are described in appendix F. 

9.2 Mixing code at configuration level 

The mixing of code written in different languages can be achieved at the con­
figuration level, using linked units generated using any of the INMOS TCOFF 
compilers. The TCOFF family of compilers generates object code in a special 
format which is interchangeable at configuration level. 

72 TDS 224 00 August 1990 



138 9 Mixed language programming 

9.2.1 C and occam 

Linked object files which are to be configured can contain entirely C code, entirely 
occam code, or mixtures of the two. Remember when linking any C code to 
also link in the appropriate linker startup file (startup .lnk or started .lnk 
depending whether the program uses the full or the reduced library), and when 
linking any occam code remember to link in the compiler libraries. Linker in­
direct files which specify the correct occam compiler library for different trans­
puter targets are supplied with the TCOFF version of the occam 2 toolset (IMS 
OX205). 

The configuration description allows complete flexibility in the placement of soft­
ware modules onto the hardware network. It can be used, for example, to place 
processes written in different languages on the same processor as easily as on 
a network of processors interconnected by transputer links. Each code module 
must be a fully linked unit in which all external references are already resolved 
and must have been created in TCOFF format. 

For further information about the configuration system and language, including 
examples of simple configuration descriptions, see chapter 6. 

9.3 Calling occam processes 

Special facilities are provided in the toolset to allow occam procedures and 
functions to be imported into C programs as C functions. The mechanism uses 
the ice pragma IMS..nolink to prevent the addition of a static link parameter 
when the call to the occam function is compiled. 

9.3.1 Pragma IMS..nolink 

IMS..nolink disables the passing of the global static base (gsb) parameter 
when the occam code is called. The gsb locates the static area for C functions 
but would disrupt the normal occam calling sequence. 

For example, consider the occam function ocfunc which performs some un­
specified calculation and returns a single integer value: 

INT FUNCTION ocfunc(VAL INT argl, arg2) 
INT ret: 
VALOF 

SEQ 
-- calculate ret 

RESULT ret 

72 TOS 224 00 August 1990 

_ 
• 

e



139 Calling occam processes 

To call ocfunc from a C program it must first be declared as an extern 
function and then specified as having no static base parameter: 

extern int ocfunc(int argl, int arg2);
/* declare function as extern */

'pragma IMS nolink(ocfunc)
/* direct function to be compiled

with no static base parameter */

void call oc(void)
{ ­

int argl, arg2, ret;
/* set up arguments */

ret = ocfunc(argl, arg2);
/* call function */

When linking the C program the file containing the occam function must be 
linked with the program in the same way as any other compiled object file. Re­
member to link in the occam compiler libraries (using the appropriate Iinker 
indirect file for the transputer type, supplied with the occam toolset) and any 
other libraries that the occam program uses. 

An alternative to using the nolink pragma is to compile the occam code with 
a dummy first parameter of type INT. The dummy parameter is not used by 
occam and simply ensures compliance with the C calling requirements. 

9.3.2 Translating occam names 

The compiler pragma option INS_translate is provided to allow occam 
names, such as those containing invalid C characters, to be replaced by an 
acceptable C alias. For example, it is common in occam to use the full stop 
character to create multi-part names. Use of the full stop is prohibited in C. 

The pragma allows occam identifiers, where it is impossible or undesirable to 
change them, to be referenced in the program by valid C names. The syntax is 
as follows: 

#pragma INS_translate (ename, "occamname") 

For example: 

#pragma INS_translate (occam_func "occam. func") 

72 TDS 224 00 August 1990 



140 9 Mixed language programming 

All references to occam_func in the source code will be translated into 
occam. func in the object file. 

9.3.3 Rules for Importing occam code 

Only occam procedures and occam functions returning a single value, 
may be called. 

2 The occam process to be called must be at the outer level of a sepa­
rately compiled unit. 

3 All interaction with the calling program must be via channels. 

4 No process which requires direct communication with the host file server 
may be called. 

5 Formal occam parameters, return values from occam functions, must 
be mapped onto actual C parameters of the correct type. The calling 
conventions are described in section 9.4. 

6 The occam process must not use vector space, or call any other occam 
process which uses vector space. If arrays are used they should be 
explicitly placed within the workspace. occam libraries supplied with 
the occam 2 toolset which use vector space and therefore cannot be 
called from Care: hostio . lib, streamio . lib, process . lib, 
msdos . lib, and streamco . lib. 

7 There must be enough workspace on the stack of the calling C program. 
This must be ensured by the programmer. 

8 Non-VAL occam parameters should be passed as pointers from C. 

9 Where the formal parameter to an occam procedure or function is an 
array (VAL or Non-VAL) the calling C program should always pass a 
pointer to the array. For an occam array parameter with unspecified ar­
ray bounds, the actual sizes of the bounds should be passed immediately 
following the array parameter; for multidimensional arrays the bounds 
should be passed in the same order as they appear in the declaration. 

For example, to call the following occam procedure (which uses a 
bounded array): 

PROC ocproc([8]INT array) 

the following code should be used: 

72 TDS 224 00 August 1990 



141 Calling occam processes 

extern void ocproc(int array[8]);

#pragma IMS_nolink(ocproc)

int array[8];

ocproc(array);

To call the following occam procedure (unbounded array): 

PROC ocproc([]INT array) 

use the C code: 

extern void ocproc(int array[], int arraysize);

#pragma IMS_nolink(ocproc)

int array[8];

ocproc(array, 8);

72 TDS 224 00 August 1990 



142 9 Mixed language programming 

9.4 Parameter passing 

The following tables describe the calling conventions that must be followed when 
passing parameters from C programs to imported occam processes. They list 
the C equivalents on 32 and 16 bit transputers for all occam types. Where 
there is no true equivalent the action to take is given. 

Formal occam Actual C parameter 
parameter 

(32 bit) (16 bit) 

VAL BOOL int int 
(value must be 0 or 1) (value must be 0 or 1) 

VAL BYTE char char 
unsigned char unsigned char 

VAL INT16 short int 
int 

VAL INT32 

short int 

int long int * 
long int 

VAL INT64 No direct equivalentt No direct equivalentt 

VAL INT int int 

VAL REAL32 float float * 
VAL REAL64 double * double * 
VAL array array array 

(see above) (see above) 

t There is no direct type equivalent in C. Either recode the occam program 
or pass the parameter in another form. 

72 TDS 224 00 August 1990 



9.4 Parameter passing 143 

Formal occam 
parameter 

Actual C parameter 

(32 bit) (16 bit) 

BOOL char * 
unsigned char 
value pointed to 
must be 0 or 1) 

* 
char * 
unsigned char 
value pointed to 
must be 0 or 1) 

* 

BYTE char * 
unsigned char * 

char * 
unsigned char * 

INT16 short int * short int 
int * 

* 

INT32 int * 
long int * 

long int * 

INT64 No direct equivalentt No direct equivalentt 

INT int * int * 
REAL32 float * float * 

REAL64 double * double * 

CHAN Channel * 
(see Note 1) 

Channel * 
(see Note 1) 

PORT No direct equrvalentt No direct equivalentt 

TIMER Pass nothing 
(see Note 2) 

Pass nothing 
(see Note 2) 

array array 
(see above) 

array 
(see above) 

t There is no direct type equivalent in C. Either recode the occam program 
or pass the parameter in another form. 

Note 1: Channel is an INMOS specific type declared in the header file 
channel.h. 

Note 2: An occam TIMER parameter should have no associated C actual 
parameter passed. For example, to call the occam procedure: 

PROC ocproc(VAL INT pl, TIMER t, VAL INT p2) 

use the following C call: 

extern void ocproc(int pl, int p2); 

#pragma IMS-nolink(ocproc) 

ocproc (pl, p2); 

72 TDS 224 00 August 1990 



144 9 Mixed language programming 

9.4.1 Return values 

The following table outlines the conventions that must be followed when receiving 
occam function return values in C. 

occam C function type 
function 
type 

(32 bit) (16 bit) 

BOOL int int 

BYTE char char 
unsigned char unsigned char 

INT16 short int short int 
int 

INT32 int long int 
long int 

INT64 No direct equivalentt No direct equivalentt 

INT int int 

REAL32 float float 

REAL64 double double 

t There is no direct type equivalent in C. Either recode the occam program 
or return the value in another form. 

72 TDS 224 00 August 1990 



9.4 Parameter passing 145 

9.4.2 Example of passing parameters 

The following example shows an occam function with a variety of formal pa­
rameters, along with the C code which can call it. The calling code for 32 bit 
and 16 bit transputers is given separately. 

The occam function to be called is as follows: 

INT32 FUNCTION ocfuncl(VAL INT32 parml) IS parml: 

PROC ocprocl(VAL BYTE vb,
VAL INT16 vi16,
VAL INT32 vi32,
VAL INT vi,
VAL REAL32 vr32,
VAL REAL64 vr64,
VAL BOOL vbo,
VAL [ ] INT varrl,
VAL [8]INT varr2,
BYTE b,
INT16 i16,
INT32 i32,
INT i,
REAL32 r32,
REAL64 r64,
BOOL bo,
[] INT arrl, 
[8]INT arr2) 

SEQ
b := vb
i16 := vi16
i32 := vi32
i := vi
r32 := vr32
r64 := vr64
bo := vbo
arrl .- varrl
arr2 := varr2

72 TDS 224 00 August 1990 



146 9 Mixed language programming 

The C code to call the above occam function on a 32 bit transputer is as follows: 

'define ARRAY SIZE 1 4
'define ARRAY:SIZE:2 8

extern long int ocfunc1(long int parm1); 

extern void ocproc1 (char vb, short int vi16', 
long int vi32, int vi, 
float vr32, double *vr64, 
int vbo, 
int varr1[], int varr1 size, 
int varr2[ARRAY SIZE 2], 
char *b, short Int *I16, 
long int *i32, int *i, 
float *r32, double *r64, 
char *bo, 
int arr1[], int arr1 size, 
int arr2[ARRAY_SIZE_2]); 

'pragma INS nolink(ocfunc1)
'pragma INS=nolink(ocproc1)

long int li, result;
char vb, b;
short int vi16, i16;
long int vi32, i32;
int vi, i;
float vr32, r32;
double vr64, r64;
int vbo;
char bo;
int varr1[ARRAY SIZE 1], arr1[ARRAY SIZ~ 1];
int varr2[ARRAY:SIZE:2l, arr2[ARRAY:SIZE:2];

result = ocfunc1(li); 

ocproc1(vb, vi16, vi32, vi, vr32 , &vr64,
vbo, varr1, ARRAY SIZE 1, varr2,
&b, &i16, &i32, &I, &r32 , &r64,
&bo, arr1, ARRAY_SIZE_1, arr2);

72 TDS 224 00 August 1990 



9.4 Parameter passing 147 

The C code to call the above occam function on a 32 bit transputer is as follows: 

'define ARRAY SIZE 1 4
'define ARRAY:SIZE:2 8

extern long int ocfuncl(long int *parm1); 

extern void ocproc1(char vb, short int vi16, 
long int *vi32, int vi, 
float *vr32, double *vr64, 
int vbo, 
int varr1[], int varr1 size, 
int varr2[ARRAY SIZE 2], 
char *b, short Int *I16, 
long int *i32, int *i, 
float *r32, double *r64, 
char *bo, 
int arr1[], int arr1 size, 
int arr2[ARRAY_SIZE_2]); 

'pragma INS nolink(ocfunc1)
'pragma INS=nolink(ocproc1)

long int li, result;
char vb, b;
short int vi16, i16;
long int vi32, i32;
int vi, i;
float vr32, r32;
double vr64, r64;
int vbo;
char bo;
int varr1[ARRAY SIZE 1], arr1[ARRAY SIZE 1];
int varr2[ARRAY:SIZE=2], arr2[ARRAY:SIZE=2];

res = ocfunc1(&li); 

ocproc1(vb, vi16, &vi32, vi, &vr32, &vr64, 
vbo, varr1, ARRAY SIZE 1, varr2, 
&b, &i16, &i32, &I, &r32, &r64, 
&bo, arr1, ARRAY_SIZE_1, arr2)j 

72 TDS 224 00 August 1990 



148 9 Mixed language programming 

9.5 Mixing code using the occam 2 toolset 

If you also have the occam 2 toolset installed, code written in different lan­
guages can be mixed with current TCOFF-compatible code using a special in­
terface code system. The facility extends to code written using the earlier INMOS A 
3L compilers and toolsets. • 

Any non-OCcam code can be wrapped in an occam envelope and treated as an 
equivalent occam process, providing that certain interfacing rules are applied. 
The system is similar to that described in the 'occam 2 too/set user manua!', 
but with some modifications to the interfaces. Details of the interfaces supported 
for this form of mixed language programming are given in appendix F. 

9.5.1 Calling C from occam 

The library callc .lib can be used to call C programs from occam. The 
library is provided with the occam toolset (TCOFF based version) and informa­
tion about its use can be found in the 'occam 2 too/set user manua!'. 

72 TDS 224 00 August 1990 



10 Using the EPROM 
tools 

10.1 Introduction 

INMOS EPROM software is designed so that programs can be developed and 
tested using the INMOS toolset, and once they are working, can be placed in 
ROM with only minor change. 

Under development, software is booted onto a network from a link connecting 
the network to the host computer. Then the software is prepared for a ROM, 
which is attached to the root transputer in the network. 

Figure 10.1 shows how a network of five transputers would be loaded from a 
ROM accessed by the root transputer. 

Boot from link 

Figure 10.1 Loading a network from ROM 

To prepare software to be booted from ROM, rather than to be booted from link, 
the following two steps must be taken: 

1 Give different options to the configurer and collector tools so that they 
produce ROM-bootable code. 

2 Run the ieprom tool to produce a file or set of files suitable for blowing 
into EPROM. 

Figure 10.2 illustrates the stages of preparing ROM-bootable software. One or 

72 TDS 224 00 August 1990 



150 10 Using the EPROM tools 

more linked units will be referenced from the configuration file, depending on 
whether it is a single or multi-process program. 

~ ... 
I
I

~icconf~iCOllect~

~ Input/output 

- -~ References 

I 
I 
I 
I 

Figure 10.2 Preparation stages for ROM-bootable software 

10.2 Processing configurations 

The processing configuration used will depend on the number of software pro­
cesses, the number of transputers available to run the code and whether the 
code is to run from ROM or RAM. The following sections outline the possible 
configurations. 

10.2.1 Single process, single processor, run from ROM 

The application process is prepared as a single configuration process. (See 
section 10.4). The application process is then run in the processor, directly from 
ROM, using the RAM as the data area for. static variables, workspace and heap. 

10.2.2 Multiple process, single processor, run from ROM 

The application is prepared as a collection of processes, connected together as 
described in a configuration file. It is then run on a single processor, with the 
code in ROM, and the RAM is used as the data area. 

72 TDS 224 00 August 1990 



10.3 The eprom tool: ieprom 151 

10.2.3 Single process, single processor, run from RAM 

The application is prepared as a single configuration process (See section 10.4). 
When booted from ROM, the processor loads the code into RAM, and executes 
it there; the data area is also in RAM. 

10.2.4 Multiple process, single processor, run frOm RAM 

The application is prepared as a collection of processes, connected together as 
described in a configuration file. When booted from ROM, the processor loads 
the code for all the processes into RAM, and sets them all running, with their 
data areas also in RAM. 

10.2.5 MUltiple process, multiple processor, run from RAM 

The application is prepared as a collection of processes, connected and allocated 
to processors as described in a configuration file. The compiled and configured 
application code is placed in the ROM of the root processor: When booted from 
ROM, the root processor loads its own code into RAM, and loads the rest of the 
network via its links. Each processor then sets off its own processes, and the 
application runs. (This configuration is shown in figure 10.1). 

10.2.6 Multiple process, multiple processor, root run from ROM, rest of 
network run from RAM 

The application is prepared as a collection of processes, connected and allocated 
to processors as described in a configuration file. The compiled and configured 
application code is placed in the ROM of the root processor. When booted from 
ROM, the root processor loads the rest of the network via its links, and then 
continues to run its own code from ROM. 

10.3 The eprom tool: ieprom 

The eprom tool ieprom takes the output of the collector, and produces a file 
or set of files suitable for blowing into an EPROM. The following output formats 
are supported: 

- Binary 

- Hex 

- Intel hex format 

72 TDS 22400 August 1990 



152 10 Using the EPROM tools 

- Intel extended hex format 

- Motorola S-record format 

ieprom supports the production of code files in block mode, which allows the 
code to be placed in a set of different files. This is useful to program EPROMS 
organised as separate byte-wide devices, or where the EPROM programming 
device does not have enough memory to hold the entire image. 

_ 
• 

ieprom also supports the inclusion in the EPROM image of a memory config­
uration. Some 32-bit transputers have a configurable memory interface which 
can be initialised from a fixed area in the ROM, when the transputer is reset. 
A particular memory configuration can be specified to ieprom in a text file. 
These files are known as memory configuration files and normally have the file 
extension •memo The format of these files, and the facility to edit them using an 
interactive tool called iemit is described in chapter 17. 

The ieprom tool is driven by a control file which normally has the file extension 
. epr. A detailed description of ieprom and its control file is given in chapter 18. 

10.4 Using the conflgurer and collector to produce ROM­
bootable code 

To produce code suitable for running in ROM or RAM, the configurer and collector 
tools must be specified with the appropriate command line options. The following 
options are used for both tools: 

e 
• The ro option specifies that the code is to run in ROM. 

• The ra option specifies that the code is to run in RAM. 

• The rs option specifies the ROM size. 

In addition the p option must be specified for the configurer, in order to specify 
the root processor name. 

The collector will add the appropriate ROM bootstrap to the application code and 
the output file will be given the extension •btr. 

When preparing code to run in ROM or RAM, the configuration phase must be 
used, in order to specify the size of stack and heap to be used. This applies even 
when the application consists of a single process running on a single processor. 

72 TDS 224 00 August 1990 



10.5 Summary of EPROM steps for different processing conflguratlons153 

10.5 Summary of EPROM steps for different processing con­
figurations 

Compile and 
link 

Conflgure Collect EPROM 

Single process, Compile and Configure with Collect with the Run EPROM 
single processor, link program the ro,~. ro and rs tool to add 
run from ROM. as a single 

unit. 
ahd p options. options. memory interface 

(if necessary), 
and produce 
EPROM files. 

MUltiple process, Compile and Configure with Collect with the Run EPROM 
single processor, link a set of the ro, rs ro and ra tool to add 
run from ROM. units, one per 

process. 
and p options. options. memory Interface 

(If necessary), 
and produce 
EPROM files. 

Single process, Compile and Configure with Collect with the Run EPROM 
single processor, link program the ra, rs ra and rs tool to add 
run from RAM. as a single 

unit. 
and p options. options. memory interface 

(if necessary), 
and produce 
EPROM files. 

Multiple process, Compile and Configure with Collect with the Run EPROM 
single processor, link a set of the ra, ra ra and rs tool to add 
run from RAM. units, one per 

process. 
and p options. options. memory interface 

(if necessary), 
and produce 
EPROM files. 

Multiple process, Compile and Configure with Collect with the Run EPROM 
multiple processor, link a set of the ra, rs ra and rs tool to add 
run from RAM. units, one per 

process. 
and p options. options. memory interface 

(if necessary), 
and produce 
EPROM flies. 

Multiple process, 
multiple processor 
root runs from 
ROM, rest of 
network runs from 
RAM. 

Compile and 
link a set of 
units, one per 
process. 

Conflgure with 
the ro, ra 
and p options. 

Collect with the 
ro and ra 
options. 

Run EPROM 
tool to add 
memory interface 
(if necessary), 
and produce 
EPROM files. 

72 TDS 22400 August 1990 



154 10 Using the EPROM tools 

72 TDS 224 00 August 1990 



Tools

72 TDS 224 00 August 1990 



156 Tools 

72 TDS 224 00 August 1990 



11 ice - ANSI C 
compiler 

This chapter describes in detail the ANSI C compiler icc~ It describes the 
command line syntax, compiler options, and preprocessor directives, explains 
what is meant by transputer classes and how to use them, and describes other 
features of the compiler such as support for transputer code. The chapter ends 
with a list of error messages. 

11.1 Introduction 

The ANSI C compiler is a full ANSI C compiler with support for concurrent pro­
gramming. It also supports some additional extensions to the C language in­
cluding compiler directives, pragmas and low level programming. 

The ANSI standard for the C language extends the language through the defini­
tion of runtime library support, new types, function prototyping, and many other 
ways. For a summary of the differences between ANSI C and the original defini­
tion of the language see chapter 3 'New features in ANSI e' in the accompanying 
reference manual. The ANSI C compiler includes support for parallel program­
ming through a set of library functions with associated types and structures, a 
mechanism for incorporating transputer code sequences, and a group of com­
piler pragmas for enabling compiler options in sections of code and for conveying 
directives to the linker. The transputer code mechanism supports the full set of 
transputer instructions and operations and also supports labels. 

Parallel processing is achieved througn a library of process, channel, and 
semaphore functions and their related types and data structures. Calls to the 
functions are compiled by ice into highly efficient parallei code for the trans­
puter. 

ice is itself written in ANSI C and normally runs on the transputer board. A 
version of the compiler running on the host system is supplied with Sun and 
VAX based toolsets. 

ice generates code for a particular transputer, transputer type, or class, and a 
target should be specified for all compilations. The default is 10 produce code 
for the IMS T414. 

72 TDS 224 00 August 1990 



158 11 ice - ANSI C complier 

11.2 Running the compiler

To invoke the compiler use the following commahd line:

ice filename {optiOhS} 

where: fi/ename is the C program source file. If no extension is given • c is 
assumed. Only one filename may be given on the command line. 

options is a list of the options given in the following tables. 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Note: ice must be invoked in a writeable directory, that is, one in which you 
(or any alias you use to invoke the compiler) have write access. 

A 
• 

Examples of use: 

UNIX based toolsets: MS-DOS and VMS based toolsets: 

ice hello 
i1ink hello.teo -f startup./nk 
ieolleet hello./ku -t 
iseNer -sb hello.bt/ -se 

ice hello 
i1ink hello.teo If startup./nk 
icolleet hello./ku It 
iseNer Isb hello.bt/ /se 

72 TDS 224 00 August 1990 



159 11.2 Running the complier 

Option 

TA 

• TB

T2l2
T2

T222

T225
T3

T400

T4l4

T4

T425

T5

T800

T8

T80l

T805

T9

C 

D symbol 

D symboi=value 

EC 

EP 

EZ 

FH 

FV 

72 TDS 224 00 

Description 

Compile for transputers of class A (T400. T414. T425.
T800. T801. T805).

Compile for transputers of class B (T400. T414. T425).

Compile for T212 transputer.

Compile for T212. T222. or M212 transputers.

Compile for T222 transputer.

Compile for T225 transputer.

Compile for T225 transputer.

Compile for T400 transputer.

Compile for T414 transputer. This is the default processor
type and may be omitted if the target processor is a T414.

Compile for T414 transputer.

Compile for T425 transputer.

Compile for T425 or T400 transputers.

Compile for T800 transputer.

Compile for T800 transputer.

Compile for T801 transputer.

Compile for T805 transputer.

Compile for T801 or T805 transputers.

Performs a syntax check only. Generates no object code. 

Defines a symbol. Same as #define symbol 1 at the 
start of the source file.

Defines a symbol and assigns a value. Same as #define
symbol value at the start of the source file.

Disables checks for invalid type casts. ANSI compliance
check.

Disables checks for invalid text after #else or #endif.
ANSI compliance check.

Disables checks for zero-sized arrays. ANSI compliance
check.

Checks that all extern function definitions are preceded
by a declaration and reports all unused forward static
declarations. Software QA check.

Generates warning messages on #defined but unused
macros.

Generates warning messages on declared but unused vari­
ables or functions (default).

August 1990 



160 11 ice - ANSI C complier 

Option Description 

G Generates comprehensive debugging data. The default is to 
produce minimal debugging data. Debugging data is required 
for the correct operation of idebuq. 

I 

J dir 

L 

KS 

o outputfile 

pp 

S 

u symbol 

WA 

wo 

WF 

WT 

wv 

XM 

XO 

Displays detailed progress information at the terminal as the 
compiler runs. 

Adds dir to the list of directories to be searched for source files 
incorporated with the #include directive In extended search 
paths. See section 11 .3.1 for details. 

Loads the tool onto thetransputer board and terminates. 

Enables stack checking. 

Specifies an output file. If no filename is given the compiler 
derives the output fHena.ne from the input filename stem and 
adds the • tco extension. 

Usts the preprocessed source file to stdout. 

Compiles the source file to assembly language and writes it to 
a file. Assembly is suppressed and no object code is produced. 
The file is named after the input file and given the • s extension. 

Disables a symbol definition. Equivalent to #undef symbol at 
the start of the source file. 

Sup~resses messages warning of '=' in conditional expressions. 

Suppresses messages warning of deprecated function declara­
tions.

Suppresses messages warning of implicit declarations of
extern int ( ) . 

Suppresses messages warning of implicit narrowing or lower pre­
cision.

Suppresses messages warning of the possibility of less efficient
code when compiled for a transputer class.

Suppresses messages warning of non-declaration of void func­
tions.

Directs the transputer-hosted versions of the tool to be executed 
so that they can be restarted without rebooting by the server. 

Directs the transputer-hosted versions of the tool to be executed 
once on the transputer board and then terminate. 

•

72 TDS 224 00 August 1990 



11.2 Running the compiler 161 

11.2.1 Transputer targets 

The compiler generates code for a specific transputer type. This means that a 
processor type should be specified for all transputer.targets except the default 
that is built into the compiler. The default processor type which is used if no 
target is specified is T414. 

Processor types supported are the IMS T212, M212, T222, T225, T400, T414, 
T425, T800, T801 and T805 transputers. For the purpose of generating common 
code for several transputer types these are also grouped into transputer classes. 

Transputer classes group transputers according to word size, the position of the 
start of usable memory, and instruction set compatibility. They can be used to 
generate code for combinations of transputers. 

Details of transputer types and classes can be found in section 5.3. 

11.2.2 Error modes 

All code in mixed language transputer programs must be compiled and linked in 
the same or a compatible error mode. iee always generates code in UNIVER­
SAL error mode, which is compatible with HALT and STOP error modes created 
by other INMOS compiler toolsets. 

The error mode for a mixed language program can be consolidated into a single 
mode for the entire program by specifying the appropriate linker option. If no 
mode is specified the linker generates the program in HALT mode. 

11.2.3 Default command line options 

Commonly used command line parameters can be defined in the host environ­
ment variable ICCARG. Parameters specified in this way are automatically added 
to the command line when the compiler is invoked. 

Command line parameters must be specified in ICCARG using the syntax re­
quired by the iee command line. 

11.2.4 File extension defaults 

The • e extension is assumed on input source files and does not need to be 
specified. If no output file is specified the compiled object file is named after the 
input file and given a •tee extension. A •tee extension is also added if a file 
is specified without an extension. 

72 TDS 224 00 August 1990 



162 11 icc - ANSI C complier 

11.2.5 Search paths 

The normal search paths are used for locating files specified on the command 
line. The search rules are described in section A.3. 

Search paths for files imported With the #include compiler directive differ 
slightly from those for files specified on the command line and can be extended 
by the use of special syntax and a command line option. Details of this facility 
can be found in section 11.3.1. 

e 

11.3 Compiler directives 

11.3.1 #include 

Syntax: #include fi/sname 

The #include directive instructs the preprocessor to copy the contents of the 
named file into the current file. The filename must be enclosed within angle 
brackets «fi/ename» or double quotes (nfi/enamej. The two forms of syntax 
generate different search strategies. 

If angle brackets are used only those directories specified by ISEARCB are 
searched. No other directories (including the current directory) are searched. 
This system is mainly used to include the standard library header files. 

_ 
• 

If double quotes are used to enclose the filename the standard toolset search is 
used, but incorporating a method for extending the search list. First the current 
directory is searched. If the file is not found the search continues with the list of 
directories specified after the compiler ''1' option. If the file is still not found, or 
if no list is given, directories specified by ISEARCH are searched in the normal 
way. 

Relative directory names 

Relative directory names are treated as relative to the directory containing the 
current source file. 

Backslash character In fllenames 

In included filenames the backslash is not treated as an introducer to an escape 
sequence unless it is followed by another backslash ('\ \ '). 

72 TDS 224 00 August 1990 



11.3 Complier directives 163 

11.3.2 'define 

Syntax: 'define name [(arg1, . .. ,argn)] [value] 

The define directive allows simple macro substitution to be performed. In its sim­
plest mode of operation name and value represent a series of ASCII characters 
causing the preprocessor to substitute all occurrences of name by value (which 
may be NULL). Arguments may also appear after the name, and when this hap­
pens the preprocessor will still replace all occurrences of name and its following 
arguments by value, but in this case the value string will have been defined in 
terms of the expected arguments, and will therefore exhibit a dependence on 
the original text. 

'define YES. 1 /* replace all occurrences 
of YES by 1 */ 

'define max(a,b) (a > b ? a : b)
/* max(2,4) will be replaced by

(2 > 4 ? 2 : 4) */

11.3.3 'undef 

Syntax: 'undef identifier 

This directive causes the current definition of identifier (as defined using the 
'define directive) to be deleted. 

11.3.4 'if 

Syntax: 'if constant_expression 

This directive, along with the 'else and 'endif directives, is used in a similar 
way to the if ... else construct of many high level programming languages. When 
it is encountered, the preprocessor evaluates the following constant expression 
and if it is zero it deletes all text up to the following 'else or 'endif directive. 
If, however, the expression evaluates to non-zero, then only the text between 
the 'else and 'endif directives (if any) is removed. This mechanism would 
typically be used to allow conditional compilation. 

As an extension to this directive, the preprocessor also allows 'if defined' typed 
expressions. In this case 'defined' is used as a unary operator which returns 
true if its operand represents an identifier that is currently defined within the 
preprocessors symbol table, and false if it is not. By combining this operator 
with the logical operators it is possible to build complex expressions of the form: 

72 TDS 224 00 August 1990 



164 11 ice - ANSI C complier 

'if defined foo & ! defined dummy 

/* if foo is defined & dummy is not */ 

11.3.5 #ifdef 

Syntax: #ifdef identifier 

This directive works in a similar way to the #if directive, but instead of basing 
its decision on the result of an expression it uses the existence or non-existence 
of the identifier within the preprocessors' symbol table as the criterion. If the 
identifier has not previously appeared in a #define directive then all text up to 
the following #else or #endif directive is deleted; otherwise all text between 
the #else and #endif directives is removed. 

11.3.6 #ifndef 

Syntax: #ifndef identifier 

This directive is similar to #ifdef, except that the text is passed if identifier is 
not currently defined. 

11.3.7 #else 

Syntax: #else 

This directive can be used with the #if, #ifdef, and #ifndef directives 
to mark the beginning of text which will be ignored whenever the expression 
following the #if evaluates to a non-zero value. 

11.3.8 #elif 

Syntax: #elif 

This directive can be used in place of the sequence #else life 

11.3.9 #endif 

Syntax: #endif 

This directive must be used with the #if, #ifdef, and #ifndef directives to 
mark the end of the text which may be affected by the #if ... #else ... #endif 

72 TDS 224 00 August 1990 



11.3 Complier directives 165 

construct. 

11.3.10 'line 

Syntax: 'line Iinenumber [filename] 

This directive instructs the compiler that it is currently processing line number 
linenumber in the file filename. If no file name is specified, the original name is 
retained. 

11.3.11 'pragma 

Syntax: 'pragma pragma (params) 

This directive activates and deactivates various compiler options in sections of 
C code. It may be used to set (or override) options specified on the command 
line. Most pragmas also take parameters or numerical arguments. 

The following two tables list the main compiler pragmas and the parameters to 
INS_on and INS_off. 

Option Description 

INS_on (params) 

INS_off (params) 

INS-nolink (functionname) 

INS_linkage ([ " name" ]) 

Enables specific compiler checks. Takes a 
list of parameters which specify the checks 
to be enabled. 

Disables compiler checks. Takes a list of 
parameters which specify the checks to be 
disabled. 

Compiles the function functionname with­
out a static link parameter. The function 
must already have been declared but must 
not have been defined or called. This 
pragma is used for importing code written 
using languages such as occam which do 
not use static data, and for exporting C 
functions to the same languages. 

Adds ordered reference tags to specific re­
gions of code. The tags are directives to 
the Iinker which force a specific segment 
ordering. For further details about link time 
ordering see section 20.3.1. 

72 TDS 224 00 August 1990 



166 11 icc - ANSI C complier 

Option 

IMS~odpatchsize(n)

IMS_codepatchsize(n) 

INS_translate (name, "newname n
) 

Parameters to INS_on and INS_off: 

Description 

Specifies the number of bytes 
reserved by the compiler for a 
linker module number patch. 
n has default values of 3 for 
32-bit targets and 2 for 16-bit 
targets. 

Specifies the number of bytes 
n reserved by the compiler for 
a linker code patch. n has a 
default value of 6 for 32-bit 
targets and 4 for 16-bit tar­
gets. 

Directs the compiler to re­
place all references to name 
(for example an external rou­
tine) by "newnamtl'. "new­
name" is a C string which can 
contain alphanumeric charac­
ters and the underscore ('_'), 
percent ('%'), and full stop 
(' .') characters. 

Parameter S/f Description 

channel_pointers cp Treats a variable of type Channel in the 
scope of the definition typedef void 
*_IMS_Channel as a channel type for the 
debugger. Default is off. This pragma is 
enabled in the header file channel. h. If 
channel. h is included in the program this 
pragma will remain active until specifically dis­
abled. 

inline_ops il Compiles certain operations 
on long operands (signed or unsigned) on 
16-bit targets as in line operations rather than 
as earls to the compiler library. Operations af­
fected are: ,., (bitwise complement), +, -, , 
(bitwise AND), I (bitwise OR), At (bitwise ex­
clusive OR), «, », <, <=, ==, ! =, >=, and 
>. Default is on. 

72 TDS 224 00 August 1990 



11.3 Complier directives 167 

Parameter 

inline_string_ops 

printf_checking 

scanf_checkinC)' 

stack_checking 

warn_deprecated 

warn_implicit 

SII 

is 

pc 

sc 

8C 

wt 

wd 

wi 

Description 

Compiles the library functions memcpy and 
strcpy as in-line transputer code under cer­
tain conditions. For further details see sec­
tion 11.4. Default is off. 

inline_strinQ'_ops is enabled in the 
standard header file, string. h, where 
memcpy and strcpy are declared. 

Checks that arguments passed to a function 
conform to the format used by printf. De­
fault is off. This pragma is normally used 
to check formal arguments which are to be 
passed directly as format strings to printf. 

For each function within the scope of the 
pragma the last formal parameter is read as 
a format string"and subsequent variable argu­
ments are checked for correct type, accord­
ing to the formatting rules of printf. This 
pragma is enabled in stdio . h for the decla­
ration of printf and related functions, and 
subsequently disabled. 

Checks that arguments passed to a func­
tion conform to the format used accepted by 
scanf. Default is off. Otherwise this pragma 
has the same effect printf_checking. 

This pragma is enabled in stdio. h for the 
declaration of scanf and related functions, 
and subsequently disabled. 

Checks for stack overflow at the start of each 
function. Default is off. 

Warns of inferior code generated for a trans­
puter class rather than for a specific trans­
puter target. Default is on. 

Warns of parameterless function declarations. 
Default is on. 

Warns of undeclared functions. Default is on. 

72 TDS 224 00 August 1990 



168 11 ice - ANSI C compiler 

Pragma IMS-nolink 

The pragma IMS-nolink enables C routines to call or be called from occam
and other languages.

Syntax: 'pragma IMS-nolink (fname) 

The following code uses the pragma to allow an occam routine OCCAMREALOP
to be called in a C program:

extern float OCCAMREALOP(const float x,
const int op,
const float y);

'pragma INS_nolink (OCCAMREALOP) 

float x, y, z;
z = OCCAMREALOP(x, op_add, y);

The following code allows the C function max to be called from occam: 

extern int max(const int x, const int y);
'pragma INS nolink (max)
extern int max(const int x, const int y)
{ return x > y ? x : y; }

11.3.12 terror 

Syntax: 'error text 

This directive causes an explicit error. If there is no pragma in force, the compiler 
terminates immediately and the text following the directive is displayed on the 
screen. If a pragma is already in force, the text is displayed but the. compilation 
is not aborted. This is useful for determining which pieces of code are being 
bypassed by a construct of the form ,if ... 'else ... 'endif. 

11.4 Optimised functions 

Optimised versions of memcpy and strcpy are provided in the form of the 
library functions ..memcpy and _strcpy. These functions are compiled directly 
in-line as transputer code under certain conditions, thereby optimising their per- e 
formance.

72 TDS 224 00 August 1990



11.5 Complier predefinitions 169 

void * memcpy(void *dest, const void *source, 
- size_t n)i 

char *_strcpy(char *dest, const char *source)i 

...memcpy is compiled directly as a transputer block move operation when n is 
a positive integer constant and either no result is required or dest is a simple 
local pointer. The value of n must be positive because the result of the block 
move operation is undefined with a string length of zero. 

_strcpy is compiled directly as a transputer block move operation when 
source is a string literal and either no result is required or dest is a sim­
ple local pointer. 

If the pragma inline_string_ops is enabled, calls to the ANSI standard 
functions memcpy and strcpy are treated as calls to ...memcpy and _strcpy, 
and will consequently be compiled in line if the required conditions are met. 

Note: inline_string_ops is enabled in the standard header file 
string. h, which also declares memcpy and strcpy. If this header file is 
included in the source then calls to memcpy and strcpy will automatically be 
treated as calls to the respective in line functions and compiled as transputer 
code. 

11.5 Compiler predefinitions 

Certain constants which identify global information, and some function names, 
are automatically recognised by the compiler. Generally, these items can be 
referenced directly in C programs do not need to be declared. 

Note: Predefined functions _lsb and _params (see section 11.5.3) should be 
declared to avoid spurious warning messages being generated by the compiler. 

11.5.1 Constants 

All predefined constants defined by the ANSI standard are present. 

The following INMOS constants are also defined: 

__CC-NORCROFT - Norcroft C compiler

_ICC - ANSI C compiler

-PTYPE - Processor type

-ERRORMODE - Execution error mode

72 TDS 224 00 August 1990 



170 11 ice - ANSI C complier 

Details of the constants and the values they can take can be found in chapter 4 
of the accompanying Reference Manual. 

11.5.2 Functions

The optimised library functions ..memcpy and _strcpy are predefined.

11.5.3 Other predeflnes 

Two further names _lsb and _params are predefined by the compiler. They 
can be used in expressions in the same way as C variables. Both represent 
addresses which may be manipulated in low level programming. 

volatile const void * lsb 

volatile const void *-params 

_lsb is a pointer to the base of the compiled file's data area. 

_params is a pointer to the base of the the current function's parameter block. 
It can be used to obtain low level information about a function's runtime code. 

The following example illustrates how the two functions can be used to determine 
a function's return address, global static pointer, and workspace pointer. 

void P () 
{ 
typedef struct paramblock 

void *return_address;
void *gsb;
int regparam1, regparam2;

}
paramblocki

paramblock *pp = (paramblock *)-paramsi 

/* Return address is: pp->return address 
global static base sb is: pp->gsb 
caller Wptr is: (void *) (pp + 1) */ 

72 TDS 224 00 August 1990 



11.6 Fatal runtime errors 171 

11.6 Fatal runtime errors 

Errors are generated at severity level Fatal by the C runtime system when the 
program cannot be run. Such errors may occur at startup or during program 
execution. 

The main causes of runtime errors in a program are summarised below. 

• Insufficient memory at startup. 

• Stack overflow during execution. 

• Illegal conditions detected by the library functions free, realloc, 
Proclnit, and ProcPriPar. These errors are described in detail 
under the function descriptions in chapter 2 of the accompanying Refer­
ence Manual. 

When runtimeerrors occur the program terminates immediately with an error 
message. All runtime error messages are prefixed with 'Fatal-C-Library'. 

11.6.1 Runtime error messages 

Fatal-C_Library-Out of memory in system startup [number] 

This error is generated when insufficient static or heap space is available 
to run the program. number can take the following values: 

1 - Insufficient static area in programs which incorporate mixed lan­
guage code from previous 3L compiler toolsets. 

2 - Insufficient static area in programs written using the current 
TCOFF-based toolsets. 

3 - Insufficient heap space for the input and output channel arrays. 

4 - Insufficient heap space for command line parameters to the pro­
gram. 

If this error occurs then either the available memory can be increased or 
the program recoded in a less memory-intensive way. 

Fatal-C_Library-Stack overflow 

This message is only generated when stack checking is enabled in the 
compiler. It indicates stack overflow in the program and may be remedied 
by increasing increasing the specified stack size. If no stack size has 

72 TDS 224 00 August 1990 



172 11 ice - ANSI C complier 

been specified and the default has been assumed by the program then 
the stack size cannot be increased and the program should be recoded. 

Fatal-C_Llbrary-Error In freeO, bad pointer or heap corrupted 

This error indicates an invalid pointer passed to free or corruption of 
the heap. No specific recovery is possible and the program should be 
debugged. 

Fatal-C_Llbrary-Error In reallocO, bad pointer or heap corrupted 

This error indicates an invalid pointer passed to realloe or corruption 
of the heap. No specific recovery is possible and the program should be 
debugged. 

Fatal-C_Llbrary-lncorrect allocation of process workspace 

This error indicates that process workspace was not allocated from the 
heap. It is generated by Proclnit when an attempt is made to use 
process workspace which has not been allocated by the standard func­
tions malloc, ealloc, and realloc, which allocate space from the 
heap. 

Fatal-C_Llbrary-Nested Pri Pars are illegal 

This error is generated by ProcPriPar when it is called from a high 
priority process. Calling ProcPriPar from a high priority process is 
prohibited in ANSI C. 

11.7 Transputer in-line code 

ANSI C provides a detailed mechanism for incorporating transputer assembly 
code inserts into C programs. The system uses the special keyword __asm 
which can be used to enclose sequences of transputer instructions. 

The __asm statement and how to use it is described in chapter 4 of the accom­
panying Reference Manual. 

11.8 Compiler diagnostics 

This section lists diagnostic error messages generated by ice. The section is 
introduced by descriptions of some standard terms which may be encountered 
in the message texts. 

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 173 

11.8.1 Message format 

Diagnostic messages are displayed in the standard toolset format for error mes­
sages. Details of the standard can be found in section A.6.1. 

11.8.2 Severities 

Diagnostics are tagged with a severity level which indicates their effect on the 
compilation. Severity levels are the same as those used in the toolset standard 
but have slightly different meanings, which are described below. 

Warning severity diagnostics are generated whenever legal, but unorthodox pro­
gramming styles are detected. Compilation is unaffected and object code is 
generated normally. 

Error severity diagnostics are generated whenever the compiler detects a pro­
gramming error from which it can recover. Compilation continues, but may abort 
if more errors are detected subsequently. No object code is generated. 

Serious diagnostic messages are generated when programming errors are de­
tected from which the compiler cannot recover. Compilation continues but code 
has been lost. No output is generated. 

Fatal diagnostic messages are generated for the most serious syntactical errors 
and cause the compiler to discontinue processing immediately. However, they 
do not indicate failure of the compiler and should not be reported to INMOS. No 
output is generated. 

Error, Serious, and Fatal diagnostic messages return error codes for handling by 
system MAKE programs and batch files. 

11.8.3 Standard terms 

This section explains some of the standard terms and notation used in compiler 
error messages. 

abstract declarator 

When using explicit casts or when passing an argument to sizeof () , a 
data type must be specified. This can be done by declaring an object of 
the correct type without specifying the name of the object. Declarations 
of this type are called abstract declarations, because they apply to no 
known object. 

72 TDS 224 00 August 1990 



174 11 icc - ANSI C complier 

Examples of abstract declarations are: 

(int) a = b; /* 'int' is the abstract 
declarator */ 

sizeof(int [3]); /* 'int [3]' is the abstract 
declarator */ 

char 

Stands for a single ASCII character. 

context 

Stands for a type, for example, 'character constant', 'integer constant', 
and 'string constant'. 

deprecated declaration 

This means that a function declaration is incomplete. "Declarations should 
specify the type of the function and the type of each formal parameter. If 
there are no parameters then the function type void should be specified. 

expression 

Stands for a C expression. 

filename 

A file name. 

function prototype 

A function declaration which usually precedes the function definition. It 
declares the function's type and the types of its parameters. 

identifier 

A C identifier, for example, a variable or function name. 

Inltlallser 

An initial value which is assigned to an object at the time of its declaration. 

72 TDS 224 00 August 1990 



11.8 Complier diagnostics 175 

message string 

The string which follows a compiler directive. 

op 

An operator. Valid operators include: "++" or "__ tt, "- >", "«=", and 
the unary operators &, *, + and -. 

quote_char 

A quote character for the #include directive. This could be ", " <, or 
>. 

store class 

A C storage class. Valid classes are static or extern. 

string 

Any string of ASCII characters. 

struct/union 

A variable of type struct or union. 

type 

A type identifier. Valid types are int, char, and float. 

void context 

This can occur at any point in a program where a value is not expected, 
for example, calling a function without using the returned number. 

instruction 

A transputer instruction, or a pseudo-instruction as accepted by the -asm 
construct. 

11.8.4 ANSI trigraphs 

The ANSI specification includes a number of three character sequences that 
can be used to represent certain ASCII characters that may not be present on 
all keyboards. These sequences, known as trlgraphs, are used in compiler error 

72 TDS 22400 August 1990 



176 11 ice - ANSI C complier 

messages to stand for these characters. 

ANSI standard trigraph sequences consist of a sequence of 2 question marks 
followed by a third character. A complete list of ANSI trigraphs is given in chapter 
3 'New features in ANSI C' of the accompanying User Manual. 

11.8.5 Warning diagnostics 

#deflne mac'ro identifier defined but not used 

The named macro has been defined, but not referenced in the rest of the 
program. This message is only generated if specifically enabled by the 
'FM' compiler option. 

'&' unnecessary for function or array identifier 

A pointer to a function or array is implied by use of the name alone; the 
'&' operator is not required. 

'Int identifier()' assumed - 'void' Intended? 

A function was defined without specifying its type. The compiler assumes 
a function of type int if no type is specified. 

identifier has been defined; pragma Ignored 

The function specified in the IMSJlolink pragma has already been 
defined with a static link. 

identifier has not been declared; pragma Ignored 

The function specified in the IMSJlolink pragma has not yet been 
declared. 

identifier Is not a function; pragma Ignored 

The argument to the IMSJlolink pragma must be a function name. 

identifier multiply translated, this translation Ignored 

The IMS_translate pragma has been applied to identifier more than 
once. 

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 177 

identifier has already been translated to string 

The INS_translate pragma has been used to translate more than 
one name to string. 

number treated as numberUL In 32-blt implementation 

No type was specified for the number. The compiler assumes uns iqned 
lonq if no type was specified. 

op: cast between function and object pointer 

The specified operator has been used in an expression involving pointers 
of different types, that is, a function pointer and an object pointer (a 
pointer to an area in memory). 

op: cast between function and non-function object 

The operation is performed upon two arguments, one of which is a func­
tion, and the other an object. 

type identifier declared but not used 

The named identifier has been declared, but not used in the program. 

actual type type mismatches format '0/0char , 

The type of an argument to printf or scanf does not match that 
implied by the control string. 

ANSI 'char char char' trlgraph for 'char' found - was this Intended? 

The specified three character sequence was found in the source pro­
gram. This has been treated as an ANSI trigraph and substituted for the 
character shown. 

argument and old-style parameter mismatch: expression 

There is an old (non-prototype) style function definition in scope, and the 
type of an argument (after default argument promotion has taken place) 
does not agree with the type of the corresponding formal parameter. 

Cannot generate stack check for function (pragma nolink applied) 

A stack check requires a static link, and the function function has been 
specified not to receive a static link (using INSJlolink). ice compiles 

72 TDS 224 00 August 1990 



178 11 ice - ANSI C complier 

the function with the stack check omitted. 

character sequence 1* Inside comment 

The start-of-comment character sequence was detected within a com­
ment. Check that the previous comment was terminated correctly. 

Dangling 'else' Indicates possible error 

Within nested if ... else constructs, there is some ambiguity as to 
which 'if' relates to which 'else'. 

Deprecated declaration identifier() - give arg types 

In the prototype declaration of the named function, the argument's names 
and/or their types were not specified. 

division by zero: op 

Division, or remainder, by zero, will cause overflow. 

Expected string as second argument • pragma Ignored 

The second argument to the IMS_translate pragma must be a string _ 
literal. ., 

extern 'main' needs to be 'Int' function 

In a declaration of main (), the function should always be declared as 
type into 

extern identifier not declared in header 

All objects must be declared before use. This message is only generated 
if specifically enabled by the 'FM' compiler option. 

floating point constant overflow: op 

Floating point overflow occurred during addition, subtraction, multiplica­
tion or division of two constants. 

floating point overflow when folding 

Floating point overflow occurred during addition, subtraction, multiplica- _ 
tion or division of a constant. ., 

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 179 

floating to Integral conversion failed 

Conversion (casting) from a floating point type to an integral type (such 
as int) failed. 

formal parameter identifier not declared - 'int' assumed 

A formal parameter has been listed in the parameter list of the function 
definition, but there is no entry for it in the declaration list; it is therefore 
assumed to be of type into 

Format requires count parameter(s), but count1 given 

A call to printf or scanf was made with the incorrect number of argu­
ments. The control string indicated that count arguments are needed, but 
count1 were provided. This warning is only generated if pragma INS_on 
(pc) is active. The header file stdio. h includes this pragma. 

Illegal format conversion '%char' 

The character sequence '%char' is not a legitimate conversion character 
forprintf or scanf. This warning is only generated if pragma INS_on 
(pc) is active. The header fHe stdio. h includes this pragma. 

implicit narrowing cast: op 

The result of an operation performed at higher precision i"s immediately, 
and implicitly, cast to lower precision, thus losing the extra precision: if 
the extra precision is not required, the operation ought to be performed 
at the lower precision. 

Implicit return In non-void identifier() 

The function does not contain a return statement, even though it is 
defined to return a value. 

Incomplete format string 

The control string for use with printf or scanf is incomplete. This 
warning is only generated if pragma INS_on (pc) is active. The header 
file stdio.h includes this pragma. 

inventing 'extern inl identifier();' 

No declaration exists for the function; it will be defined by default as 
extern into 

72 TDS 224 00 August 1990 



180 11 ice - ANSI C complier 

label identifier was defined but not used 

The named label was set, but not used. 

linkage already set - pragma ignored 

The IMS_linkage parameter has been specified more than once. 

lower precision In wider context: op 

The result of an operation performed at lower precision is immediately 
cast to a higher precision; it may be that the user was expecting the 
operation to be performed at the higher precision. 

Missing comma in pragma argument list - pragma ignored 

Multiple arguments to a pragma must be separated by commas. 

no side effect in Yold context: identifier 

The value which has been returned by an expression is not being used. 
This error would occur, for example, when a non-void function is called 
and the returned value is ignored. 

non-portable - not 1 char in ' ... ' 

The characters enclosed by single quotes represent more than one char­
acter. The compiler will read the first character only, for example, 'AB' 
will be read as 'A'. 

non-Yalue return in non-Yoid function 

A function which should return a value has terminated without using a 
return statement or with a return statement that has no arguments. The 
value received from the function by the calling routine is undefined. 

odd unsigned comparison with 0 : op 

a ~ comparison of an unsigned integer with zero, or a :::; comparison of 
zero with an unsigned integer, is always true. 

omitting trailing '\0' for char [count] 

The char array is fully occupied by characters and there is no room to _ 
append the string terminator (\ 0). count is the full length of the character ,. 
array. 

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 181 

repeated definition of #deflne macro identifier 

The named macro has been defined more than once. The definitions are 
identical. 

Shift of type by count undefined in ANSI C 

A shift of more than the number of bits in type, or less than zero was 
requested, undefined in ANSI C. 

spurious {} around scalar Initialiser 

A scalar can take only one initialiser, so there is no need to use braces 
as are required with aggregate types such as arrays. 

static identifier declared but not used 

The named static object was declared but not used. 

struct has no named member 

A structure has been declared without any members. 

Undefined macro string in #if - treated as 0 

This error occurs when enumeration or undefined constants appear after 
the preprocessor #if directive. For example, if 'ab' and 'cd' are enumer­
ation constants of the enumerated type 'abcd', the statement #if ab 
== cd would generate this error. 

union has no named member 

A union has been declared without any members. 

unnamed bit field initialised to zero 

A static declaration of a structure or union containing an unnamed bit 
field, the compiler has initialised that field to zero. 

Unrecognised #pragma (no '(') 
Unrecognised #pragma (no ')') 

The arguments to a pragma are not correctly enclosed in parentheses. 

72 TDS 224 00 August 1990 



182 11 ice - ANSI C complier 

Unrecognised #pragma identifier 

identifier is not a pragma recognised by this compiler. 

unused earlier static declaration of identifier 

The static variable identifier has been defined before being declared. 
Generated only if the 'FB' compiler option is specified. 

use of op In condition context 

Generated when the invalid operators '=' (assignment) or '-' (bit-not) are 
used in a condition statement. 

variable identifier declared but not used 

The variable was declared, but not used anywhere in the program. 

(possible error): >= number lines of macro arguments 

There are a suprisingly large number of lines of arguments to a macro; 
this may indicate a syntax error. 

11.8.6 Recoverable errors 

terror encountered string 

The #error directive was found in the source code. 

#ident Is not In ANSI·C 

#ident is not a recognised preprocessor directive. 

context identifier may not be function - assuming function pointer 

An attempt was made to use a function where it was not expected, typi­
cally when a function is included as a component within a structure. 

instruction may not have a size specified 

An _&sm pseudo-instruction may not be explicitly sized. 

',' (not ';') separates formal parameters 

A semicolon has been used to separate the formal parameters in a func­

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 183 

tion definition (as in Pascal) instead of a comma. 

'register' attribute for identifier Ignored when address taken 

An attempt was made to take the address of a variable with 'register' 
storage dass. The register attribute will be ignored allowing the address 
to be taken. 

int op pointer treated as int op (Int) pointer 

The expression involving a integer and a pointer will result in the pointer 
being converted (cast) to an integer. 

op: Implicit cast of type to 'Int' 

A non-integer object has been used where an int was expected, for 
example, attempting to use a double as an argument to a switch state­
ment (which requires an integer type). 

op: Implicit cast of non-O Int to pointer 

Evaluation of the expression will result in the cast of an integer to a 
pointer. 

op: Implicit cast of pointer to 'Int' 

Evaluation of the expression will result in the cast of the pointer to an 
integer. 

operator: Implicit cast of pointer to non-equal pointer 

Evaluation of the expression will result in the cast of one pointer type to 
another. 

pointer operator int treated as (Int) pointer operator int 

Evaluation of the expression will result in the cast of the pointer to an 
integer. 

Ancient form of Initialisation, use '=' 

A }, rather than =, was used to introduce an initialiser, this is no longer 
legal C. 

72 TDS 224 00 August 1990 



184 11 ice - ANSI C compiler 

ANSI C does not support 'long float' 

An object has been declared of type long float, this is illegal in ANSI 
e, which supports float, double, or long double. 

Array of type Illegal - assuming pointer 

An array of functions or void objects has been declared. The compiler 
treats this as an array of pointers to functions or void objects. 

Array [0] found 

An empty array has been defined and will be set up instead as an array 
with one element. 

assignment to 'const' object identifier 

The expression contains an assignment to a constant. The assignment 
will be carried out. 

const typedef identifier has const respecified 

A typedef which is already qualified with const, has been qualified with 
const. 

comparison op of pointer and Int: literal 0 (for == and 1=) Is only legal 
case. 

The specified operator was used to compare an object of type int and 
one of a type pointer. The only legal comparison of this type is be· 
tween a pointer and 0 using either == or !=. 

declaration with no effect 

No name has been declared for the object. Specifying only the type of 
an object generates this error. 

differing pointer types: op 

The specified operator was used with pointers of different types. 

differing pointer types: ':' 

Types of objects in the conditional expression do not match. 

72 TDS 224 00 August 1990 



185 11.8 Complier diagnostics 

Digit 8 or 9 found In octal number 

A decimal digit was encountered in an octal number. 

duplicate macro formal parameter: 'identifiet 

The function macro has two formal parameters with the same name. 

duplicate member identifier1 of identifier2 

Two fields of structure or union identifier2 have the name identifier1. 

ellipsis (...) cannot be only parameter 

A function declared to take a variable number of parameters must have 
at least one known parameter. 

extern identifier mismatches top-level declaration 

AA extern declaration of identifier within a function definition does not 
match an extern declaration of identifier at the top level. 

formal name missing in function DEFINITION 

The type of a formal parameter has been omitted in a function definition. 

function identifier may not be Initialised - assuming function pointer 

Initialisers cannot be used in function declarations or definitions. 

function prototype formal identifier needs type or class - lint' assumed 

The type of a formal parameter has been omitted in a function declaration 
and int has been assumed. 

hex number cannot have exponent 

A hex number ending in e may not be immediately followed by + or -; 
separate the number and the additive operator with whitespace. 

Illegal bit field type type - lint' assumed 

Bit fields cannot be set within non integral variables. The compiler as­
sumes an int instead. 

72 TDS 224 00 August 1990 



186 11 ice - ANSI C complier 

Illegal Indirection on (void *): '*' 

An attempt has been made to take the contents of the object pointed to 
by a pointer to void. 

Illegal option -Didentifier identifier 

The compiler D option must be specified for each assignment. 

Illegal string escape '\char' - treated as char 

The character following \ does not form part of a valid string escape. 
The compiler treats the sequence \ char as char. 

Illegal [] member: identifier 

An open array may not be a member of a structure or union. 

Implicit cast (to type) overflow 

Overflow occurred when casting an expression. 

junk at end of 'identifier line - Ignored 

The text following the directive is invalid and will be ignored. 

linkage disagreement for identifier - treated as store class 

The storage class of a previously defined static or extern object or 
function disagrees with the current declaration. The object will be treated 
as though it is in storage class store class. 

L'...' needs exactly 1 wide character 

A wide character constant should contain exactly one wide character. 

Missing newllne before EOF - Inserted 

A blank line should have been inserted before the end-of-file character. 

Missing type specification - 'Int' assumed 

A type specification is missing. The object will be assumed to be of type 
into 

72 TDS 224 00 August 1990 



11.8 Complier diagnostics 187 

more than 4 chars In character constant 

More than 4 ASCII characters were used to represent a character con­
stant. When using the single quote syntax for character constants a 
maximum number of 4 characters is permitted in order to accommodate 
the octal representation of a character. The first 4 characters will be 
used. 

no chars In character constant" 

No characters or character ·codes have been specified for the character 
constant. A NULL character is assumed. 

number missing In #lIne 

There is no line number following the preprocessor #line directive. 

objects that have been cast are not I-values 

An object that has been cast in I-value context; ANSI has made this 
illegal. 

Omitted type before formal declarator - 'Int' assumed 

No type was specified; type int will be assumed. 

operand of # not macro formal parameter: 'identifiet 

The operand to the # preprocessor operator must be a formal parameter 
of the function macro containing it. 

overlarge escape '\number1' treated as '\number2 

An octal number in an escape sequence is too large to be represented 
in the target architecture. 

overlarge escape '\xnumber1' treated as '\xnumber2 

A hexadecimal number in an escape sequence is too large to be repre­
sented in th~ target architecture. 

parentheses (... ) Inserted around expression following text 

Parentheses were expected after the specified text, for example, around 
a conditional expression such as an if statement. 

72 TDS 224 00 August 1990 



188 11 ice - ANSI C complier 

prototype and old-style parameters mixed 

It is illegal to mix new (prototype) and old-style parameter declarations. 

return expression Illegal for void function 

A return statement was found within a void function. The return statement 
is ignored. 

signed constant overflow: op 

Overflow occurred when performing op upon signed, constant operands. 

size of 'void' required - treated as 1 

'void' was used as an argument to sizeof. The compiler assumes the 
size of void to be 1. 

size of a [] array required, treated as [1] 

The array is of unspecified size. In these circumstances sizeof return 
the size of the array type. 

size of function required - treated as size of pointer 

A function name was passed to the sizeof function. In these circum­
stances sizeof returns the size of the pointer to the function. 

sizeof bit field illegal - slzeof(int) assumed 

A bit field was passed to the sizeof function. In these circumstances 
s izeof casts the bit field to an integer and then returns its size. 

Small (single precision) floating value converted to 0.0 

The number is too small to represent in a single word (32 bit) floating 
point format, and has been rounded to 0.0. 

Small floating point value converted to 0.0 

The number is too small to represent in a double word (64 bit) floating 
point format, and has been rounded to 0.0. 

Spurious #elff ignored 

The #elif directive could not be matched with a corresponding if 

72 TDS 224 00 August 1990 



189 11.8 Compiler diagnostics 

directive and has been ignored. 

Spurious #else Ignored 

The 'else directive could not be matched with a corresponding if 
directive and has been ignored. 

Spurious #endif ignored 

The 'endif directive could not be matched with a corresponding if 
directive and has been ignored. 

struct member identifier may not be function - assuming pointer 

A structure member was declared of function type; the compiler treats 
this as pointer to function type. 

struct tag identifier not defined 

A structure has been referenced before being defined. 

type or class needed (except in function DEFINITION) - 'Int' assumed 

The type or storage class has been omitted from the function declaration. 

Undeclared name, inventing 'extern Int identifiet 

An undeclared identifier was encountered and will be given the storage 
class extern. 

union member identifier may not be function - assuming pointer 

A union member was declared of function type; the compiler treats this 
as pointer to function type. 

union tag identifier not defined 

A union has been referenced before being defined. 

unsigned constant overflow: op 

Overflow occurred when performing op upon unsigned, constant 
operands. 

72 TDS 224 00 August 1990 



190 11 ice - ANSI C complier 

unprintable char number found - Ignored 

An unprintable character was found in the source text. 

volatile typedef identifier has volatile respeclfled 

A typedef which is already qualified with volatile, has been qualified 
with volatile. 

wrong number of parameters to function 

A function was called with the wrong number of arguments. 

11.8.7 Serious errors 

op: cast to non-equal type Illegal 

A structure or union has been cast into a structure or union of a different 
type. The cast is illegal and will be ignored. 

operator: Illegal cast of type to pointer 

A variable has been cast into a pointer type. The cast is illegal and will 
be ignored. e 

op: Illegal cast to type 

An illegal cast has been attempted. The cast is illegal and will be ignored. 

context: illegal use In pointer Initlallser 

An object of type auto, or its address, cannot be initialised. 

'... ' must have exactly 3 dots 

An ellipsis must consist of three dots. 

'break' not In loop or switch - Ignored 

A break statement was encountered outside the scope of a loop or switch 
statement. A break at this point is illegal and will be ignored. 

'case' not In switch - Ignored 

A case prefix has been encountered outside the body of a switch state­

72 TDS 224 00 August 1990 



11.8 Complier diagnostics 191 

ment. A case statement at this point is illegal and will be ignored. 

'continue' not In loop - Ignored 

A continue statement has been encountered outside the body of a loop. 
A continue statement at this point is illegal and will be ignored. 

'default' not In switch - Ignored 

A default prefix has been encountered outside the body of a switch state­
ment. A default prefix at this point is illegal and will be ignored. 

'goto' not followed by label - Ignored 

The text following a goto statement does not represent a label. 

'void' values may not be arguments 

Formal parameters in function definitions or declaration cannot be of type 
void. 

'while' expected after 'do' - found text 

The while statement is missing from a do ... while construct. text 
marks the position. 

'{' of function body expected - found text 

The opening brace in the body of a function is missing. 

'{' or identifier expected after type, but found text 

The opening brace following a struct, union or enum is missing. text 
marks the position. 

':' expected but found a symbol 

A label definition inside an _asm construct was not terminated by a colon. 

<asm-dlrectlve> expected but found a text 

text indicates where the _asm directive was expected. 

72 TDS 22400 August 1990 



192 11 icc - ANSI C complier 

<command> expected but found a text 

Statements such as switch or if should be followed by a command. 
text indicates where the command was expected. 

<expression> expected but found text 

text indicates where the expression was expected. 

identifier expected but found text In 'enum' definition 

Reserved words cannot appear in the definition of enumerated types. 

function has pragma nollnk specified, but accesses static data 

The specified function has been specified not to receive a static link (via 
IMS.-nolink), but attempts to use static data. It is only possible to use 
static data when a static link is available. 

identifier is not a label • Idlabeldlff Ignored 

The operands to the ldlabeldiff pseudo-instruction must be labels. 

instruction not followed by label - Ignored 

A load or store _asm instruction must have a constant or label operand. 

op may not have whitespace In It 

Two-character operators such as '+=' must not contain spaces. 

store class variables may not be Initialised 

Some types of C variables, such as those declared as extern, cannot 
be initialised. 

Array size count illegal - 1 assumed 

Arrays cannot be larger than Oxffffff on a 32-bit target, or 65535 on a 
16-bit target. 

attempt to apply a non-function 

A name not declared as a function has been used in a context where a _ 
function should be. • 

72 TDS 224 00 August 1990 



193 11.8 Complier diagnostics 

attempt to Include structlunlon identifier object/member 

A structure or union declaration may not contain a field of the structure 
or union type, or a field which references another field. 

bit fields do not have addresses 

Elements of type bit field in C structures cannot be addressed. 

Bit size size Illegal - 1 assumed 

Bit sizes greater than 32 are set to 1. 

Cannot call function (It requires a static link) 

An attempt has been made to call the specified function which requires 
a static link, from a function which has been specified not to receive a 
static link (via IMS-nolink). 

Cannot call through pointer (it requires a static link) 

An attempt has been made to call a function through the specified pointer 
from a function which has been specified not to receive a static link (via 
IMS-nolink). All calls through function pointers are assumed to require 
a static Iink. 

