Parallel Fortran
User Guide

3L Ltd

Copyright © 1990 by 3L Ltd and EPCL. All Rights Reserved.

This edition November 30, 1990 describes version 2.1.3 of the
software.

20 19 18 17 16 15 14 13 12 11
i0o 9 8 7 6 5 4 3 2 1

3L isa registered trademark, and the 3L logo is a trademark of
3L Ltd.

inmos™, IMS™ and occam™ are trademarks of the Inmos group of
companies.

IBM® is a registered trademark, and PC/AT™ and PC-DOS™ are
trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft
Corporation.

Intel® is a registered trademark of Intel Corporation.

The installation program used to install Parallel Fortran, INSTALL, is
licensed software provided by Knowledge Dynamics Corporation,
Highway Contract 4 Box 185-1I, Canyon Lake, Texas 78133-3508 (USA),
1-512-964-3994. INSTALL is Copyright © 1987-1989 by Knowledge
Dynamics Corporation which reserves all copyright protection worldwide.
INSTALL is provided to you for the exclusive purpose of installing
Parallel Fortran.

3L Ltd

Peel House

Ladywell

Livingston EII54 6AG
Scotland

Tel. (0506) 41 59 59
Fax. (0506) 41 59 44

27 Not

W For
—~ Sale

Contents

Introduction

II

Intended Audience
Ilardware Assumptions.
Document Structure
Further Reading
Conventions e

Getting Started

Installing the Compiler

Confidence Testing
Tutorial

Developing Sequential Programs

3.1 Editingo oo

32 Compiling o L

33 Linking oo
3.3.1 Linking More than One Object File
3.3.2 Indirect Ilileso 000000
3.3.3 Calling the Linker Directly
334 Libraries. oL o000

34 Running oL Lo

vi

CONTENTS

3.4.1 Using Fortran Programs as MS-DOS Commands 22
3.4.2 1/0O Units, Redirection and Piping 23
35 Memory Use 24
3.5.1 Default Memory Mapping 25
3.5.2 Alternative Memory Mapping 26
3.5.3 Limit on Program Memory 26
3.6 Accessing MS-DOS Functions 27
Introduction to Parallel Fortran 31
4.1 AbstractModel L. 31
4.2 Hardware Realisation. 33
4.3 SoftwareModel 34
4.4 Multiple Input Channels 36
4.5 Parallel Execution Threads 37
4.6 Configuring an Application 38
4.7 Processor Farms 38
Developing Parallel Programs 411
5.1 Configuring One User Task 42
5.1.1 Hardware Configuration 44
5.1.2 Software Configuration. 45
5.1.3 Building the Application. 48
5.2 More than One User Task 51
5.2.1 Inter-Task Communication Functions 51
5.3 Building Multi-Task Systems EPUPER 55
5.4 Multi-Transputer Systems 57
5.5 Multi-Channel Input 58
5.5.1 The ALT Functions 58
5.6 Multi-Threaded Tasks 59
5.6.1 Threads versus Tasks 63
57 Debugging L L. 64
5.8 Estimating Memory Requirements 66
Global Input/Output 69
6.1 OneTransputer 69
6.2 More than One Transputer 72

6.3 More than One Multiplexer 73

CONTENTS vii

6.4 Limits o e 73
6.5 Termination of an Application. 74

7 Processor Farms 79
7.1 The Worker Task 80
7.2 The Master Task 81
73 The NET Package 82
7.3.1 FT77_NET_SEND and F77_NET_RECEIVE 82

7.3.2 FT7T_NET_BROADCAST 83

7.4 Building the Application 84
74.1 ConfigurationFile 84

7.5 Running the Example 86
7.6 Heterogeneous Networks 87
IIT Language Reference 89
Introduction 91
8 Fundamentals 93
8.1 CharacterSet, 94
8.2 Program Structure 95
8.3 Program Unit Structure 96
83.1 Lines., 96

83.2 Statements 98

8.3.3 Statement Labels 98

8.3.4 Categories of Statement 99

8.3.5 Order of Statements and Lines 100

84 Names e 102

9 Data 103
9.1 Data Values and Types 103
9.2 Constants, Variables, and Arrays 104
921 Constants 105

9.2.2 Symbolic Constants 111

923 Variables 111

924 Arrays e e 112

viii

10

11

CONTENTS

9.2.5 Character Substrings
9.3 Type Specification
9.3.1 Predefined Specification
9.3.2 The IMPLICIT Statement
9.3.3 The IMPLICIT NONE Statement
9.3.4 The IMPLICIT UNDEFINED Statement
9.3.5 Explicit Type Specification Statements
9.3.6 The PARAMETER Statement

Storage of Data

10.1 Storage Requirements
10.1.1 Constants and Variables
10.1.2 Arrays o o it e e e e e e e e
10.1.3 Character Storage

10.2 Allocation of Storage
10.2.1 General Considerations
10.2.2 The DIMENSION Statement
10.2.3 The COMMON Statement
10.2.4 The EQUIVALENCE Statement

10.3 Assignment of Initial Values
10.3.1 The DATA Statement
10.3.2 Block Data Subprogram

Expressions

11.1 Arithmetic Expressions
11.1.1 Arithmetic Elements
11.1.2 Arithmetic Operators and Parentheses
1113 Rules
11.1.4 Order of Evaluation
11.1.5 Examples of Arithmetic Expressions
11.1.6 Determination of the Type of an Expression . .
11.1.7 Integer Arithmetic
11.1.8 Arithmetic Constant Expressions
11.1.9 Integer Constant Expressions
11.1.10 Not-a-Number and Infinity

11.2 Character Expressions
11.2.1 Character Elements

123
123
124
126
127
128
128
129
131
134
137
138
143

CONTENTS ix

11.2.2 Character Operator and Parentheses 153

11.3 Logical Expressions 153

11.3.1 Logical Elements 154

11.3.2 Relational Expressions 154

11.3.3 Logical Operators and Parentheses 155

1134 Rules 156

11.3.5 Order of Evaluation 157

11.3.6 Examples of Relational and Logical Expressions158

12 Assignment Statements 161

12.1 Arithmetic Assignment Statements 161

12.2 Logical Assignment Statements 162

12.3 Character Assignment Statements 163

13 Control Statements 165

13.1 GO TO Statements 165

13.1.1 Unconditional GO TO 165

13.1.2 Computed GO TO 166

13.1.3 Assigned GO TO and ASSIGN Statements 167

13.2 IF Statements 168

13.2.1 ArithmeticIF. 169

13.22 Logical IF 170

1323 Block IF o oo 170

133 D0 Loops o e 174

13.3.1 DO Statements 174

13.3.2 The DO WHILE Statement 176

13.3.3 Terminal Statements 177

13.34 Nested DO-Loops 178

13.3.5 Transfer of Control in DO-Loops 179

13.4 The CONTINUE Statement 180

13.5 STOP Statements 180

13.6 PAUSE Statements 181

14 Program Units and the Transfer of Control 183

4.1 Procedures 183
14.1.1 Differences between Function and Subroutine

Subprograms 184

CONTENTS

X

14.1.2 Functions 185
14.1.3 Subroutineso L oL 189
14.2 Transfer of Control between Program Units 190
14.2.1 Functions 191
14.2.2 Subroutineso oL 193

14.3 Correspondence between Dummy and Actual Argu-
mentsttt e e e e 196
14.3.1 Use of Constants and Expressions 198
14.3.2 Use of Variables 198
14.3.3 Use of Arrays and Array Elements 198
14.3.4 Use of Functions and Subroutines as Arguments201
14.3.5 INTRINSIC Statement 202
14.4 Transfer of Values between Program Units 203
14.4.1 Common blockitems. 204
14.4.2 Dummy and Actual Arguments 204
14.5 Multiple Entry into a Subprogram 205
14.5.1 The ENTRY Statement 205
14.5.2 Referencing an ENTRY Statement 206
14.5.3 Entering the Subprogram 207
14.5.4 Exit from the Subprogram 207
14.6 The SAVE Statement 207
14.7 The INCLUDE Statement 209
15 Format Specification 211
15.1 Format Specifications 213
15.1.1 Field Separators 213
15.1.2 Slash Editing 214
15.1.3 Repetition of Descriptors 215
15.2 Format Specification Methods 215
15.2.1 The FORMAT Statement 216
15.2.2 Character Format Specification 216

15.2.3 Effect of FORMAT Statcients and Character
Format Specifications 217
15.3 Edit Descriptors 220
15.3.1 Format (Conversion) Codes 223
15.3.2 Colon Editing 250

15.3.3 Default Field Widths 251

CONTENTS xi

16

15.4 Examples of Format Specification 251
Input and Output 255
16.1 Introduction 255
16.1.1 Format of Records 256
16.1.2 Accessing Records 257
16.2 Input/Output Statements 258
16.2.1 Input/Output Lists. 260
16.2.2 Correspondence Between Input/Output Lists
and Format Codes 260
16.2.3 Implied DO-Loops 261
16.3 Sequential Access Input and Qutput 263
16.3.1 READ and WRITE Statements 264
16.3.2 File Positioning Input/Qutput Statements . . . 271
16.4 Direct Access Input and Qutput 273
16.4.1 READ and WRITE statements 274
16.4.2 Formatted Direct Access Input and Output . . 274
16.4.3 Unformatted Direct Access Input and Output . 277
16.5 List-Directed Input and Qutput 278
16.5.1 The READ Statement 278
16.5.2 Input Data 280
16.5.3 Output Statements 282
16.54 Qutput Data 283
16.6 Namelist-Directed Input and Output 285
16.6.1 The NAMELIST statement 285
16.6.2 Input Statements 286
16.6.3 Input Data 287
16.6.4 Qutput Statements 289
16.6.5 Output Data 290
16.6.6 Example of Namelist-Directed I/O 290
16.7 Internal Files 291
16.8 Auxiliary Input/Output Statements 293
16.8.1 Unit and File Connection 293
16.8.2 The OPEN Statement 296
16.8.3 The CLOSE Statement 301

16.8.4 The INQUIRE Statement 306

xii CONTENTS
IV General Reference 315
17 Fortran Compiler Reference - 317
17.1 Running the Compiler 317
17.2 Compiler Switches 318
17.2.1 Default switches 319

17.2.2 Controlling Source Processing 320

17.2.3 Controlling Qutput Files. 320

17.2.4 Controlling Object Code 323

17.2.5 Controlling Debugging 327

17.2.6 Controlling INCLUDE Processing 327

17.2.7 Controlling the Format of the Listing 328

17.2.8 Information from the Compiler 329

17.2.9 Controlling the Compiler’s Buffer Sizes 329

17.2.10 Obsolescent Switches 331

17.3 Handling of INCLUDE Files 331
17.4 Data-Type Representations 333
17.5 Data File Formats 334
17.5.1 FORMATTED SEQUENTIAL 335

17.5.2 FORMATTED DIRECT 335

17.5.3 UNFORMATTED SEQUENTIAL 335

17.5.4 UNFORMATTED DIRECT 335

17.6 Fortran Error Messages 336
17.6.1 Syntax Errors 336

17.6.2 Code Generator Errors. 338

176.3 Fatal Errors 338

17.6.4 Run-Time Errors 343

18 The Parallel Fortran Run-Time Library 349
18.1 Purpose of the Run-Time Library 349
18.2 Non-Intrinsic Subprograms 350
18.2.1 Conventions 350

18.2.2 The DOS Package 351

18.2.3 The THREAD Package 354

18.24 The SEMA Package 360

18.2.5 The TIMER Package 362

18.2.6 The CHAN Package 363

CONTENTS

18.2.7 The NET Package
18.2.8 The ALT Package
18.2.9 Compatibility Subroutines
18.2.10 Miscellaneous

19 The Linker
19.1 Command Line
19.2 File Name Conventions
19.3 The Output File
19.4 Indirect Files
19.5 Libraries
19.6 The Executable Image
19.7 Map Files
19.8 Debug Tables
19.9 Summary of Switches
19.10Using Batch Files
19.11Duplicate Definitions
19.12Messages

..................
.....................
.......................
..........................
..................
.........................
.......................
..................
.....................
...................

.........................

20 The mempatch Utility
20.1 Identifying mempatch
20.2 Invoking mempatch

20.3 Re-invoking mempatch

...................
....................

21 The decode Utility
21.1 Usage
21.2 Features of the decode Program

21.3 Other Languages

22 The worm Utility
22.1 Notes

23 The tnm Utility
24 The tunlib Utility

25 The fpr Utility

xiii

372
374

407

411

413

Xiv CONTENTS

26 Configuration Language Reference
26.1 Standard Syntactic Metalanguage
26.2 Configuration Language Syntax
26.2.1 Low Level Syntax
26.2.2 Numeric Constants
26.2.3 String Constants
26.2.4 Identifiers
26.2.5 Statements
26.2.6 PROCESSOR Statement
26.2.7 WIRE Statement
26.2.8 TASK Statement
26.2.9 CONNECT Statement
26.2.10PLACE Statement
26.2.11 BIND Statement

27 Flood-Fill Configurer Reference
27.1 User Task Protocol
27.1.1 Master Task’s Ports
27.1.2 Worker Task’s Ports
27.2 Packet Format

28 Task Data Sheets

Appendices

A Distribution Kit
A.l Directory \tf2vl
A.2 Directory \tf2vi\examples

B Compatibility with T414A and T800A
B.1 Problems with T414A
B.1.1 Restriction on Message Lengths
B.1.2 Problems with Timers
B.2 Problems with T800A
B.2.1 Floating-Point Conversion Problems
B.2.2 Instruction Decode Problems

457

457
457
459

CONTENTS XV

C Building a Network 465
C.1 Network Principles 165
C.2 Network Requirements 466

C.2.1 Requirements for Links 466
C.2.2 Requirements for System Services 467
C.3 Connecting a Network 468

D Additional Language Features 471
D.1 The ENCODE and DECODE statements 472
D.2 The DEFINE FILE statement 473
D.3 Record selection 475
D.4 The FIND Statement 475

E Intrinsic Functions 477
E.1 ANSI Standard Intrinsic Functions 477

E.1.1 Rounding 477
E.1.2 Character Type Conversion 477
E.1.3 Numeric Type Conversion 478
E.1.4 Arithmetic e e 479
E.1.5 Maximum and Minimum 480
E.1.6 Complex Operations 480
E.1.7 Exponential and Logarithms 481
E.1.8 Trigonometrical Functions 482
E.1.9 Trigonometrical Functions (Degree) 483
[.1.10 Hyperbolic Functions 483
E.1.11 Character Operations 484
E.1.12 Lexical Character Comparisons 4184
E.2 Bit-Manipulation Functions 481
E.2.1 Bitwise Logical Operations 485
E.2.2 Single-Bit Functions 485
[.2.3 Shilt and Extract 486

F Summary of Option Switches 487
I'.1 Compiler Switches 487
.2 Linker Switcheso o o000 L. 489

F.3 afserver Switches 190

Xvi CONTENTS

G Syntax Error Messages 493
H Linker Error Messages 507
I Run-Time Error Messages 519
I.1 General Input/Output Errors 519
.2 Run-Time Format Errors 527
1.3 Errors Returned by afserver 528
J Mandelbrot Program Listings 529
J1 MasterTask. 529
J2 Worker Task 535
J.3 Command Packet Include File. 537
J.4 Results Packet Include File 537
J.5 Flood Configuration File. 538
J.6 Static Configuration File. 538
K ASCII Code Chart 539
Bibliography 541

Index 543

Introduction

Intended Audience

This User Guide accompanies 3L’s Parallel Fortran product, and is
intended for anyone who wants to use Parallel Fortran to program
a transputer system, whether writing a conventional sequential pro-
gram or using the full support for concurrency which the transputer
processor has to offer.

Hardware Assumptions

Parallel Fortran can be used with a large variety of target trans-
puter systems. This manual makes the simplifying assumption that
the target hardware will be an Inmos IMS B001 transputer evalua-
tion board, or a transputer system which is largely compatible with
a B004. This board is a single plug-in card for the standard IBM PPC
bus, with onc transputer and either IMB or 2MB of RAM.

Similarly, the assumption is made here that the host computer for the
B004 will be an IBM PC with a hard disk drive, or one of the many
personal computers compatible with the original IBM machines.

Xxviii Introduction

Document Structure

There are five main divisions within this document, as follows:

e Part I: Gelting Started covers installing Parallel Fortran on
your machine and verifying that it is operating correctly.

o Part II: Tutorial introduces you to the operation of the com-
piler and the other tools supplied with Parallel Fortran. In
particular, there are tutorial sections explaining parallelism on
the transputer and the way in which this can be accessed from
Parallel Fortran programs.

e Part III: Language Reference contains a complete specification
of the language accepted by the Parallel Fortran compiler. This
is ANSI Fortran 77, with certain extensions which are described
in this part.

o Part IV: General Reference contains the detailed technical in-
formation which you will require to write sophisticated appli-
cations for the transputer using Parallel Fortran.

e The appendices at the end of this manual contain supple-
mentary information in a condensed form, such as tables of
compiler error messages.

Further Reading

Although this User Guide does include a complete description of
Fortran 77, readers who are unfamiliar with this language are advised
to consult one of the many introductory texts available.

In a similar way, the reader is assumed to be reasonably familiar with
the operating system of the host computer being used. For personal
computers made by IBM, this will usually be PC-DOS, which is
supplied with a manual called Disk Operating System Reference[2].

Introduction XiX

For compatible machines made by other manufacturers, the oper-
ating system will usually be MS-DOS, described in Microsoft MS-
DOS User’s Reference[3]. These two operating systems are largely
compatible, and their documentation is very similar. We will refer
to “MS-DOS” in this manual to mean the operating system used
on your machine. The term DOS Reference Manual will be used to
refer to the appropriate manual.

Relerences to these and other documents mentioned in this manual
are collected in a bibliography, which can be found on page 541.

Conventions

Throughout this manual, text printed in this typeface represents
direct verbatim communication with the computer: for example,
picces of Fortran text, commands to MS-DOS and responses from
the computer.

In examples, text printed in this typeface is not to be used verbatim:

it represents a class of items, one of which should be used. For
example, this is the format of the Fortran ASSIGN statement:

ASSIGN label TO int
This means that the statement consists of:
I. The word ‘ASSIGN’, typed exactly like that.

2. A label: not the word ‘label’, but something which the accom-
panying description explains.

3. The word ‘TQ’, typed exactly like that.

4. An nl: once again, the accompanying description explains
what this is.

XX Introduction

In examples, it is sometimes necessary to indicate exactly where
there is a space, or how many spaces are present. In these cases, we
represent a space by the symbol ‘,’.

Part 1

Getting Started

Chapter 1

Installing the Compiler

This chapter contains instructions on how to load Parallel Fortran
from the supplied floppy disks onto a hard disk ready for use.

You can skip this chapter if the compiler has already been installed
on the machine you are using.

The compiler is distributed on three 360KB floppy disks. The con-
tents of these disks are described in detail in appendix A.

To install Parallel Fortran on your hard disk, follow this procedure.

1. Place the disk labelled Disk 1 of 3 in your floppy disk drive
A:.

2. Type the following commands:
Cra:
C>install
3. Answer any questions the install program asks you.

4. Place the appropriate disks in drive A: when the install pro-
gram asks for them.

4 Chapter 1

It is important to use the supplied install program to install Par-
allel Fortran. If you simply copy the files, the installation will not
be performed correctly.

Parallel Fortran will be installed on directory tf2v1. If this directory
already exists, files in it with the same name as Parallel Fortran files
will be overwritten.

The compiler is now installed, but can only be run in the directory
\tf2vi. Before the compiler can be used from other directories
\tf2v1 must be added to the MS-DOS search path . Program files
stored in directories which are on the search path can be loaded and
run simply by typing the name of the program as a command. So,
to make sure that the Fortran compiler (t4f or t8f) is available as
a command, \tf2v1l must be added to the search path.

The search path for your machine is set up by the batch file
c:\autoexec.bat which is automatically executed when the ma-
chine starts up. To change the path, you will nced to edit the
autoexec.bat file using a text editor like edlin. (The DOS Ref-
erence Manual explains how to use edlin). autoexec.bat will
probably already contain a line of the following form:

path ... list of directories ...
For example:

path c:\dos;c:\utils

In this case, you will need to add the text “;c:\tf2v1” on to the
end of the line, giving:

path c:\dos;c:\utils;c:\tf2vl
If there is no path line in the autoexec.bat lile, just add the line:
path c:\tf2vl

Three important points about setting the search path should be
noted:

Installing the Compiler 5

1. The documentation for previous versions of 3I. compilers, in-
cluding Fortran, recommended the use of a set path= com-
mand to set up the search path. This is equivalent to the path
command, and can be changed to include \tf2v1 in the same
way.

2. If you alrcady have an earlier Fortran compiler installed on
your machine, a directory such as \t£2v0 will be in your path;
it should be removed before adding \tf2v1.

3. If you are a user of the Inmos TDS environment, your search
path will probably include a reference to the directory where
the TDS is held, such as \tds2dir. This reference must not
precede \tf2v1 in the path; if it does, the wrong version of the
afserver program will be called.

4. If you are a user of Parallel C or Parallel Pascal, you should
be aware that this version of Parallel Fortran includes new
versions of the afserver program and the linker. The versions
of these which were released with version 2.1 and earlier of
Parallel C and version 2.0 of Parallel Pascal should not be used
with this version of Parallel Fortran. This means that directory
\tf2v1 should precede the installation directories for the other
languages in your search path.

Once autoexec.bat has been changed, you will need to reboot your
machine to make the changes effective.

Wihen you have completed this installation procedure, the compiler
may be accessed from any directory on the disk on which it has been
installed, in this case C:. If you wish to execute the compiler from a
directory on some other disk, say D:, you should refer to section 17.3
in part IV of this manual for information about file handling in
INCLUDE statement statements.

Chapter 1

Chapter 2

Confidence Testing

This chapter describes a short procedure which may be followed to
check that installation has been done correctly.

1. Set the current disk to the same disk as the compiler has been
installed on. For example, if the compiler has been installed in
directory c:\tf2v1, do this:

D>c:
c>

2. Set the current directory to a convenient directory for doing
this test. For example:

C>cd \mine
c>
NB: Don’t use directory \t£2v1 for the confidence test, as this

would mean that you would not be testing whether the correct
scarch path has been set up.

Chapter 2

3. Check that the correct versions of the afserver program and
of the compiler are available, by typing the following command.
You should see the output shown.

C>t4f /i -:i
IBM PC Filer server Inmos V1.3 (14th October 1987) / 3L
V1.3.5

Copyright INMOS Limited, 1985

Transputer Fortran 77 compiler, F77_transputer V2.1.1
Copyright (C) EPCL 1990

Copyright (C) 3L 1990

[

If the above message does not appear, check the installation
procedure, and in particular, ensure that the correct path com-
mand has been set up.

If, after the afserver’s identity, the computer outputs the
following, or something similar—

Last command = 0
Server terminated: bad protocol when expecting INT32

—it is likely that there has been some error in setting up the
transputer board. In particular, please check that the wire
links, accessible from the back of the PC, have been correctly
installed. The transputer board’s documentation should help
with this.

4. Copy the example hello.£77 file to the current directory:

C>copy \tf2vi\examples\hello.£f77
1 File(s) copied

c>

5. Compile the example using the T-1 version of the compiler (this
will work for the T8 as well, because the example contains no
floating-point instructions):

C>t4f hello

Confidence Testing

Cc>

6. Link the resulting binary file with the necessary parts of the
run-time library:

C>t4flink hello

C>linkt hello \tf2vi\frtlt4 \tf2vi\t4harn
c>
7. Finally, the program can be run:

C>afserver -:b hello.b4d
Hello, world!

c>

The output “Hello, world!” comes from the hello.£77 example
program. If it does not appear, we recommend that the installation
procedure should be carefully repeated, and the confidence test pro-
cedure followed again. If this message still does not appear, please
contact your dealer for further assistance.

10

Chapter 2

Part 11

Tutorial

Chapter 3

Developing Sequential
Programs

This chapter shows you how to use the Parallel Fortran compiler to
develop conventional sequential programs to run on the transputer.
You should be familiar with the contents of this chapter before you
progress to the later chapters explaining parallel programming on
the transputer.

The instructions in this chapter assume that the Parallel Fortran
compiler has alrecady been installed as described in chapter 1.

Some of the operating procedures described here are different for T
and T8 transputers. You should find out which type of transputer
is fitted in your ’C before using the compiler.

3.1 Editing

Any editor which handles standard MS-DOS text files can be used
to create or change Parallel Fortran source programs. The example

14 Chapter 3

below shows how the edlin editor supplied with MS-DOS can be
used to create a new Parallel Fortran source program.

C>edlin hello.f77

New file
»i
1:= PROGRAM HELLO
2:» PRINT =», ’Hello, world!’
3:s END
4:%°C
*e
c>

The DOS Reference Manual explains how to use edlin.

Note that the “folded” files which the Inmos TDS works with are
not ordinary MS-DOS text files and that therefore they cannot be
used directly as input to the compiler. ITowever, the tdslist utility
program supplied with the TDS will convert TDS-format text files
into ordinary MS-DOS text files which can be read by the Parallel
Fortran compiler.

3.2 Compiling

A Parallel Fortran source program is compiled into a binary object
(.bin) file of T4 transputer instructions by a command of the form:

t4f source-file
To compile code for a T8 transputer, use the command
t8f source-file

Note that, in general, code compiled for a T4 will not run on a T8
(or vice versa) so you must use the commmand appropriate for the
type of processor in your transputer board.

Developing Sequential Programs 15

The source-file is the filename of the Fortran source program which
is to be compiled. If no filename extension is given in the command,
.£77 is added automatically.

So, to compile the file hello.£77 for the T4, you would give the
command

C>t4f hello

If the source file contains no errors, an output object file hello.bin
is produced. If the compiler detects errors in the source program, it
writes diagnostic messages to the MS-DOS standard output stream.
Error messages may therefore be redirected using ‘>’, or piped using
‘1°. The format of compiler error messages is described in section 17.6
in part IV of this manual, and a list of all the syntax error messages
which the compiler may produce can be found in appendix G.

3.3 Linking

Once a Parallel Fortran program has been compiled into an object
(.bin) file, it must be linked with any external subprograms it re-
quires before it can be run, including intrinsic functions like SQRT,
and other subprograns from the Parallel Fortran run-time library.
This is done by the linker. llere we discuss the most usual linker
operations; a full description of the linker can be found in chapter 19.

Rather than calling the linker directly, it is usually more convenient
to use one of the batch files provided for the purpose.

To link T4 code produced by the t4f compiler use the command:
t4flink object-file
For example,

t4flink hello

16 Chapter 3

To link T8 code produced by t8f use the command:

t8£f1ink object-file

You must use the link command appropriate to the target processor

(T4 or T8).

Both these batch files assume that the object file’s extension is .bin,
and produce an executable file with the same file name as the object
file and extension .b4.

3.3.1 Linking More than One Object File

This section deals with linking more than one object file at a time.
If you only want to link single object files for now, you can skip to
section 3.4 which describes how to run executable files produced by
the linker.

The t4flink and t8flink batch files can be used to link up to
nine object files. As before, the extensions of all the object files are
assumed to be .bin. The executable file generated will have the file
name of the first object file specified, with the extension .b4.

For example, if there are two Fortran source files, main.£f77 and
fns.£77, the following commands will compile them and link them
together, producing an executable file for the T4 called main.b4.

C>t4f main
C>t4f fns
C>t4flink main fns

Compiling and linking the example files above for the T8 would be
done as follows:

C>t8f main
C>t8f fns

C>t8flink main fns

Developing Sequential Programs 17
3.3.2 Indirect Files

[t is quite common for programs to consist of many diflerent object
files. The t4flink and t8f1link batch files cannot handle more than
nine, but even with fewer files than this, you may find the command
line awkward to type.

The linker provides a way of getting round this problem, called an
indirect file. An indirect file is a text file containing a list of object
file names, all of which are to be included in the executable file. Tt
is specilied in the linker command by its file name preceded by an
‘@’. For example:

C>t4flink Q@objfiles

This will cause the linker to find the file objfiles.dat, and link
together all the object files specified in it. As usual, the generated
file will be given the name of the first object file with the extension
.b4.

Indirect files are assumed to have the extension .dat. They contain
a list of MS-DOS file names, with one file name on each line. Full
path names, including directory specifications, are allowed. Indirect
files may also include the names of other indirect files, by preceding
with an ‘@’; nesting indirect files in this way may be done to five
levels.

The example indirect file objfiles.dat above might contain the
following text:

main

fns
\userlib\general\io
Ografpack

When used in the example given above, this will link the object
files main.bin and fns.bin [rom the current directory and io.bin
from the directory \userlib\general, together with all the object
files specified in the indirect file grafpack.dat. The executable file
generated will be main.b4.

18 Chapter 3

3.3.3 Calling the Linker Directly

Occasionally, instead of using the batch files, you may need to call
the linker directly, or write your own batch files to do so. Fuller
information about the linker may be found in chapter 19, and de-
tails of the internal format of object files are provided in the Inmos
Standalone Compiler Implementation Manual[13].

The linker is invoked by the command linkt. The general form of
a link command is

linkt object-files, executable-file

object-files is a list of object file names separated by spaces. These
are the object files which are to be linked together. All of them must
have been compiled for the same processor type (T4 or T8). If an
object file is specified without an extension, the extension is assumed
to be .bin.

The order in which the object files are specified is significant. Details
of this may be found in sections 3.5 and 17.2.4.5.

The ezecutable-file is the name of the file to which the linker writes
the executable output code. If no extension is specified, the linker
supplies the extension .b4. The executable file and its preceding
comma may be omitted; in this case, the executable file is given the
same file name as the first object file in the command line, with the
extension .b4. If the first file mentioned on the command line is an
indirect file, the executable file is given a name taken from the name
of the first object file listed in the indirect file.

To link Fortran programs, you must include in the list of object
files both the Parallel Fortran run-time library and a special object
file called a “harness”. The directory \tf2v1 contains two versions
ol both of these components: frtlt4.bin and t4harn.bin for T4
transputers, and frtlt8.bin and t8harn.bin for 18 transputers.
The linker will not allow you to mix T4 and T8 object files.

Developing Sequential Programs 19

The example below shows the command necessary to link all the files
listed in the indirect file subs.dat into a single executable file for
the T4, called prog.b4.

C>1linkt Osubs \tf2vi\frtlt4 \tf2vi\t4harn,prog

Note that the Parallel Fortran run-time library (frtlt4.bin) and
the harness (t4harn.bin) must both be named explicitly as input
object files.

For the T8, the command would be the following.

C>linkt @subs \tf2vi\frtlt8 \tf2vi\t8harn,prog

3.3.4 Libraries

It is often convenient to be able to treat a group of object files as
a single unit. For example, the Parallel Fortran run-time library
consists of many separate object files, but is supplied as a single file
containing all of them.

The linker provides the option of linking together a group of object
files to produce a library file instead of an executable file. The library
contains all of the code and entry points defined by the input object
files, which can be changed or deleted without aflecting the library.
To change a library it must be relinked from its component parts.

Library files have several advantages over using indirect files.

e Thelinker selects from the library file only those modules which
arc actually referenced clsewhere in the program; the others are
not included in the executable file.

e Copying a single file to another place is simpler than copy-
ing many component object files and making sure that the
corresponding indirect file is kept up to date with changes in
directory and file names.

20 Chapter 3

e Opening just one library file is faster than opening an indirect
file and several object files.

llowever, using an indirect file may be faster while a library is being
developed because there is no need to relink the library whenever a
component module is changed.

A linker command of the form shown below is used to produce a
library from a number of component object files.

linkt object-files,library-file/1
The option letter after the ‘/’ is a lower case ‘L’.

The form of the input object-files is the same as for normal operation
of the linker: a list of filenames separated by spaces. Indirect files
are indicated by an ‘@’ sign as before.

The library-file must be a single MS-DOS file name. If no extension
is specified, the linker will give it the extension .1ib. Note that this
is different from the default extension for input libraries, which is
.bin.

The example below shows a graphics library being built from a core
graphics module and two device driver modules. The library is then
linked in the ordinary way with a user program. Indirect files are
used to simplify the required linker commands.

C>type graflib.dat
core
tek

hp
C>linkt @graflib,graflib.bin/1

C>type myprog.dat
myprog

graflib
\tf2vi\frt1t8
\tf2vi\t8harn

C>linkt Omyprog

Developing Sequential Programs 21

3.4 Running

Fxecutable programs are loaded into the transputer board and run
using the afserver program, which runs on the IBM PC.

The afserver is an ordinary MS-DOS program, and after loading
the Fortran program into the transputer board, it remains active
throughout the program’s run. Instructions are sent from the For-
tran run-time library to the afserver whenever it needs to per-
form MS-DOS functions such as reading information from the disks,
displaying output on the scrcen and so on. The results of these
operations are sent by the afserver back to the transputer board.

The command to load and run a program is:

afserver -:b filename

The filename must be the name of an executable file produced by
the linker. The file name extension must be specified. An example
of a command to load and run a simple program would be:

C>afserver -:b hello.b4

Note that this will only work if your program uses a fairly small
amount of stack memory. See section 3.5 for how to get round this
problem.

Appendix section F.3 includes more information about the afserver
and its options, and the Inmos Stand Alone Compiler Implementa-
tion Manual[13] (section 10) contains a full description. Note that
the -:e (test error flag) switch described in [13] is not supported for
use with Parallel Fortran programs. For improved performance, the
Fortran compiler relies on being able to generate code which might
incidentally cause the error flag to be set. Therefore, the transputer
error flag may be set as part of the normal execution of a Fortran
program.

The running of programs can be simplified by putting the appro-
priate afserver command into an MS-DOS batch file. Typing the

22 Chapter 3

name of the batch file is then sufficient to run the program. For
example:

C>type myprog.bat
afserver -:b \mydir\myprog.b4

C>myprog

The command myprog will then call afserver to load the executable
file \mydir\myprog.b4 into the transputer board and start it. Note
that if a program compiled and linked for the T4 is loaded into a T8
(or vice versa) the eflects will be unpredictable.

3.4.1 Using Fortran Programs as MS-DOS Com-
mands

Because of the limitations on what can be done with MS-DOS batch
files it is useful to have a way of running a transputer Fortran pro-
gram as if it were an MS-DOS . exe file.

You can turn any .b4 file into an MS-DOS command by making a
copy of the file \tf2v1\linkt.exe in the same directory as the .b4
file, giving it the same root filename as the .b4 file but keeping the
.exe extension. For example, if the current directory contains the
executable file ex.b4, it can be run as a command by typing:

C>copy \tf2vi\linkt.exe ex.exe

C>ex

This new ex command can be used from any directory, provided the
directory containing ex.exe and ex.b4 is on the MS-DOS search
path.

(1inkt.exe works by taking the command verb from its command
line, adding .b4, and then calling afserver to load that file from
the same directory linkt.exe itsell was loaded from).

Developing Sequential Programs 23

When a .b4 file is invoked via a “driver” program in this way,
the -:0 1 switch (sec section 3.5) is added automatically and the
program is given a large amount of stack space. If you want to run a
program as an MS-DOS command, but with its stack in fast on-chip
RAM, you should invoke the program as usual but add -:0 O to the
command line (hyphen, colon, letter ‘o’, then a space followed by
the digit zero). For example:

C>ex -:0 0

3.4.2 I/0O Units, Redirection and Piping

Section 16.8.1.2 explains how a Fortran program’s I/O units are
preconnected. In particular, unit 5 is connected to the MS-DOS
standard input facility and unit 6 to standard output.

Normally standard input comes from the keyboard, but it can be
taken from a file by using the MS-DOS redirection symbol ‘<’ in the
normal way. For example, when running a program wc, you could
redirect unit 5 to read from file chap1.txt by using this command:

C>afserver -:b wc.b4 <chapl.txt

This also works if wc.b4 is invoked by a driver program, wc.exe:

C>wc <chapil.txt

Similarly, the standard output normally goes to the screen, and may
be redirected using the >’ symbol. For example, mangle.b4 is a
program which reads raw data through unit 5, processes them and
writes the results to unit 6. It could be made to read from file
rav.dat and write to cooked.dat by this command:

C>afserver -:b mangle.b4 <raw.dat >cooked.dat

The output from unit 6 may also be piped into an MS-DOS filter
program by writing the name of the filter after a vertical bar ‘|’, as
shown below.

C>afserver -:b mangle.b4 <raw.dat | more

24 Chapter 3

The DOS Reference Manual describes in detail what can be done
with filters. (The more program simply displays its input on the
screen, a page at a time).

3.5 Memory Use

The memory used by a Fortran program is divided into four storage
areas.

e Code storage is used to hold the executable instructions of the
program itself, together with some constant data and control
information.

e Static storage is used to hold the following:

— arrays;
CHARACTER variables;

variables initialised by DATA statements, or by the ex-
tended forms of the explicit type statements;

variables in COMMON blocks;
variables which have been specified in SAVE statements.

Static storage which is not initialised by the program is ini-
tialised automatically to zero.

e Slack storage(sometimes referred to as workspace) is used for
all other variables, unless the program has been compiled using
the /S switch, in which case all variables are held in static
storage. The stack is also used for function calls and CALL
statements and for holding pointers to the actual arguments of
subprograns.

In addition, library functions use varying amounts of stack
space as working storage. The stack requirements of the math-
ematical functions are given in the Inmos T'DS Compiler Imple-
mentation Manual[14] (Section 10, Parameters and workspace

Developing Sequential Programs 25

requirements) and are generally about 40 to 100 words. The
stack requirements of the floating-point arithmetic support li-
brary for the T4 are generally about 10 to 40 words. About
70 words of stack storage are permanently reserved for use by
the run-time library.

Variables created on the stack are not automatically initialised
to zero, and may have any initial value.

e Heap storage is used internally by the run-time library for I/O
buffers, etc.

These four areas of storage are mapped onto two areas of physical
memory:

e On-chip memory. The T4 has 2KB of fast on-chip memory,
and the T8 has 4KB.

o Ezternal memory. The Inmos B004 board has either 1IMDB or
2MB of external memory.

Using the linker only, two methods of mapping the storage arcas
onto physical memory are available: the default method, and the
alternative method. The configurers required for developing parallel
programs give the user more advanced methods for controlling the
use of memory. See sections 5.1.2 and 5.8, and chapter 26.

3.5.1 Default Memory Mapping

Default memory mapping is used if the afserver program is called
as described in section 3.4 above. With this arrangement, the T1’s
on-chip memory, and the first 2KB of the T8’s on-chip memory, are
used for stack storage. Since on-chip memory is faster than exter-
nal memory, programs can run much faster with default memory
mapping. Obviously, you must be certain that the program’s stack
storage will fit in the available 2KD.

26 Chapter 3

If you are using a T8, default memory mapping provides an op-
portunity for further speed inprovements, since the remaining 2KB
of the T8’s on-chip memory is available for code storage. To take
advantage of this, you should place small, speed-critical subprograms
at the beginning of the link-list.

WARNING: A program which ezceeds the amount of available stack
space will fail in unpredictable ways: it may hang, or it may simply
give wrong answers.

3.5.2 Alternative Memory Mapping

Unless you are sure your program’s stack data will fit into the 2KB
of available on-chip memory, you should run it like this:

C>afserver -:b myprog.b4 -:o0 1

The -:0 1 switch (hyphen, colon, option letter ‘o’, then a space,
then the digit one) changes the way memory is allocated to give
the program a very large amount of stack space. In this mode of
operation, the size of the stack is only limited by the amount of
external RAM available, but execution speed is lower because the
external RAM used for the stack is slower than the transputer’s on-
chip RAM.

3.5.3 Limit on Program Memory

The current version of the linker generates executable files which
will only run correctly on boards having 1IMB or 2MI3 of memory.
To get round this restriction, the Parallel Fortran kit includes the
mempatch program which may be used to change executable files
to run on boards which have different amounts of memory. See
chapter 20 for a discussion of mempatch.

Developing Sequential Programs 27

3.6 Accessing MS-DOS Functions

The Parallel Fortran run-time library for the transputer includes a
number of functions and subroutines which allow Fortran programs
to access the MS-DOS host system. These functions are described
in detail in section 18.2.2.

All MS-DOS functions are accessed by sending a set of register val-
ues to the host processor, executing a software interrupt instruction
and finally receiving a set of modified register values. Thus, to use
these functions you require a detailed knowledge of register uses and
interrupt numbers for the MS-DOS function you wish to use. One
source of this information is the IBM DOS Technical Reference([4].

Register values are moved to and from the host machine in an integer
array known as a DOS block. The programmer is helped in building
a DOS block by various constants defined in the file DOS.INC, and
this should be included in any subprogram which makes use of MS-
DOS functions. The length of the DOS block is the value of the
constant F77_D0S_BLOCK_SIZE, defined in DOS.INC. The elements
of the DOS block correspond to 16-bit registers of the MS-DOS
machine, and to help with accessing these, DOS.INC defines various
constants whose names use the familiar Intel register names. This
means, for example, that to load the value 10 into the AX register for
moving to the host, the programmer could code the following:

INCLUDE ’DOS.INC’
INTEGER DOSBLOCK(F77_D0S_BLOCK_SIZE)

DOSBLOCK (F77_DOS_AX) = 10

There are a number of significant points about the format of the
DOS block.

1. The registers in the DOS block are in a different order from that
conventionally used under MS-DOS. This difference simplifics
the job of the run-time library, and should not be visible to pro-

28 Chapter 3

grammers who make use of the constants defined in DOS.INC
as described above.

2. The transputer has no 16-bit data types; the 16-bit 80z86
registers such as AX are therefore represented in the DOS block
by Fortran INTEGER variables. Again, programs which access
DOS blocks should not normally be aware of this difference.

3. The byte registers of the host machine (AH, AL etc) are mapped
onto the 16-bit word registers in the usual way. This means
that accessing these registers will often require the use of the
bit-manipulation functions, described in appendix E. For ex-
ample, to load 10 into register AH for moving to the host, the
following code should be used:

INCLUDE ’DOS.INC’
INTEGER DOSBLOCK(F77_D0S_BLOCK_SIZE)

DOSBLOCK(F77_DOS_AX) =
1 IOR(IAND(DOSBLOCK(F77_DOS_AX),255),ISHFT(10,8))

An MS-DOS interrupt is performed by using the F77_HOST_INTERRUPT
subroutine. One of its parameters is a DOS block, into which the
programmer loads the required values for the host registers before
the call; the returned values of registers may be found there too.
The segment registers used on the host may be used unchanged,
or the segment register values in the DOS block may be used,
depending on the value of the ISEGS parameter. The subroutine
F77_READ_SEGMENTS is provided to read the contents of the segment
registers so that particular registers can be changed while leaving
the rest with their current values.

Some of the more complex interrupt calls, both to MS-DOS and to
add-on packages like GEM and MS-WINDOWS require parameters
and data blocks to be passed in memory rather than in registers.
If a block of memory is required as a parameter to an interrupt
call, it must first be acquired from MS-DOS. After use, the mem-
ory block should be returned to MS-DOS so that it may be used
again. These operations can be performed either by the appropri-

Developing Sequential Programs 29

ate DOS function calls (described in the DOS Technical Reference)
or by the run-time library subprograms F77_ALLOC_HOST_MEM and
F77_FREE_HOST_MEM.

The Intel 80286 architecture uses a 32-bit quantity to specily an
address in memory. This can be held in a Fortran INTEGER, and
consequently, for example, F77_ALLOC_HOST_MEM returns the address
of the allocated memory as an integer. The more significant 16 bits
of this object are a segment number and the least significant 16 bits
are an offset from the base of that segment. The two parts of the
address can be extracted using the bit-manipulation functions.

Because the transputer and its host MS-DOS system do not have any
shared memory areas, information destined for a parameter block
in the MS-DOS host cannot be simply written into the block by
normal Fortran assignment operations. Instead, a duplicate of the
block is created as a Fortran structure in the transputer’s memory,
and a subroutine is then called to move the contents of the block
in the transputer’s memory to its counterpart in the memory of the
MS-DOS host. Similarly, reading information from a block in host
memory involves transferring the block into an identical structure
in the transputer’s memory and then accessing the latter. These
two operations are performed by the run-time library subroutines
F77_BLOCK_TO_HOST and F77_BLOCK_FROM_HOST.

Note that some structures used as parameter blocks to MS-DOS,
GEM, MS-WINDOWS and so forth include 16-bit ficlds. For exam-
ple, GEM parameter blocks contain many 16-bit fields representing
z and y co-ordinates. Because the transputer has no 16-bit data
objects, there is no straightforward way of representing these, and
they would in most cases need to be packed into integers, using the
bit-manipulation functions.

Some simple examples of the ways in which the above functions
might be used will now be given. First, the following program calls
MS-DOS function 2,6 (Character Qutput) to display the character
‘A’ on the screen. The argument is passed in the DL register.

30 Chapter 3

PROGRAM SENDA
INCLUDE °’DO0S.INC’
INTEGER DOSBLOCK (F77_DOS_BLOCK_SIZE)
C Load 2 into AH and ’A’ into DL
DOSBLOCK (F77_DOS_AX) = ISHFT(2, 8)
DOSBLOCK(F77_DOS_DX) = 65
c Call interrupt 33 (hexadecimal 21)
CALL F77_HOST_INTERRUPT(33, 0, DOSBLOCK)
END

Next, a much more complicated example in which MS-DOS function
9,6 (Output Character String) is used to print the string “Hello”
on the screen. The string to be printed is written into a block of
MS-DOS memory before the call.

PROGRAM PHELLO

INCLUDE ’DOS.INC’

INTEGER DOSBLOCK(F77_DOS_BLOCK_SIZE), MEMORY
CHARACTER+6 HELLO

DATA HELLO/’Hello$’/

c

c Allocate host storage and write string to it
MEMORY = F77_ALLOC_HOST_MEM (6)
CALL F77_BLOCK_TO_HOST (HELLO, MEMORY, 6)

c

c Find current segment register addresses
CALL F77_READ_SEGMENTS (DOSBLOCK)

c

c Set up function call number
DOSBLOCK (F77_DOS_AX) = ISHFT (9, 8)

c

c Set up segment number and offset of string
DOSBLOCK (F77_D0OS_DX) = IBITS (MEMORY, 0, 16)
DOSBLOCK (F77_D0OS_DS) = IBITS (MEMORY, 16, 16)

c

c Perform the call
CALL F77_HOST_INTERRUPT (33, 1, DOSBLOCK)

c

c Free the string memory in host

CALL F77_FREE_HOST_MEM (MEMORY)
END

Chapter 4

Introduction to Parallel
Fortran

This chapter aims to help you become familiar with Parallel Fortran
and its terminology. If you know occam, or if you have read a lot
about the transputer, then you will already be familiar with the idcas
on which Parallel Fortran is based. If not, don’t worry; the ideas are
quite simple. They are explained in outline here, and again in more
detail in the chapters which follow.

4.1 Abstract Model

The treatment of parallel processing in transputer systems is based
on the idea of communicating sequential processes. In this model,
a computing system is a collection of concurrently active sequential
processes which can only communicate with each other over chan-
nels. A channel connects exactly one process to exactly one other
process. A channel can only carry messages in one direction: if
communication in both directions between two processes is required,
two channcls must be used. Each process can have any number of

32 Chapter 4

input and output channels, but note that the channels in a system
are fixed; new channels cannot be created during its operation.

For example, a disk copy command built into a computer’s operating
system could be described as three concurrently executing processes:
two floppy disk controller processes and one process doing the copy-

ing.

copy

AN

disk 1 disk 2

This example shows an important property of channel communica-
tions: they are synchronised. A process wanting to send a message
over a channel is always forced to wait until the receiving process
reads the message. In our example, this means that even if at
some time the output floppy disk can’t keep up with the input, the
system will still work properly. This is because the copy process will
automatically be forced to wait if it tries to send a message before
the output disk process is ready to receive it. Sometimes it is useful
to allow a sending process to run ahead of a receiving one; in such
cases an explicit buflering process must be added to the system.

Note that because a process in this model is just a “black box”
connected to the outside world only by its channels, the actual im-
plementation of any individual process is not important. A process
could be a bit of hardware or a software module; in particular it
may also be another complex system, itself consisting of a number
of communicating processes.

Introduction to Parallel Fortran 33

4.2 Hardware Realisation

The transputer was designed to be used as a component in concur-
rent systems of exactly the sort described in the previous section.
Each transputer processor has four Inmos links, to connect it with
other transputers. Each link has two channels, one in each direction.
These hardware channels behave exactly like the abstract channels
discussed above; they provide synchronised, unidirectional commu-
nication.

Arbitrary networks of transputers can be constructed simply by con-
necting their links together with ordinary wires, the only limitation
being that each processor cannot be directly connected to more than
four others.

At this level, a transputer can therefore be viewed as a single process
in a multi-transputer system. However, it is also possible for any
number of concurrent processes to be run on an individual trans-
puter. Any word in the transputer’s memory may be used as a
channel to connect one internal process to another. The address
of such a channel word is used to identify it to the transputer in-
structions (and Parallel Fortran subprograms) which send or receive
messages. The contents of the word are used by the hardware to
synchronise sending and receiving processes.

From a program’s point of view, these internal channels and the hard-
ware link channels are identical. The same instructions (or Parallel
Fortran subprograms) are used to send and receive messages on both.
Hardware link channels are identified by special fixed addresses. For
example, on a T414 the input channel of processor link 3 is always
at address 8000001C;6. Internal channels have addresses allocated
by soltware.

This equivalence of internal channels to hardware link channels
means it is possible to develop a parallel system on a single trans-
puter and then move some of its processes onto other transputers
without having to recompile any code.

34 Chapter 4

Each process executing on a transputer processor has a priority,
which can either be “urgent” or “not urgent”. The processor
automatically shares its available time between these processes.
A process can be descheduled either because it has performed an
operation (such as sending a message to another process) which
causes it to pause or, in the case of a “not urgent” process, because
it has been executing without interruption for a certain period of
time. The effect of this is that the CPU time-slices between the “not
urgent” processes, but “urgent” processes are only interrupted when
they cannot proceed because of a communication. For this reason,
“urgent” processes should be designed so that they do not perform
large amounts of computation, as they will “lock out” the less urgent
processes entirely.

4.3 Software Model

Parallel Fortran is based on the same abstract model of communi-
cating sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more con-
currently executing tasks. Each task has its own region of memory
for code and data, a vector of input ports, and a vector of output
ports. The port vectors are known to the run-time library, and they
can be accessed by special functions supplied with Parallel Fortran
for the purpose. The code of a task is a single transputer image
(.b4) file generated by the ordinary linker, linkt.

Tasks can be treated as software “black boxes” connected together
via their ports, as shown in figure 4.1.

For example, a very simple task might accept on an input port a
stream of INTEGER values each of which is an ASCII character, con-
vert each character to upper case, and output the resulting stream
of characters on an output port. The Fortran code for this is shown
in figure 4.2.

Introduction to Parallel Fortran 35

input output
ports ports
—- task

e —

Figure 4.1: a task viewed as a “black box”.

Tasks can be treated as atomic building blocks for parallel systems,
to be wired together rather like electronic components. Indeed, sev-
eral such basic building-block tasks are supplied with the compiler.

Ports are bound to real channel addresses by configuration software
external to the task itself; the bindings can be changed without
recompiling or relinking the task. Extended Fortran run-time library
subprograms supplied with the compiler allow Fortran programs
to send and receive messages over the channels bound to a task’s
ports. The port vectors themselves are not normally accesssible
to a Fortran program, but the addresses of the channels to which
they are bound may be found by use of the F77_CHAN_IN_PORT and
F77_CHAN_OUT_PORT functions, as shown in figure 4.2.

The configuration software also provides ways of specifying which
software tasks are to be run on which hardware processors. Each
processor can support any number of tasks, limited only by available
memory.

Tasks placed on the same processor can have any number of intercon-
nccting channels. Tasks placed on diflerent processors can only be
connected where physical wires connect the processors’ links. Each
logical connection between two tasks placed on different processors is
assigned exclusive use of one of the physical link channels connecting
the processors. The number of interconnections between tasks on
different processors is thereflore limited by the number of hardware

36 Chapter 4

PROGRAM UPPER
INCLUDE ’CHAN.INC’
INTEGER INCHANADDR, OUTCHANADDR, WORD
INCHANADDR = F77_CHAN_IN_PORT (0)
OUTCHANADDR = F77_CHAN_OUT_PORT (0)
100 CONTINUE
CALL F77_CHAN_IN_WORD (WORD, INCHANADDR)
IF (WORD .EQ. -1) GOTO 200
IF ((WORD .GE. 97) .AND. (WORD .LE. 122)) THEN
WORD = WORD - 97 + 65
END IF
CALL F77_CHAN_OUT_WORD (WORD, OUTCHANADDR)
GOTO 100
200 STOP
END

Figure 4.2: Complete example task with one input and one output
port.

links each one has. If more than four logical connections in each
direction are required between one transputer and its neighbours,
the designer of the system must provide explicit multiplexor tasks.

4.4 Multiple Input Channels

Sometimes, a task has to accept input from any of a number of
input channels. For example, the main loop of a file server process
would want to wait until a message was available from any one of
its “client” processes. It can’t read them all sequentially because a
message could come from any one of them, in any order.

To handle this situation, the Parallel Fortran run-time library in-
cludes functions which enable the program to wait until one of a
group of input channels is ready to transmit, and then report which
channel it is. Alternatively, the program can “poll” a group of
channels, that is, check which (if any) of them is ready to transmit,
without waiting.

Introduction to Parallel Fortran 37

This facility corresponds roughly to that provided by the occam ALT
statement, and is sometimes referred to as “guarded input”.

4.5 Parallel Execution Threads

The software features described so far allow you to build parallel
systems by connecting together the ports of a number of relatively
independent tasks. In particular, all the tasks have separate code
and data, and are only allowed to communicate with each other by
sending messages over channels.

Parallel Fortran also allows you to take advantage of the transputer’s
architecture by creating new concurrent threads of execution within a
task. Parallel Fortran’s threads resemble the “processes” of Modula-
2, and the “coroutines” of some other languages. Each one has its
own stack (allocated by its creator), but shares its code with any
other threads in the same task. Threads of the same task also have
access to the same COMMON blocks, and semaphore functions in the
run-time library are used to prevent threads which share data from
interfering with each other.

Parallel Fortran’s multiple thread facility differs somewhat from that
supported by 3L Parallel C. It is a general rule that Fortran subpro-
grams are not reentrant; that is, a subprogram may not be active
more than once at any one time. This means that a subprogram
cannot call itsell, directly or indirectly; it also means that a sub-
program may not be invoked through the thread mechanism more
than once at a time. This precludes the easy use of the multiple
threads for reading from a number of input channels “all at the
same time”. Nonectheless, the technique may be useful for alimost
any problem which falls into sections which are largely independent,
and in particular many problems in simulation, real-time control and
other areas map very well onto a multi-threaded algorithm.

38 Chapter 4

4.6 Configuring an Application

Once an application has been designed and written as a collection
of communicating tasks, how is it loaded into a physical network of
transputers?

First, each individual task is built by compiling all its source files
with the Fortran compiler and using the linker (1inkt) to combine
the resulting binary (.bin) files with the Parallel Fortran run-time
library, and a special “task” harness in place of the standard harness
we have used so far. This produces a task image (.b4) file.

Now a bootable application image file must be generated from the
component task (.b4) files. The program which does this is called
the configurer. It is driven by a user-supplied configuration file which
specifies:

e the hardware configuration (processors, and the wires connect-
ing them) on which the application is to be run;

e the names of the .b4 files containing the component tasks of
the application;

o the connections between the various tasks’ ports;

o the placement of particular tasks onto particular processors in
the physical network.

The output of the configurer is an application file which can be

booted into the specified hardware network and run using the same
afserver program used for simple standalone programs.

4.7 Processor Farms

The tools described so far allow you to build applications which
execute on any transputer network whose wiring can be specified in

Introduction to Parallel Fortran 39

advance in a configuration file. For many parallel computations it
is useful to be able to create applications which will automatically
configure themselves to run on any network of transputers. Such
applications will automatically run faster when more transputers are
added to a network, without recompilation or reconfiguration.

Parallel Fortran allows you to create applications like this, provided
the application can be implemented by a processor farm, and pro-
vided that there is enough memory on each processor in the network
to support the required loading and message handling software.

In the processor farm technique, an application is coded as one
master task which breaks the job down into small, independent
pieces called work packets which are processed by any number of
anonymous identical worker tasks. Work packets are automatically
distributed across an arbitrary network of transputers by rouling
software supplied with the compiler. All of the worker tasks must run
the same code. Each worker simply accepts work packets, processes
them, and sends back result packets via the same routing software.
A worker task is just a simple sequential loop: read a work packet;
process it; send back a result packet; repeat.

Provided a master task can be written for your application which
will split the job up into independent work packets which the worker
tasks can handle without communicating with other tasks, you can
use the flood-fill configurer to combine the code for the master and
worker tasks into a bootable application file which can be loaded
automatically into an arbitrary transputer network by the afserver
program.

Many computationally intensive applications can in fact be imple-
mented by processor farms, particularly graphics applications like
ray-tracing where different sections of the screen can be worked on
independently.

40

Chapter 4

Chapter 5

Developing Parallel
Programs

In this chapter we move on from looking at the general features of
Parallel Fortran to explaining how some of the parallel programming
tools supplied with the compiler are used in practice. The general-
purpose configurer is described here along with the extended run-
time library subprograms for sending messages over channels and
creating new execution threads. Processor farm applications are
covered in the next chapter.

We have actually already encountered an interesting example of
a parallel system: even a simple sequential program running on
a transputer board plugged into a PC runs in parallel with the
afserver program on the host computer, as shown below.

PC B004
]
10 ' 9 1
- : user
se:ger ! filter prog.
1
(] T 0 T 1
]
)

42 Chapter 5

The afserver task is an ordinary MS-DOS executable (.exe) file
that runs on the PC. It loads executable .b4 files into the transputer
and also acts as a file server, handling I/O requests made by the
transputer. The afserver and the transputer execute in parallel and
communicate via an Inmos link. The messages sent to the afserver
are normally generated by the Parallel Fortran run-time library. It
converts I/0 statements, for example READ and WRITE, into messages
requesting the afserver to perform MS-DOS operations like write
512 bytes and then waits for the afserver to reply.

In principle, the afserver task could be directly connected to the
user program. In practice, a filter task is interposed between them.
The filter runs in parallel with the afserver and the user task;
it simply passes on messages travelling in both directions. The
filter is required because sometimes the messages passed between
the user program and the afserver are only one byte long and the
revision A T414 chip cannot handle single-byte message transfers on
its hardware links. The filter pads out 1-byte messages to 2 bytes to
avoid this problem.

5.1 Configuring One User Task

Up to now a standard “harness”, t4harn.bin, has been linked in
with all user programs. The harness contains system initialisation
code, the filter, and a call to the user program. There is no need
to describe the standard system configuration (afserver, filter and
one user task) to the harness; the configuration is assumed.

Using the standard harness is simple but inflexible. We need a way
to produce executable files for more complicated system configura-
tions containing many tasks and many transputers. The configurer
program supplied with the compiler can do this; a simpler harness
(known as the “task harness”) can then be used.

The configurer is driven by a user-written configuration file which
describes the system to be built: the file lists all the physical proces-

Developing Parallel Programs 43

'
! UPPER.CFG

[}
processor host ‘the PC
processor root 'the transputer in the B004
vire jumper - ‘connects. ..
root[0] - 'link 0 of root tramsputer
host [0] ‘to the PC bus
task upper ins=2 outs=2 ‘the user task

task filter ins=2 outs=2 data=10k
task afserver ins=1 outs=1

place afserver host !afserver runs on PC
place upper root leverything else on transputer
place filter root

connect ? filter[0] afserver[0]
connect 7 afserver[0] filter[0]
connect 7 filter[1] upper[1]
connect 7 upper[1] filter[1]

Figure 5.1: Configuration File with One Example Task

sors in the system, the wires connecting them, the tasks to be loaded
into the system and their logical interconnections. The complete
configuration file needed for a single transputer system with one task
(i.c., the same configuration that is built into the standard harness)
is shown in figure 5.1. In the rest of this section we will look at its
contents in detail.

The example program we have chosen just converts a stream ol
characters read from the standard input stream to upper case. The
Fortran source file, upper.£77 is shown in figure 5.2 (the correspond-
ing configuration file is called upper.cfg).

44 Chapter 5

PROGRAM UPPER
CHARACTER+80 LINE
INTEGER P, C
100 CONTINUE
READ (5, 110, END=130) LINE
110 FORMAT (A80)
DO 120 P = 1, 80
C = ICHAR(LINE(P:P))
IF ((C .GT. 96) .AND. (C .LT. 123)) C = C-32
LINE(P:P) = CHAR(C)

120 CONTINUE
WRITE (6, 110) LINE
GOTO 100
130 STOP
END

Figure 5.2: Fortran Source File for Upper Casing Program,
upper .£77

5.1.1 Hardware Configuration

The first thing the configuration file needs to describe is the hardware
configuration. A single B004 board plugged into a PC is very easy
to describe.

processor host
processor root
vire jumper host[0] root[0]

There are two processors: the host PC and the root transputer in the
B004. The root transputer is so called because if a larger network is
built around a basic B004 system, the transputer directly connected
to the PC becomes the root of the network—all communication with
the file system on the PC must pass through it.

A wire connects the root transputer’s link 0 to the host processor.
The WIRE statement describes actual physical cables, in this case
the little jumper you have to plug into the back of a B004 board
which connects link 0 on the transputer to the PC bus.

Developing Parallel Programs 45

Objects declared in the configuration language can have arbitrary
names made up of letters, digits and the special characters ‘_’ and
‘$’, but are usually given mnemonic names. For example, a wire may
be given a name, in this case jumper; or, more usually, it can be left

anonymous, by writing ‘?’ instead of the name.

The processor identifiers (host and root) used in a WIRE statement
must have been declared in a previous PROCESSOR statement.
This is a general rule: all objects in the configuration language
(processors, wires, tasks) must be declared before they are used.

Now compare the short example above with the full configuration file
in figure 5.1. You will notice a few differences in layout. Blank lines,
spaces and tabs have been used to improve readability, and comments
(from a ‘!’ character to the end of the line) have been added. Some
lines have been broken, indicated by a hyphen, ‘-’, as the last non-
whitespace character before a line break (or comment). Layout and
comments are ignored by the configurer. Note that the configurer
also ignores the case of letters: ‘a’ and ‘A’ are not distinguished.

As a short-cut when writing a configuration file, you can use the
worm program to generate the hardware configuration automatically.
This is done by using worm’s /C switch, and directing the output into
a file. For example:

C>worm/c > upper.cfg

This would place a correct description of the current hardware con-
figuration in the file upper.cfg. For a full description of the worm
program, see chapter 22.

5.1.2 Software Configuration

As well as describing the hardware of a system, the configuration file
must contain details of all its software tasks and their interconnec-
tions.

46 Chapter 5
5.1.2.1 Declaring Tasks

For each concurrently executing task in the system the configuration
file must contain a TASK statement which declares the number of in-
put and output ports the task has. The afserver has only one input
port (for file system requests) and one output port for responses.

task afserver ins=1 outs=1

Our example user task is next. It will be a program to convert
characters to upper case, so it is given the name upper.

task upper ins=2 outs=2

As before, the ins and outs attributes specify the number of input
and output ports for the task. The upper task has two of each, num-
bered from 0 upwards, and called upper [0] and upper[1]. Whether
a port specifier like upper[0] refers to an input or an output port is
determined by the context in which it is used.

The ordinary Parallel Fortran run-time library, with which the upper
task will be linked, makes the assumption that the first two input
and output ports of a task will be reserved for its use. The first pair
of ports (numbered 0) have uses which will not be described here;
they should simply be left unconnected. The second pair of ports
(numbered 1) are assumed to be connected to a file server task. Here,
we will connect the upper task to the afserver through a filter task.

The filter task has a slightly more complicated declaration:

task filter ins=2 outs=2 data=10k

The DATA attribute specifies the amount of immemory a task needs.
The filter task requires a minimum of 10K of workspace. For
ready-made tasks supplied with the compiler, like filter, memory
requirements can be looked up in the data sheets in chapter 28.

A user task like upper for which no memory requirement is specified
gets all the free memory remaining once any other tasks placed on
that processor are loaded. Only one task on each processor can have

Developing Parallel Programs 47

its memory requirements left unspecified in this way. The configurer
would otherwise have to decide how to split the remaining memory
between several tasks with unspecified requirements. Because an
even split is unlikely to be desirable in practice, this is not allowed.
Section 5.8 below gives hints on estimating memory requirements in
cases where multiple user-written tasks must be placed on the same
processor.

5.1.2.2 Assigning Tasks to Processors

The placement of tasks on processors is specified by the PLACE
statement. In our example, the afserver runs on the host PC and
the user task (upper) runs on the root transputer with the filter task.

place afserver host
place upper root
place filter root

5.1.2.3 Making Connections between Tasks

The CONNECT statement establishes a channel between two tasks
by binding the input and output ports. Because channels (unlike
wires) are unidirectional, two CONNECT statements are needed to
create channels going in both directions between the afserver and
the filter.

connect ? filter[0] afserver[0]
connect 7 afserver[0] filter[0]

The CONNECT keyword can be followed by an identifier naming the
connection, but all the configuration statements which declare new
identifiers allow a question mark to be used in place of the identificr
being declared. This is useful when there is no need to refer to an
object after it has been declared. Currently there is no statement
which can refer to the identifier declared by a CONNECT state-
ment, so the question marks avoid the bother of naming essentially
anonymous connections.

48 Chapter 5

The first port mentioned in a CONNECT statement is an output
port, and the second is an input port. In our example the connections
are, in fact, symmetrical, but this is not always the case.

The remaining connections in our example system are written down
in the same way:

connect ? filter[1] upper(1]
connect ? upper[1] filter(1]

5.1.3 Building the Application

Once a configuration file has been written all we have to do to execute
the application is compile the Fortran source file upper.£77, link the
resulting object file with the Parallel Fortran run-time library, and
then run the configurer.

The example below shows what must be done to build an executable
file from the uppercasing example:

C>t4f upper
C>t4ftask upper

C>config upper.cfg upper.app

C>afserver -:b upper.app
case changer

CASE CHANGER

~Z

c>

Two commands are new: t4ftask and config.

