
Parallel C
User Guide

3L Ltd

Copyright © 1991 by 3L Ltd. All Rights Reserved.

This edition July 26, 1991 describes version 2.2.2 of the software.

20 19 18 17 16 15 14 13 12 11
10 9

3LCB> is a registered trademark, and the 3L logo is a trademark of
3L Ltd.

inmosTM, IMS™ and occam™ are trademarks of the Inmos group of
companies.

IBM@ is a registered trademark, and PC/AT™ and PC-DOS™ are
trademarks of International Business Machines Corporation.

Microsoft® and MS-DOS® are registered trademarks of Microsoft
Corporation.

Intel® is a registered trademark of Intel Corporation.

The installation program used to install Parallel C, INSTALL, is licensed
software provided by Knowledge Dynamics Corporation, Highway
Contract 4 Box 185-11, Canyon Lake, Texas 78133-3508 (USA),
1-512-964-3994. INSTALL is Copyright @ 1987-1989 by Knowledge
Dynamics Corporation which reserves all copyright protection worldwide.
INSTALL is provided to you for the exclusive purpose of instaJling
Parallel C.

3L Ltd
Peel House
Ladywell
Livingston EI154 6AG
Scotland
Tel. +44 506 41 59 59
Fax. +44 506 41 59 44
E-mail Support@ThreeL.Co.UK

Contents

Introduction
Intended Audience
The C Language .
Hardware Assumptions.
Document Structure
Further Reading ..
Conventions

Text Conventions .
Installation Directory

1 Installing the Compiler
1.1 Installation Directory
1.2 Installing the Software
1.3 The Search Path ...
1.4 Environmental variable 3LCC_INC ..

2 Confidence Testing

3 Developing Sequential Programs
3.1 Editing ..
3.2 Compiling .
3.3 Linking .

3.3.1 Linking More than One Object File
3.3.2 Indirect Files
3.3.3 Calling the Jjoker Directly
3.3.4 I.libraries............

xv
xv
xv

· . xvi
· . xvii
· . xviii
· . xix
· . xix

XIX

1
1
2
3
4

7

11
12
12
13
14
15
16
17

VI CONTENTS

3.4 Running........................ 19
3.4.1 Using C Programs as MS-DOS Commands 20
3.4.2 Command-Line Arguments 21
3.4.3 I/O Redirection and Piping 22

3.5 Memory Use 23
3.5.1 Default Memory Mapping. . 24
3.5.2 Alternative Memory Mapping . 25
3.5.3 Limit on Program Memory 25

4 Introduction to Parallel C
4.1 Abstract Model .
4.2 Hardware Realisation.
4.3 Software Model
4.4 Simultaneous Input
4.5 Parallel Execution Threads
4.6 Configuring an Application
4.7 Processor Farms .

5 Developing Parallel Programs
5.1 Configuring One User Task ...

5.1.1 Ilardware Configuration
5.1.2 Software Configuration.
5.1.3 Building the Application .

5.2 More than One User Task .
5.2.1 Inter-Task Communication Functions

5.3 Building Multi-Task Systems
5.4 Multi-Transputer Systems
5.5 Simultaneous Input
5.6 Multi-Threaded Tasks ..

5.6.1 Creating Threads.
5.6.2 Threads versus Tasks

5.7 Debugging............
5.8 Estimating Memory Requirements

6 Global Input/Output
6.1 One Transputer .
6.2 More than One Transputer

27
27
29
30
32
33
33
34

37
38
40
41
43
46
47
51
53
54
56
56
60
62

65

67
67
70

CONTENTS

6.3 More than One Multiplexer
6.4 Limits .
6.5 Termination of an Application.

7 Processor Farms
7.1 The Worker Task .
7.2 The Master Task
7.3 The net Package

7.3.1 Functions net_send and net_receive
7.3.2 The net_broadcast function

7.4 Building the Application.
7.4.1 Configuration File

7.5 Running the Example ..
7.6 Heterogeneous Networks.

8 Developing T2 Programs
8.1 Compiling .
8.2 The Compiler in T2 Mode . . .

8.2.1 Language Restrictions
8.2.2 Pre-defined Macros . . .
8.2.3 Data-type Representations
8.2.4 Compiler Error Messages

8.3 Linking T2 Tasks
8.4 Linker Support for the T2 .

8.4.1 Linker Command Switches
8.4.2 The Bootstrap .

8.5 The Run-Time Library.
8.5.1 Functions Defined in alt.h
8.5.2 Functions Defined in chan. h
8.5.3 Functions Defined in chanio. h
8.5.4 Functions Defined in ctype. h .
8.5.5 Functions Defined in locale.h
8.5.6 Functions Defined in par. h
8.5.7 Functions Defined in sema. h ..
8.5.8 Functions Defined in setjmp.h
8.5.9 Functions Defined in signal.h
8.5.10 Functions Defined in stdlib.h

vii

71
71
72

77
79
79
80
81
82
82
83
84

. 86

89
89
90
90
91
92
93
93
94
94
99
99

· .100
· .100
· .100
· . 100
· . 101
· . 101
· . 101

. 101
· . 101
· . 101

Vlll

8.5.11 Functions Defined in string.h
8.5.12 Functions Defined in thread.h
8.5.13 Functions Defined in timer.h .

8.6 Running T2 Programs
8.6.1 Using the Configurer to Boot a T2
8.6.2 Piping Code into a T2 .

8.7 Parameters to Main .

Introduction
Overview .
Standard Syntactic Metalanguage. .

9 C Compiler Reference
9.1 The C Language ..

9.1.1 ANSI Features ..
9.1.2 Special Features
9.1.3 System-dependent Features

9.2 The C main Function.
9.3 Running the Compiler ..
9.4 Compiler Switches

9.4.1 Default Switches
9.4.2 Controlling Output Files.
9.4.3 Controlling Object Code.
9.4.4 Controlling Code Patch Sizes
9.4.5 Controlling Debugging
9.4.6 Controlling 'include Processing
9.4.7 Macro Definitions .
9.4.8 Information from the Compiler

9.5 Predcfined Macros
9.6 Ilandling of 'include Files .
9.7 Assembly J-Jangnage .

9.7.1 When to Use Assembly Langua.ge .
9.7.2 Asscnlbly Language Syntax
9.7.3 Literal Operands .
9.7.4 Variables as Operands .
9.7.5 Accessing Complex Structures
9.7.6 Labels and Jumps .

CONTENTS

· .102
· .102
· .102
· .102
· .103

· .. 104
· .106

107

· .107
· .108

109

· .109
· .. 110
· .. 119

· .120
· . 121
· . 121
· . 122

.123
· .124
· .126
· .129

· .. 131
· . 132

. 132
· . 133
· . 135

· . 135

· . 137
· . 137

· . 138

· . 139
· . 139
· . 142
· . 144

CONTENTS

9.7.7 Literal Machine Code
9.7.8 Errors.,.,.".,

9.8 Data-type Representations ...
9.8.1 Integral Data Types
9.8.2 Pointer Types
9.8.3 Floating Types . . .
9.8.4 Alignment and Complex Types

9.9 Compiler Error Messages .
9.9.1 Compiler Error Message Format
9.9.2 Fixing Errors Detected by the Compiler
9.9.3 List of Error Messages
9.9.4 Errors in Assembler Language

10 The C Run-Time Library
10.1 Introduction .

10.1.1 Purpose of the Run-Time Library
10.1.2 Versions of the Run-Time Library
10.1.3 Conventions .
10.1.4 Header Files .
10.1.5 Errors <errno.h> .
10.1.6 Limits <float .h> and <limits .h> ...
10.1.7 Common Definitions <stddef .h> .

10.2 Alt Package <alt.h> .
10.3 Diagnostics <assert .h> .
10.4 Neighbouring Transputers <boot .h>
10.5 Channels <chan.h> .
10.6 Character Handling <ctype .h> .

10.6.1 Character Testing Functions
10.6.2 Character Mapping Functions . . .

10.7 Accessing DOS Functions <dos .h>
10.8 Localisation <locale .h> .
10.9 Mathematics <math.h> .

10.9.1 Treatment of Error Conditions
10.9.2 Trigonometric Functions .
10.9.3 IIyperbolic Functions .
10.9.4 Exponential arid Logarithmic Functions
10.9.5 Power Functions .

ix

· .146
, ,146
· . 147
· . 147
· . 148
· . 148
· .150
· . 151
· .152
· .154
· .156
· .198

203

· .203
· .203
· .204
· .205
· .206
· .207
· .208
· .208
· .208
· .209
· .209
· .209
· .211
· .211
· .212
· .212
· .217
· .217
· .218
· .218
· .218
· .218
· .219

x CONTENTS

10.9.6 Nearest Integer, Absolute Value and Remain-
der Functions 219

10.10Processor Farm Communications <net. h> 220
10.1lSynchronising Access to Run-Time Library <par .. h> .220
10.12Semaphores <sema.h> 221
10.13Emulating the filter Task <serv.h> .. 221
10.14Nonlocal Jumps <setjmp.h>221
10.15Signal Handling <signal.h> 222
10.16Variable Arguments <stdarg.h> .. 222
lO.17Input/Output <stdio .h> .. 223

10.17.1 Stream I/O .. 225
10.17.2 Binary I/O 226
10.17.3 Text I/O 226
10.17.4 Operations on Files .. 227
10.17.5 File Access Functions .. 227
10.17.6 Formatted Input/Output Functions .. 227
10.17.7 Character Input/Output Functions 228
10.17.8 Direct Input/Output Functions .. 229
10.17.9 File Positioning Functions 229
10.17.1tError Handling Functions 230

10.18General Utilities <stdlib .h> 230
10.18.1 String Conversion Functions. . . 230
10.18.2 Pseudo-Random Sequence Generation Functions230
10.18.3 Memory Management Functions 231
10.18.4 Communication with the Environment . . . 231
10.18.5 Searching and Sorting Utilities .. 232
10.18.6 Integer Arithmetic Functions . . . 232
10.18.7 Multibyte Character Functions .. 232
10.18.8 Multibyte String Functions .. 232

10.19String Jlandling <string.h>233
10.19.1 Copying Functions 233
10.19.2 Conca.tenation Functions .. 233
10.19.3 Comparison Functions . . . 233
10.19.4 Search Functions 234
10.19.5 Miscellaneous Functions .. 234

10.20Threads <thread. h> 235

CONTENTS

10.21Date and Time <time.h>
10.22Transputer Timers <timer .h> .

11 Alphabetic List of Run-time Library Entries

12 The Linker
12.1 Command Line
12.2 File Name Conventions ..
12.3 The Output File
12.4 Indirect Files
12.5 Libraries
12.6 The Executable Image
12.7 Map Files .
12.8 T2 Support

12.8.1 Switch IMsize .
12.8.2 Switch I Asize .
12.8.3 Switches IFC, IFA, IFS, and IFH
12.8.4 Modified IF Switches ..
12.8.5 Switch IRsize .

12.9 Debug Tables
12.10Summary of Switches
12.11 Using Batch Files ...
12.12Duplicate Definitions .
12.13Messages

13 The mempatch Utility
13.1 Identifying mempatch .
13.2 Invoking mempatch . .
13.3 Re-invoking mempatch

14 The decode Utility
14.1 Usa.ge .

14.1.1 Compilation for the Decoder
14.1.2 Running the Decoder

14.2 Features of the decode Program
14.3 Other Languages .

xi

· .235
· .236

237

333
· .333
· .334
· .335
· .335
· .336
· .338
· .340
· .340
· .341
· .341
· .342
· .344
· .345
· .345
· .345
· .348
· .349
· .350

367
· .368
· .369
· .369

371

· .371
· .371
· .372
· .372
· .373

Xll

15 The vorm Utility
15.1 Notes

16 The tnm Utility

17 The tunlib Utility

18 Configuration Language Reference
18.1 Standard Syntactic Metalanguage ..
18.2 Configuration Language Syntax .

18.2.1 Low Level Syntax .
18.2.2 Numeric Constants .
18.2.3 String Constants .
18.2.4 Identifiers
18.2.5 Statements
18.2.6 PROCESSOR Statement
18.2.7 WIRE Statement .
18.2.8 TASK Statement .
18.2.9 CONNECT Statement .
18.2.10 PLACE Statement
18.2.11 BIND Statement

19 Flood-Fill Configurer Reference
19.1 User Task Protocol

19.1.1 Master Task's Ports
19.1.2 Worker Task's Ports

19.2 Packet Format .

20 Task Data Sheets

Appendices

A Distribution Kit
A.I Directory \tc2v2 .
A.2 Directory \tc2v2\examples ..

B Compatibility with T414A and T800A

CONTENTS

375
.376

379

383

385

· .385
· .386
· .387
· .389

.390
· .391
· .393
· .393

. .. 399
· .399
· .405
· .406
· .407

409

· .409
· .410
· .410
· .410

413

427

427

· .427
· .429

431

CONTENTS

B.1 Problems with T414A .
B.1.1 Restriction on Message Lengths ..
B.1.2 Problems with Timers .

B.2 Problems with T800A .
B.2.1 Floating-Point Conversion Problems
B.2.2 Instruction Decode Problems .

C Building a Network
C.I Network Principles .
C.2 Network Requirements .

C.2.1 Requirements for Links
C.2.2 Requirements for System Services

C.3 Connecting a Network .

D Summary of Option Switches
D.1 Compiler Switches
D.2 Linker Switches .
D.3 afserver Switches .
D.4 General Purpose Configurer Switches.

E Transputer Instructions
E.I Pseudo-Instructions .
E.2 Prefixing Instructions
E.3 Direct Instructions ..
E.4 Operations .
E.5 T4-only Instructions
E.6 T8-only Instructions

E.6.1 Floating Point Instructions
E.6.2 Other T8-only Instructions

F Compatibility Functions
F.! Introduction .

F.t.l ASCII Control Codes <ascii .h> .
F.l.2 Channel Communications <chanio.h> .
F.l.3 Variable Arguments <varargs .h> .

F.2 Low-Level I/O .
F.3 Alphabetic List of Compatibility Functions

xiii

· .431
· .432
· .432
· .433
· .433

.433

435
.435

· .436
· .436
· .437
· .438

441
· .441
· .443

. ... 445

· .447

449

· .449
· .450
· .450
· .452
· .454
· .455
· .455
· .457

459

· .459
· .460
· .460
· .460
· .461

.... 462

XIV

G Mandelbrot Program Listings
G.I Mandelbrot Example Master Task
G.2 Mandelbrot Example Worker Task
G.3 Header File .
G.4 Configuration File .

H ASCII Code Chart

Bibliography

Index

CONTENTS

475
· .475
· .481
· .483
· .483

485

487

489

Introduction

Intended Audience

This User Guide accompanies 3L's Parallel C product. It is intended
for anyone who wants to use Parallel C to program a transputer
system, whether writing a conventional sequential program or using
the full support for concurrency which the transputer processor has
to offer.

The C Language

There are two main dialects of the C language in common use: these
are often referred to as "K&R C" and "ANSI C".

K&R C This older dialect of C is defined-fairly informally-by
The C Progmmming Language, First Edition[l], by nrian
w. Kernighan and Dennis M. Ritchie, the original authors of
the language.

ANSI C This is defined, in ANS X3.159-1989[3], as the American
national standard for the C language. At the time of writing,
the same definition was expected to be adopted as an interna
tional standard.

XVI Introduction

The dialect of C accepted by the 3L Parallel C was originally based
on K&R C. IIowever, it has been extended by adding most of the
features of ANSI C, including, for example, function prototypes and
enumerated types. Details of Parallel C's ANSI extensions may be
found in section 9.1.

In addition, the run-time library includes nearly all of the features of
the ANSI run-time library. Traditional features have been retained
as well, for compatibility with other compilers. To this have been
added functions providing control of the transputer's special features,
such as channel communications, concurrent execution threads, and
so on.

Hard'Ware Assumptions

Parallel C can be used with a large variety of development a.nd target
transputer systems.

The compiler itself and all the supporting utilities run on a T414 or
T800 processor. This manual makes the simplifying assumption that
the development environment will be an Inmos IMS D004 transputer
evaluation board, or a transputer system which is largely compatible
with a B004. This board is a single plug-in card for the standard
IBM PC bus, with one transputer and either 1 or 2MB of RAM.

The assumption is' also made here that the host computer for the
B004 will be an IBM PC with a hard disk drive, or one of the many
personal computers compatible with the original IDM machin(\s.

A variety of target processors are supported by Parallel C.

• The T414 and T800 target environment is assunlcd to be sim
ilar to the development environment described above. Iloth
processors a.re fully supported by Parallel C. Ilowcver, early
pre-production transputers contained faults which Inay cause
problems with the operation of Parallel C programs. If you will

Introduction xvii

be using early transputer chips, you should check appendix n
for details of the problems which you ma.y encounter, and how
to get round them.

• The T425 processor can be used with Pa.rallcl C if it is treatcd
as if it were a T414; some additional instructions are included
in this processor which are not at present accepted by the
in-line assembler within Parallel C. If you wish to use these
instructions in assembly-language code, you must code them
using the opr instruction instead.

• Parallel C can also be used to build programs for the 16-bit
T212 and T222 processors. Target environments for these are
discussed in chapter 8.

Document Structure

There are four main divisions within this document, as follows:

• Part I: Getting Started covers installing Parallel C on your
machine and verifying that it is operating correctly.

• Part 11: Tutorial introduces you to the operation of the com
piler and the other tools supplied with Parallel C. In particular,
there are tutorial sections explaining parallelism on the trans
puter and the way in which this can be accessed from Parallcl C
programs.

• Part Ill: Reference contains the detailed technical information
which you will require to write sophisticated a.pplications for
the transputer using Parallel C.

• The appendices at the end of this manual conta.in supple
mentary information in a condensed form, such as tables of
tranSpll tcr assembly language mnemonics.

XVlll

Further Reading

Introduction

This User Guide does not attempt to teach the C language itself;
rather, reference should be made to one of the many introductory
texts available. The first-and still one of the best-books about C
is the original book describing the language. This is The C Pro
gramming Language, First Edition[l], by Brian W. Kernighan and
Dennis M. Ritchie.

As Parallel C includes so many ANSI features, it may be useful
to consult the second edition[2] of this book, by the same authors,
which describes the standard dialect. However, as certain ANSI
features are not supported by Parallel C, beginners in particular
may find the first edition preferable. Both editions are available in
most bookshops or from the publishers.

The reader is assumed to be reasonably familiar with the operating
system of the host computer being used. For personal computers
made by IBM, this will usually be PC-DOS, which is supplied with
a manual called Disk Operating System Reference[4]. For compat
ible machines made by other manufacturers, the operating system
will usually be MS-DOS, described in Microsoft "'IS-DOS User's
Reference[5]. These two operatin,g systems are largely compatible,
and their documentation is very similar. We will refer to "MS
DOS" in this manual to mean the operating system used on your
machine. The term DOS Reference Alanual will be used to refer to
the appropriate manual.

References to these and other documents mentioned in this rnanual
are collected in a bibliography, which can be found on page 487.

Introduction

Conventions

Text Conventions

xix

Throughout this manual, text printed in this typeface represents
direct verbatim communication with the computer: for example,
pieces of C text, commands to MS-DOS and responses from the
computer.

In examples, text printed in this type/ace is not to be used verbatim:
it represents a class of items, one of which should be used. For
example, this is the format of one kind of compilation command:

t8e source-file

This means that the command consists of:

1. The word "t8c", typed exactly like that.

2. A source-file: not the text source-file, but an item of the
source-file class, for example "myprog. e".

Installation Directory

As we shall see in chapter 1, it is possible to install the Parallel C
compiler and its associated software in any directory. By default,
however, it will be installed in directory \tc2v2, and throughout
the rest of the User Guide it will be assumed that this is what
has been done. Users who have chosen to install the software in
another directory should replace the directory \tc2v2, wherever it
is mentioned, by the name of their own installation directory.

xx Introduction

Chapter 1

Installing the Compiler

This chapter contains instructions on how to load Parallel C from
the supplied floppy disks onto a hard disk and make it ready for use.

You can skip this chapter if the compiler has already been installed
on the machine you are using.

1.1 Installation Directory

Before we go any further, you should decide on an installation di
rectory; that is, the directory where you want the compiler and its
associated software to be placed. It is best to reserve a directory
just for this purpose, rather than mixing Parallel C up with other
system software. In particular, do not try to j nstall Parallel C in
the same directory as any other 3L compilers, as many of the files
have the same names, even though their contents may be different.
The installation procedure will overwrite any file in the installation
directory which has the same name as a Parallel C file.

Notice that certain files are created at installation time, and include
the name of the installation directory. This means tha.t if you wish

2 Chapter 1

to move the software to another directory, you cannot simply copy
it across; instead, you should install it again from the floppy disks.

The default installation directory is \tc2v2. In the other chapters
of this User Guide we shall assume that this is where the software
has been installed. If this is not the case, you should mentally
substitute the name of your installation directory whenever \tc2v2
is mentioned.

1.2 Installing theSoft~are

The compiler is distributed on three 360KB floppy disks. The con
tents of these disks are described in detail in appendix A.

To install Parallel C on your hard disk, follow this procedure.

1. Place the disk labelled Disk 1 of 3 in your floppy disk drive
A: .

2. Type the following commands:

C>a:

1>install

3. Answer any questions the install program asks you. One of
these will enable you to specify your installation directory (see
above). If you wish to accept the default installation directory
(\tc2v2), you should just press the Enter key in answer to this
question; otherwise, erase "\tc2v2" and type the name of the
installation directory you want.

4. Place the appropriate disks in drive A: when the install pro
gram asks for them.

It is important to use the supplied install program to insta.ll Par
allel C. If you simply copy the files, the installation will not be
performed correctly.

Installing the Compiler

1.3 The Search Path

3

The compiler is now installed, but can only be run in the installation
directory. Before the compiler can be used from other directories the
installation directory must be added to the MS-DOS search path.
Program files stored in directories which are on the search path can
be loaded and run simply by typing the name of the program as
a command. So, to make sure that the C compiler is available as
a command (t8e, t4c or t2c), the installation directory must be
added to the search path.

The search path for your machine is set up by the batch file
c : \autoexec .bat which is automatically executed when the ma
chine starts up. To change the path, you will need to edit the
autoexee .bat file using a text editor like edlin. (The DOS Ref
erence Afanual explains how to use edlin). Your autoexee. bat file
will probably already contain a line of the following form:

path ... list oJ directories ...

For example:

path c:\dos;c:\utils

In this case, you will need to add the text "e: \ tc2v2" (if that is the
installation directory) on to the end of the line, giving:

path c:\dos;c:\utils;c:\tc2v2

If there is no path line in the autoexee. bat file, just add the line:

path c:\tc2v2

Some important points about setting the search pa.th should be
noted:

1. The documentation for previous versions of 3L compilers, in
cluding Parallel C, recommended the use of a set path= com
mand to set up the search path. This is equivalent to the path

4 Chapter 1

command, and can be changed to include your installation
directory in the same way.

2. If you already have earlier C compiler installed on your ma
chine, its installation directory may appear in your search path.
It should be removed from the search path before adding the
installation directory of the new version.

3. If you are a user of the Inmos TDS environment, your search
path will probably include a reference to the directory where
the TDS is held, such as \tds2dir. This reference must not
precede the Parallel C installation directory in the path; if it
does, the wrong version of the afserver program will be called.

4. From time to time, 3L release new versions of components,
such as the linker or the afserver, which are included in
more than one compiler product. This means that if you are a
user of any other 3L compilers, you should make sure that the
installation directory of the latest compiler product precedes
all the others. This will ensure that the latest versions of these
common components are picked up; they will be compatible
with all the compiler products.

Once your autoexec. bat file has been changed, you will need to
reboot your machine to make the changes effective.

1.4 Environmental variable 3LCC_INC

Sometimes it is also necessary to define the MS- DOS environnlental
variable 3LCC_INC when you install the compiler. 3LCC_INC can be
used to define where the compiler should look for the header files
which are included in programs by lines such as

'include <stdio.h>

Installing the Compiler 5

If 3LCC_INC is not defined, the compiler looks for header files, such
as stdio. h, in directory \tc2v2 on the current disk. This means
that 3LCC_INC must be defined in the following circumstances.

• If you have decided to install the compiler in a directory other
than \tc2v2.

• If you use the compiler from a disk other than the one where
the compiler is installed.

In either case, you should include in your autoexec. bat file a line
of this format:

set 3LCC_IIC-f:\lib\ThreeLC

A full discussion of how the 'include directive is handled may be
found in section 9.6 in part III of this manual.

6 Chapter 1

Chapter 2

Confidence Testing

This chapter describes a short procedure which may be followed to
check that installation has been done correctly.

1. Set the current disk drive to the one on which Parallel C has
been installed. For example, if the compiler has been installed
in directory c: \tc2v2, do this:

D>c:

C>

2. Set the current directory to a convenient directory for doing
this test. For example:

C>cd \.ine

C>

NB: Don't use the installation directory for the confidence test,
as this would mean that you would not be testing whether the
co~ ·;t.rch path has been set up.

8 Chapter 2

3. Check that the correct versions of the afserver program and
of the compiler are available, by typing the following command.
You should see the output shown.

C>t8c /i -:i
IBM PC Filer server Inaos Vl.3 (14th October 1987) / 3L
V1.3.7
Copyright IIMOS Liaited. 1985
Transputer C coapiler. CC_transputer V2.2.2
Copyright (C) 3L 1991

C>

If the above message does not appear, check the installation
procedure, and in particular, ensure that the correct path com
mand has been set up.

If, after the afserver's identity, the computer outputs the
following, or something similar-

Last co_and • 0
Server terainated: bad protocol when expecting 11132

-it is likely that there has been some error in setting up the
transputer board. In particular, please check that the wire
links, accessible from the back of the PC, have been correctly
installed. The transputer board's documentation should help
with this.

4. Copy the example hello. c file to the current directory. If the
installation directory is \tc2v2, for example, you should type
this:

C>copy \tc2v2\examples\hello.c
1 File(s) copied

C>

5. Compile the example using the T8 version of the compil<'r (this
will work for the T4 as well, because the example contains no

Confidence Testing

floating-point instructions):

C>t8c hello

C>

9

6. Link the resulting binary file with the necessary parts of the
run-time library, and the harness:

C>t8clint hello

C>lintt

C>

hello \tc2v2\crtlt8 \tc2v2\t8harn

7. Finally, the program can be run:

C>afserver -:b hello.b4
hello, world

C>

The output "hello, world" comes from the hello. c example pro
gram. If it does not appear, we recommend that the installation
procedure should be carefully repeated, and the confidence test pro
cedure followed again. If this message still does not appear, please
contact your dealer for further assistance.

10 Chapter 2

Chapter 3

Developing Sequential
Programs

This chapter shows you how to use the Parallel C compiler to write
conventional sequential programs to run on the transputer. You
should be familiar with the contents of this chapter before you
progress to the later chapters explaining parallel programming on
the transputer.

The instructions in this chapter assume that the C compiler has
already been installed as described in chapter 1.

The operating procedures for the T2 differ in some ways from the
ones discussed here, which are appropriate for the T4 a.nd T8 trans
putcrs. If you are developing programs for thc T2, you should read
this chaptcr for general information, and then study chapter 8.

Some of the procedures described here are different for T4 and T8
transputers. You should find out which type of transputcr is fitted
in your PC before using the compiler.

12 Chapter 3

3.1 Editing

Any editor which handles standard MS-DOS text files can be used
to create or change C source programs. The example below shows
how the edlin editor supplied with MS-DOS can be used to create
a new C source program.

C>edlin hello.c
le. file

1: ••ain()

2:.{
3:. printf(tlhello••orld\n");
4:.}
6:."C

C>

The DOS Reference Manual explains how to use edlin.

Note that the "folded" files which the Inmos TDS works with are
not ordinary MS-DOS text files and that therefore they cannot be
used directly as input to the compiler. However, the tdslist utility
program supplied with the TDS will convert TDS-for~at text files
into ordinary MS-DOS text files which can be read by Parallel C.

3.2 COlllpiling

A C source program is compiled into a binary object (. bin) file of
TB transputer instructions by a command of the fornl:

t8c source-file

To compile code for a T4 transputer, use the comnland

t4c source-file

Developing Sequential Programs 13

Note that, in general, code compiled for a T4 will not run on a T8
(or vice versa) so you mnst use the command appropriate for the
type of processor in your transputer board.

The source-file is the filename of the C source program which is to
be compiled. If no filename extension is given in the command, . c
is added automatically.

So, to compile the file hello. c for the T8, you would give the
command:

C>t8c hello

If the source file contains no errors, an output object file hello. bin
is produced. If the compiler detects errors in the source program, it
writes diagnostic messages to the MS-DOS standard output stream.
Error messages may therefore be redirected using '>', or piped using
'I', as described in the DOS Reference Manual. The format of
compiler error messages, and a list of all the messages which may be
produced by the compiler, appears in section 9.9 in part III of this
manual.

3.3 Linking

Once a Parallel C program has been compiled into an object (.bin)
file, it must be linked with any external functions it requires before
it can be run, including functions like printf and other functions
from the Parallel C run-time library. This is done by the linker.
Here we discuss the most usual }jnker operations; a full description
of the lioker can be found in chapter 12.

Rather than calling the lioker directly, it is usually more convenient
to use one of the batch files provided for the purpose.

To link T4 code produced by the t4c compiler use the command:

t4clink object-file

14

For example,

t4clink hello

To link T8 code produced by t8e use the command:

t8clink object-file

Chapter 3

You must use the link command appropriate to the target processor
(T4 or T8).

Both batch files automatically append .bin to the object file name
and produce an executable file with the same file name as the object
file and extension .b4.

3.3.1 Linking More than One Object File

This section deals with linking more than one object file at a time.
If you only want to link single object files for now, you can skip to
section 3.4 which describes how to run executable files produced by
the linker.

The t4clink and t8clink batch files can be used to link up to
nine object files. As before, the extensions of all the object files are
assumed to be .bin. The executable file generated will have the file
name of the first object file specified, with the extension .b4.

For example, if there are two C source files, main. c and fns. c,
the following commands will compile them and link them together,
producing an executable file for the T4 called main. b4.

C>t4c .ain

C>t4c fns

C>t4clink .ain fns

Compiling and linking the example files above for the T8 would be
done as follows:

C>t8c .aiD

Developing Sequential Programs

C>t8c fns

C>t8clink .ain fns

3.3.2 Indirect Files

15

It is quite common for programs to consist of many different object
files. The t4clink and t8clink batch files cannot handle more than
nine, but even with fewer files than this, you may find the command
line awkward to type.

The linker provides a way of getting round this problem, called an
indirect file. An indirect file is a text file containing a list of object
file names, all of which are to be included in the executable file. It
is specified in the linker command by its file name preceded by an
'G'. For example:

C>t8~~ni, lobjfiles

This will cause the linker to find the file objfiles. dat, and link
together all the object files specified in it. As usual, the generated
file will be given the name of the first object file with the extension
.b4.

Indirect files are assumed to have the extension . date They contain
a list of MS-DOS file names, with one file name on each line. Full
path names, including directory specifications, are allowed. Indirect
files may also include the names of other indirect files, by preceding
with an 'G'; nesting indirect files in this way may be done to five
levels.

The example indirect file objfiles .dat above might contain the
following text:

.ain
fns
\userlib\general\io
Igrafpack

16 Chapter 3

When used in the example given above, this will link the object
files main. bin and fns. bin from the current directory and io. bin
from the directory \userlib\general, together with all the object
files specified in the indirect file grafpack. date The executable file
generated will be main. b4.

3.3.3 Calling the Linker Directly

Occasionally, instead of using the batch files, you may need to call
the linker directly, or write your own batch files to do so. Fuller
information about the linker may be found in chapter 12, and details
of the internal format of object files are provided in the Inmos Stand
Alone Compiler Implementation Manual[14].

The linker is invoked by the command linltt. The general form of
a link command is

linkt object-files. executable-file

object-files is a list of object file names separated by spaces. These
are the object files which are to be linked together. All of them must
have been compiled for the same processor type (T4 or TB). If an
object file is specified without an extension, the extension is assumed
to be .bin.

The order in which the object files are specified is significant. Details
of this may be found in sections 3.5 and 9.4.4.2.

The executable-file is the name of the file to which the tinker writes
the executable output code. If no extension is specified, the linker
supplies the extension .b4. The executable file and its preceding
comma may be onlitted; in this case, the executable file is given the
same file name as the first object file in the command line, with the
extension .b4. If the first file mentioned on the command line is an
indirect file, the executable file is given a name taken from the na.me
of the first object file listed in the indirect file.

Developing Sequential Programs 17

To link C programs, you must include in the list of object files both
the Parallel C run-time library and a special object file called a
"harness". The directory \tc2v2 contains two versions of both of
these components: crtlt4. bin and t4harn. bin for T4 transputers,
and crtlt8. bin and t8harn. bin for TB transputers. The lioker will
not allow you to mix T4 and TB object files.

The example below shows the command necessary to link all the files
listed in the indirect file subs. dat into a single executable file for
the T4, called prog. b4.

C>linkt Isubs \tc2v2\crtlt4 \tc2v2\t4harn t prog

Note that the Parallel C run-time library (crtlt4.bin) and the
harness (t4harn. bin) must both be named explicitly as input object
files.

For the TB, the command would be the following.

C>linkt Isubs \tc2v2\crtlt8 \tc2v2\t8harn.prog

3.3.4 Libraries

It is often convenient to be able to treat a group of object files as a
single unit. For example, the Parallel C run-time library consists of
many separate object files, but is supplied as a single file containing
all of them.

The Iinker provides the option of linking together a group of object
files to produce a library file instead of an executable file. The library
contains all of the code and entry points defined by the input object
files, which can be changed or deleted without affecting the library.
To change a library it must be relinked from its component parts.

Library files have several advantages over using indirect files .

• The linker selects from the library file only those modules which
are actually referenced elsewhere in the program; the others are
not i ~;~.·Juded in the executable file.

18 Chapter 3

• Copying a single file to another place is simpler than copy
ing many component object files and making sure that the
corresponding indirect file is kept up to date with changes in
directory and file names.

• Opening just one library file is faster than opening an indirect
file and several object files.

However,using an indirect file may be faster while a library is being
developed because there is no need to relink the library whenever a
component module is changed.

A linker command of the form shown below is used to produce a
library from a number of component object files.

linkt object-file•• library-file/l

The option letter after the 'I' is a lower case 'L'.

The form of the input object-files is the same as for normal operation
of the linker: a list of filenarnes separated by spaces. Indirect files
are indicated by an 'I' sign as before.

The library-file must be a single MS-DOS file name. If no extension
is specified, the linker will give it the extension .lib. Note that
this is different from the default extension which the linker uses for
libraries when they are specified as input files, which is .bin.

The example below shows a graphics library being built from a core
graphics module and two device driver modules. The library is then
linked in the ordinary way with a user program. Indirect files are
used to simplify the required linker commands.

C>type graflib.dat
core
tet
hp

C>lintt Igraflib.graflib.bin/l

C>type ayprog.dat

Developing Sequential Programs

ayprog
graflib
\tc2v2\crtlt8
\ tc2v,2\t8barn

C>lintt "yprog

3.4 Running

19

Executable programs are loaded into the transputer board and run
using the afserver program, which runs on the IBM PC.

The afserver is an ordinary MS-DOS program, and after loading
the C program into the transputer board, it remains active through
out the program's run. Instructions are sent from the C run-time
library to the afserver whenever it needs to perform MS-DOS func
tions such as reading information from the disks, displaying output
on the screen and so on. The results of these operations are sent by
the afserver back to the transputer board.

The command to load and run a program is:

afserver -: b filename

The filename must be the name of an executable file produced by
the linker. The file name extension must be specified. An example
of a command to load and run a simple program would be:

C>afserver -:b hello.b4

Note that this will only work if your program uses a fairly small
amount of stack memory. See section 3.5 for information about
running programs with larger stack requirements.

Appendix section D.3 includes more information about the afserver
and its options, and the Inmos Stand-Alone Compiler Implementa
tion Manual[14] (section 10) contains a full description. Note that
the -: e (test error flag) switch described in [14] is not supported

20 Chapter 3

for use with Parallel C programs. For improved performance,
the C compiler relies on being able to generate code which might
incidentally cause the error flag to be set. Therefore, the transputer
error flag may be set as part of the normal execution of a C program.

The running of programs can be simplified by putting the appro
priate afserver command into an MS-DOS batch file. Typing the
name of the batch file is then sufficient to run the program. For
example:

C>type .yprog.bat
af8eryer -:b \aJdir\aJProl.b4

C>ayprog

The command myprog will then call afserver to load the executable
file \mydir\myprog. b4 into the transputer board and start it. Note
that if a program compiled and linked for the T4 is loaded into a TB
(or vice versa) the effects will be unpredictable.

3.4.1 Using C Programs as MS-DOS Commands

Because of the limitations on what can be done with MS-DOS batch
files it is useful to have a way of running a transputer C program as
if it were an MS-DOS . exe file.

You can turn any. b4 file into an MS-DOS command by making a
copy of the file \tc2vl \linkt. exe in the same directory as the. b4
file, giving it the same root filename as the. b4 file but keeping the
. exe extension. For example, jf the current directory contains the
executable file ex. b4, it can be run as a command by typing:

C>copy \tc2vl\linkt.exe ex.exe

C>ex

This new ex command can be used from any directory, provided the
directory containing ex. exe and ex. b4 is on the MS-DOS search
path.

Developing Sequential Programs 21

(linkt. exe works by taking the command verb from its command
line, adding . b4, and then calling afserver to load that file from
the same directory linkt. exe itself was loaded from).

When a . b4 file is invoked via a "driver" program in this way,
the -: 0 1 option (see section 3.4) is added automatically and the
program is given a large amount of stack space. If you want to run a
program as an MS-DOS command, but with its stack in fast on-chip
RAM, you should invoke the program as usual but add -:0 0 to the
command line (hyphen, colon, letter '0', then a space followed by the
digit zero). For example:

C>ex -:0 0

3.4.2 Command-Line Arguments

The afserver passes its command line on to the user program it
invokes, for use as program arguments. For example:

C>afserver -:b ayprog.b4 fred

Here, the character string "fred" is passed on to myprog. b4.

