ANSI C toolset
user manual

INMOS Limited

72 TDS 224 00 August 1990

Copyright © INMOS Limited 1990
@ , Inmos, IMS and occam are trademarks of INMOS Limited.
INMOS is a member of the SGS-THOMSON Microelectronics Group.

The C compiler implementation was developed from the Perihelion Software "C”
Compiler and the Codemist Norcroft "C” Compiler.

UNIX is a trademark of AT&T. ‘

INMOS document number: 72 TDS 224 00

Contents overview

Contents

Preface

Differences from 3L Parallel C

User Guide

1 Introduction to An introduction to transputers and transputer
transputers programming.

2 Overview of the Gives an overview of the ANSI C toolset, in-

toolset cluding brief descriptions of each tool.

3 Getting started Shows the command sequences to generate
single and multitransputer C programs, using
simple examples.

4 Parallel processing Describes parallel processing using the
toolset. Describes the concurrency functions
and explains how to use them.

5 Introduction to the Introduces the ANSI C compiler and its fea-

ANSI C compiler tures, and explains about transputer targets.

6 Configuring Describes the configuration language and
transputer how to use it to configure software on trans-
programs puter networks.

7 Loading transputer Describes how to load programs onto trans-
programs puters and transputer networks, with brief de-

scriptions of the tools that are used.

8 Debugging Describes how to use the debugger to de-
transputer bug transputer programs in post-mortem and
programs breakpoint modes.

9 Mixed language Describes how to mix C and occam code at

programming source and configuration levels.

10 Using the EPROM Describes how to use the EPROM support

tools tools to develop ROM-based programs.
72 TDS 224 00 August 1990

i Contents overview

Tools

11 ice - ANSIC Describes the ANSI C compiler.

compiler
12 icconf - Describes the configurer which generates
configurer configuration binary files from configuration

descriptions.

13 icollect —code Describes the code collector which generates
collector executable code from single linked units or
configuration binary files.

14 icvlink - file Describes the file format convertor which con-
format convertor verts object files created by earlier INMOS
toolsets into TCOFF format.

15 idebug - network Describes the network debugger. Lists the
debugger symbolic functions and Monitor page com-
mands. at machine level.

16 idump — memory Describes the memory dumper tool which
dumper dumps root transputer memory for post-
mortem debugging.

17 iemit —memory Describes the memory configurer tool which
configurer helps to configure the transputer memory in-
terface.

18 ieprom — EPROM Describes the EPROM formatter tool which
program convertor creates executable files for loading into ROM.

19 ilibr - librarian Describes the toolset librarian which creates
libraries of compiled code.

20 ilink - linker Describes the toolset linker which links com-
piled code and libraries into a single unit.

21 ilist —binary Describes the binary lister which displays bi-

lister nary files in a readable form.

22 imakef — Makefile Describes the Makefile generator which cre-

generator ates Makefiles for toolset compilations.
23 iserver — host Describes the host file server which loads pro-

file server grams onto transputer hardware and provides

host communication.

24 isim - T425 Describes the transputer simulator which al-

simulator lows programs to be run without hardware.
25 iskip — skip Describes the skip loader tool which loads

loader programs onto external subnetworks. .

72 TDS 224 00 August 1990

Contents overview

Appendices
A Toolset standards Describes the conventions and standards of
and conventions the toolset.
B Transputer List instruction sets for INMOS transputers.
instruction set
Cc Configuration Defines the syntax of the transputer configu-
language definition ration language.

D ISERVER protocol Describes the server protocol and describes
ISERVER functions.

E Bootstrap loaders Describes bootstrap loaders and lists the
standard INMOS offering.

F occam interface Describes a set of interfaces for object code

code generated using previous INMOS toolsets.
G 3L functions Describes functions supported from the ear-
supported lier INMOS 3L Parallel C toolset.

H ITERM Describes the format of ITERM files.

I Glossary A glossary of terms.

J Bibliography Lists literature and documentation for further
reading.

The Index

72 TDS 224 00

August 1990

iv Contents overview

72 TDS 224 00 August 1990

Contents

Contents overview

Contents v
Preface XXV
Differences from 3L Parallel C XXVii
User Guide 1
1 Introduction to transputers 3
1.1 Overview 3
1.2 Transputers 3
1.2.1 Multitransputer systems 3

1.2.2 Links 4

1.2.3 Hardware parallel support 4

1.2.4 Transputer products 5

1.3 Transputers and C 5
1.3.1 Programming model 6

1.3.2 Multitransputer programming 6

1.3.3 Real time programming 6

1.4 Program development 7
1.4.1 Software design 7

1.4.2 Programming 7

1.4.3 Debugging 7

1.4.4 Embedded systems 8

2 Overview of the toolset 9
2.1 Introduction 9
2.2 Features of the toolset 9
2.2.1 Standard object file format 9

2.2.2 New configuration language 9

2.2.3 Runtime library 10

2.2.4 Concurrent programming 10

2.2.5 Transputer targets 10

2.2.6 Support for earlier toolsets 10

23 Toolset summary 10
24 ANSI C compiler - icc 12
2.5 Generating executable code 12

72 TDS 224 00

August 1990

Contents

vi
2.5.1 Linker —ilink 12
2.5.2 Configurer — icconf 13
2.5.3 Code collector — icollect 13
2.6 Loading and running programs 13
2.6.1 Host file server - iserver 13
2.6.2 Skip loader — iskip 14
2.7 Program development and support 14
2.7.1 Network debugger — idebug 14
2.7.2 Memory dumper — idump 15
2:7.3 Librarian — ilibr ° 15
2.7.4 Binary lister — ilist 15
2.7.5 Transputer simulator — isim 15
2.7.6 Makefile generator — imakef 15
2.7.7 File format convertor — icvlink 16
2.8 EPROM programming 16
2.8.1 EPROM programmer — ieprom 16
2.8.2 Memory configurer — iemit 16
2.9 Program development using the toolset 17
2.10 Runtime library 18
o 2.10.1 Header files 19
2.11 Toolset file extensions 19
File extension scheme required for imakef 21
2.12 Error reporting 21
2.13 Host dependencies 21
Command line syntax 22
2.13.1 Host-specific library 22
2.13.2 Filenames 22
2.13.3 Search paths 23
2.13.4 Environment variables 23
2.13.5 Default command line arguments 24
3 Getting started 25
3.1 Outline procedure 25
3.2 Running the examples 25
3.2.1 Sources 25
3.2.2 Example command lines 26
3.2.3 Using the simulator 26
3.3 A simple sequential program 26
3.3.1 Compiling 26
3.3.2 Linking 26
3.3.3 Configuring 27
3.3.4 Loading 27
72 TDS 224 00 August 1990

Contents vii
3.4 A parallel version 27
3.5 Separate compilation 28
3.6 A simple configuration example 29

4 Parallel processing 31
4.1 Introduction 31
4.2 Abstract model 31

4.2.1 Processes 31

4.2.2 Channels 32

4.3 Semaphores 33
4.4 Parallel processing and transputers 33
4.4.1 Multitransputer networks 33

4.4.2 Multitransputer programming 33

4.4.3 Instruction set 34
Process control 34

Process selection 34

Process timing 35

45 ANSIC 35
4.5.1 Library support 35

4.5.2 New data types 35

4.6 Concurrency functions 36
4.7 Processes 36
4.7.1 Unused process pointer 37

4.7.2 Process initialisation 38

4.7.3 Freeing stack and workspace 39

4.7.4 Process execution 40
Unsynchronised processes 40
Synchronised processes 41

4.7.5 Process timing and scheduling 42
Process timing 42

Process scheduling 43

4.7.6 Clock time 43

4.7.7 Input alternation 43

4.7.8 Simple alternation 44

4.7.9 Polling several inputs 44

4.7.10 Timed input 45

4.7.11 Example of use 45

4.8 Channel communication 45
4.8.1 Transputer link addresses 46

4.8.2 Channel allocation, initialisation, and reset 46

4.8.3 Channel input and output 46

4.8.4 Reliable channel protocols 47

72 TDS 224 00

August 1990

viii Contents

4.8.5 Semaphores 48
Use of semaphores by the library 49
4.8.6 Semaphore allocation 49
Examples 49
4.8.7 Semaphore handling 50
4.9 Parallel programming examples 50
5 Introduction to the ANSI C compiler 55
5.1 Introduction 55
5.2 Source and object code 55
5.2.1 Object code format 56
5.3 Transputer types and classes 56
5.3.1 Single transputer type 56
5.3.2 Creating a program which can run on a range of
transputers 57
5.3.3 Object file containing code compiled for differ-

ent targets 59
5.3.4 Classes/instruction sets — additional information 60
5.4 Error modes 62
5.5 Preprocessor directives 62
5.5.1 Include files 63
5.5.2 Pragmas 63
5.5.3 Compiler messages 63
5.6 Runtime library 64
5.6.1 Reduced library 65
5.7 Low level programming 65
5.7.1 Assembly code support 65
5.7.2 Compiler predefines 66
5.8 Mixed language programming 66
6 Configuring transputer programs 67
6.1 Introduction 67
6.2 Configuration model 67
6.3 Configuration language 68
6.3.1 Identifiers 69
6.3.2 Types 69
6.3.3 Constants 70
6.3.4 Booleans 70
6.3.5 Expressions and arithmetic 70
6.3.6 Arrays 71

6.3.7 Conditional statement 71 ‘

6.3.8 Replication 72 '

72 TDS 224 00 August 1990

Contents ix
6.3.9 Predefined functions 73

6.4 Network definition 73
6.4.1 Nodes 74

6.4.2 New node types 74

6.4.3 Connections 75
Prohibited connections 75

6.5 Software network description 75
6.5.1 Process attributes 76

6.5.2 Stack and heap size 76

6.5.3 Interface 76

Array parameters 77

get_param function 77

Host server channels 77

6.5.4 Execution priority 78

6.5.5 Segment ordering 78

6.5.6 Defining new process types 79

6.5.7 Input and output channels 79

6.5.8 Edge connections 80

6.5.9 Assigning code to processes 80

6.6 Hardware network description 81
6.6.1 Processor links 82

6.6.2 Defining new processor types 82

6.6.3 Links 82

6.6.4 Edges 83

6.7 Mapping description 83
6.7.1 Placement of channels 84

6.8 Software network example 84
6.9 Terminating configured processes 85
6.10 Checking the configuration 85
6.11 Configuration examples 85
6.12 Configuration language summary 88
7 Loading transputer programs 91
7.1 Introduction 91
7.2 Tools for loading 91
7.3 The loading mechanism 92
7.3.1 Breakpoint debugging 92

7.4 Boards and subnetworks 92
7.4.1 Subsystem wiring 93

7.4.2 Connecting subnetworks 93

7.5 Loading programs for debugging 94
7.5.1 Board types 94

72 TDS 224 00

August 1990

Contents

X
7.5.2 Use of the root transputer 94
7.5.3 Analyse and Reset 95
7.6 Example skip load 95
7.6.1 Target network 96
7.6.2 Loading the program 96
7.6.3 Clearing the network 96
8 Debugging transputer programs 99
8.1 Introduction 99
8.1.1 Debugging with isim 99
8.2 Programs that can be debugged 100
8.3 Compiling programs for debugging 100
8.3.1 Symbolic debug information 100
8.3.2 Error modes 100
8.4 Debugging configured programs 101
8.5 Post mortem debugging 101
Using abort to halt a program 101
8.5.1 Program loading 102
8.6 Breakpoint debugging 103
8.6.1 Runtime kernel 103
8.6.2 Hardware breakpoint support 104
8.6.3 Compiling the program 105
8.6.4 Loading the program 105
8.6.5 Clearing error flags 105
8.6.6 Breakpoint functions and commands 105
8.6.7 Breakpoints 106
8.7 Program termination 106
8.8 Symbolic facilities 107
8.8.1 Locating to source code 107
8.8.2 Browsing source code 108
8.8.3 Inspecting variables 108
Jumping down channels 109
8.8.4 Tracing procedure calls 109
8.8.5 Modifying variables 109
8.8.6 Breakpointing 109
8.9 Monitor page 110
8.9.1 Startup display 110
Process pointers 111
Registers 112
Error flags 113
Clocks 113
Memory map 113

72 TDS 224 00

August 1990

Contents xi
8.9.2 Monitor page commands 113
Examining memory 114

Locating processes 114

Specifying processes 114

Selecting processes 115

Other processors 115

Breakpoint commands 115

8.10 A method for debugging halted programs 115
8.10.1 Locating all processes 115
Running on the processor 116

Waiting on a run queue 116

Waiting on a timer queue 116

Waiting for communication on a link 117

Waiting for communication on a channel 117

Processes stopped, terminated or not started 117

8.10.2 Locating functions 117

8.11 Library functions 118
8.11.1 Action when the debugger is not available 119

8.12 Debugging with isim 119
8.12.1 Command interface 120
8.12.2 Using the simulator 120

8.12.3 Program execution monitoring 120
Breakpoints 121

Single step execution 121

8.12.4 Core dump file 121

8.13 Debugging example 121
8.13.1 The example program 121

8.13.2 Compiling and loading the facs program 126

8.13.3 Setting initial breakpoints 127

8.13.4 Starting the program 127

8.13.5 Entering the debugger 128

8.13.6 Inspecting variables 128
8.13.7 Backtracing 128
8.13.8 Jumping down a channel 128

8.13.9 Inspecting by expression 129
8.13.10Modifying a variable 129
8.13.11Backtracing to main 129
8.13.12Entering #include files 129
8.13.13Quitting the debugger 129

8.14 Points to note when using the debugger 129
8.14.1 Abusing hard links 130

72 TDS 224 00

August 1990

Xii Contents

8.14.2 Examining the active network (the network is

volatile) 130
8.14.3 Selecting events from specific processors 130
8.14.4 Invalid pointers 131
8.14.5 INTERRUPT key 131
8.14.6 Program crashes 131
8.14.7 Undetected program crashes 131
8.14.8 Debugger hangs when starting program 132
8.14.9 Debugger hangs 132

8.14.10Catching concurrent processes with breakpoints

132

8.14.11Arrays as arguments 133
8.14.12Backtracing with concurrent C processes 133
8.14.13Phantom breakpoints 134
8.14.14Errors generated by the full library 134
8.14.15Errors generated by the reduced library 135
8.14.16Shifting by large positive or negative values 135
8.14.17Compiler optimisations 135
8.14.18Determining connectivity and memory sizes 136
9 Mixed language programming 137
9.1 Introduction 137
9.2 Mixing code at configuration level 137
9.2.1 C and occam 138
9.3 Calling occam processes 138
9.3.1 Pragma IMS_nolink 138
9.3.2 Translating 0Occam names 139
9.3.3 Rules for importing occam code 140
9.4 Parameter passing 142
9.4.1 Return values 144
9.4.2 Example of passing parameters 145
9.5 Mixing code using the occam 2 toolset 148
9.5.1 Calling C from occam 148
10 Using the EPROM tools 149
10.1 Introduction 149
10.2 Processing configurations 150

10.2.1 Single process, single processor, run from ROM 150
10.2.2 Multiple process, single processor, run from ROM
150
10.2.3 Single process, single processor, run from RAM 151 .

72 TDS 224 00 August 1990

Contents

Xiii

10.2.4 Multiple process, single processor, run from RAM

151

10.2.5 Multiple process, multiple processor, run from
RAM 151

10.2.6 Multiple process, multiple processor, root run
from ROM, rest of network run from RAM 151
10.3 The eprom tool: ieprom 151

10.4 Using the configurer and collector to produce ROM-
bootable code 152

10.5 Summary of EPROM steps for different processing con-
figurations 163
Tools 155
11 icc — ANSI C compiler 167
11.1 Introduction 157
11.2 Running the compiler 158
11.2.1 Transputer targets 161
11.2.2 Error modes 161
11.2.3 Default command line options 161
11.2.4 File extension defaults 161
11.2.5 Search paths 162
11.3 Compiler directives 162
11.3.1 #include 162
Relative directory names 162
Backslash character in filenames 162
11.3.2 #define 163
11.3.3 #undef 163
11.3.4 #if 163
11.3.5 #ifdef 164
11.3.6 #ifndef 164
11.3.7 #else 164
11.3.8 #elif 164
11.3.9 #fendif 164
11.3.10#1line 165
11.3.11#pragma 165
Pragma IMS_nolink 168
11.3.12#error 168
11.4 Optimised functions 168
11.5 Compiler predefinitions 169
11.5.1 Constants 169
11.5.2 Functions 170

72 TDS 224 00

August 1990

xiv Contents

11.5.3 Other predefines 170

11.6 Fatal runtime errors 171

11.6.1 Runtime error messages 171

11.7 Transputer in-line code 172

11.8 Compiler diagnostics 172

11.8.1 Message format 173

11.8.2 Severities 173

11.8.3 Standard terms 173

11.8.4 ANSI trigraphs 175

11.8.5 Warning diagnostics 176

11.8.6 Recoverable errors 182

11.8.7 Serious errors 190

11.8.8 Fatal Errors 203

11.9 icc error messages 203

11.9.1 Warnings 203

11.9.2 Serious errors 204

11.9.3 Fatal Errors 204

12 icconf — configurer 207

12.1 Introduction 207

12.2 Configuration language implementation 207

12.3 Running the configurer 208
12.3.1 Default command line parameters 209 .

12.3.2 Boot-from-ROM options 210

12.3.3 Standard include files 210

12.3.4 Configuration description examples 210

12.3.5 Configurer library files 211

12.3.6 Search paths 211

12.3.7 Default memory map 211

12.4 Configurer diagnostics 212

12.4.1 Warning messages 212

12.4.2 Error messages 213

12.4.3 Serious messages 229

12,5 icconf error messages 230

12.5.1 Serious errors 230

12.5.2 Fatal errors 232

13 icollect - code collector 233

13.1 Introduction 233

13.2 Running the code collector 234

13.2.1 Examples of use 236

13.2.2 Input files 237

72 TDS 224 00 August 1990

Contents XV
13.2.3 Output files 237

13.2.4 Non-bootable files 237

13.2.5 Boot-from-ROM options 238

13.2.6 Debug data file . 239

13.2.7 Alternative bootstrap loaders 239

13.2.8 Small values of IBOARDSIZE 239

13.3 Error messages 240
13.3.1 Warnings 240

13.3.2 Serious errors 240

14 icvlink - file format convertor 247
14.1 Introduction 247
14.2 Running the format convertor 249
14.2.1 Default command line 251

14.2.2 Input files 251
Compiled object files 251

Library files 251

Linked object files 251

14.2.3 Output files 251

14.3 Transputer classes and error modes 252
14.4 Summary of rules for using icvlink 252
14.5 Error messages 253
14.5.1 Serious errors 253

15 idebug - debugger 255
15.1 Introduction 255
15.1.1 Post-mortem debugging 255
15.1.2 Breakpoint debugging 255
15.2 The root transputer 256
15.2.1 Board wiring 256
15.2.2 Post-mortem debugging R-mode programs 257
15.2.3 Post-mortem debugging T-mode programs 257
15.2.4 Post-mortem debugging from a network dump
file 257
15.2.5 Debugging a dummy network 258
15.2.6 Methods for breakpoint debugging 258
15.3 Running the debugger 258
15.3.1 Environment variables 260
15.3.2 Program termination 260
15.3.3 Post-mortem mode invocation 260
Reinvoking the debugger on single transputer
262

programs

72 TDS 224 00

August 1990

Contents

Xvi

15.3.4 Breakpoint mode invocation 262
Clearing error flags on transputer boards 262

Program loading 264

15.3.5 Function key mappings 264

15.4 Debugging programs on different board types 264
15.4.1 Subsystem wiring 264

15.4.2 Debugging commands 265

15.4.3 Detecting the error flag in breakpoint mode 265

15.5 Debugging programs on other boards 266
15.6 Monitor page commands 267
Command format 267

Specifying transputer addresses 267

15.6.1 Scrolling the display 267

15.6.2 Commands mapped by ITERM 268

15.6.3 Summary of main commands 268

15.6.4 Symbolic-type commands and scroll keys 270

15.6.5 Symbolic-type commands 290

15.7 Symbolic functions 290
15.7.1 Breakpoint functions 295

15.8 Expression language for and 296
15.8.1 C syntax not supported 296

15.8.2 Extensions to C syntax 296

15.8.3 Editing keys 296

15.8.4 Types 297

Type compatibility when using [MODIFY] 297

15.9 Display formats for source code symbols 298
15.9.1 Warnings 298

15.9.2 [TOGGLE HEX] key 298

15.9.3 Notation 299
15.9.4 Basic Types 299

15.9.5 Enumerated types 299

15.9.6 Pointers 300

15.9.7 Function Pointers 300

15.9.8 Structs 301

15.9.9 Unions 301
15.9.10Addressof (&) operator 301
15.9.11Arrays 301
15.9.12Channels 302

15.10 Example displays 303
15.11 Error messages 305
15.11.10ut of memory errors 305
15.11.2If the debugger hangs 305

72 TDS 224 00

August 1990

Contents Xvii
15.11.3Error message list 305

16 idump — memory dumper 315
16.1 Introduction 315

16.2 Running the memory dumper 315

16.2.1 Example of use 316

16.3 Error messages 316

17 iemit — memory configurer 319
17.1 Introduction 319

17.2 Running iemit 320

17.3 Output files 322

17.4 Interactive operation 323

17.4.1 Page 0 323

17.4.2 Page 1 323

17.4.3 Page 2 328

17.4.4 Page 3 330

17.4.5 Page 4 331

17.4.6 Page 5 331

17.4.7 Page 6 332

17.5 Example iemit display pages 332

17.6 iemit error and warning messages 336

17.7 Memory configuration file 337

17.8 Memory interface conversion tool icvemit 340

17.9 Running icvemit 340

17.10 icvemit error messages 341

18 ieprom — EPROM program convertor 343
18.1 Introduction 343

18.2 Prerequisites to using the hex tool ieprom 344

18.3 Running ieprom 344
18.3.1 Examples of use 345 .

18.4 ieprom control file 345

18.5 What goes in the EPROM 350

18.5.1 Memory configuration data 350

18.5.2 Jump instructions 351

18.5.3 Bootable file 351

18.5.4 Traceback information 351

18.6 ieprom output files 351

18.6.1 Binary output 352

18.6.2 Hex dump 352

18.6.3 Intel hex format 352

72 TDS 224 00

August 1990

xViii Contents

18.6.4 Intel extended hex format 352
18.6.5 Motorola S-record format 353
18.7 Block mode 353
18.7.1 Memory organisation 353
18.7.2 When to use block mode 353
18.7.3 How to use block mode 354
18.8 Example control files 354
18.9 Error and warning messages 356
19 ilibr - librarian 357
19.1 Introduction 357
19.2 Running the librarian 357
19.2.1 Default command line 359
19.2.2 Library indirect files 359
19.3 Library modules 360
19.3.1 Selective loading 360
19.4 Library usage files 360
19.5 Building libraries 360
19.5.1 Rules for constructing libraries 361
19.5.2 Hints for building libraries 361
19.5.3 Optimising libraries 361
Library build targeted at specific transputer types
362
Semi-optimised library build targeted at all trans-
puter types 362
Optimised library 362
19.6 Error messages 363
19.6.1 Warning messages 363
19.6.2 Serious errors 363
20 ilink - linker 365
20.1 Introduction 365
20.2 Running the linker 366
20.2.1 Default command line parameters 368
20.3 Linker indirect files 369
20.3.1 Linker directives 369
20.3.2 Linker startup files 372
20.4 Linker options 372
20.4.1 Processor types 372
20.4.2 Error modes - options H, S and X 373
20.4.3 TCOFF and LFF output files — options T, LB, LC 373
20.4.4 Display information — option I 374

72 TDS 224 00 August 1990

Xix

Contents
20.4.5 Virtual memory — option KB 374
20.4.6 Main entry point — option ME 374
20.4.7 Link map filename — option MO 374
20.4.8 Linked unit output file — option O 375
20.4.9 Permit unresolved references — option U 375
20.4.10Disable interactive debugging — option Y 375
20.5 Selective linking of library modules 375
20.6 The link map file 376
20.7 Using imakef for version control 376
20.8 Error messages 376
20.8.1 Warning messages 377
20.8.2 Errors 378
Serious errors 379
20.8.3 Embedded messages 382
21 ilist - binary lister 383
21.1 Introduction 383
24.2 Data displays 383
21.3 Running the lister 384
21.3.1 Default command line parameters 386
21.4 Specifying an output file — option O 386
21.5 Symbol data — option A 387
21.6 Code listing — option C 388
21.7 Exported names — option E 389
21.8 Hexadecimal/ASCIl dump — option H 390
21.9 Module data — option M 391
21.10 Library index data — option N 392
21.11 Procedural interface data — option P 393
21.12 Specify reference — option R 393
21.13 Full listing — option T 394
21.14 File identification — option W 395
21.15 External reference data — option X 396
21.16 Error messages 397
21.16.1Warning messages 397
21.16.2Serious errors 397
22 imakef — Makefile generator 399
22.1 Introduction 399
22.2 How imakef works 400
22.3 Target files 400
22.4 File extensions for use with imakef 400
22.4.1 Transputer types and error modes 401

72 TDS 224 00

August 1990

Contents

XX
Error modes in mixed language programs 402

22,5 Linker indirect files 402
22.6 Running the Makefile generator 403
22.6.1 Example of use 403

22.6.2 Disabling debug data 403

22.6.3 Removing intermediate files 404

22.7 imakef examples 405
22.7.1 Single transputer program 405

22.7.2 Multitransputer program 406

22.8 Format of Makefiles 407
22.8.1 Macros 407

22.8.2 Rules 407
Action strings 408

22.8.3 Delete rule 408

22.8.4 Editing the Makefile 408
Adding options 408

22,9 Error messages 408
23 iserver - host file server 411
23.1 Introduction 411
23.1.1 Loadable programs 411

23.2 Running the server 411
23.2.1 Examples of use 412

23.2.2 Supplying parameters to the program 413

23.2.3 Checking and clearing the network 413

23.2.4 Terminating the server 413

23.2.5 Options to use when loading the program 414

23.2.6 Specifying a link address — option SL 414

23.2.7 Terminating on error — option SE 415

23.3 Server functions 415
File system commands 416

Host environment commands 416

Server control commands 417

23.4 Error messages 418
24 isim — T425 simulator 421
24.1 Introduction 421
24.2 Running the simulator 421
24.2.1 Example of use 422

24.2.2 ITERM file 423

24.3 Monitor page display 423
24.4 Simulator commands 424

72 TDS 224 00

August 1990

Contents xxi
24.4.1 Specifying numerical parameters 424

24.4.2 Commands mapped by ITERM 424

24.5 Batch mode operation 428

24.5.1 Setting up ISIMBATCH _ 428

24.5.2 Input command files 429

24.5.3 Output 429

24.5.4 Batch mode commands 429

24.6 Error messages 430

25 iskip ~ skip loader tool 431
25.1 Introduction 431

25.1.1 Uses of the skip tool 431

25.2 Running the skip tool 432

25.2.1 Examples of use 433

25.2.2 Monitoring the error status — option E 433

25.2.3 Loading a program 434

25.2.4 Clearing the error flag 434

25.3 Error messages 435
Appendices 437

A Toolset standards and conventions 439
A1 Command line syntax 439

A.1.1 General conventions 439

A.1.2 Standard options 440

A.2 Filenames 440

A.3 Search paths 440

A.4 Standard file extensions 441

A.4.1 ‘Main path’ source and object files 442

A.4.2 Other outputs 442

A.4.3 Indirect input files 443

A.4.4 Miscellaneous files 443

A.5 Extensions required for imakef 443

A.6 Error handling 444

A.6.1 Error displays 445

A.6.2 Severities 445

A.6.3 Runtime errors 446

B Transputer instruction set 447
B.1 Pseudo-instructions 447

B.2 size option on __asm statement 448

B.3 Prefixing instructions 448

72 TDS 224 00 August 1990

xXii Contents

B.4 Direct instructions 448
B.5 Operations 449
B.6 Additional instructions for T400, T414, T425 and TB 452
B.7 Additional instructions for IMS T800, T801 and T805 452

B.7.1 Floating-point instructions 452 .

B.8 Additional instructions for IMS T225, T400, T425, T800,
T801, T805 454

B.9 Additional instructions for the IMS T225, T400, T425,
T801 and T805 455
(o Configuration language definition 457
CA Notation 457
C.2 Implementation details 457
C.3 Reserved words 458
C.3.1 Keywords 458
C.3.2 Pre-defined attributes 458
Node attributes 458
Processor attributes 458
Process attributes 459
C.4 Predefinitions 459
C.4.1 Constants 460
C.4.2 Types 460
C.5 Language syntax 462
C.5.1 Configuration 462
C.5.2 Language features 462
C.5.3 Expressions 463
C.5.4 Replication and conditionals 464
C.5.5 Numeric value declarations 464
C.5.6 Network declarations 465
C.5.7 Mapping declarations 466
D Bootstrap loaders 467
D.1 Introduction 467
D.1.1 The example bootstrap 467
Transfer of control 468
D.1.2 Writing bootstrap loaders 468
D.2 Example user bootstrap 469
D.3 The INMOS Network Loader 474
E ISERVER protocol 481
E.1 The host file server iserver 481
E.2 The server protocol 481

72 TDS 224 00 August 1990

Contents xxiii
E.2.1 Packet size 481

E.2.2 Protocol operation 482

E.3 The server libraries 482

E.4 Porting the server 482

E.5 Server commands 483

E.5.1 Notation 483

E.5.2 Reserved values 483

E.5.3 File commands 484

E.5.4 Host commands 493

E.5.5 Server commands 495

F occam interface code 499
F.1 Interface code 499

F.2 Reserved channels 501

F.3 Stack and heap requirements 501

F.3.1 Stack overflow 502

F.4 Parameters to C main 502

F.5 Type 1 interface 503

F.5.1 Type 1 procedural interface 503

F.5.2 Building a type 1 process 504

F.6 Type 2 interface definition 505

F.6.1 Type 2 procedural interface 505

F.6.2 Example type 2 wrapping 506

F.7 Type 3 interface definition 507

F.7.1 Type 3 procedural interfaces 507

F.7.2 Example type 3 wrapping 508

G 3L functions supported 511
G.1 Code compatibility 511

G.1.1 Source code 511

G.1.2 Object code 511

G.2 Parallel functions supported 511

G.2.1 Header file 511

G.2.2 Restrictions 511

H ITERM 513
H.1 Introduction 513

H.2 The structure of an ITERM file 513

H.3 The host definitions 514

H.3.1 ITERM version 514

H.3.2 Screen size 514

H.4 The screen definitions 514

72 TDS 224 00

August 1990

XXiv Contents

H.4.1 Goto X Y processing 515
H.5 The keyboard definitions 516
H.6 Setting up the ITERM environment variable 517
H.7 An example ITERM 517
1 Glossary 521 .
J Bibliography 527
J.1 Reference books 527
J.2 INMOS publications 527
J.3 INMOS technical notes 528

72 TDS 224 00 August 1990

Preface

About this Manual

This manual is a User Guide to the ANSI C toolset. The manual is divided into
two main parts, plus appendices:

1 User Guide. Describes the toolset and shows how it is used to develop
and run transputer programs.

2 Tools. Detailed descriptions of the individual tools, with their syntax and
options.

3 Appendices. For technical reference.
Differences from previous toolsets
Differences from the 3L Parallel C toolset are listed immediately after this preface.
Host versions

The manual is designed to cover all host versions of the toolset:

IMS D7214 - [BM and NEC PC running MS-DOS.
IMS D5214 - Sun 3 systems running SunOS

IMS D4214 - Sun 4 systems running SunOS

IMS D6214 - VAX systems running VMS

72 TDS 224 00 . August 1990

XXVi Preface

Documentation conventions

The following typographical conventions are used in this manual:

Bold type Used to emphasize new or special terminology.

Teletype Used to distinguish command line examples, code fragments,
and program listings from normal text.

Italic type In command syntax definitions, used to stand for an argument
of a particular type. Used within text for emphasis and for book
titles.

Braces { } Used to denote an optional items in command syntax.

Brackets [] Used in command syntax to denote optional items on the com-
mand line.

Ellipsis ... In general terms, used to denote the continuation of a series.
For example, in syntax definitions denotes a list of one or more
items.

In command syntax, separates two mutually exclusive alterna-
tives.

72 TDS 224 00 August 1990

Differences from 3L
Parallel C

This chapter lists the differences between ANSI C and the previous 3L Parallel
C toolset.

List of differences

1 The ANSI C compiler implements ANSI standard C. The 3L Parallel C
compiler was an implementation of basic K & R C.

2 The ANSI C compiler is invoked by the icc command, which replaces
the tc series of commands in 3L Parallel C. Transputer targets are now
specified using command line options.

The compiler is completely new and command line options may have
different meanings.

3 The ANSI C toolset makes use of the new TCOFF object file format.
This means that object files created with 3L Parallel C are not compatible
with object files created using ANSI C. If possible 3L source should be
recompiled. If this is not possible then the file conversion tool icvlink
can be used to convert 3L object files to the new TCOFF format.

4 3L Parallel C supported T4 and T8 processor types. ANSI C compiles
code for all currently supported transputer types.

5 The linker 11ink is completely new and command line options may have
different meanings.

6 The harness and the runtime library, previously required on the linker
command line are not required in the ANSI C toolset and are replaced
by the linker indirect file startup. 1nk which references all the runtime
and library code required.

7 The default extensions for the binary object file output from the compiler
and linker are .tco and . 1ku respectively; in Parallel C they were .bin
and .cxx.

Although the filename conventions used in 3L Parallel C can still be used
a new set exists for the ANSI C toolset. See sections 2.11 and A.4.

8 The 3L configurer tool config is now defunct and is replaced by
icconf.

72 TDS 224 00 August 1990

xXviii Differences from 3L Parallel C

No equivalent to the 3L configurer tool £config exists in the ANSI C
toolset.

9 The configuration language is completely new.

10 The iboot tool is now defunct and is replaced by icollect.
icollect generates bootable files for single and multi-transputer pro-
grams from single linked units and configuration binary files respectively.

11 The decode utility is not supplied with the ANSI C toolset. The binary
lister tool i1ist provides equivalent functionality.

12 The librarian ilibr is completely new and command line options may
have different meanings.

13 Tools have been added for creating ROM-based programs. ieprom for-
mats bootable code for installing into EPROMs and iemit assists in
creating memory configurations. The conversion tool icvemit is pro-
vided for converting memory configurations created by the earlier iemi
tool.

14 A comprehensive debugger idebug is provided which supports source
level debugging, low level debugging, and breakpointing.

15 An imakef tool is provided to assist with program building. ‘

A
16 A transputer simulator tool isim is provided to run and test programs
without transputer hardware.

17 The ANSI C Runtime Library is an implementation of the ANSI standard
library plus some INMOS specific extensions. Many extra functions have
been added that were not present in 3L Parallel C and a new concurrency
support library is provided.

Most of the functions present in 3| Parallel C are also represented in
ANSI C. Where functions have been omitted it is because they are either
no longer required or there exists an equivalent ANS| C function.

3L functions not included in ANSI C are:

_inmess -outmess -outbyte —outword

-tolower _toupper boot_poke boot_peek

fdopen fileno index net_receive
net_send putw rindex serv_filter

cfree getw ‘

72 TDS 224 00 August 1990

Differences from 3L Parallel C XXiX

Functions in the 3L packages thread, sema, timer, chan, and par

are retained for compatibility but all the functions are now declared in

the header file conndx11.h. The functions now simply call equivalent

functions in the new concurrency library and may operate slower than if
‘ the equivalent ANSI C functions were called directly.

18 ANSI C, like Parallel C, provides a reduced version of the Runtime Library
for modules which do not communicate with the host. This library is
installed in the file 1ibcred.1lib and can be linked to a program by
specifying the linker indirect file startrd.lnk on the linker command
line.

19 Mixed language programming can be achieved in the ANSI C toolset by
configuring linked units created using TCOFF toolsets on any processor.
Facilities are provided for calling occam from C. :

20 In line assembly code is now introduced with the keyword __asm. The
transputer code facility is extended with additional syntax.

Comparison of commands

This section shows a comparison of the commands required to generate and run
a program on a T8 series transputer. For simplicity in presentation the examples
are given using the ‘=’ option switch character only.

‘ 3L Parallel C:

t8c f1

t8c f£2

ilink mainent.c8x fl.bin £2.bin crtl.lib -o
main.c8x

iboot main.c8x

iserver -sb main.b8x

ANSI C:

icc f1 -t8

icc £2 -t8

ilink fl.tco f2.tco -f startup.lnk -t8 -o
main.lku

icollect main.lku -t

iserver -sb main.btl

72 TDS 224 00 August 1990

XXX Differences from 3L Parallel C

72 TDS 224 00 August 1990

User Guide

72 TDS 224 00 August 1990

2 User Guide

72 TDS 224 00 August 1990

1 Introduction to
transputers

This chapter introduces transputers and concurrent programming. It describes
how the transputer supports concurrent programming through on-chip hardware
and introduces the concepts of parallel processing in C.

1.1 Overview

Parallel processing is a powerful way of increasing system performance and can
be applied whatever the underlying architecture. The combination of hardware
concurrency support and a compiler toolset which makes the hardware features
easily accessible from software makes the transputer and toolset a powerful
vehicle for the development of parallel applications.

1.2 Transputers

Transputers are high performance microprocessors that support parallel process-
ing through on-chip hardware. They can be connected together by their serial
links in application-specific ways and can be used as the building blocks for
complex parallel processing systems.

The transputer is a complete microcomputer on a single chip. In addition to
the hardware support for processor communications it contains a very fast (sin-
gle cycle) on-chip memory and a programmable memory interface that allows
external memory to be added with the minimum of supporting logic.

Figure 1.1 shows the generalised architecture of the IMS T4 family of 32 bit
transputers.

1.21 Multitransputer systems

Multitransputer systems can be built very simply. The four high speed links
allow transputers to be connected to each other in arrays, trees, and many other
configurations. The circuitry to drive the links is all on the transputer chip and
only two wires are needed to connect two transputers together.

Some possible arrangements of transputers are illustrated in figure 1.2.

72 TDS 224 00 August 1990

4 1 Introduction to transputers

On-chip
RAM

L Memory interface J

Figure 1.1 Transputer architecture

1.2.2 Links

In addition to providing a communication and synchronisation path between pro-
cessors, transputer links allow memory to be examined directly by debugging
programs and permit programs to be loaded onto whole networks of transputers
down a single transputer link. Each individual transputer also supports communi-
cation between parallel processes through a system of internal links implemented
as words in memory.

1.2.3 Hardware parallel support

Each transputer has a highly efficient built-in run-time scheduler for processes
running in parallel on the same transputer and supports channel communica-
tion through single words in memory. Processes waiting for input or output, or
waiting on a timer, consume no CPU resources, and process context switching
time can be as little as one microsecond. The communication links between
processors operate concurrently with the processing unit and can transfer data
simultaneously on all links without the intervention of the CPU.

72 TDS 224 00 August 1990

1.3 Transputers and C 5

Linked processors Pipeline

Tree structure Square array

Figure 1.2 Transputer networks

1.2.4 Transputer products

There is a complete family of transputer devices, including: 32 bit and 16 bit
processors; a peripheral control processor; a link switch; and a parallel link
adaptor.

A wide range of transputer programming boards is supplied by INMOS and other
vendors for several hosts. These boards can be used for:

e Developing and debugging transputer software
¢ Improving system performance (as accelerator boards)
¢ Loading software onto embedded systems

¢ Building specific transputer networks.

1.3 Transputers and C
The ANSI C toolset has been designed to reflect the parallel processing model

of communicating sequential processes (CSP). The inherent flexibility of the C
language, the capacity to mix code from different languages, and the ability to

72 TDS 224 00 August 1990

6 1 Introduction to transputers

use the concurrency features of the transputer make ANSI C a powerful tool for
programming concurrent systems.

1.3.1 Programming model

The parallel programming model consists of a number of independent processes
executing simultaneously and communicating through channels. Channels are
one-way communication paths that allow processes to exchange data.

A process can be built from any number of other parallel processes, so that an
entire software system can be described as a hierarchy of intercommunicating
parallel processes. This model is consistent with many modern software design
methods.

Communication between processes is synchronised. When data is passed be-
tween two processes the output process does not proceed until the input process
is ready. Buffered communication and multiplexing can be achieved by inserting

a specific buffer or multiplexing process between the two processes. Library
functions are provided for the input and output of data on channels.

1.3.2 Multitransputer programming

Processes are independently executable and will run on any processor in a
network. A special configuration language is used to distribute processes over
a network of transputers and can be used to program complex multiprocessor
systems.

1.3.3 Real time programming

The concurrency features of the transputer provide direct support for real time
programming. The key features are listed below.

o Direct and efficient implementation of parallel processes in hardware
¢ Prioritisation of parallel processes.
e The ability to implement software interrupts as high priority processes

o Easy programming of software timers, allowing close control of timing
and non-busy polling

o Placement of variables at specific addresses in memory, for accessing
memory mapped devices.

72 TDS 224 00 August 1990

1.4 Program development 7

Some of the technical issues in transputer programming are discussed in the
INMOS series of Technical Notes. Selected titles in this series are listed in the
bibliography towards the rear of this manual.

1.4 Program development

The compiler and its supporting tools run under standard operating systems,
either on the host itself or on a transputer board attached to the host, and can
be used in conjunction with existing text editing software and source control
systems. For this reason, no editor is provided with the toolset.

1.4.1 Software design

The software designer can use ANSI C to specify the components of a system in
terms of communicating processes. The overall design can be directly expressed
in the parallel constructs of the language.

Common-modules can be collected together into libraries for the purpose of code
sharing within programming teams.

1.4.2 Programming

Code for single transputers is linked using the linker tool and loadable programs
are generated using the collector tool. For multitransputer systems the collector
tool reads and processes a configuration data file created by the configurer tool;
for single transputer programs the collector adds bootstrap code for a single
processor. Single processor bootstrapping by the collector is controlled by a
command line option.

Software processes and channels are allocated using the configuration language
and loadable code ready for distribution on the network is generated using the

configurer.

1.4.3 Debugging

Programs for multi-processor systems can be debugged at the symbolic level
using the network debugger that allows a breakpointed or halted program to be
analysed in terms of its source code. A low level debugging environment us-
ing direct memory display, instruction disassembly, and processor data is also
provided. Breakpoint debugging allows programs to executed interactively, and
post-mortem debugging allows stopped programs to be debugged from the con-
tents of the transputers’ memory. The debugger inserts no additional code into

72 TDS 224 00 August 1990

8 1 Introduction to transputers

the program, but rather reads data from a description file. This guarantees that
the code generated when debugging is disabled will always run in the same way
as the final version of the program.

1.44 Embedded systems .

Programs for embedded systems can be loaded from the host directly onto the
target hardware via a transputer link. If the program is to be held in ROM,
special tools are provided to reformat the object code for loading into an EPROM
or for processing by user-defined EPROM loader programs. A configuration
tool is provided to assist with the evaluation and definition of specific memory
configurations.

72 TDS 224 00 August 1990

2 Overview of the toolset

This chapter gives an overview of the ANSI C toolset. It briefly describes each
tool, outlines its purpose, and explains how the tools are used together to de-
velop, configure, load and run transputer programs. The chapter also introduces
the runtime library, outlines the standards for error reporting, and summarises
host-specific characteristics.

2.1 Introduction

The ANSI C toolset is a software cross-development system for transputers,
hosted on PC/MS-DOS, Sun 3/SunOS, Sun 4/SunOS and VAX/VMS systems.
It consists of a full ANSI C compiler with concurrency support, a multilanguage
linker, a configurer for mapping programs onto transputer networks, a code col-
lector tool for generating directly loadable files, and a program loader and host
server tool. The toolset also includes a fully interactive debugger, program build
tools, and EPROM programming tools. Together, the compiler and its support-
ing tools form an integrated environment for the development of programs on
transputers and transputer-based hardware.

2.2 Features of the toolset

The ANSI C toolset is an integrated development system for transputer programs
incorporating a new standard object file format, a C-like configuration language, a
comprehensive Runtime Library, and support for concurrent programming based
on the communicating process model. It represents a broad enhancement of
the approach to parallel programming in C and introduces standards for the
generation of object code for transputers and transputer-based hardware.

2.21 Standard object file format

The ANSI C compiler generates object code in an intermediate form known as
TCOFF (Transputer Common Object File Format). The adoption of a common
format introduces a standard for the development of future transputer compilers
and enables code generated by compatible compilers to be freely mixed in the
same system.

2.2.2 New configuration language

The toolset incorporates a new configuration language that allows software and
hardware networks to be described separately and joined by a software-to-

72 TDS 224 00 August 1990

10 2 Overview of the toolset

hardware description. The language is a simple declarative language that has
the syntactic flavour of C and can be used on any size of network. A full range of
high level language constructs including replicative and conditional statements
make it easy to explore different configurations before committing to hardware.

2.2.3 Runtime library

A comprehensive runtime library is supplied with the toolset providing full ANSI C
support with additional support for concurrency and parallel programming. The
library of concurrency functions provides the choice of either channel-based or
semaphore-based communication. An optimised library with no server support
is available for embedded code.

2.2.4 Concurrent programming

The abstract model used in ANSI C reflects the Communicating Sequential Pro-
cess (CSP) model of parallel programming. The model maps easily onto the
transputer to provide efficient parallel code. Software is broken down into in-
dependent processes which exchange data and synchronize their activity via
channels. Processes can be mapped onto one, several, or many transputers
using the new configuration language.

2.2.5 Transputer targets

The ANSI C toolset can be used used to write programs targetted at IMS M212,
T212, T222, T225, T400, T414, T425, T800, T801, and T805 transputers. Code
can also be written to run on a group of processor types by compiling for a
transputer class.

2.2.6 Support for earlier toolsets

A file convertor tool supplied with the toolset enables object code and libraries
generated by earlier INMOS compilers and toolsets such as the 3L Parallel C

and occam 2 toolsets to be incorporated into programs written with ANSI C.
Spaecific support is provided for functions from the 3L Parallel C toolset.

2.3 Toolset summary

The tools provided in the toolset are summarised in Table 2.1 and briefly de-
scribed in the following sections.

72 TDS 224 00 August 1990

2.3 Toolset summary 11

Tool

Description

icc

icconf

icollect

icvlink

idebug

idump

iemit

ieprom

ilibr

ilink

ilist

imakef

iserver

isim

iskip

The ANSI C compiler. A full ANSI standard compiler with con-
currency support. Generates object code for specific transputer
targets.

The configurer. Analyses the configuration description and pro-
duces a configuration data file for the code collector.

The code collector. Collects linked units into a single file for
loading on a transputer network. Takes as input a configuration
data file or a single linked unit.

The TCOFF file convertor. Converts object files generated by
earlier toolsets to TCOFF format.

The network debugger. Provides post-mortem and interactive
debugging of transputer programs.

The memory dumper. A debugging auxiliary tool used to debug
programs that run on the root transputer.

The transputer memory configuration tool. Used for evaluating
and defining memory configurations for later incorporation into
ROM programs.

The EPROM program formatter tool. Formats transputer
bootable code for input to ROM programmers.

The toolset librarian. Builds libraries of compiled code in the
same format as the C runtime library.

The toolset linker. Resolves external references and links sep-
arately compiled code into a single file.

The binary lister. Disassembles and decodes object code and
displays information in a readable form.

The Makefile generator. Generates Makefiles for input to MAKE
programs.

The host file server. Loads programs onto transputer hardware
and provides runtime access to the host.

The T425 simulator. Simulates program execution on an IMS
T425 transputer and provides simple debugging facilities.

The skip loader tool. Used with iserver to load programs onto
external networks over the root transputer.

Table 2.1 The ANSI C toolset

72 TDS 224 00 August 1990

12 2 Overview of the toolset

2.4 ANSI C compiler — icc

The compiler icc is an ANSI standard C compiler with additional support for
concurrency. It conforms fully with ANSI standard X3.159 1989.

The ANSI standard for C formalises the original implementation of C as described
in ‘The C Programming Language’ by Kernighan and Ritchie, and extends it to
include a runtime library, some language extensions already in common usage,
and many other improvements designed to standardise the language.

The original implementation vof C will be referred to in the rest of this manual
as '‘K&R C’ and ANSI standard C as ‘ANSI C'. A summary of the differences
between K&R C and the ANSI standard can be found in section .1.

ANSI C supports concurrency through a series of C structures and a compre-
hensive set of process handling, channel communication, and semaphore ma-
nipulation functions. Some useful non-ANSI functions are also provided in the
runtime library.

The compiler produces compiled code for specific processor types or transputer
classes. The compiled object file is in a standard intermediate code format which
must be linked, configured, and made executable before the program can be run.
The runnable file consists of code which can be directly loaded onto a transputer
network.

2.5 Generating executable code

Three tools are used in sequence (or two for a single transputer program) to
generate the loadable file from compiled object code:

ilink —the toolset linker which links separately compiled program units

icconf - the configurer tool which generates a configuration data file
(multitransputer programs only)

icollect - the code collector which generates a bootable file for a
transputer network either from the configuration data file or a single linked
unit.

25.1 Linker - ilink
The toolset linker ilink links separately compiled modules and libraries into

a single code unit, resolving external references and generating a linked unit.
Linked units can be used in configuration descriptions to map software onto spe-

72 TDS 224 00 August 1990

2.6 Loading and running programs 13

cific arrangements of transputers, or can be bootstrapped for a single transputer
using icollect.

Library modules are linked in with the program by the the C startup file which
must be specified on the linker command line. The correct startup file must be
specified for the transputer type.