Developing Parallel Programs 49
5.1.3.1 Linking for the Configurer

The ordinary batch file for linking Fortran programs (t4f1ink) is not
suitable for linking a task because it links in the standard harness.
t4ftask.bat is a batch file supplied with the compiler which links
an object (.bin) file with the Parallel Fortran run-time library and a
vestigial “task” harness containing neither the filter process nor any
system initialisation code. The example below shows two Fortran
source files, main.£77 and subs.£77 being compiled and then linked
together to form a T4 task called main.b4.

C>t4f main
C>t4f subs
C>t4ftask main subs

Like t4flink, the t4ftask batch file can handle up to nine object
files on the command line. If you need to link more files than this,
you will need to use an indirect file, as described in section 3.3.2.
Sometimes you may need to call the linker directly, as described in
section 3.3.3; in this case, you must include the run-time library,
frtlt4.bin and the vestigial task harness, taskharn.t4. Both can
be found in the release directory, \tf2v1.

As usual, there are T8 versions of the batch file and the task harness.
They are called t8ftask and taskharn.t8.

Note: it is important to link all tasks which are to be used with the
configurer with the correct harness. If the wrong harness is used (for
exzample by accidentally using t4flink rather than t4ftask) then
the configured application will fail to operate correctly. It may fail to
execule, or it may simply give wrong answers.

5.1.3.2 Running the Configurer

The configurer is invoked by the config command. Two filenames
must be specified on the command line: first the configuration file,

50 Chapter §

then the name of the executable file to be output. For our case
conversion example, the required config command line was:

C>config upper.cfg upper.app

The configurer does not supply default filename extensions, but .cfg
is conventional for configuration files.

File names for the task images which make up the application are
not supplied on the command line; the configurer derives them au-
tomatically by appending .b4 to the task identifiers given in the
configuration file. In our example, the configurer will search for task
image files called upper.b4 and filter.b4.

If a task image file is not found in the current directory, the configurer
will automatically search all of the directories on the MS-DOS search
path, so there is no need to make copies of ready-made tasks like
filter.b4 held in the same directory as the compiler (\tf2v1).
The search path can be modified in the usual way by the MS-DOS
commands path and set.

This automatic mechanism for specifying task image file names can
be overridden by the FILE attribute of the configuration language’s
TASK statement, described in chapter 26.

Note that tasks placed on the host (PC) processor are not searched
for in this way to be included in the output application file. The
configurer does not attempt to load afserver.b4 into the PC from
the transputer! The afserver task must be declared and placed on
the host simply in order to give a name to the object with which the
filter task communicates over its port 0. As the afserver task
loads the application into the transputer and handles all its 1/0
requests, it is reasonable to regard it as part of the configuration.

The output from the configurer can be run directly using the
afserver:

C>afserver -:b upper.app

Developing Parallel Programs 51

The actual configuration of the transputer network attached to your
PC must match the declarations in the configuration file.

The memory requirements of configured tasks are specified in the
configuration file; the afserver switches -:0 1 and -:0 0 arc ig-
nored by configured applications.

5.2 More than One User Task

In the previous section we saw how an application consisting of a
single user task could be built using the configurer instead of the
standard harness.

From this base, we can move on to more complicated systems con-
taining multiple user tasks running in parallel.

Let’s continue with the small case conversion example by splitting
the job performed by upper.f77 into two tasks: a driver task to
handle file I/0, and a processing task which accepts a stream of
words containing ASCII character code values on one of its input
ports and sends the corresponding upper case character codes to one
of its output ports.

This example is a bit contrived, but splitting a job up into an I/0O
task and a number of concurrent computation tasks is commonplace.

5.2.1 Inter-Task Communication Functions

Coding the driver task in Fortran is easy. Instead of checking for
lower-case ASCII codes and subtracting 32 from them, it converts
characters to upper case by sending a message containing the ASCII
character code to the “computation” task and waiting for a reply
message containing the result.

Parallel Fortran tasks send messages using the channel I/O functions
described in chapter 18. The CHAN package provides functions to

52 Chapter 5

PROGRAM DRIVER
INCLUDE ’CHAN.INC’
CHARACTER+80 LINE
INTEGER QUTCHANADDR, INCHANADDR, P, C
OUTCHANADDR = F77_CHAN_OUT_PORT (2)
INCHANADDR = F77_CHAN_IN_PORT (2)
100 CONTINUE
READ (5, 110, END=130) LINE
110 FORMAT (A80)
D0 120 P = 1, 80
C = ICHAR(LINE(P:P))
CALL F77_CHAN_OUT_WORD (C, OUTCHANADDR)
CALL F77_CHAN_IN_WORD (C, INCHANADDR)
LINE(P:P) = CHAR(C)

120 CONTINUE
WRITE (6, 110) LINE
GOTO 100
130 CALL F77_CHAN_OUT_WORD (-1, OUTCHANADDR)
STOP
END

Figure 5.3: driver.£77 with Channel I/O Calls

send and receive messages of any length. The driver task is shown
in figure 5.3; it uses F77_CHAN_IN_WORD and F77_CHAN_OUT_WORD to
handle word-sized messages. A word is the same size as an INTEGER,
32 bits.

The driver source file, driver.£77, is included as an example in
the distribution kit, along with the processing task, upc.£77, and
a suitable configuration file, upc.cfg. These files can be found in
the examples subdirectory of the directory containing the compiler,
\tf2vl.

The statement in driver.£77 which sends character codes to the
processing task is:

CALL F77_CHAN_OUT_WORD (C, OUTCHANADDR)

The word (INTEGER) value to be sent is passed as the first argument
in the function call.

Developing Parallel Programs 53

Beware when using the channel I/O functions that sending and re-
ceiving tasks always agree on the size of messages. For example, if a
task sends a word value as a single 4-byte message, the receiving task
must read it as one 4-byte unit; it is not possible for the receiving
task to read four separate 1-byte messages. Trying to do so may
cause the transputer to lock up or behave unpredictably.

The second argument to F77_CHAN_OUT_WORD identifies the channel
to which the message is to be sent. OUTCHANADDR has been initialised
to the value of F77_CHAN_OUT_PORT(2), that is, the address of the
channel which is bound to output port 2. A CONNECT statement
in the application’s configuration file referring to driver([2] will
specify which task the port is connected to. In our case, it will be
the processing task to be described later.

The number of output ports a task has is defined by the OUTS
attribute of the TASK statement used to declare the task in the
configuration file. Our driver task has outs=3, so it has three
output ports, numbered 0 to 2.

The value of OUTS is also accessible at run time, by using the
function F77_CHAN_OUT_PORTS. It can be used to write tasks which
handle an arbitrary number of ports, like the multiplexer task de-
scribed later on in this chapter.

Using the functions F77_CHAN_IN_PORTS and F77_CHAN_IN_PORT,
details of the task’s input ports can be accessed in a similar way.
In the driver example, the address of the channel bound to input
port 2 is found by taking the value of F77_CHAN_IN_PORTS(2).

The driver task reads records from unit 5 (that is, MS-DOS stan-
dard input), sends the characters one-by-one to the processing task,
packs the reply messages (the translated characters) into records and
writes these records to unit 6 (that is, MS-DOS standard output).
It continues to do this until READ detects an end of input.

The next thing to look at is the processing task. It is logically a
“black box” with one input port and one output port:

54 Chapter 5

PROGRAM UPC
INCLUDE ’CHAN.INC’
INTEGER OUTCHANADDR, INCHANADDR, C
OUTCHANADDR = F77_CHAN_ODUT_PORT (0)
INCHANADDR = F77_CHAN_IN_PORT (0)
100 CONTINUE
CALL FT7_CHAN_IN_WORD (C, INCHANADDR)
IF (C .LT. 0) GOTO 120
IF ((C .GT. 96) .AND. (C .LT. 123)) C = C-32
CALL F77_CHAN_OUT_WORD (C, OUTCHANADDR)
GOTO 100
120 STOP
END

Figure 5.4: The Processing Task

processing
task

stream of word- .
size messages — @] upc [0 same stream in

(ASCII codes) upper case

A Parallel Fortran implementation of this task is shown in figure 5.4.

The processing task uses the same channel 1/O functions as the driver
to send and receive messages. It terminates when it receives a —1
from the driver.

Extending the configuration file for our first, single-task, example
(fig. 5.1) to handle two tasks is easy. We just change references to the
old upper task to driver, and add the following extra configuration
statements to describe the processing task and its connections.

task upc ins=1 outs=1 data=1k
place upc root

connect 7 driver[2] upc[0]
connect 7 upc[0] driver([2]

This says that the new task upc has one input port, one output port,

Developing Parallel Programs 55

and requires 5KB of memory (section 5.8 gives hints on estimating
task memory requirements). The upc task is placed on the root
transputer, and its ports are connected to the corresponding ports
of the driver task.

5.3 Building Multi-Task Systems

We will run into a problem when trying to compile and link the
components of the dual-task system.

The ordinary Parallel Fortran run-time library expects to send mes-
sages to the afserver on output port 1 and receive replies on input
port 1. This is true even if your Fortran program does not explicitly
use any I/O statements—the library will still try to open the stan-
dard input and output streams and preconnect them to units 5 and
6.

This means that even though it does no Fortran I/0, the upc task will
still attempt to communicate with the afserver if it is linked with
the standard run-time library. However, the afserver is already
connected to the driver task. The afserver task can’t simply be
shared between the driver and upc tasks, because that would require
connecting one port on the afserver task to two client ports. That
is not allowed—channels must always connect one port to exactly
one other port.

This is not as restrictive as it seems, because a standalone version
of the Parallel Fortran run-time library which does not need to com-
municate with the afserver is supplied with the compiler. The
standalone library is just the same as the ordinary library except
that all the functions which require afserver support (I/O, DOS
calls, etc.) are missing.

A multi-task application must be split up into an I/O task with
afserver support and one or more processing tasks which do not

56 : Chapter 5

need ordinary Fortran I/0 because they use the channel I/O func-
tions like F77_CHAN_IN_WORD instead.

Our example application is already in the right form: all we need
to do is link the driver task with the standard run-time library and
link the processing task, upc, with the standalone library.

In practice this logical organisation of an I/0 task serving a number
of parallel computing tasks is commonplace anyway. For embedded
systems which do not need disk I/O support, all the component tasks
may be linked with the standalone library, producing a consequent
reduction in code size due to the absence of I/0O initialisation code
from the standalone library.

A batch file analogous to t4ftask is provided for linking an object
file with the standalone library. It is called t4fstask.bat; a T8
version (t8fstask) is also supplied. As usual, these batch files can
be used to link up to nine object files; if you need to drive the linker
yourself, the files to link with are safrtlt4.bin and taskharn.t4
in the release directory, \tf2vi, or their T8 equivalents. The com-
mands required to link and configure the upper case example for a
T4 are shown below.

C>t4f driver

C>t4ftask driver

C>t4f upc

C>t4fstask upc

C>config upc.cfg upc.app
C>afserver -:b upc.app

xyz123
XYZ123

pPar
PQR

~Z

Developing Parallel Programs 57

You can try this out for yoursell by making a copy of the relevant
files, which are supplied in the directory \tf2v1i\examples.

5.4 Multi-Transputer Systems

If you have followed the examples this far, the generalisation from
a multi-task system running on a single transputer to a full multi-
transputer system will be fairly obvious. All that is required is a
change to the configuration file to describe the extra hardware and
place some tasks onto processors other than the root transputer.

We could run the case conversion example on a two-transputer sys-
tem with the driver task on the root transputer and the upc task on
the other transputer. The extra hardware must be declared in the
configuration file:

processor addon
wire ? root[1] addon[0]

This gives a name (addon) to the second processor and declares that
it will be connected by a wire from its link 0 to link 1 on the root
transputer. (Link 0 on the root transputer is already being used to
connect it to the host computer).

If we reconfigured the application at this stage, the addon processor
would be unused because the upc and driver tasks are both placed
on the root transputer. We can fix this by modifying the PLACE
statement for upc.

place upc addon

Now the configurer will automatically generate all the bootstrap and
loader software required to make sure that the code of the upc task
is loaded into the second transputer when the complete application
is started on the root transputer by the afserver.

C>config upc.cfg upc.app

58 Chapter 5

C>afserver -:b upc.app
tvo transputers...
TWO TRANSPUTERS. ..

“Z

Further generalisation to an arbitrary system should be clear: just
declare more processors and wires in the configuration file, place
tasks on the processors and connect them together.

5.5 Multi-Channel Input

One thing we have not yet seen how to do is to wait for a message
from any one of a number of concurrently executing tasks. For
example, a multiplexer task which accepted messages on any of an
arbitrary number of input ports and passed them on through a single
output port would be a useful building block. It might be used to
allow a number of tasks to share a single hardware link.

output

input mux |2
port

ports

—4

A task connected to the output port of the mux task sees a sequential
stream of messages, even though they are coming from any number
of input tasks, in any order.

5.5.1 The ALT Functions

To implement the mux task we will need a way of handling a number
of input ports “all at the same time”.

In Parallel Fortran, this is done by using one of the ALT functions.
The implementation of the multiplexer task shown in figure 5.5,
for example, uses F77_ALT_WAIT_VEC. The second argument to this
function is an array, each element of which is the address of a channel.

Developing Parallel Programs 59

C MUX.F77: Message multiplexer task
C

PROGRAM MUX
C

INCLUDE ’ALT.INC’
INCLUDE ’CHAN.INC’

INTEGER INVEC(128), INPORTS, INPORT, LENGTH,
1 OUTPORT, BUFF(256)

OUTPORT = F77_CHAN_OUT_PORT (0)
C Put addresses of all input channels in INVEC
INPORTS = F77_CHAN_IN_PORTS ()
DO 100 I = 1, INPORTS
INVEC(I) = F77_CHAN_IN_PORT (I-1)
100 CONTINUE

c

200 CONTINUE

[

Cc Wait for a channel to be ready

INPORT = F77_ALT_WAIT_VEC (INPORTS, INVEC)
INPORT = INVEC (INPORT)
C Read message-length word, and body of message
CALL F77_CHAN_IN_VORD (LENGTH, INPORT)
CALL F77_CHAN_IN_MESSAGE (LENGTH, BUFF, INPORT)
C Write the message to port O
CALL F77_CHAN_OUT_WORD (LENGTH, OUTPORT)
CALL F77_CHAN_OUT_MESSAGE (LENGTH, BUFF, OUTPORT)

GOTO 200

END
Figure 5.5: Multiplexer Task Using ALT Functions
The first argument specifies how many channels there are. The
function waits until one of these channels has data ready to read,

then returns its place in the array. The program can now read the
data from this channel in the usual way.

5.6 Multi-Threaded Tasks

In this section we will look at an application of concurrent threads.
This is a simple filter, the object of which is to copy 1024-byte blocks

60 Chapter 5

of data from input port 0 to output port 1 as fast as possible. To
do this, a swinging buffer technique is used. The task has two
buffers, one of which is used for input and the other for output
simultaneously. When both operations are complete, the buffers are
swapped over. Figure 5.6 illustrates this arrangement.

In order for the input and output to be performed simultaneously, the
program creates a new ezecution thread to perform the input, while
the main program does the output. The threads use two semaphores
to coordinate their activities. This is necessary because the input
thread needs to be sure that the contents of the buffer it is going to
overwrite have already been output; while the main routine needs to
be sure that a buffer is full of new data before it outputs it.

Figure 5.7 shows an implementation of this task in Parallel For-
tran. The thread for performing the input is created by the call to
F77_THREAD_CREATE, which invokes the INPUT subroutine in parallel
with the execution of the main program, and passes it one argument,
which is the address of the channel to use for input. Common blocks
are shared between subprograms running in parallel in the usual
way; in this case, the common block BUFFS is shared between the
two threads. The semaphores READY and INP are part of this block,
and so are accessible to both threads. The main thread signals that
it is ready for more input by signalling the READY semaphore; the
input thread signals that it has completed input by signalling the
INP semaphore. There are two buffers; while one is being input to
by the input thread, the other is being output from by the main
thread. In fact, both the buffers are held in the array BUFF; one
buffer starts at BUFF(1), and the other at BUFF(256). The input
thread tells the main thread which buffer it has filled by placing its
subscript in P.

If you haven’t used semaphores or a similar method for controlling
concurrent access to shared objects before, you should read a good
introduction to the subject, such as [5,6], or restrict yourself to the
stylised usage shown in the example. It is possible to introduce
difficult-to-trace errors into a program il threads forget to synchro-

Developing Parallel Programs

Port 0

Buffer

¥

Buffer

Y

Port 1

Input to Buffer A, Output from Buffer B

Port 0

Buffer

N\

N\

Buffer

Port 1

Input to Buffer B, Output from Buffer A

Figure 5.6: Filter task: Use of Swinging Buffers

61

62

100

100

Chapter 5

SUBROUTINE INPUT (CHANADDR)
INTEGER CHANADDR
IBCLUDE ’CHAN.INC’
IBCLUDE ’SEMA.INC’
COMMON /BUFFS/ BUFF(512), INBUF, OUTBUF,
INP(F77_SEMA_SIZE) , READY(F77_SEMA_SIZE)
INTEGER BUFF, IBBUF, OUTBUF, INP, READY
INBUF = 1
CONTINUE
CALL F77_SEMA_VAIT (READY)
IF (INBUF .EQ. 1) THEN
TNBUF = 267
ELSE
INBUF = 1
END IF
CALL F77_CHAN_IN_MESSAGE (1024, BUFF(INBUF), CHANADDR)
CALL F77_SEMA_SIGNAL (INP)
GOTO 100
END

PROGRAM COPY
INCLUDE ’CHAN.INC’
INCLUDE ’SEMA.INC’
INCLUDE ’THREAD.INC’
COMMON /BUFFS/ BUFF(512), IBBUF, OUTBUF,
IBP(F77_SEMA_SIZE), READY(F77_SEMA_SIZE)
INTEGER BUFF, IBBUF, OUTBUF, INP, READY
EXTERBAL INPUT
INTEGER OCHAN
LOGICAL LOG
OCHAN = F77_CHAN_OUT_PORT(0)
CALL F77_SEMA_INIT (INP, 0)
CALL F77_SEMA_INIT (READY, 0)
LOG = F77_THREAD_CREATE (INPUT, 10000, 1, F77_CHAN_IN_PORT(0))
CALL F77_SEMA_SIGNAL (READY)
CONTINUE
CALL F77_SEMA_VAIT (INP)
OUTBUF = INBUF
CALL F77_SEMA_SIGNAL (READY)
CALL F77_CHAN_OUT_MESSAGE (1024, BUFF(DUTBUF), OCHAN)
GOTO 100
END

Figure 5.7: Swinging Buffers: Example of Use of Threads and Sema-
phores

Developing Parallel Programs 63

nize access to a shared object by waiting for a semaphore.

5.6.1 Threads versus Tasks

Threads can be useful in many situations. They are just “light-
weight” processes, corresponding to processes in Modula-2 or the
co-routines of some other languages.

Compared with tasks, threads are:

o “lightweight”—they share their code, heap, static and external
data memory with all the other threads created by the same
task;

e they can share data and may communicate either by using
channels like tasks, or via shared memory;

e all the threads of a single task run on the same processor,
allowing them to share memory.

Tasks on the other hand are more substantial than threads:

e they only communicate via channels;

e each task has its own code and data areas, separate from all
other tasks; code, including run-time library functions, is not
shared between tasks, even tasks placed on the same processor;
this is so that...

e a task can be moved to a diflerent processor simply by recon-
figuration.

Two operations to be performed concurrently can be usefully per-
formed by threads rather than tasks if all of the following conditions

hold.

e They will never need to be run on distinct processors.

64 Chapter 5

e The operations are closely coupled, i.e., they share a lot of
common code. Code is automatically shared between threads,
but each task has its own copy of all of its code, including
library functions, so that if necessary it can later be moved to
a different processor without requiring recompilation or relink-

ing.

o The operations logically operate on shared data structures.
This may be more efficiently performed directly by concur-
rent threads than by tasks copying the data back and forth as
messages when they are modified.

5.7 Debugging

Parallel Fortran is compatible with the 3L interactive debugger,
Tbug. This can handle multiple-task applications, and debugs multi-
transputer applications by loading all the tasks on one transputer.
You can trace the execution of the tasks at source level, and moni-
tor the contents of variables. Breakpointing and single-stepping are
provided.

Apart from using Tbug, what can be done when a parallel system
locks up or fails to work properly? A sequential program could be
attacked by inserting extra debugging output statements at strategic
points in the code.

In a multi-task system this will in general only be easy to do to
an I/O server task linked with the standard library and directly
connected to the afserver. Unless you design debugging messages
into the communication protocol used between the various tasks in
your system you will not be able to get debugging output from
a standalone task to a screen driving task. Even building debug
message formats into the protocols used by the tasks in your system
may not be enough if the fault lies in the failure of some intermediate
task to transmit messages correctly.

Developing Parallel Programs 65

However, it is possible to get output directly from a standalone task
to an output device by using a second host computer and transputer
board combination as a debugging tool. The second system can be
attached to a suspect node of the system, in the same way as an
oscilloscope can be used to debug an electronic system.

One way of doing this is to relink the suspect task with the standard
run-time library (rather than the standalone library) and place it
on the transputer attached to the second host computer. Ordinary
PRINT statements can then be inserted in the code; the results will
be output directly by the afserver in the second PC and displayed
on its screen. The configuration statements required would be like
this:

processor host
processor root

vire ? root[0] host[0] !as before
processor extra_PC type=PC
processor extra_B004 'plugged into extra_PC

task extra_afserver ins=1 outs=1
wire 7 extra_B004[0] extra_PC[0]
vire 7 extra_B004[1] root[1]

place extra_afserver extra_PC
place suspect_task extra_B004

connect 7 suspect_task[1] extra_afserver[0]
connect 7 extra_afserver[0] suspect_task[1]

The main thing to notice here is the type=PC attribute given to
the extra_PC processor. This tells the configurer not to try and
bootstrap any tasks into that processor. (The host processor is
just a special case for which type=PC is assumed). To make this
configuration work, you must start the afserver on the extra PC
using the afserver command without the - :b option before starting
the system under test. If no -:b option is present on the command
line, the afserver does not attempt to bootstrap the network it is
attached to; it will simply accept file I/O request messages over its
links.

It is also possible to use this debugging technique if you don’t have

66 Chapter 5

another host and transputer board combination but do have another
PC with an Inmos link adapter card. Relink the suspect task with
the full run-time library rather than the standalone library, then re-
configure the system with input and output ports 1 of the task being
debugged connected to the PC with the link adapter, as follows:

processor second_PC type=pc
task second_afserver ins=1 outs=2
place second_afserver second_PC

processor any_processor ‘of network being debugged
vire ? any_processox{3] second_PC[0]

task suspect_task ins=2 outs=2 !connect [1]’s to afserver
place suspect_task any_processor

connect 7 suspect_task[1] second_afserver([0]

connect ? second_afserver[0] suspect_task[1]

This technique has two advantages: it only requires an extra PC and
link adapter card, rather than an extra PC and transputer board,
and there is no need to change the placement of the suspect task.

A third technique uses the three spare links on a transputer board
plugged into the extra PC to accept debugging messages from up
to four separate tasks anywhere in the network being debugged and
multiplex them onto its PC screen.

5.8 Estimating Memory Requirements

Section 3.5 has already discussed the various categories of data stor-
age. As noted there, the data requirement for a task is the sum ol
the number of bytes required for static, stack and heap storage in all
its modules.

The decode utility (see chapter 21) can be used to determine a
module’s static data requirement. decode displays the number of
words (not bytes) of static data required by a module near the top
of the output listing it produces, after the keyword STATIC. The

Developing Parallel Programs 67
[

whole task also has one word of static space permanently allocated

to each module.

Stack and heap requirements are more difficult to estimate; you must
decide how much space to leave for all the subprograms which may
be active at once, based on the sizes of individual data items. Each
level of subprogram calling uses about five words of stack space in
addition to the space required for variable data.

The heap is used internally by the run-time library to allo-
cate storage for I/O buffers, and to supply a workspace for the
F77_THREAD_CREATE function. Heap storage is currently allocated
by the run-time library in blocks of 4KB, so if your task uses the
heap be sure to allocate at least that much space for it.

In fact, static storage and the heap are allocated from a single mem-
ory area, from which static storage is taken first. What is left is then
available for the heap, if needed. For further details, see chapter 26.

In addition to the amount of space you estimate your task actually
needs, it is a good idea to leave at least 1 or 2KB of extra overflow
space, unless you are absolutely sure the task will never require more
space than you have calculated.

Bear in mind that if a task exceeds its stated memory requirements
the whole system will probably crash, so err on the side of caution.
A good rule of thumb would be to allocate at least 1KB to simple
tasks which don’t use the heap, and 8-10KB for tasks which do use
the heap.

If the stack space required by a task is small enough it can be allo-
cated from the transputer’s on-chip RAM. The space available there
is 2KB on a T414, 4KB on a T800 (the restriction to 2KB for the
T800 does not apply for configured tasks). Placing a computationally
intensive task’s stack in fast on-chip RAM can produce dramatic
speed improvements. The configuration language contains various
attributes for the TASK statement which allow control over memory
layout. These more advanced topics are covered in chapter 26.

68

Chapter 5

Chapter 6

Global Input/Output

In the last chapter, we looked at how to build configured applications
with more than one user task, whether running on one or more
transputers. In this chapter, we shall see how to arrange for all these
tasks to use standard Fortran I/O statements and other facilitics
which need the support of the afserver program.

6.1 One Transputer

We saw in section 5.3 that only one task can communicate with the
afserver, and that this task was the only one to be linked with the
full Fortran run-time library. All the other tasks were linked with
the standalone library, and this precluded them from doing standard
Fortran 1/0, DOS calls and so on. Figure 6.1 shows, for example, a
simple two-task application, and figure 6.2 shows the corresponding
configuration file.

The problem is that the server only has one possible connection to
one filter task, and the filter task has only one possible connection
to a user task. We can get round this problem by placing a special
multiplexer task between the user tasks and the filter tasks. This

70

:
‘
H
: :
:
H
: :
H
H 0 H
: H
H
: :
:
: :

Chapter 6

host : afserver
; P
: filter
rootg I‘I
g ,
: useri 2 2 user2

Figure 6.1: Two-task Application

multiplexer task is included with the Parallel Fortran kit, and is
called filemux; a task data sheet for it can be found in chapter 28.

Figure 6.3 shows this arrangement.
changed, except that the following statements, which connected
userl to the filter are removed:

connect ? filter[1] useri[1]
connect 7 useri[1] filter[1]

and instead we have the following:

The configuration file is un-

task filemux ins=3 outa=3 data=6656
place filemux root

connect
connect

connect 7
connect 7

connect

connect 7

?
?
?

?
?
?

filter[1] filemux[0]
filemux[0] filter[1]
filemux[1] useri[1]
useri[1] filemux[1]

? tilemux[2] user2[i]

user2[1] filemux[2]

Global Input/QOutput h!

processor host
processor root
vire 7 root[0] host[0]

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K
task userl ins=3 outs=3 data=50K
task user2 ins=3 outs=3 data=50K

place afserver host

Pioce wreet come 2/ Not
lc)tl):;:c‘tm;ri i;::: [0] afserver[0] \\\ F or
connect 7 filter(1] useri[1] _—// Sale

7?7 afserver[0] filter[0]
>
connect 7 useri[1] filter([1]
?
?

connect

connect 7 useri[2] user2(2]
connect ? user2[2] useri[2]

Figure 6.2: Two-task Application

Now it is filemux which is connected to the filter, and the two user
tasks each have their number 1 port pairs connected to a filemux
port pair. Each user task should be linked with the full run-time
library using t4ftask or t8ftask, and each task can behave as if it
has sole use of the afserver. The multiplexer arranges for all the
messages from the user tasks to be transported to the afserver on
the host, and transports the replies back to the correct user task.

You can arrange for the multiplexer to handle more tasks. Each
must have their port pair 1 connected to a multiplexer port pair,
starting at number 1 and going upwards with no gaps. For example,
if the multiplexer is supporting 9 tasks, they must be connected to
port pairs 1 to 9. The amount of memory which the multiplexer uses
is no more than (6 + 0.25n)K bytes, where n is the number of tasks
supported. So in the case of 9 supported tasks, the TASK statement
should read:

task filemux ins=10 outs=10 data=7.75K

The multiplexer adjusts its own activities to support all the tasks

72

host afserver

filter

I

filemux

I

useri

2

2

I

user2

:
:
root !
:

...

Chapter 6

Figure 6.3: Two-task Application with Global I/O

which are connected in this way.

6.2 More than One Transputer

A task does not have to be on the same transputer as the multiplexer
which supports it. Provided the necessary wires exist, it can be on an
adjacent transputer. Figure 6.4 shows how this would be arranged,

and figure 6.5 is the corresponding configuration file.

Each WIRE statement corresponds to a hardware link between two
transputers, and supports two CONNECT statements, one in each
direction. This means that the connections between filemux and one

Global Input/Output 73

supported task on a neighbouring transputer will use up one WIRE
statement, that is, one hardware link. This implies two restrictions:

e If you have a task on a neighbouring transputer supported by
a multiplexer on this, and you also want user tasks on the two
transputers to be connected, you will need twe hardware links
between the two transputers.

e As a transputer has only four hardware links, the number of
tasks on neighbouring transputers which can be supported is
limited.

6.3 More than One Multiplexer

Fortunately, there is a way to improve on this situation. This can
be done by using more than one copy of the filemux task.

Up to now, the number 0 port pair of the multiplexer has always been
connected to the number 1 port pair of the filter task. However, it
is also possible to connect the number 0 port pair to another copy
of the multiplexer, which could be on another transputer. In this
way, copies of the multiplexer can be built up into a tree. Figure 6.6
shows how this could be done, and figure 6.7 shows the corresponding
configuration file.

Once again, a user task which is connected to the multiplexer, no
matter how deep into the tree it is, can use the server’s facilities as
if it were directly connected. The task’s server requests are passed
up the tree of multiplexer tasks until they reach the afserver, and
the response is similarly passed back to the correct user task.

6.4 Limits

The number of MS-DOS files and devices which the afserver can
handle at the same time is limited, currently to 20. This means that

74 Chapter 6

the network of tasks which are supported by filemux may not open
more than 20 files at any one time. This applies regardless of the
number of filemux tasks involved.

Each Fortran task which is linked with the full run-time library uses
up two of this allotment of 20, for the pre-connected units 5 and 6.
As a result, the maximum number of tasks which can be supported
by the multiplexer network is currently 10.

6.5 Termination of an Application

When a task which is linked to the full run-time library terminates,
for example by executing a STOP statement or calling the EXIT sub-
routine, it sends to the afserver a server terminate request. This
causes the afserver to stop executing and return control to DOS.

Obviously, when a number of tasks are using the server, this cannot
be allowed to happen. Accordingly, filemux does not pass on a
server terminate request until all the the tasks it supports have tried
to send one.

The effect of this is that the afserver does not terminate until it
has been asked to do so by every task in the application which is
supported by filemux. It is not enough for a task to go into a loop,
or to be waiting for input; if this happens, the application as a whole
will not terminate. Every task must terminate properly.

Global Input/Output

host afserver
; filter :
I '
root ! filemux H
i 1 2 ;
: useril :
2 :
s :
: 2 user2 :

Figure 6.4: Task on Neighbouring Transputer

76

Chapter 6

processor host
processor root
processor tvo
vire ? root[0] host([0]
wire ? root[1] two[0]
vire 7 root[2] two[1]

task afserver ins=1 outa=1

task filter ins=2 outs=2 data=10K
task filemux ins=3 outs=3 data=6656
task userl ins=3 outs=3 data=50K
task user2 ins=3 outs=3 data=50K
place afserver host

place filter root

place filemux root

place useri root

place user2 two

connect
connect
connect
connect
connect
connect
connect
connect
connect
connect

?

?
?
?
?
?
?
7
?
?

filter[0] afserver[0]
afserver[0] filter([0]
filter[1] filemux[0]
filemux[0] filter[1]
filemux[1] useri[i]
useri[1] filemux[1]
filemux[2] user2[i]
user2[1) filemux[2]
user1[2] user2[2)]
user2[2)] useri1[2]

Figure 6.5: Task on Neighbouring Transputer

Global Input/QOutput 7

host E afserver ;
: o :
i filter i
: s
. |
: ° :
root § filemux i
i 1 2 3 :
P 1 :
: ! 1 :
i useri user?2 §
§ filemux §
: 1 2 3 :
two | Bl [1 g
: 1 1 1 :
: user3 user4 userb :

Figure 6.6: Networking Multiplexers

78

proce
proce
proce
wire
vire

task

task

task

task

task

task

task

task

task

place
place
place
place
place
place
place
place
place
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne
conne

ssor host
8sor root
ssor two
7 root[0] host[0]
7 root[1] two[0]

afserver ins=1 outs=1

filter ins=2 outs=2 data=10K
muxi file=filemux ins=4 outs=4 data=6912
mux2 file=filemux ins=4 outs=4 data=6912
userl ins=2 outs=2 data=50K
user2 ins=2 outs=2 data=50K
user3 ins=2 outs=2 data=50K
user4 ins=2 outs=2 data=50K
userb ins=2 outs=2 data=50K

afserver host

filter root

muxi root

mux2 two

userl root

user2 root

user3d two

user4 two

userb two
ct ? filter[0] afserver[0]

ct ? afserver[0] filter[0]
ct 7 filter[1] mux1[0]
ct 7 mux1[0] filter[i]
ct 7 mux1[1] useri[1]
ct 7 user1[1] muxi[1]
ct ? mux1[3] user2[1]
ct ? user2[1] murxi([3]
ct 7 muxi[2] mux2[0]
ct 7 mux2[0] muxi[2]
ct 7 mux2[1] user3[1]
ct 7 user3[1] mux2[1]
ct 7 mux2([2] user4[1]
ct 7 userd4[1] mux2[2]
ct ? mux2[3] userb[1]
ct ? user5[1] mux2(3]

Figure 6.7: Networking Multiplexers

Chapter 6

Chapter 7

Processor Farms

The previous chapters showed how to create a parallel application
for a multi-transputer system with a fixed hardware configuration.
In this chapter we look at how to build one of the “processor farm”
applications mentioned in the Introduction to Parallel Fortran in
chapter 4 which will automatically flood-fill an arbitrary network of
transputers with copies of a “worker” task.

Three things must be written to create a processor farm application:

1. A master task to split up the job into independent work pack-
ets.

2. A worker task, which is automatically copied to each node of
the network.

3. A conliguration file, describing the memory requirements and
other attributes of the tasks.

In this chapter we will look at an example of a processor farm appli-
cation. This is a program which displays pictures of the now-famous
“Mandelbrot Set” on an IBM PC-type host equipped with a CGA-
compatible display.

80 Chapter 7

The full source code of the Mandlebrot master and worker tasks, and
of the configuration file required, is printed in appendix J. These files
are also supplied in machine-readable form in the \tf2vi\examples
directory, along with a batch file (mandel .bat) which compiles, links
and configures the example files into an executable application. Sec-
tion 7.5 at the end of this chapter explains how to run the demon-
stration if you want to try it out before reading further.

The Mandelbrot program is suitable for running on a processor farm
because each part of the final picture can be computed independently
of all the others.

The master task has to split the job up into lots of small units
which can be handled independently by the “farm workers”. In the
Mandelbrot case this is easy: the master divides up the screen area
into 100 small squares, and sends the coordinates of the individual
squares out into the network as work packets. Any idle worker
receiving a packet calculates the required graphics display bitmap
for that part of the picture and sends it back as a result packet.

7.1 The Worker Task

If you look at the code of the Mandelbrot worker task you will see
that it is purely sequential. It consists of a single loop:

1. Get a work packet by calling F77_NET_RECEIVE. The work
packet identifies the individual square of the display which is
to be computed.

2. Work out the Mandelbrot values for that square, and place
them in the R_COUNTS character variable in the results packet.

3. Send the result packet back to the master task by calling
F77_NET_SEND.

4. Go back to step 1.

Processor Farms 81

The F77_NET_SEND and F77_NET_RECEIVE functions are discussed
below in section 7.3. Full details may be found in section 18.2.7.

The worker task does not care which processor it is executed on and
must not communicate explicitly with other tasks. All communica-
tion between workers and master is handled “behind the scenes” by
F77_NET_SEND and F77_NET_RECEIVE.

The only other restriction on the worker task is that because it
must be replicated throughout the network and therefore cannot
be directly connected to the afserver it must be linked with the
standalone run-time library.

7.2 The Master Task

The master task of a processor farm application has three basic
functions.

1. Split up the job into work packets. It sends the work packets
out into the farm of worker tasks by calling F77_NET_SEND.
The master simply does this as fast as it can: whenever the
network of worker tasks becomes saturated, F77_NET_SEND is
automatically blocked until a worker task becomes idle.

2. Receive result packets from the network by calling F77_NET_RECEIVE.
If no result packets are available, F77_NET_RECEIVE will wait
for one to arrive before returning.

3. Perform any I/O required by the worker tasks.

To prevent incoming result packets being blocked by the F77_NET_SEND
function waiting for a worker to become free, or conversely the send-
ing of work packets being blocked by F77_NET_RECEIVE waiting for
a reply, these functions must be performed in parallel.

82 Chapter 7

In the example implementation of the Mandelbrot program these
functions are performed by three parallel execution threads: SEND,
RECEIVE and MAIN.

7.3 The NET Package

A full description of the NET package subroutines may be found in
section 18.2.7. Subprograms which call these subroutines should

include the NET package file, by coding this statement:

INCLUDE ’NET.INC’

The administration of a processor farm is under the control of a
task called frouter (see chapter 28). Each node in a processor farm
contains a copy of this task; all the copies, and the master and worker
tasks, are connected together by the flood-filling configurer (see sec-
tion 7.4 below). This network of frouter tasks can be regarded by
the programmer as a single entity, whose job it is to ensure that
messages arrive at their correct destinations.

7.3.1 F77_NET_SEND and F77_NET_RECEIVE

F77_NET_SEND is used to send a message to the network, and
F77_NET_RECEIVE is used to receive one from the network.

Messages sent to the network by the master task (using F77_NET_SEND)
are routed to an idle worker task, if necessary passing through more
than one node in order to reach one. At each level of re-direction,
the messages are buffered. Only if all the worker tasks are busy, and
all the buffering is full, will a call on F77_NET_SEND by the master
task have to wait.

Messages sent to the network by worker tasks are routed back to the
master task, once again passing through more than one transputer
if necessary.

Processor Farms 83

There is a limit on the size of a buffer that can be submitted to
F77_NET_SEND; the constant F77_NET_MAX_PACKET_LENGTH is de-
fined in the package file to have this value (currently 1024). If the
message you wish to send is longer than this, it must be broken into
a number of packets. The last packet of the message should be sent
with the COMPLETE argument of F77_NET_SEND set to .TRUE.; this
should also be done if there is only one packet in the message. All the
other packets should be sent with COMPLETE set to .FALSE.. When a
packet is received, F77_NET_RECEIVE sets its COMPLETE argument to
the value used when the packet was sent. The network will ensure
that a sequence of packets will arrive in the right order, but it is
the receiving task’s responsibility to fit the sequence of packets back
together again.

It is best, however, to design the application to use messages which
are smaller than 1024 bytes, as long packets can clog up the network
and block packets being delivered to other nodes.

7.3.2 F77_NET_BROADCAST

Sometimes you may wish to start a run of your processor farm appli-
cation by initialising all the worker tasks with the same set of data.
These could be parameters obtained from the user, for example, or
data tables which vary from run to run. This can be done using the
F77_NET_BROADCAST subroutine.

F77_NET_BROADCAST should only be used by the master task. Each
call on this subroutine results in a copy of the broadcast mes-
sage being sent to every worker task in the processor farm. The
broadcast message can be received by the worker tasks by using
F77_NET_RECEIVE in the normal way. The most usual time to do
a broadcast would be at the beginning of the run, but a message
can be broadcast whenever the network is idle; that is, when all the
work packets sent out by the master task have been answered by the
worker tasks by sending a results packet. However, as there is no
method to tell a broadcast message from a normal work packet, it

84 Chapter 7

is up to the programmer to ensure that the worker tasks never get
confused.

A broadcast message can be any length. If necessary, F77_NET_BROADCAST,
will break it up into packets for transmission through the network.

In this case, the worker tasks will have to call F77_NET_RECEIVE
more than once to receive it, checking the COMPLETE argument as
described above.

Note that F77_NET_BROADCAST is the only reliable method to send
an identical message to every worker task. Repeatedly calling
F77_NET_SEND is unlikely to work.

7.4 Building the Application

Once the master and worker tasks have been compiled, the master
should be linked with the standard run-time library (t4ftask for
the T4 or t8ftask for the T8); the worker task must be linked with
the standalone run-time library (t4fstask for the T4 or t8fstask
for the T8).

The executable file containing the code of these tasks along with the
extra software to flood-fill a transputer network with copies of the
worker task is generated by the flood-fill configurer, fconfig.

7.4.1 Configuration File

Like the fixed-network configurer, fconfig requires a configuration
file as input. This must specify at least:

o the filename of the master task;
o the filename of the worker task;

e the memory requirements of the worker task.

Processor Farms 85

The configuration language accepted by fconfig is a subset of that
accepted by config.

The minimum configuration file for the Mandelbrot example would
be:

task master
task worker data=10k

fconfig would search for the master task in master.b4, and for
the worker task in worker.b4. These file names can be over-ridden
using the FILE attribute of the TASK statement, as shown below,
but the task identifiers master and worker are special: you must use
these names to identify the master and worker tasks to the flood-
configurer.

If the alternative configuration file below were used, the config-
urer would expect to find the tasks in files called mandelm.b4 and
mandelw.b4.

task master file=mandelm
task vorker file=mandelw data=10k

The DATA size specification is required for at least one of the tasks.
Other attributes governing placement of stack memory in on-chip
RAM and so on are covered in the reference part of this manual.

It is not required (and indeed not possible) to specify INS or OUTS
for the master and worker tasks: all the ports and connections re-
quired are generated automatically by the configurer.

To run the flood-configurer, use a command of the form:
fconfig configuration-file executable-file

For example:
C>fconfig mandel.cfg mandel.app

The executable file generated by the flood-configurer will place the
master task and one copy of the worker task on the root transputer,
and distribute copies of the worker task to any other transputers

86 Chapter 7

connected to the root. A filter task allowing the master task to
communicate with the afserver is automatically added by fconfig,
along with the loader and router tasks required to copy the workers
across the network and carry messages between them and the master
task.

This additional software occupies about 20KB of RAM in the current
version of Parallel Fortran, so each node in our example network
must have at least 32KB of RAM to support the 10KB worker task
declared in the configuration file along with a router and loader. The
root node must be larger again in order to support the master task
as well.

7.5 Running the Example

A batch file, mandel.bat, is supplied along with the Mandelbrot
example which will automatically compile, link and configure the
application.

To run the program in a temporary directory, you can use the fol-
lowing commands:

C>cd \

C>mkdir temp

C>cd temp

C>copy \tf2vi\examples*.*

C>mandel

The resulting executable file (called fmandel.b4) can be loaded and
run on any network containing only T4 transputers. To use T8
transputers you would have to recompile the tasks to generate T8
code. Section 7.6 below describes how to flood-configure applications
to run on a network containing a mixture of T4 and T8 processors.

Processor Farms] 87

The executable file can be loaded and run in the normal way:

C>afserver -:b fmandel.b4

When it starts, the Mandelbrot program reminds you that it needs
an IBM PC compatible host machine with CGA graphics to work
properly, then prompts you to enter several numeric parameter val-
ues on the keyboard.

Some suitable test values are:

Input X coordinate: -2
Input Y coordinate: -1.25
Input Y range: 2.5
Threshold 1: 5

Threshold 2: 20
Threshold 3: b0

Once the display is complete, the host system’s bell will be rung. Hit
Enter, and the first prompt will reappear. You can then experiment
with other sets of parameter values. A more interesting set of values
is: —0.25, 0.8, 0.25, 10, 20, 50.

Use Ctrl-C when you want to stop the program.

Once you have the program working, you can make it run faster sim-
ply by plugging more T4 transputers into the network and reinvoking
fmandel.b4.

7.6 Heterogeneous Networks

A flood-filled application compiled for the T4 and configured using
the simple master and worker forms of task declaration may work
on a mixed network of T4 and T8 processors if it uses only integer
operations. This approach will not in general work for an application
which uses floating-point operations, because of the incompatibilities
between the T4 and T8 instruction sets.

88 Chapter 7

Mixed networks of T4 and T8 processors are properly handled by an
extension to the configuration file, like this:

task t4master file=mandelm4

task t8master file=mandelm8

task t4worker file=mandelw4 data=10k

task t8vorker file=mandelw8 data=10k opt=stack

Separate tasks must be compiled and linked for T4 and T8 proces-
sors; the Parallel Fortran software ensures that the right task images
are loaded into the right processors.

Again the names t4master, t8master, t4worker and t8worker are
special, but the file names derived from them can be over-ridden by
the FILE attribute, as above.

Note that it is possible to specify different memory optimisation
options (e.g., opt=stack above) for the T4 and T8 variants of a
task. This is useful because the T4 and T8 have different amounts
of on-chip RAM.

If a t4master task is declared, a corresponding t8master task must
also be declared, and similarly for the worker task.

Part III1

Language Reference

Introduction

This Part describes the language recognised by the Parallel Fortran
compiler. It is primarily intended for users with previous experience
of Fortran programming,.

The internationally accepted standard for Fortran (ANSI X3.9-1978
and ISO 1539-1980) (see [1]) is supported by the compiler. This
standard is referred to variously throughout this publication as either
the ANSI Standard or the Fortran 77 Standard. Parallel Fortran also
supports various extensions to the Standard and these are identified
in the text.

This Part includes chapters 8 to 16 of the Parallel Fortran User
Guide. Chapter 8 is a general introductory chapter which describes
the basic elements of the language, and chapters 9 and 10 describe
the various types of data, their values, and how they are stored.
Chapter 11 is concerned with expressions and chapter 12 with assign-
ment statements. Chapters 13 and 14 describe the transfer of control
within and between the units of a program respectively. Chapter 15
is concerned with format specifications, which are used in conjunc-
tion with the input and output facilities described in chapter 16.

The compiler’s intrinsic functions, including those which are exten-
sions, are described in appendix E.

Certain facilities have been included in the compiler in order to
help those who are porting programs from earlier compilers. These
features are described in appendix D.

92

Introduction

Chapter 8

Fundamentals

This chapter provides general Fortran information. The chapter
introduces basic terminology and outlines the structure of a Fortran
program.

Parallel Fortran is based on the ANSI Fortran 77 standard as de-
fined in ANST X3.9-1978[1]. Extensions to the language have been
provided as a transition aid from other Fortran dialects. These
extensions are noted throughout this document and in the index.

Such extensions are allowable within the ANSI Fortran 77 standard
since they do not conflict with the standard definition, but they
should not be used in programs that are intended to be portable to
other implementations of Fortran 77. The compiler issues a warning
by default when any non-standard Fortran construct is used.

Fortran is a programming language designed primarily for the math-
ematical or scientific user. A Fortran program is written as a series
of statements using symbolism analogous to that used in algebra.
Many of these statements are readily intelligible to a programmer
with mathematical training. For example, the Fortran expression

(A+B) /C

94 Chapter 8

resembles a line of algebra and has a similar meaning. Each state-
ment occupies at least one line of coding and can extend onto subse-
quent lines if necessary. Statements can be given identifying labels.
Fortran provides facilities for the evaluation of common mathemat-
ical functions. The programmer need only write

Y = SIN(X)

and Fortran evaluates the sine function. Appendix E lists the stan-
dard procedures. You can write similar procedures for yourself as
external functions.

A Fortran program normally executes in the order in which state-
ments are written, but various control statements enable the pro-
grammer to specify that control branches to another statement with
an identifying label, either unconditionally or if certain conditions
are satisfied.

You can write Fortran programs as one or more program units and
compile each program unit separately. One program unit is desig-
nated as the master program unit. This program unit controls the
running of the program and passes control to other program units.

8.1 Character Set

The set of characters used in writing Fortran programs is:

e alphabetic:

ABCDEFGHI JKLMNOPQRSTUVWXYZ
abcdefghi jklmnopqrstuvexyz

® numeric:

0123456789
e special characters:

+-u/m, () 'SR\ Y

Fundamentals 95

e the space (or blank) character. When necessary in this text,
the symbol ‘.’ will be used to make explicit the location of a
space,

No character other than these may be used except in character con-
stants (see section 9.2), and in comment lines (see section 8.3.1.3).

Standard Fortran uses only upper case alphabetic characters. In
Parallel Fortran, lower case is also accepted. Lower case alphabetic
characters are equivalent to upper case characters except when they
appear in character strings or Hollerith constants.

Alphabetic and numeric characters are referred to collectively as
alphanumeric characters.

8.2 Program Structure

A program consists of program units. A program always has at least
one program unit, called the main program, and may have one or
more other program units that are called subprograms. Execution of
the program starts in the main program and then control is passed
between the main program and subprograms or between subpro-
grams. For further details of transfer of control between program
units see chapter 14.

There are three classes of subprogram:
1. Function subprograms
2. Subroutine subprograms
3. Block data subprograms

Function and subroutine subprograms provide a mechanism to assist
the programmer in structuring programs in a meaningful way, and to
allow common code to be conveniently accessed. These subprograms
are described in detail in chapter 14.

96 Chapter 8

Block data subprograms are used to give initial values to vari-
ables and arrays used in more than one program unit. They differ
from other subprograms in that they can contain only certain non-
executable statements (see section 8.3.4.2) and in that control is
never passed to them. Block data subprograms are described in
detail in section 10.3.2.

8.3 Program Unit Structure

8.3.1 Lines

A line in a program unit consists of 72 character positions. The
character positions are numbered from 1 to 72. A statement occupies
positions 7 to 72 of one or more lines. Any text following position
72 is ignored. If the compiler is invoked with the /R switch, the line
length is extended to 132 character positions.

In Parallel Fortran a TAB character in the first position of a line can
be used to skip past the statement label positions. If the character
following the TAB character is a digit this is assumed to be in position
6, the continuation indicator position. Any other character following
the TAB character is assumed to be in position 7, the start of a new
statement. A TAB character in any other position of a line is treated
as a space.

There are three classes of Fortran line.

8.3.1.1 Initial Line

An nitial line has the following form:

e Positions 1 to 5 may contain a statement label (see section 8.3.3
below).

e Position 6 contains a space or the digit ‘0’.

Fundamentals 97

e Positions 7 to 72 (or 7 to 132, if the /R switch is used) can
contain the statement.

8.3.1.2 Continuation Lines

A continuation line has the following form:
e Positions 1 to 5 are blank.

e Position 6 contains any character other than ‘O’ or a space. It
is usual to number continuation lines consecutively from 1.

e Positions 7 to 72 (or 7 to 132, if the /R switch is used) contain
the continuation of a statement.

In Parallel Fortran an alternative form is possible. In this case the
first position of the line contains an ampersand ‘@’, and the rest of
the line forms the statement.

8.3.1.3 Comment Lines

Comment lines may be included in a program; such lines do not
affect the program in any way but can be used by the programmer
to include explanatory notes. The letter ‘C’ or an asterisk ‘*’ in
position 1 of a line designates that line as a comment line. The
comment text is written in positions 2 onwards. A line containing
only blank characters in positions 1 to 72 (or in all positions, if /R
is specified) is also a comment line.

In Parallel Fortran an exclamation mark ‘!’ either in position 1 or in
any position from 7 onward, causes the rest of the line to be treated
as a comment.

In Parallel Fortran, lines with a ‘D’ in position 1 are known as debug
comments. Normally, such lines are treated as if the ‘D’ were a ‘C’,
that is, as comments. However, if the compiler is invoked with the

98 Chapter 8

switch /D, the ‘D’ is treated as a space, so that the debug comment
is compiled.

8.3.2 Statements

A statement consists of an initial line and, where necessary, up to 19
continuation lines.

Except as part of a logical IF statement, no statement may begin on
a line that contains any part of the previous statement.

Blank characters may appear preceding, within or following a state-
ment without changing the interpretation of the statement, except
when they appear within character constants or the ‘H’ or apostro-
phe ¢ ? ’ format codes in FORMAT statements.

An END statement statement marks the end of a program unit. The
statement consists of the three characters ‘E’ ‘N’ ‘D’ in that order, in
any of positions 7 to 72 of an initial line. All other positions from 1
to 72 must contain spaces. No other statement may have an initial
line that appears to be an END statement.

8.3.3 Statement Labels

Any statement in a Fortran program may be identified by preceding
it with a statement label.

A statement label is an unsigned integer in the range 1 to 99999.
The numbers used as labels have no sequential significance. For
example, the label 7 may occur after the label 9853. Labels may
appear anywhere within columns 1 to 5. Blanks and leading zeros
have no significance in labels.

All statement labels within any one program unit must be unique.
Labels may be referred to only in the program unit in which they
occur.

Fundamentals 99

8.3.4 Categories of Statement

Each statement is classified as executable or non-executable.

Ezecutable statements specify actions and form an execution se-
quence in a program.

Non-ezecutable statements specify characteristics, arrangement, and
initial values of data; contain format editing information; specify
statement functions; classify program units; and specify entry points
within subprograms. Non-executable statements are not part of the
execution sequence. They may be labelled, but such statement labels
must not be used to control the execution sequence.

8.3.4.1 Executable Statements

The following statements are classified as executable:

e Arithmetic, logical, statement label (ASSIGN), and character
assignment statements

¢ Unconditional GO TO, assigned GO TO, and computed GO TO
statements

e Arithmetic IF and logical IF statements

o Block IF, ELSE IF, ELSE, and END IF statements
e CONTINUE statement

e STOP and PAUSE statements

e DO statement

e READ, WRITE, PRINT and, in Parallel Fortran, TYPE and ACCEPT
statements

o REWIND, BACKSPACE, ENDFILE, OPEN, CLOSE and INQUIRE state-
ments

100 Chapter 8

e In Parallel Fortran, DECODE, ENCODE, DEFINE FILE, and FIND
statements

e CALL and RETURN statements t

END statement

END DO statement

8.3.4.2 Non-executable Statements

The following statements are classified as non-executable:

o PROGRAM, FUNCTION, SUBROUTINE, ENTRY and BLOCK DATA state-
ments

e DIMENSION, COMMON, EQUIVALENCE, IMPLICIT, PARAMETER, EXTERNAL,
INTRINSIC, SAVE statements, and, in Parallel Fortran, NAMELIST
and VIRTUAL statements \

e INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER
type-statements and, in Parallel Fortran, DOUBLE COMPLEX and
BYTE type-statements

o DATA statement
e FORMAT statement

e Statement function statement

8.3.5 Order of Statements and Lines

Table 8.1 is a diagram of the required order of statements and
comment lines for a program unit. Vertical lines delineate vari-
eties of statements that may be interspersed. For example, FORMAT
statements may be interspersed with statement function statements
and executable statements. Horizontal lines delineate varieties of

Fundamentals 101

PROGRAM, FUNCTION, SUBROUTINE or
BLOCK DATA statement
IMPLICIT
PARAMETER | statements
Comment | FORMAT | statements Other

lines and specification
ENTRY statements
Statement

function

DATA statements

statements | Executable

statements

END statement

Table 8.1: Required Order of Statements and Comment Lines

statements that must not be interspersed. For example, statement
function statements must not be interspersed with executable state-
ments.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements except
PARAMETER statements. Any specification statement that specifies
the type of a symbolic constant must precede the PARAMETER state-
ment that defines that particular symbolic constant; the PARAMETER
statement must precede all other statements containing the symbolic
constants that are defined in the PARAMETER statement.

ENTRY statements may appear anywhere except between a block IF
statement and its corresponding END IF statement, or between a DO
statement and the terminal statement of its DO-loop.

The last line of a program unit must be an END statement.

All statement function statements must precede all executable state-
ments.

102 Chapter 8

8.4 Names

In Fortran various items are identified by names chosen by the pro-
grammer. In standard Fortran 77 a name is a string of up to six
alphanumeric characters of which the first must be alphabetic. Some-
times the first character has special significance (see section 9.3.1).
Spaces normally have no significance in Fortran programs and so,
for example, the following names are identical:

NAME1
N AME1
NAME 1

In Parallel Fortran symbolic names may include up to 31 alphanu-
meric characters, all of which are significant; and may include the
characters ‘§$’ and ‘_’, though not initially.

In general, a name has only one meaning within a program unit.
The same name used in diflerent program units does not in general
refer to the same object except when it refers to a subprogram or
common block name. There are three exceptions to these rules:

1. A common block name may also be a variable, array or state-
ment function name.

2. A function subprogram name must also be a variable name
within the function subprogram (see section 14.1).

3. The name of a variable used as the DO-variable of an implied-DO
in a DATA statement may have any other meaning outside the
implied-DO list.

Note: The term symbolic name is sometimes used instead of name.

Chapter 9

Data

This chapter is concerned only with the organisation of data in
a Fortran program. The three permissible types of data are de-
scribed, together with the possible methods of data specification.
Data storage and input/output are described in chapters 10 and 16

respectively.

9.1 Data Values and Types

Values in Fortran can be classified as follows:

1. Arithmetic values. These can be further subdivided into:

o Integer values, which are whole numbers. Such values are
said to be of type integer and are held exactly in fixed
point form in store.

e Real values, which are numbers expressed as decimal frac-
tions with exponents. Such values are said to be of type
real and are held approximately in floating-point form in
store.

104

Chapter 9

o Double precision values, which are numbers held in the
same form as real values but to a greater precision.

o Complez values, representing complex numbers. Such
values are said to be of type complex and are held in
store as a pair of real values, the first representing the
real part and the second representing the imaginary part.

e In Parallel Fortran, double complex values, which are
complex numbers each part of which is held as a double
precision number.

2. Logical values, representing the values true or false. Such val-

ues are said to be of type logical.

Character values, representing strings of characters. Such val-
ues are said to be of type character, and their length is under
the control of the programmer. In Parallel Fortran the length
of character variables, array elements, or constants may be
from 1 to 32767 characters.

9.2 Constants, Variables, and Arrays

Values can be made available for use in calculations in one of five

ways:

1. As a constant value which can be written at the point in the

program at which it is required (see section 9.2.1).

As a symbolic constant which has previously been named
and defined with a value in a PARAMETER statement (sce sec-
tion 9.3.6).

In a variable. This is a named area of storage which can
contain one item of data of a particular type, the type being
determined by the variable name (see section 9.2.3) or by a
type specification statement (see section 9.3).

Data 105

4. In an array. This is a named area of storage which can contain
a set of items of data of a particular type, the type being deter-
mined by the array name or by a type specification statement
(see section 9.3). Each item of data within the set is called an
array element (see section 9.2.4).

5. In a character substring. This is an unbroken portion of a
variable or array element of type character (see section 9.2.5).

Variables, arrays, and array elements may be assigned initial values
by use of DATA statements (see section 10.3.1) and may be assigned
new values during the execution of the program.

9.2.1 Constants

There are six types of constant that can be used in standard For-
tran: integer, real, double precision, complex, logical, and character.
Integer, real, double precision, and complex constants are grouped
together as arithmetic constants. Parallel Fortran adds another type
of arithmetic constant, double complex.

9.2.1.1 Integer Constants

An integer constant is an optionally signed whole number written
as a string of digits with no decimal points or exponents. Unsigned
integer constants are assumed to be positive.

9.2.1.2 Real Constants

Real constants are numbers written containing a decimal point, an
exponent or both. They may be signed or unsigned. If they arc
unsigned they are assumed to be positive. Erponents are written as
the letter ‘E’ followed by a signed or unsigned integer. The integer
represents a power of ten to which the constant is to be raised.

106 Chapter 9

Thus real constants may take any of the following forms:

+n.m tn.mE+a

+n. +nEta

+.m +.mE+ta
tnE+a

where n, m, and a are strings of digits, and + is an optional sign,
‘4 or ‘-,

9.2.1.3 Double Precision Constants

Double precision constants are numbers written containing an op-
tional decimal point and an exponent. They may be signed or
unsigned. If they are unsigned they are assumed to be positive.
Exponents are written as the letter ‘D’ followed by a signed or un-
signed integer. The integer represents the power of ten to which the
constant is to be raised. Double precision constants take any of the
following forms:

tn.mDta

inDta

+t.mDta

tnDta

where n, m, and a are strings of digits, and £ is an optional sign,
‘4 or ‘-7,

9.2.1.4 Complex Constants

Compler constants are pairs of real or integer constants; the first
constant corresponds to the real part of a complex number and the
second corresponds to the imaginary part. Complex constants have
the form (a,b), where a and b are constants and (a,b) represents
the complex number a + tb. The form -(a,b) is not a valid complex
constant, and would have to be written (-a,-b).

Data 107

9.2.1.5 Double Complex Constants

A double complez constant is a complex number each part of which is
held as a double precision number. It has the same form as a complex
constant except that a and b are double precision constants.

Double complex constants are not available in standard Fortran.

9.2.1.6 Logical Constants

There are two logical constants, representing the values true and
false. They have these forms:

.TRUE.
.FALSE.

9.2.1.7 Hollerith Constants

In Parallel Fortran Hollerith constants may be used for data ini-
tialisation in DATA statements and in the argument list of a CALL
statement. In DATA statements, non-character variables and array
elements may be initialised by Hollerith constants and each constant
must have a length which is less than or equal to the length of the
item. If the constant is shorter than the item, it is extended on the
right with blanks.

Variables and array elements which are not of type character may
alternatively be assigned Hollerith data by using the Aw edit descrip-
tor in a formatted READ statement (see chapter 15). This facility
is an extension to the ANSI Standard. The Aw edit descriptor may
also be used to output variables and array elements which contain
Hollerith data. Non-character arrays are also permitted in Parallel
Fortran to define a format specification; see section 15.2.2 for further
information and section 15.4 for examples.

108 Chapter 9

An actual argument in a subroutine reference may be a Hollerith con-
stant. The corresponding dummy argument must be of type integer,
real, double precision, or logical. If the length of the constant is one
to four bytes then a four byte argument is passed (blank characters
being added to the right if necessary). If the length of the constant
is five to eight bytes then an eight byte constant is passed.

Hollerith constants are not allowed in the ANSI Standard; they are
not compatible with variables or array elements of type character
and they may not be used to initialise, or assign new values to, such
variables.

9.2.1.8 Hexadecimal Constants

In Parallel Fortran hezadecimal constants may be used to initialise
logical, integer, byte or real variables. Two forms of the constant are
supported:

X’ value’
Yvalue’X

where value is a sequence of hexadecimal digits (0-9, A—F).

Hexadecimal constants may only appear in DATA statements, or in
the special form of type statement which allows data initialisation
(see section 10.3.1.8). They may not be used in executable state-
ments.

9.2.1.9 Octal Constants

Octal constants may be used to initialise logical, integer, byte or real
variables. Use of these constants is restricted to DATA statements and
the special form of type statement which allows data initialisation
(see section 10.3.1.8). The form of an octal constant is:

0’ value’

Data 109

where value is a string of octal digits (0-7).

Octal constants are not allowed in the ANSI standard.

9.2.1.10 Binary Constants

Binary constants may be used to initialise logical, integer, byte or
real variables. The form of a binary constant is:

B’ value’

where value is a string of binary digits (0, 1). Binary constants are
not allowed in the ANSI Standard, and they may not appear in an
executable statement. Their use is restricted to DATA statements and
the special form of type statement which allows data initialisation
(see section 10.3.1.8).

9.2.1.11 Character Constants

A character constant is a non-empty string of any characters, de-
limited by being enclosed in apostrophes ¢’ ’. In Parallel Fortran a
character constant may alternatively be enclosed in double quotes

‘N

If a string enclosed in apostrophes itself contains an apostrophe, this
must be represented by two apostrophes to distinguish it from a
delimiting apostrophe. In Parallel Fortran the same applies when a
string is delimited by double quotes; if another double quote appears
in the string it must be repeated. But if a string is delimited by
one sort of marker, then the other can appear in the string without
needing to be repeated. The backslash escape character ¢\’ described
below provides another mechanism to allow embedding quotes in
strings.

The length of a character constant is the number of characters which
appear between the delimiting apostrophes or quotes, except that

110 Chapter 9

each pair of consecutive apostrophes or quotes counts as a single
character.

The following are examples of valid character constants:

’c(1)=’
MUSTARD AND CRESS’
PISN’’T?

Using the alternative double quote in Parallel Fortran, the following
would be valid character constants:

"RADIUS ="
“ISN’T"

For compatability with C usage, the backslash ‘\’ is allowed in Par-
allel Fortran as an escape character. It denotes that the following
character in the string has a significance which is not normally as-
sociated with the character. The effect is to ignore the backslash
character, and either substitute an alternative value for the following
character or to interpret the character as a quoted value. The escape
characters recognised, and their effects are as follows:

Escape Character Effect

\n newline

\t tab

\b backspace

\f form feed

\o null

\’ apostrophe (does not terminate a string)
\" double quote (docs not terminate a string)
\\ backslash

\z z, where z is any other character

For example,
YISN\’T’

is a valid string.

Data 111

The backslash is not counted in the length of the string.

9.2.2 Symbolic Constants

A symbolic constant is a constant value that is identified by a name
(see section 8.4). The value associated with the symbolic constant
is defined in a PARAMETER statement (see section 9.3.6) which must
appear before any use is made of the name to represent a value. The
type of a symbolic constant is determined in the same way as for a
variable (see section 9.2.3 and section 9.3).

9.2.3 Variables

A variable is an item of data that is identified by a name (see sec-
tion 8.4). Values can be assigned to variables during the execution
of a program. The value assigned to a variable at any time is made
available to the program when a reference is made to the variable
name.

In general, a particular variable will be available in only one program
unit. A name used for a variable in one program unit may be used
for an entirely different variable in another program unit.