Note that the "-: b myprog. b4" part of the command is not passed
through as an argument to myprog. b4. In general, afserver option
switches (-:b, -:0) and their arguments are not passed on to the
user program. Any DOS file redirections (see section 3.4.3 below)
are also stripped out.

The text of the command line is also passed on to the user program
if the afserver is invoked using the driver program described in
section 3.4.1. For example:

C>ayprog xyz abc

Ilere, the program argument string "xyz abc" is pa.ssed on to
myprog.b4.

The program argument string is broken up into a sequence of to
kens before being passed to the C main program function. Tokens

22 Chapter 3

are separated by blank or horizontal tab characters, so in the first
example there was one token: "fred", and in the second example
there were two: "xyz" and "abe".

When the C main program function is called, it is passed the follow
ing arguments:

aain(int argc. char *argv[])

argv [0] is the program name, currently always a pointer to a null
string (i.e., a pointer to a '\0' character).

If the value of ugc is greater than one then argv [1] ... argv [argc-1]
are pointers to token strings each of which is terminated by '\0'.

argv[argc] is a null pointer.

arge is the number of tokens, including the program name. It is
always greater than zero.

3.4.3 I/O Redirection and Piping

Normally the C standard input stream (stdin) read by functions like
gate and scanf is the keyboard. Standard input can be taken from
a file by using the MS-DOS redirection symbol '<' in the normal way.
For example, to use the file chap1. txt as the standard input stream
for a word counting program vc. b4 you could use the command:

C>afserver· -:b vc.b4 <chapl.tIt

This also works if vc. b4 is invoked by a driver program, vc. exe:

C>vc <chap!. tIt

Similarly, the standard output stream (stdout) written by functions
like putc and printf is normally the screen. Standard output is
redirected using the '>' symbol. A program called cat. b4 which
concatenated the contents of all the input filenames given as its
program arguments and wrote the result to the standard output

Developing Sequential Programs 23

stream could be used to concatenate the files a. txt, b. txt and
c, txt, writing the result to another file a113. txt as follows:

C>afserver -:b cat.b4 a.t~t b.tIt c.txt >al13.txt

Note that neither ">filename" nor "<filename" is considered to be
part of the program arguments; these special forms do not appear in
the argv array passed to a C main program.

Standard output may also be piped into an MS-DOS filter program
by writing the name of the filter after a vertical bar' I', as shown
below.

C>afserver -:b cat.b4 a.txt b.txt I .ore

The DOS Reference Manual describes in detail what can be done
with filters. (The more program simply displays its input on the
screen, a page at a time).

3.5 Memory Use

The memory used by a C program is divided into four storage areas.

• Code stomge is used to hold the executable instructions of the
program itself, together with some constant data and control
information.

• Static stomge is used to hold static and external variables,
including variables declared at the global level.

• Stack stomge(sometimes referred to as workspace) is used for
auto variables. The stack is also used for function calls and
passing parameters.

In addition, library functions use varying amounts of stack
space as working storage. The stack requirements of the math
ematical functions are given in the Inmos TDS Compiler Imple
mentation Manual[15] (Section 10, Parameters and workspace

24 Chapter 3

requirements) and are generally about 40 to 100 words. The
stack requirements of the floating-point arithmetic support li
brary for the T4 are generally about 10 to 40 words. About
70 words of stack storage are permanently reserved for use by
the run-time library.

• Heap storage is used to hold all variables created by calls on
malloc, etc. It is also used internally by the run-time library
for I/O buffers, etc.

These four areas of storage are mapped onto two areas of physical
memory:

• On-chip memory. The T4 has 2KB of fast on-chip memory,
and the T8 has 4KB.

• External memory. The Inmos B004 board has either 1MB or
2MB of external memory.

Using the linker only, two methods of mapping the storage areas
onto physical memory are available: the default method, and the
alternative method. You can select the method you wish to use by
calling the afserver in different ways, which are discussed below.

The configurers required for developing parallel programs give the
user more advanced methods for controlling the use of memory. See
section 5.8, and chapter 18.

3.5.1 Default Memory Mapping

Default memory mapping is used if the afserver program is caJled
as described in section 3.4 above. With this arrangement, the T4's
on-chip memory, and the first 2KD of the T8's on-chip memory, are
used for stack storage. Since on-chip memory is faster than exter
nal memory, programs can run much faster with default memory
mapping. Obviously, you must be certain that the program's stack
storage will fit in the available 2KB.

Developing Sequential Programs 25

If you are using a TB, defa,ult memory mapping provides an op
portunity for further speed inprovements, since the remaining 2KB
of the TB's on-chip memory is available for code storage. To take
advantage of this, you should place small, speed-critical subprograms
at the beginning of the link-list.

WARNING: A program which exceeds the amount of available stack
space will fail in unpredictable ways: it may hang, or it may simply
give wrong answers.

3.5.2 Alternative Memory Mapping

Unless you are sure your program's stack data will fit into the 2KB
of available on-chip memory, you should use the alternative method
of memory mapping. This is done by calling the afserver like this:

C>af8erver -:b .yprog.b4 -:0 1

With the alternative method, the stack is placed in external memory,
and so is limited only by the amount of external memory available.
On the T4, on-chip RAM is not used at all. On the TB, although
the upper 2K of on-chip RAM is used for code as before, the rest of
it is unused.

The program will execute more slowly with this method, because
external memory is slower than on-chip memory.

Note that the afserver switch is typed as hyphen, colon, option
letter '0', then a space, then the digit one.

3.5.3 Limit on Program Memory

The current version of the linker generates executable files which will
only run correctly on boards having 1MB or 2MB of memory. To
get round this restriction, the Parallel C kit includes the mempatch
program which may be used to change executable files to run on

26 Chapter 3

boards which have different amounts of memory. See chapter 13 for
a discussion of mempatch.

Chapter 4

Introduction to
Parallel C

This chapter aims to help you become familiar with Parallel C and
its terminology. If you know occam, or if you have read a lot about
the transputer, then you will already be familiar with the ideas on
which Parallel C is based. If not, don't worry; the ideas are quite
simple. They are explained in outline here, and again in more detail
in the chapters which follow.

4.1 Abstract Model

The treatment of parallel processing in transputer systems is based
on the idea of communicating sequential processes. In this model,
a computing system is a collection of concurrently active sequcntial
processes which can only communicate with each other over chan
nels. A channel connects exactly one process to exa.ctly one other
process. A channel can only carry messages in one direction: if
communication in both directions between two processes is requircd,
two channels must be used. Each process can have any numbcr of

28 Chapter 4

input and output channels, but note that the channels in a system
are fixed; new channels cannot be created during its operation.

For example, a disk copy command built into a computer's· operating
system could be described as three concurrently executing processes:
two floppy disk controller processes and one process doing the copy
ing.

copy

disk 1 disk 2

This example shows an important property of channel communica
tions: they are synchronised. A process wanting to send a message
over a channel is always forced to wait until the receiving process
reads the message. In our example, this means that even if at
some time the output floppy disk can't keep up with the input, the
system will still work properly. This is because the copy process will
automatically be forced to wait if it tries to send a message before
the output disk process is ready to receive it. Sometimes it is useful
to allow a sending process to run ahead of a receiving one; in such
cases an explicit buffering process must be added to the system.

Note that because a process in this model is just a "black box"
connected to the outside world only by its channels, the actual im
plementation of any individual process is not important. A process
could be a bit of hardware or a software module; in particular it
may also be another complex system, itself consisting of a nunlber
of communicating processes.

Introduction to Parallel C

4.2 Hardware Realisation

29

The transputer was designed to be used as a component in concur
rent systems of exactly the sort described in the previous section.
Each transputer processor has four Inmos links, to connect it with
other transputers. Each link has two channels, one in each direction.
These hardware channels behave exactly like the abstract channels
discussed above; they provide synchronised, unidirectional commu
nication.

Arbitrary networks of transputers can be constructed simply by con
necting their links together with ordinary wires, the only limitation
being that each processor cannot be directly connected to more than
four others.

At this level, a transputer can therefore be viewed as a single process
in a multi-transputer system. However, it is also possible for any
number of concurrent processes to be run on an individual trans
puter. Any word in the transputer's memory may be used as a
channel to connect one internal process to another. The address of
such a channel word is used to identify it to the transputer instruc
tions (and Parallel C functions) which send or receive messages. The
contents of the word are used by the hardware to synchronise sending
and receiving processes.

From a program's point of view, these internal channels and the
hardware link channels are identical. The same instructions (or
Parallel C functions) are used to send and receive messages on both.
Hardware link channels are identified by special fixed addresses. For
example, on a T414 the input channel of processor link 3 is always
at address 8000001C16. Internal channels have addresses allocated
by software.

This equivalence of internal channels to hardware link channels
means it is possible to develop a parallel systcln on a single trans
putcr and then move some of its processes onto other transputers
without having to recompile any code.

30

input
ports task

output
ports

Chapter 4

Figure 4.1: a task viewed as a "black box".

Each process executing on a transputer processor has a priority,
which can either be "urgent" or "not urgent". The processor
automatically shares its available time between these processes.
A process can be descheduled either because it has performed an
operation (such as sending a message to another process) which
causes it to pause or, in the case of a "not urgent" process, because
it has been executing without interruption for a certain period of
time. The effect of this is that the CPU time-slices between the "not
urgent" processes, but "urgent" processes are not interrupted until
they cannot proceed because of a communication. For this reason,
"urgent" processes should be designed so that they do not perform
large amounts of computation, as they will "lock out" the less urgent
processes entirely.

4.3 SoftlVare Model

Parallel C is based on the same abstract model of communicating
sequential processes as the transputer hardware.

A complete application is viewed as a collection of one or more con
currently executing tasks. Each task has its own region of memory
for code and data, a vector of input ports, and a vector of output

ports. The port vectors are passed to the task as arguments to its
main function. The code of a task is a single transplIter ilnage (. b4)
file generated by the ordinary linker, linkt.

Tasks can be treated as software "black boxes" connected together
via their ports, as shown in figure 4.1.

Introduction to Parallel C

'include <chan.h>
'include <ctype.h>

aain(int argc, char *argv[], char *envpD,
CHAI *in_ports[], int ins, CHAN .out_portsO, int outs)

{

int c;

for (;;) {
chan_in_vord(ac, in_ports[O]);
if (c •• -1) break; /. 'terainate task ./
chan_out_vord(_toupper(c), out_ports[O]);

}
}

31

Figure 4.2: Complete example task with one input and one output
port.

For example, a very simple task might accept a stream of char values
on an input port, convert each character to upper case, and output
the resulting stream of characters on an output port. The C code
for this is shown in figure 4.2.

Tasks can be treated as atomic building blocks for parallel systems,
to be wired together rather like electronic components. Indeed, sev
eral such basic building-block tasks are supplied with the compiler.

Each element in the input and output port vectors is of type "pointer
t~ channel word", (CHAN .). Ports are bound to real channel ad
dresses by configuration software external to the task itself; the
bindings can be changed without recompiling or relinking the task.
Extended C run-time library functions supplied with the compiler
allow C programs to send and receive messages over the channels
bound to a task's ports.

The configuration software also provides ways of specifying which
software tasks are to be run on which hardware processors. Each
processor can support any number of tasks, limited only by available

32

memory.

Chapter 4

Tasks placed on the same processor can have any number of intercon
necting channels. Tasks placed on different processors can only be
connected where physical wires connect the processors' links. Each
logical connection between two tasks placed on different processors is
assigned exclusive use of one of the physical link channels connecting
the processors. The number of interconnections between tasks on
different processors is therefore limited by the number of hardware
links each one has. If more than four logical connections in each
direction are required between one transputer and its neighbours,
the designer of the system must provide explicit multiplexer tasks.

4.4 Simultaneous Input

All of the code of a task can be written in an ordinary sequential
language like e, except for one extra feature needed by languages
based on the communicating sequential processes idea. This extra
feature is a way of making a process wait until a message is received
on anyone of a number of input channels. For example, the main
loop of a file server process would want to wait until a message was
available from anyone of its "client" processes. It can't read them
all sequentially because a message could come from anyone of them,
in any order.

Parallel C provides a group of library functions, the al t package,
which solve this problem. These functions aJlow a program to wait
until anyone of a selected group of channels becomes ready to COITI

municate. The channel which becomes ready first is identified to the
calling program, which can then go on to read its message using one
of the same channel I/O functions used to send messages between
tasks.

Introduction to Parallel C

4.5 Parallel Execution Threads

33

Parallel C supports multi-threaded tasks. Tasks dynamically create
new execution threads by passing a pointer to a function and an
amount of stack space to a library function. The new execution
thread then starts executing the code of the pointed-to function
concurrently with the thread which created it. The new thread runs
in the same context as its creator; they share their static, extern
and heap memory areas. The only private storage available to the
new thread is its stack. The parent thread has no direct control over
its offspring, which continues to execute until it terminates itself by
returning from the function which was invoked, or by calling another
library function.

Parallel C's threads resemble the execution threads of OS/2, the
"processes" of Modula-2, and the "coroutines" of some other lan
guages. Each one has its own stack but shares the rest of its data
with all the other threads in the same task.

Semaphore functions in the run-time library can by used to prevent
threads which share data from interfering with each other. Alterna
tively, internal channels declared as program variables can be used
to synchronize the threads' operations and transmit data between
them by passing messages. Parallel C provides a CHAN data type
which can be used to declare channel variables.

Of course, like any other software construct, threads or coroutines
may be used in contexts other than those in which they are formally
necessary_ Indeed, many problems in simulation, real-time control
and other areas map very well onto a Illulti-threaded algorithm,
although they do not strictly require to be executed in this way_

4.6 Configuring an Application

Once an application has been designed and written as a collection
of conlffiunicating tasks, how is it loaded into a physical network of

34

transputers?

Chapter 4

First, each individual task is built by compiling all its source files
with the C compiler and using the linker (linkt) to combine the
resulting binary (. bin) files with the Parallel C run-time library to
produce a task image (. b4) file.

Now a bootable application image file must be generated from the
component task (. b4) files. The program which does this is called
the configurer. It is driven by a user-supplied configumtion file which
specifies:

• the hardware configuration (processors, and the wires connect
ing them) on which the application is to be run;

• the names of the .b4 files containing the component tasks of
the application;

• the connections between the various tasks' ports;

• the placement of particular tasks onto particular processors in
the physical network.

The output of the configurer is an application file which can
booted into the specified hardware network and run using the same
afserver program used for simple stand-alone programs.

4.7 Processor Farllls

The tools described so far allow you to build applications which ex
ecute on any transputer network the wiring of which can be specified
in advance in a configuration file. For many parallel computations
it is useful to be able to create applications which will automatica.lly
configure themselves to run on any network of transputers. Such
applications will automatically run faster when more transputers are
added to a network, without recompilation or reconfiguration.

Introduction to Parallel C 35

Parallel C allows you to create applications like this, provided the
application can be implemented by a processor farm, and provided
that there is enough memory on each processor in the network to
support the required loading and message handling software.

In the processor farm technique, an application is coded as one mas
ter task which breaks the job down into small, independent pieces
called work packets which are processed by any number of anony
mous worker tasks. Work packets are automatically distributed
across an arbitrary network of transputers by routing software sup
plied with the compiler. All of the worker tasks must run the same
code. Each worker simply accepts work packets, processes them, and
sends back result packets via the same routing software. A worker
task is just a simple sequential loop: read a packet; process it; send
back a result packet; repeat.

Provided a master task can be written for your application which
will split the job up into independent work packets which the worker
tasks can handle without communicating with other tasks, you can
use the flood-fill configurer to combine the code for the master and
worker tasks into a bootable application file which can be loaded
automatically into an arbitrary transputer network by the afserver
program.

Many computationally intensive applications can in fact be imple
mented by processor farms, particularly graphics applications like
ray-tracing where different sections of the screen can be worked on
independently.

36 Chapter 4

Chapter 5

Developing Parallel
Programs

In this chapter we move on from looking at the general features of
Parallel C to explaining how some of the parallel programming tools
supplied with the compiler are used in practice. The general-purpose
configurer is described here along with the extended run-time library
functions for sending messages over channels and creating new exe
cution threads. Processor farm applications are covered in the next
chapter.

We have actually already encountered an interesting example of
a parallel system: even a simple sequential program running on
a transputer board plugged into a PC runs in parallel with the
afserver program on the host computer, as shown below.

PC B004

0 I 0 1 1

af- I
filter

user
server I prog.

I

0 0 I 1

38 Chapter 5

The afserver task is an ordinary MS-DOS executable (. exe) file
that runs on the PC. It loads executable. b4 files into the transpl1ter
and also acts as a file server, handling I/O requests made by the
transputer. The afserver and the transputer execute in parallel and
communicate via an Inmos link. The messages sent to the afserver
are normally generated by the Parallel C run-time library. It converts
I/O operations like putchar and fprintf into messages requesting
the afserver to perform MS-DOS operations like write 512 bytes
and then waits for the afserver to reply.

In principle, the afserver task could be directly connected to the
user program. In practice, a filter task is interposed between them.
The filter runs in parallel with the afserver and the user task;
it simply passes on messages travelling in both directions. The
filter is required because sometimes the messages passed between
the user program and the afserver are only one byte long and the
revision A T4I4 chip cannot handle single-byte message transfers on
its hardware links. The filter pads out I-byte messages to 2 bytes to
avoid this problem.

5.1 Configuring One User Task

Up to now a standard "harness", t4harn. bin, has been lin ked in
with all user programs. The harness contains system initialisation
code, the filter, and a call to the user program. There is no need
to describe the standard system configuration (afserver, filter and
one user task) to the harness; the configuration is assumed.

Using the standard harness is simple but inflexible. We need a way
to produce executable files for more complicated system configura
tions containing many tasks and many transputers. The configurer
program supplied with the compiler can do this; a simpler harness
(known as the "task harness") can then be llsed.

The configurer is driven by a user-written configumtion file which
describes the system to be built: the file lists all the physical proces-

Developing Parallel Programs

UPPER.CFG

39

processor host
processor root
vire juaper-

root[O]
host [0]

!the PC
!the tranaputer in the 8004
!connects.•.
flint 0 of root tranaputer
!to the PC bus

tast upper ins-2 outs-2 !the user tast
tast filter ina-2 outs-2 data-tOt
tast afserver ins-louts-I

place afserver host
place upper root
place filter root

!afs8rwer runs on PC
!everything else on transputer

connect ?
connect ?
connect ?
connect ?

filter [0] afseryer[O]
af8erver[0] filter[O]
filter[l] upper [1]
upper [1] filter[l]

Figure 5.1: Configuration File with One Example Task

sors in the system, the wires connecting them, the tasks to be loaded
into the system and their logical interconnections. The complete
configuration file needed for a single transputer system with one task
(Le., the same configuration that is built into the standard harness)
is shown in figure 5.1. In the rest of this section we will look at its
contents in detail.

The example program we have chosen just converts a streanl of char
acters read fro.m stdin to upper case. l"'he C source file, upper. c
is shown in figure 5.2 (the corresponding configuration file is called
upper. cfg). Note that the examples discussed here are not the same
as the files with the same names supplied in the distribution kit.

40 Chapter 5

'include <stdio.h)
'include <ctype.h>

.ain()
{

int c;

.hile «c • S8tchar(» !- EOF)
putchar(toupper(c))i

}

Figure 5.2: C Source File for Upper Casing Program, upper. c

5.1.1 Hardware Configuration

The first thing the configuration needs to describe is the hardware
configuration. A single B004 board plugged into a PC is very easy
to describe.

proce88or h08t
proce88or root
wire juaper h08t[O] root[O]

There are two processors: the host PC and the root transputer in the
B004. The root transputer is so called because if a larger network is
built around a basic B004 system, the transputer directly connected
to the PC becomes the root of the network-all communication with
the file system on the PC must pass through it.

A wire connects the root transputer's link 0 to the host processor.
The WIRE statement describes actual physical cables, in this case
the little jumper you have to plug into the back of a 8004 board
which connects link 0 on the transputer to the PC bus. Each wire
is given a name, in this case jumper. Objects declared in the con
figuration language can have arbitrary names made up of letters,
digits and the special characters '_' and '$', but are usually given
mnemonic names.

The processor identifiers (host and root) used in a WIR.E statement
must have been declared in a previous PROCESSOR statement.

Developing Parallel Programs 41

This is a general rule: all objects in the configuration language
(processors, wires, tasks) must be declared before they are used.

Now compare the short example above with the full configuration
file in figure 5.1. You will notice a few differences in layout. Blank
lines, spaces and tabs have been used to improve readability, and
comments (from a '!' character to the end of the line) have been
added. Some lines have been broken, indicated by a hyphen, '-', as
the last oon-whitespace character before a line break (or comment).
Layout and comments are ignored by the configurer. Note that,
unlike C, the configurer also ignores the case of letters: 'a' and 'A'
are not distinguished.

5.1.2 Software Configuration

As well as describing the hardware of a system, the configuration file
must contain details of all its software tasks and their interconnec
tions.

5.1.2.1 Declaring Tasks

For each concurrently executing task in the system the configuration
file must contain a TASK statement which declares the number of in
put and output ports the task has. The afserver has only one input
port (for file system requests) and one output port for responses.

task afserver ins=1 outs=1

Our example user task is next. It will be a program to convert
characters to upper case, so it is given the name upper.

task upper ins=2 outs=2

As before, the ins and outs attributes specify the nUlnber of input
and output ports for the task. The upper task has two of each, nUln

bered from 0 as in C, and called upper [0] and upper [1]. Whether

42 Chapter 5

a port specifier like upper [0] refers to an input or an output port is
determined by the context in which it is used.

The ordinary Parallel C run-time library, with which the upper task
will be linked, makes the assumption that the first two input and
output ports of a task will be reserved for its use. The first pair
of ports (numbered 0) have uses which will not be described here;
they should simply be left unconnected. The second pair of ports
(numbered I) are assumed to be connected to a file server task. Ifere,
we will connect the upper task to the afserver through a filter task.

The filter task has a slightly more complicated declaration:

task filter ina-2 outs-2 data-lOt

The DATA attribute specifies the amount of memory ,a task needs.
The filter task requires a minimum of IOKB of workspace. For
ready-made tasks supplied with the compiler, like filter, memory
requirements can be looked up in the data sheets in chapter 20.

A user task like upper for which no memory requirement is specified
gets all the free memory remaining once any other tasks placed on
that processor are loaded. Only one task on each processor ca.n have
its memory requirements left unspecified in this way. The configurer
would otherwise have to decide how to split the remaining memory
between several tasks with unspecified requirements. Beca.use an
even split is unlikely to be desirable in practice, this is not allowed.
Section 5.8 below gives hints on estimating memory requirements in
cases where multiple user-written tasks must be placed on the same
processor.

5.1.2.2 Assigning Tasks to Processors

The placement of tasks on processors is specified by the PI.lACE
statement. In our example, the afserver runs on the host PC a.nd
the user task (upper) runs on the root transputcr with the filter task.

place afserver host

Developing Parallel Programs

place upper root
place filter root

5.1.2.3 Making Connections between Tasks

43

The CONNECT statement establishes a channel between two tasks,
by connecting an output port to an input port. Because chan
nels (unlike wires) are unidirectional, two CONNECT statements
are needed to create channels going in both directions between the
afserver and the filter.

connect ? filter[O] afBeryer[O]
connect ? afBerver[O] filter[O]

The CONNECT keyword can be followed by an identifier naming the
connection, but all the configuration statements which declare new
identifiers allow a question mark to be used in place of the identifier
being declared. This is useful when there is no need to refer to an
object after it has been declared. Currently there is no statement
which can refer to the identifier declared by a CONNECT state
ment, so the question marks avoid the bother of naming essentially
anonymous connections.

After the identifier (or question mark) we code first the output port,
and then the input port. Thus, the first CONNECT statement in
the example above makes a channel from filter's output port 0 to
afserver's input port O.

The remaining connections in our example system are written down
in the same way:

connect ? filter[l] upper[l]
connect ? upper[l] filter[l]

5.1.3 Building the Applicatioll

Once a configuration file has been written all we have to do to execute
the application is compile the C source file upper. c, link the resulting

44 Chapter 5

object file with the C run-time library, and then run the configllrer.

The example below shows what must be done to build an executable
file from the uppercasing example:

C>t4c upper

C>t4ctask upper

C>config upper.cfg upper.app
WARNING: no .e.ory allocation specified for task upper:

assuaing rest of processor's .e.orJ

C>afserver -:b upper.app
case changer
CASE CHAIGER
AZ

C>

Two commands are new: t4ctask and config.

5.1.3.1 Linking for the Configurer

The ordinary batch file for linking C programs (t4clink) is not
suitable for linking a task because it links in the standard harness.
t4ctask. bat is a batch file supplied with the compiler which links
an object (. bin) file with the Parallel C run-time library and a
vestigial task harness containing neither the filter process nor any
system initialisation code. The example below shows two C source
files, main. c and subs. c, being compiled and then linked together
to form a T4 task called main. b4.

C>t4c .ain

C>t4c subs

C>t4ctask .ain subs

Like t4clink, the t4ctask batch file can handle up to nine object
files on the command line. If you need to link more files than this,

Developing Parallel Programs 45

you will need to use an indirect file, as described in section 3.3.2.
If you need to call the linker directly, as described in section 3.3.3,
you must link in the run-time library, crtlt4. bin and the task har
ness, taskharn. t4, by hand. Both can be found in the installation
directory, \tc2v2.

As usual, there are TB versions of the batch file and the task harness.
They are called t8ctask and taskharn. t8.

Note: it is important to link all tasks which are to be used with the
configurer with the correct harness. If the wrong harness is used (for
example by accidentally using t4clink rather than t4ctask) then
the configured application will fail to operate correctly. It may fail to
execute, or it may simply give wrong answers.

5.1.3.2 Running the Configurer

The configurer is invoked by the config command. Two filenames
must be specified on the command line: first the configuration file,
then the name of the executable file to be output. For our case
conversion example, the required config command line was:

C>eonfig upper.efg upper.app

The configurer does not supply default filename extensions, but. cfg
is conventional for configuration files.

File names for the task images which make up the application are
not supplied on the command line; the configurer derives them au
tomatically by appending .b4 to the task identifiers given in the
configuration file. In our example, the configurer will search for task
image files called upper. b4 and filter. b4.

If a task image file is not found in the current directory, the configurer
will automatically search all of the directories on the MS-DOS search
path, so there is no need to make copies of ready-rnade tasks like
filter. b4 held in the same directory as the compiler (\tc2v2).

46 Chapter 5

The search path can be modified in the usual way by the MS-DOS
commands path and set.

This automatic mechanism for specifying task image file names can
be overridden by the FILE attribute of the configuration language's
TASK statement, described in chapter 18.

Note that tasks placed on the host (PC) processor are not searched
for in this way to be included in the output application file. The
configurer does not attempt to load afserver. b4 into the PC from
the transputer! The afserver task must be declared and placed on
the host simply in order to give a name to the object with which the
filter task communicates over its port o. However, afserver. exe
will always be running in the PC, ready to accept file I/O requests,
when a transputer application starts running, simply because the
afserver is used to load the application into the transputer. It is
therefore reasonable to regard it as part of the configuration.

The output from the configurer can be run directly using the
afserver:

C>afserver -:b upper.app

The actual hardware configuration of the transputer network at
tached to your PC must match the declarations in the configuration
file. The memory requirements of configured tasks are specified in
the configuration file; the afserver options -: 0 1 and -: 0 0 are
ignored by configured applications.

5.2 More than One User Task

In the previous section we saw how an application consisting of a
single user task could be built using the configurer instead of the
standard harness.

From this base, we can move on to more complicated systems con
taining multiple user tasks running in parallel.

Developing Parallel Programs 47

Let's continue with the small case conversion example by splitting
the job performed by upper. c into two tasks: a driver task to handle
file I/O, and a processing task which accepts a stream of words
containing ASCII character code values on one of its input ports
and sends the corresponding upper case character codes to one of its
output ports.

This example is a bit contrived, but splitting a job up into an I/O
task and a number of concurrent computation tasks is commonplace.

5.2.1 Inter-Task Communication Functions

Coding the driver task in C is easy. Instead of using the toupper
function from <ctype.h> as before, it converts characters to upper
case by sending a message containing the ASCII character code to '
the "computation" task and waiting for a reply message containing
the result.

C tasks send messages using the channel I/O functions described in
chapter 10. The chan package provides functions to send and receive
messages of any length. The driver task is shown in figure 5.3; it uses
chan_in_vord and chan_out_vord to handle word-sized messages.
A word is the same size as an int.

The driver source file, driver. c, is included as an example in the
distribution kit, along with the processing task, upc. c, and a suitable
configuration file, upc. cfg. These files can be found in the examples
subdirectory of the directory containing the compiler, \tc2v2.

The statement in driver. c which sends character codes to the pro
cessing task is:

The word (int) value to be sent is passed as the first argument in
the function call.

48 Chapter 5

/.
•• driver.c file I/O for uppercasing exaaple
./

'include <chan.h>
'include <8tdio.h>

aain(int argc. char .argv[]. char .envpD,
CHAt .in_port8[], int ins, CHAI .out_port80, int outs)

{

int c;
for (;;) {

c • getchar();
chan_out_word(c, out_ports[2]).
if (c •• EOF) break;
chan_in_word(lc, in_pon8[2]) i

putchar (c) •
}

}

Figure 5.3: driver. c with Channel I/O Calls

Beware when using the channel I/O functions that sending and re
ceiving tasks must always agree on the size of messages. For example,
if a task sends a word value as a single 4-byte message, the receiving
task must read it as one 4-byte unit; it is not possible for the receiving
task to read four separate I-byte messages. Trying to do so may
cause the transputer to lock up or behave unpredictably.

The second argument to chan_out_vord identifies the output port
to which the message is to be sent. out_ports [2] corresponds to
output port 2 of the driver task. A CONNECT statement in the
application's configuration file referring to driver [2] will specify
which task the port is connected to. In our case, it will he the
processing task to be described later.

out_ports is a vector of pointers to channels, passed into the task
via the argument list of its C main function. This vector is decla.red
as:

Developing Parallel Programs 49

CHAN is the channel data type defined in the library header file
<chan.h> which is included by C files which use the channel I/O
functions. Each port (Le., each element in the vector) has type
"pointer to channel".

The number of output ports in the vector is defined by the OUTS
attribute of the TASK statement used to declare the task in the
configuration file. Our driver task has outs=3, so there are three
elements in its output port vector, numbered 0 to 2.

The value of GUTS is passed into the task as an argument to main
along with the port vector. It is declared (int outs) in driver. c
but not used. It can be used to write tasks which handle an arbitrary
number of ports, like the multiplexer task described later on in this
chapter.

The main function's argument list also provides access to the input
port vector in a similar way. In the driver example, the input port
vector is given the name in_ports and will have ins elements.

The driver task will keep reading characters from the standard input
stream (getchar), sending them to the processing task and writing
the reply messages (the translated characters) to the standard output
stream until EOF is read.

The next thing to look at is the processing task. It is logically a
"black box" with one input port and one output port:

processing
task

stream of word- I Isize messages __~~ upc _0__.....same stream in
(ASCI I codes) upper case

A Parallel C implementation of this task is shown in figure 5.4.

50 Chapter 5

/-
_. upc.c stand-alone processing task;
.- coaaunicates vith driver.c
-/

'include <chan.h>
'include <ctype.h>
'include <stdio.h>

.ain(int argc. char *argv[]. char -envpD.
CHAI -in_ports[], int ins, CHd -out_ports 0 , int outs)

{

int c;

for (;;) {
chan_in_word{tc, in_porta[O]);
if (c •• EOF) break; /* te~inate task -/
chan_out_vord{ toupper{c), out_ports[O]);

}
}

Figure 5.4: The Processing Task

The processing task uses the same channel I/O functions as the driver
to send and receive messages. It terminates when it receives a -1
from the driver. (The character codes are sent as words rather than
bytes because in this implementation of C, char variables can only
hold values in the range 0 to 255; -1 is not a valid char value).

Extending the configuration file for our first, single-task, example
(see figure 5.1) to handle two tasks is easy. We just change references
to the old upper task to driver, and add the following extra configu
ration statements to describe the processing task and its connections.

task upe ins-! outs=! data-Sk
place upc root
connect? driver[2] upc[O]
connect? upc[O] driver[2]

This says that the new task upc has one input port, one output port,
and requires 5KB of memory (section 5.8 gives hints on estimating

Developing Parallel Programs 51

task memory requirements). The upc task is placed on the root
transputer, and its ports are· connected to the corresponding ports
of the driver task.

5.3 Building Multi-Task Systems

We will run into a problem when trying to compile and link the
components of the dual-task system.

The ordinary C run-time library expects to send messages to the
afserver on output port 1 and receive replies on input port 1. This
is true even if your C program does not explicitly use any standard
I/O functions like printf-the library will still try to open the stan
dard input and output streams, and read the command-line string
from the host machine in order to initialize argc and argv.

This means that even though it does no C I/O, the upc task will
still attempt to communicate with the afserver if it is linked with
the standard run-time library. Ilowever, the afserver is already
connected to the driver task. The afserver task can't simply be
shared between the driver and upc tasks, because that would require
connecting one port on the afserver task to two client ports. That
is not allowed-channels must always connect one port to exactly
one other port).

This is not as restrictive as it seems, because a stand-alone version
of the C run-time library which does not need to communicate with
the afserver is supplied with the compiler. The stand-alone library
is just the same as the ordinary library except that all the functions
which require afserver support (I/O, date, DOS calls, etc.) have
been olnitted.

A multi-task application is nornlally split up into an I/O task with
afserver support and one or more processing tasks which do not

IThere is, ill fact, a Inelhod lo allow tasks to share the afserver. It is
described in chapter 6.

52 Chapter 5

need ordinary C I/O because they use the channel I/O functions like
chan_in_vord to communicate with the I/O task.

Our example application is already in the right form: all we need
to do is link the driver task with the standard run-time library and
link the processing task, upc, with the stand-alone library.

In practice this logical organisation of an I/O task serving a number
of parallel computing tasks is commonplace anyway.

For embedded systems which do not need disk I/O support, IS IS

possible to link all of the component tasks with the stand-alone
library, producing a consequent reduction in code size due to the
absence of I/O initialisation code from the stand-alone library.

If an application includes several tasks which need to write to the
screen using printf, or access disk files using fread, you will need
the global I/O facility described in chapter 6. Normally it is just
as simple to cast an application in the form of an I/O task serving
multiple "compute" tasks which only use the stand-alone library and
communicate by passing messages.

A batch file analogous to t4ctask is provided for linking an object
file with the stand-alone library. It is called t4cstask. bat; a TB
version (t8cstask) is also supplied. As usual, these batch files can
be used to link up to nine object files; if you need to drive the)jnker
yourself, the files to link with are sacrtlt4. bin and taskharn. t4
in the installation directory, \tc2v2, or their TB equiva.lents. The
commands required to link and configure the upper case example for
a T4 are shown below.

C>t4c driver

C>t4ctask driver

C>t4c upc

C>t4cstask upc

C>config upc.cfg upc.app

Developing Parallel Programs

WARNING: no aeaory allocation specified for task driver:
assuaing rest of processor's aeaory

C>afserver -:b upc.app
xyz123
IYZ123
pqr
PQR
"z

53

You can try this out for yourself by making a copy of the relevant
files, which are supplied in the directory \tc2v2\examples, together
with the batch files upct4.bat and upct8. bat, for building the
application.

5.4 Multi-Transputer SysteRls

If you have followed the examples this far, the generalisation from
a multi-task system running on a single transputer to a full multi
transputer system will be fairly obvious. All that is required is a
change to the configuration file to describe the extra hardware and
place some tasks onto processors other than the root transputer.

We could run the case conversion example on a two-transputer sys
tem with the driver task on the root transputer and' the upc task on
the other transputer. The extra hardware must be declared in the
configuration file:

processor addon
wire root[l] addon[O]

This gives a name (addon) to the second processor a.nd declares that
it will be connected by a wire from its link 0 to link 1 on the root
transputer. (Link 0 on the root transputer is already being used to
connect it to the host computer).

If we rcconfigured the application at this stage, the addon processor
would be unused because the upc and driver tasks are both placed

54 Chapter 5

on the root transputer. We can fix this by modifying the PLACE
statement for upc.

place upc addon

Now the configurer will automatically generate all the bootstrap and
loader software required to make sure that the code of the upc task
is loaded into the second transputer when the complete application
is started on the root transputer by the afserver.

When interpreting a CONNECT statement, the configurer makes a
direct channel connection between the ports, if the two tasks are in
the same processor. Now they are on different processors, the chan
nel will use the external links, and will be mapped by the configurer
onto the external connection as specified in the WIRE statement.

C>config upc.cfg upc.app
WARNING: no ae.ory allocation specified for task driver:

assuaing rest of processor's ae.ory

C>afserver -:b upc.app
two transputera ..•
TWO TRAISPUTERS •••
AZ

Further generalisation to an arbitrary system should be clear: just
declare more processors and wires in the configuration file, place
tasks on the processors and connect them together.

5.5 Simultaneous Input

One thing we have not yet seen how to do is to wait for a messa.ge
from anyone of a number of concurrently executing tasks. For
example, a multiplexer task which accepted messages on any of an
arbitrary number of input ports and passed them on through a single
output port would be a useful building block. It might be used to
allow a number of tasks to share a single hardware link.

Developing Parallel Programs

input ==*l L output
ports~ mux I port

55

A task connected to the output port of the mux task sees a sequential
stream of messages, even though they are coming from any number
of input tasks, in any order.

To implement the muz task we will need a way of reading from
a number of input ports "all at the same time" so that the first
message to appear on any of them "wins" and satisfies the read
request, blocking any other messages which appear until the next
read request.

The alt functions supplied with Parallel C provide this facility. The
alt package is more fully described in chapter 10; the interfaces
to the individual functions are described in the alphabetical list of
functions in chapter 11.