2.5.2 Configurer — icconf

The configurer icconf generates configuration information for transputer net-
works from a configuration description written in the transputer configuration lan-
guage. The tool prepares the program for configuring on a specific arrangement
of transputers by analysing the configuration description and producing a data
file for the code collector tool.

2.5.3 Code collector — icollect

The code collector tool icollect takes the data file generated by icconf
and generates a single file that can be loaded and run on a transputer network.
The file contains bootable code modules for all processors on the network along
with distribution-information that is used by the loader to place the modules on
each processor.

icollect is also used to generate bootable code for single transputer pro-
grams from linked units by appending single transputer bootstrap code. The
single transputer mode of operation is selected by a command line option.

2.6 Loading and running programs

Bootable code for single transputers and transputer networks is loaded onto the
transputer hardware using the host file server tool iserver which both loads
the program and starts up the runtime environment that supports interaction with
the host. The auxiliary skip loading tool iskip can be used in combination with
iserver to load a program onto an external network.

2.6.1 Host file server — iserver
The host file server iserver is a combined host server and loader tool. When
invoked to load a program it both loads the code onto the transputer hardware

and provides runtime services on the host (such as program i/o) for the transputer
program.

72 TDS 224 00 August 1990

14 2 Overview of the toolset

2.6.2 Skip loader — iskip

The skip loader iskip forces a program to be loaded over the root transputer
(the transputer connected to the host). It is used prior to invoking iserver
for loading programs onto a transputer board without needing to use the root
transputer as part of the network. The tool is useful when debugging programs
that are configured to use the root transputer because it leaves the root transputer
free to run the debugger and avoids the use of idump to save the program
image.

2.7 Program development and support
Seven tools are provided to assist in program development:
idebug - the interactive network debugger.

idump - the memory dump tool for use with idebug when debugging
programs on the root transputer.

ilibr - the librarian which generates libraries of compiled code.

ilist - the binary lister which decodes and displays data from object
files.

isim - the T425 transputer simulator.

imakef - the Makefile generator which creates Makefiles for toolset
object files.

icvlink - the file format convertor which allows object code to be
imported from earlier INMOS toolsets.

2.7.1 Network debugger — idebug

The network debugger idebug provides post-mortem and interactive debugging
for transputer programs. It allows stopped programs to be analysed from their
memory image or from image dump files (post-mortem debugging) and supports
interactive execution of a program using breakpoints (breakpoint debugging).
Breakpoints can be set on source lines or memory addresses, variables can be
inspected and modified, and the program restarted with new values.

idebug provides two debugging environments: a symbolic environment which

allows a program to be debugged from source code; and the Monitor page which
allows a program to be debugged at machine level.

72 TDS 224 00 August 1990

2.7 Program development and support 15

2.7.2 Memory dumper — idump

The special debugging tool idump is provided to assist with the post-mortem
debugging of programs that run on the root transputer. Since idebug executes
on the root transputer and overwrites the program image, idump must be used
to save the image to a file which is later read by the debugger.

2.7.3 Librarian -~ ilibr

The librarian ilibr creates libraries of compiled code for use in application
programs. Modules generated by 11ibx are in the same format as code in the
standard runtime library and can be used in exactly the same way.

Code written using other compatible toolsets can be mixed with C code in the
same library.

2.7.4 Binary lister - ilist

The binary lister i1ist decodes object code files and displays data and infor-
mation from them in a readable form. Command line options select the category
and format of data displayed.

Examples of the kind of information that can be displayed are symbolic names
and attributes, code listing, index data and modular breakdown of libraries, and
external reference data.

2.7.5 Transputer simulator — isim

The transputer simulator isim provides software emulation of an IMS T425
transputer. Programs configured for single transputers can be run and debugged
on the simulator before transferring them to hardware. The debugging environ-

ment is similar to that provided by the debugger Monitor page.

Batch mode operation is also supported.

2.7.6 Makefile generator — imakef

The Makefile generator imake£ creates Makefiles for specific program compi-
lations. Coupled with a suitable MAKE program it can greatly assist with code
management and version control.

imakef constructs a dependency graph for a given toolset object file and gener-
ates a Makefile in standard format. To allow the tool to work with mixed processor

72 TDS 224 00 August 1990

16 2 Overview of the toolset

networks and mixed code programs a standard set of file naming conventions is
used during program development.

2.7.7 File format convertor — icvlink

The file format convertor icvlink converts LFF object files generated by earier
INMOS toolsets to standard TCOFF format. TCOFF is a standardised interme-
diate object file format for transputer programs.

ievlink allows existing object code to be used with the INMOS family of
TCOFF compilers and toolsets. Files to be converted must be compiled files or
linked object files. The tool is intended to support the importation of code where
the source is unavailable and should not be used where code can be recompiled
with one of the new compilers.

2.8 EPROM programming

Two tools allow transputer programs to be installed into ROM. These are the
EPROM programmer ieprom and the memory configurer iemit. An auxiliary
tool icvemit is provided with iemit for importing memory configuration files
generated by the previous INMOS memory configurer tool iemi.

2.8.1 EPROM programmer ~ ieprom

The EPROM programmer ieprom converts ROM-bootable files generated by
icollect into a format suitable for input to ROM programmers. Files can be
generated for input to ROM loading programs provided for specific EPROMSs, or
dumped in straight Hex or binary for input to users’ own ROM loaders.

2.8.2 Memory configurer — iemit

The memory configurer iemit allows specific memory configurations to be eval-
uated before running them on hardware. The completed configuration can be
included in the ieprom output file for automatic installation into processor mem-
ory. The iemit support tool icvemit can be used to convert memory config-
uration files generated by iemi (a tool supplied in previous toolsets) to iemit
format.

72 TDS 224 00 August 1990

2.9 Program development using the toolset 17

2.9 Program development using the toolset

The ANSI C toolset is a cross-development system for transputers. Creation of
executable code for a transputer or transputer network takes several stages
involving the use of specific tools at each stage. Program development is
supported by tools which provide facilities for debugging, creating object code
libraries, automating the program build, and for importing code from earlier
toolsets.

The main stages in developing a program and the tools to use at each stage are
listed below.

1 Write the source.

Source code can be written using any ASCII editor available on the sys-
tem. Code can be divided between any number of source files. Source
code must conform to the ANSI standard. Source code syntax can be
checked prior to compilation by invoking the compiler with the check op-
tion.

2 Compile the source.

Each source file is compiled using the ANSI C compiler icc to produce
one or more compiled object files in TCOFF format. Each file must be
compiled for the same transputer type or for a transputer class covering
several compatible types. Commonly used object code can be combined
into libraries using ilibr.

3 Link the compiled units.

The compiled source files are linked together using 11ink. This gener-
ates a single file called a /inked unit in which all external references are
resolved. The linking operation also links in the library modules required
by the program, which are selected by transputer type from the compiled
library code. Compiled source files can be generated by any TCOFF
compatible compiler.

4 Configure the program.
For multitransputer programs a configuration description must be con-
structed in order to assign linked units to specific nodes on the transputer
network and link them by channel variables. The description is processed
by the configurer tool iccon£ to produce a configuration data file.
Single transputer programs can also be configured.

5 Generate a runnable file.

72 TDS 224 00 August 1990

18 2 Overview of the toolset

The configuration data file generated by icconf£ is read by the code
collector icollect which generates a single executable file for a trans-
puter network. The same tool is used to generate bootable files for single
transputer programs directly from linked units.

6 Load and run the program.

The executable or bootable file is loaded and run on the transputer net-
work down a host link using iserver. Once loaded the code begins
to execute immediately. The server tool also starts up and maintains the
environment that supports the program’s communication with the host.

Figure 2.1 illustrates the development process in terms of the architecture of
the toolset. The default file extensions assumed and generated by the tools are
used to represent source and target files.

icconf .cfb

1 1
h Lk}

@— ice ilink

icollect @

iserver

Transputer
network

Figure 2.1 Toolset compilation architecture

2.10 Runtime library

The runtime library is a library of compiled C functions that perform common
programming operations. The library contains the complete set of ANSI standard
functions plus functions to support parallel programming and some non-ANSI
extensions.

The concurrency functions are divided into three functional groups: process

72 TDS 224 00 August 1990

2.11 Toolset file extensions 19

management, channel communication, and semaphore handling. The non-ANSI
extensions include a set of i/o primitives, a set of short maths functions, functions
for retrieving information about the host system, and debugging functions.

A reduced library is available for linking with programs that do not use i/o or i/o
dependent functions, for example, code for embedded systems or code that only
communicates with other processes on the network and has no direct interaction
with the host. The reduced library contains no calls to ISERVER.

2.10.1 Header files

Library functions, like all C functions, must be declared before use. Declarations
of library functions with associated constants, macros, and definitions are held
in a number of library header files to ensure that function declarations are of the
correct form and that supporting macros and constants are included. Header
files are given the suffix .h.

The library header files contain groups of routines collected together according
to common usage. For example, routines that control standard i/o operations
are grouped in the file stdio.h. Most header files also contain definitions of
constants and macros that are associated with the functions’ use.

Many of the header files and function groupings are defined in the ANSI stan-
dard. The library extensions which support concurrency and other non-ANSI op-
erations are also grouped for programming convenience, for example, functions
for sending data down channels are grouped separately from those which manip-
ulate semaphores. Similarly, non-ANSI functions such as short maths functions
and low level i/o functions are grouped separately. Concurrency functions are in
fact grouped into three files covering process handling, channel communication,
and semaphore handling.

Some library functions are implemented as macros, and a few are implemented
as both functions and macros. The decision about which to use depends on the
programming style and personal choice.

2.11 Toolset file extensions

The toolset uses a standard set of file extensions to identify specific source,
intermediate, and object files. Certain file extensions are assumed on input, and
generated on output if extensions are not specified on the command line. For
example, the compiler assumes the suffix . c for the input source file and adds
the extension . tco to the output file unless otherwise specified. The adoption of
a standard system allows file extensions to be omitted on the command line and
permits host file handling systems to be use manipulate the files. The system

72 TDS 224 00 August 1990

20 2 Overview of the toolset

Extension | Description

.btl Bootable code file. Created by the collector tool.

.btr Executable code minus bootstrap information. Used for
input to the EPROM tool. Created by the collector tool.

.c C source files. Assumed by icc.

.cfb Configuration data file. Created by iccon€£.

.cfs Configuration description. Assumed by iccon£.

.1lku Linked unit. Created by ilink.

.1bb Library build file. Assumed by ilibr.

.1lib Library file. Created by ilibr.

.1lnk Linker indirect file. Assumed by ilink.

.rsc Dynamically loadable code file. Used for calling object
modules from source code.

.tco Compiled code file. Created by icc.

Table 2.2 Toolset main file extensions

forms an integrated whole and is designed to reflect the architecture of toolset
compilation.

The standard set of default file extensions used by the toolset is not mandatory
and may be modified according to personal choice (unless imakef is to be used
to build the program, where a special scheme must be used for mixed processor
types and error modes, see below). The standard system has the advantage
of ready defaults but may not be readily mapped onto existing development
schemes. If you decide to use your own scheme the system should be formal and
controlled, particularly where systems are being written by teams of developers.

Some extensions recognised by the toolset are used for convention only and are
not interpreted by the tools in any special way. For example, the .h suffix for

library header files is a C programming convention that has been adopted by the
toolset.

The main file extensions are listed in Table 2.2 A full list of all file extensions
used by the toolset can be found in appendix A.

The use of default extensions in program development is illustrated in figure 2.1.

72 TDS 224 00 August 1990

2.12 Error reporting 21

File extension scheme required for imakef

The Makefile generator imakef£ requires a special set of file extensions to be
used for compiled and linked object files in order to account for mixed trans-
puter networks and code configured in different error modes. The extensions
define the architecture of toolset compilation for imake£ so that it can trace file
dependencies and construct the proper commands for making target files.

For details of the file extensions that you must use with the imakef tool see
section 22.4.

2.12 Error reporting
All errors are reported in a standard format containing the name of the tool,
a severity level, and some explanatory text explaining why the error occurred.
Errors found in files or the file system may also generate a filename and line
number. Standardisation of the format is designed to improve error reporting
and to support automated error handling by host system utilities.
For example:

Warning-icc-prog.c (25) inventing ‘extern int foo();’
Note: Messages that are part of the normal operation of the tool, for example,
syntax errors generated by the compiler and messages from the debugger and
simulator tools, are not required to conform to the standard and may be displayed
in special formats. The formats are designed to be appropriate for the tools’
purpose and will become familiar with use.

Details of the standard format can be found in appendix A.

2.13 Host dependencies
The ANSI C toolset can be hosted on several platforms, and is designed to blend
in as far as possible with each host operating system. Source and object code
is portable between all systems.
The toolset is available for the following systems:

¢ IBM PC and NEC PC running MS-DOS

¢ VAX running VMS

e Sun 3 running SunOS

72 TDS 224 00 August 1990

22 2 Overview of the toolset

e Sun 4 running SunOS

Differences between the various platforms are minor and reflect the ‘flavour’
of the particular operating system. This leads to minor differences between
them in the areas of command line syntax and characters allowed in filenames.
Some installation issues are also host dependent, for example the setting of
environment variables and the definition of search paths. These are covered
in detail in the Delivery Manual that describes product installation and system
setup, and are only described briefly here.

Host system dependencies are as far as possible made invisible to the user. The
few differences are some minor variations in command line syntax, host-specific
library routines, directory names, and environment settings such as search paths
and global variables. Each is described briefly below.

Command line syntax

The major difference between the various host implementations is the use of
the host system option prefix. For UNIX based toolsets the prefix character is
the dash ‘~’; for IBM PC and VAX/VMS based toolsets the prefix is the forward
slash ‘/’. For consistency between implementations, the case of options is also
not significant. Other command line syntax conventions are identical in all four
implementations and are described in appendix A.

2.13.1 Host-specific library

All library functions supplied with the toolset are host independent except for the
functions declared in dos . h which are specific to DOS. The DOS functions are
supplied with all host versions of the toolset.

Care should be taken in the use of these functions in application programs.
Programs which use them will not be portable across all four systems.

2.13.2 Filenames

Filenames, with or without the full directory path, conform to the normal host
system conventions except that characters which can be interpreted as directory

separators must not be used in the filename part. Prohibited characters are:
colon :, forward slash /, backslash \, and closing square bracket].

72 TDS 224 00 August 1990

2.13 Host dependencies 23

2.13.3 Search paths

All tools which use or generate filenames use a standard mechanism for locating
files on the host system. The same mechanism is used in all operating system
versions of the toolset. Briefly, the search mechanism is based on a list of di-
rectories to be searched in sequence. If a directory path is specified only this
directory is searched. Relative pathnames are treated as relative to the current
directory. If no directory path is specified the current directory is searched fol-
lowed by the directories specified in the ISEARCH environment variable. Details
of how to set up environment variables on your system can be found in the
Delivery Manual that accompanies the release.

Details of the mechanism can be found in appendix A.

2.13.4 Environment variables

The toolset uses a number of environment variables on the host system. Use
of these variables is optional but if defined they will affect the behaviour of the
tools on your system.

Variable Meaning

ISEARCH The search path i.e. the list of directories that will be searched
if a full pathname is not specified. Pathnames must be ter-
minated by the standard directory separator character for the
system. Used by all tools that read and write files.

ITERM The file that defines terminal keyboard and screen control
codes. Used by idebug to define symbolic function keys.
IBOARDSIZE | The size (in bytes) of memory on the transputer board. Used
by iserver.

TRANSPUTER | The address at which the transputer board is connected to
the host. Used by iserver.

IDEBUGSIZE | The size (in bytes) of memory connected to the root trans-
puter. Used by idebug.

toolname ARG | Default command line arguments. (Applies to certain tools
only. See section 2.13.5.)

The exact commands used to define environment variables depend on the op-
erating system. For example, on the IBM PC they are defined using the set
command; on VAX systems running VMS they can be set up either as logical
names or as VMS symbols. Examples of how to set up environment variables
can be found in the Delivery Manual that accompanies the release.

For IBOARDSIZE and IDEBUGSIZE the value can be given in decimal or
hexadecimal format. Hexadecimal numbers must be preceded by ‘#' or ‘$'.

72 TDS 224 00 August 1990

24 2 Overview of the toolset

Leading and trailing spaces are prohibited in both variables.

Note: If IBOARDSIZE is specified incorrectly, for example as a character or
string, the system defaults to a board size of 0 (zero) and the program cannot
be run. If IBOARDSIZE is explicitly set to a very small value a similar error may
oceur.

2.13.5 Default command line arguments

An environment variable can be defined on the system to specify a default set of
command line arguments for certain tools. The variable name must be defined
in upper case and is constructed from the tool name by appending the letters
‘ARG'. For example, the variable for icc is ICCARG.

Tools for which a default command line can be defined, and the variables used
to define them, are listed below.

Tool Variable Tool Variable
ice ICCARG ilibr ILIBRARG
ilink ILINKARG ilist ILISTARG
icconf | ICCONFARG icvlink | ICVLINKARG

Command line parameters must be specified within each variable using the spe-
cific syntax required by each tool.

72 TDS 224 00 August 1990

3 Getting started

This chapter outlines how to compile, link, and run simple C programs on a
transputer, using sample programs provided in subdirectories of the toolset

examples directory.

3.1 Outline procedure

In order to create a program that will run on a transputer or transputer network
you must:

1 Compile each source file using the ANSI C compiler icc. By default the
compiler codes for a T414 transputer.

2 Link the separately compiled object files with each other, and with the
libraries that they use, using the linker ilink.

3 Cenfigure the program for the transputer or transputer network. For mul-
titransputer programs a configuration description must be written for pro-
cessing by the configurer and the resulting configuration data file passed
to the collector in order to generate a loadable or bootable file. For sin-
gle transputer programs the collector is used to bootstrap the linked unit
directly by invoking it with a special option.

4 Load the bootable program onto the network using the host file server
tool iserver. Bootable programs are self-starting and begin to run
immediately they are loaded into transputer memory.

3.2 Running the examples

In the following examples programs are compiled for the default processor type
T414. For other transputer types, for example, processors in the IMS T8 group,
the program must be compiled for the specific transputer target or a transputer
class by giving the appropriate option on the compiler command line. Details
of transputer types and the cross compatibilities of processor types and classes
can be found in section 5.3.

3.2.1 Sources

The sources of all the examples are held on the toolset examples subdirectory.
To use the example command lines either move to this directory or place a copy
of the file in your current directory.

72 TDS 224 00 August 1990

26 3 Getting started

3.2.2 Example command lines

Where necessary, example command lines are duplicated for different host ver-
sions of the toolset; the ‘=’ switch character is used in command lines for UNIX-
based toolsets and the ‘/’ character is used in commands for MS-DOS and VMS
based toolsets. When reproducing the examples you should use the appropriate
command line for your host system.

3.2.3 Using the simulator

If no transputer hardware is available the examples can be run using the T425
simulator isim. If the simulator is used the appropriate isim command line
should be substituted for the i servexr command line in all example procedures.
Details of how to invoke the simulator tool can be found in chapter 24.

3.3 A simple sequential program

The following procedure shows how to build and run a simple ‘Hello World’ pro-
gram. The program is held in the source file hello. c on the simple examples
subdirectory.

3.3.1 Compiling
To compile the program type:

icc hello

The compiler assumes a .c extension. If the source file contains no errors, the
compiled object file hello.tco-is produced.

3.3.2 Linking

The compiled object file must be linked with the runtime library and startup code
using the linker tool i1ink. Use one of the following commands:

ilink hello.tco -f startup.lnk (UNIX)
ilink hello.tco /f startup.lnk (MS-DOS and VMS)

This produces the linked unit hello.lku. As no output file is specified the file
is named after the input file and the default link extension . 1ku is added.

The ‘£’ option specifies the standard C startup file containing commands and
directives to i1ink. The file is in standard linker indirect file format and contains

72 TDS 224 00 August 1990

3.4 A parallel version 27

all the startup information required for a C program using the full runtime library.
This includes access points for the library, and no libraries need be specified on
the command line.

3.3.3 Configuring

The linked unit must now be configured for the transputer. Because the program
is to be run on a single processor the configurer is not required and icollect
can be used directly. To bootstrap a single linked unit the ‘t’ option must be
specified:

icollect hello.lku -t (UNIX)
icollect hello.lku /t (MS-DOS and VMS)

This creates the file hello.btl which can be loaded and run on a single
transputer.

3.3.4 Loading

iserver is used to load the bootable file down the host link into transputer
memory where it begins to execute immediately:

iserver -sb hello.btl (UNIX)
iserver /sb hello.btl (MS-DOS and VMS)

The program runs and displays the greeting "Hello World".

3.4 A parallel version

The example program parhello.c on the simple examples subdirectory is
a parallel version of the "Hello world” program, using separate parallel processes
to output each word of the greeting. A time delay is built into one of the processes
to demonstrate their independence.

The example produces the same output as the sequential program and is in-
cluded here in order to introduce a simple working example of a parallel C pro-
gram. Parallel programming is described in greater detail in chapter 4.

To run the example parallel program compile, link, configure, and load the pro-

72 TDS 224 00 August 1990

28 3 Getting started

gram in the normal way:

icc parhello

ilink parhello.tco -f startup.lnk (UNIX)
ilink parhello.tco /f startup.lnk (MS-DOS and VMS)
icollect parhello.lku -t (UNIX)
icollect parhello.lku /t (MS-DOS and VMS)
iserver -sb parhello.btl (UNIX)
iserver /sb parhello.btl (MS-DOS and VMS)

The program prints the word "Hello” followed after a short delay by "world”.

The overall construction of the program can be deduced from the program listing.
Briefly, processes to be run in parallel are defined as separate C functions,
space is allocated for the process structures, and the functions are started up in
parallel. A comparison of the source code for sequential and parallel versions
can be instructive.

3.5 Separate compilation

Larger programs are often built from a number of separately compiled source
files. The following example shows how to build and run the parallel "Hello World”
program from three source files. The program sources are held on the simple
examples subdirectory.

The main program in main.c calls two independently compiled parallel pro-
cesses hellof and woxrldf which each print one word of the greeting.

To run the program first compile each source file:
icc main
icc hellof

icc worldf

This creates three compiled object (. tco) files. These are then linked with each

72 TDS 224 00 August 1990

3.6 A simple configuration example 29

other to produce the single linked unit main. 1ku:

ilink main.tco hellof.tco worldf.tco -f startup.lnk

(UNIX)
ilink main.tco hellof.tco worldf.tco /f startup.lnk

(MS-DOS and VMS)

The linked unit is then bootstrapped in the normal way for a single transputer
using icollect, and loaded into transputer memory using iserver:

icollect main.lku -t (UNIX)
icollect main.lku /t (MS-DOS and VMS)
iserver -sb main.btl (UNIX)
iserver /sb main.btl (MS-DOS and VMS)

3.6 A simple configuration example

Linked units can be configured on processor networks by processing a configura-
tion description with icconf. The file hello.cfs on the config examples
subdirectory contains a configuration description for a "Hello World” program
along with the source file. (The source file is not the same as the one used in
the non-configured examples).

The description configures the program for a single processor, which is treated
by icconf in the same way as any multiprocessor network.

Either move to the config examples subdirectory or copy the "Hello World”
source file hello. c and the "Hello World” configuration description hello.cfs
from the directory into a working directory.

Compile and link the source file as in the previous examples to produce a linked
unit. Now run icconf on the hello.cf£s file. This produces the configuration
binary file hello.cfb. Run the collector on this file, this time omitting the 't’
option (only required when the input file is a linked unit). Then load the program
in the normal way using iserver.

72 TDS 224 00 August 1990

30 3 Getting started

The sequence of commands is illustrated below.

icc hello
ilink hello.tco -f startup.lnk (UNIX)
ilink hello.tco /f startup.lnk (MS-DOS and VMS)

icconf hello.cfs
icollect hello.cfb

iserver -sb hello.btl (UNIX)
iserver /sb hello.btl (MS-DOS and VMS)

72 TDS 224 00 August 1990

4 Parallel processing

4.1 Introduction

Parallel processing is widely accepted as an important way of improving soft-
ware performance on any given processor architecture. The transputer supports
parallel processing directly by incorporating into its design a process scheduler
which is responsible for scheduling parallel tasks, and by providing the means
for connecting processors (transputer links) to create a processor network.

ANSI C supports concurrent programming by runtime library extensions which
allow C functions to run in parallel and communicate via channels. The exten-
sions provided consists of new type definitions for processes and channels and
a set of library functions for process, channel, and semaphore handling.

Semaphore-based communication is also supported.

4.2 Abstract model

Parallel processing in transputer based systems is based on the idea of Commu-
nicating Sequential Processes (CSP) developed by by Professor C.A.R. Hoare.

CSP is an abstract generalised model of concurrency based on the idea of
independently executing processes exchanging data with each other via one
way connections called channels. The model can be used to describe software
applications in an intuitive way reflecting the parallelism of the real world.

Concurrent processing in ANSI C conforms to the CSP model. Concurrent C
processes are independent, can be nested within each other, and are linked
together by channels. Any C function can be defined as a concurrent process
using a special set of functions provided in the runtime library.

Figure 4.1 illustrates the main elements of the CSP model. Processes can be
nested with one another, and can communicate either unidirectionally (one pro-
cess passing data to another) or bidirectionally (two processes exchanging data
and working in a cooperative manner). In real applications processes normally
communicate with at least one other process in the system.

4.21 Processes
Processes are the main elements of the CSP model. A process describes the

behaviour of a discrete, separable component of an application; it may consist
of other processes, sequential operations, or any combination of these. Appli-

72 TDS 224 00) August 1990

32 4 Parallel processing

Figure 4.1 Communicating sequential processes

cations can be broken down into any number of processes, and processes can
be mapped onto any network of transputers.

4.2.2 Channels

Channels are the connections between processes through which information
and data are exchanged. Channels are point-to-point unidirectional connections,
that is, they connect only two processes, and the transfer of data is one way.
Processes which exchange messages and data with each other must do so via
a pair of channels. Channels in real systems are often paired in this way to
enable processes to cooperate in a task.

An item of data is always acknowledged by the receiving process before the next
item is passed.

In CSP, channels have two functions. They provide the communication path
between independently executing processes, and serve to synchronise the com-
munication between the two processes. Items of data must always be acknowl-
edged by the receiving process and the sending process always waits for the
acknowledgement. In the same way processes which send data cannot do so
until the receiving process is ready. In this way synchronisation between the two
processes is assured; no data is passed until both partners in the operation are
ready.

72 TDS 224 00 August 1990

4.3 Semaphores 33

4.3 Semaphores

Support for semaphores, though not a part of the CSP model, is provided in the
toolset for those who wish to develop parallel programs in the traditional manner
using semaphores. Semaphores are efficiently implemented within the toolset
using channel functions, and are therefore subject to a slightly greater overhead
than if the intrinsic synchronising ability of channels were used directly.

4.4 Parallel processing and transputers

The transputer has been designed to support parallel processing and the con-
struction of multiprocessor environments. The device architecture and instruction
set reflect the CSP model and make it easy to implement in high level languages.
ANSI C takes full advantage of this ability, providing a parallel programming en-
vironment optimised for the transputer, but retaining all the features of the C
language.

Each transputer separately supports parallel processing. Processes can ex-
change data and synchronise their activity by a scheduling system built into the
hardware of the processor and requiring no complex programming. The system
automatically time shares the CPU between processes and requires no extra
input from the programmer. Communication between processes is achieved via
channels implemented as words in on-chip memory.

4.4.1 Multitransputer networks

Processes can also run on separate transputers and communicate with each
other using channels implemented through processor links. Each transputer
contains four INMOS communication links through which processors exchange
data and information. This ability to be cross-connected enables the transputer to
be used as the basic component in the construction of processor networks. Spe-
cific arrangements of transputers can be designed for particular software tasks,
and large networks of transputers can be used to build distributed processing
supercomputers.

4.4.2 Multitransputer programming

Software processes can communicate as readily down transputer links as they
can across channels on the same processor. This allows applications to be writ-
ten without being constrained by a fixed topology; a program can be developed
on a single transputer and ported to the target network when the program is fully
developed and bug-free. The final code can be reinstalled on a new target sim-
ply by writing a new configuration description, generating an executable file, and

72 TDS 224 00 August 1990

34 4 Parallel processing

loading it onto the network. No modification of the original code or recompilation
of source is required.

Figure 4.2 shows how three software processes, separately compiled and linked,
could be configured to run on a single processor or on several processors linked
together in a simple linear network.

(5] ¢
(p2) !

’ - p2
Three processes on
one transputer t
== = channel Distributed processes

> = transputer link

Figure 4.2 Distributing processes

4.4.3 Instruction set

Transputers have been designed to support the ideas of parallel processing and
make them easy to implement in high level languages. There is direct support
in the transputer instruction set for process control and management.

Process control

The transputer provides direct instructions for setting up, starting, pausing, and
terminating parallel processes. Processes run at one of two priorities — high or
low; high priority processes have priority access to the processor and will always
be executed in preference to any low priority process running concurrently on
the same processor.

Process selection

The transputer instruction set includes direct support for selection of the first
ready process from a series of of inputs, making polling of data channels easy.

72 TDS 224 00 August 1990

45 ANSIC 35

Process timing

The transputer contains high and low priority clocks, which can be used to im-
plement delayed execution of processes. Specific instructions are provided to
‘ delay execution of a process for a specified time period, or until a specified time.

45 ANSIC

ANSI C takes full advantage of the advanced concurrency features of the trans-
puter and like the high level transputer language occam implements the CSP
model. Concurrency is supported by library extensions consisting of three new
data types and a set of library functions and macros. Together these imple-
ment the parallel model. A set of routines for synchronising processes using
semaphores is also provided.

4.5.1 Library support

The runtime library functions are accessed in the same way as all other C li-
brary functions by including the appropriate header file in the program. Process,
channel, and semaphore support functions are declared in three separate header
files.

‘ The concurrency functions are designed as a base set of functions which can
either be used in their basic form or as building blocks for higher level routines.
For example, a high level package might wish to implement features such as
process multiplexing and complex channel protocols using functions from the
basic set.

4.5.2 New data types

Three new data types complete the concurrency support. Data structures aare
used to hold data about processes and semaphores, and a pointer type is used
to implement channels.

e Process. A structure type that holds information about each declared
process.

e Channel. A pointer type used to implement channels. In accordance
with the CSP model, channel variables represent unidirectional commu-
nication links between two processes. Channel is a pointer to type
void.

‘ o Semaphore. A structure type that holds information about a semaphore.

72 TDS 224 00 August 1990

36 4 Parallel processing

Parallel processes are created by linking a function definition to a predeclared
process structure, and are then initialised, started, and run using routines from
the concurrency library.

Channels between processes are created simply by declaring a variable of type
Channel* at an appropriate point in the program. Channel input and output
functions are then used to pass data. It is the responsibility of the programmer to
ensure that data sent by one process is received by another; separate functions
exist for input and output and the two must be paired for communication between
two processes to take place.

Semaphores are declared using either the semaphore initialisation function or
a macro that performs a similar action. Semaphores are then acquired and

released by calls to two separate functions. Semaphores can be used to syn-
chronise the activity of low with high priority processes.

4.6 Concurrency functions

The concurrency functions implement the following parallel processing opera-
tions:

o Process setup, startup, and scheduling

¢ Ready input selection

¢ Channel communication

e Semaphores.
The main parallel processing functions are declared in the header files
process.h and channel.h. Declarations of functions for semaphore han-

dling can be found in semaphor.h.

The following sections describe the process, channel, and semaphore functions.

4.7 Processes

Processes are defined in the same way as regular C functions, but with a fixed
first parameter. The first parameter to a new function which will be started as
a process must be a pointer to its own Process structure. Parameters to the
function follow the fixed process pointer in the normal way.

Processes are instantiated by a call to ProcAlloc, using the function name
as the link to the process structure. Once allocated, the process is started

72 TDS 224 00 August 1990

4.7 Processes 37

using ProcRun or one of its variants, ProcPar or one of its variants, or
ProcPriPar.

An example of the creation and instantiation of a process is shown below.

void newproc(Process *p, int argl, int arg2, int arg3)
{
P = P/

/* ...process code */

}

int main()

{ /* Declare pointer to process structure */
Process *x;
/* Declare parameters */
int pal, pa2, pa3;

/* Allocate process; check for non-allocation */

if ((x = ProcAlloc(newproc,0,3,pal,pa2,pa3)) == NULL)
abort (),

/* Start process running */
ProcRun (x) ;

/* Rest of code executes
in parallel with ’‘newproc’ */

4.7.1 Unused process pointer

The compiler generates a warning message indicating an unused process pointer
each time a process pointer is passed to a function. To prevent the message be-
ing generated the process pointer should be assigned to itself within the function
using a statement of the form p = p;. Process code which does not assign
the pointer in this way will still compile and run normally but the ‘unused pointer’
message will be generated as the process is compiled.

Warning: The process pointer passed through to a function is used internally
by the concurrency software and must never be changed. If it is modified in any

72 TDS 224 00 August 1990

38 4 Parallel processing

way the results are undefined.

4.7.2 Process initialisation

Two functions allocate and initialise parallel processes. A third function is pro-
vided to allow parameters to be altered in an existing process. The three func-
tions and their parameters are listed below.

Function Parameters

Process ProcAlloc (void (*func) (), int size,
int nparam, ...)

int ProcInit (Process *p, void (*func) (),
int *ws, int wssize,
int nparam, ...)

void ProcParam (Process *p, ...)

ProcAlloc reserves memory space for a process and initialises the Process
structure using the lower level routine ProcInit. ProcInit can also be used
directly to initialise a process for which the memory space has already been
reserved by the programmer.

The ancillary function ProcParam allows parameters to be changed in an ex-
isting (previously allocated) process. It must be called before the process is
started up.

ProcAlloc takes a pointer to the function code, allocates a stack frame for
the process, and sets up the function’s parameters. A pointer to the process
structure is returned.

The stack size is specified in the size parameter. If size is specified as zero
a default stack size of 4K for 32-bit machines and 1K for 16-bit machines is
used instead. If insufficient stack space is allocated for the required number of
parameters, the stack is extended. ProcAlloc returns a pointer to the process
structure (Process¥).

Processes set up using ProcAlloc share the same global data space and
therefore access the same static and external variables. Private data space
for a process must be allocated using auto variables. In addition ProcAlloc
uses the standard functions malloc and £ree to allocate and deallocate space
from the heap and as a result all C processes share the same heap space. |If
an attempt is made to allocate stack space from an array of type auto, an error
is reported.

72 TDS 224 00 August 1990

4.7 Processes 39

All calls to ProcAlloc should be followed by a check for successful allocation,
and the NULL result (allocation unsuccessful) should be handled in an appropri-
ate way.

ProcInit takes apointerto an existing Process structure and a pointer to the
stack space to be used. It then initializes the process structure and workspace
for the function according to its workspace requirement and process parameters.
ProcInit is the lower level routine used by ProcAlloc. ProcInit returns
a value indicating success or failure. The number of parameters indicated by
nparam excludes the compulsory process pointer.

Note: Processes must always be allocated before use. If this is not done the
same memory space may be referenced on behalf of the same process. In this
context allocation can be performed by ProcAlloc or ProcInit.

ProcParam can be used to modify the parameters of an already allocated
process. It returns no result.

Note: Care should be taken when setting up processes and changing param-
eters in concurrently executing processes. If ProcAlloc, ProcInit, or
ProcParam are used from two parallel processes to initialise the same pro-
cess the results may be unpredictable because there may be contention for the
process structure.

4.7.3 Freeing stack and workspace
Two functions ProcAllocClean and ProcInitClean are provided to free

stack and workspace after a process has completed. The functions and their
parameters are listed below.

Function Parameters

void ProcAllocClean | (Process *p)

void ProcInitClean (Process *p)

ProcAllocClean is used for processes initialised using ProcAlloc, and
ProcInitClean for processes initialised using ProcInit.

Note: For both functions the process must have been started synchronously (by

ProcPar or ProcParList), and must have already terminated (ProcPaxr or
ProcParList must have returned).

72 TDS 224 00 August 1990

40 4 Parallel processing

4.7.4 Process execution

A set of functions is provided for executing processes asynchronously (ProcRun
and related functions) or synchronously (ProcPar and others). Functions are
provided in the first group to start processes at high or low priority, and in the sec-
ond group to start many processes in a single call or to start a pair of processes
at high and low priority.

Note: A process may only be started once. If the same process pointer is passed
as an argument to more than one function running as a process unpredictable
effects can occur.

Function Parameters

void ProcRun (Process *p)
void ProcRunHigh | (Process *p)
void ProcRunlLow | (Process *p)
void ProcPar (Process *pl, Process *p2, ...)

void ProcParList | (Process **plist)

void ProcPriPar (Process *phigh, Process *plow)

Unsynchronised processes

ProcRun, ProcRunHigh and ProcRunLow start processes which execute
independently of the process from which they are called. The initiating process
cannot determine or alter the state of the process except through an explicit
communication path (usually a channel) that the programmer establishes.

ProcRun starts a process at the same priority as the calling process.
ProcRunHigh and ProcRunLow start processes at high and low priority re-
spectively.

Unsynchronised processes (those started with the ProcRun, ProcRunHigh,
and ProcRunLow functions) run independently of the main program and may
continue when the main program terminates. To ensure that processes do not
access the server when it has already been terminated, processes can be cou-
pled to the main program using channels. The main program will then wait until
all other processes are finished before it terminates the server. Alternatively,
ProcPar can be used to force synchrony on a group of processes.

Synchronization channels are channels on which an output to the main program

72 TDS 224 00 August 1990

4.7 Processes 41

is performed as the last action in a process. This forces the main program to
wait until all other processes are completed and ensures clean termination of a
program. An example of how to use synchronisation channels is shown below.

#include <process.h>
#include <channel.h>

void pl(Process *p, Channel *synch)
{
P = P/
/* ...process code */

ChanOutInt (synch, 1);

/*
Sends integer to main program to signal
completion

*x/

}

int main()

{

Process *p;

Channel *synch; /* Synchronization channel */

if ((synch = Chanﬂlloc()) == NULL

/* Call channel error handler */

}

if ((p = ProcAlloc(pl, 0, 1, synch)) == NULL)
{/* Call process error handler */
}

ProcRun (p) ;

ChanIniInt (synch);

*
/ Receives completion signal from process pl

*/

} /* Program can terminate safely */

Synchronised processes
ProcPar, ProcParList, and ProcPriPar each start a group of processes.

72 TDS 224 00 August 1990

42 4 Parallel processing

Control is returned to the process from which the function was called when all
processes in the group have terminated.

ProcPar executes a group of processes at the current priority. The list of pro-
cesses must be terminated by NULL. ProcParList takes an array of pointers
to processes and executes them at the current priority. The list must be termi-
nated by NULL. ProcPriPar takes two processes and executes them at high
and low priority. The first process in the list is executed at high priority.

Note: ProcPriPar can only be called from a low priority process; if the function
is called from a high priority process a runtime error occurs and the program is
aborted.

4.7.5 Process timing and scheduling

Routines are provided for delayed execution, the timed suspension and reschedul-
ing of processes, and the termination of processes before normal completion.

Function Parameters
void ProcAfter (int time)
void ProcWait (int time)
void ProcReschedule (void)

int ProcGetPriority (void)

void ProcStop (void)

int ProcTime (void)

int ProcTimePlus (const int timel, const int
time2)

int ProcTimeMinus (const int timel, const int
time2) -

int ProcTimeAfter (const int timel, const int
time2)

Process timing

Execution of a process can be delayed until a specified time using the
ProcAfter function, and suspended for a specified time using ProcWait.

72 TDS 224 00 August 1990

4.7 Processes 43

Process scheduling

ProcReschedule reschedules a process, that is, places it at the end of the
process queue. This can be used to implement a ‘busy wait’ on a resource.

ProcGetPriority returns the execution priority of a process (1 for a low
priority process and O for a high priority process. Macros PROC_LOW (1) and
PROC_HIGH (0) are defined within the process library.).

ProcStop permanently deschedules a process. It is used to stop a process
before normal completion. Stopped processes cannot be restarted.

4.7.6 Clock time

ProcTime returns the current value of the clock. The selection of the high or
low priority clock depends on the priority of the process from which the function
is called.

ProcTimePlus re-
turns the result of adding timel to time2. ProcTimeMinus returns the
result of subtracting time2 from timel. Both functions use modulo arithmetic
- there is no overflow checking and the values are cyclic.

ProcTimeAfter determines the relationship of one transputer clock value to
another. It returns 1 if timel is after time2, otherwise 0 (zero).

4.7.7 Input alternation

Six routines are prqvided to allow for the selection of a ready channel from

multiple parallel inputs. Separate versions of the routines are provided to deal
with lists of channels.

72 TDS 224 00 August 1990

44 4 Parallel processing

Function Parameters

int ProcAlt (Channel *cl,
Channel *c2,)

int ProcAltList (Channel **clist)

int ProcSkipAlt (Channel *cl1,
Channel *c2,)

int ProcSkipAltList (Channel **clist)

int ProcTimerAlt (int time, Channel *cl,
Channel *c2,)

int ProcTimerAltList | (int time, Channel **clist)

ProcAlt, ProcSkipAlt, and ProcTimerAlt take as input a list
of pointers to channels terminated by NULL. Similarly, ProcAltList,
ProcSkipAltList, and ProcTimerAltList take as input an array of
channel pointers terminated by NULL.

4.7.8 Simple alternation
ProcAlt and ProcAltList suspend the current process until one of the
channel arguments is ready to input. On completion, the functions return an

index into the parameter list indicating the ready channel.

For example, the following code sets i to 0, 1, or 2, according to which of the
three channels becomes ready first:

int i;
Channel *c0, *cl, *c2;

i = ProcAlt(c0, cl, c2, NULL);
Both ProcAlt and ProcAltList require at least one input parameter; if the
parameter list is empty an error is generated.
4.7.9 Polling several inputs
ProcSkipAlt and ProcSkipAltList check a series of channels without
blocking the current process. If one of the channels is ready to input an index into
the parameter list is returned. Both functions return immediately with a special

code value and do not wait for a channel to become ready.

72 TDS 224 00 August 1990

4.8 Channel communication 45

4.7.10 Timed input

ProcTimerAlt and ProcTimerAltList block the current process until
one of the channels is ready for input or until a specified time is reached. If a
channel becomes ready before the timeout occurs an index into the parameter
list is returned, otherwise the timeout code is returned.

4.7.11 Example of use

All six alternation routines return an index to the ready channel rather than the
data itself and must be followed by a statement which performs the input.

int i;
char buffer[LENGTH];
Channel *c0, *cl, *c2;

i = ProcAlt (c0O0, cl, c2, NULL);
switch (i)
{

case 0: /* channel c0 ready */
ChanlIn(cO0, buffer, LENGTH); breakj;

case 1: /* channel cl ready */
ChanlIn(cl, buffer, LENGTH); breakj;

case 2: /* channel c2 ready */
ChanlIn(c2, buffer, LENGTH); breakj;

default:
error_handler(); breakj;

4.8 Channel communication

Routines are provided for the passing of bytes and integers on channels
(ChanIn, ChanOut, and others), for implementing safe channel protocols (ex-
traordinary link handling), and for allocating and resetting channels.

Communication between processes is effected by passing data on variables of
type Channel. Functions are provided to allocate, initialise, and reset channels,
to support input and output of characters, integers, and untyped data, and to
assist with establishing reliable protocols (extraordinary link handling).

Channel input and output functions must be paired for two processes to commu-
nicate and exchange data.

72 TDS 224 00 August 1990

46 4 Parallel processing

4.8.1 Transputer link addresses

Each link on a transputer is associated with an input and an output chan-
nel address. Transputer link addresses are defined in the library header file

channel.h. .

4.8.2 Channel allocation, initialisation, and reset

Function Parameters

Channel *ChanAlloc (void)

int ChanReset (Channel *c)

void ChanInit (Channel *c)

ChanAlloc reserves space from the heap for the channel, initialises the chan-
nel and returns a pointer to it. |f space cannot be allocated ChanAlloc returns
NULL.

Note: All calls to ChanAlloc should be followed by a check for successful
allocation, and any NULL result (allocation unsuccessful) handled appropriately.

ChanReset resets a channel to its quiescent (non-communicating) state, re-
turning either a descriptor to the process waiting to communicate, or the value
NotProcess_p which indicates the previous communication completed suc-
cessfully and the channel is free. NotProcess_p is a macro defined in the
header file channel.h.

ChanlInit initialises a channel by writing the the value NotProcess_p into
the channel word.

Note: Channels between processes running on the same transputer (soft chan-
nels) must always be allocated before use. If this is not done the same memory
space may be referenced on behalf of the same channel. In this context alloca-
tion can be peformed by ChanAlloc or ChanInit.

4.8.3 Channel input and output

ChanOut and ChanIn perform the basic operation of passing bytes on a chan-
nel. The data can be of any type or size but the number of bytes must be spec-
ified. Typed data should be broken down into individual bytes for transmission

and retyped on input. .

72 TDS 224 00 August 1990

4.8 Channel communication 47

ChanOutChar and ChanInChar are similar except that they pass single char-
acters and no byte count is required. ChanOut Int and ChanInInt are similar
except that they pass single integers.

’ Function Parameters
void ChanOut (Channel *c, void *cp, int cnt)
void ChanIn (Channel *c, void *cp, int cnt)
void ChanOutChar (Channel *c, char ch)
char ChanInChar (Channel *c)
void ChanOutInt (Channel *c, int n)
int ChanInInt (Channel *c)

ChanOut and ChanIn are used to transfer data of any type. Each take as
parameters the channel to be used, a pointer to the data to be passed, and the
number of bytes of data.

4.8.4 Reliable channel protocols

‘ The standard input and output channel functions do not attempt to recover from
physical link failure. If there is a faulty connection between two processors, pro-
cesses waiting for communication on that link can never complete successfully.
Four functions are provided to allow recovery from link failure. The functions

can be used as they are, or in the definition of higher level functions for reliable
channel protocols.

72 TDS 224 00 August 1990

48 4 Parallel processing

Function Parameters

int ChanOutTimeFail (Channel *chan, void *cp,
int cnt, int time)

int ChanOutChanFail (Channel *chan, void *cp,
int cnt, Channel
*failchan)

int ChanInTimeFaill (Channel *chan, void *cp,
int cnt, int time)

int ChanInChanFail (Channel *chan, void *cp,
int cnt, Channel
*failchan)

The functions are essentially the same as ChanOut and ChanIn except that the
communicating process becomes rescheduled after a specified timeout (...Time-
Fail functions) period or after receiving a communication on a special reset chan-
nel (...ChanFail functions). The ...ChanFail functions allow a communication to
be aborted by a separate process set up to monitor the integrity of the link.

The reliable channel functions offer somewhat more overhead than their ChanIn
and ChanOut counterparts. They are designed for establishing the integrity of
a link between two unfamiliar processors rather than as the standard method of
communicating data.

The reliable communication routines do not attempt to reestablish communication
between two processes. This is a problem which is properly addressed at the
application level.

4.85 Semaphores

Semaphore handling routines are provided for programmers who wish to write
traditional parallel code based on the acquisition and release of tokens. The
routines are used within the implementation of INMOS C to parallelize certain
functions in the standard i/o library.

Semaphore support is included for implementing special operations rather than
for implementing normal parallelism, for which the concurrency functions are
provided. The standard process and channel functions provide the best way of
using the transputer hardware to execute parallel code.

Semaphores can be used to synchronise high with low priority processes.

72 TDS 224 00 August 1990

4.8 Channel communication 49

Note: Semaphores are mapped by the compiler onto standard channel pro-
cessing functions. This involves some overhead and for maximum efficiency the
functions can be used directly.

Use of semaphores by the library

Semaphores are used in the language implementation to parallelize some library
routines. For instance, they are used in the implementation of malloc, free,
and realloc to prevent the heap being corrupted by simultaneous. calls from
concurrently executing processes.

File descriptors used internally by the compiler also use semaphores.

4.8.6 Semaphore allocation

Two functions and a macro are provided to set up and initialise semaphores.
All perform the same basic operation of creating a semaphore and their use
depends on personal choice.

Function Parameters

Semaphore *SemAlloc (int initvalue)

void SemInit (Semaphore *sem, int
initvalue)

SEMAPHOREINIT (int initvalue)

In all three cases x is the value of the semaphore on creation.

If semAlloc fails to allocate space for the semaphore a NULL result is returned.
All calls to SemAlloc should be followed by a check for successful allocation,
and the NULL result (allocation unsuccessful) should be handled appropriately.

SEMAPHOREINIT can be used to initialise the semaphore at declaration time.
It is particularly useful for static semaphores.

Examples

1 #include <semaphor.h>
Semaphore *newsem;
newsem = SemAlloc (x);

2 #include <semaphor.h>
Semaphore sem;

72 TDS 224 00 August 1990

50 4 Parallel processing

SemInit (&sem, x);
3 #include <semaphor.h>
Semaphore sem = SEMAPHOREINIT (x);
4.8.7 Semaphore handling

Two routines synchronise the acquisition and release of semaphores:

Function Parameters

void SemWait (Semaphore *sem)

void SemSignal (Semaphore *sem)

SemWait allows the calling process to acquire the semaphore. If the semaphore
is already in use (that is, has the value 0), the current process is suspended
and placed on a semaphore queue; if the semaphore is free the semaphore is
acquired, that is, incremented, and the process continues to execute.

SemSignal releases the semaphore and runs the first process waiting on the
semaphore queue. If there is no process waiting the semaphore is incremented.