There are six types of variables in standard Fortran 77: integer, real,
double precision, complex, logical, and character. Parallel Fortran
adds two more: byte and double complex. The ranges of values
these types can take are the same as for the corresponding types of
constants (see section 9.2.1) with the following exceptions.

e Real, double precision and complex arithmetic may result in
special values as defined by the IEEE standard for floating
point numbers[9] (see section 11.1.10).

o Byte variables have integer values, but these values must be in
the range —128 to +127.

112 Chapter 9

If the name chosen for a variable begins with one of the letters ‘I’
to ‘N’ inclusive, then the variable will be assumed to be of type
integer. Otherwise it will be assumed to be of type real. How-
ever, the programmer can override this convention by specifying, in
a type specification statement, the type the variable is to be (sec
section 9.3).

For example, variables with names such as INT, LIST, NUMBER or J322
would be assumed to be of type integer unless otherwise specified.
Variables with names such as AREA, SUM or R147 would be assumed
to be of type real unless otherwise specified.

This method of defining the types of variables can result in small
coding errors creating unwanted variables, which can be hard to track
down. For this reason, the Parallel Fortran compiler can be invoked
with the /U switch. This stops variables from being defined in this
automatic way, and obliges the programmer to define all variables
explicitly. See section 9.3 below for a further discussion. of this.

9.2.4 Arrays

Sets of data items of the same type can be processed as arrays.
A single name, the array name, is chosen to identify the set, and
individual items are called the array elements (see section 8.4 for
further details concerning names). Arrays may have one or more
dimensions. For example, the matrix A:

A(1,1) A(1,2) A(1,3) A(1,4)
A(2,1) A(2,2) A(2,3) A2,

could be treated as a two-dimensional array with eight clements.
Arrays may have up to seven dimensions.

There are six types of arrays in standard Fortran 77: integer, real,
double precision, complex, logical, and character. Parallel Fortran
adds two more: byte and double complex. The type of an array
is determined in the same way as the type of a variable, and each
element of the array has this same type.

Data 113

In some contexts an array may be referred to as a whole by spec-
ifying the array name. In other contexts individual elements may
be referred to by an array element reference which takes the form of
the array name followed by a subscript list enclosed in parentheses.
A subscript list is an ordered set of subscript expressions separated
by commas, one subscript expression for each dimension of the ar-
ray. A subscript ezpression may be an arithmetic expression (see
chapter 11) which in standard Fortran must be of type integer. In
Parallel Fortran, however, subscript expressions may also be of type
real.

The compiler allocates storage to the array as instructed by an ar-
ray declarator (see section 10.2.2). The array declarator and the
subscript expressions given in the array element reference are used
to calculate the position in store that is occupied by the specified
element. The order in which array elements are held in store is
specified in section 10.1.2.

Each subscript expression, when evaluated, must have a value within
the declared bounds for that subscript.

The following are examples of valid array element references, with
explanations:

TABLE(7) Element (7) of the one dimensional array TABLE

MAT(I,I+1) If I is an integer variable with the value 7, this refer-
ence is to element (7,8) of the two-dimensional array
MAT.

VECTOR(IFUN(J,3))
If IFUN is an integer external function or statement
function requiring two actual arguments and VECTOR is
a one dimensional array, then the function is evaluated
to give the array element required.

114 Chapter 9
9.2.5 Character Substrings

A character substring is an unbroken portion of a character scalar or
array element and is a variable of type character. It may be assigned
values and referenced, and is identified by a substring name in one
of these forms:

c(p,:p;)
alky,kz,...)(p,:p;)

where:

c is a character variable name.

a(kl ik2n-~-)
is a character array element name.

p; and p, are integer expressions and are known as substring ez-
pressions.

The value p, specifies the leftmost character position of the sub-
string, and p, specifies the rightmost character position. The values
of p, and p, must be such that

1<p<p2<s

where s is the length of the character variable ¢ or the array element
a(ky,kz,...). If p; is omitted then the value of 1 is assumed, and
if p, is omitted then the value of s is assumed; both p, and p, may
be omitted.

9.3 Type Specification

In Fortran all constants, symbolic constants, variables, arrays and
functions must be identified as being of particular types so that they
can be stored and processed correctly. The type of a constant is
indicated by the way the constant is written. The type of a symbolic

Data 115

constant, variable, array, or function may be defined in any of three
ways:

1. Predefined specification
2. IMPLICIT specification
3. Explicit specification statements

Explicit statements override IMPLICIT specifications, which in turn
override predefined specifications.

9.3.1 Predefined Specification

Any symbolic constants, variables, arrays or functions whose names
are not mentioned in a type specification statement and whose initial
letter is not mentioned in an IMPLICIT statement (see section 9.3.2)
will be assumed to be of type integer or real according to the follow-
ing rules:

o If the name of the symbolic constant, variable, array or func-
tion begins with one of the letters I, J, K, L, M or N the compiler
assumes the symbolic constant, variable, array, or function to
be of type integer.

e If the name begins with any other letter the quantity is as-
sumed to be of type real.

Some examples of predefined type variable names are given in sec-
tion 9.2.3.

Parallel Fortran has a compile-time switch /U which stops the com-
piler from predefining the types of symbolic constants, variables,
arrays or functions in this way. When a program is compiled with
this switch, everything must be defined with the IMPLICIT statement
or one of the explicit type specification statements, as described next.

116 Chapter 9
9.3.2 The IMPLICIT Statement

The IMPLICIT statement provides a means of overriding the For-
tran convention of predefined specification for the types of symbolic
constants, variables, arrays and functions. This takes effect for the
whole of the current program unit unless overridden by explicit type
statements. The statement takes the form:

IMPLICIT type,(a1,62,...),...,type,(Gm,an,...)

where:

type; is one of: INTEGER, BYTE, REAL, DOUBLE PRECISION,
LOGICAL, COMPLEX, DOUBLE COMPLEX, or CHARACTER*s.

a1,a2,...and a,,,a5,...
are lists of single alphabetic characters separated by
commas, or a range of alphabetic characters in se-
quence, separated by a minus sign. The same letter
may not appear singly, or within a range of characters,
more than once in a subprogram.

s is the length of the character entities and is either
an unsigned, non-zero integer constant, or an integer
constant expression enclosed in parentheses and with
a positive value. s (together with the preceding *) is
optional and, if omitted, the length is one.

After this statement has been processed, all symbolic constants,
and variable, array or function names beginning with the charac-
ters aj,as,...are implicitly of type type, and all symbolic constants,
and variable, array or function names beginning with a,,,a,,...are
implicitly of type type, unless the specification is overridden by an
explicit specification statement.

A program unit may contain more than one IMPLICIT statement, but
IMPLICIT statements must precede all other specification statements
except PARAMETER statements. For a subprogram, IMPLICIT state-
ments can specify the type of the parameters to the subprogram, and

Data 117

of the function name for a function subprogram, unless their types
are specified in an explicit type specification statement.

Here are two examples of the IMPLICIT statement.

IMPLICIT REAL(A-D,X,Z),LOGICAL(L)

This statement specifies that all variables whose names begin with
A, B, C, D, X or Z that do not appear in explicit type statements
are to be real. Similarly all variables whose names begin with L are
assumed to be logical.

COMPLEX FUNCTION BACH(THEME,FUGUE)
IMPLICIT DOUBLE PRECISION(A-H)

The overall effect of these two statements is that the parameter
FUGUE will be of type double precision and the function BACH will
be of type complex. The parameter THEME is assumed to be type
real by virtue of its initial letter T.

9.3.3 The IMPLICIT NONE Statement

This statement, provided in Parallel Fortran, overrides all the prede-
fined type specification provisions of Fortran. If an IMPLICIT NONE
statement is included in a program unit then all the names in that
unit must have their type explicitly declared. A program unit that
includes an IMPLICIT NONE statement may not include any other
IMPLICIT statements.

9.3.4 The IMPLICIT UNDEFINED Statement

This statement, provided in Parallel Fortran, has similar effects to
IMPLICIT NONE. It has the form:

IMPLICIT UNDEFINED (a;-a2)

where a; and a;, are alphabetic characters. This statement overrides
the predefined typing mechanism for names beginning with the let-

118 Chapter 9

ters a; to a;. For example, variables with names beginning with the
letters I to N would normally, unless explicitly specified, be of type
integer. But the statement

IMPLICIT UNDEFINED(L-N)

overrides the automatic classification as integer for variables begin-
ning with the letters ‘L’, ‘W’, and ‘N’. If any variable names begin
with these letters, their types would have to be explicitly specified.

9.3.5 Explicit Type Specification Statements

Ezplicit type specification statements are used to confirm or override
the predefined or implicit type specification, and optionally to give
dimension information for arrays.

The appearance of the name of a symbolic constant, variable, array,
external function or statement function specifies the data type for
that name for all appearances in the program unit. Within a program
unit a name must not have its type explicitly specified more than
once. A type statement which confirms the type of an intrinsic
function (listed in appendix E) is permitted, but is not necessary.
The appearance of a generic function name (listed in appendix E)
(see section 14.1.2.1) in a type statement does not necessarily remove
the generic properties of that function. Explicit type specification
statements may also, in Parallel Fortran, assign initial values to data
items. This initialisation is defined in the same manner as for a DATA
statement (see sections 10.3.1 and 10.3.1.8).

9.3.5.1 Arithmetic and Logical Type Statements

These statements take the form:

type var, (dim;) ,vara (dim2) ... ,var,(dim,)

where:

Data 119

each type; isone of: INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, or, in Parallel Fortran, DOUBLE COMPLEX or
BYTE

each var; is a symbolic constant, variable, array, function or
dummy procedure name (see section 14.1).

each (dim;) is optional and gives dimension information for arrays
(see section 10.2.2).
Here are some examples of explicit type specifications statements.

REAL A,B(10),C,D

This statement declares A, C and D to be real, and B to be a real
array with 10 elements.

INTEGER FRED, JIM,UNCLES(5)

This statement declares the variables FRED and JIM, of type integer.
In addition, the integer array UNCLES is declared, which has five
elements.

DOUBLE PRECISION HEXNO,INTNO

This statement declares two double precision variables, HEXNO and
INTNO.

LOGICAL L,BOOLE
This statement declares two logical variables, L and BOOLE.

In Parallel Fortran the following data type specifications are also
allowed:

LOGICAL*4

INTEGER*4

REAL#4 REAL»*8
COMPLEX*8 COMPLEX*16

In each case, the number following the ‘¢’ indicates the number of
bytes allocated.

120 Chapter 9

9.3.5.2 The CHARACTER Type Statement

This statement is written:

CHARACTER#s var; (dim;)#*s;,var2(dim2)#*s2,... ,var,(dim,)*s,

where:

each var; is a symbolic constant, variable, array, function or
dummy procedure name (see section 14.1).

each (dim;) is optional and gives dimension information for arrays
(see section 10.1.2).

*s and each *s;
are optional length specifications (numbers of charac-
ters) of a character variable, character array element,
character symbolic constant, or character function.
Each s is one of the following;:

e An integer constant, in the range 1 to 32767;

e An integer constant expression enclosed in paren-
theses and with a positive value;

e An asterisk in parentheses.

A *s immediately following the word CHARACTER is the length speci-
fication for each entity in the specification not having one of its own.
A length specification immediately following an entity applies only to
that entity: for an array the length specification is for each element
of that array. If a length is not specified for an entity, its length is
one. If a length is specified for an entity declared in the statement,
the length specification must be a positive non-zero integer constant
expression, unless the entity is an external function, a dummy argu-
ment of an external subprogram or a character symbolic constant.

If a duinmy argument (see section 14.1) has a length ‘(*)’ declared,
the dummy argument assumes the length of the associated actual
argument for each reference of the subprogram. If the associated

Data 121

actual argument is an array name, the length assumed by the dummy
argument is the length of an array element in the associated actual
argument array.

If an external function has a length ‘(*)’ declared in a function sub-
program, the function name must appear as the name of a function
in a FUNCTION or ENTRY statement in the same subprogram. When
a reference to such a function is executed, the function assumes the
length specified in the referencing program unit.

The length specified for a character function in the program unit
that references the function must be an integer constant expression
and must agree with the length specified in the subprogram that
specifies the function. There is always agreement of length if ‘(*)’
is specified in the subprogram that specifies the function.

If a character symbolic constant has a length ‘(*)’ declared, the
symbolic constant assumes the length of its corresponding constant
expression in a PARAMETER statement.

The length specified for a character statement function or statement
function dummy argument of type character must be an integer
constant expression.

Example:
CHARACTER CHAR,BUFF*80

This statement declares two character variables BUFF and CHAR. CHAR
occupies one character (the default length) and BUFF occupies 80
characters.

9.3.6 The PARAMETER Statement

A PARAMETER statement is used to define the value of a symbolic
constant. The statement has the form:

PARAMETER (name,=ezpr,,namez=eipr,,... ,namep,=erpr,)

122 Chapter 9

where:

each name; is a symbolic constant name.

each ezpr; is a constant expression.

If name; is of type integer, real, double precision, complex, or double
complex, the corresponding ezpr; must be an arithmetic constant
expression. If name; is of type character or logical, the corresponding
ezpr; must be a character constant expression or a logical constant
expression respectively.

Each name; is the name of a symbolic constant that is defined by
the value of its corresponding ezpr; in accordance with the rules for
assignment statements (see chapter 12). No name may be defined
more than once in any program unit.

If any name is not to have the type specified implicitly then its
type must be specified by a type-statement (see section 9.3.5) or
an IMPLICIT statement (see section 9.3.2) before its appearance in a
PARAMETER statement. If the length specified for a symbolic constant
of type character is not the default length of one, then its length must
first be given in an IMPLICIT or type statement. Its length cannot
be changed subsequently.

Once a symbolic constant has been defined it may be used in any
subsequent statement in the same program unit as an element of
an expression or in a DATA statement, but not as part of a format
specification or as part of another constant.

Chapter 10

Storage of Data

This chapter deals with the storage of data. It describes how quan-
tities are held in store according to their type and then describes the
various non-executable statements concerned with allocating storage
and assigning initial values to variables.

Specification of type is described in chapter 9 and the order in which
the non-executable statements described in this chapter must occur
is given in section 8.3.5.

10.1 Storage Requirements

The standard unit of storage is a byte, which consists of 8 binary
digits. The amounts of storage required under Parallel Fortran by
the various types of data are defined below.

124 Chapter 10

10.1.1 Constants and Variables
10.1.1.1 Integer

An integer constant or variable occupies four bytes. An integer value
is held in twos complement form, and may range from —23! to 423! -
1, that is, from —2147483648 to +2147483647.

Some examples of valid integer constants are:

0 5678 2147483647
-2147483648 =255 -0
+0 +5678 +2147483647

10.1.1.2 Byte

A byte variable occupies 1 byte. The value held in a byte variable
must be an integer in the range —128 to +127. Byte variables are
an extension to the ANSI Standard.

10.1.1.3 Real

A real constant or variable occupies four bytes. A real value is
held as a normalised floating point number in accordance with
the IEEE floating point format (see IEEE Standard for Binary
Floating-Point Arithmetic[9]) and may range from +271%¢ to ap-
proximately +2+128 that is, approximately, from +1.1754945x 10~38
to +3.402823 x 10*38. Some examples of valid real constants are:

Storage of Data 125

1.23 -1.23 +1.23

0. .0001234 667744 .
1.23E2 +1.23E2 -1.23E2
123456 .ES 1.23E30 1.23E+33
1.23E+3 0.EO0 1.23E0
1.23E+03

-1.23E30 -1.23E10 +123E10
+123E10 123456789E-34 OEO

Also see section 9.2.1.2.

10.1.1.4 Double Precision

A double precision constant or variable occupies eight bytes. A dou-
ble precision value is held as a normalised floating point number in
accordance with the IEEE floating point format and may range from
4271022 g 4 21024 that is, approximately from +2.2250738 x 10~308
to +1.7976931 x 103%.

10.1.1.5 Complex

A complex number consists of a real part and an imaginary part.
(The word real, in the term real part, is not used in the sense of
section 9.2.1.2.)

A complex constant or variable occupies eight bytes. It consists
of either a pair of real (in the sense of section 9.2.1.2) constants,
or a pair of integer constants; the first of the pair is the real part
and occupies the first four bytes and the second is the imaginary
part which occupies the second four bytes. Some examples of valid
complex constants are:

(3.75,-2.100)
(0.,0.)
(-2.75E+2,7.1E-2)

126 Chapter 10
10.1.1.6 Double Complex

A double complex constant or variable occupies sixteen bytes. It
has the same form as a complex constant except that the real and
imaginary parts are double precision constants, as described in sec-
tion 9.2.1.3. This form of constant is an extension to the ANSI
Standard permitted by Parallel Fortran.

10.1.1.7 Logical

A logical constant or variable occupies four bytes.

10.1.1.8 Character

Each character in the character constant or variable occupies one
byte.

A character constant or variable may comprise from 1 to 32767
characters.

10.1.2 Arrays

Arrays can take the same types as variables. Each of the array
elements has the same type as the array and is allocated the standard
amount of storage for a variable of that type. The type of the array
depends on its name (see section 9.3) unless otherwise specified.

The number of dimensions of each array and their sizes must be
specified once, and only once, in a DIMENSION statcment, COMMON
statement (see sections 10.2.2 and 10.2.3 or an explicit type state-
ment (see section 9.3.5). Individual array clements may in general be
referred to by giving the array name and a list of subscript expres-
sions, one subscript expression for each dimension (see section 9.2.4).

Storage of Data 127

However, it is sometimes necessary for the programmer to know how
the elements of an array are arranged in store. They are stored
consecutively so that the left-hand subscript varies most rapidly and
successive subscripts vary less rapidly. For example, the following
two DIMENSION statements:

DIMENSION A(3,2)
DIMENSION B(2,3,4)

would result in the two arrays being stored as follows:
A(1,1) A(2,1) A(3,1) A(1,2) A(2,2) A(3,2)

B(1,1,1) B(2,1,1) B(1,2,1) B(2,2,1) B(1,3,1) B(2,3,1) B(1,1,2) .
B(2,1,2)

B(1,2,2) B(2,2,2) B(1,3,2) B(2,3,2) B(1,1,3) B(2,1,3) B(1,2,3)
B(2,2,3)

B(1,3,3) B(2,3,3) B(1,1,4) B(2,1,4) B(1,2,4) B(2,2,4) B(1,3,4)
B(2,3,4)

10.1.3 Character Storage

Characters may be held in a variable or array element of type char-
acter. Character values may be given to variables or array elements
in four ways:

1. By assigning a character value in a DATA statement (see sec-
tion 10.3.1);

2. By specifying a character constant as an actual argument of a
subroutine call or of a function reference;

3. By using an A format description in conjunction with a READ
statement (see section 15.3.1.7);

4. By specilying a character constant or expression on the right-
hand side of a character assignment statement.

128 Chapter 10

10.2 Allocation of Storage

10.2.1 General Considerations

This section discusses various statements used for storage allocation.

COMMON statements (see section 10.2.3) allow the same area of storage
to be accessed by a number of different program units. This allows
values assigned in one program unit to be used in other units.

EQUIVALENCE statements (see section 10.2.4) allow the same storage
space to be used for more than one variable or array within one
program unit.

DIMENSION statements (see section 10.2.2) are used for declaring
arrays (see also section 10.1.2).

10.2.1.1 Variables

It is not necessary to specify every variable name in a non-executable
statement in order that storage will be reserved for it. Variable
names may be mentioned in various non-executable statements but
this will always be for some purpose other than merely informing
the compiler of the existence of the variable. If a variable name is
not mentioned in a non-executable statement, when the name is first
encountered in an executable statement, the compiler will assume the
variable to be of the type given by its initial letter (see section 9.3.1)
and will implicitly allocate the amount of storage accordingly.

Note that the Parallel Fortran compiler can be invoked with a /U
switch if it is desired to stop storage being allocated automatically
in this way. If this is done, every variable name must have its type
defined with an IMPLICIT statement or an explicit type specification
statement. This can be useful in tracking down programming errors.

Storage of Data 129

10.2.1.2 Arrays

Arrays must be specifically defined so that the compiler is informed
of the number of dimensions and the size of each dimension. The
definition is given by means of an array declarator, whose form is
specified in section 10.2.2. Array declarators may be given in type
specification statements, COMMON statements and DIMENSION state-
ments, but a particular array declarator may only be given once in
each program unit. An array name on its own does not constitute an
array declarator and thus, for example, the array name on its own
could occur in a COMMON statement and a type specification statement
if the declarator were given in a DIMENSION statement.

10.2.2 The DIMENSION Statement

The DIMENSION statement is used to declare names as being array
names and to specify the number of dimensions of the array and the
size of each dimension, so that the appropriate amount of storage
can be allocated to the array. The statement has the form

DIMENSION aname;(dim;),aname;(dim;),...,aname, (dim,)

where:

each aname; is an array name.

each dim; defines the number of dimensions and the number of
elements in each dimension of the corresponding array.
Each dim; takes the form

liy:uy, lazua, ..., l:u,
where:
each [; and u;

are the lower and upper bounds of di-
mension 1.

130 Chapter 10

z specifies the number of dimensions, which
should be in the range 1 to 7.

The dimension bounds are arithmetic expressions in which all con-
stants, symbolic constants, and variables are of type integer. Integer
variables may appear in dimension bound expressions only for ad-
justable array specifications. A dimension bound expression must
not contain a function or array element reference. The upper dimen-
sion bound of the last dimension in an assumed size specification
may be an asterisk (see section 14.3.3.2).

The value of either bound may be positive, negative or zero provided
that the upper bound is not less than the lower bound. If the lower
bound is not specified it is assumed to have the value one. An upper
bound specified as an asterisk always has a value greater than or
equal to the lower bound.

Each aname;(dim;) is an array declarator. A declarator for each
array used in a program unit must be given once and only once in
that program unit, in either a DIMENSION statement, a type speci-
fication statement or a COMMON statement. A declarator appearing
in a COMMON statement may not contain dimension sizes specified by
integer variable names or an asterisk.

For example, the statement

DIMENSION A(10),B(1:600,0:9)

declares A as a one-dimensional array with ten elements and B as a
two-dimensional array, one dimension having 500 elements and the
other dimension having ten elements.

For compatibility with some other Fortran compilers, Parallel For-
tran also provides the VIRTUAL statement. This has exactly the same
syntax and effect as the DIMENSION statement.

Storage of Data 131

10.2.3 The COMMON Statement

The COMMON statement enables areas of storage, known as common
blocks, to be used in more than one program unit of a program. Thus,
values obtained in one program unit can be used in other program
units (see section 10.2.3.4).

The statement has the form:

COMMON /cbname;/a(d;),b(d2),...,/cbname;/c(d3),d(d,s),...

where:

each /cbname;/
is an optional parameter specifying a common block
name (see section 10.2.3.1 below).

a,b,... are variable or array names. In a subroutine or func-
tion these must not be dummy arguments (see sec-
tion 14.1). If any variable or array is of type character
then all variables and arrays in that common block are
required by the ANSI Standard to be also of type char-
acter. This restriction is relaxed by Parallel Fortran.

each (d;) is an optional parameter giving dimension information
for arrays.

An optional comma may appear after a list of variable or array names
and before the slash ¢/’ prefacing another common block name.

10.2.3.1 Common Block Names

Any number of common blocks may be used in a program. If desired,
one common block may be used without a name: such a block is
referred to as the blank common block. All other blocks must be
given a block name chosen to obey the rules for names, given in

132 Chapter 10

section 8.4. No intrinsic function name (see appendix E) may be used
as a common block name nor may the name of a constant or of any
program unit of the program be used. There are no other restrictions
on common block names (and thus duplication of variable and other
names by common block names is permissible).

If a blank common block is used, two consecutive slashes ‘//’ must
precede the names of variables and arrays in the block unless the
blank common block is the first block given in the COMMON statement,
in which case the two slashes may be omitted.

The same block name may appear more than once in a COMMON
statement or in a subprogram; see section 10.2.3.3 below.

Here are some examples of the use of the COMMON statement.

COMMON /BLOCK 1/VALUE,ARRAY/BLOCK 2/X,Y,Z

The variable VALUE and the array ARRAY are held in a common block
named BLOCK1, and variables X, Y, and Z are held in a common block
named BLOCK2. The dimensions of the array ARRAY must be declared
in a type statement or a DIMENSION statement, since they have not
been given in the COMMON statement.

COMMON COUNT,TABLE ,RESULT/AREA/SUB, ITEM
COMMON /AREA/SUB,ITEM//COUNT, TABLE ,RESULT

These two statements have the same eflect; COUNT, TABLE, RESULT
are held in the blank common block and SUB and ITEM are held in
common block AREA.

COMMON A,B(20)/COMM/D(40) ,E,1//X,Y,2

This statement declares the variables A, B, X, Y and Z to be in the
blank commeon block, and D.E,I to be in the block COMM. If later, the
statement

COMMON /COMM/A1,A2,A3(17)/0N/BA,BC

occurs, then the variables A1, A2, A3 are added to the end of block
COMM and a new block ON is created with variables BA, BC (see sec-
tion 10.2.3.3).

Storage of Data 133

10.2.3.2 Storage of Variables

The size of a common block is the sum of the storage required for
each element within it. Ilowever, program units which are to be
executed together must specify the same sizes for named common
blocks which they share. Variables are allocated consecutive units
of storage in the order in which they occur in the program.

10.2.3.3 Multiple References within a Program Unit

It is permissible for a common block name (or a reference to the blank
common block) to occur more than once in a COMMON statement or
in more than one COMMON statement in the same program unit. For
example, the statement

COMMON X,Y,CHECK/RESULT/A(10)//SUM,AREA/RESULT/B(10),C

is equivalent to the following two statements occurring in the same
program unit:

COMMON X,Y,CHECK/RESULT/A(10)
COMMON SUM, AREA/RESULT/B(10),C

Either of these examples will have the same effect as the statement
COMMON X,Y,CHECK,SUM,AREA/RESULT/A(10),B(10),C

That is, variable and array names are allocated to the common block
indicated in the order in which they occur in the program unit.

10.2.3.4 Using the COMMON Statement

The common block is an area of storage that will be used in more
than one program unit of the program. The name of the block must
appear in a COMMON statement in each program unit in which the
block is to be used. The names of the variables and arrays within

134 Chapter 10

the block may be the same in different program units, but need not
be. Thus if the two statements

COMMON X,Y,CHECK/RESULT/A(10)
COMMON XCOORD, YCOORD, CH/RESULT/ARRAY (10)

occurred in two different program units, the variables X, Y, CHECK
used in the first program unit would occupy the same storage area
as XCOORD, YCOORD and CH used in the second program unit. The
storage area is called the blank common block. Similarly A(10) in
the first program unit and ARRAY(10) in the second program unit
will share the storage area of common block RESULTS. Usually, the
variable and array names included in a given common block in one
program unit will correspond in number and type to those used in
all other program units in which the block is referenced.

For the initialisation of named common blocks, see section 10.3. For
the equivalencing of common items, see section 10.2.4.3.

10.2.4 The EQUIVALENCE Statement

The EQUIVALENCE statement enables variables and array elements of
the same or different types used in one program unit to share storage
space. Thus, the amount of storage used by a program unit can be
reduced. There is no mathematical equivalence, simply a sharing or
saving of space. The statement has the form

EQUIVALE"CE (01,02,63,...).... .(ﬂ],nz,ﬂa,...)

where a,,a2,a3,...,ny,... are variables, array elements, arrays or
character substrings. They must not be function names or dummy
arguments of functions or subroutines.

This statement causes all the elements of each list of variables, a; to
a,, and n, to n,; toshare the same storage area; that is, aj,a,,. .. ,a,,
will share one area and ny,n,,...,n,, will share another.

Storage of Data 135

The subscripts of an array element used in this statement must be
integer constant expressions and must correspond in number to the
dimensions of the array.

In Parallel Fortran you may express an element of a multidimensional
array in an EQUIVALENCE statement as a singly-subscripted reference,
provided that the missing subscripts have the default value one. The
compiler will assume a value of one for the missing subscripts.

10.2.4.1 Arrays in EQUIVALENCE Statement

Since array elements are stored in a fixed order, an equivalence
between two elements of different arrays effectively defines an equiv-
alence between other elements. It is important not to contradict
these equivalences by further EQUIVALENCE statements.

10.2.4.2 Equivalencing Items of Different Types or Length

Variables, arrays and array elements except of type character may be
equivalenced with other such items of different types, but wherever
one of the equivalenced items of type fypel is assigned a value of
type typel then the value of another item of type type2 that is
equivalenced to the first item becomes undefined and should not
be referred to in an expression until it has been assigned a value of

type type2.

If equivalenced items occupy different amounts of store (for example
if a real variable and a complex variable are equivalenced), the starts
of the items are aligned. For example, the statement

EQUIVALENCE(A,B)

where A is of type complex and B is of type real will cause B to share
the first four bytes of the storage allocated to A.

In standard Fortran an entity of type character may only be equiv-
alenced to another entity of type character. The lengths of the

136 Chapter 10

equivalenced entities do not need to be the same. In Parallel Fortran
entities of type character may be equivalenced to entities of any other

type.

10.2.4.3 Equivalencing Common Block Items

If one of the items given in the EQUIVALENCE statement appears in
a common block then none of the other items given in the same list
in the EQUIVALENCE statement may appear in the same or any other
common block in the program unit.

Since an array element may be equivalenced to a variable in common,
the implicit equivalencing of the rest of the array may extend the size
of the common area. Such lengthening of a common block can take
place only beyond the last entry in the block and not before the first
entry. For example, the following series of statements:

COMMON /BLOCK/A(10),B,C,I,J
DIMENSION TABLE(3,4),ARRAY(4,4)
EQUIVALENCE(A(1),TABLE(1,1))

would result in the 12 elements of TABLE sharing the common storage
area with the 10 elements of array A and the two variables B and C.
If the EQUIVALENCE statement were replaced by

EQUIVALENCE(A(1) ,ARRAY(1,1))

then ARRAY would share storage with A, B, C, I and J, and the
common block would be extended to hold the remaining elements
of ARRAY. The EQUIVALENCE statement could not validly be replaced
by

EQUIVALENCE (ARRAY(2,2),4(5))

since if this were implemented it would result in the common block
BLOCK being extended before the first item in the block. Element
ARRAY(2,2) is the sixth item of array ARRAY; if it were to be equiv-
alenced with A(5) then ARRAY(2,1) would by implication be equiv-
alenced with A(1) and the block would have to be extended before

Storage of Data 137

A(1) to give storage to ARRAY(1,1). This therefore is an invalid
EQUIVALENCE statement.

10.3 Assignment of Initial Values

Initial values may be assigned to variables, arrays, array elements
and substrings by using DATA statements. In Parallel Fortran initial
values may also be assigned by using a special form of the type
specification statement (see section 10.3.1.8).

Initial values may not be assigned to the dummy arguments of func-
tion or subroutine subprograms nor to a variable in a function sub-
program whose name is also the name of the subprogram or an entry
to the subprogram. If initial values are to be assigned to variables
or arrays that form part of a common block (or are equivalenced
to items in a common block), this must be done in the block data
subprogram (see section 10.3.2) and not in any of the other program
units in which the common block is used. Initial values may only be
assigned to named common blocks, and not to the blank common
block.

Initialisation is carried out when a program unit is loaded, and not
when control enters the program unit. Thus when a subroutine or
external function is to be entered several times it cannot be assumed
that the initial values apply on each occasion of entry.

In the case of character and logical values the type of a value must
be the same as that of the variable or array element to which it is
being assigned. For arithmetic values, the type of a value should be
the same as that of the variable or array element to which it is to be
assigned. However, the compiler will perform a conversion between
integer and real values if necessary.

In Parallel Fortran, as an extension to the standard language, integer
values may be assigned to character variables. See section 10.3.1.6.

138 Chapter 10

Another extension available in Parallel Fortran allows Iollerith con-
stants, character constants and binary, octal, or hexadecimal con-
stants to be used to initialise certain types of variables. See sec-
tion 10.3.1.2 for Hollerith constants, section 10.3.1.5 for character
constants and section 10.3.1.3 for the others.

10.3.1 The DATA Statement

The DATA statement has the form

DATA nlist,/vlist,/,nlista/vlista/,... ,nlist,/vlist,,/

where:

each nlist; is a list of names of variables, arrays, array elements
or substrings, and implied DO lists, separated by com-
mas. The comma after a slash ‘/’ and before a list is
optional.

each vlist; is a value list as described in section 10.3.1.1 below.

The values given in each vlist are assigned in order to the items given
in the corresponding nlist. When an array name appears in a nlist
it is treated as a list of all the elements of the array, in the order
given in section 10.1.2.

The number of items listed in each nlist (counting each array element
of any arrays named as one item) must be the same as the number
of initial values given in the associated vlist.

10.3.1.1 Value Lists
Values are given in the form of lists of items separated by commas:
these items may take either of the following forms:

val
rept*val

Storage of Data 139

where val is a constant or the symbolic name of a constant, and rept
is a non-zero unsigned integer constant or the symbolic name of such
a constant. The latter form is equivalent to specifying rept copies of
the constant val. Thus the list

1,3,4.975,.TRUE. ,4+8,3E-2
will have the same effect as the list

1,3,4.975,.TRUE.,8,8,8,8,3E-2

10.3.1.2 Hollerith Constants in Value Lists

In Parallel Fortran you may use Hollerith constants in value lists to
initialise variables of any type except character. A Hollerith constant
takes the form:

nHtext

where tezt is a string of characters of length n. text may contain
spaces and apostrophes. An example of a valid Hollerith constant
is:

7TH(F10.3)

A Hollerith constant used for initialisation must be of the same
length as, or shorter than, the variable being initialised.

10.3.1.3 Initialisation with Binary, Octal or Hexadecimal
Constants

In Parallel Fortran binary, octal, or hexadecimal constants can be
used to initialise logical, integer, or real variables. These constants
are indicated by a letter followed by a string in single quotes, where

B indicates a binary constant (digits 0 and 1)

0 indicates an octal constant (digits 0 to 7)

140 Chapter 10

ZorX indicates a hexadecimal constant (digits O to 9 and A
to F).

For hexadecimal constants, the string of digits may alternatively
precede the letter X, instead of following it.

For example, the following constants have the decimal values shown:

Constant Value
B?0001°’ 1
0’12’ 10
2’F’ 15
X’B’ or ’B’X 11

10.3.1.4 Implied-DO in a DATA Statement

The implied-DO list in a DATA statement has the form:

(dlist, imp = p,,p,,p;)

where:
dlist is a list of array element names and implied-DO lists.
tmp is the name of an integer variable, known as the

implied-DO-variable.

P1, P2 and p3
are integer constant expressions, except that the ex-

pressions may contain implied-DO-variables of other
implied-DO lists that have this implied-D0 list within
their ranges.

The range of an implied-DO list is the list dlist. An iteration count
and the values of the implied-D0-variable are found from p,, p, and
p3 as for a DO-loop (see section 13.3.1), except that the iteration
count must be positive. p; together with the preceding comma may
be omitted.

Storage of Data 141

When an implied-DO list appears in a DATA statement, the list items
of dlist are specified once for each iteration of the implied-DO list
with the appropriate substitution of values for any occurrence of the
implied-DO-variable imp. The appearance of an implied-DO-variable
in a DATA statement does not affect the definition of a variable of the
same name elsewhere in the same program unit.

Each subscript expression in the list dlist must be an integer con-
stant expression, except that the expression may contain implied-
DO-variables of implied-DO lists that have the subscript expression
within their ranges. For example:

DATA ((A(J,TI), I=1,J), J=1,5) / 15%0. /

10.3.1.5 Character Values

In standard Fortran, initialisation with character values is restricted
to variables and array elements of type character and character
substrings. Parallel Fortran allows character values to be used to
initialise any variable or array element.

Character values are held as strings of eight-bit characters. One byte
of storage will hold one character. If a character constant contains
fewer characters than the number required to fill the variable, array
element or substring to which it is being assigned as an initial value,
space characters will be added to the right-hand end of the string to
make the number of characters equal to the length of the variable,
array element or substring.

If a character constant contains more characters than the number
required to fill the variable, array element or substring to which it is
being assigned as an initial value, the surplus rightmost characters
in the constant are ignored. For example, the character constant

"HEAD’

could be assigned as an initial value to a character variable of length
4, and would fill it exactly. If the character constant

142 Chapter 10

>ARRAY_ELEMENTS’

were assigned as an initial value to an element of a CHARACTER#*8
array, the element would hold ‘ARRAY_EL’.

10.3.1.6 Integer Values in Character Variables

In Parallel Fortran, variables or array elements of type character are
not restricted to being assigned character values. As an extension to
the ANSI Standard, a single character in a variable or array element
may be initialised by any integer in the range 0 to 255.

For example, the value 135 could be assigned to a character variable
of length 1.

10.3.1.7 Examples of Initial Value Assignment

The effect of the statement
DATA 1/1/,3/1,3%0,1,3%2,1/

where J is a 3 x 3 array, is to assign to I the initial value 1, and to
assign to J the values:

100012221
The effect of the statement

DATA A,B,C,D/4+0.0/,HEAD/’VALUES’/

is to assign the initial value 0.0 to each of real variables A, B, C and D,
and to insert the characters ‘VALUES_,’ in the character*8 variable
HEAD.

10.3.1.8 Initialisation in a Type Statement

In Parallel Fortran, initial values may be assigned in a type specilfi-
cation statement (see section 9.3.5), in which case the valuc assigned

Storage of Data 143

to a variable, or the values assigned to the elements of an array, ap-
pear immediately after the name of the variable or array in question,
bounded by slashes ‘/’. Thus the example

REAL P1/3.14159/, ARRAY(10)/ 5#0.0, 5+1.0/

declares the variable PI and the array ARRAY to be of type real. It
also assigns PI the value 3.14159, assigns five of ARRAY’s ten elements
the value 0.0, and the other five the value 1.0.

10.3.2 Block Data Subprogram

Block data subprograms are used to give initial values to items in
named common blocks by means of DATA statements. A block data
subprogram must start with a BLOCK DATA statement and end with
an END statement and may only contain the following statements:

IMPLICIT

PARAMETER

Ezplicit type specification statements
DIMENSION

COMMON

EQUIVALENCE

DATA

A block data subprogram is never executed.

If variables and arrays from a common block are named in a COMMON
statement in a block data subprogram, then the total storage area
in the common block must be specified completely. For example, an
array must have its dimension information specified in the COMMON
statement or in a DIMENSION or a type statement in the subprogram,
even if it is not named in DATA statements.

If any part of a common block is being given an initial value then a
complete set of specification statements for the whole block must be
included belore any part is initialised. This means that DIMENSION,
COMMON, EQUIVALENCE and type specification statements must come
before DATA statements for each common block.

144 Chapter 10

A Fortran program may contain more than one block data subpro-
gram but any one common block can be referred to in only one block
data subprogram. Initial data values may be entered into more than
one common block in a single block data subprogram. Items in the
blank common block (see section 10.2.3.1) cannot be given initial
values.

The block data subprogram may be given an optional name, in
which case the name must not be the same as any local name in the
subprogram, nor the same as the name of any external procedure,
main program, common block or other block data subprogram in
the same executable program. There must not be more than one
unnamed block data subprogram in an executable program.

As an example, the following block data subprogram gives initial
values to some items of the common blocks CB1 and CB2. All the
items in each block are specified completely.

BLOCK DATA

REAL B(4)

DOUBLE PRECISION Z(3)

COMPLEX C

COMMON/CB1/C,A,B/CB2/Z,Y

DATA B,Z,C/1.0,1.2,2¢1.3,3¢7.654321D0,(2.4,3.76)/
END

Chapter 11

Expressions

In Fortran, expressions may be used in many different statements in a
variety of contexts. There are three kinds of expression: arithmetic
expressions, logical expressions and character expressions. Arith-
metic expressions have numerical values; logical expressions have
logical values; and character expressions have character values: this
chapter gives the rules for forming and evaluating these kinds of
expression.

11.1 Arithmetic Expressions

An arithmetic erpression is a sequence of arithmetic elements of
type integer, real, double precision, complex or double complex,
combined by arithmetic operators and parentheses. The type of an
arithmetic expression depends upon the types of its constituents; sce
section 11.1.6.

A byte variable, when included in an expression, is equivalent to an
integer element.

146 Chapter 11
11.1.1 Arithmetic Elements

An arithmetic element can be a numerical constant, an arithmetic
symbolic constant name, a variable name, an array element refer-
ence or a function reference (see section 14.2.1.1). For example, the
following are valid arithmetic elements:

TE23 VARI A(1,3) SIN(X)

The simplest arithmetic expression is one that consists of only one
arithmetic element: the expression is then of the same type as the
element. The term expression is used in this manual to include
elements as well as more complicated expressions.

11.1.2 Arithmetic Operators and Parentheses

Arithmetic operators are used to combine arithmetic elements or
other arithmetic expressions to give more complex arithmetic ex-
pressions. The arithmetic operators are:

Operator Meaning

+ Addition

- Subtraction or negation
* Multiplication

/ Division

ok Exponentiation

Some simple examples of arithmetic expressions using only one
operator are:

-A
A+B
A*xB Equivalent to the algebraic expression a x b or ab

AxxB Equivalent to the algebraic expression a®

Expressions 147

Parentheses are used to enclose arithmetic expressions which form
part of a more complex arithmetic expression. The parenthesized ex-
pressions are evaluated as separate entities; this usage of parentheses
is therefore equivalent to normal mathematical usage.

11.1.3 Rules
When writing arithmetic expressions, the following rules must be
observed:

1. Arithmetic elements must be separated by an arithmetic oper-
ator.

2. No two operators may be adjacent.

3. The operators ‘4’ and ‘-’ must be followed by an element:
the other operators must be both preceded and followed by
elements.

Thus the following are not valid arithmetic expressions:

A.B Rule 1: A multiplied by B must be written as ‘A*B’

Ax*-B Rule 2: A to the power -B must be written as ‘A**(-B)’

*B Rule 3: this on its own is meaningless, while ‘-B’ is
valid

11.1.4 Order of Evaluation

Arithmetic expressions are evaluated in general from the innermost
set of parentheses outwards. Within each set of parentheses or each
unparenthesized expression, the order of evaluation is from left to
right, except when the precedence of operators dictates otherwise.
This precedence is:

1. Function references

148 Chapter 11

2. Exponentiations
3. Multiplications and divisions
4. Additions and subtractions

This order of precedence determines the sequence of operations in the
evaluation of an expression. The first two operators are compared
and, if the first takes precedence over or is equal to the second,
then the first operation is performed. If the second takes precedence
over the first, the third operator is compared with the second and
so on. When the end of the expression is reached, any remaining
operations are performed, reading from right to left. For example, in
the expression A*B+C#D#xI the operations are performed as follows:

. A»B =E1 intermediate result E1+C#D%xI
2. Dx*xI =E2 intermediate result E1+C*E2
3. C*E2 =E3 intermediate result E1+E3

4. E1+4E3 =result final operation

1

If one exponentiation operator follows immediately after another,
the evaluation is from right to left. Thus A**B**C is evaluated as
follows:

1. Bx=*C =E1 intermediate result
2. AssE1 =result final operation

A series of multiplications and divisions is evaluated from left to
right. Under some circumstances this could lead to results that
are inaccurate owing to rounding errors or to a lack of precision
in the values of the elements in use. If such errors are possible, the
programmer may use parentheses to control the order of evaluation
so as to produce the most precise result.

Wlere part of an expression is contained within parentheses, that
part is evaluated first, and the result obtained is used in evaluation
of the expression as a whole. Where nested parentheses occur, that
part of the expression contained within the innermost set is evaluated
first.

Expressions 149

The sign of a signed quantity takes the same precedence as the
addition or subtraction sign. Thus

A =-B is treated as A = 0 - B
A = -BxC istreated as A = -(B*C)
A = -B+C istreatedas A = (-B) + C

11.1.5 Examples of Arithmetic Expressions

The expression

ARRAY (2,10)-C0S(Z) / (2+PI)

is evaluated as follows:

Cc0s(2) =E1 function reference
(2+PI) =E2 parenthesized expression
E1/E2 =E3 division

ARRAY(2,10)-E3 =result subtraction

The expression

A+B*C/D* (P-1)-3.0%*(Q+R)+2.0/X*#2

is evaluated as follows:

B*C =>E1
E1/D =>E2
P-1 =E3
E2+E3 =>E4
A+E4 =ES
Q+R =E6

3.0%xE6 =E7
ES5-E7 =E8
X*%2 =E9
2.0/E9 =E10
E8+E10 = result

Although the order in which expressions are evaluated in these ex-
amples may not be exactly that described, it will be mathematically

150 Chapter 11

equivalent. However, the order of evaluation implied by the presence
of parentheses will be followed.

11.1.6 Determination of the Type of an Expression

The value of an arithmetic expression can be of any of the standard
types integer, real, double precision, complex, or, in Parallel Fortran,
double complex. The evaluation of an expression is carried out in
simple steps (as in the example in section 11.1.5). The types of
the elements involved in each step determine the type of the value
produced by that step. The type of the final expression can be found
by following through the steps of the evaluation, noting the types of
the intermediate values at each stage.

Table 11.1 gives the type of an expression composed of two simpler
expressions of type A and type B. In standard Fortran, an expression
composed of a complex expression and a double precision expression
is prohibited. In Parallel Fortran, however, such an expression is
allowed. It will be of type double complex, as indicated in table 11.1.

As we noted above, a byte variable, when included in an expression,
is equivalent to an integer element. This means that an expression
including only byte variables will be of type integer.

11.1.7 Integer Arithmetic

The following special considerations apply when both the arguments
of an arithmetic operation are of type integer:

o A result of type integer is that integer obtained by truncating
the mathematical result towards zero:

15/4 =3 (3.75)

-15/4 = -3 (—3.75)
4*x(-1) =0 (0.25)

Expressions 151

e A series of multiplication and division operations on integer
quantities will always proceed from left to right.

11.1.8 Arithmetic Constant Expressions

An arithmetic constant expression may contain only arithmetic con-
stants and arithmetic symbolic constants. The exponentiation oper-
ator is not permitted unless the exponent is of type integer.

Arithmetic constant expressions may be used in PARAMETER or DATA
statements.

11.1.9 Integer Constant Expressions

An integer constant expression is an arithmetic constant expression
in which each constant or symbolic constant is of type integer.

Integer constant expressions may be used in PARAMETER statements,
as a character length or array bound specifier in a specification
statement or as an array element subscript or character substring
position expression in EQUIVALENCE or DATA statements.

11.1.10 Not-a-Number and Infinity

Arithmetic on real, double precision, complex or double complex con-
stants and variables may result in the special values NaN, 400 and
—oo (that is, Not-a-Number and Positive and Negative Infinity), in
the circumstances defined in the IEEE standard. This does not stop
the execution of the program, however, and subsequent processing
of these values continues in the way the IEEE standard specifies.

In addition, some of the intrinsic functions return these special val-
ues, in circumstances defined for the corresponding Inmos functions
by the Standalone Compiler Implementation Manual[13].

152 Chapter 11
Type of A

Type of B | Integer Real Double | Complex | *Double
precision complex

Integer Integer | Real Double | Complex | *Double
precision complex

Real Real Real Double | Complex | *Double
. precision complex

Double Double | Double | Double | *Double | *Double
precision precision | precision | precision | complex | complex
Complex Complex | Complex | *Double | Complex | *Double
complex complex

*Double *Double | *Double | *Double | *Double | *Double
complex complex | complex | complex | complex | complex

Table 11.1: Expression Types

Note: * = non-standard type

There is no method for representing NaN, +00 or —oo in a Fortran
program. See sections 15.3.1.2 and 15.3.1.3 for a description of how
these values are output.

11.2 Character Expressions

A character expression is a sequence of one or more character ele-
ments separated by character operators.

11.2.1 Character Elements

A character element can be a character constant, a character sym-
bolic constant name, a character variable name, a character array
element reference, a character substring reference or a character

Expressions 153

function reference. For example, the following are valid character
elements:

’SOME TEXT’
CVAR
NAME(I)

provided that CVAR has been specified as of type character and that
NAME has been specified as a one-dimensional array of type character,
or is a function of type character.

11.2.2 Character Operator and Parentheses

The concatenation operator, ‘//’, is a character operator that is used
to concatenate two character elements to produce a character string
of type character whose length is the sum of the lengths of the two
elements. Except in a character assignment statement, a character
expression must not concatenate a character element whose length
specification is an asterisk in parentheses unless the element is the
symbolic name of a constant. Parentheses may have a cosmetic effect
on a character expression but they do not affect the value found. For
example, the following two expressions:

*AN’//(’ AESTHETIC’//’ALLY’)
(’AN’//’AESTHETIC’)//’ALLY’

are ecquivalent, each producing

ANAESTHETICALLY’

11.3 Logical Expressions

A logical erpression is a sequence of logical elements and relational
expressions combined by logical operators and parentheses. The
value of a logical expression is always either .TRUE. or .FALSE.

154 Chapter 11
11.3.1 Logical Elements

A logical element is a constant, a symbolic constant, a variable, an
array element or a function reference of type logical (see section 9.1).
The value of a logical element must be either .TRUE. or .FALSE..
For example, the following are valid logical elements:

.TRUE. LVAR STATUS(1,3) 0K (B)

provided that LVAR has been specified as of type logical, that STATUS
has been specified as a two dimensional array of type logical, and that
OK is a function of type logical. The simplest logical expression is
one that consists of only one logical element.

11.3.2 Relational Expressions

A relational expression has the form
ezpr, relop expr,

where:

ezpr, and ezpr,
are both arithmetic expressions or are both character

expressions.
relop is one of the following relational operators:
Operator Meaning
.LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

The periods are essential.

Expressions 155

A complex or double complex operand is only permitted when the
relational operator is .EQ. or .NE.

If ezpr, and ezpr, are character expressions of different lengths then
the shorter operand is considered as if it were extended with blanks
on the right to the length of the longer operand.

If the relation indicated by the relational operator between the two
arithmetic expressions is true, then the value of the relational ex-
pression is .TRUE.. Similarly, if the relation is false, the value of the
expression is .FALSE.

A relational expression is equivalent to a logical element for the
purpose of constructing further logical expressions; it need not be
enclosed in parentheses.

11.3.3 Logical Operators and Parentheses

Logical operators are used to combine logical elements, relational
expressions or other logical expressions to give more complex logical
expressions. The logical operators are defined as follows, where ezpr,
and erpr, are logical expressions:

.NOT. ezpr, This expression has the value .TRUE. if ezpr; has the
value .FALSE. and has the value .FALSE. if expr, has
the value .TRUE.

expry .AND. expr,
This expression has the value .TRUE. if both ezpr, and
expr, have the value .TRUE.. It has the value .FALSE.
if either ezpr, or ezpr, or both have the value .FALSE.

ezpr, .OR. expr,
This expression has the value .TRUE. if either expr; or
expr, or both are .TRUE.. It has the value .FALSE. if
both ezpr, and ezpr, are .FALSE.

156 Chapter 11

expr, .EQV. ezxpr,
This expression has the value .TRUE. if a and b both
have the same value .TRUE. or .FALSE.. It has the
value .FALSE. if ezpr, and ezpr, have different truth
values.

ezpr, .NEQV. ezpr,
This expression has the value .TRUE. if ezpr; and
ezpr, do not both have the same value .TRUE. or
.FALSE.. It has the value .FALSE. if ezpr, and ezpr,
have the same truth value.

expr; .XOR. ezpr,y
This expression is available in Parallel Fortran as an al-
ternative to .NEQV.. It has the same values as .NEQV.
in the same circumstances.

The periods are essential.

Parentheses may be used to enclose logical expressions which form
part of more complex logical expressions. Their usage here is analo-
gous to their usage in arithmetic expressions. An expression enclosed
in parentheses must satisfy the rules given below.

11.3.4 Rules

When writing logical expressions, the following rules must be ob-
served:

1. If arithmetic expressions appear, they must be in pairs sepa-
rated by relational operators.

2. Logical elements (and relational expressions) must be sepa-
rated by logical operators.

3. No two logical operators may be adjacent unless the first is
one of .AND., .OR., .EQV., .NEQV., or .XOR. and the second
is .NOT.

Expressions 157

4. The logical operator .NOT. must be followed by, but must not
be preceded by, a logical element. The logical operators .AND.,
.OR., .EQV., .NEQV., and .XOR. must be preceded by a logical
element and must be followed either by a logical element or by
the operator .NOT.

Thus the following are not valid logical expressions:

A.AND.7.0 (Rule 1: A.AND.7.0.GT.B is valid if B is an arithmetic
element and A is of type logical)

A+C (Rule 2: A.AND.C is valid if A and C are of the type
logical. A+C is, of course, a valid arithmetic expression
if A and C are arithmetic elements)

A.AND..OR.C
(Rule 3: A.AND. .NOT.C is valid)

A.NOT.C (Rule 4: .NOT.C.AND.A.OR..NOT.D illustrates the var-
ious possible valid uses of operators)

11.3.5 Order of Evaluation

Logical expressions are in general evaluated starting at the inner-
most set of parentheses and working outwards. Within one set of
parentheses or within one expression the order of evaluation is as
follows:

1. Evaluation of functions

2. Exponentiation

3. Multiplication and division
4. Addition and subtraction
5. Relational expressions

6. .NOT. operations

158 Chapter 11

7. .AND. operations
8. .OR. operations
9. .EQV., .NEQV., or .XOR. operations

Rounding errors (see section 11.1.4) cannot occur with logical ex-
pressions since these may only take the values .TRUE. or .FALSE..

No more code than necessary is actually obeyed when evaluating an
expression. Some parts of a logical expression may not be evaluated
every time the expression occurs. In the following example

A.OR.LGF(.TRUE.)

the LGF function need not be called to evaluate the expression when
A has the value .TRUE.

11.3.6 Examples of Relational and Logical Expres-
sions

The expression

B*#2.GT.4.%AsC

is a relational expression. The arithmetic expressions are evaluated
as described in section 11.1.4. Then the relational operation is per-
formed. The resulting value will be .TRUE. or .FALSE.

The expression

JOB.EQ.3.AND.AGE.LT.18

is evaluated as follows:

JOB.EQ.3 =>E1
AGE.LT.18 =E2
E1.AND.E2 = resull

The expression

Expressions 159

A.OR.B.OR.C.AND. (P.OR.Q) .AND.(I.LT.1.0R.J.EQ.0)

is effectively evaluated as follows:

A.OR.B =E1
P.OR.Q =E2
C.AND.E2 =>E3
I.LT.1 =E4
J.EQ.O =E5
E4.0R.ES =E6
E3.AND.E6 =E7
E1.0R.E7 = result

However, certain stages are sometimes unnecessary. For example
in the above expression, if A is .TRUE. then the result is .TRUE.,
regardless of the values of the other variables. Similarly, if A, B and
C are all .FALSE., the result will always be .FALSE. too.

The order of evaluation in these examples may not be exactly as
shown, but will be logically equivalent.

160 Chapter 11

Chapter 12

Assignment Statements

Assignment statements are used in Fortran to assign new values
to variables or array elements, replacing any existing values. As-
signments are executable statements. There are three types of as-
signment statements: arithmetic assignment, logical assignment and
character assignment. The rules for forming assignment statements
are given in this chapter.

12.1 Arithmetic Assignment Statements

An arithmelic assignment statement is used to assign a new value
to a variable or an array element of type integer, real, double preci-
sion, complex, or in Parallel Fortran, byte or double complex. The
statement takes the form:

name = erpression
where:

name is the name of the variable or array element of type
integer, real, double precision, complex, or double com-
plex.

162 Chapter 12

ezpression is an arithmetic expression (see section 11.1).

When an assignment statement is encountered in a program the
expression part is evaluated and the resulting value is assigned to
the variable or array element with the name name. The variable or
array element then retains this value until it is assigned a new value.
Any previous value of the variable or array element is lost.

The variable or array element name need not be of the same type
as the expression. The expression is evaluated according to the
rules given in section 11.1 and the resulting value is assigned to the
variable or array element after any necessary type transformations
as indicated in table 12.1.

Some examples of arithmetic assignment statements follow:
VALUE = 38.765
COUNT = COUNT1
NEXT = ITEM(3,1)

MATRIX(7) = MATRIX(4+I) + MATRIX(3)
M = (2+M-1)/Q-M

12.2 Logical Assignment Statements

A logical assignment statement assigns a new value to a variable or
array element of type logical. The statement takes the form:

name = erpression
where:
name is the name of a logical variable or array element.
expression is a logical expression (see section 11.3).

When a logical assignment statement is encountered in a program,
the logical expression is evaluated and the resulting value is assigned
to the variable or array element with the name name. The variable

Assignment Statements 163

or array element then retains this value until it is assigned a new
value. Any previous value of the variable or array element is lost,

Some examples of logical assignment statements follow:

COURSE = .TRUE.

QUAD = B#*%2_GT.4#A»C

STATUS = PUPIL.AND.AGE.LT.21

RES = A.AND.(B.OR. (C.AND..NOT.D))

12.3 Character Assignment Statements

A character assignment stalement assigns a new value to a variable,
substring or array element of type character. The statement takes
the form:

name = ezpression

where:

name is the name of a character variable, substring or array
element.

erpression is a character expression (see section 11.2).

Note that no character position in name may be referenced in ez-
pression.

The variable, substring or array element need not be of the same
length as the character expression. If the expression is shorter, then
spaces are added to the right on assignment; but if the expression
is longer, then truncation will occur on the right. An example of a
character assignment statement is

CH = 'TEST DATA’

164 Chapter 12
Type of Expression
Type of | Integer Real or Complex
Name Double or *Double
precision complex
Integer Assign Fix and assign | Fix and assign
real part
*Byte Truncate and | Fix, truncate Fix, truncate
assign and assign and assign
real part
Real or Float and Assign Assign real
Double assign part
precision
Complex Float and Assign real Assign
or *Double | assign real part, zero
Complex part, zero imaginary part
imaginary part

Table 12.1: Assignment of Value to Variable or Array Element

* — Non-standard

o Truncate means extract the low-order eight bits of the integer
value. Should the high-order bit of these eight bits be set, the

value, once stored in the byte variable, will be negative.

e Float means convert the result to type real.

e Fir means truncate any fractional part towards zero and con-
vert the remaining value to integer. There will be an overflow

if the result is outside the range of integer values.

e Where real and double precision numbers of different lengths
are involved, as much precision is preserved as possible. If a
double precision value is assigned to a real variable or array
element name, then the value is truncated as necessary. If a
real value is assigned to a double precision variable or array

element name, then the mantissa is extended with zeros.

Chapter 13

Control Statements

Execution of a Fortran program begins at the first executable state-
ment of the main program. Subsequent statements are executed in
the order in which they occur until a control statement is encoun-
tered. Control statements are used to transfer control from one part
of a program to another. This chapter describes those statements
used for transferring control within a program unit. Statements used
to transfer control from one program unit to another are described
in chapter 14.

13.1 GO TO Statements

A GO TO statement is an executable statement that is used to transfer
control to another executable statement in the same program unit.
There are three types of GO TO statements: unconditional GO TO,
computed GO TO and assigned GO TO.

13.1.1 Unconditional GO TO

An unconditional GO TO statement has the form:

166 Chapter 13

GO TO label

where label is the label of the executable statement to which control
is to be transferred (see section 8.3.3).

Each time a GO TO statement of this form is encountered, control
is transferred to the statement with the label label. This statement
must be in the same program unit as the GO TO statement. The first
executable statement after the GO TO statement should be labelled
unless it is an ELSE IF, ELSE or END IF statement, otherwise control
can never reach it.

The following is an example of an unconditional GO TO statement:

GO TO 3

13.1.2 Computed GO TO

A computed GO TO statement transfers control to one of a list of
statements, depending upon the computed value of an expression.
The statement has the form:

GO TO (label, ,label;,... ,labely), iezpr

where:

each label; is the label of an executable statement in the same
program unit as the GO TO statement.

texpr is an integer expression: the preceding comma is op-
tional.

When a computed GO TO statement is encountered int should have
a value in the range 1 to n. If int has the value j, then control is
passed to the executable statement with label label;. The same label
may appear more than once in the list.

If int is not in the required range, then the next statement in se-
quence will be executed, as the GO TO statement has no effect.

Control Statements 167

An example of the use of a computed GO TO statement follows:

COUNT = 3

GO TO(14,21,20,15,20) ,COUNT

Control is transferred to the statement with label 20, the third label
in the list.

13.1.3 Assigned GO TO and ASSIGN Statements

An assigned GO TO statement transfers control to one of a list of
labelled executable statements depending on the value assigned, by
an ASSIGN statement, to an integer variable. The statement has one
of these forms:

GO TO snt, (labely ,label,,... ,label,)
GO TO int

where:

int is an integer variable.

each label; is thelabel of an executable statement in the same pro-
gram unit as the assigned GO TO statement. If present,
the bracketed list of labels must contain all those labels
that may be assigned to the variable.

The ASSIGN statement has the form:

ASSIGN label TO int

where:

label is the label of an executable statement in the same
program unit as the ASSIGN statement.

int is the integer variable to be used in an assigned GO TO

statement.

168 Chapter 13

Each time an assigned GO TO statement is encountered, control is
transferred to the statement with label label, where label is the value
last assigned to the variable int in an ASSIGN statement. If, when
the statement is encountered, the variable int has not been assigned
a value by an ASSIGN statement in the same program unit, then the
effect of the GO TO statement is unpredictable.

A variable may have, at different times, a statement label value
assigned by an ASSIGN statement or an integer value assigned in any
other way. An attempt to use a variable which has a statement label
value when an integer value is required, or vice versa, will have an
unpredictable effect. The label list when present enables the compiler
potentially to check that an appropriate label has been assigned.

For example, the statements

ASSIGN 57 TO MEANS
GO TO MEANS,(92,3,9999,57)

will result in a transfer of control from the GO TO statement to the
statement with label 67. If the GO TO statement were written

GO TO MEANS

the same result would be achieved.

13.2 1IF Statements

An IF statement allows the program to take different actions de-
pending on a particular condition. Thus an IF statement may have
one result the first time it is executed in a program and a different
result on a subsequent execution if the relevant condition has altered.
There are three types of IF statement: arithmetic IF, logical IF and
block IF.

Control Statements 169

13.2.1 Arithmetic IF

An arithmetic IF statement transfers control to one of three state-
ments depending on the value of an arithmetic expression. It has
the form:

IF (ezpr) label,,label; ,labely

where:

expr is an arithmetic expression of type integer, real or dou-
ble precision.

labely ,label; , labels

are the labels of executable statements in the same
program unit as the IF statement. The same label
may be used more than once.

The statement causes control to be transferred to the statement with
label label,, label; or label; depending on whether the value of the
expression is less than, equal to, or greater than zero respectively.

For example, the statement
IF(B+B-4.0#A+C) 100,101,102
would have the following effects:

e If B2 — 4 x A X C < 0, control is transferred to the statement
with label 100.

e If B2 = 4 x A X C, control is transferred to the statement with
label 101.

e IfB2—4x AXB >0, control is transferred to the statement
with label 102,

Note: As real expressions rarely evaluate exactly to zero, programs
should assume that the branch to label, will never be taken when
expr is real.

170 Chapter 13
13.2.2 Logical IF

The logical IF statement tests whether a logical expression has the
value .TRUE. or .FALSE.; if it has the value .TRUE. then a particular
executable statement included in the IF statement is executed. The
statement has the form:

IF (ezpr) slatement

where:

ezpr is a logical expression.

statement is any executable statement except a DO, block IF,
ELSE, ELSE IF, END IF, or END statement or another
logical IF statement.

If ezpr, when evaluated, has the value . TRUE., statement is executed;
if ezpr, when evaluated, has the value .FALSE., statement is not
executed. For example, if the statement

IF(B«B.LT.4.0%A+C) GO TO 100

is executed when B? < 4xAXC, control is transferred to the statement
with label 100. Otherwise the GO TO statement is ignored.

Some other examples of logical IF statements follow:

IF(SUM+TERM.GE.9E7 .OR.TERM.LT.1E-2) CALL CHECK
IF(COUNT.EQ.60) IF(COUNT1-14)26,27,28
IF(I.LT.0) I = -1

13.2.3 Block IF

A block IF statement is used with the END IF statement and op-
tionally with the ELSE and ELSE IF statements to control the exe-
cution of a block of consecutive executable statements. The block
of statements is divided into IF-blocks, ELSE-blocks and ELSE IF-
blocks. The block IF statement and IF-blocks, the ELSE statement

Control Statements 171

and ELSE-blocks, and the ELSE IF statement and ELSE IF-blocks
are described in sections 13.2.3.1, 13.2.3.2 and 13.2.3.3 respectively.
The END IF statement is described in section 13.2.3.4.

Every statement in an IF-block, an ELSE-block or an ELSE IF-block
has an IF-level. The IF-level of a statement s is n;—n,, where
n; is the number of block IF statements from the beginning of the
program unit down to and including s, and n; is the number of
END IF statements in the program unit down to but not including s.

The IF-level of every statement must be non-negative, the IF-level
of each block IF, ELSE, ELSE IF and END IF statement must be
positive: the IF-level of the END statement must be zero.

Figure 13.1 shows how IF-levels are assigned to statements.

13.2.3.1 The Block IF Statement and IF-blocks

The block IF statement has the form:

IF (expr) THEN
where ezpr is a logical expression.

An IF-block consists of all the executable statements following
the block IF statement down to but not including the next ELSE,
ELSE IF or END IF statement that has the same IF-level as the block
IF statement. An IF-block may be empty.

When the block IF statement is executed, ezpr is evaluated and if it
has the value .TRUE. then the IF-block is executed. If the IF-block
is empty and the value of expression is .TRUE. then control passes
to the next END IF statement at the same IF-level as the block IF
statement. If the value of ezpr is .FALSE. then control passes to the
next ELSE IF or END IF statement that has the same IF-level as the
block IF statement.

Control cannot be passed into an IF-block. If the last statement in
an IF-block does not pass control elsewhere then control passes to

172 Chapter 13

IF-level

0 .

1 IF (ezpr) THEN

1 .

1 IF-block

1 .

1 ELSE

1 .)
2 IF (ezpr) THEN

2 .

2 IF-block

2 .

2 ELSE IF (ezpr) THEN 3 ELSE-block
2 .

2 ELSE IF-block

2 .

2 END IF

1 .)
1 END IF

0

Figure 13.1: IF-levels of statements

the next END IF statement that has the same IF-level as the block
IF statement preceding the IF-block.