Cannot store to identifier 

identifier is a built-in name, such as _lsb or _params, which cannot be 
assigned to. 

char and wide (L"...") strings do not concatenate 

A char string and a wide char string appear adjacently in the source text. 
Normally, adjacent strings in the source text are concatenated; however, 
this is not possible here, as they have different types. 

differing redefinition of #define macro identifier 

The named macro has been defined more than once. The definitions are 
not identical. 

Digit required after exponent marker 

Exponents of floating point numbers must be followed by a numeric char­
acter. The numeric character may be preceded by 1+' or 1_'. 

72 TDS 224 00 August 1990 



194 11 ice - ANSI C complier 

duplicate 'default' case Ignored 

The default prefix has already been specified for the switch construct. 
The original definition will be used. 

duplicate definition of identifier 

The named identifier has already been defined. 

duplicate definition of structlunion tag identifier 

The named structure or union identifier has already been used. 

duplicate definition of label identifier - Ignored 

The specified identifier has already been used. The original definition will 
be used. 

duplicate type specification of formal parameter parameter 

The specified parameter has been listed more than once in the function's 
formal parameter list. 

duplicated case constant: constant 

The constant has been specified more than once in the same case state­
ment. 

EOF In comment 

The end-of-file character was detected inside a comment. 

EOF in string 

The end-et-file character was detected within a string. 

EOF In string escape 

The character sequence '\EOF' was detected within a string. 

EOF not newllne after #If ... 

An end-et-file character was feund after the '#if' directive; a newline 
character was expected. 

72 TDS 22400 August 1990 



195 11.8 Complier diagnostics 

expected symbo/1 - Inserted before symbo/2 

symbo/1 was expected before symbo/2 and the compiler has changed the 
code accordingly. For example, in the code "if (TRUE printf () ;" 
the compiler would expect to find ')' before 'printf'. 

expected symbo/1 or symbo/2 - Inserted .symbo/1 before symbo/3 

symbo/1 or symbo/2 was expected before symbo/3, but neither was 
found. symbo/1 is suggested as the most appropriate choice and the 
compileF has changed the· code a~ordingly.

Expected <Identifier> after operator but found text 

The specified operator must be followed by an identifier. This error may 
occur after the structure member operator' .' and the structure pointer 
operator '- >'. 

Expecting <declarator> or <type>, but found text 

An identifier or type was expected at text. For example, the declaration 
'typedef int * [3] test:;' generates this error. 

Grossly over-long floating point number 

There are too many digits in the floating point number. The compiler 
reads the maximum number of digits allowed and discards the rest. 

Grossly over-long hexadecimal constant 

There are too many digits in the hexadecimal number. The compiler 
reads the maximum number of digits allowed and discards the rest. 

Grossly over-long number 

There are too many digits in the decimal number. The compiler reads 
the maximum number of digits allowed and discards the rest. 

Hex digit needed after Ox or OX 

The hexadecimal specifier Ox must be followed by a valid hexadecimal 
digit. The compiler assumes a zero digit. 

Identifier (name) found In abstract dec/arator - Ignored 

An identifier should not be used in an abstract declarator. This error is 

72 TDS 224 00 August 1990 



196 11 ice - ANSI C complier 

generated, for example, if sizeof (int *test [3] ) ; is used instead 
of the correct form sizeof (int * [3] ) ; . 

Illegal In context: error 

Illegal expressions such as those involving division by zero generate this 
error. 

illegal in expression: non constant identifier 

A constant is required in certain expressions, for example after a case 
prefix. 

Illegal In I-value: context 

An I-value was expected. For example, attempting to assign a value to a 
constant will generate this error. 

Illegal In I-value: 'enum' constant identifier 

Enumeration constants cannot be used as I-values in an expression. 

Illegal In Ivalue: function or array identifier 

Arrays and function declarators cannot be used as I-values. This error 
would be generated, for example, by attempting to assign a value to a 
function declarator. 

Illegal In the context of an I-value: op 

The operator op cannot appear in I-value context. 

Illegal types for operands: operator 

The operator has been used with an invalid type. For example, it is illegal 
to use the structure member operator' .' with a variable of type into 

Illegal 'void' member/object: identifier 

An object or member of a structure or union cannot be declared as being 
of type void. 

incomplete tentative declaration of identifier 

The declaration of identifier has gone out of scope before the declaration 
has been completed. 

72 TDS 224 00 August 1990 



11.8 Complier diagnostics 197 

Junk after #if expression 

The #if directive must be terminated by a newline character. 

Junk after #Include filename 

The #include directive must be terminated by a newline character. 

label identifier has not been set 

A label has been referenced but not set. This message will be generated 
if goto is used with an undefined label. 

Idlabeldlff not followed by label • Ignored 

The operands to the ldlabeldiff pseudo-instruction must be labels. 

Misplaced 'else' Ignored 

An else statement was found where it was not expected. It will be 
ignored. 

Misplaced '{' at top level - Ignoring block 

An opening brace was found at the top level of a program when it was not 
expected, for example when not used as part of a function or structure 
definition. 

Misplaced preprocessor character char 

A preprocessor directive character (# or \) was found where it was not 
expected. 

Missing #endif at EOF 

An #endif directive is missing. This error will not be generated until 
the last of the currently open files is about to be closed (ANSI standard 
does not require #if and #else statements to match in included files). 

Missing quote char In preprocessor command line 

A 'quote' character is missing from a preprocessor command line. The 
missing character could be ' , <, >, or ". 

72 TDS 224 00 August 1990 



198 11 ice - ANSI C complier 

Missing C)' after identifier (... on line number 

A closing parenthesis is missing from the macro which will be substituted 
at line number. 

Missing c,' or C)' after #define identifier (... 

The list of parameters in a macro definition is either incomplete or has 
not been correctly terminated by a closing parenthesis. 

Missing < or " after #include 

The opening 'quote' character which introduces the filename is missing. 

Missing hex dlglt(s) after \x 

The hexadecimal introducer sequence \x was found, but no hexadecimal 
digit was specified. The compiler assumes that the letter x was intended. 

Missing Identifier after #define 

The definition is empty. #define must be followed by an identifier. 

Missing identifier after #ifdef 

#ifdef must be followed by an identifier. 

Missing Identifier after #undef 

#undef must be followed by an identifier. 

Missing parameter name in #define identifier (... 

A parameter is missing from the specified macro definition. This error 
would be generated by a definition of the form #define test (arq, ) . 

Newline or end of file within string 

A newline or end-of-file character was encountered within a string. 

No C)' after #if defined(... 

The closing parenthesis is missing from the directive. 

72 TDS 224 00 August 1990 



11.8 Compiler diagnostics 199 

No Identifier after #If defined 

#if defined must be followed by an identifier. 

Non-formal identifier in parameter-type-specifler 

The parameter identifier was included in the declarator list of a function, 
but not in the parameter list. For example, a definition such as int 
foo () int X; {} would generate this error. 

non-static address identifier In pointer Inltlallser 

Pointers cannot be initialised with the address of an object of type auto. 

Number number too large for 32-bit Implementation 

The specified number is too large to be represented in 32 bits. 

Operand number to instruction Is larger than a word 

The arguments to an _asm load or store pseudo-instruction must fit in a 
machine word. 

Operand number to instruction Is not word-sized 

The arguments to an -asm store pseudo-instruction must fit exactly in a 
machine word. 

Operand to instruction must be a constant or local variable 

An illegal operand has been given to an -asm ldl or stl instruction. 

Operand to instruction Is larger than a word 

The operand to a primary instruction inside _asm must fit in a machine 
word. 

Overlarge (single precision) floating point value found 

The number is too large to represent in single word (32 bit) floating point 
format. 

Overlarg~ floating point value found 

The number is too large to represent in double-word (64 bit) floating point 
format. 

72 TDS 224 00 August 1990 



200 11 icc - ANSI C complier 

quote (char) Inserted before newllne 

The specified quote character was found before a newline character. This 
may indicate a a spurious character or a missing closing quote. 

re-using structlunion tag identifier as union/struct tag 

The named identifier has been used to identify two different types of 
object. 

size of expression unknown: treated as 0 

The size of a structure or union is required, but the structure or union 
has not been completely declared. 

size of struct identifier needed but not yet defined 

The size of the structure has not yet been defined. This error can occur 
when an undefined structure is used as an argument to the sizeof 
function and when an undefined structure is used in the declaration of 
a variable. In the second case the error occurs because the compiler 
attempts to determine the size of the structure for memory allocation 
purposes. 

static function identifier not defined - treated as extern 

A function was defined as static in the function prototype, but the 
compiler was unable to find the function definition. An extern function 
is assumed. 

storage class store class Incompatible with store class - Ignored 

Two incompatible storage classes have been used in a declaration. 
For example, extern static fOOi generates this error because 
extern and static are incompatible types. 

storage class store class not permitted in context context - Ignored 

The specified storage class is not permitted in the context in which it has 
been used. This error would be generated, for example, if storage class 
a uto were to be used at the top level. 

string Initialiser longer than char [count] 

A character array has been initialised with more characters than the array 
can accommodate. Since the compiler adds a terminating NULL charac­

72 TDS 224 00 August 1990 



201 11.8 Complier diagnostics 

ter to strings, string initialisers should always contain one less element 
than the array. 

struct identifier must be defined for (static) variable declaration 

An undefined structure has been used in a variable declaration. 

struct/unlon identifier has no identifier field 

The structure or union contains no field of that name. 

struct/unlon identifier not yet defined - cannot be selected from 

A reference was made to an undefined structure or union. 

Too few arguments for instruction 

A load or store _asm pseudo-instruction has too few arguments. 

Too few arguments to macro identifier(. .. on line number 

There are too few arguments to the macro which will be substituted at 
line number. 

Too many arguments for instruction 

A load or store _asm pseudo-instruction has too many arguments. 

Too many arguments to macro identifier( . .. on line number 

There are too many arguments to the macro which will be substituted at 
line number. 

too many Initlalisers In {} for aggregate 

An aggregate type, for example an array, has been initialised with more 
values than can be accommodated. 

type type1 Inconsistent with type2 

Two incompatible type identifiers are being used in the declaration of 
a single object. For example, the declaration double int Xi would 
generate this error. 

72 TDS 224 00 August 1990 



202 11 ice - ANSI C complier 

type disagreement for identifier 

The specified identifier has already been assigned a different type. 

typedef name type used In expression context 

A type definition has been used in an expression. 

undefined structlunlon identifier cannot be member 

The structure or union being used as a member of another structure or 
union is at present undefined. 

undefined structlunlon identifier1 member/object: identifier2 

The structure or union is, at present, undefined. 

Unlnitlallsed static [] arrays Illegal 

Static arrays of unspecified size must be initialised. 

union identifier must be defined for (static) variable declaration 

An undefined union has been used in a variable declaration. 

Unknown directive: 'identifier 

identifier is not a valid preprocessor directive. Check spelling and/or 
syntax. 

\space and \tab are Invalid string escapes 

Whitespace ('\space' or '\tab') was found within a string. All characters 
up to the first non-whitespace character are ignored; if the first non­
whitespace character is a newline character, this will also be ignored. 

{} must have 1 element to Initialise scalar or auto 

When initialising a scalar quantity or auto·variable only one initialiser 
should be specified within the enclosing braces. 

## first or last token In 'define body 

The II preprocessor operator must be preceded by a preprocessor to­
ken, and succeeded by a preprocessor token. 

72 TDS 224 00 August 1990 



203 11.9 ice error messages 

11.8.8 Fatal Errors 

'error encountered string 

The 'error directive was found. This directive normally causes 
the compilation to abort Immediately but can be disabled by the 
INS_off (ef) pragma. The message is still generated. 

11.9 ice error messages 

This section lists messages generated by ice on encountering file system and 
other errors. Errors are listed by severity level. 

ice generates errors at three severity levels: Warning; Serious; and 
Fatal. 

11.9.1 Warnings 

Cannot delete temporary file filename 

Host file system error. 

Expression generates poor code on this target ('dup' required) 

An expression is being compiled for a tranputer class of which only some 
members have the dUp instruction. The compiler has decided that the 
expression could be compiled more efficiently using the dup instruction, 
but cannot do so because it is not present on all members of the class. 

Floating-point generates poor code on this target 

Floating-point code is being compiled for a transputer class of which only 
some members have instruction set additions to enhance floating-point 
performance. As these instructions are not present on all members of 
the class, the compiler cannot use them. 

Too many complier arguments 
Too many assembler arguments 

There are too many options on the command line. The extra options are 
ignored. 

72 TDS 224 00 August 1990 



204 11 ice - ANSI C complier 

11.9.2 Serious errors 

#Include file filename wouldn't open 

The file filename could not be opened. 

Illegal character (number ='char') In source 
Illegal character (hex code numbe" In source 

An unexpected character was found in the source code. The ASCII code 
of the character (if printable). and the character itself. are given. 

11.9.3 Fatal Errors 

Invalid command line option (text) 

text is not a recognised command line option. 

Invalid source file name (filename) 

filename is not a valid source file name. (Source file names may not 
contain hyphens.) 

1/0 error writing filename 

An error occurred when writing to the named file. 

Missing Include directory name 

The J command line option must be followed by a directory name. 

Missing object file name 

The 0 command line option must be followed by an object file name. 

No file name given 

No source file was specified on the command line. 

Out of memory 
Out of store (for error buffer) 
Out of store (In cc.-alloc) 

The compiler ran out of available memory. 

72 TDS 224 00 August 1990 



205 11.9 ice error messages 

Too many errors

After 100 Serious errors, the compilation aborts.

72 TDS 224 00 August 1990 



206 11 ice - ANSI C complier 

72 TDS 224 00 August 1990 



12 icconf - configurer
This chapter describes the configurer tool icconf that configures code for trans­
puter networks. It describes the command line syntax and explains how the tool 
is used to generate a configuration data file for input to the code collector tool. 
The chapter ends with a list of error messages. 

12.1 Introduction 

The configurer takes a configuration description created using the transputer 
configuration language and produces a configuration data file which icollect 
uses to generate bootable code for a transputer network. 

A configuration description describes how code is to be run on a network of 
transputers. It consists of separate definitions of the software and hardware 
networks, and a mapping description which defines how the software will be 
placed on the processor network. Using this description the configurer allocates 
code to particular processors and performs wide ranging consistency checks on 
the mapping of software to hardware. 

Code to be run on separate processors must be linked code. Linked units that are 
to be run on the same transputer must be compiled for the same or a compatible 
transputer type. 

The operation of the configurer tool in terms of toolset default file extensions is 
illustrated below. 

,'" -', 
~ .inc: 
'--,-'y

@---1 icconf ---~.@

12.2 Configuration language implementation 

The configuration language supported by icconf has a number of implementa­
tion characteristics of which the programmer should be aware. These are briefly 
listed below; details can be found in section C.1 . 

• Array subscript ranges are machine word-length dependent. 

72 TDS 224 00 August 1990 



208 12 icconf - conflgurer 

• Source lines must not exceed 512 characters. Leading and following 
white space is ignored. 

• Dimensions for symbols and array constants must not exceed 16. 

• The number of characters in external symbol names in a linked object _ 
file must not exceed 256. 

12.3 Running the configurer 

The configurer takes as input a configuration description file and produces an
object data file for input to the collector tool.

To run the configurer use the following command line:

~ icconf filename {options} 

where: filename is the configuration description file. The filename is interpreted 
as given and no file extension is assumed. Only one file may be specified. 

options is a list of one or more options from table 12.1. 

Options must be preceded by '-' for UNIX based toolsets and '/' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Examples of use: 

UNIX based toolsets: MS-DOS and VMS based toolsets: 

ice hello ice hello 
i1ink hello.teo -f startup.lnk i1ink hello. teo / f startup.lnk 
icconf hello.cfs icconf hello.cfs 
ieolleet hello.efb -t ieolleet hello.efb It 
iserver -sb hello.btl -se iserver /sb hello.btl /se 

72 TDS 224 00 August 1990 



209 12.3 Running the conflgurer 

Option Description .. 
C 

G 

I 

L 

0 fi/ename 

P procname 

RA 

RO 

RS romsize 

w 
WP 

XM 

XO 

Checks the configuration description. No configuration data 
file is generated. 

This option is used when debugging and disables any ordering 
of process memory segments in the configuration code. 

Displays extra information as the tool runs. 

Loads the tool onto the transputer board and terminates. 

Specifies an output file name. If no output file is specified the 
configuration data file is given the base name of the input file 
and the • cfb extension is added. 

Specifies the name of the root processor when configuring for 
EPROMs. procname must not be an element from an array 
of processors. 

Creates a file suitable for a boot-from-ROM application in 
which the code and data are both loaded into RAM. 

Creates a file suitable for a boot-from-ROM application in 
which the code is loaded into ROM and the data is loaded 
into RAM. 

Specifies the size of ROM on the root processor. Only valid 
when used with the 'RA' or 'RO' options. romsize is specified 
in decimal format and can be followed by 'K' or 'M' to indicate 
kilobytes or megabytes. 

Disables configurer messages of severity Warning. 

Generates additional Warning messages. 

Directs the transputer-hosted versions of the tool to be exe­
cuted so that they can be restarted without rebooting by the 
server. 

Directs the transputer-hosted versions of the tool to be exe­
cuted once on the transputer board and then terminate. 

Table 12.1 Configurer options 

12.3.1 Default command line parameters 

Default command line parameters can be defined on the system in the 
ICCONFARG environment variable. Parameters must be specified in the variable 
using the syntax required by the configurer command line. 

72 TDS 224 00 August 1990 



210 12 icconf - conflgurer 

12.3.2 Boot-from-ROM options 

The boot-from-ROM options 'RO' and 'RA' indicate that the program is to be 
collected for loading into EPROM and select the execution mode (from ROM or 
RAM) for the root transputer code. 

Note: The same boot-from-ROM option ('RO' or 'RA' as appropriate) must also 
be supplied to icollect: when the EPROM-loadable program is created. The 
option specifies to the collector the correct EPROM mode for the program. 

For further details see section 13.2.5. 

12.3.3 Standard Include flies 

A number of standard include files are supplied to assist with configuration. 

Configurer defaults are defined in the file setconf. inc which is read by the 
configurer at startup. This file is automatically included and does not need to 
referenced by an #include statement. setconf. inc contains a number of 
boolean constants required by icconf, definitions of configuration base types, 
and predefined INMOS transputer types. 

Other standard include files provided with the toolset need to be included in the 
normal way. They provide definitions of processor and memory combinations for 
INMOS iq systems systems products and a number of configuration examples 
that can be used as templates for configuration descriptions. 

All standard configuration include files supplied with the toolset carry the. inc 
extension. The files supplied are listed below. 

trams. inc processor type definitions for INMOS iq systems 
TRAnsputer Modules (TRAMs). 

boards. inc Processor type definitions for INMOS iq systems transputer 
evaluation boards. 

12.3.4 Configuration description examples 

A series of example configuration descriptions is supplied on the config ex­
amples subdirectory. 

There are a number of files provided on this subdirectory including a configuration 
description for the 'Hello world' program used in chapter 3, and a series of 
configurations for specific network topologies such as rings, grids, trees, and _ 
pipelines. 

72 TDS 224 00 August 1990 



12.3 Running the conflgurer 211 

12.3.5 Conflgurer library flies 

The configurer reads a special library file at startup which contains the sys­
tem startup processes for different transputer types and error modes. The 
file is called sysproc. lib and is searched for on the directory specified by 
ISEARCB. This is normally the toolset libs directory, in which the file was 
originally installed. 

12.3.6 Search paths 

If a directory path is not ~pecified the configurer uses the standard toolset search 
mechanism for locating input files, include files, and system library files. Briefly, 
the current directory is searched first, followed by the directories specified by 
ISEARCH (if defined on the system). For details see section A.3. 

12.3.7 Default memory map 

By default the configurer places code into memory in the following order begin­
ning at LoadStart (a location above MemStart defined by icollect): stack; 
code; vector space; static; heap; system data; system code; and freespace. The 
memory segments are contiguous. 

The default memory map is illustrated in figure 12.1 . 

System process 
(Code + Data) 

System data 
Heap 

Data Segments 
Static 

Data Segments 
Vector 

Data Segments 
Code 

Segments 
Stack 

Data Segments 

...- FreeStart 

Contiguous memory 

...- LoadStart 

Figure 12.1 icconf default memory map 

72 TDS 224 00 August 1990 



212 12 icconf - conflgurer 

12.4 Conflgurer diagnostics 

Errors in the configuration source produce diagnostic messages in standard 
toolset format. Details of the format can be found in section A.6.1. 

Diagnostics are generated at severities Warning, Error, and Serious. No diag­
nostics are generated at severity level Fatal. The configurer aborts after 200 
source file errors have been detected. 

Diagnostic messages are listed in the following sections by severity. 

Note: The following lists do not describe general icconf system errors, which 
are listed separately in section 12.5. 

12.4.1 Warning messages 

The following diagnostic messages are generated at severity level Warning. 

attribute 'name' definition Ignored 

This message can only occur in mixed language programs incorporating 
occam modules. The named stacksize or heapsize attribute has 
been assigned a value that has been ignored. 

attribute 'name' has been reassigned 

Named attribute has been reassigned and can occur for any attribute. 

attribute 'name' undefined 

Named attribute has not been assigned a value. 

channel 'name' unconnected and unplaced 

Named channel has not been connected or placed. 

connector 'name' unused 

Named connector has not been used in a connect stateme~t.

link 'name' unconnected 

Named link has not been connected. 

72 TDS 224 00 August 1990 



12.4 Configurer diagnostics 213 

nested comment statements, value 

One or more nested comments have been found by the configurer. value 
is the number of nested comments found. 

order attributes ignored in debug mode 

The G option has been specified and the memory segments of one or 
more user process has been given an order priority in the configuration 
source. 

overflow in hexadecimal escape character 

A numerical overflow has occurred during the evaluation of a hexadecimal 
escape character whose range is from 0 to 255. 

overflow in octal escape character 

A numerical overflow has occurred during the evaluation of an octal es­
cape character whose range is from 0 to 255. 

processor 'name' unconnected 

Named processor has not been connected to the network (defined by the 
tree of connections from the root processor). 

processor 'name' unused 

Named process has been connected to the network but has had no user 
processes placed onto it. 

12.4.2 Error messages 

The following diagnostic messages are generated at severity level Error. 

attribute 'name' cannot be reassigned 

Named attribute cannot be reassigned. This can only occur with the 
element and type attributes of nodes and processors. 

attribute 'name' multiply defined in 'name' 

Named attribute has been declared within the interface attribute and 
its name clashes with a previously declared attribute or its name clashes 
with the name of a predefined attribute for the named symbol. 

72 TDS 224 00 August 1990 



214 12 icconf - conflgurer 

attribute 'name' undefined In 'name' 

Named attribute is an undefined attribute of the named symbol. 

attribute 'name' undefined 

Named attribute has not been assigned a value which is required. 

channel 'name' connected and unplaced 

Named channel has been connected to an input (or output) edge and 
has not been placed onto a link. 

channel 'name' multiply connected 

Named channel has been used more than once in a connect statement. 

channel 'name' multiply placed 

Named channel has been used more than once in a place statement. 

channel 'name' unconnected and placed 

Named channel has been placed and is unconnected. 

connect 'name' to 'name' Illegal, both edges 

Connect statement is illegal because the named elements are both 
edges. 

connect 'name' to 'name' Illegal, both non-edges 

Connect statement is illegal because the named elements are channels 
and they communicate in the same direction. 

connect 'name' to 'name' Illegal, edge/non-edge 

Connect statement is illegal because the first named element is an input 
(or output) edge and the second named element is a channel and they 
communicate in different directions. 

connect 'name' to 'name' Illegal, non-edge/edge 

Connect statement is illegal because the first named element is a channel 
and the second named element is an input (or output) edge and they 
communicate in different directions. 

72 TDS 224 00 August 1990 



12.4 Conflgurer diagnostics 215 

connector •name' multiply placed 

Named connector has been used more than once in a place statement. 

connector •name' mUltiply used 

Named connector has been used more than once in a connect statement. 

constant dimension sizes inconsistent, value 

A constant array has been defined which has inconsistent dimension 
sizes for some of its elements. value is the number of the incorrect 
dimension, counting from zero. 

constant dimensions Incompatible with •name' 

Named symbol has been assigned a constant value whose dimensions 
do not ~atch the symbol in number and/or size. 

/ 

constant element types not equal, type 

A constant array has been defined where some or all of its elements have 
non-equal types. type is the correct type for each element in the array. 

constant type incompatible with •name', type 

Named symbol has been assigned a constant value whose type is not 
the same as itself. type is the correct type for the constant. 

element •name' in connection undefined 

Named symbol has been used in a connect statement and has no asso­
ciated data, for example attributes that are undefined, link attributes of 
processor types, channel attributes of process types etc. 

element •name' In placement undefined 

Named symbol has been used in a place statement and has no asso­
ciated data, for example attributes that are undefined, link attributes of 
processor types, channel attributes of process types etc. 

element •name' not completely subscrlpted 

Named symbol has been defined as an array and has not been com­
pletely subscripted. 

72 TDS 224 00 August 1990 



216 12 icconf - conflgurer 

host edge 'name' undefined 

When configuring to boot from link, the named host edge has not been 
declared in the configuration source. This error can only be caused if the 
standard include file setconf. inc has been altered. 

illegal RAM + ROM memory size for 'name', value 

Named symbol is a processor whose total RAM and ROM memory sizes 
exceed the total memory addressing capabilities for the processor. value 
is the amount of extra memory specified for the processor. 

illegal RAM memory size for 'name', value 

Named symbol is a processor whose total RAM memory size exceeds 
the total memory addressing capabilities for the processor. value is the 
amount of extra memory specified for the processor. 

Illegal ROM memory size for 'name', value 

Named symbol is a processor whose total ROM memory size exceeds 
the total memory addressing capabilities for the processor. value is the 
amount of extra memory specified for the processor. 

illegal assignment for attribute 'name' 

Named attribute is the wrong type of attribute for the assignment of a 
constant value, for example, the order attribute of a process. 

illegal dimension size, value 

A dimension size not greater than zero has been specified. value is the 
dimension number with the illegal dimension size. 

Illegal escape character sequence, char 

An illegal escape character sequence has been specified. char is the 
illegal escape character. 

illegal format character constant, char 

An illegal format character constant has been specified. char is the un­
expected character found in the character constant. 

72 TDS 224 00 August 1990 



217 12.4 Conflgurer diagnostics 

Illegal format hexadecimal constant, char 

An illegal format hexadecimal constant has been specified. char is the 
unexpected character found in the hexadecimal constant. 

Illegal number of dimensions for •nams' 

Named symbol has too many dimensions, should have zero dimensions. 

Illegal number of dimensions, valus 

Number of dimensions for a symbol or constant exceeds the maximum 
number of dimensions allowed by the configurer. valus is the maximum 
number of dimensions allowed. 

Illegal number of subscripts for 'nams', valus 

Number of subscripts specified for the named symbol exceeds the num­
ber the symbol requires. valus is the maximum number of subscripts 
allowed. 

illegal number of sUbscripts for constant, valus 

Number of subscripts specified for a constant exceeds the number the 
constant requires. value is the maximum number of subscripts allowed. 

Illegal operation for attribute •name' 

Named attribute has been used incorrectly. That is, the use of the at­
tribute does not conform to its syntactic specification, for example, using 
the node attribute element to form a list of parameters. 

illegal source file character, value 

An unexpected character has been found in the source file. value is the 
ASCII value for the illegal character. 

Illegal token for expression, found token 

An unexpected token has been found at the start of an expression. token 
is the unexpected token. 

Illegal token for statement, found token 

An unexpected token has been found at the start of a statement. token 
is the unexpected token. 

72 TDS 224 00 August 1990 



218 12 icconf - conflgurer 

Illegal type for'name' In USE statement, type 

Named symbol has been specified In a use statement and is not a pro­
cess or a process type. type is the type of the symbol. 

Illegal type for 'name' In connection, type 

Named symbol has been specified in a connect statement and is not a 
channel, link or connector. type is the type of the symbol. 

Illegal type for 'name' In definition, type 

Named symbol has been specified in a node definition statement and is 
not a node type. type is the type of the symbol. 

Illegal type for 'name' In expression, type 

Named symbol has been specified in an expression and is not a constant 
value. type is the type of the symbol. 

Illegal type for 'name' In modification, type 

Named symbol has been specified in an attribute modification statement 
and is not a node. type is the type of the symbol. 

Illegal type for 'name' In placement, type 

Named symbol has been specified in a place statement and is not a 
process, processor, channel, link or connector. type is the type of the 
symbol. 

Illegal type for 'name', type 

Named symbol does not have the type expected by the configurer. This 
will only occur if the name specified using the P option is not a processor 
or if the host edge host is in fact not an edge. type is the type of the 
symbol. 

Illegal type for IF statement condition, type 

The condition value for an if statement is not of integral type. type is the 
type of the condition value. 

72 TDS 224 00 August 1990 



219 12.4 Conflgurer diagnostics 

Illegal type for arithmetic operator operator, type 

The operand of an arithmetic unary operator is not of arithmetic type. 
type is the type of the operand and operator is the arithmetic operator. 

Illegal type for boolean operator operator, type 

The operand of a boolean binary operator is not of integral type. type is 
the type of the operand and operator is the boolean operator. 

Illegal type ·'or condition operator operator, type 

The condition value for a conditional ternary operator is not of integral 
type. type is the type of the condition value and operator is the conditional 
operator. 

Illegal type for connector •name' In placement, type 

Named symbol is a connector defining a connection and has been used 
in the incorrect position in a place statement. For example, if the symbol 
describes a connection between channels then the symbol has been 
used after the on in the place statement. type is the type of connection 
defined by the symbol. 

e Illegal type for dimension size, type 

The type of a dimension size value is not of integral type. type is the type 
of the dimension size value. 

Illegal type for Integral operator operator, type 

The operand of an integral unary operator is not of integral type. type is 
the type of the operand and operator is the integral operator. 

Illegal type for subscript value, type 

The type of a subscript value is not of integral type. type is the type of 
the subscript value. 

illegal type for value In REP statement, type 

The base or limit value for a replicator statement is not of integral type. 
type is the type of the base or limit value. 

72 TDS 224 00 August 1990 



220 12 icconf - conflgurer 

Illegal types for arithmetic operator operator, type1 and type2 

The operands of an arithmetic binary operator are not both of arithmetic 
type. type1 and type2 are the types of the operands and operator is the 
arithmetic operator. 

Illegal types for equality operator operator, type 1 and type2 

The operands of an equality binary operator are not both of arithmetic 
type. type1 and type2 are the types of the operands and operator is the 
equality operator. 

Illegal types for Integral operator operator, type 1 and type2 

The operands of an integral binary operator are not both of integral type. 
type 1and type2are the types of the operands and operator is the integral 
operator. 

Illegal use of constant for element 

A constant value has been used in a situation where it is not required. 

illegal use of subfleld operator for 'name' 

Named symbol which no associated subfields (or attributes) has been e 
accessed using the subfield operator. 

Illegal use of subfleld operator for constant 

A constant value has been accessed using the subfield operator. 

Illegal value for attribute 'name' In PRI PAR process 

This message can only be generated in mixed language programs incor­
porating occam modules. A named attribute has been given a value 
which is inconsistent with the type of the process it is associated with, 
that is, a high priority occam process has been specified to start in high 
priority. 

Illegal value for attribute'name' 

Named attribute has been given a value which is inconsistent with the 
type of the attribute and its semantic meaning, for example, assigning an 
integer value to the type attribute of a processor. 

72 TDS 224 00 August 1990 



221 12.4 Conflgurer diagnostics 

incompatible Interface, 'name' has different type, type 
incompatible Interface, 'name' has too few parameters 
incompatible Interface, 'name' has too many parameters 
incompatible Interface, 'name' has unequal dimensions 

These messages can only be generated in mixed language programs 
incorporating occam modules. The named symbol is an occam pro­
cess and the interface defined for the process mismatches the formal 
parameter list defined in its associated object file. 

Insufficient RAM memory for 'name', value 

Named processor's total RAM memory size is insufficient for the number 
of processes placed on the processor (which includes their data require­
ments). value is the number of extra bytes needed to accommodate all 
the processes on the processor. 

Insufficient ROM memory for 'name', value 

Named processor is the root processor in a boot from ROM system and 
its total ROM memory size is insufficient for the number of processes 
placed on the processor. value is the number of extra bytes needed to 
accommodate all the processes on the processor. 

e link 'name' multiply connected 

Named link has been used more than once in a connect statement. 

link 'name' multiply placed 

Named link has been used more than once in a place statement. 

links 'name' and 'name' unconnected and placed 

Named links are not connected to each other and have each been placed 
with channels which are connected to each other. 

missing ( for SIZE operator, found token 

The size operator has been found and an opening parenthesis was ex­
pected to be found after the keyword size, instead of which the token 
token was found. 

72 TDS 224 00 August 1990 



222 12 icconf - conflgurer 

missing) for SIZE operator, found token 

The size operator has been found and a closing parenthesis was ex­
pected to be found after the operand to the operator, instead of which 
the token token was found. 

missing) for attribute list, found token 

An attribute list has been found and a closing parenthesis was expected 
to terminate the list, instead of which the token token was found. 

missing) for cast operator, found token 

A casting operator has been found and a closing parenthesis was ex­
pected to be found after the type identifier, instead of which the token 
token was found. 

missing ) for expression, found token 

A parenthesised expression has been found and a closing parenthesis 
was expected to be found after the sub-expression, instead of which the 
token token was found. 

missing, or TO for CONNECT statement, found token 

A connect statement has been found and a comma or the keyword to 
were expected to be found, instead of which the token token was found. 

missing: for conditional operator, found token 

A conditional operator has been found and a colon was expected to be 
found after the first sub-expression, instead of which the token token was 
found. 

missing ; for statement, found token 

A statement has been found which expects a semicolon to terminate it, 
instead of which the token token was found. 

missing = for REP statement, found token 

A replicator statement has been found and an equals was expected to 
be found after the replicator identifier, instead of which the token token 
was found. 

72 TDS 224 00 August 1990 



12.4 Conflgurer diagnostics 223 

missing = or ( for attribute, found token 

An attribute definition has been found and an equals or opening paren­
thesis were expected to be found after the attribute identifier, instead of 
which the token token was found. 

missing FOR for USE statement, found token 

A use statement has been found and the keyword for was expected to 
be found, instead of which the token token was found. 

missing INCLUDE for # statement, found token 

A hash has been found and the keyword include was expected to be 
foiJnd, instead of which the token token was found. 

missing ON for PLACE statement, found token 

A place statement has been found and the keyword on was expected to 
be found, instead of which the token token was found. 

missing TO or FOR for REP statement, found token 

A replicator statement has been found and the keywords to or for were 
expected to be found, instead of which the token token was found. 

missing ] for subscript, found token 

A subscript operator has been found and a closing square bracket was 
expected to be found after the subscript value, instead of which the token 
token was found. 

missing attributes for attribute list 

An attribute list has been found which is empty. 

missing constants for constant list 

A constant list has been found which is empty. 

missing Identifier for DEFINE statement, found token 

Adefine statement has been found and an identifier was expected to be 
found after the attribute list (if specified), instead of which the token token 
was found. 

72 TDS 224 00 August 1990 



224 12 icconf - configurer 

missing Identifier for REP statement, found token 

A replicator statement has been found and an identifier was expected to 
be found after the keyword rep, instead of which the token token was 
found. 

missing identifier for VAL statement, found token 

A value statement has been found and an identifier was expected to be 
found after the keyword val, instead of which the token token was found. 

missing Identifier for attribute list, found token 

An attribute list has been found and an identifier was expected to be 
found after the opening parenthesis starting the list, instead of which the 
token token was found. 

missing identifier for attribute, found token 

An attribute list has been found and an identifier was expected to be 
found after a comma in the attribute list, instead of which the token token 
was found. 

missing identifier for name, found token 

A name expression has been found and an identifier was expected to be 
found at the start of the expression, instead of which the token token was 
found. 

missing Identifier for subfleld, found token 

A subfield expression has been found and an identifier was expected to 
be found after the subfield operator, instead of which the token token was 
found. 

missing statements for statement list 

A statement list has been found 'which is empty. 

missing string for INCLUDE statement, found token 

An include statement has been found and a string was expected to be 
found after the keyword include, instead of which the token token was 
found. 

72 TDS 224 00 August 1990 



12.4 Conflgurer diagnostics 225 

missing string for USE statement, found token 

A use statement has been found and a string was expected to be found 
after the use keyword, instead of which the token token was found. 

missing type for DEFINE statement, found token 

A define statement has been found and a type identifier was expected 
to be found after the keyword define, instead of which the token token 
was found. 

missing type for attribute, found token 

An parameter list has been found and a parameter type was expected to 
be found after a comma in the parameter list, instead of which the token 
token was found. 

missing } for constant list, found token 

A constant list has been found and a closing brace was expected to 
terminate the list, instead of which the token token was found. 

missing } for statement list, found token 

A statement list has been found and a closing brace was expected to 
terminate the list, instead of which the token token was found. 

modification of 'name' Illegal, already used 

Named symbol is a type identifier which has derived other symbols and 
an attempt has been made to modify of one of its attributes. 

object file for 'name' undefined 

Named process has been specified more than once in a use statement. 

overflow In REP statement expression 

A numerical overllow has occurred during the evaluation of a replicator 
statement, that is, the replicator identifier has overllowed. 

overflow In arithmetic expression 

A numerical overflow has occurred during the evaluation of an arithmetic 
expression. 

72 TDS 224 00 August 1990 



226 12 icconf - conflgurer 

overflow In decimal Integer constant 

A numerical overflow has occurred during the conversion of a string rep­
resenti"g a 32 bit decimal integer constant. 

overflow In dimension size expression 

A numerical overflow has occurred during the evaluation of a dimension 
size expression (which is done to the precision of the hosts integer word 
length). 

overflow In dimension sizes for 'name' 

A numerical overflow has occurred during the evaluation of the number 
of elements of the named symbol (which is done to the precision of the 
host system's integer word length). 

overflow In dimension sizes for constant 

A numerical overflow has occurred during the evaluation of the number 
of elements of a constant array (which is done to the precision of the 
hosts integer word length). 

overflow In hexadecimal Integer constant 

A numerical overflow has occurred during the conversion of a string rep­
resenting a 32 bit hexadecimal integer constant. 

overflow In octal Integer constant 

A numerical overflow has occurred during the conversion of a string rep­
resenting a 32 ljit octal integer constant. 

overflow In real double constant 

A numerical overflow has occurred during the conversion of a string rep­
resenting a 64 bit real constant. 

overflow In real float constant 

A numerical overflow has occurred during the conversion of a string rep­
resenting a 32 bit real constant. 

72 TDS 224 00 August 1990 



12.4 Conflgurer diagnostics 227 

overflow In subscript value expression 

A numerical overflow has occurred during the evaluation of a subscript 
value expression (which is done to the precision of the hosts integer word 
length). 

place 'name' on 'name' Illegal, edge/non-edge 

Place statement is illegal because the first named element is an input or 
output edge and the second named element is a link. 

place 'name' on 'name' Illegal, non-edge/edge 

Place statement is illegal because the first named element is a channel 
and the second named element is an edge. 

process 'name' and channel 'name' placed on different processors 

Named process has been placed on a different processor than the named 
channel. That is, the named channel, which is one of the channels of the 
process, has been placed on the link of a different processor. 

process 'name' and processor 'name' error modes mismatch 

Named process has an error mode (defined by the object file associated 
with the process by the use statement) which is incompatible with other 
processes executing on the named processor. 

process 'name' and processor 'name' target types mismatch 

Named process has a target transputer type (defined by the object file 
associated with the process by the use statement) which is incompatible 
with transputer type of the named processor. 

process 'name' multiply USEd 

Named process has been used more than once in a use statement. 

process 'name' mUltiply placed 

Named process has been used more than once in a place statement. 

process 'name' unplaced 

Named process has not been placed. 

72 TDS 224 00 August 1990 



228 12 icconf - conflgurer 

process type 'name' multiply USEd 

Named process type has been used more than once in a use statement. 

processes 'name' and 'name' placed on different processors 

Named processes (which are connected by channels) have been placed 
on different processes such that there is no unplaced link connection 
between the processors. 

processor 'name' unconnected and placed 

Named processor has not been connected to the network and has had 
one or more user process placed onto it. 

reference to undefined symbol 'name' 

Named symbol has been referenced but had not been defined at the 
point of reference. 

root processor 'name' undefined 

When configuring to boot from ROM, the named processor (specified 
using the P option) has not been defined in the configuration source. 

subscript out of range for 'name', value 

Named symbol has been accessed with the subscript operator and the 
subscript value used is outside the valid range for the symbol. value is 
the dimension number that was subscripted. 

subscript out of range for constant, value 

A constant value has been accessed with the subscript operator and the 
subscript value used is outside the valid range for the constant. value is 
the dimension number that was subscripted. 

symbol 'name' multiply defined In symbol table 

Named symbol has been multiply defined in the configuration source. 

unlnitlallsed symbol 'name' In expression 

Named symbol, which is of arithmetic type, has been used in an expres- _ 
sion and has not been assigned any value. • 

72 TDS 224 00 August 1990 



229 12.4 Configurer diagnostics 

untermlnated character constant 

A character constant has been specified where a closing quote has not 
been found before the end of the line. 

unterminated comment statement 

A comment has been started and has not been terminated before the 
end of the file. 

untermlnated string constant 

A string constant has been specified where a closing double quote has 
not been found before the end of the line. 

unused connector 'name' In placement 

Named connector has not been used in a connect statement and has 
been used in a place statement. 

value for attribute'name' out of range 

Named attribute has been assigned a value that is not in the valid range 
for the attribute, for example, a negative value for the memory attribute 
of a processor. 

zero length character constant 

A zero length character constant has been specified. 

12.4.3 Serious messages 

The following diagnostic messages are generated at severity level Serious. 

TCOFF descrlptor, Illegal number of dimensions, value 
TCOFF descriptor, Illegal type for name, type 
TCOFF descriptor, missing (, found char 
TCOFF descrlptor, missing ), found char 
TCOFF descrlptor, missing :, found char 
TCOFF descrlptor, missing ? or I, found char 
TCOFF descrlptor, missing OF for CHAN or PORT 
TCOFF descrlptor, missing ], found char 
TCOFF descrlptor, missing occam PROC keyword 
TCOFF descrlptor, missing occam Identifier 
TCOFF descrlptor, overflow In dimension size 

72 TDS 224 00 August 1990 



230 12 icconf - conflgurer 

TCOFF descrlptor, undefined channel parameter 
TCOFF descrlptor, unknown occam parameter type 
TCOFF descrlptor, unknown occam process type 
TCOFF format, define main undefined 
TCOFF format, descrlptor and define main mismatch 
TCOFF format, descrlptor undefined 
TCOFF format, expected library file 
TCOFF format, Illegal code size, value 
TCOFF format, Illegal entry offset, value 
TCOFF format, Illegal format origin symbol, string 
TCOFF format, Illegal scalar size, value 
TCOFF format, Illegal vector size, value 
TCOFF format, module not found In library file 
TCOFF format, multiple code sections 
TCOFF format, multiple define mains 
TCOFF format, multiple descriptors 
TCOFF format, multiple origin symbols 
TCOFF format, multiple virtual sections 
TCOFF format, unexpected error mode, found none 
TCOFF format, unexpected language, found value 
TCOFF format, unexpected library file 
TCOFF format, unexpected library tag, found value 
TCOFF format, unexpected tag, found value 
TCOFF format, unexpected transputer type, found none 

These messages indicate an error in the format of the object file specified 
to the configurer in a use statement. 

12.5 icconf error messages 

This section documents command line and system errors (other than configura­
tion source diagnostics) generated by icconf. Such errors are generated at 
severities Serious and Fatal. 

The display format for error messages is described in section A.6.1. 

12.5.1 Serious errors 

The following errors are generated at severity level Serious. 

ROM memory size undefined 

The RA or RO options have been used and no RS option has been spec­
ified. 

72 TDS 224 00 August 1990 



231 12.5 icconf error messages 

Illegal ROM memory size, value 

Value specified for the RS option is not greater than zero. 

Illegal format ROM memory size, string 

An illegal format memory size value has been specified for the RS option. 
string is the illegal format memory size. 

Internal token buffer overflow, value 

An internal buffer used for storing the current input line has overflowed 
causing the error. value is the size of the internal buffer in bytes. 

multiple ROM memory sizes, string 

The RS option has been specified more than once. string is the latest 
value for the RS option. 

multiple Input file names, string 

An input file name has been specified more than once. string is the latest 
input file name. 

multiple output file names, string 

The 0 option has been specified more than once. string is the latest 
value for the 0 option. 

multiple processor names, string 

The P option has been specified more than once. string is the latest 
value for the P option. 

options G and RA or RO are Incompatible 

The G and RA or RO options have been specified. 

options XM and XO are Incompatible 

The ]CM and xo options have been specified. 

processor name undefined 

The RA or RO options have been used and no P option has been speci­
fied. 

72 TDS 224 00 August 1990 



232 12 icconf - configurer 

too many errors occurring, value 

Number of errors exceeds maximum number allowed. value is the max­
imum number of errors allowed. 

unable to open (value) 

An attempt to open a file failed due to either the file not existing or an 
error occurring in the host file system. value is the error number for the 
failure. 

unexpected command line token, string 

A token has been specified on the command line to the configurer that 
is not recognised as a valid option string. 

12.5.2 Fatal errors

The following errors are generated at severity Fatal.

illegal string length (value)

A string length has been input from an object file which exceeds the 
maximum string length for an object file. value is the illegal string length a 
found. • 

unable to allocate heap memory 

Amount of memory available to the configurer is insufficient for configuring 
the configuration source. 

unable to close (value) 
unable to read (value) 
unable to seek (value) 
unable to tell (value) 
unable to write (value) 

These messages are generated as 'a result of an error occurring in the 
host file system. value is the error number for the failure. 

unexpected end of Input 

The end of the input has been found unexpectedly in an object file. 

72 TDS 224 00 August 1990 



13 icollect - code 
collector 

This chapter describes the code collector tool icollect which generates ex­
ecutable files for single and multitransputer programs, from configuration data 
files and linked units respectively. The tool is also used to create files for in­
put to the EPROM programmer tool ieprom, and to generate files that can be 
dynamically loaded by application source code. 

13.1 Introduction 

icollect generates bootable files for transputer programs and other exe­
cutable files in special formats. Bootable files are transputer executable files 
containing distribution and bootstrap information which can be directly loaded 
onto the hardware down a transputer link. The command line default is to gen­
erate a bootable file for a networked program from a configuration binary file; 
single processor operation and special outputs are selected by specific com­
mand line options. 

The bootable file contains all the information for loading and running the pro­
gram on a specific network of processors. The file includes data that controls 
the distribution of code on the network and self-booting code for each proces­
sor. Bootable programs are self-distributing and self-starting and can be loaded 
directly onto the transputer hardware using iserver. 

For multitransputer programs the input file is a configuration data file (by default, 
a file with the • cfb extension) created by the configurer from a configuration 
description. The file describes the placement of processes and channels on the 
processor network in a special format which can be read by the collector. 

For single transputer programs the input file is a single linked unit (by default, a 
file with the .lku extension), to which bootstrap and system code is added for 
a single processor. 

icollect can be directed to generate output files in a special format for pro­
cessing by the ieprom tool, and executable code with no bootstrap or system 
process information, intended for dynamic loading by a high level language pro­
gram. 

The main inputs and outputs of the collector tool for bootable programs are 
shown below. 

72 TDS 224 00 August 1990 



234 13 icollect - code collector 

13.2 Running the code collector 

The code collector is invoked using the following command line: 

~ icollect filename {options} 

where: filename is a configuration data file created by icconf or a single linked 
unit created by ilink. 

options is a list of options from the following tables. 

Options must be preceded by ,_, for UNIX based toolsets and' /' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

72 TDS 224 00 August 1990 



235 13.2 Running the code collector 

Option 

B filename 

C filename 

D

E

I

K

L 

M memorysize 

0 filename 

RA 

RO 

Description 

Uses a user-defined bootstrap loader program in place of the 
standard bootstrap. The program is specified by filename 
and must conform to the rules described in appendix D. This 
option can only be used with the 'T' option (single processor 
mode) and cannot be used with the 'RA' and 'RO' options. 

Specifies a name for the debug data file. A filename must 
be supplied and is used as given. Only valid when accom­
panied by the 'T' option and invalid if used with the 'D' or 'K' 
options. 

Disables the generation of the debug data file for single 
transputer programs. Can only be used with the 'T' option. 

Changes the setting of the Halt On Error flag. HALT mode 
programs are converted to not stop when the error flag is 
set, and non-HALT mode programs to stop when the error 
flag is set. Can only be used with the 'T' option. 

Displays progress information as the collector runs. 

Creates a single transputer file with no bootstrap code. Can 
only be used with the 'T' option. If no file is specified the 
output file is named after the input file name and given the 
. rsc extension. 

Loads the tool onto the transputer board and terminates. 

Specifies the memory size available (in bytes) on the root 
processor for single transputer programs. Can only be used 
with the 'T' option. memorysize can be specified in Kilobytes 
and Megabytes using the 'K' or 'M' suffixes. memorysize may 
also be specified in hexadecimal using the 'I' or '$' prefixes. 

Specifies the output file. A filename must be supplied and 
is used as given. 

Creates a file for processi ng by ieprom into a boot from 
ROM file to run in RAM. If no output file is specified the file 
is given the . btr extension. If the input is a configuration 
binary file it must have been created using the icconf 'RA' 
option. 

Creates a file for processing by ieprom into a boot from 
ROM file to run in ROM. If no output file is specified the file 
is given the •btr extension. If the input is a configuration 
binary file it must have been created using the icconf 'RO' 
option. 

72 TDS 224 00 August 1990 



236 13 icollect - code collector 

Option Description 

RS romsize Specifies the size of ROM on the root processor. Only valid 
when used with the 'RA' or 'RO' options. romsize must be given 
in decimal format and can be followed by 'K' or 'M' to indicate 
Kilobytes or Megabytes. romsize must match the romsize spec­
ified to icconf if used. 

_ 
• 

S stacksize Specifies the extra runtime stack size for single transputer pro­
grams. Can only be used with the 'T' option. stacksize must 
be given in decimal format. 

T Creates a bootable file for a single transputer. The input file 
specified on the command line must be a linked unit. This 
option cannot be used for programs linked with the reduced 
runtime library. 

XM Directs the transputer-hosted version of the tool to be executed 
so that they can be restarted without rebooting by the server. 

xo Directs the transputer-hosted version of the tool to be executed 
once on the transputer board and then terminate. 

13.2.1 Examples of use 

Example A (single processor mode): 

UNIX based toolsets: MS-DOS and VMS based toolsets: 

ice hello iee hello
ilink hello.teo -f startup./nk J1ink hello.teo If startup./nk
icollect hello.lku -t icollect hello.lku It 
iserver -sb hello.bt/ -se iserver I sb hello.btl I se 

Example B (configured program mode): 

UNIX based toolsets: MS-DOS and VMS based toolsets: 

iee hello iee hello
ilink hello.teo -f startup./nk ilink hello.teo If startup./nk
iceonf hello.efs ieeonf hello. efs
icollect hello.cfb icollect hello.cfb 
iserver -sb hello.bt/ -se iserver I sb hello.bt/ I se 

72 TDS 224 00 August 1990 



13.2 Running the code collector 237 

13.2.2 Input files 

The input file is either a configuration data file generated by icconf, or a linked 
unit generated by ilink. By default the collector assumes a configuration data 
file; for linked units that are to be processed for single transputers the 'T' option 
must be specified. Incorrect format input files generate an error message and 
no output is produced. 

13.2.3 Output files 

The main output file is a binary file that can be loaded directly onto the transputer 
hardware down a transputer link, whether for a single transputer or a multitrans­
puter network. This type of file is known as a boot from link program. If no 
filename is specified the output file is named after the input file and given a 
.btl extension. If an output filename is specified the file is given the specified 
name. 

Files created using the 'RA', 'RO', and 'K' options are given special extensions (if 
no output filename is specified) which indicate the file type. File types created 
for each of the options are listed below. 

Option File created 
K .rsc 

RA .btr 
RO .btr 

13.2.4 Non-bootable files 

Files created with the 'K' option are non-bootable files which can be dynamically 
loaded by a program or manipuJated at runtime. 

Non-bootable files consist essentially of program code preceded by a number 
of words of runtime data. The sequence of data and code blocks in the file is 
summarised in the following table. Descriptions of the data items immediately 
relating to the program block are given after the table. 

72 TDS 224 00 August 1990 



238 13 icollect - code collector 

No of words 
(long ints) 

Data Unit 

one 

Set by above 

one 

Set by above 

Interface descriptor size 

Interface descriptor 

Compiler id size 

Compiler id 

bytes 

-
bytes 

-
one 

one 

one 

one 

one 

one 

one 

Set by above 

Target processor type 

Version number 

Program scalar workspace requirement 

Program vector workspace requirement 

Static size 

Program entry point offset 

Program code size 

Program code block 

-
-

words 

words 

words 

bytes 

bytes 

-

Target The processor type or transputer class for which the
program was compiled.

Version The format version number of the file. This can be 10
or 11 in the TCOFF system. For programs compiled
with ice it will always be 11, which indicates the pres- e 

. ence of a static data parameter. A value of 10 indicates 
no static parameter and is used to identify code written 
using other INMOS language toolsets. 

Scalar workspace Specifies the size of the workspace required for the
linked program's runtime stack.

Vector workspace Specifies the size of the workspace required for the
linked program's vector (array) data.

Static size Specifies the size of the static area.

Entry point offset Indicates the offset in bytes of the program entry point
from the base of the code block.

Code size Indicates the size of the program code in bytes.

Code The progratn code.

13.2.5 Boot-from-ROM options 

The boot-trom-ROM options 'RA' and 'RO' produce code that can be loaded into e 
EPROM using the ieprom tool. Both options apply only to code running on the 

72 TDS 224 00 August 1990 



13.2 Running the code collector 239 

root transputer of a network; processors on the network connected to the root 
transputer are booted from the root transputer links. 

'RA' generates code which is executed from RAM. The code is copied from ROM 
into RAM at runtime. 'RO' generates code which is directly executed from ROM. 

RAM executable code can be used for applications which are to be executed 
from fast RAM, and for code which may be user-modified. ROM executable code 
requires no external RAM and can be used to create a truly embedded system. 

Configured programs for loading into ROM must have been created using the 
same configurer option ('RO' or 'RA' as appropriate) that is supplied to the col­
lector. 

13.2.6 Debug data file 

For single transputer programs only, the collector automatically generates a con­
figuration binary file for reading by the debugger. By default the filename stem 
is taken from the output file and the' • cfb' extension is added. If the 'e' option 
is specified the filename is used as supplied. Generation of the debug data file 
can be disabled by specifying the '0' option. 

13.2.7 Alternative bootstrap loaders 

If not otherwise specified, icollect uses the standard INMOS primary boot­
strap loader. The correct code for the application program is chosen from a 
library of bootstraps compiled for different transputer types and error modes. 

The collector can be directed to use other bootstrap loader programs defining 
different loading sequences by specifying the 'B' option. The option directs the 
collector to append a user-defined loader program in place of the standard boot­
strap loading sequence. 

User-defined bootstraps must be created according to certain rules, illustrated 
by the standard INMOS bootstrap which is listed in appendix 0 along with the 
standard Network Loader. The listing is fully commented and can be used as a 
template to design and code your own bootstrap sequence. 

13.2.8 Small values of IBOARDSIZE 

If IBOARDSIZE is set to a small value, for example if the value specified is 
invalid and it is set to 0 by default, the collector generates a warning message. 
Very small values of IBOARDSIZE (including zero) are detected at runtime and 

72 TDS 224 00 August 1990 



240 13 icollect - code collector 

prevent the program from being run. 

13.3 Error messages 

This section lists error messages generated by icollect. The messages are 
listed under severity headings in alphabetical order, omitting the introductory 
information (error severity and filename data). 

icollect generates errors of severities Warning and Serious. Serious error 
cause the tool to terminate without producing any output. 

13.3.1 Warnings 

The following messages are prefixed with 'Warning-'. They are only generated 
when the 'T' option is used (single processor mode). 

Flip error mode Ignored with user bootstrap 

The 'E' option is ignored when a user-defined bootstrap is specified since 
the collector will only accept a single linked unit as a bootstrap. 

Strange board size for sixteen bit processor : Setting to zero 

The memory size specified exceeds the addressing capacity of a 16 bit 
processor (64 Kbytes). The collector uses a memory size of zero for the 
rest of the build. 

13.3.2 Serious errors 

The following errors are prefixed with 'Serious-'. 

Address space for target processor exhausted 

The address space required by the program is greater than 64Kbytes, 
the maximum addressable space on a 16-bit processor. 

Bootstrap file already specified 

More than one bootstrap file was specified. Only one file is allowed. 

Bootstrap fllename too long 

The maximum length allowed for the bootstrap filename is 255 characters. 

72 TDS 224 00 August 1990 



241 13.3 Error messages 

Bootstrap Is greater than 255 byte In library file 

The library bootstrap is too large. This should only occur if the library file 
is invalid or corrupt. 

Cannot have both rom types 

'RA' and 'RQ' options are mutually exclusive and cannot both be specified 
on the same command line. 

Cannot have conflgured and memory size 

The memory size option is incompatible with building a bootable program 
for a configuration binary file. 

Cannot have configured and non bootable file 

The collector cannot generate both a network loadable file and a non­
bootable file simultaneously for the same program. 

Cannot have rom and non bootable file 

The collector cannot generate both a ROM-Ioadable file and a non­
bootable file simultaneously for the same program. 

Cannot open file filename 

Host file system error. The file specified cannot be opened. 

Command line parsing error at string 

Unrecognised command line option. 

Debug file already specified 

More than one debug was file specified. Specify one only. 

Dynamic memory allocation failure 

Memory allocation error. The collector cannot allocate the required 
amount of memory for its internal data structures. 

Error In writing to debug file 

Host file system error. The debug file could not be written. This mes­
sage will only appear if the collector is invoked with the 'T' option (single 

72 TDS 224 00 August 1990 



242 13 icollect - code collector 

processor mode). 

Expected end tag found not present In .cfb file 

A specific end tag is missing in the configuration binary file. Either the 
file is corrupted or the versions of icollect and icconf used are 
incompatible. 

_ 
• 

Illegal tag found In .cfb file 

Incorrect format configuration binary file, recognised as an illegal tag. 
Either the file is corrupted or the versions of icollect and icconf 
used are incompatible. 

Illegal language type found in input file 

Source language used to create the file is not supported by the collector. 
Less likely, but possible, is that the file was created using an incompatible 
(possibly earlier) version of a tool. 

Illegal process type 

Unrecognised process type. Either the file has been corrupted or the 
versions of icollect and icconf used are incompatible. 

Illegal processor type 

Unrecognised processor type. Either the file 
icollect and icconf are incompatible. 

has been corrupted or 

Illegal tag found in Input file : filename 

Incorrect format input file. The most likely reason for this error is that an 
incorrect file has been specified. Other less likely but possible explana­
tions are that the file was created using an earlier or incompatible version 
of one of the tools, or that the file has become corrupted. 

Input file already specified 

More than one input file specified on the command line. 

Input file has not been linked filename 

The collector accepts only linked files, either directly when using single 
processor operation. or indirectly via entries in the configuration binary e 
file. This message can be generated if the file was created using a 

72 TDS 224 00 August 1990 



13.3 Error messages 243 

previous version of a tool, or if the file is corrupt. 

Input file Is of Incorrect type : fjlename 

If the 'T' option is specified (single processor program) the input file must 
be a single linked unit ( .1ku type). If the 'T' option has not been specified 
the input file must be a configuration binary file (. cfb type). 

Input filename too long 

The maximum length allowed for the input filename is 256 characters. 

Linked unit file In cfb and linked unit In Input file found do not match : 
filename 

The linked file specified in the configuration binary and the one found the 
collector do not match. 

Linked unit module not found In : filename 

The required library module is missing or has been corrupted. This mes­
sage is generated when an incorrect version of the library is installed. 

Memory size already specified 

Memory size must be specified once only. 

Memory size string Invalid 

Memory size must be given in decimal or hex. Hex numbers must be 
introduced by 'I' or '$'. 

Memory size string too long 

Specified memory size is too large. 

More than one parameter statements 

The collector expects only one parameter statement per processor. Ei­
ther the file has been corrupted or the versions of icollect and 
icconf used are incompatible. 

No debug and debug output file specified in command line 

Options '0' (disable debug) and 'e' (debug filename) cannot be used. 
together. 

72 TDS 224 00 August 1990 



244 13 icollect - code collector 

No input file specified 

One, and only one, input file must be specified on the command line. 

No parameter descriptor present in input file : filename 

The formal parameter descriptor in the input file is not present. This 
usually means that the process has not been linked with a main entry 
routine. This message will only appear if the collector is invoked with the 
'T' option (single processor mode). 

Output file already specified 

More than one output file was specified. Specify only one. 

Output filename too long 

The maximum length allowed for the output filename is 256 characters. 

Parameter descriptor error in input file : filename 

The formal parameter descriptor in the input file is not of the correct 
form, indicating that the process interface is not one recognised by the 
collector. This message will only appear if the collector is invoked with 
the 'T' option (single processor mode). 

Program configured for boot from ROM command line is boot from link 

The specified configuration binary file was created for either ROM or 
RAM, and neither has been specified to icollect. 

Program configured for running in RA mode command line is RO mode 

Wrong mode specified, or incorrect option given to icconf when the 
specified configuration binary file was created. Ra and RA modes are 
mutually exclusive. 

Program configured for running in RO mode command line is RA' mode 

Wrong mode specified, or incorrect option given to icconf when the 
specified configuration binary file was created. RA and Ra modes are 
mutually exclusive. 

Rom size already specified 

ROM size must be specified once only. 

72 TDS 224 00 August 1990 



13.3 Error messages 245 

Rom size In Input file and command line do not match 

The ROM size specified on the command line does not match that spec­
ified to icconf when the input file was created. 

Rom size not specified 

A ROM size must be specified because the input file is configured for 
loading into ROM. 

Rom size string invalid 

ROM size must be given in decimal. 

Rom size string too long 

ROM size specified was too large. 

Stack size already specified 

Stack size must be specified once only. 

Stack size string invalid 

Stack size must be specified in decimal format. 

Stack size string too long 

Specified stack size was too large. 

Strange function or attribute for linked unit in : filename 

The collector has found an unfamiliar value in the input file. Either an old 
version of a tool was used in the creation of the input file, or the input file 
has been corrupted. 

System error 

Host system error has occurred, probably when accessing a file. This 
message may be generated when a file is read and its contents seem to 
have changed. 

Unexpected end of file: filename 

One of the files specified in the configuration binary has ended prema­
turely. filename identifies the offending file. If the message 'Suspect 

72 TDS 224 00 August 1990 



246 13 icollect - code collector 

corrupted file' is substituted for filename then the file is corrupted. 

User bootstrap not allowed when program Is conflgured 

User defined bootstrap loaders can only be used with single processor 
programs. 

User bootstrap not allowed with rom option 

User defined bootstrap loaders cannot be used with ROM-Ioadable code. 

User bootstrap type does not match that of linked unit 

Either the target processor type or the error mode of the bootstrap code 
does not match that of the input file. 

72 TDS 224 00 August 1990 



14 icvlink - file format 
convertor 

This chapter describes the file format convertor tool icvlink which converts 
object files from Linker File Format (LFF) to Transputer Common Object File 
Format (TCOFF). The chapter begins with a short introduction to the tool and 
then describes how it is used. The chapter ends with a list of error messages 
which may be generated by icvlink. 

14.1 Introduction 

Earlier compilers and INMOS toolsets targetted at the transputer produced ob­
ject files in LFF. Examples of such products are the 3L and INMOS Parallel C, 
occam, FORTRAN and Pascal compilers. 

All object files produced by the latest INMOS Toolsets are generated in a format 
known as Transputer Common Object File Format (TCOFF). Input files for the 
linker, librarian, and lister tools, supplied with these toolsets, must be in TCOFF. 

icvlink enables code compiled in LFF to be used with later versions of the 
tools without needing to recompile. In particular it enables existing software to 
make use of the new configuration language implemented by the current toolset. 

The conversion to TCOFF may take place at different stages in the develop­
ment process depending on the user's requirements. Figures 14.1 to 14.3 il­
lustrate three different approaches to using icvlink. Notice that in all three 
approaches the conversion is performed before the configuration stage. 

In figure 14.1, compiled object and library modules are processed by the con­
vertor and then linked using the current toolset tinker ilink. Converted library 
modules have to be processed by the current toolset librarian ilibr in order 
to create TCOFF library modules, see section 14.2.2. 

Figure 14.2 illustrates how existing compilation and library modules may be linked 
using a previous version of the Iinker to produce a linked object file in LFF. This 
file may then be converted to TCOFF and the current toolset Iinker ilink used 
to create a linked object file in TCOFF. 

Figure 14.3 illustrates an extension to the second approach, where the TCOFF 
file produced by the conversion is linked with modules compiled by the cur­
rent toolset compiler. The linking process is performed by employing the same 
method of linking that is used for mixed languages. 

72 TDS 224 00 August 1990 



248 14 icvlink - file format convertor 

The shaded symbols, in the figures, represent both i/o files in LFF format and 
previous issues of particular tools. Note: where txx has been used it would be 
equally valid to use •bin (see section 14.2 below). 

_-1 icvlink ~8-1 ilibr ~8b

_-1 icvlink ~8 .~ 8-1icconfI 

Figure 14.1 Converting compilation and library modules 

e~~
_-i.IIiJ-e-licvlinkk3-1 ilink ~-l icconfI 

Figure 14.2 Converting linked object module 

8------~'--~

8----------------1 
Figure 14.3 Conversion followed by linking for mixed languages 

When source code is available it is recommended that the source code is recom­
piled using the compiler supplied with this toolset rather than using icvlink. If, 
however, the source code is not available or recompilation is likely to be difficult, 
then icvlink should be used, following one of the approaches outlined above. 