4.9 Parallel programming examples

The following three examples are parallelized versions of the "Hello World” pro-
gram. They are designed to demonstrate:

o How to set up parallel processes

o How to bind processes together using a synchronisation channel

¢ How to couple processes together for the exchange of data.
The examples include checks for successful allocation of processes and chan-
nels. It is recommended that similar checks be included in all application pro-

grams to ensure correct error handling when process or channel space fails to
be allocated.

The p = p; statement at the start of the code for each process disables the
generation of a compiler warning message and has no operational effect in the
code. For further details see section 4.7.1.

Example 1 — Unsynchronised parallel processes.

72 TDS 224 00 August 1990

4.9 Parallel programming examples 51

This example shows how to declare and run basic parallel processes in C. A time
delay is introduced into one of the processes to demonstrate their independence
from each other.

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

void hello(Process *p)
{
P = PpP;
ProcWait (10000) ;
printf ("\nHello, \n");
}

void world(Process *p)
{
P =P/
printf£ ("\nWorld\n");

int main()

Process *pl, *p2;

Pl = ProcAlloc (hello, 0,0);
if (pl == NULL)

abort () ;
P2 = ProcAlloc(world, 0,0);
if (p2 == NULL)

abort();

ProcPar (pl,p2,NULL) ;
}
Example 2 — Processes synchronised by a channel.
This example shows how the two processes in example 1 can synchronise their
activity using channel communication. Using a channel to connect the two pro-
cesses forces process world to wait untii hello has completed its output,

and makes the processes interdependent. No status polling is required because
synchronization is implicit in the channel reference.

72 TDS 224 00 August 1990

52 4 Parallel processing

The integer channel functions are used for convenience. In this instance any
pair of channel functions will do the job providing the communication protocols
agree. The channel simply ties the two processes together, and communicates
no real data.

#include <stdio.h>

#include <stdlib.h>
#include <process.h>
#include <channel.h>

void hello(Process *p, Channel *ready)
{
P = P/
ProcWait (10000);
printf ("\nHello, \n");
ChanOutlInt (ready, 1);
}

void world(Process *p, Channel *ready)
{
P = P/
ChanInlInt (ready) ;
printf ("\nWorld\n");

int main()

Process *pl, *p2;
Channel *ready;

ready = ChanAlloc():;
if (ready == NULL)
abort();

pl = ProcAlloc(hello, 0,1, ready):;
if (pl == NULL)

abort () ;
P2 = ProcAlloc(world, 0,1, ready):;
if (p2 == NULL)

abort () ;

ProcPar (pl,p2,NULL) ;
}

72 TDS 224 00 August 1990

4.9 Parallel programming examples 53

Example 3 — Communicating data over a channel.

This example shows how two processes can both synchronise their behaviour
and communicate data by the use of channels.

. In the example the process input prompts the user for a name and passes it
to a second process display which adds it to a predefined string and displays
a personalized greeting.

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <process.h>
#include <channel.h>

void input (Process *p, Channel *chan)

{

char message[20];

P =P/

printf("\nPlease type your name (20 letters max): ");
gets (message) ;

ChanOut (chan, message, 20);

}
‘ void display(Process *p, Channel *chan)

{
char name[20];

P =P/
ChanlIn(chan, name, 20);

printf("\nHello %s\n", name);

}

int main()
{

Process *pl, *p2;
Channel *chan;

chan = ChanAlloc():
if (chan == NULL)
abort();
. pl = ProcAlloc(input,0,1,chan);
if (pl == NULL)

72 TDS 224 00 August 1990

54 4 Parallel processing

abort ()
p2 = ProcAlloc(display,0,1,chan);
if (p2 == NULL)

abort ()

ProcPar (pl,p2,NULL);

72 TDS 224 00 August 1990

5 Introduction to the
ANSI C compiler

This chapter provides an introduction to the ANSI C compiler and describes its
main sequential and concurrent features. It describes the meaning of transputer
types and transputer classes and how they can be used to generate common
code for groups of processors. The chapter also provides a short introduction
to the Runtime Library and outlines the support provided for low level and mixed
language programming.

5.1 Introduction

The ANSI C compiler is an ANSI standard C compiler with concurrency exten-
sions to support parallel programming for transputers and transputer networks.
The ANSI C compiler implementation was developed from the Perihelion Soft-
ware "C” Compiler and the Codemist Norcroft "C” Compiler written by Drs. Arthur
Norman and Alan Mycroft.

The ANSI C compiler implements fully the X3.159-1989 ANSI standard for the
C programming language. This standard is expected to be ratified as ISO stan-
dard I1ISO 9899 and to become the internationally recognised standard for the
C programming language. The standard specifies the content and defines the
interpretation of programs written in C, establishing standards of reliability, and
maintainability and enhancing portability of programs between systems.

ANSI C supports a standard model of parallel processing based on processes
which interact via channels. The system is based on a set of predefined data
types and structures and a set of library functions for creating processes and
synchronising data transfer down channels. Semaphores are also supported
using data types and library functions.

5.2 Source and object code

The C compiler takes as input an ANSI standard C source file and compiles it
into an intermediate object file in standard format for linking with the linker tool
ilink. The compiled object code is compatible with code generated by other
INMOS compiler toolsets that generate TCOFF object code. Once linked, the
code is converted to an executable program binary file using the configurer and
collector tools.

Command line options control the target processor type and other facilities such
as the degree of compiler checking, the format of error displays, and the output

72 TDS 224 00 August 1990

56 5 Introduction to the ANSI C compiler

file format. An option is available to disable code generation and output assembly
code to a file.

5.21 Object code format

The compiler generates intermediate object code (TCOFF) that can be pro-
cessed by other tools in the toolset and when linked can be mixed with code
written using other compatible INMOS toolsets.

Unlike the standard UNIX C compiler ice does not automatically link the pro-
gram or generate an executable module. Code generated by icc must be linked
transputer bootstrap information added before it can be run on a transputer. Mul-
titransputer programs must also include a configuration stage which describes
how the software is to be placed on the transputer network.

The steps involved in generating transputer executable code are described in
chapter 3. Briefly, the compiler produces an object code file in the standard
TCOFF format. This compiled object file must then be linked with all other code
modules and libraries using the linker tool. Once the code is linked the final
stages which generate loadable transputer code differ for single and muiltitrans-
puter programs.

For multitransputer programs the linked unit is configured on a network with other
linked units by the configurer tool, and subsequently processed by the collector
tool. For single transputer programs the collector is used directly to append
bootstrap code to the linked unit. In both cases the file generated is one that
can be loaded onto transputer hardware using the iserver tool.

5.3 Transputer types and classes

This section describes the meaning of transputer types and classes and how
selection of the target processor affects the compilation and linking stages of
program development. The section describes how to compile and link code
targetted at a single processor type and then describes how to compile and link
programs so that they can be executed on different processor types.

5.3.1 Single transputer type
For those users who have a single transputer or indeed a network of transputers
all of the same type, the compilation and linking stages of program develop-

ment are very straightforward. Simply compile and link all your modules for the
required processor.

72 TDS 224 00 August 1990

5.3 Transputer types and classes 57

The compiler and linker both support command line options to select the following
processor types:

16-bit processors | T212, M212, T222, T225
32-bit processors | T400, T414, T425, T800, T801, T805

Example: to compile and link for a T800:

icc hello -t800
ilink hello.tco -t800 -f startup.lnk (UNIX)

icc hello /t800
ilink hello.tco /t800 /f startup.lnk (MS-DOS and

VMS)

The default target processor for both the compiler and linker is a T414, so if you
are using this processor type the steps are even simpler:

icec hello
ilink hello.tco -f startup.lnk (UNIX)

icc hello
ilink hello.tco /f startup.lnk (MS-DOS and VMS)

5.3.2 Creating a program which can run on a range of transputers

The compiler and linker use the concept of transputer class to enable programs
to be developed which may be run on different transputer types without the need
to recompile.

A transputer class identifies an instruction set which is common to all the pro-
cessors in that class. When a program is compiled and linked for a transputer
class it may be run on any member of that class.

Note: Code created for a transputer class will often be less efficient than code
created for a specific processor type. Therefore, creating code for a transputer
class is discouraged in situations where program efficiency is a primary concern;
it should only be performed where there is a genuine need to produce code
which will run on a range of transputers or to reduce the size of a support library,
where program efficiency is not a major concern.

Table 5.1 lists all the transputer classes which the compiler and linker support
and indicates which processors the program can be run on.

In order to develop a program which will run on different processor types, perform
the following steps:

72 TDS 224 00 August 1990

58 5 Introduction to the ANSI C compller

Transputer | Processors which class can be run on

class
T2 T212, M212, T222, T225
T3 T225

T4 T414, T400, T425

TS T400, T425

T8 T800, T801, T805

T9 T801, T805

TA T400, T414, T425, T800, T801, T805
B T400, T414, T425

Table 5.1 Transputer classes and target processor

1 Identify the processors on which the program is to run.

2 Using table 5.1 select the class which may be run on all the target pro-
cessors.

3 Compile and link all the program modules for this class.

For example to create a program which will run on both a T400 and a T425,
compile and link for transputer class T5:

icc hello -t5
ilink hello.tco -t5 -f startup.lnk (UNIX)

icc hello /t5
ilink hello.tco /t5 /f startup.lnk (MS-DOS and VMS)

Alternatively to create a program which will run on a T400, T425 or a T800,
compile and link for transputer class TA.

icc hello -ta
ilink hello.tco -ta -f startup.lnk (UNIX)

icc hello /ta
ilink hello.tco /ta / startup.lnk (MS-DOS and VMS)

Programs compiled for the T212, M212 or T222 transputers, which make up
class T2, can be run on a T225 (class T3) because a T225 has a similar but
larger instruction set than class T2 transputers. Similarly code compiled for a
T414 (class T4) may be run on a T400 or T425, which form class T5. The
T400 and T425 have additional instructions to those of the T414. Likewise, code
compiled for a T80O (class T8) may be run on a T801 or T805, which form class

72 TDS 224 00 August 1990

5.3 Transputer types and classes 59

T9. Again the T801 and T805 have additional instructions to those of the T800.

5.3.3 Object file containing code compiled for different targets

This section describes how object code compiled for one target processor or
transputer class can be linked with code compiled for different transputer types
or classes.

The ability to do this provides the user with greater flexibility in the use of program
modules:

e An individual module can be compiled once e.g. for class T4, and then
linked with separate programs to run on different processor types e.g.
T414 and T425.

o When the user is preparing a library for use by programs intended to
run on different processor types, a single copy of code compiled for a
transputer class can be inserted instead of multiple copies for specific
transputers.

When linking a collection of compiled units together into a single linked unit,
the user must select a specific transputer type or transputer class on which the
linked unit is to run. As before, this determines the set of transputer types on
which the code will run. When linking for a particular type or class, the linker
will accept compilation units compiled for a compatible class. Table 5.2 shows
which transputer classes the linker will accept when linking for a particular class.

Link | Transputer classes which
class | may be linked

T2 | T2

T3 (T3, T2

T4 | T4, TB, TA

T5 |T5, T4, TB, TA

T8 | T8
To |To, T8
TB |TB, TA
TA |TA

Table 5.2 Linking transputer classes

For example if the target processors are a T400 and a T425 the user may compile
for classes T5 and TB and link the code for for class T5.

72 TDS 224 00 August 1990

60 5 Introduction to the ANSI C compiler

Code for a different transputer class can be included in the final linked unit, as
long as :

- it uses the instruction set or a subset, of the instruction set of the link
class.

- the calling conventions are the same.

Classes T8 and T9 cannot be linked with class TA. This is a change from the
previous issue of the toolset. The reason why these classes cannot be linked
together is explained in section 5.3.4, which gives details of the differences be-
tween the instruction sets, as additional information. .

A library can be made, consisting of the same modules compiled for different
transputer types or classes. The user. then needs only to specify the library file
to the linker, and the linker will choose a version of a required routine which is
suitable for the system being linked.

The linker uses the rules given in table 5.2 to determine whether a compiled
module, found in a library, is suitable for linking with the current system. So, for
example, to create a library which may be linked with any transputer class or
specific transputer type, all routines could be compiled for classes T2, TA and
T8.

If there are a number of possible versions of a module in a library the best one
(i.e. the most specific for the system being linked) is chosen.

5.3.4 Classes/instruction sets — additional information
The instruction sets of the transputer classes differ in the following ways:

o Classes T2 and T3 support 16-bit transputers whereas all the other trans-
puter classes support 32-bit transputers.

e Class T3 is the same as class T2 except that T3 has some extra instruc-
tions to support CRC and bit operations, special debugging functions and
includes the dup instruction.

o Class T5 is the same as class T4 except that TS has extra instructions to
perform CRC, 2D block moves, bit operations, special debugging func-
tions and also includes the dup instruction.

¢ Class T9 is the same as class T8 except T9 has additional debugging
instructions.

72 TDS 224 00 August 1990

5.3 Transputer types and classes 61

e The T800, T801 and T805 processors use an on-chip floating point pro-
cessor to perform REAL arithmetic. Thus a large number of floating point
instructions are available for these transputers and for their associated
classes T8 and T9. These instructions are listed in section B.7.

o For the T414, T400 and T425 processors i.e. transputer classes T4 and
T5 the implementation of REAL arithmetic is in the software. These trans-
puters make use of a small number of floating point support instructions
listed in section B.6.

The instruction set of class TA only uses instructions which are common
to the T400, T414, T425, T800, T801 and T805 transputers. Therefore
it does not use the floating point instructions, the floating point support
instructions or the extra instructions to perform CRC, 2D block moves or
special debugging or bit operations and it does not use the dup instruc-
tion.

o The instruction set of class TB only uses instructions which are common
to the T400, T414 and T425 processors. Therefore it uses the floating
point support instructions, but does not use the extra instructions to per-
form CRC, 2D block moves or special debugging or bit operations and it
does not use the dup instruction.

When considering the similarities and differences in the instruction sets of differ-
ent transputer classes it helps to divide them into the three separate structures
as shown in figure 5.1.

By comparison with Table 5.2 it can be seen that a module may only be linked
with modules compiled for a transputer class which belongs to the same struc-
ture.

Classes T2 and T3 which form the first structure are targetted at 16-bit transput-
ers so it is obvious that they cannot be linked with the other classes which are
all targetted at 32-bit transputers.

The reason why classes T8 and T9 cannot be linked with classes TA, TB, TS
or T4 is because floating point results from functions are returned in a floating
point register for T8 and T9 code and in an integer register for all other 32-bit
processors. Even if your code does not perform real arithmetic, linking code
compiled for a T9 or T8 with code compiled for any of the other classes is not
permitted.

To summarise, compiling code for the transputer classes TA and TB enables it
to be run on a large number of transputer types, however, the code may not
be as efficient as code compiled for one of the other transputer classes or for a
specific transputer type. For example compiling code for class T5 enables the

72 TDS 224 00 August 1990

62 5 Introduction to the ANSI C compiler

T2 'i:’ T8

T3 B8 T9

5

Figure 5.1 Structures for mixing transputer types and classes

CRC and 2D block move instructions to be used, whereas these instructions are
not available to code compiled for classes TA and TB.

54 Error modes

The compiler generates object code in a single error mode known as UNIVER-
SAL. Other types of error modes can be generated by other INMOS compilers,
for example, the occam 2 compiler oc, and may be encountered in mixed lan-
guage programs. The other two common modes are: HALT, which halts the
transputer when the program generates a runtime error; and STOP, which stops
the errant process but allows the rest of the program to continue.

The linker requires all modules to be in the same error mode. Command line
options are provided for setting all program modules to the same mode and
should be used in mixed language programs containing code compiled in HALT
or STOP modes, so that all C modules are converted to the correct mode.

5.5 Preprocessor directives
The ANSI C compiler incorporates an ANSI standard C preprocessor that allows

source file inclusion, conditional code, conditional and unconditional definitions,
and implementation dependent pragmas. The following directives are supported:

72 TDS 224 00 August 1990

5.5 Preprocessor directives 63

#include #else #define
#elif #undef #fendif
#if #line #ifdef
#pragma #ifndef #ferror

Details of the compiler directives can be found in chapter 11.

5.5.1 Include files

Include files can contain declarations, definitions, or code. Header files for the
runtime library are imported using the #include directive.

The search paths for files imported with the #include directive are similar to
those for the toolset as a whole (see section A.3), but differ in some important
respects. Two forms of syntax can be used to specify the filename, one of which
allows the search path to be extended by directories specified on the command
line. For more details see section 11.3.1.

5,52 Pragmas

The #pragma directive allows some compiler operations to be activated or deac-
tivated in specific sections of code. Pragmas are defined for setting or overriding
compiler options, particularly those concerned with code checking, for defining
the size of linker code patches, and for allowing code written in other languages
to be called from C.

The pragmas provided with icc are listed below.

IMS_on IMS_ off IMS_nolink
IMS_linkage IMS_modpatchsize IMS_codepatchsize
IMS_translate

Details of pragma syntax and options can be found in section 11.3.11.

5.5.3 Compiler messages

Compilation errors are displayed to the user by compiler messages. The format
used for compiler messages is the same as the standard format used by all of
the tools for error messages and is described in section A.6.1.

Compiler messages are generated at four different severity levels: Warning;
Error, Serious; and Fatal.

72 TDS 224 00 August 1990

64 5 Introduction to the ANSI C compiler

Errors which indicate non-compliance with ANSI C are generated at severity
levels Error and Serious. It may be possible to compile non-compliant code
by using the 'E*’ series of compiler options which disable certain ANSI checks.
Severities greater than Warning prevent the generation of object code.

The display format for compiler messages starts with the error severity, gives the
filename and line number where the error was found (if appropriate), and then
gives a short reason for the error.

Compiler options can be used to suppress certain types of error messages. |f
these options are specified on the command line the corresponding error mes-
sages are not generated.

A complete list of compiler messages and their meanings can be found in chap-
ter 11.

5.6 Runtime library

The ANSI C runtime library contains the full set of ANSI functions, a set of
concurrency functions, and some other miscellaneous non-ANSI functions. The
library is supplied as compiled code for all transputer types and classes; the cor-
rect library code is selected at link time, based on the transputer target specified
at compilation. A reduced form of the library is supplied for programs which re-
quire no server-based communications, for example in embedded systems. The
correct library is linked into the program using separate linker command files for
the full and reduced libraries.

Access to the functions is via header files which are included at the start of
a program. These contain function declarations, constants, and common vari-
ables. The ANSI library uses the standard ANSI set of header files, the con-
currency library is split over three files dealing with process control, channels,
and semaphores, and the miscellaneous functions are divided into several files
containing related groups.

The library is installed on the system as two files, one containing the full set of
functions, and the other containing all functions except those that require access
to the host file server. The two libraries are known as the full and reduced
libraries respectively.

The library files are modular, with a fine granularity. Each module contains either
a single function, or a few related functions, so that only the minimum amount
of code is loaded. The library is indexed for quick look-up by the compiler and
linker.

72 TDS 224 00 August 1990

5.7 Low level programming 65

5.6.1 Reduced library

Code which does not communicate with the host file server, that is, does not
use any of the server-based functions, can be linked with the reduced runtime
library. Using the reduced library ensures that code that is not required, such as
the code that ensures proper closedown of the i/o system, is not loaded with the

program.

The reduced library contains all the functions (including concurrency functions)
that are in the full library, but omits those which require the host file server.
This includes common ANSI functions such as print £ and getenv and i/o
dependent functions such as host_info.

The reduced library can be used to limit the size of code in systems where
memory space is limited, such as embedded systems. It can also be used to
generate code for remote nodes in a transputer network, that is, those that have
no direct dialogue with the host. (Nodes can still communicate with each other
using the channel functions, which are included in the reduced library.)

A few functions from the standard i/o library, not true i/o functions, are avail-
able in the reduced library. These are the functions sprint£, sscanf, and
vsprint£, which are used to format and deformat strings. The three functions
are declared in the header file stdiored.h.

5.7 Low level programming

icc incorporates support for low level programming in the form of a machine
code insertion facility and some predefined names which can be used to obtain
a limited amount of low level information about compiled code.

5.7.1 Assembly code support

The compiler provides support for in line transputer assembly code in C pro-
grams. Sequences of transputer instructions can be embedded in C code using
the __asm construct.

--asm can be useful for implementing low level operations such as controlling
peripheral devices, and for optimising the performance of critical sections of
code. It is not intended for the wholesale inclusion of large blocks of assembly
code and should not be used for this purpose.

Details of how to use the assembly code insertion facility, with examples illus-

trating commonly performed operations, can be found in chapter 4 ‘Language
extensions’ of the accompanying Reference Manual.

72 TDS 224 00 August 1990

66 5 Introduction to the ANSI C complier

5.7.2 Compiler predefines

The two predefined names _1sb and _params can be used as variables to
determine the position of a file’s static data and a function’s parameter block
respectively. For further details see section 11.5.3.

5.8 Mixed language programming

Code written using other INMOS language compilers that generate TCOFF stan-
dard file format (such as the occam 2 compiler oc) can be incorporated into
C programs, with certain restrictions, by defining them as external functions and
then linking them in the normal way. The compiler pragma IMS_nolink is then
used to compile the function in the C program without a static link parameter.

Mixed language programs can be constructed easily using the configuration sys-
tem. Individual linked units written in different languages can be placed on any
transputer in a network; to the configurer all linked units are the same and can
be mixed in any combination. The method can also be used for mixing code
on the same, or a standalone, processor; in this case the processor is simply
treated as a single-node network and configured in just the same way.

Chapter 9 explains how to create mixed language programs using the configurer,

how to import occam code into C programs, and how to call C functions from
occam.

72 TDS 224 00 August 1990

6 Configuring transputer
programs

This chapter describes the configuration language in detail and shows how it is
used to map software programs onto transputer networks. The chapter includes
examples of some simple configuration descriptions for single and two-processor
networks.

6.1 Introduction

Transputer programs can be configured to execute on any physical arrangement
of transputers. The assignment of independent but communicating program units
to a specific transputer network is known as configuration.

Configuration is achieved by first writing a configuration description in the network
configuration language. The configuration description is then processed by the
configurer tool to generate a configuration data file, and then by the collector
tool to generate a transputer loadable file, which can be loaded directly onto the
network.

Within the configuration description software and hardware networks are defined
independently and married together using a mapping description. The mapping
description assigns software modules to specific processors and places channel
inputs and outputs on transputer links. The software modules referenced in the
configuration description must be linked units.

6.2 Configuration model

The configuration model consists of a software network consisting of processes
joined to a hardware network of processors by a mapping description.

The software network is a description of the way in which processes interact;
processes are defined with specific interface parameters and connected to each
other using input and output channels defined in the configuration language.
Configuration channels, like channels in source programs, are unidirectional,
point-to-point connections. The number of channels is unlimited. Connections to
the outside world are made via channels declared outside the processes known
as channel edges. Channel edges can be connected to channels defined within
a process to enable connections to be made to other software networks.

The hardware network describes the processors on the network and the physical
link connections between them. The number of links available on each processor

72 TDS 224 00 August 1990

68 6 Configuring transputer programs

is determined by the processor type. The hardware network interfaces to the
outside world via a special configuration type called an edge.

The main elements of the configuration model are illustrated below.

Processes Mapping Processors

TO

Links

&r
Channels T1

Software and hardware networks are built up from generic network types called
nodes. Definitions of software nodes (processes) and hardware nodes (pro-
cessors) that form the basic elements of software and hardware networks are
configuration defaults which are read from a file of predefinitions when the con-
figurer is invoked.

6.3 Configuration language
The network configuration language is a special purpose language that allows
linked object code to be connected to other linked units and placed on any
physical arrangement of transputers. The language has been designed to be
compatible with several language toolsets and allows linked code to be mixed
on the same network. The main features of the language are listed below.

e The language is C-like. Declarations and expressions use C notation.

o Software and hardware networks are described in a simple declarative
way using a common syntax.

¢ Replication and conditional statements make it easy to describe regular
networks, and to define irregularities within them.

¢ New nodes types can be created from existing node types.

o Identifiers have global scope (except replication counters).

72 TDS 224 00 August 1990

6.3 Configuration language 69

e Arrays can be declared of processes, processors, channels, and edges.
e Source files can be included.
o« Comments can be inserted at any point.

o All statements except i £ and rep must be terminated with a semicolon.

A formal description of the language can be found in appendix C. The following
sections describe the main features of the language and explain each of the
language statements.

6.3.1 Identifiers

Identifiers represent elements used in the configuration, for example proces-
sors, processes, and channels. Most identifiers will be associated with a type,
although untyped constant identifiers are also permitted.

Symbolic names can consist of any alphabetic character, any decimal digit, or the

underscore character but must begin with a letter or underscore. All characters
in the name are significant and case sensitive.

6.3.2 Types

Six base types are defined within the language:

node input output edge
connection numeric value

The predefinitions process and processor derived from the node type are
contained in a file that is read by the configurer at startup.

numeric value can have the following subtypes:

char (character) int (32-bit integer)
float (32-bit IEEE real) double (64-bit IEEE real)

The char subtype represents the integer value of a character's ASCIl code.
The default subtype for a numeric constant if none is implied, is int.

Node types are associated with a number of attributes. The element attribute

is common to software and hardware nodes and depending on its value defines
attributes which are specific for software and hardware nodes.

72 TDS 224 00 August 1990

70 6 Configuring transputer programs

6.3.3 Constants

Numeric and character constants are defined using the val statement. A sub-
type can be specified but if it is not it will be deduced from the expression. For
example:

val gridsize 4; — integer
val x_coord 2.0£; - single length real

Integers can be expressed in decimal, octal, or hexadecimal. Suffixes K and M
can be used to indicate ‘Kilo’ (2'°) and ‘Mega’ (2%°) values for example, when
defining processor memory size.

Character constants must be enclosed within single quotes and string constants
within double quotes. Standard C escape sequences can be used to specify
control characters such as Tab and EOL (‘end-of-line’). For example:

val ¢ ‘c’; — character constant
val greeting "Hello\n"; - string constant

Note: Any string constant that is to be passed to a C program must be explicitly
terminated by the NULL character escape sequence \0.

For a full list of escape sequences supported in the configuration language see
section C.4.3.

Constant arrays can be defined by enclosing the sequence of values in braces.
Multidimensional constant arrays are permitted. For example:

val pow2 {1, 2, 4, 8, 16, 32, 64, 128};

val powers {{1, 1, 1}, {2, 4, 8}, {3, 6, 9}};

6.3.4 Booleans

The boolean constants TRUE and FALSE are predefined as integer constants
with values one and zero respectively. In conditional statements any non-zero
expression counts as TRUE.

6.3.5 Expressions and arithmetic

Expressions follow the syntax of the C language. Standard C operator prece-

dence determines the order of evaluation, and brackets can be used to override
the normal ordering. Operators supported are as follows:

72 TDS 224 00 August 1990

6.3 Configuration language 71

Unary: 1 =+ ~
Binary: + = * / % & | ~ && || << >> < <= > >= == I=

Ternary: ?:
All integer arithmetic is carried out to 32 bit precision and also passed as 32 bit
integer values regardless of the processor type, that is, it is independent of the
word length of the processor.
Strings and arrays can be tested for equality in the same way as integer exbres-
sions using the == and != operators.
6.3.6 Arrays
Arrays can be defined of any base or user-defined type. The size and dimen-

sions are specified after the symbol name using the square bracket convention.
Subscripts are numbered from zero. Values are stored in row order.

All elements in constant arrays must be of the same type and for multidimensional
constant arrays the dimension size of all the subarrays must be consistent.

Arrays are commonly used to define the basic elements of the hardware and
software networks. For example:

processor grid[4]:;

process slave[4]:;

Elements of arrays can be referenced by specifying the subscript either after the
array name or after the array declaration. For example:

val y x[i];

val x {1, 2, 3}[i];

6.3.7 Conditional statement

The if. . .else statement controls the execution of the succeeding statement.
The syntax of the statement is as follows:

if exp statement[else statement];

where: exp is any valid expression.

72 TDS 224 00 August 1990

72 6 Configuring transputer programs

statement can be a single statement or a group of statements.

if is commonly used to exclude part of a network from a replicated declaration.
For example:

T414 (memory=1M) grid[4];
edge freelink[4];
rep 1 =0 to 3

{
connect grid[i].link[2] to grid[i].link[3]:;

if (1 == 0)
connect grid[i].link[1l] to host;
else

connect grid[i].link[1l] to freelink[i];
}

if can also be useful to selectively place processes on specific types of pro-
cessors, for example:

if remote.memory >= 2M
place master on remote;
else
place master on root;

This places the master process on processor remote only if the processor is
equipped with at least 2 Megabytes of memory.
6.3.8 Replication

The rep statement replicates the succeeding statement or group of statements.
rep is a counted loop in which the control bounds are integers or integer ex-
pressions.

The rep statement has two syntactic forms in which the number of replications
is specified either by a range of values or by an initial value followed by a count:

rep index = exp to exp statement

rep index = exp for exp statement

72 TDS 224 00 August 1990

6.4 Network definition 73

For example:

rep i = 0 to 9
{
}

rep i = 0 for 10

{
}

If the range or count is zero the succeeding statement or group of statements is
not executed.

Replication is commonly used to define regular networks such as grids, rings,
and hyper-cubes and to place processes on them. It can be used for both
hardware and software networks.

The following example of the use of rep connects four T414 transputers in

a square-array and places the same process on each. The processors are
connected to their neighbours via links 2 and 3; links 0 and 1 processor are left

unconnected:

T414 (memory=1M) grid[4];

rep 1 = 0 to 3
connect grid[i].link[2] to grid[i].link[3];

process slave[4]

rep i = 0 for 4
place slave[i] on grid[i];

6.3.9 Predefined functions

The function size (array) is predefined. size returns the number of elements
in its array argument. If the argument is not an array then size returns the

value 1 (one).

6.4 Network definition

Software and hardware networks are defined using a common syntax based on
the declaration of nodes and their interconnection by language statements.

72 TDS 224 00 August 1990

74 6 Configuring transputer programs

6.4.1 Nodes

Nodes are a generic network type from which the software node type process
and hardware node type processor are derived. Although not a formal part
of language syntax, process and processor types are predefined in a configu-
ration defaults file input by the configurer and can be used as though they are
defined in the language. Definitions of all the predefined types can be found in
section C.3.2.

Nodes are associated with a number of attributes, the exact number and na-
ture of which depends on the common attribute element. Elements of type
processor imply the presence of the type and memory attributes, and ele-
ments of type process imply the existence of a set of runtime process attributes
such as interface parameters, priority of execution, memory requirements, and
program memory segment ordering.

Node attributes can be accessed in expressions using the dot convention and
can be used to control the configuration. For example:

if (remote.memory >= 2M)
place p on remote;
else
place p on root;

Process and processor attributes are described in more detail below.

6.4.2 New node types
Refinements of existing node types can be created by using the define state-

ment to specify nodes with specific attributes. For example, the predefined node
types process and processotr are defined in the following way:

define node(element="processor") processor;

define node (element="process") process;

Node types can be used to define other types. For example, the base type
processor can be refined into a TRAM definition in the following way:

define processor(type = "T414") T414;

define T414 (memory = 1M) B403;

New software node types can be defined in the same way. For example:

72 TDS 224 00 August 1990

6.5 Software network description 75

define process(stacksize = 10K,
interface (int count,
input command,
output result)) workpackage:;

Once defined, new types can be used to declare variables in the same way as
base types. For example:

T414 worker;
B403 root;

workpackage slave[4]:

6.4.3 Connections

Nodes are connected by the connect statement which can be used to join soft-
ware channels (unidirectional), transputer links (bidirectional), or network edges
(bidirectional). The statement has two equivalent syntactic forms:

connect item to item [by connection]

connect item, item [by connection]

Examples of the use of connect can be found in succeeding sections.

Prohibited connections

Connecting processes to processors, inputs to inputs, and outputs to outputs
(except channel to edge connections) is prohibited and generates a configurer
error.

Connections can also be named for later use in the configuration, using the
connection type.

6.5 Software network description

The software network is composed of nodes of the predefined type process
connected by input and output channels. The software description consists of a
series of process declarations along with the program statements that connect
processes together and define the network’s interface with the outside world.
A separate statement is used to assign compiled and linked modules to the
software processes.

72 TDS 224 00 August 1990

76 6 Configuring transputer programs

A typical process declaration would be as follows:

process (stacksize=2K,
interface(int count, input in)) p;

6.5.1 Process attributes

Each process possesses a set of attributes some of which must be given val-
ues in the process declaration; others are optional with built-in defaults. The
attributes of a process are as follows:

stacksize The size of stack required for the process in bytes. Must be
specified.

heapsize The size of heap required for the process in bytes. Must be
specified.

interface The list of parameters to the process. Should be specified
if external communications are required.

priority The execution priority for the process. Priority can be HIGH
or LOW. Optional.
order The ordering of program segments in memory. Segments

which can be ordered are code, stack, static, heap,
and vectox. Optional.

6.5.2 Stack and heap size

For C programs stacksize and heapsize are mandatory. The sizes of the
program segments code, vector, and static are fixed by the compiler and
linker.

6.5.3 Interface

The interface attribute is mandatory and defines the way in which the process
‘interacts with the outside world or other processes via a set of parameters. The
parameters can be read by a source program using the runtime library function
get_param.

Parameters can be input channels, output channels, simple datatypes, and ar-
rays of these. Permitted datatypes for the parameters are int, char, float,
and double. Strings are defined as arrays of characters and may be initialised
by a quoted string constant.

72 TDS 224 00 August 1990

6.5 Software network description 77

Each input channel can only be connected to an output channel on another
process and vice versa for output channels. The rules for connecting channels
to software network edges is described in section 6.5.8.

Values can be defined for interface parameters either by assigning a value in the
process declaration or by a separate statement. For example:

process (interface (int count = 10,

input command,

output result)) task;
* count defined at declaration as 10 *\
task (count = 100);

* count redefined as 100; this value for count
remains in force until redefined again *\

Values given to parameters may also be derived from a replicator count using
an expression including the index variable.

Array parameters

When assigning parameters which are numeric arrays it is not possible to assign
individual elements of the array but only the complete array. For example:

x(y = {0,1,2,3})

get_param function

A special library function get_paramis provided to receive the process interface
parameters within the C program. The function returns pointers to the parameters
and is used to retrieve them from the configuration code.

Details of the function’s operation can be found under the function description in
the accompanying Reference Manual.

Host server channels

For C programs which use the host file server the first scalar input channel and
the first scalar output channel in the list of parameters must be the host server
channels. It should be noted that it is the programmer’s responsibility to ensure
the channels are constructed correctly and declared in the configuration. The

72 TDS 224 00 August 1990

78 6 Configuring transputer programs

server channels, like other interface parameters, can be accessed by calling
get_param.

For programs linked with the reduced library there is no access to the server
and therefore the server channels are not required. In this case all channels
declared in the interface definition are those defined for use in the program.

Note: The first arrays of input and output channels defined in the interface def-
inition are passed into the main entry point as arrays of pointers to channels.
However, they are still accessible through get_param and this is the recom-
mended way of retrieving them.

6.5.4 Execution priority

Runtime priority for the process can be set high or low by specifying

priority=BHIGH or priority=LOW. The default is LOW priority.

6.5.5 Segment ordering

The order in which the four program segments are placed in transputer memory

can be changed by specifying an ordering priority for each or any of the four

code segments. The default is no segment ordering.

The syntax for the order attribute is as follows: ‘
order ({segment = value})

where: segment is one of: code stack vector static heap
value is the ordering priority and can take any integer value. Positive val-
ues indicate placement higher in memory and imply lower speed access;
negative values indicate lower memory placement and imply higher speed
access. The lower the placement, the greater the chance that code will

be placed in on-chip RAM, which has the fastest access.

If no order is specified a default segment ordering is applied. Details of the
ordering can be found in section 12.3.7.

72 TDS 224 00 August 1990

6.5 Software network description 79

6.5.6 Defining new process types

Specific process types can be defined and used later in the program with dif-
ferent actual parameters. For example, the following code defines a process
type £ilter which is later used to declare three filter processes with differ-
ent values for the cuto££ parameter. The processes are configured to form
a pipeline starting and finishing at the host. The connection statements linking
interface thannel variables to host channels are shown for completeness. The
host channels are assumed to have been defined earlier in the program.

process (stacksize = 200,
interface (input in,
output out, int cutoff)) filter;

filter x, y, z;

x (cutoff = 10);
y(cutoff = 20);
z (cutoff = 10);

connect x.in to from host;
connect y.in to x.out;
connect z.in to y.out;
connect z.out to to_host;

Attributes can also be activated for specific instances of a type by specifying
them within the declaration. In the following example a heap size is defined for
a single instance of the workexr type; no other instances are affected and all
other attributes are unchanged:

worker (heapsize = 50K) ant;

Extra attributes can also be supplied in process definitions or in attribute assign-
ment statements. For example:

define worker (heapsize = 20K) small_worker;
small worker drone;

worker bee;
bee (heapsize = 200K);

6.5.7 Input and output channels

Processes which cooperate with each other and exchange data are connected
by channels of types input or output. These channels are equivalent to
channels in source code programs.

72 TDS 224 00 August 1990

80 6 Configuring transputer programs

To send or receive data processes must declare input and output channels. The
sending process must declare an input channel and the receiving process an
output channel. The two channels are then connected by a connect statement.

In the following example a host monitor process host_process sends data
via the output channel £rom_host to the application process p, which receives
it on the input channel in.

process (stacksize = 200,
interface (int count, input in)) p;

process (stacksize = 200,
interface (output from_host)) host_process;

connect p.in to host_ process.from host;

6.5.8 [Edge connections

The software network can be connected to the outside world by channel edges.
Channel edges are input and output channels declared within the software de-
scription and connected to input and output channels of a process. A process
can then import or export data from the software network. Edges are commonly
used for interfacing i/o processes to the host server.

Unlike channels between processes, connections between edges and process
channels must be of the same polarity, that is, an input edge must be connected
to an input channel and an output edge to an output channel. This preserves
the direction of the channel parameter. For example, given the process p in the
above example, the following code creates an interface between p and the host
server:

input from_ server:; /* input edge */
output to_server; /* output edge */
connect p.in to from_ server; /* input path */
connect p.out to to_server; /* output path */

6.5.9 Assigning code to processes
Code is assigned to specific processes by means of the use statement. This

associates a specific object module with a process. The module must be a
linked unit. In the following example the same linked module filter.1lku is

72 TDS 224 00 August 1990

6.6 Hardware network description 81

assigned to each of three processes:

filter x, y, z;
use "filter.lku" for x;

use "filter.lku" for y;
use "filter.lku" for z;

Linked units can also be associated with process types. This allows the same
code to be assigned to several processes in a single statement. For example:

filter x, y, z;

use "filter.lku" for filter;

6.6 Hardware network description

Hardware networks consist of nodes of type processor connected by pro-
cessor links. The hardware description contains declarations of processors on
the network along with the connect statements that join them by their processor
links.

Processors have two user-definable attributes:

type The processor type. INMOS standard transputer types are
predefined.
memory The amount of memory available to the processor.

All attributes can be specified when the processor is declared.

Links are special attributes of processors that predefined within the language.
Once the type is defined all processors declared using that name acquire the
appropriate number of links. Link attributes cannot be changed.

Links can be connected to links on other processors or mapped onto software
channels.

A typical processor declaration would be:

processor (type = "T414", memory = 1M) root;

72 TDS 224 00 August 1990

82 6 Configuring transputer programs

6.6.1 Processor links

The number of links on each processor type is predefined within the configurer
via the processor type attribute. The value of this attribute is defined for all
INMOS transputer types listed in the standard include file setcon£. inc.
Links are referenced using the dot notation and can be treated as arrays. For

example, the size () function can be used to determine the number of links on
a processor:

8ize (T414.1ink)

6.6.2 Defining new processor types
Processor types can be defined for later use in a program. In the following
example the processor type T800 is first defined and then used to define a
further processor type called B405 which is a T800 with a set amount of memory.
This definition corresponds to the INMOS iq systems IMS B405 TRAM product.
define processor(type = "T800") T800;
define T800 (memory = 8M) B405;
Certain processor types are predefined in the configurer by the automatic in-
clusion of the setcon€£. inc file at startup. The file provides definitions of all
transputer types manufactured by INMOS along with other predefinitions.

Predefined types can be used as though they are part of the language and do
not need to be referenced by an include statement.

The definitions are listed in section C.3.2.

6.6.3 Links

Processors are connected to each other by processor links. The number of links
is defined by the processor type. Link numbers begin at zero.

Links can only be connected to one other link (or network edge, see below).
Links can be left unconnected.

Links are specified using the dot convention as in C structures. They can also
be subscripted as though they are arrays. For example:

connect root.link[2] to transputerl.link[O0]

72 TDS 224 00 August 1990

6.7 Mapping description 83

6.6.4 Edges

Edges are hardware network variables which bring transputer links out of the
network for connection to the outside world, that is, to external devices or other
networks. They are directly analogous to channel edges in software networks.
Edges have the same characteristics as processor links. Edges can only be
connected to other transputer links.

In the following example an edge is declared which allows a processor in a
hardware network to input data from an A-to-D convertor:

T414 data_handler;

edge a_to_d;

connect data_handler.link([l] to a_to_d;
A special edge called host is predefined in configurer defaults file and can be
used without defining it in the program. In networks that will be loaded from

a host system, there must be one, and only one, processor link connected to
host.

Arrays of edges can be useful constructions. In the following example an array
of edges is declared for a series of sampling lines and then connected to three

links of a processor which logs the data from each line. The remaining link is
used to boot the processor.

edge samplers[3];

rep i = 0 to 2
connect data_logger.link[i] to samplers[i];

6.7 Mapping description

The mapping description defines how processes and channels declared in the
software description should be assigned to processors and links defined in the
hardware description. Assignment is performed in both cases by the place
statement:

place process on processor;

place channel on link;

72 TDS 224 00 August 1990

84 6 Configuring transputer programs

6.7.1 Placement of channels

The configurer automatically places software channels on links using the place-
ment of processes processors as a guide. Explicit placement of channels on
links is only required where links are used for special purposes, for example,
connection to a device, or where an application uses input and output channels
separately, as in software implementations of high-speed links.

The configurer also performs automatic placement of one end of a connection if
the other end is explicitly placed.

Predefined connection names can also be used to place named channels on
named links. For example:

connect root.link[0] to host by root_linkO_host’

connect master.ts to to_server by master_ts_to_server;
connect master.fs to from_server by master_fs_from_ server;

place master_ts_to_server on root_link0O_host;
place master_fs_from_ server on root_linkO_host;

Note that the order of automatic channel placements is defined by the order of
the elements in the connect statements. In the above example the placements
would be as follows:

place master.ts on root.link[O0];
place master.fs on root.link[0];

place to_server on host;
place from server on host;

6.8 Software network example

In the following example the software network consists of an i/o process
host_process and a worker process task connected by the channels in
and out. Two processors root and processorl joined by a single link con-
nection form the hardware network. The root processor is already connected to
the host via link zero. The mapping description places each process on one of
the processors and assigns channels between the processes to the appropriate
links:

connect host_process.out, task.in;
connect host_process.in, task.out;

72 TDS 224 00 August 1990

6.9 Terminating configured processes 85

connect root.link[l] to processorl.link[O0];

place host_process on root;
place task on processorl;

6.9 Terminating configured processes

Configured processes (processes that have been configured on a processor by
icconf£) cannot use exit to terminate the program. In the case of configured
processes exit merely terminates the process from which it is called; it does
not affect the server and other processes will continue to run.

To terminate the server from a configured process use exit_terminate,
which shuts down the server and terminates the program. Details of the function
can be found in chapter 2 of the accompanying Reference Manual.

Configured processes which use the reduced library cannot terminate the pro-
gram (even by using exit_terminate) because they have no link with the
server. In these cases a call to exit_terminate has the same effect as
exit.

6.10 Checking the configuration

Configurations may be checked against the hardware on a transputer board using
a network check program such as ispy. The ispy program supplied as part
of the board support software for INMOS iq systems products. These products
are available separately from your local INMOS distributor.

6.11 Configuration examples

Note: The examples presented here are simply intended to illustrate the syntax
of configuration language statements and how they are used to form a config-
uration description. They are not intended to be tutorial examples and are not
provided on the toolset examples directory.

Further examples illustrating how to use the configuration language and configure
software on various network topologies can be found on the config examples
subdirectory. This subdirectory contains the program configuration source files
and a number of Makefiles and batch files to assist with program building. A
READ ME file provides a summary of the directory contents, describes the pre-
requisite hardware, and gives instructions on how to build the programs.

72 TDS 224 00 August 1990

86 6 Configuring transputer programs

Note: A thorough knowledge of the way the configuration language defines
software and hardware networks and links them by mapping statements is a pre-
requisite to understanding the configuration model. Readers are recommended
to study the examples at length and be thoroughly familiar with the language
before attempting to write complex configurations.

Example 1 — Single process configured on one transputer.

The following example shows how to configure a program consisting of a single
process on one transputer. The single process contains all the code in the
program including that required for host communication.

/* Hardware description:
declare processor memory size;
connect link 1 to host edge */

T800 (memory = 1M) root;

connect host to root.link[1l];

/* Software description: declare channels;
declare process and interface params;

connect interface to inputs and outputs */

input from_server;
output to_server;

process (stacksize = 8K, heapsize = 50K,
interface (input command,
output reply)) Jjob;

connect from server to job.command;
connect to_server to job.reply;

/* Mapping description:

define object file;

pPlace process on processor;

place channels on edge "host" */
use "job.lku" for job;

place job on root;

place from_server on host;
place to_server on host;

72 TDS 224 00 August 1990

6.11 Configuration examples . 87

Example 2 — Two processes configured on a two-processor network.

The program consists of two processes. One process acts as the interface to the
host (the i/0 process) and the other performs a complex numerical calculation.

The hardware consists of a T425 and a T800 transputer connected together by
a single link. The T425 acts as the root transputer. The i/o process is to be
executed on the T425 and the numerical process on the T800.

/* Hardware description: */

T425 (memory = 1M) root;
T800 (memory = 2M) worker;

connaect root.link[1l] to host;
connect root.link[2] to worker.link[1l];

/* Software description: */

input from_ server; /* input edge */
output to_server; /* output edge */

process (stacksize = 8K, heapsize = 50K,
interface (input command,
output reply,
output feed,
input response)) controller;

connect from server to controller.command;
connect to_server to controller.reply;

process (stacksize = 16K, heapsize = 512K,
interface (input feed,
output response)) task;

connect controller.feed to task.feed;
connect task.response to controller.response;

/* Mapping description: */

use "control.lku" for controller;
use "compute.lku" for task;

place controller on root;
place task on worker;

place from_server on host;
place to_server on host;

72 TDS 224 00 August 1990

88

6 Configuring transputer programs

6.12 Configuration language summary

Numeric types

int
char
float
double

Integer type.

Character type.

Single length fioating point type (IEEE 754).
Double length floating point type (IEEE 754).

Configuration types

node A point in a software or hardware network. Has the general
attribute element (process or processor) and other
specific attributes for software and hardware nodes.

connection | A defined connection type between links or channels.

edge Declares a network edge.

input Declares a software process input channel or edge.

output Declares a software process output channel or edge.

Language constructs

if

rep

connect

place

use

#include

if exp statement else statement

Simple conditional construct. exp can be any valid integer
expression and statement can be the single succeeding
statement or a group of statements. else is optional.

rep index = exp to exp statement
rep index = exp for exp statement

Simple replication construct. Can be controlled by a range
or a count.

connect item to item by connection;
connect item, item by connection;

Joins channels to channels, links to links, channels to soft-
ware edges, and links to hardware edges. by is optional.

place process on processor;
place channel on link;

Assigns a software process to a processor, or a channel to
a link.

use filename for process;
Assigns a linked unit to a process.
#include filename

Includes another source file.

72 TDS 224 00

August 1990

6.12 Configuration language summary 89

Definitions

of the expression.

val val identifier exp;
Defines a numeric constant. The type is deduced from the type

define | define type (attributes) identifier;
Defines a node type. A list of attributes is optional.

Operators
Unary: + - ! ~
Binary: + = * / % & | < >> && || < > <= >=
== I=
Ternary: ?:
Functions

size ’ Returns the size of an array.

Node types

process PROCESS Software process node type.

processor Hardware processor node type.

PROCESSOR

T212 t212 T222 IMS T2 series.

t222

T225 t225 M212

m212

T400 t400 IMS T4 series.

T414 t414

T425 t425

T800 t800 IMS T8 series.

T801 t801

T805 t805

Constants

HIGH, high The integer constant 0 (zero). Used to indicate
a high priority process.

LOW, low The integer constant 1 (one). Used to indicate
a low priority process.

TRUE, true The integer constant 1 (one).

FALSE, false The integer constant 0 (zero).

Edges

host The host link or channel.

72 TDS 224 00

August 1990

90 6 Configuring transputer programs

72 TDS 224 00 August 1990

7 Loading transputer
programs

‘ This chapter explains how to load programs onto single transputers and trans-
puter networks. It briefly describes the format of loadable programs and intro-
duces the program loading tools iserver and iskip. The chapter goes on to
explain how to load programs for debugging and ends with an example of skip
loading.

7.1 Introduction

Transputer programs are loaded onto transputer boards with the iserver tool
which installs code on each processor using processor and distribution informa-
tion embedded in the executable file. The executable file consists of code to
which bootstrap information has been added to make the program self-booting
on the transputer. Self-booting executable code is also known as bootable
code.

Bootable files are generated by icollect from configuration data files (network

programs) or linked units (single transputer programs). Bootable files are gen-

erated with the default extension .bt1 (for loading onto boot from link boards),
. or .btr (for loading onto boot from ROM boards).