13.2.3.2 The ELSE Statement and ELSE-blocks

The ELSE statement has the form:

ELSE

An ELSE-block consists of all the executable statements following the
ELSE statement down to but not including the next END IF statement
that has the same IF-level as the ELSE statement. An ELSE-block
may be empty.

Control Statements 173

An END IF statement of the same IF-level as the ELSE statement
must be included before an ELSE IF or another ELSE statement of
the same IF-level.

Control cannot be passed into an ELSE-block. No reference may be
made to the statement label, if any, of the ELSE statement.

13.2.3.3 The ELSE IF Statement and ELSE IF-blocks

The ELSE IF statement has the form:

ELSE IF (expr) THEN
where ezpr is a logical expression.

An ELSE IF-block consists of all the executable statements following
the ELSE IF statement down to but not including the next ELSE,
ELSE IF or END IF statement that has the same IF-level as the
ELSE IF statement. An ELSE IF-block may be empty.

When the ELSE IF statement is executed, ezpr is evaluated and if it
has the value .TRUE. the ELSE IF-block is executed. If the ELSE IF-
block is empty and ezpr has the value .TRUE. then control passes to
the next END IF statement that has the same IF-level as the ELSE IF
statement. If the value of ezpr is .FALSE. then control passes to the
next ELSE, ELSE IF or END IF statement that has the same IF-level
as the ELSE IF statement.

Control cannot be passed into an ELSE IF-block. No reference may
be made to the statement label, if any, of the ELSE IF statement.

13.2.3.4 The END IF Statement

The END IF statement has the form:

END IF

174 Chapter 13

Each block IF statement must be matched by a separate END IF
statement.

13.3 DO Loops

A DO-loop is a series of statements that is to be executed several
times. It is headed by a DO statement which specifies the number
of times the loop is to be executed and also specifies the last state-
ment included in the loop. The range of a DO-loop is the series of
statements from the statement after the DO statement down to and
including the terminal statement. If a DO statement appears within
an IF-block, ELSE-block or ELSE IF-block, then the range of the
DO-loop must be wholly within that block.

13.3.1 DO Statements

The DO statement has the form:

DO label int = p,,p,,ps

where:

label is the label of the terminal statement (see section 13.3.3
below for further details).

int is the DO-variable.

P1 is the initial parameter.

P2 is the terminal parameter.

P3 is the incrementation parameter and may be omitted,

together with the preceding comma.

As an extension in Parallel Fortran, a DO-loop mnay terminate with
an END DO statement. In this case the label is omitted from the DO
statement.

Control Statements 175

The terminal statement must be in the same program unit as the
DO statement and must occur later in the program unit than the
DO statement. The DO-variable must be an integer, real or double
precision variable. The three parameters must all be integer, real or
double precision expressions. The incrementation parameter must
not be zero at the time of execution of the DO-loop. If the incre-
mentation parameter is omitted, it is assumed to have a value of
1.

When a DO statement is encountered in a program, the values of the
three parameters are calculated and, if necessary, converted accord-
ing to the rules given in section 12.1 to be of the same type as the
DO-variable.

The value of p, is assigned to the DO-variable and the iteration count
is found by evaluating this expression:

MAX(INT((p, - p, + p;)/p,;), 0)

If this count is non-zero then execution of the first statement in
the range of the DO-loop begins. When the terminal statement is
reached the DO-variable is incremented by p;. The iteration count
is decremented by one. If it is non-zero, control then returns to
the first statement in the range of the DO-loop. If it is zero, the
DO-statement is satisfied: the DO-variable retains its current value
and control passes to the next executable statement following the
terminal statement.

Variables and array elements used in the expressions for the parame-
ters p;, p, and p,, and the DO-variable int, may be referenced within
a DO-loop, but the value of int must not be altered by any statement
within the range of the DO statement. For example, in the series of
statements

SUMSQ = 0.0
SUM = 0.0
DO 27 J = 1,MAX,2
SUM = SUM + PART(J+1)

27 SUMSQ = SUMSQ + PART(J)*PART(J)

176 Chapter 13

the range of the DO statement is the two statements following it. The

effect of the sequence is to set SUM equal to PART(2) +PART(4)+...+PART(2+1),
where z is the greatest odd integer less than or equal to MAX, and to

set SUMSQ equal to the sum of the squares of PART(1) ,PART(3),... ,PART(:

Control may be transferred out of a DO-loop before the DO statement
is satisfied (for example, by use of a GO TO statement): in this case
the control variable retains its current value (see section 13.3.5).
Transfer into the range of a DO-loop from outside the range is for-
bidden in standard Fortran 77. However, Parallel Fortran allows
extended range DO-loops as an extension to the language. A control
statement may be used to transfer control out of the range of the
loop. A subsequent control statement may then transfer control back
into the range of the same D0-loop. The value of the DO variable must
not be changed outside the range of the D0O-loop.

Execution of a function reference or a CALL statement that appears
within the range of a DO-loop is permitted. If control is returned
from the subprogram by means of an extended form of the RETURN
statement (see section 14.2.2.2) to a statement not in the range of
the DO-loop, then control cannot be transferred into the range of the
DO-loop.

13.3.2 The DO WHILE Statement

DO WHILE is an alternative form of the DO statement available under
Parallel Fortran. It has the form:

DO label WHILE (ezpr)

where:
label is the label of the terminal statement.
expr is a logical expression.

The DO-loop is repeated for as long as expr has the value .TRUE..
For example,

Control Statements 177

X=0
Y =121
DO 1001 WHILE (X.LE.Y)

1001 X =X + 2

would execute the DO WHILE loop 61 times, until X was greater than
Y. The value of the logical expression is checked on the first pass as
well as on later ones, so that if expression has the value .FALSE. to
start with then the DO WHILE-loop would not be executed at all. If
no label is included, the DO WHILE loop must end with an END DO
statement.

13.3.3 Terminal Statements

The range of a DO-loop consists of all the executable statements
following a DO statement up to and including the terminal statement
which is identified by the label in the DO statement. More than one
DO-loop may share the same terminal statement.

The terminal statement must not be any of the following statements:
e Unconditional GO TO
e Assigned GO TO
o RETURN
e STOP
e DO
e Arithmetic IF
e Block IF
e ELSE

e ELSE IF

178 Chapter 13

e END IF
e END

e Logical IF containing any one of the following:

- DO

— Block IF

~ ELSE

— ELSE IF

— END IF

— END

— Another logical IF

A labelled CONTINUE statement may be used as the terminal state-
ment to overcome this restriction (see section 13.4).

In Parallel Fortran, an END DO statement may be used instead of a
labelled statement to terminate a DO-loop. Thus

SUMSQ = 0.0

SUM = 0.0

DO J = 1,MAX,2

SUM = SUM + PART(J+1)

SUMSQ = SUMSQ + PART(J)sPART(J)
END DO

would have the same effect as in the example in section 13.3.1.

13.3.4 Nested DO-Loops

The statements included in the range of a DO statement may include
other DO statements; the DO-loops are then said to be nested. In a
system of nested DO-loops, the range of any inner DO statement must
be completely contained in the range of any outer DO statements.
However, DO statements may share a terminal statement. If two or

Control Statements 179

more DO statements share the same terminal statement then the DO-
variable for any outer DO is not increased and tested until all inner
DOs are satisfied.

For example the sequence of statements

DIMENSION A(10,10),B(10,10),C(10,10)
DO 20 J = 1,10
DO 20 I = 1,10

20 C(I,J) = A(1,1)+B(L,))

forms the elements of array C by adding together the correspond-
ing elements of arrays A and B. When the first DO statement is
encountered J is set equal to 1. Then the second DO statement is
encountered, and the inner DO-loop is performed with J equal to 1
and I varying from 1 up to 10. Only after that is J increased to 2.

13.3.5 Transfer of Control in DO-Loops

Any transfers of control may occur within the range of a DO statement
except that, if a statement is the terminal statement for more than
one DO statement, then control can be transferred to it only from
the range of the innermost DO having that terminal statement. A
CONTINUE statement (see section 13.4) may be used to overcome this
restriction.

Any transfers of control from inside to outside a DO-loop are allowed.
The DO-variable retains its current value.

For example, the sequence of statements

SUM = 0.0

DO 25 J = 1,100

IF (A(J).GT.50)G0 TO 80
25 SUM = SUM + A(J)

80 statement

forms the sum of the elements of an array, except that if any element
is greater than 50, control passes to statement 80 outside the DO-loop.

180 Chapter 13

13.4 The CONTINUE Statement

The CONTINUE statement is a dummy statement and causes no action.
It has the form

CONTINUE

This statement is most often used to give distinct terminal state-
ments to a nest of DO-loops. It is also useful for avoiding the state-
ments forbidden in section 13.3.3.

For example, in the sequence of statements

I=0
DO 200 I = 5, 100, 6
Y = A(L,1)
IF(Y.LT.0.0)GO TO 200
I=X+Y
DO 300 J = 2, 150

300 X =X+ A(L,))

200 CONTINUE

the CONTINUE statement is necessary to allow the IF statement to
transfer control to the terminal statement of the outer loop without
also transferring control to the terminal statement of the inner loop.

13.5 STOP Statements

A STOP statement terminates the execution of the program. It has
one of the following forms:

STOP
STOP n
STOP ’message’

where:

n is a string of one to five digits.

message is a literal constant enclosed in apostrophes.

Control Statements 181

When a STOP statement is encountered in a program, no further
statements are executed, and the run is terminated. If the second
or third varieties of STOP is used, a message in one of the following
formats is output:

STOP n
STOP message

Important Notes

e The STOP statement should not be executed in a subrou-
tine which has been invoked in a subsidiary thread, via
F77_THREAD_START or F77_THREAD_CREATE. Any attempt to
do so may result in a condition handling error (see sec-
tion 17.6.4.4). In these conditions, use the F77_THREAD_STOP
subroutine instead, to stop the current thread only.

e STOP counts as an input-output statement. This means that
when there is more than one thread running in a task, a thread
must gain control of the run-time library before executing a
STOP, by calling the F77_THREAD_USE_RTL subroutine (see sec-
tion 18.2.3).

13.6 PAUSE Statements

A PAUSE statement causes the program to output a message, and
then continue. The statement has one of the following forms:

PAUSE
PAUSE n
PAUSE ’message’

where:

n is a string of 1 to 5 decimal digits.

message is a literal constant enclosed in apostrophes.

182

Chapter 13

Execution of this statement causes a message of one of the following
forms to be reported to the user:

PAUSE
PAUSE n
PAUSE message

After this, the following message will be output:

Type GO to resume execution, any other input will terminate
the job

The user may then decide whether to terminate the run or to go
back to executing the program.

Important Notes

o The PAUSE statement should not be executed in a subrou-

tine which has been invoked in a subsidiary thread, via
F77_THREAD_START or F77_THREAD_CREATE. This is because if
the user terminates the job by typing something other than GO,
there will be a condition handling error (see section 17.6.4.4).

PAUSE counts as an input-output statement. This means that
when there is more than one thread running in a task, a thread
must gain control of the run-time library before executing a
PAUSE, by calling the F77_THREAD_USE_RTL subroutine (see
section 18.2.3).

If you attempt to link a program which uses the PAUSE
statement against one of the stand-alone run-time libraries
safrtlt4.bin or safrtlt8.bin (sce section 5.3), the linker
will report an error.

Chapter 14

Program Units and the
Transfer of Control

As described in chapter 8 a program is made up of program units: one
main program and, possibly, other program units called subprograms.
The block data subprogram, described in section 10.3.2, contains
only non-executable statements and control never enters it. The
remaining subprograms, called procedures, are described below in
section 14.1. Section 14.2 describes the transfer of control between
program units, involving the use of CALL and RETURN statements and
function references. The following sections describe the transfer of
values between program units, the correspondence between dummy
and actual arguments of procedures (see also section 14.3) and the
facility of multiple entry into a subprogram.

14.1 Procedures

Procedures normally contain sequences of statements that carry out
a process that is likely to be repeated in the execution of the program.
It is convenient for the programmer to write out such a sequence only

184 Chapter 14

once, so the programmer writes a procedure using dummy arguments
and declares it in the program once in that form.

A dummy argument is a name that is used in a procedure at the
declaration stage. Dummy arguments represent the values that will
be associated with the procedure when it is actually called later in
the program. At each call of the procedure, the values required in
that particular call are substituted for the dummy arguments; these
substituted values are called the actual arguments.

Besides avoiding the need to write out repeated processes each time,
procedures also form logical subdivisions of the program. These
subdivisions may be written and tested quite separately from the
main body of the program if desired.

The location of the procedure declaration, the scope of the validity
of the use of the procedure and how to call the procedure depend on
the kind of procedure. There are four kinds of procedure:

1. Intrinsic function
2. External function
3. Statement function
4. External subroutine

Each of these is described in detail in sections 14.1.2 and 14.1.3.

14.1.1 Differences between Function and Subroutine
Subprograms

A function subprogram is used to evaluate a specific function and
to substitute a value for the function reference in the calling pro-
gram unit. This class of subprogram would not normally be used to
change the value of any variables or array elements in the referencing
program unit though facilities are available for the programmer to
do so if desired. A subroutine subprogram is not specifically used

Program Units and the Transfer of Control 185

for the calculation of a single value but may perform any series of
operations. From this basic difference some others follow:

e Function subprograms are entered by function references; sub-
routine subprograms are entered by CALL statements.

e Function subprograms have a type; subroutine subprograms
do not.

e Results from a function subprogram are returned principally
via the function value; results from subroutine subprograms
are returned only via dummy arguments and common blocks.

14.1.2 Functions
14.1.2.1 Intrinsic Functions

The Fortran compiler provides a number of standard functions.
These are called intrinsic functions and include certain standard
mathematical functions, such as sine and cosine, and type conversion
functions.

Use of a function name in an EXTERNAL statement (see section 14.3.4),
will mean that the name will not be recognised as an intrinsic func-
tion name.

Intrinsic function names are either generic or specificc Generic
function names provide an automatic function selection facility. This
facility allows the programmer to use a single generic name when
requesting a Fortran-supplied function which has several specific
names, depending on argument type. The proper function is selected
by the Fortran Compiler, based on the type of the arguments of the
function. With this facility the programmer can, for example, use the
generic name SIN to refer to any sine routine, rather than explicitly
calling SIN for real arguments, DSIN for double precision arguments,
CSIN for complex arguments or CDSIN for double complex arguments.

186 Chapter 14

Generic function names may have specific function names associated
with them. If a specific name is used, then the arguments must be
of the correct type otherwise a compile time fault will be reported.
Some functions do not have a generic name. The specific names
that identify the intrinsic functions, their generic names, function
definitions, types of arguments and types of results are given in
appendix E.

A specific name of an intrinsic function that appearsin an INTRINSIC
statement (see section 14.3.5) may be passed as an actual argument
to an external procedure with the exception of intrinsic functions
for type conversion, lexical comparison, and maximum/minimum
functions.

An intrinsic function can be called at any point in any program by
means of a function reference (see section 14.2.1.1), in which the
function name is given and the dummy arguments are replaced by
actual arguments.

Actual arguments can be any expressions of the correct type and
therefore may contain function references to other function subpro-
grams (see the fourth example below).

Examples

SIN(ANGLEA)

A + SQRT(B)

A*#2 + 2.0% COS(BETA + P1/2.0)

A + SINC(ALOG(A+B+C)**3 + SQRT(Z+SQRT(Y)))

14.1.2.2 External Functions

Any functions required in a particular program that are not intrinsic
functions can be written as external functions for that program.
External functions are independently written subprograms that are
executed whenever a function reference (see section 14.2.1.1) to their
name is encountered in any program unit.

Program Units and the Transfer of Control 187

An external function is identified as such by the first statement being
a function declaration statement. This statement has the form:

type FUNCTION frame (z1,Z2,...,Zn)

where:

type

fname

T1,Z2,...

is an optional type specification, that is, one of the
following:

INTEGER

BYTE (in Parallel Fortran only)

REAL

DOUBLE PRECISION

COMPLEX

DOUBLE COMPLEX (in Parallel Fortran only)
LOGICAL

CHARACTER

In the absence of a type specification the function will
be given its type by the predefined convention (see
section 9.3.1).

The type specification may optionally be followed by
a length specification, which may be any of the forms
described in sections 9.3.5.1 and 9.3.5.2.

is the name of the function being declared; the name
by which it will be called elsewhere in the program by
a function reference.

is a dummy argument list which may be empty, al-
though the enclosing brackets must be specified. The
items represent variable, array or dummy procedure
names.

The FUNCTION statement is followed by the statements that make up
the required process. The function declaration itself finishes with an
END statement (see section 8.3.2).

188 Chapter 14

A function can be invoked as a variable anywhere in the program by a
function reference (see section 14.2.1.1) giving its name, fname, with
actual arguments (a;,82,...,8,). Within the function subprogram,
the function name can be used as a variable (of the specified type)
and must be assigned a value at least once before a RETURN or END
statement is executed.

A function must not reference itself: recursion, either direct or indi-
rect, is not allowed.

Example of a function subprogram

LOGICAL FUNCTION TMEAN(A,D)
REAL MEAN,A(10, 10)
MEAN = 0
D04I=1, 10
DO4J=1, 10
4 MEAN = MEAN + A(1,J)
MEAN = MEAN/100
TMEAN = MEAN.GT.D
END

14.1.2.3 Statement Functions

If a mathematical function can be written in one statement then it
may be written as a statement function. The statement function is
declared by a statement function statement which takes the form:

sfname(z,,22,...,2T0) = expr

where:

sfname is the name given to the function.

T1,Z25.-.,24,
is a dummy argument list which may be empty, al-
though the enclosing brackets must be specified. The
names used as dummy arguments in this list may be

Program Units and the Transfer of Control 189

used elsewhere in the same subprogram as variables of
the same type.

expr ‘is an arithmetic, logical or character expression. It
may contain references to external functions or previ-
ously defined statement functions. It may be a logical
expression only if sfname is defined as type logical and
a character expression only if sfname is defined as type
character.

All statement function declarations must precede the first executable
statement of the program unit and the statement function can be
invoked only within that program unit.

A statement function is invoked in an expression by using sfname,
with actual arguments replacing the dummy arguments. The ac-
tual arguments must correspond in number and type to the dummy
arguments.

Example

C Declaration of the statement function VOL
VOL(R,H) = 3.14%R+#2%H

C Executable statements
VOL SUM = 0.

DO 11 I = 1,15

READ(5,12) D,X
C This statement includes a reference to VOL with actual
C arguments 0.5#¢D replacing R and X replacing H
11 SUM = SUM + VOL(0.5¢D,X)

14.1.3 Subroutines
A subroutine subprogram fulfils a similar purpose to a function sub-
program but returns any results in a different way.

A subroutine is declared by a SUBROUTINE statement, which takes
the form:

190 Chapter 14

SUBROUTINE sname (z1,Z2,...,%n)

where:

sname is the name of the subroutine.

Z1,Z2,...,Zq
is a dummy argument list. The list may be empty, in
which case enclosing brackets may be omitted. The
list items can represent variable, array or dummy pro-
cedure names or can take the form ‘*’. The character
‘s’ represents a label in the calling program unit (see
section 14.2.2.2).

The SUBROUTINE statement is followed by the statements that carry
out the desired processes and the subroutine declaration is finished
by an END statement (see section 8.3.2).

The subroutine can be called from another program unit by use of
the CALL statement (see section 14.2.2.1). Control is returned to
this position when the RETURN or END statement of the subroutine is
encountered.

A subroutine must not contain a call to itself; recursion, either direct
or indirect, is not allowed.

14.2 Transfer of Control between Program
Units

Every executable Fortran program contains at least one program
unit, the main program. The first statement of the main program
may be a PROGRAM statement. This statement has the form:

PROGRAM progname

where progname is the name of the program and ust be of the form
specified in section 8.4.

Program Units and the Transfer of Control 191

Execution of the program begins at the first executable statement of
the main program. Control stays in the main program until either a
function reference or a CALL statement is encountered, when control
will be transferred to another program unit: a function from a func-
tion reference or a subroutine from a CALL statement. Control will
then be passed between the main program and the other program
units and between the program units themselves until either a STOP
statement is executed or the END statement of the main program is
reached.

The ways of entering and leaving function and subroutine subpro-
grams are described in the sections below.

14.2.1 Functions
14.2.1.1 Transfer of Control to a Function Subprogram

Control is passed to a function subprogram by a function reference.
This function reference takes the form:

name (aj,az,...,a,)

where:

name is the name of an external function, an intrinsic func-
tion or a statement function.

a;,02,...,0y
is a list of actual arguments that replace the dummy
arguments z4,Z3,...,Z, given in the function declara-
tion. They must agree in order, number and type with
the dummy arguments. If the referenced function has
no parameters, the reference to it must still include a
pair of brackets.

When a function reference to an intrinsic function or a statement
function is encountered in a program unit, the function is evaluated

192 Chapter 14

using the actual arguments supplied by the function reference. This
value is then substituted where the function reference occurs and
execution of the program unit continues.

When a function reference to an external function is encountered in
a program unit, control enters the function at the first executable
statement of the function subprogram. Within the body of a func-
tion, the function name must be assigned a value at least once.

External function names must have an associated type. The type of
the external function may be declared in the FUNCTION statement;
otherwise its type is defined by the initial letter of its name, as
described in section 9.3.1. In any program unit in which the ex-
ternal function is referenced, the type must be declared in a type
specification statement unless the predefined type is correct. The
type assumed by the referencing program unit must agree with that
defined in the external function. An external function name must
not be assigned an initial value in a DATA statement.

14.2.1.2 Return of Control from a Function Subprogram

In the case of a statement function or an intrinsic function, control
is returned automatically to the position of the function reference in
the calling program unit. In the case of external functions, control
is returned from the external function to the calling statement when
control reaches a RETURN or the END statement and the function value
is returned to the calling program unit.

The RETURN statement takes the form:
RETURN

An extended form of this statement is available for use in a subrou-
tine subprogram only (see section 14.2.2.2).

Program Units and the Transfer of Control 193

14.2.1.3 Example of an External Function

The following is an example of an external function showing how the
function is referenced in the calling program unit and how control is
returned to the statement containing the function reference.

The function TMEAN has the value . TRUE. if the mean of the elements
of a 10 x 10 array is greater than D.

LOGICAL FUNCTION TMEAN(A,D)
REAL MEAN,A(10, 10)
MEAN = 0
D0O4I=1, 10
DD 4J1=1, 10
4 MEAN = MEAN + A(1,J)
MEAN = MEAN/100
TMEAN = MEAN.GT.D
RETURN
END

TMEAN could be referenced by any statement which may contain a
logical expression. For example:

IF(TMEAN(ARR,50.0))GO TO 48

The effect of this statement is to test whether the mean of the 10 x 10
array ARR is greater than 50. If it is, control passes to the statement
labelled 48.

14.2.2 Subroutines
14.2.2.1 Transfer of Control to a Subroutine Subprogram

Subroutine subprograms are called from another program unit by a
CALL statement statement. The CALL statement has the form:

CALL sname (a;,az,...,a,)

where:

194 Chapter 14

sname is the name of the subroutine being called.

a1,82,...,4,
is a list of actual arguments. These must agree in
order, number and type with the dummy arguments
given in the subroutine declaration for sname. If the
referenced subroutine has no arguments the CALL to it
may omit the brackets.

’

To correspond with a dummy argument of the form ‘¥’, an actual

argument must take the form
*n

In Parallel Fortran the actual argument may also have the form
&n

In both cases n is the label of an executable statement in the calling
program unit (see section 14.2.2.2).

When a CALL statement statement referring to a subroutine is exe-
cuted, control is transferred to that subroutine, which is entered at
its first executable statement.

Subroutine names do not have an associated type.

14.2.2.2 Return of Control from a Subroutine Subprogram

Control is returned from a subroutine subprogram to the calling
program unit when control reaches a RETURN or the END statement
within the subroutine. There may be any number of RETURN state-
ments in a subroutine but only one of these will be executed in any
one execution of the subroutine. The RETURN statement statement
has two possible forms:

RETURN
RETURN expr

where ezpr is an integer expression.

Program Units and the Transfer of Control 195

The simple form, RETURN, has the effect of returning control to the
statement following the CALL statement in the calling program unit.

The extended form, RETURN ezpr, provides a means of returning to
any labelled statement in the calling program unit. The expression
ezpr has a value, say n, and this value denotes that return is to be
made to the nth statement label in the argument list. If ezpr is
less than one or greater than the number of statement labels in the
argument list then control is returned to the statement following the
CALL statement in the calling program unit.

For example, if a CALL statement of the form

CALL SUB(X,Y,*3,%10,2)

is made to a program unit whose first statement is

SUBROUTINE SUB(A,B,#,*,C)

and this subroutine contains the following RETURN statements:

RETURN 2
RETURN 1
RETURN

then RETURN 2 will return control to the statement labelled 10 in the
calling program unit, RETURN 1 will return control to the statement
labelled 3, and RETURN will return control to the statement following
the CALL statement in the calling program unit.

14.2.2.3 Example of a Subroutine Subprogram

The following is an example of a subroutine subprogram showing
how it is called and how control is returned to the calling program
unit by means of a simple RETURN statement.

Subroutine ADD is required to add the elements of matrix I.

SUBROUTINE ADD(I,J)
DIMENSION I(10)

196 Chapter 14

J=0

DO 2K =1,10
2 J=J + I(K)

RETURN

END

If this subroutine is to be entered, then the CALL statement must
refer to the subroutine name ADD. For example, if it is required to
add together the elements of an array IARR and to hold the result in
N, the calling program unit would contain the following statements:

DIMENSION IARR(10)

CALL ADD(IARR, W)

14.3 Correspondence between Dummy and
Actual Arguments

A dummy argument (see section 14.1) must be one of the following;:

o A dummy variable name.
e A dummy array name.
e A dummy function or subroutine name.

o An asterisk ‘#¢’, or alternatively in Parallel Fortran, an amper-
sand ‘¢’, for subroutines only, signifying an alternate return to
the calling program unit (see section 14.2.2.2).

Actual arguments may be any of the following:

e An expression except a character expression involving concate-
nation of a character element whose length specification is an
asterisk in parentheses (unless it is a symbolic constant). Note
that an expression may be a constant or a symbolic constant.

e An array name.

Program Units and the Transfer of Control 197

e An intrinsic function name.
o An external function or subroutine name.

o A statement label preceded by an asterisk ‘*’, or alternatively
in Parallel Fortran an ampersand ‘2’, for subroutines only (see
section 14.2.2.2).

Note that a statement function name cannot be used as an actual
argument.

Examples of actual arguments

FA (the name of an intrinsic or external function)
A (an array name)

A(2,3) (an array element; see below)

yA (a variable)

SIN(Z) (an expression comprising a function reference)
3.16 (a constant)

X+4*Y+3/Z (an expression)

However, several rules apply for correct correspondence between
dummy and actual arguments. These rules are as follows:

e Actual and dummy arguments must correspond in number,
order and type.

o If the dummy argument is a function, the actual argument
that replaces it must be the name of an intrinsic or external
function.

e If the dummy argument is a subroutine, the actual argument
that replaces it must be the name of a subroutine subprogram
(see section 14.4.2).

o If the dummy argument is an array, the actual argument that
replaces it must be an array or an array element.

198 Chapter 14

e If the dummy argument is a variable, the actual argument that
replaces it may be a constant, a variable, an array element, or
any other expression.

e If an external function or subroutine includes a transfer of
control to another subprogram, the dummy arguments of the
external function or subroutine may be used as actual argu-
ments in the nested subprogram.

The transfer of values between program units by means of dummy
and actual arrays is described in section 14.4.

14.3.1 Use of Constants and Expressions

If a dummy argument is assigned a value within the function or
subroutine subprogram and this is used to return a result, then
the corresponding actual argument may not be a constant or an
expression.

14.3.2 Use of Variables

Dummy variables must not occur in COMMON, DATA, EQUIVALENCE,
PARAMETER or INTRINSIC statements; they may occur in type speci-
fication or DIMENSION statements (as bounds of dummy arrays).
Dummy variables may not be specified in NAMELIST statements.

14.3.3 Use of Arrays and Array Elements

If a dummy argument is an array then the array must be declared in
the subroutine or function subprogram in which the dummy array is
used (see section 10.2.2). The size of each dimension may be given as
an integer or as a variable of type integer. Dummy array names must
not occur in COMMON, DATA, EQUIVALENCE, PARAMETER or INTRINSIC
statements.

Program Units and the Transfer of Control 199

If the actual argument is an array name, it is made available to
the called subprogram starting at its first element. That is, if the
dummy array has n elements then the first n elements of the actual
argument will be used as the n elements of the dummy array.

An array clement used as an actual argument may replace a dummy
argument that is either a variable or an array. If an array element
replaces a variable, only that one element is made available to the
called program unit. If an array element replaces an array, the spec-
ified actual element is used as the first element of the dummy array,
and subsequent elements of the actual array form the remaining
elements of the dummy array.

Thus if the actual argument is an array element, say A(z), and the
dummy array is specified as having n elements then the n elements
of array A from A(z) to A(z + n — 1) are used as the n elements of
the dummy array.

The actual argument specified must at least be large enough to cover
the dummy array completely. That is, if the actual argument is an
array, it must have at least as many elements as the dummy array.
If the actual argument is an array element, that part of the actual
array from and including the element given as the actual argument
to the last element must contain at least as many elements as the
dummy array.

Care must be taken when arrays having more than one dimension
are used because of the order in which array elements are stored (see
section 10.1.2).

An example of the use of arrays and array elements as actual argu-
ments follows:

FUNCTION FUN1(A,B)
REAL A(500),B(10)
DO 4 I=1, 500

4 CONTINUE
DO 5 J=1,10

200 Chapter 14

& CONTINUE
FUN1= ...
RETURN
END

A reference to this external function could be included in an expres-
sion as follows:

REAL LIST(540)

X=4+FUN1(LIST,LIST(631))

In this case, the first 500 elements of array LIST will be used as array
A in the function and the elements LIST(531) to LIST(540) will be
used as array B.

14.3.3.1 Adjustable Arrays

A dummy array declared using one or more integer variables to
define the bounds of the subscripts is an adjustable array. This
method of declaration is only permissible for dummy arrays, but it
allows the dummy array to have dimensions of different size each time
the subprogram is executed, though the number of dimensions must
remain constant. Each integer variable which specifies a dimension
of an adjustable array must appear either in a common block or as a
dummy argument in every dummy argument list which contains the
array name.

For example, the subroutine ADD given in section 14.2.2.3 could be
rewritten to add together the elements of an array of variable size.

SUBROUTINE ADD(I,J,L)
DIMENSION I(L)
J=0
DO 2 K=1,L
2 J=J+I(K)
RETURN
END

Program Units and the Transfer of Control 201

When the subroutine is called, the CALL statement will specify the
size of the actual array to be used. For example

CALL ADD(IARR,N,20)

would add the elements of a one dimensional array IARR with twenty
elements.

14.3.3.2 Assumed Size Arrays

An assumed size array is a dummy array declared with an asterisk
as the upper bound of its last dimension (see section 10.2.2). A
dummy array declared with assumed size takes its actual size from
the corresponding actual argument as follows:

e If the actual argument is a non-character array, the size of the
dummy array is the size of the actual argument array.

e If the actual argument is a non-character array element, the
size of the dummy array is the size of the actual argument
array from the specified array element to the end of the array.

o If the actual argument is a character array, character array
element, or character array element substring, the size of the
dummy array is the number of characters from the specified ac-
tual argument to the end of the actual argument array, divided
by the length of an element in the dummy array.

Note that if an assumed size dummy array has n dimensions, the
product of the sizes of the first n—1 dimensions must be less than
or equal to the size of the array, as determined by the above rules.

14.3.4 Use of Functions and Subroutines as Argu-
ments

If a dummy argument is used as a subroutine or function name, the
corresponding actual argument must be the name of a subroutine

202 Chapter 14

subprogram if the dummy argument appears in a CALL statement, or
the name of an intrinsic or external function if the dummy argument
appears in a function reference.

Any subroutine or external function name used as an actual argu-
ment in a CALL statement or function reference must be given in an
EXTERNAL statement in the program unit in which the name is used
as an actual argument.

The EXTERNAL statement has the form:

EXTERNAL name; ,namez,... ,namey,

where each name; is the name of a subroutine or an external function
that is used as an actual argument in the program unit containing
the EXTERNAL statement.

For example, if the subroutine
SUBROUTINE GREEN(FUN,X,Y,Z)
X=FUN(Y/2)

RETURN
END

is to be called, giving an external function name as actual argument
to replace the dummy argument FUN, the calling program unit could
contain the following statements:

EXTERNAL FUN1,FUN2
CALL GREEN(FUN2,4,B,C)

CALL GREEN(FUN1,A1,F1,EXP(C))

14.3.5 INTRINSIC Statement

An INTRINSIC statement is used to identify a name as representing
an intrinsic function (see section 14.1.2.1). It also permits a name

Program Units and the Transfer of Control 203
representing a specific intrinsic function to be used as an actual
argument. The INTRINSIC statement has the form:

INTRINSIC name,,namez,...,namey
where each name is an intrinsic function name.

The use of a name in an INTRINSIC statement declares that name
to be an intrinsic function name. If a specific name of an intrinsic
function is used as an actual argument in a program unit, it must
appear in an INTRINSIC statement in that program unit.

The names of the following intrinsic functions must not be used as
actual arguments:

e Those for type conversion:

INT IFIX IDINT FLOAT SNGL
REAL DBLE CMPLX ICHAR CHAR

e Those for lexical relationship:
LGE LGT LLE LLT
e Those for choosing the largest or smallest value:

MAX MAXO AMAX1 DMAX1 AMAXO MAX1
MIN MINO AMIN1 DMIN1 AMINO MIN1

The use of a generic name in an INTRINSIC statement does not cause
that name to lose its generic property.

A name must not be used in more than one INTRINSIC statement in
a program unit. Also a name must not be used in both an EXTERNAL
and an INTRINSIC statement in a program unit.

14.4 Transfer of Values between Program
Units

Values can be transferred between program units by use of:

204 Chapter 14

o Function values (see section 14.1.2.2).
e Common block items.
¢ Dummy and actual arguments.

If either of the latter two methods is used for returning results from
external functions, care must be used if the actual arguments also
appear elsewhere in the calling statement. For example in the state-
ment

VAL = A##2/FUN(A,B)sBes2

the function FUN must not alter the values of its arguments, otherwise
the results obtained will be unpredictable.

The second and third methods of transferring values are described
in the sections below.

14.4.1 Common block items

A common block is an area of storage that may be referred to in
any program unit which mentions the name of the block in a COMMON
statement. This facility is discusssed fully in section 10.2.3. If in
one program unit a value is assigned to an item which forms part of
a common block and control is then transferred to another program
unit which also refers to that common block, the value assigned in
the first program unit becomes the value of the item occupying the
same area of storage in the second program.

Items in named common blocks may be given initial values in block
data subprograms by means of the DATA statement. This is described
in section 10.3.2.

14.4.2 Dummy and Actual Arguments

When a transfer of control is made to a subroutine or a function
subprogram, actual arguments are supplied in the CALL statement

Program Units and the Transfer of Control 205

or in the function reference, and the actual arguments are substituted
for the dummy arguments in the function or subroutine on entry to
the subprogram.

The actual arguments given in the CALL statement or the function
reference must agree in number, order and type with the dummy
arguments that they replace in the subroutine or function subpro-
gram. The correspondence rules for dummy and actual arguments
are described more fully in section 14.3.

14.5 Multiple Entry into a Subprogram

It is possible to enter a function or a subroutine subprogram at a
statement other than the first executable statement. This is done by
using a CALL statement or function reference that references an ENTRY
statement within the subprogram. Control will enter the subprogram
at the first executable statement following the ENTRY statement.

14.5.1 The ENTRY Statement

The ENTRY statement has the form:

ENTRY name (z,,12,...,%Tn)

where:

name is the name of the entry point.

T1,T25...3Tn
is a list of dummy arguments corresponding to the ac-
tual arguments given in the CALL statement or function
reference.

The names used as dummy arguments in the list may be used else-
where in the same subprogram as variables of the same type.

206 Chapter 14

The ENTRY statement is non-executable and does not affect control
sequencing during the execution of the subprogram.

The appearance of an ENTRY statement does not affect the rule
that statement functions in a subprogram must precede the first
executable statement of that subprogram.

14.5.2 Referencing an ENTRY Statement

The ENTRY statement is referenced by a CALL statement if it is in a
subroutine subprogram or by a function reference if it is in a function
subprogram.

A subprogram must not reference itself directly or through any of
its own entry points.

The actual arguments in the CALL statement or function reference
must agree in order, number and type with the dummy arguments
in the ENTRY statement being referenced. However, the dummy ar-
guments of the ENTRY statement need not agree in order, type or
number with the dummy arguments in the SUBROUTINE or FUNCTION
statement or in any other ENTRY statement in the subprogram.

In a function subprogram the types of the function name and entry
point name are determined by the FUNCTION and ENTRY statements.
If an entry name in a function subprogram is of type character then
each entry name and the name of the function subprogram must
be of type character. If not of type character the types of the
function name and entry point names can be different; whether they
are or not, they are treated as variabies equivalenced by means of
an EQUIVALENCE statement (see section 10.2.4). After one of these
variables is assigned a value in the subprogram, the othiers become
undefined.

If information for an array is passed in the reference to an ENTRY
statement, the array name and all its dimension parameters (except
any that are in a common area or are constant) must appear in the

Program Units and the Transfer of Control 207

dummy argument list of the ENTRY statement. A name that appears
as a dummy argument in an ENTRY statement must not appear in
any executable statement preceding that ENTRY statement.

14.5.3 Entering the Subprogram

Entry into a subprogram assigns new values to the dummy arguments
of the referenced ENTRY statement. Thus, all appearances of these
arguments in the whole subprogram are affected.

Reference to an ENTRY statement will not transmit new values for
the arguments not listed in that ENTRY statement.

Entry cannot be made into an IF-block or the range of a DO state-
ment.

14.5.4 Exit from the Subprogram

On exit from the subprogram, the value returned to the calling pro-
gram is the last value assigned in the subprogram to the entry point
name before control is returned. A value may be returned via a name
other than the one used to enter the subprogram. If this is done the
two names must be of the same type, otherwise the value returned
will be undefined.

14.6 The SAVE Statement

In Parallel Fortran, variables do not retain their values after a
subroutine or function returns to its calling subprogram. If the
subroutine or function is entered again, the values of variables may
have changed. There are the following exceptions to this:

e All variables in COMMON blocks;

208 Chapter 14

o Arrays;

e Variables which have been intialised by means of a DATA state-
ment or an extended explicit type specification statement.

The SAVE statement can be used to make items retain their values
after the execution of a RETURN or END statement. It has this format:

SAVE name; ,name;,... ,namey,

where each name; is a named common block name preceded and
followed by an oblique; a variable name; or an array name.

A name may not occur more than once in a SAVE statement within a
particular program unit. Dummy argument names, procedure names
and names of items in a common block must not appear in a SAVE
statement.

A SAVE statement without a list is treated as though it contained
the names of all allowable items in that program unit.

The appearance of a common block name preceded and followed by
an oblique in a SAVE statement has the effect of specifying all of the
items in that common block. If a particular common block name
is specified by a SAVE statement in a subprogram it must also be
specified by a SAVE statement in every other subprogram in which
that common block appears. Note however, that if a named common
block is used in the main program unit it is effectively saved for all
subprograms referenced by the main program.

The ANSI Fortran 77 standard specifies that only the following must
retain their values between calls to a subprogram:

e Items specified by SAVE statements.
e Items in blank common.

o Items defined with an initial value and not assigned a new
value.

Program Units and the Transfer of Control 209

e Items in a named common block that appears in the subpro-
gram and in at least one other program unit which is referenc-
ing, either directly or indirectly, that subprogram.

Although Parallel Fortran by default saves more than this minimum,
programs which are intended to be portable should make use of SAVE
statements, so as to avoid problems with implementations which do
not.

14.7 The INCLUDE Statement

In Parallel Fortran the compiler may be directed to include the
contents of secondary source files in the compilation. The effect
of using the file inclusion mechanism is identical to having the text
of the secondary file or files present in the file being compiled.

The directive to include a file is a special Fortran statement:

INCLUDE °’ filename’

Note that because the filename is a Fortran character constant, the
character ‘\’ is interpreted as an escape character, as described in
section 9.2.1.11. This means that if you wish to use an MS-DOS
pathname when specifying the included file, you must double the ‘\’
character. For example:

INCLUDE ’c:\\lib\\incfiles\\maths.inc’

A description of where the compiler looks for the specified file may
be found in section 17.3.

210 Chapter 14

= Sale
Chapter 15

Format Specification

In Fortran 77 all input and output data are handled in the form of
records.

Records can be output to:

e the display;

e a printer;

o files on magnetic media;

e internal files consisting of character variables or arrays.
Records can be input from:

e the keyboard;

o files on magnetic media;

o internal files

Two kinds of records are recognised: formatted records and unfor-
matted records. A formatted record is a scquence of characters
which may, for instance, be input from the keyboard or output as
a line of print. Each record can be regarded as being split into

212 ’ Chapter 15

fields, where each field contains one or more characters and normally
represents the value of one variable or array element.

An unformatted record normally contains one or more values which
are in internal machine form and is commonly used for re-input into
the computer rather than for visual inspection of program results.

The reading or writing of a formatted record may be controlled by
a format specification. The format specification can be given either
in a FORMAT statement (see section 15.2.1) or as values of character
arrays, character variables, or other character expressions.

A format specification defines the form of one or more records in
either an external file or an internal file and specifies the transfor-
mation to be applied between the internal machine form and the
fields of a record. When reading a formatted record the format
specification describes the fields within the record and the manner
in which these are to be converted from character codes on the input
medium into internal machine form. If the format specification is
used in association with an output statement it describes the manner
in which data in internal machine form is converted to records in the
character code used by the output medium.

The individual fields within a record and the conversions to be ap-
plied to them are specified within a format specification by means
of edit descriptors, which take the forms described in section 15.3.
Thus, for example, the edit descriptor 14 describes an integer field
four character positions wide. The way in which edit descriptors
can be combined to form complete format specifications is described
below, and the use of edit descriptors in FORMAT statcments and
arrays is discussed in sections 15.2.1 and 15.3.

Input normally involves assigning the value represented in each field
to a variable or array element in store, output normally involves
placing the value of a variable or array element in store into the
appropriate field. Some descriptors have other eflects such as al-
lowing for spacing between fields. The edit descriptors of a format

Format Specification 213

specification are associated with items in an input or output list in
a READ or WRITE statement as described in section 15.2.3.

The ANSI Standard describes the first character of a formatted out-
put record as a print control character which controls the vertical
spacing of the record if it is sent to a display device such as a printer
or screen; this is discussed in section 15.3.1.10.

15.1 Format Specifications

A format specification consists of a series of edit descriptors (see
section 15.3) surrounded by parentheses. The specification describes
one or more records which are to be input or output. Apart from the
edit descriptors, the following may also appear in the specification:

e commas
e parentheses

e repeat counts and group repeat counts

15.1.1 Field Separators

Consecutive edit descriptors and groups of edit descriptors enclosed
in parentheses (see section 15.1.3) must be separated by a comma,
except

e between an edit descriptor containing a P and an immediately
following edit descriptor containing an F, E, D or G descriptor.

e beflore or after a slash.

e before or after a colon.

Other slashes may appear before or after a series of edit descriptors.
A comma marks the end of a field. A slash marks the end of a field
and the end of a record (see below).

214 ' Chapter 15

15.1.2 Slash Editing

A slash ¢/’ marks the end of a field and the end of a record. Thus,
when one slash is present the current record is terminated and pro-
cessing of the next record begins: on input any remaining data in
the current record will be ignored while on output no more data will
be written to the record.

If two or more consecutive slash edit descriptors appear in a format
specification then the first slash will terminate the current record
and each succeeding slash will on input, skip a record, or on ouput
write an empty record. For example, the format specification

(F1,F2/F3,///F4)

where each F is an edit descriptor, describes a series of records in the
following order:

e a record containing two fields corresponding to F1 and F2.
e a record containing one field corresponding to F3.
e two blank records (or two records to be skipped on input).
e a record containing one field corresponding to F4.

The parentheses at the beginning and end of the format specification
may be considered to initiate a new record and terminate a record
respectively. For example, the specification

(///¥/11)

where F is an edit descriptor, describes a series of records in the
following order:

e three blank records.
e a record containing one field corresponding to F.

e three blank records.

Format Specification 215

15.1.3 Repetition of Descriptors

An edit descriptor or a group of edit descriptors (that is a series of
descriptors enclosed in parentheses) may be repeated by preceding it
with an integer r. The effect will be as if the descriptor or group was
repeated r times. Non-repeatable edit descriptors (see section 15.3)
may be repeated only if they are enclosed in parentheses.

The repeat count or group repeat count r must be a positive (and
non-zero) integer. If a group enclosed in parentheses is not preceded
by a group repeat count, a count of one is assumed.

Any group of descriptors enclosed in parentheses may have among its
items other groups of descriptors enclosed in parentheses but these
must not be nested more than seven deep.

For example, the specification
(F1,3F2/5F3,6(/F4,F5) ,2F6)

where each F is an edit descriptor, describes a series of records in the
following order:

e a record containing one field described by F1 and three de-
scribed by F2.

e a record containing five fields described by F3.

o five records each containing one field described by F4 and one
by FS5.

e a record containing one field described by F4, one by FS and
two by F6.

15.2 Format Specification Methods

Format specifications as described in the earlier part of this chapter
may be either specified in FORMAT statements or as values of character

216 Chapter 15

arrays, character variables, or other character expressions. When a
format specification is to be used to control the input or output of
data, either a reference is made to the label of the FORMAT state-
ment or the name of the character array or character variable, or a
character expression is used.

Section 15.2.2 describes character format specifications, section 15.4
contains examples, and information on the use of format specifica-
tions for input and output is given in chapter 16.

15.2.1 The FORMAT Statement

A FORMAT statement is a non-executable statement and has the
form:

label FORMAT specification

where:

label is a statement label; every FORMAT statement must be
labelled.

specification is a format specification as described earlier in the
chapter.

The following are examples of FORMAT statements, where each F is
an edit descriptor as described in section 15.3. Complete examples
of FORMAT statements including the use of edit descriptors are given
in section 15.4.

16 FORMAT (F1)
3049 FORMAT (F2,3F3/F4)
4 FORMAT (F5,F6,6(/F7,3F8)/F9)

15.2.2 Character Format Specification

A format specification may be held in a character array, or within a
character variable, or may be specified as a character expression. The

Format Specification 217

specification must include the parentheses at the beginning and end.
It may have been read into a character array or character variable
by means of an A conversion code (see section 15.3.1.7) or may have
been initialised by a DATA statement, or assigned during the course
of the execution of the program. Character data may follow the right
parenthesis that ends the format specification and will be ignored.

For example, the format specifications given in the examples in the
previous section could be held in arrays instead of being given in
FORMAT statements. If the specification given in the statement la-
belled 3049 were held in a CHARACTER*4 array named ARR, the first
element of the array would hold the left parenthesis followed by some
or all of the characters that make up the edit descriptor F2. The
succeeding character positions would hold the comma, the figure
three, the characters making up the field descriptor F3, the slash,
the figure three, the characters making up the edit descriptor F4
and, finally, the right parenthesis, using as much of the remainder of
the array ARR as is required.

A character format specification can be used for input or output in
the same way as one given in a FORMAT statement. For example,
a reference to the array ARR mentioned in the previous paragraph
would have the same effect as a reference to the statement labelled
3049 in the previous section.

Formats may be varied at run-time either by assigning new values
to, or using A format codes (see section 15.3.1.7) to read values into
character array elements or character variables.

For compatibility with ANSI66, Parallel Fortran also allows arrays
which are not of type character to define a format specification.

15.2.3 Effect of FORMAT Statements and Character
Format Specifications

A READ or WRITE statement (see sections 16.3.1 and 16.4.1) referenc-
ing a FORMAT statement or character format specification normally

218 Chapter 15

contains a list of variable names and array elements known as an
input or output list. These are associated in order with the edit
descriptors in the format specification, except that non-repeatable
edit descriptors are not associated with any variable or array element.
Thus if a list of names in a READ statement was

Y,Z
and the FORMAT specification was
(F1,¥,F2)

where F1 and F2 are repeatable edit descriptors and W is a non-
repeatable edit descriptor, then the variable Y will be associated
with edit descriptor F1 and Z with edit descriptor F2.

Each action performed during the execution of a formatted READ or
WRITE statement is determined by the next descriptor in the format
specification and the next item, if any, in the input or output list.
If the descriptor is a non-repeatable edit descriptor, then it is acted
upon and the next descriptor is examined; this process is repeated
until a repeatable edit descriptor is encountered.

The descriptor must be one which is permitted with a variable or
array element of the type under examination (see section 15.3 below).
On input the value represented in the field is converted according to
the edit descriptor and is assigned to the variable or array element;
on output the value of the variable or array element is output to the
field in the format specified. The next item from the list in the READ
or WRITE statement and the next edit descriptor are then selected,
and the process is repeated until the input or output list is satisfied.

When the last named variable or array element has been operated
upon, the next descriptor is examined. If it is a non-repeatable
edit descriptor it will be acted upon and the next descriptor will
be examined in the same way. This process is repeated until a
repeatable edit descriptor is encountered.

When the last edit descriptor has been acted upon or when an edit
descriptor not of the types given above is encountered, execution of

Format Specification 219

the statement ceases.

A special case of a formatted READ or WRITE statement is one that
does not contain a list of variable and array element names; the first
or only descriptor in the corresponding format specification should be
a non-repeatable edit descriptor otherwise the corresponding record
is skipped.

If, when the format specification has been completely scanned, there
are still items left in the list of names, a new record will be started
and the format specification will be re-scanned as follows:

o If there are no internal parentheses, scanning will be repeated
from the beginning of the specification;

e Ifthere are internal parentheses, scanning will be repeated from
the left parenthesis corresponding to the right-most internal
right parenthesis. If this left parenthesis is preceded by a group
repeat count, the repeat count is taken into account.

This process is repeated whenever the closing parenthesis of the
format specification is rescanned and items still remain in the input
or ouput list.

The symbol 1} in the following examples shows where scanning would
be restarted:

ft

Examples of complete FORMAT statements and their effects are given
in section 15.4.

220 Chapter 15

15.3 Edit Descriptors

The edit descriptors are used to specify the external format of fields
in a record, and are classified into two types:

e repeatable edit descriptors.
e non-repeatable edit descriptors.

Repeatable edit descriptors may be preceded by a repeat count which
is an unsigned, non-zero, integer constant and which specifies the
number of times the edit descriptor is to be repeated. If the repeat
count is omitted a value of one is assumed. A repeatable edit de-
scriptor indicates the manner in which a variable or array element
is to be edited, and contains one of the following format codes: A, D,
E, F, G, I, L and (in Parallel Fortran), Z and 0.

Repeatable edit descriptors and their effects are described in sec-
tions 15.3.1 to 15.3.1.9. They generally operate on fields whose width
is defined by the edit descriptor. However, in Parallel Fortran, a
comma in data being read may be used to override the defined field
width. Thus if a field contains a comma, the comma delimits that
field and any remaining data in the field will be associated with the
following field. This facility may be used with D, E, F, G, I, L, 0, and
Z edit descriptors; a comma in a field read by an A edit descriptor
has no special effect.

For example, if the formal specification

(L6, I3, E15.8, A4)

were used to read the following record

-T,~4,uu00uu262,4,8,C

then the following values would be assigned to the corresponding
items in the input/output list:

.TRUE.
-4

Format Specification 221

0.252E-05
A,B,

From this example one should note that the use of the comma within
a ficld has no effect on either the data read by the A conversion code,
or on the decimal point positioning as defined by the E conversion
code.

It is not possible to extend the width of a field using this facility.

Non-repeatable edit descriptors are described in sections 15.3.1.10 to
15.3.1.16. Non-repeatable edit descriptors, slashes and colons must
not be preceded by a repeat specification, and they operate indepen-
dently of any items in the input or output list. A non-repeatable edit
descriptor contains one of the following format codes: H, ’literal’,
T, TL, TR, X, S, SP, SS, P, BN, BZ and (in Parallel Fortran), $ or Q.

Non-repeatable edit descriptors are generally used to control the
manner in which a field is to be edited, although they may be used
for other purposes such as altering the positioning within a record
at which transfer of data is to start. The use of a colon to terminate
format control if there are no more items in the input or ouput list
is described in section 15.3.2.

The different edit descriptors, the types of internal variables with
which they correspond, and their actions, are listed in table 15.1. A
reference is given to the section in which each descriptor is discussed.

In the list of edit descriptors shown in table 15.1, the capital letters
I, F,E, D, etc., are called format codes and it is these format codes
that indicate in what way the record is to be converted either from
external format to internal machine form on input, or from internal
machine form to external format on output. The other symbols
should be interpreted as follows:

w specifies the number of character positions occupied by
a field in the record.

222 Chapter 15
Edit Internal Action Section
descriptor data type
Tw Integer, byte Numeric conversion 15.3.1.1
Iw.m
Fw.d Real, double 15.3.1.2
Dw.d precision, 15.3.1.3
Ew.d part of N ic conversion 15.3.1.3
Ew.dEe complex or umer nver 15.3.1.3
Guw.d double 15.3.14
Gw.dEe complex 15.3.1.4
kP Scaling real numbers 15.3.1.5
Lw Logical Logical value conversion 15.3.1.6
:w Character Character conversion 15.3.1.7
2w Any Hexadecimal 15.3.1.8
Zw.m conversion
Ow .

Any Octal conversion 15.3.1.9
Ow.m
nH Write text 15.3.1.10
sliteral® rite 3.
nX Alter position in 15.3.1.11
Tc record where 15.3.1.12
TLc transfer of data 15.3.1.12
TRc should begin 15.3.1.12
S Control of optional 15.3.1.13
SP plus characters in 15.3.1.13
SSs numeric output fields 15.3.1.13
BN Control handling
BZ of input blanks 15.3.1.14
Integer or Query size of .
Q Logical rest of record 15.3.1.16
$ Input prompt 15.3.1.15

Table 15.1: Edit Descriptors

Format Specification 223

d specifies the number of character positions in the frac-
tional part of a number.

m specifies the number of significant digits in the field.
e specifies the number of digits in the exponent.
k specifies an optionally signed integer constant.

w, e, n and ¢
are nonzero, unsigned, integer constants.

Since complex values can be considered as two real values for the
purposes of input and output, they are transferred by means of two
D, E, F, or G format codes; one format code for the real part and one
for the imaginary part. Double complex values can similarly be con-
sidered as two double precision values, and they can be transferred
in the same way.

15.3.1 Format (Conversion) Codes

The following sections describe the various format codes and their
effects on data on input and output. The term conversion code is
used interchangeably with format code for those codes which are
directly concerned with converting data between its external format
and its internal machine form.

15.3.1.1 The I Conversion Code
The T conversion code is used to transfer integer data. The edit
descriptor has one of the following forms:

Tw
Iw.m

where:

224 Chapter 15

w is an unsigned positive integer that defines the width
of the field in characters.

m is an unsigned integer that gives the minimum number
of digits to be output.

Input

The Iw.m edit descriptor is treated identically to the Iw edit de-
scriptor. When this conversion code is used for input, the next w
characters in the current record are read as an integer and the value
is assigned to the next variable or array element in the input list.

The characters in the external field may be a signed or an unsigned
integer; unsigned numbers will be assumed to be positive. Spaces
before the first digit are ignored but must be included in the charac-
ter count w, as must the sign, if any. All other spaces are treated as
zeros or are ignored as determined by a combination of any BLANK=
specifier that is currently in effect for the unit (see chapter 16),
and any BN or BZ edit descriptors (see section 15.3.1.14). Unless
specified otherwise spaces, other than leading spaces, are treated in
the examples which follow as zeros. A field of all spaces is treated
as a field of zeros. The field must not contain a decimal point or an
exponent.

Note that if the next element in the input list is a byte variable or
array element, the value read is checked before it is assigned, and if
it is outside the range —128 to +127 an error will be reported.

The following examples demonstrate the effects of the I format code
on input. The symbol ‘.’ represents a space.

Format Specification 225

Edit descriptor External number Internal number

IS ut376 +376

16.2 uuau—2 -2

16 uuuu'2 -2

14 34,4, +3400

13 LU 0
Output

When this conversion is used for output, the edit descriptor will
cause the value of the corresponding item in the output list to be
output as an integer occupying w character positions in the current
record; the number will be right justified. The effect of using the
Iw.m edit descriptor is the same as Iw except that the unsigned
integer constant consists of at least m digits and if necessary, has
leading zeros.

The value of m must not exceed the value of w. If m is zero and the
value of the output item is zero then the output field consists only
of blank characters regardless of the sign control that is currently
in eflect. Negative numbers will be preceded by a minus sign which
occupies one of the w character positions specified; positive numbers
will be unsigned. The field of w characters will be space filled on
the left if necessary. If the integer to be output, including any minus
sign, exceeds w characters, the output field is filled with asterisks.

Some examples follow of the eflect of the I code on output:

Edit descriptor Internal number External number

IS +3659 u3659
16 —987 unu—-987
13 +3659 *hx
16.4 -123 u-0123

15.3 +24 uu024

226 Chapter 15

For example, the following:

I=20

J = -236

K = 9872

WRITE(6,100) I,J,K
100 FORMAT(’0’,14.3,2I8)

causes the following line to be printed:

._.020“”._,“—236““”“9872

15.3.1.2 The F Conversion Code

The F conversion code is used to transfer real numbers without
an exponent. It may also be used to input real numbers with an
exponent. The edit descriptor has the form:

Fw.d
where:
w is an integer giving the width in characters of the ex-
ternal field.
d is the number of digits in the fractional part of the
number. w must always be greater than or equal to d.
Input

When this conversion code is used for input, the edit descriptor
causes the next w characters in the current record to be read as a
real number and the converted value to be assigned to the next item
in the input list. If the item is of type complex or double complex
then two edit descriptors are required.

The external field should contain w characters and include :

Format Specification 227

e a sign (optional).
e a string of digits which may contain a decimal point.
The external field may also contain an exponent.

Unsigned numbers are assumed to be positive. Spaces occurring
before the first digit are ignored. All other spaces are treated as for
I editing. All spaces must be included in the character count. A
field of all spaces is treated as zero.

If the field does not contain a decimal point, the number is treated
as though a point occurred before the last d digits of the string. This
is the number that any scale factor can be considered to operate on
(see section 15.3.1.5). If the external field contains a decimal point,
this will override the decimal point implied by the value d in the
descriptor.

Some examples follow of the effects of the F format code on input.
The symbol ‘.’ represents a space.

Edit descriptor External number Internal number

F6.2 uul234 12.34

F6.2 1.2300 1.23

F6.2 u-2345 —23.45

F6.2 ul23E1 12.30
Output

When this conversion code is used for output, the edit descriptor
causes the value of the next item in the output list to be output
as a decimal fraction, rounded to d decimal places and made up by
trailing zeros il necessary. The number is right justified and if it
is negative it is preceded by a minus sign. The field will be space-
filled on the left to make up the w characters. If the number has
no integral part and if the field width specified is large enough, the
decimal point will be preceded by a zero. The decimal point and
minus sign must be included in the character count w. If the item

228 Chapter 15

is of type complex or double complex, two descriptors are required
to output it.

The number of characters to be output should not exceed the field
width. If it does, the output field is filled with asterisks.

Similarly, in Parallel Fortran, if an attempt is made to output the
exceptional IEEE values NaN, +00 or —o0, the output field is filled
with question marks: see section 11.1.10.

Some examples follow of the effects of the F code on output. The
symbol ‘.’ represents a space.

Edit descriptor Internal number External number

F10.4 +5227.3278 u5227.3278
F10.4 —345.6789 u-345.6789
F10.4 +12.3 wuwl2.3000
F10.4 -3.21989623 wuu=3.2199

For example, the following statements:

X = -3.7690
Y=1.55
Z = 12345.69
WRITE(6,100) X,Y,Z
100 FORMAT(1H,,F10.4,F8.6,F8.3)

would produce the following line:

wuu—3.76901.550000% s %% %%

The value for Z requires five positions before the decimmal point but
since only four are available the value is represented by **¥xkxkx,
that is asterisks in all eight positions of the field.

Format Specification 229

15.3.1.3 The E and D Conversion Codes

The E and D conversion codes are used to transfer real numbers. The
edit descriptors have the following forms:

Ew.d
Dw.d
Ew.dEe

where:

w is an integer giving the width of the field in characters.

d is an integer giving the number of digits in the frac-
tional part of the number. w must always be greater
than or equal to d.

e is an integer giving the number of digits in the expo-
nent: e must be greater than zero. It has no effect on
input.

Input

When the E or D conversion code is used for input, the edit descriptor
causcs the next w characters in the current record to be read as a real
number and the converted value to be assigned to the next variable
or array element in the input list. If the item is of type complex or
double complex then two edit descriptors are required.

The external ficld should contain w characters and include:
e a sign (optional).
e a string of digits which may contain a decimal point;
e an cxponent (optional).

The exponent may have one of the following forms;

e a signed integer constant.

230 Chapter 15

e E or D followed by a signed integer constant;
e E or D followed by an unsigned integer constant.

Unsigned numbers and exponents are assumed to be positive. Spaces
occurring before the first digit are ignored. All other spaces are
treated as for I editing. All spaces must be included in the character
count. A field of all spaces is treated as zero.

If the field does not contain a decimal point, the number is treated
as though a point occurred before the last d digits of the string. This
is the number that any exponent or scale factor can be considered to
operate on. If the external field contains a decimal point, this will
override the decimal point implied by the value d in the descriptor.

Some examples follow of the effects of the E format code on input.
The symbol ‘,,’ represents a space.

Edit descriptor External number Internal number

E7.3 7654321 +7654.321

E7.3 ut137-3 +.000137

E7.3E2 u+137-3 +.000137

E7.3 1.234E2 41234

E7.3 -123E02 -12.3
Output

When the E or D conversion code is used for output, the edit descrip-
tor outputs the next item in the output list as a decimal fraction
with an exponent. If the exponent ficld e exists then the exponent
will be output with e digits.

The fractional part, f, of the external number will be in the range
0.1 < f < 1 and will be rounded to d digits and will be output
preceded by a minus sign (if the number is negative), a zero (if the
field width specified is wide enough) and a decimal point. If the item
is of type complex or double complex then two edit descriptors are
required.

Format Specification 231

The exponent will have one of the forms:

Etd;d; if Ew.d or Dw.d is used and |ezp| < 99
td,yd,ds if Ew.d or Dw.d is used and 99 < |exp| < 999
Etdyds...d, if Ew.dEe is used

where d; d,...d, are digits. The number will be right justified.

The fractional part f will be signed only if it is negative. The
exponent part will always be signed. The scale factor can be used to
alter the range of the fractional part f of the external number from
the limits defined above.

If necessary, the field will be space filled on the left to w characters.
The number of characters, including the minus sign if any, should
not exceed the field width. If it does, the output field is filled with
asterisks.

Similarly, in Parallel Fortran, if an attempt is made to output the
exceptional IEEE values NaN, +o0o or —o0, the output field is filled
with question marks: see section 11.1.10.

Some examples follow of the effects of the E code on output. The

symbol ‘.’ represents a space.

Edit descriptor Internal number External number

E14.5 +12345678 uuu0.12346E+08

E14.5 -1.23 Lu-0.12300E+01

E14.5 +.000123 uuu0 . 12300E-03

E14.5 —.003 uu—0.30000E-02

E14.5E4 —.003 -0.30000E-0002
Examples

The following;:

A = 4764.732
B = -21.5E-4
¢ = .003210

232 Chapter 15

D = -99.9E3
WRITE(6,100) A,B,C,D
100 FORMAT(’0’,E15.8E3,E13.6,E12.4,E9.4)

causes this line to be printed out:

0.47647320E+004-0.215000E-02,,0.3210E-02¢#s% s s %+

The value for D requires at least ten positions (—.9990 x 10°) and as
only nine are specified, the field is set to ‘*xdkkxduns’,

The following:

DOUBLE PRECISION X,Y,Z
X = -3.66D2
Y = 123456.12346
Z = 155.1561
WRITE(6,100) X,Y,Z
100 FORMAT(’0’,D10.3,D16.8,D18.7)

causes this line to be printed out:

~0.366E+03,,0.12345612E+06,uuuLu0.1551510E+03

The edit descriptor for Y specifies only eight significant figures; in
this case rounding occurs.

The following;:

REAL X, Y

X=-1.0

Y = SQRT (X)

WRITE (6,100) Y
100 FORMAT(F5.2)

causes the following to be output:

This is because the result of performing a SQRT of —1.0 is a NaN.

Format Specification 233

15.3.1.4 The G Conversion Code

The G conversion code is used to transfer a real or double precision
value, or the real or imaginary part of a complex or double complex
value. Edit descriptors using the G conversion code have the format:

Gw.d
Gw.dEe
where:
w is an integer giving the width, in characters, of the
external field.
d is an integer giving the number of digits in the frac-
tional part of the number: w must always be greater
than or equal to d.
e is an integer giving the number of digits in the expo-
nent. It has no effect on input.
Input

For input the G conversion code has the same effect as if it were
Ew.d,Dw.d or Fw.d (see sections 15.3.1.2 and 15.3.1.3).

Output

When this conversion code is used for output the edit descriptor
outputs the next item in the output list either in fixed point form
(without an exponent) or in floating point form (with an exponent).
The magnitude of the value determines the form in which it is output
as follows:

o I the number, z, is outside the range 0.1 < z < 10¢, then the
nuimber is output with an exponent in the same manner as the
E edit descriptor (see section 15.3.1.3).

234

Chapter 15

¢ If the number is inside the above range, then the d most sig-

nificant digits of the number are output as a decimal {raction
without a decimal exponent and will be justified towards the
left by a fixed number of spaces. If the Gw.dEe conversion
code is used then e + 2 spaces will be produced at the right of
the field; four spaces will be produced if the Gw.d conversion
code is used. The field width w must allow for these additional
characters.