Programs which have been converted should in general be kept separate from 
programs developed with the current toolset. This is because of differences 
in the supplied libraries and in the implementation of the different versions of 
the compilers and toolsets. If it is necessary to combine old and new software, 

72 TDS 224 00 August 1990 



249 14.2 Running the format convertor 

the modules should be linked using the methods described for mixed language 
programming, see chapter 9. 

14.2 Running the format convertor 

The format convertor operates on a single' input file. This file may be a single 
module or a library. The operation of the format convertor in terms of standard 
extensions is shown below. 

Note: The file extensions of the input files, pertain to default file extensions used 
by previous issues of INMOS toolsets, where: 

. lib is the extension of a library file. 

. txx is the extension of a c~mpiled occam file. 

. cxx is the extension of a linked unit. 

. bin is the extension of a compiled C or FORTRAN file. 

To invoke the file format convertor use the following command line: 

~ icvlink filename {options} 

where: filename is the name of the file to be converted. Any string not recognised 
as an option is treated as an input filename. 

options is a list of options given in table 14.1. 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

72 TDS 224 00 August 1990 



250 14 ievlink - file format convertor 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Option Description 

0 

I 

L 

0 filename 

p 

XM 

xo 

Forces a TA module to be converted into both a new TA mod­
ule and a TB module. Forces a TC module to be converted 
into both a T5 and a TB module. This option is only for use 
with library modules. 

Displays progress information as the conversion proceeds. 

Loads the tool onto a transputer board and then terminates. 

Specifies an output file. If no output file is specified the 
name is taken from the input module and a •teo extension 
is added. If more than one output file is specified then the 
last one takes precedence. 

Forces TA and TC modules to be converted to TB modules. 

Directs the transputer-hosted versions of the tool to be exe­
cuted so that they can be restarted without rebooting by the 
server. 

Directs the transputer-hosted versions of the tool to be exe­
cuted once on the transputer board and then terminate. 

Table 14.1 ievlink command line options 

Examples 

ievlink myproge.bin 

In this example ievlink is used to convert an object file, produced by the IN­
MOS 3L Parallel C compiler. The output file name will default to myproge . teo. 

ievlink myprog.t4x 

In this example ievlink is used to convert an occam object file which has 
been compiled for a T4 series transputer. The output filename will default to 
myprog. teo. 

72 TDS 224 00 August 1990 



14.2 Running the format convertor 251 

14.2.1 Default command line 

A set of default command line options can be defined for the tool using the 
ICVLINKARG environmental variable. Options must be specified using the syn­
tax required by the command line. 

14.2.2 Input flies 

The format convertor will accept a compiled object file, a linked object file or a 
library file, in LFF format, as input. The fellowing sections describe the use of 
the format convertor in the context of these file types. 

Complied object flies 

The format convertor may be used to convert any compiled object files. The 
convertor will produce compiled modules in TCOFF format. Any libraries required 
to be linked with the compilation modules must also be converted (see below), 
before the linker ilink can be used to produce the linked object file. 

Library files 

The format convertor will convert a library file which is in LFF format to the 
new TCOFF format but it will not generate a new library file. When a library is 
converted the resulting file contains a concatenation of all the converted modules. 
In order to create a library file the librarian tool ilibr, supplied with this toolset, 
must be used to prepend the library index. 

Linked object flies 

Linked object files in LFF format may also be converted into TCOFF format. 

The procedure for converting linked files is similar to that for converting compiled 
object files. The format convertor will convert a linked object file which is in LFF 
format into a TCOFF format file. This file may then be supplied as an input file to 
the linker tool ilink in order to produce a linked object file in the new format. 

14.2.3 Output files 

The format convertor creates a single TCOFF object module. As indicated above, 
if either a library or linked object module is used as input then the output module 
must be processed by the current ilibr or ilink tools. 

72 TDS 224 00 August 1990 



252 14 icvlink - file format convertor 

14.3 Transputer classes and error modes 

Both the members and the meaning of the different transputer classes has 
changed for this issue of the toolset. icvlink therefore has to impose a 
transputer class on any module whose class has no direct representation in the 
current toolset. This also applies to error modes. The following rules are used 
for transputer classes an~ error modes: 

.­
• 

• The error mode UNDEFINED is converted to UNIVERSAL. 

• Transputer class TA does not change name but note that the meaning of 
this class has changed. 

• Transputer class TC is converted to transputer class T5. 

For more information on transputer classes see section 5.3. 

The command line options '0' and lp' can be used to override these rules. The 
command line option lp' causes TA and TC modules to be converted to TB 
modules. The '0' option is designed to be used when converting libraries that 
contain TA and TC modules. When a TA library module is converted with this 
option two modules will be generated by the conversion; one 'new style' TA 
module and one TB module. For a TC library module converted with the '0' 
optron, a T5 and TB module will be created. 

The lp' option may be used to convert any compiled, library or linked object 
modules. The '0' option, however, is restricted to converting library modules, 
because the linker can selectively load library modules whereas it cannot selec­
tively load compilation modules. 

14.4 Summary of rules for using icvlink 

1 When source code is available icvlink should not be used. Instead 
the source code should be recompiled using the compiler supplied with 
this toolset. 

2 The libraries supplied with this toolset must not be linked with converted 
object modules. Instead the library files originally called by the converted 
modules must also be converted so that the modules may be linked 
correctly. 

3 If converted modules are to be used in conjunction with modules compiled 
by the current toolset, then they must be linked by using mixed program­
ming techniques. In general converted object and library modules should e 
be used in isolation of any new development.

72 TDS 224 00 August 1990



253 14.5 Error messages 

14.5 Error messages 

This section lists each error and warning message that can be generated by the 
convertor. Messages are in the standard toolset format which is explained in 
appendix A. 

14.5.1 Serious errors 

filename • bad format: reason 

The named file does not conform to a recognised INMOS file format or 
has been corrupted. 

Could not open for Input 

The named file could not be opened for reading. 

Could not open for output 

The named file could not be opened for writing. 

No input file supplied 

No file name has been placed on the command line. 

Only one Input file allowed 

More than one file name has been placed on the command line. 

Parsing command line token 

An unrecognised token was found on the command line. 

Promote and duplicate options conflict 

The P (promote) and D (duplicate) options have conflicting meanings and 
should not be used in conjunction. 

72 TDS 224 00 August 1990 



254 14 icvlink - file format convertor 

72 TDS 224 00 August 1990 



15 idebug - debugger
This chapter is describes the network debugger tool idebuq. It begins by 
describing the command line syntax and shows how to invoke the debugger in 
the two main debugging modes. The rest of the chapter lists and describes in 
detail the symbolic debugging functions and Monitor page commands and ends 
with a list of error messages. 

15.1 Introduction 

The network debugger idebuq is a special purpose debugger for transputers. 
It can be used to examine stopped programs (post-mortem debugging) or to 
execute programs interactively (breakpoint debugging). 

Programs can be analysed using the symbolic functions which operate using 
source code symbols or the Monitor page commands which operate at memory 
and processor level. Symbolic and Monitor page environments are separate but 
can be recalled from each other at will. 

Symbolic functions allows files to be examined, variables inspected, and proce­
dures traced, from source code level. Monitor page commands allow transputer 
memory to be examined and processor state to be determined anywhere on the 
network. Symbolic and Monitor page environments can be recalled from each 
other at any time. 

15.1.1 Post-mortem debugging 

Post-mortem mode debugging allows stopped programs to be analysed from the 
residual contents of transputer memory or from a network dump file. Programs 
that run on the root transputer must be debugged from a memory dump file 
because the debugger overwrites the root transputer's memory. The memory 
dump file is created using the idump tool. 

15.1.2 Breakpoint debugging 

Breakpoint mode debugging allows transputer programs to be executed inter­
actively using breakpoints set in the code. Breakpoints can be set symbolically 
on lines of source text or at transputer memory addresses, and values can be 
modified in transputer memory to show the effect of changing variables. 

Certain symbolic functions and Monitor page commands are only available in 
breakpoint mode. 

72 TDS 224 00 August 1990 



256 15 idebuq - debugger 

15.2 The root transputer 

idebuq can be used to debug single and multitransputer programs. The tech­
niques and commands to use when invoking the debugger differ slightly accord­
ing to whether or not the program (or a process forming part of the program) 
runs on the root transputer, and according to the debugging mode (post-mortem 
or breakpoint). 

_ 
• 

The root transputer is the name given to the processor that is directly connected 
to the host computer. In a transputer network that is connected to the host it 
forms the root of the network. The debugger always runs on the root transputer, 
which must be a 32-bit transputer with at least one Megabyte of memory. 

The relationship of the root transputer to the host computer and the rest of the 
network is illustrated below. 

host com uter 

fs 

ts 

root transputer 

Iink(s) 
rest of 

network 

Two procedures are used to debug programs in post-mortem mode, depending 
on whether the application is configured to use the root transputer. Programs that 
use the root transputer are referred to in this chapter as R-mode programs, and 
programs that do not use the root transputer are referred to as T-mode programs. 
Command line options are used to select the correct mode of operation for 
idebuq. 

To avoid the need for a memory dump applications configured to use the root 
transputer can be skip loaded. Skip loading requires at least one extra processor 
on the network but speeds up debugging considerably and is the recommended 
method where more than one processor is available. iskip can be used to 
skip any number of processors on a network by invoking the tool successively. 

15.2.1 Board wiring 

Before any program can be debugged in post-mortem mode on a transputer 
board the Analyse signal must be asserted on the network once, and once only. 
Because different procedures must be adopted for programs which do and do not 
use the root transputer, the debugger cannot assert the signal automatically and it 
must be asserted by passing the appropriate iserver option from the idebuq 

72 TDS 224 00 August 1990 



257 15.2 The root transputer 

command line. Table 15.2 gives a summary of the command sequences to use 
for the two program modes on different board types. 

15.2.2 Post-mortem debugging R-mode programs 

Code running on the root transputer and loaded with iserver directly is de­
bugged in post-mortem mode from a memory dump file which is specified by 
the 'R' option. The memory dump file must be created using the idump tool 
before the debugger is invoked. Code on other transputers is debugged down 
transputer links in the normal way. 

In R-mode programs idump asserts the Analyse signal and the 'SA' option is 
not required on the idebug command line. In fact a second assertion of the 
signal would cause data in the memory to become corrupted. If idump is not 
invoked then the debugger cannot load onto the root transputer and a booting 
error is reported. 

Details of the idump and iskip tools can be found in chapters 16 and 25 
respectively. 

15.2.3 Post-mortem debugging T-mode programs 

T-mode programs are loaded using iskip and subsequently debugged using 
the 'T' option to specify the root transputer link to which the network is connected. 
The 'SA' server option must also be added to the idebug command line in order 
to assert Analyse. 

If the 'SA' option is not given, the debugger is not booted onto the root transputer 
and the server aborts with an error message. If the server is inputting data at 
the time some corruption of the data may occur. The debugger should then be 
reinvoked with the correct options. 

15.2.4 Post-mortem debugging from a network dump file 

To suspend a post-mortem R or T debugging session without losing the original 
context, the Monitor page 'N' command can be used to dump the entire state of a 
network into a network dump file (including Freespace if required). The debugger 
can then be invoked on the file without being connected to the network. 

Notes: This option will only work for programs that have not been interactively 
breakpoint debugged. 

Memory dump files and network dump files are not the same: the former con­

72 TDS 224 00 August 1990 



258 15 idebug - debugger 

tains a single processor's memory image while the later contains data about a 
complete network. They are also in different formats. 

15.2.5 Debugging a dummy network 

The debugger may be used to debug a program using dummy data. Using 
the debugger command line '0' option which simulates the contents of memory 
locations and registers, static features of a program may be examined. This 
is useful to determine processor connectivity and memory mapping for each 
processor in the network. This option may also be used to explore the features 
of the debugger. 

15.2.6 Methods for breakpoint debugging 

Breakpoint mode debugging does not require use of the memory dump tool be­
cause the program is automatically skip loaded over the root transputer where the 
debugger is running. However, like all skip loads it requires an extra processor 
in the network. 

15.3 Running the debugger 

The debugger is invoked using the following command line: 

~ idebug filename { options} 

where: filename is the program bootable file. 

options is a list of one or more options from table 15.1. 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

72 TDS 224 00 August 1990 



15.3 Running the debugger 259 

Option Description 

B linknumber 

M linknumber 

T linknumber 

R filename 

N filename 

C type 

D 

A 

S 

I 

Interactive breakpoint debug a network that is connected to 
the root processor via link linknumber. idebug executes 
on the root processor. 

Must be accompanied by the iserver 'SR' option. 

Postmortem debug a previous interactive debugging ses­
sion.- idebug executes on the root processor. 

Must be accompanied by the iserver 'SA' option. 

Postmortem debug a program that does not use the root 
processor, on a network that is connected to link linknum­
ber. idebuq executes on the ro.ot processor. 

Must be accompanied by the iserver 'SA' option. 

Postmortem debug a program that uses the root transputer. 
filename is the file that contains the contents of the root 
processor (created by idump). The file is assumed to have 
the extension •dmp if none is supplied. 

Postmortem debug a network from a network dump file file­
name (created by idebug). The file is assumed to have 
the extension •dmp if none is supplied. 

Must be accompanied by the iserver 'SR' option. 

Specify a processor type (e.g. T425) instead of a class 
(e.g. TA) for programs that have not been configured. 

Dummy debugging session. Can be used for familiarisation 
with the debugger or establishing memory mappings. 

Must be accompanied by the iserver 'SR' option. 

Assert subsystem analyse. Directs the debugger to assert 
Analyse on the network connected to the root processor. 

Ignore subsystem error status when breakpoint debugging. 

Display debugger version string. 

Must be accompanied by the iserver 'SR' option. 

Table 15.1 Debugger command line options 

72 TDS 224 00 August 1990 



260 15 idebuq - debugger 

15.3.1 Environment variables

idebuq requires three environment variables to be set up on the host system:

ITERM Defines key mappings for debugger symbolic functions and 
some Monitor page commands. 

IDEBUGSIZE Defines the amount of memory available on the root transputer 
board. This variable must be specified for idebuq to work 
correctly (idebug requires at least 400Kbytes of available 
root transputer memory). 

IBOARDSIZE The amount of memory available for the application program. 
Required for single transputer programs (created from linked 
units using icollect with the 'T' option and without the 'M' 
option), where the memory size was not specified. 

Details of how to set up the variables can be found in the Delivery Manual that 
accompanies the release. 

15.3.2 Program termination 

If the program terminates on issuance of the server terminate command by the 
C runtime system the following message is displayed: 

[Program has finished - hit any key for monitor] 

The debugger can be re-entered after server termination by pressing any key. 
The final state of the network can be examined using the full range of Monitor 
page and symbolic commands. 

The exit status returned by the program is displayed on the Monitor page. 

If the program contains independent processes which require no communication 
with the server the debugger allows the program to be resumed. In this case the 
debugger displays the following warning message: 

[Warning: The server has been terminated by the program] 

15.3.3 Post-mortem mode Invocation 

To invoke the post-mortem debugger use the appropriate command from the 
following list. 

Command lines are duplicated in UNIX and MS-DOSNMS formats. Use the 
appropriate command line format for your system.

72 TDS 224 00 August 1990



261 15.3 Running the debugger 

Note: Commands are given for a B008 board wired subs. For the commands 
to use on other board types see section 15.4. 

idebuq bootab/etile -t Iinknumber -sa
idebuq bootab/eti/e It Iinknumber Isa

idebuq bootab/etile -r ti/ename
idebuq bootab/etile Ir tilename

idebuq bootab/eti/e -n tilename -sr
idebuq bootab/etile In tilename Isr

idebuq bootab/eti/e -m ti/ename -sa
idebuq bootab/etile Im ti/ename Isa

where: bootab/etile is the program bootable file. 

/inknumber is the number of the link of the root processor which is con­
nected to the network. 

ti/ename is a network dump file or a root transputer memory dump file. 

Use the It' option for programs that do not use the root transputer, that is, those 
loaded by using iskip. The program is debugged from the program image that 
is resident in the memory of each transputer; the information about the rest of 
the network is extracted down the root transputer link. The It' option produces 
faster debugging option because the root transputer memory image is not saved. 
However, the option does require an extra transputer on the network. The It' 
option should be accompanied by the iserver 'sa' option to assert Analyse on 
the network. 

Use the 'r' option for programs that use the root transputer in a network. The 
dump file is created by using idump, which produces a dump of the program 
image on the root transputer only; the debugger extracts information about other 
transputers on the network (if applicable) via the root transputer links. 

Use the In' option to debug programs without access to the original network 
of transputers. This is effectively debugging off-line. The network dump file is 
generated by the idebuq Monitor page 'N' command (only for programs that 
have not been breakpoint debugged). The It' option should be accompanied by 
the iserver 'sr' option to reset the network. 

Use the 'm' option to debug a previous breakpoint debugging session where 
either the network has crashed (error flag was set) or you have used the 
host IBREAKI key to terminate the debugger. This option is the same as the It' 
option but informs the debugger the breakpoint runtime kernel is present. The 

72 TDS 224 00 August 1990 



262 15 idebuq - debugger 

'm' option should be accompanied by the iserver 'sa' option to assert Analyse 
on the network. 

Symbolic functions and Monitor page commands that support breakpointing are 
absent in the post-mortem debugger. 

Relnvoklng the debugger on single transputer programs 

For programs running on a single transputer only and debugged from a memory 
dump file the debugger can be reinvoked on the same dump file by passing the 
'SR' option to iserver from the idebuq command line. This option is required 
to reset the transputer before loading the debugger program, which is normally 
simulated by idump. 

15.3.4 Breakpoint mode Invocation 

To invoke the debugger in breakpoint mode use one of the commands below. 

Note: Commands are given for a B008 board wired subs. For the commands 
to use on other board types see section 15.4. 

idebuq bootab/efNe -b Iinknumber -sr
idebuq bootab/efi/e /b /inknumber / sr

where: fj/ename is the program executable file 

Iinknumber is the number of root transputer link where the application 
network is connected. 

In breakpoint mode idebuq loads the bootable file directly onto the network and 
sets up a runtime kernel and virtual link system on each processor used by the 
program. iserver is not required to load the program, but an extra processor 
is required to run the debugger: the program is in effect 'skip' loaded. 

Clearing error flags on transputer boards 

Processors in the network with their error flags set can cause idebuq to signal 
a crashed program even when they are not being used by the program. This is 
because idebuq uses subsystem services to monitor error flag status through­
out the network. A reliable method of clearing all of error flags on a network is to 
run a network check or worm program such as ispy before invoking idebuq. 

The ispy program is provided as part of the board support software for INMOS 
iq systems products. These products are available separately through your local 

72 TDS 224 00 August 1990 



15.3 Running the debugger 263 

INMOS distributor. 

An alternative method of ensuring that error flags are cleared on a network is 
to load a dummy process on each processor. The act of loading code onto the 
processor clears the error flag. 

The following is an example of a dummy process which could be used to clear 
the error: flag on a processor. The code simply starts up then shuts down imme­
diately (exit_terminate (exit_terminate is used because the program 
is configured). 

/******************* 

* 
* Place this program on each processor 
* to clear the error flags. 

* * Remember to use startup.lnk for the 
* root processor and startrd.lnk for 
* all other processors when linking. 

* 
*******************/ 

#include <misc.h> 

int
main (int argc, char* argv[])

{ 
exit_terminate (0); 
} 

Generate a linked unit containing the dummy process code for each processor 
on the network. Write a configuration description which places the linked units 
on each processor, collect the program, and load the resulting bootable file onto 
the network using iserver. The bootstrap code clears the error flag on each 
processor before loading the process code. 

Note: When linking each process for subsequent configuration the process to 
be placed on the root processor must be linked with the full library; processes 
to be placed on other processors in the network can be linked with the reduced 
library. 

72 TDS 224 00 August 1990 



264 15 idebuq - debugger 

Program loading 

In breakpoint mode idebuq loads the bootable program directly onto the net­
work and sets up a debugging runtime kernel on each processor. iserver
is not required to load programs for breakpoint debugging. An extra processor A.
is required on the network to run a program in breakpoint mode because the •
program is in effect skip loaded.

When first invoked the breakpoint debugger immediately enters the Monitor page 
where the 'B' (Breakpoint Menu) command can be used to set breakpoints before 
the program is started. 

15.3.5 Function key mappings 

All the debugger symbolic functions, and some Monitor page commands, are 
assigned to specific keys on the keyboard by the ITERM file (the file specified by 
the environment variable ITERM). For the correct keys to use on your terminal 
consult the keyboard layouts provided in the Delivery Manual that accompanies 
the release. 

ITERM files are supplied with the release for terminals commonly used with your 
host system but may also be created to suit your own requirements. Details of 
the ITERM file and an example listing which illustrates the format can be found 
in appendix H. 

Key-mapped symbolic functions and Monitor page commands are listed in sec­
tion 15.6.2. 

15.4 Debugging programs on different board types 

On transputer boards the Analyse and Reset signals can be propagated from 
the root transputer in two ways, and this influences the options that must be used 
when debugging programs. 

15.4.1 Subsystem wiring 

On transputer boards the subsystem signal are either propagated unchanged 
to all transputers on the network (known as wired down), or the signals are 
connected to the subsystem port (wired subs) from where they are controlled by 
the board's root processor. 

On 8004 boards and on all boards where subsystem is wired in the same way e 
Analyse must be asserted on the network before transputers can be accessed 

72 TDS 224 00 August 1990 



265 15.4 Debugging programs on different board types 

by the debugger from the root processor. However, if Analyse is asserted more 
than once the program will be corrupted in transputer memory. 

The wiring type can be identified by the hardware addresses of the three sub­
system registers. 8004-type boards use the following addresses: 

Signal Hardware address 
Reset #00000000 
Analyse #00000004 
Error #00000000 

An example of a 8004-type board is the IMS 8404 TRAM. For details of the 
subsystem wiring on other boards consult the Datasheet or board specification. 

In addition, TRAM boards and 8004 boards differ in the way the subsystem port 
is used. On TRAMs the signals are propagated to all transputers on the network, 
whereas on 8004 boards the signals are not propagated at all. 

15.4.2 Debugging commands 

The above conditions affect the commands you must use when debugging T­
mode and R-mode programs. To simplify the selection of the correct command 
Table 15.2 has been constructed giving the command line options to use for 
different combinations of board type, subsystem wiring, and program mode. 

Note: Command lines are given in the UNIX format ('-' option switch character) 
in order maintain simplicity in layout. For MS-DOS and VMS based systems 
replace '-' by 'I' in all command lines. 

For further details about loading programs see chapter 7. 

15.4.3 Detecting the error flag in breakpoint mode 

In breakpoint mode the debugger detects that a processor has its error flag set 
by use of the subsystem services. If your hardware is not wired up to use the 
subsystem services then the debugger is unable to detect when an error flag 
is set; this may cause the debugger to hang for no apparent reason. On such 
networks you should use the iserver 'SE' option to detect when an error flag 
has been set. Note however that detection of an error flag set will terminate the 
debugger without warning. 

Note: When using the debugger in breakpoint mode you should if possible wire 
your hardware up to use the subsystem services. 

72 TDS 224 00 August 1990 



266 15 idebug - debugger 

Board Wiring Mode Command IIne(s) to use 

TRAM down T idebug program -b linknumber -sr -set -st 

idebug program -m Iinknumber -sa 

idebug program -t Iinknumber -sa 

R idump outputfile size 
idebug program -r filename 

subs T idebug program -b linknumber -sr 

idebug program -m linknumber -sa 

idebug program -t linknumber -sa 

R idump outputfile size 
idebug program -r filename 

8004 down T idebug program -b Iinknumber -sr -set -st 

idebug program -m linknumber -sa 

idebug program -t linknumber -sa 

R idump outputfile size 
idebug program -r filename 

subs T idebug program -b linknumber -a -sr 

idebug program -m linknumber -a -sa 

idebug program -t linknumber -a -sa 

R idump outputfile size 
idebug program -r filename -a 

For MS-DOS and VMS based toolsets use the 'I' option switch character. 

Options on the idebug command line that are not debugger options are 
passed to iserver. 

The 'si' option may also be used on any command line to display activity 
information when loading the debugger. 

Modes: R = program using the root transputer; T = program not using the
root transputer, and debugged down a root transputer link.

t See section 15.4.3.

Table 15.2 Commands to use when debugging 8004 and TRAM boards 

15.5 Debugging programs on other boards 

For hardware that does not adhere to the INMOS subsystem convention you will 
need to determine how the hardware is configured and the appropriate command 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 267 

line options yourself. 

You will probably need to use the idebuq command line'S' option when'break­
point debugging in order to stop the debugger monitoring the subsystem error 
status, and the iserver 'SE' option to determine when the error flag has been set. 

15.6 Monitor page commands 

This section lists and describes the Monitor page commands. The commands are 
tabulated in alphabetical order for easy reference. Where a command invokes 
an option submenu the operation of each option is described. Summaries of the 
commands can also be found in the Handbook that accompanies the ANSI C 
toolset release. 

Command format 

All Monitor page commands are either single letter commands or are invoked by 
a single function key press. Key mappings for the few general commands that 
use function keys can be found in the Delivery Manual that accompanies the 
release. 

Specifying transputer addresses 

Many Monitor page commands require a transputer address. If none is given the 
debugger assumes a default address when one is displayed with the prompt. The 
default address is the last address specified or located to and can be selected 
by pressing IRETURNI. 

Addresses can be specified in decimal or hexadecimal format. Hexadecimal 
numbers must be given as a sequence of hexadecimal digits preceded by the 
characters 'I', '$', or '%'. The It' and '$' characters are used to prefix a full 
hexadecimal address. The '%' character adds INT....MIN (MOSTNEG INT) to 
the hexadecimal value using modulo arithmetic. This is useful when specifying 
transputer addresses which are signed and start at INT....MIN. For example, on 
a 32 bit transputer %70 is interpreted as #80000070 and on a 16 bit transputer 
as #8070. 

15.6.1 Scrolling the display 

Several commands mapped by the ITERM (see below) may be used to scroll 
certain of the Monitor page displays. Cursor keys may also be used. 

72 TDS 224 00 August 1990 



268 15 idebuq - debugger 

15.6.2 Commands mapped by ITERM 

Certain Monitor page commands are mapped to specific keys on the terminal by
the ITERM file. Commands mapped in this way include keys which are used to
scroll the display (see below), commands which produce the same effect in both _
debugging modes, and the commands IRELOCATE/ and IRETRACE/ which invoke .,
the corresponding symbolic mode functions.

The keys to use for all Monitor page commands mapped by ITERM can be found
by consulting the keyboard layouts supplied in the Delivery Manual.

15.6.3 Summary of main commands 

Key Meaning Description 

A ASCII View a region of memory in ASCII. 

8t Breakpoint Display the Breakpoint menu enabling break­
points to be set, cleared or listed. 

C Compare Compare the code on the network with the code 
that should be there to ensure that the code has 
not been corrupted. 

D Disassemble Display the transputer instructions at a specified 
area of memory. 

E Next Error Switch the current display information to that of 
the next processor in the network which has 
halted with its error flag set. 

F Select file Select a source file for symbolic display using 
the filename of the object file produced for it. 

G Goto process Goto symbolic debugging for a particular pro­
cess. 

H Hex View a region of memory in hexadecimal. 

I Inspect View a region of memory in any type. Types are 
expressed as occam types. 

Jt Jump Start or resume application program. 

K Processor names Display the names of all processors in the net­
work. 

t = Breakpoint mode only 

72 TDS 224 00 August 1990 



269 15.6 Monitor page commands 

Key Meaning Description 

L Links Display instruction pointers and workspace descrip­
tors for the processes currently waiting for input or 
output on a transputer link, or for a signal on the 
Event pin. 

M Memory map Display the memory map of the current transputer. 

N Network dump Copy the entire state of the transputer network into 
a 'network dump' file in order to allow continued 
(off-line) debugging at a later date. 

0 Specify process Resume the source level symbolic features of the 
debugger for a particular process. 

P Processor Switch the current display information to that of an­
other processor. 

Q Quit Leave the debugger and return to the host operat­
ing system. 

R Run queues Display instruction pointers and workspace descrip­
tors of the processes on either the high or low pri­
ority active process queue. 

St Show messages Display the Messages menu enabling the default 
actions of the debugger to debug support functions 
to be changed. 

T Timer queues Display instruction pointers, the workspace descrip­
tors and the wake-up times of the processes on 
either the high or low priority timer queue. 

Ut Update Update the monitor page registers to reflect the cur­
rent state of the processor. 

V Process names Display the names of all processes on the current 
transputer. 

Wt Write Write to any portion of memory in any occam type 
(e.g. REAL32). 

X Exit Return to symbolic mode. 

Yt Postmortem Change a breakpoint debug session into a post­
mortem debug session. 

? Help .Display help information. 

t = Breakpoint mode only 

72 TDS 224 00 August 1990 



270 15 idebuq - debugger 

15.6.4 Symbolic-type commands and scroll keys 

Key Description 

ITOplU Locate to the last instruction executed on the current processor. 

Switch to symbolic mode and perform symbolic operation. 

Switch to symbolic mode and perform symbolic operation. 
Display help information. 

Re-draw the screen. 

IRETRACEI U 

IRELOCATEI U 

IHELPI U 

IREFRESHI U 

ILlNE upl U 

Scroll the currently displayed memory, disassembly, 

or queue. 

ILlNE DOWNI U 

IPAGE upl U 

IPAGE DOWNI U 

DJ 
[]] 

EJ 
El 

Scroll the currently displayed processor left or right. 

U For key bindings see the Delivery Manual. 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 271 

~ ASCII 

This command displays a segment of transputer memory in ASCII for­
mat, starting at a specific address. If no address is given the last 
specified address is used. Specify a start address after the prompt: 

Start address (#hhhhhhhh) ? 

Either press IRETURNI to accept the default (last specified) address, or 
enter the desired address. The address can be entered as a decimal 
number, a hexadecimal number preceded by '#', or the short form 
'%h ... h'. 

The memory is displayed in blocks of 16 rows of 32 ASCII bytes, each 
row preceded by an absolute address in hexadecimal. Bytes are or­
dered from left to right in each row. Unprintable characters are substi­
tuted by a full stop. 

rn, rn, IPAGE upl, IPAGE DOWNI keys can be used to scroll the display. 

00 Breakpoint menu (Breakpoint mode only) 

This command invokes the Breakpoint Menu: 

S - Set a breakpoint on this processor 
T - Toggle a breakpoint on this processor 
C - Clear a breakpoint 
A - Clear all breakpoints on all processors 
B - Clear all breakpoints on this processor 
E - Set a breakpoint at all entries this processor 
G - Set a breakpoint at all entries all processors 
M - Set a breakpoint at all main () this processor 
L - List all breakpoints 
P - List all breakpoints on this processor 
Q - Quit 

Breakpoint option (A,B,C,E,G,L,M,P,Q,S,T) ? 

Options are selected by entering one of the single letter commands. 
Pressing IRETURNI with no typed input when prompted for a breakpoint 
number or address cancels the option. 

72 TDS 224 00 August 1990 



272 15 idebuq - debugger 

o Breakpoints are assigned a unique number which must be specified 
with the 'c' option. Numbers are given on the List Breakpoints displays. 

The 'E' and 'G' options which set breakpoints at the entrypoint of a 
process (at configuration level) are primarily intended for use with other 
INMOS language toolsets where there is no equivalent of a fixed name 
entrypoint (such as main () in C). 

Note: Only breakpoints which are set in symbolic mode (at the be­
ginning of a statement) are properly supported. Setting breakpoints at 
arbitrary addresses using the'S' option may cause incorrect execution 
of the program. 

@] Compare memory 

Compare memory compares the code on the network with the code 
that was loaded, to check that memory has not become corrupted. 

Note: This option treats breakpoints as corrupted code. 

The following menu is displayed: 

Compare memory 
Number of processors in network is : 2 

A - Check whole network for discrepancies 
B - Check this processor for discrepancies 
C - Compare memory on screen 
e - Find first error on this processor 
Q - Quit 

Type one of the options A, B, C, e, or Q. Option 'Q' returns you to the 
Monitor page. 

Checking the whole network - option A 

Option 'A' checks the whole network processor by processor and dis­
plays a summary of the discrepancies found. 

72 TDS 224 00 August 1990 



273 15.6 Monitor page commands 

If there no errors the following message is displayed: D 

Checked whole network OK 

If any errors are detected the number of errors is given along with the 
address of the first error found and the name of the processor on which 
it occurred. 

Checking a single processor - option B 

Option 'B' checks just the -current processor. In all other respects it is 
similar to option 'A'. 

Compare memory on screen - option C 

Option cC' displays the actual and expected code for for each address 
in a block of memory. Discrepancies are marked with an asterisk {'*'}. 

Memory is checked in blocks of 128 bytes. At the end of each block. 
type either 'Q' to quit, or ISPACEI to read and display the next block. 

The format of the display is similar to the following example: 

Network Code Correct Code 
'800001234 0011223344556677 7766554433221100 * 
,80000123C 0011223344556677 0011223344556677 
'800001244 0011223344556677 7766554433221100 * 

,8000012AC AABBCCDDEEFF0011 AABBCCDDEEFF0011 

Press [DOWN] to scroll memory, [SPACE] for next 
error, or Q to quit : 

Pressing ISPACEI automatically invokes option '0' - Find first 
error •••. 

Find first error - option 0 Option '0' searches the current processor's 
memory for the first occurrence of a discrepancy. If a discrepancy is 
found the display is switched to mode cC' and the memory can be 
checked and displayed as in 'Compare memory on screen'. 

72 TDS 224 00 August 1990 



274 15 idebuq - debugger 

[ID Disassemble memory 

The Disassemble command disassembles memory into transputer in­
structions. Specify an address at which to start disassembly after the 
prompt: 

Start address (#hhhhhhhh) ? 

Either press IRETURNI to accept the default address, or enter the de­
sired address. The address can be entered as a decimal number, a 
hexadecimal number preceded by 'I', or the short form '%h ... h'. 

The memory is displayed in batches of sixteen transputer instructions, 
starting with the instruction at the specified address. If the specified 
address is within an instruction, the disassembly begins at the start 
of that instruction. Where the preceding code is data ending with a 
transputer 'pfix' or 'nfix' instruction, disassembly begins at the start 
of the pfix or nfix code. 

Each instruction is displayed on a single line preceded by the address 
corresponding to the first byte of the instruction. The disassembly is a 
direct translation of memory contents into instructions; it neither inserts 
labels, nor provides symbolic operands. 

[ID Next Error 

Next Error searches forward through the network for the next processor 
which has both its error and halt-on-error flags set. Processors are 
searched in the same order as they are listed by the 'K' command, 
starting from the current processor and wrapping round. If a processor 
is found with both flags set the display is changed to the new processor 
as if the 'p' option had been used. Press ITOpl to display the source 
line which caused the error. 

If there is only one processor in the network you are informed of the 
fact. 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 275 

~ Select source file 

This command selects a specified source file and invokes symbolic 
debugging. The full name of the object file (including extension) must 
be supplied. 

This option allows breakpoints to be set in modules which have not yet 
been reached in the program's execution. (Source which has not yet 
been executed cannot be displayed using the '0' or 'G' options because 
the Iptr and Wdesc addresses are not yet known.) 

This option may also be used to browse source files rather like the 
ICHANGE FILEI symbolic function. However, unlike ICHANGE FILEI it allows 
you to use"some of the symbolic debugging operations. 

If a processor has been configured to contain different processes, this 
option first prompts for the process number of the source file: 

Select process number (0 - N) ? 

The range of numbers displayed in brackets are process numbers as­
signed by the debugger to different processes on the processor. Pro­
cess names can be determined by using the Monitor page Process 
Name (V) option before invoking the 'F' command. 

Once a valid process number has been supplied (if applicable), the 
debugger prompts for the filename of the compiled object module. The 
full object filename (including extension) must be supplied. 

Object module filename ? 

The object filename must be specified because the debugger extracts 
the source code filename from the debug information in the compiled 
object file. 

Note: At each prompt the command may be aborted by pressing 
IRETURNI with no typed input. 

72 TDS 224 00 August 1990 



276 15 idebuq - debugger 

@] Goto process 

This command locates to the source code for any process which is 
currently shown on the screen. The cursor is positioned next to the 
lptr, and permitted responses are listed on the screen as follows: 

[CURSOR] then [RETURN], or 0 to F, (l)ptr, 
(L)o, or (Q)uit 

To select the desired process use the cursor keys to skip between 
processes on the screen, or specify a value 0 to F. Press IRETURNI to 
select the process indicated by the cursor. The saved Iptr is chosen 
by typing 'I', and if currently in high priority, the interrupted low priority 
process is chosen by typing 'L'. The sixteen processes shown on the 
right hand side of the display are chosen by typing '0' to 'F'. Type 'Q', 
IFINISHI, or IREFRESHI to abort this choice. 

[B] Hex 

The Hex command displays memory in hexadecimal. Specify the start 
address after the prompt: 

Start address (#hhhhhhhh) ? 

Press IRETURNI to accept the default address, or enter the desired ad­
dress. The address can be entered as a decimal number, a hex­
adecimal number preceded by 'I', or the short form '%h ••• h'. If the 
specified start address is within a word, the start address is aligned to 
the start of that word. 

The memory is displayed as rows of words in hexadecimal format. 
Each row contains four or eight words, depending on transputer word 
length. Words are displayed in hexadecimal (four or eight hexadecimal 
digits depending on word length), most significant byte first. 

For a four byte per word processor the sequence of bytes in a single 
row would be: 

321 0 765 4 11 10 9 8 15 14 13 12 

For a two byte per word processor, the ordering would be: 

1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 277 

o Words are ordered left to right in the row starting from the lowest ad­
dress. The word specified by the start address is the top leftmost word 
of the display. 

The address at the start of each line is an absolute address displayed 
in hexadecimal format. 

IT] Inspect memory 

The Inspect command can be used to inspect the contents of an entire 
array. Specify a start address after the prompt: 

Start address (#hhhhhhhh) ? 

Either press IRETURNI to accept the default address, or enter the de­
sired address. The address can be entered as a decimal number, a 
hexadecimal number preceded by 'I', or the short form '%h ... h'. 

When a start address has been given, the following prompt is displayed: 

Typed memory dump
o - ASCII
1 - INT
2 - BYTE
3 - BOOL
4 - INT16
5 - INT32
6 - INT64
7 - REAL32
8 - REAL64
9 - CHAN 

Which type (1 - INT) ? 

Give the number corresponding to the type you wish to display, or 
press IRETURNI to accept the default type. The types correspond to 
formal occam types as defined in the 'occam 2 Reference Manua!'. 
occam equivalences of C types are listed in the following table. 

72 TDS 224 00 August 1990 



278 15 idebug - debugger 

o 

C type occam type 

int 

char, unsigned char 

short, signed short 

long, signed long 

float 

double, long double 

INT 

BYTE 

INT16 

IN'r32 

REAL32 

REAL64 

ASCII arrays are displayed in the format used by the Monitor page 
command 'ASCII'. Other types are displayed both in their normal rep­
resentation and hexadecimal format. 

The memory is displayed as sixteen rows of data. The address at the 
start of each line is an absolute address displayed as a hexadecimal 
number. The element specified by the start address is on the top row 
of the display. 

Start addresses are aligned to the nearest valid boundary for the type, 
that is: BYTE and BOOL to the nearest byte; INT16 to the nearest 
even byte; INT, INT32, INT64, REAL32, REAL64, and CHAN to the 
nearest word. 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 279 

Q] Jump Into and run program 

This command starts up a program from the Monitor page, or 
restarts a process which has encountered a breakpoint or stop point 
inserted by the debug support functions debug_assert () and 
debug_stop () . 

When starting a program the debugger converts (patches) the config­
uration external channels (those assigned to links) for each processor 
into virtual channels for use with the debugging kernel. This action is 
indicated by an activity indicator. 

When the patching is complete the debugger prompts for a command 
line for the program: 

Command line: 

This is the command line used by the C runtime library to provide the 
argc and arqv parameters to main (). 

When jumping into and resuming a program from a breakpoint, the 
following menu is displayed: 

Jump into Application 

R - Resume breakpointed process 
o - Resume all others 

(abandon breakpointed process) 
J - Jump to different location 
Q - Quit 

Which option (J,O,Q,R) ? 

When resuming from an error, the following submenu is displayed: 

Jump into Application 

° - Resume all others 
J - Jump to different location 
Q - Quit 

Which option (J,O,Q) ? 

72 TDS 224 00 August 1990 



280 15 idebug - debugger 

o The four Resume options are listed in the following table. 

Option Description 

R Restarts the process that encountered the breakpoint. 

0 Ignores the stopped process and resumes monitoring the 
network for other process activity. (When a process has 
stopped other processes continue to run until they either 
encounter a breakpoint or error, or become dependent on 
the stopped process.) 

Note: Using this option for a process stopped on a break­
point removes the process forever. 

J Restarts the process from a different location. Only use this 
option if you are confident that the program can be resumed 
from the new location; resumption from most locations will 
corrupt the program. 

Q Quits the Resume submenu. 

00 Processor names 

This command gives the processor numbers corresponding to proces­
sor names used in the configuration description. Processor numbers 
must be given when selecting specific processors for display by the 
debugger. 

Note: The debugger displays only the first 19 characters of the proces­
sor name. If this is a problem you should make names unique within 
the first 19 characters. 

72 TDS 224 00 August 1990 



281 15.6 Monitor page commands 

[h] Links 

The Links command displays the instruction pointer, workspace de­
scriptor, and priority, of the processes waiting for communication on 
the links, or for a signal on the Event pin. If no process is waiting, the 
link is described as 'Empty'. Unk connections on the processor, and 
the link from which the processor was booted are also displayed. 

The format of the display is similar to the following example: . 

Link 0 out Empty 
Link 1 out Empty 
Link 2 out Iptr: '80000256 Wdesc: '80000091 (Lo) 
Link 3 out Empty 
Link 0 in Empty 
Link 1 in Empty 
Link 2 in Iptr: #80000321 Wdesc: #80000125 (Lo) 
Link 3 in Iptr: #80000554 Wdesc: #80000170 (Hi) 
Event in Empty 

Link 0 connected to Host
Link 1 not connected
Link 2 connected to Processor 88, Link 1
Link 3 connected to Processor 1, Link 3

Booted from link 0 

72 TDS 224 00 August 1990 



282 15 idebuq - debugger 

[M] Memory map 

The Memory map command displays a memory map of the current
processor. The display includes the address ranges of on-chip RAM, 4a
program code, configuration code, workspace and vectorspace, the .,
sizes of each component in bytes rounded up to the nearest 1K bytes,
total memory usage, and the address of 'MemStart', the first free loca­
tion after the RAM reserved for the processor's own use.

Also displayed is the maximum number of processors that can be ac­
commodated by the debugger's buffer space. This will depend on the
amount of memory on the root processor, indicated to the debugger by
the host environment variable IDEBUGSIZE.

The address of 'MemStart' is the value actually found on the transputer
in the network. If this does not correspond to that expected by the
configuration description, for example if a T414 was found when a
T800 was expected, the following message is displayed:

MemStart should be : #80000070 (T800) I!!!! 

If an incorrect MemStart is detected the symbolic functions may not 
work correctly. In these circumstances you should rebuild your program 
for the correct processor types on the network before reinvoking the 
debugger. 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 283 

[ID Network dump 

The Network dump command saves the state of the transputer network 
for later analysis. If you quit the debugger without creating a network 
dump file, debugging cannot continue from the same point without re­
running the program. This is because the debugger itself overwrites 
parts of the memory on each transputer in the network. 

Note: This command cannot be used in breakpoint mode (idebug 
command line option 'B') or.when post-mortem debugging a breakpoint 
session (idebug command line option 'M'). 

Once a 'network dump file has been created, debugging can continue 
from the file, and the debugger does not need to be connected to the 
target network. 

Before the dump file is created, the debugger calculates the disk space 
required, and requests confirmation. The size of the file depends on 
how much of each processor's memory is actually used in running the 
program, and is displayed as follows: 

Create network dump file 
Number of processors to dump 2 
File size excluding Freespace : 112604 bytes 
File size including Freespace : 2097308 bytes 

Continue with network dump (Y,N) ? 

To continue with the network dump, type 'V'. 

Vou will them be prompted whether to include Freespace in the dump 
file (this is not normally required for configured programs). 

Do you wish to include Freespace (Y,N) ? 

Type 'V' or 'N' as appropriate and specify a filename after the prompt: 

Filename ("network.dmp", or "QUIT") ? 

Press IRETURN/ to accept the default filename, enter a filename (any 
extension will be replaced by '. dmp'), or type 'QUIT' (uppercase) to 
exit. 

72 TDS 224 00 August 1990 



284 15 idebuq - debugger 

o If the file already exists, you are warned: 

File "network.drop" already exists 
Overwrite it (Y,N) ? 

If you type 'N', you are reprompted for the filename. 

While the dump file is being written, a message is displayed at the 
terminal. For example: 

Dwnpinq network to file "network.drop"
Processor 1 (T800)
Memory to dump : 10456 bytes ...

[Q] Specify process 

This command restores symbolic debugging, either at the same source 
line, or at another location. It can be used to locate to any source line, 
whether or not a process is waiting or executing there. To ensure the 
debugger locates to a valid process, it is better to use the 'G' command. 

To return to symbolic debugging, the debugger requires values for 
Iptr and Wdesc. Specify Iptr after the prompt: 

Iptr (#hhhhhhhh) ? 

The default displayed in parentheses is the last line located to on this 
processor, or the address of the last instruction executed. 

Either press IRETURNI to accept the default address, or enter the de­
sired address. The address can be entered as a decimal number, a 
hexadecimal number preceded by 'I', or the short form '%h ••• h'. 

Useful addresses can be determined using the 'R', 'T', and 'L' com­
mands to display specific addresses. The same addresses can be 
listed by using the 'G' command. The value of the saved low priority 
Iptr can also be used. 

If the Iptr is not within the program body, the debugger indicates the 
type of code to which it corresponds. 

After pressing any key you are returned to the Monitor page. 

72 TDS 224 00 August 1990 



285 15.6 Monitor page commands 

D If the Iptr is valid. you are prompted for the Wdesc: 

Wdesc (#hhhhhhhh) ? 

If a displayed Iptr was specified. its corresponding Wdesc is offered 
as a default. Press IRETURNI to accept the default, or specify a value 
in the same format as Iptr. 

If no symbolic features other than a single 'locate' are required. then 
Wdesc is not needed and the default can be accepted. 

If an invalid Wdesc is given. most of the symbolic features will not 
work. or will display incorrect values. However, you can still determine 
the values of scalar constants and some other symbols. 

Any attempt to inspect or modify variables or channels, or to backtrace, 
will give one of the following messages: 

Wdesc is invalid - Cannot backtrace 

Wdesc is invalid Cannot Inspect variables 

Wdesc is invalid - Cannot Modify variables 

If the location to be displayed is in a library for which the source is not 
available and the debugger cannot locate the call to that library, the 
following message is displayed: 

Wdesc is invalid - Cannot auto backtrace out 
of library 

Once the Iptr and Wdesc have been supplied. the debugger displays 
the source code at the required location, and the full range of symbolic 
features are available. 

72 TDS 224 00 August 1990 



286 15 idebuq - debugger 

[fJ Change processor 

This command changes to a different processor in the network. Specify 
the processor number after the prompt: 

New processor number ? 

To determine the mapping between the processor number and the 
processor name used in the configuration file, use the 'K' command. 
If the processor exists the display is changed to provide information 
about the specified processor. If the new processor's word length is 
different from that of the previous processor, the start address is reset 
to the bottom of memory. 

If the processor is not in the configuration, the following message is 
displayed: 

Error : That processor number does not 
exist 

To abort the command press IRETURNI with no input. 

If there is only one processor in the network you are informed of the 
fact. 

The cursor keys ( 8 and B ) can be used to scroll the list of pro­
cessors. 8 changes to the preceding processor and B to the next 
processor in the sequence. The processor sequence is the same as 
that displayed by the 'K' command. 

[gJ Quit 

This command quits the debugger and returns to the operating system. 
Once quit, the debugger cannot be used to debug the same program 
without reloading the program unless a 'network dump' file has been 
created. This is because using the debugger over'Writes some of the 
contents of the network. 

72 TDS 224 00 August 1990 



15.6 Monitor page commands 287 

[ID Run queues 

This command displays Iptrs and Wdescs for processes waiting on 
the processor's active process queues. If both high and low priority 
front process queues are empty, the following message is displayed: 

Both process queues are empty 

If neither queue is empty, you are required to specify the queue: 

High or low priority process queue? (H/L) 

Type 'H' or 'L' as required. If only one queue is empty, the debugger 
displays the non-empty queue. 

The screen display is paged. To view other processes scroll the dis­
play using the ICURSOR upl, ICURSOR DOWNI, ILlNE upl, ILlNE DOWNI, 

IPAGE upl, and IPAGE DOWNI keys. 

Note: In breakpoint mode this command may provide incorrect results 
because the queues may include processes which form the debugging 
kernel. An asterisk next to the queue heading indicates where this is 
so. 

~ Show debugging messages 

This command is used to enable and disable debugging messages and 
prompts. It invokes the following submenu: 

Show Messages Menu 

B 
D 
E 
Q 

Show message for breakpoints 
Show debug messages 
Show message for errors 
Quit 

ON 
ON 
ON 

Which option (B,D,E,Q) ? 

Options Band E control the display of prompts when a breakpoint or 
error (via the library functions debug_assert and debug_stop) is 
encountered. Disabling these options ensures that the debugger is 
enU~red on a breakpoint or error without requesting confirmation. 

Option D controls the display of debugging messages inserted with the 
debug-message library function. 

72 TDS 224 00 August 1990 



288 15 idebuq - debugger 

[!] Timer queues 

This command displays Iptrs, Wdescs, and wake-up times for pro­
cesses waiting on the processor's timer queues. Prompts and displays 
are similar to those for the Run queue command. 

a 
• 

ITOP I Last Instruction 

This command is used to display the source corresponding to the last 
instruction to be executed on the current processor. It is the same as 
typing 'G', then 'I'. 

[ill Update registers 

This command updates the clock and status display (e.g. runtime 
queues) for the current processor. It enables you to monitor the activ­
ity of other processes while one process is stopped at a breakpoint or 
error. 

~ Process names 

This command gives the process numbers corresponding process 
names used in the configuration description. Process numbers must be 
given when selecting specific processes for display by the debugger. 

.. 
• 

Note: The debugger displays only the first 19 characters of the process 
name. If this is a problem you should make names unique within the 
first 19 characters. 

~ Write to memory 

This command writes a value to a specified address. Values must be 
specified in the current type (the type used in the previous Monitor page 
Inspect command), or INT if the type was a CHAN or the Disassemble 
or Hex options have been used after an Inspect. 

00 Exit 

This command returns to symbolic mode and locates to the current 
address. 

72 TDS 224 00 August 1990 



289 15.6 Monitor page commands 

[!J Enter post-mortem debugging 

This command allows the debugger to be switched into post-mortem 
mode when the program crashes (a process sets the error flag on 
any processor). Halted processors prevent the breakpoint debugger 
from accessing the network correctly and debugging must continue in 
post-mortem mode. 

If the program has not crashed, the debugger prompts for confirmation: 

The program has not crashed - are you sure (Y,N) ? 

If you have disabled checking of the subsystem error status (the com­
mand line'S' option), you are prompted with: 

Unable to detect if the program has crashed ­
are you sure (Y,N) ? 

Typing 'V' continues the operation, typing 'N' aborts it. 

This command performs the same action as quitting the debugger when 
in breakpoint mode and restarting it using the 'M' command line option 
instead of 'B'. 

Note: State information for a process that has stopped (on breakpoint 
or error) will be lost when switching from breakpoint to post-mortem 
mode. If the information is important you should make a note of it 
before switching modes. 

72 TDS 224 00 August 1990 



290 15 idebuq - debugger 

15.6.5 Symbolic-type commands 

IRELOCATE I 

IRETRACE I 

This command locates to the last instruction executed on the 
current processor. 

This command returns to symbolic mode and performs a sym­
bolic IRELOCATEI. It cannot be used if the processor has been 
changed at the Monitor page. 

This command returns to symbolic mode and performs a sym­
bolic IRETRACE~ It cannot be used if the processor has been 
changed at the Monitor page. . 

These commands display a summary of the commands avail­
able at the Monitor page. 

IREFRESHI This command refreshes the screen. 

15.7 Symbolic functions 

Symbolic debugging allows high level language programs to be debugged from 
the identifiers used in the source code. Symbolic identifiers are the names given 
in the program to variables, constants, channels, and functions. 

Symbolic functions are invoked using keyboard function keys. Keyboard layouts 
for common terminal types can be found in the rear of the Delivery Manual that 
accompanies the release. 

Symbolic debugging functions are listed in Table 15.3. Functions only available 
in breakpoint mode are marked with a double dagger (t). 

72 TDS 224 00 August 1990 



15.7 Symbolic functions 291 

Function Description 

UNSPECTI Display the value and type of a source code symbol. 

ICHANNELI Locate to the process waiting on a channel. 

ITOpl Locate back to the error, or last source code location. 

IRETRACEt Retrace the last IBACKTRACEt etc. 

IRELOCATEI Locate back to the last location line. 

UNFOI Display extra process information. 

IMODIFYI * Change the value of a variable in memory. 

IRESUMEt * Resume the application program from the breakpoint. 

IMONITORl Change to the Monitor page. 

IBACKTRACEt Locate to the procedure or function call. 

IHELPI Display a summary of utility key uses. 

IGET ADDREssl Display the location of a source line in memory. 

IGOTO L1NEI Go to a specific line in the file. 

ISEARCHI Search for a specified string. 

IENTER FILEt Change to an included file. 

IEXIT FILEt Change to an enclosing file. 

ICHANGE FILEI Display a different source file. 

ITOP OF FILEt Go to the first line in the file. 

IsonOM OF FILEt Go to the last line in the file. 

ITOGGLE BREAKt * Set or clear a break on the current line. 

UNTERRUPTI * Force the debugger into the Monitor page without stop­
ping the program. 

ICONTINUE FROMI * Resume the application program from the current line. 

ITOGGLE HEXI Enables/disables Hex-oriented display of constants and 
variables. 

IFINISHI Quit the debugger. 

*= Breakpoint mode only 

Table 15.3 Debugger symbolic functions 

72 TDS 22400 August 1990 



292 15 idebuq - debugger 

IINSPECT/ This function allows you to determine the value and type of 
variables and constants, and provides useful information about 
other source code symbols such as functions and channels. 
To inspect a symbol, place the cursor on the name and 
press !lNSPECTI, or press !lNSPECTI and give a symbol name. 
Spaces and the case of the letters in the name are significant. 
Specifying an empty expression aborts the HNSPECTI operation. 

The symbol must be in scope with the line to which the debugger 
last located, which may not be the same as the current cursor 
position. 

Expressions for variables can incorporate numbers, pointers, 
and any in-scope identifiers. For pointers to functions an ad­
dress is displayed which can be used to locate to the source 
code using the Monitor page '0' command. For semaphores, 
pointers to processes waiting on the semaphore can be deter­
mined from the display of its data structure. For enumerated 
types their symbolic names are also displayed. 

Details of the display formats for all variable types are given in 
section 15.9. 

Expression language 

UNSPECTI supports an expression language for variables which 
follows C syntax but with some limitations and extensions (for 
example, subranging of arrays is supported). The IMODIFYI com­
mand also supports the same language. 

Details of the expression language can be found in section 15.8. 

ICHANNEL I This function jumps down a channel if a process is waiting at 
the other end. Use this key as you would /lNSPECTI, but when 
positioned on a channel. The debugger locates to the source line 
corresponding to the waiting process from where the process can 
be debugged. This function is invalid if the cursor is not on a 
channel or the name specified is not a channel. 

The /CHANNEL/ function allows you to 'jump' to other processors 
along transputer links. If a process running on another processor 
is waiting for communication on a channel the debugger 'jumps 
down' the link and automatically changes to that processor. 

72 TDS 224 00 August 1990 



15.7 Symbolic functions 293 

IRETRACE! 

IRELOCATE I 

ISEARCHI 

IMONITOR! 

IFINISHI 

IBACKTRACE! 

72 TDS 224 00 

This function locates back to the line containing the original 
error, or to the line located to by the previous invocation of 
the Monitor page 'G' or '0' command. 

This function locates back to the previous location. Re­
peated use of IRETRACEI reverses the effect of successive 
ISACKTRACEI, ICHANNELI, and ITOpl operations. 

This function locates back to the last point located to by 
the debugger. For example, it can be used to return to the 
original source line of an error after browsing the code with 
the cursor and scroll keys. 

This function disptays the Iptr and Wdesc of the last lo­
cation, the process name and priority, and the processor 
number. 

If the Wdesc is not in the defined region for a process the 
message: Undefined process is displayed in place of 
the process name. For single processor programs that have 
not been configured there is no defined region and the mes­
sage: Stack area unknown is displayed to reflect this. 

If a Wdesc has not been supplied, it is given as 'invalid'. 

This function searches forwards in the source file for a spe­
cific string. Either specify a search string or press IRETURNI 
to accept the default, which is the last string specified. 

This function displays a brief summary of the debugger sym­
bolic function keys. 

This function recalls ~he Monitor page environment. 

This function quits the debugger. The Monitor page 'Q' op­
tion has the same effect. 

This function locates to the line where a procedure or func­
tion was called. If the debugger is already located in the 
program's main procedure, no backtrace is possible and 
the following message is displayed: 

Error: Cannot backtrace from here 

August 1990 



294 15 idebug - debugger 

IGET ADDRESS I This function displays the address of the transputer 
code which was compiled for the source line where 
the cursor is currently placed. 

ICHANGE FILE I This function opens a different source file for reading 
only. No symbolic functions are available. unlike the 
Monitor page 'F' option. 

ITOGGLE HEXI This function displays Hex values of C variables as 
well as their decimal values. The default is to display 
integral types in decimal format only. 

IINTERRUPTI This function forces the debugger to enter the Monitor 
page without stopping the program. 

Note: This command does not operate if there are 
keystrokes waiting before it in the keyboard buffers. It 
may also fail if the application program is waiting for 
input from the keyboard. 

IENTER FILE I Enters an included file. Position the cursor on the rel­
evant #include directive and press IENTER FILEI. 

IEXIT FILE I Exits from an open included file. 

IGOTO LINE I This furction allows you to change to a particular line 
in the source. Specify a line number. or type 0 (zero) 
to abort the operation. 

ITOP OF FILE I Moves to the start of the file. 

IBOTTOM OF FILE I Moves to the end of the file. 

72 TDS 224 00 August 1990 



295 15.7 Symbolic functions 

15.7.1 Breakpoint functions 

'TOGGLE BREAKI This function toggles a breakpoint on the source line 
indicated by the cursor and provides information on 
the breakpoint number (as used by the Monitor page 
IB' command), whether it was set or cleared, and the 
line number it is on. 

When the source line the cursor is on produces no 
associated object code the debugger displays an ex­
clamation mark « ! » after the line number to indicate 
that the breakpoint has been toggled on a different line 
to the one the cursor is on (as shown at the bottom of 
the display). 

'RESUME I This function restarts the program from the breakpoint. 
(To restart from an error use ICONTINUE FROM!). 

'CONTINUE FROM' This function restarts the program from the line indi­
cated by the cursor. ICONTINUE FROM! should only be 
used to bypass an erroneous source line. The result 
of continuing from other points in the code may be un­
predictable if there are intervening stack adjustments. 

,MODIFY' This function changes the value of a variable in trans­
puter memory. Like !INSPECT! this function accepts ex­
pressions involving any symbol in scope. To modify 
a variable place the cursor on the name and press 
IMODIFY!. The debugger then prompts for the destina­
tion followed by the source, which can both be given as 
expressions. The destination expression is the variable 
or constant you wish to change; the source expression 
is the new value that will be assigned. Specifying an 
empty expression aborts the IMODIFY! operation. 

Variables are specified using the same expression lan­
guage that is used by !lNSPECTL The language uses the 
syntax of C but with some limitations. A description of 
the language can be found in section 15.8. 

72 TDS 224 00 August 1990 



296 15 idebug - debugger 

15.8 Expression language for UNSPECTI and IMODIFyl 

The expression language for source code symbols (variables. constants. and
channels) follows the syntax of C with some minor modifications.

Limitations and extensions to C syntax are described in the following sections.

15.8.1 C syntax not supported 

The following table summarises aspects of C syntax not supported in the ex­
pression language. 

Area of limitation Example of limitation 

Casting to pointer types (char *) ptr 

Address operator & returns int 
rather than a pointer to the type 

&baz 

sqrt (x) 

"a string" 

Calling of functions 

Input of strings 

Input of initialiser lists { 1, 2, 3 } 

'?? (' 

x = y 

a? b: c 

Trigraph sequences 

Bit field modification 

Modification using assignment 

Conditional operator 

15.8.2 Extensions to C syntax 

The language supports the specification of array subranges for arithmetic data 
types. Subranges are specified as two array bounds separated by a semicolon. 
For example: foo [2; 4] displays the values of elements foo [2]. foo [3 ] 
and foo [4]. 

Note: For arrays and structures the information displayed will normally overwrite 
part of the screen display. Press any key when prompted to restore the display. 

15.8.3 Editing keys 

The following editing functions are available for on-screen editing of expressions: 

72 TDS 224 00 August 1990 



297 15.8 Expression language for UNSPECTI and [MOOiE7J 

Key Effect 

ISTART OF L1NEI Move the cursor to the beginning of the expression. 

lEND OF L1NEI Move the cursor to the end of the expression. 

IDELETE L1NEI Delete the expression. 

El Move the cursor left one character. 

B Move the cursor right one character. 

IT] Replace the current expression with the expression 
used in the previous IINSPECTI or IMODIFYI. 

IDELETEI Delete the character to the left of the cursor. 

IRETURNI Enter the expression for evaluation. 

Note: ISTART OF L1NEI, lEND OF L1NEI, IDELETE L1NEI, and IDELETEI are mapped 
by the ITERM file to specific keys on the keyboard. Details of the key mappings 
on your terminal can be found in the Delivery Manual that accompanies the 
release. 

15.8.4 Types 

C types are interpreted and displayed by the debugger as follows: 

Name Member types 

Character 

Floating 

Basic 

Integral 

Arithmetic 

Scalar 

Derived 

char,signed char,unsigned char 
float, double, long double 

Character, signed integer, 
unsigned integer, Floating 

Character, signed integer, 
unsigned integer,enum 

Integral, Floating 

Arithmetic, Pointer 

Array, Function, Pointer, struct, union 

Type compatibility when using IMODIFYI 

Source and destination expressions must be type compatible according to the 
rules of C. Scalar types are cast automatically into other scalar types but non­
scalar expressions must be strictly compatible. 

Type conversions, where required, are performed according to normal C promo­

72 TDS 224 00 August 1990 



298 15 idebuq - debugger 

tion rules. 

The following examples illustrate the rules governing type compatibility. 

Given the following declarations: 

int two d array [2] [10];
int one-d-array[10];
int foo; ­
char bar;

the following modifications are permitted: 

Soume: one_d_array (array of 10 integers)
Destination: two_d_array [1] (row of 10 integers)

Soume: foo
Destination: bar

Soume: two_d_array [1] [2] (single element)
Destination: bar (single integer)

The following modification is not permitted: 

Source: two_d_array [1] (row of 10 integers)
Destination: foo (single integer)

15.9 Display formats for source code symbols 

When displaying an object, idebug (where possible) will also display type in­
formation for an object (e.g. unsigned char). 

15.9.1 Warnings 

When evaluating an expression, checking is performed which may lead to warn­
ing messages being produced (eg. overflow in arithmetic operation). Such warn­
ings are intended to highlight potential problems and to ensure that a user un­
derstands any action idebug is taking. 

15.9.2 ITOGGLE HEXI key 

This key enables Hex Integer Print to be toggled. 

72 TDS 224 00 August 1990 



15.9 Display formats for source code symbols 299 

tt idebug attempts to display integral types in the format it believes is most ap­
propriate. 

This means that by default, integer values (including enumerated types) are dis­
played in decimal, addresses are displayed in Hex and decimal, and characters 
are printed in decimal along with the corresponding character constant. By use 
of ITOGGLE HEXI, the default behaviour may be overridden to cause idebuq to 
print in Hex and decimal for integral types, and in decimal with the corresponding 
Hex character constant for characters. 

15.9.3 Notation 

In the following descriptions, the following notation is used: 

ddd indicates a (possibly signed) decimal value 
, c' indicates a character 

OxHBH indicates a hexadecimal value 

, \BB' indicates a hexadecimal character 

fff indicates a floating point number of the form: 
ddd.ddd or ddd.dddEddd 

type indicates the type of the object 

indicates a character string in an array 

indicates a character string of unknown length which is termi­
nated by a null character (which is not shown) 

{ } indicates a list 

{ } ... indicates a character list of unknown length which is terminated 
by a null character (which is shown) 

< > indicates the contents of a basic or channel object when a pointer 
points to it (except when the object is volatile) 

( ) provides extra information about an object 

15.9.4 Basic Types 

Display formats for basic C types are given in the Table 15.4. Displays are given 
in normal decimal format and in Hex format (invoked by ITOGGLE HEXI). 