7.2 Tools for loading

Two tools are provided to load programs onto transputers and transputer net-
works:

e iserver - the file server and loader tool.

iserver loads the bootable file onto the single transputer or transputer
network and activates the host file server that provides communication
with the host.

e iskip - the skip loading tool.

iskip allows a program to be loaded over the root transputer onto an
external network. The tool is used prior to invoking iserver to start up
a special route-through process on the root transputer that transfers data
between the the network and the host system.

72 TDS 224 00 August 1990

92 7 Loading transputer programs

Skip loading is useful for the post-mortem debugging of programs that use
the root transputer. The root transputer in the network is omitted from
the logical network and the program is loaded onto the first processor
after the root transputer, leaving it free to run the debugger. This avoids
having to debug the code from a memory dump file.

Programs loaded using i skip always require one extra processor on the
network in addition to those required to run the program. For example, a
program written for a single transputer requires at least two processors,
one to act as the root transputer and one to run the program.

7.3 The loading mechanism

In single transputer programs code is loaded onto the first processor on the
network and the program code is then loaded down the host link byte by byte.
If iskip has been used the program is loaded onto the second processor on
the physical network. In multitransputer programs the process is repeated for all
processors on the network until all the code is loaded.

When the code is copied into the transputer’s memory the process boots auto-
matically and the program continues to run until an error occurs or the server
is terminated by pressing the ISERVER interrupt key, usually CTRL-C or CTRL-
BREAK.

7.3.1 Breakpoint debugging

Programs are loaded for breakpoint debugging using the idebug command.
When invoked in breakpoint mode this command incorporates a skip load and
iserver is not required. Because it uses a skip load, breakpoint debugging
requires at least two processors on the network.

For more information about breakpoint debugging and details of the command
syntax see section 15.3.4.

7.4 Boards and subnetworks

There are two basic types of transputer evaluation board: those that boot from
link and those that boot from ROM.

Boot from link boards form the majority of transputer boards in general use. They
are loaded down the link that connects the root transputer to the host using the
iserver tool. Programs intended to run on boot from link boards must consist
of bootable code.

72 TDS 224 00 August 1990

7.4 Boards and subnetworks 93

Examples of boot from link boards supplied by INMOS are the IMS B008 PC
motherboard and the IMS B014 and IMS B016 VMEbus standard interface

boards.

Boot from ROM TRAMSs boards are intended for standalone applications such
as embedded systems.

Examples of boot from ROM products are the INMOS iq systems IMS B418
Flash ROM TRAM and the IMS B016 VME board operating in boot-from-ROM
mode.

7.4.1 Subsystem wiring

Subsystem wiring is the way in which boards are connected together, and de-
termines the manner in which transputer subnetworks are controlled.

Three signals are used to control transputers mounted in a system, namely Re-
set, Analyse, and Error. Together these are known as the System Services. All
INMOS transputer boards use a common scheme for propagating these signals
to other subnetworks. The scheme is as follows.

Each transputer board has three ports for communicating system services from
one board to another. These are Up, Down, and Subsystem. Up is the input
port, used to control the board from an external source; Down and Subsystem
are both output ports and are used to propagate the Up signal to other boards
or subnetworks.

The Down and Subsystem ports work in the following ways:

Down propagates the Up signal unchanged to the next board or subnetwork.
This allows multiple boards to be chained together by connecting successive Up
and Down ports and the whole network can be controlled by a single signal.
Subsystem transfers control to the board, allowing subnetworks downstream of
the board to be independently reset, analysed, and their error flags read, under
the control of the root transputer on that board.

7.4.2 Connecting subnetworks

Multiple transputer systems can either be controlled by the host computer or by
a master transputer controlled by the host computer.

In a typical multitransputer system the root transputer's Up port is connected to
the host computer so that it can control the loading of programs and monitor

72 TDS 224 00 August 1990

94 7 Loading transputer programs

errors on the network. The first processor in the subnetwork is connected to
either Down or Subsystem depending on the application, and other processors
on the network are chained together via their Up and Down ports.

In a simple application requiring multiple transputers, the subnetwork would nor-
mally be connected to Down on the root transputer. This would allow the host
computer to reset the whole network in a single operation and to monitor the
error signal on any transputer in the network.

A more complicated application may require several programs to be loaded onto
the subnetwork under the control of the root transputer. Here the subnetwork
would be connected to Subsystem so that the root transputer could repeatedly
reset and re-load the subnetwork. Any errors in the subnetwork would be de-
tected by the root transputer through its Subsystem port, and the error would not
be propagated through the Up port to the host computer. Reset and Analyse
signals are propagated through to the Subsystem port, but the error signal is not
relayed back.

7.5 Loading programs for debugging

Special debugger and server options must be used for the debugging of pro-
grams running on transputer boards. The options vary with the subsystem wiring,
the board type, and whether or not the program uses the root transputer. The
effects of subsystem wiring are described above; the effects of board type and
program mode are described in the following sections.

Commands to use for various combinations of subsystem wiring, board type, and
program mode, are listed in Table 15.2.

7.51 Board types

Some early INMOS boards of the B004 type, unlike later TRAM-based boards,
do not propagate Reset through to the Subsystem port. On these boards the
‘SA’ iserver option must be supplied on the debugger command line to reset the
network.

7.5.2 Use of the root transputer
The use made of the root transputer by the program changes the procedures
you must use in post-mortem debugging. This is because the debugger program

executes on the root transputer and any application code becomes overwritten
when the tool is invoked.

72 TDS 224 00 August 1990

7.6 Example skip load 95

Two procedures can be used to load and debug code running on the root trans-
puter:

1 Programs can be loaded in the normal way using iserver and the
program image in the root transputer's memory saved to a file. The
code running on the root transputer is then debugged from the dump file.
Code running on the rest of the network is debugged in the normal way
by reading the transputer memory directly down the transputer links.

The dump file is created by invoking idump. The debugger is subse-
quently invoked using the debugger ‘R’ option that directs it to read the
dump file.

Note: On boards that contain only one transputer this method must be
used.

2 Programs can be loaded over the top of the root transputer by invoking
the iskip tool before iserver. This leaves the root transputer free
to run the debugger. The program can then be debugged down the root
transputer link in the normal way.

If iskip is used an extra processor is required over and above those
required to run the application program.

Programs configured for a subnetwork that does not include the root transputer
can be loaded with iserver and debugged down the root transputer link using
the debugger ‘T’ option.

Detaiils of the procedures to use for loading and debugging all types of transputer
programs can be found in section 15.2.

7.5.3 Analyse and Reset

Care must be taken that Analyse or Reset are only asserted once on a network
that is to be debugged, or incorrect data will be obtained. To ensure this the

debugger should be invoked using the standard command sequences given in
Table 15.2.

7.6 Example skip load

This section shows how to load a program into a network over the root transputer
using the iskip tool.

72 TDS 224 00 August 1990

96 7 Loading transputer programs

7.6.1 Target network

The program to be loaded is configured for a target network consisting of two
T800 processors mounted on a B0O08 motherboard. The target network is con-
nected to a T414 processor in slot zero acting as the root transputer, and the
two T800 processors are connected by a single link.

The target network and its connections are shown schematically below.

target network
host computer root transputer ¥ ¥

host host | link skip link 2 processor| |processor
file process 1 2
server

7.6.2 Loading the program

The file twinprog.btl contains the bootable program.

To prepare the board for running the program on the target network, invoke
iskip using one of the following commands:

iskip 2 -r -e
iskip 2 /r /e

This sets up the system to direct the program to the target network over the top

of the root transputer and starts the route-through process on the root transputer.

Options ‘r’ and ‘e’ respectively reset the target network and direct the host file

server to monitor the halt-on-error flag.

The program can then be loaded using one of the following commands:
iserver -ss -se -sc twinprog.btl (UNIX)
iserver /ss /se /sc twinprog.btl (MS-DOS and VMS)

7.6.3 Clearing the network

On transputer boards error flags can be cleared using a network check program
such as ispy. (Error flags can become set when the board is powered up).

72 TDS 224 00 August 1990

7.6 Example skip load 97

The ispy program is provided as part of the board support software for INMOS
iq systems products. These products are available separately through your local

INMOS distributor.
. An alternative to using a network check program is to load a dummy process
onto each processor. In the act of loading the process code the error flag is

cleared. This method is described in section 15.3.4.

72 TDS 224 00 August 1990

98 7 Loading transputer programs

72 TDS 224 00 August 1990

8 Debugging transputer
programs

This chapter describes the facilities of the toolset debugger idebug and shows
how they can be used to debug transputer programs in a systematic way. It
explains how the debugger can be used in two ways (post-mortem and interac-
tive) to analyse transputer programs and describes the two levels of debugging
(symbolic and Monitor page). The chapter includes examples to illustrate the
debugging facilities and demonstrate debugging techniques, and ends with a list
of points to note when using the debugger.

8.1 Introduction

The network debugger idebug is a comprehensive debugging tool for transputer
programs. It can be run in post-mortem mode to deteérmine the cause of failure
in a halted program, or in interactive mode to execute a program stepwise by
setting breakpoints in the code. In either mode programs can be debugged from
source code using the symbolic functions or from the machine code using the
Monitor page commands. The two environments can be invoked from each other
at will.

Post-mortem debugging allows programs to be examined for the cause of failure
after halting the transputer on error. The debugger locates the errant process
in the program either by direct examination of the program image in transputer
memory or by reading memory dump files. Processes running in parallel with
the errant process can be examined anywhere on the network.

Breakpoint debugging allows programs to be executed in a stepwise manner
under interactive control. Breakpoints can be set within the code to cause the
program to pause for the inspection of variables, channels, and processes; vari-
ables can be modified and the program continued with the new values.

The debugger can also be invoked on a dummy network to examine the static
features of a program. The dummy network simulates the contents of memory
locations and registers, and can also be used to explore the features of the
debugger without running a real program.

8.1.1 Debugging with isim
The transputer simulator tool isim can also be used to debug transputer pro-

grams from a low level environment. Using a similar environment to the de-
bugger Monitor page transputer memory can be examined, breakpoints set, and

72 TDS 224 00 August 1990

100 8 Debugging transputer programs

programs executed by single stepping.

The debugging facilities of the simulator are briefly described in this chapter
(section 8.12). Details of how to use the simulator tool can be found in chapter 24.

8.2 Programs that can be debugged

The debugger can analyse programs running on transputers that are either di-
rectly attached to a host through a server program, or connected to the host
via a root transputer. The debugger runs on the root transputer and networks
to be debugged must incorporate a 32-bit transputer at the root. If breakpoint
debugging is used the transputer network must contain at least two processors,
because the root transputer is dedicated to running the breakpoint debugger.

8.3 Compiling programs for debugging

Programs to be debugged should be compiled with full debugging information
enabled.

8.3.1 Symbolic debug information

Full debugging information, necessary for debugging, is selected by specifying
the compiler ‘G’ option when the program is compiled.

By default icc generates object files containing minimal symbolic debug infor-
mation. This is in order that object modules, especially those intended to form
libraries, are kept as small as possible. Minimal debug information enables the
debugger to backtrace out of a library function to a module compiled with full
debug information.

Note: The object code produced with minimal debug information contains certain
optimisations that are absent in code generated with full debugging information
enabled. As a consequence the object code produced may be different.

8.3.2 Error modes

C programs are compiled in toolset error mode UNIVERSAL, which enables
them to be mixed freely with modules compiled in other modes (HALT or STOP)
using other INMOS language toolsets. The programmer need take no special
action to ensure complete compatibility with other INMOS compilers.

The error mode of a mixed language program may be changed at link time; the

72 TDS 224 00 August 1990

8.4 Debugging configured programs 101

linker default is to generate HALT code, which is the recommended mode for
debugging.

Further information about link error modes can be found in section 20.4.2.

8.4 Debugging configured programs

Configured programs (programs created from a configuration description by
icconf), must be processed using the configurer ‘G’ option to generate de-
bugger compatible information.

8.5 Post mortem debugging

Post-mortem debugging refers to the analysis of stopped programs, that is, pro-
grams that have failed to run correctly and set the transputer error flag. Programs
that are to be debugged in this mode should be configured in HALT mode so that
the processor halts when the flag is set, and they should be loaded by iserver
so that the error flag is monitored, by specifying the ‘SE’ option.

Post-mortem debugging can also be used to debug programs that have been
explicitly interrupted by the host system BREAK key. To interrupt a program, for
example when a program 'hangs’, press the BREAK key, which stops the server
but not the program, and then invoke idump to take a snapshot of the running
program. Invoking idump stops the program by sending an Analyse signal to
the transputer in order to take a snapshot of its current activity.

Automatic error checking, for example of array indices, is not provided in C and
this makes it difficult to cause a C program to HALT when an error occurs. This
restricts somewhat the usefulness of post-mortem debugging in C, but can be
used if programs are halted explicitly by using the debugging support functions
(see section 8.11) or the library functions abort and assert (see below).

Breakpoint debugging with its associated debug support functions is a more
flexible approach and is the recommended method for debugging C programs if
possible.

Using abort to halt a program

The aboxrt function can be enabled to halt the processor by calling the auxiliary
function set_abort_action. This enables a backtrace to be performed to
the point in a program where the error occurred, without the need to modify all
of the assert statements in a program.

72 TDS 224 00 August 1990

102 8 Debugging transputer programs

The technique is illustrated in the following example:

/*t*************************************
*
Debugger example: abort.c

Example of forcing a C program to HALT the
processor for post-mortem analysis regardless
of the error mode it has been configured in.

*
*
*
*
*
*
* Use of the debug support functions is encouraged

* as an alternative (see debugger example file debug.c
* for details).

*

*

**************************************/

#include <stdio.h>
#include <stdlib.h>
#include <misc.h>
#include <assert.h>

int
main (void)

{

/* 0 will cause assert () to fail assertion test */
int x = 0;

printf ("Program started\n");

/* override normal abort action */
set_abort_action (ABORT HALT);

printf ("Program being halted by assert ()\n");
assert (x);

printf ("Program being halted by abort ()\n"):;
abort ();

8.5.1 Program loading

Programs which run on the root transputer, or which use the root transputer to

run part of a multiprocessor program, must be debugged from an memory image .
of the transputer. This is necessary because the debugger executes on the root
transputer and overwrites the code in the transputer's memory.

72 TDS 224 00 August 1990

8.6 Breakpoint debugging 103

The memory dump is performed using the idump tool after the program has
failed and before the debugger is invoked with the ‘R’ option. Details of how to
invoke the idump tool can be found in chapter 16.

Alternatively the program can be skip loaded onto the next processor on the
network, avoiding the root transputer. This requires one extra processor on the
network over and above the number needed to run the program. Skip loading is
described in chapter 25.

If only one transputer is available, for example on single-transputer boards, the
memory dump method must be used. If more than one transputer is available
skip loading is the recommended method since it is a quicker operation.

8.6 Breakpoint debugging

Breakpoint debugging allows programs to executed under interactive control us-
ing breakpoints set in the code. Breakpoints can be set on any line of source.
Symbolic and Monitor page facilities can be used to examine code, inspect vari-
ables, jump down channels to other processes or processors, and determine
the state of the network. Special symbolic functions and Monitor page com-
mands, only available in breakpoint mode, support the modification of variables
and memory locations and the restarting of programs from the breakpoint or from
other points in the code.

8.6.1 Runtime kernel

The breakpoint debugger places a special runtime kernel on each processor in
addition to the application bootable code. This kernel provides a virtual commu-
nication network to enable the debugger to transparently share transputer links
with the application in addition to providing a breakpoint handler to deal with
breakpoints, errors, inspection of processor state etc. The scheme is illustrated
in Figure 8.1.

Note: The debugging kernel places the transputer into Halt-On-Error mode re-
gardless of the error mode of the program. This means that during breakpoint
debugging a transputer will always HALT when an error occurs.

The runtime kernel requires a certain amount of memory on each processor, the
exact amount differing slightly between processor types. The size of the kernel
on each transputer type is given in Table 8.1.

Apart from the extra memory required, the kernel is transparent to the application
program if processes on different processors communicate with each other in the

72 TDS 224 00 August 1990

104 8 Debugging transputer programs

Without debugging With debu?ging
kernel 0 kerne l 0
3| /Runtime™ |1
_3l{ user \1 Yy T
process 1]
/ User
2 Transputer Transputer

Figure 8.1 Debugger runtime kernel

Processor | Kernel size | H/'W support
M212 10K No
T212 10K No
T222 10K No
T225 12K Yes
T414 12K No
T800 12K No
T400 14K Yes
T425 14K Yes
T801 14K Yes
T805 14K Yes

Table 8.1 Runtime kernel size and processor breakpoint support

normal way using channels supplied by the configurer (maximum of four input
and four output per processor).

Note: To allow breakpoint debugging to function correctly a program must not
place channels explicitly onto processor link addresses. Programs that do so
may introduce conflict with the runtime kernel, which also uses the external links.
Programs currently coded in this way should be recoded to pass in external
channels, otherwise breakpoint debugging may not be used.

8.6.2 Hardware breakpoint support

Certain transputers have built-in instructions for breakpointing (see Table 8.1).
For those processors without hardware breakpoint support, breakpoints should
not be set within high priority processes because the mechanism used to im-
plement breakpoints causes high priority processes to lock the processor and
disable all communications to the processor via the runtime kernel.

The effect on the network of setting such a breakpoint will depend on the position

72 TDS 224 00 August 1990

8.6 Breakpoint debugging 105

of the processor in the network hierarchy but in any event should be avoided. The
debugger is unable to check the validity of breakpoints and it is the programmer’s
responsibility to ensure correct operation on processors without direct hardware
breakpoint support.

8.6.3 Compiling the program

All modules in the program must be compiled in the same or a compatible mode.
Modes are checked at link time and if incompatibilities are found the link is
aborted.

8.6.4 Loading the program

Breakpoint debugging does not require special loading or memory dump proce-
dures because the program is automatically skip loaded by idebug. However,
breakpoint debugging does require one extra processor on the network because
the root processor is dedicated to running the breakpoint debugger program.

8.6.5 Clearing error flags

If either iserver or idebug detect that the error flag is set immediately a
program starts executing it is likely that the network consists of more processors
than you are currently using and that one or more of the unused processors
has its error flag set. (Error flags can become set when transputer boards are
powered up).

On transputer boards error flags can be cleared by running a network check
program such as ispy. This ensures a clean network on which to load the
program.

The ispy program is provided as part of the board support software for INMOS
iq systems products. These products are available separately through your local
INMOS distributor.

An alternative to using a network check program to clear the network is to load
a dummy process onto each processor. In the act of loading the process code
the error flag is cleared. This method is described in section 15.3.4.

8.6.6 Breakpoint functions and commands

Several symbolic debugging functions and Monitor page commands are only
available in breakpoint mode. The commands available are summarised below.

72 TDS 224 00 August 1990

106 8 Debugging transputer programs

Symbolic functions Monitor page commands
TOGGLE BREAK| | Set/clear breakpoint. Breakpoint menu.
RESUME] Execute from breakpoint. Execute program.
Execute from current line. @ Show debug messages.
Modify variable. Update register display.

Write to memory.

8.6.7 Breakpoints

Breakpoints can be set, cleared, and listed using Monitor page commands, and
set/cleared using symbolic functions.

Breakpoints can be set at any point in a process running on any processor. At
each breakpoint (or on error) the process pauses and the source code may be
displayed.

Note: When a process is paused at a breakpoint or error other parallel processes
in the program continue to run.

Breakpoints can be set at code entry points, or on any line of source code. Vari-
ables within scope at the breakpoint can be modified and the process restarted.
Breakpoints can also be set at the Monitor page but care should be taken not
to set breakpoints at addresses that do not correspond to the start of a source
code statement, otherwise the behaviour is undefined.

Setting breakpoints at symbolic level is the recommended method.

8.7 Program termination

Program termination is signalled to the debugger by the termination of iserver.
This is performed automatically by the C runtime system. If the program contains
independently executing processes which do not require communication with the
server the debugger may be resumed to interact with these processes.

To run or debug the program again it must be reloaded onto the transputer using
iserver, or idebug in breakpoint mode.

72 TDS 224 00 August 1990

8.8 Symbolic facilities 107

8.8 Symbolic facilities

Symbolic debugging is debugging at source code level using the symbols defined
in the program for variables, constants, and channels. Features provided in
symbolic debugging include the examination of source code, the inspection of
variables and channels, and the backtracing of procedure calls. A number of
special breakpoint functions are available if the debugger is invoked in breakpoint
mode.

Source level debugging is accessed through symbolic functions mapped to spe-
cific keyboard function keys. Keyboard layouts for specific terminal types can be
found in the Delivery Manual that accompanies this release.

The main symbolic debugging activities and the functions that are used to access
them are described in the following sections.

8.8.1 Locating to source code

Locating to the source code for a particular process is a crucial procedure in
the debugging process on which other operations depend. For each required
location the debugger must be given a memory address which it uses to locate to
the source. When the required code is located, symbolic functions can be used
to browse the code and inspect variables. Where the source code is unavailable,
for example, libraries supplied as object code with minimal debug information;
the line containing the library call is located to instead.

When first invoked in post-mortem mode the debugger is given the address of
the last instruction executed, which it uses to automatically locate to the relevant
source code. Subsequently for each new point to locate to in the code the
debugger requires a new address which can be supplied by the programmer. A
default address is available by pressing [RETURN]; normally the default address
is the address of the previous location.

Addresses of important segments of code can be determined using the Moni-
tor page commands that display lists of processes waiting on the run queues,
the timer queue, and on the transputer links. Any address in memory can be
specified using the Monitor page ‘O’ command.

Certain addresses are already known to the debugger and can be located to
using symbolic functions without specifying the address or switching to Monitor
page commands. Many of the common operations used during source code
debugging can be performed directly with symbolic functions. They include re-
locating to the previous location and locating to the original error.

The symbolic functions that can be used directly for locating to known areas of

72 TDS 224 00 August 1990

-
o

8 8 Debugging transputer programs

code are listed below.

TOP Locate back to the error, or last source code location.
RELOCATE Locate back to the last location line.

A strategy for debugging multiprocess programs by locating each process in turn
is described later in this chapter in section 8.10.

8.8.2 Browsing source code

Several functions are available for browsing source files once they have been
located. They include functions for navigating files, changing to included or new
files, and string searching. The functions are listed below.

Go to the first line.

Go to the last line.

Go to a specified line.

Search for a specified string.

Enter an included file (one incorporated by #include).
EXIT FILE Exit to the enclosing file.

Display a different file.

8.8.3 Inspecting variables

The values of constants, variables, parameters, arrays, and channels can be
inspected at any point in the code. A special inspect function for channels only
allows the debugger to locate to the process at the end of the channel. Symbols
to be inspected must be in scope with the source line last located to.

Expressions can be used to inspect subsets of an array and to calculate val-

ues involving the inspected item. If the debugger is used in breakpoint mode
variables can also be modified.

For C functions the debugger returns an address and for channels the debugger
checks the channel’s status and displays information about waiting processes.
If no processes are waiting the channel is given as 'Empty’.

The two inspect functions are listed below.

Display the value and type of a source code symbol.
Locate to the process waiting on a channel.

72 TDS 224 00 August 1990

8.8 Symbolic facilities 109

Jumping down channels

The function can be used to locate to a process waiting on a channel.
This is known as ‘jumping down’ a channel and works for channels on the same
processor (internal or soft channels) or channels assigned in the configuration to
transputer links (external or hard channels which connect processes on different
processors together). Debugging can then continue at the waiting process. If
no process is waiting on a channel the channel is given as ‘Empty’.

8.8.4 Tracing procedure calls

Two functions assist in the tracing of function calls. They can be used even if
the source is not present, for example, libraries supplied as object code with
minimal debug information, but in this case the line containing the function call
is displayed rather than the library code itself. Where procedures are nested
successive backtrace operations will locate to the original call. Variables and
other symbols can be inspected at any stage. The two functions are listed
below.

Locate to the procedure or function call.
Reverse the last

8.8.5 Modifying variables

The function allows variables and constants to be changed in transputer
memory and the program continued with the new values. It supports the same
expression language as For further details see chapter 15.

8.8.6 Breakpointing

Symbolic functions are provided for setting and clearing breakpoints, for modify-
ing the value of a variable, and for continuing the program.

Set or clear a breakpoint on the current line.
Change the value of a variable in memory.
Resume the program from the breakpoint.

R
CONTINUE FROM Resume the program from the current line.

72 TDS 224 00 August 1990

110 8 Debugging transputer programs

8.9 Monitor page

The debugger Monitor page is a low level debugging environment which gives
direct access to machine level data. It allows memory to be viewed and disas-
sembled and gives access to information about the processor’s activity through
the display of error flag status and pointers to process queues. Specific debug-
ging operations are invoked by mainly single letter commands typed after the
Option prompt.

8.9.1 Startup display

When first invoked in breakpoint mode, or in post-mortem mode with an invalid
Iptr or Wdesc (see below), the debugger enters the Monitor page environment
and displays information such as the addresses of instruction and workspace
pointers, status of error flags, and information about the processor run queues.
The memory map is also displayed.

If an Iptr or Wdesc is invalid at startup it is marked as invalid.

The Monitor page display differs slightly between post-mortem and breakpoint
modes. In post-mortem mode the display includes the saved pointers for the low
priority process if the processor was running at high priority when analysed; in
breakpoint mode the display does not include these pointers but does include
the contents of the A, B, and C registers, if known. At startup in breakpoint mode
no machine pointers or register values are available (the program has not yet
started) and so no values are displayed.

A typical post-mortem startup display is shown in figure 8.2.

72 TDS 224 00 August 1990

8.9 Monitor page 111

\

Toolset Debugger : V2.00.00 Processor 0 "example" (T800)

Processor State Memory map
Iptr #80003B7A Configuration code : #80000070 - #8000014F (224)
Wdesc #801FFE3D Stack : #80000150 - #8000076F (1568)
Error Set Program code : #80000770 - #80005ASF (21K)
FPU Brror Clear Configuration code : #80005A90 - #80006293 (2052)
Halt On Error Set Freespace : #80006294 - ¥BOL1FFFFF (2024K)
Fptrl (low Empty
Bptrl queue) Total memory usage : 25236 bytes (25K)
Fptr0 (high Empty
Bptr0 queue) On-chip memory (4K) : #80000000 - #80000FFF
TPtrl (timer Empty MemStart : #80000070

Tptr0 queues) Empty
Clockl (low) #000234C5 Debugger has enough memory for 805 processors
Clock0 (high) #008D3152

Error explicitly set, Last instruction was : seterr

\Option (? for help) (A,C,D,E,F,G,HIKLMNOP,QR,TVX?) ? /

Figure 8.2 Example post-mortem Monitor page display for a T800 processor

Iltems displayed on the startup page and their meanings are summarised in Ta-
ble 8.2. Most of the data displayed is common to all transputer types. Where
the display differs for specific processor types and debugging modes, this is
indicated in the table.

Process pointers

Iptr points to the last instruction executed and Wdesc to the process
workspace. Low priority Iptr and Wdesc are also displayed if the processor
was running in high priority mode when it was halted. An asterisk placed next to
either an Iptr or Wdesc indicates an invalid memory location for the process.
‘Invalid’ Wdesc indicates that no process was executing on the processor when
it halted, which may occur in the presence of deadlock.

Practical note: If Wdesc contains the address of ‘Memstart’ it is likely that the
Analyse signal has been asserted more than once on the network. This can
occur on transputer boards where the subsystem signal is asserted on analyse,
as on the IMS B004. For further guidance on the use of such boards refer to
section 15.4.

Fptr and Bptr point to the process run queues, which hold information about
processes awaiting execution. The suffix 1 indicates the high priority queue and
0 the low priority queue. If the front and back pointers are the same then only
one process is waiting; if there are no processes waiting the pointers have no
value and the queue is given as ‘empty’.

72 TDS 224 00 August 1990

112

8 Debugging transputer programs

Item displayed

Description

Iptr

Wdesc
IptrIntSavet
WdescIntSavet
A Registert
B Registert

C Registert

Instruction pointer (address of the last instruction ex-
ecuted).

Workspace descriptor (pointer to process workspace).
Saved low priority instruction pointer, if applicable.
Saved low priority workspace descriptor, if applicable.
Contents of A register, if known.

Contents of B register, if known.

Contents of C register, if known.

Error Status of transputer error flag.

FPU Error Status of FPU error flag (T800 series only).
Halt On Error | Status of halt on error flag.

Fptrl Front pointer to low priority process queue.
Bptrl Back pointer to low priority process queue.
Fptr0 Front pointer to high priority process queue.
Bptr0 Back pointer to high priority process queue.
TPtrl Pointer to low priority timer queue.

TPtxO Pointer to high priority timer queue.
Clockl Value of low priority transputer clock.
ClockO Value of high priority transputer clock.

t Not available in breakpoint mode.
1 Not available in post-mortem mode. Not known in breakpoint mode on
processors with no hardware support for breakpointing.

Table 8.2 Items displayed at the Monitor page

Tptrl and TptrO0 are pointers to the high and low priority timer queues re-
spectively.

Registers

In breakpoint mode only, the contents of the transputer registers Areg, Breg,
and Creg are displayed for those processors which have built in instructions for
breakpoint handling. Values displayed are those which were current when the
process stopped.

72 TDS 224 00 August 1990

8.9 Monitor page 113

Error flags

Two flags are displayed for all processors: Error and Halt-on-error. The FPU
Error flag is also displayed for transputers with an integral floating point unit (IMS
T800 series). .

Clocks

Clockl and ClockO0 display the values of the low and high speed transputer
clocks when the process was stopped. In breakpoint mode the clock values (and
queue pointers) can be updated using the Monitor page ‘U’ command.

Memory map

The memory map display is included on the standard startup display, as though
the Monitor page ‘M’ option had been automatically invoked. Any or all of the
following memory segments may be displayed, depending on the application
program and its configuration:

Runtime kernel / Configuration code
Stack

Program code

Vectorspace

Static area

Heap area

Configuration code

Freespace

8.9.2 Monitor page commands

Most Monitor page options are single-letter commands that you type in at the
Monitor page Option prompt. A few commands are mapped onto specific func-
tion keys. The commands that support breakpoint debugging are only available
when the debugger is invoked in breakpoint mode.

The main Monitor page commands allow you to disassemble and display trans-
puter memory, locate and debug processes, and examine the network processor
by processor.

The main commands for common debugging operations are introduced in the
following sections. Full details of all the commands can be found in chapter 15.

72 TDS 224 00 August 1990

114 8 Debugging transputer programs

Examining memory

Specific segments of transputer memory can be displayed in hexadecimal, ASCII,
or any high level language type, or disassembled into transputer instructions.
The segment of memory to be displayed is specified by a starting address. A
map of the transputer's memory can be displayed giving the positions of code
and workspace. Commands for examining transputer memory are summarised
below.

Display memory in ASCII.

[[ﬂ Disassemble into transputer instructions.

[H] Display memory in hexadecimal.

[Display memory in selected data type.

@ Memory map.
Locating processes
Locating to code for specific processes is one of the major functions available
through the Monitor page. They allow processes other than the stopped or cur-
rent process to be located and examined anywhere on the network. Processes

can be located on the current processor by examining run queues, and on other
processors by jumping down transputer links.

Four commands are used, three to display waiting processes and one to jump
to the selected code of a process displayed by the other three.

|E] Display processes waiting on Run queues.

Display processes waiting on Timer queues.
Display processes waiting on Links.

@ Goto symbolic debugging for the selected process.

These commands can be used in a systematic way to trace all processes on a

network and determine the cause of program failure. The method is explained
in more detail in section 8.10.

Specifying processes

One command allows a specific process to be selected for symbolic debugging.
[O] specify a process for symbolic debugging.

The ‘0’ command is useful for going directly to symbolic debugging for a specific

72 TDS 224 00 August 1990

8.10 A method for debugging halted programs 115

process whose details you have already noted earlier in the debug session.

Selecting processes

The ‘F’ command enables you to select a source file for symbolic display using
the filename of the object module produced for it. This option enables symbolic
locating (for setting breakpoints etc.) without needing to know Iptr and Wdesc
process details (as the ‘G’ and ‘O’ options do).

Other processors
Two commands allow other processors on the network to be examined:

IE] Go to next halted processor.
|E| Go to specified processor.

Breakpoint commands

The following commands support breakpointing. To use the commands the de-
bugger must be invoked with the ‘B’ command line option.

Breakpoint menu.

Jump into and run application program.

El Show debugging messages and prompts menu.

Update processor status display.

Write value to memory.

8.10 A method for debugging halted programs

Most transputer programs consist of several processes running in parallel, either
on the same transputer or on a multitransputer network. The following technique
is offered as a way of debugging halted programs using a systematic method
based on the tracing of all processes in the network. The method can be used
whether the program is running on a single transputer board or on a network of
many processors.

8.10.1 Locating all processes

Processes are located by the debugger using the process Wdesc (Workspace
Descriptor), which is a base pointer for the data and variables that make up the

72 TDS 224 00 August 1990

116 8 Debugging transputer programs

process.
Each process running on a transputer exists in one of several states. In the
systematic method each possibility is explored in turn until the errant process is
found. The possible states for a process are:

o Not yet started.

¢ Running on the processor.

o Waiting on a processor execution queue (Run queue).

o Waiting on a timer execution queue (Timer queue).

o Waiting for communication from another process on the same processor.

o Waiting for communication on a transputer link (Link information).

o Already stopped or terminated.

Running on the processor

For the stopped process the debugger automatically locates to the area of source
code where the error occurred.

Waiting on a run queue

Processes on the run queues can be located by first using the Monitor page ‘R’
command to display the list of waiting processes. A process can then be selected
by pressing ‘G’ (for 'Goto process’), positioning the cursor on the desired process

and pressing [RETURN].

Pointers to the run queues are displayed on the Monitor page and can be used
to determine the overall status of the queue. If pointer addresses are displayed
there are processes waiting. If only a single process is waiting the front and
back pointers have the same value. If no processes are waiting the queue is
given as 'Empty’.

Waiting on a timer queue

Processes waiting for a specified time are placed on the high and low priority
timer queues. These are similar to the run queues except that they are controlled
by the transputer clock.

Processes on the timer queues can be located by using the Monitor page ‘T’

72 TDS 224 00 August 1990

8.10 A method for debugging halted programs 117

command to display a list of processes and invoking the ‘G’ command to locate
to the required process. Pointers to the timer queues are displayed on the
Monitor page and can be used to determine overall queue status.

Waiting for communication on a link

Processes waiting for a hardware communication (input or output on a transputer
link, or an input on the Event pin) can be located by using the Monitor page ‘L’
command to display a list of waiting processes, and invoking the ‘G’ command
to locate to the process. Links where no processes are waiting are given as

‘Empty’.

At most 9 processes can be waiting for a hardware communication, two for each
of the four links and one for the Event pin. Pointers to these processes are held
at special addresses at the bottom of the memory space and are not given on
the Monitor page.

Waiting for communication on a channel

Processes waiting for a internal communication can be located from source level
using the [CHANNEL] If there are no processes waiting on a channel the channel
is given as ‘'empty’.

Processes stopped, terminated or not started

If the running process and all the waiting processes have been found, not forget-
ting all those processes waiting on all the internal channels, then any processes
still unaccounted for must either have finished or failed to start. These remain-
ing processes cannot be located to because there are no Wdescs for them, and
they must be accounted for by a process of elimination.

8.10.2 Locating functions

When a procedure is called, the workspace pointer is moved. If the debugger
locates inside a function then only local variables, and variables declared globally,
are in scope and available for inspection.

To inspect variables or channels not in scope within the function use

the key to locate to a position where the desired variable or channel
is in scope. To relocate into the function again use the key.

72 TDS 224 00 August 1990

118 8 Debugging transputer programs

8.11 Library functions

Three functions are provided in the runtime library to assist with debugging.
debug._stop and debug_assert are used to stop a process, the latter on
a specified condition, and debug_message is used to insert debugging mes-
sages. The functions are accessed by including the header file misc.h.

Function Action

debug_assert | Stops the process and alerts the debugger if the param-
eter condition evaluates FALSE (0).

debug_stop Stops the process and alerts the debugger.
debug_message | Inserts debugging messages in the program.

Details of each of the functions can be found under the function descriptions in
the accompanying Reference Manual.

debug_assert and debug._stop allow a process to be stopped at any point
in the code, where it can then be debugged using the symbolic functions and
Monitor page commands. debug_stop always stops the process whereas
debug_assert only stops the process if the parameter condition evaluates to
FALSE.

The following short example illustrates their use:

/**t****************

*

* Example of debug support furictions when used with
* and without the debugger.

* (see also example file abort.c)

*

*******************/

#include <misc.h>
#include <stdio.h>

int
main (void)

{
/* 0 will cause debug_assert to fail assertion test */

int x = 0;

printf ("Program started\n");

72 TDS 224 00 August 1990

8.12 Debugging with isim 119

debug_message ("A debug message only within the
debugger") ;

printf ("Program being halted by debug_assert ()\n");
debug_assert (x);

printf ("Program being halted by debug_stop ()\n");
debug_stop ():
}

In this example if x is 1 debug_assert evaluates to TRUE and the pro-
gram runs until it encounters debug_stop. If x is set to 0 (as in the ex-
ample) debug_assert evaluates to FALSE and the process stops before it
reaches debug_stop. Code stopped by debug_assert and debug_stop
may be resumed from the line following the call of the debug function by using

the [CONTINUE FROM| key.

debug_message is used to insert debugging messages into the code. Mes-
sages are relayed back to the terminal from any point in the program, even from
code running on distant processors of a network. It can be used to monitor
the activity of outlying processors which are not directly connected to the host.
The display of debug messages at the terminal is controlled by an option on the
Monitor page Breakpoint Menu.

8.11.1 Action when the debugger is not available

If the debugger is not available on the system the debug library functions have
the following actions:

Function Action

debug_assert | Stops the process (also stops the processor if configured
in HALT mode) if the parameter evaluates to FALSE.

debug_stop Stops the process (also stops the processor if configured
in HALT mode).

debug_message | No action.

8.12 Debugging with isim

The T425 simulator isim provides a single processor interactive simulation of a
program running on an IMS T425 transputer, running on a 2 Mbyte boot from link
transputer board, and connected to a host computer through the host file server
iserver. The interactive environment provides a machine level (non-symbolic)

72 TDS 224 00 August 1990

120 8 Debugging transputer programs

environment similar to the debugger Monitor page for debugging programs and
monitoring program execution.

The simulator allows any single processor program to be run and analysed with-
out a transputer board.

All the component parts of a program to be simulated, must be compiled for -

the T425 transputer type (or compatible targets), linked together using ilink
(including libraries), and made bootable using icollect.

Note: The simulator can only be used to simulate single transputer programs.

8.12.1 Command interface

The simulator has a single command interface which corresponds to the de-
bugger Monitor page. Most commands are single letter commands and can be
invoked with a single key press. For a list of commands see chapter 24.

8.12.2 Using the simulator

The simulator can be used in two ways:

o To debug programs by inspection of the transputer and memory, in the
same way as with the debugger. Registers, memory, and machine state
can be examined directly at the Monitor page.

o To monitor the execution of programs using machine level single step
execution and the setting of break points at specific memory locations.
Code can be executed by stepping single instructions.

8.12.3 Program execution monitoring

The simulator provides a number of functions that can be used interactively to
monitor and control the behaviour of a program. These are:

o Breakpoints
o Single step execution of a program

A program can be stepped a single instruction at a time using the ‘S’ command.

72 TDS 224 00 August 1990

8.13 Debugging example 121

Breakpoints

Breakpoints can be set, displayed, and cancelled using the ‘B’ command to
display the Breakpoint Options Page. '

‘ Single step execution

A program can be stepped a single instruction at a time using the ‘s’ command.

8.124 Core dump file

isim may be used to produce a core dump file that can be read by the debugger
(as if the code had been executed on a real transputer).

8.13 Debugging example

This example illustrates some of the post-mortem and breakpoint features of the
debugger. The debugger is invoked in breakpoint mode.

8.13.1 The example program

. The example program facs.c calculates the sum of the squares of the first n
factorials, using a rather inefficient algorithm. It has been structured this way for
clarity in process structure and to demonstrate parallel processing and debugging
methods. The same program coded in occam is supplied with the occam 2
toolset.

The program incorporates five processes, each coded as a separate function.
The five processes in turn input n, calculate factorials, square the factorials, sum
the squares, and output the result. The program is listed below.

72 TDS 224 00 August 1990

122 8 Debugging transputer programs

/**i*i**i**i*i*****ii*i*********i**iti*t

*
* Debugger example: facs.c

*

* jidebug (and parallel C) example based on similar program
* in occam toolset.

*

* Uses 5 processes to compute the sum of the squares of
the

* first N factorials using a rather inefficient algorithm.
*

* Plumbing:

*

* - > feed -> facs -> square -> sum -> control <-> User
I/0

* | |

**********i****i**i************i*******/

#include <stdio.h>

#include <stdlib.h>
#include <process.h>
#include <channel.h>

const double stop_real = -1.0;
const int stop_integer = -1;

void
ChanOutDouble (Channel *out, double value)

{
}

ChanOut (out, (void *) &value, sizeof (value));

double
ChanInDouble (Channel *in)

{

double value;

ChanIn (in, (void *) &value, sizeof (value));

return value;
) ®

72 TDS 224 00 August 1990

8.13 Debugging example 123

/* compute factorial */
double
factorial (int n)

{
double result;

int i;

result = 1.0;

for (1 = 1; 1 <= n; ++1i) {
result = result * i;

}

return result;

/* source stream on ints */
void
feed (Process *p, Channel *in, Channel *out)

{
int n, i;

n = ChanInInt (in);
for (1 = 0; 1 < n; ++i) {
ChanOutInt (out, i);

}
ChanOutlInt (out, stop_integer);

/* generate stream: of factorials */
void
facs (Process *p, Channel *in, Channel *out)

{
int x;
double fac;

x = ChanInInt (in);

while (x != stop_integer) {
fac = factorial (x);
ChanOutDouble (out, fac);
x = ChanInInt (in);

}

ChanOutDouble (out, stop real);

72 TDS 224 00 August 1990

124 8 Debugging transputer programs

/* generate stream of squares */
void
square (Process *p, Channel *in, Channel *out)

{
double x, sq;

x = ChanInDouble (in);

while (x != stop_real) {
sq = x * x;
ChanOutDouble (out, s8q):;
x = ChanInDouble (in);

}

ChanOutDouble (out, stop_real):

/* sum input */
void
sum (Process *p, Channel *in, Channel *out)

{
double total, x;

total = 0.0;

x = ChanInDouble (in);

while (x != stop_real) {
total = total + x;
x = ChanInDouble (in);

}
ChanOutDouble (out, total);

/* user interface and control */
void
control (Process *p, Channel *in, Channel *out)

{
double value;
int n;

printf ("Sum of the first n squares of
factorials\n");
do {
printf ("Please type n : ");
} while (scanf ("%d", &n) !=1);
printf ("n = %d\n", n);

72 TDS 224 00 August 1990

8.13 Debugging example

125

printf ("Calculating factorials ... ");

ChanOutlInt (out, n);
value = ChanInDouble (in);

printf ("\nThe result was : %g\n", value):;

Channel *
Checked_ChanAlloc ()

{

Channel *chan;

if ((chan = ChanAlloc ()) == NULL) {
fprintf (stderr, "ChanAlloc () failed\n");
exit (EXIT_FAILURE);

}

return chan;

Process *
Checked ProcAlloc (void (*func) (), int sp, int nparam,

int

Channel *cl, Channel *c2)

Process *proc;

proc = ProcAlloc (func, sp, nparam, cl, c2);

if (proc == NULL) {
fprintf (stderr, "ProcAlloc () failed\n"):;
exit (EXIT FAILURE);

}

return proc;

main (void)

{

72 TDS 224 00

Channel *facs_to_square, *square_to_sum;
Channel *sum to_control, *feed to_facs;
Channel *control_to_feed;

Process *p feed, *p_facs, *p_square;
Process *p_sum, *p control;

August 1990

126 8 Debugging transputer programs

facs_to_square = Checked_ChanAlloc ()’
square_to_sum Checked _Chanalloc ()’
sum_to_control Checked_ChanAlloc ():
feed_to_facs Checked ChanAlloc ();
control_to_feed Checked_ChanAlloc ():

p_feed = Checked_ProcAlloc (feed, 0, 2,
control_to_feed, feed to_facs);
p_facs = Checked_ProcAlloc (facs, 0, 2,
feed_to_facs, facs_to_square):
p_square = Checked ProcAlloc (square, 0, 2,
facs_to_square, square_to_sum);
p_sum = Checked ProcAlloc (sum, 0, 2,
square_to_sum, sum_to_control);
p_control = Checked ProcAlloc (control, 0, 2,
sum_to_control, control_to_feed);

ProcPar (p_feed, p_facs, p_square, p_sum,
p_control, NULL);

exit (EXIT_SUCCESS);

8.13.2 Compiling and loading the facs program

The source of the program is provided on the toolset debugger examples sub-
directory. It should be compiled for transputer class TA with debugging enabled,
then linked with the appropriate library files and made bootable using icollect
using the “T" option to create single transputer bootable code.

The example is intended for running on a B008 board wired subs. See sec-
tion 15.4 if your system is different.

A typical sequence of commands for compiling, linking, and booting the program
is shown below. The ‘i’ option on the linker command line is optional but provides
useful information on the progress of the linking operation.

Command sequences are shown for UNIX-based and MS-DOS/VMS-based
toolsets. Use the appropriate set of commands for your system.

icc facs.c -g -ta -o facs.tax
ilink facs.tax -f startup.lnk -ta -o facs.cah -i
icollect facs.cah -t

icc facs.c /g /ta /o facs.tax

72 TDS 224 00 August 1990

8.13 Debugging example 127

ilink facs.tax /f startup.lnk /ta /o facs.cah /i
icollect facs.cah /t

The program is loaded for breakpoint debugging by invoking idebug with the
Breakpoint option using one of the following commands:

idebug -sr -si -b2 facs.btl -c t425
idebug /sr /si /b2 facs.btl /c t425

This command starts up the debugger and displays the Monitor page but does
not start the program. The iserver ‘si’ switch is optional.

Note: If your transputer is not a T425 you should change the T425 option to the
appropriate transputer type. You may also need to change the number specified
after the ‘b’ option to the number of the root transputer link where your network
is connected.

See Table 15.2 for more details about the options to use if in doubt.

8.13.3 Setting initial breakpoints

Initial breakpoints can often be set by invoking the Monitor page ‘B’ command
and specifying a breakpoint at the start of main (). In this example we use a
different method based on setting specific breakpoints in the source code before
the program is started.

At the Monitor page select option ‘F”’ to display the source file. At the object mod-
ule filename prompt specify the compiled object file f£acs.tax. The debugger
uses debug information within the object module to select the source file.

The source file is displayed with the cursor positioned at the first function defini-
tion. At this point the program is still waiting to be started.

Set a breakpoint at the beginning of the ChanOutDouble function us-

ing The debugger confirms the breakpoint is set. (Note that
the breakpoint is set on the first executable line of the function.)

8.13.4 Starting the program

Return to the Monitor page using the key and start the program by se-
lecting the ‘3" option. Press at the '"Command line’ prompt (no command
line is required) and give a small positive number (e.g. 12) when the program
prompts for input. The program runs until it reaches the breakpoint.

72 TDS 224 00 August 1990

128 8 Debugging transputer programs

8.13.5 Entering the debugger

At the breakpoint the debugger requests confirmation to continue. Press any key
except ‘C’ or ‘c’ to enter the symbolic debugging environment. The debugger
locates to the breakpoint and displays the source code.

8.13.6 Inspecting variables

Variables and channels in ChanOutDouble can now be examined. For ex-
ample, to examine the variable value press and specify its name at
the prompt. The debugger displays the value 1.0 and labels it as a double.
Pressing with the cursor positioned on value has the same effect.

Note that only variables in scope at the debugger's current location point can
be inspected, although the rest of the file can be displayed with the cursor keys.
The current location point is at the start of function ChanOutDouble.

8.13.7 Backtracing

ChanOutDouble is called from function £acs to output the factorial it calcu-
lates for each integer received from feed. To confirm this press
and the debugger locates to the line in £acs where ChanOutDouble is called.

8.13.8 Jumping down a channel

Within £acs the variable £ac is the first in a sequence of outputs on the channel
out. To trace the destination process for fac first inspect the channel out,
which is declared to be a channel pointer. Reinvoke but specify *out,
which dereferences the channel pointer. The debugger displays an Iptxr and
Wdesc, indicating that there is a low priority process waiting at the other end of
the channel.

Now press and again specify *out to dereference the channel pointer.
The debugger jumps down the channel connecting the two processes and lo-
cates to ChanInDouble. Now backtrace to the function which inputs and uses
ChanInDouble, namely function square. Variables in scope with square
now become available for inspection (at this stage they have not been initialised).

While still in function square move the cursor to the first line containing

ChanOutDouble and set a breakpoint. Then press successively in
order to run the program up to the breakpoint just set.

72 TDS 224 00 August 1990

8.14 Points to note when using the debugger 129

8.13.9 Inspecting by expression

In function square inspect the variable sq and check the computation by rein-
voking and specifying the expression x * x. Note how can
be used to perform arithmetic on any variable in scope. Expressions can also
include numbers and other variables and constants in scope at the location point.

8.13.10 Modifying a variable

In breakpoint debugging any program variable (or even constant) may be mod-
ified. To modify a variable x press and specify x at the 'Destination’
prompt. The debugger now requests the new value by display the 'Source’
prompt. Give any value and check the value has changed by inspecting x once
again.