Here, we give the flavour of these functions by showing a Parallel C
implementation of the multiplexer task which uses the alt_vait_vac
function to wait for a message to arrive from any element of an array
of (pointers to) channels. The multiplexer task's input port vector is
just such an array of pointers to channels, so it can be passed directly
to alt_vait_vac along with a count of the number of elements in
the array.

alt_vait_vec waits for a message to arrive on any of the channels
pointed to by the array, in this case any of the multiplexer task's
input ports. It then returns the index in the array of the channel on
which the message was received. If more than one message arrives
at the same time, the system will choose which one to handle first.
If no message ever arrives, the function will never return.

Once alt_vait_vec has determined the channel on which a message
is incoming, the rest of the mux task is quite straightforward. First,
read the message from that channel into a buffer, then echo the
message to the single output port. In the example, the messages
consist of a fixed length (four byte) header giving the size of a

56 Chapter 5

/. alt.ux.c: ..ssas••ultiplex.r using 'alt' p.ckaS••/

linclud. <alt .h>
linclud. <chan.h>

••iD(iDt arsc, char .arsy[], char ••DYp[],
CBII .iD_port.[], iDt ins, CBII .out_port.[], iDt out.)

{
char buf[1024]j
ut ij
iDt -Sl.Dj

for (jj) {

/ •••••-S. buff.r .,
,. iDput port OD .hichS. r.c.iyed .,
,. D_ber of bJt•• iD •••••••,

}

, •••it till ••n •••as. r.c.i.ecl OD DJ iIlput port .,
i • alt_w.it_y.c(iDa, iD_port.);

,. re.d the fro. that port ./
chaD_iIl_word("'ll.. , ia_port.[i]);
clum_iD <-ap••, Ibu1[O]. ia_port.[i]);

, •... aDd COPJ it to the .iDSI. output port .,
chaD_out_vord(l.D, out_port.[O]);
chaD_out_ (l •• , lbaf[O], out_port.[O]);

}

Figure 5.5: Multiplexer Task Using alt Package

trailing variable-length part. Only one message buffer is required
no matter how many input ports are connected to the multiplexer
task. Messages arriving on any other channels are blocked while the
multiplexer deals with the current message.

Figure 5.5 shows the code of the multiplexer task.

5.6 Multi-Threaded Tasks

5.6.1 Creating Threads

The alt functions allow a limited amount of parallelism or non
determinism to be introduced into a sequential task. Parallel C also

Developing Parallel Programs 57

allows tasks to be fully multi-threaded. This means that a task
can contain any number of 'concurrent processes each of which is
independently executing the code of the task. All the threads in a
task share the same static, extern and heap data. The threads can
still operate independently because each one is given its own stack
for auto variables. New threads are created dynamically by calling
the library function thread_create. All of the library functions
discussed in this section are described more fully in chapters 10
and 11.

If multiple threads in a task are operating on shared data, say a
buffer held in static storage or on the heap, they must synchronize
their access to this data. Threads can synchronize their operations
using either channels or semaphores.

A channel can be used to synchronize two threads by includeing the
header <chan.h> and then declaring a static, extern or heap vari
able of type CHAN. If this channel is initialized using the chan_ini t

function, a pointer to it can be used to specify the channel to be
read or written by any of the channel I/O functions.

Remember that each channel can only be used to transmit data in
one direction between exactly two threads. You cannot use a channel
to transmit data in both directions (you must use two channels) and
you cannot allow more than one thread to be waiting for input from
the same channel.

Figure 5.6 shows a task which creates just two threads, a producer
thread which generates a sequence of word-sized messages and a
consumer thread which processes them. The messages are transmit
ted across an internal channel, chan. The channel transmits the data,
and also ensures synchronization: the consumer cannot proceed once
it has called chan_in_vord until the producer sends a Inessage over
chan. Similarly, if the consumer thread is busy when the producer
attempts to send a lllessage, it will be blocked until the consumer
comes to read its next message.

There are several points to note about this example.

58

'includ. <thr.ad.h>
'includ. <chan.h>
liDclud. <par.h>

Id.fin. STACISIZE 1024

Chapter 5

yoid produc.r()
{

iDt i;
tor (i-O; i < 10; i++)

chan_out_word(i, Ichaa);
}

Yoid cOD81111er()
{

,. proe..... 10 .&1u.. .,

iDt i, Yal;
tor (i-O; i < 10; i++) {

chan_iIl_word(IYal, Ichan);
par_prilltf(UU\D", 2.Yal);

}

chaD_out_vord{t, IcoDa...r_fiDiah.d);
}

aaiD()
{

iDt d__,;

chaD_iDit(lcoD....r_fini.h.d);
chaD_iDit (lchllD) ; ,. BEFORE .tarti. the threads! .,

thread_create(producer, STACISIZE, 0);
tbr.ad_cr••t.(coD....r, STACISIZE, 0);

,. vait for all thr••ds to t.~iD.t••,
chaD_iD_VOrd(ld " Ico.....r_fini.h.d);

,. b.for••xiting .,
}

Figure 5.6: Synchronization by Internal Channels

Developing Parallel Programs 59

First, any channels to be used to synchronize the operations of mul
tiple threads should be declared and initialized before those threads
are created.

Second, it is a bad idea for the main function of a task to return
while any threads it has created are still active if, as in this case, one
of the threads may use C standard I/O. If this happens, the main
function may exit, causing the run-time library to shut down the I/O
system and close all open files before some thread which needs to do
I/O has finished. To forestall this possibility, an extra channel has
been added in the example from the consumer thread back to the
original main thread. It is used purely for synchronization. When the
consumer thread is about to terminate, it sends a dummy message
over this channel. The main thread waits for this message before
returning.

Finally, note the use of par_printf in place of printf in the
consumer thread. If multiple threads are active in a task, and more
than one thread may need to call the run-time library, then their calls
must be interlocked using a semaphore. The par package provides
ready-interlocked versions of some common functions like printf.
The interlock is not actually necessary in this case, since no other
thread will be attempting to use the run-time library at the same
time, but it is as well to be aware of the problem.

Semaphores may also be used to interlock user threads. To illustrate
the use of semaphores we have recoded the multiplexer example pre
sented previously to use multiple threads interlocked by a semaphore
in place of the alt functions.

A new execution thread is created for each input port. Each thread
does a sinlple sequential read and waits for a nlessage. As soon as
one thread receives a message it waits until a seInaphore indicates
the output port is free. It needs to wait in case one of the other
threads is currently using it. Using a semaphore prevents disaster if
two threads each try to write to a shared object like the output port
at the same time.

60 Chapter 5

Figure 5.7 shows the semaphore version of the multiplexer task in
Parallel C. This implementation shares one message buffer area be
tween all its threads as well as sharing the output port. All of a
task's threads share the same static, extern and heap data. Each
thread has its own stack for auto variables, so each thread in the
example has its own msglen variable. The stack space for a thread is
created automatically (from the heap) by the thread_create func-·
tion. Any number of input threads can have read the length part of
their incoming messages, but the bUf_free semaphore ensures that
only one is using buf and out_ports [0] at any time.

If you haven't used semaphores or a similar method for controlling
concurrent access to shared objects before, you should read a good
introduction to the subject, such as [7,8]. It is possible to introduce
difficult-to-trace errors into a program if threads forget to synchro
nize access to a shared object by waiting for a semaphore.

5.6.2 Threads versus Tasks

Threads can be useful in many situations. They are just "light
weight" processes, corresponding to processes in Modula-2 or the
coroutines of some other languages.

Compared with tasks, threads are:

• "lightweight"-they share their code, heap, stafic and external
data memory with all the other threads created by the same
task;

• they can share data and may communicate either via sha.red
memory or by using channels like tasks;

• all the threads of a single task run on the same processor,
allowing them to share memory.

Tasks on the other hand are more substantial than threads:

Developing Parallel Programs 61

••••ag. IlUltipl.x.r task -,

'includ. <chan. h>
'includ. <thread.h>
'include <._.h>

,- r.quir.d h••d.r 1il.. -,

char buf[1024];
SEIIl but_free;
CI&I --in_p, --out_Pi

,- control. access to but -,
,- Ilobal pointer. to -,
,- port .ector. .,

..in(int argc, char .arr[], char - ...,[],
call -in-port.(], iDt in., CB'••out_port.[], tat out.)

{
ext.rn .oid recei.e(int);
iat i;

in_p • in_port.;
out_p • out_ports;

for (i-a; i < insi i++)
thr.ad_cr.ate(rec.i•• ,

60-.iz.of(int),
1,
i);

}

yoid rec.iye(int i)

{

,- buffer i. initiallJ free -,

,- .ate iD_porte a out_ports .,
,- IloballJ a.ail.ble -,

,- on. thre.d per input port -,
,- function .,
,. vork.pac. .iz. in bJte. -,
,- 1 argaa.nt -,
,. tell thr.ad vhich port .,

,. handle a singl. input port -,
,- i • port to ••ryic. -/

int IUglen; / ••ach thr••d has it. ova asgl.n -/
for (;;) { ,- forey.r ... -/

chan_in_vord(&.sgl.n, in_p[i]); ,- .v.it ••••ag. fro. input port ./
s..._v.it(lbuf_fr.e); /. v.it till no one els. using buf ./

chan_in_••Bsag.(_gl.n, ,. r.ad bodJ of ••s.ag. into -,
Ibuf[O], /. the .h.red global buff.r -/
in_p[i]); /. fro. our port ./

chan_out_vord(.sglen, out_prO]); ,. copy ••••ag. to out_port.ro] ./
chan_out_ae8sage(_glen, Ibuf[O], out_pro]);

se.a_8ignal(lbuf_zree); /. l.t so••one .lse in again -/
}

}

~'igure 5.7: Multiplexer Task Using Selnaphores

62 Chapter 5

• they only communicate via channels;

• each task has its own code and data areas, separate from all
other tasks; code, including run-time library functions, is not
shared between tasks, even tasks placed on the same processor;
this is so that

• a task can be moved to a different processor simply by recon
figuration.

Two operations to be performed concurrently can be usefully per
formed by threads rather than tasks if all of the following conditions
hold.

• They will never need to be run on distinct processors.

• The operations are closely coupled, i.e., they share a lot of
common code. Code is automatically shared between threads,
but each task has its own copy of all of its code, including
library functions, so that if necessary it can later be moved to
a different processor without requiring recompilation or relink
ing.

• The operations logically operate on shared data structures.
This may be more efficiently performed directly by concur
rent threads than by tasks copying the data back and forth as
messages when it is modified.

5.7 Debugging

This section contains some hints on debugging parallel programs
for users who have not purchased Tbug, 3L's interactive debugger
product. Thug allows examination of source program variah]~s and
provides source level breakpointing and single-stepping within multi
threaded, multi-tasking P.arallel C applications. This simplifies fault
finding.

Developing Parallel Programs 63

If you do not have Thug, what can he done when a parallel system
locks up or fails to work properly? A sequential program could be
attacked by inserting extra debugging output statements at strategic
points in the code.

In a multi-task system this will in general only be easy to do to
an I/O server task linked with the standard library and directly
connected to the afserver. Unless you design debugging messages
into the communication protocol used between the various tasks in
your system you will not be able to get debugging output from
a stand-alone task to a screen driving task. Even building debug
message formats into the protocols used by the tasks in your system
may not be enough jf the fault lies in the failure of some intermediate
task to transmit messages correctly.

However, it is possible to get output directly from a stand-alone task
to an output device by using a second host computer and transputer
board combination as a debugging tool. The second system can be
attached to a suspect node of the system, in the same way as an
oscilloscope can be used to debug an electronic system.

One way of doing this is to reHnk the suspect task with the standard
run-time library (rather than the stand-alone library) and place it
on the transputer attached to the second host computer. Ordinary
printf calls can then be inserted in the code; the results will be
output directly by the afserver in the second PC and displayed on
its screen. The configuration statements required would be like this:

processor host
processor root
wire? root[O] host[O] !as before
processor extra_PC type=PC
processor extra_B004 !plugged into extra_PC
task extra_afserver ins=1 outs:1
wire? extra_B004[O] extra_PC[O]
wire? extra_B004[1] root[l]

place extra_afserver extra_PC
place suspect_task extra_B004

64

connect 1 suspect_task[l] extra_afserver[O]
connect ? extra_afserver[O] suspect_task[1]

Chapter 5

The main thing to notice here is the type=PC attribute given to
the extra_PC processor. This tells the configurer not to try and
bootstrap any tasks into that processor. (The host processor is
just a special case for which type=PC is assumed). To make this
configuration work, you must start the afserver on the extra PC
using the afserver command without the -:b option before starting
the system under test. If no -:b option is present on the command
line, the afserver does not attempt to bootstrap the network it is
attached to; it will simply accept file I/O request messages over its
links.

It is also possible to use this debugging technique if you don't have
another host and transputer board combination but do have another
PC with an Inmos link adapter card. Relink the suspect task with
the full run-time library rather than the stand-alone library, then re
configure the system with input and output ports 1 of the task being
debugged connected to the PC with the link adapter, as follows:

processor second_PC type-pc
tast second_afserver ins-1 outs-1
place second_afserver second_PC

processor any_processor !of netvort being debugged
vire any_processor[3] eecond_PC[O]

task suspect_tast ins-2 outs-2 !connect [1]'s to afserver
place suspect_tast any_processor
connect ? suspect_task[1] second_afserver[O]
connect ? second_afserver[O] suspect_task[l]

This technique has two advantages: it only requires an extra PC and
link adapter card, rather than an extra PC and transputer boa.rd,
and there is no need to change the placement of the suspect task.

A third technique uses the three spare links on a transputcr board
plugged into the extra PC to accept debugging messages from up
to four separate tasks anywhere in the network being debugged and
multiplex them onto its PC screen.

Developing Parallel Programs

5.8 EstiDlating Memory Requirements

65

Section 3.5 has already discussed the various categories of data stor
age. As noted there, the data requirement for a task is the sum of
the number of bytes required for static, stack and heap storage in all
its modules.

The decode utility (see chapter 14) can be used to determine a
module's static data requirement (including extern data). decode
displays the number of words (not bytes) of static data required by
a module near the top of the output listing it produces, after the
keyword STATIC. The whole task also has one word of static space
permanently allocated to each module.

Stack and heap requirements are more difficult to estimate; you must
decide how much space to leave for all the functions which may be
active at once, based on the sizes of individual data items. Each level
of function calling uses about five words of stack space in addition
to the space required for function data.

IIeap storage is currently allocated by the run-time library in blocks
of 4KB, so if your task uses the heap be sure to allocate at least that
much space for it.

In addition to the amount of space you estimate your task actually
needs, it is a good idea to leave at least 1 or 2KB of extra overflow
space, unless you are absolutely sure the task will never require more
space than you have calculated.

Bear in mind that if a task exceeds its stated memory requirements
the whole systenl will probably crash, so err on the side of caution.
A good rule of thunlb would be to allocate at least 1KD to sinlple
tasks which don't use the heap, and 8-10KD for tasks which do use
the heap. Note that the C standard I/O functions (such as fprintf
or printf) implicitly use the heap to allocate buffer spa.ce.

If the stack space required by a task is small enough it can be
allocated fronl the transputer's on-chip RAM. The space available

66 Chapter 5

there is 2KB on a T414, 4KB on a T800. Placing a computationally
intensive task's stack in fast on-chip RAM can produce dramatic
speed improvements. The configuration language contains various
attributes for the TASK statement which allow control over memory
layout. These more advanced topics are covered in chapter 18.

Chapter 6

Global Input/Output

In the last chapter, we looked at how to build configured applications
with more than one user task, whether running on one or more
transputers. In this chapter, we shall see how to arrange for all
these tasks to use the input/output functions and oth~r facilities
which need the support of the afserver program.

6.1 9ne Transputer

We saw in section 5.3 that only one task can communicate with the
afserver, and that this task was the only one to be linked with
the full C run-time library. All the other tasks were linked with the
stand-alone library, and this precluded them from doing I/O, DOS
calls and so on. Figure 6.1 shows, for example, a simple two-task
application, and figure 6.2 shows the corresponding configuration
file.

The problem is that the server only has one possible connection to
one filter task, and the filter task has only one possible connection
to a user task. We can get round this problem by placing a special
multiplexer task between the user tasks and the filter tasks. This

o
afserver

68

host

root

.----. ~- ... -_. -- --. ---. -. ~ .. -·
I

··.._---------- --- -----------

o

filter

user1 2 2 user2

Chapter 6

Figure 6.1: Two-task Application

multiplexer task is included with the Parallel Ckit, and is called
filemux; a task data sheet for it can be found in chapter 20.

Figure 6.3 shows this arrangement. The configuration file is un
changed, except that the following statements, which connected
user! to the filter are removed:

connect? filter[l] userl[l]
connect? userl[l] filter[l]

and instead we have the following:

task file.ux in.-3 outs=3 data=6.5K
place file.ux root
connect ? filter[l] file.ux[O]
connect ? file.ux[O] filter[l]
connect? file.ux[l] userl[l]
connect? userl[l] file.ux[l]
connect ? file.ux[2] user2[1]
connect ? user2[1] file.ux[2]

Global Input/Output

processor host
processor root
vire ? root[O] host[O]

task afserver ins=l outs-l
task filter ins-2 outs-2 data-l01
task user1 ins-3 outs-3 data-SOl
task user2 ins-3 outs-3 data-SOl
place afserver hoat
place filter root
place userl root
place user2 root
connect ? filter[O] afaerver[O]
connect ? afserver[O] filter[O]
connect? filter[l] user1[1]
connect? user1[1] filter[1]
connect? userl[2] uaer2[2]
connect? uaer2[2] uaer1[2]

Figure 6.2: Two-task Application

69

Now it is filemux which is connected to the filter, and the two user
tasks each have their number 1 port pairs connected to a filemux
port pair. Each user task should be linked with the full run-time
library using t4ctask or t8ctask, and each task can behave as if it
has sole use of the afserver. The multiplexer arranges for all the
messages from the user tasks to be transported to the afserver on
the host, and transports the replies back to the correct user task.

You can arrange for the multiplexer to handle more tasks. Each must
have its port pair 1 connected to a multiplexer port pair, starting
at number 1 and going upwards with no gaps. For example, if the
multiplexer is supporting 9 tasks, they must be connected to port
pairs 1 to 9. The alnount of memory which the multiplexer uses is
no more than (6 +O.25n)K bytes, where n is the number of tasks
supported. So in the case of 9 supported tasks, the TASK statement
should read:

task fileauI ins=10 outs=10 data=8.25K

The multiplexer adjusts its own activities to support all the tasks

70 Chapter 6

host afserver
o

o
filter

0

root filemux
2

J f
1 1

user1 2 2 user2

Figure 6.3: Two-task Application with Global I/O

which are connected in this way.

6.2 More than One 'I'ransputer

A task does not have to be on the same transputer as the multiplexer
which supports it. Provided the necessary wires exist, it can be on an
adjacent transputer. Figure 6.4 shows how this would be arranged,
and figure 6.5 is the corresponding configuration file.

Each WIRE statement corresponds to a hardware link betwccn two
transputers, and supports two CONNECT statements, one in each
direction. This means that the connections between filemux a.nd one

Global Input/Output 71

supported task on a neighbouring transputer will use up one WIRE
statement, that is, one hardware link. This implies two restrictions:

• If you have a task on a neighbouring transputer supported by
a multiplexer on this one, and you also want user tasks on the
two transputers to be connected, you will need two hardware
links between the two transputers.

• As a transputer has only four hardware links, the number of
tasks on neighbouring transputers which can be supported is
limited.

6.3 More than One Multiplexer

Fortunately, there is a way to improve on this situation. This can
be done by using more than one copy of the filemux task.

Up to now, the number 0 port pair of the multiplexer has always been
connected to the number 1 port pair of the filter task. However, it
is also possible to connect the number 0 port pair to another copy
of the multiplexer, which could be on another transputer. In this
way, copies of the multiplexer can be built up into a tree. Figure 6.6
shows how this could be done, and figure 6.7 shows the corresponding
configuration file.

Once again, a user task which is connected to the multiplexer, no
matter how deep into the tree it is, can use the server's facilities as
if it were directly connected. The task's server requests are passed
up the tree of multiplexer tasks until they reach the afserver, and
the response is similarly passed back to the correct user task.

6.4 LiInits

The nurnbcr of MS-DOS files and devices which the afserver can
handle at the sanle time is linlited, currently to 20. This means that

72 Chapter 6

the network of tasks which are supported by filemux may not open
more than 20 files at anyone time. This applies regardless of the
number of filemux tasks involved.

Each C task which is linked with the full run-time library uses up
three of this allotment of 20, for stdin, stdout and stderr. As a
result, the maximum number of tasks which can be supported by
the multiplexer network is currently 6.

6.5 TerDlination of an Application

When a task which is linked to the full run-time Iihrary terminates,
for example by returning from the main function or calling the exit
function, it sends to the afserver a server terminate request. This
causes the afserver to stop executing and return control to DOS.

Obviously, when a number of tasks are using the server, this cannot
be allowed to happen. Accordingly, filemuJ: does not pass on a
server terminate request until all the the tasks it supports have tried
to send one.

The effect of this is that the afserver does not terminate until it
has been asked to do so by every task in the application which is
supported by filemux. It is not enough for a task to go into a loop,
or to be waiting for input; if this happens, the application as a whole
will not terminate. Every task must terminate properly.

Global Input/Output

host a1server
o

o
filter

o
root

1

user1
2

1ileaux
2

1

2 user2 two

73

Figure 6.4: Task on Neighbouring Transputer

74

processor host
processor root
processor two
wire? root[O] host[O]
wire? root[1] two[O]
wire? root[2] two[1]

tast afserYer ins-1 outs-1
tast filter ina-2 outs-2 data-tOI
tast file.ux in.-3 outs-3 data-66S6
tast user1 in.-3 out.-3 data-SOl
tast user2 ins-3 outs-3 data-SOl
place afserver host
place filter root
place file.ux root
place user1 root
place user2 two
connect ? filter[O] afserver[O]
connect ? afserver[O] filter[O]
connect ? filter[l] file.ux[O]
connect ? file.ux[O] filter[l]
connect? file.ux[l] user1[1]
connect? userl[1] file.ux[1]
connect ? file.ux[2] user2[1]
connect ? user2[1] file.ux[2]
connect? user1[2] uaer2[2]
connect? user2[2] userl[2]

Figure 6.5: Task on Neighbouring Transputer

Chapter 6

Global Input/Output

host af.erver
o

o

filter

o
root

user1

1ile.ux
2 3

1 1
1

user2

75

.
------ --- ------ --- --------_. --- --- ------ -- --- ------ --- --- ---_.- --. ---- --- --- --- --- --- -- ..

0

fileaux
2 3

two 1 1
1 1

user3 user4 userS

Figure 6.6: Networking Multiplexers

76

processor host
processor root
processor two
wire? root[O] host[O]
wire? root[1] two[O]

task afserver ins-1 outs-l
task filter ina-2 outs-2 data-l01
task auxl fil..fileaux iDa-4 outs-4 data-6912
task aux2 file-fileaux iDa-4 out.-4 data-6912
task userl in.-2 outs-2 data-SOl
task user2 in.-2 outs-2 data-SOl
task u.er3 in.-2 outs-2 data-SOl
task user4 in.-2 outs-2 data-SOl
task userS ins-2 outs-2 data-SOl
place afBerver host
place filter root
place 1lUI1 root
place aux2 two
place user1 root
place user2 root
place user3 two
place user4 two
place userS two
connect ? filter[O] afserver[O]
connect ? afserver[O] filter[O]
connect? filter[l] auxl[O]
connect? auxl[O] filter[l]
connect? auxl[l] userl[l]
connect? user1[1] auxl[1]
connect? auxl[3] user2[1]
connect? user2[1] .uxl[3]
connect? auxl[2] aux2[O]
connect? aux2[O] allIl[2]
connect ? .ux2[1] user3[1]
connect? user3[1] aux2[1]
connect ? aux2[2] user4[1]
connect ? user4[1] aUI2[2]
connect? aux2[3] UBer5[1]
connect? user5[1] aux2[3]

Figure 6.7: Networking Multiplexers

Chapter 6

Chapter 7

Processor Farms

The previous chapters showed how to create a parallel application
for a multi-transputer system with a fixed hardware configuration.
In this chapter we look at how to build one of the "processor farm"
applications mentioned in the Introduction to Pamllel C in chapter 4
which will automatically flood-fill an arbitrary network of transput
ers with copies of a "worker" task.

Three things must be written to create a processor farm application:

1. A master task to split up the job into independent work pack
ets.

2. A worker task, which is automatically copied to each node of
the network.

3. A configuration file, describing the memory requirements and
other attributes of the tasks.

In this chapter we will use a prograrn which displays pictures of the
now-farnous "Mandelbrot Set" on an IBM PC-type host equipped
with a CGA-compatible display as an example processor farm appli
cation.

78 Chapter 7

The full source code of the Mandlcbrot master and worker tasks,
and of the configuration file required, is printed in appendix G.
These files are also supplied in machine-readable form in the
\tc2v2\examples directory, along with a batch files (mandelt4. bat
and mandelt8. bat) to compile, link and configure the example files
into an executable application. Section 7.5 at the end of this chapter
explains how to run the demonstration if you want to try it out before
reading further.

The Mandelbrot program is suitable for running on a processor farm
because each part of the final picture can be computed independently
of all the others.

The master task has to split the job up into lots of small units
which can be handled independently by the "farm workers". In the
Mandelbrot case this is easy: the master divides up the screen area
into 100 small squares, and sends the coordinates of the individual
squares out into the network as work packets. Any idle worker
receiving a packet calculates the required graphics display bitmap
for that part of the picture and sends it back as a result packet.

Both the master and worker task make use of a package of functions
(the "net" functions) which provide a procedural interface to the
underlying message-based software which routes work packets from
the master to free worker tasks and carries result packets back again.
The net_send and net_receive functions used by the master and
worker tasks must be declared by including the appropriate header
file:

'include <net.h>

The net_send and net_receive functions are described in deta.il in
the reference part of this manual, starting on page 290.

Processor Farms

7.1 The Worker Task

79

If you look at the code of the Mandelbrot worker task you will see
that it is purely sequential. It consists of a single loop:

1. Get a work packet by calling net_receive. The work packet
identifies the individual square of the display which is to be
computed.

2. Work out the graphics display for that square in the counts
array member of the result packet structure r.

3. Send the result packet back to the master task by calling
net_send.

4. Go back to step 1.

The worker task does not care which processor it is executed on and
must not communicate explicitly with other tasks. All communica
tion between workers and master is handled "behind the scenes" by
net_send and net_receive.

The only other restriction on the worker task is that because it
must be replicated throughout the network and therefore cannot
be directly connected to the afserver it must be linked with the
stand-alone run-time library.

7.2 The Master Task

The master task of a processor farm application has three basic
functions.

1. Split up the job into work packets. It sends the work packets
out into the farm of worker tasks by calling net_send. The
master simply does this as fast as it can: whenever the network
of worker tasks becomes saturated, net_send is automatically

80 Chapter 7

blocked until a worker task becomes idle. Because the routing
software is buffered, the network can hold a number of packets
waiting to be processed; this ensures that processors are idle
for a short a time as possible. Consequently, the network will
not be saturated until all the workers are working, and all the
buffers are full.

2. Receive result packets from the network by calling net_receive.
Ifno result packets are available, net_receive will wait for one
to arrive before returning.

3. Perform any I/O required by the worker tasks.

To prevent incoming result packets being blocked by the net_send
function waiting for a worker to become free, or conversely the send
ing of work packets being blocked by net_receive waiting for a
reply, these functions must be performed in parallel.

In the example implementation of the Mandelbrot program these
functions are performed by three parallel execution threads: send,
receive and main, which are synchronized using semaphores.

7.3 The net Package

Descriptions of the functions in the net package may be found in
chapter 11.

The administration of a processor farm is under the control of a
task called frouter (see chapter 20). Each node in a processor farm
contains a copy of this task; all the copies, and the master and worker
tasks, are connected together by the flood-filling configurer (see sec
tion 7.4 below). This network of frouter tasks can be regarded by
the programmer as a single entity, whose job it is to ensure that
messages arrive at their correct destinations.

Processor Farms

7.3.1 Functions net_send and net_receive

81

The function net_send is used to send a message to the network,
and net_receive is used to receive one from the network.

Messages sent to the network by the master task (using net_send)
are routed to an idle worker task, if necessary passing through more
than one node in order to reach one. At each level of re-direction,
the messages are buffered. Only if all the worker tasks are busy, and
all the buffering is full, will a call on net_send by the master task
have to wait.

Messages sent to the network by worker tasks are routed back to the
master task, once again passing through more than one transputer
if necessary.

There is a limit on the size of a buffer that can be submitted to
net_send; the constant ~ET_MAX_PACKET_LENGTHis defined in the
package file to have this value (currently 1024). If the message you
wish to send is longer than this, it must be broken into a number
of packets. The last packet of the message should be sent with the
complete parameter of net_send set to the value 1; this should also
be done if there is only one packet in the message. All the other
packets should be sent with complete set to the value o. When
a packet is received, net_receive sets its complete parameter to
the value used when the packet was sent. The network will ensure
that a sequence of packets will arrive in the right order, but it is
thc receiving task's responsibility to fit the sequence of packcts back
together a.ga.in.

It is best, however, to design the application to use messa.ges which
are srnaller than 1024 bytes, as long packets can clog up the network
and block packets being delivered to other nodes.

82 Chapter 7

7.3.2 The net_broadcast function

Sometimes you may wish to start a run of your processor farm appli
cation by initialising all the worker tasks with the same set of data.
These could be parameters obtained from the user, for example, or
data tables which vary from run to run. This can be done using
net_broadcast.

The net_broadcast function should only be used by the master
task. Each call results in a copy of the broadcast message being sent
to every worker task in the processor farm. The broadcast message
can be received by the worker tasks by using net_receive in the
normal way. The most usual time to do a broadcast would be at
the beginning of the run, but a message can be broadcast whenever
the network is idle; that is, when all the work packets sent out by
the master task have been answered by the worker tasks by sending
a result packet. However, as there is no method to tell a broadcast
message from a normal work packet, it is up to the programmer to
ensure that the worker tasks never get confused.

A broadcast message can be any length. If necessary, net_broadcast
will break it up into packets for transmission through the network. In
this case, the worker tasks will have to call net_receive more than
once to receive it, checking the complete parameter as described
above.

Note that net_broadcast is the only reliable method to send an
identical message to every worker task. Repeatedly calling net_send
is unlikely to work.

7.4 Building the Application

Once the master and worker tasks have been compiled, the master
should be linked with the standard run-time library (t4ctask or
t8ctask); the worker task must be linked with the stand-alone run
time library (t4cstask or t8cstask).

Processor Farms 83

The executable file containing the code of these tasks along with the
extra software to flood-fill a transputer network with copies of the
worker task is generated by the flood-fill configurer, fconfig.

7.4.1 Configuration File

Like the fixed-network configurer, fconfig requires a configuration
file as input. This must specify at least:

• the filename of the master task;

• the filename of the worker task;

• the memory requirements of the worker task.

The configuration language accepted by fconfig is a subset of that
accepted by config.

The minimum configuration file for the Mandelbrot example would
be:

task .aster
task worker dataa 10t

fconfig would search for the master task in master. b4, and for
the worker task in vorker. b4. These file names can be over-ridden
using the FILE attribute of the TASK statement, as shown below,
but the task identifiers master and worker are special: you must use
these names to identify the master and worker tasks to the flood
configurer.

If the alternative configuration file below were used, the config
urer would expect to find the tasks in files caJled mandelm. b4 and
mandelv. b4.

task .aster file=aandel.
task worker file=aandelw data-tOt

84 Chapter 7

The DATA size specification is required for at least one of the tasks.
Other attributes governing placement of stack memory in on-chip
RAM and so on are covered in the reference part of this manual.

It is not required (and indeed not possible) to specify INS or OUTS
attributes for the master and worker tasks in their configuration
TASK statements: all the ports and connections required are gener
ated automatically by the flood-configurer.

To run the flood-configurer by hand, use a command of the form:

feonfig configuration-file eXe£utable-/ile

For example:

C>feonfis .and.l.efS .and.l.app

The executable file generated by the f1ood-configurer will place the
master task and one copy of the worker task on the root transputer,
and distribute copies of the worker task to any other transputers
connected to the root. A filter task allowing the master task to
communic.ate with the afserver is automatically added by fconfig,
along with the loader and router tasks required to copy the workers
across the network and carry messages between them and the master
task.

This additional software occupies about 20KB of RAM in the current
version of Parallel C, so each node in our example network must have
at least 32KB of RAM to support the lOKB worker task declared in
the configuration file along with a router and loader. The root node
must be larger again in order to support the master and filter tasks
as well.

7.5 Running the Example

The kit includes batch files which will automatically compile, link
and configure the the Mandelbrot example.

Processor Farms 85

To run the program from a temporary directory on a network of T8s,
you can use the following commands:

C>cd \

C>akdir teap

C>cd teap

C>copy \tc2v2\exaaplea*.*

C>aandelt8

To run on a network of T4s, you should use the command mandelt4
instead of mandelt8. Each of these batch files results in an appli
cation file (called fmandel. b4) which can be run in any network
consisting only of the appropriate type of transputer. Section 7.6
below describes how to flood-configure applications to run on a net
work containing a mixture of T4 and T8 processors.

The executable file can be loaded and run in the normal way:

C>afserver -:b faandel.b4

When it starts, the Mandelbrot program reminds you that it needs
an IBM PC compatible host machine with CGA graphics to work
properly, then prompts you to enter several numeric parameter val
ues on the keyboard.

Some suitable test values are:

Input X coordinate: -2
Input Y coordinate: -1.25
Input Y range: 2 .5
Threshold 1: 5
Threshold 2: 20
Threshold 3: 50

Once the display is complete, the host system's bell will be rung. IIit
Enter, and the first prompt will reappear. You can then experiment

86 Chapter 7

with other sets of parameter values. A more interesting set of values
is: -0.25, 0..8, 0.25, 10, 20, 50.

Use Ctrl-C when you want to stop the program.

Once you have the program working, you can make it run faster
simply by plugging more transputers into the network and rebooting
the program.

The batch files mandelt4. bat and mandelt8. bat also result in an
other file, mandel. b4. This is a statically configured application
including a master task and one worker, which are both placed on
the root transputer.

7.6 Heterogeneous Networks

A flood-filled application compiled for the T4 and configured using
the simple master and worker forms of task declaration may work
on a mixed network of T4 and TB processors if it uses only integer
operations. This approach will not in general work for an application
which uses floating-point operations, because of the incompatibilities
between the T4 and T8 instruction sets.

Mixed networks of T4 and TB processors are properly handled by an
extension to the configuration file, like this:

task t4aaster file=aandela4
task ta-aster filezaande1ll8
task t4vorker file=.andelv4 data-lOk
task tSvorker file-aandelv8 data-lOk opt=stack

Separate tasks must be compiled and linked for T4 and TB proces
sors; the Parallel C software ensures that the right task ima.ges are
loaded into the right processors.

Again the names t4master, t8master, t4vorker and t8vorker are
special, but the file names derived from them can be over-ridden by
the FILE attribute, as above.

Processor Farms 87

Note that it is possible to specify different memory optirnisation
options (e.g., opt=stack above) for the T4 and TB variants of a
task. This is useful because the T4 and T8 have different amounts
of on-chip RAM.

If a t4master task is declared, a corresponding t8master task must
also be declared, and similarly for the worker task.

At present, T425 processors cannot be included in heterogeneous
flood-filled networks.

88 Chapter 7

Chapter 8

Developing T2 Programs

This chapter shows you how to use the Parallel C compiler to develop
programs for 16-bit transputers, hereafter referred to as T2 trans
puters. Many of the features of the compiler are the same whether
you are compiling for T2, T4 or TB transputers.

The preceding chapters describe working with T4 and TB transputers
in detail. This chapter will concentrate on the differences you will see
between T2 transputers and the other variants. For the convenience
of T2 users, appropriate information drawn from chapters 9, 10, 11
and 12 is also be presented here.

8.1 Compiling

T2 support

A C source progranl is compiled into a binary object (. bin) file of
T2 transputer instructions by a command of the form:

t2c source-file

90 Chapter 8

Note that code compiled for a T2 will not run on 32-bit transputers
(and vice versa) so you must use the command appropriate for the
type of processor you have in mind.

The source-file is the filename of the C source program which is to
be compiled. If no filename extension is given in the command, . c
is added automatically.

So, to compile the file hello. c for the T2, you would give the
command:

C>t2c hello

If the source file contains no errors, an output file hello. bin is
produced. If the compiler detects errors in the source program, it
writes diagnostic messages to the MS-DOS standard output stream.

8.2 The Compiler in T2 Mode

8.2.1 Language Restrictions

This section should be read in conjunction with section 9.1.

The compiler .imposes a number of restrictions on the sorts of pro
gram it can handle when generating instructions for T2 transputers.

• There is no support for floating-point quantities. This means
that you cannot declare variables of type float or double.
Similarly, you cannot use floating-point constants.

• The only sizes of integer variable you can use are int (signed
or unsigned), short, and char. int and short will give you a
16-bit integer which will have an even address. char will give
you an 8-bit unsigned integer.

• Any integer expressions which are evaluated while the program
is being ('pll!piled (for example, values used for conditional

Developing T2 Programs 91

compilation with lif) will be evaluated to 32-bit accuracy.
This can give different answers from the evaluation of simi
lar expressions during program execution. For example, the

. condition on the following lif statement is true:

lif (0%8000 « 1) » 1 .. 0%8000

However, note the effect of the following expressions when the
program runs on a T2 transputer:

int %.J.Z'
I • 0%8000.
J • %«1.
Z • J»1 •

/* J viII Bet the value 0 */
/* z viII Bet the value 0 ./

• Integer constants to be used during program execution will be
evaluated to 32-bit accuracy and the least significant 16 bits
will be used. A warning will be issued if the most significant
16 bits of the 32-bit representation are not all the same. This
means that, for example, if you write the constant Ox12345 in
a program, the compiler will generate a warning message and
use the value Ox2345 instead.