If a scale factor (see section 15.3.1.5) is operating, it will have
no effect unless the value being output is outside the range
0.1 < z < 10% If the value is outside this range, then the
effect of the scale factor will be as for the E conversion code
(see section 15.3.1.3).

Some examples follow of the effects of the G code on output. The
symbol ‘)’ represents a space.

Edit descriptor Internal number External number

Gi1.4 +10.3456 wul0.35,uuu
G11.4E4 +10.3456 10.35,uuuuu
Gi1.4 —0.000367 -0.3670E-03
G11.4E1 —0.000367 u-0.3670E-3
G11.4 +4958.67 A wud958. Luuu
Gi11.4 +49586.7 u0.4959E+05
2PG11.4 +10.3456 wul0.35uLuu
2PG11.4 —.00036 u-36.00E-05
Example

The following;:

11

REAL A,R,S,T

COMPLEX C

READ(5,4) A,C,R,S,T

FORMAT (2G8.3,G6.2,G11.8E2,G4.0,G15.12)
WRITE(6,41) A,C,R,S,T

FORMAT (1H,,,610.3,69.2,2G12.5E3,G13.6,G7.1)

Format Specification 235

and a data input record of the form:

u33854uu2000 - 2'4‘ 1 2775uu_966 1 2.E‘8768u+uuu 1 05uuuuuuuu

would produce a printed output line as follows:

u0.339E+04,,0. 20,127 . TSyuuuu—- 96612E-011,,,,7680 . 00,10 . 1E-01

15.3.1.5 The Scale Factor

The scale factor is used to change the position of the decimal point
in real numbers. It has the form:

kP
where k is an integer, optionally preceded by a minus sign.

A scale factor of zero is assumed in any format specification until a
scale factor is specified. Once a scale factor is specified it operates on
all real or complex values converted in that FORMAT statement by F,
E, D or G edit descriptors (see sections 15.3.1.1, 15.3.1.2 and 15.3.1.4)
until a new scale factor is encountered. A scale factor of the form

oP

cancels the operation of any previous scale factor.

Effects on Input

A scale factor affects only real numbers without an exponent. The
scale factor is ignored for any other type of number.

The effect of the scale factor on a real number input is that the
number will be divided by 10* as it is converted from an external
value to the internal value.

That is:

e il the input data is in the form ab.cde and it is required to
use this data internally in the form .abede, the edit descriptor
necessary would be 2PF6.3

236 Chapter 15

o if the input data is in the form ab.cde and it is required to
use this data internally in the form abed.e, the edit descriptor
would be -2PF6.3

Effects on Output

The scale factor can be used to modify the effect of edit descriptors
containing F, D, E or G conversion codes as follows:

e F conversion code:
The internal number is multiplied by 10* as it is output.

e E or D conversion code:
The internal number is multiplied by 10* as it is output but
the exponent is adjusted to compensate. Thus the number is
changed in form but not in value. Note that in this instance the
scale factor k must be restricted to the range —d < k < d + 2,
where d is an integer which defines the number of digits in the
fractional part of the number.

e G conversion code:
If the number is output without an exponent, the scale factor

has no effect. Otherwise, the effect is the same as for the E or
D descriptors.

The scale factor has no effect on edit descriptors other than these.

Examples

The following table shows the effect of a scale factor on field descrip-
tors used for input:

Format Specification 237

Edit descriptor External number Internal number

-3PF6.3 99.99 99990.0
3PF6.3 99.99 .09999
2PF12.2 4120.0 41.2
OPF5.2 21.2 21.2
2PE7.1 8642.0 86.42
2PE7 .1 86 .42E2 8642.0

The next table shows the effect of a scale factor in format codes used
for output:

Edit descriptor Internal number External number

2PF11.0 12345.0 wuw1234500.
-3PE11.5 12345.0 0.00012E+08
2PE11.3 12345.0 uul2.34E+03
4PG11.3 12345.0 wul234 .E+01
-1PG11.3 12345.0 uu0.012E+06

15.3.1.6 The L Conversion Code

The L conversion code is used to transfer logical values. The edit
descriptor has the form

Lw

where w is an integer giving the width in characters of the external
field.

Input

Wlen this conversion code is used for input, the edit descriptor will
cause a field of w characters to be read and converted to the internal
representation of . TRUE. or .FALSE.; the converted value is assigned
to the corresponding item in the input list. The external field consists
of w characters as follows:

238 Chapter 15

e optional spaces, optionally followed by a decimal point, fol-
lowed by T (representing the value . TRUE.), optionally followed
by any other characters, or

e optional spaces, optionally followed by a decimal point, fol-
lowed by F (representing the value .FALSE.), optionally fol-
lowed by any other characters.

Output

When this conversion code is used for output it will cause w — 1
spaces to be output followed by the character T if the next item in
the output list item has the value .TRUE. or by the character F if
the item has the value .FALSE. For example, the following:

LOGICAL X,Y
X = .TRUE.
Y = .FALSE.
N = 250
A=27.4
WRITE(6,4) N,X,A,Y
4 FORMAT(’0’,15,L6,F6.2,L3)

will cause the following line to be output:

wu250uuuuuTu27 . 404 F

15.3.1.7 The A Conversion Code

The A conversion code is used to transfer character values. The edit
descriptor has one of the following forms:

Aw
A

where w gives the width, in characters, of the external field. If no
width is specified then the number of characters in the external field
is the length of the item in the input/output list.

Format Specification 239

Although the ANSI Standard allows the A format code to be used
only with data of type character, Parallel Fortran allows the format
code to be used with any data type.

Input

If the field width w is greater than or equal to the length of the item
(len), then the rightmost len characters will be taken from the input
field. If the field width is less than len then w characters will be lelt
justified in the field with len — w padding spaces to the right. For
example, the following:

CHARACTER+*4 A,B,C,X,Y,Z
READ(5,3) A,B,C,X,Y,Z
3 FORMAT (A4,A4,A,A5,A2,A5)

and this data input record:

HOT#AND+COLDHOT*AND+COLD

would cause the character strings to be assigned to the variables, A,
B,C, X, Y, Z as follows:

Variable String

HOT*
AND+
COLD
0T*A
NDyu,
COLD

N =< O W >

Output

When this conversion code is used for output, the edit descriptor will
cause w characters to be output. If w is less than or equal to len,
then the w leftinost characters are output and the rest are ignored.
Il w is greater than len then w — len blank characters will be output
followed by the characters of the list item.

240 Chapter 15
15.3.1.8 The Z Conversion Code

The Z conversion code is used to transfer hexadecimal data. The
edit descriptor has one of the following forms:

Zw

Zw.m
where:
w is an unsigned positive integer which defines the width
in characters of the external field;
m is an unsigned integer which gives the minimum num-

ber of digits to be output.

The Z conversion code is not allowed by the ANSI Standard. Parallel
Fortran allows the format code to be used with any data type.

Input

The Zw.m edit descriptor is treated identically to the Zw edit de-
scriptor. The edit descriptor will read the next w characters in the
current record as hexadecimal data and the converted value will be
assigned to the relevant item in the input list.

Within an external field all spaces before the first hexadecimal digit
will be ignored, but must be included in the character count w. All
other spaces are treated as for I editing. Some examples follow of
the effect of the Z code on input.

Edit descriptor External number Internal number

3 100 256
23 wuF 15
Z3 AOA 2570

23.2 AOA 2570

Format Specification 241

Output

When used with an output statement, this edit descriptor will output
the next item in the output list as a hexadecimal number occupying w
character positions in the current record. The Zw.m edit descriptor
has a similar effect except that the hexadecimal number consists of
at least m digits and, if necessary, has leading zeros.

The value of m must not exceed the value of w. If m is zero and the
value of the output item is zero, then the output field will consist only
of space characters. The hexadecimal number will be right justified
within the field by inserting spaces on the left if necessary. If the
value to be output exceeds w characters, the output field is filled
with asterisks.

Some examples follow of the eflect of the Z code on output.

Edit descriptor Internal number External number

Z4 10 uuud
Z4.3 10 u00A
24.0 0 LUUU
24 65536 *okokk

15.3.1.9 The 0 Conversion Code

The 0 conversion code is used to transfer octal data. The edit
descriptor has one of the following forms:

Ow
Ow.m
where:
w is an unsigned positive integer describing the width of
the field in characters.
m is an unsigned integer which defines the minimum num-

ber of digits to be output.

242 Chapter 15

The ANSI Standard does not allow the 0 format code; in Parallel
Fortran the format code may be used with any data type.

Input

The 0w . m edit descriptor has the same effect as the 0w cdit descrip-
tor. When this conversion code is used for input, the edit descriptor
will read the next w characters as octal data and will assign the
converted value to the next variable or array element in the input
list. Spaces before the first octal digit in a field will be ignored
but must be included in the character count w. All other spaces
are treated as for I editing. Examples follow of the effects of the 0
format code on input; the symbol ‘,’ represents a space.

Edit descriptor External number Internal number

04 100 512

04 uul? 63

04.2 4444 2340

04 4444 2340
Output

When the 0 format code is used for output, the next item in the
output list will be transferred to the external field as an octal number
occupying w character positions in the current record; the number
will be right justified by inserting spaces on the left if necessary.

The Ow.m edit descriptor has a simliar effect except that the octal
number will consist of at least m digits and, if necessary, will have
leading zeros. The value of m must not exceed the value of w. If m
is zero and the value of the output item is zero then the output field
will consist only of space characters.

If the value to be output exceeds w characters, the output field will
be filled with asterisks.

Format Specification 243

The following examples demonstrate the effect of the 0 conversion
code on output; the symbol ‘,,’ represents a space.

Edit descriptor Internal number External number

05 8 w10
05.4 8 w0010
05.0 0 LULUU
05 32768 kkkokok

15.3.1.10 The H Format Code and Character Data

Edit descriptors using the H format code are used to transfer charac-
ter strings between the format specification and the current record.
They do not involve program variables. They have the form:

nHstring
*slring’

where:
n is the width of the character string.

string is the character string to be transferred.

If character data within apostrophes contains an apostrophe, that
apostrophe must be represented by two apostrophes, for example,
'DON’’T’ and SHDON’T are equivalent.

Both forms can be used in format specifications. For example, the
following two formats are equivalent:

100 FORMAT(’ ANNUAL TOTAL’)
100 FORMAT(13H ANNUAL TOTAL)
Input

Edit descriptors using apostrophes or the H format code may not be
used on input.

244 Chapter 15

Output

When used for output, this edit descriptor will cause the n characters
of string to be output as part of the current record. For example,
either of the examples quoted above would cause

ANNUAL TOTAL
to be written to the output stream.

The ANSI Standard describes the first character of a formatted out-
put record as a print control character which controls the vertical
spacing of the record if it is sent to a display device such as a printer
or screen. The table below describes the effect of various values for
the print control character.

Print control character Eflect

Feed one line before printing

[N

0 Feed two lines before printing
1 Feed to head of a new page

+ No line feed

any other As for space character

Parallel Fortran however follows the common convention that no
significance is attached to the first character of a formatted record.
Instead, the program fpr is provided (see chapter 25), and this may
be used to convert output which includes carriage control characters
for printing.

A convenient form of specifying the print control character is to use
an edit descriptor of the following form at the beginning of a format
specification

iHz
,1.)

where z may be one of the characters in the table given above.

Format Specification 245

15.3.1.11 The X Format Code

The X format code is used to skip characters in the input or output
record. The edit descriptor has the form:

nX

where n is an integer giving the number of characters to be skipped.
The X code is not concerned with transfer of data to or from a variable
or array element in store.

Input

When this format code is used for input, the edit descriptor will
cause n characters on the external record to be skipped.

Output

When this format code is used for output the edit descriptor will
cause the next character that is to be transmitted to the record,
to be written at a position n characters forward from the current
position. Any unfilled positions will be filled with spaces.

15.3.1.12 The T Format Codes

The T format codes are used to specify the position in the record
where the transfer of data is to begin. Their use may result in the
overwriting of data already in the record. The edit descriptor takes
one ol the forms:

Tc
TLc¢
TR¢

where ¢ specifies the character position at which the transfer should
begin.

246 Chapter 15

The Tc edit descriptor indicates that the next character is to be
transferred to or from the cth character position within the record,
counting the first character position in the record as position one.

The TLc edit descriptor indicates that the next character to or from
the current record is to be ¢ character positions backward from the
current position. If the current position is less than or equal to
position ¢, then the transmission of the next character to or from
the record would occur at position one.

The TRc edit descriptor indicates that the next character to or from
the current record is to be ¢ character positions forward from the
current position. Note that on output, T format codes do not in
themselves cause any characters to be transferred and therefore do
not affect the length of the record. However if characters are subse-
quently written beyond any unfilled positions, then those positions
will be filled with spaces.

Examples

The following format specification:

100 FORMAT(T16,°0OF’,T1’,THE’,T19, ’FILEX’,T6,9HBEGINNING)

causes the following line to be written to the output stream:

THE BEGINNING OF FILEX
The format specification:
200 FORMAT(T19,’ING’,TL8,’ EDIT’,T6,’SM’,TL8, ’,TRAN’,TR2,’ISSION’)
causes the following line to be written to the output stream

TRANSMISSION EDITING

15.3.1.13 The S Format Codes

The S format codes control the outputting of plus characters in
numeric output fields. The edit descriptors take one of the forms

Format Specification 247

SP
SS
S

If an SP edit descriptor occurs in a format specification then a plus
sign will be produced in any subsequent position which normally
contains an optional plus.

If an SS edit descriptor occurs in a format specification then a plus
sign will not be produced in any subsequent position which normally
contains an optional plus.

If an S edit descriptor occurs then the option is restored to the
compiler default, which in Parallel Fortran is the same as for the
SS edit descriptor.

15.3.1.14 The B Format Codes

The B format codes control the interpretation of spaces other than
leading spaces in numeric input fields. The edit descriptors take one
of the following forms:

BN
BZ

If a BN edit descriptor occurs in a format specification all spaces in
succeeding numeric input fields are ignored. The effect of ignoring
spaces within numeric spaces is to treat the input field as if all spaces
were left justified. A field of all spaces has the value zero.

The following example

READ(S,10) I,J,K
10 FORMAT (BN, 216)

with data
UU2U34U 1U2U3UUUUUU

would cause the following values to be assigned:

248 Chapter 15

e I to be assigned the value 234
e J to be assigned the value 123
e K to be assigned the value 0

If a BZ edit descriptor occurs in a format specification all such space
characters in succeeding numeric input fields are treated as zero. In
the example above with BZ specified:

e I would be assigned 2034
e J would be assigned 10203
e K would be assigned 0

The BN and BZ edit descriptors have no effect on output. On input
they affect only D, E, F, G, I, and in Parallel Fortran, 0 and Z editing.

15.3.1.15 The Dollar ($) Format Code

This edit descriptor is used to suppress the output of a carriage
return at the end of a line of output. The edit descriptor takes the
form

The ANSI Standard does not allow the dollar edit descriptor, but it
may be used in Parallel Fortran as means of generating a prompt for
input.
Input

The dollar format code has no effect on input.

Format Specification 249

Output

When output is directed to a display device such as a video screen
each record normally appears on a line by itself. The dollar format
code may be used to suppress the carriage return such that any typed
input at the screen will directly follow the output on the same line.
This gives the effect of a prompt for input.

Example
CHARACTER+10 OPTION
WRITE(6,36)

36 FORMAT(’ENTER OPTION: ’,$)

READ(5,40) OPTION
40 FORMAT(A)

will output the message on the screen in the form
ENTER OPTION:

The reply (say LIST) will then appear on the same line, thus:

ENTER OPTION: LIST

15.3.1.16 The Q Format Code

In Parallel Fortran, the Q edit descriptor is used to obtain the number
of characters in the input record remaining to be transferred during
a read operation. The edit descriptor takes the following form.

Q

The ANSI standard does not allow the Q edit descriptor.

Input

The input list item corresponding to the Q edit descriptor must be
of integer or logical data type. The Q edit descriptor could be used
to read a variable length formatted record.

250 Chapter 15

For example, consider the following.

READ (1,100) X,K,NCHRS, (ICHR(I),I=1,NCHRS)
100 FORMAT(F10.4,14,Q,80A1)

Two fields are first read into the variables X and K. The number of
characters remaining in the record is stored in NCHRS and this value
is then used to control the number of characters read into the array
ICHR.

Output

In an output statement the only effect of the Q edit descriptor is to
skip the corresponding output list item.

15.3.2 Colon Editing

When a colon is encountered in a format specification and there
are no more items in the input/output list then format control is
terminated. If there are more items in the input/output list then
the colon has no effect.

The example below demonstrates the effect the colon edit descriptor
has on output:

I= 12

J= 24

WRITE(6,10) I

WRITE(6,10) I1,J

WRITE(6,20) I
10 FORMAT(’ FIRST VALUE IS’,I3,:,’, SECOND VALUE IS’,I3)
20 FORMAT(’ FIRST VALUE 1S’,I3,’, SECOND VALUE IS’,I4)

would print the following output

FIRST VALUE IS 12
FIRST VALUE IS 12, SECOND VALUE IS 24
FIRST VALUE IS 12, SECOND VALUE IS

Format Specification 251

15.3.3 Default Field Widths

You can specify some edit descriptors without giving their field
widths. In this case, the field widths are decided by the compiler
on the basis of the data type of the corresponding element in the
I/0 list. The way in which field widths are specified is discussed in
section 15.3. The default values for the w, d and e parts of the field
descriptors are shown below.

Data type of

Descriptor list element w|dle
, 0, 2 BYTE 7
, 0,2 INTEGER, LOGICAL 12
A REAL 12
A REAL*8 23
LOGICAL 2

, REAL, COMPLEX 151 7 |2

(2]
Q0
o o

REAL*8, COMPLEX*16 | 25|16 | 3
LOGICAL, INTEGER 4
REAL, COMPLEX 4
REAL*8, COMPLEX*16 | 8
CHARACTER*n n

> kb T, OO HH
trl

15.4 Examples of Format Specification

1. A READ statement (see chapter 16) could refer to the format
statement

16 FORMAT(2E5.3)

and specify an input list which consists of two real variables X
and Y. In this case, il the first ten characters in the record read
by the READ statement were

1234599.90

252

Chapter 15

the variable X will be assigned the value 12.345 and Y the value
99.9.

If the record also contains further fields, then the data in these
fields will not be used. If the READ statement is executed again,
another record will be read and X will be assigned the value
corresponding to the first five characters and Y the value of the
next five characters.

The CHARACTER#8 array AX(4) holds the following characters:
AX(1) (3PG11.4
AX(2) ,OPET .3,
AX(3) 3(/ET.3)
AX(4) JX3/)) .,

The first three elements and the first character of the fourth
element form a format specification; the final seven characters
of the fourth element are irrelevant. A reference in a READ
statement to the array name AX is equivalent to a reference to
statement label 101 where statement 101 reads as follows:

101 FORMAT(3PG11.4,0PE7.3,3(/E7.3))

If the READ statement contains a list giving the following
names:

A,B, C,D, E

in that order, where all the names are those of real variables,
the first eleven characters of the next record (say the nth record
of a data) will be read according to the G conversion code with
a scale factor of 3, and the value assigned to variable A. The
next seven characters of the record will be read according to
the E conversion code with a scale factor of zero and the value
assigned to variable B. The first seven characters of cach of
the (n + 1)th, (n + 2)th and (n + 3)th records will be read
according to the E conversion code with a scale factor of zero
and the values assigned to variables C, D and E respectively.

3. The FORMAT statement

Format Specification

11 FORMAT(G11.4,2(E7.3,E8.5))

253

is used in conjunction with a WRITE statement which lists the

following real variables:

Ar B- cv Dn E. F. G, H

in that order. The output records contain the values of the

following variables:

Record Characters

1 1to 1l
12 to 18
19 to 26
27 to 33
34 to 41

2 1to7
8to 15
16 to 22

Variable

QTImoQw>

H

Format

G11.4
E7.
E8.
E7.
E8.
E7.
E8.
E7.

Wowomwomw

As the output list is not exhausted when the format specifi-
cation has been completely scanned, rescanning takes place as

described in section 15.2.3.

254 Chapter 15

Chapter 16

Input and Output

This chapter describes the input and output facilities available.

Important Notes

o None of the facilities described in this chapter are available
to programs which are linked with the standalone run-time
libraries, safrtlt4.bin and safrtlt8.bin (see section 5.3).
If you attempt to link programs which use these facilities with
the standalone libraries, the linker will report errors.

e If more than one thread concurrently makes use of the facili-
ties described in this chapter, they must protect the run-time
library from corruption by using the F77_THREAD_USE_RTL and
F77_THREAD_FREE_RTL subroutines. See section 18.2.3.

16.1 Introduction

Reading data into and writing data out from main store is controlled
by input/output statements.

256 Chapter 16

The general form of these statements is discussed in section 16.2
where references to details of each statement can be found.

Each external file is identified in an input/output statement by a
unique number, a unit number, which takes the form of an unsigned
integer.

The identification of internal files is described in sections 16.3.1.1
and 16.7 below.

Items of data for input or output are grouped into records which can
be either formatted or unformatted.

The records within an external file are either all unformatted or they
are all formatted. These two types are described in more detail in
sections 16.1.1.1 and 16.1.1.2 below and the formats of input/output
statements for each are referenced in those sections.

Each input/output operation begins at the start of a record. The
method of access to a file may be either sequential or direct depend-
ing on the type of input/output device used. These methods of access
are described in sections 16.1.2.1 and 16.1.2.2 respectively and the
input/output statements available for each method are described in
sections 16.3 and 16.4 respectively.

16.1.1 Format of Records
16.1.1.1 Unformatted Records

Unformatted records are input and output under the control of a
READ or WRITE statement with no associated format specification.
The records are representations of the internal machine form. Un-
formatted records will normally be output by the computer and
used subsequently for re-input rather than for examination by the
programiner.

Input and Output 257

Details of input/output statements for unformatted records are
found, for sequential access, in section 16.3.1.2, and, for direct access,
in section 16.4.3.

16.1.1.2 Formatted Records

Formatted records are input and output under the control of a READ,
WRITE, PRINT, TYPE or ACCEPT statement in association with list-
directed input/output, namelist-directed input/output or a format
specification. The records are character representations of the inter-
nal values.

Details of input/output statements for formatted records are found
in section 16.3.1.1 for sequential access, and in section 16.4.2 for
direct access. Section 16.5 describes list-directed input and output,
and section 16.6 describes namelist-directed input and output.

16.1.2 Accessing Records

16.1.2.1 Sequential Access

In sequential access, each record is read or written in sequence start-
ing with the first record on the file.

Records on any type of input/output device may be accessed sequen-
tially. Records on some types of device must be accessed sequentially,
for example, records on a display screen. However, on certain types
of input foutput device such as disk it is possible to space backward
past one or more records or to position at the first record on the
device. Input and output using sequential access is described in
section 16.3.

258 Chapter 16
16.1.2.2 Direct Access

In direct access, any record can be accessed directly in an order
chosen by the user.

It is only possible to use direct access on certain types of in-
put/output devices known as direct access devices. A typical direct
access device is a magnetic disk. Input and output using direct access
is described in section 16.4.

'16.2 Input/Output Statements

The most important input/output statements are the READ and
WRITE statements.

The READ statement has the effect of making values from external
data records available to the program by assigning them to specified
variables and array elements. The WRITE statement has the effect of
forming external records from the values of specified variables and
array elements.

The READ and WRITE statements can take various forms depending
on the kind of record to be handled, the kind of file on which it is
held, and the facilities used to control the handling of the record.

The most general forms of the READ and WRITE statements are:

READ(parameters) list
WRITE (parameters) list

where:

parameters is a list of parameters which varies according to the
kind of record being handled and the file being used.

list is an input/output list, which specifics the names of
the items to have their values input or output (see

Input and Output 259

section 16.2.1). The list may be used in either for-
matted or unformatted READ or WRITE statements (see
section 16.2.2 for details of the correspondence between
list items and the format specification).

The effects of the various READ and WRITE statements are described
in sections 16.3 to 16.5.

The PRINT statement and, in Parallel Fortran, the TYPE and ACCEPT
statements can be used in place of the READ and WRITE statements
in certain contexts.

There are three input/output statements known as auziliary in-
put/output statements, which may be used to describe, terminate,
and inspect a connection between a unit number and an external
file. The statements are:

OPEN
CLOSE
INQUIRE

The auxiliary input/output statements are described in section 16.8.

Other input/output statements, known as file positioning input/output
statements, are available for limited forms of input/output device.
The following statements are available for certain sequential access
input/output devices:

ENDFILE
REWIND
BACKSPACE

They are described in detail in section 16.3.1.2.
Other statements, called list-directed statements (see section 16.5)

are available. In these statements the format of the input or output
data need not be specified.

260 Chapter 16

16.2.1 Input/Output Lists

An input/output list is normally required in a READ or WRITE state-
ment. The list has the form:

item; ,item,,... ,item,

where each item; can be the name of a variable, array, array element
or character substring, or an implied DO-loop (see section 16.2.3). In
addition, in a WRITE statement, an item may be any other expression
except for character expressions which include elements of assumed
size which are not symbolic constants. Any item or series of items
may be enclosed in parentheses. An array name in an input/output
list represents the whole array and thus corresponds to n separate
items in the input/output list, where n is the total number of ele-
ments in the array taken in their order of storage (see section 10.1.2).
Note that the name of an assumed-size dummy array must not ap-
pear in an input/output list, nor may an input/output list contain
a reference to a function if the function executes an input/output
statement.

An input/output list is normally required with all READ, WRITE,
PRINT, TYPE and ACCEPT statements, whether the data is to be trans-
ferred formatted or unformatted and whether the access method
is sequential or direct. If no input/output list is specified then in
general one record will be skipped on input and an empty record
will be written on output. However, if there is no input/output list
but there is a format specification, the actions required by any non-
repeatable edit descriptors will be performed until either a repeatable
edit descriptor or the end of the format specification is encountered.

16.2.2 Correspondence Between Input/Output Lists
and Format Codes

When a statement with a format specification and an input/output
list is executed, successive items in the list are transmitted according

Input and Output 261

to the successive format codes. Where the format code is of a specific
type, for example, the I format code for integer values and the L
format code for logical values, then the corresponding item in the
input/output list must be of the same type.

If, in an input/output statement, there are more items than format
codes, then a new record is started and control is transferred to one
of the following:

o If there is a group format specification: to the group format
specification repeat count that is terminated by the penulti-
mate right hand parenthesis of the FORMAT statement;

e If there are no group format specifications: to the beginning of
the FORMAT statement.

The same series of format codes is then used for the next items in
the input/output list.

16.2.3 Implied DO-Loops

An implied DO-loop is a series of list elements, usually array elements,
that is to be repeated for different values of a DO-variable. An im-
plied DO-loop is used to simplify the specification of array elements
required in input/output operations.

It takes the form:

(e1,€2,...,6en,4=my,ma,mj)

where:

cach e; is a list element as defined in section 16.2.1. An e; may
be another implied DO-loop.

i is the DD-variable.

my is the initial parameter.

262 Chapter 16

mo is the terminal parameter.

ms is the incrementation parameter, which may be omit-
ted, in which case it is assumed to have the value 1.

The DO-variable and parameters are analogous to those of a DO state-
ment (see section 13.3.1). As with DO statements, implied DO-loops
may be nested.

i may be the name of an integer, real or double precision variable;
m;, my and m3 may be any integer, real or double precision expres-
sion except that any functions referenced must not themselves carry
out input or output operations.

The effect of the implied DO-loop is the same as if the list e;,ez,... e,
had been written down once for each iteration of the implied DO-loop
with appropriate substitution of values for any occurrence of the DO-
variable 1.

For input lists, 1, my, m, and m3 must not appear within the implied
DO-loops except in subscripts to array names.

If one e; in an implied DO-loop is a variable rather than an array
then, on output, the same value will be output several times, and
on input, several values will be assigned successively to the same
variable, each value overwriting the previous value.

Example 1

A simple implied DO-loop of the form

(A(1),I = -1,10,1)
would have the same effect as the input/output list

A(-1),A(0),A(1),...,A(10)

Example 2

An implied DO-loop of the form

Input and Output 263

N, (A(1),B(I),I = 1,N),ALPHA(2)

transfers the data in the following order:

N,A(1),B(1),A(2),B(2),... ,A(N) ,B(N) ,ALPHA(2)

Note that, in this example, N appears in the same input/output list
as an implied DO-loop using it for indexing information. It also shows
a specific array element, ALPHA(2), appearing in the input/output
list.

Example 3
The input /output list

A,M,MOD, ((CAB(J,L),B(L), L = {,N),J = 1,35,2)
causes the variables to be accessed in the following order:

A,M,M0OD,CAB(1,1) ,B(1) ,CAB(1,2),B(2),...,CAB(1,N),
B(N),CAB(3,1),B(1),...,CAB(35,N-1) ,B(N-1), CAB(35,N),B(N)

Note that because of the position of array B in the nested implied
DO-loops, every element of B is accessed a total of 18 times.

Example 4

(I,T = 1,10)

If used in a WRITE statement this implied DO-loop would output
integer numbers 1,2,...,10. However, this list would be invalid in
a READ statement.

16.3 Sequential Access Input and Output

Reading from and writing to sequential access input/output devices
are carried out by READ, WRITE, PRINT, TYPE and ACCEPT statements.
The form of these statements is described below and the use of

264 Chapter 16

these statements for formatted and unformatted data is described
in sections 16.3.1.1 and 16.3.1.2 respectively. Other sequential in-
put/output statements are described in section 16.3.2.

16.3.1 READ and WRITE Statements

The basic forms of these statements for sequential access are as
follows:

READ(Ck,f) list
WRITE(k,f) list

where:

k is a unit specification.

f is a format specification.

list is an input/output list as described in section 16.2.1.

The unit specification k is normally an unsigned integer or integer
expression which defines the unit to be used in the input/output
operation. The unit would be associated with a file or device either
by an OPEN statement (see section 16.8) or by the preconnections
which exist before the program is executed. Details of preconnected
units may be found in section 16.8.1.2.

The unit may also be specified as an asterisk. Such a unit identifier
is associated with the primary input and output channels which are
preconnected to the keyboard and the display respectively. This
form of unit identifier may only be used to read or write formatted
records in a sequential manner.

Section 16.3.1.1 describes other permissible forms.

The format specification f is normally a FORMAT statement label
(see section 15.2.1) or a character variable or array name (see
section 15.2.2). Other permissible forms are described in sec-
tion 16.3.1.1.

Input and Output 265

If the records to be input or output are formatted the READ or WRITE
statement must contain an f parameter, and if they are unformatted
the statement must not contain an f parameter.

16.3.1.1 Formatted Sequential Access Input and Output

Input

The appropriate form of the READ statement for formatted sequential
input is

READ(UNIT=k ,FMT=f ,END=ends ,ERR=errs ,JOSTAT=m) list

where:

UNIT=k specifies the unit number of the input/output file in-
volved. k is an unsigned integer constant, variable or
expression. Its value must either be zero or positive;
or it may be an asterisk signifying the primary input
channel (see section 16.3.1). A unit identifier may also
be the name of a character variable, character array,
character array element or character substring to be
used in an internal file operation (see section 16.7).
The characters UNIT= may be omitted, in which case
the unit identifier must be specified first.

FMT=f identifies a format specification. A format identifier
may be one of the following:

e The statement label of a FORMAT statement.

e An integer variable that has been ASSIGNed the
statement label of a FORMAT statement that ap-
pears in the same subprogram as the READ state-
ment.

o A character array name, or in Parallel Fortran,
any array name.

266

END=ends

ERR=errs

IOSTAT=m

Chapter 16

e Any character expression unless it includes ele-
ments of assumed size which are not symbolic
constants.

e Any character expression that does not involve
the concatenation of a character clement which
has a length specification of assumed size unless
the character element is a symbolic constant;

e An asterisk, signifying list-directed formatting.

The characters FMT= may be omitted, but only if the
format identifier is the second item in the list and if
the first item is the unit identifier without the optional
characters UNIT=.

is optional, and ends is the statement label to which
control is transferred if an attempt is made to read
data beyond the end of the file on unit number k.

is optional, and errs is the statement label to which
control may be transferred when an error condition is
detected.

is optional, and m is an integer variable or array
element which is known as the input/output status
specifier. Once the input/output statement has been
completed it is assigned a value which indicates the
existence of any abnormal condition encountered as
follows:

e If an end of file condition is encountered, m is
assigned a value of —1.

e If an error condition is encountered, m is assigned
a positive value which identifies the corresponding
error message.

e If no end of file condition or error condition exists,
m is assigned a value of zero.

Input and Qutput 267

If the input /output status specifier is omitted, program
execution will terminate if either an end of file condi-
tion is encountered and the END= specifier is omitted,
or if an error condition is encountered and the ERR=
specifier is omitted.

list is optional and is an input/output list.

The characters UNIT=, FMT=, END=, ERR= and IOSTAT= are known as
specifiers, and if specified are not constrained to appear in the order
given above. Thus for example, the input/output status specifier
(I0STAT=) may precede the end of file specifier (END=).

This READ statement reads in the items listed in ltst under the control
of the format specification identified by f, from the file with unit
number k.

An example of a formatted sequential READ statement is

READ(5,12) A,B, (C(I),I=1,10),J

In this example, data are read from a file with unit number 5 under
control of the format specification in the format statement labelled
12. The variables A,B,C(1),C(2),...,C(10),J are given values in that
order.

An alternative form of the READ statement is:
READ f,list

wlhere:

f identifies a format specification as in the READ state-
ment above; it may not be preceded by the optional
characters FMT=.

list is optional, and is an input/output list. If the in-
put/output list is omitted then the preceding comma
must also be omitted.

268 Chapter 16

The unit implicitly defined by this form of the READ statcment is
the primary input channel which is the same unit as identified by
UNIT=* in the READ statement above.

Parallel Fortran allows ACCEPT as an alternative to READ in this form
of the statement.

Output

The appropriate form of the WRITE statement for formatted sequen-
tial output is

VRITE(UNIT=k ,FMT=f ERR=errs ,IOSTAT=m) list
where k, f, errs, m and list are as for the READ statement above.

The WRITE statement outputs to the unit identified by k all the items
within list under the control of the format specification defined by
f- An example of a formatted sequential WRITE statement is

WRITE(6,101) X, ((Y(I,J),I=1,10),J=1,5)

Data are written to the file with unit number 6, under the control
of the FORMAT specification labelled 101, in the order

X,Y(1,1),Y(2,1),...,Y(10,1),Y(1,2),...,Y(10,5)

An alternative form of the WRITE statement is:

PRINT f, list

where:

f identifies a format specification as in the WRITE state-
ment above.

list is optional, and is an input foutput list. The preceding
comma must be omitted il the input/output list is not
specified.

Input and Output 269

The unit identified by the PRINT statement is the primary output
stream, and is the same as the unit identified by an asterisk in the
WRITE statement above.

Parallel Fortran allows the use of TYPE in place of PRINT, with the
same meaning.

16.3.1.2 Unformatted Sequential Access Input and Out-
put

Input

The appropriate form of the READ statement for unformatted sequen-
tial input is

READ(UNIT=k ,END=ends ,ERR=errs ,I0OSTAT=m) list

where:

UNIT=k specifies the unit number of the external file involved.
k is either an integer constant, integer variable or in-
teger expression whose value is either zero or positive;
it may not be an asterisk. The characters UNIT= are
optional, and if they are omitted the unit specifier &
must be the first item.

END=ends is optional, and ends is the statement label to which
control is transferred if any attempt is made to read
data beyond the end of the file on unit numnber k.

ERR=ecrrs is optional, and errs is the statement label to which
control may be translerred when an error condition is
detected.

IOSTAT=m is optional, and specifies an input/output status speci-
fier m where m is an integer variable or array element.
After the input /output statement has been executed it

270 Chapter 16

may be examined to determine whether any abnormal
condition was encountered as follows:

e a value of —1 indicates that an end of file condi-
tion was encountered;

e a positive value indicates that an error condition
was encountered and the value corresponds to an
appropriate error message identifier;

e a value of zero indicates that no end of file condi-
tion or error condition was encountered.

If an end of file condition is detected while performing
the READ statement and no end of file specifier (END=)
or input/output status specifier (I0STAT=) is defined,
then program execution will terminate. Similarly if an
error condition exists and no error specifier (ERR=) or
input/output status specifier is defined, then program
execution will also terminate. See section 17.6.4.1.

list is optional, and is an input/output list. When this
READ statement is executed, the next record will be
read and the values will be assigned in order to the
variables listed in the input/output list. The number
of items in the input/output list may be equal to or
less than the number of values in the external record
but it must not be greater than this number. If there
is no input/output list, one external record is skipped.

An example of an unformatted sequential READ statement is as fol-
lows:

READ(8) X, (Y(2,K),K=1,5)

This statement causes data to be transferred from an input file to X,
Y(2,1), Y(2,2),...,Y(2,5) in turn.

Input and Output 271

Output

The appropriate form of the WRITE statement for unformatted se-
quential output is

WRITE (UNIT=k ,ERR=errs ,JOSTAT=m) list
where k, errs, m and list are as for the READ statement above.

When an unformatted sequential WRITE statement is executed, the
values of the items listed in list will be output to the file associated
with the unit & in the order in which they occur, in internal machine
form. Each unformatted WRITE statement will cause one, and only
one, new record to be created.

The WRITE statement

WRITE(9) A,B,C

causes variables A, B, C to be written, in that order, to the file with
unit number 9.

16.3.2 File Positioning Input/Output Statements

These statements are for use with magnetic input/output devices
only.

16.3.2.1 The ENDFILE Statement

This statement has the following forms:

ENDFILE &
ENDFILE (UNIT=k,ERR=errs,IOSTAT=3s)

where:

UNIT=k specifies the unit number. & is an integer constant
or expression, or an integer variable whose value must

272 Chapter 16

be zero or positive; it may not be an asterisk. The
characters UNIT= are optional, and if they are omitted
then the unit specifier must be the first item in the list.

ERR=errs is optional, and errs is the statement label to which
control is transferred if an error condition is detected.
errs is known as the error specifier.

I0OSTAT=s isoptional, and s is an integer variable or array element
which becomes defined with a zero value if no error
condition exists. If an error condition does exist it
becomes defined with a positive value which identifies
the corresponding error message. s is known as the
input/output status specifier. If an error condition is
detected, and if both the error specifier and the in-
put/output status specifier are omitted, then program
execution terminates.

The ENDFILE statement defines the end of the file associated with
unit number k to be the current position within the file, and any
data beyond the current position will be truncated. The file must be
repositioned using either a REWIND or a BACKSPACE statement prior
to executing a subsequent READ or WRITE on that file.

16.3.2.2 The REWIND Statement

This statement has the following forms:

REWIND k
REWIND (UNIT=k ,ERR=errs , IOSTAT=s)

where k, errs and s are as for the ENDFILE statement above.

The REWIND statement positions the file associated with unit number
k at the beginning of the file. The effect is that the next READ
or WRITE statement referencing unit number k£ will access the first
record. If the file is already positioned at the first record then this
statement has no effect.

Input and Output 273

16.3.2.3 The BACKSPACE Statement

This statement has the following forms:

BACKSPACE k
BACKSPACE(UNIT=k ,ERR=errs, IOSTAT=3)

where k, errs and s are as for the ENDFILE statement above.

When a BACKSPACE statement is executed, the effect is that the next
READ or WRITE statement referencing unit number k will operate
on the previous record of the file. If the file was positioned at its
first record before the BACKSPACE statement is executed, then the
statement will have no effect.

If the BACKSPACE statement occurs immediately after an ENDFILE
statement, it has the effect of back-spacing over the end-of-file
marker.

Backspacing over records which have been written using list-directed
formatting (see section 16.5) is prohibited.

- 16.4 Direct Access Input and Output

Reading from and writing to a direct access input/output device is
carried out by READ and WRITE statements of the form described
below. At any time, any record may be read or written; there is
no requirement to start at the first record. Writing to an output file
alters only each record written, without destroying any record before
or after it. Data items are not written across record boundaries, nor
are they read from across record boundaries.

Data can be accessed directly only on direct access devices, usually
magnetic disks.

Each record in a direct access file is assigned a number, called its
record number, by which it can be referenced. The first record of

274 Chapter 16

a file is numbered one and the rest are numbered consecutively in
steps of one. Record numbers appear in direct access input/output
statements. Note that all the records of a direct access file have the
same length.

The READ and WRITE statements that are used for reading from and
writing to direct access files are described in section 16.4.1 below.

16.4.1 READ and WRITE statements

The basic forms of READ and WRITE statements for direct access are
as follows:

READ(k ,REC=r) list
WRITE(k,REC=r) list

where:

k is an integer variable, or integer constant or integer
expression and gives the unit number to be used in
the input/output operation. The unit number must
be zero or positive.

r is an integer expression whose value is positive. It
specifies the number of the first record that is to be
read or written.

list is optional and is an input/output list as described in

section 16.2.1.

16.4.2 Formatted Direct Access Input and Output

Input

The appropriate form of the READ statement for formatted direct
access input is

Input and Output 275

READ(UNIT=k ,FMT=f ,REC=r ,ERR=errs, IOSTAT=s) list

where:

UNIT=k

FMT=f

REC=r

ERR=errs

identifies a unit number. k is an integer expression
whose value is zero or positive. The characters UNIT=
may be omitted provided that the unit identifier is the
first item.

identifies a format specification. A format identifier
may be one of the following:

o the statement label of a FORMAT statement.

e an integer variable that has been assigned the
statement label of a FORMAT statement that ap-
pears in the same subprogram as the READ state-
ment.

e a character array name or, in Parallel Fortran,
any array name.

e any character expression unless it includes an el-
ement which has an assumed size and is not a
symbolic constant.

The characters FMT= may be omitted, but only if the
format identifier is the second item in the list and if
the unit identifier is the first item without the optional
characters UNIT=.

is an integer expression whose value must be positive.
It represents the record number of the first record
which is to be read.

is optional and errs is the label of the statement to
which control may be transferred when an error condi-
tion is encountered while executing the input/output
statement.

276 Chapter 16

IOSTAT=s is optional, and specifies an input/output status spec-
ifier. s is an integer variable or array element which
becomes defined with a zero or positive value when
the input/output statement has been executed. If no
error condition exists then a value of zero is assigned,
otherwise the value assigned is the number of the error
message which corresponds to the error detected.

If the input/output status specifier and the error spec-
ifier are both omitted, program execution will termi-
nate when an error condition is encountered; see sec-
tion 17.6.4.1.

list is optional and is an input/output list as defined in
section 16.2.1.

This READ statement transfers data from a file on a direct access
device under control of the format specification identified by f, and
assigns the values to the items within the input/output list. The file
from which data are read must be a direct access file. It is an error
to attempt to read a record from beyond the current end of the file.

Output

The appropriate form of the WRITE statement for formatted direct
access output is

WRITE(UNIT=k ,FMT= f,REC=r ,ERR=crrs,I0STAT=s) list
where k, f, r, errs, s and list are as for the READ statement above.

This WRITE statement transfers data under control of the format
specification f from items in the input/output list to a direct access
file. The data are written starting at record r. If record r already ex-
ists in the file it will be overwritten. If the values in the input/output
list are not sufficient to fill the record the remainder of the record is
filled with spaces.

Input and Output 277

If record r lies beyond the current end of the file, then the file will
be extended, but the contents of any records between the previous
end of the file and record r will be undefined.

If an input/output list is not specified the only data that will be writ-
ten will be any character data which may appear at the beginning
of the format specification.

16.4.3 Unformatted Direct Access Input and Output

Input

The appropriate form of the READ statement for unformatted direct
access input is:

READ(UNIT=k ,REC=r ,ERR=errs ,I0STAT=s) list
where k, r, errs, s and list are as defined in section 16.4.2.

This statement transfers data from record r in the direct access file
associated with unit number k to the items in the input/output list;
only one record is read and so the input/output list must not specifly
more values than can be contained in one record. The file from which
the data are being transferred must be a direct access file.

Output

The appropriate form of the WRITE statement for unformatted direct
access output is:

WRITE(UNIT=k ,REC=r,ERR=errs,IOSTAT=s) list
where k, r, errs, s and list are as defined in section 16.4.2.

This statement transfers data from the items within the input/output
list to record r in the direct file on unit k. If record r already exists
in the file then it will be overwritten. The input/output list must
not specify more values than can fit into a single record. If the values

278 Chapter 16

specified do not fill the record, the remainder of the record becomes
undefined. If the input/output list is omitted then the entire output
record becomes undefined.

If record r lies beyond the current end of the file, then the file will
be extended, but the contents of any records between the previous
end of the file and record r will be undefined.

An example of an unformatted direct access WRITE statement is

WRITE (ERR=999 ,UNIT=30,REC=I+J) IARRAY,(A(I,K),K=4,8)

This statement will write a record to the file with unit number 30.
The value of the expression I+J identifies the particular record within
the file to which the variables TARRAY, A(I,4), A(I,5), A(I,6),
A(I,7), A(1,8) are to be written. Control will be transferred to the
statement labelled 999 should an error condition occur (for example
if the record specifier (REC=) has a negative value).

16.5 List-Directed Input and Output

The use of list-directed input/output statements allows data to be
read or written without the restrictions imposed by format specifi-
cations.

16.5.1 The READ Statement

The list-directed READ statement may take the following form:
READ(UNIT=k ,FMT=# ,END=ends ,ERR=errs ,I0STAT=3s) list
where k, ends, errs, s and list are as defined in section 16.3.1.1.

Execution of the READ statement inputs values from external records
and assigns them, in order, to the items in the input list. In the
case of an array name the elements are given values in order of

Input and Output 279

storage (that is, with the leftmost subscript expression varying most
rapidly). Each value input from an external record should be ter-
minated by a value separator which may be one of the following:

e a comma optionally preceded by one or more spaces and op-
tionally followed by one or more spaces;

e a slash optionally preceded by one or more spaces and option-
ally followed by one or more spaces;

e one or more spaces between two values or following the last
value.

The input operation is terminated by the satisfaction of the input
list or by the reading of a slash.

Items of the input list will not be assigned values if they either
correspond to null data items (see below) or if a slash is specified in
the data before their values are read. Such items in the input list
will retain any value they held prior to the READ statement.

The type of each item from the input list must correspond with the
form of data from the external medium. However Parallel Fortran
allows character constants to be assigned to non-character items in
the input list.

Each READ statement starts with a new record, and reads as many
records as are necessary to provide data to satisfy the input/output
list.

An alternative form of the list-directed READ statement is:
READ =*,list

where list is as described in section 16.3.1.1. In this case, input will
be taken from standard input.

Paralle]l Fortran allows ACCEPT as an alternative to READ in this formn
of the statement.

280 Chapter 16
16.5.2 Input Data

When a list-directed READ statement is executed, reading begins at
the start of the next unaccessed record in the input file and continues
until either each item in the input list has been given a value or a
slash (/) is encountered in the input. Any data in the last record
accessed by a READ statement which follows a slash or is not required
for input cannot be accessed. Any input list items not given a
value before a slash is reached retain their current value (or remain
undefined).

The input stream consists of a series of data items which are as-
sociated in their order of occurrence with the items of the input
list. Data items are separated by one or more spaces or by a single
comma optionally preceded and optionally followed by spaces. Note
that the end of a record has the effect of a space, except when it
appears within a character constant (see below). An item may be:

A numeric constant: this may take any of the forms listed in sec-
tion 9.2.1 apart from Hollerith, hexadecimal, octal or binary
constants. Numeric constants may not contain any embedded
spaces except between the parts of a complex constant, in
which case any number of spaces is permissible. The end of
a record may not appear within a constant unless the constant
is a complex value, in which case the end of record may occur
between the real part and the comma or between the comma
and the imaginary part.

The type of the constant must be the same as that of the
corresponding list item, but there need be no correspondence
of length.

A logical constant: if the corresponding item is of type logical, the
data item may be any value acceptable to L editing (sce sec-
tion 15.3.1.6). However commas or slashes are not permitted
as optional characters.

A character constant: a data item may be a non-empty string of

Input and Output 281

characters enclosed within apostrophes. Note that the form
nH... is not permitted. Each apostrophe that is part of the
character value must be represented by two consecutive apos-
trophes. The constant may be continued on as many records
as needed and an end of record does not cause a space or any
other character to become a part of the value. Double quote
characters as described in section 9.2.1.11 have no significance
in list-directed input.

The corresponding input list item need not be of type char-
acter, and there need be no correspondence of length. Note
that the constant is assigned in the same manner as if the
constant appeared in a character assignment statement (see
section 12.3).

A null item: a null item may take one of the following forms:

e No characters appearing between two successive value
separators.

e No characters preceding the first value separator in the
first record input by a READ statement.

The value (or undefined status) of the corresponding list item
is left unchanged.

A repeated item: any of the above items may be preceded by a
positive unsigned integer constant and an asterisk (n¥). nx
must not contain any embedded spaces and may not extend
over a record. A repeated null item occurs if the next character
alter x is a value separator.

The effect of a repeated item is that the next n items from the
input list have the same value read into them; they must all
have the same type as the value. If a null item is repeated, the
next n items from the input list are left unchanged.

282 Chapter 16

A constant is terminated by the first space, end of record, or comma
after its syntactic completion (that is, after a closing bracket for a
complex constant or the closing apostrophe for a character constant).

Note that spaces are never used as zeros, and all spaces are con-
sidered to be part of some value separator except in the following
circumstances:

e spaces embedded within a character constant.

e spaces which precede or follow the real or imaginary part of a
complex constant.

e leading spaces in the first record input by a READ statement
unless they are immediately followed by a comma or a slash.

Example

If the next two records read from a file are

1056” 198766 s LUILILIL » UULILY IJI.ILIUSO.UULILILIUULIUIJ

50+ (4E1,5E1) ,uuT, ’ONE’ *S?, " TWO /,u456 00

and the file is accessed by the statement

READ(15,#*) I,J,K,L,(A(M),M=1,50),(B(M),M=1,50),P,X,Y N

I is given the value 1056, J the value 198765, K, L and A arc un-
changed, the first 50 elements of B are each given the complex value
40 + 50z, P the value .TRUE., X the value ONE’S and Y the value
TWO. N remains unchanged and the value 456 is not accessed since
the slash intervenes.

16.5.3 Output Statements

The list-directed forms of the WRITE, PRINT and TYPE statements
output the values associated with the items in an output list. The
values are written to a device or file in a form which is compatible
with the type of the item.

Input and QOutput 283

16.5.3.1 The WRITE statement

This statement has the form:

WRITE (UNIT=k ,FMT=% ERR=crrs ,IOSTAT=s) list
where k, errs, s and list are as for the READ statement above.

The WRITE statement outputs the values of each item in the output
list to a file identified by unit number k.

16.5.3.2 The PRINT and TYPE Statements

The PRINT statement has the form:

PRINT =, list
where list is an input/output list as defined in section 16.2.1.

The PRINT statement writes data to be written to the primary output
channel which is usually connected to the screen. The unit will be
the same as if an asterisk had been specified in a list-directed WRITE
statement. The following is an example of a list-directed PRINT
statement:

PRINT »,1,3,K,(A(I),I = 1,100)

Parallel Fortran allows the use of TYPE in place of PRINT, with the
same meaning.

16.5.4 Output Data

When a list-directed WRITE, PRINT or TYPE statement is executed,
the values of all elements of each list item are output in sequence.
Each record starts with a single space and contains at least one
space between each value output and no embedded spaces within
items (other than spaces within character values). A record may
end with no spaces or with one or more spaces.

284 Chapter 16

The forms of output are as follows:

For integer values: all digits are output except for leading zeros.
If negative, the value is preceded by a minus sign.

For real values: all significant digits are output. If the value to be
output contains d significant digits, and the value is greater
than or equal to 0.1 and less than 10¢, the number is output
in a form which is similar to the effect of using an F edit
descriptor (see section 15.3.1.2) with a zero scale factor, that
is, without an exponent; otherwise, the number is output with
an exponent in a form that is similar to the eflect of using an
E edit descriptor (see section 15.3.1.3) with a scale factor of 1.
The value is preceded by a minus sign if it is negative.

For complex values: an opening parenthesis is output followed by
the value of the real part, followed by a comma, followed by
the imaginary part, followed by a closing parenthesis. The real
and imaginary parts are output as for real values.

For logical values: the single character T or F is output.

For character values: all the characters are output without spaces
preceding or following the characters other than any spaces
that may be part of the character value. Character values that
are output are not delimited by apostrophes.

As many records as are necessary will be written but the end of
a record will not occur within a value, apart from a complex or
character value. The end of a record may appear within a complex
value between the comma and the imaginary part only if the entire
constant is as long as, or longer than an entire record. Character
values will be extended across as many records as required and each
such new record will have a space character inserted at the beginning
for carriage control (see section 15.3.1.10).

Note that slashes, as value separators, and null items are not pro-
duced by list directed formatting.

Input and Output 285

The ANSI Standard permits repeated items of the form nx* (see sec-
tion 16.5.2) to be output; however, this form is not used by Parallel
Fortran.

16.6 Namelist-Directed Input and Output

Namelist-directed I/O enables the programmer to input or output a
group of variables with a single statement. This group of variables
is called a namelist. A namelist has a symbolic name, which is
defined by a NAMELIST statement. Whenever an input or output
statement refers to the namelist’s name, the whole group of variables
is transferred, in a special format which includes their names.

Namelist-directed I1/0 is an extension to the ANSI standard.

16.6.1 The NAMELIST statement

The NAMELIST statement has the following format.

NAMELIST /name,/a),az2,.../namez/by ,ba,...

where:

name;,names,. ..
are the names of namelists.

a),a,... ,b],bz,. .
are the lists of variables or array names which are to
form the namelists in question.

The NAMELIST statement groups together under one name the vari-
ables and arrays whose names are specified in the statement, so
that they can be input or output by a single namelist-directed 1/0O
statement. A namelist must be declared by a NAMELIST statecment
before it is used, and it must be declared only once.

286 Chapter 16

The variables and arrays in the namelist may be of any type. A vari-
able or array may appear in more than one namelist. The following
things, however, may not appear in namelists:

e Array elements;
e Character substrings;

e Dummy arguments.

However, values may be given to array elements and character sub-
strings by a namelist-directed input statement, provided that the
array or character variable of which they are a part is included in
the appropriate namelist.

For example, the following NAMELIST statement:
NAMELIST /NAM1/Q,B,I,L,J,K /NAM2/C,J,I,L,K

This defines two namelists, NAM1 and NAM2. The variables Q and B
belong to namelist NAM1, and C belongs to namelist NAM2. I, J, K
and L belong to both namelists, although in different orders.

16.6.2 Input Statements

The namelist-directed input statement takes one of the following
forms:

READ (UNIT=k,NML=nml,END=ends ,ERR=errs,I0STAT=m)
READ nml
ACCEPT nml

where:

k, ends, errs and m
are as defined in section 16.3.1.1, except that & cannot
be an internal file.

nml is the name of a namelist, already dcfined by a
NAMELIST statement.

Input and Output 287

16.6.3 Input Data

Data Blocks

The data block required by a namelist-directed input statement con-
sists of a number of items, separated by item separators. An item
separator is a comma or a sequence of one or more spaces; extra
spaces may be inserted on either side of a comma. Except where
noted below, items may not include embedded spaces. The items
are as follows.

e The first item consists of an ampersand ‘@’ or dollar ‘$’ followed
by the name of the namelist.

e After this there follows a sequence of data items. These are
discussed below.

e Finally, the data block is terminated by an item consisting of
an ampersand ‘@’ or dollar ‘$’ followed by END.

Data Items

The format of a data item is as follows.

enlity=value

where:

entity is the name of an array, an array element, substring,
array element substring or a variable.

value is the value to be assigned to entity.

There may be a sequence of one or more spaces on either side of
the ‘=". Array elements and substrings are specified in the usual
Fortran way; extra spaces may be inserted within the parenthescs.
Subscripts must be constants.

The value may be one of the following.

288 Chapter 16

A constant: constants follow the usual Fortran formats, and may
be of type integer, real, character, complex or logical. Symbolic
(PARAMETER) constants cannot be used.

Numeric constants may not be Hollerith, hexadecimal, octal
or binary. Integer values may be supplied for real variables,
but not vice versa. Extra spaces may be inserted within the
parentheses of a complex constant.

The allowed values for logical constants are those which are
acceptable to L editing (see section 15.3.1.6).

Character constants are enclosed in apostrophes (’); apostro-
phes within the constant are represented by two apostrophes.
Character constants enclosed in double quote characters (") are
not allowed. Character constants may be assigned to numeric
variables.

A list of constants: this may be used when the entity is an array.
The constants in the list are separated by item separators (see
above). A sequence of identical constants may be represented
in the form n*c, where n is a constant unsigned integer repeti-
tion count, and c is the constant value. Values are assigned to
the array starting at its lowest-numbered element; the number
of elements listed must not be greater than the size of the array.

A null value: A null value is represented by two successive commas
in a list, an initial comma or a trailing comma. A sequence of
null values can be represented by the form n*, where n is a
constant unsigned integer repetition count. The effect of a null
value is that the value of the object to which it is assigned is
unchanged.

Data Blocks and Records

As many records as are needed may be used to hold a data block.
The first column of each record is unused, and must be blank. A new
record may be started anywhere in the data block where a space is

Input and Output 289

allowed: a record boundary is the equivalent of a space, and so by
itself can constitute an item separator. A record boundary within a
character constant, however, is not treated as a space, but is entirely
ignored.

The entity of a data item must be contained in a single record,
including any subscripts or substring specifiers. There may not be
any space before the first item: that is, the ampersand ‘&’ or dollar
‘¢’ must be in column 2 of the record.

Evaluation of the Data

When a namelist-directed input statement is executed, Fortran reads
records from the specified unit until a record is encountered which
starts a data block for the appropriate namelist. If such a record is
not found, an end-of-file is signalled.

Fortran then reads the data items in the data block, and assigns
the values to the specified entities. The order of the data items is
not significant. Only entities named in the corresponding NAMELIST
statement may be assigned values in the data block; any others will
cause an error.

Entities which are not assigned values, or which are assigned null
values, will have unchanged values. The same applies to elements of
an array which are not assigned values, and the remaining parts of
a character variable when a substring is assigned a value.

16.6.4 Output Statements

The namelist-directed output statement takes one of the following
forms:

WRITE (UNIT=k ,NML=rnml!,ERR=errs,I0STAT=m)
PRINT nml
TYPE nml

where:

290 Chapter 16

k, errs and m
are as defined in section 16.3.1.1, except that k cannot
be an internal file.

nml is the name of a namelist, already defined by a
NAMELIST statement.

16.6.5 Output Data

When a namelist-directed output statement is executed, the data
- are output in the form of a data block which can be read using
namelist-directed input.

All variable and array names specified in the namelist and their
values are written out according to their type. The fields for the
data are made sufficiently large to contain all the significant digits.
The values of a complete array are written out in columns.

16.6.6 Example of Namelist-Directed I/O

Consider the following program.

REAL A(3)

INTEGER I(3,3), L(3,3)

DATA A/3%0.0/, 1/9%0/, L/9%1/
NAMELYST/NAM1/A,B,1,J,L/NAM2/C,1,],L
READ(5,NAM1)

C=428000

WRITE(7,NAM2)

Suppose that this is executed with the following input data (note
that the data start in the second column of each record).

ulNAM1 1(2,3)=5,J=4,B=3.2
uh(3)=4.0,L=2,3,7+4,8END

The NAMELIST statement defines two namelists, NAM1 and NAM2. The
READ statement causes input data to be read from I/O unit 5 into
the variables and arrays specified by NAM1, as follows.

Input and Output 291

The first data record is read and examined to verify that it is the
start of a namelist data block, and that its name is consistent with
the namelist specified in the READ statement. If it were not, Fortran
would continue reading data records until the right one was found.

When data are read, the integer constants 5 and 4 are placed in
I1(2,3) and J respectively. Real constants 3.2 and 4.0 area placed
in B and A(3) respectively. Then, since L is an array name not
followed by a subscript the entire array L is filled with the succeeding
constants. Therefore, the integer constants 2 and 3 are placed in
L(1,1) and L(2,1) respectively, and the integer constant 4 is placed
inL(3,1), L(1,2),...,L(3,3).

The WRITE statement causes data to be written from the variables
and arrays specified by NAM2 to I/O unit number 7 as follows:

uRNAM2
uC=428000.0,
uI=0, 0, 0, O, O, O

u0, 5, 0,

UJ-3I

l= 2, 3, 4, 4, 4, 4
u4d, 4, 4,

u&END

16.7 Internal Files

If the first parameter to a formatted sequential READ or WRITE state-
ment (see section 16.3.1) is the name of a character variable, charac-
ter array element, or character array, or if it is a character substring,
then the input/output operation is to be carried out on an internal
file consisting of that variable, array element, array, or substring.

An internal file has the following properties:

e A record of an internal file is a character variable or character
array element or character substring.

292 Chapter 16

o If the file is a character variable, character array element, or
character substring it consists of a single record whose length is
that of the variable, array element, or substring, respectively.
If the file is a character array it is treated as a sequence of
character array elements, each of which is a record of the file.
Each record of the file has the same length, namely the defined
array element length.

o If the number of characters being written to the file is less than
the length of the record, the remaining portion of the record is
filled with spaces.

e An internal file is always positioned on the first record at the
start of a READ or WRITE statement accessing that file.

o Reading and writing records may only be performed using se-
quential access formatted input/output statements that do not
specify list-directed formatting.

The character variable, character array element, or character array
being used as an internal file must not appear in the input/output
list nor contain the format being used when accessing that file.

Example
In the following code
CHARACTER#16 TEXT

WRITE(TEXT,10)I
10 FORMAT(’VALUE OF I =’,1I4)

if I contains the value of 136 when the WRITE statement is executed
the effect will be equivalent to assigning the character string ‘VALUE
OF I = 136’ to the character variable TEXT.

The ENCODE and DECODE statements, which provide an alternative
method for performing internal 1/0, are described in appendix D.1.

Input and Output 293

16.8 Auxiliary Input/Output Statements

The input/output statements above describe the manner in which
data may be transferred between internal storage and external me-
dia, and between internal storage and internal files. They also de-
scribe file positioning statements. The following sections describe
auxilary input/output statements which may be used to define a
connection between a unit number and a file, terminate such a con-
nection, or interrogate the attributes of either a connection or a file.

16.8.1 Unit and File Connection

The physical association of a unit to an external file is known as
a connection. Prior to program execution a connection may be
predefined by the system. This is known as preconnection. For
example, the list-directed input statement

READ #,list
makes use of the preconnection to standard input.

Internal to a program a connection may be established by means of
the OPEN statement (see section 16.8.2)

A connection is between a unit and a file. No unit may be connected
to more than one file at the same time and similarly no file may
be connected to more than one unit at the same time. However,
means are available to terminate a connection (see section 16.8.3),
and to connect a unit to a different file. No READ, WRITE, PRINT,
TYPE or ACCEPT statement can be executed without a connection to
the specified unit.

The properties of a connection include the following:
1. The type of access, either direct access or sequential access.

2. The kind of records, either formatted or unformatted.

294 Chapter 16

3. The length of the records if the file is to be accessed with direct
access input/output statements.

File existence is totally independent of a connection; that is, a file
may be connected but not exist (see section 16.8.1.2).

16.8.1.1 File Properties

A file property is a characteristic of an external file which exists for
the life-span of the file. Taken together a file’s properties describe
the permissible methods that may be used to access the file.

Within the context of the ANSI Standard a file is attributed the
following properties:

o The file may exist, or may not exist. If it does not exist, then it
has no other property. A file is said to exist for a program if the
program may transfer data either to or from the file, provided
that it does not have to be created first. A new file may be
created by executing an OPEN statement (see section 16.8.2) or
by writing a record to the file if the file is preconnected.

o Its records may either be all formatted, or all unformatted. A
file may not contain both types of record.

o It may be accessed with direct access input/output statements,
or it may be accessed with sequential access input/output
statements. Some files may be accessed with either type of
statement, but note that a given connection is only for a single
type of access.

o A file may have a name. Ifit has no name then it is a temporary
file which will cease to exist alter program termination.

When a connection is defined (see section 16.8.2) between a unit
and a file, the properties of the connection must be compatible with
the properties of the file. For example, it is not valid to define a

Input and Output 295

connection for direct access when the file to be connected is a line
printer.

16.8.1.2 Preconnection

No unit may be referenced by a READ, WRITE, PRINT, ACCEPT or TYPE
statement unless it is first associated with a file or device. This
association is known as a connection and without a connection no
data may be transferred between a file and a unit. A connection
may be established:

e by the OPEN statement (see section 16.8.2).

e implicitly by the system before a program is executed. This is
known as a preconnection.

A unit which is preconnected may be referenced in an input/output
statement without first establishing a connection between the unit
and a file. I/O units in Parallel Fortran are preconnected as follows:

Unit Connection

* Standard input if reading; standard output if writing
5 Standard input

6 Standard output

all others a file with a default filename (see below)

The default filename is of the form FORTnnn .DAT where nnn is the
unit number. The file is assumed to be in the current directory.

If a preconnected file does not exist then it will be created when the
file is first written or read. Thus, in the following example, if the
first reference to unit 73 were:

WRITE(73,1000) (I,I=1,3)
1000 FORMAT(I1)

the file FORTO73.DAT will be created if it does not exist. Three
records will be written to the file; the first record would contain the

296 Chapter 16

character ‘1’, the second record the character ‘2’, and the last record
the character ‘3.

Standard input and standard output may be redirected at run time
using the usual MS-DOS conventions. See section 3.4.2.

Direct Access

In Parallel Fortran the effect of using direct access I/O statements
to reference a preconnected file differs from that described in sec-
tion 16.4. Since the connection has not been defined by an OPEN
statement, Fortran cannot tell what the record length of the file
is; MS-DOS does not record this information. Accordingly, the file
is treated as if it had a record length of 1, that is, as if it had
been opened with the specifier RECL=1. This means that the record
selector (REC=1) in a READ or WRITE in fact specifies a byte/character
displacement from the start of the file at which the transfer of data
is to begin. As much data as required to satisfy the input/output
list is transferred.

For example, unit 31 might be referenced for the first time by this
statement.