8.13.11 Backtracing to main

While stiltin square, press to locate back to where the function
was called. The debugger locates to ProcPar in function main where the
five major processes are started in parallel. If the call to function square had
been nested in other calls, successive operations might have been
necessary but would have eventually located to the call in the program main
function.

8.13.12 Entering #include files

Press and select line 20. This will locate you to the #include
<stdio.h> line. By using the key you may now enter the
#include file (and any nested files within it); the key will bring you
out again into the enclosing file.

8.13.13 Quitting the debugger

Finally, to quit the debugger you should use the key. (You may also quit
the debugger from the Monitor page using the ‘Q" command).

8.14 Points to note when using the debugger

This section contains some extra information which may be of use when debug-
ging parallel multiprocessor programs written in C.

72 TDS 224 00 August 1990

130 8 Debugging transputer programs

8.14.1 Abusing hard links

Current generation transputers permit unsynchronised transfer of messages on
external channels (links). This allows, for example, two 4-byte messages to be
sent and for them to be received as a single 8-byte message on the receiving
transputer. This is not consistent with the communication of messages between
processes on the same processor where the transfer of messages is synchro-
nised.

When breakpoint debugging, external communications are handled by the de-
bugger’s virtual link system; this is an internal transfer which is liable to function
incorrectly if user code is relying on unsynchronised transfers.

Unsynchronised transfer of data should not be used where breakpointing is used
to debug a program. It is bad practice anyway and will certainly cause the
debugging virtual link system, on which breakpointing depends, to crash.

8.14.2 Examining the active network (the network Is volatile)

When a process stops at a breakpoint you should remember that all of the other
processes are still running (unless they hit a breakpoint, terminate etc.). This
means that any of the Monitor page commands that display process queues
(eg. R, L, T etc.) may change if you invoke them again (or use the ‘U’ (Update)
command to update the state information). When in symbolic mode the same is
true for Channels which may appear empty when first inspected only to change
to a waiting process when inspected again.

The only way to effectively freeze all processes is to flip to post-mortem mode by
using the Monitor page ‘Y’ (Enter Postmortem) command. You should remember
that when you use this command that all processes that have hit a breakpoint
will not appear in the runtime queues. If this is a problem, you should note the
Iptr and Wdesc values of the processes and use the Monitor page ‘O’ (Select
Process) command to locate to them symbolically.

8.14.3 Selecting events from specific processors

The debugger provides no guarantee that debugging events such as breakpoints
and debugging messages from processes running on different processors are
presented in the same order in which they occur. Events on processors which
are closer in terms of connectivity to the root transputer (where the debugger is
running) are usually displayed before events on distant processors.

If it is important that you encounter a debugging event on a specific processor
before events on other processors you can usually achieve this by changing to

72 TDS 224 00 August 1990

8.14 Points to note when using the debugger 131

the processor of interest (using the Monitor page ‘P’ command or left and right
cursor keys) before resuming via the ‘3* command.

8.14.4 Invalid pointers

The debugger checks instruction pointers (Iptrs) and workspace descriptors
(Wdescs) for the correct code and data limits. Invalid pointers are flagged by
an asterisk (*) on the screen.

Invalid pointers indicate a major problem with the program. They may also be
caused by specifying an incorrect dump file.

8.14.5 INTERRUPT key

The debugger can be diverted from the running program to return to the Monitor
page by the use of the key. However, -problems can arise if the
running program is trying to simultaneously read keystrokes from the keyboard;
the debugger is then unable to intercept the interrupt key. (Sometimes it is
possible to force the interrupt to be recognised by repeating the key quickly.)

A similar problem arises when there are existing keystrokes buffered before the
interrupt key; if the application program does not read these buffered keystrokes
the debugger will never have a chance to see the interrupt key.

8.14.6 Program crashes

If in breakpoint mode the debugger detects that the program has crashed im-
mediately after starting program execution (i.e. after invoking the ‘3" (Jump into
application) command), you should use the post-mortem breakpoint option (‘Y’)
to determine the cause. However, if no error flags are set on the network that is
rurning the program then it is likely that the an error flag is set on a transputer
that is not in use. This may occur on boards where the subsystem services are
wired to propagate all error flags to the root transputer. In this instance you need
to clear the network (see section 15.3.4 for more details).

8.14.7 Undetected program crashes

When operating in breakpoint mode and a program overwrites the debugging
kernel or you have set a breakpoint in a high priority process on a processor
without hardware breakpoint support, the debugger cannot fully recover and is
unable to indicate that the program has crashed. This situation is indicated by
the following message appearing at the top of the screen when the debugger
attempts to display the Monitor Page:

72 TDS 224 00 August 1990

132 8 Debugging transputer programs

Toolset Debugger : V2.00.00 Processor n "name" (Tm)

In such instances you should use the host BREAK key in order to terminate
the debugger and restart the debugger using the command line ‘M’ option to
post-mortem debug the session.

8.14.8 Debugger hangs when starting program

If the debugger hangs immediately after you have supplied the command line
arguments when starting execution of a program you have probably set a break-
point in a configuration level High priority process on a processor without hard-
ware breakpoint support.

8.14.9 Debugger hangs

If the debugger hangs when attempting to flip to post-mortem using the Monitor
page ‘Y’ command or when trying to quit, you should terminate the debugger
manually using the host key.

If you were trying to flip to post-mortem mode you should restart the debugger
using the command line ‘M’ option to resume debugging in post-mortem mode.

8.14.10 Catching concurrent processes with breakpoints

Sometimes a concurrent process is executing in a program (often in a loop)
and you would like to be able to control it better by use of breakpoints. If the
process is communicating with other processes via channels and you have set
breakpoints in the other processes, breakpoints can be set on a communication
and the channel can be jumped down to the executing process when you hit the
breakpoint.

However, if the process has entered a non-communicating loop or you are not
sure where exactly it is in your program code you must use a different approach.
In order to set a breakpoint, you should use the key to return to the
Monitor page and then, by using the ‘R’ (Run queues) command and/or the ‘T’
(Timer queues) command, list the Iptrs and Wdescs of the processes currently
executing. (Often, this will include the debugging kernel processes but these are
easily detected and ignored because they are marked by an asterisk.)

Use the ‘G’ (Goto process) command to select the Iptr and Wdesc of the
process to locate symbolically to the process and set a breakpoint on that line.
Then return to the Monitor page and resume the debugger using the ‘3’ com-
mand; when the process hits the breakpoint you may continue to debug it. If

72 TDS 224 00 August 1990

8.14 Points to note when using the debugger 133

there are no processes on either the runtime or timer queues and there are no
external communications, it means that your program has either deadlocked or
terminated.

8.14.11 Arrays as arguments

Because C requires a declaration of a parameter as array of type to be adjusted
to pointer to type the debugger must treat all array parameters as pointers. This
means that it cannot display the contents of an array of arithmetic type passed
as a parameter automatically.

In order to display the contents of arithmetic arrays you should use array sub-
ranging. This is illustrated in the following example:

#include <misc.h>

void
foo (int p[4])

{
/* inspect p and p[0;3] here */
debug_stop ();

int
main (void)

{

foo (p):

8.14.12 Backtracing with concurrent C processes

idebug supports backtracing from a parallel process to the parent pro-
cess (where the parallel process was started via a C library call). How-
ever, for processes started asynchronously via ProcRun, ProcRunHigh, or
ProcRunLow, idebug merely enables you to backtrace and does not allow
operations such as inspection of variables after a backtrace. This is because the
parent process which started the asynchronous processes may no longer exist,
in which case inspection is meaningless.

72 TDS 224 00 August 1990

134 8 Debugging transputer programs

8.14.13 Phantom breakpoints

Because of the mechanism used for breakpoints on those transputers without
hardware breakpoint support (see Table 8.1) it is possible for code produced by
INMOS compilers to contain code that fools the debugger into thinking it is a
breakpoint (a phantom breakpoint). This may occur with icc and other TCOFF
compatible INMOS compilers such as oc.

The following two fragments of code generate phantom breakpoints.
for (;; {

}

while (1) {

}

If you encounter a phantom breakpoint and you wish to continue execution, you
must set a breakpoint at the same address and then resume execution.

To do this use the key to obtain the start address of the empty
loop when in symbolic mode, change to the Monitor page and use the Breakpoint
Set option to set a breakpoint at the loop address.

8.14.14 Errors generated by the full library

Generally, the full C runtime library is able to detect when there is insufficient
memory for it to function correctly; in such instances it displays an error message
at startup.

In rare circumstances the library is able to detect that there is insufficient memory
but it does not have enough memory to display the startup error message. In
such instances, it sets the error flag and terminates execution.

If a program sets the error flag and the debugger is unable to backtrace when
the last instruction executed was seterr (error explicitly set), and the following
error message is displayed by the debugger:

Error : Not compiled with debugging enabled "libc.lib"

then it is highly likely that insufficient memory is available for either the Static or
Heap area.

72 TDS 224 00 August 1990

8.14 Points to note when using the debugger 135

8.14.15 Errors generated by the reduced library

Because the reduced C runtime library has no host to communicate with, if a
runtime error occurs the reason for the error is not readily apparent.

If a program sets the error flag and the debugger is unable to backtrace when
the last instruction executed was seterr (error explicitly set), and the following

- error message is displayed by the debugger:

Error : Not compiled with debugging enabled "libcred.lib"

then it is highly likely that insufficient memory is available for either the Static or
Heap area.

8.14.16 Shifting by large positive or negative values

Current transputers will temporarily ‘lock’ (for a time proportional to the shift value
which is treated as unsigned) if you shift by large positive values or negative
values. C performs no runtime checks for invalid shift values and does not
protect you against their consequences. (Certain transputer languages such as
occam do perform these checks).

If the debugger when used in post-mortem mode locates to a source line con-
taining a shift operator and the error flag has not been set then it is likely that
you have shifted by an invalid value.

8.14.17 Compiler optimisations

icc performs some code optimisations. If an external variable is optimised out

from a module because it is never used the debugger is informed of this and is
able to relay this information to the user.

72 TDS 224 00 August 1990

136 8 Debugging transputer programs

However, for some optimisations the debugger is not informed and consequently
it may provide misleading information. The following code illustrates this:

int
main (void)

{
int a=20;
int b= 0;
while (1) { /* or for (;:;) */
}
/* following optimised out by compiler */
a = 42;
b=a+1;
a=b*hb
}

In these cases the debugger may show the discrepancy in either of the following
ways:

1 If a function follows the optimised code the debugger associates the
address of the optimised lines with the address of the start of the function.

2 If no function follows the optimised code the debugger indicates that it is
unable to find the address for any of the optimised lines.
8.14.18 Determining connectivity and memory sizes

In order to establish the connectivity and memory map range for each processor
in a program you should use the debugger command line dummy debug session
‘D’ option.

You should remember for non-configured programs that the memory map re-
quirements may be larger than those indicated because of initialisation processes
which are overlayed.

72 TDS 224 00 August 1990

9 Mixed language
programming

This chapter describes the mechanisms supplied with the toolset for mixing code
modules written in different high level languages. It describes both the gener-
alised system for mixing code at configuration level and the special facilities that
support the incorporation of 0ccam code into C programs.

9.1 Introduction

For many applications it is appropriate to write the software using more than
one programming language. For example, a particular algorithm may be better
expressed in a specific language or applications software may already exist in
particular languages. In either case a well defined mechanism for mixing lan-
guages within a single system is desirable.

The communicating process programming model provides a clean and simple
basis for mixing languages. The model consists of independent processes, com-
municating via channels, which can be distributed in any way to a network of
transputers using a configuration description. Programs can be written in differ-
ent languages, compiled and linked using a common set of tools, and the linked
units placed anywhere on a network of transputers.

Programs written using any of the INMOS compilers and toolsets which generate
code in compatible TCOFF format can be freely mixed in the same configuration
as linked modules.

A special mechanism supports the importation of 0ccam procedures and func-
tions into C programs, based on a C compiler pragma. A pragma is also provided
for translating 0ccam names into valid C names.

A set of interfaces is also provided for incorporating code written using earlier IN-
MOS 3L toolsets. The interfaces use a series of 0ccam harnesses for different
types of C program and are described in appendix F.

9.2 Mixing code at configuration level
The mixing of code written in different languages can be achieved at the con-
figuration level, using linked units generated using any of the INMOS TCOFF

compilers. The TCOFF family of compilers generates object code in a special
format which is interchangeable at configuration level.

72 TDS 224 00 August 1990

138 9 Mixed language programming

9.21 C and occam

Linked object files which are to be configured can contain entirely C code, entirely
occam code, or mixtures of the two. Remember when linking any C code to
also link in the appropriate linker startup file (startup.lnk or started.lnk
depending whether the program uses the full or the reduced library), and when
linking any occam code remember to link in the compiler libraries. Linker in-
direct files which specify the correct occam compiler library for different trans-
puter targets are supplied with the TCOFF version of the 0occam 2 toolset (IMS
DX 205).

The configuration description allows complete flexibility in the placement of soft-
ware modules onto the hardware network. It can be used, for example, to place
processes written in different languages on the same processor as easily as on
a network of processors interconnected by transputer links. Each code module
must be a fully linked unit in which all external references are already resolved
and must have been created in TCOFF format.

For further information about the configuration system and language, including
examples of simple configuration descriptions, see chapter 6.

9.3 Calling occam processes

Special facilities are provided in the toolset to allow occam procedures and
functions to be imported into C programs as C functions. The mechanism uses
the icc pragma IMS_nolink to prevent the addition of a static link parameter
when the call to the occam function is compiled.

9.3.1 Pragma IMS_nolink

IMS_nolink disables the passing of the global static base (gsb) parameter
when the occam code is called. The gsb locates the static area for C functions
but would disrupt the normal occam calling sequence.

For example, consider the occam function ocfunc which performs some un-
specified calculation and returns a single integer value:

INT FUNCTION ocfunc (VAL INT argl, arg2)
INT ret:
VALOF
SEQ
-- calculate ret
RESULT ret

72 TDS 224 00 August 1990

Calling OCCaM processes 139

To call ocfunc from a C program it must first be declared as an extern
function and then specified as having no static base parameter:

extern int ocfunc(int argl, int arg2);
/* declare function as extern */

#pragma IMS nolink(ocfunc)
/* direct function to be compiled
with no static base parameter */

void call_oc(void)

{
int argl, arg2, ret;
/* set up arguments */

ret = ocfunc(argl, arg2);
/* call function */

When linking the C program the file containing the occam function must be
linked with the program in the same way as any other compiled object file. Re-
member to link in the occam compiler libraries (using the appropriate linker
indirect file for the transputer type, supplied with the occam toolset) and any
other libraries that the occam program uses.

An alternative to using the nolink pragma is to compile the occam code with
a dummy first parameter of type INT. The dummy parameter is not used by
occam and simply ensures compliance with the C calling requirements.
9.3.2 Translating occam names
The compiler pragma option IMS_translate is provided to allow occam
names, such as those containing invalid C characters, to be replaced by an
acceptable C alias. For example, it is common in occam to use the full stop
character to create multi-part names. Use of the full stop is prohibited in C.
The pragma allows occam identifiers, where it is impossible or undesirable to
change them, to be referenced in the program by valid C names. The syntax is
as follows:

#pragma IMS_translate(Cname, "occamname")
For example:

#pragma IMS_translate(occam_func "occam.func")

72 TDS 224 00 August 1990

140 9 Mixed language programming

All references to occam_func in the source code will be translated into
occam. func in the object file.

9.3.3 Rules for importing occam code

1 Only occam procedures and occam functions returning a single value,
may be called.

2 The occam process to be called must be at the outer level of a sepa-
rately compiled unit.

3 All interaction with the calling program must be via channels.

4 No process which requires direct communication with the host file server
may be called.

5 Formal occam parameters, return values from occam functions, must
be mapped onto actual C parameters of the correct type. The calling
conventions are described in section 9.4.

6 The occam process must not use vector space, or call any other occam
process which uses vector space. If arrays are used they should be
explicitly placed within the workspace. occam libraries supplied with
the occam 2 toolset which use vector space and therefore cannot be
called from C are: hostio.lib, streamio.lib, process.1lib,
msdos.lib, and streamco.lib.

7 There must be enough workspace on the stack of the calling C program.
This must be ensured by the programmer.

8 Non-VAL occam parameters should be passed as pointers from C.

9 Where the formal parameter to an occam procedure or function is an
array (VAL or Non-VAL) the calling C program should always pass a
pointer to the array. For an 0ccam array parameter with unspecified ar-
ray bounds, the actual sizes of the bounds should be passed immediately

following the array parameter; for multidimensional arrays the bounds
should be passed in the same order as they appear in the declaration.

For example, to call the following occam procedure (which uses a
bounded array):

PROC ocproc([8]INT array)

the following code should be used:

72 TDS 224 00 August 1990

Calling OCCamMm processes 141

extern void ocproc(int array(8]):;
#pragma IMS nolink (ocproc)
int array[8];
ocproc (array) ;
To call the following 0occam procedure (unbounded array):
PROC ocproc([]INT array)
use the C code:
extern void ocproc(int array[], int arraysize);
#pragma IMS_nolink (ocproc)
int array[8];

ocproc (array, 8);

72 TDS 224 00 August 1990

142 9 Mixed language programming

9.4 Parameter passing

The following tables describe the calling conventions that must be followed when
passing parameters from C programs to imported 0ccam processes. They list
the C equivalents on 32 and 16 bit transputers for all occam types. Where
there is no true equivalent the action to take is given. .

Formal occam Actual C parameter
parameter
(32 bit) (16 bit)

VAL BOOL int int

(value must be 0 or 1) (value must be 0 or 1)
VAL BYTE char char

unsigned char unsigned char
VAL INT16 short int short int

int

VAL INT32 int long int *

long int
VAL INT64 No direct equivalentt No direct equivalentt
VAL INT int int
VAL REAL32 float float *
VAL REALG64 double * double *
VAL array array array

(see above) (see above)
t There is no direct type equivalent in C. Either recode the 0Cccam program
or pass the parameter in another form.

72 TDS 224 00 August 1990

9.4 Parameter passing

143

Formal occam Actual C parameter
parameter
(32 bit) (16 bit)

BOOL char * char *

unsigned char * unsigned char *

value pointed to value pointed to

must be 0 or 1) must be 0 or 1)
BYTE char * char *

unsigned char * unsigned char *
INT16 short int * short int *

int *

INT32 int * long int *

long int *
INT64 No direct equivalentt No direct equivalentt
INT int * int *
REAL32 float * float *
REAL64 double * double *
CHAN Channel * Channel *

(see Note 1) (see Note 1)
PORT No direct equivalentt No direct equivalentt
TIMER Pass nothing Pass nothing

(see Note 2) (see Note 2)
array array array

(see above) (see above)
t There is no direct type equivalent in C. Either recode the 0ccam program
or pass the parameter in another form.
Note 1: Channel is an INMOS specific type declared in the header file
channel.h.
Note 2: An occam TIMER parameter should have no associated C actual
parameter passed. For example, to call the occam procedure:
PROC ocproc (VAL INT pl, TIMER t, VAL INT p2)
use the following C call:
extern void ocproc(int pl, int p2);
#fpragma IMS_nolink (ocproc)
ocproc(pl, p2):

72 TDS 224 00

August 1990

144 9 Mixed language programming

9.4.1 Return values

The following table outlines the conventions that must be followed when receiving
occam function return values in C.

72 TDS 224 00

August 1990

occam C function type .
function
type
(32 bit) (16 bit)

BOOL int int
BYTE char char

unsigned char unsigned char
INT16 short int short int

int

INT32 int long int

long int
INT64 No direct equivalentt No direct equivalentt
INT int int
REAL32 float float
REALG64 double double
t There is no direct type equivalent in C. Either recode the occam program
or return the value in another form.

9.4 Parameter passing

145

9.4.2 Example of passing parameters

The following example shows an occam function with a variety of formal pa-
rameters, along with the C code which can call it. The calling code for 32 bit
and 16 bit transputers is given separately.

The occam function to be called is as follows:

INT32 FUNCTION ocfuncl (VAL INT32 parml) IS parml:

PROC ocprocl (VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL
VAL

BYTE vb,
INT16 vile,
INT32 vi32,
INT vi,
REAL32 vr32,
REAL64 vr64,
BOOL vbo,
[]INT varrl,
[8]INT varr2,

BYTE b,
INT16 ils,
INT32 i32,

INT

i,

REAL32 r32,
REAL64 ré64,
BOOL bo,
[]INT arrl,
[8]INT arr2)

SEQ
b := vb
ilé := vileé
i32 := vi32
i = vi
r32 := vr32
r64 := vré64
bo := vbo
arrl := varrl
arr2 := varr2

72 TDS 224 00

August 1990

146 9 Mixed language programming

The C code to call the above 0ccam function on a 32 bit transputer is as follows:

#define ARRAY SIZE 1 4
#define ARRAY SIZE 2 8

extern long int ocfuncl(long int parml);

extern void ocprocl(char vb, short int vilé,
long int vi32, int vi,
float vr32, double *vré64,
int vbo,
int varrl[], int varrl_size,
int varr2[ARRAY SIZE 2],
char *b, short int *il6,
long int *i32, int *i,
float *r32, double *ré64,
char *bo,
int arrl[], int arrl_size,
int arr2[ARRAY_ SIZE 2]);

#pragma IMS_ nolink (ocfuncl)
#pragma IMS_nolink(ocprocl)

long int 1i, result;

char vb, b; .
short int vilé, ilé6;

long int vi32, i32;

int vi, i;

float vr32, r32;

double vr64, r64;

int vbo;

char bo;

int varrl[ARRAY SIZE 1], arrl[ARRAY SIZE 1];
int varr2[ARRAY SIZE_ 2], arr2[ARRAY SIZE 2];

result = ocfuncl(li);
ocprocl(vb, vilé, vi32, vi, vr32, &vré64,
vbo, varrl, ARRAY SIZE 1, varr2,

&b, &il6é, &i32, &i, &r32, &r64,
&bo, arrl, ARRAY SIZE_ 1, arr2);

72 TDS 224 00 August 1990

9.4 Parameter passing

147

72 TDS 224 00

#define ARRAY_SIZE 1 4
#define ARRAY SIZE 2 8

extern long int ocfuncl(long int *parml);

extern void ocprocl (char vb, short int vilé,
long int *vi32, int vi,

float *vr32, double *vré64,

int vbo,

The C code to call the above 0ccam function on a 32 bit transputer is as follows:

int varrl[], int varrl size,

int varr2[ARRAY SIZE_2],
char *b, short int *ilé6,
long int *i32, int *i,
float *r32, double *ré64,
char *bo,

int arrl[], int arrl_size,

int arr2[ARRAY SIZE 2]);

#pragma IMS_nolink(ocfuncl)
#pragma IMS nolink(ocprocl)

long int 1i, result;

char vb, b;

short int vilé, il6;

long int vi32, i32;

int vi, i;

float vr32, r32;

double vré64, r64;

int vbo;

char bo;

int varrl[ARRAY SIZE 1], arrl[ARRAY SIZE 1];
int varr2 [ARRAY SIZE_2], arr2[ARRAY SIZE 2];

res = ocfuncl(&li);

ocprocl(vb, vilé, &vi32, vi, &vr32, &vr64,
vbo, varrl, ARRAY SIZE 1, varr2,
&b, &il6, &i32, &i, &r32, &r64,
&bo, arrl, ARRAY SIZE_ 1, arr2);

August 1990

148 9 Mixed language programming

9.5 Mixing code using the occam 2 toolset

If you also have the occam 2 toolset installed, code written in different lan-
guages can be mixed with current TCOFF-compatible code using a special in-
terface code system. The facility extends to code written using the earlier INMOS
3L compilers and toolsets.

Any non-0occam code can be wrapped in an 0ccam envelope and treated as an
equivalent occam process, providing that certain interfacing rules are applied.
The system is similar to that described in the ‘Occam 2 toolset user manual’,
but with some modifications to the interfaces. Details of the interfaces supported
for this form of mixed language programming are given in appendix F.

9.5.1 Calling C from occam
The library callc.1lib can be used to call C programs from occam. The

library is provided with the occam toolset (TCOFF based version) and informa-
tion about its use can be found in the ‘occam 2 toolset user manual’.

72 TDS 224 00 August 1990

10 Using the EPROM
tools

10.1 Introduction

INMOS EPROM software is designed so that programs can be developed and
tested using the INMOS toolset, and once they are working, can be placed in
ROM with only minor change.

Under development, software is booted onto a network from a link connecting
the network to the host computer. Then the software is prepared for a ROM,
which is attached to the root transputer in the network.

Figure 10.1 shows how a network of five transputers would be loaded from a
ROM accessed by the root transputer.

Boot from link

link
from ROM Root transputer|lin . lin .
buffer Wboot from ROM Boot from link Boot from link
link

Boot from link

Figure 10.1 Loading a network from ROM

To prepare software to be booted from ROM, rather than to be booted from link,
the following two steps must be taken:

1 Give different options to the configurer and collector tools so that they
produce ROM-bootable code.

2 Run the ieprom tool to produce a file or set of files suitable for blowing
into EPROM.

Figure 10.2 illustrates the stages of preparing ROM-bootable software. One or
72 TDS 224 00 August 1990

150 10 Using the EPROM tools

more linked units will be referenced from the configuration file, depending on
whether it is a single or multi-process program.

cfg icconf .cfb icollect .btr .hex

1
)
| ihx

o

.mot

—» Input/output

- > References bin

Figure 10.2 Preparation stages for ROM-bootable software

10.2 Processing configurations

The processing configuration used will depend on the number of software pro-
cesses, the number of transputers available to run the code and whether the
code is to run from ROM or RAM. The following sections outline the possible

configurations.

10.2.1 Single process, single processor, run from ROM

The application process is prepared as a single configuration process. (See
section 10.4). The application process is then run in the processor, directly from
ROM, using the RAM as the data area for. static variables, workspace and heap.
10.2.2 Multiple process, single processor, run from ROM

The application is prepared as a collection of processes, connected together as

described in a configuration file. It is then run on a single processor, with the
code in ROM, and the RAM is used as the data area.

72 TDS 224 00 August 1990

10.3 The eprom tool: ieprom 151

10.2.3 Single process, single processor, run from RAM

The application is prepared as a single configuration process (See section 10.4).
When booted from ROM, the processor loads the code into RAM, and executes
it there; the data area is also in RAM.

10.2.4 Multiple process, single processor, run from RAM

The application is prepared as a collection of processes, connected together as
described in a configuration file. When booted from ROM, the processor loads
the code for all the processes into RAM, and sets them all running, with their
data areas also in RAM.

10.2.5 Multiple process, multiple processor, run from RAM

The application is prepared as a collection of processes, connected and allocated
to processors as described in a configuration file. The compiled and configured
application code is placed in the ROM of the root processor: When booted from
ROM, the root processor loads its own code into RAM, and loads the rest of the
network via its links. Each processor then sets off its own processes, and the
application runs. (This configuration is shown in figure 10.1).

10.2.6 Multiple process, multiple processor, root run from ROM, rest of
network run from RAM

The application is prepared as a collection of processes, connected and allocated

to processors as described in a configuration file. The compiled and configured

application code is placed in the ROM of the root processor. When booted from

ROM, the root processor loads the rest of the network via its links, and then
continues to run its own code from ROM.

10.3 The eprom tool: ieprom

The eprom tool ieprom takes the output of the collector, and produces a file
or set of files suitable for blowing into an EPROM. The following output formats
are supported:

- Binary
— Hex

- Intel hex format

72 TDS 224 00 August 1990

162 10 Using the EPROM tools

— Intel extended hex format
— Motorola S-record format

ieprom supports the production of code files in block mode, which allows the
code to be placed in a set of different files. This is useful to program EPROMS
organised as separate byte-wide devices, or where the EPROM programming
device does not have enough memory to hold the entire image.

ieprom also supports the inclusion in the EPROM image of a memory config-
uration. Some 32-bit transputers have a configurable memory interface which
can be initialised from a fixed area in the ROM, when the transputer is reset.
A particular memory configuration can be specified to ieprom in a text file.
These files are known as memory configuration files and normally have the file
extension .mem. The format of these files, and the facility to edit them using an
interactive tool called iemit is described in chapter 17.

The ieprom tool is driven by a control file which normally has the file extension
.epr. Adetailed description of ieprom and its control file is given in chapter 18.

10.4 Using the configurer and collector to produce ROM-
bootable code

To produce code suitable for running in ROM or RAM, the configurer and collector
tools must be specified with the appropriate command line options. The following
options are used for both tools:

e The ro option specifies that the code is to run in ROM.
o The ra option specifies that the code is to run in RAM.
e The rs option specifies the ROM size.

In addition the p option must be specified for the configurer, in order to specify
the root processor name.

The collector will add the appropriate ROM bootstrap to the application code and
the output file will be given the extension .btx.

When preparing code to run in ROM or RAM, the configuration phase must be

used, in order to specify the size of stack and heap to be used. This applies even
when the application consists of a single process running on a single processor.

72 TDS 224 00 August 1990

10.5 Summary of EPROM steps for different processing configurations153

10.5 Summary of EPROM steps for different processing con-
figurations

Compile and | Configure Collect EPROM
link
Single process, Compile and | Configure with | Collect with the | Run EPROM
single processor, link program the ro, zs ro and rs tool to add
run from ROM. as a single anhd p options. | options. memory interface
unit. (if necessary),
and produce
EPROM files.
Multiple process, Compile and | Configure with | Collect with the | Run EPROM
single processor, link a set of the ro, rs ro and xs tool to add
run from ROM. units, one per | and p options. | options. memory interface
process. (if necessary),
and produce
EPROM files.
Single process, Compile and | Configure with | Collect with the | Run EPROM
single processor, link program the ra, rs ra and rs tool to add
run from RAM. as a single and p options. | options. memory interface
unit. (if necessary),
and produce
EPROM files.
Multiple process, Compile and | Configure with | Collect with the | Run EPROM
single processor, link a set of the ra, xs ra and rs tool to add
run from RAM. units, one per | and p options. | options. memory interface
process. (if necessary),
and produce
EPROM files.
Multiple process, Compile and | Configure with | Collect with the | Run EPROM
multiple processor, | link a set of the ra, rs ra and rs tool to add
run from RAM. units, one per | and p options. | options. memory interface
process. (if necessary),
and produce
EPROM files.
Multiple process, Compile and | Configure with | Collect with the | Run EPROM
multiple processor | link a set of the ro, zs ro and rs tool to add
root runs from units, one per | and p options. | options. memory interface
ROM, rest of process. (if necessary),
network runs from and produce
RAM. EPROM files.

72 TDS 224 00

August 1990

154 10 Using the EPROM tools

72 TDS 224 00 August 1990

Tools

72 TDS 224 00 August 1990

156 Tools

72 TDS 224 00 August 1990

11 ice — ANSIC
compiler

This chapter describes in detail the ANSI C compiler icc. It describes the
command line syntax, compiler options, and preprocessor directives, explains
what is meant by transputer classes and how to use them, and describes other
features of the compiler such as support for transputer code. The chapter ends
with a list of error messages.

11.1 Introduction

The ANSI C compiler is a full ANSI C compiler with support for concurrent pro-
gramming. It also supports some additional extensions to the C language in-
cluding compiler directives, pragmas and low level programming.

The ANSI standard for the C language extends the language through the defini-
tion of runtime library support, new types, function prototyping, and many other
ways. For a summary of the differences between ANSI C and the original defini-
tion of the language see chapter 3 ‘New features in ANSI C’ in the accompanying
reference manual. The ANSI C compiler includes support for parallel program-
ming through a set of library functions with associated types and structures, a
mechanism for incorporating transputer code sequences, and a group of com-
piler pragmas for enabling compiler options in sections of code and for conveying
directives to the linker. The transputer code mechanism supports the full set of
transputer instructions and operations and also supports labels.

Parallel processing is achieved through a library of process, channel, and
semaphore functions and their related types and data structures. Calls to the
functions are compiled by icc into highly efficient parallel code for the trans-
puter.

icc is itself written in ANSI C and normally runs on the transputer board. A
version of the compiler running on the host system is supplied with Sun and
VAX based toolsets.

icc generates code for a particular transputer, transputer type, or class, and a

target should be specified for all compilations. The default is to produce code
for the IMS T414.

72 TDS 224 00 August 1990

158 11 icc — ANSI C compiler

11.2 Running the compiler
To invoke the compiler use the following command line:
> icc filename {options}

where: filename is the C program source file. If no extension is given .c is
assumed. Only one filename may be given on the command line.

options is a list of the options given in the following tables.

Options must be preceded by ‘-’ for UNIX based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

Note: icc must be invoked in a writeable directory, that is, one in which you
(or any alias you use to invoke the compiler) have write access.

Examples of use:

UNIX based toolsets: MS-DOS and VMS based toolsets:
icc hello icc hello
ilink hello.tco -f startup.ink ilink hello.tco /f startup.ink
icollect hello.lku -t icollect hello.lku /t
iserver -sb hello.btl -se iserver /sb hello.btl /se

72 TDS 224 00 August 1990

11.2 Running the compiler 159

D symbok=value

Option Description
TA Compile for transputers of class A (T400, T414, T425,
T800, T801, T805).
TB Compile for transputers of class B (T400, T414, T425).
T212 Compile for T212 transputer.
T2 Compile for T212, T222, or M212 transputers.
T222 Compile for T222 transputer.
T225 Compile for T225 transputer.
T3 Compile for T225 transputer.
T400 Compile for T400 transputer.
T414 Compile for T414 transputer. This is the default processor
type and may be omitted if the target processor is a T414.
T4 Compile for T414 transputer.
T425 Compile for T425 transputer.
TS5 Compile for T425 or T400 transputers.
T800 Compile for T800 transputer.
T8 Compile for T800 transputer.
T801 Compile for T801 transputer.
T805 Compile for T805 transputer.
T9 Compile for T801 or T805 transputers.
(o] Performs a syntax check only. Generates no object code.
D symbol Defines a symbol. Same as #define symbol 1 at the

start of the source file.

Defines a symbol and assigns a value. Same as #define
symbol value at the start of the source file.

EC Disables checks for invalid type casts. ANSI compliance
check.

EP Disables checks for invalid text after #else or #endif.
ANSI compliance check.

EZ Disables checks for zero-sized arrays. ANSI compliance
check.

FH Checks that all extern function definitions are preceded
by a declaration and reports all unused forward static
declarations. Software QA check.

FM Generates warning messages on #defined but unused
macros.

FV Generates warning messages on declared but unused vari-

ables or functions (default).

72 TDS 224 00

August 1990

160 11 icc - ANSI C compiler
Option | Description
G Generates comprehensive debugging data. The default is to
produce minimal debugging data. Debugging data is required
for the correct operation of idebug.
I Displays detailed progress information at the terminal as the
compiler runs.

J dir Adds dir to the list of directories to be searched for source files
incorporated with the #include directive in extended search
paths. See section 11.3.1 for details.

L Loads the tool onto the transputer board and terminates.
KS Enables stack checking.

O outpultfile

Specifies an output file. If no filename is given the compiler
derives the output filename from the input filename stem and
adds the .tco extension.

PP

Lists the preprocessed source file to stdout.

Compiles the source file to assembly language and writes it to
afile. Assembly is suppressed and no object code is produced.
The file is named after the input file and given the . s extension.

U symbol

Disables a symbol definition. Equivalent to #undef symbol at
the start of the source file.

Suppresses messages warning of ‘=" in conditional expressions.
Suppresses messages warning of deprecated function declara-
tions.

Suppresses messages warning of implicit declarations of
extern int().

Suppresses messages warning of implicit narrowing or lower pre-
cision.

Suppresses messages warning of the possibility of less efficient
code when compiled for a transputer class.

Suppresses messages warning of non-declaration of void func-
tions.

5 2 § 8 § &3

Directs the transputer-hosted versions of the tool to be executed
so that they can be restarted without rebooting by the server.

Directs the transputer-hosted versions of the tool to be executed

once on the transputer board and then terminate.

72 TDS 224 00 August 1990

11.2 Running the compiler 161

11.2.1 Transputer targets

The compiler generates code for a specific transputer type. This means that a
processor type should be specified for all transputer targets except the default
that is built into the compiler. The default processor type which is used if no
target is specified is T414.

Processor types supported are the IMS T212, M212, T222, T225, T400, T414,
T425, T800, T801 and T805 transputers. For the purpose of generating common
code for several transputer types these are also grouped into transputer classes.

Transputer classes group transputers according to word size, the position of the
start of usable memory, and instruction set compatibility. They can be used to
generate code for combinations of transputers.

Details of transputer types and classes can be found in section 5.3.

11.2.2 Error modes

All code in mixed language transputer programs must be compiled and linked in
the same or a compatible error mode. icc always generates code in UNIVER-
SAL error mode, which is compatible with HALT and STOP error modes created
by other INMOS compiler toolsets.

The error mode for a mixed language program can be consolidated into a single
mode for the entire program by specifying the appropriate linker option. If no
mode is specified the linker generates the program in HALT mode.

11.2.3 Default command line options

Commonly used command line parameters can be defined in the host environ-
ment variable ICCARG. Parameters specified in this way are automatically added
to the command line when the compiler is invoked.

Command line parameters must be specified in ICCARG using the syntax re-
quired by the icec command line.

11.2.4 File extension defaults

The .c extension is assumed on input source files and does not need to be
specified. If no output file is specified the compiled object file is named after the

input file and given a .tco extension. A .tco extension is also added if a file
is specified without an extension.

72 TDS 224 00 August 1990

162 11 icc - ANSI C compiler

11.2.5 Search paths

The normal search paths are used for locating files specified on the command
line. The search rules are described in section A.3.

Search paths for files imported with the #include compiler directive differ
slightly from those for files specified on the command line and can be extended
by the use of special syntax and a command line option. Details of this facility
can be found in section 11.3.1.

11.3 Compiler directives
11.3.1 #include
Syntax: #include filename

The #include directive instructs the preprocessor to copy the contents of the
named file into the current file. The filename must be enclosed within angle
brackets (<filename>) or double quotes ("filename”). The two forms of syntax
generate different search strategies.

If angle brackets are used only those directories specified by ISEARCH are
searched. No other directories (including the current directory) are searched.
This system is mainly used to include the standard library header files.

If double quotes are used to enclose the filename the standard toolset search is
used, but incorporating a method for extending the search list. First the current
directory is searched. If the file is not found the search continues with the list of
directories specified after the compiler ‘g’ option. If the file is still not found, or
if no list is given, directories specified by ISEARCH are searched in the normal
way.

Relative directory names

Relative directory names are treated as relative to the directory containing the
current source file.

Backslash character in filenames

In included filenames the backslash is not treated as an introducer to an escape
sequence unless it is followed by another backslash (‘\\').

72 TDS 224 00 August 1990

11.3 Compiler directives 163

11.3.2 #define
Syntax: #define name [(argl....,argn)] [value]

The define directive allows simple macro substitution to be performed. In its sim-
plest mode of operation name and value represent a series of ASCII characters
causing the preprocessor to substitute all occurrences of name by value (which
may be NULL). Arguments may also appear after the name, and when this hap-
pens the preprocessor will still replace all occurrences of name and its following
arguments by value, but in this case the value string will have been defined in
terms of the expected arguments, and will therefore exhibit a dependence on
the original text.

#define YES.1 /* replace all occurrences
of YES by 1 */

#define max(a,b) (a >b ? a : b)
/* max(2,4) will be replaced by
(2>422: 4) %/

11.3.3 #undef
Syntax: #undef identifier

This directive causes the current definition of identifier (as defined using the
#define directive) to be deleted.

11.3.4 #if
Syntax: #if constant_expression

This directive, along with the #else and #endif directives, is used in a similar
way to the if . .. else construct of many high level programming languages. When
it is encountered, the preprocessor evaluates the following constant expression
and if it is zero it deletes all text up to the following #else or #endif directive.
If, however, the expression evaluates to non-zero, then only the text between
the #else and #endif directives (if any) is removed. This mechanism would
typically be used to allow conditional compilation.

As an extension to this directive, the preprocessor also allows ‘if defined’ typed
expressions. In this case ‘defined’ is used as a unary operator which returns
true if its operand represents an identifier that is currently defined within the
preprocessors symbol table, and false if it is not. By combining this operator
with the logical operators it is possible to build complex expressions of the form:

72 TDS 224 00 August 1990

164 11 icc — ANSI C compiler

#if defined foo & ! defined dummy

/* if foo is defined & dummy is not */

11.3.5 #ifdef

Syntax: #ifdef identifier
This directive works in a similar way to the #1i £ directive, but instead of basing
its decision on the result of an expression it uses the existence or non-existence
of the identifier within the preprocessors’ symbol table as the criterion. If the
identifier has not previously appeared in a #define directive then all text up to
the following #else or #endif directive is deleted; otherwise all text between
the #felse and #endif directives is removed.
11.3.6 #ifndef

Syntax: #ifndef identifier
This directive is similar to #ifdef, except that the text is passed if identifier is
not currently defined.
11.3.7 #else

Syntax: #else
This directive can be used with the #if, #ifdef, and #ifndef directives
to mark the beginning of text which will be ignored whenever the expression
following the #if evaluates to a non-zero value.
11.3.8 #elif

Syntax: #elif

This directive can be used in place of the sequence #else #if.

11.3.9 #endif
Syntax: #endif

This directive must be used with the #if, #ifdef, and #ifndef directives to
mark the end of the text which may be affected by the #if ... #else... #endif

72 TDS 224 00 August 1990

11.3 Compiler directives 165

construct.

11.3.10 #line

Syntax: #line linenumber [filename]
This directive instructs the compiler that it is currently processing line number
linenumber in the file filename. If no file name is specified, the original name is
retained.
11.3.11 #pragma

Syntax: #pragma pragma (params)
This directive activates and deactivates various compiler options in sections of
C code. It may be used to set (or override) options specified on the command

line. Most pragmas also take parameters or numerical arguments.

The following two tables list the main compiler pragmas and the parameters to
IMS_on and IMS_off.

Option Description

IMS_on (params) Enables specific compiler checks. Takes a
list of parameters which specify the checks
to be enabled.

IMS_off (params) Disables compiler checks. Takes a list of
parameters which specify the checks to be
disabled.

IMS_nolink (functionname) | Compiles the function functionname with-
out a static link parameter. The function
must already have been declared but must
not have been defined or called. This
pragma is used for importing code written
using languages such as occam which do
not use static data, and for exporting C
functions to the same languages.

IMS_linkage (["name"]) | Adds ordered reference tags to specific re-
gions of code. The tags are directives to
the linker which force a specific segment
ordering. For further details about link time
ordering see section 20.3.1.

72 TDS 224 00 August 1990

166 11 icc - ANSI C compiler
Option Description
IMS_modpatchsize (n) Specifies the number of bytes

IMS_codepatchsize(n)

IMS_translate (name,

reserved by the compiler for a
linker module number patch.
n has default values of 3 for
32-bit targets and 2 for 16-bit
targets.

Specifies the number of bytes
nreserved by the compiler for
a linker code patch. n has a
default value of 6 for 32-bit
targets and 4 for 16-bit tar-
gets.

Directs the compiler to re-
place all references to name
(for example an external rou-
tine) by "newname”. "new-
name” is a C string which can
contain alphanumeric charac-
ters and the underscore ('_’),
percent (‘%’), and full stop
(‘.") characters.

"newname ")

Parameters to IMS_on and IMS_off:

Parameter S/t

Description

channel_pointers | cp

inline_ops il

Treats a variable of type Channel in the
scope of the definition typedef void
*_IMS_Channel as a channel type for the
debugger. Default is off. This pragma is
enabled in the header file channel.h. If
channel.h is included in the program this
pragma will remain active until specifically dis-
abled.

Compiles certain operations
on long operands (signed or unsigned) on
16-bit targets as in line operations rather than
as calls to the compiler library. Operations af-
fected are: ~ (bitwise complement), +, —, &
(bitwise AND), | (bitwise OR), ~ (bitwise ex-
clusive OR), <<, >>, <, <=, ==, I=, >= and
>. Default is on.

72 TDS 224 00

August 1990

11.3 Compiller directives 167

Parameter S/f | Description

inline_string_ops | is | Compiles the library functions memcpy and
strcpy as in-line transputer code under cer-
tain conditions. For further details see sec-
. tion 11.4. Default is off.

inline_string_ops is enabled in the
standard header file, string.h, where
memcpy and strcpy are declared.

printf_checking pc | Checks that arguments passed to a function
conform to the format used by print£. De-
fault is off. This pragma is normally used
to check formal arguments which are to be
passed directly as format strings to print£.

For each function within the scope of the
pragma the last formal parameter is read as
a format string-and subsequent variable argu-
ments are checked for correct type, accord-
ing to the formatting rules of print£. This
pragma is enabled in stdio . h for the decla-
ration of print£ and related functions, and
subsequently disabled.
. scanf_checking sc | Checks that arguments passed to a func-
tion conform to the format used accepted by
scanf. Default is off. Otherwise this pragma
has the same effect print£_checking.

This pragma is enabled in stdio.h for the
declaration of scanf and related functions,
and subsequently disabled.
stack_checking sc | Checks for stack overflow at the start of each
function. Default is off.

warn_bad_target wt | Warns of inferior code generated for a trans-
puter class rather than for a specific trans-
puter target. Default is on.

warn_deprecated wd | Warns of parameterless function declarations.
Default is on.

warn_implicit wi [Warns of undeclared functions. Default is on.

72 TDS 224 00 August 1990

168 11 icc — ANSI C compiler

Pragma IMS_nolink

The pragma IMS_nolink enables C routines to call or be called from occam
and other languages.

Syntax: #pragma IMS_nolink (fname)

The following code uses the pragma to allow an occam routine OCCAMREALOP
to be called in a C program:

extern float OCCAMREALOP (const float x,
const int op,
const float y):;

#pragma IMS nolink (OCCAMREALOP)

float x, y, z;
z = OCCAMREALOP (x, op_add, y):;

The following code allows the C function max to be called from occam:

extern int max(const int x, const int y);
#pragma IMS nolink (max)
extern int max(const int x, const int y)
{ return x >y ? x : y; }

11.3.12 #error
Syntax: #error text

This directive causes an explicit error. If there is no pragma in force, the compiler
terminates immediately and the text following the directive is displayed on the
screen. If a pragma is already in force, the text is displayed but the compilation
is not aborted. This is useful for determining which pieces of code are being
bypassed by a construct of the form #if ...#else ...#endif.

11.4 Optimised functions

Optimised versions of memcpy and strcpy are provided in the form of the
library functions _memcpy and _stxcpy. These functions are compiled directly
in-line as transputer code under certain conditions, thereby optimising their per-
formance.

72 TDS 224 00 August 1990

11.5 Compiler predefinitions 169

void * _memcpy(void *dest, const void *source,
size t n);

char *_strcpy(char *dest, const char *source);

_memcpy is compiled directly as a transputer block move operation when n is
a positive integer constant and either no result is required or dest is a simple
local pointer. The value of n must be positive because the result of the block
move operation is undefined with a string length of zero.

_strcpy is compiled directly as a transputer block move operation when
source is a string literal and either ro result is required or dest is a sim-
ple local pointer.

If the pragma inline_string_ops is enabled, calls to the ANSI standard
functions memcpy and stxcpy are treated as calls to _memcpy and _strcpy,
and will consequently be compiled in line if the required conditions are met.

Note: inline_string_ops is enabled in the standard header file
string.h, which also declares memcpy and strcpy. If this header file is
included in the source then calls to memcpy and stxcpy will automatically be

treated as calls to the respective in line functions and compiled as transputer
code.

11.5 Compiler predefinitions

Certain constants which identify global information, and some function names,
are automatically recognised by the compiler. Generally, these items can be
referenced directly in C programs do not need to be declared.

Note: Predefined functions _1sb and _params (see section 11.5.3) should be
declared to avoid spurious warning messages being generated by the compiler.
11.5.1 Constants

All predefined constants defined by the ANSI standard are present.

The following INMOS constants are also defined:

__CC_NORCROFT - Norcroft C compiler
_ICcC — ANSI C compiler
_PTYPE — Processor type
-ERRORMODE — Execution error mode

72 TDS 224 00 August 1990

170 11 icc - ANSI C compiler

Details of the constants and the values they can take can be found in chapter 4
of the accompanying Reference Manual.
11.5.2 Functions

The optimised library functions _memcpy and _stxcpy are predefined.

11.5.3 Other predefines

Two further names _1sb and _params are predefined by the compiler. They
can be used in expressions in the same way as C variables. Both represent
addresses which may be manipulated in low level programming.

volatile const void *_1l1sb
volatile const void *_params
_1sb is a pointer to the base of the compiled file’s data area.

_params is a pointer to the base of the the current function’s parameter block.
It can be used to obtain low level information about a function’s runtime code.

The following example illustrates how the two functions can be used to determine
a function’s return address, global static pointer, and workspace pointer.

void p()
typedef struct paramblock

{ void *return_address;
void *gsb;
int regparaml, regparam2;

}
paramblock;

paramblock *pp = (paramblock *)_params;
/* Return address is: pp->return_address

global static base sb is: pp->gsb
caller Wptr is: (void *) (pp + 1) */

72 TDS 224 00 August 1990

11.6 Fatal runtime errors 171

11.6 Fatal runtime errors

Errors are generated at severity level Fatal by the C runtime system when the
program cannot be run. Such errors may occur at startup or during program
execution.