• If you use the keyword long in a declaration, the compiler will
ignore it and warn you of this fact.

8.2.2 Pre-defined Macros

When compiling for T2 transputers, the following macros will be
automatically defined with the value '1 ':

_transputer
_3L
_IMST2

l'hc following rnacros will be undefined, as they are used to indicate
that a 1'4 Of TB conlpilation is being perfoflned:

IMST4
_IMST8
_IMST8A

92

See also section 9.5.

8.2.3 Data-type Representations

Chapter 8

A full discussion of data-type representations for all processors may
be found in section 9.8.

8.2.3.1 Integral Data Types

On the T2, a byte is 8 bits and a word is 16 bits (2 bytes). The
C integral (i.e., integer or character) data types are represented as
follows:

Type Bits Bytes Minimum Maximum
char 8 1 0 255
signed char 8 1 -128 127
int 16 2 -32768 32767
uns igned int 16 2 0 65535
short int 16 2 -32768 32767
unsigned short int 16 2 0 65535

The long data types are not supported.

8.2.3.2 Pointer Types

All pointer types (i.e., types of the form "pointer to x") are repre
sented by a single word (2 bytes, 16 bits) whose value is the address
of the object pointed to.

8.2.3.3 FI~ting Types

Floating types are not supported on the T2.

Developing T2 Programs

8.2.4 Compiler Error Messages

93

The following special messages may be output when the compiler is
working on a T2 program.

• no support for "double" types

• no support for IIfloat" types

• no support for IIlongll types

• Warning: integer constant truncated to 16 bits at line
number

8.3 Linking T2 Tasks

Once a C program has been compiled into an object (. bin) file, it
must be linked with any external functions it requires before it can
be run. This operation is performed by the tinker, linkt.

Standard functions are provided in sacrtlt2. bin, the T2 stand
alone run-time library. A single batch file is provided to link together
as many as nine object files with this library to produce an executable
(position-dependent) program.

To link a single T2 object file produced with the t2c compiler use
the command:

t2clink object-file

This is equivalent to the command:

linkt/.64k object-file sacrtlt2

To link multiple T2 object files use the command:

t2clint object-filel object-file2

For example:

94

C>t2clink .ain bits pieces

Chapter 8

The t2clink batch file assumes that the target T2 processor has
64KD of read-write memory. If this is not the case with your pro
cessor, you must add appropriate switches to the command line, as
described below.

8.4 Linker Support for the T2

The linker is described in full in chapter 12. This section covers only
those facilities provided to support the T2 processors.

8.4.1 Linker Command Switches

The following command-line switches are only for use when linking
code for T2 processors:

IMsize

IAsize
IFe
IFA
IFS
IFH
IRsize

define size of read-write memory area (including on-chip
memory)
define size of stack area
optimise code area
optimise stack (automatic) area
optimise static data area
optimise heap area
define size of read-only memory area

When you give the size of an area you can specify it either in bytes
(e.g., 4096) or in kilobytes (e.g., 4K).

8.4.1.1 Switch IMsize

This switch gives the total number of bytes of rea.d-write memory
available to the program. The memory will be used to hold the static
data, heap and stack for the running program. In addition, it will

Developing T2 Programs 95

hold the executable code of the program unless the code is to be held
in read-only memory.

You must give a IM switch when linking for T2 systems unless you
intend to control the linker's memory allocation by means of modified
IF switches.

The batch file t2clink provides a default value of 64K for this switch
(/M64K) but you may override this default with another I" switch of
your own, e.g.,

C>t2clint .aiD bits pieces/.2ft

If more than one IM switch appears on a command line, only the last
will have any effect.

The linker will give a warning if you specify less than 2048 bytes
(the size of the on-chip RAM) or more than 65536 bytes of read
write memory.

8.4.1.2 Switch I Asize

This switch controls the number of bytes of read-write memory to
be used for the stack ("automatic" storage in C terminology). The
linker will give a warning if you specify less than 128 bytes of stack.
Memory for the stack is taken from the read-write memory remaining
after the code and static data areas have been allocated.

If you do not specify this switch then the whole of the remaining
memory will be used for a combined heap and stack area. The stack
will grow towards the hea.p from the more positive end of the area
while the heap will grow towards the stack from the more negative
end of the area.

IHeap ----- -- Stack I

If you do give a lA switch, the given amount of Inemory will be
allocated to the stack and the whole of the remaining Inelnory will

96 Chapter 8

be used for the heap. In this case the stack and heap areas will be
considered distinct and will not interact.

8.4.1.3 Switches IFC, IFA, IFS, and IFH

These switches are used to control the order in which the various
areas of the program are loaded into the available memory: IFC for
code, IFA for the stack (automatic) area, IFS for static data, and
IFH for the heap.

The linker will usually construct an executable image by laying out
the various areas (code, static data, heap, and stack) in memory,
starting at the most negative address usable--in the fast, on-chip
memory. Consequently the parts of the image which are placed first
will benefit from the speed of this memory.

The IF switches give you control over the order in which the areas
will be laid out. Any area mentioned in a IF switch will be considered
a candidate for "optimisation"-you can think of the 'F' as sta.nding
for "fast". For example, the switches /FC/FS indicate that the code
and static data areas are to be optimised. The order in which you
give the IF switches is of no significance.

The]jnker will lay out all of the optimised areas before it lays out any
non-optimised areas. The order in which areas (optimised or not)
are laid out depends on the presence or absence of the / A switch.

If you do not specify the I A switch, then the stack and hea.p areas
will be combined, as described above. In this case the linker will lay
out the areas in the order: code, static data, and then the comhined
stack and heap.

If you do specify the I A switch, then the stack and h('ap areas will
remain distinct, and the linker will layout the areas in the order:
stack, code, static data, and then heap.

Developing T2 Programs 97

The following pictures should clarify this procedure. Note that in
these pictures addresses grow more positive towards the right hand
side.

more negative
-+--memory addresses

C>linkt prog

more positive
memory addresse~

ICode I Static Data I Heap+Stack I
C>linkt prog/fe

I Static Data §] Heap+Stack I
C>linkt prog/a8k

IStack §] Static Data~

C>linkt prog/a8k/fc

ICode 8 Static Data IHeap I
C>linkt prog/a8k/fs/fa

IStack I Static Data~ Heap I
The system described is designed to allow the most common require
ments to be specified simply.

8.4.1.4 Modified IF Switches

The IF switches may be modified so that instead of simply marking
areas for optiInisation they explicitly specify the memory locations
to be used.

98 Chapter 8

To modify the switches you append an address and size specification
of the form start: size, where start is the address for the start (small
est address) of the area and size is the size of the area in bytes.
If start or size begin with a '.' character they will be interpreted
as hexadecimal, otherwise they will be interpreted as decimal. All
values of start and size must be even. Note that the start address
of the stack area is not the initial value for Wptr; that value will be
start + size. For example:

C>linkt x J Z /fc'1000:80 /fh.2000:.2000 /1a.8000:4096 /180:8

The linker will check that these areas do not overlap and issue an
error message if they do. Similarly, the linker will issue an error
message if either the code area or the static data area is too small
for the linked image. The total size" of the static data area for a task
will be:

modul.

2 X modules + E statici
i=l

There are several implications of modifying IF switches in this way:

1. If you specify one modified IF switch then you must specify
and modify all four. The only exception to this rule is when
you are linking for ROM (described later);

2. There will be no automatic optimisation or memory allocation.
Memory allocation is fully under your control;

3. The stack and heap areas will be considered separate, even
though they may be adjacent. This means that while the
program is running the heap will never extend into the stack
area.

8.4.1.5 Switch IRsize

The IR switch instructs the lioker to generate an image suitable for
burning into ROM. The image size will be exactly the numher of
bytes specified in the IR switch.

Developing T2 Programs 99

When a ROM program starts execution, it copies its static data from
the ROM into read-write memory.

The code may either be left in the ROM or copied into the read-write
memory. This is controlled by the IFC switch. If no IFC switch is
specified then the code will be executed from the ROM. If IFC is
specified (modified or not) then the code will be copied into the
read-write memory before being executed.

Note that when linking for ROM with modified IF switches you may
omit the modified IFC switch if you wish the code to be executed
from ROM. Of course, you should make sure that none of the areas
overlaps any ROM addresses.

8.4.2 The Bootstrap

Programs are loaded into T2 systems by a speciaJ piece of code caJled
the "bootstrap". This code needs to use about 160 bytes of read
write memory while it is loading your program. The linker will
automatically arrange for the bootstrap to use part of the memory
that eventually will be used for your stack area or heap area. You
will get a fatal error from the linker if it finds that neither of these
areas is large enough for the bootstrap, so you should ensure that
one or other of them is at least 160 bytes in size.

8.5 The Run-TilDe Library

The T2 is supported only by a stand-alonc run-time library,
sacrtlt2. bin. This contains a subset of the functions described
in chapters 10 and 11.

As we noted above, a word on the T2 is 16 bits (2 bytes). l"'his Ineans
that functions such as chan_in_vord will only tra.nsfer 2 bytcs of
data.

100 Chapter 8

The following sections list the functions that are defined in the spec
ified header files. Discussions of each of the various modules of the
run-time library may be found in chapter 10, and each individual
function is described in chapter 11, which is arranged alphabetically
by function name.

8.5.1 Functions Defined in alt.h

alt_novait alt_novait_v8c alt_vait
alt_vait_vec

8.5.2 Functions Defined in chan. h

chan_in_byte
chan_in_message_t
chan..init
chan_out_message
chan_out_vord_t

chan_in_byte_t
chan_in_vord
chan_out_byte
chan_out_message_t
chan_reset

chan_in_message
chan_in_vord_t
chan_out_byte_t
chan_cut_vord

8.5.3 Functions Defined in chanio. h

_inmess _outbyte _outmess
_outvord

8.5.4 Functions Defined in ctype. h

isalnum isalpha isascii
iscntrl isdigit isgraph
islover isprint ispunct
isspace isupper isxdigit
tolover toupper

Developing T2 Programs

8.5.5 Functions Defined in locale. h

localeconv setlocale

8.5.6 Functions Defined in par. h

8.5.7 Functions Defined in sema. h

101

sema_init
sema_test_wait

sema_signal
s8JDa_wait

sema_signal_n
88JDa_wait_D

8.5.8 Function~ Defined in setjmp.h

longjmp setjmp

8.5.9 Functions Defined in signal.h

raise signal

8.5.10 Functions Defined in stdlib.h

abs
bseareh
div
malloe
mbtovc
vcstombs

atexit
calloc
exit
mblen
qsort
wctomb

atoi
cfree
free
mbstoves
realloc

102 Chapter 8

8.5.11 Functions Defined in string.h

memchr memcmp memcpy
memmove memset strcat
strchr strcmp strcpy
strcspn strlen strncat
strncmp strncpJ strpbrk
strrchr strspn strstr
strtok

8.5.12 Functions Defined in thread. h

thread_create
thread_restart

thread_deschedule
thread_start

thread_priority
thread_stop

8.5.13 Functions Defined in timer.h

timer_after timer_delay timer_nov
timer_vait

8.6 Running T2 Programs

Usually you would run T2 programs under the control of another
transputer (or completely stand-alone, e.g. from ROM). It is unlikely
that you would be able to run a T2 program directly from the server
running in the host.

There are two ways in which the T2 shown in figure 8.1 can be loaded.
The first, and preferred, method is to use the general configurer and
the second method is to use a small program on the T8 to pass
the code through to the T2. These methods are described in the
following sections.

Developing T2 Programs

HOST

0

TB 2 0 T2

Figure 8.1: Example Network with T2

8.6.1 Using the Conftgurer to Boot a T2

103

The use of the general configurer, config, is discussed in chapter 5.
Details of the configuration language, and more about the function
ing of the configurer may be found in chapter 18.

The configurer can be used to boot a processor at the edge of a
network with code from a specified file. Processors using this mecha
nism are declared in the configuration file using the BOOT attribute,
which is described in more detail in section 18.2.6.1.

The configuration file should describe the main network ofT4 and T8
transputers. The T2 processor should be declared using the BOOT
attribute to specify the file which contains the code for the T2.

The wire between the T2 and the main network should be declared.

l"'he task in the main network which will comnlunicate with the T2
task should have its ports bound to the appropriate link addresses.
You luust use the actual hardware link addresses to do this.

For example, the main network in figure 8.1 consists of a single T8

104

so the configuration file could be as follows:

! Exa.ple of configuring with T2
processor host
processor root TS
processor POOl BOOT-"t2code.b4" T2

Chapter 8

wire? host[O] root[O]
wire? root[2] P001[O]

! connect PC to network

! Task declarations
task afserver ins-t outs-t
task filter ina-2 outs-2 data-l01
task aonitor in8-3 outs-3

! Assign software task8 to phJ8ical proce8sor8
place afserver h08t
place filter root
place aonitor root

! Set up the connections between the tasks.
connect ? afserver[O] filter[O]
connect ? filter[O] afserver[O]

connect ? filter[l] aonitor[t]
connect ? aonitor[t] filter[l]

! bind ports to link to 12 processor
bind input aonitor[2] value-aS000001S
bind output aonitor[2] value-aSOOOOOOS

I/O to 12
over link 2

Here, monitor is a task compiled and linked for the T8 as described
in chapter 5. The monitor task would communicate with the task
on the T2 using its port pair 2. The T2 processor would be booted
with the code from the file t2code. b4.

8.6.2 Piping Code into a T2

It may be preferable to use a program on the T8 to pass the code
through to the target T2. This mechanism is only suitable when the
target T2 is connected directly to the root transputer.

Developing T2 Programs 105

The program below shows how the T2 in figure 8.1 can be loaded
from the T8. It passes the code of the file named as a parameter to
output link 2 and then calls a function which the user would write
to communicate with the program in the T2.

Idefine TIMEOUT 31250
'include <atdio.b>
'include <chan.h>

aain(int argc, char .arp[])
{

,- about 2 ••conda -,

FILE -t2fi
int n, ei
char buffer[256];
if (argc ,- 2) {

printf("T8: Vr0D8 nuaber of arguaenta\n"); return;
},-
•• open the T2 iaag8 file.,
if ((t2f - fopeo(argv[l]. "rb") .. lULL) {

printf("Cannot acceSB %8\0", argv[I]). return;
}

,*
_. boot the iaage down link 2

*,
while (0 - fread(buffer. I, sizeof(buffer). t2f» {

if C!chan_out_aeBsage_tCn, buffer, Link20utput. TIMEOUT» {
printf("Tiae-out while booting T2\n"); return;

}

}

,*
•• co..unicate with the T2.,
User_Function();

}

This program would be compiled and linked for the T8 and then run
as follows:

C>afserver -: b progname. b4 codefile. b4

Ilere, progname is the pipe program listed above and codefile is the
name of the file of code compiled and linked for rr2 transputers.

106 Chapter 8

8.7 ParaDleters to Main

A T2 program will be invoked from the surrounding initialisation
code by a call to the function main. The call will pass in two chan
nel pointer parameters boot_l ink_in and boot_l ink_out. These
parameters will contain respectively the addresses of the input link
from which the program was loaded and its corresponding output
link address.

yoid .ain(CHAI *boot_link_in, CHAI *boot_lint_out)
{

}

If the T2 program has been loaded from ROM then both of these
parameters will have the value zero.

Note that the parameters passed to a T2 main function are quite
different from those passed to a T4 or TB main function, as described
in section 9.2.

Introduction

Overvie\V

The chapters which follow provide detailed reference material for use
with the Parallel C compiler. They are intended for use by readers
who have already covered the "Getting Started" and "Tutorial" parts
of the manual, and have run at least some of the examples described
there.

• The compiler itself is described in chapter 9. This includes
descriptions of the language accepted by the compiler, the
option switches used to operate it and a complete list of the
error messages it can produce.

• The discussion of th-e compiler's associated run-time library is
divided into two chapters. An overview of the library, divided
into sections by function, is provided in chapter 10. A detailed
definition of every entry in the run-time library, arranged in
alphabetical order of name, follows in chapter 11.

• The utility programs provided with the compiler are described
in chapters 12 to 17.

• The configuration software takes up two chapters in this man
ual. First, a generaJ description of the configuration langua.ge
is given in chapter 18. This is followed by specific information
about the flood-fill configurer (chapter 19).

108 Introduction

• A number of "black box" task images are provided in the
distribution disk. Task "data sheets" are provided for these
in chapter 20.

Standard Syntactic Metalanguage

In a formal description of a computer language, it is often conveni
ent to use a more precise language than English. This language
description language is referred to as a metalanguage. The metalan
guage which will be used in this manual is that specified by British
Standard 6154[9]. A tutorial introduction to the standard syntactic
metalanguage is available from the National Physical Laboratory[10].

The BS6154 standard syntactic metalanguage is similar in concept
to many other metalanguages, particularly those of the well-known
Backus-Naur family. It therefore suffices to give a very brief informal
description here of the main points of BS6154; for more detail, the
standard itself should be consulted.

1. Terminal strings of the language-those not built up by rules
of the language-are enclosed in quotation marks.

2. Non-terminal phrases are identified by names, which may con
sist of several words.

3. A sequence of items may be built up by connecting the com
ponents with commas.

4. Alternatives are separated by vertical bars ('I').

5. Optional sequences are enclosed in square brackets ('[' and ']').

6. Sequences which may be repeated zero or more times a.re en
closed in braces ('{' and '} ') .

. 7. Each phrase definition is built up using an equals sign to sep
arate the two sides, and a semi-colon to terminate the right
hand side.

Chapter 9

C Compiler Reference

This chapter contains technical information about the way the C lan
guage is implemented on the transputer. Note that the information
in this chapter applies only to the current version of the compiler; it
is not guaranteed that future versions of the compiler will behave in
the same way.

9.1 The C Language

The basis of the C language adopted by 3L for Parallel C is the one
given by Kernighan and Ritchie (the designers of the language) in
the first edition of The C Programming Language[I]. The definition
of C given in this book will be referred to as "K&R C".

3L have also included in the compiler the most important features
of the American national standard for the C language, as defined
by ANS X3.159-1989[3]. We shall refer to this standard dialect as
"ANSI C". ANSI C features which have been adopted by Parallel C
are discussed j n section 9.1.1 below.

Although much of the power of C comes from the library functions for
input and output of data, string handling and so on supplied along

110 Chapter 9

with most compilers, K&R C does not define a set of functions which
all compilers must provide. For this reason, the library functions
provided with Parallel C (see chapter 10) are based on the ANSI
standard. These have been supplemented with functions to support
"special" transputer facilities, and a number of functions which pro
vide compatibility with older versions of the run-time library, or with
run-time libraries on other systems.

In order to use Parallel C and make best use of this manual, we
recommend that you should have access to the information in the
first edition of The C Programming Language[l]. The second edition
of the book[2], which describes ANSI C, may also be useful.

The differences between Parallel C, and K&R C are described here.

9.1.1 ANSI Features

The following ANSI C features are supported by Parallel C. The
section numbers in the text refer to sections of the ANSI standard[3].

9.1.1.1 Trigraph Sequences

The ANSI trigraph sequences, as described in ANSI 2.2.1.1, are
recognised by the compiler.

9.1.1.2 Escape Sequences

All the ANSI escape sequences are recognised by the compiler, in
cluding hexadecimal escape sequences of the form \xdd; for example,
\xoo.

C Compiler ReFerence

9.1.1.3 Translation Limits

III

The maximum length of a string literal is about 4 KO; see
ANSI2.2.4.1.

9.1.1.4 Keywords

The following identifiers are reserved for use as keywords, and may
not be used otherwise:

asm double int typedef
auto else long union
break enUID register unsigned
case extern return void
char float short volatile
const for sizeof vhile
continue fortran static
default goto struct
do if svitch

Parallel C includes the ANSI C keywords const, enum, void and
volatile. The K&R keyword entry is not implemented. For the
uses of the asm keyword, see section 9.7. Although the fortran
keyword is recognised, it currently has no function in Parallel C.

9.1.1.5 Identifiers

Two identifiers are deemed by the compiler to be the same if their
first 255 characters match (K&R C says 8 characters). Any addi
tional characters are ignored. For external linkage, only the first 31
characters of an identifier are significant. Case is significant, even
for external identifiers processed by the tinker.

The ANSI standard allows compilers to restrict the number of sig
nificant characters for external linkage to 6. For this reason, jf C

112 Chapter 9

programs are to be portable to many different compilers, they should
only use external identifiers which are distinct in the first 6 characters
whether or not the distinction between upper and lower case letters
is ignored.

9.1.1.6 Types

All the ANSI-specified integral types are implemented. This includes
int, short, char and long with the signed and unsigned versions
of each. short variables are 16-bit objects; long variables are the
same size as int variables.

long double declarations are accepted; they are treated as double.

Enumeration (anum) data types are accepted.

The void data type is implemented.

9.1.1.7 Constants

The ANSI suffixes to floating constants ('f', '1, 'F', 'L') and to integer
constants ('u', '1, 'U', 'L') are accepted by the compiler, although
such suffixed constants are not at present treated differently from
unsuffixed ones.

Wide character constants (e.g., L Ja J) and wide string literals (e.g.,
Lllhello ll) are accepted, but are treated like the corresponding non
wide elements.

Adjacent string literals are treated as a single literal. For example,
the following two statements have the same effect:

p • "Hello, .orld";
p • "Hello,orld";

Note, however, that although ANSI allows white space to occur
between the two literals, the compiler does not at present accept
this.

C Compiler Reference

9.1.1.8 Conversions

113

The compiler follows the ANSI standard by performing the "inte
gral promotions" on integer-type values before they are used in an
expression. This means that if the whole range of values of the type
can be represented by an int it is converted into an int; otherwise
it is converted into an unsigned int.

Only after this has been done are the necessary conversions for eval
uating the expression performed. In particular, if at this stage one
of the operands is an unsigned int and the other an int, the int
will be converted to unsigned int.

This will make a difference to the value of expressions only in a small
number of cases. For example,

unsigned char c • 5.
int a. b·-I.
a • (c > b).

With K&R C, a is assigned the value 0 (false). Parallel C follows
ANSI C in assigning it the value 1 (true).

Full details of these conversions may be found in ANSI 3.2.1. Users
may also be interested in the corresponding section of the Rationale
for the standard, where this change is described as "the most serious
semantic change made by the Committee to a widespread current
practice" .

Note that the integral promotions treat unsigned short values dif
ferently for the T2 and T4/T8; for the former, they become unsigned
int, and for the latter, int.

9.1.1.9 float expressions

Parallel C follows ANSI by perforrrling floating-point arithrrlctic
which involves only float values in single precision. This differs

114 Chapter 9

from K&R C, which performs all floating-point arithmetic in double
precision by default.

It is important to note that at present Parallel C does not support
single-precision floating-point constants; all floating-point constants
are treated as double precision. Consequently, any floating-point
expression involving constants are evaluated in double precision.

If necessary, you can invoke the compiler with the IGd switch, which
will make it use double-precision arithmetic as required by K&R.

9.1.1.10 Selecting Structure and Union Members

Parallel C follows ANSI in its treatment of the'.' and "->" opera
tors. The first operand of the'.' operator must be of structure or
union type, and the first operand of "->" must be of type pointer
to structure or union. The second operand in both cases must be
member of the appropriate type; Parallel C treats as an error any
expression of the form a. b or p. b, where b does not appear in the
list of members of the structure type designated by a or p.

It is possible to select the members of a structure value, such as
the result of a function or the value of an assignment or conditional
expression. Expressions of the form z++->a are also allowed.

The descriptions of the'.' and "->" operators in K&R sections 7.1
and 14.1 are both obsolete.

9.1.1.11 type name Syntax Relaxed

K&R gives the definition of the type name construct (used in casts
and for the sizeof operator) as:

type name ==
type specifier, abstract declarator;

C Compiler Reference 115

This allows only one type specijier before the abstract declarator,
disallowing expressions like:

sizeof(long int)
(unsigned ahort) s.all

Multiple type specijiers like long int are allowed in this context by
ANSI C and by Parallel C.

9.1.1.12 Conditional Operator

Expressions of the form (x?a:b) where a and b are both structures
are accepted. The value of such an expression is of structure type,
which may be used, for example, in an assignment (see below). The
standard requires that the two structure operands are of the same
type.

Conditional expressions which have second and third operands of
type void are also allowed.

9.1.1.13 Assignment to Whole struct/union Variables

Parallel C follows ANSI in allowing the assignment operator '=' to
be used to assign a value to a whole struct variable at once. The
value could be the value of another struct variable; or it could be
a struct value, such as the result of a struct function or the value
of another assignment expression or a conditional expression. The
value must be of the same struct type as the variable to which it is
being assigned. For example:

struct { int p, q; } I, Y

x.p = 3; x.q = 17;

y = x; /. struct assignaent ./

After this structure assignlnent, y.p has the value 3 and y.q has the
value 17.

116 Chapter 9

struct tag { int p. q; } ;

void clear(struct tag itea)
{

ite•.p • 0; ite•.q· 0;
}

int exaaple(void)
{

struct tag pair;

pair.p • 3; pair.q· 4;
clear(pair) ;
return(pair.p + pair.q);

}

Figure 9.1: Example of the use of struct arguments

Both assignments in the example below are incorrect because the
types of the operands for '=' do not match.

struct { int p. q; } I

struct { int a. b; } J
int i;

x • ii /* one integer. one struct */
x • y; /* saae size. but different types */

Function arguments may also be struct types (K&R C allows only
pointers to structs as arguments). struct arguments are dcclared
and used in the same way as any other type.

The result returned by the function example in figure 9.1 will be
7 because, like all other types of function arguments in C, struct
arguments are passed by value: clear cannot affcct the contents of
the structure pair which is passed to it, since it works with a copy
of pair named item.

C Compiler Reference

9.1.1.14 Compound Assignment Operators

117

Assignment operators like "+=" are single tokens whose parts ('+'
and '=') may not be separated by white space. If "+ =" is written
instead of "+=", an error message will be printed by the compiler.

The anachronistic forms '=op' for the assignment operators, as de
scribed in section 11 of K&R C are considered illegal. We suggest,
all the same, that for portability reasons assignments should not be
specified using the notation %=-1; rather, the meaning should be
made clear by use of one of the following forms:

% -= 1;
or x = -1;

,. meaning x = x - 1 .,
,. meaning x = (-1) .,

9.1.1.15 Restrictions on struct Member Names Relaxed

In K&R C, the same member name may occur in different structures
only if the fields identified by the member name and all preceding
fields are the same. Parallel C follows ANSI in making no restric
tions on the use of the same member name in different structures.
Programmers who wish to port their programs to other C compilers
should bear this in mind.

9.1.1.16 const and volatile

The ANSI type qualifier keywords const and volatile are accepted
by the compiler in the appropriate contexts. However, they have no
effect.

9.1.1.17 Function Declarators

ANSI-style functions declarators with parameter type lists are ac
cepted by Parallel C. These allow the compiler to check that actual
and formal argument types match in function calls and definitions.

118 Chapter 9

Parallel C follows ANSI by permitting functions which return struc..
ture values.

9.1.1.18 Anachronistic Form of Initialisations

The anachronistic form int x 3; for an initialisation, which is de
scribed in section 17 of K&R C, is not allowed in Parallel C.

The correct modern form of this initialised declaration int x 3;
would be int x a 3;

9.1.1.19 Selection and Iteration Statements

Parallel C allows expressions of type float and double to be used
as control expressions in if and vhile statements and as the second
expression of a for statement.

9.1.1.20 Preprocessing Directives

Preprocessor directives may be preceded on a line by white space,
and the initial '.' character need not fall in the first column.

The 'error preprocessor directive is supported. The syntax is:

'error text

A compiler error message is displayed containing the specified text.

The 'pragma preprocessor directive is accepted, although there are
currently no pragmas available to the user.

C Compiler ReFerence

9.1.1.21 Conditional Inclusion

119

The defined unary operator, as specified in section 3.8.1 of the ANSI
standard, is recognised by the preprocessor. For example:

lif defined(OEBUG)
printf ("loop Yalue-Id\n", i) i

lendif

The 'elif preprocessor directive is implemented.

9.1.1.22 Predefined Macro Names

Two of the predefined macros prescribed by ANSI are provided by
Parallel C.

__FILE__ expands to a character string literal which is the name of
the current source file.

__LINE__ expands to the line number of the current source line (a
decimal constant).

9.1.2 Special Features

The following Parallel C features follow neither K&R C nor ANSI C.

9.1.2.1 Use of sizeof in Array Declarations

Constant expressions used in an array declaration may not contain
the sizeof operator. This example is illegal:

char v [sizeof(int)]j /. illegal exaaple ./

120 Chapter 9

9.1.2.2 Dollar Sign in Identifiers

The dollar sign '$' may appear in identifiers, The dollar sign is
treated as though it were a letter. The following are all acceptable
identifiers:

•rateS
S_aax9

9.1.3 System-dependent Features

Using the features described in this section may cause different effects
with different C compilers.

9.1.3.1 Plain char Type Unsigned

The plain char data type is unsigned in Parallel C. Programs which
assume that plain chars are signed may need to be modified.

9.1.3.2 All Bit Fields Unsigned

Parallel C requires that bit fields in structures are integers. The
class of integer (int, short, long etc.) is ignored: all bit fields are
taken to be of type unsigned int. Bit fields specifically defined as
signed int will be marked as errors.

This restriction is permitted by K&R C (section 8.5), although
ANSI C requires that signed integer bit fields are allowed.

9.1.3.3 » Operator

The use of the » operator results in a logical shift rather than an
arithmetic shift, that is, zeros are brought in at the most significant

C Compiler Reference 121

end of the operand rather than copies of the sign bit. As a result,
the value of the expression (-1»>1 is 7FFFFFFF16 (LONG_MAX) and
not FFFFFFFF16 (-1).

9.1.3.4 Register variables

The register storage class is ignored in Parallel C.

9.2 The C main Function

The C main program function has the following definition.

'include <chan.h>
.ain(int argc. char .argv[]. char .envp 0 •

CHAI *in_ports[], int ins, CHd *out_portsD. int outs);

argc and argv are described in section 3.4.2.

envp is always NULL.

in and out are vectors of pointers to channels. inlen and outlen
are the number of elements in in and out respectively. The C pro
gram can send and receive messages across these channels using the
channel I/O functions described in section 10.5.

If your program is linked with the stand-alone library, main has the
same arguments. However, no command-line arguments are passed
to the program, and as a result argc is always 1, argv[O] is always
1111, and argv[l] is always NULL.

9.3 Running the Compiler

The compiler is run by one of the comnlands t8c, t4c or t2c.

t8c generates object code for the T800 floating-point transputer.

122

t4c generates object code for the T414 32-bit transputer.

t2c generates object code for the T212 16-bit transputer.

Chapter 9

The command line used to invoke the compiler must specify a single
source file name. Wild cards are not allowed.

Option switches may optionally be given on the command line.
Option switches are introduced by the 'I' character; the available
switches are discussed in section 9.4 below.

If the source file is successfully compiled, a zero exit status code is
returned to DOS. If errors are detected, the compiler returns an
exit status code of 1. This feature can be used in DOS batch files to
check whethe~ a compilation was successful.

The compiler creates a number of temporary files as it works. Nor
mally, these are placed in the current directory; however, the envi
ronmental variable TMP may be used to make the compiler put them
in another directory. For example, to make the compiler place the
temporary files in the root directory on disk D.:, the following DOS
command could be used.

C>set TItP-D:\

The temporary files are called ctemp.l, ctemp.2 and ctemp.3. Usu
ally, the compiler will delete them at the end of the run, but occa
sionally this may not be done; in this case, it is safe to delete them
yourself.

9.4 Compiler SlVitches

This section describes the switches available to control the behaviour
of the compiler. Switches are introduced by a 'I' character and may
be typed in any order, before or after the source file specification.
Except as noted below, switches and their argument strings are not
case-sensitive; that is, lower-case letters have the same significance

C Compiler Reference 123

as the corresponding upper-case letters. This means, for example,
that the following two switches would be treated the same:

IFBhello.bin
IfbllELLO .BII

The format of the various switches is described using the following
notations:

In An MS-DOS filename. It may be omitted in whole or in
part; the compiler's behaviour in this case is described
in section 9.4.2 below.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

mac Any sequence of characters which is acceptable to the
compiler as a macro name.

str Any sequence of characters which is acceptable to the
compiler as the value of a macro.

n A decimal integer.

An example of a command to invoke the compiler with switches:

C>t8c hello IdLEVEL-3 Iflkeep I.

This will invoke the TB compiler to compile hello. c, and place a
listing of the source file with any error messages in keep .lis. Before
the compilation, a macro LEVEL will be defined with the value 3.

Compilation warning messages will be suppressed.

9.4.1 Default Switches

Switches are normally entered on the cOlnmand line when the com
piler is invoked. In practice, you ma.y find you use sotne switches on
every cOlllpilation. To avoid entering the same switches again and
again, the compiler also allows switches to be entered through a DOS

124 Chapter 9

environmental variable. The contents of the environmental variable
TC, jf any, are prefixed to the arguments supplied on the command
line. For example, to make the compiler print its version number
(/1) and generate debug tables (/Zi) every time it is run, give DOS
the command: set TC=/i/Zi

Default options set in this way can be turned off again using the
DOS command: set Te=

9.4.2 Controlling Output Files

The IF switch is used for specifying which output files are to be
generated, and their names. Each of the varieties of IF may be
followed by a In, but the complete MS-DOS path name may not be
necessary. The compiler supplies defaults, as follows:

• If no extension is given, the compiler supplies a default exten
sion depending on the type of output file: .lis for listing files,
etc.

• If no filename is given, the filename of the source file is used.

• If the drive specification or directory specification are omitted,
then the current drive and/or directory are used.

• If a drive specification is given alone, then the output file is cre
ated in the current directory of the specified drive, regardless
of the source file's directory.

The following examples may clarify this. The 'Supplied' string below
is assumed to be the argument of a IFL switch. The current drive
and directory are c: \michael, and the current directory on a: is
\output.

C Compiler ReFerence

Specified source file Supplied Output file

125

dogs
dogs
dogs
dogs
dogs
dogs
dogs

nothing
cats
cats.out
\stuff\
a:\first\
a:
a:cats

c:\michael\dogs.lis
c:\michael\cats.lis
c:\michael\cats.out
c:\stuff\dogs.lis
a:\first\dogs.lis
a:\output\dogs.lis
a:\output\cats.lis

Notice that in examples like the fourth above, it is the fact that the
supplied string ends with a '\' which indicates that this is a directory
specification. If it is omitted, output would be sent (in this case) to
c: \stuff .lis, even if a directory c: \stuff exists.

9.4.2.1 Switches IFS and IFO

These switches have the same effect. They instruct the compiler to
create an object file in binary format. The default extension is .bin.

Notice that if no IFB or IFO switches are specified, the behaviour
of the compiler is the same as if a IFS switch were used, with no
argument. In order to stop the compiler generating an object file of
any kind, the le switch must be used (see section 9.4.3).

9.4.2.2 Switch IFL

This switch makes the compiler produce a line-numbered source
listing file. The listing file contains any error Inessages produced
by the compiler, as well as the numbered source lines. The default
extension is .lis.

The listing file produced for the hello. c program would look like
this:

Source file: HELLO.C

126 Chapter 9

Object file: HELLO.BIN
Switches: ITa IFL
Co.piled by: transputer C co.piler. CC_transputer V2.2.2

1 aain ()
2 {
3 printf (IIHello, vorld\n")i
4 }

9.4.3 Controlling Object Code

9.4.3.1 Switches IT2, IT4, ITS and IT8A

These switches can be used to specify which type of transputer the
program is to be compiled for. IT2, IT4 and ITS are only permitted
with the te command, as the t2e, t4c and t8e commands supply the
appropriate switches automatically, and these will, in fact, appear
in the "Switches:" line of the listing (see section 9.4.2.2).

The ITSA switch is valid with the tSe and te commands. It makes
the compiler generate code to work round a floating-point firmware
bug in Rev A of the T800 processor which affects integer-to-real
conversions.

9.4.3.2 Switch IS

By default, previous versions of the compiler followed the K&R C
rule that all floating arithmetic should be carried out in double
precision. The IS switch was used to cause the compiler to perform
arithmetic in single-precision floating-point when both opera.nds of
an operator were of type float.

The current version of the compiler by default follows the ANSI
standard and uses single-precision by default. As a result, th(' /S
switch has no effect; if you use it, a warning message will be printed
and the compiler's behaviour will be unchanged.

C Compiler Reference 127

To cause the compiler to follow the K&R method of performing
floating-point arithmetic, the /Gd switch should be used: see sec
tion 9.4.3.3.

9.4.3.3 Switch IGd

By default, the compiler now follows the ANSI standard in using
single-precision floating-point a.rithmetic when both operands of an
arithmetic operator are of type float.

Previous versions of the compiler, however, followed the K&R rule.
The C Progmmming Language[l] states that "all floating arithmetic
in C is carried out in double-precision; whenever a float appears in
an expression it is lengthened to double... ". The compiler may be
made to follow the K&R rule by using the IGd switch. This means
that an expression like a+b, where a and b are float, is evaluated by
first converting a and b to double and then performing the addition
using double-precision floating-point arithmetic.

The new default should result in faster program execution, but
because floating-point arithmetic works with approximations the
numerical result of the operation may be less accurate than that
obtained before. Users who are affected by this may prefer to use
the /Gd switch.

Note that even without /Gd, floating-point constants are still double,
and so an expression like 2.0*a will still be evaluated in double
precision (with a being converted to double). You can avoid this
happening by assigning the value 2.0 to a float temporary variable
beforehand (two say) and then writing the expression as two*a.

9.4.3.4 Switch /Gi

By default, the compiler will when possible expand calls to certain
library functions into in-line code which has the same effect. This

128 Chapter 9

speeds up execution by removing the overhead of the (:alling instruc
tions. The IGi switch suppresses this optimisation and makes the
compiler generate true function calls in these cases.