15.9.5 Enumerated types 

Variables of an enumerated type are displayed as their integer value (in exactly 
the same manner as an int) followed by the name of the enumeration and 

72 TDS 224 00 August 1990 



300 15 idebug- - debugger 

Type Hex Integer Print Off Hex Integer Print On 

char ddd (' c') type ddd (' \xHH ') type 

short ddd type OxHBH (ddd) type 

int ddd type OxHBH (ddd) type 

long­ ddd type OxHHH (ddd) type 

float fff float fff float 

double fff double fff double 

long- double fff double fff double 

Table 15.4 Display formats - basic C types 

the enumeration constant name for· the value. If there are multiple enumerated 
constants that share the same value. a list is formed containing all of the enumer­
ation constant names. invalid enum constant is used to indicate when 
a value is not a member of an enumerated type. 

integer ( enum-tag-name: enum-const-name) 
integer (enum-tag-name: {enum-const-name, ...}) 
integer ( enum-tag-name : invalid enum constant) 

15.9.6 Pointers 

Pointers are displayed in one of the following ways: 

OxHHH (null pointer)
OxBHH (pointer to const volatile)
OxHHH (pointer to volatile)
OxHHH (channel pointer to link)
OxHHH (channel pointer)
OxHHH * (mis-aliqned pointer)
OxHHH < basic or channel object >
OxHHH (pointer)

15.9.7 Function Pointers 

If the function pointed to is defined in the current module the name of the function 
is displayed. 

OxHHH (function pointer to "functionname ()") 
OxHHH (cannot find corresponding function) 

72 TDS 224 00 August 1990 



301 15.9 Display formats for source code symbols 

15.9.8 Structs 

In order to display structures in a readable manner, members which are derived 
types are not always displayed in as much detail as when the member occurs 
on its own. To obtain more detail select the member of the structure explicitly. 

identifier = { 

memberl object 
member2 object 
member3 = object 

15.9.9 Unions 

Unions are displayed in the same manner as structs except that a question mark 
? appears to the left of each member to indicate that only one member of the 
union should be selected. 

identifier = { 

? memberl object 
? member2 object 
? member3 object 
? 
? 

15.9.10 Addressof (&) operator 

The result of the addressof & operator is automatically printed as a Hex and 
integer value regardless of the setting of ITOGGLE HEXI. 

Note: that the result type of addressof & is an int rather than a pointer to the 
type used. 

&identifier = OxHHH (ddd) 

15.9.11 Arrays 

When displaying arrays idebuq prints the valid range of each dimension (if 
known) in addition to any type information and the contents of the array. 

72 TDS 224 00 August 1990 



302 15 idebuq - debugger 

For single dimension arrays containing arithmetic types each member of the 
array is displayed regardless of the size of the array. For large arrays idebuq 
requests confirmation to continue during the display. 

For large arrays where the full display may be unwieldy use array subranging to 
display the area of interest. 

identifier = array [ 0 .. M] of list of arithmetic type
identifier = array [0 .. M] of type
identifier = array [0 .. M] [0 .. N] of type

15.9.12 Channels 

Channels are displayed to show information on the process that is waiting at the 
other end (or Empty if no is process waiting). 

identifier = Channel <Iptr: address, Wdesc: address (Lo) > 
identifier = Channel <Iptr: address, Wdesc: address (Hi) > 
identifier = Channel <Empty> 

An asterisk (*) is used to denote when an Iptr or Wdesc value is not within 
the defined memory map range of the program (Le. the value is invalid). 

identifier = Channel <Iptr: address *, Wdesc: address *> e 

72 TDS 224 00 August 1990 



303 15.10 Example displays 

15.10 Example displays 

Consider the following source code segment compiled for a 32 bit transputer (for 
a 16 bit transputer integers in Hex format and addresses would contain 4 Hex 
digits instead of 8): 

enum colour red = 1 }; 
struct Many { 

int a; 
double b; 

} ; 

enum colour shoe = red;
struct Many many { -42, 2.0 } ;

int answer = 42;
char key = 'A' ;
char string [] "bye";
char* ptr = string;
short iarray [] = { 1, 2, 3, 4 j ;

72 TDS 224 00 August 1990 



304 15 idebuq - debugger 

Expression Display (Hex Integer Print Off) 

answer answer = 42 int 

'answer = Ox801FFF2C (-2145386708) int 

key = 65 (' A' ) unsigned char 

string = array [0 .. 3] of unsigned char 
"bye\O" 

ptr = Ox801FFF18 < "bye" ... 
unsigned char > 
iarray[li2] = subarray of short {2, 3} 

shoe = 1 int (colour: red) 

red = 1 int (enum constant) 

many = { 
a = -42 int 
b = 2.0 double 

} 

'answer 

key 

string 

ptr 

iarray[li 2 ] 

shoe 

red 

many 

Expression Display (Hex Integer Print On) 

answer answer = OxOOOOO02A (42) int 

'answer = Ox801FFF2C (-2145386708) int 

key = 65 (' \x41' ) unsigned char 

string = array [0 .. 3] of unsigned char 

{\x62, \x79, \x65, \xOO} 

ptr = Ox801FFF18 < {\x62, \x79, \x65, 
\xOO} ... unsigned char > 

iarray[li2] = subarray of short {OxOO02, 
OxOO03} 

shoe = OxOOOOOO01 (1) int (colour: red) 

red = OxOOOOOO01 (1) int (enum constant) 

many = { 
a = OxFFFFFFD6 (-42) int 
b = 2.0 double 

} 

'answer 

key 

string 

ptr 

iarray[li2] 

shoe 

red 

many 

72 TDS 224 00 August 1990 



305 15.11 Error messages 

15.11 Error messages 

This section lists errors generated by idebug. Other messages not in this list 
may be generated by corrupt files and by files not created by the toolset. 

15.11.1 Out of memory errors 

If the debugger runs out of memory when trying to read in information and the 
offending item cannot be reduced in size, the amount of memory available to 
the debugger may be increased by increasing the size of the memory on the 
transputer the debugger is running on and updating IDEBUGSIZE accordingly. 

15.11.2 If the debugger hangs 

If the debugger starts up but then hangs with the message: 

Loading network ... 

either of the following errors may have occurred: 

1 The network connectivity is not correctly described in the configuration 
description, for example, a link is not connected to a processor, or the 
type of a processor has been specified incorrectly. 

Network connectivity on a board can be checked by running a check 
or worm program, such as the ispy program supplied with the board 
support software for INMOS iq systems products. These products are 
available separately from your local INMOS distributor. 

2 You have set IDEBUGSIZE to be larger than the memory on the pro­
cessor where the debugger is running. 

Change IDEBUGSIZE to reflect the correct memory size. 

15.11.3 Error message list 

"filename" not complied with full symbolic debug Information 

The object code module does not contain sufficient debug information 
for the debugger to locate to its corresponding source code (Le. it con­
tains minimal debug information). Recompile the module and rebuild the 
program in order to debug it symbolically. 

72 TDS 224 00 August 1990 



306 15 idebuq - debugger 

Already located • No process Is waiting at the other end of this link 

An attempt to jump down a hard channel (link) has failed because"there 
is no process waiting at the other end. 

Attempted read outside Parameter block 
Attempted write outside Parameter block 

The configuration system has become corrupted. Check hardware using 
a memory check program such as ispy. (The ispy program is supplied 
as part of the board support software for INMOS iq systems products. 
These products are available separately from your local INMOS distribu­
tor.) 

Can only specify a transputer type If bootable Is for a class 

You have tried to specify a processor type when the bootable file is 
already for a specific processor type. 

Cannot create network dump • reason 

Creation of a network dump file is not permitted on a program that is, or 
has been, breakpointed. 

reason can be either of the following: 

1 Not for breakpoint postmortem - invalid when post-mortem 
debugging a breakpoint debug session. 

2 Not while breakpointing - invalid in breakpoint mode. 

Cannot find this line's location 

Either of the following has occurred: 

1 You have moved the cursor beyond the end of the current source 
file for which there is no executable code. 

2 The compiler has optimised the executable code out. 

Cannot locate beyond Freespace area 

The address specified is not within the memory map range of the pro­
cessor. 

72 TDS 224 00 August 1990 



307 15.11 Error messages 

Cannot locate to area (Iptr: #address) 

The address specified is not within the code area for the program on 
the processor. area can be any of the following: 

ReseNedt~nspu~rmemo~

Runtime kernel
Configuration code area
Vectorspace area
Static area
Heap area
Freespace area

Cannot open "filename" 

Either the file does not exist or it is not on the ISEARCB path (note that 
by default this includes the current directory). The ilist tool can be 
used to confirm this. 

Cannot read processor number (Txxx) 

The debugger cannot communicate with that processor. Any of the fol­
lowing errors may have occurred: 

1) The root processor's core dump has been incorrectly specified. 

2) The debugger has failed to analyse the network correctly. Either 
you have failed to specify the 'A' option or the system control 
signals are wired incorrectly. 

3) The network does not match that specified in the configuration 
file. Check network connectivity using a check program such as 
ispy. (The ispy program is supplied as part of the board sup­
port software for INMOS iq systems products. These products 
are available separately from your local INMOS distributor.) 

Cannot run application - the program has crashed ! 

Use the 'y' (Enter post-mortem debugging) command to post-mortem 
debug the (now defunct) breakpoint session. 

Channel Is Invalid 

The channel does not point to a known process executing on the pro­
cessor. 

72 TDS 224 00 August 1990 



308 15 idebug - debugger 

Debug Info too large (reason) 

The debugging information for a particular compilation module is too large 
for the debugger. Either reduce the size of the offending module or 
increase the size of memory on the processor where the debugger is 
running (see section 15.11.1 on how to overcome this). 

_ 
., 

reason can be any of the following: 

Ix.tags Is full 
ws.array Is full 
name table is full 

Debugger Incompatible configuration file "ti/ename" 

You have configured your program without specifying the debugger com­
patible option ('G' option) to the configurer (this option disables code 
segment re-ordering). 

Debugger Incompatible ROM configuration file "ti/ename" 

You have configured your program to be ROM-Ioadable. The debugger 
can only debug bootable programs. 

Duplicate debugger modes: message 

Mutually incompatible options have been specified on the command line. 

enum constant name Is not In scope 

The identifier name exists in the module, but is not in scope from where 
the debugger last located to. In order to inspect the identifier you must 
locate to a new position where the symbol is in scope. 

File has Changed since configuration "ti/ename" 

You should rebuild the program again. 

File was not Included 

The #include line on which you are trying to use IENTER FILEI was 
not included by the compiler (probably as a result of a preprocessor 
conditional action). 

72 TDS 224 00 August 1990 



309 15.11 Error messages 

FILE IS TOO BIG • truncated 

The debugger buffer capacity has been exceeded. The buffer contains 
as much of the file as could be read before the capacity was exceeded 
(see section 15.11.1 on how to overcome this). 

Illegal virtual channel address 

The channel has been (possibly incorrectly) tagged as virtual but does 
not point to a valid virtual channel. This is caused by channel pointers 
that have either not been initialised or have become corrupted. 

Interactive debugging has disabled 

The module has been linked with the linker ay' option to disable break­
point (interactive) debugging. Rebuild your program without disabling 
interactive debugging and retry. 

ITERM error on line /inenumber, message 

The debugger has detected a syntax error in the ITERM file. message 
describes the error. 

Llnker complains that any of the following debug support functions are 
not found: 

debug.-assert () 
debugJnessage () 
debug_stop () 

You have omitted the #include <mise .h> directive required for the 
debug support functions. 

No need to assert SUbsystem Analyse 

The 'A' option is not required when you specify options 'N' or '0'. 

Not a (compatible) bootable file "ti/ename", 

The file is either a non-bootable file or a pre-product release bootable 
file. Use ilist to determine the contents of the file if in doubt. 

Not enough free memory for the debugger 

You have either not set the environment variable IDEBUGSIZE or you 

72 TDS 224 00 August 1990 



310 15 idebuq - debugger 

have set it to be too small (it should be > 400K). 

Change the variable to reflect the memory size of the root processor. 

Not on a valid 'Include line 

You may only use IENTER FILEI when the cursor is on a line with a 
'include directive. 

Only debugging tools and cursor keys are available 

You have pressed a key which is not defined. 

Option must be followed by a link number (0 • 3) 

Options 'B', 'M', and 'T' require a link number in the range 0 - 3. 

Option must be followed by a valid Processor type (eg. T425) 

The processor type supplied is not recognised by the debugger. 

(Probe Go) : Processor number· Cannot contact 

The debugger is unable to communicate with processor number. The 
processor type specified in the configuration (or to the debugger via the 
'c' option) does not match that found. Check the network using a pro­
gram such as ispy in order to determine the correct processor type. 
(The ispy program is supplied as part of the board support software for 
INMOS iq systems products. These products are available separately 
from your local INMOS distributor.) 

(Probe Go) : Processor number· Invalid processor type 

The processor type specified in the configuration (or to the debugger via 
the 'c' option) does not match that found. Check the network using a 
program such as ispy in order to determine the correct processor type. 

(Probe Resume) : Processor number· Invalid Breakpoint 

The debugger has stopped at a breakpoint which it did not place in the 
code. If you wish to continue executing the program set a breakpoint at 
the same address and retry the command. 

Processor number: Insufficient memory, require at least number bytes 

The memory requirement of the processor as specified to the configurer, 

72 TDS 224 00 August 1990 



311 15.11 Error messages 

collector, or in IBOARDSIZE (as appropriate) is too small. (Note that the 
value displayed may include memory for some configuration code that is 
reclaimed when program starts executing). 

This may also be caused by the debugging Runtime kernel using an extra 
10-14K of memory. 

Processor type must be a 32 bit processor (eg. T425) 

You must specify a 32 bit processor type because processor classes are 
for 32 bit processors only. 

Processor type must be not abbreviated 

You must specify specific processor types rather than abbreviated types 
(e.g. T425 rather than T5) because some abbreviated types cover more 
than one specific type. 

READ ERROR • truncated 

The debugger could not read all of the file. The buffer contains as much 
of the file as could be read (see section 15.11.1 on how to overcome 
this). 

Runtlme kernel Is not present (or has been overwritten) 

Either the runtime kernel has been corrupted or you are trying to post­
mortem a breakpoint session that didn't occur. 

There Is no enclosing #Include 

You have attempted to use IEXIT FILEI when not located in a nested include 
file. 

There are no processes waiting at either end of this link 

An attempt to jump down a hard channel (link) has failed because there 
are no processes waiting at either end. 

This transputer link Is connected to the host 

The link specified in the 'B', 'M', and 'T' option is the communication link 
from the debugger to the host and is not connected to the network. 

72 TDS 224 00 August 1990 



312 15 idebuq - debugger 

Too many processes used at configuration level (number) 

The debugger requires more memory in order to operate on this many 
processes (see section 15.11.1 on how to overcome this). 

Too many processors - There Is only enough room for (number) 

The debugger requires more memory in order to operate on this many 
processors (see section 15.11.1 on how to overcome this). 

Unable to find file line entry In debug Info 

This error may occur when trying to ENTER an include file, if conditional 
preprocessor directives are present (e.g. #ifdef) which cause certain 
lines to be excluded from the compilation, and the debugger is not aware 
of this. 

Unable to read environment variable ITERM 

There is no translation for the ITERM environment variable which defines 
the screen and keyboard format. 

Unable to toggle a breakpoint on this line 

The breakpoint cannot be set or cleared on this source line. Either: 

1 The current file contains no executable code or 

2 Executable code is contained in an include file and the debugger 
cannot determine whether you mean to toggle the breakpoint in 
that file or in the current file. 

Move to the line where you really want to toggle the breakpoint and retry 
the command. 

Unknown core dump format filename 

The network dump file is in the wrong format or the wrong file has spec­
ified. 

variable name Is not in scope 

The identifier name exists in the module, but is not in scope from where 
the debugger last located to. In order to inspect the identifier you must 
locate to a new position where the symbol is in scope. 

72 TDS 224 00 August 1990 



313 15.11 Error messages 

Wdesc Is Invalid • message 

The Wdeac supplied is invalid: this may be deliberate because it is 
unknown. If you supplied it from the Monitor page environment, retry the 
command with a valid Wdesc. 

message can be one of: 

cannot Inspect variables 
cannot modify variables 
cannot backtrace 
cannot auto backtrace out of library 

Wrong number of processors In network dump file fllename 

The number of processors does not correspond to the current program. 
The wrong network dump file may have been specified. 

You cannot backtrace from here 

The procedure you are trying to backtrace was called by the program's 
bootstrap routine which cannot be accessed by the debugger. 

You have changed file, so you can't use this key 

There are certain symbolic features that you may not do if you have 
changed file. Either press IRELOCATEI before retrying the command or 
relocate to the file from the Monitor page using the 'F' (Select file) com­
mand. 

You must specify a filename 

The command line syntax requires a filename. 

Yo'u must specify the application boardslze In IBOARDSIZE to be <= 
#10000 

On a T2 the maximum memory size is 64K (#10000). 

72 TDS 224 00 August 1990 



314 15 idebug - debugger 

72 TDS 224 00 August 1990 



16 idump - memory 
dumper 

This chapter describes the memory dumper tool idump that dumps the contents 
of the root processor's memory to disk. It is used to enable the debugging of 
code running on the root transputer. 

16.1 Introduction 

The memory dumper allows programs that use the root transputer to be de­
bugged in the normal way using the debugger tool idebuq. It is required be­
cause idebuq runs on the root tranSputer and overwrites all code and code in 
its memory. 

idump saves the contents of the root transputer to a disk file in a format that can 
be read by the debugger. Information contained in the file allows the debugger 
to analyse data in the root transputer in the same manner as other transputers 
on the network. 

When idump is invoked it calls the server with the 'SA' option so that the space 
occupied by the dumper program is saved before it is loaded onto the transputer. 

16.2 Running the memory dumper 

To invoke the idump tool, use the following command line: 

~ idump filename memorysize {startoffset length} 

where: fi/ename is the name of the dump file to be created. 

memorysize is the number of bytes, starting at the bottom of memory, to 
be written to the file. 

startoffset is an offset in bytes from the start of memory. 

length is the amount of memory in bytes, starting at startoffset, to be 
dumped in addition to memorysize. 

All parameters can be expressed in either decimal or in hexadecimal format. 
Hexadecimal numbers must be preceded by the hash # character or the dollar 
sign $. 

72 TDS 224 00 August 1990 



316 16 idwnp - memory dumper 

The memory dump file stores the contents of the transputer's registers and the
first memorysize bytes of memory. The file is given the • dmp extension. After
the dump has been performed idump remains resident on the transputer board
ready to load the debugger.

memorysize must be large enough to contain the complete program with its e.
workspace and vectorspace. If the program to be dumped uses the free memory
buffer, the whole of the transputer board's memory should be dumped.

Further portions of memory can be dumped by specifying the start of the segment 
of memory to be dumped and the number of bytes, using pairs of startoffset 
length parameters. The start address is given by startoffset and the number of 
bytes by length. 

The overall size of the memory dump file is given by the amount of memory 
saved plus around 500 bytes for the register contents. 

16.2.1 Example of use 

Assur1}ing an IBOARDSIZE of 100K: 

idump core 100000 

16.3 Error messages 

Badly formed command line 

Command line error. The command syntax requires a file name followed 
by the number of bytes of memory to dump. Check the syntax of the 
command and retry. 

Cannot open file 

File system error. The memory dump file could not be opened on the 
host system. 

Cannot write file 

File system error. The memory dump file could not be written to the host 
system. 

72 TDS 224 00 August 1990 



317 16.3 Error messages 

You must tell the server to peek the transputer 

idump has been invoked by calling the host file server with the incorrect 
option. This error can only occur if the tool is not invoked with the supplied 
executable file idump. exe. 

72 TDS 224 00 August 1990 



318 16 idump - memory dumper 

72 TDS 224 00 August 1990 



17 iemit - memory 
configurer 

e This chapter describes the Memory Configuration tool iemit. This tool can be 
used interactively to enable the user to explore the effects of changes in the 
memory interface parameters of certain 32 bit transputers. The tool can also 
be used in batch mode to create ASCII or PostScript files. The tool produces 
a memory configuration file which may be included as an input file to ieprom 
and blown into EPROM along with a ROM-bootable appfication file. 

The chapter describes how to use iemit and outlines its capabilities. Example 
displays are provided followed by a list of error messages which the tool may 
generate. The format of the memory configuration file is described and an ex­
ample is given. Note: memory configuration files are simple text files which may 
be created manually using a standard editor or generated by using iemit. 

Finally the chapter describes a tool called icvemit. This tool is provided to 
convert memory configuration files produced by iemi (a previous version of 
iemit), to the file format recognised by the current release of iemit and 
ieprom. The command line syntax is described and a list of possible error 
messages is given. 

17.1 Introduction 

The IMS T400, T414, T425, T800 and the T805 transputers have a configurable 
external memory interface which allows a variety of types of memory device to 
be connected using few extra components. 

For these transputers, the interface configuration may be selected by one of two 
mechanisms. The user may select one of the 17 standard memory configurations 
(13 for the T414) or a customised memory configuration may be loaded from a 
ROM or PAL on reset. 

Both methods of memory configuration are available when booting from ROM 
or from link. If the transputer is being booted from ROM, a customised memory 
configuration may be added to the ROM or a standard configuration may be 
used. If the transputer is booted from link a standard configuration may be used 
at no extra cost, or a dedicated ROM or PAL may be added for a customised 
configuration. 

In order to generate a customised configuration the user may create a mem­
ory configuration file, describing the memory configuration and have this blown 
into an EPROM. The configuration chosen is made known to the transputer by 

72 TDS 224 00 August 1990 



320 17 iemit - memory conflgurer 

simple board level connections which are detected by the transputer on reset. 
If a standard configuration is required the MemConflg pin is connected to the 
appropriate address pin. For example, standard configuration 7 is selected via 
address pin MemAD7. If a customised configuration is required the MemConflg 
pin is connected though an invertor to the appropriate data line, usually this is _ 
MemnotWrDO. Note: when iemit is used to generate the memory configura- ., 
tion, the MemnotWrDO pin must be used. For further details see The Transputer 
Databook 72 TRN 203 01. 

The external memory interface configuration tool iemit produces timing dia­
grams for potential configurations of the memory interface and warns of possible 
errors in the design. It indicates whether one of the preset configurations that 
are available would be suitable, or whether it would be necessary to use an 
externally programmed configuration. 

Note: That it is assumed that readers creating memory configuration files are 
familiar with the memory interface of the processor that they are using. The 
stages in designing a memory interface, including examples, are described in 
chapter 2 of The Transputer Applications Notebook - Systems and Performance. 
Further information may also be found in The Transputer Databook. 

17.2 Running iemit 

The iemit tool can be invoked by the following command line: 

iemit options 

where: options is a list of one or more options from table 17.1. 

Options are preceded by '-' for UNIX based toolsets and '/' for MS­
DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

72 TDS 224 00 August 1990 



17.2 Running iemit 321 

Option Description 

A Produce ASCII output file. 

E Invoke interactive mode. 

Specify input memory configuration file. F filename 

I Select verbose mode. In this mode the user will receive sta­
tus information about what the tool is doing during operation for 
example. reading or writing to a file. 

o filename Specify output filename. 

Produce PostScript output file. p 

Table 17.1 iemit command line options

Note: that if option 'E' is selected Le. interactive mode, then no other options
may be specified on the command line.

The operation of iemit in terms of standard file extensions is shown below:

8 

Examples of use 

iemit may be invoked in interactive mode by using one of the following com­
mands: 

iemit -e (UNIX based toolsets) 
iemit /e (MS-DOS and VMS based toolsets) 

Output files in ASCII or PostScript may be specified by command options from 
within interactive mode; alternatively iemit may be invoked in batch mode. to 
create an output file in one of these formats. 

72 TDS 224 00 August 1990 



322 17 iemit - memory conflgurer 

When the tool is invoked in batch mode to produce an output file in either ASCII 
or PostScript format, then an input file must be supplied using the 'F' option. It 
is also mandatory to specify either the 'A' or 'p' option. If the '0' parameter is 
not supplied then an output filename will be constructed, from the input filename, 
with an extension of' •PS' for a PostScript output. or' .ASC' for an ASCII output. 

Example: 

The following commands cause iemit to produce an output file in PostScript 
format. The tool is invoked in verbose mode. 

UNIX based toolsets: 

iemit -i -p -f memconfig.mem -0 waveform.ps 

MS-DOS and VMS based toolsets: 

iemit li Ip If memconfig.mem 10 waveform.ps 

17.3 Output flies 

Two different types of output may be produced by iemit, these are listed below: 

• A memory configuration file suitable for including as an input file to the 
ieprom tool. 

• An output file in either ASCII or Postscript format, suitable for inclusion 
in documentation. 

The tool may be used interactively to produce a memory configuration file in text 
format. This file may then be used as an input file to the ieprom tool, thus 
enabling the memory configuration to be stored on ROM. iemit is capable of 
saving and reloading configurations to allow for design over an extended period 
and for comparison of different configurations. The memory configuration file is 
described and an example is given in section 17.7. 

Additionally iemit may be used to produce an output file which is either a plain 
ASCII file containing timing data or a file in PostScript format containing waveform 
diagrams. These formats were chosen so that the results of the program could 
be easily included in reports or other documentation. 

72 TDS 224 00 August 1990 



17.4 Interactive operation 323 

17.4 Interactive operation 

When iemit is invoked in interactive mode the program will power up with the 
default standard configuration 31. 

The tool's user interface is presented as a number of display pages showing 
timing data. The displays may be updated by changing the timing parameters, 
which are accessed from page 1. All inputs are executed immediately so that 
the user can see the effect on any of the displays. As each page is shown, the 
user has the option of selecting another page for display by keying in its number. 
The current configuration may be saved at any time to a specified output file. 

The information displayed and options available on each page are described 
below. 

17.4.1 Page 0 

This page acts as an index to the others. It shows the title of each page and 
permits the selection of one of them. An option is provided to enable an input file 
to initialise the memory configuration. Other options enable the user to selectively 
generate output files. Options are listed in table 17.2 and an example of the 
display page is given in figure 17.1. 

The user enters an option code followed by the !RETURNI key. If a file option is 
specified the user will be prompted for a filename. Note: file extensions should 
be specified, there are no defaults. 

17.4.2 Page 1 

This page shows the input parameters to iemit. It is from these parameters that 
the tool computes the timing information and the waveforms. Only one parameter 
may be changed at a time and the display data is immediately updated. An 
example of the display page is given in figure 17.2. 

When the page is displayed, the user has the option to select a new page by 
entering its number, or entering C to change one of the parameters. In the latter 
case, a list of parameter identifiers is displayed (see table 17.3) and the user is a 
prompted to select one. The user may then specify a new value, or by pressing 
the 'RETURNI key, leave the current selection unchanged. The parameters used 
for modifying the timing data are described in tables 17.4, 17.5 and 17.6. 

Note: that there are two parameters displayed on page 1 which are updated by 
iemit but which cannot be directly updated by the user; they are the EMI clock 
period Tm and the Wait states (see tables 17.5 and 17.6). 

72 TDS 224 00 August 1990 



324 17 iemit - memory conflgurer 

Option Description 

1 to 6 Selects the page to be displayed. 

S Save configuration to a file. The program prompts for the name of 
a file to which the data will be written, by convention the extension 
•MEN should be used. Output is a memory configuration file. An 
error is rf!ported if the data could not be saved. The save file is 
given comments in its header indicating that it was created by the 
iemit program. 

L Load previously saved configuration. A filename is prompted for, 
and the configuration saved in that file is read in and the display 
data is updated. The program expects a memory configuration file. 

If loading does not succeed because the file has a bad format, the 
current configuration is reset to standard configuration 31. If load­
ing fails because the file could not be found or could not be opened 
for reading, the load is abandoned without losing the current con­
figuration. 

A Output pages in ASCII format to a file. The program prompts for 
the name of a file to which the data will be written. Output is in 
plain ASCII format with a form feed (FF) character after each page. 
It includes full timing information and a representation of the timing 
diagrams for read and write cycles. An error is reported if the output 
could not be written. 

p Generate PostScript file. The program prompts for a filename. The 
program writes to the file a program in the PostScript page descrip­
tion language to draw the timing diagrams for the chosen memory 
interface configuration. The waveforms shown are the same as 
those which can be seen by selecting pages 4 and 5. 

The file produced fully conforms to the PostScript structuring con­
ventions, allowing it to be processed by other programs. The dia­
gram is designed to fit lengthways on an A4 page, and is suitable 
for inclusion in technical notes and reports. The file can be sent 
directly to an Apple LaserWriter or other PostScript output device. 

Quit - selection of this option exits the program. Q 

Table 17.2 iemit page 0 options 

72 TDS 224 00 August 1990 



17.4 Interactive operation 325 

Parameter 

Identifier 

Parameter 

0 to 6 

0 

T1 

T2 

T3 

T4 

T5 

T6 

so 
Sl 

S2 

S3 

S4 

RS 

WS 

R 

WM 

w 

C 

Page to be displayed 

Device type 

Address setup time before address valid strobe 

Address hold time after address valid strobe 

Read cycle tristate or write data setup 

Extendible data setup time 

Read or write data 

End tristate or data hold 

Nonprogrammable strobe "notMemSO" 

Programmable strobe "notMemS1" 

Programmable strobe "notMemS2" 

Programmable strobe "notMemS3" 

Programmable strobe "notMemS4" 

Read cycle strobe name 

Write cycle strobe name 

Refresh period 

Write mode 

Memwait input connection 

Standard configuration 

Table 17.3 iemit page 1 parameter identifiers 

72 TDS 224 00 August 1990 



326 17 iemit - memory conflgurer 

Parameter Description 

Device type This parameter enables the program to deduce 
the time taken for a half cycle of the signal 
ProcClockOut: this is Tm, the basic unit of 
time of the memory interface. A menu of the 
available devices is displayed and the user is 
invited to select one: 

T400-20 T800-17 
T414-15 T800-20 
T414-17 T800-22 
T414-20 T800-25 
T425-17 T800-30 
T42S-20 T800-35 
T425-25 T80S-25 
T425-30 T80S-30 

The length of each Tstate T1 to T6, is entered 
as a number of Tm periods between 1 and 4. 
(2 Tm periods = 1 clock cycle). 

Tstates Tl-T6 

Programmable The programmed durations of the strobes not-
Strobes SO-S4 MemSO to notMemS4. The strobes each have 

two names which can be altered. One which 
can be up to 9 characters in length, and one 
consisting of just one character. There should 
be no embedded spaces in the long names. 
The short names are used in the timing infor­
mation on pages 2 and 3, while the long names 
are used to label the waveforms on pages 4 
and 5, and in the PostScript output. The signal 
names are initialised to sensible defaults. 

Note: that SO is a fixed strobe, so its duration 
cannot be changed. The duration of a strobe 
can be 0 to 31 Tm periods. If the value for 
S1 is set to zero, then notMemS1 stays high 
throughout the cycle; if the value for S2, S3 or 
S4 is set to zero, then the strobe is low for the 
duration of the cycle. 

Table 17.4 iemit page 1 parameters 

72 TDS 224 00 August 1990 



327 17.4 Interactive operation 

Parameter Description 

Read strobe name The names for the read strobe notMemRd can be 
altered. 

Write strobe name The names for the write strobe notMemWrB can 
be altered. Note that because the four byte write 
strobes have the same timing, only one is consid­
ered. 

Refresh period The refresh period is given as a number of Clockln 
periods (18, 36, 54, or 72) or as Refresh Off if zero 
is selected. 

Write mode The write mode can be set to Early or Late to suit 
the type of memory being used. 

Wait connection The MemWalt input may be connected to one of 
the strobes 52, 53, 54 by entering '52', '53' or '54' 
respectively. Alternatively, by specifying a number 
in the range 1 to 60 MemWalt may be connected 
to a simulated external wait state generator. This 
causes MemWait to be held high then to become 
inactive (tow) a set number of Tm periods after the 
start of T2. Note: that this mode is not supported 
directly by the T414; in a final design, a circuit 
would have to be built to perform this function. 

If the current connection of MemWait causes the 
signal to become inactive just as ProcClockOut 
is falling during T4, a warning is given that there 
is a hazard of a wait race condition. ThisIS· be­
cause MemWalt is sampled on the falling edge 
ef ProcClockOut - and if the signal is changing 
while being sampled, the result is undefined. 

EMI clock period Tm The value of Tm for a clockln frequency of 5MHz. 
This is computed from the other parameters and 
displayed. 

Table 17.5 iemit page 1 parameters 

72 TD5 224 00 August 1990 



328 17 iemit - memory conflgurer 

Parameter Description 

Wait states The number of wait states in the current configura­
tion. This is computed from the other parameters 
and displayed. 

Standard The parameters can all be reset to those for one of 
confiquration the built in configurations. There are 13 standard 

configurations available for the T414, valid configu­
ration numbers being 0 to 11 and 31. For the T400, 
T425, T800 and the T805 there are 17 standard 
configurations available, valid configuration num­
bers being 0 to 15 and 31. If the user selects, for 
a T414, one of the four configurations which are 
not available, a message will be displayed indicat­
ing that this configuration may not be hardwired on 
a T414. 

If the currently set configuration happens to corre­
spond exactly to one of the preset configurations, 
the tool reports the fact. 

Table 17.6 iemit page 1 parameters 

17.4.3 Page 2 

This page shows general timing information for the interface, such as delays 
between various strobes and required access times of the memory devices to 
be used. The user should adjust these figures to allow for delays in external 
logic. 

Table 17.7 lists the timing information displayed on this page while an example 
of the display is given in figure 17.3. 

72 TDS 224 00 August 1990 



329 17.4 Interactive operation 

JEOEC symbol Parameter description 

TOLOL Cycle time (in both nanoseconds and processor 
cycles) 

TAVQV Address access time 

TOLQV Access time from notMemSO 

TrLQV Access time from notMemRd 

TAVOL Address setup time 

TOLAX Address hold time 

TrHQX Read data hold time 

TrHQZ Read data turn off 

TOLOH notMemSO pulse width low 

TOHOL notMemSO pulse width high 

TrLrH notMemRd pulse width low 

TrLOH Effective notMemRd width 

TOLwL notMemSO to notMemWrB delay 

TOVwL Write data setup time 

TwLOX Write data hold time 1 

TwHOX Write data hold time 2 

TwLwH Write pulse width 

TwLOH Effective notMemWrB width 

Table 17.7 General timing parameters 

The total cycle time is given in nanoseconds and in processor clock cycles. The 
only option available from this page is to select another page for display. 

72 TOS 224 00 August 1990 



330 17 iemit - memory conflgurer 

17.4.4 Page 3 

This page gives timing information of special interest to designers working with 
dynamic memory, including various access times and the time for 256 refresh 
cycles. With this information the designer can ensure that the requirements of 
the memory devices to be used are met. The user should adjust these figures to 
allow for delays in external logic. Table 17:8 lists the DRAM timing parameters. 

JEDEC symbol Parameter description 

T1L1H notMemS1 pulse width 

T1H1L notMemS1 precharge time 

T3L3H notMemS3 pulse width 

T3H3L notMemS3 precharge time 

T1L2L notMemS1 tonotMemS2 delay 

T2L3L notMemS2 to notMemS3 delay 

T1L3L notMemS1 to notMemS3 delay 

T1LQV Access time from notMemS1 

T2LQV Access time from notMemS2 

T3LQV Access time from notMemS3 

T3L1H notMemS1 hold (from notMemS3) 

T1L3H notMemS3 hold (from notMemS1) 

TwL3H notMemWrB to notMemS3 lead time 

TwL1H notMemWrB to notMemS1 lead time 

T1LwH notMemWrB hold (from notMemS1) 

T1LDX Write data hold from notMemS1 

T3HQZ Read data turn off 

TRFSH Time for 256 refresh cycles (in microseconds) 

Table 17.8 DRAM timing parameters 

The only option available from this page is to select another page for display. An 
example of the display is given in figure 17.4. 

72 TDS 224 00 August 1990 



331 17.4 Interactive operation 

17.4.5 Page 4 

This page shows graphically the timing for a memory read cycle. An example of 
the display page is given in figure 17.5. 

The Tstates and strobes are labelled, and bus activity is shown. The point where 
data are latched into the processor is also indicated. 

At the top of the page is displayed the processor clock and the Tstates, a number 
indicating the Tstate, 'W' indicating a wait state, and 'E' indicating a state that is 
inserted to ensure that T1 starts on a rising edge of the processor clock. 

Below this are displayed the waveforms of the programmable strobes and the 
read, write and address/data strobes. Each of these strobes is labelled with the 
corresponding label parameter. 

The point at which the read data is latched is indicated by a 'A' beneath the read 
cycle address/data strobe. 

The MemWalt waveform shows the input to the MemWalt pin. If the wait input 
is a number then it goes low n Tm periods after the end of T1 and high again 
at the end of T6, if the wait input is connected to a strobe it goes low and then 
high when that strobe does so. 

If the cycle is too long to fit horizontally on the screen, it may be scrolled left 
and right using the Land R options. The displayed area moves by about 15 
characters each time these options are used. 

17.4.6 Page 5 

Page 5 shows the waveforms for a memory write cycle. The display is similar 
to that of page 4, indeed the read and write cycle diagrams are combined when 
the PostScript output is produced. 

Scrolling the display to the left or right is permitted in the same way as for page 
4. 

An example of the display page is given in figure 17.6. 

72 TOS 224 00 August 1990 



332 17 iemit - memory conflgurer 

17.4.7 Page 6 

This page gives a configuration table for the current configuration. This is a 
listing of the data which have to be placed in a ROM situated at the top of the 
transputer's memory map in order to achieve the desired configuration. The table 
consists of 36 words of data, but only the least significant bit in each is used. The 
address and contents are given for each location. Note: when iemit is used 
to generate the memory configuration, the Memconfig pin must be connected 
to MemnotWrDO. 

An example of the display page is given in figure 17.7. 

Note: that if page 1 indicates that the configuration is one of the transputer's 
preset ones, there will be no need for a ROM; configuration can be achieved by 
connecting the MemConflg pin of the device to one of the address/data lines. 

17.5 Example iemit display pages 

Paqe 0 ~414/~800 External Memory Intertace Proqram 

Paqe 0: Index - thi. paqe 
1: BKI configuration parameter. 
2: General timinq 
3: Dynamic RAN timinq 
4: Read aycle wavetorma 
5: Write aycle wavetorma 
6: Contiguration table 

Plea.e enter 1 ... 6 to .ee a new paqe; 
<S> to aave c;:ontiguration to a tile; 
<L> to load a aaved configuration; 
<A> to q.nerate an ASCII li.tinq ot all paqe. to a file; 
0> to qenerate Po.tScript tile of wavetorma; 
<Q> to exit the proqram 

Figure 17.1 Example iemit display page 0 

72 TDS 224 00 August 1990 



17.5 Example iemit display pages 333 

Paqe 1 JUa Confiquration parameter. 

Device type 1'414-20 
JUa clock period ('!'Ill) 25 at Clockln 

- 5KHz 
Wait State. 0 
Addre.. .etup time 1'1: 1 period. '!'Ill 
Addre•• hold time 1'2: 1 period. '!'Ill 
Read cycle tri.tate/Write data .etup 1'3: 1 perioda Till 
Exteneled for wait 1'4: 1 period. '!'Ill 
Read or write data 1'5: 1 period. '!'Ill 
Bnd tri.tate I Data hold T6: 1 period. '!'Ill 
Hon-Proqramaaable .trobe "notMelllSO " "0" SO 
Programaaable .trobe "notNem.9l " "1" Sl: 30 perioda '!'Ill 
Proqramaaable .trobe "notNelDS2 " "2" S2: 1 period. '!'Ill 
Proqramaaable .trobe "notNelDS3 " "3" S3: 3 period. '!'Ill 
Proqramaaable .trobe "notNems4 .. "4" S4: 5 period. '!'Ill 
Read cycle .trobe "notMemRd""r" 
Write cycle .trobe "notNemWrB" "w" 
Refre.h period 72 clockin period. Wait o 
Write mode Late Confiquration o 

Figure 17.2 Example iemit display page 1 

Page 2 Qeneral Time. 

Symbol Parameter mn(n.) IIl&X (n.) note. 

TOLOL Cycle time 150 - - 3 proce••or cycle. 
TAVQV Addre.. acce.. time 125 
TOLQV Acce.. time frolll 0 100 
TrLQV Acce.. time frolll r 50 
TAVOL Addre.. .etup time 25 
TOLAX Addre.. hold time 25 
TrHQX Read data hold time 0 
TrHQZ Read data turn off 25 
TOLOH o pul.e width low 100 
TOHOL o pul.e width high 50 
TrLrH r pul.e width low 50 
TrLOH Bffective r width 50 
TOLwL o to w delay 50 
TDVwL Write data .etup time 25 
TwLDX Write data hold time 1 75 
TwHDX Write data hold time 2 25 
TwLwH Write pul.e width 50 
TwLOH Bffective w width 50 

Figure 17.3 Example iemit display page 2 

72 TDS 224 00 August 1990 



334 17 iemit - memory configurer 

Page 3 Dr.. Ti... 

Symbol Par_t.r adn(n.) max(n.) not•• 

T1LlB 1 pul•• widtb 125 
T1BlL 1 precharg. ti.- 25 
T3L3B ~3 pul•• widtb 25 
T3B3L 3 pr.charge ti.. 125 
T1L2L 1 to 2 delay 25 
T2L3L 2 to 3 delay 50 
T1L3L 1 to 3 delay 75 75 
T1LQV Acce.. ti.- frolll 1 100 
T2LQV Acce.. time frolll 2 75 
T3LQV Acce.. ti.. frolll 3 25 
T3L1B 1 bold (frolll 3) 50 
T1L3B 3 bold (frolll 1) 100 
TwL3B w to 3 l.ad ti.. 50 
TwL1B w to 1 l.ad time 75 
T1LwB w bold (fro. 1) 100 
T1LDX Wr data bold frolll 1 125 
T3BQZ bad data turn off 25 
Dl'SB 256 r.fr••b cycl•• 3650 Ti.. i. in micro••cond. 

Figure 17.4 Example iemit display page 3 

Pag. 4 1 2 

ProcClock ,---, ,---, ,---, , 

notNelllSO 0).---', ,,--­

notNelllSl 1).---,, _ 

notNelllS2 2). -------,--­
notNelllS3 3). ,--,--­
notllelllS4 4). 

llellllfait ---,, _ 

JUlAD CYCLB 

NeIIlAD 
-----R-.:~-~~~-~~~~~~~-~~~:-A-->-<

notNemRd. (r). -----,,--­

Figure 17.5 Example iemit display page 4 

72 TDS 224 00 August 1990 



335 17.5 Example iemit display pages 

Paqe 5 112131415161

ProCC1ock ,--, ,--, ,--,__,__ __

notKemSO 0) .---, ,--­

notKemS1 1).---', _ 

notKemS2 2). ,-------,--­
notKemS3 3). ,--,--­
notKemS4 4). 

NemWait ---,._-------------
WlUR CYCLE _ 

KemaD X X 

notKedfrB (r) • ._----,--­

Figure 17.6 Example iemit display page 5 

Paqe 6 Confiquration Tabl. 

• 71TPTF6C - 0 ,7FFFFFB4 - 0 
,7F1TiT70 - 0 ,7FFFFFBS - 0 
'71T1'FJ1'74 - 0 • 7FFFFFBC - 0 
'71TPTF7S - 0 '7FFFFFCO - 0 
'71TF1'r7C - 0 • 7FFFFFC4 - 1 
'7nTFFSO - 0 '7FFFFFCS - 1 
• 71TJT1'S 4 - 0 • 7ITFFFCC - 0 
'7F1TPFSS - 0 ,7FFFFFDO - 0 
'7nTFFSC - 0 ,7FFFFFD4 - 0 
'7I7ITi'gO - 0 ,7FFFFFDS - 1 

• 71'1T1'1'g4 
'7nTFFgS 

- 0 
- 0 

• 7ITFFFDC 
,7ITFFFBO 

-
-

0 
1 

• 71'1T1'1'gc 
• 71'1T1'1'AO 

- 0 
- 1 

• 7FFFFFB4 
,7FFFFFBS 

-
-

0 
0 

'7J'1'1'F1'A4 - 1 • 7FFFFFEC - 1 
'7ITPTFAS - 1 ,7FFFFFFO - 1 
'7FFF1TAC - 1 • 7FFFFFi'4 - 1 
• 7J'I'I'FI'B0 - 1 ,7FFFFFFS - 1 

Figure 17.7 Example iemit display page 6 

72 TDS 224 00 August 1990 



336 17 iemit - memory conflgurer 

17.6 iemit error and warning messages 

The following is a list of error and warning messages the tool can produce: 

Wait race 

If one of the programmable strobes is used to extend the memory cycle 
then the strobe must be taken low an even number of periods Tm after 
the start of the memory interface cycle. If the strobe is taken low an odd 
number of periods after the start then a wait race warning will appear. 
Should this warning appear, it will remain on display on page 1, until 
the race condition is removed. Further information can be obtained from 
reference 1, listed at the start of this chapter. 

Input out of range 

If the value entered for a numeric parameter is outside the range valid 
for that parameter, an input out of range warning is displayed, the value 
cleared from the screen and the program waits for a new value. 

MemWalt connection error 

If an attempt is made to connect S1 to the MemWalt input an error is 
displayed because it is a meaningless operation. 

Configuration cannot be hardwlred on a T414 

The transputers which have a configurable memory interface all have 
(with the exception of the T414) 17 standard memory configurations avail­
able to them. The T414 only has a choice of 13 standard configurations. 
If the standard configurations 12, 13, 14 or 15 are selected for a T414 
the above warning message will be displayed against the selection on 
page 1. 

Unable to open configuration file 'filename' 

This can occur when attempting to load a memory configuration file and 
indicates that the tool cannot find the specified input file. Check the 
spelling of the filename and/or that the file is present. 

Command line parsing error 

An option has been specified that the tool does not recognise. 

72 TDS 224 00 August 1990 



17.7 Memory configuration file 337 

No Input file specified 

This indicates that when trying to invoke the tool to produce an output fUe, 
the user has not specified a memory configuration file to use as input. 

One and only one of options A or P must be specified 

This indicates that when trying to produce an output file, the user has not 
specified whether the output is to be in ASCII or PostScript format. 

Unable to open output file 'fi/ename' 

An output filename has been specified incorrectly. Check the format of 
the filename. 

17.7 Memory configuration file 

Memory configuration files are text files which may be generated by a standard 
text editor or by using the memory interface configuration tool iemit, see sec­
tion 17.2. 

If the user has existing memory configuration files created by iemi (a previous 
version of iemit) then the user will need to convert them from the old file format 
to the file format used by the current EPROM tools. This is achieved by using 
the memory configuration conversion tool icvemit, see section 17.8. 

By convention memory configuration files have the file extension •mem. The 
file consists of a sequence of statements and comments. The following are 
considered to be comments: 

• Blank lines 

• Any line whose first significant characters are '--' 

• Any portion of a line following '--'. 

Comments are ignored by the ieprom and iemit tools. Statements are all 
other lines within the file; they may be interspersed with comments. 

Individual statements are constructed of the statement and an associated param­
eter. These must be separated by at least one space or tab but extra spaces 
may be inserted before, between, or after them for aesthetic purposes. 

The statements defined are listed along with their parameters in table 17.9. 
Further information about specifying parameters is given in section 17.4.2. 

72 TOS 224 00 August 1990 



338 17 iemit - memory conflgurer 

Statement 
standard. configuration 

device. type 

tl. duration, 
t2 . duration, 
t3. duration, 
t4 . duration, 
t5. duration, 
t6.duration 

sO.label, 
sl.label, 
s2.label, 
s3.label, 
s4.label 

rs.label 

ws.label 

sl.duration 

s2 . duration, 
s3 . duration, 
s4.duration 

Parameters 
0 to 13 or 31 for T414 processors. 0 to 
15 or 31 for T400, T425, T800 and T805 
processors. 
One of the following devices: 

T400-20 T800-l7 
T4l4-l5 T800-20 
T4l4-17 T800-22 
T4l4-20 T800-25 
T425-l7 T800-30 
T42S-20 T800-35 
T425-25 T800-25 
T425-30 T805-30 
1 to 4 Tm periods. (2 Tm periods =1 clock 
cycle). Defines the length in Tm periods of 
Tstates, T1 to T6, of the memory cycle. 

Each of these parameters accepts two 
text strings. They are the long (up to 9 
characters) and short (1 character) names 
of the strobes notMemSO to notMemS4. 
The names should not contain embedded 
spaces. Names longer than the permitted 
number of characters will be truncated. 

As above, the long and short names for the 
read strobe notMemRd. 
As above, the long and short names forthe 
read strobe notMemWrB. 
o to 31 Tm periods. The 81 strobe goes 
low at the start of Tstate 2. This parame­
ters defines the number of Tm periods be­
fore it goes high. 

o to 31 Tm periods. The 82 to 84 strobes 
all go high at the end of Tstate 5. These 
parameters define the number of Tm peri­
ods before each strobe goes low. 

Table 17.9 Memory Configuration file statements 

72 TD8 224 00 August 1990 



17.7 Memory configuration file 339 

Statement Parameters 
refresh.period 18, 36, 54, 72 or the string ·Disabled". This 

parameter defines the period between re­
fresh cycles as a count of Clockln cycles. 

write.mode String value either: "Early· or "Late". De­
fines the write mode. 

wait.connection S2, S3, S4 or a value in the range 0 to 60. 
This parameter conneds MemWait to one 
of the strobes S2, S3, S4 or to simulated 
external wait state generator. 

Table 17.10 Memory Configuration file statements 

Example memory configuration file 

Memory interface configuration for 
build xxx of processor board. 

device.type .- T800-25 
tl.duration .- 3 Take 3 state to setup 

-- address. 
t2.duration .- 2 
t3.duration .- 1 
t4.duration .- 2 
t5.duration .- 1 
t6. duration .- 1 
sl.duration .- 5 
s2.duration .- 1 
s3.duration .- 2 
s4.duration .- 9 
sO.label := ALE 0 
sl.label .- RAS 1 
s2.label .- NUX 
s3.label .- CAS 
s4.label .- WAIT 
rs.label .- notMemRd 
ws.label .- notMemWrB 
refresh.period .- 36 
write.mode .- EARLY 
wait. connection .- S4 

72 TDS 224 00 August 1990 



340 17 iemit - memory conflgurer 

17.8 Memory interface conversion tool icvemit 

This tool is provided to convert memory configuration files produced by iemi (a 
previous version of iemit) to the file format recognised by the current release 
of iemit and ieprom. 

The tool will take, as input, the 'save' file produced by iemi and convert it to a 
memory configuration file in a format which may be read by the current release 
of the EPROM tools. 

17.9 Running icvemit 

The icvemit tool can be invoked by the following command line: 

~ icvemit filename {options} 

where: filename is the input file; this file must have been created by the tool 
iemi released with previous versions of the transputer toolse1. 

options is a list of one or more options from table 17.11. 

Options are preceded by '-' for UNIX based toolsets and 'I' for MS­
DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Option Description 

I Select verbose mode. In this mode the user will receive status 
information about what the tool is doing during operation ego 
reading or writing to a file. 

Specify output filename. Saves the output to· a specified file­
name. If the option is not supplied then the output will be placed 
in a file with the same name as the input file but with the exten­
sion of "mem". 

o filename 

Table 17.11 icvemit options 

72 TDS 224 00 August 1990 



341 17.10 icvemit error messages 

The operation of icvemit in terms of standard file extensions is shown below: 

\7--1 icvemit ~

Note: the file extension of the input file pertains to previous issues of the toolset. 

Example 

icvemit memconfig.asc /i /0 memconfig.mem MS-DOS and VMS 

based toolsets. 

icvemit memconfiq. asc -i -0 memconfig. mem UNIX based toolsets. 

17.10 icvemit error messages

The following is a list of error and warning messages the tool can produce:

Unable to open configuration file 'filename'

Indicates that the tool cannot find the specified input file. Check the 
spelling of the filename and/or that the file is present. 

Command line parsing error 

This indicates that an option has been specified that the tool does not 
recognise. 

No Input file specified 

This indicates that when trying to invoke the tool to produce an output file, 
the user has not specified a memory configuration file to use as input. 

Unable to open output file 'filename' 

An output filename has been specified incorrectly. Check the format of 
the filename. 

72 TDS 224 00 August 1990 



342 17 iemit - memory configurer 

72 TDS 224 00 August 1990 



18 ieprom - EPROM 
program convertor 

This chapter describes the EPROM Hex tool ieprom. This tool is used to 
convert a ROM-bootable file into one or more files suitable for blowing into an 
EPROM. 

The chapter describes how to invoke ieprom and gives details of the command 
line syntax. It describes the control file which the tool accepts as input and 
provides background information on the layout of the code in the EPROM. A 
description of the various file formats which may be output by the tool is given, 
including block mode where the output is split up over a number of files. The 
chapter ends with a list of error messages which may be generated by the tool. 

18.1 Introduction 

The INMOS EPROM software is designed so that programs which have been 
developed and tested using the INMOS toolset may be placed in ROM with only 
minor modification (see below). 

This has the advantages that an application need not be committed to ROM until 
it is fully debugged and the actual production of the RaMs can be done relatively 
late in the development cycle without the fear of introducing new problems. 

If a network of transputers is being used, only the root transputer needs to be 
booted from ROM; once this has been booted it will boot its neighbours by link. 

Figure 18.1 shows how a network of five transputers would be loaded from a 
ROM accessed by the root transputer. 

Some 32 bit transputers have a configurable external memory interface. For 
these transputers a memory configuration file may be created and blown into 
ROM together with the application. A description of memory configuration files 
and how to create them is given in chapter 17. 

72 TDS 224 00 August 1990 



344 18 ieprom - EPROM program convertor 

Boot from link 

Figure 18.1 Loading a network from ROM 

18.2 Prerequisites to using the hex tool ieprom 

For an application file to be suitably formatted for blowing into ROM it must 
have been configured to be booted from ROM rather than booted from link. This 
selection is made by specifying the appropriate command line option when using 
the icconf and icollect tools. See chapters 12 and 13 respectively. It is 
also essential that all C programs, including those targeted at a single processor 
are configured using icconf. C programs prepared with the icollect IT' 
option do not have the required format to be suitable input for ieprom. 

18.3 Running ieprom 

ieprom takes as input a control file and outputs one or more files which may 
be blown into ROM by an EPROM programmer. 

The control file, in text format, specifies the root transputer type, the name of 
the bootable file containing the application, the memory configuration file (if one 
is being used), the amount of space required on the EPROM and the format 
that the output is to take. Available output formats are: binary, hex dump, Intel, 
Extended Intel or Motorola S-Record format. 

The ieprom tool is invoked by the following command line: 

72 TDS 224 00 August 1990 



345 18.4 ieprom control file 

~ ieprom filename {option} 

where: fHename is the name of the control file. 

option may take the value I which selects verbose mode. In this mode 
the user will receive status information about what the tool is doing during 
operation for example reading or writing to a file. If option 'I' is specified 
it must be preceded by '-' for UNIX based tools or 'f for MS-DOS and 
VMS based tools. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

The operation of ieprom in terms of standard file extensions is shown below. 

18.3.1 Examples of use

ieprom may be invoked in verbose mode by using one of the following com­
mands: 

ieprom-i mycontrol.epr (UNIX based toolsets) 

ieprom/i mycontrol.epr (MS-DOS and VMS based toolsets) 

18.4 ieprom control file 

The control file is a standard text file, prepared by an editor; it consists of com­
ments and statements. 

72 TDS 224 00 August 1990 



346 18 ieprom - EPROM program convertor 

The following are considered to be comments: 

• Blank lines 

• Any line whose first significant characters are •- -' 

• Any portion of a Iine following •- --:". 

Comments are ignored by the ieprom tool. 

Statements are all other lines within the file. They may be in any order, except 
that the four statements defining a block must immediately follow the statement 
output. block (see table 18.2). Statements may be interspersed with com­
ments. 

Individual statements are constructed of the statement and an associated param­
eter. These must be separated by at least one space or tab but extra spaces 
may be inserted before, between, or after them for aesthetic purposes. The 
statements defined are listed along with their parameters in tables 18.1 and 
18.2. 

72 TDS 224 00 August 1990 



18.4 i.prom control file 347 

Statement 
root.processor.type 

bootable.file 

memory. configuration 

eprom.space 

output. format 

Parameter/Description 
T2, T4 orT8 

This statement has a keyword as its param­
eter. It specifies the root processor type as 
being T2 (1 S bit processor), T4 (32 bit pro­
cessor), or T8 (32 bit processor with a floating 
point unit). This statement must be present in 
the control file. 

filename 

This statement specifies the file that contains 
the .output of icollect, usually the appli­
cation plus its ROM loader(s). This file is 
inserted into the EPROM with the comment 
bootstrap at its head removed. This statement 
must be present in the control file. 
filename 

This statement specifies a memory configura­
tion file to be included in the EPROM image. 
This file is a standard memory configuration 
description (see chapter 17 for details). If this 
statement is absent from the control file then 
no memory configuration will be inserted in the 
image. 

hexadecimal number 

This statement specifies the size of the 
EPROM space in bytes. The space may ac­
tually contain several physical devices. This 
statement must be present in the control file. 

binary, hex, intel, extintel or 
srecord 

This statement takes a keyword as a parame­
ter. It specifies the type of the records going 
to the output file, as binary output, a plain hex 
dump, Intel format, Extended Intel format, or 
Motorola S-Record format respectively. If this 
statement is absent from the control file then 
the output will be a simple hex dump. 

Table 18.1 ieprom control file statements

72 TDS 224 00 August 1990



348 18 ieprom - EPROM program convertor 

Statement 
output.all 
output.block 

Parameter/Description 
filename 

filename 

These two statements specify the output file. By 
convention the file extension •epr should be used. 
output. all means that all of the image is to be out­
put to one file. output .block specifies that a block 
of data is to be output to the specified file. It must be 
followed by the four statements that define that block; 
these are detailed next. 

The control file must contain one output. all state­
ment, or one or more output .block statements. 

start.offset 

end. offset 

byte. select 

output. address 

hexadecimal number 

This statement specifies the offset, into the EPROM 
space, of the start of a block. One of these statements 
must follow each output. block statement. 

hexadecimal number 

This statement specifies the offset, into the EPROM 
space, of the end of a block. One of these statements 
must follow each output. block statement. 

decimal number or all 

This statement takes a decimal number, or the keyword 
all, as a parameter. It specifies which bytes in a word 
are to be output in this block. The number takes values 
0, 1, 2 or 3 for 32 bit processors, and 0 or 1 for 16 bit 
processors. 

One of these statements must always follow each 
output. block statement. 

hexadecimal number 

This statement specifies the address in the EPROM 
programmer's memory, at which the block is to be out­
put. For output. all the output address is always 
zero. 

One of these statements must always follow each e 
output. block statement. 

Table 18.2 ieprom control file statements 
72 TDS 224 00 August 1990 



349 18.4 ieprom control file 

Example control file 

EPROM description file for 
build of complicated example 

root.processor.type T4 

bootable.file wiggle.btr 
memory.configuration slowacc.mem 
eprom.space 

output.format 

output.block 
start.offset 
end. offset 
byte. select 
output.address 

output.block 
start.offset 
end. offset 
byte. select 
output.address 

output.block 
start.offset 
end. offset 
byte. select 
output.address 

output.block 
start.offset 
end. offset 
byte. select 
output.address 

etc ... 

20000 

SRECORD 

partl.mot 
00000 
OFFFF 
o 
00000 

part2.mot 
00000 
OFFFF 
1 
00000 

part3.mot 
00000 
OFFFF 
2 
00000 

part4.mot 
00000 
OFFFF 
3 
00000 

72 TDS 224 00 August 1990 



350 18 ieprom - EPROM program convertor 

18.5 What goes in the EPROM 

This section describes the contents of the EPROM, the reasons behind the code 
layout and the function of those components inserted by ieprom. 

The content of the EPROM when blown includes the bootable file, traceback data 
and jump instructions to enable the processor to find the start of the bootable 
file. Should the user define the memory configuration this information will also be 
placed in the EPROM. The general layout of the code in the EPROM is shown 
in figure 18.2. 

Address (T41T8) Address (T2) 

#7FFFFFFE #7FFE 

#7FFFFF68 #7FFA 
, 

Iincreasing address 

jump to bounce ~

~
~

data from memory 
configuration file 
(T4 and T8 only) 

bounce iump 

content of bootable 
file minus icollect 
comment bootstrap 

.... 

traceback information 

empty 

Figure 18.2 Layout of code in EPROM 

18.5.1 Memory configuration data 

Memory configuration data, when present, is placed immediately below the top 
word of the EPROM. The top word holds the first instructions to be executed if 
the transputer is booting from ROM. 

If the processor has a configurable memory interface it will scan the memory 
configuration data held on the EPROM, before executing the first instructions. If 
a standard memory configuration is being used there should be no memory con­
figuration data present and the processor will ignore this section of the EPROM. 

72 TDS 224 00 August 1990 



18.6 ieprom output files 351 

18.5.2 Jump Instructions 

The first instruction executed by the processor when booting from EPROM. is 
located at (MOSTPOS INT) - 1: this is #7FFFFFFE for 32-bit machines and 
#7FFE for 16-bit machines. The first two instructions cause a backwards jump 
to be made. with a distance of up to 256 bytes; however. since most applications 
are larger than 256 bytes it is necessary for ieprom to insert a bounce jump 
to the start of the bootable file. 

18.5.3 Bootable file 

The bootable file will have been produced by the collector tool icollect. 
using a boot from ROM loader. The comment bootstrap. containing traceback 
information. originally added to this file by icollect. is stripped off by ieprom. 

The bootable file is placed in the EPROM such that the start of the file is placed 
at the lowest address. with the rest of the file being loaded in increasing address 
locations. The end of the file is placed immediately below the bounce jump 
instruction. which points to the start of the bootable file. 

18.5.4 Traceback Information 

ieprom creates its own traceback information consisting of the name of the 
control file and the time at which ieprom ran. This information is placed below 
the start of the bootable file. Note at present this information is not used by any 
of the tools. 

18.6 ieprom output files 

The tool can produce output in a form readable by the user or in a form readable 
by EPROM programming devices. The following formats are supported: 

Binary output 

Hex dump 

Intel hex format 

Intel extended hex format 

Motorola S-record format 

72 TDS 224 00 August 1990 



352 18 ieprom - EPROM program convertor 

Whichever form is used, it is sometimes necessary to output the data in blocks. 
Block mode operation is discussed in section 18.7. 

Note: there is no output for unused areas of the EPROM. If the buffer in the 
EPROM programmer is not initialised before loading the files produced by this _ 
program into it, unused areas of the EPROM will be filled with random data. • 
Although the operation of the bootstrap code and loader programs will not be 
affected by the presence of random data, these areas of the EPROM cannot 
subsequently be programmed without erasing the whole device. 

18.6.1 Binary output 

This file is in binary format and simply contains all bytes output. There is no 
additional information such as address or checksums. 

18.6.2 Hex dump 

This simple format is intended to be used to check the output from the program. 
The dump consists of rows of 16 bytes each, prefixed by the address in the initial 
byte of each row. The format contains no characters other than the hexadecimal 
digits, the space character and newlines. 

18.6.3 Intel hex format 

This is a commonly used protocol for EPROM programming equipment. A se­
quence of data records is sent. Each record contains a few bytes of information, 
a start address and a checksum. In addition, a special record marks the end 
of a transmission. Since the format only supports 16-bit addresses, any longer 
addresses will generate an error message. Records produced by this program 
contain at most 32 bytes each. 

18.6.4 Intel extended hex format 

This format, also known as Intel 86 format, is similar to Intel hex, but adds 
another type of record. The new type 02 record is used to specify addresses of 
more than 16 bits. The type 02 record contains a 16-bit field giving a segment 
base offset. This value is shifted left four places and added to subsequent 
addresses. This mimics the operation of the segment registers on the Intel 8086 
range of microprocessors. The segment base offset value persists until the next 
type 02 record occurs. This format therefore allows addresses up to 20 bits in 
length. Again, longer addresses will generate an error message. The program _ 
minimises the number of type 02 records inserted in its output. • 

72 TDS 224 00 August 1990 



353 18.7 Block mode 

18.6.5 Motorola S-record format 

This format is another well known industry standard; it consists of a header 
record, data records, and finally an image end record. The advantage of this 
format is that, by the use of different data record types, it can support 16, 24, or 
32 bit addresses. This program uses whichever data record type is necessary. 

18.7 Block mode 

Block mode is a term used to describe the output from ieprom, when more 
than one output file is produced. The user defines how the data is to be split 
between files using control file statements. (See table 18.2). 

18.7.1 Memory organisation 

In order to understand the ideas behind block mode operation it is helpful to 
understand the way memory is organised in a 16 or 32 bit transputer. 

In general, a transputer with a 32 bit data bus will expect to read from memory 
in 32 bit words; the addresses of these words will be on word boundaries (Le. 
the address will always be divisible by 4, the two least significant bits will be 
0). EPROM devices, however, are usually 8 bits wide, and so it is necessary to 
have 4 EPROMs side by side to make up the 32 bit width. We identify these 4 
devices as being byte n (n = 0, 1, 2 or 3), where the least two significant bits of 
the address would together have the value n. 

Similarly a 16 bit transputer will expect to read from memory in 16 bit words. The 
address of each word will always be divisible by 2. The two EPROM devices 
required to make up the 16 bit width will be identified as bytes (n = 0 or 1). 

18.7.2 When to use block mode 

Block mode has three uses: 

• When the EPROM programmer being used is unable to split up the bytes 
from its input, in order to program separate byte wide devices. 

• When the EPROM programmer has insufficient memory to hold the entire 
image. 

• When it is required for some reason, to load the program to a different 
address in the EPROM programmer to that which it will occupy in the 
EPROM space. 

72 TDS 224 00 August 1990 



354 18 ieprom - EPROM program convertor 

18.7.3 How to use block mode 

When block mode is to be used, the user must first decide on the blocks to 
be output. For each block required an output. block statement must be 
specified in the control file. Each output. block statement must be followed 
by the four statements: 

start.offset 

end. offset 

byte. select 

output.address 

ieprom will scan the entire image and output those bytes that have an eprom 
space address between start. offset and end. offset and whose byte 
address matches the byte. select value. It will output this data to contiguous 
addresses starting at output. address. 