The main causes of runtime errors in a program are summarised below.

o Insufficient memory at startup.
o Stack overflow during execution.

o lllegal conditions detected by the library functions free, realloc,
ProcInit, and ProcPriPar. These errors are described in detail
under the function descriptions in chapter 2 of the accompanying Refer-
ence Manual.

When runtime errors occur the program terminates immediately with an error
message. All runtime error messages are prefixed with ‘Fatal-C_Library'.

11.6.1 Runtime error messages
Fatal-C_Library-Out of memory in system startup [number]

This error is generated when insufficient static or heap space is available
to run the program. number can take the following values:

1 - Insufficient static area in programs which incorporate mixed lan-
guage code from previous 3L compiler toolsets.

2 - |Insufficient static area in programs written using the current
TCOFF-based toolsets.

3 - Insufficient heap space for the input and output channel arrays.

4 - Insufficient heap space for command line parameters to the pro-
gram.

If this error occurs then either the available memory can be increased or
the program recoded in a less memory-intensive way.

Fatal-C_Library-Stack overflow
This message is only generated when stack checking is enabled in the

compiler. It indicates stack overflow in the program and may be remedied
by increasing increasing the specified stack size. If no stack size has

72 TDS 224 00 August 1990

172 11 icc - ANSI C compiler

been specified and the default has been assumed by the program then
the stack size cannot be increased and the program should be recoded.

Fatal-C_Library-Error in free(), bad pointer or heap corrupted

This error indicates an invalid pointer passed to £ree or corruption of
the heap. No specific recovery is possible and the program should be
debugged.

Fatal-C_Library-Error in realloc(), bad pointer or heap corrupted

This error indicates an invalid pointer passed to realloc or corruption
of the heap. No specific recovery is possible and the program should be
debugged.

Fatal-C_Library-Incorrect allocation of process workspace

This error indicates that process workspace was not allocated from the
heap. It is generated by ProcInit when an attempt is made to use
process workspace which has not been allocated by the standard func-
tions malloc, calloc, and realloc, which allocate space from the
heap.

Fatal-C_Library-Nested Pri Pars are illegal
This error is generated by ProcPriPar when it is called from a high

priority process. Calling ProcPriPar from a high priority process is
prohibited in ANSI C.

11.7 Transputer in-line code

ANSI C provides a detailed mechanism for incorporating transputer assembly
code inserts into C programs. The system uses the special keyword __asm
which can be used to enclose sequences of transputer instructions.

The __asm statement and how to use it is described in chapter 4 of the accom-
panying Reference Manual.

11.8 Compiler diagnostics
This section lists diagnostic error messages generated by icc. The section is

introduced by descriptions of some standard terms which may be encountered
in the message texts.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 173

11.8.1 Message format

Diagnostic messages are displayed in the standard toolset format for error mes-
sages. Details of the standard can be found in section A.6.1.

11.8.2 Severities

Diagnostics are tagged with a severity level which indicates their effect on the
compilation. Severity levels are the same as those used in the toolset standard
but have slightly different meanings, which are described below.

Warning severity diagnostics are generated whenever legal, but unorthodox pro-
gramming styles are detected. Compilation is unaffected and object code is
generated normally.

Error severity diagnostics are generated whenever the compiler detects a pro-
gramming error from which it can recover. Compilation continues, but may abort
if more errors are detected subsequently. No object code is generated.

Serious diagnostic messages are generated when programming errors are de-
tected from which the compiler cannot recover. Compilation continues but code
has been lost. No output is generated.

Fatal diagnostic messages are generated for the most serious syntactical errors
and cause the compiler to discontinue processing immediately. However, they
do not indicate failure of the compiler and should not be reported to INMOS. No
output is generated.

Error, Serious, and Fatal diagnostic messages return error codes for handling by
system MAKE programs and batch files.
11.8.3 Standard terms

This section explains some of the standard terms and notation used in compiler
error messages.

abstract declarator

When using explicit casts or when passing an argument to sizeof (), a
data type must be specified. This can be done by declaring an object of
the correct type without specifying the name of the object. Declarations
of this type are called abstract declarations, because they apply to no
known object.

72 TDS 224 00 August 1990

174 11 icc - ANSI C compiler

Examples of abstract declarations are:

(int) a = b; /* ‘int’ is the abstract
declarator */

sizeof (int [3]); /* ‘int [3]’ is the abstract
declarator */

char
Stands for a single ASCII character.
context

Stands for a type, for example, ‘character constant’, ‘integer constant’,
and ‘string constant’.

deprecated declaration
This means that a function declaration is incomplete. ‘Declarations should
specify the type of the function and the type of each formal parameter. If
there are no parameters then the function type void should be specified.
expression
Stands for a C expression.
filename
A file name.

function prototype

A function declaration which usually precedes the function definition. It
declares the function’s type and the types of its parameters.

identifier
A C identifier, for example, a variable or function name.

initialiser

An initial value which is assigned to an object at the time of its declaration.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 175

message string
The string which follows a compiler directive.

op

An operator. Valid operators include: "++" or "—-", "— >", "<<=", and
the unary operators &, *, + and —.

quote_char

A quote character for the #include directive. This could be ”,’, <, or
>.

store class

A C storage class. Valid classes are static or extern.
string

Any string of ASCII characters.
struct/union

A variable of type struct or union.
type

A type identifier. Valid types are int, char, and £loat.
void context

This can occur at any point in a program where a value is not expected,
for example, calling a function without using the returned number.

instruction
A transputer instruction, or a pseudo-instruction as accepted by the _asm
construct.

11.8.4 ANSI trigraphs

The ANSI specification includes a number of three character sequences that

can be used to represent certain ASCII characters that may not be present on
all keyboards. These sequences, known as trigraphs, are used in compiler error

72 TDS 224 00 August 1990

176 11 icc — ANSI C compiler

messages to stand for these characters.

ANSI standard trigraph sequences consist of a sequence of 2 question marks

followed by a third character. A complete list of ANSI trigraphs is given in chapter

3 ‘New features in ANSI C’ of the accompanying User Manual.

11.8.5 Warning diagnostics

#define macro identifier defined but not used
The named macro has been defined, but not referenced in the rest of the
program. This message is only generated if specifically enabled by the
‘FM’ compiler option.

‘&’ unnecessary for function or array identifier

A pointer to a function or array is implied by use of the name alone; the
‘&’ operator is not required.

‘int identifier()’ assumed - ‘void’ intended?

A function was defined without specifying its type. The compiler assumes
a function of type int if no type is specified.

identifier has been defined; pragma ignored

The function specified in the IMS_nolink pragma has already been
defined with a static link.

identifier has not been declared; pragma ignored

The function specified in the IMS_nolink pragma has not yet been
declared.

identifier is not a function; pragma ignored
The argument to the IMS_nolink pragma must be a function name.
identifier multiply translated, this translation ignored

The IMS_translate pragma has been applied to identifier more than
once.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 177

identifier has already been translated to string

The IMS_translate pragma has been used to translate more than
one name to string.

number treated as numberUL in 32-bit implementation

No type was specified for the number. The compiler assumes unsigned
long if no type was specified.

op: cast between function and object pointer
The specified operator has been used in an expression involving pointers
of different types, that is, a function pointer and an object pointer (a
pointer to an area in memory).

op: cast between function and non-function object

The operation is performed upon two arguments, one of which is a func-
tion, and the other an object.

type identifier declared but not used
The named identifier has been declared, but not used in the program.
actual type type mismatches format ‘%char’

The type of an argument to print£f or scanf does not match that
implied by the control string.

ANSI ‘char char char’ trigraph for ‘char’ found - was this intended?
The specified three character sequence was found in the source pro-
gram. This has been treated as an ANSI trigraph and substituted for the
character shown.

argument and old-style parameter mismatch: expression
There is an old (non-prototype) style function definition in scope, and the
type of an argument (after default argument promotion has taken place)
does not agree with the type of the corresponding formal parameter.

Cannot generate stack check for function (pragma nolink applied)

A stack check requires a static link, and the function function has been
specified not to receive a static link (using IMS_nolink). icc compiles

72 TDS 224 00 August 1990

178 11 icc - ANSI C compiler

the function with the stack check omitted.
character sequence /x inside comment

The start-of-comment character sequence was detected within a com-
ment. Check that the previous comment was terminated correctly.

Dangling ‘else’ indicates possible error

Within nested if ...else constructs, there is some ambiguity as to
which ‘i’ relates to which ‘else’.

Deprecated declaration identifier() — give arg types

In the prototype declaration of the named function, the argument’s names
and/or their types were not specified.

division by zero: op
Division, or remainder, by zero, will cause overflow.
Expected string as second argument - pragma ignored

The second argument to the IMS_translate pragma must be a string
literal.

extern ‘main’ needs to be ‘int’ function

In a declaration of main (), the function should always be declared as
type int.

extern identifier not declared in header

All objects must be declared before use. This message is only generated
if specifically enabled by the ‘FM’ compiler option.

floating point constant overflow: op

Floating point overflow occurred during addition, subtraction, multiplica-
tion or division of two constants.

floating point overflow when folding

Floating point overflow occurred during addition, subtraction, multiplica-
tion or division of a constant.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 179

floating to integral conversion failed

Conversion (casting) from a floating point type to an integral type (such
as int) failed.

formal parameter identifier not declared - ‘int’ assumed
A formal parameter has been listed in the parameter list of the function
definition, but there is no entry for it in the declaration list; it is therefore
assumed to be of type int.

Format requires count parameter(s), but count1 given
A call to print £ or scanf was made with the incorrect number of argu-
ments. The control string indicated that count arguments are needed, but
count1 were provided. This warning is only generated if pragma IMS_on
(pc) is active. The header file stdio.h includes this pragma.

lllegal format conversion ‘%char’
The character sequence ‘schar’ is not a legitimate conversion character
forprint£ or scanf. This warning is only generated if pragma IMS_on
(pc) is active. The header file stdio.h includes this pragma.

implicit narrowing cast: op
The result of an operation performed at higher precision is immediately,
and implicitly, cast to lower precision, thus losing the extra precision: if
the extra precision is not required, the operation ought to be performed
at the lower precision.

implicit return in non-void identifier()

The function does not contain a return statement, even though it is
defined to return a value.

Incomplete format string
The control string for use with print£ or scanf is incomplete. This
warning is only generated if pragma IMS_on (pc) is active. The header
file stdio.h includes this pragma.

inventing ‘extern int identifier();’

No declaration exists for the function; it will be defined by default as
extern int.

72 TDS 224 00 August 1990

180 11 icc — ANSI C compiler

label identifier was defined but not used
The named label was set, but not used.

Linkage already set - pragma ignored
The IMS_linkage parameter has been specified more than once.

lower precision in wider context: op
The result of an operation performed at lower precision is immediately
cast to a higher precision; it may be that the user was expecting the
operation to be performed at the higher precision.

Missing comma in pragma argument list - pragma ignored
Multiple arguments to a pragma must be separated by commas.

no side effect in void context: identifier
The value which has been returned by an expression is not being used.
This error would occur, for example, when a non-void function is called
and the returned value is ignored.

non-portable — not 1 charin ...’
The characters enclosed by single quotes represent more than one char-
acter. The compiler will read the first character only, for example, ‘AB’
will be read as ‘A’.

non-value return in non-void function
A function which should return a value has terminated without using a
return statement or with a return statement that has no arguments. The
value received from the function by the calling routine is undefined.

odd unsigned comparison with 0 : op

a > comparison of an unsigned integer with zero, or a < comparison of
zero with an unsigned integer, is always true.

omitting trailing \0’ for char [count]
The char array is fully occupied by characters and there is no room to

append the string terminator (\0). count is the full length of the character
array.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 181

repeated definition of #define macro identifier

The named macro has been defined more than once. The definitions are
identical.

Shift of type by count undefined in ANSI C

A shift of more than the number of bits in type, or less than zero was
requested, undefined in ANSI C.

spurious {} around scalar initialiser

A scalar can take only one initialiser, so there is no need to use braces
as are required with aggregate types such as arrays.

static identifier declared but not used
The named static object was declared but not used.

struct has no named member
A structure has been declared without any members.

Undefined macro string in #if — treated as 0
This error occurs when enumeration or undefined constants appear after
the preprocessor #i £ directive. For example, if ‘ab’ and ‘cd’ are enumer-
ation constants of the enumerated type ‘abcd’, the statement #if ab
== cd would generate this error.

union has no named member
A union has been declared without any members.

unnamed bit field initialised to zero

A static declaration of a structure or union containing an unnamed bit
field, the compiler has initialised that field to zero.

Unrecognised #pragma (no ’(’)
Unrecognised #pragma (no ')’)

The arguments to a pragma are not correctly enclosed in parentheses.

72 TDS 224 00 August 1990

182 11 icc — ANSI C compiler

Unrecognised #pragma identifier
identifier is not a pragma recognised by this compiler.
unused earlier static declaration of identifier

The static variable identifier has been defined before being declared.
Generated only if the ‘FH’ compiler option is specified.

use of op in condition context

Generated when the invalid operators ‘=" (assignment) or ‘~’ (bit-not) are
used in a condition statement.

variable identifier declared but not used
The variable was declared, but not used anywhere in the program.
(possible error): >= number lines of macro arguments

There are a suprisingly large number of lines of arguments to a macro;
this may indicate a syntax error.

11.8.6 Recoverable errors
#error encountered string
The #errox directive was found in the source code.
#ident is not in ANSI-C
#ident is not a recognised preprocessor directive.
context identifier may not be function — assuming function pointer

An attempt was made to use a function where it was not expected, typi-
cally when a function is included as a component within a structure.

instruction may not have a size specified
An _asm pseudo-instruction may not be explicitly sized.
Y’ (not ‘;’) separates formal parameters

A semicolon has been used to separate the formal parameters in a func-

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 183

tion definition (as in Pascal) instead of a comma.
‘register’ attribute for identifier ignored when address taken

An attempt was made to take the address of a variable with ‘register’
storage class. The register attribute will be ignored allowing the address
to be taken.

int op pointer treated as int op (int) pointer

The expression involving a integer and a pointer will result in the pointer
being converted (cast) to an integer.

op: implicit cast of fype to ‘int’
A non-integer object has been used where an int was expected, for
example, attempting to use a double as an argument to a switch state-
ment (which requires an integer type).

op: impilicit cast of non-0 Int to pointer

Evaluation of the expression will result in the cast of an integer to a
pointer.

op: implicit cast of pointer to ‘int’

Evaluation of the expression will result in the cast of the pointer to an
integer.

operator: implicit cast of pointer to non-equal pointer

Evaluation of the expression will result in the cast of one pointer type to
another.

pointer operator int treated as (int) pointer operator int

Evaluation of the expression will result in the cast of the pointer to an
integer.

Ancient form of Initialisation, use ’'=’

A }, rather than =, was used to introduce an initialiser, this is no longer
legal C.

72 TDS 224 00 August 1990

184 11 icc - ANSI C compiler

ANSI C does not support 'long float’

An object has been declared of type long float, thisis illegal in ANSI
C, which supports £loat, double, or long double.

Array of type illegal - assuming pointer

An array of functions or void objects has been declared. The compiler
treats this as an array of pointers to functions or void objects.

Array [0] found

An empty array has been defined and will be set up instead as an array
with one element.

assignment to ‘const’ object identifier

The expression contains an assignment to a constant. The assignment
will be carried out.

const typedef identifier has const respecified

A typedef which is already qualified with const, has been qualified with
const.

comparison op of pointer and int: literal 0 (for == and !=) is only legal
case.

The specified operator was used to compare an object of type int and
one of a type pointer. The only legal comparison of this type is be-
tween a pointer and 0 using either == or !=.

declaration with no effect

No name has been declared for the object. Specifying only the type of
an object generates this error.

differing pointer types: op
The specified operator was used with pointers of different types.

differing pointer types: ‘:’

Types of objects in the conditional expression do not match.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 185

Digit 8 or 9 found in octal number

A decimal digit was encountered in an octal number.
duplicate macro formal parameter: ‘identifier

The function macro has two formal parameters with the same name.
duplicate member identifier1 of identifier2

Two fields of structure or union identifier2 have the name identifier1.
ellipsis (...) cannot be only parameter

A function declared to take a variable number of parameters must have
at least one known parameter.

extern identifier mismatches top-level declaration

AR extexrn declaration of identifier within a function definition does not
match an extexrn declaration of identifier at the top level.

formal name missing in function DEFINITION
The type of a formal parameter has been omitted in a function definition.
function identifier may not be Initialised — assuming function pointer
Initialisers cannot be used in function declarations or definitions.
function prototype formal identifier needs type or class - ‘int’ assumed

The type of a formal parameter has been omitted in a function declaration
and int has been assumed.

hex number cannot have exponent

A hex number ending in e may not be immediately followed by + or -;
separate the number and the additive operator with whitespace.

illegal bit field type type - ‘int’ assumed

Bit fields cannot be set within non integral variables. The compiler as-
sumes an int instead.

72 TDS 224 00 August 1990

186 11 icc - ANSI C compiler

illegal Indirection on (void *): '*’

An attempt has been made to take the contents of the object pointed to
by a pointer to void.

illegal option —Didentifier identifier
The compiler D option must be specified for each assignment.
illegal string escape ‘\char’ — treated as char

The character following \ does not form part of a valid string escape.
The compiler treats the sequence \char as char.

illegal [] member: identifier
An open array may not be a member of a structure or union.
implicit cast (to type) overfiow
Overflow occurred when casting an expression.
junk at end of #identifier line - ignored
The text following the directive is invalid and will be ignored.
linkage disagreement for identifier — treated as store class
The storage class of a previously defined static or extern object or
function disagrees with the current declaration. The object will be treated
as though it is in storage class store class.
L’...’ needs exactly 1 wide character
A wide character constant should contain exactly one wide character.
Missing newline before EOF — inserted
A blank line should have been inserted before the end-of-file character.
Missing type specification — ‘int’ assumed

A type specification is missing. The object will be assumed to be of type
int.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 187

more than 4 chars in character constant
More than 4 ASCII characters were used to represent a character con-
stant. When using the single quote syntax for character constants a
maximum number of 4 characters is permitted in order to accommodate
the octal representation of a character. The first 4 characters will be
used.

no chars in character constant

No characters or character-codes have been specified for the character
constant. A NULL character is assumed.

number missing in #line
There is no line number following the preprocessor #1ine directive.
objects that have been cast are not I-values

An object that has been cast in l-value context; ANSI has made this
illegal.

Omitted type before formal declarator — ‘int’ assumed
No type was specified; type int will be assumed.
operand of # not macro formal parameter: ‘identifier

The operand to the # preprocessor operator must be a formal parameter
of the function macro containing it.

overlarge escape '\ number?’ treated as '\ number2

An octal number in an escape sequence is too large to be represented
in the target architecture.

overlarge escape '\xnumber?’ treated as ’\xnumber2

A hexadecimal number in an escape sequence is too large to be repre-
sented in the target architecture.

parentheses (...) inserted around expression following text

Parentheses were expected after the specified text, for example, around
a conditional expression such as an if statement.

72 TDS 224 00 August 1990

188 11 icc - ANSI C compiler

prototype and old-style parameters mixed
It is illegal to mix new (prototype) and old-style parameter declarations.
return expression illegal for void function

A return statement was found within a void function. The return statement
is ignored.

signed constant overflow: op
Overflow occurred when performing op upon signed, constant operands.
size of ‘void’ required — treated as 1

‘void’ was used as an argument to sizeo£f. The compiler assumes the
size of void to be 1.

size of a [] array required, treated as [1]

The array is of unspecified size. In these circumstances sizeof return
the size of the array type.

size of function required — treated as size of pointer

A function name was passed to the sizeof function. In these circum-
stances sizeof returns the size of the pointer to the function.

sizeof bit field illegal — sizeof(int) assumed

A bit field was passed to the sizeof£ function. In these circumstances
sizeof casts the bit field to an integer and then returns its size.

Small (single precision) floating value converted to 0.0

The number is too small to represent in a single word (32 bit) floating
point format, and has been rounded to 0.0.

Small floating point value converted to 0.0

The number is too small to represent in a double word (64 bit) floating
point format, and has been rounded to 0.0.

Spurious #elif ignored

The #elif directive could not be matched with a corresponding if

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 189

directive and has been ignored.
Spurious #else ignored

The #else directive could not be matched with a corresponding if
directive and has been ignored.

Spurious #endif ignored

The #endif directive could not be matched with a corresponding if
directive and has been ignored.

struct member identifier may not be function — assuming pointer

A structure member was declared of function type; the compiler treats
this as pointer to function type.

struct tag identifier not defined
A structure has been referenced before being defined.
type or class needed (except in function DEFINITION) - ‘int’ assumed
The type or storage class has been omitted from the function declaration.
Undeclared name, inventing ‘extern int identifier

An undeclared identifier was encountered and will be given the storage
class extern.

union member identifier may not be function — assuming pointer

A union member was declared of function type; the compiler treats this
as pointer to function type.

union tag identifier not defined
A union has been referenced before being defined.
unsigned constant overflow: op

Overflow occurred when performing op upon unsigned, constant
operands.

72 TDS 224 00 August 1990

190 11 icc - ANSI C compiler

unprintable char number found - ignored
An unprintable character was found in the source text.
volatile typedef identifier has volatile respecified

A typedef which is already qualified with volatile, has been qualified
with volatile.

wrong number of parameters to function

A function was called with the wrong number of arguments.

11.8.7 Serious errors
op: cast to non-equal type illegal

A structure or union has been cast into a structure or union of a different
type. The cast is illegal and will be ignored.

operator : illegal cast of type to pointer

A variable has been cast into a pointer type. The cast is illegal and will
be ignored.

op: illegal cast to type
An illegal cast has been attempted. The cast is illegal and will be ignored.
context: lllegal use in pointer initialiser
An object of type auto, or its address, cannot be initialised.
‘...” must have exactly 3 dots
An ellipsis must consist of three dots.
‘break’ not in loop or switch - ignored

A break statement was encountered outside the scope of a loop or switch
statement. A break at this point is illegal and will be ignored.

‘case’ not in switch - ignored

A case prefix has been encountered outside the body of a switch state-

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 191

ment. A case statement at this point is illegal and will be ignored.
‘continue’ not in loop ~ ignored

A continue statement has been encountered outside the body of a loop.
A continue statement at this point is illegal and will be ignored.

‘default’ not in switch — ignored

A default prefix has been encountered outside the body of a switch state-
ment. A default prefix at this point is illegal and will be ignored.

‘goto’ not followed by label — Ignored
The text following a goto statement does not represent a label.
‘void’ values may not be arguments

Formal parameters in function definitions or declaration cannot be of type
void.

‘while’ expected after ‘do’ — found text

The while statement is missing from a do ...while construct. text
marks the position.

‘{’ of function body expected — found text
The opening brace in the body of a function is missing.
‘{’ or identifier expected after type, but found text

The opening brace following a struct, union or enum is missing. text
marks the position.

'’ expected but found a symbol/
A label definition inside an _asm construct was not terminated by a colon.
<asm-directive> expected but found a text

text indicates where the _asm directive was expected.

72 TDS 224 00 August 1990

192 11 icc — ANSI C compiler

<command> expected but found a text

Statements such as switch or if should be followed by a command.
text indicates where the command was expected.

<expression> expected but found text
text indicates where the expression was expected.
identifier expected but found text in ‘enum’ definition
Reserved words cannot appear in the definition of enumerated types.
function has pragma nolink specified, but accesses static data
The specified function has been specified not to receive a static link (via
IMS_nolink), but attempts to use static data. It is only possible to use
static data when a static link is available.
identifier is not a label - Idlabeldiff ignored
The operands to the 1dlabeldiff pseudo-instruction must be labels.
instruction not followed by label - ignored
A load or store _asm instruction must have a constant or label operand.
op may not have whitespace in it
Two-character operators such as ‘+=" must not contain spaces.
store class variables may not be initialised

Some types of C variables, such as those declared as extern, cannot
be initialised.

Array size count illegal — 1 assumed

Arrays cannot be larger than Oxffffff on a 32-bit target, or 65535 on a
16-bit target.

attempt to apply a non-function

A name not declared as a function has been used in a context where a
function should be.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 193

attempt to include struct/union identifier object/member

A structure or union declaration may not contain a field of the structure
or union type, or a field which references another field.

bit fields do not have addresses
Elements of type bit field in C structures cannot be addressed.

Bit size size illegal — 1 assumed
Bit sizes greater than 32 are set to 1.

Cannot call function (it requires a static link)
An attempt has been made to call the specified function which requires
a static link, from a function which has been specified not to receive a
static link (via IMS_nolink).

Cannot call through pointer (it requires a static link)
An attempt has been made to call a function through the specified pointer
from a function which has been specified not to receive a static link (via
IMS_nolink). All calls through function pointers are assumed to require
a static link.

Cannot store to identifier

identifier is a built-in name, such as _1sb or _params, which cannot be
assigned to.

char and wide (L"...”) strings do not concatenate
A char string and a wide char string appear adjacently in the source text.
Normally, adjacent strings in the source text are concatenated; however,
this is not possible here, as they have different types.

differing redefinition of #define macro identifier

The named macro has been defined more than once. The definitions are
not identical.

Digit required after exponent marker

Exponents of floating point numbers must be followed by a numeric char-
acter. The numeric character may be preceded by ‘+ or ‘.

72 TDS 224 00 August 1990

194 11 icc - ANSI C compiler

duplicate ‘default’ case ignored

The default prefix has already been specified for the switch construct.
The original definition will be used.

duplicate definition of identifier

The named identifier has already been defined.
duplicate definition of struct/union tag identifier

The named structure or union identifier has already been used.
duplicate definition of label identifier - ignored

The specified identifier has already been used. The original definition will
be used.

duplicate type specification of formal parameter parameter

The specified parameter has been listed more than once in the function’s
formal parameter list.

duplicated case constant: constant

The constant has been specified more than once in the same case state-
ment.

EOF in comment

The end-of-file character was detected inside a comment.
EOF in string

The end-of-file character was detected within a string.
EOF in string escape

The character sequence ‘\EQF’ was detected within a string.
EOF not newline after #if ...

An end-of-file character was found after the ‘#if’ directive; a newline
character was expected.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 195

expected symbol1 — inserted before symbol2
symbol1 was expected before symbol2 and the compiler has changed the
code accordingly. For example, in the code "if (TRUE printf();”
the compiler would expect to find ‘)’ before ‘printf’.

expected symbol1 or symbol2 - inserted .symbol1 before symbol3
symbol1 or symbol2 was expected before symbol3, but neither was
found. symbol1 is suggested as the most appropriate choice and the
compiler has changed the. code accordingly.

Expected <identifier> after operator but found text
The specified operator must be followed by an identifier. This error may
occur after the structure member operator ‘.’ and the structure pointer
operator ‘— >’.

Expecting <declarator> or <type>, but found text

An identifier or type was expected at text. For example, the declaration
‘typedef int %[3] test;’ generates this error.

Grossly over-long floating point number

There are too many digits in the floating point number. The compiler
reads the maximum number of digits allowed and discards the rest.

Grossly over-long hexadecimal constant

There are too many digits in the hexadecimal number. The compiler
reads the maximum number of digits allowed and discards the rest.

Grossly over-long number

There are too many digits in the decimal number. The compiler reads
the maximum number of digits allowed and discards the rest.

Hex digit needed after Ox or 0X

The hexadecimal specifier 0x must be followed by a valid hexadecimal
digit. The compiler assumes a zero digit.

Identifier (name) found in abstract declarator — ignored

An identifier should not be used in an abstract declarator. This error is

72 TDS 224 00 August 1990

196 11 icc - ANSI C compiler

generated, for example, if sizeof (int xtest[3]) ; is used instead
of the correct form sizeof(int *[3]);.

illegal in context: error

llegal expressions such as those involving division by zero generate this
error.

illegal in expression: non constant identifier

A constant is required in certain expressions, for example after a case
prefix.

lllegal in I-value: context

An l-value was expected. For example, attempting to assign a value to a
constant will generate this error.

lllegal in I-value: ‘enum’ constant identifier
Enumeration constants cannot be used as I-values in an expression.
lllegal in Ivalue: function or array identifier
Arrays and function declarators cannot be used as I-values. This error
would be generated, for example, by attempting to assign a value to a
function declarator.
lllegal in the context of an I-value: op
The operator op cannot appear in I-value context.

lllegal types for operands: operator

The operator has been used with an invalid type. For example, it is illegal
to use the structure member operator ‘.’ with a variable of type int.

lllegal 'void’ member/object: identifier

An object or member of a structure or union cannot be declared as being
of type void.

incomplete tentative declaration of identifier

The declaration of identifier has gone out of scope before the declaration
has been completed.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 197

Junk after #if expression

The #if£ directive must be terminated by a newline character.
Junk after #include filename

The #include directive must be terminated by a newline character.
label identifier has not been set

A label has been referenced but not set. This message will be generated
if goto is used with an undefined label.

Idlabeldiff not followed by label - ignored
The operands to the 1dlabeldiff pseudo-instruction must be labels.
Misplaced ‘else’ ignored

An else statement was found where it was not expected. It will be
ignored.

Misplaced ‘{’ at top level - ignoring block
An opening brace was found at the top level of a program when it was not
expected, for example when not used as part of a function or structure
definition.

Misplaced preprocessor character char

A preprocessor directive character (# or \) was found where it was not
expected.

Missing #endif at EOF
An #endif directive is missing. This error will not be generated until
the last of the currently open files is about to be closed (ANSI standard
does not require #if and #else statements to match in included files).

Missing quote char in preprocessor command line

A ‘quote’ character is missing from a preprocessor command line. The
missing character could be /, <, >, or ".

72 TDS 224 00 August 1990

198 11 icc - ANSI C compiler

Missing ‘)’ after identifier (... on line number

A closing parenthesis is missing from the macro which will be substituted
at line number.

Missing ,” or ‘)’ after #define identifier (...

The list of parameters in a macro definition is either incomplete or has
not been correctly terminated by a closing parenthesis.

Missing < or ” after #include
The opening ‘quote’ character which introduces the filename is missing.
Missing hex digit(s) after \x

The hexadecimal introducer sequence \x was found, but no hexadecimal
digit was specified. The compiler assumes that the letter x was intended.

Missing identifier after #define
The definition is empty. #define must be followed by an identifier.
Missing identifier after #ifdef
#ifdef must be followed by an identifier.
Missing identifier after #undef
#undef must be followed by an identifier.
Missing parameter name in #define identifier (...

A parameter is missing from the specified macro definition. This error
would be generated by a definition of the form #{define test (arg,).

Newline or end of file within string
A newline or end-of-file character was encountered within a string.
No ‘) after #if defined(...

The closing parenthesis is missing from the directive.

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 199

No Identifier after #if defined
#if defined must be followed by an identifier.
Non-formal identifier in parameter-type-specifier
The parameter identifier was included in the declarator list of a function,
but not in the parameter list. For example, a definition such as int
foo () int x; {} would generate this error.
non-static address identifier in pointer initialiser
Pointers cannot be initialised with the address of an object of type auto.
Number number too large for 32-bit implementation
The specified number is too large to be represented in 32 bits.
Operand number to instruction is larger than a word

The arguments to an _asm load or store pseudo-instruction must fit in a
machine word.

Operand number to instruction is not word-sized

The arguments to an _asm store pseudo-instruction must fit exactly in a
machine word.

Operand to instruction must be a constant or local variable
An illegal operand has been given to an _asm 1d1 or st1l instruction.
Operand to instruction is larger than a word

The operand to a primary instruction inside _asm must fit in a machine
word.

Overlarge (single precision) floating point value found

The number is too large to represent in single word (32 bit) floating point
format.

Overlarge floating point value found

The number is too large to represent in double-word (64 bit) floating point
format.

72 TDS 224 00 August 1990

200 11 icc - ANSI C compller

quote (char) inserted before newline

The specified quote character was found before a newline character. This
may indicate a a spurious character or a missing closing quote.

re-using struct/union tag identifier as union/struct tag

The named identifier has been used to identify two different types of
object.

size of expression unknown: treated as 0

The size of a structure or union is required, but the structure or union
has not been completely declared.

size of struct identifier needed but not yet defined

The size of the structure has not yet been defined. This error can occur
when an undefined structure is used as an argument to the sizeof
function and when an undefined structure is used in the declaration of
a variable. In the second case the error occurs because the compiler
attempts to determine the size of the structure for memory allocation
purposes.

static function identifier not defined - treated as extern
A function was defined as static in the function prototype, but the
compiler was unable to find the function definition. An extexrn function
is assumed.

storage class store class incompatible with store class — ignored
Two incompatible storage classes have been used in a declaration.
For example, extern static foo; generates this error because
extern and static are incompatible types.

storage class store class not permitted in context context — ignored
The specified storage class is not permitted in the context in which it has
been used. This error would be generated, for example, if storage class
auto were to be used at the top level.

string initialiser longer than char [countf]

A character array has been initialised with more characters than the array
can accommodate. Since the compiler adds a terminating NULL charac-

72 TDS 224 00 August 1990

11.8 Compiler diagnostics 201

ter to strings, string initialisers should always contain one less element
than the array.

struct identifier must be defined for (static) variable declaration

An undefined structure has been used in a variable declaration.
struct/union identifier has no identifier tield

The structure or union contains no field of that name.
struct/union identifier not yet defined — cannot be selected from

A reference was made to an undefined structure or union.
Too few arguments for instruction

A load or store _asm pseudo-instruction has too few arguments.
Too few arguments to macro identifier(. ..on line number

There are too few arguments to the macro which will be substituted at
line number.

Too many arguments for instruction
A load or store _asm pseudo-instruction has too many arguments.
Too many arguments to macro identifier(...on line number

There are too many arguments to the macro which will be substituted at
line number.

too many initialisers in {} for aggregate

An aggregate type, for example an array, has been initialised with more
values than can be accommodated.

type type1 inconsistent with type2
Two incompatible type identifiers are being used in the declaration of

a single object. For example, the declaration double int x; would
generate this error.

72 TDS 224 00 August 1990

202 11 icc - ANSI C compiler

type disagreement for identifier

The specified identifier has already been assigned a different type.
typedef name type used Iin expression context

A type definition has been used in an expression.
undefined struct/union identifier cannot be member

The structure or union being used as a member of another structure or
union is at present undefined.

undefined struct/union identifier1 member/object: identifier2
The structure or union is, at present, undefined.
Uninitialised static [] arrays illegal
Static arrays of unspecified size must be initialised.
union identifier must be defined for (static) variable declaration
An undefined union has been used in a variable declaration.
Unknown directive: #identifier

identifier is not a valid preprocessor directive. Check spelling and/or
syntax.

\space and \tab are invalid string escapes
Whitespace (‘\space’ or ‘\tab’) was found within a string. All characters
up to the first non-whitespace character are ignored; if the first non-
whitespace character is a newline character, this will also be ignored.

{} must have 1 element to initialise scalar or auto

When initialising a scalar quantity or auto variable only one initialiser
should be specified within the enclosing braces.

#it first or last token in #define body

The ## preprocessor operator must be preceded by a preprocessor to-
ken, and succeeded by a preprocessor token.

72 TDS 224 00 August 1990

11.9 icc error messages 203

11.8.8 Fatal Errors
#error encountered string
The #error directive was found. This directive normally causes

the compilation to abort immediately but can be disabled by the
IMS_off (ef) pragma. The message is still generated.

11.9 icc error messages

This section lists messages generated by icec on encountering file system and
other errors. Errors are listed by severity level.

icc generates errors at three severity levels: Warning; Serious; and
Fatal.
11.9.1 Warnings
Cannot delete temporary file filename
Host file system error.
Expression generates poor code on this target ("dup’ required)
An expression is being compiled for a tranputer class of which only some
members have the dup instruction. The compiler has decided that the
expression could be compiled more efficiently using the dup instruction,
but cannot do so because it is not present on all members of the class.
Floating-point generates poor code on this target
Floating-point code is being compiled for a transputer class of which only
some members have instruction set additions to enhance floating-point
performance. As these instructions are not present on all members of

the class, the compiler cannot use them.

Too many compiler arguments
Too many assembler arguments

There are too many options on the command line. The extra options are
ignored.

72 TDS 224 00 August 1990

204 11 icc — ANSI C compiler

11.9.2 Serious errors
#include file filename wouldn’t open
The file filename could not be opened.

illegal character (number = ‘char’) in source
illegal character (hex code number) in source

An unexpected character was found in the source code. The ASCII code
of the character (if printable), and the character itself, are given.

11.9.3 Fatal Errors

Invalid command line option (texf)
text is not a recognised command line option.

Invalid source file name (filename)

filename is not a valid source file name. (Source file names may not
contain hyphens.)

/0 error writing filename

An error occurred when writing to the named file.
Missing include directory name

The J command line option must be followed by a directory name.
Missing object file name

The O command line option must be followed by an object file name.
No file name given

No source file was specified on the command line.
Out of memory
Out of store (for error buffer)

Out of store (in cc_alloc)

The compiler ran out of available memory.

72 TDS 224 00 August 1990

11.9 icc error messages 205

Too many errors

After 100 Serious errors, the compilation aborts.

72 TDS 224 00 August 1990

206 11 icc - ANSI C compiler

72 TDS 224 00 August 1990

12 icconf — configurer

This chapter describes the configurer tool icconf£ that configures code for trans-
puter networks. It describes the command line syntax and explains how the tool
is used to generate a configuration data file for input to the code collector tool.
The chapter ends with a list of error messages.

12.1 Introduction

The configurer takes a configuration description created using the transputer
configuration language and produces a configuration data file which icollect
uses to generate bootable code for a transputer network.

A configuration description describes how code is to be run on a network of
transputers. It consists of separate definitions of the software and hardware
networks, and a mapping description which defines how the software will be
placed on the processor network. Using this description the configurer allocates
code to particular processors and performs wide ranging consistency checks on
the mapping of software to hardware.

Code to be run on separate processors must be linked code. Linked units that are
to be run on the same transputer must be compiled for the same or a compatible
transputer type.

The operation of the configurer tool in terms of toolset default file extensions is
illustrated below.

12.2 Configuration language implementation
The configuration language supported by icconf has a number of implementa-
tion characteristics of which the programmer should be aware. These are briefly
listed below; details can be found in section C.1.

o Array subscript ranges are machine word-length dependent.

72 TDS 224 00 August 1990

208 12 icconf - configurer

o Source lines must not exceed 512 characters. Leading and following
white space is ignored.

o Dimensions for symbols and array constants must not exceed 16.

e The number of characters in external symbol names in a linked object
file must not exceed 256.

12.3 Running the configurer

The configurer takes as input a configuration description file and produces an
object data file for input to the collector tool.

To run the configurer use the following command line:
> icconf filename {options}

where: filename is the configuration description file. The filename is interpreted
as given and no file extension is assumed. Only one file may be specified.

options is a list of one or more options from table 12.1.

Options must be preceded by ‘-’ for UNIX based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

Examples of use:

UNIX based toolsets: MS-DOS and VMS based toolsets:
icc hello icc hello
ilink hello.tco -f startup.Ink ilink hello.tco /f startup.Ink
icconf hello.cfs icconf hello.cfs
icollect hello.cfb -t icollect hello.cfb
iserver -sb hello.btl -se iserver /sb hello.btl /se

72 TDS 224 00 August 1990

12,3 Running the configurer 209

Option

Description .

(o]

G

I
L
O filename

P procname

RO

RS romsize

E %

X0

Checks the configuration description. No configuration data
file is generated.

This option is used when debugging and disables any ordering
of process memory segments in the configuration code.

Displays extra information as the tool runs.

Loads the tool onto the transputer board and terminates.
Specifies an output filename. If no output file is specified the
configuration data file is given the base name of the input file
and the . c£fb extension is added.

Specifies the name of the root processor when configuring for
EPROMs. procname must not be an element from an array
of processors.

Creates a file suitable for a boot-from-ROM application in
which the code and data are both loaded into RAM.

Creates a file suitable for a boot-from-ROM application in
which the code is loaded into ROM and the data is loaded
into RAM.

Specifies the size of ROM on the root processor. Only valid
when used with the ‘RA’ or ‘RO’ options. romsize is specified
in decimal format and can be followed by 'K’ or ‘M’ to indicate
kilobytes or megabytes.

Disables configurer messages of severity Warning.
Generates additional Warning messages.

Directs the transputer-hosted versions of the tool to be exe-
cuted so that they can be restarted without rebooting by the
server.

Directs the transputer-hosted versions of the tool to be exe-
cuted once on the transputer board and then terminate.

Table 12.1 Configurer options

12.3.1 Default command line parameters

Default command line parameters can be defined on the system in the
ICCONFARG environment variable. Parameters must be specified in the variable
using the syntax required by the configurer command line.

72 TDS 224 00

August 1990

210 12 icconf - configurer

12.3.2 Boot-from-ROM options

The boot-from-ROM options ‘RO’ and ‘RA’ indicate that the program is to be
collected for loading into EPROM and select the execution mode (from ROM or
RAM) for the root transputer code.

Note: The same boot-from-ROM option (‘RO’ or ‘RA’ as appropriate) must also
be supplied to icollect when the EPROM-loadable program is created. The
option specifies to the collector the correct EPROM mode for the program.

For further details see section 13.2.5.

12.3.3 Standard include files
A number of standard include files are supplied to assist with configuration.

Configurer defaults are defined in the file setcon£. inc which is read by the
configurer at startup. This file is automatically included and does not need to
referenced by an #include statement. setcon£.inc contains a number of
boolean constants required by iccon£, definitions of configuration base types,
and predefined INMOS transputer types.

Other standard include files provided with the toolset need to be included in the
normal way. They provide definitions of processor and memory combinations for
INMOS iq systems systems products and a number of configuration examples
that can be used as templates for configuration descriptions.

All standard configuration include files supplied with the toolset carry the . inc
extension. The files supplied are listed below.

trams.inc processor type definitions for INMOS iq systems
TRAnsputer Modules (TRAMSs).

boards.inc | Processor type definitions for INMOS iq systems transputer
evaluation boards.

12.3.4 Configuration description examples

A series of example configuration descriptions is supplied on the config ex-
amples subdirectory.

There are a number of files provided on this subdirectory including a configuration
description for the ‘Hello world’ program used in chapter 3, and a series of
configurations for specific network topologies such as rings, grids, trees, and
pipelines.

72 TDS 224 00 August 1990

12.3 Running the configurer 211

12.3.5 Configurer library files

The configurer reads a special library file at startup which contains the sys-
tem startup processes for different transputer types and error modes. The
file is called sysproc.1ib and is searched for on the directory specified by
ISEARCH. This is normally the toolset 1ibs directory, in which the file was
originally installed.

12.3.6 Search paths

If a directory path is not specified the configurer uses the standard toolset search
mechanism for locating input files, include files, and system library files. Briefly,
the current directory is searched first, followed by the directories specified by
ISEARCH (if defined on the system). For details see section A.3.

12.3.7 Detault memory map

By default the configurer places code into memory in the following order begin-
ning at LoadStart (a location above MemStart defined by icollect): stack;
code; vector space; static; heap; system data; system code; and freespace. The

memory segments are contiguous.

The default memory map is illustrated in figure 12.1.

< FreeStart

System process
(Code + Data)

System data
Heap
Data Segments

Static Contiguous memory
Data Segments
Vector
Data Segments
Code
Segments

Stack
Data Segments

y
<«— LoadStart

Figure 12.1 icconf default memory map

72 TDS 224 00 August 1990

212 12 icconf - configurer

12.4 Configurer diagnostics

Errors in the configuration source produce diagnostic messages in standard
toolset format. Details of the format can be found in section A.6.1.

Diagnostics are generated at severities Warning, Error, and Serious. No diag-
nostics are generated at severity level Fatal. The configurer aborts after 200
source file errors have been detected.
Diagnostic messages are listed in the following sections by severity.
Note: The following lists do not describe general iccon£ system errors, which
are listed separately in section 12.5.
12.4.1 Warning messages
The following diagnostic messages are generated at severity level Warning.
attribute ‘name’ definition ignored
This message can only occur in mixed language programs incorporating
occam modules. The named stacksize or heapsize attribute has
been assigned a value that has been ignored.
attribute ‘name’ has been reassigned
Named attribute has been reassigned and can occur for any attribute.
attribute ‘name’ undefined
Named attribute has not been assigned a value.
channel ‘name’ unconnected and unplaced
Named channel has not been connected or placed.
connector ‘name’ unused
Named connector has not been used in a connect statement.

link ‘name’ unconnected

Named link has not been connected.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 213

nested comment statements, value

One or more nested comments have been found by the configurer. value
is the number of nested comments found.

order attributes ignored in debug mode
The G option has been specified and the memory segments of one or
more user process has been given an order priority in the configuration
source.

overflow in hexadecimal escape character

A numerical overflow has occurred during the evaluation of a hexadecimal
escape character whose range is from 0 to 255.

overflow in octal escape character

A numerical overflow has occurred during the evaluation of an octal es-
cape character whose range is from 0 to 255.

processor ‘name’ unconnected

Named processor has not been connected to the network (defined by the
tree of connections from the root processor).

processor ‘name’ unused
Named process has been connected to the network but has had no user
processes placed onto it.
12.4.2 Error messages
The following diagnostic messages are generated at severity level Error.
attribute ‘name’ cannot be reassigned

Named attribute cannot be reassigned. This can only occur with the
element and type attributes of nodes and processors.

attribute ‘name’ multiply defined in ‘name’
Named attribute has been declared within the interface attribute and

its name clashes with a previously declared attribute or its name clashes
with the name of a predefined attribute for the named symbol.

72 TDS 224 00 August 1990

214 12 icconf - configurer

attribute ‘name’ undefined in ‘name’
Named attribute is an undefined attribute of the named symbol.

attribute ‘name’ undefined

Named attribute has not been assigned a value which is required.
channel ‘name’ connected and unplaced

Named channel has been connected to an input (or output) edge and
has not been placed onto a link.

channel ‘name’ multiply connected

Named channel has been used more than once in a connect statement.
channel ‘name’ multiply placed

Named channel has been used more than once in a place statement.
channel ‘name’ unconnected and placed

Named channel has been placed and is unconnected.

connect ‘name’ to ‘name’ lllegal, both edges

Connect statement is illegal because the named elements are both
edges.

connect ‘name’ to ‘name’ illegal, both non-edges

Connect statement is illegal because the named elements are channels
and they communicate in the same direction.

connect ‘name’ to ‘name’ illegal, edge/non-edge
Connect statement is illegal because the first named element is an input
(or output) edge and the second named element is a channel and they
communicate in different directions.
connect ‘name’ to ‘name’ illegal, non-edge/edge
Connect statement is illegal because the first named element is a channel ‘

and the second named element is an input (or output) edge and they
communicate in different directions.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 215

connector ‘name’ multiply placed
Named connector has been used more than once in a place statement.
connector ‘name’ multiply used
Named connector has been used more than once in a connect statement.
constant dimension sizes inconsistent, value
A constant array has been defined which has inconsistent dimension
sizes for some of its elements. value is the number of the incorrect
dimension, counting from zero. :

constant dimensions incompatible with ‘name’

Named symbol has been assigned a constant value whose dimensions
do not match the symbol in number and/or size.

constant element types not equal, type

A constant array has been defined where some or all of its elements have
non-equal types. type is the correct type for each element in the array.

constant type incompatible with ‘name’, type

Named symbol has been assigned a constant value whose type is not
the same as itself. type is the correct type for the constant.

element ‘name’ in connection undefined
Named symbol has been used in a connect statement and has no asso-
ciated data, for example attributes that are undefined, link attributes of
processor types, channel attributes of process types etc.

element ‘name’ In placement undefined
Named symbol has been used in a place statement and has no asso-
ciated data, for example attributes that are undefined, link attributes of
processor types, channel attributes of process types etc.

element ‘name’ not completely subscripted

Named symbol has been defined as an array and has not been com-
pletely subscripted.

72 TDS 224 00 August 1990

216 12 icconf - configurer

host edge ‘name’ undefined
When configuring to boot from link, the named host edge has not been
declared in the configuration source. This error can only be caused if the
standard include file setcon£. inc has been altered.

illegal RAM + ROM memory size for ‘name’, value
Named symbol is a processor whose total RAM and ROM memory sizes
exceed the total memory addressing capabilities for the processor. value
is the amount of extra memory specified for the processor.

illegal RAM memory size for ‘name’, value
Named symbol is a processor whose total RAM memory size exceeds
the total memory addressing capabilities for the processor. value is the
amount of extra memory specified for the processor.

illegal ROM memory size for ‘name’, value
Named symbol is a processor whose total ROM memory size exceeds
the total memory addressing capabilities for the processor. value is the
amount of extra memory specified for the processor.

illegal assignment for attribute ‘name’

Named attribute is the wrong type of attribute for the assignment of a
constant value, for example, the oxrder attribute of a process.

illegal dimension size, value

A dimension size not greater than zero has been specified. value is the
dimension number with the illegal dimension size.

illegal escape character sequence, char

An illegal escape character sequence has been specified. char is the
illegal escape character.

illegal format character constant, char

An illegal format character constant has been specified. char is the un-
expected character found in the character constant.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 217

illegal format hexadecimal constant, char

An illegal format hexadecimal constant has been specified. char is the
unexpected character found in the hexadecimal constant.

illegal number of dimensions for ‘name’
Named symbol has too many dimensions, should have zero dimensions.
illegal number of dimensions, value
Number of dimensions for a symbol or constant exceeds the maximum
number of dimensions allowed by the configurer. value is the maximum
number of dimensions allowed.
illegal number of subscripts for ‘name’, value
Number of subscripts specified for the named symbol exceeds the num-
ber the symbol requires. value is the maximum number of subscripts
allowed.

illegal number of subscripts for constant, value

Number of subscripts specified for a constant exceeds the number the
constant requires. value is the maximum number of subscripts allowed.

illegal operation for attribute ‘name’
Named attribute has been used incorrectly. That is, the use of the at-
tribute does not conform to its syntactic specification, for example, using
the node attribute element to form a list of parameters.

illegal source file character, value

An unexpected character has been found in the source file. value is the
ASCI!I value for the illegal character.

illegal token for expression, found token

An unexpected token has been found at the start of an expression. token
is the unexpected token.

illegal token for statement, found token

An unexpected token has been found at the start of a statement. token
is the unexpected token.