The following library functions may be expanded in-line.

abs
ceil
chan_in_byte
chan_in_.essage
chan_iD_word
chan_init
chan_out_bJte
chan_out_••••••

9.4.3.5 Switch IGs

chan_out_word
chan_re.et
fab.
floor
labs
.e.cpy
.odf
thread_de.ch.dule

thread_priority
thread_restart
thread_stop
tiaer_after
tiaer_delay
tiaer_Dov
tiaer_vait

Variables of type short and unsigned short are now 16 bits wide
by default. If you need compatibility with earlier versions of the
compiler, you can use the switch IGs. This will cause the compiler
to generate 32-bit short variables, as the earlier versions did.

Before using this switch, however, you should note that library func
tions, such as printf and scanf, expect short variables to be 16
bits wide.

A built-in macro _3L_SHORT_BITS has the value 16 or 32, depending
on the width of short variables in the current compilation.

This switch has no effect on compilations for the T2, where short
and unsigned short variables are always 16 hits in length.

9.4.3.6 Switch le

If this option switch is used, the compiler checks the source file for
errors, but does not generate an object file.

C Compiler Reference

9.4.4 Controlling Code Patch Sizes

129

Certain constant values in a program cannot be worked out by the
compiler, but must be filled in (or patched) by the linker. The com
piler leaves gaps for these values, and fills the gaps with a special
code. In some circumstances, however, the linker may decide on
a patch value which is too large to fit in the gap provided by the
compiler. When this happens, the linker gives the following error
message:

FATAL ERROR(22): patch over valid code in .odule module

The IP switch controls the sizes of the gaps left by the compiler, so
that this situation can be avoided. There are two varieties.

9.4.4.1 Switch IPCn

This switch changes the size of the gap the compiler leaves for a
function call. The size of the gap limits the distance from the call
to the called function. Four bits of the displacement are stored in
every byte of gap, so the maximum displacement is 24n - 1 bytes.
n should be in the range 2 to 8. If the IPC switch is not used, the
compiler assumes a value of 6 for n, giving a maximum displacement
of 16MB. Similar negative displacements are also allowed. Smaller
values of n reduce the code size for external calls (resulting in faster
execution) but restrict the total size of the final program image. For
example, n = 5 allows displacements up to 1MB; n = 4 allows up to
64KB. Normally the default value of n should be adequate.

The compiler does not accept a IPC1 switch, as in this case not only
would the displacement be restricted to 15 bytes, but in addition
backward calls would not be possible.

130 Chapter 9

9.4.4.2 Switch IPMn

A linked program contains a module table, which has an entry for
every module in the program, including both the modules written
by the user and those extracted from libraries. Each module's entry
contains the address of the module's static data area. The first thing
which a subprogram does is to access this address, and to do this, it
must load the module number. These module numbers are assigned
by the linker, so the compiler cannot predict how large a module's
number will be. Once again, it leaves a gap, and the IPM switch
allows the user to specify how large this gap is. Four bits of the
module number are stored in every byte of gap, so the maximum
module number is 24n - 1 bytes. n should be in the range 2 to 8.
If the IPM switch is not used, the compiler assumes a value of 2 for
n, giving a maximum module number of 255. Larger IPM numbers
increase the maximum number of modules which can be linked into
one program, but make the program slightly larger and slower.

If the linker reports patch over valid code, as described above,
the likely cause is that the linked program contains more than 255
modules, including library modules. The programmer can cope with
this situation as follows:

• Use IPM to increase the maximum allowable module number.
For example, IPM3 will allow 4096 modules.

• Modules are assigned numbers in order, depending on the.ir po
sition in the linker's command line. It is essential that modules
from the C library should have module numbers which are less
than 255; they have already been compiled with IPM2, and this
cannot be changed. So the linker command line should have
the C library and harlH\SS first; then any user-written modules
and libraries, compiled with a larger IPM. For example:

C>linkt \tc2v2\crtlt8 \tc2v2\t8harn .ain ..ysubs,.ain.b4

C Compiler Reference

9.4.5 Controlling Debugging

131

The following switches control the output of information required
by the decode program and by Tbug, 3L's interactive symbolic
debugger for the transputer.

9.4.5.1 Switch /Zd

This switch causes the compiler to include line-number tables in the
generated object file. These tables are used by decode and by Tbug
to work out which piece of object code corresponds to each line of
the source program. If this switch is not used, this information will
not be available, and Tbug will not be able to display the source
version of the program.

9.4.5.2 Switch /Zi

This switch causes the compiler to include variable tables in the
generated object file. These contain information about the names,
locations and types of the program's identifiers. If this switch is not
used, Tbug will not be able to display the variables by name and in
the correct format.

The /Zi switch will also cause the compiler to output the line
number tables. This means that if you use /Zi, you do not need
to use /Zd as well.

9.4.5.3 Switch /Za

This switch causes the compiler to generate diagnostic information
in an older format which is not required for use with Thug. This
facility is retained ill order to maintain compatibility with the 3L
system programming environment, and is unlikely to he needed by
end-users.

132 Chapter 9

9.4.6 Controlling 'include Processing

This section should be read in conjunction with section 9.6, where
include file processing is discussed more fully.

9.4.6.1 Switch IIdir

This switch adds dir to the include list, that is, the list of "stan
dard places" where the compiler looks for files specified in 'include
lines. The dir string is assumed to be a directory, whether or not it
terminates with a '\'.

9.4.6.2 Switch IX

This switch excludes the "standard places" from the include list.
Directories added to the include list by means of the IIdir switch
are not affected, and will still be searched by the compiler.

9.4.7 Macro Definitions

This section should be read in conjunction with section 9.5, where
predefined macros are discussed.

9.4.7.1 Switch IDmac and IDmac=str

The first form of the ID switch can be used to define a macro with the
value '1'. The second form enables the user to define a macro with
the value 'str'. These definitions are done before the compilation of
the program. For example:

C>T8C/dDEBUG/Dhelp-3/dJOE-Jia CATS

C Compiler ReFerence 133

This is equivalent to coding the following lines at the top of the
program cats. c:

Idefine DEBUG 1
Idefine help 3
Idefine JOE Jia

Notice that the macro names and their values are case sensitive. If
there are any syntax errors in the definitions, these are reported on
the display and included on the listing (if any) in the usual way.

9.4.7.2 Switch lUmac

This switch undefines a predefined macro-see section 9.5 for a dis
cussion of these. This means, for example, that the following switch:

C)t8clD_transputer cats

is equivalent to coding the following line at the top of cats. c:

lundef _transputer

Once again, the name of the macro is case sensitive.

9.4.8 Information from the Compiler

9.4.8.1 Switch II

This switch makes the compiler display a line containing its identity
and version. Please quote this information in any correspondence
about the compiler.

9.4.8.2 Switch IH

This switch causes the expanded form of lines containing macros
to be written to the listing file. By default, macro expansions are

134 Chapter 9

not listed. If a IM is used without a IFL, the latter is assumed. An
example of a listing file containing macro expansions is shown below.

Source file: MACRO.C
Object file: MACRO.BIN
S.itches: ITS IFL IN
Co.piled by: tranaputer C coapiler, CC_transputer Y2.2.2

priDtf("Beventeen • %d\n", SEYEITEEI);
printf ("Beventeen • Id\n", PWS (TEI, SEYEI» ;
priDtf(....vent.en • Xd\n", «TEI)+(SEYEI»);
printfC"seventeen • Xd\n", «10)+(SEVEI»);
printf("seventeen • Xd\n", «10)+(7»);

aain()
{

1 Idefine SEVEITEEI PLUS(TEI,SEVEI)
2 Id.fine PLUS(a.b) «a)+(b»
3 Id.fine TEI 10
4 Idefine SEVEI 7
5
6
7
8
8"
S"
8"
8"
9 }

Notice that the compiler does not list the definitions of the predefined
macros, or of macros defined by ID switches.

9.4.8.3 Switch IV

Makes the compiler produce additional messages on the standard
output stream indicating how far compilation has progressed. By
default, only error messages are written to the standard output
stream and no messages are produced if no errors are detected.

Typical messages generated by use of the IV option are:

123 state.ents analysed; no errors detected
Code generation co.plete: starting object file generation
Object file coaplete: deleting scratch files

C Compiler Reference

9.4.8.4 Switch IV

135

IV suppresses warning messages. The form IVn is allowed for com
patibility with other compilers. IVO is equivalent to IW. Other values
of n cause warning messages to be displayed.

9.5 Predefined Macros

The following macros are defined with the value '1' for every compi
lation:

_transputer
_3L

The following macros are defined to indicate which processor the
current compilation is for:

Macro Compilations defined for
_IM5T2 T2C, TC/T2
_IM5T4 T4C, TC/T4
_IM5T8 T8C, TC/T8, T8C/T8A, TC/T8A
_IM5T8A T8C/T8A, TC/T8A

In addition, the macro _3L_5HORT_BITS has the value 16 or 32,
depending on the number of bits in a short variable for this compi
lation (see section 9.4.3.5 above).

Any of these predefinitions may be cancelled by the IUmac switch.
See section 9.4.7 for details.

9.6 Handling of #include Files

llandling of .include lines is discussed in The C Programming Lan
guage[l] p. 207. When the compiler encounters an 'include line, it
searches for the specified file in a sequence of directories known as

136 Chapter 9

the include list. This consists of the following, which are searched in
this order:

1. The current directory-except in the case of lines of this for
mat:

'include <filename>

2. The "standard places". These are defined in one of three ways.

• The user may define the environmental variable 3LCC_INC
to specify a series of directories, by an MS-DOS command
like this:

C>SET 3LCC_IIC-c:\root\branch;\cats

• If 3LCC_INC has no value, there is only one standard
place: directory \tc2v2. This directory is not searched if
3LCC_INC has been defined.

• If the /X compiler switch is used, the standard places are
excluded from the include list.

3. Directories which have been specifically added to the include
list at compilation time by means of the /1 switch-see sec
tion 9.4.6.

All the filenames which are added to the include list, either by the
SET 3LCC_INC= command or by the /1 compiler switch are assumed
to be directories, even if they do not end with a '\'; in this case,
the '\' is supplied by the compiler. If the filename specified in the
'include line includes a directory specification, an a.ttempt is made
to concatenate it to each of tht> directories in the include list in order
to find the file. Such a filenaul{\ should not itself start with a '\ '.

\tc2v2 is the default installat.ion directory for Parallel C. For this
reason, it is also the default "standard place" to search for include
files, especially header files. Its name is built into the compiler,
and cannot be changed. For this reason, if you have installed the

C Compiler Reference 137

compiler in different directory, you, must define 3LCC_INC to specify
your installation directory. If this is not done, the compiler will be
unable to find its header files.

Note also that this default directory specification does not include
a disk name. This implies that by default the compiler will only
search directory \tc2v2 on the current disk. This problem also
can be solved by defining 3LCC_INC to include the appropriate disk
name.

9.7 Assembly Language

This section shows you how to use the "in-line assembler" which is
built into the C compiler to write programs containing embedded
transputer assembly language instructions. It is assumed that you
are already familiar with the transputer's architecture and machine
code. If you are not familiar with these topics you will need to read
in addition the Inmos Compiler Writers' Guide[13].

If you use assembly language you may find the decode utility de
scribed in chapter 14 useful. It allows you to disassemble the object
files generated by the compiler and read the machine code contained
in them.

9.7.1 When to Use Assembly Language

There are two main reasons for using in-line assembly language in a
C program.

1. To take direct control of the hardware, for example to write a
function which sets the transputer error flag.

2. rro i,nprove the performance of short sections of critical code.

The C compiler's in-line asselllbler is suitable for both these tasks.
Ilowever, it is not intended for writing large sections of code in

138 Chapter 9

assembly language. If you need to do that, you should use a sep
arate transputer assembler with its own macros, storage allocation
directives and direct access to external symbols.

9.7.2 Assembly Language Syntax

Assembly language instructions are inserted into a program using
the asm statement, which has the following syntax:

statement ==
"asm", "{", instructions, "}";

instructions =
instruction, ";", [instructions];

There are two basic forms of instruction, reflecting the division of
the transputer instruction set into direct instructions which have
an operand field, and the zero-address indirect instructions with
no operand field l which take their operands from the three-register
evaluation stack.

instruction ==
direct I indirect;

direct ==
direct opcode, operand;

indirect ==
indirect opcode;

Appendix E contains a list of the opcodes recognised by the compiler.

A function to set the transputer error flag could be written as:

1 Actua.lly, there are only direct opera.tions. All the indirect operations are
assembled as particular literal operand values for one direct instruction called
opr.

C Compiler ReFerence 139

{

}
as. { seterr; }

Two more example asm statements are shown below.

as. { aeterr; stopp; }
as. { ldl 0; aj. -10; atl 2; ldc 123; stl 1; }

9.7.3 Literal Operands

The operand of a direct instruction can be any literal 32-bit integer
value. The assembler automatically generates any pfix or nfix
bytes required to encode large values.

operand =
constant;

Decimal, octal and hexadecimal constants can be used; floating
point, character and string constants are not allowed. Some valid
examples are shown below.

Idefine IYZ 23as. {
Idc 17;
Idc OIff;
ldc 0377;
Idc IYZ;

}

/* deci.al */
/* heI */
/* octal */
/* deci.al 23. defined by .acro */

Note that constant expressions like sizeof(int) or 10+7 are not
allowed as assembly language operands.

9.7.4 Variables as Operands

The assembler allows C variables to be used as operands for the
following direct instructions:

140 Chapter 9

Idl which loads a data word from memory and pushes it onto the
evaluation stack;

atl which pops a word from the evaluation stack and stores it in
memory;

IdIp which pushes a pointer to a word in memory onto the evalua
tion stack.

The required syntax is:

instruction =
"ldl ", identifier I
"ldIp", identifier I
"atl", identifier;

We can now write a complete C example function which uses assem
bly language to manipulate program variables.

• ain()
{

int a. b-123. e=456;as. {
ldl b; Idl e;
add;
stl a;

}

printf(tla-Xd\ntl • a);
}

9.7.4.1 Storage Class

/. load b and e .,
,. add the. .,
,. store result in a ./

An identifier used as the operand oCa Idl, ldlp or stl instruction
must be the identifier of a variable. The variable can have storage
class auto, register or static2 • An extern variable can also be

2The assembler automatically generates the extra IdI instruction required to
load the base address of the static area and converts the "local" operation into a
"non-local" one.

C Compiler Reference 141

used, but only in the scope of the declaration which actually allocates
storage for the variable. The following example is allowed:

int i • 17j /* Btorage for 'i' allocated here */
void fun(void)
{

as. { ldc 123; Btl i; }
}

The next example is not allowed, because storage for j is not al
located by the declaration in scope. That declaration contains an
explicit extern keyword, which means that storage for j is allocated
elsewhere (probably in a different file).

extern int j; /* refers to .torage elBe.here */
void fun2(void)
{

as. { ldc 123j atl j; }
}

9.7.4.2 Type

Identifiers used as operands for Idl, Idlp and atl must be declared
as variables. Function identifiers, labels, struct member names, and
tags like struct tags cannot be used.

Otherwise the type of a variable is ignored when it is used as an
assernbly language operand. The Idl and atl instructions always
load or store exactly one word, irrespective of how a variable was
declared. If an object (e.g., a struct) is longer than a word then
only the first word is accessed. Take care with char objects, which
are shorter than a word: the whole word beginning at the address of
the char will be loaded or stored to.

142 Chapter 9

9.7.5 Accessing Complex Structures

Expressions are not allowed as assembly language operands. The
following example shows some incorrect operands.

struct s { int value; struct s *link; };
int total-O;

void sua(struct s *p)
{

while (p) as. {
ldl p-)Yalue;
ldl total;
add;
atl total;
ldl p;
ldnl link;
atl p;

}

}

/* wrong: p-)Yalue is an expression */
/. ok */

/* wrong again: lint is a aeaber nalle */

To make this example work, we can rewrite it as follows.

struct s { int value; struct s *lint; };
int total-O;

void sua2(struct s *p)
{

total;
p;
1 ;

p;

while (p) as. {
ldl p;
Idol 0;
ldl total;
add;
stl
ldl
Idol
etl

}
}

/* load pointer to base 01 etruct */
/* value: 0 offset fro. struct base */

/* struct base addr again */
/* link: offset=1 word ./

In general, an object whose address is given by a complex expression
(e.g., an array element) can be manipulated in assembly language
either by saving a pointer to the object beforehand in C and then

C Compiler Reference 143

accessing the object via the pointer, or by working out how the
compiler will allocate storage for the object and then calculating its
address in assembly language.

For example, to store the character '.' in element i of a char array
A we can use any of the following techniques.

1. Write in C.

char 1[128];
int i;

void f1(void) { l[i] • '.'. }

2. Save a pointer to the object in C.

void f2(void) {
char .p • ll[i]; ,* Bave pointer to it .,
aB. {

Idc Ox2A; /* ASCII '*' */
Idl p.
Bb; ,* Btore byte ./

}

}

3. Calculate the object's address in assembly language.

void f3(void) {
aB. {

Idc Ox2A;
Idl i;
Idlp A.
bsub.
sb;

}

}

/. byte subscript: IA[i] ./
,* store byte */

Use methods 1 or 2 if at all possible. If you use method 3 you
may find that your progranl will not work with future versions of
the cOlllpiler because tbe way in which storage is allocated for some
object changes. If you do need to use method 3, the decode utility
described in chapter 14 can be used to find out how the conlpiler has
allocated storage for a program's variables.

144 Chapter 9

9.7.6 Labels and Jumps

In the examples given so far, C control statements (e.g., while) have
been used to control the execution of assembly language statements.
Sometimes though, you may need to program jumps in assembly
language. For example, you might want to avoid storing an interme
diate result back into a local variable in order to be able to test its
value using a C conditional statement.

To make programming jumps easy, the j and cj instructions permit
C labels to be used as operands.

instruction =
"j ", label I
"cj ", label;

label =
identifier;

An identifier used as the operand of a j or cj instruction must
appear as a C statement label somewhere in the body of the enclosing
function.

The example below shows the list-summing function with its while
statement recoded in assembly language.

struct s { int valuej struct s *linkj }j
int total-Oj

/* p-)link */

total;
p;
t j

cj
ldl
1001
ldl
add;
stl
ldl
ldnl

void sua3(struct 8 .p)
{

loop: as. {
ldl p;

outj
pj
OJ /. p-)value ./
total;

C Compiler Reference

atl p; /. p • p->link; ./
j loop;

}

out:
}

145

Note the forward reference to label out. Any identifier which ap
pears in an aSID statement and which has not yet been declared is
automatically declared as a forward reference to a label, which must
be defined before the end of the function.

9.7.6.1 Labels within asm Statements

C labels must be attached to C statements. It is not possible to
label individual instructions within an aSID statement. If you need
to do so, the instruction sequence must be split up into multiple
asm statements, each of which can be labelled. For example, the
following is incorrect:

as. {
ldc 17;

L: atl i; /. not allowed -/
}

It is incorrect because a label has been put inside an asm statement.
It must be split up as follows:

as. { ldc 17; }
L: as. { atl i; }

9.7.6.2 Jump Optimisations

The assembler always generates minimum sized jumps. Note that it
may also delete unreachable jumps and merge jumps-ta-jumps.

146 Chapter 9

9.7.7 Literal Machine Code

The assembler allows you to put literal machine code directly into
the object file using the byte pseudo-operation.

instruction =
"byte", code list;

code list =
constant, { ",", constant};

For example, the following asm statement outputs the actual machine
code for a ret instruction:

as. { byte Ox22. OxFO; }

9.7.8 Errors

The messages produced by the compiler when it detects an error in
an assembly language statement are of the form:

• opcode: me!sage at line n of file In

The opcode, line and file parts refer to the name and location of the
offending instruction; the various possible messages are included in
the full list of compiler error messages in section 9.9.4. The filename
part of the message is omitted unless the error is within an 'include
file.

The following error message can appear jf you mis-spell an identifier
in an asm statement.

label "ident" is used in function "I" above but is not defined
there

This is because the mis-spelt identifier is assumed by the compiler
to be a forward reference to a label.

C Compiler Reference

9.8 Data-type Representations

147

On all transputers, a byte is 8 bits. On the T4 and the T8, a word
is 32 bits (4 bytes), while on the T2, it is 16 bits (2 bytes).

9.8.1 Integral Data Types

On the T4 and the T8, the C integral (i.e., integer or character) data
types are represented by default as follows:

Type Bits Bytes Minimum Maximum
char 8 1 0 255
signed char 8 1 -128 127
short int 16 2 -32768 32767
unsigned short int 16 2 0 65535
int 32 4 -2147483648 2147483647
unsigned int 32 4 0 4294967295
long int 32 4 -2147483648 2141483647

If the compiler is invoked with the IGs switch, short variables are
treated in a different way:

Type Bits Bytes Minimum Maximum
short int 32 4 -2147483648 2147483647
unsigned short int 32 4 0 65535

In this case, unsigned short variables occupy 32 bits, but only the
16 least significant bits are used in expressions. This interpretation
allows the compiler to use the fast integer load and store operations
for unsigned shorts, with only a simple additional masking step
required when the value is to be used.

On the T2, these data types are represented as follows:

148 Chapter 9

Type Bits Bytes Mininlum Maximum
char 8 1 0 255
signed char 8 1 .. 128 127
int 16 2 ...32768 32767
unsigned int 16 2 0 65535
short int 16 2 -32768 32767
UDS igned short int 16 2 0 65535

The long data types are not supported on the T2.

9.8.2 Pointer Types

All pointer types (i.e., types of the form "pointer to x") are rep
resented by a single word whose value is the address of the object
pointed to.

9.8.3 Floating Types

Floating types are not supported on the T2.

The transputer follows the IEEE floating-point standard[11] in defin
ing the representation of floating-point values. For a float variable,
the IEEE single-precision format is used; for a double, the double
precision format. The way in which these standard formats are
represented in transputer memory is shown in figure 9.2. Note that
a float occupies 4 bytes (32 bits) and a double occupies 8 bytes
(64 bits). long double is currently equivalent to double.

When the exponent field e is all ones (e == 255 for single precision,
e == 2047 for double precision) the value represented is an infinity or
a Not-a-Number (NaN). For example, the following function detects
whether a given double value is an infinity or NaN:

int is_inf_or_laN(double d)
{

int second_word 2 «int *)(ld»[l];
int e • (second_word » 20) a 2047;

C Compiler Reference

+- msb byte number Isb -+

76LiJ4[2]2[I]O

[!G]....... f_ra_c_t_io_D

1 +-11--++-.-------52 bits--------+

[!G] fraction

1 +-8--++---23 bits---+

Figure 9.2: Representation of Floating-point Values

return (e.~2047);

}

149

An infinity is represented with a fraction of zero; the sign bit s then
indicates whether positive or negative infinity is meant. A non-zero
fraction indicates a Not-a-Number; the sign bit s is ignored in this
case.

The following table lists all those NaNs defined by Inmos, in terms
of their hexadecimal representation for both single and double pre
cision. Note that each of these representations consists of the appro
priate e field being set to all bits one, with the addition of a single
extra bit set in the !r(lction field to indicate the type of exception.

150 Chapter 9

Single Double Description
7FCOOOOO 7FF80000 00000000 divide zero by zero
7FAOOOOO 7FF40000 00000000 divide infinity by infinity
7F900000 7FF20000·00000000 multiply zero by infinity
7F880000 7FF10000 00000000 addition of opposite signed in.finities
7F880000 7FF10000 00000000 subtraction of opposite signed infinities
7F840000 7FF08000 00000000 negative square root
7F820000 7FF04000 00000000 double to float conversion
7F804000 7FF00800 00000000 remainder from infinity
7F802000 7FFOO400 00000000 remainder by zero
7F800010 7FF00002 00000000 result not defined mathematically
7F800008 7FFOOOOl 00000000 result unstable
7F800004 7FFOOOOO 80000000 resuIt inaccurate

When an infinity or Not-a-Number is output by the standard run
time library, a special string is output instead of a normal value. See
the description of fprintf (page 261) for details.

9.8.4 Alignment and Complex Types

All types except char are automatically word-aligned by the com
piler. Bear in mind in the discussion below that on the T4 and the
T8, a word contains four bytes, 32 bits, whereas on the the T2 it
contains two bytes, 16 bits.

struct and union types are always rounded up to a whole number
of words, even if they contain only byte objects.

Successive bit fields in a struct are allocated starting from the least
significant (lowest addressed) end of a word. Only integer fields are
allowed, and plain int fields are treated as unsigned. On the T4
and the T8, fields may not be wider than 32 bits; on the T2, the
limit is 16 bits.

Adjacent bit fields are considered together when they a.re being
packed into words. A sequence of fields occupying up to 8 bits is
packed into the next byte in the structure. Longer sequences are
aligned starting at the next word in the structure and padded out to a

C Compiler Reference

struct sI { char first; .
int bitsl:7. bits2:7;
char last; };

struct s2 { char first, last;
tot bit81:7. bits2:7; };

struct 83 { char fir8t;
tot bital:7;
char last;
tot bit82:7; };

Figure 9.3: Effect of Alignment on struct Size

151

whole number of words (even if following char fields could otherwise
be packed into this padding space). Figure 9.3 shows the effects of
this on the total size of structures. In s1 the fields bits1 and bits2
together occupy 14 bits and are therefore aligned to start at the next
word boundary (offset 1 word). They occupy the whole of this word,
forcing last into the next word (offset 2 words), making s1 3 words
long after being rounded up.

In s2 the two char items first and last have been brought together
reducing the size of the struct to two words.

In s3 the bit fields have been separated by last. This prevents the
bit fields being combined into a unit of 14 bits, leaving them as two
byte-sized objects. On the T4 and the TB, the overall effect is to
reduce the size of the struct to four bytes (1 word).

9.9 Compiler Error Messages

l'his section shows how error conditions are reported by the compiler,
outlines ways of dealing with errors detected by the cOlnpiler and
lists the error messages which may be produced by the compiler
along with examples showing how they might come about.

152 Chapter 9

9.9.1 Compiler Error Message Format

This section describes the error reports displayed by the compiler
when it detects errors in the program it is trying to compile. Errors
which can be detected by the compiler in this way are the easiest
to correct. If an attempt is made to compile a program which does
not obey all of the rules of C, the compiler will display a message
indicating the nature of the fault and showing where in the program
the error was detected. For example, in the following program the
brackets which must surround the expression following the keyword
while have been omitted:

aain()
{

int i • 0;

while i++ < 10
printf("hello. world\n");

}

The compiler will discover the error and display a message like this:

."prog.c". line 5: while i++ < 10

(expected

The upward arrow character ,-, points to the place where the error
was found.

Notice the format of the message: all of the messages which the
compiler can produce appear in a similar form. The first character
in the message is a marker which indicates how bad the error was
an asterisk '.' is the normal sort of error; it means that the compiler
has detected a fault but is able to continue trying to compile the rest
of the program. The other markers which can appear are described
later.

Following the marker character there is the name of the file in which
the error has occurred, followed by the line number in the original

C Compiler Reference 153

C program at which the error was detected; here the error is on
line five. Wherever possible ·the compiler displays the text of the
offending line after the line number, as in the example program, but
because the original text is stored in a fixed size memory area, this
cannot always be done. If the source text is no longer in memory it
is omitted from the error message.

The general form of compiler messages is therefore:

markertlfilename". line line-number: lource-Iext

meslage-text

Here ,-, points to the part of the source-text in error, message-text
is a brief explanation of the fault, and marker may be any of '*', '1'
or '! '.

Marker Meaning

'.' Error: compilation continues

'?' Warning: a part of the program is strictly correct, but
is dubious in some way. For example, if some part of a
program can never be reached.

'!' Fatal error. Compilation cannot continue after a fatal
error. Fatal errors indicate either that a program is too
large or complicated to be compiled in the amount of
memory available or that there is a fault in the compiler
itself which makes it unable to compile this program.
Section 9.9.3 gives information about what should be
done if any particular fatal error is reported.

The line number information can be used to locate the incorrect line
quickly with a text editor even when a program contains 'include
statements, because each 'include counts as a single line, no matter
how rnany lines the included file contains. Look at two C program
files called main. c (figure 9.4) and error. h (figure 9.5).

154

'include "error.h"

.ain()
{

while count++ < 10
printf("hello\n");

}

Figure 9.4: File main. c

/* error included text */

auto int count.

Figure 9.5: File error.h

Chapter 9

If we compile main, we will get the following error messages:

*"error.h". line 3: auto int count;

an external data definition .ay not haye storage class "auto"

*"aain.c", line 5:

(expected

while count++ < 10

These messages indicate that in line three of the included file
error.h the declaration of count is not allowed (because only
static or extern declarations are allowed at the outermost level
of a program), and in line five of main. c an opening bracket must
follow the keyword vhile.

9.9.2 Fixing Errors Detected by the Compiler

This section contains information about how the compiler handles
errors in the program which it is trying to compile. This information
should make it easier to understand the messages displayed by the
compiler, and so make it easier to fix incorrect programs.

C Compiler ReFerence 155

The compiler can detect two classes of error: errors in the form of
a program such as missing semicolons, mis-spelt keywords etc., and
errors where an identifier of a particular type is used in the wrong
context, such as attempting to multiply a struct variable by a float
value or use an identifier that has not been declared.

Errors of form (syntax errors) are detected when the compiler dis
covers that the piece of program it is reading does not fit in the
context of the part of the program it has read already. When this
happens the compiler displays a message and starts reading on from
the point of the error, ignoring everything until it finds a symbol
which could fit in at this point in the program; compilation then
continues as though there had been no error.

Because the compiler may ignore vital parts of the program (like
declarations) in recovering from an error, the best policy when fixing
errors reported by the compiler is to deal with them one by one,
starting with the first. Look at the part of the program indicated
by the error message and try to find out what is wrong with it, then
fix the problem and recompile t~e program. If errors are dealt with
sequentially like this, you will not waste time hunting for spurious
errors caused by the compiler skipping over some declarations and
then complaining about "undeclared identifiers" in the rest of the
program. Look at the example below, where a comma in a declara
tion has been mistyped as a dot.

aain()
{

int length . breadth;

length = breadth ;
}

This cOInpiler will display the following messages:

."ex . c", line 3:

; expected

."ex.c", line 5:

int length . breadth;

length • breadth

156

tlbreadthtl not declared

Chapter 9

The first message indicates that a semicolon or comma must follow
each identifier in a declaration; a dot is not allowed. Because the
compiler has skipped the declaration of breadth in order to get back
in step with the program, breadth appears not to be declared in line
five resulting in the second error message.

If you correct this program as suggested above, by starting with the
first error, fixing it and then recompiling the program then you will
never have to worry about fixing the second error: it will go away
automatically when the first error is fixed.

In certain cases the logic of the compiler will result in the same error
being reported more than once. The remedial action here is simply
to fix the error and ignore the duplicated messages.

9.9.3 List of Error Messages

The messages listed here may be issued by the compiler while a
program is being compiled.

Some messages contain special sequences like item-l, item-2 etc.
These do not appear in the actual message displayed by the compiler,
rather they are replaced by appropriate text from the program. For
example, take the message:

lIitem-l tI not declared

If it is the identifier foo which has not been declared, the messa.ge
actually displayed will be:

tlfootl not declared

Where feasible, the description of each message includes a sample
(meaningless) program which causes the message to be generated
during compilation.

C Compiler Reference

9.9.3.1 Program Errors

157

This section gives a list of messages which may be generated by the
compiler as a result of errors in the source program or limitations
imposed by the compiler.

• a bit-field must have an integer type

C allows an implementation to restrict the type of bit-fields. Par
allel C imposes the restriction that all bit-fields must have a type
which yields integer values.

errore)
{

atruct thing { float .ee:9; };
}

• a compiler-control (I) line may not begin with "item-l"

Compiler control lines are introduced by a hash character, 'I', fol
lowed by a keyword. This message indicates that a valid keyword
has not been found.

errore)
{

'?rubbish
}

• a constant integer expression is required here

This message indicates that an identifier or a string literal has been
found in a context which requires a constant integer expression.

errore)
{

int a[12];
int b[a];

}

/. right ./
/. vrong ./

158 Chapter 9

• a decimal integer constant must not start with a 0

Because C uses a leading zero to mark the start of an octal constant,
as in 01777, you cannot use leading zeros in decimal constants. The
following example is therefore incorrect. It would be accepted if the
099 were replaced by 99.

error()
{

int i;

i • 099;
}

You would get the same error message if you accidentally typed an
'8' or a '9' as part of an octal constant. The compiler would take
the bad digit to mean that a decimal constant was intended, which
may not start with a '0'.

• a field may not exceed 32 bits

C limits the size of a bit field to the size of an int. On the T4 or
TB, this is 32 bits long.

error()
{

struct thing { int huge:999; };
}

• a field may not exceed 16 bits

C limits the size of a bit field to the size of an int. On the T2, this
is 16 bits long.

error()
{

struct thing { int huge:17; };
}

C Compiler Reference

• a function result of type "item-l" is not allowed

159

This message is generated when an attempt is made to define a
function which returns an array or a function.

errore)
{

int f()[17];
}

/. f cannot return an array of 17 iteas ./

• a hexadecimal digit vas expected after "\x"

The digits which follow "\x" in a hexadecimal escape sequence
"\xdd" within a character or string literal must be valid hexadecimal
digits: '0'-'9', 'a'-'f', or 'A'-'F'.

The example below is in error because 'G' is not a valid hexadecimal
digit.

errore)
{

printf(l\xGG". 7);
}

• ANSI function definition may not include parameter
declarations

The cause of this message is a function definition which attempts
to declare its parameters using a mixture of the K&R and ANSI
notations.

int error(int i. float a)

int i;
float a;
{

}

• a number is required after 'line

The 'line preprocessor directive keyword must be iInmediately fol
lowed by a decimal line number. Octal and hexadecimal forms are

160 Chapter 9

not allowed, Both uses of 'line in the example below are incorrect.

errore)
{

'line
'line "72"
}

• a parameter declaration may not be initialized

A parameter declaration simply gives information about the sort of
value being passed as a parameter, the actual value of the parameter
being given when the function is called. This message could be the
result of placing the declaration of what should be local variables
before the opening '{' of the function.

error (x)

int x • 3;
{

}

• a parameter may not have storage class "item-1"

This message indicates that a parameter type specification has at
tempted to give a parameter an invalid storage class. This can be
the result of confusing parameter specifications with local variable
declarations.

error (x)
static int Xj

{

}

• a parameter type declaration vas expected here

In ANSI parameter list declarations, the type of each parameter must
be specified explicitly. The example below would generate this error
message because no type is given for b.

error(int a, b)
{

}

C Compiler Reference 161

In C, unlike some other languages, it is not presumed that b must
be int just because the previous parameter, a, has been declared as
int. If b is meant to be int, you must write:

ok(int a, int b)
{
}

• lIitem-l" already defined

This message is issued when an attempt is made to redefine the tag
of a struct or union.

errore)
{

atruct thing{int a,b;};
atruct thing{float c.d;};

}

• "item-l" already defined as item-2 tag

This message reports inconsistent usage of tags, for example a
struct tag later used in a union declaration. Item-l is the name of
the tag; item-2 is struct, union or enum depending on how item-l
was originally declared.

In the example below, the compiler will fault the union declaration,
reporting that foo was already defined as a struct tag.

errore)
{

struct 100 { int a, b; };
union foo { int class; double I; char y; };

}

• an empty enumerator list is not allowed

The list of enumeration constants in the declaration of an enumer
ated type nlust not be empty; there must be at least one enumeration
constant.

errore)

162

{

}
enua transparent {};

Chapter 9

• an empty structure is not allowed

Every struct must have at least one member; it is not possible to
have structures with no members.

error()
{

struct ellptJ {};
}

• an external data definition may not have storage class
11 item-l11

Variables declared outside a function may only have a limited selec
tion of storage classes. This message indicates that such a declaration
has a prohibited storage class.

register int r;
error()
{
}

• an identifier list in a function declarator that is not
part of a function definition must be empty

A plain identifier list can only appear in a function declarator that is
part of a K&R-style function definition. If the function declarator is
part of an ordinary declaration, as in the example below, the brackets
following the function name must be empty.

errore)
{

int fun(a, b, c);
fun (1. 2. 3);

}

The correct way to declare fun here is: int fun();

C Compiler Reference 163

Parameter identifiers can be used in ANSI-style function declarations
anywhere, but then a type must be given for each one, as in:

int fun(int at int b, int c);

• an object of this type cannot be initialized

An attempt has been made to initialize (in a declaration) a type of
object which cannot be initialized. The example below is incorrect
because it attempts to initialize a function.

errore)
{

int f() • 17;
}

• "item-l 11 and "item-2" are incompatible operand types for
the lIitem-3 11 operator

This message indicates that an attempt has been made to apply the
given operator to operands of inappropriate types.

errore)
{

int z;
struct {int a,b;} x.y;
if (x<y) z-O; /* struct coaparison not allowed */

}

• array dimension table full

There is a global limit on the overall complexity of array and struc
ture declarations. This fatal error message is issued when the pro
gram exceeds this complexity. The remedial action is to siInplify the
progranl or split it into two or more separate files.

It is not feasible to give a simple example of a program which would
generate this fault.

164

• attempt to assign address to short or char

Chapter 9

The address of an object is a value which will almost certainly be
too large to be assigned to a short or char sized object. While this
is not prohibited it will result in the pointer value being converted
into an int and then the more significant bits being truncated. As
it is very likely that this effect will not be what was intended the
compiler will issue this warning.

varning()
{

int Yi

static char text • "hello"
short 11 • hi
char x • ay;

}

• attempt to divide by zero

/. 11%'°118 ./
/. 11%'°118 ./
/. nOI18 ./

The compiler has detected an attempt to divide by zero. Note that
this can happen in two distinct places in the compiler: in a context
where the result of the division is needed during the compilation, or
when the value is not strictly needed until the compiled program is
executed but the compiler is attempting to simplify the expression.
This particular error message is a result of a division by ze'ro in the
first case.

errore)
{

.if 1/0
'endif
}

The second case gives rise to a "Zero divide" message which is
described in section 9.9.3.3.