Note: if the image does not occupy all of the EPROM space then there may be 
some space at output. address before the data starts. 

18.8 Example control files 

Simple output 

For this example we will assume that the application is in bootable. btr, there 
is no memory configuration, there is 128k of EPROM space, and the programmer 
can take the whole image in one file. 

Then the control file will look like :­

EPROM description file for 
build of network program 

root.processor.type T4 

bootable.file bootable.btr 
eprom.space 20000 
output. format srecord 

output. all image.mot 

72 TDS 224 00 August 1990 



18.8 Example control flies 355 

Using block mode 

For this example we will assume that the application is in embedded.btr, 
there is a memory configuration in fastsram.mem, there is 16k of EPROM, 
the image is to be split into four blocks of 4k EPROMS, and that these EPROMS 
are to be programmed from locations 0000, 1000, 2000, and 3000 in the EPROM 
programmer's memory. 

The control file will look like :­

EPROM description file for 
build of embedded system 

root.processor.type Ta 

bootable.file embedded.btr 
memory. configuration fastsram.mem 

eprom. space 4000 

output. format intel 

output.block partl.ihx 
start. offset 0000 
end. offset 3FFF 
byte. select 0 
output.address 0000 

output.block part2.ihx 
start. offset 0000 
end. offset 3FFi' 
byte. select 1 
output.address 1000 

output.block part3.ihx 
start. offset 0000 
end. offset 3i'Fi' 
byte. select 2 
output.address 2000 

output.block part4.ihx 
start. offset 0000 
end. offset 3FFF 
byte. select 3 
output.address 3000 

72 TDS 224 00 August 1990 



356 18 ieprom - EPROM program convertor 

18.9 Error and warning messages 

The following is a list of error and warning messages the tool can produce: 

Command line parsing error 

This indicates that a command line option has been specified that the 
tool does not recognise. 

No input file specified 

This indicates that when trying to invoke the tool the user has not specified 
a control file to use as input. 

Unable to open control file 'filename' 

The control file specified cannot be found. Check the spelling of the 
filename and/or that the file is present. 

Unable to open configuration file 'filename' 

The memory configuration file specified in the control file cannot be found. 
Check the spelling of the file name and/or that the file is present. 

Unable to open bootable file 'filename' 

The bootable file specified in the control file cannot be found. Check the 
spelling of the filename and/or that the file is present. 

Unable to open output file lfilename' 

An output filename has been specified incorrectly. Check the format of 
the filename. 

Control file error 

This message will be received whenever an error is found in the format 
of the control file. A self explanatory message will be appended, giving 
details of what the tool expects the format to be. 

72 TDS 224 00 August 1990 



19 ilibr - librarian
This chapter describes the librarian tool ilibr that integrates a group of com­
piled code files into a single unit that can be referenced by a program. The 
chapter begins by describing the command line syntax, goes on to describe 
some aspects of toolset libraries, followed by some hints about how to build 
efficient libraries from separate modules. The chapter ends with a list of error 
messages which may be generated by the tool. 

19.1 Introduction 

The librarian builds libraries from one or more separately compiled units supplied 
as input files. The input files may be any of the following: 

• Object code files produced by ice. 

• Library files already generated by ilibr. 

• Object code files produced by the convertor tool icvlink. 

• Object code files produced by other compatible INMOS compilers such 
as oc the TCOFF occam 2 compiler. 

The library, once built, will contain an index followed by the concatenated mod­
ules. The index is generated and sorted by the librarian to facilitate rapid access 
of the library content by the other tools in the toolset, for example, the linker. 

19.2 Running the librarian 

The librarian takes a list of compiled files in TCOFF format and integrates them 
into a single object file that can be used by a program or program module. Each 
module in the input list becomes a selectively loadable module in the library. 
Input files can either be specified as a list on the command line or in indirect 
fJ'les. 

Compiled files may be concatenated for convenience before using the librarian. 
This may prove useful when dealing with a large number of input files. The 
number of file names allowed on a command line is system dependent. To 
avoid overflow, files may be concatenated or an indirect file used. It is the 
user's responsibility to ensure that the concatenation process does not corrupt 
the modules, for example by omitting to specify that the concatenation is to be 
done in binary mode. 

72 TDS 224 00 August 1990 



358 19 ilibr - librarian 

Note: when a library file is used as a component of a new library, its index is 
discarded by ilibr. 

The operation of the librarian in terms of standard file extensions is shown below. 

To invoke the librarian use the following command line: 

~ ilibr [filenames] {options} 

where: filenames is a list of input files or indirect files in any combination sepa­
rated by spaces. Any string not recognised as an option is treated as a 
filename. 

options is a list of one or more options, in any order, from Table 19.1. 

Options must be preceded by '-' for UNIX based toolsets and' I' for 
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces. 

Options must not appear within indirect files. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Example of use 

ilibr myprog.t4x myprog.t8x 

In this example, the files myprog. t4x and myprog. t8x (compiled for T4 
and T8 transputers respectively) are used to create a library. Because no output 
file name is specified on the command line, the library will be given the name 
myprog. lib. 

72 TDS 224 00 August 1990 



19.2 Running the librarian 359 

Option Description 

F filename 

:r 
L 

0 filename 

XM 

xo 

Specifies a library indirect file. 

Displays progress information as the library is built. 

Loads the librarian onto a transputer board and terminates. 

Specifies an output file. If no output file is specified the name 
is taken from the first input file and a . lib extension is added. 

Directs the transputer-hosted versions of the tool to be exe­
cuted so that they can be restarted without rebooting by the 
server. 

Directs the transputer-hosted versions of the tool to be exe­
cuted once on the transputer board and then terminate. 

Table 19.1 ilibr command line options 

19.2.1 Default command line 

A set of default command line options can be defined for the tool using the 
ILIBRARG environmental variable. Options must be specified using the syntax 
required by the command line. 

19.2.2 Library indirect files 

Library indirect files are text files that contain lists of input files, directives to 
the librarian, and comments. Filenames and directives must appear on different 
lines. Comments must be preceded by the double dash character sequence 
'--', which causes the rest of the line to be ignored. By convention indirect files 
are given the . lbb extension. 

Indirect files may be nested within each other, to any level. This is achieved 
by using the #INCLUDE directive. By convention nested indirect files are also 
given the extension .lbb. 

The following is an example of an indire~t file: 

-­ user's .lbb file 

userprocl.tco 
userproc2.tco 
userproc3.tco 
myconcat.tco 
#INCLUDE indirect.lbb 

-­ single modules 

concatenation of modules 
another indirect file 

72 TDS 224 00 August 1990 



360 19 ilibr - librarian 

userproc4.tco another single module 

The contents of a nested indirect file will effectively be expanded at the position 
it occured. 

To specify indirect files on the command line each indirect filename must be 
preceded by the 'F' option. 

19.3 Library modules 

Libraries are made up of one or more selectively loadable modules. Each module 
is selected via the library index. A module is the smallest unit of a library that 
can be loaded separately. 

19.3.1 Selective loading 

Libraries can contain the same routines compiled for different transputer types 
and (if non-C code is used) in different error modes. The linker decides which 
library modules are used and selects the library modules best suited to the 
compilation units. 

19.4 Library usage files 

Library usage files describe the dependencies of a library on other libraries or 
separately compiled code. They consist of a list of separately compiled units or 
libraries referenced within a particular library. The .liu files required by the 
toolse1's libraries are supplied by INMOS. Library usage files are text files and 
can be edited. 

11 the imakef tool is used then library usage files should be created for all 
libraries that are supplied without source. This is to enable the imakef tool 
to generate the necessary commands for linking. Library usage files can be 
created for a specific library by invoking imakef and specifying a .liu target. 

Such files are given the same name as the library file to which they relate but 
with an .liu extension. 

19.5 Building libraries 

This section describes the rules that govern the construction of libraries and 
contains some hints for building libraries. 

72 TDS 224 00 August 1990 



19.5 Building libraries 361 

19.5.1 Rules for constructing libraries 

Routines of the same name in a library must be compiled for different 
transputer types and error modes. 

2 Libraries that contain modules compiled for a transputer class (Le. TA or 
TB) are treated as though they contain a copy for each member of the 
class. 

3 Libraries that contain modules compiled in UNIVERSAL mode are treated 
as though they contain a copy for each of the three mixed language 
programming error modes (HALT, STOP, and UNIVERSAL). 

4 Libraries that contain modules compiled with interactive debugging infor­
mation enabled are treated as though they also contain a copy of the 
modules with interactive debugging disabled. 

19.5.2 Hints for bUilding libraries 

Routines that are likely to be used together in a program or procedure (such as 
routines for accessing the file system) can be incorporated into the same library. 
At a lower level, routines that will always be used together (such as those for 
opening and closing files) can be incorporated into the same module. 

Libraries can contain the same routines compiled for different transputer types, 
in different error modes (for mixed language programs only), and with interactive 
debugging information enabled or disabled. Only those modules actually used 
by the program are incorporated by the compiler and linked in by the linker. 

Where possible compile library input files with debugging enabled. This enables 
the debugger to locate. the library source if an error occurs inside the library. 

19.5.3 Optlmising libraries 

The librarian creates a library index which is used by the linker to select the 
required modules. The librarian sorts the index so that for a given processor 
type the optimum module is always selected by the linker. 

It is possible, by compiling for transputer classes, to optimise the size and content 
of any libraries to improve the speed of code execution and to provide the best 
code for a given processor. Transputer types and classes are described in 
section 5.3. 

The farrowing three approaches to building a library may be farrowed as appro­
priate; the third approach provides the greatest level of optimisation. 

72 TDS 224 00 August 1990 



362 19 ilibr - librarian 

Library build targeted at specific transputer types 

This method of building a library will limit the use of the library modules to specific 
transputer types. It is recommended as the simplest strategy to use provided 
the target transputers are known. Each module is compiled for all required 
transputer types. The resulting library may be large and contain a certain amount 
of duplication. 

Seml-optimised library build targeted at all transputer types 

This is the simplest way to build a library that covers the full range of transput­
ers. The user should compile each module to be included in the library for the 
following three general cases: 

T2, TA and T8 

The resulting library will be small in terms of the number of modules it will contain. 
Due to their generic nature the modules themselves may -be bulky and because 
they contain only the base set of instructions, the execution time for the program 
will tend to be slower than a more optimised approach. 

Optimised library 

The transputer type determines the instruction set used for the compilation. 
Transputer classes TA and TB provide the basic instruction sets common to. 
several transputer types. Transputer classes such as the T5 provide extended 
instruction sets but are targeted at fewer transputers than classes TA and TB. 

-
• 

The C compiler will attempt to use the dup instruction to produce better code. 
If this instruction would make the compilation more efficient but it is not present 
in the processor class being used for the compilation, a warning message is 
generated. 

In order to build a library which is both generalised enough to work for all 32-bit 
transputers and is then optimised for modules which require extended instruc­
tions sets the following approach is recommended: 

1 Compile all modules for class TA and type T8. This will provide modules 
which can be run on all 32-bit transputers. 

2 Any modules which could be compiled more efficiently using the dup 
instruction, should also be compiled for type T5. 

For 16-bit transputers. all modules should be compiled for T2. Any modules e 
which use the dup instruction should also be compiled for type T3. 

72 TDS 224 00 August 1990 



363 19.6 Error messages 

19.6 Error messages 

This section lists each error and warning message which may be generated by 
the librarian. Messages are in the standard toolset format which is explained in 
section A.6.1. 

19.6.1 Warning messages 

filename • bad format: symbol symbol mUltiply exported 

An identical symbol has occurred in the same file. There are three pos­
sibilities: 

• The same file has been specified twice. 

• The file was a library where previous warnings have been ignored. 

• A module in the file has been incorrectly generated. 

filename1 • symbol symbol also exported by filename2 

An identical symbol has occurred in more than one module. If the Iinker 
requires this symbol, it will never load the second module. 

19.6.2 Serious errors 

bad format: reason 

A module has been supplied to the librarian which does not conform to 
a recognised INMOS file format or has been corrupted. 

filename - line number· bad format: excessively long line in indirect file 

A line is too long. The length is implementation dependent, but on all 
currently supported hosts, is long enough to only be exceeded in error. 

filename - line number • bad format: file name missing after directive 

A directive (such as INCLUDE) has no file name as an argument. 

filename - line number· bad format: non ASCII character In indirect file 

The indirect file contains some non printable text. A common mistake is 
to specify a library or module with the F command line argument or the 
INCLUDE directive. 

72 TDS 224 00 August 1990 



364 19 ilibr - librarian 

bad format: not a TCOFF file 

The supplied file is not a library or module of any known type. 

filename - line number • bad format: only single parameter for directive 

The directive has been given too many parameters. 

command line error token 

An unrecognised token was found on the command line. 

filename • could not open for reading 

The named file could not be found/opened for reading. 

filename1 - line number • could not open filename2 for reading 

The file name specified in an INCLUDE directive could not opened. 

filename • could not open for writing 

The named file could not be opened for writing. 

filename • must not mix linked and linkable files 

The librarian is capable of creating libraries from compiled modules or 
linked units, but it is illegal to attempt to create a library from both. 

no flies supplied 

Options have been given to the librarian but no modules or libraries. 

filename • nothing of Importance In file 

The file name specified in a library indirect file or in an INCLUDE directive 
was empty or contained nothing but white space or comments. 

filename - line number • only one file name per line 

More than one file name has been placed on a single line within an 
indirect file. 

filename -line number • unrecognised directive directive 

An unrecognised directive has been found in an indirect file. 

72 TDS 224 00 August 1990 



20 ilink - tinker
This chapter describes the linker tool ilink which combines a number of com­
piled modules and libraries into a linked object file. The chapter begins with a 
short introduction to the Iinker, explains the command line syntax and goes on 
to describe Iinker indirect files and the main Iinker options. The chapter ends 
with a list of Iinker messages. 

20.1 Introduction 

The linker links a number of compiled modules and library files into a single 
linked object file, resolving all external references. The Iinker may be used to 
link object files produced by TCOFF compatible compilers including icc, by the 
librarian ilibr, or by the file format convertor icvlink.lt can also be used 
with other TCOFF compatible compilers such as the occam 2 compiler oc. 
Code produced by the linker can be used as input to the configurer and collector 
tools to produce a bootable code file. 

The linker can be driven directly from the command line or indirectly from a linksr 
indirect file. This is a text file which contains a list of files to be linked, together 
with directives to the Iinker. 

The Iinker is designed to accept input files in the Transputer Common Object File 
Format (TCOFF) supported by this release of the toolset. However, the Iinker 
can be directed to produce special format output files for use by the iboot or 
iconf tools used in previous releases of the toolset. Files for input to these 
tools are generated in Linker File Format (LFF). 

The operation of the Iinker in terms of standard input and output file extensions 
is shown below. 

.too 

.lib 

Note: The Iinker does not support the pre-Iinking of files. 

72 TDS 224 00 August 1990 



366 20 ilink - linker 

20.2 Running the linker

To invoke the linker use the following command line:

ilink [filenames] {options} 

where: fi/enames is a list of compiled files, library files, or files converted from 
previous toolsets using icvlink. 

options is a list of any of the optio.ns given in tables 20.1 and 20.2. 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

If an error occurs during the linking operation no output files are produced. 

Examples of use: 

UNIX based toolsets: 

ice hello 
ilink hello.teo -f startup.lnk 
icollect hello./ku -t
iserver -sb hello.btt -se

MS-DOS and VMS based toolsets: 

ice hello 
ilink hello.teo If startup.lnk 
icollect hello.tku It
iserver I sb hello.btt I se

In this example a compiled file is linked for the default T414 transputer, using the 
startup file startup .lnk. The example also shows the steps for compiling, 
booting and loading the program. 

72 TDS 224 00 August 1990 



367 20.2 Running the linker 

Option 

TA 

TB

T2l2

T222

M2l2

T2

T22 S

T3

T400

T4l4

T4 

_ T425 

TS

T800

T8

T80l

T80S

T9

H

S 

x 

Description 

Specifies target transputer class TA (T400, T414, T42S, T800,
T801, T80S)

Specifies target transputer class TB (T400, T414, T42b)

Specifies a T212 target processor.

Specifies a T222 target processor. Same as T2l2.

Specifies a M212 target processor. Same as T2l2.

Same as T2l2, T222 and M2l2. 

Specifies a T22S target processor.

Same as T22S.

Specifies a T400 target processor. Same as T42S.

Specifies a T414 target processor.
This is the default processor type and may be omitted when linking
for a T414 processor.

Same as T4l4 (default).

Specifies a T425 target processor.

Same as T400 and T42S.

Specifies a T800 target processor.

Same as T800.

Specifies a T801 target processor. Same as Teos.

Specifies a T80S target processor.

Same as T80l and T80S.

Generates the linked unit in HALT mode. This is the default mode 
for the linker and may be omitted for HALT mode programs. This 
option is mutually exclusive with the'S' option. 

Generates the linked unit in STOP mode. This option is mutually 
exclusive with the 'H' option. 

Generates the linked unit in UNIVERSAL mode. See section 20.4.2 
below. 

Table 20.1 ilink command line options 

72 TDS 224 00 August 1990 



368 20 ilink - IInker 

Option Description 

T 

LB 

" 

Le 

Specifies that the output is to be generated in TCOFF for­
mat. This format is the default format. 

Specifies that the output is to be generated in LFF format, 
for use with the iboot bootstrap tool and iconf config­
urer tool used in previous toolsets. 

Specifies that the output is to be generated in LFF format, 
for use with the iconf tool (supported by previous issues 
of the toolset). 

Specifies a linker indirect file. 

Displays progress information as the linking proceeds. 

F filename 

I 

KB memorysize Specifies virtual memory required in Kilobytes. 

Loads the tool onto the transputer board and terminates. L 

ME entryname Specifies the name of the main entry point of the program 
and is equivalent to the #mainentry directive (see be­
low). 

Generates a module information file with the specified 
name. 

Specifies an output file. 

Allows unresolved references. 

Directs the transputer-hosted versions of the tool to be ex­
ecuted so that they can be restarted without rebooting by 
the server. 

MO filename 

0 filename 

U 

XM 

xo Directs the transputer-hosted versions of the tool to be ex­
ecuted once on the transputer board and then terminate. 

y Disables interactive debugging for occam code. Used 
only when linking in occam modules compiled with inter­
active debugging disabled. 

Table 20.2 ilink command line options 

20.2.1 Default command line parameters 

A set of default command line options can be defined for the tool using the 
lLlNKARG environment variable. Options must be specified using the standard 
command line format. 

72 TDS 224 00 August 1990 



20.3 Llnker indirect files 369 

20.3 Linker indirect files 

Linker indirect files are text files containing lists of input files and commands to 
the Iinker. Indirect files are specified on the command line using the 'F' option. 

Linker indirect files can contain filenames, linker directives, and comments. File­
names and directives must be on separate lines. Comment lines are introduced 
by the double dash ('--') character sequence and extend to the end of line. 
Comments must occupy a single line. 

Indirect files can include other indirect files. 

20.3.1 Llnker directives 

The Iinker supports six directives which can be used to fine tune the linking 
operation. Linker directives must be incorporated in indirect files (they cannot 
be specified on the linker command line) and are introduced by the hash Cl') 
character. 

The six linker directives are summarised below and described in detail in the 
following sections. 

Directive Description 

#alias 

#define 

#include 

#mainentry 

#reference 

#section 

Defines a set of aliases for a symbol name. 

Assigns an integer value to a symbol name. 

Specifies a Iinker indirect file. 

Defines the program main entry point. 

Creates a reference to a given name. 

Defines the linking priority of a module. 

Note: All symbol names are case sensitive. 

72 TDS 224 00 August 1990 



370 20 i1ink - IInker 

#alias basename {aliases} 

The #a1ias directive defines a list of aliases for a given base name. Any 
reference to the alias is converted to the base name before the name is resolved 
or defined. For example, if a module contains a call to routine 'proc_a', which 
does not exist, then another routine 'proc_d' may be given the alias 'proc..a' in 
order to force the call to be made to routine 'proc_d'. 

In the above example the reference to 'proc_a' is considered to be resolved. 
Modules may be loaded from the library for 'proc_d' but the Iinker will not attempt 
to search for library modules for 'proc-s'. If a procedure called 'proc-s' is found 
in any module then an error will result as the symbol will be multiply defined. 

#define symbolname value 

The #define directive defines a symbol and gives it a value. This value must 
either be an optionally signed decimal integer, or an unsigned hexadecimal in­
teger. (If it is the latter it must be preceded by a # sign). 

#include filename 

The #inc1ude directive allows a further linker indirect file to be specified. Linker 
indirect files can be nested to any level. The following is an example of nested 
indirect files: 

-- user's .lnk file: 

userprocl.tco module 
#mainentry proc a main entry point directive 
#include sUb.lnk nested indirect file 

-- user's sub.lnk file: 

userproc2.tco further modules 
userproc3.tco 
hostio.lib library 

#mainentry symbolname 

The #mainentry directive defines the main entry point of the program ie. 
the lowest level functions of the program. This directive is equivalent to the 'ME' 
command line option. Only one main entry point may be specified. If it is omitted 
the linker will select the first valid entry point in its input as a default. 

72 TDS 224 00 August 1990 



371 20.3 Llnker indirect files 

The supplied indirect files for linking C programs define the C system main entry 
point. 

#reference symbolname 

The #reference directive creates a forward reference to a given symbol. This 
allows names to be made known to the linker in advance, or forces linking of 
library modules that would otherwise be ignored. The purpose is to allow the 
inclusion of library initialisation routines which might not otherwise be included. 
For example: 

#reference so.open 

The above example causes so.open to be included in the link, whether it is 
needed or not. 

#section name 

The #section enables the user to define the order in which particular modules 
occur in the executable code. 

In order to use this directive the program modules must have been compiled 
using the compiler directive #pragma IMS_linkaqe. Details of the syntax 

.. can be found in section 11.3.11. 

The linkage directive associates a section name with the code of a compilation 
module. A section name may take the default value "pri%text%base" or a 
name specified by the user. 

The linker will place modules, associated with the section name 
"pri%text%base", first in the code of the linked unit, in the order in which 
these modules are encountered. When the linker directive #section is used 
this default condition is overridden. The modules identified by user defined sec­
tion names will be placed first in the linked module, in the order in which the 
#section directives are encountered. These will be followed by any other 
modules in an undefined order at the end of the linked unit. For example: 

#section first%section%name
#section second%section%name

In the above example any modules identified by first%section%name will 
be linked first, followed by modules identified by second%section%name, 
followed by all other modules not identified by a section name. 

72 TDS 224 00 August 1990 



372 20 ilink - IInker 

20.3.2 Llnker startup files 

The linker command line must include a Iinker startup file which specifies to the 
linker where to locate the runtime library. Two files are supplied: startup .lnk 
which should be used for all single transputer programs and multitransputer _ 
programs which use the full library; and startrd.lnk which should be used ., 
for multitransputer programs which use the reduced library. 

Both link startup files are in standard Iinker indirect file format. 

For mixed .language programs that incorporate occam code a further Iinker 
indirect file may be included on the command line. One of three files may be 
selected, each file supports different target processor types, as shown below. 

Linker indirect file Target processors 
occam2.1nk T212/222/225/M212 
occama.lnk T400/414/425/TAlTB 
occam8.1nk TSOO/SO1/S05 

Each file contains a list of occam library files which may be required to be 
linked, but which are additional to those obviously referenced by the program. 
Depending on the other inputs and options specified on the command line the 
Iinker will select which libraries it requires from the supplied indirect file. 

20.4 Linker options 

The following sections describe the main command options which may be spec­
ified to the Iinker. 

20.4.1 Processor types 

A number of options are provided to enable the user to specify the target pro­
cessor for the linked object file, see Table 20.1. Only one target processor or 
transputer class may be specified and th1s must be compatible with the proces­
sor types or transputer class used to compile the modules. (See section 5.3 for 
details of transputer classes). 

If no target processor is specified, the processor type for the linked object file 
will default to a T414 processor type. 

If any input file in the list is incompatible with the processor type in use, the link 
fails and an error is reported. 

72 TDS 224 00 August 1990 



20.4 Llnker options 373 

20.4.2 Error modes - options H, S and x 

Three error modes are provided by the toolset for linking C programs with mod­
ules compiled using other INMOS language toolsets. All programs written ex­
clusively in C are compiled by ice in UNIVERSAL mode. 

The error modes provided for mixed language programming are as follows: 

HALT An error halts the transputer immediately. 

STOP An error stops the process and causes graceful degradation. 

UNIVERSAL Modules compiled in this mode may be run in either HALT or 
STOP mode depending on which mode is selected at link time. 

Modules that are to be linked together must be compiled for compatible error 
modes. Table 20.3 indicates the compilation error modes which are compatible 
and the possible error modes they may be linked in. 

Compatible ilink 
error modes options 

HALT, UNIVERSAL H 

STOP, UNIVERSAL S 

UNIVERSAL x 

Table 20.3 ilink error modes 

Note: modules which have been compiled in UNIVERSAL error mode may be 
linked in this mode but the resulting linked unit will be treated by the icconf 
and icollect tools as if it had been linked in HALT mode. 

The Iinker will produce an error if an input file is in a mode incompatible with the 
command line options or defaults. 

20.4.3 TCOFF and LFF output files - options T, LB, Le 

These three options enable the format of the linked unit output file to be changed. 
The Iinker will default to option T if none is specified. 

Option 'T' specifies that the linked unit is to be output in TCOFF format. This 
file may then be processed by other tools in the current toolset, for example, the 
configurer icconf and the collector icollect. 

72 TDS 224 00 August 1990 



374 20 ilink - IInker 

The 'LB' and 'LC' options specify that the linked unit is to be output in LFF format 
so that it is compatible with previous toolsets. The 'LB' option produces a file 
compatible with the iboot and iconf tools used by previous toolsets. The 
specified main entry point of the linked program is then available for bootstrap­
ping by iboot or configuring by iconf. 

The 'LC' option is used in mixed language programming for occam programs 
only. No main entry point need be specified. 

When the 'LB' and 'Le' options are used the output file will not be compatible 
with the current toolset. 

20.4.4 Display information - option I 

This option enables the display of linkage information as the link operation pro­
ceeds. 

20.4.5 Virtual memory - option KB 

The KB option allows the user to specify how much memory the Iinker will use 
for storing the image of the users program. By default the Iinker will attempt 
to store the entire image in memory. In situations where memory is limited, an 
amount (>= 1Kbytes) may be specified. If the program is larger than the amount 
specified then the linker will use the host filing system as an intermediate store. 
A reduction in speed may be expected. 

20.4.6 Main entry point - option ME 

The ME option defines the main entry point of the program ie. the point from 
which linking will start. This option is equivalent to the #mainentry directive 
and takes as its argument a symbol name which is case sensitive. 

Only one main entry point may be specified. If it is omitted the Iinker will select 
the first valid entry point in its input as a default. 

20.4.7 Link map fllename - option MO 

This option causes a link map file to be produced with the specified name. A 
file extension should be specified as there is no default available. If the option 
is not specified a separate link map file is not produced. 

72 TDS 224 00 August 1990 



20.5 Selective linking of library modules 375 

20.4.8 Linked unit output file - option 0 

The name of the linked unit output file can be specified using the '0' option. If 
the option is not specified the output file is named after the first input file given 
on the command line and a . lku extension is added. If the first file on the 
command line is an indirect file the output file takes the name of the first file 
listed in the indirect file. 

Note: That because there is no restriction on the order in which files may be 
listed it is up to the user to ensure that his output file is named appropriately. 

20.4.9 Permit unresolved references - option u 

The linker normally attempts to resolve all external references in the list of input 
files and reports any that are unresolved as errors. 

Sometimes it is desirable to allow unresolved external references, for example 
during program development. The 'u' option allows the link to proceed to com­
pletion by assuming unresolved references are to be resolved as zero. Warning 
messages may still be generated and the program will only execute correctly if 
such references are in fact redundant. 

20.4.10 Disable interactive debugging - option Y 

This option applies only to the occam modules in mixed language programs. 
The option directs the Iinker to select modules that use sequences of transputer 
instructions for i/o instead of a set of library routines. 

20.5 Selective linking of library modules 

Library modules that are compiled for incompatible processor types or error 
modes are ignored by the linker. This allows library modules to be selectively 
loaded for specific processor types or transputer classes. 

The standard C run time library is supplied in several forms to cover the complete 
range of transputer types. User libraries that are likely to be used on different 
transputer types can adopt the same strategy. 

Libraries are also selected for linking on the basis of previous usage. Modules 
that are used by several input files are linked in only once. 

72 TDS 224 00 August 1990 



376 20 ilink - linker 

20.6 The link map file 

A file containing a map of the code being linked will be generated if the command 
line option MO is specified. 

The file is generated in text format and contains information which may assist 
the user during program debugging. The map contains information about two 
categories of input file: separate compilation units, and library modules. The 
following information is included: 

• Details of the target processor. 

• Details of the main entry point.- its source and the amount of workspace 
and vector space used. 

• A list of the linkage sections used indicating the number of words each 
occupies. 

• A list of modules used, indicating the source of the module, error mode, 
address, size and the first reference used to call it. (Addresses are 
displayed as byte offsets from the start of the code). 

Independent of whether the MO option is used, the module data and details of 
the target processor are always included in the linked unit output file in the form 
of a comment. 

20.7 Using imakef for version control 

The imakef tool may be used to simplify the linking of complex programs, 
particularly those which use libraries that are nested within other libraries or 
compilation units. 

Note: for imakef to function the file extensions described in chapter 22 must 
be used. 

20.8 Error messages 

This section lists each error and warning message that can be generated' by 
the linker. Messages are in the standard toolset format which is explained in 
appendix A. 

72 TDS 224 00 August 1990 



20.8 Error messages 377 

20.8.1 Warning messages 

filename • bad format: reason 

The named file does not conform to a recognised INMOS file format or 
has been corrupted. 

Size bytes too large for 16 bit target 

The code part of the linked unit has exceeded the address space of the 
T212 derived processor family. 

filename - symbol, implementation of channel arrays has changed 

Only generated in mixed language programs where occam code is used 
that was compiled in LFF format using previous INMOS toolsets. LFF 
files are often generated so that the LFF configurer may be used, but it 
should be noted that channel arrays should not be used as parameters 
to configured procedures since they are implemented differently in the 
new occam compiler and the old configurer. 

filename • symbol symbol not found 

The specified symbol was not found in any of the supplied modules or 
libraries. 

file 1 • usage of symbol out of step with file2 

May be generated when linking mixed language programs incorporating 
modules written using language such as occam which have a 'OSE 
file directive which causes the compiler to scan the file for details con­
cerning certain program resources. It is therefore essential that this file 
be unchanged at link time. This diagnostic indicates that this is not the 
case. There are several possible causes: 

file2 has been recompiled after file1, in which case file1 requires 
recompiling. 

The file that occurred in the 'USE directive has been replaced by 
a different version of the file at link time. 

The file that occurred in the 'OSE directive has not been supplied 
to the linker, but the Iinker has located a different version of a 
required entrypoint elsewhere. 

72 TDS 224 00 August 1990 



378 20 ilink - linker 

The occam compiler may need to scan certain libraries, of which 
the user is unaware. Specifying one of the linker indirect files 
occam2 . lnk, occama . lnk or occam8 . lnk should take care 
of these 'hidden' libraries. 

20.8.2 Errors 

filename • name clash with symbol from filename 

May be generated when linking mixed language programs. 

In languages such as occam entrypoints may be scoped, Le. extra 
information is associated with each symbol to indicate which version of 
that entry point it is. This allows programs to be safely linked even though 
there are several different versions of the same entrypoint occurring at 
different lexical levels within the program. 

This error indicates that a language without occam-type scoping has 
been mixed with a scoped language and a name conflict has occurred 
between a scoped and non scoped symbol. 

filename • symbol symbol multiply defined 

The symbol, introduced in the specified file, has been introduced previ­
ously, causing a conflict. The same module may have been supplied to 
the linker more than once or there may be two or more modules with the 
same entry point or data item defined. 

filename • symbol symbol not found 

The specified symbol was not found in any of the supplied modules or 
libraries. 

filename • usage of symbol out of step with namefile 

May be generated when linking mixed language programs incorporating 
modules written using language such as occam which have a IUSE 
file directive which causes the compiler to scan the file for details con­
cerning certain program resources. It is therefore essential that this file 
be unchanged at link time. This diagnostic indicates that this is not the 
case. There are several possible causes: 

file2 has been recompiled after file1, in which case file1 requires 
recompiling. tit 

72 TDS 224 00 August 1990 



20.8 Error messages 379 

The file that occurred in the #USE directive has been replaced by 
a different version of the file at link time. 

The file that occurred in the #USE directive has not been supplied 
to the linker, but the Iinker has located a different version of a 
required entrypoint elsewhere. 

The occam compiler may need to scan certain libraries, of which 
the user is unaware. Specifying one of the Iinker indirect files 
occam2 . lnk, occama . lnk or occam8 . lnk should take care 
of these 'hidden' libraries. 

Serious errors 

filename • bad format: reason 

The named file does not conform to a recognised INMOS file format or 
has been corrupted. 

filename - line number· bad format: excessively long line in indirect file 

A line is too long. The length is implementation dependent, but on all 
currently supported hosts it is long enough so as only to be exceeded in 
error. 

filename - line number· bad format: file name missing after directive 

A directive (such as include) has no file name as an argument. 

filename - line number· bad format: directive invalid number 

A numeric parameter supplied to a directive does not correspond to the 
appropriate format. 

filename • bad format: multiple main entry points encountered 

A symbol may be defined to be the main entry point of a program by a 
compiler. Only one such symbol must exist within a single link. 

filename • linenumber· bad format: non ASCII character in indirect file 

The indirect file contains some non printable text. A common mistake is 
to specify a library or module with the 'F' command line argument or the 
include directive. 

72 TDS 224 00 August 1990 



380 20 ilink - IInker 

filename - bad format: not linkable file or library 

The Iinker expects that all files names presented without a preceeding 
switch (on the command line) or directive (in an indirect file) are either 
libraries or modules. 

filename - line number - bad format: only single parameter for directive 

The directive has been given too many parameters. 

Cannot create output without main entry point 

No main entry point has been specified. 

Command line: 1k minimum for paged memory option 

When using the KB option, the amount of memory used to hold the image 
of the program being linked is specified. There is a minimum size of 1k. 

Command line: token 

An illegal token has been encountered on the command line. 

Command line: bad format number 

A numerical parameter of the wrong format has been found. 

Command line: image limit mUltiply specified 

The command line option'KB' has been specified more than once. 

Command line: 'load and terminate' option set, some arguments invalid 

Options to load and terminate the Iinker have been specified in conjunc­
tion with other command line options. The Iinker cannot excute these 
options if it has been instructed to 'terminate first. 

Command line: multiple debug modes 

The command line option 'y' has been specified more than once. 

Command line: multiple error modes 

More than one error mode has been specified to the linker. 

72 TDS 224 00 August 1990 



20.8 Error messages 381 

Command line: multiple module files specified 

The command line option 'MO' has been specified more than once. 
. 

Command line: mUltiple output files specified 

The command line option '0' has been specified more than once. 

Command line: multiple target type 

More than one target processor type has been specified to the Iinker. 

Command line: only one output format allowed 

The options 'T', 'LB' and 'Le' are mutually exclusive. 

filename - could not open for Input 

The named file could not be found/opened for reading. 

filename - could not open for output 

The named file could not be opened for writing. 

filename - line number - could not open for reading 

The file name specified in an include directive could not opened. 

could not open temporary file 

The 'I(B' option has been used in a directory where there is no write 
access or not enough disc space. 

filename - mode: mode - linker mode: mode 

The linker has been given a module to link which has been compiled 
with attributes incompatible with the options (or lack thereof) on the Iinker 
command line. 

Multiple main entry points specifi&d 

The main entry point has been specified on the command line or in an 
indirect file more than once. 

72 TDS 224 00 August 1990 



382 20 ilink - IInker 

filename - line number - directive not enough arguments 

The wrong number of arguments to a directive. 

filename - nothing of importance in file 

The file name specified in an include directive was empty or contained 
nothing but white space or comments. 

Nothing to link 

Various options have been given to the Iinker but no modules or libraries. 

filename .- line number - only one file name per line 

More than one file name has been placed on a single line within an 
indirect file. 

filename - line number - directive too many arguments 

The wrong number of arguments to a directive. 

Unknown error modes not supported In the LFF format 
Unknown processors not supported In the LFF format 

When generating LFF format files, certain constructs will have no repre­
sentation. For example processor types that have come into existence 
since the LFF format was defined. 

filename - line number - unrecognised directive directive 

An unrecognised directive has been found in an indirect file. 

20.8.3 Embedded messages 

Tools that create modules to be linked with ilink may embed "messages" 
within them. Three levels of severity exist; serious, warning, and message. The 
documentation of the appropriate tool should be consulted for more information. 
The format of these messages is as follows: 

Serious - ilink - filename - message: message 

Warning - ilink - filename - message: message 

Message - ilink - filename - message 

72 TDS 224 00 August 1990 



21 ilist - binary lister
This chapter describes the binary lister tool ilist, which takes an object file 
and displays information about the object code in a readable form. The chapter 
provides examples of display options and ends with a list of error messages 
which may be generated by ilist. 

21.1 Introduction 

The binary lister tool ilist reads an object code file, decodes it, and displays 
useful information about the object code on the screen. The output may be 
redirected to a file. Command line options control the category of data displayed. 

The ilist tool can decode and display object files produced by the Parallel C 
compiler icc, the Iinker, librarian, file convertor, configurer and collector tools, 
and by other TCOFF compatible compilers such as the occam 2 compiler oc. 
Text files, file formats produced by ieprom and dynamically loadable modules 
can also be displayed using ilist. Files already in editable ASCII format are 
listed without further processing. 

The ilist tool will also list compilation and linked units in Linker File Format 
(LFF) which was used by previous INMOS toolsets. 

e Object code files reflect the modular structure of the original source. Single unit 
compilations produce a file containing a single object module, whereas units 
containing many compilations, such as libraries and concatenations of modules, 
produce object files with as many object modules. The data produced by ilist 
reflects the modular composition of object files. 

21.2 Data displays 

There are several categories of data that can be displayed. Categories are 
selected by options on the command line. 

72 TDS 224 00 August 1990 



384 21 ilist - binary IIster 

The main categories are: 

• Symbol data - symbol names in each module. Information is displayed 
in tabular form. 

• External reference data - names of external symbols used by each mod­ e 
ule. Information is displayed in tabular form. 

• Module data - data for each module including target processor, compi­
lation mode, and module file name. 

• Code listing - code contained in each module, displayad in hexadecimal 
format. 

• Procedural data - for external occam calls only. 

• Index data - the content of library indexes. 

Except where indicated, the examples used in this chapter show the output 
generated for a compiled • tco file generated by ice. 

21.3 Running the lister

To invoke the binary lister use the following command line:

~ ilist {filenames} {options} 

where: filenames is a list of one or more files to be displayed. 

options is a list of one or more of the options given in Table 21.1. Options 
will only be applied to files of the appropriate file type. 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

72 TDS 224 00 August 1990 . 



21.3 Running the IIster 385 

Example: 

ilist hello. teo - a UNIX based toolsets 
ilist hello. teo I a MS-DOS and VMS based toolsets 

In this example ilist is being instructed to display all the symbol data for the 
file hello. teo. 

Option Description 
A Displays all the available information on the symbols used 

within the specified modules. 

c Displays the code in the specified file as hexadecimal. This 
option also invokes the -Tt option by default. 

E Displays all exported names in the specified modules. 
Displays the specified file(s) in hexadecimal format. 

I 

H 

Displays full progress information as the Iister runs. 

L Loads the tool onto the transputer board and terminates. 

Displays module data.

N

M 

Displays information from the library index. 

o filename Specifies an output file. If more than one file is specified the 
last one specified is used. 

p Displays any procedural interfaces found in the specified mod­
ules. 

R reference Displays the library module(s) containing the specified refer­
ence. This option is used in conjunction with other options to 
display data for a specific symbol. If more than one library file 
is specified the last one specified is used. 

T Displays a full listing of a file in any file format.
W Causes the Iister to identify a file. The filename (including the 

search path if applicable) is displayed followed by the file type. 
This is the default option. 

x Displays all external references made by the specified mod­
ules. 

XM Directs the transputer-hosted versions of the tool to be exe­
cuted so that they can be restarted without rebooting by the 
server. 

XO Directs the transputer-hosted versions of the tool to be exe­
cuted once on the transputer board and then terminate. 

Table 21.1 ilist command line options 

72 TDS 224 00 August 1990 



386 21 ilist - binary IIster 

ilist will attempt to identify the file type by its contents. If filenames only are 
supplied, ilist uses the default option 'W'. 

Table 21.2 lists the available options and indicates which file formats they may 
be used to list. The table also lists the file types it is recommended to use with 
each option, in order of usefulness. 

Option Permitted 

file format 

Recommended 

usage 

H Any format 

0 Any format 

T Any format 

W Any format 

. lib, .teo, .lkuA TCOFF only 

C TCOFF only .teo, .lku, .lib 

E TCOFF only . lib, .teo, .lku 

M TCOFF only .teo, .lku, .lib 

N TCOFF libraries only .lib 
p TCOFF only .lib, .teo, .lku 

R TCOFF libraries only .lib 

X TCOFF only .lib, .teo, .lku 

Table 21.2 Recommended options 

ilist sends its output to the host standard output stream, normally the terminal 
screen. Facilities available on the host system may allow you to redirect the 
output to a file; or send it to another process, such as a sort program. For 
details of these facilities consult the documentation for your system. 

21.3.1 Default command line parameters 

A set of default command line options can be defined for the tool using the 
ILISTARG environment variable. Options must be specified using the standard 
command line format. 

21.4 Specifying an output file - option 0 

The 0 option enables the user to redirect the display data to an output file. If more 
than one output file is specified on the command line then the last one specified 
is used. File extensions should be specified; defaults are not assumed. 

72 TDS 224 00 August 1990 



21.5 Symbol data - option A 387 

Display options are described in the following sections. 

21.5 Symbol data - option A 

This option displays all the available information about the symbols used within 
the specified modules. A tabular format is used. The data produced by this 
display may require skilled interpretation. 

The following information is given: 

• Symbol name. 

• Section attributes, if applicable. 

• Symbol attributes. 

• The number of the symbol within the module. 

• Module name. 

• Target processor. 

• Error mode. 

Certain attributes apply only to symbols which are section names. If they are 
applicable, these attributes are indicated by the following nomenclature and dis­
played as a character string: 

R - Read section. 

W - Write section. 

X - Execute section. 

o - Debug section. 

V - Virtual section. 

Attributes for all symbols, including section names, are also indicated by a char­
acter string, using the following nomenclature: 

72 TDS 224 00 August 1990 



388 21 ilist - binary IIster 

L Symbol local to the module. 

E - Symbol exported from the module. 

I Symbol imported to the module. 

W Weak attribute, indicates that the symbol takes the value 0 when not 
defined. 

C Conditional attribute, indicates that the first value given to the symbol 
is always used. 

U - Unindexed, indicates that the symbol is not present in the library index. 

P - Provisional attribute, indicates that the last value given to the symbol 
is always used. 

o Indicates that the symbol is .an origin symbol. The origin symbol is 
used by the Iinker to check the origin of the module. 

Symbol attributes are displayed immediately after the section attributes, and each 
attribute is displayed at a specific position in the string. Attributes which are not 
present are indicated by a hyphen 1_'. 

The position of each attribute in the string is as follows: 

RWXDV LEIWCUPO 

Figure 21.1 provides an example of the symbol data displayed for a single •teo 
file by the 'A' option. 

modul.'tabl.%baa. ----v -E------ 0 b.llo.c T414 X 
modul.%number ----­ L------- 1 bello.c T414 X 
atatic%baa. ----v -E------ 2 b.llo.c T4l4 X 
local%atatic ----­ L------- 3 hello.c T414 X 
'lab ----­ L------- 4 hello.c T414 X 
text%baa. R-X-­ -B------ 5 h.llo.c T414 X 
local'text ----­ L------- 6 hello.c T414 X 
main ----­ -E------ 7 hello.c T414 X 
_IMSyrintf ----­ --I----- 8 hello.c T414 X 
firat%init%block ----­ -E--CU-­ 9 hello.c T414 X 
next%init%block ----­ -E---UP­ 10 hello.c T4l4 X 
next%init%block ----­ -E---UP­ 11 hello.c T414 X 

Figure 21.1 Example output produced by the A option. 

21.6 Code listing - option c 

This option produces a full listing of the code in the same format as that generated 
by the 'T' option, but with the addition of a hex listing of the code at each 
LOAD_TEXT directive. This option may be accompanied by the 'T' option; if the e 
IT' option is not specified it is supplied automatically.

72 TDS 224 00 August 1990



21.7 Exported names - option E 389 

The hex listing consists of the address followed an ASCII hex dump of the code, 
followed by an a representation of the code in ASCII characters. The format is 
as follows: 

address ASCII hex ASCII characters 

where: address is the address of the first byte on the line, expressed as an offset 
from the start of the module. 

ASCII hex is the hex representation of the code 

ASCII characters are the ASCII characters corresponding to the hex 
code. 

In all cases code is read from left to right. If a value is not printable as an ASCII 
character it is replaced by a dot (.). 

Figure 21.2 shows an example of the output produced by listing a •teo file. The 
example shows only the hex listing for an individual LOAD_TEXT entry; normally 
this appears embedded within the full display produced by the 'T' option. 

000000D8 4521FB7l 2l9222FO 68656C6C 6F20776F E! .q!." .hello wo 
OOOOOOEB 726C640A 00202020 rld .. 

Figure 21.2 Example display produced by the C option. 

21.7 Exported names - option E 

The output from this option is in a tabular format. It consists of a list of names 
exported by the modules. This option also displays any globally visible data. 

72 TDS 224 00 August 1990 



390 21 ilist - binary IIster 

The following information is given by the display: 

• Exported name. 

• The name of the module in which the exported name is found. 

• Language used. 

• Target processor. 

• Error mode. 

Figure 21.3 shows the output produced by listing a •too file. 

-> hello.c T414 X ) 
Figure 21.3 Example display prodL._dd by the E option. 

21.8 Hexadecimal/ASCII dump - option H 

This option provides a display of the specified files in hexadecimal and ASCII e 
format. The option does not attempt to identify file types and may be used to 
display any files which the lister has previously identified incorrectly. 

The output takes the form of a hexadecimal representation of the whole of the 
file content. The display has a similar appearance to that produced by the C 
option, however, the C option only functions on code found within the file. 

Each module is displayed as a contiguous block of lines, where each line has 
the format: 

address ASCII hex ASCII characters 

72 TDS 224 00 August 1990 



21.9 Module data - option M 391 

where: address is the address of the first byte on the line, expressed as an offset 
from the start of the module. 

ASCII hex is the hex representation of the characters found. 

ASCII characters are the ASCII characters corresponding to the hex 
code. 

In all cases code is read from left to right. If a value is not printable it is replaced 
by a dot (.). 

Figure 21.4 shows the display produced by listing the text file hello. c using 
the 'H' option. 

00000000 23696E63 6C756465 203C7374 64696F2E 'include <stdio. 
00000010 683EOAOA 696E7420 6D6l696E 28290A7B h> .. int main () . { 
00000020 OA202070 72696E74 66282268 656C6C6F . printf ("hello 
00000030 20776F72 6C645C6E 22293BOA 7DOA world\n");.} . 

Figure 21.4 Example display produced by the H option. 

21.9 Module data - option M 

This option displays any header information which is present. This may include 
version control data, general comments that may have been appended to the 
file during use of the toolset and copyright information. The data is displayed for 
individual modules in the object file and includes: 

• Module name. 

• Transputer type and compilation error mode. 

• Language type. 

• Version control data. 

• Comments inserted by the toolset, for example, copyright clauses. 

Data is displayed in separate blocks for each module. Some of the data is also 
used by other tools in the toolset, for example, some comments are used by 
the dSbugger tool idebuq while version information is used by some tools for 
compatibility testing. 

72 TDS 224 00 August 1990 



392 21 ilist - binary IIster 

When linked units are displayed using this option, a long comment will be dis­
played. This comment gives details of the allocation of memory to each sepa­
rately compiled code and library module used in the linked module. The following 
information is given in tabular format: 

• Code type - Separately compiled code (SC) or library module (LIB). 

• Module name. 

• Address offset in linked module. 

• Start address. 

• End address. 

• Reference in library (if applicable) used to locate the relevant library mod­
ule. 

The example in figure 21.5 shows the listing displayed for a . teo file. 

MODULE: ANSI C 1'414 X 
VERSION: iee 'he110.o 

Figure 21.5 Example display produced by the M option. 

21.10 Library index data - option N 

This option is used to list library indexes. The data is given in a tabular format. 
For each entry in the index the following information is given: 

• The address of the module in the library. 

• The symbol name. 

• The language the module is written in. 

• The target processor type. 

• The error mode used. 

Figure 21.6 shows the output produced by the 'N' option on a library file consisting 
only of the compiled object module for a simple 'Hello world' program. 

72 TDS 224 00 August 1990 



21.11 Procedural Interface data - option P 393 

T414 X(00000082 aa.l.n J 
Figure 21.6 Example display produced by the N option. 

21.11 Procedural interface data - option P 

This option displays procedural interface information for external occam func­
tions and procedures only. The following information is displayed: 

• Target processor. 

• Error mode. 

• Language used. 

• Amount of workspace used by the procedure. 

• Amount of vector space used by the procedure. 

• Parameters used by the procedure. 

• Data type of parameters. 

• Channel usage, if applicable. 

A channel marked with an ? is an input channel to the code of that entry point, 
and a channel marked with ! is an output channel. 

When a library file is listed this will be indicated by the words 'INDEX ENTRY 
mode:' rather than 'DESCRIPTOR mode'. 

Figure 21.7 shows the procedural data output for a simple external occam 
procedure. 

21.12 Specify reference - option R 

This option is used in conjunction with any of the other options to select a specific 
symbol within a named library. All library modules that export the symbol are 
displayed. The exact format of the display depends on the main display option 
with which 'R' is used. 

72 TDS 224 00 August 1990 



394 21 ilist - binary IIster 

DESCRIP~OR mod.: ~414 B 1anguac;.: 1anq: OCCAK <ORIGIN DESCRIProR> 
DESCRIP~OR mode: ~414 B 1anguac;.: 1anq: OCCAK 
.a: 76 va: 128 
PROC a1mp1. (CBAH or SP ~a,
CBAH or SP ta, 
[]IN~ memory) 

SEa 
~a?

ta' 

Figure 21.7 Example display produced by the P option. 

Note: Symbol names must be specified in the correct case. 

21.13 Full listing - option T 

This option displays all data found in the input file. Provided that ilist recog­
nises the file type, the file is decoded in its own format. Text file are displayed 
as text and unrecognised file types are displayed as a hexadecimal dump. 

Data is not displayed in a tabular form but is output in the sequence in which it 
is found in the module. 

The display formats are tailored to each file format and are intended for diagnostic _ 
support and analysis. The display generates large amounts of data and may • 
require skilled interpretation. 

Note: The full data listing of a configured object file also shows how the pro­
cesses are mapped onto a transputer system. 

Figure 21.8 shows part of the full data output for a compiled object file. 

72 TDS 224 00 August 1990 



395 21.14 File Identification - option W 

00000000 LINJCABLB 
00000002 START NODULB CORE J'M1JL I'PSUP BIT32 MS-18 X 1ang: ANSI_C 
00000010 VBRSION tool: ice origin: hello. c 
0000001D SBCTION VIR EXP "modu1e'tab1e'ba.e" id: 0 
00000033 SBT LOAD POINT id: 0 
00000036 SYMBOL LOc "modu1e'number" id: 1 
00000047 DBI'INE LABEL id: 1 
OOOOOOQ ADJUST-POINT 1 
0000004B SBCTION VIR EXP "atatic'ba.e" id: 2 
0000005B SBT LOAD POINT id: 2 
00000061 SYMBOL LOc "loca1'.tatie" id: 3 
00000071 DEFINE LABEL id: 3 
00000074 SYMBOL- LOC "'l.b" id: 4 
0000007C DEFINE SYMBOL id: 4 SS:0+SV:3 
00000084 ADJUST-POINT 1 
00000088 SBCTION REA EXE EXP "text'ba.e" id: 5 
00000096 SET LOAD POINT id: 5 
00000099 SYMBOL LOc "loca1'text" id: 6 
000000A7 DEFINE LABEL id: 6 
OOOOOOAA LOAD EXPR .ize: 4 SV:1 
OOOOOOAF COMMENT COpy byte.: 5 
000000B9 SYMBOL EXP "main" id: 7 
000000C1 DEFINE SYMBOL id: 7 SV: 6+4 
000000C9 SYMBOL-IMP "_IMS.J>rintf" id: 8 
00000008 LOAD 'fEXT byte.: 24 
000000F3 LOAD-PREFIX .ize: 6 AP(SV:8-LP) in.tr:) 
OOOOOOFC LOAD-TEXT byte.: 2 
00000101 SYMBOL BXP CON ONI "fir.t'init'b1ock" id: 9 
00000115 DEFINE LABEL id: 9 
00000118 SYMBOL-EXP ONI PRO "next'init'b1ock" id: 10 
0000012B DEFINE LABEL id: 10 
0000012B KILL ID id: 10 
00000131 SYMBOL EXP ONI PRO "next'init'b1ock" id: 11 
00000144 DEFINE LABEL id: 11 
00000147 LOAD EXPR .ize: 4 SV: 11-LP 
0000014£ LOAD-TEXT byte.: 3 
00000154 LOAD-PREFIX .ize: 6 SV:4 in.tr: 1dn1p 
0000015A LOAD-TEXT byte.: 3 
00000160 LOAD-PREFIX .ize: 3 SV:1 in.tr: .tn1 
00000166 LOAD-TEXT byte.: 5 
0000016£ COMMENT COPY byte.: 33 
00000194 END_MODULE 

Figure 21.8 Example display produced by option T for a . teo file. 

21.14 File identification - option w 

This option causes the lister to identify the file. The filename is displayed along 
with the file type and the full pathname is also given if applicable. This is the 
default command line operation if no options are given. 

Table 21.3 indicates the different file types identified by the lister: 

72 TDS 224 00 August 1990 



396 21 ilist - binary IIster 

File format Default 

extension 

Listed file 

type 

TCOFF compiled unit 

TCOFF compiled library unit 

TCOFF linked unit 

TCOFF linked library unit 

Configuration binary 

Core dump 

Network dump 

LFF file 

LFF library 

Extracted SC 

iboot program 

Extracted prog ram 

Empty file 

Text files 

None of the above 

.tco 

.Iib 

.Iku 

.lib 

.cfb 

.dmp 

.dmp 

.cxx•.txx 

.lib 

.rxx 

.bxx 

.btl 

-
-
-

TCOFF liNKABLE UNIT 

TCOFF liNKABLE UNIT liBRARY 

TCOFF liNKED UNIT 

TCOFF liNKED UNIT LIBRARY 

CONFIGURATION BINARY 

CORE DUMP FilE 

NETWORK DUMP 

lFF SC 

lFF liBRARY 

EXTRACTED SC 

BOOTABlE PROGRAM (iboot) 

BOOTABlE PROGRAM 

EMPTY FilE 

TEXT FilE 

UNKNOWN BINARY FORMAT 

Table 21.3 File types recognised by ilist 

SC files are separately compiled files. 

LFF files are separately compiled or linked files in LFF format. 

Extracted files are files which have been compiled and developed to be dynam­
ically loaded onto a transputer system. 

iboot programs are programs which have had a bootstrap added by the iboot 
tool. supported by previous issues of the toolset. 

21.15 External reference data.- option x 

This option displays a list of all the code and data symbols imported by the 
modules specified to the lister. Le. it lists their external references. External 
references are references to separately compiled units. For C programs the 
option will also display any external references to globally visible data. 

The output from this option is in a tabular format. It consists of a list of external 
references and their associated modules. 

72 TDS 224 00 August 1990 



39721.16 Error messages 

The following information is displayed: 

• External reference Le. name of the separately compiled unit. 

• The name of the module in which the external reference exists. 

• Language used. 

• Target processor. 

• Error mode. 

Figure 21.9 shows an example of the output generated for a compiled object file. 

<- hello.a T4l4 X J 
Figure 21.9 Example display produced by the X option. 

21.16 Error messages 

This section list each error ane warning message that can be generated by 
the lister. Messages are in the standard toolset format which is explained in 
appendix A. 

21.16.1 Warning messages 

filename • reason 

The named file does not conform to a recognised INMOS file format or 
has been corrupted. 

21.16.2 Serious errors 

filename • bad format: reason 

The named file does not conform to a recognised INMOS file format or 
has been corrupted. 

72 TDS 224 00 August 1990 



398 21 ilist - binary IIster 

fi/ename - could not open for input 

The named file could not be opened for reading. 

fi/ename - could not open for output 

The named file could not be opened for writing. 

fi/ename - file type does not correspond to command line options 

The options given to the Iister apply to formats dissimilar to the format of 
the file being read. 

must supply additional TCOFF options with reference reference 

The required format of the listing has not been specified. 

filename - no entry for reference in library index 

The specified reference cannot be found in the library index. 

parsing command line token 

An unrecognised token was found on the command line. 

fi/ename - unexpected end of file 

The named file does not conform to a known INMOS file format or has 
been corrupted. 

72 TDS 224 00 August 1990 



22 imakef - Makefile 
generator 

This chapter describes the Makefile generator imakef that creates Makefiles 
for input to MAKE programs. It explains how the tool can be used to create 
Makefiles and describes the special file naming conventions that allow imakef 
to create Makefiles for mixtures of code types. The chapter describes the format 
of Makefiles generated by imakef and ends with a list of error messages. 

22.1 Introduction 

MAKE programs automate program building by recompiling only those compo­
nents that have been changed since the last compilation. To do this they read 
a Makefile which contains information about the interdependencies of files with 
one another, along with command lines for rebuilding the program. 

imakef creates Makefiles for all types of toolset object files using its built in 
knowledge of how files referenced within the target file depend on one another. 
It is intended to be used with all INMOS language toolsets that generate TCOFF 
object code. Its mode of operation for different languages is controlled by com­
mand line options. The Makefile is generated in a standard format for input to 
most MAKE programs. 

Makefiles created using imakef are compatible with many public domain and 
proprietary MAKE programs. The following MAKE programs are directly com­
patible: 

• Borland MAKE. 

• UNIX MAKE. 

• GNU MAKE. 

However, Microsoft MAKE is not compatible. 

The source of imakef is supplied withg the toolset so that it can be modified 
for use with other MAKE programs. 

72 TDS 224 00 August 1990 



400 22 imakef - Makeflle generator 

22.2 How imakef works 

imakef operates by working back from the target file to determine its depen­
dences on other files, using its knowledge of inputs and outputs of each tool 
and the compilation architecture of the toolset. For example, compiled object _ 
files must be created from language source files using the compiler. In a similar • 
way linked files must be generated from compiled files, and bootable files from 
linked units or configuration data files. imakef works back from the target file, 
determining file dependencies and creating commands to recompile the code 
where necessary. 

imakef identifies files and file types by a special set of file extensions which 
specify the transputer type and error mode and allow it produce Makefiles for 
mixed module combinations. Note that these extensions differ from the standard 
toolset defaults. The conventions are described in section 22.4. 

Note: In order for imakef to work correctly the special file naming conventions 
must be followed at all stages of program development for all types .of target file. 

22.3 Target files 

The following table lists the types of C object files for which imakef can create 
Makefiles. The file extensions required by imakef are also given for each of 
the files (see section 22.4). 

File type Extension 

Compiled code. 
Linked code. 
Bootable code for single transputer programs. 
Bootable code for multitransputer programs. 
Dynamically loadable code. 
Libraries. 
Configuration binary files. 

.txx 

.cxx 

.bxx 

.btl 

.rxx 

.lib 

.cfb 

22.4 File extensions for use with imakef 

A special set of file extensions must be used for source and object files during 
a program's development if imakef is to be used to automate any part of the 
build. The file extensions specify to imakef the transputer target and execution 
error mode for each of the program modules, and extend the scope of the default _ 
toolset file naming conventions. • 

72 TDS 224 00 August 1990 



22.4 File extensions for use with imakef 401 

The naming convention is based on a three-character file extension which iden­
tifies different types of source and object files. Some object files use the sec­
ond and third characters to identify the transputer type and execution error 
mode. This form is used for compiled code, linked units, bootable files, and 
non-bootable files. 

The main extensions are shown in figure 22.1 in relation to toolset program 
development. 

Target files in bold 

Iilibr f.0 
Transputer 

network 

Figure 22.1 Main target files showing file extensions required 

22.4.1 Transputer types and error modes 

In the imakef system some object files use the second leter of the extension to 
designate the transputer target. The third letter represents the error mode which 
in C is always UNIVERSAL, designated by the letter 'x'. For example, . t4x 
refers to a compiled C module targetted for the T4 transputer class. 

72 TDS 224 00 August 1990 



402 22 imakef - Makefile generator 

Values that can be taken by the second character and their meanings are listed 
below. 

Character Transputer types 
supported 

2 T212, T222, M212 

3 T225 

4 T414 

5 T425, T400 

a T800 

9 T805, T801 

a Class TA 

b Class TB 

Error modes in mixed language programs 

Object code generated by some other INMOS language toolsets can be compiled 
in two other error modes, namely HALT and STOP. These are represented by the 
letters 'h' and's' respectively. For example, • tah refers to a foreign language 
module targetted for the T800 transputer in HALT error mode. 

C object code generated in UNIVERSAL mode can be linked with HALT or STOP 
code generated by other languages by specifying the appropriate linker option. e 
For further information about the standards adopted for file extensions see sec­
tion A.5. 

22.5 Linker indirect files 

Linker indirect files must be written for all linked units on which imakef is to be 
used. Linker indirect files define the components of the linked unit to imakef 
and provide a starting point for determining file dependencies. 

Linker indirect files must be named after the linked unit to which they relate and 
must carry the . Ink extension. 

72 TDS 224 00 August 1990 



403 22.6 Running the Makefile generator 

22.6 Running the Makefile generator 

The imakef program takes as input a list of files generated by tools in the 
toolset and generates a Makefile for each of the input files. Each output file is 
named after its target filename stem with a . mak extension (if no output file is 
specified on the command line). 

Note: For correct operation with all C programs imakef must be invoked with 
the cC' option and the constituent modules of each linked unit must be listed in 
an appropriate linker indirect file of the correct name. 

To invoke imakef use the following command line: 

~ imakef {filenames} {options} 

where: filenames is a list of target files for which Makefiles are to be generated. If 
more than one file is specified the single Makefile generated will generate 
all of the specified files. 

options is a list, in any order, of one or more options from Table 22.1. 

Options must be preceded by '-' for UNIX based toolsets and '/' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

22.6.1 Example of use 

imakef hello.b4x -e (UNIX based toolsets) 
imakef hello.b4x /e (MS-DOS and VMS based toolsets) 

This creates the Makefile hello .mak which when used as input to MAKE gen­
erates the bootable file hello. b4x. 

22.6.2 Disabling debug data

Two options disable the creation of debug data.

72 TDS 224 00 August 1990 



404 22 imakef - Makefile generator 

Option 

C 

D 

I 

L 

o filename 

R 

XM 

XO 

y 

Description 

Specifies that the list of files to be linked is to be read from a
linker indirect file. This option must be specified for correct C
operation.

Disables the generation of debugging information. The default
is to compile with full debugging information.

Displays full progress information as the tool runs.

Loads the tool onto the transputer board and terminates.

Specifies an output file. If no file is specified the output file is
named after the target file and given the . mak extension.

Writes a deletion rule into the Makefile.

Directs the transputer-hosted versions of the tool to be executed
so that they can be restarted without rebooting by the server.

Directs the transputer-hosted versions of the tool to be executed
once on the transputer board and then terminate.

Disables interactive (breakpoint) debugging in the target compi­
lation. The default is to compile with full breakpoint debugging
information.

Table 22.1 imakef options 

The 'D' option disables the generation of all debugging information in the target 
file. If this option is used the resulting target code cannot be debugged. 

The 'y' option disables only the data required for interactive (breakpoint con­
trolled) debugging. If this option is given no breakpoint debugging operations 
can be used on the final program. Post-mortem debugging is unaffected. 

22.6.3 Removing intermediate files 

Intermediate files can be removed in final program build by specifying the 'R' 
option. This option adds a delete rule to the Makefile which directs MAKE to 
remove all intermediate files once the program is built. The delete operation is 
only honoured if MAKE is subsequently invoked with DELETE option. 

72 TDS 224 00 August 1990 



22.7 imakef examples 405 

22.7 imakef examples 

This section contains two examples of the use of imakef. The first example 
shows how to create a Makefile for a multi-module program running on a sin­
gle transputer and the second example shows how to create a Makefile for a 
configured program. 

Both programs are supplied in the imakef examples subdirectory. 

22.7.1 Single transputer program 

The example program is made up of three files: 

main.c 
hellof.c 
worldf.c 

imakef needs to know the names of the main components of the program, and 
looks for the associated linker indirect file hello .lnk: 

hello .lnk must contain the following text: 

main.t4x
hellof.t4x
worldf.t4x
#include startup.lnk

Note the use of the. t4x extension rather than •tco. This is because imakef 
needs to work out the required processor type. 

The standard C startup linker indirect file startup. lnk is also included. The 
inclusion of this file is standard for all C programs and directs imakef to include 
the C libraries. 

To create the Makefile use the command: 

imakef hello.b4x -c 

Note the use of the •b4x extension instead of •btl. Using this form of ex­
tension informs imakef that we wish to create a bootable program for a single 
transputer without the aid of the configurer. 

The Makefile hello .mak is created. 