READ(31,REC=100) IARR

In this case, the unit would be connected to the file FORT031.DAT
and data would be read from byte position 100 within the file into
the array IARR until all the elements of IARR had been assigned.

16.8.2 The OPEN Statement

The OPEN statement provides a means of accessing files that are
not preconnected. If a file does not exist then it may be created.
The OPEN statement may also be used to create a new file ou a
preconnected unit, and to alter certain properties of a connection
between a file and a unit.

Input and Output 297

Once the OPEN statement has established a correspondence between
a given unit number and a specified file then both the unit and the
file are said to be connected, and hence a READ or a WRITE statement
can be executed on the unit and hence the file. Without a connection
(or preconnection) a READ or WRITE statement cannot be executed.

When a file is opened, it is positioned at the first record.

The general form of the OPEN statement is:
OPEN(spec, , spec,,. .. ,spec,)

where each spec; is one of the following:

UNIT=k identifies a unit number where k is an integer expres-
sion whose value is either zero or positive. The charac-
ters UNIT= are optional and if they are omitted the unit
specifier must be the first item in the list; otherwise its
position in the list is not fixed.

All other specifiers may be omitted, but if they are
specified they may appear anywhere within the list.
The specifiers are described below together with any
assumed value that may be used if a specifier is not
defined.

I0STAT=i0s defines an input/output status specifier which may be
the name of either an integer variable or integer array
element. It will become defined with either a positive
value or a value of zero. If an error condition exists the
input/output status specifier is assigned the identifier
of an error message which corresponds to the error; if
no error condition is detected it is assigned the value
zero.

Program execution will terminate if an error condition
is detected and neither an input/output status specificr
nor an error specifier (see below) is defined.

298 Chapter 16

ERR=errs is an error specifier and defines a statement label to
which control is transferred if an error condition ex-
ists. If the error specifier is omitted, and also the in-
put/output status specifier (see above), then program
execution will terminate when an error condition is
detected.

FILE=/n specifies the name of a file to be connected to the
defined unit. fn is a character expression whose value
must represent a valid filename once any trailing spaces
have been removed. If the file specifier is omitted then
the value assumed by fn depends on whether the spec-
ified unit is connected. Should the unit be connected,
then the name of the file to which it is connected
is assumed; otherwise the default value used for the
file specifier is dependent upon the value of the status
specifier (see below).

Note that because fn is a character expression, the
character ‘\’ is interpreted as an escape character, as
described in section 9.2.1.11. This means that if you
wish to use an MS-DOS pathname when specifying the
file to open, you must double the ‘\’ character. For
example:

OPEN" (UNIT=10, FILE=’C:\\PROJECTA\\DATA\\SET12.DAT’)

NAME=fn is allowed in Parallel Fortran as an alternative to
FILE=.

STATUS=sla is a status specifier. sta is a character expression whose
value may be one of the following:

oLD

NEW

SCRATCH

UNKNOWN

APPEND (in Parallel Fortran)

Input and Output 299

READONLY

Any trailing spaces in the value are ignored. The
status specifier defines the existence of the file to be
connected. If OLD is specified the named file must
exist. Conversely if NEW is specified the named file must
not exist but it will be created by the OPEN statement
provided no error occurs. The values OLD or NEW may
only be used if a file specifier is defined; while the value
SCRATCH may only be used if no file specifier is defined.
SCRATCH causes the specified unit to be connected to a
temporary file which exists only until either that unit is
closed (see section 16.8.3) or the program terminates.

If the status specifier is omitted, the default value is
UNKNOWN. UNKNOWN assumes the status of the named file
if a file specifier has been defined (that is either NEW
or OLD) or the status of the file to which the unit is
connected if no file specifier has been defined. If there
exists no connection and the file specifier is omitted
then the file specifier will assume the name of the
preconnected file if the status specifier has the value
UNKNOWN.

In Parallel Fortran the status specifier may also have
the value APPEND. APPEND assumes the status of a
named file (that is, either OLD if the file exists or NEW
if it does not). If the file exists, it will be positioned
just after the last record in the file and any data which
is written will be appended onto the end. The value
APPEND may only be used if the file is to be connected
for sequential access.

Once the OPEN statement has successfully established
a connection, the status of the connected file becomes
OLD unless the file is a temporary file.

specifies that an existing file is to be opened for reading
only; attempts to write to it will cause a run-time error.

300

Chapter 16

ACCESS=acc defines the manner in which the connection is to access

FORM=fm

RECL=rl

the file. acc is a character expression whose value may
be either SEQUENTIAL or DIRECT; any trailing spaces
in the value will be ignored. The value SEQUENTIAL
specifies sequential input/output and the value DIRECT
specifies direct access input/output. When a new file
is created the specified access method becomes a prop-
erty of the file, that is the file is created as a sequen-
tial or direct access file; while for an existing file, the
file must be capable of supporting the specified access
method. A value of SEQUENTIAL will be assumed if the
access specifier is omitted.

specifies whether the file is to be accessed with either
formatted or unformatted input/output statements.
fm is a character expression whose value when trail-
ing spaces have been removed is either FORMATTED
or UNFORMATTED. If FORMATTED is specified the con-
nected file may contain no unformatted records, and if
UNFORMATTED is specified the connected file may con-
tain no formatted records.

Note that the type of the records is a file property. If
the form specifier is omitted, a value of UNFORMATTED is
assumed if the connection specified is for direct access,
while a value of FORMATTED is assumed if the connection
is for sequential access.

is a record length specifier. rl is an integer expres-
sion whose value must be positive. It specifics in
units of bytes the length of each record in a file being
connected for direct access. For an existing file the
specified length must not be greater than the actual
record length of the file. For a new file, the OPEN
statement creates the file with a record length of rl.
If the connection defined is for sequential access, the
record length specifier must be omitted; otherwise it
must be specified.

Input and Qutput 301

RECORDSIZE=/n

BLANK=blk

is allowed in Parallel Fortran as an alternative to
RECL=.

may only be specified for a connection which is to be
used for formatted input/output, and defines the inter-
pretation to be applied to space characters within nu-
meric input fields. blk is a character expression whose
value when any trailing spaces have been removed is
either ZERO or NULL. If ZERO is specified then all spaces
in numeric input fields read from the specified unit are
treated as zeros apart from leading spaces. If NULL is
specified all spaces are ignored. A field which consists
entirely of spaces always has the value zero. NULL is
the assumed value if the blank specifier is omitted.

Each specifier in an OPEN statement may appear at most once. If a
specifier is defined then it is not constrained to appear in the order

given above.

Thus for example, the blank specifier (BLANK=) may

precede the form specifier (FORM=). The ANSI Standard requires that
where the value of a specifier is character data then that data must
be in upper case; Parallel Fortran allows such data to be specified in

lower case.

A unit may be connected by an OPEN statement within any program
unit of an executable program. Once connected the unit may be
referenced in any program unit of the executable program.

16.8.2.1 Examples

Example 1

OPEN(UNIT=273,FILE="FIL001’)

defines a connection between unit 273 and the file FILOO1. In the
absence of other specifiers the connection is specified for sequential

302 Chapter 16

formatted input/output and any spaces which are read in numeric
fields are to be ignored. As the status specifier has not been defined
a value of UNKNOWN is assumed and the file will be created if it does
not exist.

Example 2

OPEN (ACCESS=’DIRECT’ ,RECL=160,UNIT=10,
FILE=’DFX’,STATUS=’0LD’)

connects the file DFX to unit 10 for direct access. The file contains
unformatted records each of which is 160 bytes long. The file is also
assumed to exist.

Example 3

OPEN(1,STATUS="UNKNOWN’ ,BLANK=’ZERD’)

either refers to an existing connection to unit 1 and changes the in-
terpretation of spaces within formatted numeric input fields to ZERO;
or, if no connection exists, it connects unit 1 to the file FORTO01.DAT,
which will be created if it does not exist. The connection established
will only be valid for formatted input/output.

Example 4

OPEN(22, ACCESS="DIRECT’ ,BLANK="NULL’)

is not a valid statement as the record length specifier is not defined.
In addition because the form specifier is omitted, the assumed access
form is unformatted input/output which is incompatible with the
specification of the blank specifier.

16.8.2.2 Changing the Properties of a Connection

When a unit becomes connected to a file, the same unit may appear
in an OPEN statement to either define a new connection or to change
certain properties of the current connection.

Input and Output 303

A new connection is defined when the filename specified in an OPEN
statement is not the same file as the file to which the specified unit
is already connected. The effect is as if an implicit CLOSE statement
(see section 16.8.3) without a status specifier is executed immediately
prior to the OPEN statement.

When the file specifier is the same as the name of the connected file
then the current connection is specified. If the file is a file that is
preconnected and does not exist, the values specified by the OPEN
statement become a part of the connection and the file is also cre-
ated. Otherwise, should the connected file exist then only the BLANK=
specifier may have a value that is different from the one currently
in force. Note that if the file specifier is omitted then the assumed
filename is the name of the connected file unless STATUS=SCRATCH
was specified.

A file which is already connected to a unit may not be connected
to another unit unless its current connection is first terminated by a
CLOSE statement (see section 16.8.3).

Example 1

The sequence

OPEN(73,FILE=’DATA3’,...)

OPEN(73,FILE="DATA4’,...)

will first connect unit 73 to the file DATA3. At the second OPEN
statement, unit 73 becomes connected to the file DATA4 after first
terminating the original connection.

Example 2

The sequence

OPEN(2000,FILE=’RESULTS’)

OPEN(2000,BLANK="ZER0’)

304 Chapter 16

will perform the connection of file RESULTS to unit 2000. The connec-
tion will be defined for sequential formatted input/output with any
spaces in numeric fields being ignored apart from such fields which
consist entirely of spaces. The effect of the second OPEN statement
is to change the interpretation of the spaces. No other property of
the connection is affected.

Example 3

The sequence

OPEN(10,FILE=’0QUTPUT’,...)

OPEN(44,FILE='0UTPUT’,...)

is not permitted as it attempts the simultaneous connection of the
file OUTPUT to two units.

16.8.3 The CLOSE Statement

The CLOSE statement terminates the connection of a unit, and hence
terminates the connection of the file to which it is connected. The
statement has an option to destroy the associated file, that is, to
cause it not to exist after the statement has been executed. Note
that once a file has been disconnected it will be free to be connected
again (provided that it still exists), either to the same unit or to
another unit.

The general form of the CLOSE statement is:
CLOSE(UNIT=k,I0STAT=i0s,ERR=errs,STATUS=sta)

where:

UNIT=k is an integer expression that identifies the unit to be
disconnected. Its value must be zero or positive. The
characters UNIT= may be omitted but in this case the

Input and Output 305

I0STAT=10s

ERR=errs

STATUS=sta

unit specifier must be the first item in the list, other-
wise the position of the specifier is not fixed.

The remaining specifiers are optional, and if they are
defined they may appear anywhere in the list. The
specifiers are described below together with any as-
sumed value or action that may be taken if a specifier
is not defined:

is an input/output status specifier that defines an in-
teger variable or integer array element which becomes
assigned with a positive or zero value. When an er-
ror condition exists the input/output status specifier
is assigned a positive value which corresponds to an
error message which describes the error. When no
error exists it is set to zero.

defines a statement label to which control is transferred
if an error condition is detected. If both the error spec-
ifier and the input/output status specifier are omitted
then program execution will terminate when an error
occurs.

is a status specifier. sta is a character expression whose
value may be either KEEP or DELETE; any trailing spaces
are ignored. If DELETE is specified the connected file
will cease to exist; DELETE is the only value that may be
specified for a file which is a temporary file, that is one
whose status was SCRATCH before the CLOSE statement.
If KEEP is specified for a preconnected file which docs
not exist, the file will still not exist after the CLOSE;
otherwise if it is specified for an existing file then the
file will continue to exist.

If the status specifier is omitted the assumed value is
KEEP, unless the file status prior to the CLOSE stale-
ment was SCRATCH in which case the assumed value is
DELETE.

306 Chapter 16

It is quite permissible in a CLOSE statement to specify a unit which
is not connected. It has no effect on the unit and it affects no file.

When program execution terminates, each unit that is still con-
nected is closed with STATUS=KEEP, unless the file to which it is
connected is a temporary file, that is one which was created with
STATUS=SCRATCH, in which case it is closed with STATUS=DELETE.
Note that the effect is the same as if the unit was specified in a
CLOSE statement with no status specifier defined.

16.8.4 The INQUIRE Statement

The INQUIRE statement is used to interrogate the properties of a
particular file or the properties of the connection to a particular
unit. The given file or unit need not be connected. There are two
forms of the INQUIRE statement:

e INQUIRE by unit
e INQUIRE by file

An INQUIRE by unit statement interrogates a specified unit and
the file to which it is connected if any; while the INQUIRE by file
statement interrogates the properties of a specified file which may or
may not exist.

16.8.4.1 INQUIRE by Unit

The general form of an INQUIRE by unit statement is:

_ INQUIRE(UNIT=k , slist)

where:

UNIT=k is the unit specifier which defines an integer expression.
The value of the intcger expression must be either
zero or positive and specifies the unit number being

Input and Qutput 307

inspected. The characters UNIT= may be omitted in
which case the unit specifier must occur in the position
indicated above; otherwise it may appear anywhere
within shist.

slist is a set of INQUIRE specifiers (see section 16.8.4.3)
which may be an empty list. Each specifier which is
not omitted inquires about a particular property of the
specified unit or file to which it is connected.

16.8.4.2 INQUIRE by File

The general form of an INQUIRE by file statement is:

INQUIRE(FILE=fn, slist)

where:

FILE=fn specifies the name of the file being interrogated and
may appear anywhere in slist. fn is a character expres-
sion whose value represents the file name; any trailing
spaces in the value are ignored. The file may or may
not either exist or be connected.

slist is a list of INQUIRE specifiers (see section 16.8.4.3)
which may be empty. Those specifiers which are de-
fined inquire about a particular property of the file.

Note that because fn is a character expression, the character ‘\’ is
interpreted as an escape character, as described in section 9.2.1.11.
This means that if you wish to use an MS-DOS pathname when
specifying the file to open, you must double the ‘\’ character. For
example:

INQUIRE (FILE=’C:\\DATA\\SET12.DAT’, EXIST=EXI)

308

Chapter 16

16.8.4.3 The INQUIRE specifiers

Any of the specifiers defined below may be used with either form of
the INQUIRE statement. Each specifier is optional, and may appear
anywhere within the list of INQUIRE specifiers. A description of the
specifiers follows.

I0STAT=10s

ERR=errs

EXIST=ez

OPENED=0p

where i0s is an integer variable or array element which
becomes defined with a value of zero if no error condi-
tion exists or with a positive value if an error condition
was detected. ios is known as an input/output status
specifier. If it becomes defined with a positive value
then the value identifies an error message which de-
scribes the error encountered.

where errs is an error specifier that defines a state-
ment label to which control is transferred if an error
condition exists. If no error specifier or input/output
status specifier is defined then program execution will
terminate when an error occurs.

where ez is a logical variable or logical array element.
For an INQUIRE by file statement it is assigned the
value .TRUE. if the specified file exists, otherwise it is
assigned the value .FALSE. If the inquiry relates to a
unit, ex is always assigned the value .TRUE., that is,
any unit number that is zero or positive may be used
for input/output. Note that some implementations
may provide a more restricted set of unit numbers.

where op is a logical variable or logical array element
that is always assigned a value when this specifier is
defined. In an INQUIRE by file statement it is assigned
the value .TRUE. if the specified file is connected to a
unit and the value .FALSE. if it is not connected to
any unit. Similarly, in an INQUIRE by unit statement
it is assigned the value .TRUE. if the specified unit is

Input and Output 309

NUMBER=num

NAMED=nmd

NAME=nm

ACCESS=acc

connected to a file, and the value .FALSE. if it is not
currently connected.

where num is an integer variable or integer array ele-
ment which only becomes defined with a value if the
specified unit or file is currently connected, in which
case it is assigned with the number of the connected
unit. If there is no connection num becomes undefined.

where nmd is a logical variable or logical array element.
For an INQUIRE by unit statement nmd becomes un-
defined only if the unit is not connected to a file, while
for an INQUIRE by file statement it becomes undefined
only if the specified file does not exist. When nmd does
become defined, it is assigned the value .TRUE. if the
file exists and has a name; otherwise it is assigned the
value .FALSE.

where nm is a character variable or character array
element which is assigned the name of the file only if
the NAMED= specifier may be assigned the value . TRUE.;
otherwise nm becomes undefined. Note that the value
assigned to nm may not necessarily be the same as that
defined by the FILE= specifier in an INQUIRE by file
statement; however, it will always represent an accept-
able value for the file identifier in an OPEN statement.

where acc is a character variable or character array
element which only becomes defined if a connection
exists. acc is assigned the value SEQUENTIAL if the
connection is for sequential input/output, or it is as-
signed the value DIRECT if the connection is for direct
access input/output.

SEQUENTIAL=seq

where seq is a character variable or character array

310

DIRECT=dir

FORM=fm

Chapter 16

element. It is assigned the value YES if sequential ac-
cess is one of the permitted forms of access method for
the file. A value NO is assigned if the file may not be
accessed sequentially. If the access property of a file
cannot be determined, a value of UNKNOWN is assigned.

In Parallel Fortran the sequential specifier is gener-
ally assigned the value YES, that is any file may be
opened for sequential access. However in certain cir-
cumstances the value UNKNOWN is returned if it is not
known whether the file is suitable for sequential access.

where dir is a character variable or character array
element which is assigned the value YES if direct access
is one of the permitted forms of access method for the
file. A value of NO is returned if direct access is not
one of the properties of the file. If for some reason the
access property of the file cannot be determined the
value UNKNOWN is assigned.

In Parallel Fortran, dir is assigned the value YES if the
file is currently connected for direct access; otherwise,
in general it is assigned the value UNKNOWN as it is not
known whether the file is suitable for direct access.

where fm is a character variable or character array
element which describes the form of the current con-
nection. It is assigned the value FORMATTED if the
connection is for formatted input/output statements,
and the value UNFORMATTED if the connection is for
unformatted input/output statements. fm becomes
undefined if there is no connection.

FORMATTED=fmt

where fmt is a character variable or character array
element. It describes whether formatted input/output
statements may be used to access the file. If the file

Input and Output 311

consists of formatted records, fmt is assigned the value
YES, while if the file consists of unformatted records it
is assigned the value NO. In some circumstances it may
not be possible to determine the permitted form and
fmt will be assigned the value UNKNOWN.

If the file is currently connected for formatted in-
put/output Parallel Fortran returns the value YES.
Otherwise the value UNKNOWN is returned as it is not
known whether the file is suitable for formatted in-
put/output.

UNFORMATTED=unf

RECL=rl

NEXTREC=nr

where unf is a character variable or character array
element that is assigned the value YES if unformatted
input/output statements may be used to access the
file. Otherwise it is assigned the value NO when only
formatted input/output statements can be used. In
circumstances when the permitted form cannot be de-
termined unf decomes defined with the value UNKNOWN.

In Parallel Fortran the value YES is returned if the file
is currently connected for unformatted input/output.
In all other circumstances it returns the value UNKNOWN
as it is not known whether the file is suitable for un-
formatted input/output.

where rl is an integer variable or integer array element
which becomes defined only if there is a connection and
the connection is for direct access, otherwise it becomes
undefined. rlis assigned the value of the record length
of the file in units of characters (bytes).

where nr is an integer variable or integer array ele-
ment. If the file is connected and the connection is for
direct access, nr is assigned the record identifier of the
record which follows the last record that was written or
read. Otherwise nr becomes undefined. Note that il no

312

Chapter 16

record has been accessed since the file was connected
a value of 1 is assigned.

BLANK=blk where blk is a character variable or character array ele-

ment and applies only to a connection which is for for-
matted input/output. If any spaces within a numeric
input field are to be ignored than blk is assigned the
value NULL. If spaces other than leading spaces are to
be interpreted as zeroes than blk is assigned the value
ZERO. blk becomes undefined if there is no connection
or if the connection is for unformatted input/output.

When using an INQUIRE by unit statement or an INQUIRE by file
statement, the following points should be noted:

Unless an error condition exists, the opened specifier (OBPENED=)
and the exist specifier (EXIST=) always become defined. If an
error condition does exist then all the INQUIRE specifier values
become undefined.

No variable or array element may be defined more than once
in the list of INQUIRE specifiers.

If the exist specifier and the opened specifier become defined
with the value .TRUE. within an INQUIRE by unit statement,
then all the other specifiers become defined.

Within an INQUIRE by file statement, if the opened specilier is
assigned the value .FALSE. (that is, if the file is not connected),
then the number, access, form, record length, next record and
blank specifiers become undefined. Note that if the file is con-
nected the record length, next record and blank specifiers need
not become defined.

Within an INQUIRE by file statement, if the exists specilier is
assigned the value .TRUE., then the named name, sequential,
direct, formatted and unformatted specifiers become delined;
otherwise they become undefined.

Input and Output 313

Example

Assume that the statement

OPEN(FILE=’DATAFILE’,ACCESS=’DIRECT’ ,RECL=80 ,UNIT=730)

has been successfully executed and has connected an existing file
DATAFILE to unit 730. The properties of the connection are defined
as direct access input/output with unformatted records whose length
is 80 bytes. Also assume that no other connection or preconnection
exists.

Then

INQUIRE (UNIT=9,EXIST=L1,0PENED=L2,DIRECT=C1)

will assign the value .FALSE. to L2 as unit 9 is not connected and
consequently C1 becomes undefined. L1 will be assigned the value
.TRUE. as the specified unit may be used for input/output.

INQUIRE(FILE="INPUTS’ ,OPENED=L1,NUMBER=I1)

will assign the value .FALSE. to L1 as the file INPUTS is not connected
to a unit and I1 will therefore become undefined. Note that the file’s
existence has no effect on the values set.

INQUIRE(BLANKS=C1,NEXTREC=I1,ACCESS=C2,FORMATTED=C3,
1 FILE=’DATAFILE’ ,OPENED=L1,EXIST=L2)

interrogates the connection defined above and consequently L1 and
L2 are assigned the value .TRUE., and C2 the value DIRECT. C3 is
assigned the value NO which causes C1, the blank specifier, to become
undefined as the connection is for unformatted input/output. The
value assigned to I1 defines the current position of the file. If no
records have been accessed since the connection was defined I1 is
assigned the value 1; otherwise, it is assigned the record identifier of
the record which follows sequentially after the last record accessed.

314 Chapter 16

Part IV

General Reference

Chapter 17

Fortran Compiler
Reference

This chapter contains technical information about the way the For-
tran compiler works. Full details of the language itself may be found
in part ITI. Note that the information in this chapter applies only to
the current version of the compiler; it is not guaranteed that future
versions of the compiler will behave in the same way.

17.1 Running the Compiler

The compiler is run by either of the commands t4f or t8f.
t4f generates object code for the T414 32-bit transputer.
t8f generates object code for the T800 floating-point transputer.

The command line used to invoke the compiler must specify a single
source file name. Wild cards are not allowed.

318 Chapter 17

Option switches may optionally be given on the command line.
Option switches are introduced by the ¢/’ character; the available
switches are discussed in section 17.2 below.

If the source file is successfully compiled, a zero exit status code is
returned to DOS. If errors are detected, the compiler returns an
exit status code of 1. This feature can be used in DOS batch files to
check whether a compilation was successful.

The compiler creates a number of temporary files as it works. Nor-
mally, these are placed in the current directory; however, the envi-
ronmental variable TMP may be used to make the compiler put them
in another directory. For example, to make the compiler place the
temporary files in the root directory on disk D:, the following DOS
command could be used.

C>set TMP=D:\

The temporary files are called ftemp.1, ftemp.2 and ftemp.3. Usu-
ally, the compiler will delete them at the end of the run, but occa-
sionally this may not be done; in this case, it is safe to dclete them
yourself.

17.2 Compiler Switches

When the compiler is invoked, the user may include in the MS-DOS
command one or more switches to control its behaviour. This section
describes these switches.

Following the MS-DOS convention, switches are introduced by a ¢/’
character and may be typed in any order, befofe or after the source
file specification. Switches and their argument strings are not case-
sensitive; that is, lower-case letters have the same significance as the
corresponding upper-case letters. This means, for example, that the
following two switches would be treated the same:

/FBhello.bin
/fbHELLO.BIN

Fortran Compiler Reference 319

The format of the various switches is described using the following
notations:

fn An MS-DOS filename. It may be omitted in whole or in
part; the compiler’s behaviour in this case is described
in section 17.2.3 below.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

n An integer. By default this is decimal, but hexadecimal
numbers may be input, using the notation 16_n.

An example of a command to invoke the compiler with switches:

C>t4f hello /q /f1KEEP /1x

This will invoke the T4 compiler to compile hello.£77, and place
a listing of the source file with any error messages and a cross-
referenced symbol table in keep.lis. Warning messages on the
console are suppressed.

17.2.1 Default switches

Switches are normally entered on the command line when the com-
piler is invoked. In practice, you may find you use some switches on
every compilation. To avoid entering the same switches again and
again, the compiler also allows switches to be entered through a DOS
environmental variable. The contents of the environmental variable
TF, if any, are prefixed to the arguments supplied on the command
line. For example, to make the compiler print its version number
(/1) and generate debug tables (/Zi) every time it is run, give DOS
the command: set TF=/i/Zi

Default options set in this way can be turned off again using the
DOS command: set TF=

320 Chapter 17

17.2.2 Controlling Source Processing
17.2.2.1 Switch /R

If this switch is used, the compiler allows source lines which are up
to 132 characters wide, rather than 72. See section 8.3.1.

17.2.2.2 Switch /D

If this switch is used, debug comment lines are compiled as normal
source lines. A debug comment line has a ‘D’ in column 1. For
further information, see section 8.3.1.3.

17.2.2.3 Switch /U

The effect of this switch is to stop the predefined specification of the
types of symbolic constants, variables, arrays and functions. (For a
discussion of predefined specification, see section 9.3.1).

If /U is not specified, things whose names start with I, J, K, L, M
and N are predefined as being of type integer; all other things are
predefined as being of type real. If /U is specified, this predefined
specification is not done, and all names must be defined with the
IMPLICIT statement or one of the explicit type statements; any name
which is not defined in this way is flagged by the compiler with error
333, name must be explicitly typed.

17.2.3 Controlling Output Files

The /F (File) switch is used for specifying which output files are to
be generated, and their names. Each of the varieties of /F may be
followed by a fn, but the complete MS-DOS path name may not be
necessary. The compiler supplies defaults, as follows:

Fortran Compiler Reference 321

e If no extension is given, the compiler supplies a default exten-
sion depending on the type of output file: .1is for listing files,
etc.

e If no filename is given, the filename of the source file is used.

e If no drive specification and no directory specification are
given, the drive and directory specification of the source file
are used; if the source file specification did not include a drive
and/or a directory specification, then the current drive and/or
directory are used.

o If a drive specification is given alone, then the output file is cre-
ated in the current directory of the specified drive, regardless
of the source file’s directory.

The following examples may clarify this. The ‘Supplied’ string below
is assumed to be the argument of a /FL switch. The current drive
and directory are c:\michael, and the current directory on a: is
\output.

Specified source file Supplied Output file

dogs nothing c:\michael\dogs.lis
dogs cats c:\michael\cats.lis
dogs cats.out c:\michael\cats.out
dogs \stuff\ c:\stuff\dogs.lis
dogs \stuff c:\stuff.lis

dogs a:\first\ a:\first\dogs.lis
dogs a: a:\output\dogs.lis
dogs a:cats a:\output\cats.lis

Notice that in examples like the fourth above, it is the fact that the
supplied string ends with a ‘\’ which indicates that this is a directory
specification. If it is omitted, as in the fifth example, output would
be sent (in this case) to c:\stuff.lis, even if a directory c:\stuff
exists.

322 Chapter 17

17.2.3.1 Switches /FB and /FO

These switches have the same eflect. They instruct the compiler to
create an object file in binary format. The default extension is .bin.

Notice that if no /FB or /F0 switches are specified, the behaviour
of the compiler is the same as if a /FB switch were used, with no
argument. In order to stop the compiler generating an object file of
any kind, the /C switch must be used (see section 17.2.4).

17.2.3.2 Switch /FH

This switch makes the compiler produce an object file in the legible
hexadecimal format described in section 3 of the Inmos Standalone
Compiler Implementation Manual. It may not be specified with the
/FB or /FO0 switch. The default extension is .hex.

Hexadecimal object files can be linked with normal binary object
files as described in section 3.3.

Normally, the /FH switch is only used if it is necessary to transmit an
object file across a communication channel which does not support
transparent binary file transfer. A hexadecimal object file is much
larger than the corresponding binary object file.

17.2.3.3 Switch /FL

This switch makes the compiler produce a line-numbered source
listing file. The listing file contains any error messages produced
by the compiler, as well as the numbered source lines. The default
extension is .lis.

For example, if the hello.f77 program were compiled using this
command:

C>t4f hello/fl

Fortran Compiler Reference 323

the listing file produced would look like this:

Source file: hello.f77

Object file: hello.bin

Switches: /T4 /FL

Compiled by: transputer Fortran 77 compiler, F77_tiransputer V2.1

1 C ’Hello, world’ program

2 c

3 PRINT 100

4 100 FORMAT (’Hello, world!’)
5 END

6

17.2.4 Controlling Object Code
17.2.4.1 Switches /T4, /T8 and /T8A

These switches can be used to specify which type of transputer the
program is to be compiled for. /T4 and /T8 are only permitted
with the tf command, as the t4f and t8f commands supply the
appropriate switches automatically, and these will, in fact, appear
in the Switches: line of the listing (see section 17.2.3.3 above).

The /T8A switch is valid with the t8f and tf commands. It makes
the compiler generate code to work round a floating-point firmware
bug in Rev A of the T800 processor which affects integer-to-real
conversions.

17.2.4.2 Switch /S

The /S (Save) switch makes the compiler allocate all scalar variables
(that is, variables which are not arrays) to statlic storage, so that
they keep their values between calls to a subprogram. Variables in
the following categories are always allocated to static storage in any
case:

324 Chapter 17

® arrays;

e variables initialised by DATA statements, or by the extended
forms of the explicit type specification statements (see sec-
tion 10.3.1.8);

e variables in COMMON blocks;

e variables which have been the subject of SAVE statements.

If the program is compiled without the /S switch, all other variables
are allocated to stack storage, and so are undefined on entry to a
subprogram, until they have been assigned a value, for example by
an assignment statement. Many Fortran compilers in fact preserve
the values of all variables across calls, although the standard does not
guarantee this. The /S switch provides compatibility with compilers
of this sort.

A similar problem arises from the fact that some compilers set all
uninitialised variables to zero, although the standard does not require
this. With Parallel Fortran, uninitialised static variables are preset
to zero. If a ported program is failing because variables are not being
preset to zero, you can compile the program with the /S switch. This
will allocate all variables to static, so that they are all preset to zero.

Unfortunately, accessing static storage is slower than accessing the
stack, and for this reason it may be preferable to use a SAVE state-
ment (see section 14.6) to preserve those variables which need pre-
serving, rather than to compile with the /S switch. On the other
hand, it is sometimes important to minimise the amount of stack
space used (see section 3.4), in which case this switch may be what
is needed.

17.2.4.3 Switch /P

Certain constant values in a program cannot be worked out by the
compiler, but must be filled in (or patched) by the linker. The com-
piler leaves gaps for these values, and fills the gaps with a special

Fortran Compiler Reference 325

code. In some circumstances, however, the linker may decide on
a patch value which is too large to fit in the gap provided by the
compiler. When this happens, the linker gives the following error
message:

FATAL ERROR(22): patch over valid code in module module

The /P switch controls the sizes of the gaps left by the compiler, so
that this situation can be avoided. There are two varieties.

17.2.4.4 Switch /PCn

This switch changes the size of the gap the compiler leaves for a call
to a subprogram. The size of the gap limits the distance from the call
to the called subprogram. Four bits of the displacement are stored
in every byte of gap, so the maximum displacement is 24" — 1 bytes.
n should be in the range 2 to 8. If the /PC switch is not used, the
compiler assumes a value of 6 for n, giving a maximum displacement
of 16MB. Similar negative displacements are also allowed. Smaller
values of n reduce the code size for external calls (resulting in faster
execution) but restrict the total size of the final program image. For
example, n = 5 allows displacements up to IMB; n = 4 allows up to
64KB. Normally the default value of n should be adequate.

The compiler does not accept a /PC1 switch, as in this case not only
would the displacement be restricted to 15 bytes, but in addition
backward calls would not be possible.

17.2.4.5 Switch /PMn

A linked program contains a module table, which has an entry for
every module in the program, including both the modules written
by the user and those extracted from libraries. Each module’s entry
contains the address of the module’s static data area. The first thing
which a subprogram does is to access this address, and to do this, it
must load the module number. These module numbers are assigned

326 Chapter 17

by the linker, so the compiler cannot predict how large a module’s
number will be. Once again, it leaves a gap, and the \PM switch
allows the user to specify how large this gap is. Four bits of the
module number are stored in every byte of gap, so the maximum
module number is 29" — 1 bytes. n should be in the range 2 to 8.
If the /PM switch is not used, the compiler assumes a value of 2 for
n, giving a maximum module number of 255. Larger /PM numbers
increase the maximum number of modules which can be linked into
one program, but make the program slightly larger and slower.

If the linker reports patch over valid code, as described above,
the likely cause is that the linked program contains more than 255
modules, including library modules. The programmer can cope with
this situation as follows:

o Use /PM to increase the maximum allowable module number.
For example, /PM3 will allow 4096 modules.

e Modules are assigned numbers in order, depending on their
position in the linker’s command line. It is essential that
modules from the Fortran library should have module numbers
which are less than 255; they have already been compiled with
/PM2, and this cannot be changed. So the linker command
line should have the Fortran library and harness first; then
any user-written modules and libraries, compiled with a larger
/PM. For example:

C>linkt \tf£2vi\frtlt8 \tf2vi\t8harn main @mysubs,main.b4

17.2.4.6 Switch /C

If the /C (Check) switch is used, the compiler checks the source file
for errors, but does not generate an object file.

Fortran Compiler Reference 327
17.2.5 Controlling Debugging
17.2.5.1 Switch /Zi

If this switch is used, the object file generated by the compiler will
contain tables listing the names, locations and types of the identifiers
used in the source file. This switch should be used if Tbug, 3L’s
interactive symbolic debugger is to be used to debug the compiled
code. By default, no tables are generated and the debugger is unable
to display source program variables symbolically.

17.2.5.2 Switch /2d

This switch causes line number tables relating compiled code ad-
dresses back to source line numbers to be included in the generated
object file for use by decode and Tbug.

In this release, line number tables are always included in the gener-
ated object file. However, as future releases may not generate line
number tables by default, you may find it helpful to get into the
habit of using /Zd now.

17.2.6 Controlling INCLUDE Processing

This section should be read in conjunction with section 17.3, where
include file processing is discussed more fully. The INCLUDE state-
ment is discussed in section 14.7.

17.2.6.1 Switch /1dir

This switch adds dir to the include list, that is, the list of “stan-
dard places” where the compiler looks for files specified in INCLUDE
lines. The dir string is assumed to be a directory, whether or not it
terminates with a ‘\’.

328 Chapter 17

17.2.6.2 Switch /X

This switch excludes the “standard places” from the include list.
Directories added to the include list by means of the /Idir switch
are not affected, and will still be searched by the compiler.

17.2.7 Controlling the Format of the Listing

The /L switch can be used to specify changes in the information to
be included in the listing file output by the compiler. If /L is used
without /FL being used as well, the compiler behaves as if /FL were
specified without a filename; that is, the listing is sent to a file whose
name is derived from the source file name (see section 17.2.3).

Note that combinations of these two switches (/LIX or /LXI) are
permitted.

17.2.7.1 Switch /LI

Normally, the contents of files which have been added to the source
program by INCLUDE statements (see section 14.7) are not included
in the listing file. When /LI (List Include) switch is used, however,
they are included.

17.2.7.2 Switch /LX

The /LX (List Cross-References) switch causes the compiler to gen-
erate an alphabetical list of all identifiers, specifying their types (see
section 9.1) and the lines on which they are referenced.

Fortran Compiler Reference 329

17.2.8 Information from the Compiler
17.2.8.1 Switch /I

This switch makes the compiler display a line containing its identity
and version. Please quote this information in any correspondence
about the compiler.

17.2.8.2 Switches /V and /Q

These switches control the information sent to the standard output
stream by the compiler during compilation. If neither /V nor /Q
is used, error messages only, including warning-class and comment-
class errors (see 17.6) are output.

The /V (Verbose) switch makes the compiler produce additional
messages on the standard output stream indicating how far com-
pilation has progressed. The compiler also outputs the name of each
subprogram as it is compiled. Here is a typical example of output
generated by the /V switch:

program MAINPROG

subroutine SECOND

function THIRD
17 statements analysed; no faults detected
starting object file generation

The /Q (Quiet) switch stops the compiler from sending warning-class
and comment-class error messages (see 17.6) to the standard output
stream. Error-class messages are still output, and all messages are
still output to the listing file, if any.

17.2.9 Controlling the Compiler’s Buffer Sizes

The /B (Buflers) switch enables the user to change the size of some
of the compiler’s internal buffers. The default sizes for these buflers

330 Chapter 17

will be appropriate for the majority of programs, but if a program
which includes particularly large or complex subprograms is com-
piled without the use of the /B switch, the compiler may be unable
to compile the program. These conditions may be recognised by the
occurrence of one of the following error messages:

1. Dictionary table overflow
2. Triad table overflow

3. Fatal error -- too many code fragments

The format of the /B switch is as follows:

/B(a:b:c)
where:
a is the requested size of the dictionary table;
b is the requested size of the triad table;
¢ is the requested size of the code fragment buffer.

All these sizes are expressed in kilobytes. If any value is omitted,
the default value is left unchanged. Trailing ‘:’ characters after the
last value may be omitted. For example, the following switch would
specify the size of the triad table as 100 kilobytes, and leave the
other two buffers unchanged:

- /B(:100)

The characteristics of the three buffers are defined by the following
table.

Minimum Maximum Default

Size Size Size
Dictionary table 32 128 64
Triad table 60 240 120

Code fragment buffer 16 no limit 16

Fortran Compiler Reference 331

Note that it is possible to specify combinations of the three buflers
which will overflow the transputer’s memory. If this happens, the
following error message will be given:

Fatal Error -- not enough memory

The /B switch may also be used alone, without parameters and
parentheses; in this case, a summary of its format and the table
above is printed.

17.2.10 Obsolescent Switches

Two switches are provided for compatibility with earlier versions of
the compiler.

/H This is the equivalent of /FH. Like /FH, it cannot be used with
/FB.

/L Similarly, this is the equivalent of /FL.

Neither of these two switches can have any arguments, and conse-
quently they cannot be used to redirect output to a hexadecimal or
listing file.

17.3 Handling of INCLUDE Files

This section discusses how the compiler’s handling of INCLUDE state-
ments (see 14.7) may be controlled.

When tlie compiler encounters an INCLUDE statement, it searches for
the specified file in a sequence of directories known as the include
list. ‘This consists of the following, which are searched in this order:

1. The current directory.

2. The “standard places”. These are defined in one of three ways.

332 Chapter 17

o The user may define the string 3LF_INC in the MS-DOS
environment to specify a series of directories, by an MS-
DOS command like this:

C>SET 3LF_INC=c:\root\branch;\cats

e If3LF_INC is not defined, there is only one standard place:
directory \tf2v1. If 3LF_INC has been defined, \tf2v1 is
only searched if it is included in the series of directories
it specifies.

o If the /X compiler switch is used, the standard places are
excluded from the include list.

3. Directories which have been specifically added to the include
list at compilation time by means of the /I switch (see sec-
tion 17.2.6).

All the filenames which are added to the include list, either by the
SET 3LF_INC= command or by the /I compiler switch are assumed
to be directories, even if they do not end with a ‘\’; in this case,
the ‘\’ is supplied by the compiler. If the filename specified in the
INCLUDE statement includes a directory specification, an attempt is
made to concatenate it to each of the directories in the include list
in order to find the file. Such a filename should not itself start with
a ‘\’.

After installing the compiler as described in chapter 1, only the direc-
tory \tf2v1 will be searched. Note that this directory specification,
which is built into the compiler, does not include a disk name: this
implies that the compiler will only search directory \tf2v1 on the
current disk. If the compiler is to be executed from a different disk
to that on which it has been installed, the string 3LF_INC must be
defined to allow the compiler to locate the standard package files
(see section 18.2.1).

Because the filename in an INCLUDE statement is a Fortran character
constant, the character ‘\’ is interpreted as an escape character, as
described in section 9.2.1.11. This means that if you wish to use

Fortran Compiler Reference 333

an MS-DOS pathname when specifying the included file, you must
double the ‘\’ character. For example:

INCLUDE ’c:\\lib\\incfiles\\maths.inc’

17.4 Data-Type Representations

This section briefly expands on the discussion of Fortran data types
to be found in section 10.1. The Fortran data types are represented
on the transputer as follows:

BYTE 1 byte

INTEGER 1 word

REAL 1 word (IEEE single-precision)
LOGICAL 1 word

DOUBLE PRECISION 2 words (IEEE double-precision)
COMPLEX 2 words (2 IEEE single-precisions)
DOUBLE COMPLEX 4 words (2 IEEE double-precisions)
CHARACTER#*n n bytes

On T4 and T8 transputers, a byte is 8 bits and a word is 32 bits.
Variables of all types are automatically word-aligned, except as noted
below.

The IEEE floating-point formats used to hold REAL, DOUBLE PRECISION,
COMPLEX and DOUBLE COMPLEX quantities on the transputer are de-
scribed in detail in the IEEE floating-point standard[9]. The way in
which these standard formats are represented in transputer memory

is shown in figure 17.1.

In the case of COMPLEX quantities, two IEEE single-precision quanti-
ties are used; the real part is stored in the word with relative address
displacement 0, and the imaginary part is stored in the word with
relative displacement 4. Similarly, DOUBLE COMPLEX quantities are
held as two IEEE double-precision quantities, with the real part at
relative address displacement 0 and the imaginary part at relative
address displacement 8.

334 Chapter 17
+— msb byte number Isb —

[T s[5 [els[a 1 o]
S—re fraction

1 11— 52 bits

S e fraction
1 —8— 23 bits -

Figure 17.1: Representation of DOUBLE PRECISION and REAL Values

LOGICAL variables each occupy a word. The value .TRUE. is repre-
sented by a value 1 in the least-significant bit, and the value .FALSE.
is represented by a 0. All other bits have the value 0.

CHARACTER variables are represented by a string of bytes whose length
is the length of the variable, rounded up to the nearest 8 bytes.

Arrays are stored as described in section 10.1.2, that is, in ascending
address order, with the lefthand subscript varying most rapidly and
successive subscripts varying less rapidly. Each element of the array
is stored as described above, according to its type, except that:

e CHARACTER elements do not have their lengths rounded up to
the nearest 8 bytes;

e BYTE elements are not aligned on word boundaries, but follow
one another without any gaps.

17.5 Data File Formats

This section describes how the various file types are realised in the
MS-DOS file system.

Fortran Compiler Reference 335

17.5.1 FORMATTED SEQUENTIAL

Each record consists of a sequence of ASCII characters, terminated
by a carriage return-line feed sequence. Files generated by this ver-
sion of Parallel Fortran terminate the file with a Ctrl/Z character.

17.5.2 FORMATTED DIRECT

The record consists of a sequence of ASCII characters, with no
terminating carriage return-line feed. If the record is not filled by
the character sequence, the remaining bytes are filled with space
characters. There is no end-of-file marker. If a record is written
beyond the current highest-numbered record, the contents of any
intervening records are undefined.

17.5.3 UNFORMATTED SEQUENTIAL

The variables written to a record are stored in the format they have in
memory. However, they are not word-aligned, and CHARACTER values
are not rounded out to a multiple of 8 bytes. Each record is preceded
and followed by a 4-byte integer record length; this record length
does not include the lengths of the record-length words themselves.
Files generated by this version of Fortran have an end-of-file marker:
this is four bytes containing the value —1.

17.5.4 UNFORMATTED DIRECT

Variables are stored in the records in the same way as for UNFORMATTED
SEQUENTIAL files, but there are no record length indicators. If the

record is not filled with data, the remaining bytes are filled with

zeroes. There is no end-of-file marker. If a record is written beyond

the current highest-numbered record, the contents of any intervening

records are undefined.

336 Chapter 17

17.6 Fortran Error Messages

This section is concerned with the format of error messages output by
the Parallel Fortran compiler at compilation time, and by compiled
programs at run time. These messages fall into four main groups,
which will be discussed in turn:

Syntax Errors These messages report errors or problems in the
syntax of the program, and occur during the first part of the
compilation process, when the program is being analysed syn-
tactically.

Code Generation Errors These occur when the compiler encoun-
ters a problem while generating the object file.

Fatal Errors These errors result in the immediate termination of
the compilation, and mostly originate in the interaction be-
tween the compiler and the operating system.

Run-Time Errors These occur when a Fortran program is run,
and result either from programming errors, or from interactions
between the program and the operating system at run time.

17.6.1 Syntax Errors

There are three classes of syntax error messages output by the com-
piler. By default, they are all output to the console, and to the
listing file, if any. However, Warning- and Comment-class messages
are not output if the /Q switch is used.

Errors The compiler output a message of this class when it at-
tempts to compile a statement which does not obey all the rules
of Fortran. The message identifies the error and attempts to
indicate where it took place. After it has output the message,
the compiler continues to analyse the program, but no object
file will be produced.

Fortran Compiler Reference 337

Warnings A message of this class is used by the compiler to identify
a statement which does not conform to strict ANSI standard,
although it is acceptable to the Parallel Fortran compiler. Af-
ter the message, the compiler continues to analyse the program,
and will produce an object file.

Comments A comment message is used by the compiler to draw
the attention to an effect which the programmer may not have
intended, and which may be the result of a programming error.

Syntax error messages have the following format:

in ... source-tezt. ..
class errno ... message-text. . .
where:
in is the number of the source line where the error hap-
pened.

source-text is the text of the erroneous line.
class is one of the words Error, Warning or Comment.
errno is a number identifying the error.

message-lext
is the message, describing the nature of the error.

The ‘=’ points to the part of the source text which is in error. For
example:

2 A(1.5) =10

Error 131 Expression must be of type integer

In this case, the programiner has attempted to subscript an array
with an expression which is not of type integer. This is not allowed
by the rules of Fortran (see section 9.2.4). The error occurred on
line 2 of the source file, and was noticed by the compiler when it had

338 Chapter 17

finished evaluating the expression, that is, when it encountered the
closing ‘)’ of the subscript. This particular error is number 131, and
the message will be found under this number in appendix G.

Appendix G contains a complete list of syntax error messages, ar-
ranged in errno order.

17.6.2 Code Generator Errors

Once the syntactic and semantic phases of compilation have been
completed the compiler attempts to generate transputer instructions
for the program.

During this phase of compilation the compiler does not have access
to the source program and so error messages cannot include the
offending statement but simply give its line number.

The general form of these messages is:

Exrror: ... reason ... at line number

The current version of the compiler can output only one code gen-
eration message. It is treated as a fatal error; that is, compilation
stops at this point.

e Zeoero divide

This message is issued when the compiler tries to evaluate a
constant expression and discovers that the divisor is zero.

PROGRAM VRONG
INTEGER A
A=5/0
END

17.6.3 Fatal Errors

Certain error conditions are so serious that the compiler cannot carry
on. Instead, it gives one of the error messages listed in this section,

Fortran Compiler Reference 339

and stops. The errors are associated with the compilation process
itself and are independent of the Fortran language.

Most of the messages are introduced by the phrase:

Fatal Error --

In the list below, those which do not include this introduction are
marked with a {.

e cannot produce both hex AND binary files

The user included on the compiler’s command line switches
which requested both hex and binary format object files. For
example:

C> t4f mangle /fo /fh

{ Dictionary table overflow

The dictionary table is used by the part of the compiler which
performs syntactic analysis to store details of the various For-
tran entities it is dealing with. If this message occurs, the size
of the dictionary table can be increased using the /B switch
(see section 17.2.9).

error in format of /B switch:swiich

Section 17.2.9 describes the format of the /B switch.

file system error:n

This error occurs when the afserver reports to the run-time li-
brary that a failure in the MS-DOS file system has happened. n
is the error code returned by the afserver; a list of error codes
and their meanings may be found in the Standalone Compiler
Implementation Manual[13]. The most common cause of this
error message is an attempt to write to a full disk.

340

Chapter 17

e more than one source file specified

Only one source file can be specified for each compilation. No-
tice that any item on the compiler’s command line which does
not start with a ¢/’ is treated as a source file, so a common cause
of this error is inserting spaces where they are not expected,
like this:

C> t4f mangle /F0 mangle.out

In this case, the user presumably meant to type this:

C> t4f mangle /FOmangle.out

{ Name table overflow

The name table is the area used by the syntactic analyser to
store the text of the names of the Fortran entities it is han-
dling. The table is very large, and consequently this message
is expected to occur only in extreme examples. The only cure
is to recast the program so that the subprogram which is caus-
ing the problem uses fewer (or shorter) names. The offending
subprogram can be identified by using the /V switch.

not enough memory This message indicates that the compiler
and all its data areas are too large for the B004’s memory. The
most likely cause is that one or more of the buffers adjustable
by the /B switch has been set too large. See the description of
the /B switch in section 17.2.9.

range for patch size is 2 to 8 bytes

The message indicates that the /PCn compilation switch has
been specified with an invalid value for the displacement value
n. Refer to section 17.2.4.4 for a discussion of this switch.

e switch should contain a number:switch

Fortran Compiler Reference 341

The /PC and /B switches have numeric parameters. This mes-
sage indicates that this number is badly formatted.

e target must be /T4 or /T8 only:swiich

This message is output when a switch starting with a ‘T’ is not
recognised as a valid target identifier. For example:

C> tf mangle /TOAD

e target processor already specified:switch

This message is output if there is more than one /T switch in
the command line of a tf command.

e too many code fragments

The code fragment buffer is used by the code generator. This
message is likely to happen only when the program contains
extremely complex expressions. The cure is to expand the
size of the code fragment buffer by using the /B switch (see
section 17.2.9).

e { Triad table overflow

The triad table is used by the syntactic analyser. If this error
is reported, the cure is to expand the size of the triad table
using the /B switch (see section 17.2.9).

e /T4 or /T8 required
This message will be output if a tf command is given without

a target processor specifying switch.

e unable to access temporary file

342

Chapter 17

The compiler uses various temporary files during its execution.
If the file system reports an error when it attempts to open one
of these files, this message will be output.

unable to create temporary file

This message is output when the compiler is unable to create
one of the temporary files it needs, because of a file system
error. The most likely cause of this is a full disk.

unable to open filename as listing file

This message is output when the user requests a compilation
listing, but the compiler is unable to open the listing file, either
because of a file system error (e.g., a full disk) or because the
filename was specified erroneously.

unable to open filename as object file

This message is output when the compiler is unable to open
the object file (whether binary or hexadecimal), either because
of a file system error (e.g., a full disk) or because the filename
was specified erroneously.

unable to open filename as source file

The given filename has been specified in the command which
invoked the compiler but such a file cannot be accessed. Check
that the filename has been spelled correctly and that it exists
in the relevant directory. ‘

unknown switch:swilch

The switch included in the error message was present in the
command line, but it is not a switch the compiler recognises.

Fortran Compiler Reference 343

e value is outwith the range for parameler

This message indicates an error in a /B switch. The message
will be accompanied by a table of the allowed values for the
three parameters of the switch. Re-type the command with all
the parameters in range.

e ... reason ...; please submit a CSR

This message indicates a fault in the compiler itself. In some
cases the reason may give a clue to a possible avoidance pro-
cedure but in all cases such messages should by reported to 3L
by means of a Customer Software Report (CSR).

If any other error messages have been generated before this
fatal error message it is possible that a previous error has
confused the compiler. Correcting the other errors may remove
the cause of this message.

17.6.4 Run-Time Errors
17.6.4.1 General Input/Output Errors

Errors sometimes occur in the input/output routines of the run-time
library. These result either from programming errors or from inter-
actions with the operating system, and happen during the processing
of one of the I/O statements (see chapter 16).

When such an error happens, the program will jump to the label
given in the ERR= specifier of the I/O statement, if any (see section
16.3.1.1, for example). In addition (or alternatively), if the IOSTAT=
specifier has been given, the error number will be placed in the
specified variable. In neither of these cases will an error message
be output. If neither of these two specifiers is given, however, a
message will be output, all the currently open units will be closed,
and the program will then be terminated.

344 Chapter 17

Notice that if an I/O error happens in a subsidiary thread (that
is, within a thread that has been invoked by F77_THREAD_START
or F77_THREAD_CREATE) the program will not be terminated in the
usual way. Instead, after the usual error message has been output,
there will be a condition-handling error (see section 17.6.4.4).

The format of an I/O error report is as follows:
Input/Output Error nnn: message text

In Procedure: procedure name
At Line: source line number

Statement: [/O statement type
Unit: unit identifier
Connected To: file name
Form: Formatted or Unformatted
Access: Sequential or Direct
Nextrec: record number
Records Read : number of records input
Records Written: number of records output
Current I0 Buffer: snapshot
FORTRAN ERROR

nnn is the I/O error number and message tezt the message: a list
of these can be found in appendix I. The unit identifier will be a
number, or the words Internal File, in the case of an internal file
(see section 16.7). The snapshot will show the contents of the current
record with a pointer to the current position within it. Not all the
above information will be supplied for every error. '

I/0 error report example
Input/Output Error 153: Input file ended

In Procedure: MAIN PROGRAM
At Line: 1

Statement: Formatted READ
Unit: §
Connected To: Standard Input Stream 0
Form: Formatted

Fortran Compiler Reference 345

Access: Sequential
Records Read : 3
Records Written: 0
FORTRAN ERROR

17.6.4.2 Errors in Run-Time Formats

Normally, formats are specified in I/O statements by reference to the
label of a FORMAT statement. Sometimes, however, the format may
be held in a character variable, or an array, or may be specified as
a character expression. In these cases, coding errors in the format
specification will not be noticed until run time.

Errors of this kind are controlled by the ERR= and IOSTAT= specifiers
of the I/O statements, in the same way as general I/O errors are. If
this is not done, however, a message will be output, all the currently
open units will be closed, and the program will then be terminated.

The format of this kind of error message is as follows:

Format Exror nnn : text
Current Format:

Jormat
[]

FORTRAN ERROR

nnn is an error number, and tert is message describing the error. A
list of error numbers and their corresponding messages may be found
in appendix I. format is the text of the format specification, and the
‘1” points at the character which caused the error.

17.6.4.3 Errors Returned by afserver

If the afserver is unable to perform a function when the run-time
library requests it, it reports an error condition. Normally, the run-
time library anticipates such error conditions, and they are reported
in the usual way, using the format described above in section 17.6.4.1.

346 Chapter 17

In certain circumstances, however, the afserver may return an un-
expected error code, and these are reported to the user in the same
way as described in section 17.6.4.1, except for the first line, which
has this format:

Alien Filer Exror nnn: message tert

where nnn is the afserver’s error code, and message text is an
explanatory message. A list of the error codes reported and their
corresponding messages may be found in appendix I. The 3L pub-
lication Technical Note 3[18] contains a complete list of afserver
error codes.

17.6.4.4 Exceptional Errors

In certain exceptional circumstances, the run-time library may be
unable to recover sensibly from an error condition. Three types of
error message may result from this.

Tracebacks

The traceback message enables to user to discover the subprogram
where the error has taken place, and the sequence of subroutine
or function calls which has lead to it. It starts with a line of this
format:

Y%event p q r

The three numbers p, ¢ and r identify the kind of error which has
occurred. They refer to events within the run-time library, and so in
most cases will not be very helpful, though the following explanations
of the meaning of p may be of some use:

0 Program is terminating
1 Overflow or truncation

2 Not enough of a resource: usually memory

Fortran Compiler Reference 347

8

9

10 - 15

Data transmission error
Invalid data, e.g., badly formatted number

Invalid argument to run-time library control struc-
tures, or corrupt internal data structures.

Value out of range

Error in run-time library’s string manipulation primi-
tives

Undefined value
Input/output error

Undefined

After this, the run-time library outputs a number of lines of the fol-
lowing format, each of which specifies a level of subprogram calling,
the lowest being output first.

heznum module subprogram

where:

module

subprogram

hexnum

is a module name. Normally this is the name of the
source file containing the subprogram.

is the name of the subprogram involved.

is a location relative to the start of the code for that
subprogram. In the case of the first line, it denotes a
place near to where the error happened. In the other
lines, it denotes the return address from the call to the
subprogram in the line above.

The top few lines may contain module and subprogram names which
are unfamiliar to you; these denote parts of the run-time library.

348 Chapter 17

Condition-Handling Errors

This message is output when the condition-handling software itself
(which is responsible for the traceback output described above) can-
not continue. One important circumstance which can bring this
about is if input-output errors happen as a result of input-output
statements used in a subsidiary thread, that is, in a subroutine which
has been invoked via F77_THREAD_START or F77_THREAD_CREATE (see
section 18.2.3). It can also happen if a STOP statement is used within
a subsidiary thread (where a call to F77_THREAD_STOP should be used
instead).

The format of the message is:

signal: error n

Static Data Overflow

If the amount of static data required by a program exceeds the
amount of memory available, the run-time library will output the
following message:

static space too small

The uses of static storage are explained in section 3.5. Note that
tasks in configured applications will not normally be able to present
this message to the user, and will simply “seize up” if this condition
"arises.

Chapter 18

The Parallel Fortran
Run-Time Library

18.1 Purpose of the Run-Time Library

The Parallel Fortran run-time library is a collection of compiled
subprograms which perform functions needed by most Fortran pro-
grams. Those subprograms needed by any particular program are
incorporated in that program by the linker (see section 3.3).

The subprograms included in the run-time library are of three kinds.

1. Those used to perform some of the commonly-used operations
of the language itself, such as input and output, scanning for-
mats, opening and closing files, and so on. These will not be
discussed explicitly here, since they are not directly called by
the programmer.

2. Intrinsic functions. These are discussed in section 14.1.2.1, and
a complete list may be found in appendix E.

3. Non-intrinsic functions and subroutines. These are discussed
in the following section.

350 Chapter 18

18.2 Non-Intrinsic Subprograms

18.2.1 Conventions
18.2.1.1 Package Files

In order to make use of the various functions and subroutines de-
scribed in the rest of this chapter, the programmer will have to
write various declarative statements. These include type declara-
tions for functions, and in certain cases PARAMETER statements to
define constants. To make this easier, the available functions and
subprograms have been divided into groups called packages, and for
each package a file called a package file has been supplied. By using
the INCLUDE statement (see section 14.7) to include the appropriate
package file, the programmer is enabled to use the subprograms in a
package without further red tape.

The package files should be installed in directory \tf2v1 along with
the rest of Parallel Fortran (see chaper 1). This means that in most
cases a package file can be included by a statement of this format,
which should be coded immediately after any IMPLICIT statements:

INCLUDE ’package-name.INC’

where package-name is the name of one of the packages described
below. The appropriate INCLUDE statement is needed in every sub-
program which uses the package. Full details of how the INCLUDE
statement is evaluated may be found in section 17.3.

18.2.1.2 Format of Synopses

The sections below describe each of the subprogram packages in turn.
The description of each subprogram starts with a synopsis, which
takes the form of a sequence of Fortran statements.

The Parallel Fortran Run-Time Library 351

1. In the case of functions, an explicit type statement is used to
show what is the type of the function. For example:

INTEGER F77_ALLOC_HOST_MEM
This statement need not be coded: it is in the package file.

2. Next, there follow explicit type statements for each of the
parameters of the subprogram, and in the case of functions,
for a variable to receive the function’s value. For example:

INTEGER NBYTES

These statements do not necessarily have to be coded. They
are included in the synopsis for your information only.

3. Finally, an example of how the subprogram is to be called,
either as a function or a subroutine. For example:

I = F77_ALLOC_HOST_MEM(NBYTES)
CALL F77_FREE_HOST_MEM(I)

18.2.2 The DOS Package

These functions and subroutines allow a program running on a trans-
puter system which is hosted by an MS-DOS computer to access
the software interrupts, DOS function calls and the memory of the
host system. Further discussion and examples of the use of these
subprograms may be found in section 3.6.

All subprograms using these routines should include the appropriate
package file, thus:

INCLUDE °’DOS.INC’

Several of these subprograms make use of a parameter known as a
DOS block. This takes the form of an integer array, the length of
which is the value of the constant F77_D0S_BLOCK_SIZE, defined in
DOS.INC. The elements of the DOS block correspond to 16-bit regis-
ters of the MS-DOS machine. The following constants are defined in

352 Chapter 18

the package file to enable the programmer to access these elements
using the familiar Intel names:

F77_DOS_AX F77_DOS_BX F77_D0OS_CX F77_DOS_DX
F77_D0S_SI F77_D0OS_DI

F77_D0OS_CS F77_DOS_DS F77_D0S_SS F77_DOS_ES
F77_DOS_CFLAG

Each of these elements is a 32-bit integer, the low-order 16 bits of
which are used to hold the register contents. When a DOS block is
sent to MS-DOS, the high-order 16 bits are ignored. In DOS blocks
sent back from MS-DOS, the high-order 16 bits are always 0. The
F77_DOS_CFLAG field returns the value of the C flag after an interrupt.

F77_ALLOC_HOST_MEM Allocate host memory

INTEGER F77_ALLOC_HOST_MEM
INTEGER NBYTES, IADDR
TADDR = F77_ALLOC_HOST_MEM (NBYTES)

This function allocates a block of at least NBYTES bytes in the
base memory of the MS-DOS host computer and returns its
32-bit address. If the memory cannot be allocated, the value 0
is returned. The allocated memory cannot be accessed directly
by the transputer program; rather, data can be moved between
the transputer system and the host by means of the subroutines
F77_BLOCK_TO_HOST and F77_BLOCK_FROM_HOST.

Note that the Intel 80286 architecture limits the amount of
memory which can be contained in a single segment to 65536
(10000,6) bytes; F77_ALLOC_HOST_MEM cannot allocate more
than this architectural limit.

F77_FREE_HOST_MEM Free host memory

INTEGER IADDR
CALL F77_FREE_HOST_MEM (IADDR)

This subroutine frees the host memory allocated by a previous
call on F77_ALLOC_HOST_MEM. The parameter IADDR should
contain the 32-bit address of the memory block.

The Parallel Fortran Run-Time Library 353

F77_BLOCK_TO_HOST Transfer memory block to host

INTEGER IADDR, NBYTES
CALL F77_BLOCK_TO_HOST (OURS, IADDR, NBYTES)

This subroutine transfers NBYTES of data from the transputer’s
memory, starting at OURS, to the host’s memory, starting at
the location whose 32-bit address is held in IADDR. The pa-
rameter OURS is the name of any Fortran variable, array or
array element. The host memory block will normally have
been allocated by F77_ALLOC_HOST_MEM.

F77_BLOCK_FROM_HOST Transfer memory block from host

INTEGER IADDR, NBYTES
CALL F77_BLOCK_FROM_HOST (IADDR, OURS, NBYTES)

This subroutine transfers NBYTES of data from the host’s mem-
ory, starting at the location whose 32-bit address is held in
IADDR, to the transputer’s memory, starting at OURS. The pa-
rameter OURS is the name of any Fortran variable, array or
array element. The host memory block will normally have
been allocated by F77_ALLOC_HOST_MEM.

F77_READ_SEGMENTS Read host segment registers

INTEGER DOSBLOCK (F77_D0OS_BLOCK_SIZE)
CALL F77_READ_SEGMENTS (DOSBLOCK)

This subroutine reads the current values of the host 80z86 pro-
cessor’s segment registers into DOSBLOCK, which is a DOS block
as described above. Only the segment register elements of the
DOS block array are changed.

F77_HOST_INTERRUPT Perform host interrupt

INTEGER INTNO, DOSBLOCK(F77_DOS_BLOCK_SIZE)
LOGICAL SEGS
CALL F77_HOST_INTERRUPT (INTNO, SEGS, DOSBLOCK)

This subroutine loads the contents of DOSBLOCK into the host’s
registers, and then calls host interrupt INTNO. DOSBLOCK should

354 Chapter 18

be a DOS block, as defined above. If SEGS has the value
.FALSE., the host’s segment registers are not changed, that
is, the segment register elements of DOSBLOCK are not used.
If SEGS has the value .TRUE., however, the host’s segment
registers are loaded from DOSBLOCK as well.

The contents of the host’s registers after the interrupt has com-
pleted are returned to DOSBLOCK. This includes the contents of
the host’s segment registers, whatever the value of SEGS. The
original contents of DOSBLOCK are lost.

F77_INP Read host I/O port

INTEGER F77_INP
INTEGER IPORT, IVAL
IVAL = F77_INP (IPORT)

The F77_INP function reads a value from one of the host PC’s
input ports. The argument IPORT specifies the port which is
to be read. The value read is returned as the value of the
function.

F77_OUTP Write to host I/0O port

INTEGER IPORT, IVAL
CALL F77_OUTP (IPORT, IVAL)

F77_OUTP writes the low-order byte of the integer value given
as its second argument to one of the host PC’s output ports.
The first argument specifies the address of the output port.

18.2.3 The THREAD Package

The subprograms in this package allow a Parallel Fortran program
to create new threads of execution within a single task. Every sub-
program which uses the package should include the package file:

INCLUDE ’THREAD.INC’

The Parallel Fortran Run-Time Library 355

Each thread executing on a transputer has a priority, which is either
“urgent” or “not urgent”. The package file defines the following
constants to represent these:

e F77_THREAD_URGENT
e F77_THREAD_NOTURG

An important point about threads in Parallel Fortran arises from the
fact that a Fortran subprogram is not reentrant. Just as subprograms
cannot call themselves (see section 14.1.3), so a subprogram cannot
be called by more than one thread at a time. This applies both to
the subroutines called directly by the THREAD subroutines, and to
all subprograms called indirectly through them. If more than one
thread needs to make use of a function or subroutine, it should be
protected by a semaphore (see section 18.2.4) to ensure that it is
only being executed once at any one time.