• auto/register arrays and structs may not be initialized

This message is issued when an attempt is made to initialize arrays or
structs with storage class auto or register. An initialized array or

C Compiler Reference 165

structure which is declared inside a function body must be explicitly
declared to be static or extern.

errore)
{

int vector[3] • {1.2.3};
atruct {int a.b;} 8 • {100.200};

}

• bad escape code \ J item-l J

The given escape code has been detected in a string or character
constant but has no meaning. This is commonly caused by including
an escape character, '\', in a string without using another escape.

IDOS IIn the following example, the fragment "\dir\myfile" should
be written "\\dir\ \myfile".

errore)
{

printf(tlcannot open \dir\ayfile.dat\n");
}

• t before array or function ignored

When used on its own as an operand in an expression, the identifier of
an array or function represents the address of that array or function.
This message indicates that an 'I:' operator has been ignored when
it has been used redundantly on an array or function.

errore)
{

int ad;
int a[12];
ad = la;
ad =- lerror;

}

166 Chapter 9

• both operands for pointer "_" must have the same type

When '-' is used to obtain the difference between two pointer values
the types of the two pointers must be identical.

errore)
{

int I;
float .1;
double .d;
I • d-f,

}

• case nitem-l l1
: already defined

This message indicates that a switch statement contains two or more
actions defined for a particular case.

errore)
{

int I,
switch (I) {

case 1 x· 100;
case 1 : I • 200;

}

}

• II case" and IIdefault ll are only alloved inside a switch
statement

The keywords case and default are reserved for use within svitch
statements and may not be used in any other contexts. The message
frequently indicates that a switch statement has been prematurely
terminated or has not been recognised because of a syntactic error.

errore)
{

int I;
case 1
default

}

I • 0;
I • 1;

C Compiler Reference

• J item-l J character not alloved here

167

The given character is either a control character or the character
grave (' I '). Such a character may only be used in very restricted
circumstances, for example inside a string. The most likely causes
for this error are typing a grave when a single quote character was
wanted or accidentally inserting control characters into the source
file.

errore)
{

I grave error j

}

• closing J)J expected

An include statement has attempted to specify a search of standard
places only by enclosing the file name in '<' and '>'. The message
indicates that the compiler has found the opening '<' but not the
closing '>'. One cause of this error is not pressing the shift key when
typing the ')' character and getting'.' instead.

• include <thing.
errore)
{

}

• comment not terminated by ..*/11

This message is given if a comment is not terminated.

aain{}
{

/* co..ent starts ...
printf ("Hello\n");

}

• constant integer expression required here

This rnessage is generated when the compiler is expecting an expres
sion which can be evaluated at compile time to give an integer value

168

but no such expression can be recognised .

• aiD()
{

int %[1.5];
}

• constant integer value too large

Chapter 9

This message indicates that overflow occurred while processing an
integer constant. Currently this is only detected in the case of octal
or hexadecimal constants.

errore)
{

int % • 0%123466789; ,- .ore than 32 bits -,
}

• corrupt syntax tree

This message indicates that an error has occurred in the compiler
itself.

It is not feasible to give a simple example of a program which would
generate this fault .

• declaration syntax fault

This message is generated whenever a declaration has been specified
incorrectly. As there are many reasons for the error it is best to
examine the declaration at the point indicated by the upward arrow
in the compiler's report. If the cause of the error is not obvious the
formal definition of the syntax of the relevant declaration should be
checked.

errore)
{

int a.;
}

C Compiler Reference 169

• lendif/lelif/lelse without matching lif

The compiler control lines lelse and lendif must follow a matching
lif or .elif control line.

errore)
{

'else
'endif
}

• lendif pending at end of file

This message is issued when the end of the source file has been
reached and no 'endif has been found to match a previous 'if.

errore)
{

'ifdef flag
}

• end of file in argument list of macro lIitem-l ll at line
lIitem-2 11 (missing II)II?)

This message indicates that the end of the source file has been found
before the compiler has found the closing parenthesis of a reference
to a macro.

errore)
{

Idefine thing (I) 1-I

int a;

a • thing(I
}

• 'error: item-l

The 'error preprocessor directive causes an error message of this
form to be generated. Item-l is the message text contained in the
'error directive. For example:

errore)

170

{

'error text of aessage
}

• error in format of integer suffix

Chapter 9

The allowed formats for an integer suffix are laid down in sec
tion 3.1.3.2 of the ANSI standard. This error message is given if
an integer suffix breaks these rules.

error ()
{

iDt i;
i • 5LUL;

}

• expanded macro line too long

This fatal error message indicates that the compiler's macro expan
sion area has become full and further processing is impossible. The
usual cause for this is a recursive macro as in the following example.

errore)
{

Idefine rubbish rubbi8h+l000
rubbish

}

• item-l expected

The given item is expected at the indicated point in the program.
Note that there may be several different items which would fit but
the compiler will only indicate the most likely one.

errore)
{

int a /* Beaicolon oaitted */
}

C Compiler Reference 171

• expected a string literal after 'line n

The 'line n preprocessor directive may optionally be followed by
a string literal representing a file name. This warning message indi
cates that something else was found, as in the example below. The
presumed name of the source file is left unaltered.

varning()
{

Iline 17 foo.c
}

Parallel C follows ANSI in warning about an example like this one,
although some other compilers will accept this older usage, with no
double quotes around the file name.

• expression expected

The compiler expects to find an expression at the indicated point in
the program.

errore)
'{

case {
}

}

• expression of type "item-lll cannot be used as a function

This message is issued when an expression which is not a function is
applied to an argument list.

errore)
{

17(0);
}

/* 17 isn't a function */

• expression of type lIitem-l ll used instead of lIint ll

l"'his message is given when an expression of a type other than 'int'
has been used in a context which requires a condition.

errore)

172

{

float f, gj
if (f) g • 0;

}

• expression syntax fault

Chapter 9

An expression has been incorrectly specified. This is usually the
result of a typographical error with operators. Check the form of
the operator you require and correct the expression accordingly.

errore)
{

int a,b,c,
b • 12,
c • 6;
a • b+Xc; /* rubbish ./

}

• format is 'include IIfile" or 'include <file)

This message indicates that the file reference in an 'include com
piler control line has not been specified correctly. The two accept
able forms are 'include llfile" which will search for file starting in
the current directory and then searching the standard place, and
'include <file> which only searches the standard place.

errore)
{

'include Boaething
}

• { function-body} expected here; could be missing
after) above?

The opening brace, '{', of a function body could not be found follow
ing the function heading. N.B., this message is unfortunately very
common, as it is easy to make a syntax error which makes a function
declaration look like a function header to the compiler.

C Compiler Reference

int a;
double d;
g()

{

a • 17;
}

• function declarator required before J{J

173

This message was generated by earlier versions of Parallel C and
should no longer be encountered. It was issued when a declaration
appeared syntactically to be a function declaration but did not have
the type ''function returning ... " .

• identifier expected

This message indicates that the context demands an identifier but
something else has been found.

error(1)
{

}

• identifier or {enum-l~st} required after J enum'

Following the enum keyword there must be either an identifier or a
list of enumeration constants enclosed in parentheses.

error()
{

enu. colour {red. yellow. green. blue} /* right */
enu.; /* wrong */

}

• identifier or {struct-decl-list} required after
'structJ/Junion J

The keywords struct and union must be followed by either an
identifier or a declaration of the contents of the structure or union.

error()

174

{

}

struct;
union;

Chapter 9

• implementation restriction: pointers to functions
cannot be initialized

This message was issued by previous versions of Parallel C. The
current versions of the compiler do not have this restriction and so
the message should never be generated.

• implementation restriction: "sizeof" not allowed in
this context

The current implementation of Parallel C does not permit the use of
the operator sizeof in a constant expression.

errore)
{

int Xi

int a[sizeof(x)];
}

• include stack underflow

This message indicates a malfunction in the compiler itself. The only
remedial action is to attempt to simplify the include file structure of
the program.

It is not feasible to give a simple example of a program which would
generate this fault .

• "item-l" incompatible with type lIitem-2 11

This message indicates that an incompatible combination of type
specifiers has been given in a declaration.

~rror()

{

long char I;
}

C Compiler Reference 115

• initializer string long~r than array

The string constant which has been used to initialize an array of
char contains more characters than there are elements in the array.
Note that there is always an invisible '\0' character on the end of
every string constant so that the number of characters it contains is
one larger than it may appear to the casual reader. The message is
simply a warning that the string constant will be truncated for the
purposes of initialization by ignoring one or more of the rightmost
characters.

varniDg()
{

static char x[3] • "1234".
}

• internal error

This message indicates that an error has occurred in the compiler
itself.

It is not feasible to give a simple example of a program which would
generate this fault .

• lIitem-l ll is not in the parameter list of lIitem-2 11 and so
may not appear here

This message is generated when a parameter specification following
a function heading attempts to describe an identifier which has not
been given in the parameter-list of the function. This can be caused
by the incorrect placement of local variable declarations before the
opening brace ('{') of the function body compound statement, or by
mis-spelling an identifier in the function heading or in its declaration.

error()

int Pi
{

P = 0;
}

176 Chapter 9

• line break illegal in strings or character constants

This message is given when a string or character constant is not
terminated on the same line as it started on. Usually this will be
by mistake; however, a programmer might try to include a newline
character in a string or character constant by not terminating the
string. This should be done instead by using the \n escape sequence.

errore)
{

printf("line 1\nline 2").
printf(lIline 1

line 211
).

printf(".iatate) ;
}

/* correct ./

• label "item-lit has already been defined in this function

Within any function a particular label may only be used once as the
prefix to a statement. This message is the result of using the given
label as a prefix on two or more statements.

errore)
{

int I;

here: I • 1.
here: I • 2;
}

• label "item-l 11 is used in function lIitem-2 11 above but is
not defined there

The named function contains a goto statement or assembly-language
statement which references a label which has not been attached to
any statement within the function. Note that C restricts the use of
the gato statement to transfer control within a function; it is not
possible to use goto to transfer control out of a function.

errore)
{

goto Boaevhere;
}

C Compiler Reference 111

Note that unknown identifiers used in asm statements are implicitly
declared as labels in case they may be forward references to real
labels. This means that mis-spelling identifiers in asm statements
may result in this message.

• left operand of lIitem-l" is not an lvalue

An lvalue is an expression referring to a manipulable region of stor
age. This message indicates that the given operator demands an
lvalue but its operand does not refer to appropriate storage.

error()
{

int Xi

Ix • 12.
}

• left operand of J.J must be a structure

The operator' . ' is used to select a particular field from a structure.
This message indicates that '.' has been used to select a field from
an object which is not a structure and therefore cannot have any
fields to be selected.

error()
{

int x.
x.x • o.

}

• macro expansion stack full

During macro expansion, the expanded macro with act:ual parame
ters substituted for formals is held in a 4Kll buffer. This fatal error
message is issued when this buffer has been filled.

• macro text store full

This fatal error message is issued under two circumstances:

178 Chapter 9

1. The body of a 'define macro is too long (currently the limit
is 1023 characters).

2. When expanding a function-like macro the size of the actual
arguments exceeds 1023 characters.

It is not feasible to give a simple example of a program which would
generate this fault .

• missing)

A right parenthesis has been omitted from an expression or param
eter list. This is commonly caused by mismatching parentheses in
complex expressions or by forgetting to depress the shift key when
typing ')' and getting a different character, '9' in the following ex
ample.

errore)
{

int a;
a • 2.(a+19;

}

• missing operand

An expression contains an operator which has not been given a
required operand.

errore)
{

int a:
a • -): /. no operand for the It_It ./

}

• lIitem-l lt must be within a loop

The keywords break and continue are used to control the execution
of a loop (for J while J or do). This message indicates that break
or continue has been found but not within the body of a loop.

errore)

C Compiler Reference

{

break;
}

• 'X' must have integer operands

179

The modulus operator, '1', returns the remainder from the division
of its operands, both of which must yield integer values.

errore)
{

int Dj

D • 123 X 4.5,
}

• not a constant

This message is generated when a constant value was expected but
something else was found.

errore)
{

int x;
switch (x) {

case x : x • 0;
}

}

• .. item-l ll not declared

This message indicates that an identifier has been used without hav
ing been declared previously. Note that in C the case of letters in
identifiers is significant. The error can be the result of mis-spelling
an identifier or simply forgetting to declare it.

errore)
{

int Thing;
thing = 0;

}

180 Chapter 9

• number of arguments does not match function prototype

This warning message indicates that the number of actual arguments
in a function call does not match the number of formal parameters
in a prototype for the function which is in scope at the point of call.
For example:

warning()
{

void feint) i

1(17, 99)i
}

• number of macro actual parameters does not agree vith
definition

This message is generated when a reference to a macro has been
given a number of parameters which is different from the number of
parameters specified when the macro was defined.

errore)
{

Idefine aaC(I) I+l
int a, b;

b • 0,
a • .ac(b);
a • aac(a. b);

}

/. right ./
/* 1froDg ./

• no support for IIdouble" types

This message is given for a T2 compilation if the program contains
a declaration of a double variable or function.

errore)
{

double d;
}

C Compiler ReFerence

• no support for IIfloat" t)'pes

181

This message is given for a T2 compilation if the program contains
a declaration of a float variable or function.

errore)
{

float 1;
}

• no support for IIlong" types

This message is given for a T2 compilation if the program contains a
declaration of a long int or unsigned long int variable or func
tion.

errore)
{

long int 1;
}

• one or more 'endif lines inserted before extra
'else/'elif here

This message is generated if an 'else or 'elif compiler control line
is found while the compiler was expecting an 'endif control line.
The compiler assumes that the 'endif for a previous 'else has
been omitted and that the 'else or 'elif it has just found belongs
to an enclosing .if statement.

errore)
{

.if 1
'else
'else /. no corresponding .if ./
'endif
}

182

• only lIextern" or IIstatic" functions are allowed

Chapter 9

This message results from attempting to define a function with a
storage class other than extern or static.

register errore)
{

}

• only one "default" statelDent is allowed per switch
stat8lDent

The default statement prefix is used to specify the action to be
taken in a switch statement when an actual case has not been explic
itly handled by a case label. It follows that a second or subsequent
default must be in error.

errore)
{

int x:
switch (x) {

default x· I:
default : x • 2:

}

}

• operand of lIitem-l 11 IDUst be an lvalue

The operator item-l requires an lvalue as its operand. An Ivalue
is an expression referring to an object in memory which can be
manipulated. Note that a pointer expression is not an Ivalue. To
use the memory pointed to by p as an lvalue, you must use the
expression (*p), which refers to the object pointed to by p.

The following example is incorrect because the value of the cast is
a pointer to the integer at address 16, not an Ivalue. To use the
pointed-to word and increment the integer at address 16, we would
have to use the expression: ++(*(int .) 16)

errore)
{

C Compiler Reference

++(int *)16;
}

• operand of -) or unary * must have pointer type

183

The left-hand operand of the operators '-)' and unary '*' must be
objects which have a pointer type. This message indicates that the
given operator has been given an operand which has not been defined
to be a pointer.

Unfortunately this message also results from errors in arrays. This
is because the C definition of array accesses is in terms of the unary
'.' and pointer '+' operators.

errore)
{

int a;
atruct point {int ItJ;};
atruct point b;
int I[10];

int p.q;
*a • 983;
b->I • 983;
a[p] [q] • 983;

}

• operand of unary lIitem-l ll must be an Ivalue

An Ivalue is an expression referring a region of storage which can be
manipulated. This message indicates that the context demands an
lvalue but the expression given does not refer to appropriate storage.
Note that a pointer value (yielded by 'i') is not an lvalue.

errore)
{

int x;

x = l12;
}

• lIitC1U-l 11 operator not allowed in a constant-expression

Only a limited number of operators may occur in expressions which

184 Chapter 9

must yield constant values at compile time. This message indicates
that such a constant expression contains a prohibited operator.

errore)
{

int a[(1.2)];
}

• original and result types for cast must be scalar or
pointers

A cast may not involve array or function types, although pointer to
array and pointer to function types are permitted.

errore)
{

(int D) 0; /* can't cut to aD array of int ./
}

• "item-l": parameter list does not match a previous
prototype

This warning message says that the (ANSI) parameter list given in
the declaration of function "item-l" does not match the parameter
list in a previous declaration of the same function. Either the pa
rameter list has a different number of arguments from the previous
declaration, or the usage of ellipsis to indicate a variable number of
arguments is inconsistent between the two declarations.

For example:

void funl(int i);
void funl(int i. double d);

llere, the two declarations of fun1 specify different numbers of ar
guments.

C Compiler Reference

• "item-lit previously declared as "item-2 1t may not be
redeclared as 11 item-3 11

185

This message results from attempting to declare an object when it
has already been declared.

errore)
{

int a;
float a;

}

• sizeof operand must be a type name or unary expression

, The sizeof operator takes as its argument something which either
has or implies a requirement for a number of bytes of storage. It is
this number which is returned as the result. The message indicates
that the argument given to sizeof is not associated with a quantity
of storage.

errore)
{

int a;
a - aizeof(elae);

}

• statement expected here

A statement which controls another statement has been specified
without any statement to be controlled.

errore)
{

int I;
if (I) else;

}

• statement out of context

A statement has been found where a declaration was expected, for
exalnple outside any function. This error may be reported jf the

186 Chapter 9

compiler has got out of step with the program due to previous syntax
errors. If you are unsure of the cause of the error, fix any errors
reported previously and recompile.

The return statement in the example below would be faulted, be
cause it is not inside the body of a function.

return 17;

error()
{

}

• storage class incompatible vith a previous declaration

This message is issued when a declaration contains more than one
storage class specification.

error()
{

static extern int x;
}

• string constant too long

This error message was output by earlier versions of the compiler
when it encountered a string literal which was longer than 255 char
acters. Now, however, the only limitation on the size of a string
literal is the size of the logical line buffer. As a result, this error
message should never be output.

• struct/union/enum tag lIitem-1 11 not defined yet

This message results from an attempt to declare a structure, union
or enumeration variable before the tag referred to in the decla.ration
has been declared. It is only possible to declare pointers to structures
and unions which have not yet been defined.

error()
{

C Compiler ReFerence

struct I Pi
}

• structure of this type has no Uitem-l l1 field

187

The operator '.' has been used to select the named field from a
structure but the structure does not contain a field with that name.

errore)
{

struct coord {float I. J;};
atruct coord point i

point.z • 0;
}

• svitch expression must have integer type

The expression used to select a particular case in a svitch statement
must yield an integer value.

errore)
{

float Ii

switch (x) {
case 1 : x • 0;
}

}

• syntax error in compiler-control (I) line

This message is generated when part of a compiler control line can
not be understood. The error could be caused by terminating an
'include control line with a semicolon.

errore)
{

.include <fred>;
}

188

• too many initializers for object of type "item-l"

Chapter 9

This message indicates that a declaration has included an initializa
tion which contains more items than the object being initialized.

static float n • {1,2}; /. n can only take 1 value not 2 */
errore)
{

}

• too many macro parameters

The compiler currently limits the number of parameters in any macro
to 32. This fatal error message indicates that the limit has been
exceeded.

errore)
{

Idefine silly(Pl,P2,P3,P4,P5,P6,P7,P8,P9,\
Pl0,Pll,P12,P13,P14,P15,P16,P17,P18,\
P19,P20,P21,P22,P23,P24,P25,P26,P27,\
P28,P29,P30,P31,P32,P33) 0

}

• too many names

The program has used so many identifiers that the compiler's dic
tionary has become full leaving no space for new identifiers. It may
be possible to solve the problem by replacing some long identifiers
with shorter ones or by splitting the file being compiled into two or
more files which can be compiled separately.

If neither of these alternatives works it will be necessary to compile
the file on a system with more memory.

It is not feasible to give a program which demonstrates this error!

• too many nested 'include files

This message results from an attempt to include a file which needs
a file to be included which needs a file to be included and so on

C Compiler Reference 189

to the limit of the compiler's ability to open files (currently eight
include files open at once). One possible cause of this would be a file
attempting to include itself! Remedial action is to reduce the depth
of include file nesting, perhaps by textual substitution of one of the
more deeply-nested files.

It is not feasible to give a simple example of a program which would
generate this fault.

• type lIitem-l 11 may not be lIunsigned"

The keyword unsigned may only be applied to a restricted selection
of type verbs. In particular, float and double may not be specified
as unsigned.

errore)
{

unsigned int a; /. right ./
Wlsigned short b; /. right */
Wlsigned char c; /. right */
unsigned float dj /. wrong ./
unsigned double ej /. wrong */

}

• type lIitem-l lt not allowed

This message is the result of attempting to declare an array of objects
which cannot be combined into arrays, functions for example.

errore)
{

static int *x[12]();
}

• type of actual argument item-l J lIitem-211
J does not match

prototype J lIitem-311

This warning message indicates that the type of the item-l th actual
argument in a function call does not match the type of the corre
sponding formal parameter as given in a prototype for the function

190 Chapter 9

which is in scope at the point of call. Item-2 is the type of the actual
argument, item-3 is the type of the formal parameter.

In the example below, the compiler will warn of the attempt to pass
a character string literal, of type (char *), as an actual argument
where the function prototype requires an int.

varning()
{

void f(int);
f(ttvrongtt)j

}

Note that the ANSI type checking rules applied by the compiler to
arguments where a function prototype is in scope are stricter than
the rules applied other contexts, like assignments. In particular,
pointers and integers, and different pointer types, cannot be mixed
so freely.

• "item-l": type of parameter item-2, "item-3", does not
match prototype, 11 item-4 11

This warning message indicates a mismatch between the type of a
parameter in the declaration of a function item-l and the prototype
given for that parameter in some previous declaration of the same
function.

Item-2 is the number of the parameter which did not match; the
leftmost parameter in the declaration is parameter one. Item-3 is the
declared parameter type in the function declaration being processed;
item-4 is the conflicting parameter type in the previous declaration
of the function.

For example:

void funl(int);
void funl(double)j

Here, the compiler will warn that in the second declaration of fun!
the type of parameter one, "double", does not match the prototype,
"int", given in the first declaration.

C Compiler Reference 191

• type of return expression (item-l) incompatible with type
of 11 item-211

(item-3)

The type of the expression in a return statement is incompatible
with the type of the enclosing function. Item-l is the type of the
expression, item-2 is the identifier of the function, and item-3 is its
type. The example below is incorrect because x is a struct and
cannot be returned as the result of an int function.

int errore)
{

struct { int a. bi } Xi

I.a • 0; x.b· 17.
return Xi

}

• unary lIitem-l 11 may not have an operand of type lIitem-2 11

This message indicates that the given unary operator has been ap
plied to an operand of the given type when such an operation is not
permitted.

errore)
{

float f;
f • -1; /* logical negation only applies to integers */

}

• union type objects may not be initialized

This message indicates that an attempt has been made to initialise
an object which is a union.

union I tint p; float q;};
union I thing = 12;

• unexpected colon in statement context

This message is issued when a colon is found in an unexpected posi
tion. One reason for this error is accidentally typing a colon at the

192

end of a statement rather than a semicolon.

errore)
{

int x;

x • 0:
}

• unexpected end of file

Chapter 9

This message results from the compiler reaching the end of the source
file when it was expecting more input.

errore)
{

int i;

i • 5,

• unimplemented feature item-l

The program contains a feature which is correct C but which has
not been implemented in the version of the compiler being used.
The only remedial action is to recast the indicated section of the
program in a different form.

This message was issued by previous versions of Parallel C. The
current version of the compiler should not generate this message.

• unknown size

This messages indicates that a statement requires the size of an
object to be known while that statement is being compiled but the
actual size cannot be determined.

errore)
{

int x;
x a sizeof(void);

}

C Compiler Reference

• value out of range

193

This message indicates that an initializing value is outside the range
of values that can be stored in the bit-field being initialized.

errore)
{

static struct {int i:3; } x • {266};
}

• void arguments not alloYed

In a function call, void actual arguments are explicitly prohibited,
for example:

errore)
{

f((void)O);
}

9.9.3.2 System Errors

This section gives a list of the error messages that may be generated
during compilation as a result of the interaction between the compiler
and the operating system. These messages give information about
errors associated with the compilation process itself and are inde
pendent of the C language and the general form of source programs.

All of these messages are introduced by the phrase: "Fatal Error
--" and result in the termination of the compilation.

• cannot open 'include file llfilename ll

An 'include compiler control line has referenced a file which cannot
be accessed. Check that the filename has been spelled correctly and
that it exjsts in the relevant directory

Note that the filenallle given in the error message is the full path
and name of the final file the compiler attempted to access; forms of

194 Chapter 9

'include which require the compiler to search two or more directo
ries will not necessarily report the same filename string as specified
by the programmer.

• ID andlor IU switches are too long

As the compiler scans any ID or IU switches typed by the user, it
converts them into 'define and 'undef compiler control lines, and
stores them in an internal buffer. If this buffer is filled up, the
compiler reports this error. In practice, it is almost impossible to
make this happen.

• expecting patch size: I switch

After a IPC switch, the compiler expects to find a decimal integer
parameter. This error is reported if no such parameter is supplied.

• more than one source file specified

The compiler will only compile one source file per run. Source file
names on the command line are distinguished from switches by the
fact that they do not start with a I. A common cause of this error
is to type, for example:

C>t8c cats Ifo dogs.bin

instead of:

C>t8c cats Ifodogs.bin

There must not be a space before dogs. bin if it is to be regarded as
a parameter of the Ifo switch.

• range for patch size is 1 to 8 bytes

The message indicates that the IPCn compilation option has been
specified with an invalid value for the displacement value 'n'. R.cfcr
to section 9.4.4.1 for a discussion of this option.

C Compiler Reference

• ... reason ... ; please submit a CSR

195

This message indicates a fault in the compiler itself. In some cases
the reason may give a clue to a possible avoidance procedure but
in all cases such messages should by reported to 3L by means of a
Customer Software Report (CSR).

If any other error messages have been generated before this fatal
error message it is possible that a previous error has confused the
compiler. Correcting the other errors may remove the cause of this
message.

• target must be IT4 or ITS only: I switch

This error is caused by using a switch like IT3, for example.

• target processor already specif ied: Iswitch

This could be caused by typing either of the following:

C>tc/t4/t8 cats
C>t4c/t8 cats

or similar things. Each would flag the ITS switch as an error; the
first, because a IT4 switch has already been given, and the second
because the t4c command implicitly specifies the T4 as the target

· processor.

• unable to open filename as listing file

The compiler was unable to open the named file for output. This
might be caused, for example, by using an erroneous filename:

C>t8c cats/f199:zot

• unable to open filename as source file

The given filename has been specified in the conlmand which invoked
the conlpiler but such a file cannot be accessed. Check that the
filenanle has been spelled correctly and that it exists in the relevant
directory.

196

• unknovn svitch I switch

Chapter 9

The sequence of characters I switch was not recognised by the com
piler as a valid switch ..

9.9.3.3 Code Generator Errors

Once the syntactic and semantic phases of compilation have been
completed the compiler attempts to generate transputer instructions
for the program ..

During this phase of compilation the compiler does not have access
to the source program and so error messages cannot include the
offending statement but simply give its line number ..

• .attempt to access a word at an unaligned address at
line number

This message is issued when the program attempts to load or store
a word-sized object (for example, an integer) at an address which is
not align'ed on a word boundary.. On the T2, a word contains two
bytes, and this message will be given for any attempt to access a
word at an odd-numbered address. On the T4 and TB, a word may
only be accessed at an address which is divisible by four.

errore)
{

char buffer[20];
*(int *)(buffer+7) = 200;

}

If this error occurs, processing of the program continues, so that
further errors can be detected, but no output file is generated .

• Error: byte initialization too complex at line number

This message is issued when the initialization of a byte-sized object
(char) has specified a value which cannot fit into a byte. Note that

C Compiler Reference 197

in Parallel C the range of values held in a byte-sized variable is 0 to
255 for a char and -128 to +127 for a signed char.

errore)
{

static char c • 1000;
}

This is treated as a fatal error.

• Error: shift out of range at line number

This message is issued when the compiler tries to fold a constant
expression and discovers that the right-hand operand of a "«" or
"»" operator is outside the allowed range, which is 0 to 32 for the
T4 and TB, and 0 to 16 for the T2.

errore)
{

int I;

I • 7«50;
}

This is treated as a fatal error.

• Error: initialization too complex at line number

errore)
{

static int i;
static int j = i;

}

This is treated as a fatal error.

• Error: Zero divide at line nU7nber

This rnessage is issued when the compiler tries to fold a constant
expression and discovers that the divisor is zero.

errore)

198

{

int I.Y;
x • I/O;

}

This is treated as a fatal error.

Chapter 9

• Warning: integer constant truncated to 16 bits at line
number

This message is output during a compilation for the T2, if the mag
nitude of an integer constant is larger than 65535.

errore)
{

int i;

i • 6663~;

i • -65535;
i • 65536;
i • -66536;

}

/. no warning ./
/. DO warning */
/* warning */
/* warning */

This is not treated as an error; the constant is truncated, and com
pilation continues.

9.9.4 Errors in Assembler Language

This section deals with a number of special errors which may occur
in assembler language. Other errors may occur in assembler lan
guage, and these are reported and dealt with in the usual way. The
distinguishing mark of the errors dealt with in this section is that
they are recognised at a relatively late point in the compilation. For
this reason, although they are reported on the display, they are not
output to the listing file. In order to save messages resulting from
these errors, the output to the display must be redirected into a file,
like this:

C>t8c errprog/fl > errprog.err

C Compiler Reference 199

In this example, the listing, with any ordinary errors would be placed
in errprog .lis as usual. Assembler error reports of this kind would
be placed in errprog. err.

These error messages have the following format:

*opcode: message at line In in file In

opcode is replaced by the intruction mnemonic or pseudo-op coded
on the line where the error happened. In specifies the source line
number. The file specification is omitted unless the error happened
in an 'include file, in which case In is the filename in question.

In the descriptions below, only the message field is mentioned.

• constant expected after II~II

This error would be reported for code like the following:

as. {
Idc -foo;

}

Only a numeric constant is valid after the '-'.

• operand form

This error will be reported when an opcode which cannot have a
symbolic operand is given one. For example:

int foo;
as. {

Idnlp foo;
}

Idnlp is not one of the opcodes allowed to have a symbolic operand.

• constant expected

This error report occurs with the byte pseudo-ope For example:

int foo;

200

as. {
byte foot

}

The byte pseudo-op must be followe<\ by a constant.

• operand type wrong

Chapter 9

This is reported when an opcode which is allowed to be followed by
a symbolic operand is in fact followed by a label:

foo:
as. {

IdI fOOt
}

• external operand not alloved

This error is reported when an opcode which is allowed to be followed
by a symbolic operand is followed by an identifier with storage class
extern which is not allocated storage by the declaration currently
in scope.

extern int fOOt
as. {

Id! foot
}

• label required

This error may be reported for the j and cj opcodes. If these are
followed by a symbolic operand, it must be an identifier defined as
a label.

int fOOt
as. {

j foot
}

C Compiler Reference

• unknown opcode

201

This error is reported for assembler statements whose opcodes do
not appear in the list in appendix E.

as. {
foo 123;

}

• syntax error

This error is reported when the format of the assembler statement
is so peculiar that the compiler cannot understand it at all.

int foot
as. {

Idc 123 foot
}

202 Chapter 9

Chapter 10

The C Run-Time Library

10.1 Introduction

10.1.1 Purpose of the Run-Time Library

The Parallel C run-time library is a collection of compiled func
tions which perform commonly-used operations not included in the
C language itself: reading and writing data, and evaluation of math
ematical functions like sin and cos are the most obvious instances.

The functions in the Parallel C run-time library fall into these cate
gories.

ANSI functions are defined in the ANSI standard[3], chapter 4;

Parallel functions are required to support the special facilities of
the transputer: channel communications, thread control, etc.;

Compatibility functions are included for compatibility purposes
only, whether with earlier versions of Parallel C or with other
C language environments.

204 Chapter 10

ANSI functions and parallel functions are grouped by function (I/O,
string handling, etc) and discussed in general in this chapter. In
chapter 11 they are listed alphabetically and discussed in detail.

The compatibility functions are discussed separately in appendix F.

10.1.2 Versions of the Run-Time Library

The three processor types supported by Parallel C each have separate
run-time libraries. The linker will detect and prohibit an attempt to
link a program with the wrong version of the run-time library.

The T4 and TB libraries each exist in two versions.

• The Full library contains all the functions listed in this chapter
and in appendix F. To make use of the full run-time library, a
program must communicate with the afserver, either directly
or through the file-service multiplexer (see chapter 6).

• The Stand-alone library excludes all those functions which re
quire the support of the afserver. Programs with no direct or
indirect connection to the afserver must be linked with this
variety of the run-time library. The functions it contains are
marked in chapter 11 and in appendix F.

Only a stand-alone library is provided for the T2.

The stand-alone library contains only essential initialisation code,
and the only I/O functions provided are those which use the trans
puter's channel communication facility directly; see section 10.5 be
low. This means that a program linked with the stand-alone library
cannot use standard I/O functions like printf, or utility functions
like exit.

The user-written function main is called by the stand-alone library
with exactly the same arguments as shown in section 9.2. llowcver,
no command-line arguments are passed to the program, and as a

The C Run-Time Library 205

result argc is always 1, argv[O] is always 1111, and argv[l] is always
NULL.

The versions of the run-time library have the following names.

Full library Stand-alone library
T2 none sacrtlt2.bin
T4 crtlt4.bin sacrtlt4.bin
TB crtlt8.bin sacrtlt8.bin

10.1.3 Conventions

This section describes how to use standard header files in calling
library functions and how to interpret the notation used in chapter 11
to specify the number and types of arguments they require.

Run-time library functions are used in exactly the same way as user
defined functions (most are in fact just normal C functions anyway).
To use a library function, a program must first declare the name
of the function to be used, and indicate that it is external to the
program (storage class extern).

So that the declarations of library functions in user programs are al
ways correct, standardised header files are provided with the system
for each group of library functions. Every function in the library is
associated with exactly one of these header files. The programmer
uses the C 'include statement to access the contents of the header
file before making use of any of the functions declared there. As
well as containing the required function declarations, the header file
will include declarations for any special data types required by its
functions and definitions of various related macros.

For example, consider the standard I/O functions. These are de
clared in the header file stdio. h. Before the first use of any of the
standard I/O functions, a program must contain the statement:

'include <stdio.h>

206 Chapter 10

This declares all or the standard I/O functions like printf and
getc as well as defining the macros EOF and NULL which are used
in communication between the I/O functions and user programs.

Programs should always use the header files provided with the com
piler rather than attempting to provide their own declarations for
library functions since the declarations of some functions will differ
from the obvious declaration implied by the function synopses in
chapter 11.

The function synopses indicate how to call library functions. In
formation about required argument types and function result types
is presented in the form of a C function declaration prefixed by
'include statements which indicate which header files, if any, must
be used in order to access the function. For example, the synopsis
for the fgets function looks like this:

'include <8tdio.h>
char .fgets(char *str. int n. FILE .streaa);

This means that fgets returns a result of type (char *) and has
three arguments of types (char *), int and FILE *, where FILE
is a data type declared in the header file stdio. h. Similarly, the
synopsis for the printf function looks like this:

'include <8tdio.h>
int printf(const char *foraat ••..);

The synopsis shows that printf's first argument must be a character
pointer, and that it is optionally followed by further arguments. The
additional arguments and their allowed types are discussed in the
text.

10.1.4 Header Files

The following ANSI header files are supplied with the compiler.
They are normally held in the compiler's installation directory (see
chapter 1), which by default is \ tc2v2.

The C Run-Time Library

assert.h
ctype.h
errno.h
float.h
limits.h

locale.h stddef.h
math.h stdio.h
setjmp.h stdlib.h
signal.h string.h
stdarg.h time.h

207

In addition, the parallel functions of Parallel C are supported by the
following header files, which are also held in the installation directory.

alt.h net.h
boot.h par.h
chan .h sema. h
dos.h

serv.h
thread.h
timer.h

The following additional header files, which support certain compat
ibility functions, are discussed in appendix F.

ascii.h chanio.h varargs.h

The ANSI and parallel functions are described in the following sec
tions which are arranged alphabetically by the names of the header
files. The remainder of this section discusses the contents of four
header files which for the most part contain only macro and type
definitions.

10.1.5 Errors <errno. h>

This header contains definitions of macros which relate to the re
porting of error conditions. In addition, it provides access to errno;
users are advised not to access errno via a declaration of their own,
as in future versions it may not simply be the identifier of an object.

208 Chapter 10

10.1.6 Limits <float. h> and <limits. h>

These he.aders define a number of macros specifying the limits and
characteristics of numeric types. Details may be found in section
2.2.4.2 of the ANSI standard. Note that some of these have different
values depending on the processor type and the compiler's command
line switches.

10.1.7 Common Definitions <stddef .h>

This header contains definitions of the following types and macros.

NULL the null pointer constant

offsetof return the offset of a structure member from the start
of the structure

ptrdiff_t the type of the result of subtracting two pointers

size_t the type of the result of sizeof and offsetof

vchar_t the type of a wide character: see sections 10.18.7 and
10.18.8 below

NULL and offsetof will be discussed further in chapter 11.

10.2 Alt Package <alt .h>

The al t functions allow a program to input from whichever of a
group of channels becomes ready first. There are two sets of func
tions. The novai t set returns a status value if none of the specified
channels is ready to communicate. The others wait until a channel
becomes ready. There are two ways to specify which channels are
to be tested. The _vec functions use an array of pointers to the
channels, the others use a variable-length argument list of pointers
to channels.

The C Run-Time Library

alt_novait is anyone of a list of channels trying to send?