72 TDS 224 00 August 1990 



406 22 imakef - Makefile generator 

22.7.2 Multltransputer program 

This example program uses the configurer to place linked units on two proces­
sors. The program is made up of the following files: 

master.c 
mult.c 
multi.cfs 

The • cfs file is the configuration description file. It places 2 linked units on 2 
processors, using the following statements: 

use "master.c8x" for master;
use "mult.c4x" for mult;

Note the use of the • cxx form of extension instead of the toolset default exten­
sion for linked units .lku. 

imakef reads the •cfs file and determines that the program is made up of two 
linked units, each of which must have an associated Iinker indirect file, namely, 
master .lnk, and mult .lnk. 

The two Iinker indirect files files must contain the following text: 

master.lnk: 

master.t8x
#include startup.lnk

mult.lnk: 

mult.t4x
#include startrd.lnk

Again note the use of the • txx form of extension. A startup Iinker indirect file 
is again included in each file to access the libraries. Note the use of the startup 
file startrd.lnk in the second file which accesses the reduced library. This 
library can be used by mult . t4x because the module does not require host 
access. 

To create the Makefile use the following command: 

imakef multi.btl -c 

The •btl extension informs imakef that the target is a configured program, 
to be built from a configuration description file called multi. cfs. 

The Makefile multi .mak is created. 

72 TDS 224 00 August 1990 



22.8 Format of Makefiles 407 

22.8 Format of Makefiles 

Makefiles essentially consist of a number of rules for building all the parts of 
a program. Each rule contains two main elements: a definition of the file's 
dependencies in a format acceptable to MAKE programs; and the command to 
recreate the file on a specific host. All Makefiles also contain macros which 
define command strings and option combinations. 

22.8.1 Macros 

All Makefiles created by imakef include a set of macro definitions inserted at 
the head of the file. 

Macros define strings which are used to call the compiler, the configurer, the 
Jinker, the librarian, the collector, and the eprom formatter tools, and fixed com­
binations of options for these tools. 

Macros are provided so that customised versions of the toolset commands, and 
specific combinations of options, can be easily incorporated. Existing macros 
can be modified for specific host environments, and new macros created, by 
editing the Makefile. 

The full set of macros defined by imakef can be found by consulting any 
MakefiJe created by the tool. 

22.8.2 Rules 

Rules define the dependencies of object files on other files and specify action 
strings to build those files. For example: 

confiq.btl: confiq.cfq proq.c4h 
$ (CONFIG) confiq -r $(CONFOPT) -0 confiq.btl 

This rule first defines the target as the bootable program confiq. btl, which 
is dependent on the configuration description file confiq. cfq and the linked 
file proq. c4h, and then specifies the command that must be invoked to build 
it. 

The first rule in all Makefiles is for the main target. Succeeding rules define 
subcomponents of the main target, and are listed hierarchically. 

72 TDS 224 00 August 1990 



22 imakef - Makeflle generator 

Action strings 

Action strings define the complete command line needed to recreate a specific 
file. The format is similar for all tools and consists of a call to the tool via a 
predefined macro, a fixed set of parameters, a list of command line options, _ 
probably also via a macro, and the output filename. (The output file is specified • 
on the command line so that the rebuilt file is always written to the directory that 
contains the source.) 

22.8.3 Delete rule 

The delete rule directs MAKE to remove all intermediate object files once the
program has been built. It consists of a single labelled action string which invokes
the host system 'delete file' command. Deletion is only performed if MAKE is
subsequently invoked with the DELETE option.

The delete rule is appended to the Makefile by specifying the imakef 'R' option. 

22.8.4 Editing the Makefile 

Makefiles created by the imakef tool can be edited for specific requirements. 
For example, new macros can be added and new rules defined for compiling 
and linking code written in other languages. 

Adding options 

imakef generates action strings which have the minimum of options for each 
tool. In most cases additional options are unnecessary or may be specified 
using compiler directives. To modify the set of default options for a particular 
tool simply edit the appropriate macro in the Makefile. 

For example, if debugging data is to be enabled for all invocations of the compiler 
the compiler 'G' option would be added to the CCOPT macro which defines the 
standard combination of options for invoking the compiler. Alternatively a new 
macro containing only the 'G' option could be defined and added to each compiler 
action string. 

22.9 Error messages 

imakef generates error messages of severities Warning and Error. Messages 
are displayed in standard toolset format. 

72 TDS 224 00 August 1990 



409 22.9 Error messages 

Cannot have a makeflle 

The file specified on the command line is not one for which imakef can 
generate a Makefile. imakef can only create Makefiles for object files 
and bootable files. 

Cannot open "fiJename" :reason 

The file specified as the output file cannot be opened for writing by the 
program, for the reason given. 

Cannot write linker command file 

The linker command file cannot be opened for writing by the program. 

Command line Is Invalid 

An incorrect command line was supplied to the program. Check the 
syntax of the command and try again. 

Error whilst reading 

A file system error has occurred whilst reading the source. 

#IMPORT references are Illegal In configuration text 

At the given line number in the file there is a reference to the #IMPORT 
directive, which is illegal for configuration source. 

#INCLUDE may not reference a library 

The #INCLUDE directive is being used to reference a file with the .lib 
extension. 

#INCLUDE may not reference binary flies 

The # INCLUDE directive is being used to refe-rence a file containing 
compiled code. 

Incomplete complier directive 

At the given line number in the file there is an invalid compiler directive. 

72 TDS 224 00 August 1990 



410 22 imakef - Makefile generator 

Library on PATH "pathname" also exists In the current directory 

A library with the specified name has been found on the current search 
path and in the current directory. 

Malloc failed 

The program has failed while trying to dynamically allocate memory for 
its own use. Try using a transputer board with more memory. If the 
program is being run on the host it may be possible to increase the 
memory··available using host commands. 

Options are Incorrectly delimlnated 

The terminating bracket which determines the options in a library build 
file, is missing at the given line number. 

Source file does not exist 

The referenced source file does not exist on the system. 

Target Is not a derivable file 

The specified file cannot be generated by the toolset. 

Tree checking failed • no output performed 

The tree of files has been found to be invalid and unusable for gener­
ating Makefile. This message always follows a message indicating what 
is wrong with the tree. The most common reason for this error is the 
presence of -cyclic references in the source. 

"filename" unknown/Illegal file reference 

A compiler directive is attempting to reference the wrong type of file. 

Writing file 

An host system error occurred while the file was being written. 

72 TDS 224 00 August 1990 



23 iserver - host file 
server 

This chapter describes the host file server iserver which loads application 
programs onto transputer networks and provides runtime access to the host. 

23.1 Introduction 

The host file server iserver performs two functions: 

• Loads bootable programs onto transputer hardware 

• Provides the runtime environment which allows the program to talk to the 
host. 

At the application program level, all communication with the host file server is 
through the standard i/o libraries. The host file server provides an intermediate 
interface through which the i/o functions can communicate with any of the sup­
ported hosts. The interface is based on a fixed protocol and is implemented 
by an underlying set of functions written in C. A description of the protocol and 
definitions of the functions can be found in appendix E. 

23.1.1 Loadable programs 

Before a program can be loaded onto a transputer network it must be compiled 
and linked. It may then be made bootable using the collector tool icollect. 
If no output file was specified when the program was built the loadable file will 
have a •btl file extension if the default extension is used. If imakef has been 
used to build the program the file will have an extension of the form •bxx. For 
further details of the file extension system used by imakef see sections 22.4 
and A.5. 

23.2 Running the server 

To invoke the host file server use the following command line: 

~ ise rver bootablefile { options} 

e where: options is a list of one or more options from table 23.1. 

72 TDS 224 00 August 1990 



412 23 iserver - host file server 

Options must be preceded by '-' for UNIX based toolsets and 'I' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Option Description 

SA 

SB fi/ename 

se fi/ename 

SE 

SI 

SL name 

SP n 

SR 

SS 

Analyses the root transputer and peeks 8K of its memory. 

Loads the program contained in the specified file. 

Copies the specified file to the root transputer link. 

Terminates the server if the transputer error flag is set. 

Displays progress information as the program is loaded. 

Specifies device name or Ii nk address. 

Sets the number of KBytes of memory peeked on Analyse. 

Resets the root transputer and subsystem on the link. 

Serves the link, that is, starts up the runtime server environ­
ment that enables programs to communicate with the host. 

'SB fi/ename' is equivalent to SR SS SI se filename. 

Table 23.1 iserver options 

23.2.1 Examples of use 

UNIX based toolsets: 

iee hello
ilink hello.teo -f startup./nk
ieolleet hello./ku -t
iserver -sb hello.btl -se 

72 TDS 224 00 August 1990 



23.2 Running the server 413 

MS-DOS and VMS based toolsets: 

ice hello 
i1ink hello. teo If startup.lnk 
ieolleet hello.lku It 
iserver Isb hello.btl 
Ise 

In this example iserver is instructed to load the bootable file hello. btl and 
to terminate on error. The example also shows the steps for compiling, linking 
and booting the program. 

23.2.2 Supplying parameters to the program 

Any text supplied on the command line that cannot be interpreted as a server 
option is passed to the program as a parameter. iserver option strings should 
not be used as program parameters. 

23.2.3 Checking and clearing the network 

On transputer boards the network can be checked and reset using a network 
check program such as ispy. 

The ispy program is provided as part of the board support software for INMOS 
iq systems products. These products are available separately through your local 
INMOS distributor. 

An alternative to using a network check program to clear the network is to load 
a dummy process onto each processor. In the act of loading the process code 
the error flag is cleared. This method is described in section 15.3.4. 

23.2.4 Terminating the server 

To terminate the server press the ISERVER interrupt key. The iserver inter­
rupt key is the same as the standard host system BREAK key. 

When the interrupt key is pressed the program does not abort immediately but 
provides the following options: 

(x)exit, (s)hell, or (c)ontinue? 

To confirm your intention to abort the program type lX' or press IRETURNI, which 
terminates the server. 

72 TDS 224 00 August 1990 



414 23 iserver - host file server 

To suspend the server in order to resume the program later, type's' for shell. 

Note: On some systems the shell option may require a host environment vari­
able. For further information see the Delivery Manual that accompanies the 
release. 

To canceJ the interrupt and continue running the program, type 'c'. 

23.2.5 Options to use when loading the program 

The name of the file containing the program to be loaded is specified using either 
the 'sc' or the 'SB' option and must be followed by a filename. The 'SB' option 
has the same effect as specifying the following combination of options: 'sc SI 
SR SS'. 

For programs which communicate via the host file server the 'SS' option must be 
specified in order to start up the host communications environment. When the 
program has been loaded the server provides runtime access to host services. 

To load a program onto a board without resetting the root transputer, use the 
'sc' option. This should only be done if the transputer has already been reset, 
or has a resident program that can interpret the file. To reset the transputer 
subsystem before loading the program use the 'SR' or 'SB' options. 

To terminate the server immediately after loading the program use the 'SR' and 
'SC' options together. This combination of options resets the transputer, loads 
the program onto the board, and terminates. 

To load a board in analyse mode, for example when you wish to use the debugger 
to examine the program's execution, use the 'SA' option to dump the first 8 Kbytes 
of the transputer's memory (starting from MOSTNEG INT). The data is stored 
in an internal buffer which is read by the idump tool when programs are to be 
debugged that use the root transputer. 

23.2.6 Specifying a link address - option SL 

The server contains a default address or device name for communicating with 
boot from link boards. The address or name can be changed by specifying 
the 'SL' option followed by the new value. Addresses can be given as decimal 
numbers, or in hexadecimal format by prefixing the number with 'I'. 

72 TDS 224 00 August 1990 



23.3 Server functions 415 

The default address is overridden by the value of host environment variable 
TRANSPUTER, if this variable has been set on the system. The address or 
name defined by this variable is itself overridden by any address or name given 
after the 'SL' option. 

23.2.7 Terminating on error - option SE 

When debugging programs it is useful to force the server to terminate when the 
subsystem's error flag is set. To do this use the 'SE' option. The error flag of a 
transputer is normally set by a program fault. 

23.3 Server functions 

This section describes the basic set of server functions. All versions of the 
iserver will support these functions, enabling programs to be used with any 
version of the toolset. 

These functions are not intended for applications programmers. They are briefly 
described here for programmers who wish to implement a server on a new host, 
or to add new facilities to the existing server. Details of the functions can be 
found in appendix E. 

The functions are divided into three groups: 

1 File system commands 

2 Host environment commands 

3 Server control commands 

Commands in each group are summarised in the following tables. 

72 TDS 224 00 August 1990 



416 23 iserver - host file server 

File system commands 

Command Description 

Fopen Opens a file, and returns a stream identifier. 

Fclose Closes a file. 

FGetBlock Reads a block ot data, in bytes, with status return. 

FPutBlock Writes a block of data, in bytes, with status return. 

Fread Reads a data block, in bytes. 

Fwrite Writes a data block, in bytes. 

Fgets Reads a line trom an open stream. 

Fputs Writes a line t,p an open stream. 

Fflush Flushes an open stream to the destination device. 

Fseek Resets the file position. 

Ftell Returns the current file position. 

Feof Tests for end-ot-file. 

Ferror Returns error status of a given stream. 

Isatty Determines if a stream is a terminal. 

Remove Deletes a file. 

Rename Renames a file. 

Host environment commands 

Command Description 

Getkey 

Pollkey 

Getenv 

Time 

System 

Reads a character trom the keyboard. 

Polls the keyboard. 

Retrieves a host environment variable. 

Returns local and universal time. 

Runs a command on the host system. 

72 TDS 224 00 August 1990 



23.3 Server functions 417 

Server control commands 

Command Description 

Exit 

CommandLine 

Core 

Version 

MSDOS 

Terminates the server. 

Retrieves the server invocation command line. 

Retrieves the contents of a peeked transputer's memory. 

Retrieves revision data about the server. 

Performs an MS-DOS specific operation. 

72 TDS 224 00 August 1990 



418 23 iserver - host file server 

23.4 Error messages 

Aborted by user 

This message is displayed when the program is interrupted by pressing 
the BREAK key (Ctrl-C or Ctrl-Break). 

a 
• 

Bad link specification 

The link name is invalid. 

Boot filename is too long, maximum size is number characters 

The specified filename was too long. 
filenames. 

number is the maximum size for 

Cannot find boot file filename 

The server cannot open the specified file. 

Command line too long (at string) 

The maximum permissible command line length has been exceeded. The 
ove rflow occurred at string. 

Copy filename is too long, maximum size is number characters 

The specified filename was too long. 
filenames. 

number is the maximum size for 

Error flag raised by transputer 

The program has set the error flag on the transputer. 
debug the program. 

Use idebuq to 

Expected a filename after -SB option 

The 'SB' option requires the name of a file to load. 

Expected a filename after -SC option 

The 'SC' option requires the name of a file to load. 

72 TDS 224 00 August 1990 



23.4 Error messages 419 

Expected a name after -SL option 

The 'SL' option requires a link name or address. 

Expected a number after -SP option 

The aSP' option requires the number of Kbytes to peek. 

Failed to allocate CoreDump buffer 

The server was unable to allocate enough memory to copy the required 
amount of transputer memory. 

Failed to analyse root transputer 

The link driver could not analyse the transputer. 

Failed to reset root transputer 

The link driver could not reset the transputer. 

Link name is too long, maximum size is number characters 

The specified name was too long. number is the maximum length. 

Protocol error, message 

Incorrect protocol on the link. This can happen if there is a hardware 
fault, or if an incorrect version of the server is used. 

message can be any of the following: 

got number bytes at start of a transaction 
packet size Is too large 
read nonsense from the link 
timed out getting a further dataname 
timed out sending reply message 

For more information about server protocols see appendix E. 

72 TDS 224 00 August 1990 



420 23 iserver - host file server 

Reset and analyse are incompatible 

Reset and analyse options cannot be used together. 

Timed out peeking word number 

The server was unable to analyse the transputer. 

Transputer error flag has been set 

The program has set the error flag. Debug the program. 

Unable to access a transputer 

The server was unable to gain access to a link. This occurs when the 
link address or device name, specified either with the SL option or the 
TRANSPUTER environment variable, is incorrect. 

Unable to free transputer link 

The server was unable to free the link resource because of a host error. 
The reason for the error will be host dependent. 

Unable to get request from link 

The server failed to get a packet from the transputer. This error indicates 
some general failure. 

Unable to write byte number to the boot link 

The transputer did not accept the file for loading. This can occur if the 
transputer was not reset 'or because the file was corrupted or in incorrect 
format. 

72 TDS 224 00 August 1990 



24 isim - T425
simulator

This chapter describes the T425 simulator tool isim that allows programs to be 
run and tested without hardware. The chapter explains how to invoke the tool 
and describes the simulator commands that allow the simulated program to be 
debugged interactively. 

24.1 Introduction 

The simulator can run any transputer program that would run on a single IMS 
T425 mounted on a normal transputer evaluation board. No transputer hardware 
is required. 

Because the simulator runs the same code that would be loaded onto a real 
transputer, any program that runs satisfactorily in the simulator can be guaran­
teed to run on an IMS T425. Because all 32-bit transputers are compatible at 
the source level, the same program can also be run on any IMS 32-bit processor 
after recompiling for the correct processor type. 

The simulator also provides a reduced set of debugging facilities similar to those 
of the debugger Monitor page. Additional features provided by the simulator are 
the ability to set break points at transputer addresses and to single step the 
program. 

The simulator can also be used to familiarise new users with transputers and 
transputer programming and as a teaching aid. 

24.2 Running the simulator 

To run the simulator use the following command line: 

is im program programparameters { options} 

where: program is the program bootable file. 

programparameters is a list of parameters to the program. The list of 
parameters must follow the bootable filename and parameters must be 
separated by spaces. 

options is a list of isim options from Table 24.1. 

72 TDS 224 00 August 1990 



422 24 isim - T425 simulator 

Options must be preceded by '-' for UNIX based toolsets and If' for 
MS-DOS and VMS based toolsets. 

Options may be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Option Description 

B 

BQ 

BV 

I 

L 

XM 

xo 

Batch mode operation. 

Batch Quiet mode. No progress information is displayed. 

Batch Verify mode. 

Displays full progress information as the simulator runs. 

Loads the tool onto the transputer board and termi nates. 

Directs the transputer-hosted versions of the tool to be executed 
so that they can be restarted without rebooting by the server. 

Directs the transputer-hosted versions of the tool to be executed 
once on the transputer board and then terminate. 

Table 24.1 isim options 

24.2.1 Example of use 

isim hello.btl 

This invokes the simulator on the "Hello World" program. 

When first invoked simulator enters the debugging environment. To start the pro­
gram invoke the 'G' command. The program runs until it completes successfully, 
a runtime error occurs, or a break point is reached. 

If an error occurs the processor halts, the error flag is set, and the program can 
be debugged using the commands as you would in the debugger Monitor page 
environment. Typing I?' displays a summary of the commands. 

72 TDS 22400 August 1990 



24.3 Monitor page display 423 

24.2.2 ITERM file 

Like the debugger, the simulator reads the ITERM file to determine how to control 
the terminal screen and to map a few simulator commands. The ITERM file must 
be defined in the host environment variable ITERM. 

24.3 Monitor page display 

The simulator Monitor page is similar to that of the debugger, which is described 
in chapter 15. Data displayed at the simulator Monitor page includes the follow­
ing: 

Iptr Contents of instruction pointer (address of the next in­
struction to be executed). 

Wdesc Contents of workspace descriptor. 
Error Status of error flag. 
Halt On Error Status of halt on error flag. 
Fptrl Pointer to the front of the low priority active process 

queue. If 'jump 0' breaks are enabled the letter 8 is dis­
played after the pointer value. 

Bptrl Pointer to the back of the low priority active process 
queue. 

FptrO Pointer to the front of the high priority active process 
queue. 

BptrO Pointer to the back of the high priority active process 
queue. 

TPtrl Pointer to the low priority timer queue. If the timer is 
disabled the letter X is displayed after the pointer value. 

TPtrO Pointer to the high priority timer queue. 

When the simulator is first invoked the Monitor page also displays a memory 
map of the program. 

If Wdesc contains the most negative address value, it will be described as 'in­
valid'. This normally means that no process is executing in the simulator (for 
example, the program may have become deadlocked). If Wdesc contains the 
address of 'Memstart' it is displayed as such. An asterisk displayed next to 
the Iptr or Wdesc pointer values indicates invalid object code. Invalid pointers 
may be generated when processes become deadlocked. 

The Monitor page also displays the last instruction executed, a summary of 
Monitor page commands, and, if an error has occurred, the cause of the error. 

72 TDS 224 00 August 1990 



424 24 isim - T425 simulator 

24.4 Simulator commands 

All simulator commands are given at the Monitor page. Many of the commands 
are similar to those of the debugger Monitor page; for full descriptions of the 
commands see chapter 15. 

24.4.1 Specifying numerical parameters 

Some simulator commands require numerical parameters, such as addresses. 
These can be specified as simple expressions in decimal or hexadecimal for­
mat. Expressions can be the sum of two expressions, the result of subtracting 
one expression from another, or constants. Constants that can be specified: 
Arag, Brag, Crag, Iptr, Wptr, decimal constants, hexadecimal constants, 
or abbreviated hexadecimal constants. Abbreviated hex constants can be cre­
ated by prefixing the sequence of hex digits with '%' or 'i, which assumes the 
hexadecimal prefix '8000 •••• '. For example, the hex number '8000F8A' can 
be specified in the abbreviated form '%F8A'. 

24.4.2 Commands mapped by ITERM 

Several commands for controlling the display are mapped to specific keys by the 
ITERM file. The keys to use for these commands can be found by consulting 
the keyboard layouts supplied in the Delivery Manual. 

72 TDS 224 00 August 1990 



24.4 Simulator commands 425 

Simulator debugging commands are listed in the following tables. 

Key Meaning Description 

A ASCII Displays a portion of memory in ASCII. 

B Break points Breakpoint menu. 

Displays transputer instructions at a .specified 
area of memory. 

Runs (or resumes) the program. 

Displays a portion of memory in hexadecimal. 

D Disassemble 

G Go 

H Hex 

I Inspect Displays a portion of memory in any occam type. 

J Jump into program Runs (or resumes) the program. Same as G. 

L Links Displays Iptr and Wdesc for processes waiting 
for input or output on a link, or for a signal on the 
Event pin. 

Displays a memory map of the simulated trans­
puter. 

Creates a network core dump file. 

Simulates a program 'boot' onto the transputer. 

M Memory map 

N Create dump file 

p Program boot 

Q Quit Quits the simulator. 

Displays Iptr and Wdesc for processes on the 
high or low priority active process queues. 

R Run queue 

S Single step Executes the next transputer instruction. 

T Timer queue Displays Iptr and Wdesc and wake-up times 
for processes on the high or low priority timer 
queues. 

Assigns a value to a register. 

Displays help information. 

U Assign register 

? Help 

Key Meaning Description 

IHELPI U Help Displays help information. 

IREFRESHI U Refresh Redraws the screen. 

IFINISHI U Quit Quits the simulator. 

[]] 
Q] 

Scrolls the current display. 

U For key bindings see Delivery Manual. See also section 24.4.. 2. 

72 TDS 224 00 August 1990 



426 24 isim - T425 simulator 

lKl- ASCII 

Displays a segment of memory in ASCII format.

00 - Breakpoints

Sets, displays, and cancels break points at specified memory locations or pro­
cedure calls. The command displays the Breakpoint Options Page: 

Breakpoint Options Page

1) Set breakpoint at Address

2) Display breakpoints

3) Cancel breakpoint at Address

Select Option?

@] - Disassemble 

Displays a segment of memory as transputer instructions. 

@]-Go 

Starts the program, or restarts the program after it has been halted (unless the 
error flag has been set, in which case the program can no longer be run). The 
program will run until it completes successfully, sets the error flag, or reaches a 
break point. 

To start the program, specify a break point address after the following prompt 
and press IRETURNI: 

(break point address) 

The default is not to set a break point. 

[E] - Hex

Displays a segment of memory in hexadecimal format.

[] -Inspect 

Displays a portion of memory in any occam type. See debugger. 

72 TDS 224 00 August 1990 



427 24.4 Simulator commands 

Q] - Jump Into program

Same as ~ - starts or resumes the program.

e [I]- Links 

Displays information about links.

~ - Memory map

Displays a complete memory map of the program.

[ID - Create dump file

Creates a network core dump file from which the program can be debugged
off-line. The name of the file and the number of bytes to write must be specified.
A file extension is not required and should not be specified. The dump file is
automatically given the • dmp extension.

(fJ - Program boot 

Loads the program into transputer memory ('boots the program') so that debug­
ging can start at beginning of the application program without stepping through 
bootstrap loading code. 

@]- Quit 

Quits the simulator, and returns to the host operating system. 

[ID - Run queue 

Displays the addresses of process waiting on the active process queues. 

[!] - Timer queue 

Displays the addresses of process waiting on the timer queues. 

[QJ - Assign 

Assigns a value to a register. To assign a value, specify the register by name 
(abbreviations are permitted), and give a value to be assigned to the register. 

72 TDS 224 00 August 1990 



428 24 isim - T425 simulator 

[1] - Help

Lists the available simulator commands.

1HELP 1- Help

Lists the available simulator commands.

1REFRESH 1- Refresh

Refreshes the screen.

1FINISH 1- Quit

Quits the simulator, and returns to the host operating system.

rn, rn, IPAGE upl, and IPAGE DOWNI keys may be used to scroll the display.

24.5 Batch mode operation 

isim can be run in batch mode by setting up the environment variable 
ISIMBATCH. If this variable is defined on the system isim automatically selects 
batch mode operation. 

24.5.1 Setting up ISIMBATCH 

ISIMBATCH is set up on the system as an environment variable using the 
appropriate command for your host system. 

VERIFY and NOVERIFY modes which enable and disable the output of input 
commands and user responses are defined by setting a value for ISIMBATCH. 
In MS-DOS the command to use is the set command. For example: 

C:\ set ISIMBATCH=VERIFY 

C:\ set ISIMBATCH=NOVERIFY 

In UNIX the equivalent command is setenv and on VMS systems the command 
to use is define. Details of how to use these commands can be found in the 
user documentation for your system. 

72 TDS 224 00 August 1990 



24.5 Batch mode operation 429 

24.5.2 Input command files 

In batch mode isim is driven from a command script containing simulator com­
mands and responses to prompts. All prompts by isim must be followed by a 
valid response. 

24.5.3 Output 

Output can be written to a log file or displayed at the terminal. Input and output 
streams can be assigned to files or the user's terminal by commands on the 
host. 

isim can be set up to operate in VERIFY or NOVERIFY mode by setting a dif­
ferent values for ISIMBATCH. In VERIFY mode all prompts and user responses 
are included in the output. 

24.5.4 Batch mode commands 

Batch mode simulator commands 'A' through '0' are the same as the interactive 
commands. Two additional commands generate special batch mode output: 

Key Meaning Description 

? Query state Displays values of registers and queue pointers. 

Where Displays next Iptr and transputer instruction. 

[!] - Query state 

Displays information about the processor state, including current values of reg­
isters, queue pointers, and error flag status. For example: 

Processor state 
Iptr #80000070 
Wdesc #800000C8 
Areg #80000070 
Breg #800000C8 
Creg #80000010 
Error Clear 
Halt on Error Set 
Fptr1 (Low #00000000 
Bptr1 queue) #00000000 
FptrO (High #00000000 
BptrO queue) #00000000 
Tptrl (timer #20202020 

72 TDS 224 00 August 1990 



430 24 isim - T425 simulator 

TptrO (queues #20202020 

8-Where 

Displays the Iptr of the next instruction to execute and a disassembly of that _ 
instruction. For example: ., 

Iptr #80000070. Low Priority, Next Instruction
ajw 42 - #2A

24.6 Error messages 

Cannot open bootfile 'filename' 

The file containing the code to be run could not be opened or could not 
be found. 

Environment variable 'IBOARDSIZE' does not exist 

Board memory size must be specified to the system using the the host en­
vironment variable IBOARDSIZE. Details of how to set up IBOARDSIZE 
on your system can be found in the Delivery Manual. 

Environment variable 'ITERM' not set up 

The ITERM definition file for the simulator function keys must be specified 
in the ITERM host environment variable. 

IBOARDSIZE Is too small (at least number bytes required) 

The simulator requires a minimum memory size in order to run correctly. 
Modify the IBOARDSIZE variable and retry the program. 

ITERM error 
Iterm Initialisation has failed 

The ITERM file for setting up the terminal codes is invalid. ITERM error 
describes the fault in the file. 

72 TDS 224 00 August 1990 



25 iskip - skip loader 
tool 

This chapter describes the skip loader tool that allows programs to be loaded 
onto transputer networks over the root transputer. The tool sets up a data transfer 
protocol on the root transputer that allows programs running on the rest of the 
network to communicate directly with the host. 

25.1 Introduction 

The skip tool iskip prepares a network to load a program over the root trans­
puter by setting up a route-through process on the root transputer to transfer 
data from the application program running on the target network to and from 
the host computer. A subsequent call to iserver loads the program onto the 
network connected to the root transputer, but does not use the root transputer 
as part of the network. The root transputer is in effect rendered transparent to 
the rest of the network. The route-through process uses a simple protocol that 
transfers data byte by byte between the program and the host. 

After iskip has been invoked to set up the data link across the root transputer, 
the program can be loaded down the host link in the normal way using iserver. 

iskip can be used to skip any number of processors and load a program into 
any part of a network. 

iskip may only be executed on 32 bit transputers. 

25.1.1 Uses of the skip tool 

The skip tool has two main uses: 

1 To allow programs configured for specific arrangements of transputers 
to be loaded onto the target network without using the root transputer 
to run the program. The root transputer helps to load the program onto 
the network and subsequently hosts a relay process which transfers data 
from the application program to the host. 

Example of boards supplied by INMOS that can be used to skip load 
programs are the IMS 8004 PC add-in board, which contains a single 
IMS T414 transputer, and the IMS 8008 PC motherboard fitted with a 
TRAM in slot zero to act as the root transputer. Other slots on the 
motherboard can be used to accommodate the target network. 

72 TDS 224 00 August 1990 



432 25 iskip - skip loader tool 

2 Programs configured for a network that normally incorporates the root 
transputer can be debugged without having to use idump to save root 
transputer's memory to disk. Programs can be loaded into the network 
connected to the root transputer and the debugger can safely run on the 
root transputer without overwriting the program. The external network 
must have the correct number and arrangement of processors for the 
program to be loaded. 

.. 
• 

This can make debugging transputer programs easier when 
transputer is available. 

an extra 

25.2 Running the skip tool 

To invoke the iskip tool use the following command line: 

~ iskip linknumber {options} 

where: Ifnknumberis the link on the root transputer to which the target transputer 
network is connected. 

options is a list, in any order, of one or more options from table 25.1. 

Options must be preceded by --' for UNIX based toolsets and -I' for 
MS-DOS and VMS based toolsets. 

Options can be entered in upper or lower case and can be given in 
any order on the command line. 

Options must be separated by spaces. 

If no arguments are given on the command line a help page is displayed giving 
the command syntax. 

Option Description 

E 

R 

I 

Directs iskip to monitor the subsystem error status and termi­
nates when it becomes set. 

Reset subsystem. Resets all transputers connected downstream 
of link linknumber. Does not reset the root transputer. 

Displays detailed progress information as the tool loads. 

Table 25.1 iskip options 

72 TDS 224 00 August 1990 



25.2 Running the skip tool 433 

25.2.1 Examples of use 

iskip 2 -r (UNIX based toolsets) 
iskip 2 /r (MS-DOS and VAX based toolsets) 

In this example iskip is invoked for a network where the sub-network is wired 
down (see section 15.4.1). The network is prepared to load the program over 
the root transputer, which is connected to the network via link 2; the 'r' option 
resets the target network. 

iskip 2 -r -e (UNIX based toolsets) 
, iskip 2 /r /e (MS-DOS and VAX based toolsets) 

In this example iskip is invoked for a network where the sub-network is wired 
subs (see section 15.4.1). The network is prepared to load the program over 
the root transputer, which is connected to the network via link 2; the 'r' and le' 
options respectively reset the target network and direct iskip to monitor the 
subsystem error status. 

25.2.2 Monitoring the error status - option E 

The iskip 'E' option should only be used when the sub-network is connected 
to the Subsystem port of the root transputer Le. 'wired subs'. When the sub­
network is connected to the Down port on the root transputer Le. 'wired Down', 
the 'E' option must not be used. (For further information about subsystem wiring 
see section 7.4). 

The 'E' option instructs the server to monitor the subsystem error status and 
terminate when it becomes set. When it terminates it sets its own error flag in 
order that the server may detect an error in the subsystem has occured. This 
allows the program to be debugged. 

If the subsystem error status is not properly monitored when the program is 
run, the server may become suspended when a program error occurs. In these 
circumstances the server can be terminated using the host system BREAK key. 

Note: There is a delay of one second after iskip is invoked with the 'E' option, 
before monitoring of the subsystem error status begins; if the program fails before 
this the server may not terminate correctly and the host system BREAK key 
should be used. 

72 TDS 224 00 August 1990 



434 25 iskip - skip loader tool 

25.2.3 Loading a program 

Once iskip has been invoked to prepare the network, the program is loaded 
by invoking iserver with the 'SE', 'SS' and 'SC' options. iserver must be 
invoked with the 'SE' option if the error flag is required to be monitored. This 
applies whether the iskip 'E' option is used or not. For example: 

a 
• 

iserver -se 
iserver Ise 

-ss 
Iss 

-SC myprog .btl 
Isc myprog .btl 

(UNIX based toolsets) 
(MS-DOSNMS based toolsets) 

Note: After using the skip tool the root transputer must not be reset or analysed, 
that is, iserver must not be invoked with the 'SR', 'SB', or 'SA' options, while 
iskip is required to run. 

25.2.4 Clearing the error flag 

If either iskip or iserver detect that the error flag is set immediately a 
program starts executing it is likely that the network consists of more processors 
than are currently being used and that one or more of the unused processors 
has its error flag set. 

On transputer boards the network may be reset using programs such as ispy 
which clear all error flags. 

The ispy program is provided as part of the board support software for INMOS 
iq systems products. These products are available separately through your local 
INMOS distributor. 

An alternative to using a network check program to clear the network is to load 
a dummy process onto each processor. In the act of loading the process code 
the error flag is cleared. This method is described in section 15.3.4. 

72 TDS 224 00 August 1990 



25.3 Error messages 435 

25.3 Error messages 

This section lists error messages that can be generated by the skip tool. 

Called Incorrectly 

Command line error. Check command line syntax and retry. 

Cannot read server's command line 

Syntax error. Retry the command. 

Duplicate option: option 

option was supplied more than once on the command line. 

No fllename supplied 

No filename was supplied on the command line. 

This option must be followed by a parameter: option 

The option specified requires a parameter. Check syntax and retry. 

Unknown option: option 

The specified option is invalid. Check option list and retry. 

You must specify a link number (0 to 3) 

A link number is required. Specify the number of the root transputer link 
to which the network is connected. If you specify the host link an error is 
reported. 

72 TDS 224 00 August 1990 



436 25 iskip - skip loader tool 

72 TDS 224 00 August 1990 



Appendices

72 TDS 224 00 August 1990 



438 Appendices 

72 TDS 224 00 August 1990 



A Toolset standards and 
conventions 

The toolset conforms to a number of conventions for command line syntax, file 
names, directory searching, and error reporting. 

A.1 Command line syntax 

All tools in the toolset conform to a common set of conventions for command 
line syntax. 

A.1.1 General conventions 

• Commands, and their parameters and options, obey host system stan­
dards. 

• Filenames, either directly specified on the command line or as arguments 
to options, must conform to the host system naming conventions. 

• Options must be prefixed with the standard option prefix character for 
the operating system ('-' for UNIX based toolsets and'/' for VMS and 
MS-DOS based toolsets). 

• Command line parameters and options can be specified in any order but 
must be separated by spaces. 

• Lists of arguments to options, where allowed, must be enclosed in paren­
theses, and the items in the list must be separated by commas. 

• If no parameters or options are specified the tool displays a help page 
that explains the command syntax. 

72 TDS 224 00 August 1990 



440 A Toolset standards and conventions 

A.1.2 Standard options 

Options listed in the following table have the same effect for all tools that use 
them. 

F 

I 

L 

o 

XM 

xo 

Specifies an indirect file (command script). 

Displays progress data in full. 

Loads the tool onto a transputer board and awaits a command line. 
Only applies to transputer hosted tools. 

Specifies an output file. 

Invokes the tool in continuous execution mode. Only applies to 
transputer hosted tools. Once the tool has completed its current 
operation it remains resident on the transputer board and can be 
reinvoked without rebooting onto the transputer board by the server. 

Invokes the tool in single invocation mode. Only applies to trans­
puter hosted tools. The tool termi nates after execution and has to 
be rebooted onto the transputer board when it is next invoked. A 
single invocation is the default. 

A.2 Filenames 

File names generally follow the naming and character set conventions of the host 
operating system except that the following directory separator characters cannot 
be used: colon':', forward slash 'I', backslash '\', and closing square bracket 
'] '. 

A.3 Search paths 

The tools locate files by searching a specified directory path on the host system. 
The path is specified using the host environment variable I SEARCH. 

72 TDS 224 00 August 1990 



A.4 Standard file extensions 441 

The tools conform to the following search rules: 

1 If the filename contains a directory specification then the filename is used 
as given. Relative directory names are treated as relative to the directory 
in which the tool is invoked. 

2 If no directory is specified the directory in which the tool is invoked is 
assumed. 

3 If the file is not present in the current directory, the path specified by the 
environment variable (or logical name) ISEARCH is searched. If there 
are several files of the same name on this path, the first occurrence is 
used. 

4 If the file is not found using the above rules, then the file is assumed to 
be absent, and an error is reported. 

If no search path has been set up then only rules 1 and 2 apply. 

All files are written to the current directory. 

A.4 Standard file extensions 

The toolset uses a standard set of file extensions for source and object files. 
These extensions are assumed for input files, and created for output files, unless 
otherwise specified on the command line. 

A separate set of extensions for object files must be used where imakef is used 
to build programs for mixed processor networks. These are described separately 
in section A.5. 

72 TDS 224 00 August 1990 



442 A Toolset standards and conventions 

A.4.1 'Main path' source and object files 

· e C source files. 

· teo Compiled binary module produced by the compiler in TCOFF format. 
Used as input to ilink and ilibr. Also read by idebug. 

. lku Linked unit. Created by ilink as an executable process with no 
external references. Used as input to ieolleet (single trans­
puter programs) or within a configuration description. Also read by 
idebug. 

· btl Bootable file which can be loaded onto a transputer or transputer 
network. Created by ieolleet directly from a .lku file (single 
transputer programs) or from a • efs file Bootable files can be sent 
down a link by iserver for immediate execution. Contains infor­
mation used by iserver to control the host link for execution. Also 
read by idebug. 

· efb Configuration binary file containing a description of how code is to 
be placed on a network, a description of the route to be used to 
load the network, and the parameters to be passed to each of the 
processes. Created by ieconf from a user-defined configuration 
description and read by ieollect to prepare a bootable file and 
by idebug to load a network for debugging. 

. lib Library file containing a collection of binary modules. 
ilibr. 

Created by 

A.4.2 Other outputs 

.btr Executable code without a bootstrap. Created by ieolleet and 
used as input to ieprom. 

· rse Runnable files which can be loaded by a program. These files con­
tain separately compiled units that are designed to be loadable by 
application programs and executed via special procedures. An ap­
plication program can determine the various attributes of a linked 
unit (e.g. workspace required) from the file in order to set up the 
parameters to call the separately compiled unit. 

· hex A hex dump of a file for loading onto a ROM by a custom ROM 
loader tool. 

· ihx Intel hex format files produced by ieprom for loading into ROM. 

. mot Motorola 'srecord' files produced by ieprom for loading into ROM. 

72 TDS 224 00 August 1990 



A.5 Extensions required for imakef 443 

A.4.3 Indirect input files 

.lnk Linker indirect files which specify the components of a program to 
be linked. Also used by imakef when creating Makefiles. 

· lbb Library build files which specify the components of 
ilibr. 

a library to 

A.4.4 Miscellaneous files 

Standard extensions are also used for other files supplied with the toolset. 

· i tm ITERM files containing information about the terminal. Used by tools 
such as idebug to handle the screen in a device-independent man­
ner. Can also be created by users for other terminals. The file is 
referenced via the environment variable I TERM. 

· dmp Memory dump and network dump files. Created by idump for de­
bugging code on the root transputer (memory dump) or for off-line 
analysis of a program on a network (network dump). Read by the 
debugger for post-mortem debugging. 

A.5 Extensions required for imakef 

The standard file extensions are adequate for simple programs executing on a 
single transputer, or on a network of transputers all of the same type. If the 
network is heterogeneous and a particular source file needs to be compiled for 
more than one transputer type, the following scheme can be used to identify the 
individual processor types and error modes. 

If imakef is used to build the program, this scheme must be used. 

72 TDS 22400 August 1990 



444 A Toolset standards and conventions 

The extended system uses extensions of the form .fpe 

where: f denotes the type of file and can take the following values: 

t for • teo equivalents.
1 for .lnk equivalents.
e for • lku equivalents.
r for • rse equivalents.

p denotes the transputer target type or class. This can take the following 
values: 

2 - T212, T222, M212 
3 - T225 
4 - T414 
5 - T425 
8 - T800 
9 - T801, T805 
a - T400, T414, T425, T800, T801, T805 
b - T400, T414, T425 

e denotes the execution error mode. The values it can take are: 

h - on execution, an error will immediately halt the transputer. 
s - when an error occurs, the transputer's error flag will be set. 
x - the program can be executed in either HALT or STOP mode. 

A.6 Error handling 

All tools in the toolset display error messages in a standard format. This has 
certain advantages: 

1 The tool generating the error can be identified even when the tool is run 
out of contact with the terminal. 

2 User programs or system utilities can be used to detect and manipulate 
errors. Some host system editors permit automatic location of errors. 

72 TDS 224 00 August 1990 



A.6 Error handling 445 

A.6.1 Error displays 

Error messages are displayed in a standard format by all tools. The generalised 
format can be expressed as follows: 

severity- toolname- filename (Iinenumber)-message 

where: severity indicates the severity level. The four severity categories are 
described below. 

toolname is the standard toolset name for the tool. Names defined using 
host system abbreviations and batch files are not displayed. 

filename and Iinenumber indicate the file and line where the error oc­
curred. They are only displayed if the error occurs in a file. They are 
commonly displayed when files of the wrong format are specified on the 
command line, for example, a source file is specified where an object file 
is expected. 

message explains the error and may recommend an action. 

A.6.2 Severltles 

The severity attached to the error indicates the importance of the error to the 
operation of the tool. It also implies a certain action taken by the tool. 

Four severity categories are recognised: 

Warning Error Serious Fatal 

Warning messages identify minor logical inconsistencies in code, or warn of the 
impending generation of more serious errors. The tool continues to run and may 
produce usable output if no serious errors are encountered subsequently. 

Error messages indicate errors from which the tool can recover in the short-term 
but may cause further errors to be generated which may lead to termination. 
The tool may continue to run but further errors are likely and the tool is likely to 
abort eventually. No output is produced. 

Serious errors are errors from which no recovery is possible. Further processing 
is abandoned and the tool aborts immediately. No output is produced. 

Fatal errors indicate internal inconsistencies in the software and cause immediate 
termination of the operation with no output. Fatal errors are unlikely to occur but 
if they do the fact should be reported to your INMOS field applications engineer. 

72 TDS 224 00 August 1990 



446 A Toolset standards and conventions 

A.6.3 Runtime errors 

Errors which prevent the program from being run are detected by the C runtime 
system at startup or during program execution. These errors are displayed in a 
similar format to that used by the tools. All runtime errors are generated at Fatal a 
severity and cause immediate termination of the program. The display format is ., 
as follows: 

Fatal-C_Library-reason 

Runtime errors and their meanings are fully described in section 11.6. Errors 
generated by library functions are also documented under the detailed descrip­
tion of the function. 

72 TDS 224 00 August 1990 



B Transputer instruction 
set 

This appendix provides a reference for the transputer instruction set as supported 
by the __asm statement. For a detailed specification of each of the instructions 
available, refer to 'Transputer instruction set: a compiler writer's guide'. 

B.1 Pseudo-instructions 

Pseudo-instructions are instructions to the assembler, rather than true transputer 
instructions. 

Expressions used in load pseudo instructions must be word sized or smaller, 
while expressions used in store pseudo instructions must be exactly word sized. 
To load a floating point value, use a Id to load its address, then a fpldnlsn or 
fpldnldb as required. The following pseudo-instructions are implemented: 

align This instruction takes no operands. It generates padding bytes 
(prefix 0) until the current code address is on a word boundary. 

byte This instruction takes as an argument a list of constant values. Only 
the lower 8 bits of the constant values are generated Le. if the con­
stant is too large to fit in a byte, only the lower bits will be generated. 
The assembler copies the literal bytes into the instruction stream. 

Id Loads a value into the Areg. 

Idab Loads values into the· Areg and Breg. The left hand expression is 
placed in Areg. 

Idabc Loads values into Areg, Breg and Creg. The leftmost Encpression 
is placed in Areg. 

Idlabeldiff Loads the difference between the addresses of two labels into 
Areg. 

st Stores the value from the Areg. 

stab Stores values from the Areg and Breg. The leftmost element re­
ceives Areg. 

stabc Stores values from the Areg, Breg, and Creg. The leftmost ele­
ment receives Areg. 

word Generates constants of the target-machine word length. This in­
struction takes as an argument a list of constant values. If the 
constant is too large to fit in a target-machine word, only the lower 
bits will be generated. 

72 TDS 224 00 August 1990 



448 B Transputer Instruction se! 

The Id, Idab, st, and stab instructions may use other registers and/or tempo­
raries. Idabc and stabc may use temporaries. 

B.2 size option on _-CLsm statement 

The size option on __asm statements that incorporate transputer operations,
direct, prefixing and certain pseudo'-instructions, forces the instruction to occupy
a set number of bytes. If the instruction is shorter than this, it is padded out with
trailing prefix 0 instructions. If the instruction cannot fit in the specified number
of bytes, a compiler error is reported. The size option allows instructions to be
built with the same size and is intended to assist the creation of jump tables.

B.3 Prefixing instructions 

The transputer instruction set is built up from 16 direct instructions, each with
a 4-bit argument field. The direct instructions include prefix instructions which
augment the 4-bit field in a direct instruction which follows them by their own
4-bit argument field, effectively allowing the argument to be extended to 32 bits.
Normally, the assembler will compute the prefix instructions required for operand
values greater than 4 bits automatically.

pfix prefix 
nfix negative prefix 

8.4 Direct instructions 

The direct instructions form the core of the transputer instruction set. Each 
direct instruction has a single operand, normally an integer constant, which will 
be encoded in the instruction itself and, if it is larger than will fit into the 4-bit 
argument field of the direct instruction, into a series of pfix and nfix instructions 
as well. 

The transputer architecture is based around a three-register evaluation stack 
and a single base register Wreg. The load and store 'local' instructions access a 
word in memory at a displacement from Wreg given by the operand value used. 
The displacement is scaled by the word size. The load and store 'non-local' 
instructions use the top evaluation stack register (Areg) as the base instead of 
Wreg, allowing computed base addresses to be used. 

The operand of the j, cj and call instructions is interpreted as a byte displacement 
from the instruction pointer (program counter) register Iptr. Idpi is similar but _ 
takes its operand from Areg. • 

72 TDS 224 00 August 1990 



8.5 Operations 449 

adc Add constant operand value to Areg 
ajw Adjust workspace pointer Wreg by constant operand value (scaled by 

word length) 
call Call 
cj Conditional jump Le. 'jump if zero otherwise pop Areg'. As with jump, 

a label identifier may be used as argument to this instruction. 
eqc Test if Areg equals constant; Areg gets 1/0 result 
j Jump: the argument may be an identifier indicating a label for the 

jump to go to; the assembler will compute the displacement required. 
Idc Load constant 
Idl Load local word 
Idlp Load pointer to local word 
Idnl Load non-local word 
Idnlp Load pointer to non-local word 
opr 'operate': the argument to this instruction is a code indicating a zero­

operand indirect instruction to be executed. Most of the transputer 
instruction set is made up of these indirect instructions. Normally you 
would use the mnemonic for the specific indirect instruction which you 
require: the assembler will encode this as an opr instruction on your 
behalf. However, it is possible to use opr explicitly, for example to 
synthesise the instruction sequence for a new indirect instruction not 
supported by the T414 and T800 transputers. 

stl Store local word 
stnl Store non-local word 

8.5 Operations 

The instructions in this section are all indirect instructions built out of the opr 
instruction. None of these instructions take an argument; instead, they work 
solely with the transputer evaluation stack. 

The arithmetic instructions take their operands from the top of the evaluation 
stack (Areg, Breg) and push the result value back on the stack in Areg. 

72 TDS 224 00 August 1990 



450 B Transputer Instruction set 

add 
alt 
altend 
altwt 
and 
bent 
bsub 
eent1 
elrhalterr 
esngl 
esubO 
eword 
diff 
dise 
diss 
dist 
div 
enbe 
enbs 
enbt 
endp 
(mul 
gajw 
geall 
gt 
in 
ladd 
Ib 
Idiff 
Idiv 
Idpi 
Idpri 
Idtimer 
lend 
Imul 
Ishl 
Ishr 
Isub 
Isum 
mint 
move 

72 TDS 224 00 

Add 
Alt start 
Alt end 
Alt wait 
Bit-wise and 
Byte count 
Byte subscript (Areg = Areg + Breg) 
Check count from 1 
Clear halt-on-error 
CheCk single 
Check subscript from 0 
Check word 
Difference 
Disable channel 
Disable skip 
Disable timer 
Divide 
Enable channel 
Enable skip 
Enable timer 
End process 
Fractional multiply (32-bit processors only) 
General adjust workspace 
General call (swap Areg+-+lptr) 
Greater than (result 'true' or 'false', placed in Areg) 
Input message 
Long add 
Load byte 
Long difference 
Long divide 
Load pointer to instruction (Areg is byte displacement from Iptr) 
Load current priority 
Load timer 
Loop end 
Long multiply 
Long shift left 
Long shift right 
Long subtract 
Long sum 
Minimum integer 
Move block of memory (src: Creg dest: Breg len: Areg) 

August 1990 



8.5 Operations 451 

mul 
norm 
not 
or 
out 
outbyte 
outword 
prod 
rem 
reseteh 
ret 
rev 
runp 
saveh 
savel 
sb 
seterr 
sethalterr 
shl 
shr 
startp 
sthb 
sthf 
stlb 
stlt 
stoperr 
stopp 
sttimer 
sub 
sum 
talt 
taltwt 
testerr 
testhalterr 
testpranal 
tin 
went 
wsub 
xdble 
xor 
xword 

72 TDS 224 00 

Multiply 
Normalise 
Bit-wise not 
Bit-wise inclusive or 
Output message 
Output byte 
Output word 
Product 
Remainder 
Reset channel 
Return 
Reverse top two stack elements 
Run process 
Save high priority queue reogisters 
Save low priority queue registers 
Store byte 
Set error 
Set halt-on-error 
Shift left 
Shift right 
Start process 
Store high priority back pointer 
Store high priority front pointer 
Store low priority back pointer 
Store high priority back pointer 
Stop on error 
Stop process 
Store timer 
Subtract 
Sum 
Timer alt start 
Timer alt wait 
Test error false and clear 
Test halt-on-error 
Test processor analysing 
Timer input 
Word count 
Word subscript (Areg = Areg + 4*Breg) 
Extend to double 
Bit-wise exclusive or 
Extend to word 

August 1990 



4S2 8 Transputer instruction set 

B.6 Additional instructions for T400, T414, T425 and TB 

The indirect instructions in this section may only be executed on a T400, T414 
or T42S processor, although you may use them in _asm statements even when 
compiling for a different processor. 

cflerr Check single-length floating-point infinity or not-a-number 
Idint Load single-length infinity 
postnormsn Post-normalise correction of single-length floating-point 

number 
roundsn Round single-length floating-point number 
unpaeksn Unpack single-length floating-point number 

B.7 Additional instructions for IMS T800, T801 and T805 

The instructions in this section may only be executed on T800, T801 and T80S 
processors, although you may use them in _asm statements even when com­
piling for a different processor. 

8.7.1 Floating-point Instructions 

The indirect instructions in this section provide access to the T8 series built-in 
floating-point processor. Note that the instructions beginning with 'fpu... ' are 
doubly indirect: they are accessed by loading an entry code constant with a 
Ide instruction, then executing an fpentry instruction, which is' itself indirect. As 
with ordinary indirect instructions, this indirection is handled transparently by the 
assembler, although the tpentry instruction is also available. 

The floating point load and store instructions use the integer Areg as a pointer 
to the operand location. 

72 TDS 224 00 August 1990 



B.7 Additional instructions for IMS T800, T801 and T80S 453 

fpadd 
fpb32tor64 
fpchkerr 
fpdiv 
fpdup 
fpentry 

fpeq 
fpgt 
fpi32tor32 
fpi32tor64 
fpint 
fpldnladddb 
fpldnladdsn 
fpldnldb 
fpldnldbi 
fpldnlmuldb 
fpldnlmulsn 
fpldnlsn 
fpldnlsni 
fpldzerodb 
fpldzerosn 
fpmul 
fpnan 
fpnotfinite 
fpordered 
fpremfirst 
fpremstep 
fprev 
fprtoi32 
fpstnldb 
fpstnli32 
fpstnlsn 
fpsub 
fptesterr 
fpuabs 
fpuchki32 
fpuchki64 
fpuclrerr 
fpudivby2 

Floating-point add 
Convert 32-bit unsigned integer to 64-bit real 
Check floating error 
Floating-point divid~
Floating duplicate 
Floating point unit entry: used to synthesise the 'fpu... ' 
instructions. 
Floating point equality 
Floating point greater than 
Convert 32-bit integer to 32-bit real 
Convert 32-bit integer to 64-bit real 
Round to floating integer 
Floating load non-local and add double 
Floating load non-local and add single 
Floating load non-local double 
Floating load non-local indexed double 
Floating load non-local and multiply double 
Floating load non-local and multiply single 
Floating load non-local single 
Floating load non-local indexed single 
Fload zero double 
Load zero single 
Floating-point multiply 
Floating point not-a-number 
Floating point finite 
Floating point orderability 
Floating-point remainder first step 
Floating-point remainder iteration step 
Floating reverse 
Convert floating to 32-bit integer 
Floating store non-local double 
Store non-local int32 
Floating store non-local single 
Floating-point subtract 
Test floating error false and clear 
Floating-point absolute 
Check in range of 32-bit integer 
Check in range of 64-bit integer 
Clear floating error 
Divide by 2.0 

72 TDS 224 00 August 1990 



454 B Transputer Instruction set 

fpuexpdec32 
fpuexpinc32 
fpumulby2 
fpunoround 
fpur32tor64 
fpur64tor32 
fpurm 
fpurn 
fpurp 
fpurz 
fpuseterr 
fpusqrtfirst 
fpusqrtlast 
fpusqrtstep 

Divide by 232 

Multiply by 232 

Multiply by 2.0 
Convert 64-bit real to 32-bit real without rounding 
Convert single to double 
Convert double to single 
Set rounding mode to round minus 
Set rounding mode to round nearest 
Set rounding mode to round positive 
Set rounding mode to round zero 
Set floating error 
Floating-point square root first step 
Floating-point square root end 
Floating-point square root step 

8.8 Additional instructions for IMS T225, T400, T425, T800, 
T801, T805 

The indirect instructions in this section supplement the T414's integer instruction 
set. 

bitcnt Count the number of bits set in a word 
bitrevnbits Reverse bottom n bits in a word 
bitrevword Reve rse bits in a wo rd 
crcbyte Calculate CRC on byte 
crcword Calculate Cyclic Redundancy Check (CRC) on word 
dup Duplicate top of stack 
wsubdb Form double-word subscript 

The following 2-dimensional block move instructions apply to the IMS T400, 
T425, T800, T801 and T805 only: 

move2dall 
move2dinit 
move2dnonzero 
move2dzero 

2-dimensional block copy 
Initialise data for 2-dimensional block move 
2-dimensional block copy non-zero bytes 
2-dimensional block copy zero bytes 

72 TDS 224 00 August 1990 



8.9 Additional instructions for the IMS T225, T400, T425, T801 and T805455 

8.9 Additional instructions for the IMS T225, T400, T425, 
T801 and T805 

The indirect instructions listed in this section provide debugging and general 
support functions. 

clrjObreak 
setjObreak 
testjObreak 
timerdisableh 
timerdisablel 
timerenableh 
timerenablel 
Idmemstartval 
pop 
Iddevid 

Clear jump 0 break enable flag 
Set jump 0 break enable flag 
Test if jump 0 break flag is set 
Disable high priority timer interrupt 
Disable low priority timer interrupt 
Enable high priority timer interrupt 
Enable low priority ti mer interrupt 
Load value of MemStart address 
Pop processor stack 
Load device identity 

72 TDS 224 00 August 1990 



456 B Transputer Instruction set 

72 TDS 224 00 August 1990 



C Configuration 
language definition 

This appendix defines the syntax of the ANSI C configuration language. 

C.1 Notation 

Syntax definitions are presented in a modified Backus-Naur Form (BNF). Briefly: 

1 Terminal strings of the language - those not built up by rules of the 
language - are printed in teletype font e.g. void. 

2 Each phrase definition is built up using a double colon and an equals 
sign to separate the two sides. 

3 Alternatives are separated by vertical bars Cl'). 

4 Optional sequences are enclosed in square brackets Cl' and I]'). 

5 Items which may be repeated zero or more times appear in braces cr 
and I}'). 

6 {o , x } represents a list of zero or more items of type 'x' separated by 
commas. 

7 {1 , X } represents a list of one or more items of type 'x' separated by 
commas. 

C.2 Implementation details 

Subscript ranges for arrays are dependent on the word length of the 
machine. For 16-bit machines the range is 0 to 215 _1, for 32-bit machines 
the range is 0 to 231 - 1. 

2 Each line in the source configuration file should not exceed 512 charac­
ters, not including leading and following white space. 

3 The maximum number of dimensions for a symbol or array constant is 
16. 

4 The maximum number of characters for an external symbol name in a 
linked object file is 256. 

72 TDS 224 00 August 1990 



458 C Configuration language definition 

C.3 Reserved words 

The following defines the set of reserved words and predefined attributes and 
constants that are defined in the ANSI C configuration language. 

C.3.1 Keywords

The configuration language's reserved words are as follows:

by char connect connection 
define double edge else 
float for if include 
input int node on 
output place rep size 
to use val 

C.3.2 Pre-deflned attributes 

Node attributes 

The element attribute used for defining the type of a node can take the fol­
lowing values: 

• processor - the node is a processor in a hardware network. 

• process - the node is a process in a software network. 

Note: The names of node attributes are not reserved words and can be freely 
used as general purpose identifiers by the programmer. 

Processor attributes

The attributes defined for nodes of type processor are as follows:

• link - used by processor and network nodes to define interconnection. 
Only defined if the type attribute has already been defined. 

• type - used by processor nodes to define processor type. Processor 
types predefined in standard include files are as follows: 

T400 T4l4 T42S 
T800 T80l T80S 
T2l2 T222 T22S 

72 TDS 224 00 August 1990 



C.4 Predeflnltlons 459 

M212 

• memory - used by processor nodes to define memory size. 

Process attributes

The attribute names currently defined for nodes of type process are:

• stacksize - used by the process nodes to specify the size of the stack 
data segment used by the process. 

• heapsiz8 - used by the process nodes to specify the size of the heap 
data segment used by the process. 

• priority - used by process nodes to specify the priority of the process. 

• interface - used by process nodes to define the type and the default 
values of parameters to be passed into the process when the process 
starts executing. 

• order - used by process nodes to specify the ordering of its code 
and data segments. The order attribute can take the following sub­
attributes: 

code stack static heap vector 

C.4 Predefinitions 

The following definitions are read from an include file by the configurer at invo­
cation. 

72 TDS 224 00 August 1990 



460 C Configuration language definition 

C.4.1 Constants 

val FALSE 0; 
val TRUE 1; 

val false 0; 
val true 1; 

val HIGH 0; 
val LOW 1; 

val high 0; 
val low 1; 

TRUE, true, FALSE, and false are used in expressions where a boolean 
value is needed. 

HIGH, high, LOW, and low can be used to define the execution priority for a 
process. 

C.4.2 Types 

define node (element "processor" ) processor; 

define node (element "process") process; 

define processor (type "T80S") t80S;
define processor (type "T801") t801;
define processor (type "T800" ) t800;
define processor (type "T42S") t42S;
define processor (type "T414") t414;
define processor (type "T400" ) t400;
define processor (type "T22S") t22S;
define processor (type "T222") t222;
define processor (type "T212") t212;
define processor (type = "M212") m212;

edge host; 

72 TDS 224 00 August 1990 



C.4 Predeflnltions 461 

define node (element "processor" ) PROCESSOR; 

define node (element "process") PROCESS; 

define processor (type "T80S") T80S;
define processor (type = "T80l" ) T80l;
define processor (type "T800") T800;
define processor (type = "T42S") T42S;
define processor (type = "T4l4") T4l4;
define processor (type = "T400") T400i
define processor (type = "T22S") T22S;
define processor (type "T222") T222;
define processor (t:ype = "T2l2") T2l2;
define processor (type "M2l2") M2l2;

These definitions are read from the include file setconf. inc by the configurer 
and forms part of its set of predefinitions. 

72 TDS 224 00 August 1990 



462 C Configuration language definition 

C.5 Language syntax 

C.5.1 Configuration 

configuration ..- config-item {config-item} 

config-item ..- declaration
replicator
conditional
directive

declaration ::= node-decl
node-attr-decl
nodedef-decl
connect-decl
edge-decl
connector-decl
mapping-decl
numeric-value-decl
compound-decl
use-decl

compound-decl ..- {config-item {config-item} } 

C.5.2 Language features 

letter ..- A 1B 1... 1z I a 1b 1... I z 

digit ..- o 1112 1... 19 

id-char ..- letter 1digit 1_ 

identifier ..- letter {id-char}
_ {id-char}

comment ..- 1* any characters except 'If/ sequence *I 

directive ..- I file-include 

file-include ..- include string 

72 TDS 224 00 August 1990 



•• 

463 C.5 Language syntax 

C.5.3 Expressions 

octal-digit ..- o 1112 I ... 17

hex-digit ..- digit IA I B I ... I F I a I b I ... I f

octal ..- o octal-digit { octal-digit}

decimal ..- digit {digit}

hex ..- Ox hex-digit {hex-digit}
ox hex-digit {hex-digit} 

character-const ..- char II 

char ..- any character except end of line and quote mark 
escape-sequence 

escape-sequence - \ I I \" I \ \ I \? 
\a I \b I \f I \n I \r I \t I \v 
\ octal-digit [octal-digit] [octal-digit] 
\x {hex-digit} 

string ..- "{string-char} "
string-char ..- any character except end of line and double quote mark

escape-sequence 
scale-size ..- k IKill L 
int-const ..- decimal[scale-size] 

octal
hex

sign ..- + 1­

exponent .. - E [sign] decimal 
e [sign] decimal 

real-size ..- f IFill L 

real-const ..- decimal. [decimal] [exponent] [real-size] 
decimal exponent [real-size] 
. decimal [exponent] [real-size] 

72 TDS 224 00 August 1990 



464 C Configuration language definition 

array-eonst ..- {{1 exp} }I 

string 

subscript ..- [exp] {[ exp ] } 

const ..- int-const
I real-const
I character-const
I array-const [subscript]

numeric-type ..- int
I float
I double
I char

monadic-op ::= + I - I ! I ­
( numeric-type)

dyadic-op ..- + I - I * I / I %
& I 1 I " I« I»
&& I 11 
< I > I<= I >= I== I != 

element ..- identifier {[subscript] • identifier} [subscript] 

function-call ..- size ( element) 

exp ..- const
element
monadic-op exp
exp dyadic-op exp
exp ? exp : exp
( exp)
function-call

C.5.4 Replication and conditionals 

replicator ..- rep identifier = exp to exp declaration
rep identifier =exp for exp declaration

conditional ::= if exp declaration [else declaration] 

C.5.5 Numeric value declarations 

numeric-value-decl ..- val identifier exp ; 

72 TDS 224 00 August 1990 



465 C.5 Language syntax 

C.5.6 Network declarations 

..­ node-type [( {1 

node 
identifier 

node-attr 
processor-attr 
process-attr 
identifier = exp 

I Iattributes} )] {1 identifier [subscript]} ; node-decl 

node-type 

attributes 

node-attr 

element-type 

processor-attr 

processor-type 

process-attr 

order-aftr 

formal-attr 

formal-type 

node-attr-decl 

nodedef-decl 

72 TDS 224 00 

..­

..­

..­

..­

..­

..­

..­

..­

..­

..­

..­

..­

element = element-type 

"processor" 
"process" 

type = processor-type 
memory = exp 

"T212" I "T414" I etc. 

stacksize = exp 
heapsize = exp 
priority = exp 
interface ( {o formal-attr} )I 

order ( {o I order-attr} ) 

code = exp 
stack = exp 
static = exp 
heap = exp 
vector = exp 

formal-type {1 I 

numeric-type 
input 
output 

identifier [subscript] [= exp] } 

element ( {1 attributes} )I 

define node-type {( {1 attributes } ) J ideotifier ; I 

August 1990 



466 C Configuration language definition 

connector-decl ..- connection {1 identifier [subscript]} ; I 

connect-decl ..- connect element, element [by identifier [subscript]] ;
connect element to element [by identifier [subscript]] ;

edge-decl ..- edge {1 , identifier [subscript]} ; fIinput {1 identifier [subscript]} ; I 

output {1 , identifier [subscript]} ;

use-decl ..- use string for element;

C.5.7 Mapping declarations 

mapping-decl ::= place element on element ; 

72 TDS 224 00 August 1990 



D Bootstrap loaders
0.1 Introduction 

Special loading procedures can be created for the program and used in place 
of, or in addition to, the standard INMOS bootstrap. The file containing the new 
bootstrap is specified by invoking the collector with the 'B' option. 