STOP and PAUSE Statements and EXIT Subroutine

The STOP and PAUSE statements and the EXIT subroutine should only
be used in a program’s main thread. Using them in a subsidiary
thread will cause a condition-handling error (see section 17.6.4.4).
See sections 13.5 and 13.6.

F77_THREAD_START Start a general thread

EXTERNAL SUB

INTEGER WSSIZE, FLAGS, NARGS

CALL F77_THREAD_START (SUB, WSARRAY, WSSIZE, FLAGS,
1 NARGS, ARG1, ..., ARGN)

This subroutine starts a new thread based on the subroutine
SUB. The new thread uses the area starting at WSARRAYto hold
its workspace; normally this would be an integer array. WSSIZE
is the size of WSARRAY, in bytes. The new thread will stop either
when it executes the subroutine F77_THREAD_STOP, or when
SUB returns.

356 Chapter 18

The FLAGS argument is a set of attributes for the new
thread. At present, the only attribute available is the
thread’s priority, which should be either F77_THREAD _URGENT

or F77_THREAD_NOTURG. Normally, new threads should be
started at the same priority as the current thread. This is
achieved by passing the result of the function F77_THREAD_PRIORITY
described below as the value of this argument. Other than

the priority specification, all bits in the FLAGS argument are
reserved, and should be 0.

The arguments ARG1,...,ARGN will be passed on to the
thread’s subroutine SUB as its arguments. The number of
arguments must be supplied in NARGS, and, so long as this
is correct, there is no limit to the number of arguments which
may be passed. The arguments may be of any type, and it is
the responsibility of SUB to handle them correctly. Variables of
type CHARACTER are passed as two arguments, and NARGS must
take account of this. For example:

CHARACTER#S5 HELLO
INTEGER CATS

CALL F77_THREAD_START (DOIT, WS, 10000, IPRIO, 3, HELLO,
CATS)

In this case, the two arguments HELLO and CATS arc passed to
the subroutine DOIT. However, as HELLO is a character variable,
the value of NARGS has to be given as 3, not 2.

See also the description of F77_THREAD_CREATE, which simpli-
fies thread creation by starting a thread at the current priority
and allocating the thread’s workspace from the heap.

F77_THREAD_CREATE Create a simple thread

LOGICAL F77_THREAD_CREATE
EXTERNAL SUB

INTEGER WSSIZE, NARGS
LOGICAL STATUS

The Parallel Fortran Run-Time Library 3567

STATUS = F77_THREAD_CREATE (SUB, WSSIZE,
1 NARGS, ARG1, ..., ARGN)

The subroutine SUB is started as a new thread, running at
the same priority as the current thread, with a workspace of
WSSIZE bytes. An attempt is made to take this workspace
from the heap. If there is not enough space available, the
F77_THREAD_CREATE returns the value .FALSE.; otherwise, it
starts the thread and returns .TRUE.. This workspace is never
returned to the heap and remains unavailable for future re-use;
if this is likely to be a problem, it would be better to use the
F77_THREAD_START subroutine.

The NARGS,ARG1,... ,ARGN sequence is used to pass arguments
to SUB, in the same way as for F77_THREAD_CREATE.

This function is a shorthand way of calling the more gen-
eral subroutine F77_THREAD_START in the most usual circum-
stances. Note that it can only be used be one thread at a time,
so if necessary, F77_THREAD_USE_RTL should be called first (see
below).

F77_THREAD_STOP Stop the current thread
CALL F77_THREAD_STOP

This subroutine stops the current thread. The current thread
is also stopped if its main subroutine returns.

F77_THREAD_PRIORITY Return the current thread’s priority

INTEGER F77_THREAD_PRIORITY
INTEGER I
I = F77_THREAD_PRIORITY()

This function returns the priority of the current thread, which
will be either F77_THREAD_URGENT or F77_THREAD_NOTURG.

F77_THREAD_RESTART Restart a thread

INTEGER HANDLE
CALL F77_THREAD_RESTART (HANDLE)

358

Chapter 18

HANDLE should be a pointer to the workspace of the thread
it is desired to restart. Currently, the only value that
should be passed to F77_THREAD_RESTART is one produced by
FT7_CHAN_RESET (see section 18.2.6 below).

This subroutine can be used to restart threads which have been
stopped because the channel on which they were attempting to
communicate has been reset using a call to F77_CHAN_RESET.

F77_THREAD_DESCHEDULE Make the current thread momentarily un-

able to execute

CALL F77_THREAD_DESCHEDULE

This subroutine causes a thread to become momentarily unable
to execute (usually for one timer tick); this will cause it to
be descheduled from the processor, thus allowing some other
thread to resume execution in its place. Eventually, the thread
which called F77_THREAD_DESCHEDULE will resume.

This subroutine can be used by a thread performing some
background computation to prevent it from “hogging” the
processor to the detriment of other threads executing at the
same priority level. In effect, a priority level even less urgent
than F77_THREAD_NOTURG can be achieved for use by threads
performing long-term CPU-intensive tasks whose results are
not expected to be immediately required.

F77_THREAD_USE_RTL Reserve the RTL to the current thread

CALL F77_THREAD_USE_RTL

In a program in which many execution threads are active,
access to the Parallel Fortran run-time library must be syn-
chronised, so that only one thread may be performing a li-
brary operation at one time. If this is not done, the inter-
nal data structures of the run-time library are likely to be
corrupted, with unpredictable results. The required synchro-
nisation is achieved by the subroutines F77_THREAD_USE_RTL
and F77_THREAD_FREE_RTL. If there is more than one thread

The Parallel Fortran Run-Time Library 359

running, any thread which wishes to use one of the following
statements must call F77_THREAD_USE_RTL first:

READ WRITE PRINT
OPEN CLOSE INQUIRE
ENDFILE REWIND BACKSPACE
PAUSE STOP

The following library subprograms, described in this chapter,
must also be protected in the same way:

¢ Any member of the DOS package
e F77_THREAD_CREATE

e ICLOCK

e F77_DO_COMMAND

e EXIT

Apart from these, intrinsic functions and the non-intrinsic
subprograms described in this chapter may, however, be used
without this precaution.

F77_THREAD_USE_RTL either reserves the run-time library for
the current thread, or if it is already reserved by another
thread, suspends the current thread until the run-time library
is free.

F77_THREAD_FREE_RTL Free the RTL

CALL F77_THREAD_FREE_RTL

F77_THREAD_FREE_RTL is used in conjunction with F77_THREAD _USE,
to synchronise the use of the Parallel Fortran run-time library.
When a thread has finished using the run-time library, it should

call this subroutine to permit other threads to use it.

360 Chapter 18

18.2.4 The SEMA Package

This group of subprograms allows a Parallel Fortran program to
create and manipulate semaphores, which can be used to synchronise
the activity of several concurrently executing threads. All subpro-
grams using these subroutines should include the appropriate pack-
age file:

INCLUDE ’SEMA.INC’

A semaphore in Parallel Fortran is represented by an integer array of
length F77_SEMA_SIZE, this being a constant defined in the package
file. Normally, a semaphore is in a COMMON block, so that more than
one thread can access it.

Note that any particular semaphore must be accessed only by threads
executing at one particular priority. For example, it would be
acceptable for a set of “urgent” threads to synchronise through a
semaphore, or for a set of “not urgent” threads to do this, but not
for a mixture of threads executing at different priorities. Threads
executing at different priorities can synchronise by passing messages
along channels (see section 18.2.6).

F77_SEMA_INIT Initialise a semaphore

INTEGER MYSEMA(F77_SEMA_SIZE), VALUE
CALL F77_SEMA_INIT(MYSEMA, VALUE)

This subroutine initialises the semaphore variable MYSEMA to
an initial state in which:

e the queue of threads waiting for the semaphore is empty

e the value of the semaphore is VALUE.

Semaphores should always be initialised using F77_SEMA_INIT,
since if this is not done the first F77_SEMA_SIGNAL or F77_SEMA_WAIT
operation on the semaphore may cause the transputer system

to behave unpredictably.

The Parallel Fortran Run-Time Library 361

F77_SEMA_SIGNAL Perform a signal operation on a semaphore

INTEGER MYSEMA(F77_SEMA_SIZE)
CALL F77_SEMA_SIGNAL(MYSEMA)

If there are threads waiting for the semaphore MYSEMA, one of
them will be chosen and made able to execute again. The value
of the semaphore under these conditions will always be 0, and
will remain unchanged.

If there are no threads waiting for MYSEMA, its value will be
increased by 1.

F77_SEMA_SIGNAL_N Perform n signal operations on a semaphore

INTEGER MYSEMA(F77_SEMA_SIZE), N
CALL F77_SEMA_SIGNAL_N(MYSEMA, N)

This subroutine calls the subroutine F77_SEMA_SIGNAL n
times, in sequence.

F77_SEMA_TEST_WAIT Test a semaphore

LOGICAL F77_SEMA_TEST_WAIT
INTEGER MYSEMA(F77_SEMA_SIZE)
LOGICAL L

L = F77_SEMA_TEST_WAIT(MYSEMA)

If the value of the semaphore MYSEMA is not zero, its value is
decreased by one, and the value .TRUE. is returned.

Otherwise, if the value of the semaphore is zero, F77_SEMA_TEST_WAIT
immediately returns the value .FALSE. The value of the sema-

phore is unchanged. This is in contrast to the F77_SEMA_WAIT
subroutine, which in this case does not return at once, but
pauses the thread until the semaphore is non-zero.

F77_SEMA_WAIT Perform a wa:l operation on a semaphore

INTEGER MYSEMA (F77_SEMA_SIZE)
CALL F77_SEMA_WAIT(MYSEMA)

362

Chapter 18

If the value of the semaphore MYSEMA is not zero, its value is
decreased by 1.

Otherwise, if the value of the semaphore is zero, the value
is left unchanged and the current thread is added to the list
of threads waiting for the semaphore, and paused. It will be
resumed by some future call on F77_SEMA_SIGNAL.

Programs should not rely on any relationship between the order
in which threads start to wait on a semaphore and the order
in which they will be resumed. At present, threads are simply
“pushed down” onto the list of waiting processes, so that the
last thread to start waiting on a semaphore will be the first to
be resumed.

F77_SEMA_WAIT_N Perform n wait operations on a semaphore

INTEGER MYSEMA(F77_SEMA_SIZE), N
CALL F77_SEMA_WAIT_N(MYSEMA, N)

This subroutine calls the subroutine F77_SEMA_WAIT n times,
in sequence. The calling thread may be forced to wait at any
point in the sequence.

18.2.5 The TIMER Package

Each transputer associates a hardware timer with the group of
threads executing at a particular priority. The following subpro-
grams allow threads to manipulate the timer associated with the
priority at which they are executing. Subprograms which use the
TIMER package should include its package file:

INCLUDE ’TIMER.INC’

F77_TIMER_AFTER Compare two transputer timer values

LOGICAL F77_TIMER_AFTER
INTEGER T1, T2

The Parallel Fortran Run-Time Library 363

LOGICAL L
L = F77_TIMER_AFTER(T1, T2)

This function returns .TRUE. if timer value T1 is after timer
value T2, and .FALSE. otherwise.

F77_TIMER_DELAY Delay for some number of timer ticks

INTEGER TICKS
CALL F77_TIMER_DELAY(TICKS)

This subroutine causes the current thread to wait for at least
TICKS ticks of the timer associated with the current thread’s
priority.

F77_TIMER_NOW Return the current timer value

INTEGER F77_TIMER_NOW
INTEGER I
I = F7T7_TIMER_NOW()

This function returns the value of the timer associated with
the current thread’s priority.

F77_TIMER_WAIT Wait until the current timer reaches some value

INTEGER ABSTIME
CALL F77_TIMER_WAIT (ABSTIME)

This subroutine causes the current thread to wait until the
value of the timer associated with the the priority of the current
thread is at least TIMER.

18.2.6 The CHAN Package

The subprograms described here allow programs to access the trans-
puter’s basic communication facility, which is to transfer a message
across a channel. Every subprogram which makes use of the CHAN
package should include its package file:

INCLUDE ’CHAN.INC’

364 Chapter 18

Most of the following subprograms have a parameter named ICHANADDR
in the synopses. This is an integer whose value is the address of a
channel word. The programmer can find out the address of a channel
word in one of the following ways:

e For channels which are bound to ports (see sections 5.1.2 and
26.2.9), the address of the channel word can be found by using
the functions F77_CHAN_IN_PORT and F77_CHAN_OUT_PORT (sce
below). For example, the configuration file might include this
statement:

connect ? cats[3] dogs[2]

Task cats could send data to task dogs like this:

ICHANADDR = F77_CHAN_OUT_PORT (3)
CALL F77_CHAN_OUT_MESSAGE (length, buffer, ICHANADDR)

Task dogs could receive data from cats like this:

ICHANADDR = F77_CHAN_IN_PORT (2)
CALL F77_CHAN_IN_MESSAGE (length, buffer, ICHANADDR)

o Any INTEGER variable may be used as an “internal” channel
for communication between threads of the same task. The
address of such a channel word may be found by using the
F77_CHAN_ADDRESS function (see below). Note that an internal
channel word must be initialised, using F77_CHAN_INIT, before
it can be used.

e The following constants, defined in the package file, give the
addresses of the channels associated with the Inmos links of
the transputer on which the task is running.

The Parallel Fortran Run-Time Library 365

F77_CHAN_LINKOINPUT input channel associated with link 0
F77_CHAN_LINKOOUTPUT output channel associated with link 0
F77_CHAN_LINK1INPUT input channel associated with link 1
F77_CHAN_LINK1OUTPUT output channel associated with link 1
F77_CHAN_LINK2INPUT input channel associated with link 2
F77_CHAN_LINK20UTPUT output channel associated with link 2
F77_CHAN_LINK3INPUT input channel associated with link 3
F77_CHAN_LINK30UTPUT output channel associated with link 3

e The package file supplies the constant F77_CHAN_EVENTREQ,
which is the address of the channel associated with the trans-
puter’s external event mechanism.

The programmer should note that none of these routines are able
to check the size of user-supplied buffers. The length of the
data transfer depends on the length requested, either explicitly
(as with FTT_CHAN_IN_MESSAGE) or implicitly (in the sense that
F77_CHAN_IN_WORD will transfer 4 bytes). In particular, if enough
buffer space is not supplied to an input subroutine, adjacent memory
will simply be overwritten, with unpredictable results.

F77_CHAN_ADDRESS Return the address of an internal channel word

INTEGER F77_CHAN_ADDRESS
INTEGER CHANWORD, ICHANADDR
ICHANADDR = F77_CHAN_ADDRESS (CHANWORD)

This function returns the address of its argument, for use when
calling other subprograms in this package. CHANWORD should be
an INTEGER variable or array element.

F77_CHAN_IN_BYTE Input a byte from a channel

INTEGER IBUFF, ICHANADDR
CALL F77_CHAN_IN_BYTE (IBUFF, ICHANADDR)

This subroutine reads a single-byte message from the channel
whose address is ICHANADDR into the integer IBUFF. The byte
of data is placed in the low-order byte of IBUFF; the other bytes
are set to 0. (Compare this to F77_CHAN_IN_MESSAGE below).

366 Chapter 18

F77_CHAN_IN_BYTE_T Input a byte from a channel, or timeout

LOGICAL F77_CHAN_IN_BYTE_T

INTEGER IBUFF, ICHANADDR, TIMEOUT

LOGICAL L

L = F7T7_CHAN_IN_BYTE_T (IBUFF, ICHANADDR, TIMEOUT)

This function attempts to read a single-byte message from the
channel whose address is ICHANADDR into the integer IBUFF. If
the communication does not take place within TIMEOUT ticks
of the timer associated with the priority of the current thread,
the function will terminate and return .FALSE.. If the com-
munication succeeds within the timeout interval, the function
will return .TRUE.

The byte of data is placed in the low-order byte of IBUFF; the
other bytes are set to 0. (Compare this to F77_CHAN_IN_MESSAGE_T
below).

F77_CHAN_INIT Initialise a channel word

INTEGER ICHANADDR
CALL F77_CHAN_INIT (ICHANADDR)

This subroutine initialises the channel word whose address is
ICHANADDR. This operation consists of writing a special value
into the channel word; the package file defines the constant
F77_CHAN_NOTPROCESS_P with this value, which indicates that
no threads are currently attempting to communicate through
the channel.

All “internal” channel words must be initialised before the first
attempt to communicate through them. If this is not done, the
first attempt to communicate through the channel will cause
the transputer processor to crash.

Note that the channel words bound to a program’s input and
output ports are already initialised by the calling environment,
and should not be initialised again by the program.

The Parallel Fortran Run-Time Library 367

F77_CHAN_IN_MESSAGE Input a message from a channel

INTEGER LENGTH, ICHANADDR
CALL F77_CHAN_IN_MESSAGE (LENGTH, BUFF, ICHANADDR)

This subroutine reads a message of length LENGTH bytes from
the channel whose address is ICHANADDR into BUFF. BUFF may
be any variable, array or array element. Notice that exactly
the number of bytes specified in LENGTH will be changed. For
example, if you specify a LENGTH of 1, and a BUFF of type
INTEGER, the low-order byte only will be changed; the other
bytes will remain unchanged.

F77_CHAN_IN_MESSAGE_T Input a message from a channel, or time-
out

LOGICAL F77_CHAN_IN_MESSAGE

INTEGER LENGTH, ICHANADDR, TIMEOUT

LOGICAL L

L = F77_CHAN_IN_MESSAGE_T (LENGTH, BUFF, ICHANADDR,
TIMEOUT)

This function attempts to read a message of length LENGTH
from the channel whose address is ICHANADDR into BUFF. BUFF
may be any variable, array or array element. If the communi-
cation does not take place within TIMEOUT ticks of the timer
associated with the priority of the current thread, the func-
tion will terminate and return .FALSE.. If the communication
succeeds within the timeout interval, the function will return
.TRUE.

F77_CHAN_IN_PORT Value of input port binding

INTEGER F77_CHAN_IN_PORT
INTEGER PORTNO, ICHANADDR
ICHANADDR = F77_CHAN_IN_PORT (PORTNO)

This function returns the binding of the specified input port.
In most cases, this will be the address of the channel word
to which the port is bound. Sometimes, however, a port is
explicitly set to some literal value by means of the configurer

368 Chapter 18

BIND statement (see section 26.2.11), in which case this value
will be returned.

F77_CHAN_IN_PORTS Number of input ports

INTEGER F77_CHAN_IN_PORTS
INTEGER I
I = F77_CHAN_IN_PORTS()

This function returns the number of ports in the input port
vector. This value is decided by the INS attribute of the config-
urer TASK statement; however, tasks which use the standard
harness will always have 2 input ports.

F77_CHAN_IN_WORD Input a word from a channel

INTEGER ICHANADDR
CALL F77_CHAN_IN_WORD (WORD, ICHANADDR)

This subroutine reads a four-byte message from the channel
whose address is ICHANADDR into the variable WORD. WORD may
be any variable which is four bytes in length, typically an
INTEGER, REAL or CHARACTER#4, or an element in an array of
one of these types.

F77_CHAN_IN_WORD_T Input a word from a channel, or timeout

LOGICAL F77_CHAN_IN_WORD_T

INTEGER ICHANADDR, TIMEOUT

LOGICAL L _

L = F77_CHAN_IN_WORD_T (WORD, ICHANADDR, TIMEOUT)

This function reads a four-byte message from the channel
whose address is ICHANADDR into the variable WORD. WORD
may be any variable which is four bytes in length, typically
an INTEGER, REAL or CHARACTER*4, or an element in an array
of one of these types.

If the communication does not take place within TIMEOUT ticks
of the timer associated with the priority of the current thread,
the function will terminate and return .FALSE.. If the com-

The Parallel Fortran Run-Time Library 369

munication succeeds within the timeout interval, the function
will return .TRUE.

F77_CHAN_OUT_BYTE Output a byte to a channel

INTEGER IVAL, ICHANADDR
CALL F77_CHAN_OUT_BYTE (IVAL, ICHANADDR)

This subroutine sends a single-byte message consisting of the
value IVAL to the channel whose address is ICHANADDR. Note
that even if the high-order 3 bytes of IVAL are non-zero, only
the low-order byte is sent.

F77_CHAN_OUT_BYTE_T Output a byte to a channel, or timeout

LOGICAL F77_CHAN_OUT_BYTE_T

INTEGER IVAL, ICHANADDR, TIMEOUT

LOGICAL L

L = F77_CHAN_OUT_BYTE_T (IVAL, ICHANADDR, TIMEOUT)

This function attempts to write a single-byte message whose
value is IVAL to the channel whose address is ICHANADDR. If
the communication does not take place within TIMEOUT ticks
of the timer associated with the priority of the current thread,
the function will terminate and return .FALSE.. If the com-
munication succeeds within the timeout interval, the function
will return .TRUE.

F77_CHAN_OUT_MESSAGE Output a message to a channel

INTEGER LENGTH, ICHANADDR
CALL F77_CHAN_OUT_MESSAGE (LENGTH, BUFF, ICHANADDR)

This subroutine sends a message of length LENGTH bytes from
BUFF to the channel whose address is ICHANADDR. BUFF may
be any variable, array or array element.

F77_CHAN_OUT_MESSAGE_T Output a message from a channel, or
timeout

LOGICAL F77_CHAN_OUT_MESSAGE
INTEGER LENGTH, ICHANADDR, TIMEOUT

370

Chapter 18

LOGICAL L
L = F77T_CHAN_OUT_MESSAGE_T (LENGTH, BUFF, ICHANADDR,
TIMEOUT)

This function attempts to send a message of length LENGTH
from BUFF to the channel whose address is ICHANADDR. BUFF
may be any variable, array or array element. If the communi-
cation does not take place within TIMEOUT ticks of the timer
associated with the priority of the current thread, the func-
tion will terminate and return .FALSE.. If the communication
succeeds within the timeout interval, the function will return
.TRUE.

F77_CHAN_OUT_PORT Return the value of an output port binding

INTEGER F77_CHAN_OUT_PORT
INTEGER PORTNO, ICHANADDR
ICHANADDR = F77_CHAN_OUT_PORT (PORTNO)

This function returns the binding of the specified output port.
In most cases, this will be the address of the channel word
to which the port is bound. Sometimes, however, a port is
explicitly set to some literal value by means of the configurer
BIND statement (see section 26.2.11), in which case this value
will be returned.

F77_CHAN_OUT_PORTS Number of output ports

INTEGER F77_CHAN_OUT_PORTS
INTEGER I
I = F77_CHAN_OUT_PORTS()

This function returns the number of ports in the output port
vector. This value is decided by the OUTS attribute of the
configurer TASK statement; however, tasks which use the stan-
dard harness will always have 2 output ports.

F77_CHAN_OUT_WORD Output a word to a channel

INTEGER ICHANADDR
CALL F77_CHAN_OUT_WORD (WORD, ICHANADDR)

The Parallel Fortran Run-Time Library 371

This subroutine sends a four-byte message from the variable
WORD to the channel whose address is ICHANADDR. WORD may be
any variable which is four bytes in length, typically an INTEGER,
REAL or CHARACTER#*4, or an element in an array of one of these

types.
F77_CHAN_OUT_WORD_T Output a word to a channel, or timeout

LOGICAL F77_CHAN_OUT_WORD_T

INTEGER ICHANADDR, TIMEOUT

LOGICAL L

L = F77_CHAN_OUT_WORD_T (WORD, ICHANADDR, TIMEOUT)

This function attempts to send a four-byte message from the
variable WORD to the channel whose address is ICHANADDR. WORD
may be any variable which is four bytes in length, typically an
INTEGER, REAL or CHARACTER#4, or an element in an array of
one of these types.

If the communication does not take place within TIMEOUT ticks
of the timer associated with the priority of the current thread,
the function will terminate and return .FALSE.. If the com-
munication succeeds within the timeout interval, the function
will return .TRUE.

F77_CHAN_RESET Reset a channel

INTEGER F77_CHAN_RESET
INTEGER ICHANADDR, HANDLE
HANDLE = F77_CHAN_RESET (ICHANADDR)

This function resets the channel whose address is ICHANADDR. If
the channel is associated with an Inmos link, then the hardware
of that link is reset as well.

If a thread was attempting to communicate on the channel at
the time of the reset, then a handle to that thread (which is now
suspended) will be returned as the result of F77_CHAN_RESET.
This handle can be used to restart the suspended thread at a
later date by passing it to the subroutine F77_THREAD_RESTART
(see section 18.2.3).

372 Chapter 18

If the channel was idle at the time of the reset (i.e., if no
thread was attempting to communicate on it) then the value
F77_CHAN_NOTPROCESS_P will be returned.

18.2.7 The NET Package

The NET package consists of two subroutines for communication be-
tween the tasks of a processor farm (see chapters 7 and 27). Sub-
programs using these subroutines should include the package file:

INCLUDE ’NET.INC’
The NET subroutines differ from the CHAN routines in several respects.

e They do not specify a channel to use; in fact, the channels
bound to input port 0 and output port 0 are always used.

o The actual destination of data sent via the NET subroutines is
decided by the routing software: data sent by the master task
are routed to a currently-idle worker task, and data sent by
the worker tasks are routed back to the master task.

e NET messages do not have to be of fixed, predetermined lengths.
The receiving task is informed how long a message is by the
F77_NET_RECEIVE subroutine.

A message sent via the NET package consists of one or more pack-
ets. Each call on one of the NET subroutines sends or receives
one packet. The package file defines the value of the constant
F77_NET_MAX_PACKET_LENGTH, which is the limit on the size of pack-
ets. Messages which are longer than this must be broken into more
than one packet, as explained below. In this case, the routing soft-
ware guarantees that the component packets of a message will be
received in the right order.

F77_NET_RECEIVE Receive a processor-farm message

INTEGER LENGTH

The Parallel Fortran Run-Time Library 373

LOGICAL COMPLETE
CALL F77_NET_RECEIVE (LENGTH, BUFF, COMPLETE)

This subroutine receives a data packet from the processor-farm
routing software. The master task will receive messages sent
by worker tasks, and worker tasks will receive only messages
sent by the master task.

The received packet is placed in BUFF, which may be any vari-
able, array or array element. It need never be longer than
F77_NET_MAX_PACKET_LENGTH, and may be shorter than this,
if it is certain that no packet which is too long to fit will be
received. The actual length of the received packet is placed in
LENGTH.

If the received packet is the final or only packet in the message,
COMPLETE is set to .TRUE.. Otherwise, it is set to .FALSE., and
the receiving task must call F77_NET_RECEIVE again, to receive
the next packet.

F77_NET_SEND Send a processor-farm message

INTEGER LENGTH
LOGICAL COMPLETE
CALL F77_NET_SEND (LENGTH, BUFF, COMPLETE)

This subroutine will send a data packet to the processor-farm
routing software. Messages sent by worker tasks are routed
to the master task, and messages sent by the master task are
routed to any idle worker task.

Data are sent from BUFF, which may be any variable, array or
array element. LENGTH specifies the number of bytes to send,
and may not be less than 0 or greater than F77_NET_MAX_PACKET_LENG
Messages longer than that must be broken into smaller packets.
If F77_NET_SEND is called with COMPLETE set to .TRUE., the
packet is assumed to be the last or only packet in the message.
All other packets should be sent with COMPLETE set to .FALSE.

374 Chapter 18

F77_NET_BROADCAST Send a processor-farm broadcast

INTEGER LENGTH
CALL F77_NET_BROADCAST(LENGTH, BUFF)

This subroutine can be used by the master task to send a
message to every worker task in the processor farm. It should
not be used by any worker task.

The message to be sent is found starting at BUFF, which may
be any variable, array or array element. The LENGTH argument
specifies the length in bytes of the message. This subrou-
tine is unlike F77_NET_RECEIVE and F77_NET_SEND in that the
LENGTH argument is not restricted to F77_NET_MAX_PACKET_LENGTH.
This means that the programmer does not have to split the
message up into packets; this is done by F77_NET_BROADCAST.
The worker tasks receive the message by calling F77_NET_RECEIVE
in the usual way, possibly several times; F77_NET_BROADCAST
ensures that the when the last packet is read, the COMPLETE
argument is set to .TRUE. as usual.

F77_NET_BROADCAST can only be used when all the worker
tasks are known to be idle. Typically, this would be at the
beginning of the program run, before any work packets have
been sent out. Later, the master task can broadcast new data,
provided a result packet has been received corresponding to
every work packet sent out.

18.2.8 The ALT Package

The ALT package is provided to enable the programmer to perform
“guarded input”, that is, to receive input from whichever of a group
of channels is ready to transmit, if any. Subprograms which use the
ALT package should include the package file:

INCLUDE ’ALT.INC’

The Parallel Fortran Run-Time Library 375

F77_ALT_WAIT Wait till input is ready

INTEGER F77_ALT_WAIT
INTEGER NCHAN, ICHANADDR1, ..., ICHANADDRN, I
I = FT7_ALT_WAIT (NCHAN, ICHANADDR1, ..., ICHANADDRN)

This function’s arguments are a count of the possible channels
for input (NCHAN) and a list of channel word addresses. The
function waits till one of these channels is ready for input,
and then returns an index into this list, such that the leftmost
(ICHANADDR1) has the index 1.

F77_ALT_NOWAIT Identify a ready input channel

INTEGER F77_ALT_NOWAIT
INTEGER NCHAN, ICHANADDR1, ..., ICHANADDRN, I
I = FT7_ALT_NOVAIT (NCHAN, ICHANADDR1, ..., ICHANADDRN)

This function’s arguments are similar to those of F77_ALT_WAIT.
If any channel is ready for input, the function returns its index
in the list. However, if no channel is ready, the function does
not wait, but immediately returns the value 0.

F77_ALT_WAIT_VEC Wait till input is ready (vector)

INTEGER F77_ALT_WAIT_VEC
INTEGER NCHAN, TICHANADDRARRAY(NCHAN), I
I = FTT_ALT_WAIT_VEC (NCHAN, YCHANADDRARRAY)

ICHANADDRARRAY is an array of channel word addresses, and
NCHAN is its length. The function waits till one of the channels
whose addresses appear in the array is ready to input, and
then returns the subscript of the element in the array which
contains that channel’s address.

F77_ALT_NOWAIT_VEC Identify a ready input channel (vector)

INTEGER F77_ALT_NOWAIT_VEC
INTEGER NCHAN, ICHANADDRARRAY(NCHAN), I
I = F77_ALT_VEC (NCHAN, ICHANADDRARRAY)

376 Chapter 18

This function is similar to F77_ALT_WAIT_VEC except that if
when the function is called there are no channels ready for
input, the function does not wait, but returns the value 0.

18.2.9 Compatibility Subroutines

The subroutines discussed in this section are supplied only for com-
patibility with previous versions of the run-time library. New pro-
grams should use the CHAN package (see section 18.2.6) to perform
channel operations. The compatibility subroutines do not have a
package file.

These subroutines can only be used to perform input/output on the
channels which are bound to ports. Consequently, the channel to
use is specified not by a channel-word address, as is the case for the
CHAN package, but by a port number. This must be in the range
defined in the configuration file by the INS and OUTS attributes of
the task (see sections 5.1.2 and 26.2.8). For example:

task mangle ins=3 outs=1

This line in the configuration defines input ports 0 to 2, and output
port 0 only.

CHANINMESSAGE Receive a message from a channel

INTEGER IPORTNO, NBYTES
CALL CHANINMESSAGE (IPORTNO, BUFF, NBYTES)

This subroutine will input a message from the channel bound to
port IPORTNO, and store it in BUFF. BUFF may be any variable,
array or array element. NBYTES specifies the number of bytes
to receive.

CHANOUTBYTE Send a byte to a channel

INTEGER IPORTNO
CALL CHANOUTBYTE (BUFF, IPORTND)

The Parallel Fortran Run-Time Library 317

This subroutine sends a single byte of data from BUFF to the
channel which is bound to port IPORTNO. BUFF may be any
variable, array or array element. In the case of an object of
type integer, the low-order byte of the integer will be sent,
and in the case of an object of type character, the left-most
character will be sent.

CHANOUTMESSAGE Send a message to a channel

INTEGER IPORTNO, NBYTES
CALL CHANOUTMESSAGE (IPORTNO, BUFF, NBYTES)

This subroutine will send a message from BUFF to the channel
bound to port IPORTNO. BUFF may be any variable, array or
array element. NBYTES specifies the number of bytes to send.

CHANOUTWORD Send a word to a channel

INTEGER IPORTNO
CALL CHANOUTWORD (BUFF, IPORTNO)

This subroutine sends a word of data (that is, four bytes) from
BUFF to the channel bound to port IPORTNO. BUFF may be any
variable, array or array element.

18.2.10 Miscellaneous

This section describes subprograms for performing a number of mis-
cellaneous tasks. There is a package file, MISC.INC, but not all the
subprograms need it; for the ones that do, the appropriate INCLUDE
statement is included in the synopses below.

18.2.10.1 Time

ICLOCK Get host clock time

INTEGER SECS
CALL ICLOCK (SECS)

378 Chapter 18

This subroutine will place in SECS the elapsed time in scconds
since 00:00:00 GMT on January 1st, 1970. ICLOCK depends on
the afserver for this information, which has three effects:

e A call to ICLOCK must be protected be protected by calling
F77_THREAD_USE_RTL first (see section 18.2.3).

e ICLOCK is not available in tasks which ahve been linked
with the stand-alone library.

e The PC software upon which ICLOCK depends attempts
to give you the time in GMT. Unless you tell the sys-
tem otherwise, it assumes you are in the Pacific Standard
Time zone of the USA and adjusts the value it returns
accordingly. To make it aware of what time zone you are
in, you can define the MS-DOS environmental variable
TZ. For example, if you live in Great Britain, you could
define TZ like this:

C>set tz=GMT
C>set tz=GMT1BST during Summer Time

18.2.10.2 Not-a-Number and Infinity

The following functions test whether a REAL or DOUBLE PRECISION
value is a NaN, 400 or —oo, that is, Not-a-Number or Positive
or Negative Infinity. These special values, as defined by the IEEE
standard, are discussed in more detail in section 11.1.10. The term
“finite” is used to describe a value which is not a NaN, 400 or —oo.

F77_R_IS_NAN Test real for NaN

INCLUDE ’MISC.INC’
LOGICAL F77_R_IS_NAN
REAL R

LOGICAL L

L = F77_R_IS_NAN (R)

The function returns the value .TRUE. il the value R is a Not-
a-Number; otherwise, it returns .FALSE.

The Parallel Fortran Run-Time Library 379

F77_R_IS_FINITE Test real for finite

INCLUDE ’MISC.INC’
LOGICAL F77_R_IS_FINITE
REAL R

LOGICAL L

L = FT7_R_IS_FINITE (R)

The function returns the value .TRUE. if the value R is finite;
otherwise, it returns .FALSE.

F77_D_IS_NAN Test double for NaN

INCLUDE ’MISC.INC’
LOGICAL F77_D_IS_NAN
DOUBLE PRECISION D
LOGICAL L

L = F77_D_IS_NAN (D)

The function returns the value .TRUE. if the value D is a Not-
a-Number; otherwise, it returns .FALSE..

F77_D_IS_FINITE Test double for finite

INCLUDE ’MISC.INC’
LOGICAL F77_D_IS_FINITE
DOUBLE PRECISION D
LOGICAL L

L = F77_D_IS_FINITE (D)

The function returns the value .TRUE. if the value D is finite;
otherwise, it returns .FALSE.

18.2.10.3 Memory Access

The following subprograms provide facilities for “low-level” access to
memory locations. Users should be aware that if these are misused,
the results are unpredictable, but could be serious.

F77_PEEK_BYTE Peck a byte

INCLUDE ’MISC.INC’
INTEGER F77_PEEK_BYTE

380 Chapter 18

INTEGER IADDR, IVAL
IVAL = F77_PEEK_BYTE (IADDR)

This function returns the value held in the byte at the absolute
memory address IADDR. The value is returned as an unsigned
(zero-extended) value.

F77_PEEK_WORD Peek a word
INCLUDE ’MISC.INC’
INTEGER F77_PEEK_BYTE

INTEGER IADDR, IVAL
IVAL = F77_PEEK_WORD (IADDR)

This function returns the value held in the word at the absolute
memory address TADDR.

F77_POKE_BYTE Poke a byte

INTEGER IADDR, IVAL
CALL F77_POKE_BYTE (IADDR, IVAL)

The value of the argument IVAL is placed in the byte at abso-
lute memory address IADDR. The value is silently truncated to
the least-significant eight bits.

F77_POKE_WORD Poke a word

INTEGER IADDR, IVAL
CALL F77_POKE_WORD (IADDR, IVAL)

The value of the argument IVAL is placed in the word at abso-
lute memory address IADDR.

%L0C Address of Variable

INTEGER %LOC, IADDR
IADDR = XLOC (VAR)

VAR may be any variable, array or array element; the function
returns its absolute memory address.

The Parallel Fortran Run-Time Library 381

F77_MOVE Block move

INTEGER NBYTES
CALL F77_MOVE (NBYTES, SOURCE, DEST)

The SOURCE and DEST arguments may be any variables, arrays
or array elements. The subroutine moves the number of bytes
specified by NBYTES from SOURCE to DEST.

F77_MOVE_A Block move absolute

INTEGER NBYTES, SRCADR, DSTADR
CALL F77_MOVE (NBYTES, SRCADR, DSTADR)

In this case, the two arguments SRCADR and DSTADR specify
absolute memory addresses. The subroutine moves the number
of bytes specified by NBYTES from SRCADR to DSTADR.

18.2.10.4 System Operations

F77_GET_COMMAND Get command parameters

CHARACTER*n BUFF
CALL F77_GET_COMMAND (BUFF)

The command parameter string is placed in BUFF. If the string
is shorter than the argument, it is padded with spaces; if it is
longer, it is truncated.

F77_DO_COMMAND Execute a host command

CHARACTER*n BUFF
CALL F77_DO_COMMAND (BUFF)

The argument string is submitted to DOS to be executed as a
command. For example:

CALL F77_DO_COMMAND (’dir ».f77’)

You should not try to execute a command which involves run-
ning another program on the transputer board; this would

382

Chapter 18

have unpredictable results. Only one thread should use
this subroutine at a time; this means that if nccessary,
F77_THREAD_USE_RTL should be called first (see section 18.2.3
above).

EXIT Terminate the program

INTEGER STATUS
CALL EXIT (STATUS)

If the task is linked with the full run-time library, all its files
are closed, and the task is terminated. The value of STATUS
is returned to DOS as a result code. EXIT should never be
called from a subroutine which has been invoked in a subsidiary
thread; if this is done, there will be a condition handling error
(see section 17.6.4.4).

EXIT may also be called from a task linked with the standalone
run-time library. In this case, it just stops the current thread,
as FT7_THREAD_STOP does; STATUS is ignored.

Chapter 19

The Linker

The linker utility, 1inkt, is compatible with all versions of the 3L
compilers for C, Fortran and Pascal. It can be used in place of the
linker distributed with earlier versions of these compilers. The linker
is also compatible with Tbug, 3L’s interactive source-level debugger.

The linker’s function is to create an executable file from a number of
object files. It can also be used to create libraries of object modules,
which may themselves be searched by the linker when it is creating
executable files.

19.1 Command Line

The linker is invoked by the command linkt. This command is
followed by an ordered list of items giving the names of the object
files and libraries to be linked, the name to be used for the executable
file, and switches to control the linking operation.

The name of the executable file must be separated from the object
file names by a comma *,’; each object file may be separated from
the next by either a space or a plus sign, ‘+’. Switches all start with

384 Chapter 19

a slash, ‘/’, and so do not need to be separated one from another,
but spaces may be inserted between them for clarity.

The following are all valid examples of link commands.

C>linkt prog.bin library.bin,prog.b4

C>linkt prog.bintlibrary.bin, prog.b4

C>linkt progi.bin prog2.bin lib.bin, myprog.b4

C>linkt progl.bin+prog2.bin+lib.bin, myprog.b4

C>linkt prog.bin lib.bin, myprog.b4 /Q/Smyprog.map/Okernel
C>linkt prog.bin lib.bin, myprog.b4 /Q /Smyprog.map /Okernel

The order of the object file names in the link command is used to
order the placement of the information they contain in the resulting
executable file. Often this ordering is of no interest but it can be used
to improve the performance of programs. This subject is discussed
further in section 19.6.

19.2 File Name Conventions

In order to simplify commands, the linker will insert file name exten-
sions where none has been given. If an explicit extension has been
given it will be used without change.

The actual extension that will be appended to a file name depends
on the sort of file being identified. The following table gives each
sort of file known to the linker along with the appropriate extension.

executable file .b4 object file .bin
indirect file .dat optimization file .opt
input library file .bin output library file .lib
map file .map

As a result the examples given previously would have the identical
effect if written in the following ways:

C>linkt prog library,prog
C>linkt prog+library, prog
C>linkt progl prog2 lib, myprog

The Linker 385

C>linkt progl+prog2+lib, myprog
C>linkt prog lib, myprog /Q/Smyprog/Okernel
C>linkt prog lib, myprog /Q /Smyprog /Okernel

19.3 The Output File

The output from a linking operation is usually a file containing a
complete program in a form ready for execution. This file is called
an ezecutable file. The output may also be a library suitable for input
to a subsequent link operation. Section 19.5 describes libraries.

The name for the output file is either specified explicitly on the
command line (as in all the examples so far) or is inferred by the
linker from the name of the first object file (or library file) seen, by
removing any extension and then appending the extension .b4.

For example, each of the following commands generates an exe-
cutable file named test.b4:

C>1linkt test.bin fns.bin lib.bin, test.b4d
C>linkt test fns 1lib, test

C>linkt test fns lib

C>linkt fns test 1lib, test

19.4 Indirect Files

It is quite common for programs to be built from a large number
of object files, perhaps more than can comfortably be fitted into a
single 1inkt command line.

The linker addresses this problem with indirect files, each of which
contains one or more file names on separate lines. Indirect files may
be given wherever object files are expected and the file names they
contain arc interpreted as the names of object files to be included in
the linking operation.

386 Chapter 19

In linker command lines, indirect files are always marked with the
symbol ‘@’ to distinguish them from other sorts of file. It is also
possible to mark names within indirect files in this way. Such names
are then taken to be the file names of nested indirect files. Indirect
files may only be nested to a depth of 5.

For example, assume the file 1ist.dat contains the following:

filel.bin
file2
file3d.xxx

In the following example, the first four commands will all have the
same effect, while the fifth command will generate an identical exe-
cutable file but will write it to a file named prog.b4:

C>linkt @list

C>linkt @list, filel.b4d

C>linkt filel file2 file3d.xxx

C>linkt filei file2 file3.xxx, filel.b4
C>linkt @list, prog

Note that in the examples above, the first object file name in the
indirect file will be the first object file seen by the linker and so it
will be that file name which will be used, if necessary, to deduce the
name for the output file.

Indirect files are also used to supply a list of optimization symbols
to the linker. This is described in section 19.6.

19.5 Libraries

It is often convenient to be able to treat a group of object files as a
single unit known as a library file. Accordingly, the linker provides
the option of combining object files (and library files) into a new
library file rather than the more usual executable file.

The Linker 387

Once a library file has been generated it may be used wherever an
object file is expected; unlike indirect files there is no need to mark
the library file name in any way.

Library files have two advantages over indirect files. Firstly, moving
a single library file to another place is simpler than moving many
component object files and making sure that the corresponding in-
direct file is kept up to date. Secondly, accessing a single library file
is faster than accessing an indirect file and several object files.

During the development of components which will eventually make
up a library, indirect files may be more convenient as there will be
no need to re-link the library whenever a component object file is
changed.

The linker command to create a library is similar to that used to cre-
ate an executable file, but includes the switch /L. When this switch
is used the output file will be a library file and not an executable
file. The name of the library file will be deduced, if necessary, in the
same way as for executable files; that is, from the name of the first
object file or library file found. The default extension .1ib will be
added if no extension is given.

The example below shows a graphics library being built from a core
graphics module and two device driver modules. The library is then
linked in the ordinary way with a user program. Indirect files are
used to simplify the required linker commands.

C>type graflib.dat
core.bin

tek.bin

hp.bin

C>linkt @graflib,graflib/L

C>type myprog.dat
myprog.bin
graflib.lib
library.bin
harn.bin

388 Chapter 19

C>linkt @myprog,myprog.b4

The switch /P can be used in place of /L and has exactly the same
meaning.

The following switches are ignored when the /L or /P switches are
used: /B, /C, /0, /S and /X. Section 19.9 contains a full description
of the switches.

If the /G option is used when creating a library, any debug infor-
mation present in the object files is passed through into the library.
Otherwise this information is left out of the library.

19.6 The Executable Image

Unless otherwise instructed, the linker will place object files it has
selected into the executable file in the order in which those object
files were specified on the command line. This order is important if
a program wishes to make use of the on-chip RAM.

When the on-chip RAM is used to hold programs, the code which
has been placed at the beginning of an executable image is more
likely to reside in RAM than code towards the end. Hence, in order
to improve the performance of a program, the object file containing
the code which is executed most frequently should be specified as
the first object file in the link command.

In many cases, it may not be easy or possible to know which order
to place the object files in. For example, the user may know which
functions are executed most frequently, but not know which object
files contain them, because they are part of a library. In this case,
the user can specify a symbol to search for, and the linker will loock
for an object file which contains a definition of that symbol. Symbols
used liked this are known as optimization symbols, and are specified
by using the /0 command line switch. Note that the switch uses the
letter ‘0’ and not the digit ‘0’.

The Linker 389

As an example, the following will place the object files which contain
definitions of fread and malloc at the beginning of the resulting
executable file t.b4:

C>linkt t library harn/Ofread/Omalloc

In this case, the object file containing the external symbol fread is
placed at the start of the executable image. The object file containing
the external symbol malloc is placed second in the executable image.

If an optimization symbol does not exist then the linker issues a
warning. Sometimes the object file containing the symbol is not
needed in the executable image; in other words, there are no refer-
ences to it. In this case, if the object file is part of a library, the
module is excluded from the executable image, and no warning is
issued. If, on the other hand, the symbol is found in an object file
named in the command line or in an indirect file, the object file is
included in the executable image regardless.

Two or more optimization symbols may refer to the same object file,
in which case the position of the object file will be determined by
the position of the first symbol to refer to it.

After all optimization symbols have been processed and the object
files which define optimized symbols have been placed at the start
of the executable image, the linker will add the remaining object
files to the executable image in the order they were found on the
command line. In the previous example this would mean that object
file t would be the third object file in the executable image and the
object file harn would be the last.

It is often easier to place the list of optimization symbols in a file
rather than keeping them on the command line. This may be done
using indirect files in the same way as for object files except that the
default extension is now .opt.

An example optimization file optsyms.opt might contain the follow-
ing text:

fread

390 Chapter 19

malloc

This file could then be used to optimize the position of the object
files defining fread and malloc as in the following command:

C>linkt t library harn/0O€optsyms

A warning is issued if the symbol is not defined in any of the object
files.

19.7 Map Files

The linker can be requested to produce a map file which will contain
a list of all the symbols (both code and data) that have been defined
in the executable image. The map file will also contain information
about the sizes of the code and static areas for each object file.

Map files are requested with the /S switch. By default, the name
of the map file is derived automatically from the first object file
name. In the following example a map file called test.map would
be generated.

C>linkt test library harn/S

Alternatively, the map file name can be specified explicitly on the
command line by placing a file name immediately after the /S as in
the following example:

C>linkt test library harn/Smfile

The default extension .map will be added if no extension is given.
The above example would create a map file called mfile.map.

19.8 Debug Tables

Object files created using the 3L, compilers may contain information
intended for use by Tbug, the 3L debugger[19]. By default, the linker

The Linker 391

will discard this information in order to produce small executable
files.

The switch /G will make the linker incorporate any debugging infor-
mation present in the object files into the output file, which may be
either an executable file or a library file.

19.9 Summary of Switches

The operation of the linker can be controlled by means of switches.
Each switch starts with a slash character ‘/’ and an identifying letter;
it does not matter if this letter is given in upper case or lower case.
The switches can be placed anywhere in the command line but they
may not occur in indirect files. No spaces are allowed between a
switch’s identifying letter and the rest of the switch.

/Bfile-name This switch specifies that the file file-name is to be
used in preference to the default bootstrap file. There
is no default extension for file-name.

/C This switch stops the linker adding the bootstrap file
to the executable file.

/G This switch results in the linker creating a debugger
information area in the executable or library file.

/1 This switch causes the linker to display its identity and
along with various statistics about the executable file
such as the code and static sizes and the maximum
patch size used.

/L This switch makes the linker generate a library file
rather than an executable file.

/Qoptimization-symbol
This switch gives priority to the position in the

392 Chapter 19

executable image of the object file which defines
optimizalion-symbol.

/0Qoptimization-file
This switch gives priority to the position in the
executable image of the object files which define
the symbols whose names are contained in the file
optimization-file. The default extension for optimization-
file is .opt.

/P This switch has the same effect has the /L switch.

/Q This switch suppresses all warning messages (see sec-
tion 19.12).

/Qn This switch suppresses the output of message n. The

number is one of those listed in appendix H. The pur-
pose of this switch is explained in section 19.11 below.

/s This switch generates a map file taking its name from
the first name in the list of object files.

/Smap-file This switch generates a map file called map-file. The
default extension for map-file is .map.

/Xentry-point
This switch causes the linker to use the symbol entry-
point in preference to INMOS.ENTRY.POINT, which is
the default.

19.10 Using Batch Files

A batch file is a convenient way of calling the linker with the ap-
propriate run-time library and harness. The linker accepts spaces
between object file names, so the batch file can pass more than one
parameter to the linker; unused parameters will be ignored. Switches
can appear in any position on the command line, so they can be

The Linker 393

passed as parameters to the batch file. For example, the batch file
tlink.bat might look like this:

C>linkt %1 %2 %3 %4 %5 %6 %7 %8 %9 library.bin harm.bin

The following example shows how the batch file could then be used
to link two files filel.bin and file2.bin into a library filel.1ib:

C>tlink filel file2/L

The batch file will then invoke the linker with the following com-
mand:

linkt filel file2/L library harn

It is not possible include a comma in a batch file parameter. For this
reason, you cannot explicitly pass an output file name to a batch file
in its command line.

19.11 Duplicate Definitions

A duplicate definition occurs if two or more object files define the
same symbol. The linker will issue a warning message about each
occurrence of a duplicate definition and will use the first definition
encountered. Object files are processed in the order in which they
appear on the command line.

This facility can be useful when it is necessary to rewrite or alter an
object file contained in a library. It can also be used to substitute
one object file for another when creating a new library.

Occasionally, for example when several libraries are being used, it
may be desirable to suppress a very large number of duplicate defi-
nition warning messages. This can be done by using the switch /Q1.
This facility may be useful for OEM users of the linker.

394 Chapter 19

19.12 Messages

The linker may issue one or more messages during a linking opera-
tion. These messages are used to draw the user’s attention to unusual
or incorrect situations.

There are two types of message: warnings, which indicate accept-
able but possibly erroneous conditions, and fatal errors which result
from conditions which are serious enough to terminate the linking
operation.

A complete list of the messages output by the linker may be found
in appendix H.

Chapter 20

The mempatch Utility

The linker program, 1inkt, normally produces an executable image
file prefixed by a short bootstrap program which allows the afserver
to load the image into an empty transputer: the bootstrap initialises
the transputer and reads in the rest of the image file.

The bootstrap produced by the linker is designed to work with the
Inmos B004 transputer board, or with an exact copy. These boards
have either 1 or 2MB of RAM: the bootstrap may not work properly
with partially B0O04-compatible boards which have different amounts
of memory.

This problem does not affect task image files produced by the linker
for use with the 3L configurers, since the configurers ignore any
bootstrap code prefixed to the input task images and add their
own bootstrap to the output application image file. The configurer-
genecrated bootstrap can handle any amount of memory which is a
multiple of 64K B.

The linker-generated bootstrap is only used il a single image file is
run on its own on one transputer as described in chapter 3. In that
case, the following problems may occur on a transputer board with
other than 1 or 2MB of RAM:

396 Chapter 20

e On systems with more than 2MB of memory, .b4 files produced
by the linker will assume that only 2MB of memory is available;
the program will not be able to take advantage of the rest of
the physical memory in the configuration.

e On systems with less than 1IMB of memory, .b4 files produced
by the linker will assume too much memory is available, and are
likely to fail when memory above the amount actually available
is used.

e On systems with more than 1MB but less than 2M B of memory,
one or other of the above effects will be observed, depending
on the details of the board’s address decoding hardware.

The mempatch utility allows you to modify .b4 files so that they will
execute correctly with a particular memory configuration other than
1 or 2MB.

The compiler, linker and other utilities provided in this release all
use the standard bootstrap, and may therefore require to be modified
using mempatch if they are to be run on a transputer board with other
than 1 or 2MB of RAM. Note that 3L does not guarantee that the
compiler, linker and other programs will necessarily operate correctly
if insufficient memory is available.

20.1 Identifying mempatch

If the mempatch utility is invoked without arguments, it will print
identifying information similar to the following:

C>mempatch

usage: mempatch filename.b4 kilobytes

e.g. mempatch myprog.b4 128

mempatch V1.2, Copyright (C) 1988, 3L Ltd.

A given version of mempatch can only be guarantced to operate
correctly with particular versions of the 3L high-level languages.

The mempatch Utility 397

You should only use the version of mempatch supplied with this
release in conjunction with the corresponding compiler and linker.
mempatch will detect and reject any program image with which it is
not compatible.

20.2 Invoking mempatch

The mempatch utility is invoked with a command line of the following
form:

mempatch image-file-name number-of-kilobytes

For example, to patch the file myprog.b4 for a system with only
64 kilobytes of memory, the following command line would be used:

C>mempatch myprog.b4 64
standard secondary bootstrap recognised
image now patched to 64 kilobytes

Note that the full filename of the program image file—including any
.b4 extension—must be supplied.

20.3 Re-invoking mempatch

A program image file may be patched more than once if, for example,
available memory in the target system changes. The program file
myprog.b4 modified in the previous example might be modified again
for a 128 kilobyte system as follows:

C>mempatch myprog.b4 128
previous patch value was 64 kilobytes
image now patched to 128 kilobytes

398 Chapter 20

Chapter 21

The decode Utility

A separate decoder utility is supplied with Parallel Fortran which
takes as its input the binary output file of the compiler, and pro-
duces a listing including both the source code and the disassembled
machine code for each source line.

An example of decode’s output may be found in figure 21.1.

21.1 Usage

The decoder is started by a command of this format:

decode filename

Here, filename is the name of a binary output file from the compiler.
If no extension is typed, .bin is assumed.

The decoder then attempts to find the source file, using the source
file name given at compilation time, which is stored in the binary file.
It applies this name in the context of the current directory when the
decoder is run. Thus, if at compilation time the source file was speci-
fied as down\cats, and the current directory when the decoder is run

400 Chapter 21

is \mine, the decoder will attempt to open \mine\down\cats.f77
as the source file. The decoder should therefore be invoked with the
current directory set to be the directory which was current when the
file being decoded was compiled.

If decode cannot find the source file, it outputs a warning message
and produces a disassembly listing without source lines.

The decoder’s output is normally sent to the display. It may, how-
ever, be redirected or piped in the usual way, for example:

C>decode cats > cats.lis

C>decode cats | more

21.2 Features of the decode Program

The line TOTALCODE 176 O in the example reports the size of the
program code for the module: in this case, 176 (decimal) bytes. The
second number can be disregarded.

The line STATIC 11 in the example reports the size of the static space
required by the module, expressed this time in words (decimal).

Machine-code instructions are decoded into mnemonics. The de-
coder automatically merges pfix’s and nfix’s with the following
opcode. There is full support for all T4 and T8 instructions, includ-
ing the T8’s ‘fpu’ operations. Unrecognised indirect instructions are
decoded as ‘opr n’, and unrecognised fpentry instructions as ‘ldc
n; fpentry’.

The destinations of j and cj instructions are shown as addresses in
hexadecimal, rather than relative displacements. Calls to external
symbols are shown symbolically if possible. The operand ficlds of all
other direct instructions are shown in decimal.

The initialisation values of static data are shown in hexadecimal and

ASCIL

The decode Utility 401

The source code contents of files added to the program by means of
INCLUDE statement files are not shown, but binary code generated
from them is decoded and appears at the right point in the main
source file.

21.3 Other Languages

The decoder can handle binary object files which are of the format
described in the Inmos Standalone Compiler Implementation Man-
ual[13]. As well as Parallel Fortran, the 3L Parallel C and Pascal
compilers generate binary files of this kind, and these can therefore
be decoded. If source files are available, the C or Pascal source
program will be correctly included in the listing.

The Inmos stand-alone occam 2 compiler also generates binary files
in this format, and should therefore be decoded correctly, although
this cannot be guaranteed. The source programs are not shown,
as the occam compiler does not generate the necessary line-number
information.

The decoder cannot handle executable (.b4) files.

402

Transputer DECODE (V1.2) of decodex.bin

ID T4 "occam 2 V2.1" "F77_transputer V2.0"

SC o
TOTALCODE 176 0
STATIC 11
REF #0, "f_stop"
20
00000000
65845444F 4345440B 00000001
3737462E
1 DATA 1/3/
00000003
6E6961 6DEF6606
CODESYMB "f_main" 00000030
71
30
20 20
BE 60
DO
2 J=I+5
70
39
86
D1
3 END
40
4F 60
70
20 20 20 20 20 20
B2
FO 22
oD 61
FFFFFFFF
00000000 00000000 01CBO1CB
0000000B 00000000 00000000
0000005C 00000064 00000034
FFFFFFD4 0000001A 00000074
PATCH LONG 00000004 MODNUM
PATCH LONG 00000008 STATICFIX
PATCH LONG 0000000C INIT
PATCH LONG 00000010 LIMIT
FFFFFFFF
0000004A 00000008 00000030
FFFFFFFF

000AF
0004C
00098
000A4

00070
000A8

00030
00031
00032
00034
00036

00037
00038
00039
0003A

0003B
0003C
0003E
0003F
00045
00046
00048
00078
00000
0000C
00018
00024

0007¢C
00080
0008C

1d1
ldnl
ldnl
ajv
stl

1d1
1ldnl
adc
stl

1ldc
1dc
1d1
call
ajv
ret

Chapter 21

I
|.___.DECODEX|
1.F771

|.f_mainl|

la___d______|
(L S

Figure 21.1: Example of output from decode

Chapter 22

The worm Utility

The worm utility is for exploring transputer networks. In its simplest
form, it just counts the number of nodes in the network.

C>worm
one processor found

The /F option switch provides fuller information about each node,
including:

e processor type (T414 or T800);
e processor clock speed;
e amount of external memory, in kilobytes (K);

e the number of ezxtra processor cycles (penalties) required to ac-
cess external memory as opposed to on-chip RAM (a minimum
of two for a T414 or T800);

o the number of nodes through which work packets in a flood-
configured application will be routed to get from the root
transputer to this node. This number of “hops” may be greater

404 Chapter 22

than the theoretical minimum imposed by the network config-
uration; it reflects the network spanning tree constructed by
the flood-loading software.

On a single-processor system the output might look like this:

C>worm/1

one processor found

processor ROOT type=T41i4 20.0MHz, 3.0 penalties, O hops 2048K
links to HOST[O], ’ ,

The link connections from each node are listed from left to right
in the order link 0, link 1, link 2, link 3. Here link 0 of the root
transputer is connected to the host computer’s link adapter and
the other three links are unconnected. A dashed line, “-------

indicates an unconnected link.

The /C option makes the worm generate the node interconnection
information in the form of a configuration file suitable for use with
the static configurer.

! one processor found
processor HOST
processor ROOT
vire ? ROOT[0] HOST([0]

22.1 Notes

The worm will not discover “bare” nodes with little or no external
memory. This is because the network loader on which it relies re-
quires about 5-10KB of external RAM to function properly.

There may be a short delay before network information is displayed.
This is because the worm waits for a certain amount of time before
deciding that a link over which nothing is being reccived is uncon-
nected and not just connected to a “slow” processor.

The worm writes its output on the standard output strecam, normally
the screen. Its output may be redirected to a file, or to a device

The worm Utility 405

like a printer, using the DOS >’ facility. For example, to put a full
description of a network into a file called net.1is:

C>worm/f >net.lis

406 Chapter 22

Chapter 23

The tnm Utility

tnm shows the external symbols defined or referenced by an object
file or library. For libraries, the names of the constituent object
modules are also shown.

tnm is invoked like this:

tna filename

The filename must be the name of an object (.bin) file produced
by the compiler, or a library file produced by the linker. No default
extension is supplied by tnm.

Object files and libraries are made up of sequences of object file
records of various types. tnm scans the input file and writes (to
standard output) the following types of record in a printable format.
Other record types are skipped.

COMPILER ID records show the target processor (T4 or T8) for which
a module was compiled, and the version of the compiler used to
compile it.

LIBRARY records delimit object modules within a library. They also
contain the name of the following object module, except for occam

408 Chapter 23

modules which do not have names and are therefore given numbers
instead.

REF records name external symbols referred to by the current module.
Note that simply referring to a symbol does not cause the module
which defines it to be loaded. Only symbols which are actually used
in “patch” records cause modules to be loaded. Patch records are
not shown by tnm, because each symbol may be used in many places
in an object file, requiring many patch records which would obscure
the output produced.

CODE SYMBOL records define the locations of external symbols in the
code area of the current module.

DATA SYMBOL records define the locations of external symbols in the
static data area of the current module.

Figure 23.1 shows the start of the output produced by running tnm
on the standard Fortran T4 run-time library.

The output from tnm normally appears on the screen, but it may be
redirected to a file or device using the DOS >’ facility, like this:

C>tom \tf2vi\frtlt4.bin >rtl.lis

The tnm Utility

LIBRARY MODULE 1: t4\pfaux.t4
COMPILER ID occam 2 V2.1 IMP_transputer V1.3
REF IMP_EVENT
CODE SYMBOL f_cpystr
CODE SYMBOL f_cpstr
CODE SYMBOL f_concat
CODE SYMBOL f_ibits
CODE SYMBOL f_ibset
CODE SYMBOL f_btest
CODE SYMBOL f_ibclr
CODE SYMBOL f_ishft
CODE SYMBOL f_ishftc3
CODE SYMBOL f_lle
CODE SYMBOL f_lge
CODE SYMBOL f_lgt
CODE SYMBOL f£_11t
CODE SYMBOL f_len
CODE SYMBOL f_index
CODE SYMBOL f_ichar
CODE SYMBOL f_char

LIBRARY MODULE 2: t4\pfcrts.t4
COMPILER ID occam 2 V2.1 IMP_transputer V1.3
REF REAL32TOREAL64
REF REAL64TOREAL32
REF REAL32EQ
REF REAL32GT
REF REAL640P
REF REAL320P
REF CSQRTP
REF CEXPP
REF CLOGP
REF CSINP
REF CCOSP
REF SQRTP
REF IMP_EVENT
CODE SYMBOL f_csqrt
CODE SYMBOL f_cexp
CODE SYMBOL f_clog
CODE SYMBOL f_csin
CODE SYMBOL f_ccos
CODE SYMBOL f_cabs

Figure 23.1: tnm Qutput

409

410 Chapter 23

Chapter 24

The tunlib Utility

Individual object files can be extracted from a library using the
tunlib command.

tunlib input-library output-library output-objfile symbol

All four command line arguments are required. No default extensions
are supplied by tunlib.

tunlib extracts an object module from the input-library and writes
it to the output-objfile. The input-library, minus the extracted mod-
ule, is copied to the output-library.

The module to be extracted is specified by giving the name of any
external symbol it defines. Symbol matching is case sensitive. Note
that Fortran symbols are converted to lower case before being output
by the compiler, so the names for Fortran subprograms should be
supplied to tunlib in lower-case form.

Do not use the same file name as both an input file and an output
file. The eflects of doing so are undefined.

In the example below, the module which defines the Fortran subrou-
tine PLOTPOINT is extracted from a library called graphlib.bin and

412 Chapter 24
written to an object file of its own called point.bin. The remainder
of the library is written to a new file, rest.bin.

C>tunlib graphlib.bin rest.bin point.bin plotpoint

If we had wanted simply to delete the module containing PLOTPOINT
from the library, we could have discarded the extracted object file
by writing it to the null file, like this:

C>tunlib graphlib.bin newlib.bin nul plotpoint

newlib.bin is just graphlib.bin with the module which defined
PLOTPOINT removed.

Chapter 25

The fpr Utility

The fpr program converts files formatted according to Fortran’s
carriage control conventions into files which may be printed under

MS-DOS.

The program reads from standard input and writes to standard out-
put, replacing the carriage control characters with characters that
will produce the intended effect when the file is printed. According
to the ANSI Fortran 77 standard, vertical spacing is determined by
the first character of each line, and the standard uses the following
table to define the effect of this character:

Character | Vertical Spacing Before Printing
u One Line

0 Two Lines

1 To First Line of Next Page

+ No Advance

If there are no characters in the record it is treated as a record
consisting of a single space character. If the first character is not
one of those mentioned above, it is treated as if it were a space
character.

The following switches are recognised:

414 Chapter 25

/B Output a form-feed at the beginning of the file; sup-
press the form-feed at the end.

/E Output a form-feed at the end, and not at the begin-
ning. Of course, if the first character of the file is a ‘1’
then a form-feed will be output in any case.

/N Do not output a form-feed either at the beginning or
the end.
/1 Print the program’s identification.

The default behaviour is to output a form-feed at the end of the file.
Note that if the output from fpr is sent to the screen of an IBM PC
(or compatible) a form-feed will be displayed as a ‘g’ symbol.

fpr may be used to convert a file, like this:
C>fpr <output.dat >prntfile.dat

Alternatively, if a Fortran program writes to unit 6 (as precon-
nected), the output can be piped through fpr:

C>afserver -:b fortprog.b4 | fpr >prntfile.dat

For
=~ Sale

274 Not

Chapter 26

Configuration Language
Reference

The 3L configuration language is the language accepted by the vari-
ous 3L configuration utilities. It is designed to allow easy description
both of physical processor networks and of user applications built up
out of tasks, without the user being concerned with the details of how
the tasks are actually loaded into the processor network.