209

alt_novait_vec is anyone of an array of channels trying to send?

await input from anyone of a list of channels

alt_vait_vec await input from anyone of an array of channels

10.3 Diagnostics <assert .h>

This header file defines the assert macro which assists the program
mer in putting run-time diagnostics in a program.

assert program debugging function

10.4 Neighbouring Transputers <boot.h>

When a transputer is reset, and before it is booted, it executes special
"peek and poke" firmware. When it is in this state, a neighbouring
transputer can inspect or alter the contents of its memory by using
the functions defined in this header file.

boot_peek peek at memory of neighbouring transputer

boot_poke poke into memory of neighbouring transputer

10.5 Channels <chan. h>

The functions described here allow programs to access the trans
puter's basic communication facility, which is to transfer a message
across a channel. The header file <chan. h> defines the following:

• a type CHAN representing the channel data type

210 Chapter 10

• (CHAN .) literals for the input and output channels for each
of the four Inmos links attached to the transputer

• a (CHAN .) literal for the channel associated with the trans
puter's external event mechanism

• a CHAN literal for initialising channels to their inactive state

• procedures to initialise and reset channels

• procedures to send and receive communications across chan
nels, with variants to wait until the communication occurs or
to fail after some timeout interval.

The literals defined by <chan.h> are as follows; note that these
literals are not entered in the alphabetical list of library entry points.

LinkOInput input channel associated with link 0

LinkOOutput output channel associated with link 0

Link1Input input channel associated with link 1

Linkl0utput output channel associated with link 1

Link2Input input channel associated with link 2

Link20utput output channel associated with link 2

Link3Input input channel associated with link 3

Link30utput output channel associated with link 3

EventReq channel associated with external events

NotProcess_P value to which channel words are initialised, and
to which channel words return after communications
using them have finished. Comparing the contents
of a channel word with this value provides a test for
whether a thread is currently attempting to commu
nicate over the channel.

The C Run-Time Library

The functions provided in the "chan" package are as follows:

chan_init initialise a channel word

211

chan_reset resets a channel, along with any link hardware asso
ciated with it

chan_in_byte input a byte from a channel

chan_in_vord input a word from a channel

chan_in_message input a message from a channel

chan_in_message_t as above, with timeout

chan_out_byte output a byte to a channel

chan_out_vord output a word to a channel

chan_out_message output a message to a channel

10.6 Character Handling <ctype. h>

10.6.1 Character Testing Functions

The character testing functions described here are implemented as
macros. They return a nonzero value if their argument nleets the
condition being tested and zero otherwise. The argument is a single
integer.

212 Chapter 10

isalnum determines if the argument is alpha-numeric

isalpha determines if the argument is alphabetic

iscntrl determines if the argument is an ASCII control char
acter

isdigit determines if the argument is a digit

isgraph determines if the argument is a printing character but
not a space

islover determines if the argument is a lowercase letter

isprint determines if the argument is a printing character

ispunct determines if the argument is a punctuation character

isspace determines if the argument is a space, horizontal or
vertical tab, carriage return, form-feed or newline

isupper determines if the argument is an uppercase letter

isxdigit determines if the argument is a hexadecimal digit
character

10.6.2 Character Mapping Functions

tolover converts uppercase characters to lowercase; returns
lowercase characters unchanged

toupper converts lowercase characters to uppercase; returns
uppercase characters unchanged

10.7 Accessing DOS Functions <dos .h>

The functions described here allow a program running on a trans
puter system which is hosted by an MS-DOS computer to access

The C Run-Time Library 213

the software interrupts, DOS function calls and memory of the host
system. The functions have been modelled after similar functions
provided in native MS-DOS C compilers.

All MS-DOS functions are accessed by sending a set of register values
to the host processor, executing a software interrupt instruction and
finally receiving a set of modified register values. Thus, to use these
functions a detailed knowledge of register uses and interrupt numbers
for the MS-DOS function you wish to use is required. One source of
this information is the IBM DOS Technical Reference[6].

The header file defines a union type called REGS which defines the
register set of the host MS-DOS machine. Most of the functions
described here accept two such union objects as arguments; one for
the register values to be supplied to the interrupt routine and another
to be filled with the register values after the interrupt has been called.
Each REGS object consists of two structs; one struct WORDREGS x
for the word registers (16-bit on MS-DOS machines) and another
struct BYTEREGS h overlaying this for the equivalent byte-length
registers. This overlaying arises from the fact that in the Intel 80x86
processors used to run MS-DOS, some of the 16-bit registers can also
be accessed as pairs of 8-bit registers. For example, the ax register
can be accessed as a high-order byte ab and a low-order byte al. As
well as the processor registers, a union REGS object also contains a
field representing the state of the processor c flag after the interrupt
has been executed.

Although these union and struct data types have been closely
modelled on the equivalent structures available to native MS-DOS
programmers, users should note that the registers in the structures
are in a different order to that conventionally used under MS-DOS,
and there are some extra fields. This difference simplifies the job
of the C run-time system and should not be visible to programs
unless they initialise static objects of these types. Such programs
would have to be changed to using the correct ordering, which can
be determined from <dos. h>.

The 16-bit 80x86 registers such as ax are represented in these struc-

214 Chapter 10

tures by fields declared as unsigned short. These will be either 16
or 32 bits wide, depending on whether the IGs compiler switch is
used. The functions will work correctly in both cases, and programs
which access these data structures should not normally be aware of
the difference.

Host Interrupts The functions int86 and int86x call specified
host software interrupts. The ... x forms of these functions always
have an extra argument which specifies the contents of the host
segment registers for the call; if the non-x form is used, the segment
registers will not be changed. The function segread is provided to
read the contents of the segment registers so that particular registers
can be changed while leaving the rest with their current values.

The functions intdos and intdosx are shorthand forms of int86
and int86x; they always use host software interrupt number 21 16 ,

which is used for the main DOS function calls.

For the very simplest DOS function calls, the function bdos may be
used; this simply takes a DOS function number and values for the
dx and al registers, and causes the appropriate DOS function to be
executed.

Host Memory Some of the more complex interrupt calls, both
to MS-DOS and to add-on packages like MS-WINDOWS, require
parameters and data blocks to be passed in memory rather than
in registers. The Intel 80x86 architecture uses a 32-bit quantity to
specify an address in memory. The 'include file <dos .h> defines a
type called pcpointer (equivalent to long int) to represent these
quantities. The more significant 16 bits of this object are a segment
number, the least significant 16 bits are an offset from the base of
that segment. These two fields can be extracted using the C shifting
and masking operations. A pcpointer can be constructed from its
components in the same way.

The C Run-Time Library 215

If a block of memory is required as a parameter to an interrupt call,
it must first be acquired from MS-DOS. After use, the memory block
should be returned to MS-DOS so that it may be used again. These
operations can be performed either by the appropriate DOS function
calls (described in the DOS Technical Reference) or by the run-time
library functions allocS6 and freeS6.

Because the transputer and its host MS-DOS system do not have any
shared memory areas, information destined for a parameter block in
the MS-DOS host cannot be simply written into the block by normal
C assignment operations. Instead, a duplicate of the block is created
as a C structure in the transputer's memory, and a function is then
called to move the contents of the block in the transputer's memory
to its counterpart in the memory of the MS-DOS host. Similarly,
reading information from a block in host memory involves transfer
ring the block into an identical structure in the transputer's memory
and then accessing the latter. These two operations are performed
by the run-time library functions toS6 and fram86.

Examples The following program calls MS-DOS function 216 (Dis
play Output) to display the character 'A' on the screen. The argu
ment is passed in the dx register pair:

'include <dos.h>
aain()
{

bdos(Ox02. /* function */
)A) • /* dx */
O)j /* al unused */

}

This more complicated example uses MS-DOS function 916 (Print
String) to print the string "Hello" on the screen. The string to be
printed is written into a block of MS-DOS Inenl0ry before the call:

'include <dos.h>
.ain()
{

char *str = ttHello$tt j

216

union REGS r:
etruct SREGS e;
pcpointer p;

/* allocate host storage and write string ./
p - alloc86(strlen(str»:
to86(strlen(str)t str t p);

/. find current ses-ent register yalues ./
segread(B);

/. set up function call nuaber ./
r.b.ah - Ox09;

/. point at string to print */
r.x.dx - p a Oxffff; /* offset into ...•/
B.ds - p » 16; /* sepent nlmber ./

/. perfoz-. the call ./
int86x(Ox21 t /* DOS function call ./

art /. registers in ./
art /. registers out ./
as); /. segaent registers ./

/. free string aeaorJ in host ./
free86(p);

}

The functions available in dos.h are as follows.

Chapter 10

int86

int86x

segread

intdos

intdosx

bdos

alloc86

perform host interrupt

perform host interrupt with segment registers

read segment registers

perform DOS function

perform DOS function with segment registers

perform simple BDOS function

allocate host memory block

The C Run-Time Library

free86 free host memory block

to86 transfer memory block to host

from86 transfer memory block from host

inp read from host I/O port

outp write to host I/O port

10.8 Localisation <locale .h>

217

The localisation facility of ANSI C makes it possible to vary a number
of aspects of the run-time library in order to follow local conventions
regarding the format of numbers, collating sequences when compar
ing alphanumeric strings, the format of the time and date, and so
on. Currently, Parallel C implements the "C" and "u locales only, as
required by the ANSI standard.

As well as two functions, the header file defines a type, lconv, which
contains fields relating to the formatting of numbers, and a number
of macros which are used to specify aspects of the locale to change
or query. For details, see section 4.4 of the standard.

localeconv return details of numeric formatting conventions of
the current locale

setlocale change or query all or part of the locale

10.9 MatheIllatics <math. h>

The Inathematical functions calculate various standard mathemati
cal functions such as logarithms, sines, cosines etc. The header also
defines the macro HUGE_VAL as a double expression which is returned
as the result of some of the functions in certain conditions.

218 Chapter 10

10.9.1 Treatment of Error Conditions

Errors are handled by returning impossible or unusual result values
and setting an error code in the external integer variable errno.

10.9.2 Trigonometric Functions

The trigonometric functions operate on angles expressed in radians.

acos returns the arc cosine of the argument

asin returns the arc sine of the argument

atan returns the arc tangent of the radian argument

atan2 returns the arc tangent of the division of the argu
ments

cos returns the cosine of the radian argument

sin returns a value that is the sine of the radian argument

tan returns the tangent of the argument

10.9.3 Hyperbolic Functions

cosh returns the hyperbolic cosine of the argument

ainh returns a value that is the hyperbolic sine of the ar
gument

tanh returns the hyperbolic tangent of the argument

10.9.4 Exponential and Logarithmic Functions

exp returns the base e raised to the power of the argument

The C Run-Time Library 219

frexp split a floating-point number into a normalised frac
tion and an integral power of 2

Idexp multiplies a floating-point number by an integral
power of 2

log returns the natural logarithm of the argument

log10 returns the base-ten logarithm of the argument

modf breaks the argument into integral and fractional parts

10.9.5 Power Functions

pow returns the value of the first argument raised to the
power of the second argument

sqrt returns the square root of the argument

10.9.6 Nearest Integer, Absolute Value and Remain
der Functions

ceil returns the smallest value which is equal to or greater
than the argument

fabs returns the absolute value of the floating point argu
ment

floor returns the largest integer which is less than or equal
to the argument

fmod calculates the floating-point renlaillder of the division
of its arguments

220 Chapter 10

10.10 Processor Farm Communications <net. h>

The functions described here allow tasks running under the ftood
filling configurer's network protocol to communicate without know
ing the exact details of that protocol.

net_broadcast send a message to every worker task

send a message into the network

net_receive receive a message from the network

10.11 Synchronising Access to Run-Time
Library <par. h>

In a program in which many execution threads are active, access to
the C run-time library must be synchronised, so that only one thread
may be performing a library operation at one time. For example,
if two threads attempted to allocate a memory block at the same
time (say, using malloc) then the run-time library's data structures
could become corrupted. The required synchronisation is achieved
by a SEMA variable par_sema defined in the header file <par. h>,
which should be used by any thread wishing to use the C run-time
library and released when it is finished.

As an alternative, some of the more common functions used in
concurrently executing threads are available in an interlocked form,
which include these semaphore operations.

par_fprintf interlocked version of fprintf

par_free interlocked version of free

par_malloc interlocked version of malloc

par_printf interlocked version of printf

The C Run-Time Library

10.12 Sernaphores <sema .h>

221

This group of functions allows a Parallel C program to create and ma
nipulate semaphores, which can be used to synchronise the activity
of several concurrently executing threads. The header file <sema.h>
declares a new type SEMA which is used by these functions.

sema_init initialise a semaphore

sema_signal perform the signal operation on a semaphore

sema_test_vait check whether waiting on a semaphore would block

sema_vait perform the wait operation on a semaphore

10.13 Emulating the filter Task <serv.h>

serv_f iltar generates Inmos file protocol filter threads

10.14 Nonlocal JUlDpS <setjmp.h>

These functions enable the programmer to save the current context
of the program, and subsequently to return to it. The header defines
a type jmp_buf, which is capable of holding all the information
necessary to recreate the context.

longjmp

setjmp

returns to the context saved by setjmp

saves the context of the calling function for a subse
quent longjmp call

222 Chapter 10

10.15 Signal Handling <signal.h>

The signal handling package enables the programmer to create traps
for various signals. In the case of Parallel C, these events do not,
however, arise spontaneously, but have to be raised by the appropri
ate function call.

The header defines macros which are used as identifiers for the signals
which can be raised, and others which define the action to be taken
when a signal is raised; see the synopses in chapter 11.

signal define way in which a signal is to be handled from now
on

raise raise a signal

10.16 Variable Arguments <stdarg. h>

A function whose declaration contains an ellipsis "... " may be called
with varying numbers of arguments. The facilities described here
allow such a function to access its arguments.

The header <stdarg. h> defines a type va_list. The user function
should declare an object of this type, called the argument pointer,
and scan the variable-length argument list with it, using these func
tions.

initialise the argument pointer

find the next argument

finish accessing arguments

The C Run-Time Library

10.17 Input/Output <stdio .h>

223

The standard I/O functions provide a portable I/O interface for
C programs. They are available in the form described here in most
implementations of C. They also provide buffering between user pro
grams and files or devices. This means that I/O transfers to or from
real files remain efficient even if data is transferred between the file
and the user program in small units (e.g., one byte at a time). On
output, user data is placed in a data buffer allocated 'behind the
scenes' by the standard I/O functions, until the buffer becomes full,
at which point the contents of the buffer are written en masse to
the file. This technique achieves an overall speed-up because disk
devices are optimised for block transfers. The situation for input is
similar.

Other standard I/O functions allow random file access and conver
sion of numeric data between internal (binary) and external (char
acter string) representations.

All of the functions described in this section require the calling pro
gram to include the header file stdio.h before they may be called.

Before a user of the standard I/O package can read or write the
data in a file, a path to the file must be opened by calling the fopen
function. The name of the file is passed to fopen, which, if the
file is accessible, returns a pointer to a structure of type FILE. This
file pointer must be used by the calling program to refer to the file
in subsequent I/O operations (fputc, for example, requires a file
pointer argument to identify the file which is to be written). The
data type FILE is declared in the header file stdio. h.

After perfornling I/O on an open file, the path to the file may be
broken by closing the file. Files should be closed when they are
no longer in use, since some implementations place a limit on the
nunlber of files which may be open at once. Files may be opened
again after they have been closed. llaving more than one path open
to the same file at any point in a program should be avoided, since

224 Chapter 10

'include <stdio.h> /. standard I/O declarations .,

.ain()
{

FILE .fp;

fp-fop8n("fred",.....);

fprintf(
fp,
"Hi!\n"

) ;

fclose(fp);
}

,. file pointer variable .,

,. file DaII8 -/

/* open for writing *,

,. for.atted output routine -/
/- file pointer (identifies file) .,,* text string to be written -,

,. disconnect file -/

Figure 10.1: An example of using fopen and fclose

some implementations may disallow or restrict this. Closing all files
explicitly at the end of a program is, however, unnecessary; this is
done automatically by the standard I/O system.

Figure 10.1 gives an example where a file named fred is opened,
some ASCII data is written out to it and the file is closed. For
clarity, no error checking is performed.

For convenience, three file pointers are always automatically opened.
These are declared in stdio. h as follows.

FILE .stdin; This is the standard input stream. By default on
most systems, stdin is connected to a terminal keyboard.

FILE .stdout; This is the standard output stream. stdout on
most systems is the display device (VDU or printer) of a ter
minal.

FILE *stderr; This is the standard error stream, used by programs
for outputting error messages. It too is normally opened on the
terminal output device.

The C Run-Time Library 225

To simplify writing programs which read one sequential input file,
process it and write another sequential output file, most implemen
tations of C provide some means external to a program (e.g., the
command language) to connect at run time files or devices other
than the default to the standard input and output of a program.
This means that programs maybe written and tested using the
terminal for standard input and output, then run unchanged using
files for input a.nd output, yet the program itself need not open files.
Section 3.4 describes the mechanism used to redefine the standard
I/O streams.

10.17.1 Stream I/O

The model of I/O supported by the standard I/O package is known
as stream I/O.

In the stream I/O model, a file is considered as a sequence of char
values. A notional file pointer, maintained by the I/O functions,
indicates the character position within the file at which the next
character will be read or written. The file pointer is advanced au
tomatically as characters are read or written. Random file access is
supported by allowing user positioning of the file pointer.

The basic operations provided by the standard I/O package in
support of the stream I/O model are therefore 'read a character'
(fgetc), 'write a character' (fputc), 'reposition file pointer' (fseek)
and 'read file pointer' (ftell). Other, higher level, operations (e.g.,
write a string) are built up directly from these primitive operations.
Because of this, calls on the character level functions and the higher
level functions may be freely intermixed and characters will still be
transferred in the expected order.

Devices such as terlninals are included in the stream I/O model:
characters may be read or written from them as appropriate (in prin
ciple, one at a time) but positioning operations are not supported.

226 Chapter 10

10.17.2 Binary I/O

The basic units in the above discussion of stream I/O are 'characters':
values of type char. These are integers which stand for graphic char
acter representations in the encoding scheme of the host computer
system (e.g., the ASCII encoding for 'A' is 65, in the EBCDIC scheme
used by IBM it is 193). The C I/O system, however, does not require
that the values transferred be valid character representations. In
fact, any binary value which can be represented in a char variable
may be written to a file (and later read back unaltered). In Parallel C
any value in the range 0 to 255 will fit in a char. Arbitrary binary
data can be stored in files using the standard I/O system by recording
it as sequences of char values.

By default, Parallel C reads and writes MS-DOS text files l . On
output, newline ('\n') characters are converted into carriage-return
line-feed sequences, and on input carriage-return line-feed sequences
are converted to single newline characters. If you need to process
binary data without conversion, you must inform the run-time li
brary that a particular file is to be processed as a binary file. This
can be done by using the "binary" specifier b in a call to fapen (for
example, fapen (II X • bin11 J "rb") .)

Files processed or created by redirecting the standard input, output
and error streams are always text files. You cannot process binary
files by redirecting standard input and standard output in this way.

10.17.3 Text I/O

Text I/O in C is simply a special case of the binary I/O discussed
above where the values transferred are restricted to the valid char
acter codes for the host system.

IThis default can be changed if desired, although this procedure is not rec
ommended. For full details, refer to the description of the _f.ode variable on
page 462.

The C Run-Time Library 227

Human-readable text files are divided into lines. Line-breaks are
represented in the stream I/O model by the newline character, '\n'.
On output, newline characters may be included at arbitrary points in
the text. On input, programs detect the end of a line by comparing
characters being read with the value '\n'.

10.17.4 Operations on Files

remove removes a file from the file system

rename renames a file

tmpfile create temporary binary file

tmpnam generate unique filename

10.17.5 File Access Functions

fclose closes a file

fflush writes out any buffered information to the file

fopen opens a file

freopen reassigns the address of a FILE structure and reopens
the file

setbuf associates a buffer with an input or output file

setvbuf determines how stream will be buffered

10.17.6 Formatted Input/Output Functions

fprintf perfoflns formatted output to a specified file

fscanf performs formatted input from a file

228 Chapter 10

printf performs formatted output to the standard output
device

scanf performs formatted input from the standard input de
vice

sprintf performs formatted output to a character string in
memory

sscanf performs formatted input from memory

vfprintf similar to fprintf, but with a single argument instead
of a list of arguments

vprintf similar to printf, but with a single argument instead
of a list of arguments

vsprintf similar to sprintf, but with a single argument instead
of a list of arguments

10.17.7 Character Input/Output Functions

fgetc returns the next character from a file; generates a true
function call

fgets reads a line from a file; the line is terminated by a
NUL character

fpute writes a single character to a file; generates a true
function call

fputs writes a string to a file

gete returns the next character from a file; implemented as
a macro

getchar returns the next character from the standard input
device

The C Run-Time Library 229

gets reads a line from the standard input device; the new
line is replaced with a NUL character

putc writes a single character to a file; implemented as a
macro

putchar writes a single character to the standard output device

puts writes a string to the standard output device; termi
nates the string with a newline

ungetc writes a character to a file buffer and leaves the file
positioned before the character

10.17.8 Direct Input/Output Functions

fread reads a specified number of items from the file

fvrite writes the specified number of items to a file

10.17.9 File Positioning Functions

fgetpos store value of file position indicator

fseek places the file pointer at a specified byte offset relative
to the beginning of the file, the end of the file or the
current location in the file

fsetpos set file position indicator

ftell returns the current byte offset from the beginning of
the file to the current location within the file

rewind places you at the beginning of the file

230 Chapter 10

10.17.10 Error Handling Functions

clearerr resets the error and end of file indicators

feof tests for end-or-file

ferror returns a nonzero integer if an error occurs during read
or write operations

perror writes (to stderr) the most recent error encountered

10.18 General Utilities <stdlib .h>

10.18.1 String Conversion Functions

atof converts an ASCII string to a double value

atoi converts an ASCII string to a int value

atol converts an ASCII string to a long value

strtod converts an ASCII string to a double value

strtol converts an ASCII string to a long int value

strtoul converts an ASCII string to an unsigned long int
value

10.18.2 Pseudo-Random Sequence Generation Func
tions

rand pseudo-random number generator

srand change seed for rand

The C Run-Time Library

10.18.3 Memory Management Functions

231

Building complex dynamically changing data structures requires a
different class of storage from static or extern variables (which
must be preallocated by the programmer when a program is writ
ten and are therefore not flexible enough) and auto or register
variables (which disappear when the procedure which created them
returns; some dynamic data structures must be operated on by many
procedures).

This extra storage class is generally referred to as heap storage (see
section 3.5). In C, heap storage is allocated by calling a library
function and remains allocated until it is explicitly released by calling
free.

calloc allocates and clears an area of memory

free deallocates allocated space

malloc allocates the specified number of contiguous bytes of
memory

realloc changes the size of an allocated area

10.18.4 Communication with the Environment

abort abnormal program termination (unless trapped)

atexit set exit handler function

exit stop program

getenv access environment variables

system execute operating system command string

232 Chapter 10

10.18.5 Searching and Sorting Utilities

bsearch performs a binary search of an array

qsort sorts an array

10.18.6 Integer Arithmetic Functions

abs returns the absolute value of the integer argument

div compute quotient and remainder of an integer division

labs returns the absolute value of the long int argument

ldiv compute quotient and remainder of a long int divi
sion

10.18.7 Multibyte Character Functions

In the present version of Parallel C, each IDultibyte character is one
byte in length. The same applies to wide characters.

mblen returns width of a multibyte character

mbtovc convert a multibyte character to a wide character

vctomb convert wide character to multibyte character

10.18.8 M ultibyte String Functions

In the present version of Parallel C, multibyte strings and wide
character strings both consist of a sequence of one-byte chara.cters.

mbstovcs

vcstombs

convert multibyte string to wide character string

convert wide character string to multi byte string

The C Run-Time Library

10.19 String Handling <string .h>

233

The C language itself allows the manipulation of single charac
ters. Library functions are provided to allow C programs to process
variable-length strings of characters.

This header includes a definition of the macro NULL and of the type
size_t.

10.19.1 Copying Functions

memcpy copies a given number of bytes from one memory lo
cation to another; undefined for overlapping blocks

memmove "safe" block move

strcpy copies one string to another

stmcpy copies a maximum number of characters from one
string to another

10.19.2 Concatenation Functions

strcat concatenates two strings

strncat concatenates two strings up to a maximum number of
characters

10.19.3 Comparison Functions

memcmp compare two blocks of melnory

strcmp perforrns lexicographic comparison of two ASCII strings

strcoll compare strings using collating sequence of current
locale

234 Chapter 10

strncmp performs lexicographic comparison of two ASCII strings
(up to a maximum number of characters)

strxfrm transform string using collating sequence of current
locale

10.19.4 Search Functions

aeachr locate character in block of memory

strchr finds a specified character in a string

strcspn returns the length of the initial part of a string which
does not contain specified characters

strpbrk locate first character from character set

strrchr find last copy of specified character in string

strspn returns the length of the initial part of a string which
contains specified characters

strstr locate substring within string

strtok returns a pointer to th~ first character of a token

10.19.5 Miscellaneous Functions

memset overwrites each byte of an object with a given charac
ter code

strerror maps errno codes to strings

strlen returns the length of a string

The C Run-Time Library

10.20 Threads <thread.h>

235

The functions in this section allow a Parallel C program to create
new threads of execution within a single task.

Every thread executing on a transputer has a priority, which is either
"urgent" or "not urgent" The header file <thread.h> defines the
literals THREAD_URGENT and THREAD_NOTIJRG to represent this.

thread_start general thread-starting facility

thread_create simpler shorthand version of thread_start

thread_priority returns current thread's priority

thread_deschedule make current thread momentarily unable to
execute

thread_restart restart a thread given a workspace pointer

thread_stop stop the current thread

10.21 Date and Time <time. h>

The following functions return information about the time.

clock

time

returns processor time used

returns the current calendar time

Note that the ANSI functions difftime, mktime, asctime, ctime,
gmtime, localtime and strftime are not yet implemented in Par
allel C.

See also section 10.22 for functions associated with the transputer's
internal timers.

236 Chapter 10

10.22 Transputer Timers <timer .h>

Each transputer associates a hardware timer with the group of
threads executing at a particular priority. The timer associated
with high-priority threads has a resolution of IllS, so that it ticks
one million times per second. The timer for low priority threads has
a resolution of 641'8 and ticks 15625 times a second. The following
functions allow threads to manipulate the timer associated with the
priority at which they are executing.

timer_after indicates whether one time value is later than another

timer_delay wait at least a specified number of ticks

timer_now returns the current timer value

timer_wait wait until current timer reaches some value

Chapter 11

Alphabetic List of
Run-time Library Entries

This chapter describes Parallel C's implementation of the ANSI
C run-time library functions, as described in chapter 4 of the
standard[3], and the functions supplied by 3L to support the special
facilities of the transputer. The functions are arranged in alphabet
ical order; note that non-letters such as digits or '_' are regarded
as being "before" the alphabet. Thus, a function a_a would appear
before aaa, and functions whose names begin with '_' appear at the
start of the list.

This chapter does not describe functions which are included in the
library only to maintain compatibility with earlier versions of Parallel
C or other implementations of C. These are discussed in appendix F.

IMACRO Iindicates a function which is implemented as a macro, and
so may not be redefined.

IINLINE Iindicates a function which is a candidate for inlining. By
"inlining" is meant a technique whereby a call to the function results
in the code for that function being included in the program at that
point. Inlining will not be done if the c9mpHer's IGI switch is used,

238 Chapter 11

or if the function is used as a procedure parameter; nor will it be
done, except in certain limited ways, if the appropriate header is not
included.

ISA Iindicates a function which is available as part of both the stan
dard (crtltx . bin) and the stand-alone (sacrtltx .bin) libraries,
and may thus be used from within a stand-alone task. Functions
without the ISA I mark may only be used within tasks linked with
the standard library (crtltx. bin).

IT21 indicates a function which is present in the T2library, sacrtlt2 .bin.

t DOS Iindicates a function which is specific to the DOS operating sys
tem, or (when used at the start of a paragraph) indicates a paragraph
of special interest to users of that operating system.

INEW Iindicates a library entry which is new with this release of
Parallel C.

NUL is used here to indicate a character value of zero, such as used
to terminate character strings. NULL, defined in <stddef. h> and
several other headers, represents a generic "null pointer" value.

_filer_handle return server stream id of file descriptor

int _filer_handle(int fd, int .streaaid);

fd must be a file descriptor as returned by open, creat or fileno.
If it is not, _filer_handle returns 0 to indicate an error.

If fd is a valid file descriptor, _filer_handle returns a non-zero
value to indicate success, and modifies the value of the int pointed
to by streamid to be the afserver stream id on which the file
is open. Note that an afserver "stream id" is different from the
underlying DOS file handle.

_f iler_handle is not defined in a header file.

Alphabetic List of Run-time Library Entries

abort INEW I abnormal program termination

'include <8tdlib.h>
void abort(void);

239

abort raises the signal SIGABRT. If this returns (th at is, if no signal
handler has been nominated for SIGABRT by a call to signal) the
program is terminated, and the MS-DOS status is set to 1. Before
termination, all functions registered by atexit will be called, and
all the task's files will be closed.

abs IINLINE 11 SA 11 T21 integer absolute value

'include <stdlib.h>
int abs(int arg);

abs returns the absolute value of its integer operand. The result
returned by abs is not defined if arg is the largest negative integer.

acos ISA I calculates the arc cosine of its argument

.include <.ath.h>
double acos(double x);

acos returns the arc cosine in the range [O,1r]. If][is outside the
range [- 1, +1], the value HUGE_VAL is returned, and errno is set to
the value EDOM.

alloc86 IDOS I allocate host memory

'include <dos.h>
pcpointer alloc86(int n);

This function allocates a block of at least n bytes in the base memory
of the MS-DOS host computer and returns a pointer to it. If the

240 Chapter 11

memory cannot be allocated, a null pcpointer is returned. The
allocated memory cannot be accessed directly by the transputer
program; rather, data can be moved between the transputer system
and the host by means of the functions to86 and from86.

Note that the Intel 80x86 architecture limits the amount of mem
ory which can be contained in a single segment to 65536 (1000016)
bytes. DOS permits allocation of more than this amount of
memory using alloc86-always assuming that enough is free
but care must be taken in accessing locations past the first
1000016 bytes of the allocated block. For example, the result of
alloc86(Ox20000) (allocate 128KB of host memory) might be the
value (pcpointer) (OxlF300000). This is not a physical location
in the host, but a combination of a segment value (IF3016) and
an offset (000016) from that segment. The corresponding physical
address is IF30016. The physical location offset 64KB from here is
physical address 2F30016, which might be expressed with a segment
value of 2F3016 and an offset of 000016, although there are other
possibilities. The corresponding pcpointer value is Ox2F300000,
which is quite different from the value obtained by directly adding
64KB to the original pcpoiDter value. Thus, pcpointer address
manipulation must always be performed by first reducing to the
appropriate physical address.

alt_Dovait ISA 11 T21 is anyone of a list of channels trying to send?

'include <alt.h>
int alt_Dovait(int n •...);

Use alt_Dowait to find out which, if any, of a set of channels is
ready to communicate.

The parameter n is followed by a series of CHAN * arguments chanO,
chanl, ... , which are pointers to the channels to be tested. n is the
number of channels to be tested; it must match the actual number
of channel pointers passed. For example: alt_nowait(2, cO, cl);

Alphabetic List of Run-time Library Entries 241

If a negative value is returned, no process was attempting to send a
message on any of the channels tested.

Otherwise, the returned value will be in the range O... n - 1, indi
cating which channel (chanO, chant, ...) is ready to communicate.
If more than one channel is simultaneously ready to communicate,
one will be arbitrarily chosen.

alt_novait_vec I SA _11 T21 is anyone of a group of channels trying to
send?

'include <alt.h>
int alt_novait_yec(int D. CHAI .channela[]);

Use alt_Dovait_vec to find out which, if any, of a set of channels
is ready to communicate.

The elements of the array channels are pointers to the channels to
be tested. D is the number of elements in the array. Note that the
channels themselves need not be in an array.

If a negative value is returned, no process was attempting to send a
message on any of the channels tested.

Otherwise, the returned value will be in the range 0... n - 1; it is
then an index into the channels array indicating which channel is
ready to communicate. If more than one channel is simultaneously
ready to communicate, one will be arbitrarily chosen.

alt_vait I SA I1 T21 await input from any of a list of channels

'include <alt.h>
int alt_vait(int n•...);

Use alt_vait to block execution of the calling thread until anyone
of a set of channels becomes ready to communicate. No processor

242 Chapter 11

time is consumed while waiting, so alt_vait is to be preferred over
a "busy wait" loop which repeatedly calls alt_novait.

The parameter n is followed by a series of CHAN • arguments chanO,
chant, ... , which are pointers to the channels. n is the number
of channels; it must match the actual number of channel pointers
passed. For example: alt_vait(2, cO, cl);

alt_vait will only return when one or more of the specified channels
becomes ready to communicate. If no communication is attempted
on any of these channels, it may never return.

If it does return, the returned value will be in the range o... n -1, in
dicating which channel (chanO, chan1,...) is ready to communicate.
If more than one channel is simultaneously ready to communicate,
one will be arbitrarily chosen.

alt_vait_vec ISA 11 T21 await input from any of a group of channels

.include <alt.h>
int alt_vait_vec(int n, CHAt .channela[]).

Use alt_vait_vec to block execution of the calling thread until
anyone of a group of channels becomes ready to communicate.
No processor time is consumed while waiting, so alt_vait_vec
is to be preferred over a "busy wait" loop which repeatedly calls
alt_novait_vec.

channels is an array of pointers to the channels. n is the nUIT.ber of
elements in the array. Note that the channels themselves need not
be in an array.

alt_vait_vec will only return when one or more of the specified
channels becomes ready to communicate. If no communication is
attempted on any of these channels, it may never return.

It it does return, the returned value will be in the range 0... n - 1; it
is then an index into the channels array indicating which channel is

Alphabetic List of Run-time Library Entries 243

ready to communicate. If more than one channel is simultaneously
ready to communicate, one will be arbitrarily chosen.

asin ISA I calculates the arc sine of its argument

'include <.ath.h>
double asin(double x);

asin returns the arc sine of its argument in the range [- ~,t]. If x
is outside the range [- 1, +1], the value HUGE_VAL. is returned, and
errno is set to the value EDDM.

assert IMACRO I program debugging routine

'include <assert.h>
void aBsert(int expression);

If the macro identifier NDEBUG is defined at the point in the source
file where <assert .h> is included, use of the assert function will
have no effect.

The assert function puts diagnostics into programs. The expres
sion argument is any scalar expression. When it is executed, if
expression is false (that is, evaluates to zero), assert writes a
message on the standard error stream and terminates the program.
The message gives the filename and line number of the assert call
which failed.

No value is returned by assert.

244

atan ISA I arc tangent

'include <aath.h>
double atan(double x);

atan returns the arc tangent of x.

atan2 ISA I arc tangent of the division of its arguments

'include <aath.h>
double atan2(double x. double ,)i

Chapter 11

atan2 returns the arc tangent of j in the range [- 11",11"]. If both
arguments are zero, the value HUGE_VAL is returned, and errno is
set to the value EDDM.

atexit IT21 set exit handler

'include <stdlib.h>
tot atexit(void (.func)(void»;

The value of func is registered by the run-time library. The function
it points to will be called (with no arguments) at normal program
termination, when the main function returns or exit is called.

atexit returns 0 if func is registered successfully, otherwise it re
turns a non-zero value.

Any number of functions may be registered. The same function may
be registered more than once.

atof ISA I convert string to floating point

'include <stdlib.h>
double atof(coDst char .nptr);

The string pointed to by nptr is converted to double-precision float-

Alphabetic List of Run-time Library Entries 245

ing point representation. The format accepted by atof is the same
as that accepted by strtod; in fact, a call to atof is equivalent to

strtod(nptr. (char **)IULL)

atoi 1SA 11 T21 convert string to integer

'include <stdlib.h>
int atoi(const char *nptr) i

This function converts the string pointed to by nptr to integer repre
sentation. The format accepted by atoi is the same as that accepted
by strtol, with a decimal base; in fact, a call to atoi is equivalent
to

(int)strtol(nptr. (char **)IULL. 10)

atol I SA 1 convert string to long integer

'include <std1ib.h>
long ato1(const char *Dptr)i

This function converts the string pointed to by nptr to long int
representation. The format accepted by atol is the same as that
accepted by strtol, with a decimal base; in fact, a call to atol is
equivalent to

strto1(nptr. (char **)IULL. 10)

In Parallel C, atol is equivalent to atoi since sizeof (int) and
sizeof (long int) are the same.

246

bdos IDOS I perform simple DOS function

'include <dos.h>
int bdos(int dosfn, int doadx, int dosal).

Chapter 11

This function performs a DOS function call interrupt on the host
with the ab register (specifying the DOS function call number) set
to dosfn, and with the dx and al registers set to dosdx and dosal
respectively. It returns the contents of the u register after DOS has
processed the interrupt.

bdos is a shorthand form of the int... calls for the very simplest
DOS function calls only.

boot_peek ISA I peek in memory of neighbouring transputer

'include <boot.h>
int boot_peek(int ad, int val, CHAI .chan_in,

CHAt .chaD_out).

This function reads a word of memory from address ad in a neigh
bouring transputer into the variable pointed to by vale In order to be
able to do this, the neighbour transputer must have been recently
reset but not bootstrapped. In this special state, the transp_uter
processor executes special firmware implementing a "peek and poke"
protocol described in the Transputer Reference Manual[12] and the
Compiler Writer's Guide[13]. The function returns a non-zero value
if the "peek" operation succeeds.

The neighbouring transputer is connected to the one on which the
boot_peek function is executed by an Inmos link, with which are as
sociated an input and output channel chan_in and chan_out. If that
link does not lead to another transputer, or if the other transputer is
not executing the "peek and poke" firmware, the boot_peek function
will time out after 30 ticks of the transputer timer associated with
the current thread's priority. This timeout period is around 2mS for
a non-urgent thread. If boot_peek times out, it returns zero.