User defined bootstraps must perform all the necessary operations to initialise 
the transputer, load the network, and set up the software environment for the 
application program. 

Bootstraps are output to the program bootable file as the first section of code in 
the bootable file. The bootstrap, consisting of the primary and secondary boot­
strap sequences, is followed by the standard INMOS network loader program, 
which is output in small packets, each packet consisting of a maximum of 60 
bytes. The last packet of the network loader is followed by a length byte of zero. 

In most cases a custom bootstrap will interface directly with the standard IN­
MOS Network Loader, which places various pieces of code and data within the 
transputer memory in a controlled way. However it is possible to skip the stan­
dard loader by sinking its code packets and following the commands used by 
the network loader that are output after the network loader. 

The general format of a custom bootstrap is a concatenated sequence of boot­
strap code segments each preceded by a length byte. The sequence can be 
any length. The bootstrap program must be contained in a single file. 

0.1.1 The example bootstrap 

The example bootstrap loader provided on the toolset examples directory is 
a combination of several files used in the standard INMOS bootstrap scheme. 
The files have been combined into a single file to illustrate how to create a user­
defined bootstrap; the functionality is the same as that used in the the standard 
INMOS scheme based on multiple files. 

The program is written in transputer code and consists of two parts: 

Primary bootstrap - performs processor setup operations such as initial­
ising the transputer links 

Secondary bootstrap - sets up the software environment and interfaces 
to the Network Loader. 

72 TDS 224 00 August 1990 



468 o Bootstrap loaders 

Transfer of control 

The calling sequence in the standard INMOS scheme is as follows: 

The primary loader calls the secondary loader, which then calls the Network 
Loader. When the Network Loader has completed its work control returns to 
the secondary loader, which calls the application program via data set up by the 
Network Loader. 

Custom bootstraps should follow the same sequence. 

0.1.2 Writing bootstrap loaders 

Bootstrap loader programs should be written to perform the same operations 
as the standard scheme, that is, hardware initialisation, setting up the software 
environment, and calling the Network Loader. If you skip the Network Loader by 
sinking its code bytes then you must ensure its function is reproduced in your 
own code. If you do use the Network Loader you must ensure the interface 
to it is correct by setting up the invocation stack. The method by which this is 
achieved can be deduced from the example program listing. 

If you wish to make only a few small changes to the standard loader, for exam­
ple, insert code to initialise some D-to-A convertors, then the example code can 
be used and the required code can be inserted between the Primary and Sec­
ondary Loader code as an additional piece of bootstrap code in the sequence 
of bootstraps. The rest of the code can be used as it stands. 

If you decide to devise your own loading scheme and rewrite the Primary and 
Secondary Loaders then you should be familiar with the design of the Transputer 
and its instruction set. For engineering data about the transputer consult the 
'Transputer Databook' and for information about how to use the instruction set 
see the 'Transputer Instruction Set: a compiler writer's guide'. 

72 TDS 224 00 August 1990 



0.2 Example user bootstrap 469 

0.2 Example user bootstrap 

(c) Inmoa 1989 

-- Aaaembly file for the Generic Primary bootatrap TA HALT mode 

-­ VAL BllSB IS 1 loop index 
-­ VAL COUNT IS 2 loop count 

-­ VAL 
-­ VAL 

LOAD START
LOAD:LENGTH 

IS 
IS 

0 
1 

.tart of loader 
loader block length 

-­ VAL NEXT ADDRESS IS 2 .tart of next block to load 
-­ VAL BOOTLINK IS 3 link booted from 
-­ VAL NEXT_WPTR IS 4 -­ work apace of loaded code 
-­ VAL RETURN_ADDRESS IS 5 -­ return addreaa from loader 
-­ VAL TEMP_ WORKSPACE IS RETURN_ADDRESS : -­ workapace u.ed by both 

-­ preamble and loader 
-­ VAL NOTPROCESS IS 6 : -­ copy of MinInt 
-­ VAL LINKS IS NOTPROCESS -­ 1at param to loader (MinInt) 
-­ VAL BOOTLINK IN PARAM IS 7 -­ 2nd parameter to loader 
-­ VAL BOOTLINK:OOT_PARAM IS 8 -­ 3nd parameter to loader 
-­ VAL MEMORY IS 9 : 4th parameter to loader 
-­ VAL EXTERNAL_ADDRESS IS 10 : -­ 5th parameter to loader 
-­ VAL ENTRY POINT IS 11 -­ 6th parameter to loader 
-­ VAL DATA_POINT IS 12 : 7th parameter to loader 
-­ VAL ENTRY ADDRESS IS 13 referenced from entry point 
-­ VAL DATA ADDRESS IS 14 referneced from Data point 
-­ VAL MEMSTART IS 15 atart of b.oot part 2 

Tbe initial workapace requirement ia found by reading the workapace 
requirement from the loader \occam\ and aubtracting the aize of the workapace 

-- uaed by both the loader and the bootatrap (\verbltemp.workapacel). Tbia value 
ia inaremented by 4 to aaaoDlllOdate the workapaae adjuatment by the aall 
inatruation uaed to preaerve the proceaaor regiatera. 

initial. adjuatment : - (loader .workapaae + 4) - temp .workapace 
ocaam work apace, + 4 for call to aave reg1atera, - adjuatment made 

-- when enterinq occam. Muat be at leaat 4 
IJr 

initial. adjuatment < 
initial . adjuatment 

TRUE 
SKIP 

aet up work apace, aave regiatera, 
aave M8II\Start and NotProceaa 

aliqn 

bYte (Endprimary-Primary) -- Length of the primary bootatrap 

Primary: 

global Primary 

ajw INITIAL_ADJUSTMBNT -- aee above (ia 20) 
aall 0 -- aave regiatera 

lda _Start - AddrO -- diatance to atart byte 
ldpi addreaa of atart 

AddrO: 
atl ICBMSTART aave for later uae 

mint 
atl HOTPROCESS -- aave for later uae 

72 TDS 224 00 August 1990 



470 D Bootstrap loaders 

initiali.. proo... qu.u.. and cl.ar .rror
ldl NOorPROCESS
.tlf r •••t low priority qu.u.

ldl NOorPROCESS
.thf -- r •••t hiqh priority qu.u.

-- u •• olrhalt.rr h.r. to or.at. boot.trap for REDUCED application 

••thalt.rr ••t halt on .rror
t ••t.rr r.ad and ol.ar .rror bit

initiali•• T8 .rror and roundinq
ldl NEMSTART -- Ch.ck if proc•••or ha. floatinq point unit by
ldl NOorPROCESS ch.ckinq if. (mematart >< mint) >- '70
xor
ldo '70 -- Mematart for TS, T8

-- B • '70, A • (Mematart >< MINT)
qt
.qc 0
oj Nofpu

fpt••t.rr -- floatinq oh.ck and ol.ar .rror in.truction 

Nofpu: 

initiali•• link and .v.nt word.
ldo 0
.tl BASB ind.x to word. to initiali••
ldo 11 no. word. to initiali••
• tl COUNT oount of word. l.ft 

Startloop: 
ldl NOorPROCESS 
ldl BASB -- index 
ldl NOorPROCESS 
w.ub -- point to n.xt addr••• 
• tnl o -- put NotProc... into addr•••ed word
ldlp BASB -- addr... of loop oontrol info
ldo Endloop - Startloop -- r.turn jump
l.nd -- qo back if more

Endloop: • 
••t up .ome load.r paramet.r.. S.. the paramet.r
.tructure of the loader
ldl MEMSTART cl.ar data and .ntry addr•••••
• tl DATA ADDRESS
ldl MBMSTART
.tl ENTRY_ADDRESS

ldlp DATA_ADDRESS addr... of .ntry word
.tl DATA_POINT .tor. in param 7

ldlp BNTRY ADDRESS addr... of .ntry word
.tl KNTRY:POINT .tor. in param ,

ldl NOT PROCESS
.tl BXTiRNAL_ADDRESS -- buff.r off••t in param S

ldl MEMSTART .tart of memory
.tl MEMORY .tor. in param 4

ldl BOOTLINX oopy of bootlink
.tl BOOTLINX_IN_P.ARAN -- .tor. in param 2

Now find the oorr••pondinq output link and place in the par....t.r 

lc:ll BOO1'LINJC
ldnlp -4 -- Calculat. the output link addr•••
• tl BOO!'LINX_ Otrf_PUAM -- .tor. in param 3 

72 TDS 224 00 August 1990 



0.2 Example user bootstrap 471 

loacl bootloader over boot.trap 
oode mu.t be 2 byte••horter than boot.trap 
ldlp LOAD LENGTH -- paoket .ize word 
ldl BOOTLINK -- addre•• of link 
ldo 1 -- byte. to load 
in input length byte 

ldl MEMSTART area to load boot loader 
ldl BOOTLINK addre.. of link 
ldl LOAD_LENGTH -- me••aqe length 
in -- input bootloader 

enter oo~ ju.t loaded 

pfix 0 -- For the next boot.trap to be 2 byte. biqqer 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 
pfix 0 

ldl MEMSTART .tart of loaded code 
qoall enter bootloader 

aliqn 

Endprimary : 

-- (c) Inmo. 1989 
-- A••embly file for the qeneric .econdary loader TA IGNORE mode 

-­ VAL BASE IS 1 loop index 
-­ VAL COUNT IS 2 loop count 

-­ VAL 
-­ VAL 

LOAD START
LOAD:LENGTH 

IS 
IS 

0 
1 

.tart of loader 
loader block length 

-­ VAL NEXT_ADDRESS IS 2 .tart of next block to load 
-­ VAL BOOTLINX IS 3 link booted from 
-­ VAL NEXT_WPTR IS 4 -­ work .pace of loaded code 
-­ VAL RETURN ADDRESS IS 5 -­ return addr... from loader 
-­ VAL TEMP_WORKSPACE IS RETURN_ADDRESS : -­ work.pace u.ed by both 

- ­ preamble and loader 
-­ VAL NOTPROCBSS IS 6 : -­ copy of MinInt 
-­ VAL LINKS IS NOTPROCESS -­ l.t param to loader (MinInt) 
-­ VAL BOOTLINX IN PARAM IS 7 -­ 2nd parameter to loader 
-­ VAL BOOTLINX:OOT_PARAM IS 8 -­ 3nd parameter to loader 
-­ VAL MEMORY IS 9 4th parameter to loader 
-­ VAL BOFI'BR IS 10 5 
-­ VAL NEXT_POINT IS 11 6th parameter to loader 
-­ VAL EN'l'RY POINT IS 12 7th parameter to loader 
-­ VAL DATA POINT IS 13 8th parameter to loader 
-­ VAL BN'l'RY ADDRESS IS 14 referenced from entry point 
-­ VAL DATA_ADDRESS IS 15 referenced from Data point 
-­ VAL NEXT_ADDRESS IS 16 referenced from Nexat point 
-­ VAL MEMSTART IS 17 .tart of boot part 2 

-- VAL PACJtBT LBNGTH IS 120 : 
-- VAL OCCAMj'ORKSPACE IS 18 : 

72 TDS 224 00 August 1990 



472 o Bootstrap loaders 

byte (Endsecondary-Secondary) -- Lenqth of the secondary boostrap 

Secondary: 

global Secondary 

initialise bootloader work.pace 

ldc PACKET LENGTH -- buffer size 
ldlp MEMSTART+l -- buffer start addre.s 
bsub end of buffer addre.s 
stl NEXT_ADDRESS -- start of area to load loader 

ldl NEXT_ADDRESS 

ldlp MEMSTART+l -- buffer start address
stl MEMORY -- Earliest place to load

ldlp TEMP_WORKSPACE -- pointer to. loader' s work space zero 
stl NEXT_WP'fR -- work space pointer of loaded code 

ldc 0 
stl BUFFER -- Buffer off.et from Buffer start 

ldc 0
.tl LOAD_LENGTH clear byte. to load

Loadcode:
ldl NEXT ADDRESS address to load loader
stl LOAD:START current load point

load code until terminator 
Startload:

ldlp LOAD LENGTH -- packet lenqth
ldl BOOTLINK -- address of link
ldc 1 -- bytes to load
in -- input lenqth byte

ldl LOAD LENGTH -- me.sage lenqth
cj Endl~ad quit if 0 bytes

ldl NEXT_ADDRESS start of area to load loader 
ldl BOOTLINK addre.s of link 
ldl LOAD_LENGTH -- message lenqth 
in -- input code block 
ldl LOAD LENGTH -- me••age lenqth 
ldl NEXT:ADDRESS area to load 
b.ub new area to load 
stl NEXT_ADDRESS -- .ave area to load 

j Startload -- go back for next block
Endload:

initiali.e return addre.s and enter loaded code
ldc Return - Addrl off.et to return addre••
ldpi return addre••

Addrl: 
stl RETURN_ADDRESS save in WO 

ldl BOOTLINK -- Get bootlink and save for later 
.tl OCCAM_WORKSPACE -- Save in area that will not be u.ed 

-- by network loader 

ldl -- wspace of loaded code 
gajw -- .et up hi. work .pace 
ldnl -- addre•• of fir.t load packet 
gcall -- enter loaded code 

Return: 

72 TDS 224 00 August 1990 



0.2 Example user bootstrap 473 

-- How .et up invocation .tack for the Init_.y.tem 

ajw (RNP_WORXSPACB + 4) -­ re.et work .pace after return 

lcU 
.tl 

OCCAN WORXSPACB 
BOOn.INJC 

-­ get back boot link 

lcU 
lcU 
b.ub 
.tl 

DATA ADDRESS 
MEMORY 

DATA_POINT 

-­ get addre.. of proce••or .tructure 

lcU ENTRY ADDRESS -- convert to real entry addre•• 
lcU MEMORY 
b.ub 
.tl LOAD_START 

lcU NOTPROCESS 
.tl NEXT_POINT 

lcU HBMORY -- make DATA ba.e off.et and CODE ba.e off.et the .&me 

.tl BUI'I'BR 

lcU BNTRY ADDRESS 
.tl TEMP_WORXSPACB Set up entry point 

lcU NEXT ADDRESS convert returned addre.. of next .equence to 
lcU MEMORY a real addre•• 
b.ub 
.tl NEXT_ADDRESS 

ldc 0 
.tl LOAD_LENGTH -- clear byte. to load 

ldlp NOT_PROCESS -- Top of temp workspace used by bootloader 
.tl HEXT_WPTR 

.tart clock 

ldc 0 
.ttimer 

Startload -- Qo back for more and over write the network loader 

align 

End.econdary : 

72 lOS 224 00 August 1990 



474 D Bootstrap loaders 

0.3 The INMOS Network Loader 

The following code, written in occam, represents the standard network loader 
program used by INMOS. 

'rhi. qeneric loader i. written and .hould be compiled with out any proce••or type 

dependencie.. 'rhat i. the .&me object code i. u.ed even if the proce••or i. one of 

the .ixt..n bit variety 

PROC Loader ([4] CHAN OF ANY link., 
CHAN OF'ANY bootlink.in, bootlink. out, 
[4] BYTB memory,

VAL INT Buffer. addre•• ,
INT Next. addre•• ,
INT Entry. point,
INT Data.point)

--tU con.tant. 
VAL data. field IS '3F 
VAL data. field.bit. IS 6 : 
VAL tag. field IS .CO 
VAL tag. field. bit. IS 2 
VAL me••age IS 0 
VAL number IS 1 
VAL operate IS 2 
VAL prefix IS 3 
VAL tag. prefix IS prefix « data. field. bit. 
VAL me••age . length IS 60 : 

VAL load IS 0 
VAL pa•• IS 1 
VAL open IS 2 
VAL operate. open IS BYTE «operate « data. field.bit.) 

\/ open) : 
VAL clo.e IS 3 : 
VAL operate. clo.e IS BYTE «operate « data. field. bit.) 

\/ clo.e) : 
VAL addre•• IS 4 
VAL execute IS 5 
VAL Data.po.ition IS 6 
VAL operate. execute IS BYTE «operate « data. field. bit.) 

\/ execute) : 

VAL operate.data.po.tion IS BYTE «operate « data. field.bit.) 
\/ Data.po.ition) : 

VAL code .load IS 7: 
VAL operate. code. load IS BYTB «operate « data. field.bit.) 

\/ code. load) : 

VAL code. addre.. IS 8:
VAL operate. code. addre•• IS BYTB «operate « data. field. bit.)

\ / code. addre•• ) :

VAL data . load IS g:
VAL operate. data .load IS BYTE «operate « data. field. bit.)

\/ data . load) :

VAL data. addre.. IS 10 :
VAL operate. data. addre•• IS BYTE «operate « data. field.bit.)

72 TDS 224 00 August 1990 



0.3 The INMOS Network Loader 475 

\/ data. addre••) : 

VAL Bntry.po.ition IS 11: 
VAL operate.entry.po.ition IS BYTE «operate « data.field.bit.) 

\/ Bntry.po.ition) : 

VAL Boot.trap.load IS 12: 
VAL Operate.boot.trap.load IS BYTE «operate « data. field.bit.) 

\/ Boot.trap.load) : 

VAL Boot.trap. end IS 13: 
VAL Operate.boot.trap.end IS BYTE «operate « data. field. bit.) 

\/ Boot.trap. end) : 

-- { { { VAlUABLES 
BYTE command: 
INT Boot.trap. depth, link•. to . load, la.t. addre•• , output . link 
BOOL loading: 
SEg 

bootlink.in ? command 
WHILE command <> operate. execute

INT tag, operand :
--{ {{ proce•• command
SEg

tag :- (INT command) »data. field.bit.
operand :- (INT command) /\ data. field
II'

--{ {{ tag - me••age 
tag - me••age

INT load. addre••
SEg

II'
--{ {{ loading
loading

SEg 
load. addre.. : - la.t. addre•• 
la.t. addre.. : - load. addre•• PLUS operand 

--{ {{ pa••ing on 
TRUE 

load. addre.. : - Buffer. addre••
-- { { { read in me••age
II'

operand <> 0 
bootlink. in ? [memory FROM load. addre•• FOR operand] 

TROB 
SKIP

-- { { { .end me••age to output.
SEg i - 0 FOR 4

IF 
(link•. to.load /\ (1« i» <> 0 

SEg 
link. [i] ! command 
IF 

operand <> 0 
links [i] ! [memory FROM load. address FOR operand] 

TRUE 
SKIP

TRUE
SKIP

-- { { { tag - operate
tag - operate

II'
-- { { { operand - load
operand - load

SEg
loading : - TRUE
link•. to . load : - 0

--{ {{ operand - data. load
operand • data .load

SEg

72 TDS 224 00 August 1990 



476 o Bootstrap loaders 

loading : - nUB 
link•. to .load : - 0

--«( operand - Code.load
operand - code .load

SEQ
loading : - nUB
link•. to . load : - 0

-- ( ( ( operand - pa••
operand - pa••

SEQ
loading :- FALSE
link•. to. load : - 0

-- ( ( ( operand - open 
operand - open

INT depth:
SEQ

depth :- 1
1fBILE depth <>

SEQ
bootlink.in ? command
II'

command - operate. open 
depth : - depth + 1 

command - operate. clo.e 
depth : - depth - 1 

nUB 
SKIP 

II' 
depth <> 0 

link. [output . link] ! command 
nUB 

SKIP
--( « operand - addre••
operand - addre••

SEQ
-- ( ( ( read in load off.et
BOOL more:
SEQ

la.t. addre.. : - 0
more :- nUB
1fBILE more

SEQ 
la.t.addre•• :- la.t.addre•• « data.field.bit. 
bootlink.in ? coamand 
la.t . addre.. : - la.t. addre.. PLUS 

«INT command) /\ data. field) 

more : - (INT command) >- tag. prefix 
-- ( ( ( entry addre•• 
Hext . addre.. : - la.t. addre•• 

operand - Data.po.ition 
saQ

--( « read in data po.itiQn off.et
BOOL more:
SBQ

Data. point : - 0
.cre :- nUB
1fBILE more

SEQ 
Data.point :- Data.point « data. field.bit. 
bootlink.in ? coamand 
Data. point : - Data. point PLUS 

«INT command) /\ data. field) 

more :- (INT coanand) >- tag.prefix
operand - Bntry.po.ition

SEQ
--(( { read in data po.ition off.et
BOOL more:
RQ

72 TDS 224 00 August 1990 



0.3 The INMOS Network Loader 477 

Bntry. point : - 0
more : - TROB
WBJ:LE more

SBg 
Entry.point :- Bnt~.point « data. field.bit. 
bootlink.in ? cOlIID&nd 
Bntry. point : - Bntry. point PLUS 

«INT command) 1\ data. field) 

more :- (INT coamand) >- tag.prefix 
--{{ { entry addre•• 

operand - code. addre•• 
SEg

--{{ { read in load off.et
BOOL more:
SEg

la.t. addre.. : - 0
more : - TRUE
WBJ:LB more

SEg 
la.t.addre•• :- la.t.addre•• « data.field.bit. 
bootlink.in ? cOlIID&nd 
la.t . addre.. : - la.t. addre.. PLUS 

«INT command) 1\ data. field) 

more :- (IN~ command) >- tag.prefix 
Entry. point : - la.t. addre•• 

operand - data.addre•• 
SBg

--{ {{ read in load off.et
BOOL more:
SBg

la.t. addre.. : - 0
more : - TROB
WHILE more

SEg 
la.t.addre•• :- la.t.addre•• « data.field.bit. 
bootlink.in ? cOlIID&nd 
la.t . addr... : - la.t. addre.. PLUS 

«IN~ command) 1\ data. field) 

more : - (INT command) >- tag. prefix 
--{ {{ entry addre•• 
Data.point : - la.t. addre•• 

operand - Boot.trap.load
IN~ load. addre.. :
INT Boot.trap . length
BOOL more:
SEg

Boot.trap.depth :- 0 
Boot.trap.length : - 0 
load. addre.. : - Buffer. addre•• 
more :- nOB 
bootlink.in ? command 
more : - (IN~ command) >- data. field 
WHILE more 

SBg 
Boot.trap.depth :- Boot.trap.depth PLUS 1 
SBQ i - 0 rOR 4 

Ir 
(link•. to.load 1\ (1 « i» <> 0 

SBg 
link.[i] , command 

nOB 
SKIP 

bootlink.in ? cOlIIID&nd 
more :- (IHIf oOllllD&nd) >- data. field 

operand : - (INT command) 1\ data. field 

72 TDS 224 00 August 1990 



478 o Bootstrap loaders 

II' 
Boot.trap.depth > 0

--{ { { read in ......ag.
SBQ

XI' 
operand <> 0 

bootlink.in ? [memo~ ROM load. addr... I'OR operand] 
DOB 

SltIP
--{ { { ••nd ......a~ to output.
SBQi-OI'OR4

XI'
(link•• to.load /\ (1 « i» <> 0

SEQ
link. [i] , coaaand
XI'

operand <> 0 
link. [i] , [memory ROM load. addr••• 

I'OR operand] 

DOB 
SKXP 

DOB 
SEQ 

mor. : - DOB 
-- Ifh. next proce••or (.) are to be boot.d '" -­-- .0 build a bootabl. pack.t and output down link 
WBXLB mor. 

SBQ 
bootlink.in ? [memory FRON load. addr••• I'OR operand] 
load.addr••• :- load.addr••• PLUS operand 
Boot.trap.l.ngth :- Boot.trap.length PLUS operand 
bootlink.in ? coaaand 
-- Stop building wh.n a proper cOlIIID&Dd 
-- i. receiv.d 1fh1. .hould be when a 
-- , Boot.trap••nd' i. r.ceived 
more : - (XNIf cOlIIID&Dd) < data. fi.ld 
operand :- (XNIf coaaand) /\ data. fi.ld 

SEQi-OI'OR4 
XI' 

(link•. to. load /\ (1 « i» <> 0 
SEQ 

link. [i] , (BYR Boot.trap.l.ngth) 
XI' 

.oot.trap.l.ngth <> 0 
link. [1] , [memory DOM Buff.r. addre•• 

I'OR Boot.trap.l.ngth] 

operand - Boot.trap.•nd
SBQ

SEQ ii - 0 I'OR Boot.trap. depth
SBQ 

-- Pa•• on all .th. oth.r boot.trap .nd. 
bootlink.in ? coaaand 
SEQi-OI'OR4 

XI' 
(link•• to • load /\ (1 « i» <> 0 

link. [i] , coaaand 
DUB 

SlaP 
Bootatrap.depth :- 0 

--«( t&CJ - m-ber
DUB

72 TDS 224 00 August 1990 



0.3 The INMOS Network Loader 479 

SEQ 

output . link : - operand. 
linka.to.load. :- linka.to.load. \/ (1 « output.link) 

bootlink. in ? command. 

72 TDS 224 00 August 1990 



480 o Bootstrap loaders 

72 TDS 224 00 August 1990 



E ISERVER protocol
This appendix describes the protocol of the host file server iserver and pro­
vides definitions of the functions used to implement it. 

E.1 The host file server iserver 

The host file server iserver is implemented in C using ANSI standard run-time 
libraries to facilitate porting to other machines. This provides an easy method 
of porting the toolset (or programs written under the toolset) to new hosts. The 
server can easily be extended to accommodate a new host, but at the risk of 
unportability. 

The source of the server and of the libraries used to communicate with the server 
is supplied with the toolset. 

E.2 The server protocol 

Every communication to and from the server is a packet consisting of a counted 
array of bytes. The count gives the length of the message and is sent in the first 
two bytes of the packet as a signed 16 bit number. The structure of a server 
packet is illustrated in figure E.1. 

This protocol has been given the name SP, and is defined in occam as follows: 

PROTOCOL SP IS INT16:: []BYTE : 

E.2.1 Packet size 

There is a maximum packet size of 512 bytes and a minimum packet size of 8 
bytes in the to-server direction (Le. a minimum message length of 6 bytes). The 
server may take advantage of this knowledge. 

message of length bO + (256 * b1) 

Figure E.1 SP protocol packet 

72 TDS 224 00 August 1990 



482 E ISERVER protocol 

The packet size must always be an even number of bytes. If the number of 
bytes is odd a dummy byte is added to the end of the packet and the packet 
byte count rounded up by one. 

The hostio library contains routines that ensure that the size restrictions are met 
when sending a packet to the server (see section E.3). 

E.2.2 Protocol operation 

Every request sent to the server receives a reply of the 'same protocol, in strict 
sequence, and no further requests are accepted until the reply has been sent. 

All integer types used by the protocol are signed and are little endian. Numbers 
are transmitted as sequences of bytes (2 bytes for 16 bit numbers, 4 bytes 
for 32 bit numbers) with the least significant byte first. Negative integers are 
represented in 2s complement. Strings and other variable length blocks are 
introduced by a 16 bit signed count. 

All server calls return a result byte as the first item in the return packet. If the 
operation succeeds the result byte is zero and if the operation fails the result 
byte is non-zero. The result is one (1) in the special case where the operation 
fails because the function is not implemented1

• If the result is non-zero, some or 
all of the return values may not be present, resulting in a smaller return packet 
than if the call was successful. 

E.3 The server libraries 

The i/o library contains all the routines provided in the toolset for communicating 
with the server. It is implemented via a set of basic routines, hidden from the 
user, from which the more complex user visible routines are built. 

E.4 Parting the server 

In order to port the iserver to a new machine you must have a C compiler 
for that machine with ANSI standard libraries. A Makefile that can assist with 
porting to a new machine is supplied on the toolset 'source' subdirectory. 

All the functions described below must be provided by any implementation of 
iserver. 

1Result values between 2 and 127 are defined to have particular meanings by occam 
server libraries. Result values of 128 or above are specific to the implementation of a server. 

72 TDS 224 00 August 1990 



483 E.5 Server commands 

E.5 Server commands 

• 
The functions provided by the iserver are split into three groups: 

1 File commands, for interacting with fifes 

2 Host commands, for interacting with the host 

3 Server commands, for interacting with the server itself. 

E.5.1 Notation 

In the descriptions that follow, the arguments and results of server calls are listed 
in the order that they appear in the data part of the packet. The size of a packet 
is the aggregated size of all the items in the packet, rounded up to an even 
number of bytes. 

occam types are used to define data items within the packet. occam types 
have a clear syntax and are generally self-explanatory but for further details 
the reader is referred to the 'occam 2 reference manua!, or any good text on 
occam. 

E.5.2 Reserved values

INMOS reserves the following values for its own use:

• Function tags in the range 0 to 127 inclusive. 

• Result values in the range 0 to 127 inclusive. 

• Stream identifiers 0, 1 and 2. 

Some commands may return particular values, which may be reserved. The 
range of reserved values is given with each command as appropriate. 

72 TDS 224 00 August 1990 



484 E ISERVER protocol 

E.5.3 File commands 

Open files are identified with 32 bit descriptors. There are three predefined open 
files: 

o - standard input
1 - standard output
2 - standard error • 

If one of these is closed then it may not be reopened. 

Fopen - Open a file 

Synopsis: Streamld = Fopen( Name, Type, Mode) 

To server: BYTE Tag = 10
INT16: : [] BYTE Name
BYTE Type 1 or 2
BYTE Mode 1 ... 6

From server: BYTE Result
INT32 Streamld

Fopen opens the file Name and, if successful, returns a stream identifier 
Streamld. 

72 TDS 224 00 August 1990 



E.5 Server commands 485 

Type can take one of two possible values: 

1 Binary. The file will contain raw binary bytes. 

2 Text. The file will be stored as text records. Text files are host­
specified. 

Mode can have 6 possible values: 

1 Open an existing file for input. 

2 Create a new file, or truncate an existing one, for output. 

3 Create a new file, or append to an existing one, for output. 

4 Open an existing file for update (both reading and writing), starting 
at the beginning of the file. 

5 Create a new file, or truncate an existing one, for update. 

6 Create a new file, of append to an existing one, for update. 

When a file is opened for update (one of the last three modes above) then 
the resulting stream may be used for input or output. There are restric­
tions, however. An output operation may not follow an input operation 
without an intervening Fseek, Ftell or Fflush operation. 

The number of streams that may be open at one time is host-specified, 
but will not be less than eight (including the three predefines). 

Fclose - Close a file 

Synopsis: Fclose( Streamld ) 

To server: BYTE 
INT32 

Tag = 11 
Streamld 

From server: BYTE Result 

72 lOS 22400 August 1990 



486 E ISERVER protocol 

Fclose closes a stream Streamld which should be open for input or out­
put. Fclose flushes any unwritten data and discards any unread buffered 
input before closing the stream. 

Fread - Read a block of data 

Synopsis: Data Fread( Streamld, Count ) 

To server: BYTE Tag = 12
INT32 Streamld
INT16 Count

From server: BYTE Result
INT16: : [] BYTE Data

Fread reads Count bytes of binary data from the specified stream. Input 
stops when the specified number of bytes are read, or the end of file is 
reached, or an error occurs. If Count is less than one then no input is 
performed. The stream is left positioned immediately after the data read. 
If an error occurs the stream position is undefined. 

Result is always zero. The actual number of bytes returned may be 
less than requested and Feof and Ferror should be used to check for 
status. 

72 TDS 224 00 August 1990 



E.5 Server commands 487 

Fwrite - Write a block of data 

Synopsis: Written Fwrite( Streamld, Data) 

To server: BYTE Tag = 13 
INT32 Streamld 
INT16: : [] BYTE Data 

From server: BYTE Result 
INT16 Written 

Fwrite writes a given number of bytes of binary data to the specified 
stream, which should be open for output. If the length of Data is less 
than zero then no output is performed. The position of the stream is 
advanced by the number of bytes actually written. If an error occurs then 
the resulting position is undefined. 

Fwrite returns the number of bytes actually output in Written. Result 
is always zero. The actual number of bytes returned may be less than 
requested and Feof and Ferror should be used to check for status. 

If Streamld is 1 (standard output) or 2 (standard error) then the write 
is automatically flushed. 

FGetBlock - Read a block of data and return success 

Synopsis: Data FGetBlock ( Streamld, Count ) . 

To server: BYTE Tag = 23 
INT32 Streamld 
INT16 Count 

From server: BYTE Result 
INT16: : [] BYTE Data 

FGetBlock reads Count bytes of binary data from the specified stream. 
Input stops when the specified number of bytes have been read, the end 
of the file is reached, or an error occurs. If Count is less than one (1) 
no input is performed. 

The stream is left positioned immediately after the data read; if an error 
occurs the position is undefined. 

72 TDS 224 00 August 1990 



488 E ISERVER protocol 

The actual number of bytes read may be less than requested. A Result 
of zero (0) indicates success, any other value failure. If a failure result is 
returned Feof and Ferror should be used to check for status. 

Note: FGetBlock should always be used in preference to Fread, whose 
function it replaces. 

FPutBlock - Write a block of data and return success 

Synopsis: FPutBlock( Streamld, String 

To server: BYTE Tag = 24 
INT32 Streamld 
INT16: : [] BYTE Data 

From server: BYTE Result 
INT16 Written 

FPutBlock writes a given number of bytes of binary data to the specified 
stream, which should be open for output. If Data is less than zero (0) 
no output occurs. The position of the stream is advanced by the number 
of bytes actually written successfully. If an error occurs the position is 
undefined. 

The number of bytes actually written is returned in Written. The actual 
number written may be less than requested. A Result of zero (0) 
indicates success, any other value failure. If a failure result is returned 
Feof and Ferror should be used to check for status. 

If Streamld is 1 (standard output) the write is automatically flushed. 

Note: FPutBlock should always be used in preference to Fwrite, whose 
function it replaces. 

72 TDS 224 00 August 1990 



E.5 Server commands 489 

Fgets - Read a line 

Synopsis: Data Fgets( Streamld, Count) 

To server: BYTE Tag = 14 
INT32 Streamld 
INT16 Count 

From server: BYTE Result 
INT16: : [] BYTE Data 

Fgets reads a line from a stream which must be open for input. Charac­
ters are read until end of file is reached, a newline character is seen or 
the number of characters read is not less than Count. 

If the input is terminated because a newline is seen then the newline 
sequence is not included in the returned array. ­

If end of file is encountered and nothing has been read from the stream 
then Fgets fails. 

Fputs - Write a line 

Synopsis: Fputs( Streamld, String 

To server: BYTE Tag = 15 
INT32 Streamld 
INT16: : [] BYTE String 

From server: BYTE Result 

Fputs writes a line of text to a stream which must be open for output. 
The host-specified convention for newline will be appended to the line 
and output to the file. The maximum line length is host-specified. 

72 TDS 224 00 August 1990 



490 E ISERVER protocol 

Fflush - Flush a stream 

Synopsis: Fflush( Streamld )

To server: BYTE Tag = 16
INT32 Streamld

From server: BYTE Result

Fflush flushes the specified stream, which should be open for output. Any 
internally buffered data is written to the destination device. The stream 
remains open. 

Fseek - Set position in a file 

Synopsis: Fseek( Streamld, Offset, Origin) 

To server: BYTE Tag = 17
INT32 Streamld
INT32 Offset
INT32 Origin

From server: BYTE Result 

Fseek sets the file position for the specified stream. A subsequent read 
or write will access data at the new position.

For a binary file the new position will be Offset characters from
Origin which may take one of three values:

1 Set, the beginning of the file 

2 Current, the current position in the file 

3 End, the end of the file. 

For a text stream, Offset must be zero or a value returned by Ftell. If 
the latter is used then Origin must be set to 1. 

72 TDS 224 00 August 1990 



E.5 Server commands 491 

Ftell - Find out position in a file 

Synopsis: Position Ftell( Streamld 

To server: BYTE Tag = 18 
INT32 Streamld 

From server: BYTE Result 
INT32 Position 

Ftell returns the current file position for Streamld. 

Feof - Test for end of file 

Synopsis: Feof( Streamld 

To server: BYTE Tag = 19 
INT32 Streamld 

From server: BYTE Result 

Feof succeeds if the end of file indicator for Streamld is set. 

Ferror - Get file error status 

Synopsis: ErrorNo, Message = Ferror(Streamld) 

To server: BYTE Tag = 20 
INT32 Streamld 

From server: BYTE Result 
INT32 ErrorNo 
INT16: : [] BYTE Message 

Ferror succeeds if the error indicator for Streamld is set. If it is, Fer­
ror returns a host-defined error number and a (possibly null) message 
corresponding to the last file error on the specified stream. 

72 TDS 224 00 August 1990 



492 E ISERVER protocol 

Remove - Delete a file 

Synopsis: Remove( Name) 

To server: BYTE Tag = 21 
INT16: : [] BYTE Name 

From server: BYTE Result 

Remove deletes the named file. 

Rename - Rename a file 

Synopsis: Rename( OldName, NewName 

To server: BYTE Tag = 22 
INT16:: []BYTE OldName 
INT16: : [] BYTE NewName 

From server: BYTE Result 

Rename changes the name of an existing file OldName to NewName. 

Isatty - Determine if a stream is connected to a terminal 

Synopsis: Isatty( Streamld ) 

To server: BYTE Tag = 25 
INT32 Streamld 

From server: BYTE Result 

Isatty determines the tty status of the specified stream. It returns success 
if the stream is connected to a terminal. 

72 TDS 224 00 August 1990 



E.5 Server commands 493 

E.5.4 Host commands 

Getkey - Get a keystroke 

Synopsis: Key GetKey() 

To server: BYTE Tag = 30 

From server: BYTE Result 
BYTE Key 

GetKey gets a single character from the keyboard. The keystroke is 
waited on indefinitely and will not be echoed. The effect on any buffered 
data in the standard input stream is host-defined. 

Po11key - Test for a key 

Synopsis: Key = PollKey () 

To server: BYTE Tag = 31 

From server: BYTE Result 
BYTE Key 

PollKey gets a single character from the keyboard. If a keystroke is not 
available then PollKey returns immediately with a non-zero result. If a 
keystroke is available it will not be echoed. The effect on any buffered 
data in the standard input stream is host-defined. 

Getenv - Get environment variable 

Synopsis: Value = Getenv( Name 

To server: BYTE Tag = 32 
INT16: : [] BYTE Name 

From server: BYTE Result 
INT16: : [] BYTE Value 

72 TDS 224 00 August 1990 



494 E ISERVER protocol 

Getenv returns a host-defined environment string for Name. If Name is 
undefined then Result will be non-zero. 

Time - Get the time of day 

Synopsis: LocalTime, UTCTime Time () 

To server: BYTE Tag 33 

From server: BYTE Result 
INT32 LocalTime 
INT32 UTCTime 

Time returns the local time and Coordinated Universal Time if it is avail­
able. Both times are expressed as the number of seconds that have 
elapsed since midnight on 1st January, 1970. If UTC time is unavailable 
then it will have a value of zero. 

System - Run a command 

Synopsis: Status = System( Command 

To server: BYTE Tag = 34 
INT16: : [] BYTE Command 

From server: BYTE Result 
INT32 Status 

System passes the string Command to the host command processor for 
execution. If Command is zero length then System will succeed if there 
is a command processor. If Command is not null then Status is the 
return value of the command, which is host-defined. 

72 TDS 224 00 August 1990 



E.5 Server commands 495 

E.5.5 Server commands

Exit - Terminate the server

Synopsis: Exit( Status) 

To server: BYTE Tag = 35 
INT32 Status 

From server: BYTE Result 

Exit terminates the server, which exits returning Status to its caller. 

If Status has the special value 999999999 then the server will terminate 
with a host-specific 'success' result. 

If Status has the special value -999999999 then the server will termi­
nate with a host-specific 'failure' result. 

CommandLine - Retrieve the server command line 

Synopsis: String CommandLine( All 

To server: BYTE Tag = 40 
BYTE All 

From server: BYTE Result 
INT16: : [] BYTE String 

CommandLine returns the command line passed to the server on invo­
cation. 

If All is zero the returned string is the command line, with arguments 
that the server recognised at startup removed. 

If All is non-zero then the string returned is the entire command vector 
as passed to the server on startup, including the name of the server 
command itself. 

72 TDS 224 00 August 1990 



496 E ISERVER protocol 

Core - Read peeked memory 

Synopsis Data = Core ( Offset, Length 

To server: BYTE 
INT32 
INT16 

Tag = 41 
Offset 
Length 

From server: BYTE 
INT16:: []BYTE 

Result 
Core 

Core returns the contents of the root transputer's memory, as peeked 
from the transputer when the server was invoked with the analyse option. 

Core fails if Offset is larger than the amount of memory peeked from 
the transputer or if the transputer was not analysed. 

If Offset + Length is larger than the total amount of memory that 
was peeked then as many bytes as are available from the given offset 
are returned. 

Version - Find out about the server 

Synopsis: Id = Version () 

To server: BYTE Tag = 42 

From server: BYTE Result 
BYTE Version 
BYTE Host 
BYTE OS 
BYTE Board 

Version returns four bytes containing identification information about the 
server and the host it is running on. 

If any of the bytes has the value 0 then that information is not available. 

72 TDS 224 00 August 1990 



E.5 Server commands 497 

Version identifies the server version. The byte value should be divided 
by ten to yield the version number. 

Host identifies the host machine and can be any of the following: 

1 PC 
2 NEC-PC 
3 VAX 
4 Sun 3 
5 IBM 370 
6 Sun 4 
7 Sun 386i 
8 Apollo 

os identifies the host environment and can be any of the following: 

1 DOS 

2 Helios 

3 VMS 

4 SunOS 

5 CMS 

Board identifies the interface board and can be any of the following: 

1 8004 9 IBM_CAT 

2 8008 10 B016 

3 B010 11 UDP 

4 8011 

5 B014 

6 DRX-11 

7 QTO 

8 8015 

Values of Host, OS and Board from 0 to 127, inclusive, are reserved for use 
by INMOS. 

72 TDS 224 00 August 1990 



498 E ISERVER protocol 

MSDOS - Perform MS-DOS specific function 

Synopsis: Id = Version ( ) 

To server: BYTE Tag = 50 

From server: BYTE Result 

72 TDS 224 00 August 1990 



F occam interface code
This appendix describes a series of mixed language programming interfaces 
provided for compatibility with entry points used by previous INMOS C compilers 
and toolsets. 

In previous toolsets mixed language programming with C and occam was 
achieved using C entry point harnesses and by #IMPORTing pre-linked C pro­
grams into occam code. A similar system was used for FORTRAN and Pascal. 
This form of interfacing has now been replaced by other systems but compati­
bility has been maintained as far as is possible for C by supplying equivalents 
of the three entry point types used previously. 

Notes: In the previous system it was possible to bring any number of pre-linked C 
programs into one occam program using the #IMPORT directive. In the current 
system it is only possible to call one C main program from any single occam 
program. Multiple importation of programs is supported in the new toolset at 
configuration level by allowing linked units written in different languages to be 
incorporated in the same configuration description. 

occam code used in this scheme should be linked with the unchecked versions 
of the occam compiler libraries. This is the default. 

F.1 Interface code 

occam interface code provides a fixed interface between occam and C pro­
grams. There are three types of interface code, known as types 1, 2, and 3. 
Descriptions and process diagrams for the three interfaces follow. 

Type 1 : This interface is used when the program runs on a single transputer 
and communicates only with the host file server. 

Type 1 

fs 

ts 

72 TDS 22400 August 1990 



500 occam interface code 

Type 2 This interface is used when the program communicates with other 
processes as well as the host file server. This interface is used with the full 
version of the C runtime library. 

Type 2 

fs '" '" out [] 

PROC.ENTRY 
ts 

in [] 

Type 3 : This interface is similar to the type 2 interface except that there is no 
access to the host file server. The interface is used with the reduced version 
of the runtime library, which contains only startup, maths, string and channel ito 
routines and does not include standard host ito routines. 

Type 3 

# 

'" out [] 

PROC.ENTRY.RC 

in [] 

Note: In previous toolsets there was 
a type 3 interface called PROC. ENTRY. STUB. This entry point allowed Type 
3 processes to be linked with the full runtime library so that functions such as 
sprintf could be used. This is now possible using PROC. ENTRY. RC and 
the stub is no longer required. 

Type 2 and 3 interfaces are called from the enclosing occam code and may be 
a part of a network of occam processes. 

72 TDS 224 00 August 1990 



F.2 Reserved channels 501 

F.2 Reserved channels 

All equivalent occam processes have four reserved channels, namely in [0] , 
in [ 1 ], out [0] and out [1]. No process which uses host services through 
the full runtime library should use these channels. 

The first two elements of both vectors of channel pointers are reserved as follows: 

out[O] Reserved for diagnostic output. 
in [0] Reserved for diagnostic input, but not currently used. 
out[l] Commands and data from the runtime library to the host file 

server. 
in [1] Responses from the host file server to the runtime library. 

F.3 Stack and heap requirements 

Data storage (workspace) requirements for C programs are set according to 
the values of flag, ws1, and ws2. Workspace is allocated by the language 
compiler and runtime libraries. 

Stack, static data and heap requirements vary from program to program, and 
between languages. The workspace vectors passed to the program must be 
large enough to accommodate: 

• The stack the program needs when it runs. 

• All the static data required by the program. 

• The heap used by the program and the runtime libraries. 

Stack overflow may lead to unpredictable behaviour by the program. For these 
reasons it is best to run a program, at first, with a large combined stack and 
heap. Later, when you have run the program and determined stack and heap 
usage, you may use a separate stack and heap, tailored to your application. 
Separate workspaces allow you to ensure that the stack is resident in the trans­
puter's internal memory, and enables the program to run faster. Procedures 
and methods you can use to optimise stacks are described in 'INMOS technical 
note 17: Performance maximisation I and' INMOS technical note 55: Using the 
occam toolsets with non-OCCam applications'. 

A minimum stack size of 512 words is recommended. 

72 TDS 224 00 August 1990 



502 occam Interface code 

F.3.1 Stack overflow 

Failure or unpredictable behaviour of programs may be due to stack overflow; to 
test for this in a program, use the procedure outlined below. 

1 Initialise the bottom few words of the stack (a falling stack is used) to 
somQ pattern of values. 

2 Run the program and, after it crashes, use the debugger to examine the 
values in the stack. If the values you initialised have been changed then 
stack overflow is likely. 

3 Increase the stack size and try again. 

The same method can be used to determine static data and heap requirements, 
except that these use a rising stack. 

The following occam fragment gives an example of initialising the bottom of the 
stack: 

SEQ i = 0 FOR words.to.initialise
wsl [i] := i

Stack overflow in the C parts of the program can also be detected by using the 
stack checking mechanism built into the C compiler and libraries. e 
F.4 Parameters to C main

Parameters to C main are described by the following function prototype:

int main (int argc, char *argv[], char *envp[],
Channel *in[], int inlen,
Channel *out[], int outlen);

72 TDS 224 00 August 1990 



F.5 Type 1 Interface 503 

where: arqc is the number of arguments passed to the program from the envi­
ronment, including the program name. 

*arqv is an array of pointers to those arguments. 

*envp is an array of pointers for the qetenv library function - imple­
mented in ANSI C as NULL. 

Channel * in [] is an array of input arguments. 

int inlen is the size of the array. 

Channel *out [] is an array of output arguments. 

int outlen is the size of the array. 

F.5 Type 1 interface 

The type 1 interface is used when making a program to run on a single transputer, 
which does not communicate with any other process apart from the host file 
server. 

C programs that run on a single transputer do not need to use occam. The 
program should be compiled as usual and then linked with the type 1 occam 
interface code using ilink. This is achieved by linking with the C libraries 
centry .lib and libc . lib and specifying MAIN. ENTRY as the entry point. 
This builds the equivalent occam process for the C program, making it appear 
like occam and enabling you to bootstrap or configure the code in the normal 
way. 

The code for the type 1 process is essentially the same as for any occam 
process for a single transputer except that an extra parameter is required for the 
C program's runtime stack (if a separate non-Occam stack was requested when 
icollect was invoked). The size of the stack is determined by the parameter 
supplied with the stack size option IS'. 

F.5.1 Type 1 procedural interface 

The type 1 occam interface is defined as follows: 

PROC MAIN.ENTRY (CHAN OF SP fs, ts, 
[]INT free.memory, 
[]INT stack.memory) 

Parameters are described in the following list. 

72 TDS 224 00 August 1990 



504 occam Interface code 

fa Channel going from the host file server to the program 
('from server'). 

ts Channel going from the program to the host file server ('to 
server'). 

free. memory Used by the program for its workspace. If the size of the 
stack.memory vector is zero then the free.memory 
vector is used for the program's runtime stack as well as 
its static and heap data area, otherwise the vector is only 
used by the program for its static and heap data. 

This vector represents the amount of free memory left after 
the program has been loaded. The size of this vector is 
determined from the environment variable IBOARDSIZE 
which specifies the amount of memory available on the 
transputer board (in bytes). The value of IBOARDSIZE is 
read at runtime by the bootstrap loader before the program 
is started. 

stack. memory Used by the program for its runtime stack if the size of the 
vector is non-zero. 

The size of this vector is determined when the linked pro­
gram is made bootable using icollect by the parameter 
supplied with the'S' option. 

F.5.2 Building a type 1 process

The type 1 occam interface code is supplied in centry.lib library.

For example, consider a C program that consists of the following compiled files:

main.tco 
funcs.tco 

The program is to run on a T414 transputer. 

72 TDS 224 00 August 1990 



F.6 Type 2 Interface definition 505 

The program can be linked using one of the following commands: 

ilink main.teo ~unes.teo eentry.lib libe.lib
-me MAIN. ENTRY -0 eprog .lku (UNIX based toolsets)

ilink main.teo ~une8.teo eentry.lib libe.lib
/me MAIN. ENTRY /0 eprog. lku (MS-DOSNMS based toolsets)

When the program has been linked, you can use the collector tool icollect 
in single program mode to produce a bootable program. The 'S' option can be 
used if required to specify the amount of runtime stack required. If no stack size 
is requested the freespace is used as a combined heap, stack, and static area. 

For the above example, using a specified stack size of 512 words, the collector 
would be invoked using one of the following commands: 

icollect cprog .lku -8 512 -t (UNIX based toolsets) 
icollect cprog .lku /8 512 It (MS-DOSNMS based toolsets) 

F.6 Type 2 interface definition 

The type 2 interface is used when building a program that will communicate with 
other processes as well as with the host file server. The program must have 
been linked with the full version of the runtime library. 

F.6.1 Type 2 procedural Interface 

The type 2 occam interface is defined as follows: 

PROC PROC.ENTRY (CHAN OF SP fa, ta, 
VAL INT flag, 
[lINT wa1, wa2, 
[lINT in, out) 

Parameters are described below. 

72 TDS 224 00 August 1990 



506 occam Interface code 

fa Channel going from the host file server to the program. 

ts Channel going from the program to the host file server. 

flag Indicates the requirement for one or two workspaces. If the value of 
flag is set to zero then the program will run with two workspace 
areas, one for static and heap data, the other for the runtime stack. If 
the value of flag is set to one then the program will run with a single 
combined workspace. 

wsl Used by the program for its workspace. If flag is zero then it is used 
only for the runtime stack; if flag is one (1) then it is used as the 
program's combined workspace: 

ws2 Used by the program as its static/heap workspace when flag is set 
to zero. Otherwise unused. 

in A vector of pointers to occam channels going to the process. 

out A vector of pointers to occam channels going from the process. 

Note: The first two elements in the channel pointer vectors in and out are 
reserved for use by the C program's runtime system and cannot be used by the 
program. 

F.6.2 Example type 2 wrapping 

The following example is of the occam procedure 'call.progl', within which 
a C program is called. 

PROC call.progl (CHAN OF SP fs, ts) 

IINCLUDE "hostio.inc"
IUSE "hostio.lib"
IUSE "centry.lib" C interface code

VAL flag IS 1 : combined heap and stack
[lOOOOO]INT wsl stack and heap for program
[l]INT ws2 dummy workspace for

program
[2]INT in, out channel pointers

-- call program
PROC.ENTRY(fs, ts, flag, wsl, ws2, in, out)
so.exit(fs, ts, sps.success)

72 TDS 224 00 August 1990 



F.7 Type 3 Interface definition 507 

There are two differences between the code above and that which would have 
been used with previous toolsets. These differences are as follows: 

1. A library of C entry points is used in place of a prelinked version of the 
C program. This is because all linking now takes place together in one 
pass. 

2. The C program is referred to by its interface name PROC. ENTRY. Note 
that this means that only one C program may be called from any occam 
program. 

A program using the above code must be linked with the centry. lib and 
libc .lib libraries along with any occam libraries which may be required. 

F.7 Type 3 interface definition 

The type 3 interface, like the type 2 interface, is used to run programs which 
communicate with other processes on the same processor or in a network of 
processes, but which do not require access to host services. Processes built 
with the type 3 interface can communicate with other processes through channels 
in the same way as for type 2 processes. 

The type 3 interface is used with programs linked with the reducedruntime library. 

F.7.1 Type 3 procedural interfaces 

The interface for type 3 eqUivalent occam processes is defined below. 

PROC PROC.ENTRY.RC (VAL INT flag, 
[lINT wsl, ws2, 
[lINT in, out) 

Parameters are described in the following list. 

72 TDS 224 00 August 1990 



508 occam interface code 

flaq Indicates the requirement one or two workspaces. If the value of flaq 
is set to zero then the program will run with two workspace areas, one 
for static and heap data, the other for the runtime stack. If the value of 
flaq is set to one then the program will run with a single combined 
workspace. 

ws 1 Used by the program for its workspace. If flaq is zero then it is 
used only for the runtime stack; if flaq is one then it is used as the 
program's combined workspace. 

ws2 Used by the program as its static/heap workspace when flaq is set 
to zero. Otherwise it is unused. 

in A vector of pointers to occam channels going to the process. 

out A vector of pointers to occam channels coming from the process. 

Note: The first two elements in the channel pointer vectors in and out are 
reserved for use by the C program's runtime system and cannot be used by the 
occam program. 

PROC. ENTRY. RC is supplied in the centry. lib library. 

F.7.2 Example type 3 wrapping 

The following shows how to call an equivalent occam process from occam 
source, and how to set up the parameters required. The example consists of an 
occam procedure ·call. proq' within which a C program is called. 

72 TDS 224 00 August 1990 



F.7 Type 3 interface definition 509 

PROC call.prog (CHAN OF COMM to.process, 
CHAN OF COMM from.process) 

IUSE "centry.lib" C entry point library 

VAL flag IS 0 : separate heap and stack 

[lOOO]INT wsl : stack for program 
[40000]INT ws2 heap for program 
[3]INT in, out: pointers to inputs/outputs 

SEQ 

set up user output channel 
LOAD.OUTPUT.CHANNEL(out[2], from. process) 

-- set up user input channel
LOAD.INPUT.CHANNEL(in[2], to.process)

-- call program
PROC. ENTRY. RC (flag, wsl, ws2, in, out)

Two channels are declared of type COMM, the first being an input channel to the 
process, the second an output channel from the process. The declaration of 
protocol type COMM is assumed. 

The first statement sets up a pointer to the output channel, using the routine 
LOAD. OUTPUT. CHANNEL. The second statement sets up a pointer to the input 
channel, using the routine LOAD. INPUT. CHANNEL. 

As with the type 2 interface there are two differences between the code above 
and that that would have been used with previous toolsets. The differences are 
as follows: 

1. A library of C entry points is used in place of a prefinked version of the 
C program. This is because all linking now takes place together in one 
pass. 

2. The C program is referred to by its interface name PROC. ENTRY. RC. 
Note that this means that only one C program may be called from any 
occam program. 

A program using the above code must be linked with the centry. lib and 
libcred .lib libraries along with any occam libraries which may be required. 

72 TDS °224 00 August 1990 



510 occam Interface code 

72 TDS 224 00 August 1990 



G 3L functions supported
G.1 Code compatibility 

The ANSI C toolset supports code written using 3L Parallel C at source code 
level. 

G.1.1 Source code 

Source code written using the 3L Parallel C toolset must be recompiled before 
incorporating it into new programs. Errors which indicate non-compliance with 
ANSI C can be disabled using the 'E-' series of compiler options. 

Other errors should be reviewed as they occur and the source code modified for 
the new toolset. 

G.1.2 Object code 

If the source is not available, linked units can be incorporated by converting them 
to the new TCOFF format using ievlink. Any code which is to be converted 
must be fully linked. 

G.2 Parallel functions supported 

The ANSI C toolset supports all the routines contained in the 3L Parallel C library 
packages thread. h, sema. h, timer. h, ehan. h, and par. h, although 
these header file names should not be used directly. Functions in each package 
are listed in table G.1. 

G.2.1 Header file 

3L functions are accessed by including the header file eonndxll. h. This 
header file also contains definitions of all constants and literals required by the 
routines. 

G.2.2 Restrictions 

All workspace must be allocated from the heap, that is, using the standard mem­
ory allocation functions malloe, ealloe, and realloe. For example, the ws 
parameter of the thread_start functions must point to memory taken from 
the heap. 

72 TDS 224 00 August 1990 



- - -

512 G 3L functions supported 

functions supported 3L package 
thread start 
thread-create 

thread.h 

thread~riority
thread deschedule 
thread restart 
thread_stop 

sema.h sema init 
sema-signal 
sema-signal n 
sema-wait ­
sema-wait n 

timer.h timer after 
timer:delay 
timer now 
timer-wait 

chan init 
chan reset 
chan-in byte 
chan-in-byte t 
chan-in-word­
chan in-word t 
chan in-message 
chan:in:message_t 
chan_out_byte 
chan_out_byte_t 
chan out word 
chan out word t 
chan_out_message 
chan_out_message_t 

par.h 

chan.h 

par_malloc 
par free 
par~rintf
par_fprintf 

Table G.1 3L functions supported by ANSI C 

Code which uses the 3L functions may run slower than equivalent code written 
using the standard INMOS concurrency functions. 

72 TDS 224 00 August 1990 



H ITERM
H.1 Introduction 

This appendix describes the format of ITERM files; it is included for people who 
need to write their own ITERM because they are using terminals that are not 
supported by the standard ITERM file supplied with the toolset. You may of 
course wish to tailor a standard ITERM to suit your own needs. 

ITERMs are ASCII text files that describe the control sequences required to 
drive terminals. Screen oriented applications that use ITERM files are terminal 
independent. 

ITERM files are similar in function to the UNIX termcap database and describe 
input from, as well as output to, the terminal. They allow applications that use 
function keys to be terminal independent and configurable. 

Within the toolset, the ITERM file is only used by the debugger tool idebug 
and the T425 simulator tool isim. 

H.2 The structure of an ITERM file 

An ITERM file consists of three sections. These are the host, screen and key­
board sections. Sections are introduced by a line beginning with the section 
letters 'H', cS' or 'K'. Case is unimportant and the rest of the line is ignored. Sec­
tions consist of a number of lines beginning with a digit. A section is terminated 
by a line beginning with the letter 'E'. The host section must appear first; other 
sections may appear in any order in the file. Sections must be separated by at 
least one blank line. 

The syntax of the lines that make up the body of a section is best described in 
an example: 

3:34,56,23,7. comments 

Each line starts with the index number followed by a colon and a list of numbers 
separated by commas. Each line is terminated by a full stop (' • ') and anything 
following it is treated as a comment. Spaces are not allowed in the data string 
and an entry cannot be split across more than one line. 

Comment lines, beginning with the character 'I', may be placed anywhere in an 
ITERM file. Extra blank lines in the file are ignored. 

72 TDS 224 00 August 1990 



514 H ITERM 

The index numbers in each section correspond to an agreed meaning for the 
data. In the following sections the meaning of the data in each of the three 
sections is described in detail. 

H.3 The host definitions 

H.3.1 ITERM version 

This item identifies an ITERM file by version. It provides some protection against 
incompatible future upgrades. 

e.g. 1:2. 

H.3.2 Screen size 

This item allows applications to find out the size of fhe terminal at startup time. 
The data items are the number of columns and rows,in that order, available on 
the current terminal. 

e.g. 2:80,25. 

Screen locations should be numbered from 0, 0 by the application. Terminals 
which use addressing from 1, 1 can be compensated for in the definition of goto 
X, Y. 

H.4 The screen definitions 

The lists of values in the screen section represent control codes that perform 
certain operations; the data values are ASCII codes to send to the display device. 

ITERM version 2 defines the indices given in table H.1. These definitions are 
used in the example ITERM file; for a complete listing of the file see section H.7. 

For example, an entry like: '8 : 27 , 91, 75.' indicates that an application should 
output the ASCII sequence 'ESe [ K' to the terminal output stream to clear to 
end of line. 

72 TDS 224 00 August 1990 



H.4 The screen definitions 515 

Index Screen operation Index Screen operation 

1 

2 

3 

4 

5 

6 

7 

8 

cursor up 

cursor down 

cursor left 

cursor right 

goto x y 

insert character 

delete character at cursor 

clear to end of line 

9 

10 

11 

12 

13 

20 

21 

clear to end of screen 

insert line 

delete line 

ring bell 

home and clear screen 

enhance on (not used) 

enhance off {not used} 

Table H.1 ITERM screen operations 

H.4.1 Goto X V processing 

The entry for 5, 'goto X V', requires further interpretation by the application. 
A typical entry for 'goto X V' might be: 

5:27,-11,32,-21,32 

The negative numbers relate to the arguments required for X and V. 

... , -ab, nn, ... 

where: a is the argument number (Le. 1 for X, 2 for V). 

b controls the data output format. 
If b=1 output is an ASCII byte (e.g. 33 is output as !).
If b=2 output is an ASCII number (e.g. 33 is output as 3 3).

nn is added to the argument before output.

As a complete example, considerthe following ITERM entry in the screen section: 

5:27,91,-22,1,59,-12,1,72. ansi cursor control 

This would instruct an application wishing to move the terminal cursor to X=14, 
V=8 (relative to O,O) to output the following bytes to the screen: 

Bytes in decimal: 27 91 57 59 49 53 72
Bytes in ASCII: ESC [ 9 1 5 B

72 TDS 224 00 August 1990 



516 H ITERM 

H.5 The keyboard definitions 

Each index represents a single keyboard operation. The data specified after 
each index defines the keystroke associated with that operation. Multiple entries 
for the same index indicate alternative keystrokes for the operation. 

ITERM version 2 defines the indices given in table H.2. These definitions are 
used in the example ITERM file; for a complete listing of the file see section H.7. 

Index Function Index Function 

2 delete character 39 goto line 

6 cursor up 40 backtrace 

7 cursor down 41 inspect 

8 cursor left 42 channel 

9 cursor right 43 top 

12 delete line 44 retrace 

14 start of line 45 relocate 

15 end of line 46 info 

18 line up 47 modify 

19 line down 48 resume 

20 page up 49 monitor 

21 page down 50 word left 

26 enter file 51 word right 

27 exit file 55 top of file 

28 refresh 56 end of file 

29 change file 62 toggle hex 

31 finish 65 continue from 

34 help 66 toggle breakpoint 

36 get address 67 search 

Table H.2 ITERM key operations 

72 TDS 224 00 August 1990 



H.6 Setting up the ITERM environment variable 517 

H.6 Setting up the ITERM environment variable 

To use an ITERM the application has to find and read the file. An environment 
variable (or logical name on VMS) called ITERM should be set up with the 
pathname of the file as its value. For example, under MS-DOS the command 
would be: 

C:\> set ITERM=C:\ITOOLS\TOOLS\PCBANSI.ITM 

Under UNIX you would set an environment variable. For example, the command 
for csh users might be: 

% setenv ITERM -/.iterm 

Under VMS you would define a logical name. For example: 

$ DEFINE ITERM SYS$LOGIN:VT100.ITM 

For more details about setting environment variables see the Delivery Manual 
that accompanies the release. 

H.7 An example ITERM 

This is the toolset ITERM file for the IBM PC using the ANSI screen driver. 

#-------------------------------------------------­
# 
# IBM PC (BANSI) ITERM data file (derived from TDS3 ITERM) 
# Support for idebug and isim 
# IDEBUG version for BANSI.SYS driver: 
# Special care needed on screen codes 6, 7, 9, 10, 11 
# 
# V1.1 - 10 July 90 (NH) Updated idebug and isim support 
# 
#-------------------------------------------------­
host section 
1:2. version 
2:80,25. screen size 
end of host section 

# screen control characters 

screen section 
# DEBUGGER SIMULATOR 

72 TDS 224 00 August 1990 



518 H ITERM 

1:27,91,65. cursor up 
2:27,91,66. cursor down 
3:27,91,68. cursor left cursor 18ft 
4:27,91,67. cursor right 
5:27,91,-22,1,59,-12,1,72. goto x y goto x y 
6:27,91,64. insert char insert char 
7:27,91,80. delete char delete char 
8:27,91.,75. clear to eol clear to eol 
9:27,91,74. clear to eos clear to 80S 
10:27,91,76. insert line insert line 
11:27,91,77. delete line delete line 
12:7. bell bell 
13:27,91,50,74. clear screen clear screen 
end of screen section 

keyboard section 
# KEY DEBUGGER SIMULATOR 
# 
2:8. # BACKSPACE del char 
6:0,72. # UP cursor up cursor up 
7:0,80. # DOWN cursor down cursor down 
8:0,75. # LEFT cursor left cursor left 
9:0,77. # RIGHT cursor right cursor right 
12:0,110. # ALT F7 delete line 
12:21. # CTRL U delete line 
12:24. # CTRL X delete line 
14:0,65. # F7 start of line start of line 
15:0,66. # F8 end of line end of line 
18:0,67. # F9 line up 
19:0,68. # F10 line down 
20:0,112. # ALT F9 page up page up 
21:0,113. # ALT F10 page down page down 
26:0,71. # NUM 7 enter file 
27:0,73. # NUM 9 exit file 
28:27. # ESC refresh refresh 
29:0,87. # SHIFT F4 change file 
31:0,117. # CTRL NUM 1 finish 
34:0,59. # F1 help help 
36:0,63. # F5 get address 
39:0,64. # F6 goto line 
40:0,129. # ALT 0 backtrace 
41:0,120. # ALT 1 inspect 
42:0,121. # ALT 2 channel 
43:0,122. # ALT 3 top 
44:0,123. 
45:0, 124. 