Each of the configuration utilities will, in general, accept a subset
of the language described here, according to its needs. For example,
the flood-fill configurer accepts the barest descriptions of the user
tasks; it needs no description of the physical network because that
information will be discovered at load time.

26.1 Standard Syntactic Metalanguage

In a formal description of a computer language, it is often conveni-
ent to use a more precise language than English. This language-
description language is referred to as a metalanguage. The metalan-
guage which will be used to describe the configuration language is

416 Chapter 26

that specified by British Standard 6151[7]. A tutorial introduction to
the standard syntactic metalanguage is available from the National
Physical Laboratory(8].

The BS6154 standard syntactic metalanguage is similar in concept
to many other metalanguages, particularly those of the well-known
Backus-Naur family. It therefore suffices to give a very brief informal
description here of the main points of BS6154; for more detail, the
standard itself should be consulted.

1. Terminal strings of the language—those not built up by rules
of the language—are enclosed in quotation marks.

2. Non-terminal phrases are identified by names, which may con-
sist of several words.

3. A sequence of items may be built up by connecting the com-
ponents with commas.

4. Alternatives are separated by vertical bars (‘|’).
5. Optional sequences are enclosed in square brackets (‘[’ and ‘]’).

6. Sequences which may be repeated zero or more times are en-
closed in braces (‘{’ and ‘}’).

7. Each phrase definition is built up using an equals sign to sep-
arate the two sides, and a semi-colon to terminate the right
hand side.

26.2 Configuration Language Syntax

To simplify the explanation of the configuration language, the formal
definition which follows in subsections 26.2.2 onwards deals only with
the higher level syntax of the language. At this level, we can deal
with how the significant characters of the language are built up into
tokens and statements. The lower level syntax deals with the way in

Configuration Language Reference 417

which multiple input files are handled, with comments and with line
continuation. This topic is treated informally in subsection 26.2.1.

The high level syntax given here has an additional simplification
intended to make it more readable. To show this, consider the
following syntax rule written in the BS6154 metalanguage:

example rule =
“first”, “second”;

Interpreted strictly, this rule would be satisfied only by an input text
which read “firstsecond”. In the syntax presented here, it should
be taken to match “first” followed by “second”, but in such a way
that the two items are distinguishable. For example, the two words
here might be separated by a space character in the input file. When
the two items are distinguishable in the input file without a space
between them, then they may be abutted. This would be the case
for the two items in the following example:

second example rule =
“f irst ”, “= ”’.

Valid input text for this rule could be, for example, “first=" or

-

“first =",

26.2.1 Low Level Syntax

The general form of a configuration language “program” is designed
to be as simple as possible to use.

The following example show the ways in which the formatting, com-
menting and continuation facilities available in the configuration
language can be used:

! this is an example of a comment
! a blank line follows...

! next, a statement continuation...
PROCESSOR -~

418 Chapter 26

host

! nov, both features in combination...
PROCESSOR - ! comment AND continuation
root

The above sequence is, to the configurer, exactly equivalent to the
following:

PROCESSOR HOST
PROCESSOR ROOT

The various facilities used above can be summarised as follows:

e Case of letters is not significant to the configurer; in other
words, upper and lower case letters may be used interchange-
ably.

e White space within a line (space characters, tab characters and
so forth) is compressed; for example, three consecutive spaces
would be seen as one.

o Everything from an exclamation mark character ‘!’ to the end
of the line is taken to be a comment, and is discarded.

o If the last non-whitespace character on a line is a hyphen *-’,
the line is taken to be continued onto the next line.

e Continuation and commenting can be used together; the hy-
phen must then be the last non-whitespace character before
the comment.

In addition to these line formatting considerations, note that the
configurer can accept any number of input files rather than simply
one. This facility is designed to allow different parts of the descrip-
tion of an application to be held in separate files. For example, the
description of the physical network might be held in one file and
the description of the user’s application in another. The configurer
simply treats each input file in order as part of one long input strcam.

Configuration Language Reference 119

26.2.2 Numeric Constants

Several different kinds of numeric constant are available to meet the
different uses of constants within the configuration language. For
example, a constant may be expressed in decimal notation or in
hexadecimal.

A special notation is provided to extend the decimal constant with a
scaling letter; this is most commonly used in specifications of memory
allocation, which are conveniently specified in units of kilobytes or
megabytes. The scaling letters ‘K’ and ‘M’ scale the decimal con-
stant they follow by 1024 and 1024 x 1024 (1048576) respectively.
Note that it is not possible to add a scaling letter to a hexadecimal
constant; the configurer would interpret such a combination as the
hexadecimal constant followed by a single-character word containing
the scaling letter.

Although all numeric constants in the configuration language repre-
sent integer values, a representation including a decimal point can
be used for input: the number is simply truncated towards zero
before use. For example, 1.6 would simply represent 1. Because this
truncation occurs after the scaling letter, if any, has been applied, the
decimal point can be used to express fractions of the scaling value.
For example, 1.6M would represent 1677721, which is the truncated
integer part of 1.6 x 1024 x 1024.

constant =
decimal constant | hex constant;

hex constant =
“&”, hex digits;

hex digits =
hex digit, { hex digit };

hex digit =
digit | “A” | ... | “F”;

420 Chapter 26

decimal constant =
decimal digits, [“.”, { decimal digit }], [scaling letter |;

scaling letter =
“K” I “H”;
decimal digits =
decimal digit, { decimal digit };
decimal digit =
“07" I “9”,
... ;

Some examples of numeric constants are given here, along with their
values, expressed in decimal.

10 10

210 16

10K 10240
10M 10485760
1.6 1

1.6k 1638

26.2.3 String Constants

The only circumstance in which a string constant is required in
the configuration language is when an operating system file must
be identified. Such string constants in the configuration language
are simply enclosed in double quotes. No notation is available for
including double quotes within the string; this is unnecessary as MS-
DOS file names may not contain this character.

The trailing string quote may be omitted if the string is terminated
by the end of the line.

string constant =
“w» { ? any ASCII character other than newline or
double quote 7 }, [“"” |

Configuration Language Reference 421

Some examples of valid string constants are as follows:

'Igtrilla"
"c:\mytasks\x.b4"
"fred.b4

Note that the case of the characters in file names is significant, even
though MS-DOS does not use this distinction. This is to help when
the software is ported to other environments.

26.2.4 Identifiers

Each object in the physical transputer system (processors and wires)
and in the user’s application (tasks and connections) has a unique
identifier. This is used by the configurer in error reports, and is also
used to specify relationships between the objects. For example, a
wire runs between links on two named processors.

Identifiers for objects in the configuration language are simply se-
quences of letters, digits and the special symbols underline ‘_’ and
dollar sign ‘$’. The sequence must start with a letter.

identifier =
letter, { identifier character };

identifier character =
letter | digit | “$” | “_”;

letter =
“A” | . I (lzn;

Some examples of valid identifiers follow. Note that the last three
examples would all be treated identically by the configurer, because
the case of letters is not significant.

proc_5

do$work

root
a_very_long_name

422 Chapter 26

A_Very_Long_Name
A_VERY_LONG_NAME

Part of the syntax of each of the configuration language statement
types which declare an object is the identifier which is to be used to
refer to that object in later statements. For example, the identifier
given to a processor is used again in placing tasks on that processor
or in wiring the processor’s links to those of other processors.

It is sometimes convenient, when an object will not be referred to
later, to allow the configurer itself to choose an identifier for an
object rather than for the user to invent meaningless identifiers for
every object. The declaration statement types all allow a question
mark to be used in place of an identifier.

new identifier =
identifier | “?”;

Normally, this special form of identifier is used when declaring wires
and connections, as there is at present no statement type which
refers back to these objects. Declarations of processors and tasks
will almost always require an explicit identifier to be used, as these
identifiers are used later when placing the tasks onto the network of
Processors.

An example of using the question mark form of identifier would be
as follows:

wire ? host[0] root[0]

This statement declares a wire running from link number 0 on pro-
cessor host to link number 0 on processor root. The configurer will
be able to report errors concerning this wire by reference to the line
number and file name of the declaration, but the user will not be
able to refer to the wire again.

Configuration Language Reference 423

26.2.5 Statements

Given the definitions of such primitives as numeric constants and
identifiers, the high-level syntax of the configuration language can
now be presented. The combined input file consists of a number of
newline-separated statements, as follows:

input file =
{ [statement], newline };

Note that the statement part of the above is optional, allowing for
blank lines appearing between statements. This may come about
either deliberately, perhaps to improve the readability of the input
file, or because the line contained only a comment, which is of course
not visible at this level.

Fach statement in the input file is one of the following statement
types. The different statement types are covered in the subsections
which follow.

statement =
processor statement |
wire statement |
task statement |
connect statement |
place statement |
bind statement;

There is no restriction on the order in which statements appear in
the input file, except that no object may be referred to before it has
been declared.

26.2.6 PROCESSOR Statement

processor statement =
“PROCESSOR”, new identifier, { processor attribute };

424 Chapter 26

processor attribute =
“TYPE”, “=”, processor type |
“BOOT”, “=”, boot file specifier |
“RAM”, “=”, constant;

processor type =
« PC ».,
?

boot file specifier =
string constant;

The PROCESSOR statement declares a physical processor. Every
processor in the physical network must be declared, including the
host processor from which the network is to be bootstrapped (nor-
mally an IBM PC-type machine). The configurer assumes that the
processor named host is the host processor; thus, each configuration
must contain a statement as follows:

processor host

Most processors declared in a configuration file will be declared so
that user tasks can be placed on them by later statements. However,
it is sometimes necessary to simply describe the tasks placed on
a particular processor without causing them to be loaded into the
processor. For example, the physical network may contain some
processors which will already be executing tasks at the time the rest
of the network is bootstrapped.

A trivial example of this case is the host processor itself. In the case
of an IBM PC host processor, the host will usually be executing the
afserver program when the network is loaded, simply because that
is the program which loads the rest of the network. It is necessary
to be able to specify the afserver task to the configurer so that its
ports can be connected to ports in user tasks, but without forcing
the configurer to attempt to bootstrap the IBM PC. Similarly, some
processors in the network might be set to bootstrap from ROM rather
than from link; here, too, there is a need to describe the tasks running
in those processors without attempting to bootstrap them.

Configuration Language Reference 425

A processor is declared to the configurer as having already been
bootstrapped by means of the TYPE attribute. For example, a
physical network containing one transputer and two IBM PCs might
be described as follows:

processor host
processor root_processor
processor other_ IBM_PC type=pc

Note that the default for the host is that it is TYPE=PC already. The
default for all other processors is to be normal, bootable, transputer
Processors.

Every processor is assumed to be able to support any user task placed
on it by the configuration file; specifically, there is no way to ask
the configurer to check the memory requirements of tasks placed
on the processor against the amount of physical memory available.
Similarly, although certain tasks may not be able to execute on
particular types of processor (for example, a task making use of the
floating point instructions found only on the T800 cannot execute on
a T414), the configurer cannot check for this and the responsibility
for ensuring a valid configuration is the user’s.

Every processor in the network is assumed to have four Inmos links,
numbered 0 to 3. These may be referred to (in the WIRE statement)
by means of a link specifier construct, which consists of the processor
identifier followed by the link number enclosed in square brackets:

link specifier =
processor identifier, “[”, constant, “]1”;

For example, link number 3 of the processor called extra would be
specified as extra(3].

26.2.6.1 BOOT Attribute

The BOOT attribute is used to indicate that a processor should not
be loaded in the conventional manner but should be booted with the

426 Chapter 26

contents of a named file.

PROCESSOR Edge BOOT='"sensor.b4"
PROCESSOR Gateway BOOT='"anneal.app"

At load time a copy of the raw data in the boot file is simply sent to
the processor: this can be any code suitable for booting a transputer,
including an application image file generated by either the static or
flood-fill configurers. In other words, a processor declared with the
BOOT attribute can be thought of as the root processor of a sub-
network to be booted using the named boot file.

In this way, a main statically-configured network can include static
sub-networks or processor farm sub-networks “on the side”. How-
ever, these sub-networks must be connected at the edge of the main
network. There must be only one connection between a sub-network
and the main network. If this restriction is not followed, the network
may fail to load.

Only the root processor of the sub-network should be described in
the main configuration file. If the boot file for the sub-network is
a configured application, then a sub-network configuration file will
have been used to create it. If the static configurer was used for
the sub-network, the sub-network configuration file defines the sub-
network topology; this description must be accurate, as no checking
can be done during the main network configuration. The processor
in the main network which has a BOOT attribute appears in the
sub-network configuration file as the host processor.

The task in the main network which is to communicate with the
root processor in the sub-network must have its ports bound to the
appropriate link addresses. The programmer must use the actual
hardware addresses for the links to do this. These addresses are as
follows:

Configuration Language Reference 427

Output address | Input address

Link 0 480000000 &80000010
Link 1 480000004 480000014
Link 2 480000008 480000018

Link 3 &8000000C &8000001C

The main task of the sub-network application should be linked with
the stand-alone run-time library unless the task it will communicate
with in the main network can respond to server protocol (e.g., if the
main network task is a file multiplexer).

As an example of a sub-network, if the upc application described
in chapter 5 were to be split into a main and sub-network using the
BOOT attribute, the main network configuration file would look like
this:

! MAINNET.CFG
! Configuration file for upper casing example
! using "boot=" to boot sub-network with upc

processor host
processor root
processor P001 BOOT="subnet.app"

wire ? host[0] root{0] ! connect PC to transputer
wire ? root[1] P001[2]

! Task declarations

task afserver ins=1 outs=1

task filter ins=2 outs=2 data=10K
task driver ins=3 outs=3

! Assign softwvare tasks to physical processors
place afserver host

place driver root

place filter root

! Set up the connections between the tasks.
connect 7 afserver[0] filter[0]

connect ? filter[0] afserver[0]

connect 7 filter[1] driver[1]

428

Chapter 26

connect ? driver[1] filter([1]

! bind ports to link to sub-network root processor
bind input driver[2] value =&80000014 ! I/0 over
bind output driver[2] value =&80000004 ! link 1

The sub-network configuration file would look like this:

! SUBNET.CFG

! Configuration file for uppercasing example. When
! configured this application can be used to boot a
! processor sub-network with the upc program.

processor host ! really root in main network
processor P001

wire 7 host[1] P001[2]
! tasks
task driver ins=3 outs=3

task upc ins=1 outs=1 data=ik

place driver host
place upc P001

connect 7 upcl0] driver[2]
connect ? driver[2] upc[0]

26.2.6.2 RAM Attribute

The RAM attribute overrides the default mechanism which dynam-
ically determines the amount of memory available to a processor at
boot time. The default mechanism probes memory to do this and
with certain board designs this is not desirable.

When the RAM attribute is used the configurer will assume that the
processor has the amount of memory specified as the parameter to
the RAM attribute and the dynamic method of memory determina-
tion will not be used. For this reason, care should be taken to ensure
that the processor really does have the amount of memory specified
with the RAM attribute.

Configuration Language Reference 429

The following RAM attributes declare that processor pel has 4MB
of memory and processor pe2 has only 500KB of memory.

processor pel ram=4096K
processor pe2 ram=500K

Use of the RAM attribute may affect the size of the application file
as it may cause extra loading software to be included.

26.2.7 WIRE Statement

wire statement =
“WIRE”, new identifier, link specifier, link specifier;

The WIRE statement declares a physical wire connecting links on
two physical processors. Each wire supports two connections, one in
either direction. The two link specifiers in the WIRE statement may
therefore be interchanged without affecting the statement’s meaning.
For example, the following statements both declare a wire named
yellow_wire running between link 2 of processor proc_one and
link 3 of processor proc_two:

vire yellow_vire proc_one[2] proc_two[3]
vire yellow_vire proc_two[3] proc_onef2]

Although it is only necessary to declare the wires which are actually
used by the application, in practice it is advisable to declare all the
wires. This is because the configurer may be able to use the extra
wires for booting the application, and as a result may be able to
reduce the size of the boot file by eliminating some of the loading
software.

26.2.8 TASK Statement

task statement =
“TASK”, new identifier, { task attribute };

430 Chapter 26

task attribute =
“INS”, “=” constant |
“0UTs”, “=”, constant |
“FILE”, “=”, task file specifier |
“OPT”, “=”, opt area |
“URGENT” |
memory area, “=”, memory amount;

opt area =
memory area | “CODE”;

memory area =
“STACK” | “HEAP” | “STATIC” | “DATA”;

memory amount =
constant | “?”;

task file specifier =
identifier | string constant;

The TASK statement declares a task, which may be either a user-
supplied task or one of the standard tasks provided with the config-
urer. Each task statement may contain a number of task attribute
clauses, each of which describes some aspect of the task. The task’s
attributes may appear in any order within the statement.

26.2.8.1 INS Attribute

Each task declaration must include an INS attribute, which specifies
the number of elements in the task’s vector of input ports. If the
task needs no input ports (because it only requires to send messages
to other tasks, never to receive) then the number of input ports may
be specified as 0.

Configuration Language Reference 431

26.2.8.2 OUTS Attribute

Each task declaration must include an QUTS attribute, which spec-
ifies the number of elements in the task’s vector of output ports. If
the task needs no output ports (because it only requires to receive
messages from other tasks, never to send) then the number of output
ports may be specified as 0.

26.2.8.3 FILE Attribute

This attribute specifies the file in which the memory image of the
task is to be found. Task image files are produced by the linker
program linkt.

The FILE attribute is ignored for any processor which is declared as
already having been bootstrapped, and may be omitted. This state
is assumed for the host processor and for any processor for which
the processor attribute type=pc has been specified.

If the FILE attribute is omitted for a normal (bootable) processor,
the configurer will scan the current directory and the directories
specified in the MS-DOS environmental variable PATH for a file whose
name is the same as the task’s name, with the suffix “.b4”. The
search stops at the first directory in which a file with the appropriate
name is found. For example, take the TASK statement TASK THIS
with no FILE attribute, with the MS-DOS PATH variable set up as
follows:

PATH=c:\mytasks;c:\dos;c:\tputer

In this case, the configurer would search for the task image in the
following files, in order:

.\this.b4
c:\mytasks\this.b4
c:\dos\this.b4
c:\tputer\this.b4

432 Chapter 26

If the FILE attribute is present, its argument is either a string
constant, or a word with the same syntax as an identifier. In the
former case, the string is the name of the file which will be opened,
as in the following example:

task x file="c:\mytasks\mytask.b4" ...

If the identifier-like option is taken, the identifier given is used in a
search through the MS-DOS PATH in the same way as the task’s own
identifier would have been if the FILE attribute had been omitted:

task x filemmytask ...

26.2.8.4 Memory Size Attributes

The various memory size attributes specify the size of the various
areas used as workspace for the task, as well as specifying which
memory allocation strategy should be used.

The argument to one of the memory size attributes is an integer
expressing the number of bytes of memory to be allocated to the area
in question. Sizes smaller than 128 bytes will not be accepted, to pre-
vent accidental entry of unreasonably small amounts (for example,
by typing 1.6 instead of 1.6K). It is also possible to specify “the rest
of memory available on the processor” by entering a question mark
instead of an integer. Only one task may request this treatment on
any particular processor.

The single-vector allocation strategy is used if the DATA attribute
appears. In this strategy, the task uses a single area of memory for
all workspace requirements, whether stack, heap or static data. The
stack and heap are allocated at opposite ends of this area, and grow
towards each other. For example:

task x ... data=50k ...

The double-vector allocation strategy is used if the STACK and
HEAP attributes appear (STATIC is available as a synonym for

Configuration Language Reference 433

HEAP). In this strategy, the stack occupies a separate area of mem-
ory to all the other workspace used by a task. This can be useful
when a task has a small stack requirement, as it can allow for the
stack area to be placed into the transputer’s on-chip memory using
the task OPT attribute; this technique can produce large perfor-
mance benefits. An example of double-vector allocation is as follows:

task x ... stack=1k heap=10k ...

The two allocation strategies are mutually exclusive. Thus, if the
DATA size for the task is given, neither STACK nor HEAP should
appear. If the two-vector allocation strategy is chosen, both STACK
and HEAP must be specified. If no memory size attributes at all
appear for a task, the default is the same as DATA=?; in other words,
single-vector allocation of the rest of memory available on the pro-
Cessor.

26.2.8.5 OPT Attribute

This attribute specifies that the memory area given as its argument
should be placed, if possible, into the transputer’s on-chip memory
area. The CODE specifier indicates the area of memory which will
contain the executing code of the task; the other memory area spec-
ifiers have the same interpretation as for the memory size attributes.

If not all of the memory areas specified will fit into the on-chip
memory, then some will be placed instead into the slower external
memory, which is the default allocation for all memory areas. The
order of precedence between memory areas in the same task is: stack,
code, heap. In other words, if OPT=STACK and OPT=CODE are both
specified, then the stack area is more likely to be placed in on-chip
memory. No order of precedence is guaranteed between memory
areas in different tasks.

It is possible for only part of a memory area to be placed in the
on-chip RAM; this is useful in respect of the code area, where the
modules which appeared first in the linker command line will have

434 Chapter 26

been placed at the start of the code area. If the most critical pro-
cedures are placed in the first module, then the likelihood of their
being executed from on-chip memory will be increased.

The on-chip memory is quite small (2KB on the T414, 4KB on the
T800), so the OPT attribute should be used sparingly to ensure
that critical memory areas are not displaced into the slower external
memory by less critical memory areas.

An example of a critical task with small stack and large data re-
quirements might be as follows:

task t stack=1k heap=100k -
opt=stack opt=code

26.2.8.6 URGENT Attribute

This attribute specifies that the task’s initial thread is to be started
at the urgent priority level. The default is that the task’s initial
thread is started at the not-urgent priority level. For example:

task x ... urgent ...

26.2.8.7 Port Specifiers

After the declaration of a task, its ports may be referred to in much
the same way as the links of a processor, by a port specifier construct
consisting of the task identifier followed by a number enclosed in
square brackets:

port specifier =
task identifier, “[”, constant, “]1”;

For example, either input or output port number 5 on task user
would be specified as user[5].

Note that a port specifier as given here does not indicate whether the
port concerned is an input port or an output port, that is, whether

Configuration Language Reference 435

the index given is into the task’s vector of input ports or into its
vector of output ports. This information is provided by the context
in which the port specifier appears. In the CONNECT statement,
the port specifier’s direction is determined by its position within the
line. In the BIND statement, the port specifier is preceded by a
direction word (INPUT or OUTPUT).

26.2.9 CONNECT Statement

connect statement =
“CONNECT”, new identifier, output port specifier,
input port specifier;

output port specifier =
port specifier;

input port specifier =
port specifier;

The CONNECT statement connects an output port on one task
with an input port on another task. For example:

connect 7 afserver[0] filter[0]
connect ? filter[0] afserver[0]

Note that the order of the ports given in the CONNECT statement
is significant, unlike the order of the links in the WIRE statement
which CONNECT otherwise resembles.

26.2.10 PLACE Statement

place statement =
“PLACE”, task identifier, processor identifier;

processor identifier =
identifier;

436 Chapter 26

task identifier =
identifier;

The PLACE statement determines which processor a particular task
is to execute on; every task must be placed on some processor. A
simple example of the use of this statement might be as follows:

place user_task root
place afserver host

Where multiple tasks which have the same image file are placed on
the same processor, they all share a single instance of the image
code. This helps to save space and can be particularly useful for
the simulation of large regular systems on fewer processors than will
eventually be used.

Note that it is incorrect to PLACE a task on a processor which was
declared with a BOOT attribute or on any processor which can only
be reached from the host via processors declared with the BOOT
attribute.

26.2.11 BIND Statement

bind statement =
“BIND”, binding type, port specifier, binding value;

binding type =
“INPUT” | “OUTPUT”;

binding value =
“VALUE”, “=”, constant;

The BIND statement allows the contents of a port to be explicitly
set to some literal value. Normally, ports are only bound by means
of the CONNECT statement; ports left unbound are pointed at
unique transputer channel words so that attempts to send or receive
messages through them cause the minimum of harm; the thread
causing the attempt to communicate over the unbound port simply

Configuration Language Reference 437

pauses indefinitely rather than causing failure of possibly all threads
running on the processor.

One application of the BIND statement is to give a task access to the
transputer’s external event mechanism. This appears as a channel
word at address 80000020,¢. Input port 5 of task event_handler
could be initialised to point to this channel word as follows:

bind input event_handler[5] value=&80000020

Another application of the BIND statement is to pass an integer
parameter to a user task. Here, the same input port as before is
bound to the value 5:

bind input event_handler[5] value=b

This technique can be used to allow several otherwise identical tasks
to behave differently. For example, tasks executing on a fast proces-
sor can have this fact indicated to them by means of a parameter
value, and use a more processing-intensive algorithm for the solution
of some problem. Another use of this parameter facility is to “label”
each task with a unique identifier.

Note that if an arbitrary value is supplied for a port binding and an
attempt is then made to send or receive a message using that port,
the processor on which the task resides will most probably crash.

438 Chapter 26

Chapter 27

Flood-Fill Configurer
Reference

There are two types of user task in a flood-fill configured application.
One task, referred to as the master, divides up the computation to be
performed into small work packets. The other task, which is known
as the worker, is replicated all over the network; it accepts work
packets originating from the master, performs some computation
and sends a reply packet or packets back.

27.1 User Task Protocol

This section describes the protocol used by the user tasks in a flood-
filled application. Note that a different protocol may well be used
by the router tasks, for example to avoid problems with T414A
restrictions on minimum length of messages sent across links.

440 Chapter 27
27.1.1 Master Task’s Ports

The master task has two input ports and two output ports. The
input and output ports master[1] are connected in the usual way
to a file server task such as afserver (probably via a protocol filter
task such as filter).

The input and output ports master[0] are connected to the router
task. The router task is provided by the flood-fill configurer, and has
the function of transporting work packets from the master through
the network to idle workers to be processed.

27.1.2 'Worker Task’s Ports

Each worker task has one input port and one output port. These
ports worker[0] are connected to the part of the routing system
which exists on each processing node of the network.

27.2 Packet Format

Work and response packets have identical format, consisting of a
fixed-length portion and an optional variable-length portion. The
two portions of the packet are send as separate messages. Each
packet starts with a message containing a 4-byte integer header, as
shown in Figure 27.1.

The various fields of this 32-bit message are used as follows:

o The least-significant sixteen bits of the message are used to
indicate the length of the data block following the header. If
the length is zero, no data block follows; otherwise this many
bytes of additional data follow as a separate message of that
length.

e Bit number 16 (value 00010000,¢) is always 1.

Flood-Fill Configurer Reference 441

B RM
Must be Zero C D(B Data Length
Y(1
31 (msb) 1918171615 (Isb) 0

Figure 27.1: Format of Packet Header

e Bit number 17 (value 00020000,¢) is set to 1 to signify that
the sending task is ready. A worker task can set RDY = 0 to
indicate that further response packets will be issued before the
next work packet will be accepted.

e Bit number 18 (value 00040000,¢) is set to 1 to signify that
this packet is a broadcast.

e Bits number 19-31 are always 0.

442 Chapter 27

Chapter 28

Task Data Sheets

This chapter contains descriptions of the standard “building block”
tasks which are provided with Parallel Fortran.

The description of each task starts with a diagram indicating the way
in which the ports of the task should be connected to those of other
tasks. Small digits inside the box representing the task are used
to indicate port numbers corresponding to the connections visible
outside the box.

This diagrammatic description is then backed up by a detailed de-
scription of the function of the task, along with examples of how a
reference to the task might appear in a configuration file.

444 Chapter 28

Data Sheet: afserver

F———

to

afserver o filter

The afserver task is used in configured applications to represent an
afserver program executing on the host computer. It is therefore
not provided in true task-image form.

The afserver task should be described to the configurer as follows:

task afserver ins=1 outs=1
place afserver host

The afserver program (and therefore the afserver task) provides
access to the host computer for tasks running in the transputer
system, with which it communicates over its port pair 0.

The protocol used by the afserver is a special variant of the Inmos
tagged file-server protocol, adjusted to be tolerant of a problem in
the T414A which prevents one-byte messages being sent over links.
The afserver would therefore normally be attached to a filter
task so that this variant protocol could be converted back into the
protocol which is used by user tasks.

Task Data Sheets 445

Data Sheet: filter

—_— —

to . to
afserver ._0 Tilter . user task

The filter task is used to convert between the two extant variants
of the Inmos tagged file-server protocol. The two variants arise
because of a problem with T414A transputers, which cannot send
one-byte messages across links. A filter task would be described
in a configuration file as follows:

task filter ins=2 outs=2 data=10k

A filter task’s port pair 0 communicates using the T414A-tolerant
variant of the Inmos protocol. This is normally attached to an
afserver task running on the host computer. Port pair 1 ofa filter
task communicates using the standard version of the Inmos protocol.

Thus, if a filter task is interposed between an afserver and a
user task, they will be able to communicate normally although each
is using a different protocol.

446 Chapter 28

Data Sheet: frouter

“up” link

| |

to ' ’ to
master ._‘ frouter s . worker

I

“down” links

The frouter task is used by the flood-filling configurer as the stan-
dard task which resides on each node of a flood-filled network and
manages the flow of work packets and responses through the network.

The attributes used by the flood-filling configurer for the frouter
task are as follows:

task router file=frouter ins=6 outs=6 -
data=11k urgent

The following list summarises the way in which the frouter task is
used by the flood-filling configurer:

0-2 Each of these pairs of “down” ports are either sct to zero by the
loader, or are connected to the “up” ports of nodes decper in
the network which were bootstrapped from this node. For cach
non-zero port pair in this range, the frouter task will start a
pair of threads to carry packets to and from the subnetwork
attached through that link.

3 If this node is not the root of the network, these “up” ports
are connected to a pair of “down” ports of the router on the

Task Data Sheets 447

node which bootstrapped this node. In this case, the frouter
task will read work packets and send responses to the booting
node (and thus ultimately to the master task executing on the
root node) through this pair of ports. If this node is the root
of the network, these ports are set to zero by the loader and
are ignored by the frouter task: port pair 4 (attached to the
master task) will be used instead.

4 If this node is the root of the network, these ports are connected
to the master task. In this case, the frouter task will read
work packets and send responses to the master task through
this port pair. Otherwise, these ports are set to zero by the
loader and the frouter task will use port pair 3 to reach the
master task.

5 These ports are connected to the worker task executing on this
node.

The standard frouter task uses two protocols in communicating
with the tasks to which it is connected:

4-5 Port pairs connected directly to user tasks use the standard
“net” protocol described in section 27.1.

0-3 Port pairs connected to other routers through Inmos links use
a variant of the “net” protocol which is tolerant to the T414A
problem with one-byte messages. In this variant, a two-byte
message is actually transferred whenever the message header
indicates that a one-byte message should follow.

Note that a communications task like frouter should normally be
specified as having the URGENT attribute. This prevents worker
tasks in the network becoming idle because there is too little CPU
time available elsewhere in the network for the router to operate.

448 Chapter 28

Data Sheet: filemux

to * . 2, to
o filemux [- .
afserver . | ;| : clients

le—

The filemux task allows several client tasks to share a single file
server task by merging (multiplexing) the clients’ request streams
into a single stream of requests. This allows more than one task in
a Parallel Fortran application to use standard file 1/0.

In a simple system, the “to afserver” ports are connected to the
afserver via a filter task. However, they may be connected to
any task which accepts the afserver protocol. In particular, they
may be connected up as the client of another filemux task to build
multiplexer chains.

In general, filemux simply passes on service requests from its clients
and forwards the responses. The exception is the “server terminate”
request. The multiplexer will only pass on “server terminate” once
all its clients have requested server termination.

Figure 28.1 shows the basic problem with which the multiplexer task
is intended to assist. Here, the task server runs on the host and
provides file services via a protocol filter task filter to a client
task client_1. The filter, client_1 and client_2 tasks all run
in the transputer system. The difficulty is in arranging that the
second client task client_2 can gain access to files stored on the
host processor.

One possibility is to connect the two client tasks together and ar-
range for client_2 to request file services from client_1. An-

Task Data Sheets 449

other possibility, illustrated in figure 28.2, is to introduce a new
task multiplexer designed to solve this particular problem. The
multiplexer task is connected to both client tasks and passes their
file service requests through to the filter and thus the server on the
host system.

Although it is possible to build any required multiplexing system
by combinations of the 2 — 1 multiplexer shown in figure 28.2, the
filemux task is more general in that it can handle any number of
client tasks: it performs an n — 1 multiplexer function. Port pair 0
(i.e., input port 0 and output port 0) of the multiplexer is always
connected to the task from which file services may be obtained; in
this example, the filter task. All other port pairs supplied to the
multiplexer in configuration language statements like ins=n, outs=n
are connected to a total of n — 1 client tasks.

In this way, the multiplexer can handle any number of client tasks,
as long as the user provides it with sufficient memory to support
them. The multiplexer needs no more than (6 + 0.25n)K bytes of
data storage, where n is the number of tasks supported. The user
should use a DATA attribute to the multiplexer’s TASK statement
to ensure this memory is available.

An example of a configuration file which represents the configuration
of tasks shown in figure 28.2 is given in figure 28.3 (the PROCESSOR
and PLACE statements required have been omitted for clarity.)

86Irvero ofilter: 1client_1

1client_2
—

Figure 28.1: Limitation on Server Connections

450 Chapter 28

Host weeeo... OOt Processor
E E 5 1 1client_1 S
E 1 .. multi-
5 servero | : ofilter: plexer ;
i E E 2 1client_2 5

..

Figure 28.2: Using the Multiplexer

The multiplexer task may also be used to support client tasks which
are not running in the root processor. When they are running in
an adjacent processor and there is a spare wire connecting the two
processors, as in figure 28.4, then no additional work needs to be
done; the configurer will simply run the connection between the client
and the multiplexer across any available wire. Note that each wire
between processors, defined in the configuration file, supports bi-
directional communication between two tasks, one on each processor.

However, if the client task is some distance away, the multiplexer
can be used in a 1 — 1 configuration (i.e., serving only one client)
to pass file service requests through processors in the middle of the
network until finally reaching the multiplexer in the root processor,
which is connected to the filter task and thus the server as shown in
figure 28.5. Thus, a network of transputers might contain a tree of
multiplexer tasks, each passing file service requests up towards the
root. This kind of arrangement can be continued indefinitely as long
as the server task has sufficient resources to handle all the clients
together.

As mentioned earlier, the multiplexer can be used in an n — 1 man-
ner. An example of its use with eight client tasks (i.e an 8 — 1
multiplexer) is shown in figure 28.6. It should be noted that the

Task Data Sheets 451

task server ins=1 outs=1

task filter ins=2 outs=2 data=10k
connect 7?7 filter[0] server[0]
connect 7 server[0] filter[0]

task multiplexer file=filemux ins=3 outs=3 data=10k
connect ? filter[1] multiplexer[0]
connect 7 multiplexer[0] filter([1]

task client_1 ins=2 outs=2 data=b0k

connect ? multiplexer[1] client_1[1]
connect ? client_1[1] multiplexer[1]

task client_2 ins=2 outs=2 data=50k
connect 7 multiplexer[2] cliemt_2[1]
connect ? client_2[1] multiplexer[2]

Figure 28.3: Example Configuration File

multiplexer port pair 0 may be connected to one of the client port
pairs of another multiplexer task. This allows multiplexers to be
chained together to provide file services across a network, if there
are sufficient links available to do this. Similarly, the client_8 task
might itself be a multiplexer providing file services to tasks on an
adjacent processor.

452 Chapter 28

Root Second
Processor Processor

= ' s s
: - multi- i :
| servex |: i|otilter: C o i :
; o plexer i s
E 5 i : : client E
e i ? 8 LTI |

...

Figure 28.4: Using the Multiplexer on an Adjacent Processor

Host Root Second Third
Processor Processor Processor
tont | |] criene | s
1 r’ l<:11;nt i 1 lclx;nt i i
- — -° | i
H ve 1 P —*] wulti- multi- i :
serven ,_I,ahlt.n Yplexer plexer § g
H H 2 o 2 I OC]‘i;nt §

Figure 28.5: Using the Multiplexer from Within a Network

Task Data Sheets

Processor
—) :
to N I multiplexer s|
afserver <«

H 1 2 3 el 7 :

E 1] o)] 0 E

5 client client client .. client E

: 1 .2 _3 7 :

: :

...

Figure 28.6: Using an 8 — 1 Multiplexer

453

client_8

454 Chapter 28

Data Sheet: stub

to

stub o PR— client

Tasks which are not connected to the afserver or a file multiplexer
task are normally linked with the standalone C run-time library.
There are some Fortran facilities, such as internal file I/O, ENCODE
and DECODE which do not strictly require file server support but
which cannot be supported by the standalone run-time library. The
stub filer task allows you to write standalone tasks which make use
of such facilities.

All Fortran 1/O facilities which do not actually require afserver
support can be made available to a standalone task by linking it with
the full standard run-time library. If facilities such as non-internal
file I/O which require server support are not used, the standard
library will only attempt to communicate with the server when it
tries to read command line arguments at program startup and set
‘the exit status at shutdown. The stub filer task acts as a sink for
these communications: it accepts this limited subset of the afserver
protocol from its client task and sends back stylised dummy replies.

Note that if the stub filer’s client task does try to use some facility
which requires server support, the stub filer will either send back
a meaningless response, or terminate and leave the client task
deadlocked waiting for a response to its request.

The stub filer task is connected to its client as shown in the example
below. The run-time library always uses output port 1 and input

Task Data Sheets 455

port 1 to communicate with the server, so the client’s port pair 1
must be connected to the stub filer’s port pair 0.

task stub ins=1 outs=1 data=20k
task client ins=3 outs=3

connect 7 client[1] atub[0]
connect 7 stub[0] client[1]

The stub filer and its client task act together like an ordinary
standalone task. In the example above the client task has been
given three input and three output ports. Port pairs 0 and 1 are
reserved for use by the run-time library, so port pair 2 is left free for
communication with other tasks.

Use the standalone run-time library in preference to the stub filer
if possible. It is simpler, and the memory used for the stub task
and some of the startup and shutdown overhead in the full run-time
library is saved.

The stub filer can only be used with the static configurer, config; it
cannot be used with the worker task of a flood-filled application. The
flood configurer, fconfig, will not allow you to specify that a task
other than the worker is to be replicated throughout the network.

456 Chapter 28

Appendix A

Distribution Kit

This appendix lists the files which make up the distribution kit for
this version of Parallel Fortran. Each file name is accompanied by a
short description of the file’s function.

A.1 Directory \tf2vil

afserver.exe file server for IBM-PC and compatible hosts
necserve.exe file server for NEC PC-9801 hosts

t4f . exe
t8f.exe
tf.exe
tf.b4

alt.inc
chan.inc
dos.inc
misc.inc
net.inc
sema.inc
thread.inc
timer.inc

Fortran compiler driver program for T4
Fortran compiler driver program for T8
generic Fortran compiler driver program
Fortran compiler code for T4 and T8

run-time library package files

458

linkt.b4
linkt.exe
t4flink.bat
t8flink.bat
t4ftask.bat
t4fstask.bat
t8ftask.bat
t8fstask.bat

frtlt4.bin
frtlt8.bin
safrtlt4.bin
safrtlt8.bin
t4harn.bin
t8harn.bin
taskharn.t4
taskharn.t8

config.b4
config.exe
fconfig.b4
fconfig.exe
floader.b4
gloader.b4

decode.b4
decode.exe
fpr.b4
fpr.exe
mempatch.b4
mempatch.exe
tnm.b4
tnm.exe
tunlib.b4
tunlib.exe
worm. b4
worm.exe

Appendix A

linker code

linker driver program

batch file to invoke linker for T4

batch file to invoke linker for T8

batch file to link a task for T4

batch file to link a stand-alone task for T4
batch file to link a task for T8

batch file to link a stand-alone task for T8

Fortran run-time library for T4 only
Fortran run-time library for T8 only
standalone Fortran run-time library for T4
standalone Fortran run-time library for T8
T4 harness code

T8 harness code

harness for tasks on T4

harness for tasks on T8

configurer code

configurer driver program

flood configurer

flood configurer driver program
loader code used by fconfig
loader code used by config

decode utility code

decode utility driver program
fpr utility code

fpr driver program

mempatch utility code
mempatch utility driver program
tnm utility code

tnm utility driver program
tunlib utility code

tunlib utility driver program
vorm utility code

worm utility driver program

Distribution Kit

filter.b4
filemux.b4
frouter.b4
stub.b4

459

afserver protocol filter task
file service multiplexer task
standard flood router task

stub filer task

A.2 Directory \tf2vi\examples

hello.f77

cga.f77

cga.inc

mandelm.f77
mandelw.£f77
mandelm.1lnk
mandelw.1lnk
command. inc
results.inc
mandel .cfg
fmandel.cfg

mandel .bat
driver.f77

upc.f77
upc.cfg

“Hello, world!” program

source package of functions to access PC’s CGA
display hardware from the transputer. Provides an
example of use of DOS-access functions.

header file for the above

source of “master” part of Mandelbrot example
source of “worker” part of Mandelbrot example
module list for linking Mandelbrot master

module list for linking Mandelbrot worker
command packet format for Mandelbrot example
results packet format for Mnadelbrot example
configuration file for Mandelbrot example
configuration file for flood-filled version of Mandel-
brot example

batch file to compile, link and configure Mandelbrot
example

source of upper-case I/0 task
source of upper-case conversion task
configuration file for upper-case example

460 Appendix A

Appendix B

Compatibility with
T414A and TS800A

This appendix describes the problems which you may encounter if
you run Parallel Fortran programs on early transputer chips.

We recommend that if you have one of the development systems
sold with these early pre-production processors, you should have
it upgraded with a production processor. Failing this, the various
problem areas are listed here so that you can program round them.

B.1 Problems with T414A

Note that the pre-production T414 (mask revision A) cannot simply
be replaced by a later revision T414 without making changes to the
support circuitry. This is because various details of the external
clock and phase-locked-loop circuitry differ between the T414A and
all later transputer processors. For their own B004 board, Inmos can
provide an upgrade kit (IMS BB901) which includes a 'T'414B chip, an
extraction/insertion tool and full instructions on the modifications
required.

462 Appendix B
B.1.1 Restriction on Message Lengths

The T414A cannot reliably transmit a single-byte message across a
link. Message transfer across internal channels is not aflected.

This problem should not affect users of single-transputer systems, as
the filter task used to communicate with the afserver task takes
care of this problem. Similarly, the private protocol used between
routers in a flood-filled network avoids this problem by padding out
1-byte messages to two bytes for transmission. User tasks in both of
these cases are unaware of the protocol conversions.

This problem can be easily avoided in new systems by ensuring that
protocols never include single-byte messages.

B.1.2 Problems with Timers
B.1.2.1 Timer Rate Problem “

In production transputers, the timer associated with high-priority
(“urgent”) threads ticks once every 1uS, while the low-priority timer
(that associated with “not urgent” threads) ticks once every 64uS.
In the T414A, both timers tick every 1.6uS.

This problem will affect the subprograms of the TIMER package, and
those functions in the CHAN package whose names end with _T.

B.1.2.2 Short Delay Problem

The T414A cannot reliably delay for small amounts of time (below
about 5 ticks). When such an operation is attempted, the thread
requesting the operation may hang forever.

This problem affects the F77_TIMER_WAIT and F77_TIMER_DELAY
subroutines when small delays are specified, and the F77_THREAD _DESCHEDULE
subroutine, which is equivalent to a 1-tick delay.

Compatibility with T414A and T800A 463

B.1.2.3 Only One Delaying Thread Problem

Only one thread on a T414A processor can be delaying at any
one time. This problem will affect the F77_TIMER_DELAY and
F77_TIMER_WAIT subroutines, and those functions in the CHAN pack-
age whose names end with _T.

B.2 Problems with T800A

B.2.1 Floating-Point Conversion Problems

The T800A has a problem in its floating-point microcode; the wrong
result may be obtained for expressions containing integer to floating-
point conversions.

The Parallel Fortran compiler has an option switch to avoid such
instruction sequences; refer to section 17.2.4 for details of the /T84
option.

Note that the run-time library supplied with Parallel Fortran has
been compiled with this option and can therefore be used safely on
a T800A.

B.2.2 Instruction Decode Problems

The T800A decodes the move2dzero and move2dnonzero instruc-
tions wrongly, with the effect that when one is requested, the other is
executed. Later T800 processors decode these instructions correctly,
however.

Note that the /T8A compiler option does not change the behaviour
of the assembler with respect to these instructions. The compiler
always generates the code for the instruction as written.

464 Appendix B

Appendix C

Building a Network

In order to make use of the multi-processor facilities provided by
Parallel Fortran, it is of course necessary to build a multi-transputer
network on which to run the programs. This appendix describes the
principles involved, and shows how to build such a network out of
plug-in transputer development cards for the IBM PC.

C.1 Network Principles

There are two sets of connections to make when building a net-
work of transputer processors. The most obvious of these are the
link connecting one transputer to another; it is through these wires
that the tasks running on each processor communicate with their
neighbours, and through which the network is bootstrapped. An
application running on a transputer network is usually aware of the
topology of link connections.

Less obviously, another set of connections must be made in order to
arrange that various system services are available to the network.
Specifically, each transputer processor has reset and analyse inputs

466

host

/ \

Appendix C

host

/

root

root

root

WRONG

 IN—

RIGHT

Figure C.1: “One Root” Condition

and an error output. The topology of the system service connections
need not be related to that of the link connections.

C.2 Network Requirements

C.2.1 Requirements for Links

When building a network, there are two conditions which the ar-
rangement of link connections must satisfy:

o Exactly one processor must be connected to the host processor.
The former is referred to as the root processor, because it forms
the root of the tree of processors in the network. Figure C.1
shows two networks, one of which is not acceptable because it
attempts to have two root processors.

e each processor in the network must be reachable by a series of
“hops” through links, starting at the host processor. In other
words, the network must be connected; i.e., have no isolated
nodes. Figure C.2 shows two nctworks, one of which is not
acceptable because it has isolated processors.

Building a Network

467

extra
host 1
root ex;ra

extra
host 1

extra
root 2

WRONG

RIGHT

Figure C.2: “Connected” Condition

up

down

Figure C.3: Inmos System Services Scheme

C.2.2 Requirements for System Services

The only requirement which Parallel Fortran places on the arrange-
ment of system service connections is that, immediately prior to a
network being bootstrapped, all of the processors in that network
must have been reset. Parallel Fortran makes no use of the trans-
puter analyse and error signals at present.

The reset signal may be carried to each of the processors in the net-
work in many different ways. However, one popular scheme is shown
in figure C.3. In this scheme, each processor has three connectors:

o UP leads to a processor closer to the host.

e DOWN leads to a processor further from the host.

468 Appendix C

Figure C.4: System Service Daisy Chain

e SUBSYSTEM leads to a sub-tree of processors under the
control of this one.

The system service signals are carried through from “up” to “down”
so that several processors can be “daisy-chained” together. The
unconnected “up” port of such a chain can be used to control the
entire chain, as shown in figure C.4.

The purpose of the “subsystem” connector is to allow one proces-
sor to control others; system service signals are sometimes, but not
always, also carried through to the “subsystem” connector.

C.3 Connecting a Network

This section describes how to connect up a network using boards
compatable with the Inmos IMS B004 development board for the
IBM PC. The B004 board is shown in figure C.5.

At the far right-hand side of this board, visible from the back of the
PC in which the board has been installed, are an array of connectors
by which the board may be connected to other boards. There are
two columns of five connectors in this array, defined as follows:

PC link unused
Link 0 Link 1
Link 2 Link 3

PC Reset | Subsystem
Up Down

Building a Network 469

View from Component Side transputer

/
/

2MB of
Dynamic RAM

/’

PC Bus Edge Connector

Figure C.5: B004-type Single-transputer Development Board

Boards are supplied with two “jumper” plugs and three cables. Each
of these objects are arranged so that they can only fit into the
connectors for which they are intended.

When only one development board is in use, the two jumpers are
installed. These connect “PC Link” to “Link 0” and “PC Reset” to
“Up”; in other words, the board will be reset by the PC in which it
is installed, which will load it through its link 0.

To extend this basic configuration with another processor, the second
board could be placed in an adjacent PC bus slot (normally to the
right) and connections made to carry system services and application
messages. For example, link 1 on the root transputer (the original
one) could be connected to link 0 on the second board, and “Down”
on the root could be connected to “Up” on the add-on. If the two
boards are in adjacent slots in the PC card cage, these connectors
will be adjacent as well.

This scheme can be extended to any number of development boards;
the root (placed on the left) is controlled by the PC, while each board
other than the right-most passes the system service signals on to the
one on its right.

470 Appendix C

Appendix D

Additional Language
Features

Parallel Fortran includes various features which are provided to help
programmers when porting programs from certain older compilers.
These facilities are:

o The ENCODE and DECODE statements;
e The DEFINE FILE statement;

e Another method for selecting records when using a direct ac-
cess file;

e The FIND statement.

None of these facilities is specified by the ANSI standard, and the
compiler supports all the corresponding standard methods for doing
these things. If possible the standard methods should be used when
writing new Parallel Fortran programs, as this will help to avoid
problems when porting to other Fortran 77 compilers.

472 Appendix D

D.1 The ENCODE and DECODE statements

These statements are an alternative method for doing internal I/0.
Similar results can be obtained by using READ and WRITE on internal
files, as described in section 16.7.

ENCODE converts a list of variables into external format in memory,
while DECODE converts a string in external format into internal val-
ues and stores them in a list of variables. They have the following
formats:

ENCODE (count, format, buffer ,IOSTAT=ios ,ERR=err) list
DECODE (count,format, buffer ,I0OSTAT=ios ,ERR=err) list

where:

buffer is a variable or array which contains, or will contain,
the character string.

count is an integer expression which specifies the length of the
buffer. In the ENCODE statement count is the number of
characters which will be generated; if necessary, extra
space characters will be generated to fill the buffer. In
the DECODE statement count is the number of charac-
ters to be converted to internal form.

format is a format identifier. ‘*’ is not accepted. If more than

one record is specified in the format, an error occurs.
The interaction between the format and the I/0 list is
the same as for formatted READ and WRITE statements,
and is described in section 16.2.2.

t0s is an integer variable where an I/O status code is
placed. See section 16.3.1.1.

err is a label, to which control is transferred if an error
happens. See section 16.3.1.1.

list is an I/O list. In the ENCODE statement, list contains
the data to be converted to character form. In the

Additional Language Features 473

DECODE statement, list receives the data after conver-
sion to internal form.

The IOSTAT and ERR clauses, with their preceding commas, may be
omitted. ‘

ENCODE works like a WRITE statement, converting the list items under
the control of the format specifier and storing the generated charac-
ters in buffer.

DECODE works like a READ statement, converting the characters in
buffer under the control of the format specifier and storing the in-
ternal values in the list items.

D.2 The DEFINE FILE statement

This statement specifies the characteristics of an unformatted direct
access file and associates it with a I/O unit number. The OPEN
statement performs a similar function (see section 16.8.2), and its
use is preferred.

The DEFINE FILE statement has the following form.

DEFINE FILE u(rn,rl,U,asv)

where:

u is an integer constant or variable which specifies I/O
unit to which the file is to be connected.

m is an integer constant or variable which specifies the
total number of records in the file.

rl an integer constant or variable which specifies the
record length, in units of two bytes.

1] is a compulsory item, specifying an unformatted lile,

the only type allowed.

474 Appendix D

asv is the associated variable, an integer variable which,
after every direct access I/O operation, is set to the
record number of the next record. The associated
variable may not be a dummy argument.

More than one file may be specified with one DEFINE FILE state-
ment:

DEFINE FILE u(rn,rl,U,asv), u(rn,rl,U,asv)...

The DEFINE FILE statement specifies that the file connected to I/0
unit u contains rn fixed-length records, each 2xrl bytes long. The
records in the file are numbered sequentially from 1 to rn.

The DEFINE FILE statement does not itself open the file. This is
done when the first I/O statement on the specified unit is executed.
If this statement is a WRITE, a new direct access file is created. If it
is a READ or FIND, the file is assumed to exist already, and an error
occurs if it does not. The DEFINE FILE statement must be executed
before the first I/O statement on the unit.

The DEFINE FILE statement does not allow the programmer to spec-
ify a filename. Instead, a default filename is used, as discussed in
section 16.8.1.2. This default (or preconnected) filename is of the
form FORTn .DAT, where n is the I/O unit.

The DEFINE FILE statement also establishes the integer variable
asv as the associated variable of a file. At the end of each direct
access input/output operation, asv is updated to contain the record
number of the record immediately following the one just read or
written. This means that by using the associated variable as the
record number specifier, the programmer can access the records in
the file sequentially. For example:

DEFINE FILE 3 (1000, 48, U, NREC)
FIND (3, REC=1)

The DEFINE FILE statement specifies that I/O unit 3 is to be con-
nected to a file of 1000 fixed-length records; each record is 96 bytes
long. The records are numbered sequentially from 1 to 1000 and are

Additional Language Features 475

unformatted. The name of the file which will be accessed through
unit 3 is FORTO03.DAT. The associated variable is NREC. The FIND
statement (see below) positions the file at record 1, and initialises
NREC. After this, any statement of the following form will read the
next record in the file:

READ (3,REC=NREC) VAR

D.3 Record selection

The usual method for selecting the record of a direct access file which
one wishes to access is to use the REC= specifier. For example:

READ (UNIT=10, REC=IRECNO) IARRAY

In this case, the number of the record to be accessed is in the variable
IRECNO. This method is described in more detail in section 16.4.1.

Parallel Fortran also supports another method for selecting records.
For example:

READ (10°IRECNO) IARRAY

In this example, which has the same effect as the previous one, the
record selector is placed after the unit specifier, separated by a single
quote character (*). The same technique may be used with WRITE
and FIND.

D.4 The FIND Statement

The FIND statement can be used to position a direct access file at
a particular record, and to set the file’s associated variable to that
record’s number. The statement has the following formats:

FIND (u’rn,ERR=err,I0STAT=io08)
FIND (UNIT=u, REC=rn, ERR=err, I0STAT=ios)

476

where:

rn

err

108

Appendix D

is an I/O unit number, which must specify a direct
access file.

is a record selector, which must specify a record within
the file.

is a label, to which control is transferred if an error
happens. See section 16.3.1.1.

is an integer variable where an I/O status code is
placed. See section 16.3.1.1.

The IOSTAT and ERR clauses, with their preceding commas, may be
omitted. No I/O list may be specified and no transfer takes place.
For an example of the use of the FIND statement, see the discussion
of DEFINE FILE in section D.2 above.

Appendix E

Intrinsic Functions

E.1 ANSI Standard Intrinsic Functions

E.1.1 Rounding

Definition Generic | Specific | No. of Type of Type of
Name Name Arguments | Argument | Function
Truncation | AINT AINT 1 Real Double
(see note 1) DINT 1 Double Double
Nearest ANINT | ANINT |1 Real Real
Integer DNINT |1 Double Double
(see note 2) | NINT NINT 1 Real Integer
IDNINT | 1 Double Integer
E.1.2 Character Type Conversion
Definition Name | No. of Type of Type of
Arguments | Argument | Function
Integer to Character | CHAR | 1 Integer Character
1 Byte Character
Character to Integer | ICHAR | 1 Character | Integer

478

E.1.3 Numeric Type Conversion

Appendix E

Definition | Generic | Specific | No. of Type of Type of
Name Name | Arguments | Argument | Function
Integer INT INT 1 Real Integer
IFIX 1 Real Integer
IDINT |1 Double Integer
1 Complex Integer
1 DComplex | Integer
1 Integer Integer
Real REAL REAL 1 Integer Real
FLOAT |1 Integer Real
1 Real Real
SNGL 1 Double Real
1 Complex Real
1 DComplex | Real
Double DBLE 1 Integer Double
Precision DBLE 1 Real Double
1 Double Double
1 Complex Double
DREAL 1 DComplex | Double
Complex | CMPLX lor2 Integer Complex
lor2 Real Complex
lor2 Double Complex
1or2 Complex Complex
lor2 DComplex | Complex
Double DCMPLX 1lor2 Integer DComplex
Complex lor2 Real DComplex
1or?2 Double DComplex
lor2 Complex DComplex
lor2 DComplex | DComplex

Intrinsic Functions

E.1.4 Arithmetic

479

Definition Generic | Specific | No. of Type of Type of
Name Name Arguments | Argument | Function
Absolute ABS IABS 1 Integer Integer
Value ABS 1 Real Real
DABS 1 Double Double
CABS 1 Complex | Real
CDABS |1 Complex | Double
Remainder | MOD MOD 2 Integer Integer
(see note 3) AMOD 2 Real Real
DMOD 2 Double Double
Transfer SIGN ISIGN |2 Integer Integer
of Sign SIGN 2 Real Real
(see note 4) DSIGN |2 Double Double
Positive DIM IDIM 2 Integer Integer
Difference DIM 2 Real Real
(see note 5) DDIM 2 Double Double
Double DPROD | 2 Real Double
Length
Product
Square SQRT SQRT 1 Real Real
Root DSQRT 1 Double Double
CSQRT |1 Complex Complex
CDSQRT | 1 DComplex | DComplex

480

E.1.5 Maximum and Minimum

Appendix E

Definition | Generic | Specific | No. of Type of Type of
Name Name | Arguments | Argument | Function
Largest MAX MAXO >2 Integer Integer
Value AMAX1 >2 Real Real
DMAX1 >2 Double Double
AMAXO | > 2 Integer Real
MAX1 >2 Real Integer
Smallest | MIN MINO >2 Integer Integer
Value AMIN1 >2 Real Real
DMIN1 >2 Double Double
AMINO | 22 Integer Real
MIN1 >2 Real Integer
E.1.6 Complex Operations
Definition | Generic | Specific | No. of Type of Type of
Name Name | Arguments | Argument | Function
Imaginary AIMAG |1 Complex Real
Part DIMAG |1 DComplex | Double
Complex | CONJG | CONJG |1 Complex Complex
Conjugate DCONJG | 1 DComplex | DComplex

Intrinsic Functions

E.1.7 Exponential and Logarithms

481

(logy 7)

Definition Generic | Specific | No. of Type of Type of
Name Name Arguments | Argument | Function
Exponential | EXP EXP 1 Real Real
(e®) DEXP 1 Double Double
CEXP 1 Complex | Complex
CDEXP |1 DComplex | DComplex
Natural LOG ALOG 1 Real Real
Logarithm DLOG 1 Double Double
(log, z) CLOG 1 Complex | Complex
CDLOG |1 DComplex | DComplex
Common LOG10 | ALOG10 |1 Real Real
Logarithm DLOG10 | 1 Double Double

482 Appendix E
E.1.8 Trigonometrical Functions
Definition Generic | Specific | No. of Type of Typeof |
Name Name | Arguments | Argument | Function |
Cosine cos cas 1 Real Real
DCOS 1 Double Double
Ccos 1 Complex Complex
CcDCOoS 1 DComplex | DComplex
Sine SIN SIN 1 Real Real
DSIN 1 Double Double
CSIN 1 Complex Complex
CDSIN |1 DComplex | DComplex
Tangent TAN TAN 1 Real Real
DTAN 1 Double Double
CTAN 1 Complex Complex
Arccosine ACOS ACOS 1 Real Real
DACOS |1 Double Double
Arcsine ASIN ASIN 1 Real Real
DASIN |1 Double Double
Arctangent | ATAN ATAN 1 Real Real
(arctan z) DATAN |1 Double Double
Arctangent | ATAN2 | ATAN2 |2 Real Real
(arctan(Zl)) DATAN2 | 2 Double Double

Intrinsic Functions 483

E.1.9 Trigonometrical Functions (Degree)

Definition Generic | Specific | No. of Type of Type of
Name Name Arguments | Argument | Function
Cosine C0SD COSD 1 Real Real
DCOSD 1 Double Double
Sine SIND SIND 1 Real Real
DSIND 1 Double Double
Tangent TAND TAND 1 Real Real
DTAND 1 Double Double
Arccosine ACOSD | ACOSD 1 Real Real
DACOSD |1 Double Double
Arcsine ASIND | ASIND 1 Real Real
DASIND |1 Double Double
Arctangent | ATAND | ATAND 1 Real Real
(arctan) DATAND |1 Double Double
Arctangent | ATAN2D | ATAN2D | 2 Real Real
(arctan(Z})) DATAN2D | 2 Double Double

These functions assume that angles are expressed in degrees, rather
than radians. They are extensions to the ANSI standard.

E.1.10 Hyperbolic Functions

Definition | Generic | Specific | No. of Type of Type of
Name Name Arguments | Argument | Function
Hyperbolic | COSH COSH 1 Real Real
Cosine DCOSH 1 Double Double
IHyperbolic | SINH SINH 1 Real Real
Sine DSINH 1 Double Double
Hyperbolic | TANH TANH 1 Real Real
Tangent DTANH 1 Double Double

484

E.1.11 Character Operations

Appendix E

Definition Name | No. of Type of Type of
Arguments | Argument | Function

Length of Character | LEN 1 Character | Integer

Entity

Location of Substring | INDEX | 2 Character | Integer

a2 in string al

E.1.12 Lexical Character Comparisons

Definition Name | No. of Type of Type of
Arguments | Argument | Function

Greater than or equal | LGE 2 Character | Logical

Greater than LGT 2 Character | Logical

Less than or equal LLE 2 Character | Logical

Less than LLT 2 Character | Logical

The above functions return the value .TRUE. if the condition is
satisfied according to the ASCII collating sequence; otherwise they
return .FALSE.. If the operands are of unequal length, the shorter
operand is considered as if it were extended on the right with blanks
to the length of that operand.

E.2 Bit-Manipulation Functions

The intrinsic functions in this section are recognised by Parallel
Fortran, but are not part of the ANSI standard.

The bits of an INTEGER are numbered from 0 to 31, with the low-
order bit of the word being numbered 0.

Intrinsic Functions

E.2.1 Bitwise Logical Operations

485

Definition Name No. of Type of Type of
Arguments | Argument | Function

AND IAND or AND | 2 Integer Integer

OR IOR or OR 2 Integer Integer

Exclusive OR | IEOR or XOR | 2 Integer Integer

Complement | NOT 1 Integer Integer

E.2.2 Single-Bit Functions
Definition Name | No. of Type of Type of
Arguments | Argument | Function

Bit Set: return value IBSET | 2 Integer Integer

of al with bit a2 =1

Bit Clear: return value | IBCLR | 2 Integer Integer

of al with bit a2 = 0

Bit Test: .TRUE. if BTEST | 2 Integer Integer

bit a2 of al =1

N

\

N

Not
For
Sale

486

E.2.3 Shift and Extract

Appendix E

Definition

Name

No. of
Arguments

Type of
Argument

Type of
Function

Shift: al logically
shifted a2 places. If
a2 < 0 shift right;
else shift left

ISHFT

2

Integer

Integer

Circular Shift: shift
low-order a3 bits in al
circularly a2 places.

If a2 < 0 shift right;
else shift left

ISHFTC

Integer

Integer

Extract: extract a field
from al, a3 bits wide
with a2 as low-order bit

IBITS

Integer

Integer

Notes

1. intz

2.

If z > 0 then int(z + 0.5)
If £ < 0 then int(z — 0.5)

zl —int(zl + z2) X z2

. If 22 > 0 then |z1]

If 2 < 0 then —|z1|

If z1 > z2 then z1 — 22
If z1 < z2 then 0

Appendix F

Summary of Option
Switches

F.1 Compiler Switches

Further information about compiler switches can be found in sec-
tion 17.2, in the subsections specified below for each switch. In the
table below, the following notations are used to describe the formats
of the switches.

fn An MS-DOS filename. It may be omitted in whole
or in part; the compiler’s behaviour in this case is
described in section 17.2.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

n An integer. By default, this is decimal; hexadecimal
integers may also be input, using the notation 16_n.

Switches and their arguments are not case sensitive.

488

/B
/B(n:n:n)
/C

/D

/FBfn
/FHfn
/FLfn
/FOfn

/H

/1
/1dir
/Q
/L
/LI
/LX
/PCn
/PMn
/R
/S
/T4
/T8
/T8A
/U
/v
/X
/Zd

/Zi

Appendix F

17.2.9 Print details of /B switch.

17.2.9 Change size of internal buffers.

17.2.4 Check: do not generate object file.

17.2.2 Compile debug comment lines starting with ‘D’.
17.2.3 Put binary object output in fn.

17.2.3 Put hexadecimal object output in fn.

17.2.3 Put listing in fn.

17.2.3 Identical to /FB.

17.2.10 Equivalent to /FH (obsolescent). A fn may not
be specified.

17.2.8 Print the compiler’s identification.

17.2.6 Add dir to the INCLUDE list.

17.2.8 Suppress comments and warning on standard
output.

17.2.10 Equivalent to /FL (obsolescent). A fn may not
be specified.

17.2.7 List INCLUDE files.

17.2.7 Generate cross-reference listing

17.2.4 Set the number of bytes required for a function
or subroutine call.

17.2.4 Set the number of bytes required for specifying
the module number.

17.2.2 Relax: permit source lines up to 132 characters
in length.

17.2.4 Allocate all scalar variables to static storage.
17.2.4 Generate object code for the T4 processor.
17.2.4 Generate object code for the T8 processor.
17.2.4 Generate special object code for the Rev A
T800 processor.

17.2.2 Report as errors names which are not defined
explicitly or with IMPLICIT.

17.2.8 Verbose: display progress messages.

17.2.6 Discard the standard INCLUDE list.

17.2.5 Output source line debugging information (this
is the default behaviour).

17.2.5 Output debugging information for variables.

Summary of Option Switches 489

F.2 Linker Switches

The format of the linker’s command line and full details of all the
switches are discussed in chapter 19. The following is a brief sum-
mary of the switches recognised by the linker.

Each switch starts with a slash character ‘/’ and an identifying letter;
it does not matter if this letter is given in upper case or lower case.
The switches can be placed anywhere in the command line but they
may not occur in indirect files. No spaces are allowed between a
switch’s identifying letter and the rest of the switch.

/Bfile-name This switch specifies that the file file-name is to be
used in preference to the default bootstrap file. There
is no default extension for file-name.

/c This switch stops the linker adding the bootstrap file
to the executable file.

/G This switch results in the linker crea<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>