72 TDS 224 00 August 1990

218 12 icconf - configurer

lilegal type for ‘name’ in USE statement, type

Named symbol has been specified in a use statement and is not a pro-
cess or a process type. type is the type of the symbol.

lilegal type for ‘name’ in connection, type

Named symbol has been specified in a connect statement and is not a
channel, link or connector. type is the type of the symbol.

lllegal type for ‘name’ in definition, type

Named symbol has been specified in a node definition statement and is
not a node type. type is the type of the symbol.

illegal type for ‘name’ In expression, type

Named symbol has been specified in an expression and is not a constant
value. type is the type of the symbol.

illegal type for ‘name’ In modification, type

Named symbol has been specified in an attribute modification statement
and is not a node. type is the type of the symbol.

illegal type for ‘name’ in placement, type

Named symbol has been specified in a place statement and is not a
process, processor, channel, link or connector. type is the type of the
symbol.

illegal type for ‘name’, type
Named symbol does not have the type expected by the configurer. This
will only occur if the name specified using the P option is not a processor

or if the host edge host is in fact not an edge. type is the type of the
symbol.

illegal type for IF statement condition, type

The condition value for an if statement is not of integral type. type is the
type of the condition value.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 219

lilegal type for arithmetic operator operator, type

The operand of an arithmetic unary operator is not of arithmetic type.
type is the type of the operand and operator is the arithmetic operator.

lilegal type for boolean operator operator, type

The operand of a boolean binary operator is not of integral type. type is
the type of the operand and operator is the boolean operator.

illegal type Tor condition opeérator operator, type
The condition value for a conditional ternary operator is not of integral
type. typeis the type of the condition value and operatoris the conditional
operator.

lllegal type for connector ‘name’ in placement, type
Named symbol is a connector defining a connection and has been used
in the incorrect position in a place statement. For example, if the symbol
describes a connection between channels then the symbol has been
used after the on in the place statement. type is the type of connection
defined by the symbol.

lllegal type for dimension size, type

The type of a dimension size value is not of integral type. typeis the type
of the dimension size value.

lllegal type for integral operator operator, type

The operand of an integral unary operator is not of integral type. type is
the type of the operand and operator is the integral operator.

illegal type for subscript value, type

The type of a subscript value is not of integral type. type is the type of
the subscript value.

illegal type for value in REP statement, type

The base or limit value for a replicator statement is not of integral type.
type is the type of the base or limit value.

72 TDS 224 00 August 1990

220 12 icconf - configurer

illegal types for arithmetic operator operator, type1 and type2
The operands of an arithmetic binary operator are not both of arithmetic
type. type1 and type2 are the types of the operands and operator is the
arithmetic operator.

lllegal types for equality operator operator, type?! and type2
The operands of an equality binary operator are not both of arithmetic
type. type1 and type2 are the types of the operands and operator is the
equality operator.

illegal types for integral operator operator, type! and type2
The operands of an integral binary operator are not both of integral type.
type1 and type2 are the types of the operands and operatoris the integral
operator.

illegal use of constant for element
A constant value has been used in a situation where it is not required.

illegal use of subfield operator for ‘name’

Named symbol which no associated subfields (or attributes) has been
accessed using the subfield operator.

illegal use of subfield operator for constant
A constant value has been accessed using the subfield operator.
illegal value for attribute ‘name’ in PRI PAR process
This message can only be generated in mixed language programs incor-
porating occam modules. A named attribute has been given a value

which is inconsistent with the type of the process it is associated with,
that is, a high priority 0cCcam process has been specified to start in high

priority.
illegal value for attribute ‘name’
Named attribute has been given a value which is inconsistent with the

type of the attribute and its semantic meaning, for example, assigning an
integer value to the type attribute of a processor.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 221

incompatible interface, ‘name’ has different type, type

incompatible interface, ‘name’ has too few parameters

incompatible interface, ‘name’ has too many parameters

incompatible interface, ‘name’ has unequal dimensions

. These messages can only be generated in mixed language programs

incorporating occam modules. The named symbol is an occam pro-
cess and the interface defined for the process mismatches the formal
parameter list defined in its associated object file.

insufficient RAM memory for ‘name’, value
Named processor’s total RAM memory size is insufficient for the number
of processes placed on the processor (which includes their data require-
ments). value is the number of extra bytes needed to accommodate all
the processes on the processor.

insufficient ROM memory for ‘name’, value
Named processor is the root processor in a boot from ROM system and
its total ROM memory size is insufficient for the number of processes

placed on the processor. value is the number of extra bytes needed to
accommodate all the processes on the processor.

‘ link ‘name’ multiply connected
Named link has been used more than once in a connect statement.
link ‘name’ multiply placed
Named link has been used more than once in a place statement.
links ‘name’ and ‘name’ unconnected and placed

Named links are not connected to each other and have each been placed
with channels which are connected to each other.

missing (for SIZE operator, found token
The size operator has been found and an opening parenthesis was ex-

pected to be found after the keyword size, instead of which the token
token was found.

72 TDS 224 00 August 1990

222 12 icconf - configurer

missing) for SIZE operator, found token
The size operator has been found and a closing parenthesis was ex-
pected to be found after the operand to the operator, instead of which
the token token was found.

missing) for attribute list, found token

An attribute list has been found and a closing parenthesis was expected
to terminate the list, instead of which the token token was found.

missing) for cast operator, found token
A casting operator has been found and a closing parenthesis was ex-
pected to be found after the type identifier, instead of which the token
token was found.

missing) for expression, found token
A parenthesised expression has been found and a closing parenthesis
was expected to be found after the sub-expression, instead of which the
token token was found.

missing , or TO for CONNECT statement, found token

A connect statement has been found and a comma or the keyword to
were expected to be found, instead of which the token token was found.

missing : for conditional operator, found token
A conditional operator has been found and a colon was expected to be
found after the first sub-expression, instead of which the token token was
found.

missing ; for statement, found token

A statement has been found which expects a semicolon to terminate it,
instead of which the token token was found.

missing = for REP statement, found token
A replicator statement has been found and an equals was expected to

be found after the replicator identifier, instead of which the token token
was found.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 223

missing = or (for attribute, found token
An attribute definition has been found and an equals or opening paren-
thesis were expected to be found after the attribute identifier, instead of
which the token token was found.

missing FOR for USE statement, found token

A use statement has been found and the keyword £or was expected to
be found, instead of which the token token was found.

missing INCLUDE for # statement, found token

A hash has been found and the keyword include was expected to be
found, instead of which the token token was found.

missing ON for PLACE statement, found token

A place statement has been found and the keyword on was expected to
be found, instead of which the token token was found.

missing TO or FOR for REP statement, found token

A replicator statement has been found and the keywords to or for were
expected to be found, instead of which the token token was found.

missing] for subscript, found token
A subscript operator has been found and a closing square bracket was
expected to be found after the subscript value, instead of which the token
token was found.

missing attributes for attribute list
An attribute list has been found which is empty.

missing constants for constant list
A constant list has been found which is empty.

missing identifier for DEFINE statement, found foken
A define statement has been found and an identifier was expected to be

found after the attribute list (if specified), instead of which the token token
was found.

72 TDS 224 00 August 1990

224 12 icconf - configurer

missing identifier for REP statement, found token
A replicator statement has been found and an identifier was expected to
be found after the keyword rep, instead of which the token token was
found.

missing identifier for VAL statement, found token

A value statement has been found and an identifier was expected to be
found after the keyword val, instead of which the token token was found.

missing identifier for attribute list, found token
An attribute list has been found and an identifier was expected to be
found after the opening parenthesis starting the list, instead of which the
token token was found.

missing identifier for attribute, found token
An attribute list has been found and an identifier was expected to be
found after a comma in the attribute list, instead of which the token token
was found.

missing identifier for name, found token

A name expression has been found and an identifier was expected to be
found at the start of the expression, instead of which the token token was

found.

missing identifier for subfield, found token
A subfield expression has been found and an identifier was expected to
be found after the subfield operator, instead of which the token token was
found.

missing statements for statement list
A statement list has been found which is empty.

missing string for INCLUDE statement, found foken
An include statement has been found and a string was expected to be

found after the keyword include, instead of which the token token was
found.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 225

missing string for USE statement, found token

A use statement has been found and a string was expected to be found
after the use keyword, instead of which the token token was found.

missing type for DEFINE statement, found token
A define statement has been found and a type identifier was expected
to be found after the keyword define, instead of which the token token
was found.

missing type for attribute, found token
An parameter list has been found and a parameter type was expected to
be found after a comma in the parameter list, instead of which the token
token was found.

missing } for constant list, found token

A constant list has been found and a closing brace was expected to
terminate the list, instead of which the token token was found.

missing } for statement list, found token

A statement list has been found and a closing brace was expected to
terminate the list, instead of which the token token was found.

modification of ‘name’ illegal, already used

Named symbol is a type identifier which has derived other symbols and
an attempt has been made to modify of one of its attributes.

object file for ‘name’ undefined
Named process has been specified more than once in a use statement.
overflow in REP statement expression

A numerical overflow has occurred during the evaluation of a replicator
statement, that is, the replicator identifier has overflowed.

overflow in arithmetic expression

A numerical overflow has occurred during the evaluation of an arithmetic
expression.

72 TDS 224 00 August 1990

226 12 icconf - configurer

overflow Iin decimal Integer constant

A numerical overflow has occurred during the conversion of a string rep-
resentihg a 32 bit decimal integer constant.

overflow in dimension size expression
A numerical overflow has occurred during the evaluation of a dimension
size expression (which is done to the precision of the hosts integer word
length).

overflow In dimension sizes for ‘name’
A numerical overflow has occurred during the evaluation of the number
of elements of the named symbol (which is done to the precision of the
host system’s integer word length).

overflow In dimension sizes for constant
A numerical overflow has occurred during the evaluation of the number
of elements of a constant array (which is done to the precision of the
hosts integer word length).

overflow In hexadecimal Integer constant

A numerical overflow has occurred during the conversion of a string rep-
resenting a 32 bit hexadecimal integer constant.

overflow In octal integer constant

A numerical overflow has occurred during the conversion of a string rep-
resenting a 32 bit octal integer constant.

overflow in real double constant

A numerical overflow has occurred during the conversion of a string rep-
resenting a 64 bit real constant.

overflow In real float constant

A numerical overflow has occurred during the conversion of a string rep-
resenting a 32 bit real constant.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 227

overflow in subscript value expression
A numerical overflow has occurred during the evaluation of a subscript
value expression (which is done to the precision of the hosts integer word
length).

place ‘name’ on ‘name’ illegal, edge/non-edge

Place statement is illegal because the first named element is an input or
output edge and the second named element is a link.

place ‘name’ on ‘name’ illegal, non-edge/edge

Place statement is illegal because the first named element is a channel
and the second named element is an edge.

process ‘name’ and channel ‘name’ placed on different processors
Named process has been placed on a different processor than the named
channel. That is, the named channel, which is one of the channels of the
process, has been placed on the link of a different processor.

process ‘name’ and processor ‘name’ error modes mismatch
Named process has an error mode (defined by the object file associated
with the process by the use statement) which is incompatible with other
processes executing on the named processor.

process ‘name’ and processor ‘name’ target types mismatch
Named process has a target transputer type (defined by the object file
associated with the process by the use statement) which is incompatible
with transputer type of the named processor.

process ‘name’ multiply USEd
Named process has been used more than once in a use statement.

process ‘name’ multiply placed
Named process has been used more than once in a place statement.

process ‘name’ unplaced

Named process has not been placed.

72 TDS 224 00 August 1990

228 12 icconf - configurer

process type ‘name’ multiply USEd
Named process type has been used more than once in a use statement.
processes ‘name’ and ‘name’ placed on different processors
Named processes (which are connected by channels) have been placed
on different processes such that there is no unplaced link connection
between the processors.

processor ‘name’ unconnected and placed

Named processor has not been connected to the network and has had
one or more user process placed onto it.

reference to undefined symbol ‘name’

Named symbol has been referenced but had not been defined at the
point of reference.

root processor ‘name’ undefined

When configuring to boot from ROM, the named processor (specified
using the P option) has not been defined in the configuration source.

subscript out of range for ‘name’, value
Named symbol has been accessed with the subscript operator and the
subscript value used is outside the valid range for the symbol. value is
the dimension number that was subscripted.

subscript out of range for constant, value
A constant value has been accessed with the subscript operator and the
subscript value used is outside the valid range for the constant. value is
the dimension number that was subscripted.

symbol ‘name’ multiply defined in symbol table
Named symbol has been multiply defined in the configuration source.

uninitialised symbol ‘name’ in expression

Named symbol, which is of arithmetic type, has been used in an expres-
sion and has not been assigned any value.

72 TDS 224 00 August 1990

12.4 Configurer diagnostics 229

unterminated character constant

A character constant has been specified where a closing quote has not
been found before the end of the line.

unterminated comment statement

A comment has been started and has not been terminated before the
end of the file.

unterminated string constant

A string constant has been specified where a closing double quote has
not been found before the end of the line.

unused connector ‘name’ in placement

Named connector has not been used in a connect statement and has
been used in a place statement.

value for attribute ‘name’ out of range

Named attribute has been assigned a value that is not in the valid range
for the attribute, for example, a negative value for the memory attribute
of a processor.

zero length character constant

A zero length character constant has been specified.

12.4.3 Serious messages
The following diagnostic messages are generated at severity level Serious.

TCOFF descriptor, illegal number of dimensions, value
TCOFF descriptor, illegal type for name, type
TCOFF descriptor, missing (, found char

TCOFF descriptor, missing), found char

TCOFF descriptor, missing :, found char

TCOFF descriptor, missing ? or !, found char
TCOFF descriptor, missing OF for CHAN or PORT
TCOFF descriptor, missing 1, found char

TCOFF descriptor, missing occam PROC keyword
TCOFF descriptor, missing occam identifier
TCOFF descriptor, overflow in dimension size

72 TDS 224 00 August 1990

230 12 icconf - configurer

TCOFF descriptor, undefined channel parameter
TCOFF descriptor, unknown occam parameter type
TCOFF descriptor, unknown occam process type
TCOFF format, define main undefined

TCOFF format, descriptor and define main mismatch
TCOFF format, descriptor undefined

TCOFF format, expected library file

TCOFF format, illegal code size, value

TCOFF format, illegal entry offset, value

TCOFF format, illegal format origin symbol, string
TCOFF format, illegal scalar size, value

TCOFF format, illegal vector size, value

TCOFF format, module not found in library file
TCOFF format, multiple code sections

TCOFF format, multiple define mains

TCOFF format, multiple descriptors

TCOFF format, multiple origin symbols

TCOFF format, multiple virtual sections

TCOFF format, unexpected error mode, found none
TCOFF format, unexpected language, found value
TCOFF format, unexpected library file

TCOFF format, unexpected library tag, found value
TCOFF format, unexpected tag, found value

TCOFF format, unexpected transputer type, found none

These messages indicate an error in the format of the object file specified
to the configurer in a use statement.

12.5 icconf error messages

This section documents command line and system errors (other than configura-
tion source diagnostics) generated by icconf. Such errors are generated at
severities Serious and Fatal.

The display format for error messages is described in section A.6.1.

12.5.1 Serious errors
The following errors are generated at severity level Serious.
ROM memory size undefined

The RA or RO options have been used and no RS option has been spec-
ified.

72 TDS 224 00 August 1990

12,5 icconf error messages 231

illegal ROM memory size, value
Value specified for the RS option is not greater than zero.
illegal format ROM memory size, string

An illegal format memory size value has been specified for the RS option.
string is the illegal format memory size.

internal token buffer overflow, value

An internal buffer used for storing the current input line has overflowed
causing the error. value is the size of the internal buffer in bytes.

multiple ROM memory sizes, string

The RS option has been specified more than once. string is the latest
value for the RS option.

multiple input file names, string

An input file name has been specified more than once. stringis the latest
input file name.

multiple output file names, string

The O option has been specified more than once. string is the latest
value for the O option.

multiple processor names, string

The P option has been specified more than once. string is the latest
value for the P option.

options G and RA or RO are incompatible

The G and RA or RO options have been specified.
options XM and XO are incompatible

The XM and XO options have been specified.
processor name undefined

The RA or RO options have been used and no P option has been speci-
fied.

72 TDS 224 00 August 1990

232 12 icconf - configurer

too many errors occurring, value

Number of errors exceeds maximum number allowed. value is the max-
imum number of errors allowed.

unable to open (value)
An attempt to open a file failed due to either the file not existing or an
error occurring in the host file system. value is the error number for the
failure.

unexpected command line token, string
A token has been specified on the command line to the configurer that
is not recognised as a valid option string.

12.5.2 Fatal errors

The following errors are generated at severity Fatal.

illegal string length (value)
A string length has been input from an object file which exceeds the
maximum string length for an object file. value is the illegal string length
found.

unable to allocate heap memory

Amount of memory available to the configurer is insufficient for configuring
the configuration source.

unable to close (value)
unable to read (value)
unable to seek (value)
unable to tell (value)
unable to write (value)

These messages are generated as a result of an error occurring in the
host file system. value is the error number for the failure.

unexpected end of input

The end of the input has been found unexpectedly in an object file.

72 TDS 224 00 August 1990

13 icollect — code
collector

This chapter describes the code collector tool icollect which generates ex-
ecutable files for single and multitransputer programs, from configuration data
files and linked units respectively. The tool is also used to create files for in-
put to the EPROM programmer tool ieprom, and to generate files that can be
dynamically loaded by application source code.

13.1 Introduction

icollect generates bootable files for transputer programs and other exe-
cutable files in special formats. Bootable files are transputer executable files
containing distribution and bootstrap information which can be directly loaded
onto the hardware down a transputer link. The command line default is to gen-
erate a bootable file for a networked program from a configuration binary file;
single processor operation and special outputs are selected by specific com-
mand line options.

The bootable file contains all the information for loading and running the pro-
gram on a specific network of processors. The file includes data that controls
the distribution of code on the network and self-booting code for each proces-
sor. Bootable programs are self-distributing and self-starting and can be loaded
directly onto the transputer hardware using iserver.

For multitransputer programs the input file is a configuration data file (by default,
a file with the .cfb extension) created by the configurer from a configuration
description. The file describes the placement of processes and channels on the
processor network in a special format which can be read by the collector.

For single transputer programs the input file is a single linked unit (by default, a
file with the . 1ku extension), to which bootstrap and system code is added for
a single processor.

icollect can be directed to generate output files in a special format for pro-
cessing by the ieprom tool, and executable code with no bootstrap or system
process information, intended for dynamic loading by a high level language pro-
gram.

The main inputs and outputs of the collector tool for bootable programs are
shown below.

72 TDS 224 00 August 1990

234 13 icollect - code collector

PR

’ A
rsc) i.cfb)

N

icollect

.btr

Jku

13.2 Running the code collector

The code collector is invoked using the following command line:
| 2 icollect filename {options}

where: filename is a configuration data file created by icconf£ or a single linked
unit created by ilink.

options is a list of options from the following tables.

Options must be preceded by ‘-’ for UNIX based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

72 TDS 224 00 August 1990

13.2 Running the code collector 235

Option

Description

B filename

C filename

L
M memorysize

O filename

RA

RO

Uses a user-defined bootstrap loader program in place of the
standard bootstrap. The program is specified by filename
and must conform to the rules described in appendix D. This
option can only be used with the “T" option (single processor
mode) and cannot be used with the ‘RA’ and ‘RO’ options.

Specifies a name for the debug data file. A filename must
be supplied and is used as given. Only valid when accom-
panied by the ‘T’ option and invalid if used with the ‘D’ or ‘K’
options.

Disables the generation of the debug data file for single
transputer programs. Can only be used with the ‘T’ option.

Changes the setting of the Halt On Error flag. HALT mode
programs are converted to not stop when the error flag is
set, and non-HALT mode programs to stop when the error
flag is set. Can only be used with the “T" option.

Displays progress information as the collector runs.

Creates a single transputer file with no bootstrap code. Can
only be used with the ‘T’ option. If no file is specified the
output file is named after the input filename and given the
.rsc extension.

Loads the tool onto the transputer board and terminates.

Specifies the memory size available (in bytes) on the root
processor for single transputer programs. Can only be used
with the “T’ option. memorysize can be specified in Kilobytes
and Megabytes using the ‘K’ or ‘M’ suffixes. memorysize may
also be specified in hexadecimal using the ‘#’ or ‘$’ prefixes.

Specifies the output file. A filename must be supplied and
is used as given.

Creates a file for processing by ieprom into a boot from
ROM file to run in RAM. If no output file is specified the file
is given the .btr extension. If the input is a configuration
binary file it must have been created using the icconf ‘RA’
option.

Creates a file for processing by ieprom into a boot from
ROM file to run in ROM. If no output file is specified the file
is given the .btr extension. If the input is a configuration
binary file it must have been created using the iccon£ ‘RO
option.

72 TDS 224 00

August 1990

236

13 icollect - code collector

Option

Description

RS romsize

S stacksize

X0

Specifies the size of ROM on the root processor. Only valid
when used with the ‘RA’ or ‘RO’ options. romsize must be given
in decimal format and can be followed by ‘K’ or ‘M’ to indicate
Kilobytes or Megabytes. romsize must match the romsize spec-
ified to icconf if used.

Specifies the extra runtime stack size for single transputer pro-
grams. Can only be used with the ‘T’ option. stacksize must
be given in decimal format.

Creates a bootable file for a single transputer. The input file
specified on the command line must be a linked unit. This
option cannot be used for programs linked with the reduced
runtime library.

Directs the transputer-hosted version of the tool to be executed
so that they can be restarted without rebooting by the server.

Directs the transputer-hosted version of the tool to be executed
once on the transputer board and then terminate.

13.2.1 Examples of use

Example A (single processor mode):

UNIX based toolsets: MS-DOS and VMS based toolsets:
icc hello icc hello

ilink hello.tco -f startup.Ink ilink hello.tco /f startup.ink
icollect hello.lku -t icollect hello.lku /t

iserver -sb hello.btl -se iserver /sb hello.btl /se

Example B (configured program mode):

UNIX based toolsets: MS-DOS and VMS based toolsets:
icc hello icc hello

ilink hello.tco -f startup.Ink ilink hello.tco /f startup.Ink

icconf hello.cfs icconf hello.cfs

icollect hello.cfb icollect hello.cfb
iserver -sb hello.btl -se iserver /sb hello.btl /se

72 TDS 224 00

August 1990

13.2 Running the code collector 237

13.2.2 Input files

The input file is either a configuration data file generated by icconf£, or a linked
unit generated by ilink. By default the collector assumes a configuration data
file; for linked units that are to be processed for single transputers the ‘T’ option
must be specified. Incorrect format input files generate an error message and
no output is produced.

13.2.3 Output files

The main output file is a binary file that can be loaded directly onto the transputer
hardware down a transputer link, whether for a single transputer or a multitrans-
puter network. This type of file is known as a boot from link program. If no
filename is specified the output file is named after the input file and given a
.btl extension. If an output filename is specified the file is given the specified
name.

Files created using the ‘RA’, ‘RO’, and ‘K’ options are given special extensioné (if
no output filename is specified) which indicate the file type. File types created
for each of the options are listed below.

Option | File created
K .rsc
RA .btr
RO .btr

13.2.4 Non-bootable files

Files created with the ‘K’ option are non-bootable files which can be dynamically
loaded by a program or manipulated at runtime.

Non-bootable files consist essentially of program code preceded by a number
of words of runtime data. The sequence of data and code blocks in the file is
summarised in the following table. Descriptions of the data items immediately
relating to the program block are given after the table.

72 TDS 224 00 August 1990

Scalar workspace
Vector workspace

Static size
Entry point offset

-

Code size
Code

238 13 icollect - code collector
No of words Data Unit
(long ints)

one Interface descriptor size bytes
Set by above | Interface descriptor -
one Compiler id size bytes
Set by above | Compiler id -
one Target processor type -
one Version number -
one Program scalar workspace requirement | words
one Program vector workspace requirement | words
one Static size words
one Program entry point offset bytes
one Program code size bytes
Set by above | Program code block -
Target The processor type or transputer class for which the
program was compiled.
Version The format version number of the file. This can be 10

or 11 in the TCOFF system. For programs compiled
with icc it will always be 11, which indicates the pres-
ence of a static data parameter. A value of 10 indicates
no static parameter and is used to identify code written
using other INMOS language toolsets.

Specifies the size of the workspace required for the
linked program’s runtime stack.

Specifies the size of the workspace required for the
linked program’s vector (array) data.

Specifies the size of the static area.

Indicates the offset in bytes of the program entry point
from the base of the code block.

Indicates the size of the program code in bytes.
The program code.

13.2.5 Boot-from-ROM options

The boot-from-ROM options ‘RA’ and ‘RO’ produce code that can be loaded into
EPROM using the ieprom tool. Both options apply only to code running on the

72 TDS 224 00

August 1990

13.2 Running the code collector 239

root transputer of a network; processors on the network connected to the root
transputer are booted from the root transputer links.

‘RA’ generates code which is executed from RAM. The code is copied from ROM
into RAM at runtime. ‘RO’ generates code which is directly executed from ROM.

RAM executable code can be used for applications which are to be executed
from fast RAM, and for code which may be user-modified. ROM executable code
requires no external RAM and can be used to create a truly embedded system.

Configured programs for loading into ROM must have been created using the
same configurer option (‘RO’ or ‘RA’ as appropriate) that is supplied to the col-
lector.

13.2.6 Debug data file

For single transputer programs only, the collector automatically generates a con-
figuration binary file for reading by the debugger. By default the filename stem
is taken from the output file and the ‘. c£b’ extension is added. If the ‘C’ option
is specified the filename is used as supplied. Generation of the debug data file
can be disabled by specifying the ‘D’ option.

13.2.7 Alternative bootstrap loaders

If not otherwise specified, icollect uses the standard INMOS primary boot-
strap loader. The correct code for the application program is chosen from a
library of bootstraps compiled for different transputer types and error modes.

The collector can be directed to use other bootstrap loader programs defining
different loading sequences by specifying the ‘B’ option. The option directs the
collector to append a user-defined loader program in place of the standard boot-
strap loading sequence.

User-defined bootstraps must be created according to certain rules, illustrated
by the standard INMOS bootstrap which is listed in appendix D along with the
standard Network Loader. The listing is fully commented and can be used as a
template to design and code your own bootstrap sequence.

13.2.8 Small values of IBOARDSIZE
If IBOARDSIZE is set to a small value, for example if the value specified is

invalid and it is set to 0 by default, the collector generates a warning message.
Very small values of IBOARDSIZE (including zero) are detected at runtime and

72 TDS 224 00 August 1990

240 13 icollect - code collector

prevent the program from being run.

13.3 Error messages

This section lists error messages generated by icollect. The messages are
listed under severity headings in alphabetical order, omitting the introductory
information (error severity and filename data).

icollect generates errors of severities Warning and Serious. Serious error
cause the tool to terminate without producing any output.

13.3.1 Warnings

The following messages are prefixed with ‘Warning-'. They are only generated
when the “T" option is used (single processor mode).

Flip error mode ignored with user bootstrap

The ‘E’ option is ignored when a user-defined bootstrap is specified since
the collector will only accept a single linked unit as a bootstrap.

Strange board size for sixteen bit processor : Setting to zero
The memory size specified exceeds the addressing capacity of a 16 bit
processor (64 Kbytes). The collector uses a memory size of zero for the
rest of the build.

13.3.2 Serious errors

The following errors are prefixed with ‘Serious-".

Address space for target processor exhausted

The address space required by the program is greater than 64Kbytes,
the maximum addressable space on a 16-bit processor.

Bootstrap file already specified
More than one bootstrap file was specified. Only one file is allowed.
Bootstrap filename too long

The maximum length allowed for the bootstrap filename is 255 characters.

72 TDS 224 00 August 1990

13.3 Error messages 241

Bootstrap is greater than 255 byte in library file

The library bootstrap is too large. This should only occur if the library file
is invalid or corrupt.

Cannot have both rom types

‘RA’ and ‘RO’ options are mutually exclusive and cannot both be specified
on the same command line.

Cannot have configured and memory size

The memory size option is incompatible with building a bootable program
for a configuration binary file.

Cannot have configured and non bootable file

The collector cannot generate both a network loadable file and a non-
bootable file simultaneously for the same program.

Cannot have rom and non bootable file

The collector cannot generate both a ROM-loadable file and a non-
bootable file simultaneously for the same program.

Cannot open file filename

Host file system error. The file specified cannot be opened.
Command line parsing error at string

Unrecognised command line option.
Debug file already specified

More than one debug was file specified. Specify one only.
Dynamic memory allocation failure

Memory allocation error. The collector cannot allocate the required
amount of memory for its internal data structures.

Error in writing to debug file

Host file system error. The debug file could not be written. This mes-
sage will only appear if the collector is invoked with the ‘T" option (single

72 TDS 224 00 August 1990

242 13 icollect - code collector

processor mode).

Expected end tag found not present in .cfb file
A specific end tag is missing in the configuration binary file. Either the
file is corrupted or the versions of icollect and icconf used are
incompatible.

lllegal tag found in .cfb file
Incorrect format configuration binary file, recognised as an illegal tag.
Either the file is corrupted or the versions of icollect and icconf
used are incompatible.

lllegal language type found in input file
Source language used to create the file is not supported by the collector.
Less likely, but possible, is that the file was created using an incompatible
(possibly earlier) version of a tool.

lllegal process type

Unrecognised process type. Either the file has been corrupted or the
versions of icollect and icconf used are incompatible.

lllegal processor type

Unrecognised processor type. Either the file has been corrupted or
icollect and icconf are incompatible.

lllegal tag found in input file : filename
Incorrect format input file. The most likely reason for this error is that an
incorrect file has been specified. Other less likely but possible explana-
tions are that the file was created using an earlier or incompatible version
of one of the tools, or that the file has become corrupted.

Input file already specified
More than one input file specified on the command line.

Input file has not been linked filename
The collector accepts only linked files, either directly when using single

processor operation, or indirectly via entries in the configuration binary
file. This message can be generated if the file was created using a

72 TDS 224 00 August 1990

13.3 Error messages 243

previous version of a tool, or if the file is corrupt.

Input file is of incorrect type : filename
If the “T" option is specified (single processor program) the input file must
be a single linked unit (. 1ku type). If the ‘T‘ option has not been specified
the input file must be a configuration binary file (. c£b type).

Input filename too long

The maximum length allowed for the input filename is 256 characters.

Linked unit file in cfb and linked unit in input file found do not match :
filename

The linked file specified in the configuration binary and the one found the
collector do not match.

Linked unit module not found in : filename

The required library module is missing or has been corrupted. This mes-
sage is generated when an incorrect version of the library is installed.

Memory size already specified
Memory size must be specified once only.
Memory size string invalid

Memory size must be given in decimal or hex. Hex numbers must be
introduced by ‘#’ or ‘$’.

Memory size string too long
Specified memory size is too large.

More than one parameter statements
The collector expects only one parameter statement per processor. Ei-
ther the file has been corrupted or the versions of icollect and
icconf£ used are incompatible.

No debug and debug output file specified in command line

Options ‘D’ (disable debug) and ‘C’ (debug filename) cannot be used.
together.

72 TDS 224 00 August 1990

244 13 icollect - code collector

No input file specified
One, and only one, input file must be specified on the command line.
No parameter descriptor present in input file : filename
The formal parameter descriptor in the input file is not present. This
usually means that the process has not been linked with a main entry
routine. This message will only appear if the collector is invoked with the
“T* option (single processor mode).
Output file already specified
More than one output file was specified. Specify only one.
Output filename too long
The maximum length allowed for the output filename is 256 characters.
Parameter descriptor error in input file : filename
The formal parameter descriptor in the input file is not of the correct
form, indicating that the process interface is not one recognised by the
collector. This message will only appear if the collector is invoked with
the ‘T* option (single processor mode).

Program configured for boot from ROM command line is boot from link

The specified configuration binary file was created for either ROM or
RAM, and neither has been specified to icollect.

Program configured for running in RA mode command line is RO mode
Wrong mode specified, or incorrect option given to icconf when the
specified configuration binary file was created. RO and RA modes are
mutually exclusive.

Program configured for running in RO mode command line is RA mode
Wrong mode specified, or incorrect option given to icconf when the
specified configuration binary file was created. RA and RO modes are
mutually exclusive.

Rom size already specified

ROM size must be specified once only.

72 TDS 224 00 August 1990

13.3 Error messages 245

Rom size in input file and command line do not match

The ROM size specified on the command line does not match that spec-
ified to icconf when the input file was created.

Rom size not specified

A ROM size must be specified because the input file is configured for
loading into ROM.

Rom size string invalid
ROM size must be given in decimal.

Rom size string too long
ROM size specified was too large.

Stack size already specified
Stack size must be specified once only.

Stack size string invalid
Stack size must be specified in decimal format.

Stack size string too long
Specified stack size was too large.

Strange function or attribute for linked unit in : filename
The collector has found an unfamiliar value in the input file. Either an old
version of a tool was used in the creation of the input file, or the input file
has been corrupted.

System error
Host system error has occurred, probably when accessing a file. This
message may be generated when a file is read and its contents seem to
have changed.

Unexpected end of file : filename

One of the files specified in the configuration binary has ended prema-
turely. filename identifies the offending file. If the message ‘Suspect

72 TDS 224 00 August 1990

246 13 icollect - code collector

corrupted file’ is substituted for filename then the file is corrupted.
User bootstrap not allowed when program is configured

User defined bootstrap loaders can only be used with single processor
programs.

User bootstrap not allowed with rom option
User defined bootstrap loaders cannot be used with ROM-loadable code.
User bootstrap type does not match that of linked unit

Either the target processor type or the error mode of the bootstrap code
does not match that of the input file.

72 TDS 224 00 August 1990

14 icvlink — file format
convertor

This chapter describes the file format convertor tool icvlink which converts
object files from Linker File Format (LFF) to Transputer Common Object File
Format (TCOFF). The chapter begins with a short introduction to the tool and
then describes how it is used. The chapter ends with a list of error messages
which may be generated by icvlink.

14.1 Introduction

Earlier compilers and INMOS toolsets targetted at the transputer produced ob-
ject files in LFF. Examples of such products are the 3L and INMOS Parallel C,
occam, FORTRAN and Pascal compilers.

All object files produced by the latest INMOS Toolsets are generated in a format
known as Transputer Common Object File Format (TCOFF). Input files for the
linker, librarian, and lister tools, supplied with these toolsets, must be in TCOFF.

icvlink enables code compiled in LFF to be used with later versions of the
tools without needing to recompile. In particular it enables existing software to
make use of the new configuration language implemented by the current toolset.

The conversion to TCOFF may take place at different stages in the develop-
ment process depending on the user's requirements. Figures 14.1 to 14.3 il-
lustrate three different approaches to using icvlink. Notice that in all three
approaches the conversion is performed before the configuration stage.

In figure 14.1, compiled object and library modules are processed by the con-
vertor and then linked using the current toolset linker 11ink. Converted library
modules have to be processed by the current toolset librarian ilibr in order
to create TCOFF library modules, see section 14.2.2.

Figure 14.2 illustrates how existing compilation and library modules may be linked
using a previous version of the linker to produce a linked object file in LFF. This
file may then be converted to TCOFF and the current toolset linker i1ink used
to create a linked object file in TCOFF.

Figure 14.3 illustrates an extension to the second approach, where the TCOFF
file produced by the conversion is linked with modules compiled by the cur-
rent toolset compiler. The linking process is performed by employing the same
method of linking that is used for mixed languages.

72 TDS 224 00 August 1990

248 14 icvlink - file format convertor

The shaded symbols, in the figures, represent both i/o files in LFF format and
previous issues of particular tools. Note: where txx has been used it would be
equally valid to use .bin (see section 14.2 below).

—= icvlink ilibr 1

icvlink tco ilink —»@—— icconf

Figure 14.1 Converting compilation and library modules

icvlink .tco ilink Jku icconf

Figure 14.2 Converting linked object module

icvlink L

ilink Jku)= icconf

®

lib

Figure 14.3 Conversion followed by linking for mixed languages

When source code is available it is recommended that the source code is recom-
piled using the compiler supplied with this toolset rather than using icvlink. If,
however, the source code is not available or recompilation is likely to be difficult,
then icvlink should be used, following one of the approaches outlined above.

Programs which have been converted should in general be kept separate from
programs developed with the current toolset. This is because of differences
in the supplied libraries and in the implementation of the different versions of ‘
the compilers and toolsets. If it is necessary to combine old and new software,

72 TDS 224 00 August 1990

14.2 Running the format convertor 249

the modules should be linked using the methods described for mixed language
programming, see chapter 9.

14.2 Running the format convertor

The format convertor operates on a single input file. This file may be a single
module or a library. The operation of the format convertor in terms of standard

extensions is shown below.

icvlink

Note: The file extensions of the input files, pertain to default file extensions used
by previous issues of INMOS toolsets, where:

.1ib is the extension of a library file.
.txx is the extension of a compiled occam file.
.cxx is the extension of a linked unit.

.bin is the extension of a compiled C or FORTRAN file.

To invoke the file format convertor use the following command line:
> icvlink filename {options}

where: filename is the name of the file to be converted. Any string not recognised
as an option is treated as an input filename.

options is a list of options given in table 14.1.

Options must be preceded by ‘-’ for UNIX based toolsets and ‘/’ for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order.

Options must be separated by spaces.

72 TDS 224 00 August 1990

250 14 icvlink - file format convertor

If no arguments are given on the command line a help page is displayed giving
the command syntax.

Option Description

D Forces a TA module to be converted into both a new TA mod-
ule and a T8 module. Forces a TC module to be converted
into both a TS and a T8 module. This option is only for use
with library modules.

I Displays progress information as the conversion proceeds.

L Loads the tool onto a transputer board and then terminates.

O filename | Specifies an output file. If no output file is specified the
name is taken from the input module and a .tco extension
is added. If more than one output file is specified then the
last one takes precedence.

P Forces TA and TC modules to be converted to T8 modules.

XM Directs the transputer-hosted versions of the tool to be exe-
cuted so that they can be restarted without rebooting by the
server.

X0 Directs the transputer-hosted versions of the tool to be exe-

cuted once on the transputer board and then terminate.

Table 14.1 icvlink command line options

Examples
icvlink myprogc.bin

In this example icvlink is used to convert an object file, produced by the IN-
MOS 3L Parallel C compiler. The output filename will default to myproge. tco.

icvlink myprog.t4x

In this example icvlink is used to convert an occam object file which has
been compiled for a T4 series transputer. The output filename will default to
myprog.tco.

72 TDS 224 00 August 1990

14.2 Running the format convertor 251

14.2.1 Default command line

A set of default command line options can be defined for the tool using the
ICVLINKARG environmental variable. Options must be specified using the syn-
tax required by the command line.

14.2.2 Input files

The format convertor will accept a compiled object file, a linked object file or a
library file, in LFF format, as input. The fellowing sections describe the use of
the format convertor in the context of these file types.

Compiled object files

The format convertor may be used to convert any compiled object files. The
convertor will produce compiled modules in TCOFF format. Any libraries required
to be linked with the compilation modules must also be converted (see below),
before the linker i1ink can be used to produce the linked object file.

Library files

The format convertor will convert a library file which is in LFF format to the
new TCOFF format but it will not generate a new library file. When a library is
converted the resulting file contains a concatenation of all the converted modules.
In order to create a library file the librarian tool 11ibxr, supplied with this toolset,
must be used to prepend the library index.

Linked object files

Linked object files in LFF format may also be converted into TCOFF format.
The procedure for converting linked files is similar to that for converting compiled
object files. The format convertor will convert a linked object file which is in LFF
format into a TCOFF format file. This file may then be supplied as an input file to
the linker tool i1ink in order to produce a linked object file in the new format.
14.2.3 Output files

The format convertor creates a single TCOFF object module. As indicated above,

if either a library or linked object module is used as input then the output module
must be processed by the current i1ibx or ilink tools.

72 TDS 224 00 August 1990

252 14 icvlink - file format convertor

14.3 Transputer classes and error modes

Both the members and the meaning of the different transputer classes has
changed for this issue of the toolset. icvlink therefore has to impose a
transputer class on any module whose class has no direct representation in the
current toolset. This also applies to error modes. The following rules are used
for transputer classes and error modes:

o The error mode UNDEFINED is converted to UNIVERSAL.

o Transputer class TA does not change name but note that the meaning of
this class has changed.

o Transputer class TC is converted to transputer class T5.
For more information on transputer classes see section 5.3.

The command line options ‘D’ and ‘P’ can be used to override these rules. The
command line option ‘P’ causes TA and TC modules to be converted to T8
modules. The ‘D’ option is designed to be used when converting libraries that
contain TA and TC modules. When a TA library module is converted with this
option two modules will be generated by the conversion; one ‘new style’ TA
module and one T8 module. For a TC library module converted with the ‘D’
option, a T5 and T8 module will be created.

The ‘P’ option may be used to convert any compiled, library or linked object
modules. The ‘D’ option, however, is restricted to converting library modules,
because the linker can selectively load library modules whereas it cannot selec-
tively load compilation modules.

14.4 Summary of rules for using icvlink

1 When source code is available icvlink should not be used. Instead
the source code should be recompiled using the compiler supplied with
this toolset.

2 The libraries supplied with this toolset must not be linked with converted
object modules. Instead the library files originally called by the converted
modules must also be converted so that the modules may be linked
correctly.

3 If converted modules are to be used in conjunction with modules compiled
by the current toolset, then they must be linked by using mixed program-
ming techniques. In general converted object and library modules should
be used in isolation of any new development.

72 TDS 224 00 August 1990

14.5 Error messages 253

14.5 Error messages

This section lists each error and warning message that can be generated by the
convertor. Messages are in the standard toolset format which is explained in
appendix A.

14.5.1 Serious errors

filename - bad format: reason

The named file does not conform to a recognised INMOS file format or
has been corrupted.

Could not open for input

The named file could not be opened for reading.
Could not open for output

The named file could not be opened for writing.
No input file supplied

No file name has been placed on the command line.
Only one input file allowed

More than one file name has been placed on the command line.
Parsing command line token

An unrecognised token was found on the command line.
Promote and duplicate options conflict

The P (promote) and D (duplicate) options have conflicting meanings and
should not be used in conjunction.

72 TDS 224 00 August 1990

254 14 icvlink - file format convertor

72 TDS 224 00 August 1990

15 idebug — debugger

This chapter is describes the network debugger tool idebug. It begins by
describing the command line syntax and shows how to invoke the debugger in
the two main debugging modes. The rest of the chapter lists and describes in
detail the symbolic debugging functions and Monitor page commands and ends
with a list of error messages.

15.1 Introduction

The network debugger idebug is a special purpose debugger for transputers.
It can be used to examine stopped programs (post-mortem debugging) or to
execute programs interactively (breakpoint debugging).

Programs can be analysed using the symbolic functions which operate using
source code symbols or the Monitor page commands which operate at memory
and processor level. Symbolic and Monitor page environments are separate but
can be recalled from each other at will.

Symbolic functions allows files to be examined, variables inspected, and proce-
dures traced, from source code level. Monitor page commands allow transputer
memory to be examined and processor state to be determined anywhere on the
network. Symbolic and Monitor page environments can be recalled from each
other at any time.

15.1.1 Post-mortem debugging

Post-mortem mode debugging allows stopped programs to be analysed from the
residual contents of transputer memory or from a network dump file. Programs
that run on the root transputer must be debugged from a memory dump file
because the debugger overwrites the root transputer's memory. The memory
dump file is created using the idump tool.

15.1.2 Breakpoint debugging

Breakpoint mode debugging allows transputer programs to be executed inter-
actively using breakpoints set in the code. Breakpoints can be set symbolically
on lines of source text or at transputer memory addresses, and values can be
modified in transputer memory to show the effect of changing variables.
Certain symbolic functions and Monitor page commands are only available in
breakpoint mode.

72 TDS 224 00 August 1990

256 15 idebug - debugger

15.2 The root transputer

idebug can be used to debug single and multitransputer programs. The tech-
niques and commands to use when invoking the debugger differ slightly accord-
ing to whether or not the program (or a process forming part of the program)
runs on the root transputer, and according to the debugging mode (post-mortem
or breakpoint).

The root transputer is the name given to the processor that is directly connected
to the host computer. In a transputer network that is connected to the host it
forms the root of the network. The debugger always runs on the root transputer,
which must be a 32-bit transputer with at least one Megabyte of memory.

The relationship of the root transputer to the host computer and the rest of the
network is illustrated below.

host computer root transputer
fs (user link(s) rest of
rap process network

Two procedures are used to debug programs in post-mortem mode, depending
on whether the application is configured to use the root transputer. Programs that
use the root transputer are referred to in this chapter as R-mode programs, and
programs that do not use the root transputer are referred to as T-mode programs.
Command line options are used to select the correct mode of operation for
idebug.

To avoid the need for a memory dump applications configured to use the root
transputer can be skip loaded. Skip loading requires at least one extra processor
on the network but speeds up debugging considerably and is the recommended
method where more than one processor is available. iskip can be used to
skip any number of processors on a network by invoking the tool successively.

15.2.1 Board wiring

Before any program can be debugged in post-mortem mode on a transputer
board the Analyse signal must be asserted on the network once, and once only.
Because different procedures must be adopted for programs which do and do not
use the root transputer, the debugger cannot assert the signal automatically and it
must be asserted by passing the appropriate iserver option from the idebug

72 TDS 224 00 August 1990

15.2 The root transputer 257

command line. Table 15.2 gives a summary of the command sequences to use
for the two program modes on different board types.

15.2.2 Post-mortem debugging R-mode programs

Code running on the root transputer and loaded with iserver directly is de-
bugged in post-mortem mode from a memory dump file which is specified by
the ‘R’ option. The memory dump file must be created using the idump tool
before the debugger is invoked. Code on other transputers is debugged down
transputer links in the normal way.

In R-mode programs idump asserts the Analyse signal and the ‘SA’ option is
not required on the idebug command line. In fact a second assertion of the
signal would cause data in the memory to become corrupted. If idump is not
invoked then the debugger cannot load onto the root transputer and a booting
error is reported.

Details of the idump and iskip tools can be found in chapters 16 and 25
respectively.

15.2.3 Post-mortem debugging T-mode programs

T-mode programs are loaded using iskip and subsequently debugged using
the ‘T’ option to specify the root transputer link to which the network is connected.
The ‘SA’ server option must also be added to the idebug command line in order
to assert Analyse.

If the ‘SA’ option is not given, the debugger is not booted onto the root transputer
and the server aborts with an error message. If the server is inputting data at
the time some corruption of the data may occur. The debugger should then be
reinvoked with the correct options.

15.2.4 Post-mortem debugging from a network dump file

To suspend a post-mortem R or T debugging session without losing the original
context, the Monitor page ‘N’ command can be used to dump the entire state of a
network into a network dump file (including Freespace if required). The debugger
can then be invoked on the file without being connected to the network.

Notes: This option will only work for programs that have not been interactively
breakpoint debugged.

Memory dump files and network dump files are not the same: the former con-

72 TDS 224 00 August 1990

258 15 idebug - debugger

tains a single processor's memory image while the later contains data about a
complete network. They are also in different formats.

15.2.5 Debugging a dummy network

The debugger may be used to debug a program using dummy data. Using
the debugger command line ‘D’ option which simulates the contents of memory
locations and registers, static features of a program may be examined. This

is useful to determine processor connectivity and memory mapping for each
processor in the network. This option may also be used to explore the features

of the debugger.

15.2.6 Methods for breakpoint debugging

Breakpoint mode debugging does not require use of the memory dump tool be-
cause the program is automatically skip loaded over the root transputer where the

debugger is running. However, like all skip loads it requires an extra processor
in the network.

15.3 Running the debugger
The debugger is invoked using the following command line:
| 2 idebug filename {options}

where: filename is the program bootable file.

options is a list of one or more options from table 15.1.

Options must be preceded by ‘-’ for UNIX based toolsets and ‘/* for
MS-DOS and VMS based toolsets.

Options may be entered in upper or lower case and can be given in
any order on the command line.

Options must be separated by spaces.

If no arguments are given on the command line a help page is displayed giving
the command syntax.

72 TDS 224 00 August 1990

15.3 Running the debugger 259

. Option Description

B linknumber | Interactive breakpoint debug a network that is connected to
the root processor via link linknumber. idebug executes
on the root processor.

Must be accompanied by the iserver ‘SR’ option.

M linknumber | Postmortem debug a prfevious interactive debugging ses-
sion.. idebug executes on the root processor.

Must be accompanied by the iserver ‘SA’ option.

T linknumber | Postmortem debug a program that does not use the root
processor, on a network that is connected to link linknum-
ber. idebug executes on the root processor.

Must be accompanied by the iserver ‘SA’ option.

R filename | Postmortem debug a program that uses the root transputer.
filename is the file that contains the contents of the root
processor (created by idump). The file is assumed to have
the extension .dmp if none is supplied.

. N filename | Postmortem debug a network from a network dump file file-
name (created by idebug). The file is assumed to have
the extension .dmp if none is supplied.