# ALT 
# ALT 

4 
5 

retrace 
relocate 

46:0,125. # ALT 6 info 
47:0,126. # ALT 7 modify 
48:0,127. # ALT 8 resume 

72 TDS 224 00 August 1990 



H.7 An example ITERM 519 

49:0,128. , ALT9 monitor 
50:0,90. , SHIFT F7 word left,50:6. CTRL F word left 
50:0,115. # CTRL NUM 4 word left 
51:0,91. # SHIFT F8 word right 
51:7. , CTRL G word right 
51:0,116. , CTRL NUM 6 word right 
55:0,92. # SHIFT F9 top of file 
55:20. # CTRL T top of file 
56:0,93. , SHIFT FIO end of file,56:2. CTRL B end of file 
62:0,108. # ALT F5 toggle hex 
65:0,105. # ALT F2 continue from 
66:0,99. # CTRL F6 toggle break 
67:0,88. , SHIFT F5 search 

end of keyboard stuff 

, idebug key that isn't really part of iterm but its here 
all the same ! 
# 
# INTERRUPT CTRL A IDEBUG 

# eof THAT'S ALL FOLKS 

72 TDS 224 00 August 1990 



520 H ITERM 

72 TDS 224 00 August 1990 



Glossary
Analyse To assert a signal to a transputer forcing it to halt at the next deschedul­

ing point, to allow the state of the processor to be read. In the context 
of 'analysing a network', to analyse all processors in the network. 

Also refers to one of the system control functions on transputers and the 
pin on which the function is asserted. 

Backtrace Within the debugger an simulator tools, to move from a position within 
a procedure or function body to the call of that procedure or function. 

Bootable code Self-starting program code, that can be loaded onto a transputer 
or transputer network down a transputer link and run. Bootable code is 
produced by icollect from linked units (single transputer programs) 
or configuration binary files (configured programs). 

Bootstrap A transputer program, loaded from a ROM or over a link after the 
transputer has been reset or analysed, which initialises the processor 
and loads a program for execution (which may be another loader). 

Configuration The association of components of a program with a set of physi­
cal resources. Used in this manual to refer to the specific case of allocat­
ing software processes to processors in a network, and channels to links 
between processors. The term is also used, depending on the context, 
to describe the act of deciding on these allocations for a program, the 
configuration code which describes such a set of allocations, and the act 
of applying th~ configurer to a configuration description. 

Configurer The tool which assigns processes and channels on a specified con­
figuration of transputers. The output from the tool is a configuration binary 
file for input to icollect. 

Deadlock A state in which one or more concurrent processes can no longer 
proceed because of a communication interdependency. 

Error mode The compilation mode of a program that determines what happens 
when a program error (such as an array bounds violation) occurs. Pro­
grams are compiled by ice in UNIVERSAL mode, which is the mode 

72 TDS 224 00 August 1990 



522 Glossary 

that can be mixed with HALT and STOP code generated by other INMOS 
language tooslets. 

Error signal In the transputer, an external signal used to indicate that an error 
has occurred in a running program. Also refers to one of the system 
control functions on transputers. Error signals can be OR-ed together _ 
on transputer boards to indicate an error has occurred in one of the ., 
transputers in the network. 

Hard channels Channels which are mapped onto links between processors in
a transputer network (ct. Soft channels).

Host The computer which is running the toolset host file server and providing
the filing system and terminal i/o.

Host file server A file server which provides access to the filing system and
terminal i/o of a host operating system, which may be used when running
standalone programs.

Include file A file containing source code which is incorporated into a program 
using the #include directive. Include files are by convention given the 
. h extension. 

Library A collection of separately compiled procedures or functions, created by 
the toolset librarian ilibr, which may be shared between parts of a 
program or between different programs. 

Library build file A file containing a list of input files for the librarian tool ilibr. 
Each file forms a separately loadable module in the library. Library build 
files should have the • lbb extension. 

Link In the context of transputer hardware, the serial communication link be­
tween processors. Used as a verb in the context of program compilation, 
to collect together all the code for a program or compilation unit, resolving 
all references and recompiling where necessary, and place the collected 
code into a single file. 

Llnker The program or tool which links a program or compilation unit. 

Loader Depending on the context, refers to the part of the host file server which _ 
loads a transputer network or to a small program which is loaded into ., 

72 TDS 224 00 August 1990 



Glossary 523 

a transputer, and which then distributes code to other transputers and 
loads a larger program on top of itself. 

Makefile An input file for a MAKE program. A Makefile contains details of file 
dependencies and directions for rebuilding the object code. Makefiles 
are created for the toolset using imakef. 

Network A set of transputers connected together using links as a connected 
graph, that is, in such a way that there is a path, via links and other 
transputers, from each transputer to every other transputer in the set. 

Newline sequence The sequence of ASCII characters, defined within the host 
file server, that directs a new line to be started on the terminal display or 
within a file. 

Object code Intermediate code between source and bootable files. Object code 
cannot be directly loaded onto a transputer and run. 

Peek and poke To read and write locations in a transputer's memory, by com­
munication over a link, while the transputer is waiting for a bootstrap. 

Preamble The part of a transputer loader program that initialises the state of the 
processor. 

Priority In the transputer, the priority level at which the currently executing pro­
cess is being run. INMOS transputers support two levels of priority, known 
as 'high' and 'Iow'. 

Process Self-contained, independently executable code. 

Protocol The pattern of communications between two processes, often including 
communications on more than one channel. 

Reset The transputer system initialisation control signal. Also refers to the pin 
on which the signal is asserted. 

Root transputer (or Root processor) The processor in a transputer network 
which is physically connected to the host computer, and through which 
the network is loaded or analysed. 

72 TDS 224 00 August 1990 



524 Glossary 

Separate compilation A self-contained part of a program may be separately 
compiled, so that only those parts of a program which have changed 
since the last compilation need to be recompiled. 

Server A program running in the host computer attached to a transputer network, 
which provides access to the filing system and terminal i/o of the host 
computer. The server can also be used to load the program onto the 
network. 

Soft channels Channels declared and used within a process running on a single 
transputer. (cf. Hard channels). Soft channels are implemented by a 
single word in memory. 

Standard error The host system error handler. Errors directed to standard error 
are displayed in a host-defined way, for example, on the terminal screen. 
For details of how to modify standard error on the system, consult the 
operating system documentation. 

Standard Input The host system input handler. Specifies the standard input 
device, for example the termi nal keyboard or a disk file. For details of 
how to modify standard input on the system, consult the operating system 
documentation. 

Standard output The host system output handler. Specifies the standard output 
device, for example, the terminal screen or a disk file. For details of how 
to modify standard input on the system, consult the operating system 
documentation. 

Subsystem In transputer board architecture, the combination of the Reset, Anal­
yse and Error signals which allows the board to control another board on 
its subsystem port. 

Target transputer The transputer on which the code is intended to run. The 
transputer type, or a restricted set of types defined in a transputer class, 
is defined when the program is compiled, using command line options. 

Vector space The data space required for the storage of vectors (arrays) within 
an occam program. 

72 TDS 224 00 August 1990 



Glossary 525 

Workspace The data space required by an occam process; when used in 
contrast to Vector space, refers to the data space required for scalars 
within the occam process. 

72 TDS 224 00 August 1990 



526 Glossary 

72 TDS 224 00 August 1990 



J Bibliography
This appendix lists C language reference books and transputer-related publica­
tions. 

J.1 Reference books 

Brian W. Kernighan & Dennis M. Ritchie
The C programming language (First Edition)
Prentice Hall 1978

Brian W. Kernighan & Dennis M. Ritchie
The C programming language (Second Edition - ANSI C)
Prentice Hall 1988

Samuel P. Harbison and Guy L. Steele 
C: A Reference Manual (Second Edition - ANSI C)
Prentice Hall 1987

J.2 INMOS publications 

INMOS Ltd
The Transputer Databook (Second Edition 1989)
INMOS 1989

INMOS Ltd 
The Transputer Applications Notebook: Architecture and SoftWare (First 
Edition 1989) 
INMOS 1989 

INMOS Ltd 
The Transputer Applications Notebook: Systems and Performance (First 
Edition 1989) 
INMOS 1989 

INMOS Ltd 
The Transputer Development and iq Systems Databook (First Edition 
1989) 
INMOS 1989 

72 lDS 224 00 August 1990 



528 J Bibliography 

INMOS Ltd 
Transputer instruction set: a compiler writer's guide 
Prentice Hall 1988 

INMOS Ltd 
occam 2 Reference Manual 
Prentice Hall 1988 

J.3 INMOS technical notes 

S Ghee 
IMS B004 IBM PC add-in board 
Technical note 11
72 TCH 011

N Miller 
Exploring Multiple Transputer Arrays 
Technical note 24
72 TCH 024

J M Wilson 
Analysing transputer networks 
Technical note 33
72 TCH 033

J M Wilson 
Loading transputer networks 
Technical note 34
72 TCH 034

72 TDS 224 00 August 1990 



Index

# 424 e #alias 370 
#define 370 

syntax 163 
#elif 164 
#else 163, 164 
#endif 163, 164 
terror 

syntax 168 
#if 

syntax 163 
#ifdef 

syntax 164 
#ifndef 

syntax 164 
#IMPORT 499 
#include 

search path syntax 162 
syntax 162 

370 

e #line 
syntax 165 

#mainentry 370 
#praqma 

syntax 165 
#pragma IMS_linkage 371 
#reference 371 
#section 371 
#undef 

syntax 163 
0/0 424 
__asm 65, 172, 447 
_inmess xxviii 
_outbyte xxviii 
_outmess xxviii 
_outword xxviii 
_tolower xxviii 
_toupper xxviii 

e 
3L 10, 137
3L Parallel C

differences from ANSI C xxvii 

support for 511 

abort 
example of use 102 
use in debugging 101 

Action strings 
in Makefiles 408 

Address of board 
defined by TRANSPUTER 415 

Alternation 
example 45 
polling several inputs 44 
simple 44 
timed input 45 

Analyse 93, 95, 264, 265 
ANSI 12 
ANSIC 

concurrency 35 
differences from 3L Parallel C 

xxvii
library support 35
parallelism 35

ANSI C compiler 55, 157 
ANSI C toolset 

introduction 9 
ANSI standard C 12 
ANSI trigraphs 175 
Areg 112 
Arithmetic 

configuration language 70 
Array 143 
Array parameters 

in configuration language 77 
Arrays 

in configuration language 71 
Assembler 

literat bytes 447 
opcodes 447 

Assembly code 65, 447 
Attributes 69, 74 

72 TDS 224 00 August 1990 



530 Index 

Backslash 
in filenames 162

IBACKTRACEI 293
Backus-Naur 457
Binary lister 383

command line 384
BNF 457
Board

address 415 
Board connections 93 
Board types 94 
Board wiring 256 
boards. inc 210 
Bold type xxvi 
BOOL 143 
Booleans 

in configuration language 70 
Boot from link 319 
Boot from li nk boards 92 
Boot from ROM 93, 149, 319, 343 
Boot-from-ROM 210, 238 
Bootable programs 411 
Bootstrap loaders 239, 467 

creating 468 
listing of example 469 

Bootstraps 
example 467 

boot_peek xxviii 
boot_poke xxviii 
Borland 399 
IBOTTOM OF FILEI 294 
Bptr 111 
BREAK key 413 
Break key 433 
Break points 121 
Breakpoint commands 105 
Breakpoint debugging 103, 255 

backtracing 128
backtracing to main 129
entering #include files 129
inspecting by expression 129
inspecting variables 128
jumping down a channel 128
methods 258
modifying a variable 129
program loading 105

72 TDS 224 00 

program termination 106
quitting 129
runtime kernel 103, 264
setting breakpoints 127
starting a program 127

Breakpoint Menu 271
Breakpointing

hardware support 104
Breakpoints 426

phantom 134
setting and clearing 106

Breg 112 
Building libraries 360

hints 361
rules 361

BYTE 143 

C 
calling from occam 148 

callc.lib 148 
Calling occam processes 138 
calloc 511 
centry.lib 507,508 
cfree xxviii 
CHAN 143 
chan xxix 
chan.h 512 
ChanAlloc 46 
ICHANGE FILEI 294 
Change processor 286 
Chanln 47 
ChanlnChanFail 48 
ChanlnChar 47 
Chanlnit 46 
ChanlnTimeFail 48 
ICHANNELI 292 
Channel 32 

communicating data 53
host server 77
placement 84
reliable communication 47

Channel 35 
channel.h 143 
channel_pointers 166 
Channel communication 45 
Channel input and output 46 

August 1990 



Index 531 

Channels 6, 75 
in synchronising processes 40 
input and output 79 
reserved 501 

ChanOut 47 
ChanOutChanFail 48 
ChanOutChar 47 
ChanOutlnt 47 
ChanOutTimeFail 48 
ChanReset 46 
chan_init 512 
chan_in-byte 512 
chan_in-byte_t 512 
chan_in-message 512 
chan_in-message_t 512 
chan_in_word 512 
chan_in_word_t 512 
chan_out-byte 512 
chan_out-byte_t 512 
chan_out-message 512 
chan_out-message_t 512 
chan_out_word 512 
chan_out_word t 512 
chan_reset 512 
char 69 
Checking a network 272 
Clearing error flags 105, 434 
Clearing the network 96, 413 
Clock time 43 
ClockO 113 
Clockl 113 
Clocks 

displayed on Monitor page 113 
code 76 
Code listing 388 
Collector 13, 149, 152, 233 

command line 234 
debug data file 239 
error messages 240 
input files 237 
non-bootable output files 237 
options 234 
Output files 237 

CommandLine 
ISERVER function 495 

Communicating processes 6 

72 TDS 224 00 

Compare memory 272 
Compatibility 

of 3L code 511 
Compilation targets 56 
Compiled code 12 
Compiler 157 

command line 158 
constants 169 
default command line 161 
directives 162 
error mode 62, 161 
fatal runtime errors 171 
include files 63 
introduction 55 
messages 63 
object code 56 
options 159 
pragmas 63, 165 
predefinitions 169 
selective loading 360 
support for low level programming 

65 
Compiler diagnostics 172 

fatal errors 203 
recoverable errors 182 
serious errors 190 
terminology 173 
warnings 176 

Compiler directives 62 
Compiler optimisations 

in debugging 135 
Compiling 

for a range of transputers 57 
Compiling a program 

example 26 
Compiling programs 

for debugging 100, 105 
Concurrency 

hardware support 4 
Concurrency functions 36 
Concurrency model 10 
Conditionals 

in configuration language 71 
config xxvii 
Configuration 67, 149, 152 

assigning code to processes 80 

August 1990 



532 Index 

checking 85
example 29
examples 85
language summary 88
mapping description 83
mixing languages 137
model 67

Configuration constants 460
Configuration description

example files 210
Configuration language 67 

arrays 71 
booleans 70 
conditionals 71 
connections 75 
constants 70 
definition 457 
expressions and arithmetic 70 
general description 68 
identifiers 69 
implementation 207, 457 
introduction 9 
keywords 458 
network definition 73 
predefines 73 
predefinitions 458 
replication 72 
reserved words 458 
summary 88 
syntax 462 
syntax notation 457 
types 69 

Configuration table 332 
Configurer 13, 207 

command line 208 
default command line 209 
errors 230 
memory map 211 
options 209 
producing debuggable programs 

101
search paths 211
standard definitions 210

Configurer diagnostics 212 
recoverable errors 213 
serious errors 229 

warnings 212
Configuring a program

example 27 
conndxll . h xxix 
connect 75 
Connecting boards 93 
Connecting subnetworks 93 
connection 75 
Connections 75 

edge 80 
prohibited 75 

Constant 
arrays 70 

Constants 
configuration predefinitions 460 
in configuration language 70 

ICONTINUE FROMI 295 
Conventions 

command line options 440 
command line syntax 439 
error messages 444 
filenames 440 

Converting memory configuration 
files 340 

Core 
ISERVER function 496 

Core dump 
listing 396 

Creg 112 
CSP 5,10,31 
ICURSOR LEFTI 286 
Cursor positioning 515 
ICURSOR RIGHTI 286 

D.ebug information 100 
Debuggable programs 100 
Debugger 14,255 

command line 258 
Monitor page commands 267 
program hangs 305 
scroll keys 267, 270 
symbolic functions 290 

Debugging 99 
abusing hard links 130 
arrays as arguments 133 
8004 boards 264 

72 TDS 224 00 August 1990 



Index 533 

backtracing with concurrent 
processes 133 

catching concurrent processes 
132 

commands to use on transputer 
boards 266 

compiler optimisations 135 
configured programs 101 
environment variables 260 
error modes 100 
errors in the full library 134 
errors in the reduced library 135 
examining the active network 130 
example 121 
important points 129 
inspecting channels 292 
interactive 375 
INTERRUPT key 131 
invalid pointers 131 
large shift values 135 
loading programs 94 
low level 11 0 
Monitor page 110 
program crashes 131 
programs termination 260 
undetected program crashes 131 
use of isim 99 
with abort 101 

Debugging kernel 103, 264 
Debugging library functions 118 

actions in absence of idebug 
119 

debug_assert 118 
debug..message 118 
debug_stop 118 
decode xxviii 
Default 

command line arguments 24 
DELETE 

MAKE option 404 
Diagnostic messages 
icconf 212 

Direct instructions 448 
Directives 

compiler 162 
Directory path 440 

72 TDS 224 00 

Disassemble memory 274
Display memory in hex 276
Display reference 393
Displaying object code 383
dos.h 22
double 69
Down 93
Dummy parameter

calling occam 139
Dynamic loading

listing files 396

Earlier toolsets 
support for 10, 511 

edge 80 
Edges 80 

in configuration 83 
Editing Makefiles 408 
element 69, 74 
Embedded systems 8 
IENTER FILEI 294 
Environment variables 23, 517 

ICCARG 161
ICCONFARG 209
ICVLINKARG 251
ILIBRARG 359

EPROM 210, 238 
EPROM devices 353 
EPROM program convertor 343 

binary output 352
block mode 353
command line 344
control file 354
hex dump 352

EPROM programmer 16 
EPROM programming 149, 319, 

343 
EPROM tools 

introduction 16 
Error 93, 113 
Error 

runtime 446 
seventies 445 

Error flag 
detection in breakpoint debugging 

265 

August 1990 



534 Index 

Error flags exit_terminate 85 
displayed on Monitor page 113 Exported names 

Error handling 444 
Error messages

fatal runtime 171
format 445
icvemit 341
icvlink 253
iemit 336
ieprom 356
ilibr 363
ilink 376
ilist 397
imakef 408
iserver 418
isim 430
iskip 435

Error modes 62, 161, 373 
in debugging 100 
icvlink 252 

Error reporting 21
Error signal 93
Errors

at runtime 171 
idebuq 305

Event 281
Examples

bootstrap loader 467 
compiling 26 
configuration 29, 85 
configuring 27 
linking 26 
loading 27 
parallel program 27 
parallel programming 50 
separate compilation 28 
skip load 95 
type 1 interface 504 
type 2 interface 506 
type 3 interface 508 
imakef 405 

Executable code 12 
exit 85 
Exit 

ISERVER function 495 
IEXIT FILEI 294 

72 TDS 224 00 

listing 389
Expressions

in configuration language 70
Extensions

file 19, 400, 441
extern 139
External references

listing 396

facs. c 121
compiling and loading 126
listing 122

Fatal runtime errors 171
Fclose

ISERVER function 485
fconfiq xxviii
fdopen xxviii
Feof

ISERVER function 491 
Ferror 

ISERVER function 491 
Fflush 

ISERVER function 490 
FGetBlock 

ISERVER function 487 
Fgets 

ISERVER function 489 
File descriptors 49 
File extensions 19, 441 

for imakef 21, 400, 443
summary 20

File format convertor 16,247 
command line 249 
input files 251 
output files 251 
rules 252 

File identification 395 
Filename conventions 440 
fileno xxviii 
IFINISHI 293 
float 69 
Floating-point instructions 452 
Fopen 

ISERVER function 484 

August 1990 



Index 535 

FORTRAN 499 
Fptr 111 
FPutBlock 

e 
ISERVER function 488 

Fputs 
ISERVER function 489 

FPU Error 113 
Fread 

ISERVER function 486 
free 49, 171 
Fseek 

ISERVER function 490 
Ftell 

ISERVER function 491 
Full data listing 394 
Fwrite 

ISERVER function 487 

IGET ADDREssl 294 
Getenv 

ISERVER function 493 
Getkey 

e 
ISERVER function 493 

getw xxviii 
get_param 77 
get_param 76 
Global static base 138 
GNU 399 
IGOTO L1NEI 294 
Goto process 276 

HALT 62 
HALT error mode 100,373 
Halt-an-Error 113 
Hardware support 

for breakpointing 104 
for concurrency 4 

Header files 
introduction 19 

Heap 501 
heap 76 
heapsize 

process attribute 76 
IHELPI 270,290,293e Hex listing 390 

Hexadecimal
arguments to idump 315

Hexadecimal format 
for environment variables 23 
syntax 23 

host 83 
Host dependencies 21

command line syntax 22
filenames 22
libraries 22
search paths 23

Host file server 411
command line 411
interrupting 413
protocol 481
terminating 414, 433

Host file server functions
summary 415

Host variables 23

IBM PC 9, 21, 22, 23, 517
IBOARDSIZE 23,260,504

small values 239
ice 157

command line options 159
error messages 203
file extension defaults 161
search path 162
summary 12
syntax 158

ICCARG 161 
icconf 207 

command line options 209 
diagnostic messages 212 
errors 230 
introduction 13 
syntax 208 

ICCONFARG 209 
icollect 233 
icollect 

command line options 234 
icollect 

error messages 240
introduction 13
syntax 234

icvemit 16,340, xxviii, 319 

72 TDS 224 00 August 1990 



536 Index 

command line 340 
command options 340 
error messages 341 

icvlink 247, xxvii 
command line 249 
command options 250 
error messages 253 
introduction 16 

ICVLINKARG 251 
idebuq 255 

breakpoint syntax 262 
command line 258 
error messages 305 
introduction 14 
options 259 
post-mortem syntax 260 
reinvoking 262 

IDEBUGSIZE 23,260,305 
Identifers 139 
Identifiers 

in configuration language 69 
idump 15,315,414 

command line 315 
error messages 316 
introduction 15 
use in debugging 257 

IEEE 69 
IEEE 754 88 
iemi xxviii, 16 
iemit 319 

introduction 16 
command line 320 
error messages 336 

ieprom 149,319,343 
bi nary output 151 
block mode 152 
command line 344 
control file 345 
error messages 356 
hex dump 151 
introduction 16 

if ... else 
configuration statement 71 

ilibr 357 
command line 358 
command options 359 

72 TDS 224 00 

error messages 363 
indirect input 359 
introduction 15 

ILIBRARG 359 
ilink 365 

command line 366 
indirect input 369 
introduction 12 

ilist 383 
command line 384 
command options 385 
error messages 397 
introduction 15 

imakef 376, 399 
command 403 
command line options 404 
Deleting intermediate files 404 
error messages 408 
examples 405 
file extensions 400 
introduction 15 
Makefile format 407 
required file extensions 443 
syntax 403 
target files 400 

Implementation 
configuration language 457 

Importing occam code 140 
IMS 8004 94, 264 
IMS 8008 93 
IMS 8014 93 
IMS 8016 93 
IMS 8404 265 
IMS 8405 82 
IMS T800 113 
IMS_codepatchsize 166 
IMS_linkaqe 165 
IMS-modpatchsize 166 
IMS-nolink 138, 165, 168 
IMS_off 165 
IMS_on 165 

parameters 166 
IMS_translate 139, 166 
In line functions 168 
index xxviii 
/INFOI 293 

August 1990 



Index 537 

inline_ops 166 
inline_strinq_ops 167, 169 
INMOS 100 
!lNSPECTI 292 
Inspect memory 277 
Instruction pointer 111 
Instruction set 34 
INT 143 
INT16 143 
INT32 143 
INT64 143 
Intel extended hex format 152, 352 
Intel hex format 151, 352 
interface 76 

process attribute 76 
!INTERRUPTI 294 
Interrupt 

host file server 413
Iptr 111
Iptr 111
iq systems 210, 82
Isatty

ISERVER function 492
ISEARCH 23,162,211,440
ISERVER

file commands 484
functions 483
host commands 493
libraries 482
porting 481, 482
protocol definition 48'
server commands 495

iserver 91,411,431 
command line 411 
command line options 412 
error messages 418 
introduction 13 

isim 421 
command line options 422 
in debugging 119 
introduction 15 
syntax 421 

ISIMBATCH 428 
iskip 91, 431 

command line options 432 
error messages 435 

72 TDS 224 00 

introduction 14 
ispy 85,96,105,262,413,434 
Italic type xxvi 
ITERM 23,260,423,517 

use by isim 424 
ITERM file 513

example listing 517
format 513
keyboard 516
screen 514
use by simulator 423
version 514

Jump into program 279 

Keyboard definitions 516
Keywords

configuration language 458

Large shift values 135
Last instruction 288
LFF 16,247
LFF files

listing 396
libc.lib 507
libcred. lib xxix
Librarian 15: 357

command line 358
concatenated input 357

Libraries 361
occam 140
building 360
ISERVER 482
modules 360
optimising 361
selective loading 360

Library 
host specific 22 

Library files 
icvlink 251 

Library index 357 
listing 392 

Library indirect files 357, 35"9 
Library usage files 360 
ILlNE DOWNI 270 
ILlNE upl 270 

August 1990 



538 Index 

Link address 414
Link map 376
Linkage targets 56
Linked files
icvlink 251 

Linker 12, 365 
command line 366 
compatible transputer classes 372 
directives 369 
LFF output 373 
options 367 
selective loading 360 
TCOFF output 373 

Linker errors 376
Linker indirect files 369
Linker startup files 372
Linking a program

example 26 
Links 281, 427

in configuration 82
introduction 4

Lister 15 
Loadable programs 411 
Loading 91 
Loading programs 91 

tools 91 
Loading a program 

example 27 
Loading programs 411 

for breakpoint debugging 92, 105 
for debugging 94, 102 
introduction 13 
onto boards and subnetworks 92 
schemes 92 
iskip 434 

LoadStart 211 
Logical name 517 
Low level programming 

assembly code 65
compiler predefines 66

Macro 
definition 163 

Macros 19 
in Makefiles 407 

Main entry point 374 

72 TDS 224 00 

MAIN. ENTRY 499
procedure interface 503

main
parameters 502

MAKE 399
Makefile

formats 407
Makefile generator 15, 399

command line 403
Makefiles

delete rule 408
editing 408

malloc 49, 511 
Master transputer 

of a board 93 
MemConfig 320 
memcpy 

optimised 169 
Memnot 320 
Memory 

disassembly 426
Hex display 276
inspecting 426
insufficient 171
on-chip 3
segment ordering 78

memory 74 
processor attribute 81 

Memory configuration 152, 343 
customised 319 
file 337 
standard 319 

Memory configurer 16, 319 
command line 320 
default configuration 323 
interactive operation 323 
output files 322 

Memory dump 103 
Memory dump file 316 
Memory dumper 15, 315 

command line 315 
error messages 316 

Memory map 113, 282, 332, 427 
configurer 211 

Microsoft 399 

August 1990 



Index 539 

Mixed language programming 66, 
137 

calling C from occam 148 
interfacing with earlier toolsets 

499 
name translation 139 
using occam 2 harness 148 

Mixing languages 
at configuration level 137 

IMODIFyl 295 
Module data 

listing 391 
Modules 360 
IMONITORI 293 
Monitor page 110 

default address 267
Enter post-mortem 289
exit 288
items displayed 111
simulator 423
startup display 110

Monitor page commands 267 
format 113 
list 268 

Monitor page debugging 
breakpointing 115 
examining memory 114 
examining processors 115 
locating processes 11 4 
selecting processes 115 
specifying processes 114 

Motorola S-record format 152, 353 
MSDOS 

ISERVER function 498 
MS-DOS 9, 21, 517 
Multiprocessor networks 33 
Multitransputer programming 33 

introduction 6 

NEC PC 21 
Network 

definition 73 
hardware description 81 
software description 75 

Network configuration 67 
Network dump 283, 427 

72 TDS 224 00 

listing 396 
net_receive xxviii
net_send xxviii
Next error 274
Node types 74
Nodes 74
Norcroft 55
NotProcess_p 46
Numerical parameters

interpretation by isim 424 

Object code
displaying 383

Object file
format 9

Object files
icvlink 251

oc 62,66
occam 62, 137

array 143
calling from C 138
function return values 144
interface code 499
libraries 140
rules for calling from C 140
translating names 139

occam2.1nk 372 
occam8.1nk 372 
occama.lnk 372 
On-Chip memory 3 
On-chip RAM 501 
Operating system 

dependencies 21 
Operations 449 
Operators 70 
Optimised functions 168 
Option prefix 22 
Options 

standard 440 
order 78 
Out of memory errors 305 

Packet size 
ISERVER 481 

IPAGE DOWNI 270 
IPAGE upl 270 

August 1990 



540 Index 

PAL 319
par xxix
Parallel processing

introduction 31
on transputers 33

Parallel programming
abstract model 31
examples 50
new data types 35
summary of functions 36

Parameter 1'40 
oCCamand C equivalents 142 
dummy 139 

Parameter passing 142
Parameters

to main 502 
par_fprintf 512 
par_free 512 
par..malloc 512 
par_printf 512 
Pascal 499 
Path searching 440 
PC 21 
Phantom breakpoints 134 
place 

configuration statement 83
Pollkey

ISERVER function 493 
PORT 143 
Porting ISERVER 481, 482 
Post-mortem debugging 101, 255 

limitations 101 
outline of method 115 

Pragmas 63 
Predefines 

in configuration language 73 
Prefixing instructions 448 
Preprocessor directives 62, 162 
printf_checking 167 
Priority 287 

of execution 78 
priority 

process attribute 76 
PROC . ENTRY 500 

procedure interface 505 
PROC.ENTRY.RC 500,507 

72 TDS 224 00 

PROC.ENTRY.STUB 500
ProcAfter 42
ProcAlloc 38
ProcAllocClean 39
ProcAlt 44
ProcAltList 44
Process

configuration atttributes 76
control 34
creation 36
defining new types 79
execution 40
freeing workspace 39
initialisation 38
input alternation 43
scheduling 43
selection 34
synchronised 41, 51
timing 35, 42
unsynchronised 40, 50

Process 35 
process 74,75 
Process names 288 
Process pointer 

unused 37 
Process pointers 

in debugging 111 
Process queue 287 
Process queues 

displaying 427 
Processes 31 

sunchronising 32 
Processor 

defining new types 82 
links 82 

processor 74, 81 
Processor names 280 
Processor types 56 
ProcGetPriority 42 
ProcInit 38, 171 
ProcInitClean 39 
ProcLow 40 
ProcPar 40 
ProcParam 38 
ProcParList 40 
ProcPriPar 40,171 

August 1990 



Index 541 

ProcReschedule 42
ProcRun 40
ProcRunHigh 40
ProcSkipAlt 44
ProcSkipAltList 44
ProcStop 42
ProcTime 42
ProcTimeAfter 42
ProcTimeMinus 42
ProcTimePlus 42
ProcTimerAlt 44
ProcTimerAltList 44
ProcWait 42
Program

terminating on error 415
Program development

introduction 17 
Programmable memory interface 3 
Programming 

model 6
on transputer networks 33

Programs
loadable 411
loading 91

Pseudo-instructions 447 
putw xxviii 

Queues 
process 287, 427 
timer 427 

Quit 
simulator 427 

Quit debugger 286 

R-mode programs 256 
RAM 150,239 
Real-time programming 6 
REAL32 143 
REAL64 143 
realloc 49, 171, 511 
Reduced runtime library 65 
/REFRESHI 270, 290, 425 
Register 

assigning value 427 
Registers 

displayed on Monitor page 112 

72 TDS 224 00 

!RELOCATE! 270, 290, 293
Remove

ISERVER function 492
Rename

(SERVER function 492
rep 

configuration statement 72
Replication

in configuration language 72
Reserved channels

in occam mixed language code
501

Reserved words
configuration language 458 

Reset 93, 95, 264 
/RESUME! 295 
Resume program 

in simulator 427 
Resuming a program 279 
!RETRACE! 270, 290, 293 
rindex xxviii 
ROM 150, 239, 319, 343 
Root transputer 94, 343, 431 

in debugging 256 
Run queue 427 
Run queues 287 
Running programs 

introduction 13 
Runtime 

libraryl introduction 18 
Runtime library 64 

introduction 10 

Scalar workspace 238 
scanf_checking 167 
Screen definitions 514 
Screen driver 517 
Screen size 514 
ISEARCHI 293 
Search path 

configurer 211
icc 162
#include 162

Search path conventions 440 
Search paths 23 
Segment ordering 78 

August 1990 



542 Index 

Select process 284
Select source file 275
Selective linking 375
Selective loading

libraries 360
sema xxix
sema.h 512
SemAlloc 49
Semaphore 35
SEMAPHOREINIT 49
Semaphores 33, 48

allocation 49
examples 49
use by runtime library 49

sema_init 512 
sema_siqnal 512 
sema_signal-n 512 
sema_wait 512 
sema_wait-n 512 
Semlnit 49 
SemSiqnal 50 
SemWait 50 
Serial links 3 
Server 13 
serv_filter xxviii 
set-abort_action 

example of use 102 
setconf.inc 82,210 
Severity 

compiler messages 63 
Show debugging messages 287 
Simulator 15, 421 

batch command files 429
batch commands 429
batch mode 428
booting program 427
command line 421
error messages 430
list of commands 424
options 422
starting a program 426
use in debugging 119

Simulator commands 424, 426 
list 425 

Single step execution 121 
size 73,82 

Skip load
example 95
in debugging 103

Skip loader 14, 431 
command line 432

Software design 7
Source level debugging 107
Stack 501

freeing 39 
overflow 502

stack 76
stacksize

process attribute 76 
Stack overflow 171 
stack_checking 167 
standard error 484 
standard input 484 
standard output 484 
Standards 

file extensions 441 
started. lnk 138 
startrd. lnk 372, xxix 
startup.lnk 138, 372, xxvii 
static 76 
STOP 62 
STOP error mode 100, 373 
strcpy 

optimised 169 
string. h 169 
SUbsystem 93 
Subsystem reset 414, 432 
Subsystem wiring 93 
Sun 3 9,21 
Sun 4 9,22 
SunOS 9,21 
Symbol data 

listing 387 
Symbolic debugger 290 
Symbolic debugging 107 

breakpoint commands 109 
browsing source code 108 
inspecting variables 108 
jumping down channels 109 
locating to code 107 
modifying variables 109 
tracing procedure calls 109 

72 TDS 224 00 August 1990 



Index 543 

Symbolic debugging functions 
list 291 

Synchronisation 
channels 40 

Synchronised communication 6 
Synchronised processes 41, 51 
Synchronising processes 32 
Syntax 

configuration language 462
System

ISERVER function 494
System services 93

T-mode programs 256
T400 319
T414 25,319
T425 319
T800 319
T805 319
Target files

for imakef 400 
Target transputers 10 
TCOFF 9, 16,56,66,247, xxvii 
TCOFF files 

listing 396
Teletype font xxvi
Termination

configured processes 85
Text files

listing 396 
thread xxix 
thread.h 512 
thread_create 512 
thread_deschedule 512 
thread_priority 512 
thread.xestart 512 
thread_start 512 
thread_stop 512 
Time 

ISERVER function 494 
TIMER 143 
timer xxix 
Timer queue 

displaying 427 
Timer queues 288 
timer.h 512 

72 TDS 22400 

timer_after 512
timer_delay 512
timer-now 512
timer_wait 512
TOGGLE BREAK 295
ITOGGLE HEXI 294
Toolset

file extensions 19
getting started 25
in program development 7
summary 10, 11

Toolset standards 439
~ 270,288,290,293
ITOP OF FILEI 294
TptrO 112
Tptrl 112
TRAM 82, 94, 265
TRAMS 264
trams. inc 210
Translating occam names 139
Transputer

clock time 43
instruction set 34
link addresses 46
master 93
networks 33
products 5
simulator 421
target 157
targets 56

TRANSPUTER 23,415 
Transputer classes 
icvlink 252 

Transputer code 65, 172 
Transputer programming 7 
Transputer targets 161 
Transputers 

and C 5
and parallel processing 33
in real-time programming 6
introduction 3

Trigraphs 175 
tt ieprom 383 
type 74 

processor attribute 81 
Type 2 interface 505 

August 1990 



544 Index 

Type 3 interface 507 
Types

in configuration language 69
nodes 74

Typographical conventions xxvi 

UNIVERSAL 62, 161
UNIVERSAL error mode 100
UNIX 22,399,517
Unresolved references 375
Unsynchronised processes 50
Unused process pointer 37
Up 93
Update registers 288
use 

configuration statement 80 

VAL 142 
VAX 21,23 
VAXNMS 9 
vector 76 
Vector space 238 

in mixed language programming 
140 

Version 
ISERVER function 496 

Virtual memory 374 
VMS 21, 22, 23, 517 

Wait race 336 
warn..bacLtarget 167 
warn_deprecated 167 
warn_implicit 167 
Wdesc 111 
Wdesc 111 
Workspace 

freeing 39
in mixed language programming

140 
Workspace descriptor 111 
Write to memory 288 

X3.159-1989 55 

72 TDS 224 00 August 1990 



Worldwide Headquarter. 

INMOS Umited 
1000 Aztec West 
Almondsbury 

•
USA 

INMOS Business Centre 
Headquarters (USA) 
SGS-THOMSON Microelectronics Inc. 
2225 Executive Circle 
PO Box 16000 
Colorado Springs 
Colorado 80935-6000 
Telephone (719) 630 4000 
Fax (719) 630 4325 

SGS-THOMSON Microelectronics Inc. 
Sales and Marketing Headquarters (USA) 
1000 East Bell Road 
Phoenix 
Arizona 85022 
Telephone (602) 8676100 
Fax (602) 867 6102 

INMOS Business Centre 
SGS-THOMSON Microelectronics Inc. 
Uncaln North 
55 Old Bedford Road 
UncoIn 
Massachusetts 01 n3 
Telephone (617) 259 0300 
Fax (617) 259 4420 

INMOS Business centre 
SGS-THOMSON Microelectronics Inc. 
9861 Broken Land Parkway 
Suite 320 
Columbia 
Maryland 21045 
Telephone (301) 995 6952 
Fax (301) 290 7047 

INMOS Business Centre 
SGS-THOMSON Microelectronics Inc. 
200 East Sandpointe 
Suite 650 
Santa Ana 
California 92707 
Telephone (714) 9576018 
Fax (714) 957 3281 

Bristol BS12 4$0
UNITED KINGDOM
Telephone (0454) 616616
Fax (0454) 617910

Worldwide Buslne.. Centres 

INMOS Business centre 
SGS-THOMSON Microelectronics Inc. 
2620 Augustine Drive 
Suite 100 
Santa Clara 
California 95054 
Telephone (408) 727 n71 
Fax (408) 727 1458 

k~H~~es,: =ectronics Inc. 
1310 Electronics Drive 
Carrollton 
Texas 75006 
Telephone (214) 466 8844 
Fax (214) 466 7352 

ASIA PACIFIC 

Japan 

INMOS Business Centre 
SGS-THOMSON Microelectronics K.K. 
Nisseki Takanawa Building, 4th Floor 
18-10 Takanawa 2-chome 
Minato-ku 
Tokyo 108 
Telephone (03) 280 4125 
Fax (03) 280 4131 

Singapore 

INMOS Business Centre 
SGS-THOMSON Microelectronics Pte Ltd. 
28 Ang Mo Kio Industrial Park 2 
Singapore 2056 
Telephone (65) 482 14 11 
Fax (65) 482 02 40 

EUROPE 

United Kingdom 

INMOS Business Centre 
SGS-THOMSON Miaoelectronics Ltd. 
Planar House 
Parkway Globe Park 
Mar10w 
Bucks SL7 1YL 
Telephone (0628) 890 800 
Fax (0628) 890 391 

France 

INMOS Business centre 
SGS-THOMSON Microelectronics SA 
7 Avenue GaJlieni 
BP 93 
94253 Gentilly Cedex 
Telephone (1) 47407575 
FAX (1) 47407927 

We.t Germany 

INMOS Business Centre 
SGS-THOMSON Microelectronics GmbH 
Bretonischer Ring 4 
8011 Grasbrunn 
Telephone (089) 46 00 60 
Fax (089) 46 00 61 40 

Italy 

INMOS Business Centre 
SGS-THOMSON Microelectronics SpA 
V.1e MiJanofiori 
Strada 4 
PaJazzo A/4/A 
20090 Assago (MI) 
Telephone (2) 89213 1 
Fax (2) 8250449 


	Contents overview
	Contents
	Preface
	Differences from 3L Parallel C
	User Guide
	1 Introduction to transputers
	1.1 Overview
	1.2 Transputers
	1.2.1 Multitransputer systems
	1.2.2 Links
	1.2.3 Hardware parallel support
	1.2.4 Transputer products

	1.3 Transputers and C
	1.3.1 Programming model
	1.3.2 Multitransputer programming
	1.3.3 Real time programming

	1.4 Program development
	1.4.1 Software design
	1.4.2 Programming
	1.4.3 Debugging
	1.4.4 Embedded systems


	2 Overview of the toolset
	2.1 Introduction
	2.2 Features of the toolset
	2.2.1 Standard object file format
	2.2.2 New configuration language
	2.2.3 Runtlme library
	2.2.4 Concurrent programming
	2.2.5 Transputer targets
	2.2.6 Support for earlier toolsets

	2.3 Toolset summary
	2.4 ANSI C compiler - icc
	2.5 Generating executable code
	2.5.1 Linker - ilink
	2.5.2 Configurer - icconf
	2.5.3 Code collector - icollect

	2.6 Loading and running programs
	2.6.1 Host file server - iserver
	2.6.2 Skip loader - iskip

	2.7 Program development and support
	2.7.1 Network debugger - idebug
	2.7.2 Memory dumper - idump
	2.7.3 Librarian - ilibr
	2.7.4 Binary lister - ilist
	2.7.5 Transputer simulator - isim
	2.7.6 Makefile generator - imakef
	2.7.7 File format convertor - icvlink

	2.8 EPROM programming
	2.8.1 EPROM programmer - ieprom
	2.8.2 Memory configurer - iemit

	2.9 Program development using the toolset
	2.10 Runtime library
	2.10.1 Header flies

	2.11 Toolset file extensions
	File extension scheme required for imakef

	2.12 Error reporting
	2.13 Host dependencies
	Command line syntax
	2.13.1 Host-specific library
	2.13.2 Filenames
	2.13.3 Search paths
	2.13.4 Environment variables
	2.13.5 Default command line arguments


	3 Getting started
	3.1 Outline procedure
	3.2 Running the examples
	3.2.1 Sources
	3.2.2 Example command lines
	3.2.3 Using the simulator

	3.3 A simple sequential program
	3.3.1 Compiling
	3.3.2 Linking
	3.3.3 Configuring
	3.3.4 Loading

	3.4 A parallel version
	3.5 Separate compilation
	3.6 A simple configuration example

	4 Parallel processing
	4.1 Introduction
	4.2 Abstract model
	4.2.1 Processes
	4.2.2 Channels

	4.3 Semaphores
	4.4 Parallel processing and transputers
	4.4.1 Multitransputer networks
	4.4.2 Multitransputer programming
	4.4.3 Instruction set
	Process control
	Process selection
	Process timing


	4.5 ANSI C
	4.5.1 Library support
	4.5.2 New data types
	4.6 Concurrency functions
	4.7 Processes
	4.7.1 Unused process pointer
	4.7.2 Process initialisation
	4.7.3 Freeing stack and workspace
	4.7.4 Process execution
	Unsynchronised processes
	Synchronised processes

	4.7.5 Process timing and scheduling
	Process timing
	Process scheduling

	4.7.6 Clock time
	4.7.7 Input alternation
	4.7.8 Simple alternation
	4.7.9 Polling several inputs
	4.7.10 Timed input
	4.7.11 Example of use

	4.8 Channel communication
	4.8.1 Transputer link addresses
	4.8.2 Channel allocation, initialisation, and reset
	4.8.3 Channel input and output
	4.8.4 Reliable channel protocols
	4.8.5 Semaphores
	Use of semaphores by the library

	4.8.6 Semaphore allocation
	Examples

	4.8.7 semaphore handling

	4.9 Parallel programming examples

	5 Introduction to the ANSI C compiler
	5.1 Introduction
	5.2 Source and object code
	5.2.1 Object code format

	5.3 Transputer types and classes
	5.3.1 Single transputer type
	5.3.2 Creating a program which can run on a range of transputers
	5.3.3 Object file containing code compiled for different targets
	5.3.4 Classes/instruction sets - additional information

	5.4 Error modes
	5.5 Preprocessor directives
	5.5.1 Include files
	5.5.2 Pragmas
	5.5.3 Compiler messages

	5.6 Runtime library
	5.6.1 Reduced library

	5.7 Low level programming
	5.7.1 Assembly code support
	5.7.2 Complier predeflnes

	5.8 Mixed language programming

	6 Configuring transputer programs
	6.1 Introduction
	6.2 Configuration model
	6.3 Configuration language
	6.3.1 Identifiers
	6.3.2 Types
	6.3.3 Constants
	6.3.4 Booleans
	6.3.5 Expressions and arithmetic
	6.3.6 Arrays
	6.3.7 Conditional statement
	6.3.8 Replication
	6.3.9 Predefined functions

	6.4 Network definition
	6.4.1 Nodes
	6.4.2 New node types
	6.4.3 Connections
	Prohibited connections


	6.5 Software network description
	6.5.1 Process attributes
	6.5.2 Stack and heap size
	6.5.3 Interface
	Array parameters
	get_param function
	Host server channels

	6.5.4 Execution priority
	6.5.5 Segment ordering
	6.5.6 Defining new process types
	6.5.7 Input and output channels
	6.5.8 Edge connections
	6.5.9 Assigning code to processes

	6.6 Hardware network description
	6.6.1 Processor links
	6.6.2 Defining new processor types
	6.6.3 Links
	6.6.4 Edges

	6.7 Mapping description
	6.7.1 Placement of channels

	6.8 Software network example
	6.9 Terminating configured processes
	6.10 Checking the configuration
	6.11 Configuration examples
	6.12 Configuration language summary

	7 Loading transputer programs
	7.1 Introduction
	7.2 Tools for loading
	7.3 The loading mechanism
	7.3.1 Breakpoint debugging

	7.4 Boards and subnetworks
	7.4.1 Subsystem wiring
	7.4.2 Connecting subnetworks

	7.5 Loading programs for debugging
	7.5.1 Board types
	7.5.2 Use of the root transputer
	7.5.3 Analyse and Reset

	7.6 Example skip load
	7.6.1 Target network
	7.6.2 Loading the program
	7.6.3 Clearing the network


	8 Debugging transputer programs
	8.1 Introduction
	8.1.1 Debugging with isim

	8.2 Programs that can be debugged
	8.3 Compiling programs for debugging
	8.3.1 Symbolic debug information
	8.3.2 Error modes

	8.4 Debugging configured programs
	8.5 Post mortem debugging
	Using abort to halt a program
	8.5.1 Program loading

	8.6 Breakpoint debugging
	8.6.1 Runtime kernel
	8.6.2 Hardware breakpoint support
	8.6.3 Compiling the program
	8.6.4 Loading the program
	8.6.5 Clearing error flags
	8.6.6 Breakpoint functions and commands
	8.6.7 Breakpoints

	8.7 Program termination
	8.8 Symbolic facilities
	8.8.1 Locating to source code
	8.8.2 Browsing source code
	8.8.3 Inspecting variables
	Jumping down channels

	8.8.4 Tracing procedure calls
	8.8.5 Modifying variables
	8.8.6 Breakpointing

	8.9 Monitor page
	8.9.1 Startup display
	Process pointers
	Registers
	Error flags
	Clocks
	Memory map

	8.9.2 Monitor page commands
	Examining memory
	Locating processes
	Specifying processes
	Selecting processes
	Other processors
	Breakpoint commands


	8.10 A method for debugging halted programs
	8.10.1 Locating all processes
	Running on the processor
	Waiting on a run queue
	Waiting on a timer queue
	Waiting for communication on a link
	Waiting for communication on a channel
	Processes stopped, terminated or not started

	8.10.2 Locating functions

	8.11 Library functions
	8.11.1 Action when the debugger is not available

	8.12 Debugging with isim
	8.12.1 Command interface
	8.12.2 Using the simulator
	8.12.3 Program execution monitoring
	Breakpoints
	Single step execution

	8.12.4 Core dump file

	8.13 Debugging example
	8.13.1 The example program
	8.13.2 Compiling and loading the facs program
	8.13.3 Setting initial breakpoints
	8.13.4 Starting the program
	8.13.5 Entering the debugger
	8.13.6 Inspecting variables
	8.13.7 Backtracing
	8.13.8 Jumping down a channel
	8.13.9 Inspecting by expression
	8.13.10 Modifying a variable
	8.13.11 Backtracing to main
	8.13.12 Entering #include files
	8.13.13 Quitting the debugger

	8.14 Points to note when using the debugger
	8.14.1 Abusing hard links
	8.14.2 Examining the active network (the network is volatile)
	8.14.3 Selecting events from specific processors
	8.14.4 Invalid pointers
	8.14.5 INTERRUPT key
	8.14.6 Program crashes
	8.14.7 Undetected program crashes
	8.14.8 Debugger hangs when starting program
	8.14.9 Debugger hangs
	8.14.10 Catching concurrent processes with breakpoints
	8.14.11 Arrays as arguments
	8.14.12 Backtracing with concurrent C processes
	8.14.13 Phantom breakpoints
	8.14.14 Errors generated by the full library
	8.14.15 Errors generated by the reduced library
	8.14.16 Shifting by large positive or negative values
	8.14.17 Compiler optimisations
	8.14.18 Determining connectivity and memory sizes


	9 Mixed language programming
	9.1 Introduction
	9.2 Mixing code at configuration level
	9.2.1 C and occam

	9.3 Calling occam processes
	9.3.1 Pragma IMS_nolink
	9.3.2 Translating occam names
	9.3.3 Rules for importing occam code

	9.4 Parameter passing
	9.4.1 Return values
	9.4.2 Example of passing parameters

	9.5 Mixing code using the occam 2 toolset
	9.5.1 Calling C from occam


	10 Using the EPROM tools
	10.1 Introduction
	10.2 Processing configurations
	10.2.1 Single process, single processor, run from ROM
	10.2.2 Multiple process, single processor, run from ROM
	10.2.3 Single process, single processor, run from RAM
	10.2.4 Multiple process, single processor, run from RAM
	10.2.5 Multiple process, multiple processor, run from RAM
	10.2.6 Multiple process, multiple processor, root run from ROM, rest of network run from RAM

	10.3 The eprom tool: ieprom
	10.4 Using the conflgurer and collector to produce ROM bootable code
	10.5 Summary of EPROM steps for different processing configurations

	Tools
	11 icc - ANSI C compiler
	11.1 Introduction
	11.2 Running the compiler
	11.2.1 Transputer targets
	11.2.2 Error modes
	11.2.3 Default command line options
	11.2.4 File extension defaults
	11.2.5 Search paths

	11.3 Compiler directives
	11.3.1 #include
	Relative directory names
	Backslash character in filenames

	11.3.2 #define
	11.3.3 #undef
	11.3.4 #if
	11.3.5 #ifdef
	11.3.6 #ifndef
	11.3.7 #else
	11.3.8 #elif
	11.3.9 #endif
	11.3.10 #line
	11.3.11 #pragma
	Pragma IMS_nolink

	11.3.12 #error

	11.4 Optimised functions
	11.5 Compiler predefinitions
	11.5.1 Constants
	11.5.2 Functions
	11.5.3 Other predeflnes

	11.6 Fatal runtime errors
	11.6.1 Runtime error messages

	11.7 Transputer in-line code
	11.8 Compiler diagnostics
	11.8.1 Message format
	11.8.2 Severities
	11.8.3 Standard terms
	11.8.4 ANSI trigraphs
	11.8.5 Warning diagnostics
	11.8.6 Recoverable errors
	11.8.7 Serious errors
	11.8.8 Fatal errors

	11.9 icc error messages
	11.9.1 Warnings
	11.9.2 Serious errors
	11.9.3 Fatal errors


	12 icconf - configurer
	12.1 Introduction
	12.2 Configuration language implementation
	12.3 Running the configurer
	12.3.1 Default command line parameters
	12.3.2 Boot-from-ROM options
	12.3.3 Standard include files
	12.3.4 Configuration description examples
	12.3.5 Configurer library files
	12.3.6 Search paths
	12.3.7 Default memory map

	12.4 Configurer diagnostics
	12.4.1 Warning messages
	12.4.2 Error messages
	12.4.3 Serious messages

	12.5 icconf error messages
	12.5.1 Serious errors
	12.5.2 Fatal errors


	13 icollect - code collector
	13.1 Introduction
	13.2 Running the code collector
	13.2.1 Examples of use
	13.2.2 Input files
	13.2.3 Output files
	13.2.4 Non-bootable files
	13.2.5 Boot-from-ROM options
	13.2.6 Debug data file
	13.2.7 Alternative bootstrap loaders
	13.2.8 Small values of IBOARDSIZE

	13.3 Error messages
	13.3.1 Warnings
	13.3.2 Serious errors


	14 icvlink - file format convertor
	14.1 Introduction
	14.2 Running the format convertor
	14.2.1 Default command line
	14.2.2 Input files
	Complied object files
	Library files
	Linked object files

	14.2.3 Output files

	14.3 Transputer classes and error modes
	14.4 Summary of rules for using icvlink
	14.5 Error messages
	14.5.1 Serious errors


	15 idebug - debugger
	15.1 Introduction
	15.1.1 Post-mortem debugging
	15.1.2 Breakpoint debugging

	15.2 The root transputer
	15.2.1 Board wiring
	15.2.2 Post-mortem debugging R-mode programs
	15.2.3 Post-mortem debugging T-mode programs
	15.2.4 Post-mortem debugging from a network dump file
	15.2.5 Debugging a dummy network
	15.2.6 Methods for breakpoint debugging

	15.3 Running the debugger
	15.3.1 Environment variables
	15.3.2 Program termination
	15.3.3 Post-mortem mode Invocation
	Reinvoking the debugger on single transputer programs

	15.3.4 Breakpoint mode invocation
	Clearing error flags on transputer boards
	Program loading

	15.3.5 Function key mappings

	15.4 Debugging programs on different board types
	15.4.1 Subsystem wiring
	15.4.2 Debugging commands
	15.4.3 Detecting the error flag in breakpoint mode

	15.5 Debugging programs on other boards
	15.6 Monitor page commands
	Command format
	Specifying transputer addresses
	15.6.1 Scrolling the display
	15.6.2 Commands mapped by ITERM
	15.6.3 Summary of main commands
	15.6.4 Symbolic-type commands and scroll keys
	15.6.5 Symbolic-type commands

	15.7 Symbolic functions
	15.7.1 Breakpoint functions

	15.8 Expression language for [INSPECT] and [MODIFY]
	15.8.1 C syntax not supported
	15.8.2 Extensions to C syntax
	15.8.3 Editing keys
	15.8.4 Types
	Type compatibility when using [MODIFY]


	15.9 Display formats for source code symbols
	15.9.1 Warnings
	15.9.2 [TOGGLE HEX] key
	15.9.3 Notation
	15.9.4 Basic Types
	15.9.5 Enumerated types
	15.9.6 Pointers
	15.9.7 Function Pointers
	15.9.8 Structs
	15.9.9 Unions
	15.9.10 Addressof (&) operator
	15.9.11 Arrays
	15.9.12 Channels

	15.10 Example displays
	15.11 Error messages
	15.11.1 Out of memory errors
	15.11.2 If the debugger hangs
	15.11.3 Error message list


	16 idump - memory dumper
	16.1 Introduction
	16.2 Running the memory dumper
	16.2.1 Example of use

	16.3 Error messages

	17 iemit - memory configurer
	17.1 Introduction
	17.2 Running iemit
	17.3 Output files
	17.4 Interactive operation
	17.4.1 Page 0
	17.4.2 Page 1
	17.4.3 Page 2
	17.4.4 Page 3
	17.4.5 Page 4
	17.4.6 Page 5
	17.4.7 Page 6

	17.5 Example iemit display pages
	17.6 iemit error and warning messages
	17.7 Memory configuration file
	17.8 Memory interface conversion tool icvemit
	17.9 Running icvemit
	17.10 icvemit error messages

	18 ieprom - EPROM program convertor
	18.1 Introduction
	18.2 Prerequisites to using the hex tool ieprom
	18.3 Running ieprom
	18.3.1 Examples of use

	18.4 ieprom control file
	18.5 What goes in the EPROM
	18.5.1 Memory configuration data
	18.5.2 Jump instructions
	18.5.3 Bootable file
	18.5.4 Traceback information

	18.6 ieprom output files
	18.6.1 Binary output
	18.6.2 Hex dump
	18.6.3 Intel hex format
	18.6.4 Intel extended hex format
	18.6.5 Motorola S-record format

	18.7 Block mode
	18.7.1 Memory organisation
	18.7.2 When to use block mode
	18.7.3 How to use block mode

	18.8 Example control files
	18.9 Error and warning messages

	19 ilibr - librarian
	19.1 Introduction
	19.2 Running the librarian
	19.2.1 Default command line
	19.2.2 Library indirect files

	19.3 Library modules
	19.3.1 Selective loading

	19.4 Library usage files
	19.5 Building libraries
	19.5.1 Rules for constructing libraries
	19.5.2 Hints for building libraries
	19.5.3 Optimising libraries
	Library build targeted at specific transputer types
	Seml-optimised library build targeted at all transputer types
	Optimised library


	19.6 Error messages
	19.6.1 Warning messages
	19.6.2 Serious errors


	20 ilink - linker
	20.1 Introduction
	20.2 Running the linker
	20.2.1 Default command line parameters

	20.3 Linker indirect files
	20.3.1 Linker directives
	20.3.2 Linker startup files

	20.4 Linker options
	20.4.1 Processor types
	20.4.2 Error modes - options H, S and X
	20.4.3 TCOFF and LFF output files - options T, LB, LC
	20.4.4 Display information - option I
	20.4.5 Virtual memory - option KB
	20.4.6 Main entry point - option ME
	20.4.7 Link map filename - option MO
	20.4.8 Linked unit output file - option O
	20.4.9 Permit unresolved references - option U
	20.4.10 Disable interactive debugging - option Y

	20.5 Selective linking of library modules
	20.6 The link map file
	20.7 Using imakef for version control
	20.8 Error messages
	20.8.1 Warning messages
	20.8.2 Errors
	Serious errors

	20.8.3 Embedded messages


	21 ilist - binary lister
	21.1 Introduction
	21.2 Data displays
	21.3 Running the lister
	21.3.1 Default command line parameters

	21.4 Specifying an output file -option O
	21.5 Symbol data - option A
	21.6 Code listing - option C
	21.7 Exported names - option E
	21.8 Hexadecimal/ASCII dump - option H
	21.9 Module data - option M
	21.10 Library index data - option N
	21.11 Procedural interface data - option P
	21.12 Specify reference - option R
	21.13 Full listing - option T
	21.14 File identification - option W
	21.15 External reference data - option X
	21.16 Error messages
	21.16.1 Warning messages
	21.16.2 Serious errors


	22 imakef - Makefile generator
	22.1 Introduction
	22.2 How imakef works
	22.3 Target files
	22.4 File extensions for use with imakef
	22.4.1 Transputer types and error modes
	Error modes in mixed language programs


	22.5 Linker indirect files
	22.6 Running the Makefile generator
	22.6.1Example of use
	22.6.2 Disabling debug data
	22.6.3 Removing intermediate files

	22.7 imakef examples
	22.7.1 Single transputer program
	22.7.2 Multitransputer program

	22.8 Format of Makefiles
	22.8.1 Macros
	22.8.2 Rules
	Action strings

	22.8.3 Delete rule
	22.8.4 Editing the Makefile
	Adding options


	22.9 Error messages

	23 iserver - host file server
	23.1 Introduction
	23.1.1 Loadable programs

	23.2 Running the server
	23.2.1 Examples of use
	23.2.2 Supplying parameters to the program
	23.2.3 Checking and clearing the network
	23.2.4 Terminating the server
	23.2.5 Options to use when loading the program
	23.2.6 Specifying a link address - option SL
	23.2.7 Terminating on error - option SE

	23.3 Server functions
	File system commands
	Host environment commands
	Server control commands

	23.4 Error messages

	24 isim - T425 simulator
	24.1 Introduction
	24.2 Running the simulator
	24.2.1 Example of use
	24.2.2 ITERM file

	24.3 Monitor page display
	24.4 Simulator commands
	24.4.1 Specifying numerical parameters
	24.4.2 Commands mapped by ITERM

	24.5 Batch mode operation
	24.5.1 Setting up ISIMBATCH
	24.5.2 Input command files
	24.5.3 Output
	24.5.4 Batch mode commands

	24.6 Error messages

	25 iskip - skip loader tool
	25.1 Introduction
	25.1.1 Uses of the skip tool

	25.2 Running the skip tool
	25.2.1 Examples of use
	25.2.2 Monitoring the error status - option E
	25.2.3 Loading a program
	25.2.4 Clearing the error flag

	25.3 Error messages

	Appendices
	A Toolset standards and conventions
	A.1 Command line syntax
	A.1.1 General conventions
	A.1.2 Standard options

	A.2 Filenames
	A.3 Search paths
	A.4 Standard file extensions
	A.4.1 'Main path' source and object files
	A.4.2 Other outputs
	A.4.3 Indirect input files
	A.4.4 Miscellaneous files

	A.5 Extensions required for imakef
	A.6 Error handling
	A.6.1 Error displays
	A.6.2 Severities
	A.6.3 Runtime errors


	B Transputer instruction set
	B.1 Pseudo-instructions
	B.2 size option on __asm statement
	B.3 Prefixing instructions
	B.4 Direct instructions
	B.5 Operations
	B.6 Additional instructions for T400, T414, T425 and TB
	B.7 Additional instructions for IMS T800, T801 and T805
	B.7.1 Floating-point instructions

	B.8 Additional instructions for IMS T225, T400, T425, T800, T801, T805
	B.9 Additional instructions for the IMS T225, T400, T425, T801 and T805

	C Configuration language definition
	C.1 Notation
	C.2 Implementation details
	C.3 Reserved words
	C.3.1 Keywords
	C.3.2 Pre-defined attributes
	Node attributes
	Processor attributes
	Process attributes


	C.4 Predefinitions
	C.4.1 Constants
	C.4.2 Types

	C.5 Language syntax
	C.5.1 Configuration
	C.5.2 Language features
	C.5.3 Expressions
	C.5.4 Replication and conditionals
	C.5.5 Numeric value declarations
	C.5.6 Network declarations
	C.5.7 Mapping declarations


	D Bootstrap loaders
	D.1 Introduction
	D.1.1 The example bootstrap
	Transfer of control

	D.1.2 Writing bootstrap loaders

	D.2 Example user bootstrap
	D.3 The INMOS Network Loader

	E ISERVER protocol
	E.1 The host file server iserver
	E.2 The server protocol
	E.2.1 Packet size
	E.2.2 Protocol operation

	E.3 The server libraries
	E.4 Porting the server
	E.5 Server commands
	E.5.1 Notation
	E.5.2 Reserved values
	E.5.3 File commands
	Fopen - Open a file
	Fclose - Close a file
	Fread - Read a block of data
	Fwrite - Write a block of data
	FGetBlock - Read a block of data and return success
	FPutBlock - Write a block of data and return success
	Fgets - Read a line
	Fputs - Write a line
	Fflush - Flush a stream
	Fseek - Set position in a file
	Ftell - Find out position in a file
	Feof - Test for end of file
	Ferror - Get file error status
	Remove - Delete a file
	Rename - Rename a file
	Isatty - Determine if a stream is connected to a terminal

	E.5.4 Host commands
	Getkey - Get a keystroke
	Pollkey - Test for a key
	Getenv - Get environment variable
	Time - Get the time of day
	System - Run a command

	E.5.5 Server commands
	Exit - Terminate the server
	CommandLine - Retrieve the server command line
	Core - Read peeked memory
	Version - Find out about the server
	MSDOS - Perform MS-DOS specific function



	F occam interface code
	F.1 Interface code
	F.2 Reserved channels
	F.3 Stack and heap requirements
	F.3.1 Stack overflow

	F.4 Parameters to C main
	F.5 Type 1 interface
	F.5.1 Type 1 procedural interface
	F.5.2 Building a type 1 process

	F.6 Type 2 interface definition
	F.6.1 Type 2 procedural interface
	F.6.2 Example type 2 wrapping

	F.7 Type 3 interface definition
	F.7.1 Type 3 procedural interfaces
	F.7.2 Example type 3 wrapping


	G 3L functions supported
	G.1 Code compatibility
	G.1.1 Source code
	G.1.2 Object code

	G.2 Parallel functions supported
	G.2.1 Header file
	G.2.2 Restrictions


	H ITERM
	H.1 Introduction
	H.2 The structure of an ITERM file
	H.3 The host definitions
	H.3.1 ITERM version
	H.3.2 Screen size

	H.4 The screen definitions
	H.4.1 Goto X Y processing

	H.5 The keyboard definitions
	H.6 Setting up the ITERM environment variable
	H.7 An example ITERM

	I Glossary
	J Bibliography
	J.1 Reference books
	J.2 INMOS publications
	J.3 INMOS technical notes

	Index