Must be accompanied by the iserver ‘SR’ option.

C type Specify a processor type (e.g. T425) instead of a class
(e.g. TA) for programs that have not been configured.

D Dummy debugging session. Can be used for familiarisation
with the debugger or establishing memory mappings.

Must be accompanied by the iserver ‘SR’ option.

A Assert subsystem analyse. Directs the debugger to assert
Analyse on the network connected to the root processor.

S Ignore subsystem error status when breakpoint debugging.
Display debugger version string.
Must be accompanied by the iserver ‘SR’ option.

Table 15.1 Debugger command line options

72 TDS 224 00 August 1990

260 15 idebug - debugger

15.3.1 Environment variables
idebug requires three environment variables to be set up on the host system:

ITERM Defines key mappings for debugger symbolic functions and
some Monitor page commands.

IDEBUGSIZE Defines the amount of memory available on the root transputer
board. This variable must be specified for idebug to work
correctly (idebug requires at least 400Kbytes of available
root transputer memory).

IBOARDSIZE The amount of memory available for the application program.
Required for single transputer programs (created from linked
units using icollect with the ‘T’ option and without the ‘M’
option), where the memory size was not specified.

Details of how to set up the variables can be found in the Delivery Manual that
accompanies the release.
15.3.2 Program termination

If the program terminates on issuance of the server terminate command by the
C runtime system the following message is displayed:

[Program has finished - hit any key for monitor]

The debugger can be re-entered after server termination by pressing any key.
The final state of the network can be examined using the full range of Monitor
page and symbolic commands.

The exit status returned by the program is displayed on the Monitor page.

If the program contains independent processes which require no communication
with the server the debugger allows the program to be resumed. In this case the
debugger displays the following warning message:

[Warning: The server has been terminated by the program]

15.3.3 Post-mortem mode invocation

To invoke the post-mortem debugger use the appropriate command from the
following list.

Command lines are duplicated in UNIX and MS-DOS/VMS formats. Use the
appropriate command line format for your system.

72 TDS 224 00 August 1990

15.3 Running the debugger 261

Note: Commands are given for a BO08 board wired subs. For the commands
to use on other board types see section 15.4.

idebug bootablefile -t linknumber -sa
idebug bootablefile /t linknumber /sa

idebug bootablefile -x filename
idebug bootablefile /x filename

idebug bootablefile -n filename -sr
idebug bootablefile /n filename /sr

idebug bootablefile -m filename -sa
idebug bootablefile /m filename /sa

where: bootablefile is the program bootable file.

linknumber is the number of the link of the root processor which is con-
nected to the network.

filename is a network dump file or a root transputer memory dump file.

Use the ‘t’ option for programs that do not use the root transputer, that is, those
loaded by using iskip. The program is debugged from the program image that
is resident in the memory of each transputer; the information about the rest of
the network is extracted down the root transputer link. The ‘t’ option produces
faster debugging option because the root transputer memory image is not saved.
However, the option does require an extra transputer on the network. The ‘t’
option should be accompanied by the iserver ‘sa’ option to assert Analyse on
the network.

Use the ‘r’ option for programs that use the root transputer in a network. The
dump file is created by using idump, which produces a dump of the program
image on the root transputer only; the debugger extracts information about other
transputers on the network (if applicable) via the root transputer links.

Use the ‘n’ option to debug programs without access to the original network
of transputers. This is effectively debugging off-line. The network dump file is
generated by the idebug Monitor page ‘N’ command (only for programs that
have not been breakpoint debugged). The ‘t’ option should be accompanied by
the iserver ‘s’ option to reset the network.

Use the ‘m’ option to debug a previous breakpoint debugging session where
either the network has crashed (error flag was set) or you have used the
host key to terminate the debugger. This option is the same as the ‘t’
option but informs the debugger the breakpoint runtime kernel is present. The

72 TDS 224 00 August 1990

262 15 idebug - debugger

‘m’ option should be accompanied by the iserver ‘sa’ option to assert Analyse
on the network.

Symbolic functions and Monitor page commands that support breakpointing are
absent in the post-mortem debugger.

Reinvoking the debugger on single transputer programs

For programs running on a single transputer only and debugged from a memory
dump file the debugger can be reinvoked on the same dump file by passing the
‘SR’ option to iserver from the idebug command line. This option is required
to reset the transputer before loading the debugger program, which is normally
simulated by idump.

15.3.4 Breakpoint mode invocation
To invoke the debugger in breakpoint mode use one of the commands below.

Note: Commands are given for a BO0O8 board wired subs. For the commands
to use on other board types see section 15.4.

idebug bootablefile -b linknumber -sr
idebug bootablefile /b linknumber /sx

where: filename is the program executable file

linknumber is the number of root transputer link where the application
network is connected.

In breakpoint mode idebug loads the bootable file directly onto the network and
sets up a runtime kernel and virtual link system on each processor used by the
program. isexver is not required to load the program, but an extra processor
is required to run the debugger; the program is in effect 'skip’ loaded.

Clearing error flags on transputer boards

Processors in the network with their error flags set can cause idebug to signal
a crashed program even when they are not being used by the program. This is
because idebug uses subsystem services to monitor error flag status through-
out the network. A reliable method of clearing all of error flags on a network is to
run a network check or worm program such as ispy before invoking idebug.

The ispy program is provided as part of the board support software for INMOS
iq systems products. These products are available separately through your local

72 TDS 224 00 August 1990

15.3 Running the debugger 263

INMOS distributor.

An alternative method of ensuring that error flags are cleared on a network is
to load a dummy process on each processor. The act of loading code onto the
processor clears the error flag.

The following is an example of a dummy process which could be used to clear
the error flag on a processor. The code simply starts up then shuts down imme-
diately (exit_terminate (exit_terminate is used because the program
is configured).

/*******************

*

* Place this program on each processor
* to clear the error flags.

*

* Remember to use startup.lnk for the
* root processor and startrd.lnk for

* all other processors when linking.

*

*******************/

#include <misc.h>

int
main (int argc, char* argv[])

{

exit_terminate (0);

}

Generate a linked unit containing the dummy process code for each processor
on the network. Write a configuration description which places the linked units
on each processor, collect the program, and load the resulting bootable file onto
the network using iserver. The bootstrap code clears the error flag on each
processor before loading the process code.

Note: When linking each process for subsequent configuration the process to
be placed on the root processor must be linked with the full library; processes
to be placed on other processors in the network can be linked with the reduced
library.

72 TDS 224 00 August 1990

264 15 idebug - debugger

Program loading

In breakpoint mode idebug loads the bootable program directly onto the net-
work and sets up a debugging runtime kernel on each processor. iserver
is not required to load programs for breakpoint debugging. An extra processor
is required on the network to run a program in breakpoint mode because the
program is in effect skip loaded.

When first invoked the breakpoint debugger immediately enters the Monitor page
where the ‘B’ (Breakpoint Menu) command can be used to set breakpoints before
the program is started.

15.3.5 Function key mappings

All the debugger symbolic functions, and some Monitor page commands, are
assigned to specific keys on the keyboard by the ITERM file (the file specified by
the environment variable ITERM). For the correct keys to use on your terminal
consult the keyboard layouts provided in the Delivery Manual that accompanies
the release.

ITERM files are supplied with the release for terminals commonly used with your
host system but may also be created to suit your own requirements. Details of
the ITERM file and an example listing which illustrates the format can be found
in appendix H.

Key-mapped symbolic functions and Monitor page commands are listed in sec-
tion 15.6.2.

15.4 Debugging programs on different board types

On transputer boards the Analyse and Reset signals can be propagated from
the root transputer in two ways, and this influences the options that must be used
when debugging programs.

15.4.1 Subsystem wiring

On transputer boards the subsystem signal are either propagated unchanged
to all transputers on the network (known as wired down), or the signals are
connected to the subsystem port (wired subs) from where they are controlled by

the board's root processor.

On B004 boards and on all boards where subsystem is wired in the same way
Analyse must be asserted on the network before transputers can be accessed

72 TDS 224 00 August 1990

15.4 Debugging programs on different board types 265

by the debugger from the root processor. However, if Analyse is asserted more
than once the program will be corrupted in transputer memory.

The wiring type can be identified by the hardware addresses of the three sub-
system registers. B004-type boards use the following addresses:

Signal | Hardware address
Reset #00000000
Analyse | #00000004
Error #00000000

An example of a BO04-type board is the IMS B404 TRAM. For details of the
subsystem wiring on other boards consult the Datasheet or board specification.

In addition, TRAM boards and B004 boards differ in the way the subsystem port
is used. On TRAM s the signals are propagated to all transputers on the network,
whereas on B004 boards the signals are not propagated at all.

15.4.2 Debugging commands

The above conditions affect the commands you must use when debugging T-
mode and R-mode programs. To simplify the selection of the correct command
Table 15.2 has been constructed giving the command line options to use for
different combinations of board type, subsystem wiring, and program mode.

Note: Command lines are given in the UNIX format (‘~’ option switch character)
in order maintain simplicity in layout. For MS-DOS and VMS based systems
replace ‘=’ by ‘/’ in all command lines.

For further details about loading programs see chapter 7.

15.4.3 Detecting the error flag in breakpoint mode

In breakpoint mode the debugger detects that a processor has its error flag set
by use of the subsystem services. If your hardware is not wired up to use the
subsystem services then the debugger is unable to detect when an error flag
is set; this may cause the debugger to hang for no apparent reason. On such
networks you should use the isexrver ‘SE’ option to detect when an error flag
has been set. Note however that detection of an error flag set will terminate the
debugger without warning.

Note: When using the debugger in breakpoint mode you should if possible wire
your hardware up to use the subsystem services.

72 TDS 224 00 August 1990

266 15 idebug - debugger
Board | Wiring | Mode | Command line(s) to use
TRAM | down T idebug program -b linknumber -sr -set -st
idebug program -m linknumber -sa
idebug program -t linknumber -sa
R | idump outputfile size
idebug program -x filename
subs T idebug program =b linknumber -sx
idebug program -m linknumber -sa
idebug program -t linknumber -sa
R idump outputfile size
idebug program -x filename
B004 | down T idebug program -b linknumber -sr -set -st
idebug program -m linknumber ~sa
idebug program -t linknumber -sa
R idump outputfile size
idebug program -r filename
subs T idebug program -b linknumber -a -sr
idebug program -m linknumber -a -sa
idebug program -t linknumber -a -sa
R | idump outputfile size

idebug program -x filename -a

For MS-DOS and VMS based toolsets use the ‘/’ option switch character.

Options on the idebug command line that are not debugger options are
passed to iserver.

The ‘si’ option may also be used on any command line to display activity
information when loading the debugger.

Modes: R = program using the root transputer; T = program not using the
root transputer, and debugged down a root transputer link.

t See section 15.4.3.

Table 15.2 Commands to use when debugging B004 and TRAM boards

15.5 Debugging programs on other boards

For hardware that does not adhere to the INMOS subsystem convention you will
need to determine how the hardware is configured and the appropriate command

72 TDS 224 00

August 1990

15.6 Monitor page commands 267

line options yourself.

You will probably need to use the idebug command line ‘S’ option when break-
point debugging in order to stop the debugger monitoring the subsystem error
status, and the iserver ‘SE’ option to determine when the error flag has been set.

15.6 Monitor page commands

This section lists and describes the Monitor page commands. The commands are
tabulated in alphabetical order for easy reference. Where a command invokes
an option submenu the operation of each option is described. Summaries of the
commands can also be found in the Handbook that accompanies the ANSI C
toolset release.

Command format

All Monitor page commands are either single letter commands or are invoked by
a single function key press. Key mappings for the few general commands that
use function keys can be found in the Delivery Manual that accompanies the
release.

Specifying transputer addresses

Many Monitor page commands require a transputer address. If none is given the
debugger assumes a default address when one is displayed with the prompt. The
default address is the last address specified or located to and can be selected

by pressing [RETURN].

Addresses can be specified in decimal or hexadecimal format. Hexadecimal
numbers must be given as a sequence of hexadecimal digits preceded by the
characters ‘#, ‘$’, or 's’. The ‘# and ‘$’ characters are used to prefix a full
hexadecimal address. The ‘¢’ character adds INT_MIN (MOSTNEG INT) to
the hexadecimal value using modulo arithmetic. This is useful when specifying
transputer addresses which are signed and start at INT_MIN. For example, on
a 32 bit transputer $70 is interpreted as #80000070 and on a 16 bit transputer
as #8070.

15.6.1 Scrolling the display

Several commands mapped by the ITERM (see below) may be used to scroll
certain of the Monitor page displays. Cursor keys may also be used.

72 TDS 224 00 August 1990

268 15 idebug - debugger

15.6.2 Commands mapped by ITERM

Certain Monitor page commands are mapped to specific keys on the terminal by
the ITERM file. Commands mapped in this way include keys which are used to
scroll the display (see below), commands which produce the same effect in both
debugging modes, and the commands [RELOCATE] and [RETRACE] which invoke
the corresponding symbolic mode functions.

The keys to use for all Monitor page commands mapped by ITERM can be found
by consulting the keyboard layouts supplied in the Delivery Manual.

15.6.3 Summary of main commands

Key Meaning Description
A ASCII View a region of memory in ASCII.
Bt Breakpoint Display the Breakpoint menu enabling break-
points to be set, cleared or listed.
C Compare Compare the code on the network with the code

that should be there to ensure that the code has
not been corrupted.

D Disassemble Display the transputer instructions at a specified
area of memory.
E Next Error Switch the current display information to that of

the next processor in the network which has
halted with its error flag set.

F Select file Select a source file for symbolic display using
the filename of the object file produced for it.

G Goto process | Goto symbolic debugging for a particular pro-
cess.

H Hex View a region of memory in hexadecimal.

1 Inspect View a region of memory in any type. Types are
expressed as occam types.

Ji Jump Start or resume application program.

K | Processor names | Display the names of all processors in the net-
work.

1 = Breakpoint mode only

72 TDS 224 00 August 1990

15.6 Monitor page commands

Key Meaning Description

L Links Display instruction pointers and workspace descrip-
tors for the processes currently waiting for input or
output on a transputer link, or for a signal on the
Event pin.

M Memory map | Display the memory map of the current transputer.

N Network dump | Copy the entire state of the transputer network into
a 'network dump’ file in order to allow continued
(off-line) debugging at a later date.

O | Specify process | Resume the source level symbolic features of the
debugger for a particular process.

P Processor Switch the current display information to that of an-
other processor.

Q Quit Leave the debugger and return to the host operat-
ing system.

R Run queues Display instruction pointers and workspace descrip-
tors of the processes on either the high or low pri-
ority active process queue.

S t | Show messages | Display the Messages menu enabling the default
actions of the debugger to debug support functions
to be changed.

T Timer queues | Display instruction pointers, the workspace descrip-
tors and the wake-up times of the processes on
either the high or low priority timer queue.

Ut Update Update the monitor page registers to reflect the cur-
rent state of the processor.

V | Process names | Display the names of all processes on the current
transputer.

Wi Write Write to any portion of memory in any occam type
(e.g. REAL32).

X Exit Return to symbolic mode.

Yt Postmortem Change a breakpoint debug session into a post-
mortem debug session.

? Help .Display help information.

t = Breakpoint mode only

72 TDS 224 00

August 1990

269

270 15 idebug - debugger

15.6.4 Symbolic-type commands and scroll keys

Key Description
t Locate to the last instruction executed on the current processor.

[RETRACE] ¢ | Switch to symbolic mode and perform symbolic operation.

[RELOCATE| § | Switch to symbolic mode and perform symbolic operation.
t Display help information.

t | Re-draw the screen.

[ONEUP)

#
[FPAGEUP]# | Scroll the currently displayed memory, disassembly,

[PAGE DOWN] § | or queue.

Scroll the currently displayed processor left or right.

f For key bindings see the Delivery Manual.

72 TDS 224 00 August 1990

15.6 Monitor page commands 271

[a]

ASCII

This command displays a segment of transputer memory in ASCII for-
mat, starting at a specific address. If no address is given the last
specified address is used. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default (last specified) address, or
enter the desired address. The address can be entered as a decimal
number, a hexadecimal number preceded by ‘#, or the short form
‘sh...h'

The memory is displayed in blocks of 16 rows of 32 ASCII bytes, each
row preceded by an absolute address in hexadecimal. Bytes are or-
dered from left to right in each row. Unprintable characters are substi-
tuted by a full stop.

[1]. [I]. [FPAGE UP], [PAGE DOWN] keys can be used to scroll the display.

Breakpoint menu (Breakpoint mode only)
This command invokes the Breakpoint Menu:

- Set a breakpoint on this processor

- Toggle a breakpoint on this processor

- Clear a breakpoint

- Clear all breakpoints on all processors

- Clear all breakpoints on this processor

Set a breakpoint at all entries this processor
- Set a breakpoint at all entries all processors
- Set a breakpoint at all main () this processor
- List all breakpoints

- List all breakpoints on this processor

- Quit

ovrErZoaREwPOdN
]

Breakpoint option (A,B,C,E,G,L,M,P,Q,S,T) ?

Options are selected by entering one of the single letter commands.
Pressing with no typed input when prompted for a breakpoint
number or address cancels the option.

72 TDS 224 00 August 1990

272

15 idebug - debugger

Breakpoints are assigned a unique number which must be specified
with the ‘C’ option. Numbers are given on the List Breakpoints displays.

The ‘E’ and ‘G’ options which set breakpoints at the entrypoint of a
process (at configuration level) are primarily intended for use with other
INMOS language toolsets where there is no equivalent of a fixed name
entrypoint (such as main () in C).

Note: Only breakpoints which are set in symbolic mode (at the be-
ginning of a statement) are properly supported. Setting breakpoints at
arbitrary addresses using the ‘S’ option may cause incorrect execution
of the program.

Compare memory

Compare memory compares the code on the network with the code
that was loaded, to check that memory has not become corrupted.

Note: This option treats breakpoints as corrupted code.

The following menu is displayed:

Compare memory
Number of processors in network is : 2

- Check whole network for discrepancies

- Check this processor for discrepancies
- Compare memory on screen

- Find first error on this processor

- Quit

Type one of the options A, B, C, D, or Q. Option ‘Q’ returns you to the
Monitor page.

OoQwy

Checking the whole network — option A

Option ‘A’ checks the whole network processor by processor and dis-
plays a summary of the discrepancies found.

72 TDS 224 00 August 1990

15.6 Monitor page commands 273

If there no errors the following message is displayed:
Checked whole network OK

If any errors are detected the number of errors is given along with the
address of the first error found and the name of the processor on which
it occurred.

Checking a single processor — option B

Option ‘B’ checks just the current processor. In all other respects it is
similar to option ‘A’.

Compare memory on screen — option C

Option ‘C’ displays the actual and expected code for for each address
in a block of memory. Discrepancies are marked with an asterisk (‘*’).

Memory is checked in blocks of 128 bytes. At the end of each block,
type either ‘Q’ to quit, or to read and display the next block.

The format of the display is similar to the following example:

Network Code Correct Code
#800001234 : 0011223344556677 7766554433221100 *
#80000123C : 0011223344556677 0011223344556677
#800001244 : 0011223344556677 7766554433221100 *

#8000012AC : AABBCCDDEEFF(0011 AABBCCDDEEFF0011

Press [DOWN] to scroll memory, [SPACE] for next
error, or Q to quit :

Pressing [SPACE] automatically invokes option ‘D’ — Find first
error....

Find first error — option D Option ‘D’ searches the current processor’s
memory for the first occurrence of a discrepancy. If a discrepancy is
found the display is switched to mode ‘C’' and the memory can be
checked and displayed as in ‘Compare memory on screen’.

72 TDS 224 00 August 1990

274

15 idebug - debugger

Disassemble memory

The Disassemble command disassembles memory into transputer in-
structions. Specify an address at which to start disassembly after the
prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘sh. . .h"

The memory is displayed in batches of sixteen transputer instructions,
starting with the instruction at the specified address. If the specified
address is within an instruction, the disassembly begins at the start
of that instruction. Where the preceding code is data ending with a
transputer ‘p£ix’ or ‘n£ix’ instruction, disassembly begins at the start
of the p£ix or nfix code.

Each instruction is displayed on a single line preceded by the address
corresponding to the first byte of the instruction. The disassembly is a
direct translation of memory contents into instructions; it neither inserts
labels, nor provides symbolic operands.

Next Error

Next Error searches forward through the network for the next processor
which has both its error and halt-on-error flags set. Processors are
searched in the same order as they are listed by the ‘K’ command,
starting from the current processor and wrapping round. If a processor
is found with both flags set the display is changed to the new processor
as if the ‘P’ option had been used. Press to display the source
line which caused the error.

If there is only one processor in the network you are informed of the
fact.

72 TDS 224 00 August 1990

15.6 Monitor page commands 275

[F]

Select source file

This command selects a specified source file and invokes symbolic
debugging. The full name of the object file (including extension) must
be supplied.

This option allows breakpoints to be set in modules which have not yet
been reached in the program'’s execution. (Source which has not yet
been executed cannot be displayed using the ‘O’ or ‘G’ options because
the Iptr and Wdesc addresses are not yet known.)

This option may also be used to browse source files rather like the
symbolic function. However, unlike it allows
you to use'some of the symbolic debugging operations.

If a processor has been configured to contain different processes, this
option first prompts for the process number of the source file:

Select process number (0 - N) ?

The range of numbers displayed in brackets are process numbers as-
signed by the debugger to different processes on the processor. Pro-
cess names can be determined by using the Monitor page Process
Name (‘V’) option before invoking the ‘F' command.

Once a valid process number has been supplied (if applicable), the
debugger prompts for the filename of the compiled object module. The
full object filename (including extension) must be supplied.

Object module filename ?

The object filename must be specified because the debugger extracts
the source code filename from the debug information in the compiled
object file.

Note: At each prompt the command may be aborted by pressing
with no typed input.

72 TDS 224 00 August 1990

276

15 idebug - debugger

Goto process

This command locates to the source code for any process which is
currently shown on the screen. The cursor is positioned next to the
Iptr, and permitted responses are listed on the screen as follows:

[CURSOR] then [RETURN], or 0 to F, (I)ptr,
(L)o, or (Q)uit

To select the desired process use the cursor keys to skip between
processes on the screen, or specify a value 0 to F. Press to
select the process indicated by the cursor. The saved Iptr is chosen
by typing ‘I’, and if currently in high priority, the interrupted low priority
process is chosen by typing ‘L’. The sixteen processes shown on the
right hand side of the display are chosen by typing ‘0’ to ‘F’. Type ‘'Q,
[FINISH], or [REFRESH] to abort this choice.

Hex

The Hex command displays memory in hexadecimal. Specify the start
address after the prompt:

Start address (#hhhhhhhh) ?

Press to accept the default address, or enter the desired ad-
dress. The address can be entered as a decimal number, a hex-
adecimal number preceded by ‘#’, or the short form ‘h. . .h'. If the
specified start address is within a word, the start address is aligned to
the start of that word.

The memory is displayed as rows of words in hexadecimal format.
Each row contains four or eight words, depending on transputer word
length. Words are displayed in hexadecimal (four or eight hexadecimal
digits depending on word length), most significant byte first.

For a four byte per word processor the sequence of bytes in a single
row would be:

3210 7654 11 10 9 8 15 14 13 12
For a two byte per word processor, the ordering would be:

10 32 54 76 9 8 11 10 13 12 15 14

72 TDS 224 00 August 1990

15.6 Monitor page commands 277

O Words are ordered left to right in the row starting from the lowest ad-
dress. The word specified by the start address is the top leftmost word
of the display.

‘ The address at the start of each line is an absolute address displayed
in hexadecimal format.

[I] Inspect memory

The Inspect command can be used to inspect the contents of an entire
array. Specify a start address after the prompt:

Start address (#hhhhhhhh) ?

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘¢h. . .h'".

When a start address has been given, the following prompt is displayed:

Typed memory dump
- ASCII
- INT
- BYTE
- BOOL
INT16
- INT32
- INT64
- REAL32
- REAL64
- CHAN

oAU WNKHEO
[}

Which type (1 - INT) ?

Give the number corresponding to the type you wish to display, or
press to accept the default type. The types correspond to
formal occam types as defined in the ‘occam 2 Reference Manual'.
occam equivalences of C types are listed in the following table.

72 TDS 224 00 August 1990

278 15 idebug - debugger

C type occam type
int INT

char, unsigned char |BYTE
short, signed short | INT16
long, signed long INT32
float REATL32
double, long double | REAL64

ASCII arrays are displayed in the format used by the Monitor page
command ‘ASCII’. Other types are displayed both in their normal rep-
resentation and hexadecimal format.

The memory is displayed as sixteen rows of data. The address at the
start of each line is an absolute address displayed as a hexadecimal
number. The element specified by the start address is on the top row
of the display.

Start addresses are aligned to the nearest valid boundary for the type,
that is: BYTE and BOOL to the nearest byte; INT16 to the nearest

even byte; INT, INT32, INT64, REAL32, REAL64, and CHAN to the .
nearest word.

72 TDS 224 00 August 1990

15.6 Monitor page commands 279

Jump Into and run program

This command starts up a program from the Monitor page, or
restarts a process which has encountered a breakpoint or stop point
inserted by the debug support functions debug_assert() and
debug._stop().

When starting a program the debugger converts (patches) the config-
uration external channels (those assigned to links) for each processor
into virtual channels for use with the debugging kernel. This action is
indicated by an activity indicator.

When the patching is complete the debugger prompts for a command
line for the program:

Command line:

This is the command line used by the C runtime library to provide the
argc and argv parameters to main ().

When jumping into and resuming a program from a breakpoint, the
following menu is displayed:

Jump into Application

R - Resume breakpointed process

O - Resume all others

(abandon breakpointed process)

J - Jump to different location

Q - Quit

Which option (J,0,Q,R) ?

When resuming from an error, the following submenu is displayed:

Jump into Application

O - Resume all others

J - Jump to different location

Q - Quit

Which option (J,0,Q) ?

72 TDS 224 00 August 1990

280

15 idebug - debugger

The four Resume options are listed in the following table.

Option | Description
R Restarts the process that encountered the breakpoint.

o Ignores the stopped process and resumes monitoring the
network for other process activity. (When a process has
stopped other processes continue to run until they either
encounter a breakpoint or error, or become dependent on
the stopped process.)

Note: Using this option for a process stopped on a break-
point removes the process forever.

J Restarts the process from a different location. Only use this
option if you are confident that the program can be resumed
from the new location; resumption from most locations will
corrupt the program.

Q Quits the Resume submenu.

Processor names

This command gives the processor numbers corresponding to proces-
sor names used in the configuration description. Processor numbers
must be given when selecting specific processors for display by the
debugger.

Note: The debugger displays only the first 19 characters of the proces-
sor name. If this is a problem you should make names unique within

the first 19 characters.

72 TDS 224 00 August 1990

15.6 Monitor page commands

281

Links

The Links command displays the instruction pointer, workspace de-
scriptor, and priority, of the processes waiting for communication on

. the links, or for a signal on the Event pin. If no process is waiting, the
link is described as ‘Empty’. Link connections on the processor, and
the link from which the processor was booted are also displayed.

The format of the display is similar to the following example: -

Link
Link
Link
Link
Link
Link
Link
Link
Event

WNHOWNKO

Link O
Link 1
Link 2
Link 3

‘ Booted

72 TDS 224 00

out
out
out
out
in
in
in
in
in

Empty
Empty
Iptr:
Empty
Empty
Empty
Iptr:
Iptr:
Empty

#80000256 Wdesc:

#80000321 wWdesc:
#80000554 Wdesc:

connected to Host
not connected

connected to Processor 88, Link 1
connected to Processor 1, Link 3

from link 0

#80000091 (Lo)

#80000125 (Lo)
#80000170 (Hi)

August 1990

282

15 idebug — debugger

Memory map

The Memory map command displays a memory map of the current
processor. The display includes the address ranges of on-chip RAM,
program code, configuration code, workspace and vectorspace, the
sizes of each component in bytes rounded up to the nearest 1K bytes,
total memory usage, and the address of ‘MemStart’, the first free loca-
tion after the RAM reserved for the processor’s own use.

Also displayed is the maximum number of processors that can be ac-
commodated by the debugger’s buffer space. This will depend on the
amount of memory on the root processor, indicated to the debugger by
the host environment variable IDEBUGSIZE.

The address of ‘MemStart’ is the value actually found on the transputer
in the network. If this does not correspond to that expected by the
configuration description, for example if a T414 was found when a
T800 was expected, the following message is displayed:

MemStart should be : #80000070 (T800) !ttt}

If an incorrect MemStart is detected the symbolic functions may not
work correctly. In these circumstances you should rebuild your program
for the correct processor types on the network before reinvoking the
debugger.

72 TDS 224 00 August 1990

15.6 Monitor page commands 283

[N]

Network dump

The Network dump command saves the state of the transputer network
for later analysis. If you quit the debugger without creating a network
dump file, debugging cannot continue from the same point without re-
running the program. This is because the debugger itself overwrites
parts of the memory on each transputer in the network.

Note: This command cannot be used in breakpoint mode (idebug
command line option ‘B’) or.when post-mortem debugging a breakpoint
session (idebug command line option ‘M’).

Once a network dump file has been created, debugging can continue
from the file, and the debugger does not need to be connected to the
target network.

Before the dump file is created, the debugger calculates the disk space
required, and requests confirmation. The size of the file depends on
how much of each processor's memory is actually used in running the
program, and is displayed as follows:

Create network dump file
Number of processors to dump : 2
File size excluding Freespace : 112604 bytes
File size including Freespace : 2097308 bytes

Continue with network dump (Y,N) ?

To continue with the network dump, type ‘Y’.

You will them be prompted whether to include Freespace in the dump
file (this is not normally required for configured programs).

Do you wish to include Freespace (Y,N) ?
Type 'Y’ or ‘N’ as appropriate and specify a filename after the prompt:
Filename ("network.dmp", or "QUIT") ?
Press to accept the default filename, enter a filename (any

extension will be replaced by ‘.dmp’), or type ‘QUIT (uppercase) to
exit.

72 TDS 224 00 August 1990

284

15 idebug - debugger

If the file already exists, you are warned:

File "network.dmp" already exists
Overwrite it (Y,N) ?

If you type ‘N’, you are reprompted for the filename.

While the dump file is being written, a message is displayed at the
terminal. For example:

Dumping network to file "network.dmp" ...
Processor 1 (T800)
Memory to dump : 10456 bytes ...

Specify process

This command restores symbolic debugging, either at the same source
line, or at another location. It can be used to locate to any source line,
whether or not a process is waiting or executing there. To ensure the
debugger locates to a valid process, it is better to use the ‘G’ command.

To return to symbolic debugging, the debugger requires values for
Iptr and Wdesc. Specify Iptr after the prompt:

Iptr (#hhhhhhhh) ?

The default displayed in parentheses is the last line located to on this
processor, or the address of the last instruction executed.

Either press to accept the default address, or enter the de-
sired address. The address can be entered as a decimal number, a
hexadecimal number preceded by ‘#’, or the short form ‘sh. . .h'.

Useful addresses can be determined using the ‘R’, ‘T’, and ‘L’ com-
mands to display specific addresses. The same addresses can be
listed by using the ‘G’ command. The value of the saved low priority
Iptr can also be used.

If the Iptr is not within the program body, the debugger indicates the
type of code to which it corresponds.

After pressing any key you are returned to the Monitor page.

72 TDS 224 00 August 1990

15.6 Monitor page commands 285

O If the Iptr is valid, you are prompted for the Wdesc:

Wdesc (#hhhhhhhh) ?

If a displayed Iptr was specified, its corresponding Wdesc is offered
as a default. Press to accept the default, or specify a value
in the same format as Iptr.

If no symbolic features other than a single ‘locate’ are required, then
Wdesc is not needed and the default can be accepted.

If an invalid Wdesc is given, most of the symbolic features will not
work, or will display incorrect values. However, you can still determine
the values of scalar constants and some other symbols.

Any attempt to inspect or modify variables or channels, or to backtrace,
will give one of the following messages:

Wdesc is invalid - Cannot backtrace
Wdesc is invalid - Cannot Inspect variables

Wdesc is invalid - Cannot Modify variables

If the location to be displayed is in a library for which the source is not
available and the debugger cannot locate the call to that library, the
following message is displayed:

Wdesc is invalid - Cannot auto backtrace out
of library

Once the Iptr and Wdesc have been supplied, the debugger displays
the source code at the required location, and the full range of symbolic
features are available.

72 TDS 224 00 August 1990

286

15 idebug - debugger

Change processor

This command changes to a different processor in the network. Specify
the processor number after the prompt:

New processor number ?

To determine the mapping between the processor number and the
processor name used in the configuration file, use the ‘K’ command.
If the processor exists the display is changed to provide information
about the specified processor. If the new processor’s word length is
different from that of the previous processor, the start address is reset
to the bottom of memory.

If the processor is not in the configuration, the following message is
displayed:

Error : That processor number does not
exist

To abort the command press with no input.

If there is only one processor in the network you are informed of the
fact.

The cursor keys ([=] and [5]) can be used to scroll the list of pro-
cessors. changes to the preceding processor and to the next
processor in the sequence. The processor sequence is the same as
that displayed by the ‘K’ command.

Quit

This command quits the debugger and returns to the operating system.
Once quit, the debugger cannot be used to debug the same program
without reloading the program unless a ‘network dump’ file has been
created. This is because using the debugger overwrites some of the
contents of the network.

72 TDS 224 00 August 1990

15.6 Monitor page commands 287

[R]

Run queues
This command displays Iptrs and Wdescs for processes waiting on

the processor's active process queues. If both high and low priority
front process queues are empty, the following message is displayed:

Both process queues are empty
If neither queue is empty, you are required to specify the queue:
High or low priority process queue ? (H,L)

Type ‘H’ or ‘L’ as required. If only one queue is empty, the debugger
displays the non-empty queue.

The screen display is paged. To view other processes scroll the dis-
play using the [CURSOR UP], [CURSOR DOWN], [LINE UP], [LINE DOWN],
[PAGE UP], and [PAGE DOWN] keys.

Note: In breakpoint mode this command may provide incorrect results
because the queues may include processes which form the debugging
kernel. An asterisk next to the queue heading indicates where this is
so.

Show debugging messages

This command is used to enable and disable debugging messages and
prompts. It invokes the following submenu:

Show Messages Menu

B -- Show message for breakpoints : ON
D -- Show debug messages : ON
E -- Show message for errors : ON
Q -- Quit

Which option (B,D,E,Q) ?

Options B and E control the display of prompts when a breakpoint or
error (via the library functions debug_assert and debug_stop) is
encountered. Disabling these options ensures that the debugger is
entered on a breakpoint or error without requesting confirmation.

Option D controls the display of debugging messages inserted with the
debug_message library function.

72 TDS 224 00 August 1990

288

15 idebug - debugger

TOP

Timer queues

This command displays Iptrs, Wdescs, and wake-up times for pro-
cesses waiting on the processor's timer queues. Prompts and displays
are similar to those for the Run queue command.

Last instruction

This command is used to display the source corresponding to the last
instruction to be executed on the current processor. It is the same as
typing ‘G, then ‘'T’.

Update registers

This command updates the clock and status display (e.g. runtime
queues) for the current processor. It enables you to monitor the activ-
ity of other processes while one process is stopped at a breakpoint or
error.

Process names

This command gives the process numbers corresponding process
names used in the configuration description. Process numbers must be
given when selecting specific processes for display by the debugger.

Note: The debugger displays only the first 19 characters of the process
name. If this is a problem you should make names unique within the
first 19 characters.

Write to memory

This command writes a value to a specified address. Values must be
specified in the current type (the type used in the previous Monitor page
Inspect command), or INT if the type was a CHAN or the Disassemble
or Hex options have been used after an Inspect.

Exit

This command returns to symbolic mode and locates to the current
address.

72 TDS 224 00 August 1990

15.6 Monitor page commands 289

Enter post-mortem debugging

This command allows the debugger to be switched into post-mortem
mode when the program crashes (a process sets the error flag on
any processor). Halted processors prevent the breakpoint debugger
from accessing the network correctly and debugging must continue in
post-mortem mode.

If the program has not crashed, the debugger prompts for confirmation:
The program has not crashed - are you sure (Y¥,N) ?

If you have disabled checking of the subsystem error status (the com-
mand line ‘S’ option), you are prompted with:

Unable to detect if the program has crashed -
are you sure (Y,N) ?

Typing 'Y’ continues the operation, typing 'N’ aborts it.

This command performs the same action as quitting the debugger when
in breakpoint mode and restarting it using the ‘M’ command line option
instead of ‘B'.

Note: State information for a process that has stopped (on breakpoint
or error) will be lost when switching from breakpoint to post-mortem
mode. If the information is important you should make a note of it
before switching modes.

72 TDS 224 00 August 1990

290 15 idebug - debugger

15.6.5 Symbolic-type commands

TOP This command locates to the last instruction executed on the

current processor. I

RELOCATE This command returns to symbolic mode and performs a sym-
bolic [RELOCATE]. It cannot be used if the processor has been
changed at the Monitor page.

RETRACE This command returns to symbolic mode and performs a sym-
bolic It cannot be used if the processor has been
changed at the Monitor page. '

HELP These commands display a summary of the commands avail-
able at the Monitor page.

[~]

This command refreshes the screen.

;

15.7 Symbolic functions

Symbolic debugging allows high level language programs to be debugged from
the identifiers used in the source code. Symbolic identifiers are the names given
in the program to variables, constants, channels, and functions.

Symbolic functions are invoked using keyboard function keys. Keyboard layouts
for common terminal types can be found in the rear of the Delivery Manual that
accompanies the release.

Symbolic debugging functions are listed in Table 15.3. Functions only available
in breakpoint mode are marked with a double dagger (}).

72 TDS 224 00 August 1990

15.7 Symbolic functions

291

Function

Description

NSPEC

Display the value and type of a source code symbol.

al =
I
>
Z
&
mf =

Locate to the process waiting on a channel.

TOP) Locate back to the error, or last source code location.
Retrace the last etc.

RELOCATE Locate back to the last location line.

Display extra process information.

t Change the value of a variable in memory.

t Resume the application program from the breakpoint.
Change to the Monitor page.

Locate to the procedure or function call.

HELP] Display a summary of utility key uses.

ET ADDRESS

Display the location of a source line in memory.

Go to a specific line in the file.

EARCI

Search for a specified string.

m)

Change to an included file.

XIT FIL

Change to an enclosing file.

ol [[@ |[m] | [{[D] | [
Z [e]
= =
o O

put
mI‘IE
- m

HANGE FILE

Display a different source file.

TOP OF FILE Go to the first line in the file.
Go to the last line in the file.

[TOGGLE BREAK] {

Set or clear a break on the current line.

INTERRUPT]

Force the debugger into the Monitor page without stop-
ping the program.

CONTINUE FROM) t

Resume the application program from the current line.

Enables/disables Hex-oriented display of constants and
variables.
Quit the debugger.

{ = Breakpoint mode only

72 TDS 224 00

Table 15.3 Debugger symbolic functions

August 1990

292

15 idebug - debugger

72 TDS 224 00

This function allows you to determine the value and type of
variables and constants, and provides useful information about
other source code symbols such as functions and channels.
To inspect a symbol, place the cursor on the name and
press [INSPECT], or press and give a symbol name.
Spaces and the case of the letters in the name are significant.
Specifying an empty expression aborts the operation.

The symbol must be in scope with the line to which the debugger
last located, which may not be the same as the current cursor

position.

Expressions for variables can incorporate numbers, pointers,
and any in-scope identifiers. For pointers to functions an ad-
dress is displayed which can be used to locate to the source
code using the Monitor page ‘O’ command. For semaphores,
pointers to processes waiting on the semaphore can be deter-
mined from the display of its data structure. For enumerated
types their symbolic names are also displayed.

Details of the display formats for all variable types are given in
section 15.9.

Expression language

supports an expression language for variables which
follows C syntax but with some limitations and extensions (for
example, subranging of arrays is supported). The com-
mand also supports the same language.

Details of the expression language can be found in section 15.8.

This function jumps down a channel if a process is waiting at
the other end. Use this key as you would [INSPECT], but when
positioned on a channel. The debugger locates to the source line
corresponding to the waiting process from where the process can
be debugged. This function is invalid if the cursor is not on a
channel or the name specified is not a channel.

The function allows you to ‘jump’ to other processors
along transputer links. If a process running on another processor
is waiting for communication on a channel the debugger ’jumps
down’ the link and automatically changes to that processor.

August 1990

15.7 Symbolic functions 293

TOP

RELOCATE

SEARCH

HELP

MONITOR

BACKTRACE

LN

72 TDS 224 00

This function locates back to the line containing the original
error, or to the line located to by the previous invocation of
the Monitor page ‘G’ or ‘O’ command.

This function locates back to the previous location. Re-
peated use of reverses the effect of successive
[BACKTRACE], [CHANNEL], and operations.

This function locates back to the last point located to by
the debugger. For example, it can be used to return to the
original source line of an error after browsing the code with
the cursor and scroll keys.

This function disptays the Iptr and Wdesc of the last lo-
cation, the process name and priority, and the processor
number.

If the Wdesc is not in the defined region for a process the
message: Undefined process is displayed in place of
the process name. For single processor programs that have
not been configured there is no defined region and the mes-
sage: Stack area unknown is displayed to reflect this.

If a Wdesc has not been supplied, it is given as ‘invalid’.

This function searches forwards in the source file for a spe-
cific string. Either specify a search string or press
to accept the default, which is the last string specified.

This function displays a brief summary of the debugger sym-
bolic function keys.

This function recalls the Monitor page environment.

This function quits the debugger. The Monitor page ‘Q’ op-
tion has the same effect.

This function locates to the line where a procedure or func-
tion was called. If the debugger is already located in the
program’s main procedure, no backtrace is possible and
the following message is displayed:

Error : Cannot backtrace from here

August 1990

n
©O

4 15 idebug - debugger

GET ADDRESS This function displays the address of the transputer
code which was compiled for the source line where
the cursor is currently placed.

CHANGE FILE This function opens a different source file for reading
only. No symbolic functions are available, unlike the
Monitor page ‘F’ option.

TOGGLE HEX This function displays Hex values of C variables as
well as their decimal values. The default is to display
integral types in decimal format only.

INTERRUPT This function forces the debugger to enter the Monitor
page without stopping the program.

Note: This command does not operate if there are
keystrokes waiting before it in the keyboard buffers. It
may also fail if the application program is waiting for
input from the keyboard.

ENTER FILE Enters an included file. Position the cursor on the rel-
evant #include directive and press [ENTER FILE].

EXIT FILE Exits from an open included file.

GOTO LINE This furction allows you to change to a particular line
in the source. Specify a line number, or type 0 (zero)
to abort the operation.

TOP OF FILE Moves to the start of the file.

[BOTTOM OF FILE] Moves to the end of the file.

72 TDS 224 00 August 1990

15.7 Symbolic functions 295

15.7.1 Breakpoint functions

[TOGGLE BREAK]

[{CONTINUE FROM|

72 TDS 224 00

This function toggles a breakpoint on the source line
indicated by the cursor and provides information on
the breakpoint number (as used by the Monitor page
‘B’ command), whether it was set or cleared, and the
line number it is on.

When the source line the cursor is on produces no
associated object code the debugger displays an ex-
clamation mark (<!>) after the line number to indicate
that the breakpoint has been toggled on a different line
to the one the cursor is on (as shown at the bottom of
the display).

This function restarts the program from the breakpoint.
(To restart from an error use [CONTINUE FROM]).

This function restarts the program from the line indi-
cated by the cursor. should only be
used to bypass an erroneous source line. The result
of continuing from other points in the code may be un-
predictable if there are intervening stack adjustments.

This function changes the value of a variable in trans-
puter memory. Like this function accepts ex-
pressions involving any symbol in scope. To modify
a variable place the cursor on the name and press
[MODIFY]. The debugger then prompts for the destina-
tion followed by the source, which can both be given as
expressions. The destination expression is the variable
or constant you wish to change; the source expression
is the new value that will be assigned. Specifying an
empty expression aborts the operation.

Variables are specified using the same expression lan-
guage that is used by The language uses the
syntax of C but with some limitations. A description of
the language can be found in section 15.8.

August 1990

296 15 idebug - debugger

15.8 Expression language for (NSPECT] and [MODIFY]

The expression language for source code symbols (variables, constants, and
channels) follows the syntax of C with some minor modifications.

Limitations and extensions to C syntax are described in the following sections.

15.8.1 C syntax not supported

The following table summarises aspects of C syntax not supported in the ex-
pression language.

Area of limitation Example of limitation
Casting to pointer types (char *) ptr
Address operator & returns int &baz
rather than a pointer to the type
Calling of functions sqgrt (x)
Input of strings "a string"
Input of initialiser lists {1, 2, 3}
Trigraph sequences T2
Bit field modification
Modification using assignment x=y
Conditional operator a?b:c

15.8.2 Extensions to C syntax
The language supports the specification of array subranges for arithmetic data
types. Subranges are specified as two array bounds separated by a semicolon.

For example: foo[2;4] displays the values of elements foo[2], foo[3]
and foo[4].

Note: For arrays and structures the information displayed will normally overwrite
part of the screen display. Press any key when prompted to restore the display.

15.8.3 Editing keys

The following editing functions are available for on-screen editing of expressions:

72 TDS 224 00 August 1990

15.8 Expression language for INSPECT] and [MODIFY] 297

Key Effect
Move the cursor to the beginning of the expression.
Move the cursor to the end of the expression.
DELETE LINE] | Delete the expression.
Move the cursor left one character.
= Move the cursor right one character.

Replace the current expression with the expression
used in the previous [INSPECT] or [MODIFY].

DELETE Delete the character to the left of the cursor.
Enter the expression for evaluation.

@

=]

Note: [START OF LINE], [END OF LINE], [DELETE LINE], and [DELETE] are mapped
by the ITERM file to specific keys on the keyboard. Details of the key mappings
on your terminal can be found in the Delivery Manual that accompanies the
release.

15.8.4 Types

C types are interpreted and displayed by the debugger as follows:

Name Member types

Character char, signed char, unsigned char

Floating float, double, long double

Basic Character, signed integer,
unsigned integer, Floating

Integral Character, signed integer,
unsigned integer, enum

Arithmetic Integral, Floating

Scalar Arithmetic, Pointer

Derived Array, Function, Pointer, struct, union

Type compatibility when using

Source and destination expressions must be type compatible according to the
rules of C. Scalar types are cast automatically into other scalar types but non-
scalar expressions must be strictly compatible.

Type conversions, where required, are performed according to normal C promo-

72 TDS 224 00 August 1990

298 15 idebug — debugger

tion rules.
The following examples illustrate the rules governing type compatibility.
Given the following declarations:

int two_d_array([2](10];

int one_d_array([10];

int foo;

char bar;

the following modifications are permitted:

Source: one_d_array (array of 10 integers)
Destination: two_d_array([1] (row of 10 integers)

Source: foo
Destination: bar

Source: two_d_array[1] [2] (single element)
Destination: bar (single integer)

The following modification is not permitted:

Source: two_d_array[1] (row of 10 integers)
Destination: £oo (single integer)

15.9 Display formats for source code symbols

When displaying an object, idebug (where possible) will also display type in-
formation for an object (e.g. unsigned char).

15.9.1 Warnings

When evaluating an expression, checking is performed which may lead to warn-
ing messages being produced (eg. overflow in arithmetic operation). Such warn-

ings are intended to highlight potential problems and to ensure that a user un-
derstands any action idebug is taking.

15.9.2 key

This key enables Hex Integer Print to be toggled.

72 TDS 224 00 August 1990

15.9 Display formats for source code symbols 299

tt idebug attempts to display integral types in the format it believes is most ap-
propriate.

This means that by default, integer values (including enumerated types) are dis-
played in decimal, addresses are displayed in Hex and decimal, and characters
are printed in decimal along with the corresponding character constant. By use
of [TOGGLE HEX], the default behaviour may be overridden to cause idebug to
print in Hex and decimal for integral types, and in decimal with the corresponding
Hex character constant for characters.

15.9.3 Notation

In the following descriptions, the following notation is used:

ddd indicates a (possibly signed) decimal value

re’ indicates a character

OxHHH indicates a hexadecimal value

’ \HH' indicates a hexadecimal character

££f indicates a floating point number of the form:
ddd.ddd or ddd.dddEddd

type indicates the type of the object

"o indicates a character string in an array

... indicates a character string of unknown length which is termi-
nated by a null character (which is not shown)

{} indicates a list

{}... indicates a character list of unknown length which is terminated
by a null character (which is shown)

< > indicates the contents of a basic or channel object when a pointer
points to it (except when the object is volatile)

() provides extra information about an object

15.9.4 Basic Types

Display formats for basic C types are given in the Table 15.4. Displays are given
in normal decimal format and in Hex format (invoked by [TOGGLE HEX]).

15.9.5 Enumerated types

Variables of an enumerated type are displayed as their integer value (in exactly
the same manner as an int) followed by the name of the enumeration and

72 TDS 224 00 August 1990

300 15 idebug - debugger

Type Hex Integer Print Off | Hex Integer Print On

char ddd (’'c’) type ddd (’\xHH’) type

short ddd type OxHHH (ddd) type

int ddd type OxHHH (ddd) type

long ddd type OxHHH (ddd) type

float £££ float £££ float

double £££ double £££ double

long double | £££ double £££ double

Table 15.4 Display formats — basic C types

the enumeration constant name for-the value. If there are multiple enumerated
constants that share the same value, a list is formed containing all of the enumer-
<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>