Alphabetic List of Run-time Library Entries

boot_poke 1SA 1 poke to memory of neighbouring transputer

'include <boot.h>
int boot_poke(int ad, int val, CHAN .chan_out);

247

This function writes the value val into the word of memory at
address ad in a neighbouring transputer. In order to be able to
do this, the neighbour transputer must have been recently reset but
not bootstrapped. In this special state, the transputer processor
executes special firrnware implementing a "peek and poke" protocol
described in the Transputer Reference Manual[12] and the Compiler
Writer's Guide[13]. The function returns a non-zero value if the
"poke" operation succeeds.

The neighbouring transputer is connected to the one on which the
boot_poke function is executed by an Inrnos link, with which is
associated an output channel chan_out. If that link does not lead
to another transputer, or if the other transputer is not executing
the "peek and poke" firmware, the boot_poke function will time out
after 30 ticks of the transputer timer associated with the current
thread's priority. This timeout period is around 2mS for a non
urgent thread. If boot_poke times out, it returns zero.

bsearch ISA 11 T21 binary search

'include <stdlib.h>
void *bsearch(const void .key. CODst void .base.

size_t naeab. size_t size.
int (*coapar)(const void *.
const void *»;

This function searches an array of objects for an element matching
a given key. The result of bsearch is a pointer to the array element
located by the search; if no match is found, a null pointer is returned.

bsearch is not limited to any particular data type; it is provided
with a comparison function which allows it to compare two objects
of the arbitrary type used by the program.

248 Chapter 11

The array to be searched starts at base and has nmemb elements,
each of size bytes. key points to the item to be searched for, which
must have the same type as the elements of the array being searched.

The compar argument points to a comparison function which, given
pointers to two objects of the same type as those pointed to by key
and base, returns a negative integer to indicate the first is "less
than" the second, a positive integer to indicate that the first object
is "greater than" the second, or 0 to indicate that the two objects
are "equat" .

Before calling bsearch, the array must be sorted into ascending order
with respect to the comparison function pointed to by compar. This
operation can often be most easily performed by the qsort function
(see page 297) which can sort an arbitrary array into order. Like
bsearch, it uses a comparison function to determine the ordering to
be used.

calloc I SA 11 T21 allocates and clears an area of memory

'include <stdlib.h>
void .callocCsize_t nele., size_t elsize)i

calloc returns a pointer to enough space for nelem objects of size
elsize, or NULL if the request cannot be satisfied. The storage is
initialised to zero.

ceil 1INLINE 11 SA 1 ceiling function

'include <.ath.h>
double ceil(double x);

ceil returns the smallest integer not less than x.

Alphabetic List of Run-time Library Entries

chan_in_byte I INLINE 1~ r T21 input a byte from a channel

'include <chan.h>
void chan_iD_byte(char *b. CHAI *chan);

249

This function reads a single-byte message from the channel pointed
to by chan into the character variable pointed to by b.

chan_in_byte_t 1SA 11 T21 input a byte from a channel, or timeout

'include <chan.h>
int chan_in_byte_t(char .b, CRAI .chan,

int tiaeout);

This function attempts to read a single-byte message from the chan
nel pointed to by chan into the character variable pointed to by b. If
the communication does not take place within timeout ticks of the
timer associated with the priority of the current thread, the function
will terminate and return zero. If the communication succeeds within
the timeout interval, the function will return a non-zero value.

chan_init IINLINE 11 SA 11 T21 initialise a channel word

'include <chan.h>
void chan_init(CHAI .chan);

This function initialises the channel word pointed to by its chan
argument. This operation consists of writing the special value
NotProcess_P into the channel word; this indicates that no threads
are currently attempting to communicate through this channel.

All channel words (i.e., all variables declared to be of type CHAN)
must be initiaJised before the first attempt to communicate through
them. If this is not done, the first attempt to communicate through
the channel will cause the transputer processor to crash.

250 Chapter 11

Note that the channel words bound to a program's input and output
ports are already initialised by the calling environment, and should
not be initialised again by the program.

chan_in_message I INLINE I1 SA I[!!] input a message from a channel

'include <chan.h>
Yoid chan_in__eaaage(int len. char -b.

CHAI -chan).

This function reads a message of length len bytes from the channel
pointed to by chan into the variable pointed to by b.

chan_in_message_'t ISA 1[!!] input a message from a channel, or
timeout

'include <chan.b>
int chan_in__essage_t(int lent char .b. CHAI .chan.

int taeout) i

This function attempts to read a message of length len bytes from
the channel pointed to by chan into the variable pointed to by b. If
the communication does not take place within timeout ticks of the
timer associated with the priority of the current thread, the function
will terminate and return zero. If the communication succeeds within
the timeout interval, the function will return a non-zero value.

chan_in_vord 1INLINE 11 SA 11 T 2 1 input a word from a channel

'include <chan.h>
void chan_in_vord(int *•• CHAI *chan);

This function reads a word-length message froIn the channel pointed
to by chan into the integer variable pointed to by v. For the T4 and
the TB, four bytes will be transferred; for the T2, two.

Alphabetic List of Run-time Library Entries

chan_in_word_t ISA 11 T21 input ~ word from a channel, or timeout

'include <chan.h>
int chan_in_vord_t(int *V, CHll *chan,

int tiaeout);

251

This function attempts to read a word-length message from the chan
nel pointed to by chan into the integer variable pointed to by v. For
the T4 and the TB, four bytes will be expected; for the T2, two. If
the communication does not take place within timeout ticks of the
timer associated with the priority of the current thread, the function
will terminate and return zero. If the communication succeeds within
the timeout interval, the function will return a non-zero value.

chan_out_byte 1INLINE 11 SA 11 T21 output a byte to a channel

'include <chan.h>
void chan_out_byte(char b, CHAI *chan);

This function sends a single-byte message consisting of the value b

to the channel pointed to by chan.

chan_out_byte_t 1SA 11 T21 output a byte to a channel, or timeout

'include <chan.h>
int chan_out_byte_t(char b, CHll *chan,

int tiaeout);

This function attempts to send a single-byte message consisting of
the value b to the channel pointed to by chan. If the communication
does not take place within timeout ticks of the timer associated
with the priority of the current thread, the function will terminate
and return zero. If the communication succeeds within the timeout
interval, the function will return a non-zero value.

252 Chapter 11

chan_out_message IINLINE I1 SA 11 T21 output a message to a channel

'include <chan.h>
yoid chan_out_.essage(int len, char *b,

CRAI *chan) j

This function sends a message of length leD bytes from the variable
pointed to by b to the channel pointed to by chan.

chan_out_message_t 1SA I[!!] output a message to a channel, or
timeout

'include <chan.h>
int chaD_out_aeeeage_t(iDt 18n, char *b, CHAI *chan,

iDt tiJleout);

This function attempts to send a message of length len bytes from
the variable pointed to by b to the channel pointed to by chan. If the
communication does not take place within timeout ticks of the timer
associated with the priority of the current thread, the function will
terminate and return zero. If the communication succeeds within
the timeout interval, the function will return a non-zero value.

chan_out_word 1INLINE I1 SA I1 T21 output a word to a channel

'include <chan.h>
void chan_out_vord(int v, CH'I.chan);

This function sends a word-length message consisting of the value
v to the channel pointed to by chan. For the T4 and the T8, four
bytes will be transferred; for the T2, two.

Alphabetic List of RUll-time Library Entries

chan_out_vord~t I SA 1~ output a word to a channel, or timeout

'include <chan.h>
int chan_out_vord_t(int v, CHAN .chan,

int ti.eout);

253

This function attempts to send a word-length message consisting of
the value v to the channel pointed to by chan. For the T4 and
the TB, the message will be four bytes long; for the T2, two. If the
communication does not take place within timeout ticks of the timer
associated with the priority of the current thread, the function will
terminate and return zero. If the communication succeeds within
the timeout interval, the function will return a non-zero value.

chan_reset IINLINE 11 SA 11 T21 reset a channel

'include <chan. h>
char *chan_reset(CHAN .chan);

This function resets the channel pointed to by chan. If the channel
is associated with an Inrnos link, then the hardware of that link is
reset as well.

If a thread was attempting to communicate on the channel at the
time of the reset, then a handle to that thread (which is now sus
pended) will be returned as the result of chan_reset. This handle
can be used to restart the suspended thread at a later date by passing
it to the function thread_restart.

If the channel was idle at the time of the reset (Le., if no thread was
attempting to communicate on it) then the value NotProcess_P will
be returned.

254

clearerr clear stream errors

'include <stdio.h>
void clearerr(FILE *strea.).

Chapter 11

clearerr resets any error indication on the named stream.

clock return processor time used

'include <t:me.h>
clock_t clock(woid).

The clock function determines the processor time used. It returns
the elapsed time in seconds since an (unspecified) base time as the
best approximation to the processor time used. The type (clock_t)
of the value returned by clock is int and CLK_reK is 1.

The time in seconds is the value returned divided by the value of the
macro CLK_TCK (also defined by <time.h».

cos ISA I cosine function

'include <aath.h>
double cos(double x);

cos returns the cosine of its radian argument.

cosh [ill hyperbolic cosine function

'include <aath.h>
double cosh(double x)j

cosh returns the hyperbolic cosine of its argument. If the ma.gnitude
of x is too large, HUGE_VAL is returned, and errno is set to the value
of ERANGE.

Alphabetic List of Run-time Library Entries

div INEW 11 SA I1 T21 integer division

'include <stdlib.h>
div_t diy(int dividend, int diyisor)i

255

This function divides dividend by divisor and returns both the
quotient and the remainder in a structure of type div_t. This type
is defined in <stdlib. h> and includes the following fields:

int quot;
int re.;

/* contain~ the quotient */
/* contain~ the remainder */

If the division is inexact, the quotient returned is the integer of lesser
magnitude which is nearest to the algebraic quotient. If the result
cannot be represented, the behaviour of div is undefined.

errno ISA I current error number

'include <errno.h>
int errno;

Some run-time library functions return a simple true/false value to
indicate success or failure. For example, fopen (see page 260) returns
a pointer to a file descriptor, or a null pointer for failure. Many
library functions also set the variable errno to indicate the type of
error in more detail. Some functions, like sqrt (see page 309), have
only one possible error type. In the case of sqrt, this is EDOM
"domain error"-which is assigned to errno when the argument to
sqrt is negative. Some other functions, such as strtol, may have
several different distinguishable error cases; strtol may set errno
either to EDDM or to ERANGE-"range error". The different values of
errno are defined as macros in <errno. h>.

The values of errno which a particular function uses are described
along with the function. In this version of Parallel C, errno may
also be assigned a server status code by any function which requires
access to file services. For example, a failed call to fapen might set
errno to 99 indicating "server operation failed".

256 Chapter 11

At entry to a program's main function, errno is zero. A run-time
library function which does not detect an error does not guarantee
to return errno to this initial state, although it may do so. Thus,
unless errno is zeroed immediately before a call to a run-time library
function, its value should only be examined if the call is otherwise
known to have failed, by examination of the function's return value.

exit IT21 terminate execution

'include <atdlib.h>
Yoid exit(iDt atatus)i

exit is the normal means of terminating program execution. It calls
all the functions registered by calls to at.xit (in reverse order of
registration), and then closes all the task's files.

This call never returns.

status is used to tell the operating system what was the status of the
terminating program. The header <stdlib. h> defines two macros
so that this may be done in a machine-independant way. If status
is zero or EXIT_SUCCESS, the program is terminating successfully. If
status is EXIT_FAILURE it is terminating unsuccessfully.

IDOS IUnder MS-DOS, the value of status is given to the MS-DOS
result code. 0 indicates success, and 1 indicates failure.

exp ISA I eX function

'include <aath.h>
double exp(double x);

exp returns the exponential function of x.

exp returns HUGE_VAL when the correct value is too large; errno is
set to ERANGE.

Alphabetic List of Run-time Library Entries

fabs I INLINE 11 SA I floating absolute value

'include <aath.h>
double fabs(double arg);

fabs returns the absolute value of arg.

fclose close a file

'include <stdio.h>
int fclose(FILE *streaa);

251

fclose causes any buffers for the specified stream to be emptied, and
the file to be closed. Buffers allocated by the standard I/O system
are freed.

fclose is called automatically upon calling exit.

fclose returns non-zero if stream is not associated with an output
file, or if buffered data cannot be transferred to that file.

feof IMACRO I is stream at end of file?

'include <stdio.h>
int feof(FILE *strea.);

feof returns non-zero when end of file is read on the named input
stream, otherwise zero. It is implemented as a macro, and therefore
cannot be redeclared.

ferror IMACRO I tests for stream errors

'include <stdio.h>
int ferror(FILE *streaa);

ferror returns non-zero when an error has occurred reading the
named stream, otherwise zero. Unless cleared by clearerr, the er-

258 Chapter 11

ror indication lasts until the stream is closed. ferror is implemented
as a macro.

fflush flush stream buffer

'include <8tdio.h>
tot ffluab(FILE ••trea.)i

fflush causes any buffered data for the named output stream to be
written to the file or device "associated with that stream. The stream
remains open.

fflush is called automatically by close, and when all streams are
implicitly closed by exit.

EOF is returned if stream is not associated with an output file or if
buffered data cannot be transferred to that file.

fgetc read a character from a stream

'include <8tdio.h>
int fgetc(FILE .Btreaa)j

fgetc returns the next character from the specified input stream.
Successive calls return successive characters from the stream. fgetc
is a genuine function, unlike getc which is a macro.

EOF is returned at end of file or if a read error occurs.

fgetpos INEW I store value of file position indicator

'include <Btdio.h>
int fgetpoB(FlLE *streaa. fpOB_t *POB);

fgetpos stores the file position in the object pointed to by pas. (The
type fpos_t is defined in stdio.h).

Alphabetic List of Run-time Library Entries 259

If successful, fgetpos returns zero. If it fails, it returns a non-zero
value, and sets errno to EBADF for a bad file descriptor, or EINVAL
for any other error.

ICAREFUL! IUsers should note that in the current version of Paral
lel C, fgetpos should only be used with binary files.

fgets read a string from a stream

'include <8tdio.h>
char .fgets(char .8tr, int D, FILE .streaa)i

fgets reads a maximum of n - 1 characters from the stream and
stores them in the string str. Reading stops when a newline has been
stored or when an end-oC-file is encountered. The last character read
into str is followed by a NUL character.

fgets normally returns str. If an error occurs, or if an end-of-file
is encountered before any characters have been read, fgets returns
NULL.

ICAREFUL! INote that fgets behaves differently to gets (q.v.) with
respect to any terminating newline character: fgets keeps the new
line, gets deletes it from the string.

floor IINLINE I[ill floor function

'include <.ath.h>
double floor(double Xli

floor returns the largest integer not greater than x, expressed as a
floating-point value.

260

fmod ISA I floating-point remainder

'include <.ath.h>
double faod(double It double J)i

fmod returns the remainder from X/J.

fopen opens a file

'include <atdio.h>
FILE *fopen(conat char .filena.e.

conat char .tJPe) i

Chapter 11

fopen opens the file named by filenaDle and associates a stream
with it. fopen returns a pointer to be used to identify the stream in
subsequent operations. fopen returns the pointer lULL if filename
cannot be accessed in the way requested.

type is a character string made up of the following parts:

• A specification of whether the file is to be opened for read
ing ('r'), writing ('v') or appending ('a'). This specifier must
appear as the first character in the type string.

• An optional "update" specifier ('+'). If included, the file is
opened for both reading and writing. If omitted, the file is
opened in the mode described by the first character of type.

• An optional specification of whether the file is to be a text file
('t') or a binary file ('b'). If this specifier is omitted, the file is
taken to be a text file.!

The second and third parts of the type string may appear in any
order. For example, IIr+bll and IIrb+" are equivalent. Some examples

IThis default behaviour can be changed if required when porting a large
application to the Parallel C environment; see the description of the _i.ode
variable (page 462) for details.

Alphabetic List of Run-time Library Entries 261

of possible values for type are now given, along with a description
of their interpretation.

IIrll

IIrt ll

"rbll

IIrb+ 1I

"r+b ll

" v "
"all

"abll

open text file for reading
open text file for reading
open binary file for reading
open binary file for update
open binary file for update
truncate and write to, or create, text file
append to, or create, text file
append to, or create, binary file

fopen will fail if the file is to be opened for reading ('r') and it does
not exist. For writing ('v') or appending ('a'), the file will be created
if it does not exist.

ICAREFUL! IIf a file is open to read and write (the type argument
includes a '+') it is not possible to switch directly from reading to
writing or vice versa. Instead, there must be a call to fseek between
them. If this is not done, the results are undefined.

fprintf formatted output

'include <stdio.h>
int fprintf (FILE *streaa. CODst char *fonaat •

...);

The arguments which follow the format argument are output to the
specified stream, using putc. The format argument controls the
way in which the following argument list is converted for output.

The format argument is a character string which contains two types
of object: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which causes conver
sion and output of the next argument.

Each conversion specification is introdneed by the character 'X'. Fol
lowing the 'X' there may be the following, in the given order.

262 Chapter 11

Flags Field This optional field includes any of the following flags,
in any order:

The value will be left-justified.

+

space

•

o

The value will always start with a sign.

If the value does not start with a sign, a space will be
placed before it.

Use an "alternate form" conversion. The alternate
forms depend on the conversion character, as follows:

o Increase specified precision by one char-
acter, so that leading digit is always '0'.

x Precede non-zero value by 'Ox'.

X, p Precede non-zero value by '01'.

8, E, f, g, G Output decimal point even if no digits
follow it.

g, G Do not remove trailing zeroes.

For the d, i, 0, U,]C, X, p, 8, E, f, g, G conversion
characters, the value is padded with zeroes. If the '-'
flag appears as well, '0' is ignored. For the d, i, 0, U,

]C, X, P conversion characters, if a precision is specified,
the '0' flag is ignored.

Field Width This optional field is a decimal integer; or an aster
isk, in which case the value for the field width is obtained from the
next argument, which should be an int.

The converted value is padded on the left (or on the right, if the '-'
flag has been specified). If a '0' flag is in force, padding will be with
'0' characters; otherwise, it will be with spaces.

Alphabetic List of Run-time Library Entries 263

Precision This optional field consists of a ' .' and either a decimal
integer, or an asterisk, in which case the value for the precision is
obtained from the next argument, which should be an int. If only
a ' .' is specified, the precision is taken as zero.

The meaning of the precision depends on the conversion character,
as follows:

d, i, 0, U, x, X
The minumum number of digits.

8, E, f The number of digits to appear after the decimal point.

g, G The maximum number of significant digits.

s The maximum number of characters to be written from
a string.

Prefixes This optional field may contain one of the following:

h The following 'd', 'i', '0', 'u', 'x' or 'I' conversion char
acter corresponds to a short int or unsigned short
int argument; or, the following 'n' conversion charac
ter corresponds to an argument which is a pointer to
a short int.

I The following 'd', 'i', '0', 'u', 'x' or 'I' conversion char
acter corresponds to a long int or unsigned long
int argument; or, the following 'n' conversion charac
ter corresponds to an argument which is a pointer to
a long int.

L The following '8', 'E', 'f', 'g' or 'G' conversion character
corresponds to a long double argument.

Conversion Character The conversion characters and their
meanings are:

264

d, i

o,u,x,X

f

e, E

g,G

c

s

Chapter 11

The int argument is converted to decimal notation.
The default precision is 1.

The UDsigned int argument is converted to unsigned
octal ('0'), unsigned decimal ('u') or unsigned hexa
decimal ('x' or '1'). The default precision is 1. When
writing a hexadecimal number, the letters abcdef are
used for x conversion, and ABCDEF for I conversion.

The double argument is converted to decimal notation
in the form "[-]ddd.ddd" where the number of d's after
the decimal point is equal to the precision specification
for the argument. The default precision is 6.

The double argument is converted to decimal notation
of the form "[-]d.ddde[±]dd". There is one digit before
the decimal point and the number after is equal to the
precision specification for the argument; the default
precision is 6. The 'e' conversion character generates
'e' as the exponent character, while 'E' generates 'E'.

The double argument is output in style 'f' or 'e'. The
precision specifies the number of significant digits; the
default is 1. Style 'e' is only used if the exponent after
conversion is less than -4 or greate than or equal to
the precision. Style 'E' is used in place of 'e' if 'G' is
specified.

The int argument is converted to unsigned char and
printed.

The argument is taken to be a string (character
pointer) and characters from the string are printed
until a NUL character is reached or until the number
of characters indicated by the precision specification is
reached; however, if the precision is zero or missing, all
characters up to a NUL are printed.

Alphabetic List of Run-time Library Entries 265

p

n

x

The value of the pointer-to-void argument is printed
as a hexadecimal number. The default precision is 8.

No output is performed. Instead, the number of char
acters output by this call to fprintf is placed in the
int variable which the argument points at.

Print a 'X'; no argument is converted.

In no case does a non-existent or small field width cause truncation
of a field. The maximum length for a single converted argument is
512 characters.

fprintf returns the nurrlber of characters output, or a negative value
if an output error occurred.

The first call on fprintf, printf, sprintf, par_fprintf or
par_printf causes a lKB buffer to be allocated from the heap.

~utput of Exceptional Values If fprintf is asked to output
a Not-a-Number or infinity value using the 'f', '8', 'E', 'g' or 'G'
conversion characters, a special string is output instead of a value in
one of the normal formats. These strings are as follows:

266 Chapter 11

Description String
Positive infinity +inf
Negative infinity -inf
Divide zero by zero NaI:O/O
Divide infinity by infinity NaN:inflinf
Multiply zero by infinity NaN:O*inf
Add or subtract opposite signed infinities laN:inf+-inf
Square root of negative number 1a.N:-sqrt
Convert NaN from double to float laN : convlaN
Remainder from infinity laN: reminf
Remainder from zero NaI:reaO
Result not mathematically defined NaN:undef
Result unstable IaI:unstable
Result inaccurate IaN: inacc
Undefined NaN IaI:???

fputc write a character to a stream

'include <stdio.b>
int fputc(int cval. FILE .streaa);

fputc appends the character cval to the specified output stream.
It returns the character written. fputc, unlike putc, is a genuine
function rather than a macro.

fputc returns EOF if an error occurs.

fputs write a string to a stream

'include <stdio.h>
int fputs(const char *str, FILE *streaa);

fputs copies the NUL-terminated string str to the specified output
stream. The NUL character which terminates the string is not written
to the stream.

Alphabetic List of Run-time Library Entries 267

Note that unlike puts, fpu~s does not append a newHne to the
output string.

fread buffered binary input

'include <stdio.h>
size_t fread(void *Ptr. size_t size. size_t nite.s.

FILE *streaa)i

fread reads nitems objects, each of size bytes, from the specified
input stream into memory at location ptr. It returns the number of
complete items actually read. Zero is returned on error conditions
or end of file.

For example, the following code fragment reads ten integer values
from the file f into the integer array a:

'include <stdio.h>
FILE *f;
int a[10] i

fread(a. sizeof(int). 10. f);

free ISA 11 T21 deallocates space obtained from the heap

'include <stdlib.h>
void free(void *ap);

free frees the space pointed to by ap, which will have been obtained
originally by a call to malloe, ealloc or realloe. If ap is a null
pointer, no action is taken.

It is an error to attempt to free space not allocated by a call to
malloe, ealloe or realloe.

268

free86 IDOS I free host memory

'include <dos.h>
void free86(pcpointer p);

Chapter 11

p should be a pcpointer previously returned by alloc86. This
function returns the block of host memory identified by p to MS
DOS for re-use.

freopen open a stream

'include <atdio.h>
FILE .freopen(conat char .filenue. conat char .tJP8.

FILE ••treaa);

freopen substitutes the named file filename in place of the open
stream. It returns the original value of stream. The original stream
is closed.

freopen is typically used to attach the preopened constant names,
stdin, stdout and stderr to specified files.

type is a character string specifying the way in which the file is to
be opened. Refer to the description of fopen (page 260) for a full
description of the type string.

freopen returns the pointer NULL if filename cannot be accessed.

frexp ISA I split floating-point number into separate parts

.include <aath.h>
double frexp(double value. int *exp);

frexp breaks value into its normalised fraction and an integral
power of 2. The function returns the fractional part and the integral
part is pointed to by .exp.

Alphabetic List of Run-time Library Entries

from86 IDOS I transfer memory block from host

.include <dos.h>
int froa86(int lent pcpointer there. char *here):

269

This function transfers len bytes of host memory starting at there
to a corresponding block starting at here in transputer memory. The
function returns the number of bytes actually transferred. The host
memory block used will normally have been previously allocated by
a call to alloc86.

fscanf formatted input

'include <8tdio.h>
int f8canf(FILE .8treaa. COD8t char .foxwat •

...);

fscanf reads characters from the specified input stream, interprets
them according to a format string and stores the results in the
variables pointed to by the arguments following format.

The format string is regarded as a sequence of directives, which are
processed one by one. fscanf tries to match each directive with
characters read from the input stream; the way in which this match
ing is done depends on the directive. If a directive does not match
with ~haracters from the input stream, we say that a matching error
has happened. In this case, the character which caused the error
is not read, and fscanf returns at once. There are three types of
directive:

• White space of any length will match white space of any length.
If the input stream does not have white space at this point, the
directive is ignored.

• A conversion specifier, which is a sequence of characters start
ing with a 'X'. These are discussed below.

• Any other character will match the next character of the input
stream if they are the same.

270 Chapter 11

A conversion specifier consists of the following, in this order:

1. A character 'X'.

2. A optional character '.', indicating that the converted value is
not to be stored;

3. The field width: an optional non-zero integer which specifies
the maximum allowable width of the input field;

4. A prefix character, which may be one of the following:

h

1

L

With conversion characters 'd', 'i' and 'n', indi
cates that the argument points to a short int.
With conversion characters '0', 'u' and 'x', indi
cates that it points to an unsigned short int.

With conversion characters 'd', 'i' and 'n', indi
cates that the argument points to a long int.
With conversion characters '0', 'u' and 'x', indi
cates that it points to an unsigned long int.
With conversion characters 'e', 'f' and 'g', indi
cates that it points to a double.

With conversion characters 'e', 'f' and 'g', in
dicates that the argument points to a long
double.

Each conversion specifier will match a sequence of characters of
a particular format, and these characters are read from the input
stream. Reading stops when the first character which does not fit
into this format is encountered; this character is not read. It is a
matching error if no characters are read, that is, if not even one
character would fit the assumed format for this specifier.

The character sequence which has been read is converted in one of
a variety of ways, and the resulting internal value is stored in the
variable pointed to by the next argument (unless a '.' was included
in the specifier). If this variable is not of an appropriate type for the
value which has been converted, the effect is undefined.

Alphabetic List of Run-time Library Entries

The following specifiers are recognised.

271

d

i

o

u

x

e,f,g

s

Matches an optionally-signed decimal integer. The ar
gument should be a pointer to an integer.

Matches an optionally-signed integer with a format
such as would be acceptable to the strtol function
with a base value of o. This means that strings start
ing with "Ox" or "OX" are interpreted as hexadecimal,
strings starting with '0' are interpreted as octal, and
others as decimal. The argument should be a pointer
to an integer.

Matches an optionally-signed octal integer. The argu
ment should be a pointer to an integer.

Matches an optionally-signed decimal integer. The ar
gument should be a pointer to an unsigned integer.

Matches an optionally-signed hexadecimal integer with
a format such as would be acceptable to the strtoul
function with a base value of 16. This means that the
string may, but need not, start with "Ox" or "OX". The
argument should be a pointer to an integer.

Matches a floating-point number with a format such
as would be acceptable to the strtod function. This
means an optionally-signed string of digits, possibly
containing a decimal point, followed by an optional
exponent field consisting of an 'E' or 'e' followed by an
optionally-signed integer. The argument should be a
pointer to a floating-point variable.

Matches a character string which includes no white
space. The argument should be a pointer to an array
of characters large enough to accept the string and a
terminating NUL character, which will be added.

212

c

[

p

n

Chapter 11

Matches a sequence of characters of the length specified
in the field width (1 by default). The argument should
be a pointer to an array of characters large enough to
accept the string. Note that unlike '8', the 'c' specifier
does not skip white space; to read the next non-space
character, use "X18".

This specifier includes all the characters from the' [' up
to a later 'l '. The characters between the brackets are
called the scan-set. The specifier matches a sequence
of characters all of which are members of the scanset.
So, for example, "[aeiou]" would match a sequence of
vowels, of any length and in any order. The argument
should be a pointer to an array of characters large
enough to accept this sequence.

If the first character of the scan-set is a '-', then
the specifier matches a sequence of characters none
of which are members of the scan-set. To enable the
scan-set to include a ']', the standard provides that if
the scan-set starts with 'l' or "-]" this will not end
the specifier and another ']' will be needed. In other
words, "[]»]" is a valid specifier, defining a scan-set
consisting of 'l', ')' and ') '.

Matches a pointer value of the format output by a 'p'
specifier in a fprintf function call. The argument
should be a pointer to a pointer to void.

The argument should be a pointer to an integer, and
in this integer is written the number of characters read
so far by this call to fscanf. No characters are read
by the n specifier.

Matches a 'X' character. The complete specifier must
be "XX". No argument is used.

The conversion specifiers 'E', 'G' and 'X' are treated as being equiva
lent to '8', 'g' and 'x'. In addition, for compatibility purposes only,

Alphabetic List of Run-time Library Entries 273

'F' is accepted as being equivalent to 'If', that is, a floating-point
conversion which expects a pointer to double as the argument.

If an end-oC-file or input error occurs before any conversion is done,
fscanf returns EOF. Otherwise, it returns the number of input itenlS
successfully converted and stored. The specifier 'n' and specifiers
including a '.' do not count.

fseek reposition a stream

'include <stdio.h>
int fseek(FILE .streaa, 1001 int off8et,

int whence);

fseek sets the file position indicator of the specified stream. The
new position is at the signed distance offset bytes from a loca
tion specified in whence. Three macros are provided for specifying
whence:

SEEK_SET

SEEK_CUR

the start of the file

the current file position

the end of the file

fseek undoes any effects of ungetc.

fseek returns -1 for improper seeks, or zero for normal completion.

When operating on a text file, fseek's arguments are limited in the
following ways:

• offset may only be o.

• whence may only be SEEK_SET or SEEK_END.

The ANSI standard[3] also allows fseek to be applied to a text
file with whence = SEEK_CUR and offset set to a value previously
obtained by applying fte11 to the same stream. The current version
of Parallel C does not support this.

274

fsetpos INEW I set file position

'include <stdio.h>
tot fsetpo8(FILE *streaa. COD8t fpos_t .pos)j

Chapter 11

fsetpos sets the file position of the specified stream to the position
stored in the object pointed to by pas. This value should have been
stored by an earlier call to fgetpos.

If successful, fsetpos returns zero. If it fails, it returns a non-zero
value, and sets errno to EBADF for a bad file descriptor, or EINVAL
for any other error.

ICAREFUL! IUsers should note that in the current version of Paral
lel C, fsetpos should only be used with binary files.

ftell stream position enquiry

'include <8tdio.h>
long int ftell(FILE *streaa)j

ftell returns the current value of the offset relative to the beginning
of the file associated with the named stream. This offset is measured
in bytes.

When operating on a text file, ftell may not give an accurate
position unless the current position is either at the beginning or
the end of the file.

fvrite buffered binary output

'include <stdio.h>
size_t fvrite(const void *ptr, size_t size,

size_t niteas, FILE *streaa);

fvrite writes nitems objects, each of size bytes, from memory at
location ptr to the specified output stream. It returns the nunlber of
complete items actually written. Zero is returned on error conditions.

Alphabetic List of Run-time Library Entries 275

For example, the following code fragment writes the contents of the
integer array a into the file f:

'include <stdio.h>
FILE .1.
int a[10];

fvrite(a. Bizeof(int). 10. f);

gete IMACRO I read a character from a stream

'include <Btdio.h>
int getc(FILE .Btrea.);

gete returns the next character from the named input stream. Suc
cessive calls on gete return successive characters from the stream.
gate is implemented as a macro.

EOF is returned on end of file or when a read error is detected.

getehar IMACRO I read a character from standard input

'include <Btdio.h>
int getchar(void)j

getehar() is identical to gete(stdin). It returns the next character
from the standard input stream stdin. getehar is implemented as
a macro.

EOF is returned on end of file or read error conditions.

276

getenv access environment variable

'include <8tdlib.h>
char .getenv(con8t char .na.e);

Chapter 11

name is a pointer to a string which must be the name of an en
vironment variable. If this environment variable is defined, geteDv
returns a pointer to the corresponding global string value; otherwise,
a null pointer is returned. The getenv function allows a C program
to access the strings placed in the MS-DOS command processor's
environment by the MS-DOS SET, PROMPT and PATH commands.
Note that, under MS-DOS, the names of all environmental variables
are forced to be upper-case by the command processor. Thus, the
result of the following command would be the definition of a variable
called FRED to the value Mixed:

C>8et fred-Mixed

If the named environment variable does not exist, getenv will return
a null pointer. Otherwise, geteDv will return a pointer to the value
of the variable. For example, the following program fragment might
print out something like C:\COMMAND.COM, the location of the MS
DOS command processor:

printfC"Xs\nn. getenvC"COMSPEC"»;

Note that the string value pointed to by getenv will be valid only
until the next call on getenv. Subsequent calls on getenv will
overwrite the memory used for the original result. If you need to
make several calls to getenv, you should therefore copy the value
returned by getenv into a local string before making further calls.

gets read string from standard input

'include <stdio.h>
char .get8Cchar *str);

gets reads a string into str from the standard input stream stdin.
The string is terminated by a newline character, which is replaced

Alphabetic List of Run-time Library Entries

in str by a NUL character. gets returns its argument as result.

277

gets returns NULL on end of file or error.

ICAREFUL! INote that gets works differently to the similarly named
fgets (q.v.) in its treatment of the terminating newline character:
gets deletes the newline, fgets keeps it.

inp IDOS I read host I/O port

'include <dOB.h>
int inp(UD8iped int port);

The inp function reads a value from one of the host PC's byte input
ports. The port argument specifies which port is to be read.

The value read is returned as the result of inp.

int86 IDOS I perform host interrupt

'include <dos.b>
int int86(int intno, union REGS *inregs,

union KEGS *outregs);

This function calls host software interrupt number intno with the
general registers set to the values in inregs. The register values after
the interrupt has completed are placed in outregs and the function
returns the value of the ax register as its result.

Note that the host processor segment registers cs, ds, es and ss are
not set before the interrupt is called. If the segment registers are to
be used, you should use the int86x function instead.

278

int86x IDOS I perform host interrupt with segment registers

'include <doe.h>
int int86x(int intno. unio BEGS -inrege.

union BEGS -outrega,
atruct SREGS -segresa);

Chapter 11

This function calls host software interrupt number intno with the
general registers set to the values in inregs and the segment registers
set to the values in segregs. The register values after the interrupt
has completed are placed in outregs and the function returns the
value of the u register as its result.

This function is useful for DOS calls which take pointers to objects,
which are normally specified as the combination of a 16-bit register
and a segment register. In the case where only some of the segment
registers are to be modified, the function segread should be used
first to obtain the current values of the others. Failure to do this can
cause unpredictable behaviour.

intdos IDOS I perform DOS function

'include <d08.h>
int intdoe(union REGS -inreS8.

union KEGS -outreg8);

This function calls int86 specifying interrupt number 2116 . This
is the software interrupt number by which DOS function calls are
accessed. intdos is thus a shorthand for a common use of int86.
Like int86, intdos returns the value of the host ax register after
the interrupt has been processed.

Alphabetic List of Run-time Library Entries

intdosx IDOS I perform DOS function with segment registers

'include <dOB.h>
int intdosx(union KEGS *inregs, union KEGS *outregs,

struct SREGS .segregs);

279

This function calls int86x specifying interrupt number 21 16 • This
is the software interrupt number by which DOS function calls are
accessed. intdosx is thus a shorthand for a common use of int86x.
Like int86x, intdos returns the value of the host u register after
the interrupt has been processed.

isalnum 1MACRO 11 SA 11 T21 is character alphanumeric?

'include <ctype.h>
int isalnua(int cval);

Returns :I 0 if cval is a letter or a digit, 0 otherwise.

isalpha 1MACRO 11 SA 11 T21 is character alphabetic?

'include <ctype.h>
int isalpha(int cval);

Returns :I 0 if cval is a letter, 0 otherwise.

iscntrl IMACRO 11 SA 11 T21 ASCII control character?

'include <ctype.h>
int iscntrl(int cval);

Returns f; 0 if cval is an ASCII control character (code less than
2016 , or code 7F16), 0 otherwise.

280

isdigit 1MACRO 11 SA 11 T21 is argument a digit?

.include <ctype.h>
int isdigit(int cval);

Chapter 11

Returns 1 0 if cval is one of the digits '0'-'9', 0 otherwise.

isgraph 1MACRO I1 SA I1 T 2 1 printing ASCII character other than space?

'include <ctJP8.b>
int isgraph(int cwal);

Returns 1 0 if cval is a printing character, codes 21 16 ('! ') to 1E16

('-') inclusive. Returns 0 otherwise.

IDOS INote that this function treats the character values between 128
and 255 inclusive as non-printable, although most are visible on a
PC screen and on some printers.

islover 1MACRO 11 SA 11 T21 is character lowercase?

'include <ctype.h>
int islover(int cval);

Returns 1 0 if cval is a lowercase letter, 0 otherwise.

isprint I MACRO 11 SA 11 T21 printing ASCII character?

'include <ctype.h>
int isprint(int cval);

Returns 1 0 if cval is a printing character, codes 2016 (space) to
7E16 ('-') inclusive. Returns 0 otherwise.

Alphabetic List of Run-time Library Entries 281

IDOS INote that this function treats the character values between 128
and 255 inclusive as non-printable, although most are visible on a
PC screen and on some printers.

ispunct I MACRO 11 SA 11 T 2 1 punctuation character?

'include <ctype.b>
int ispunct (int cval);

Returns # 0 if cval is a punctuation character; otherwise o. A
punctuation is defined as being any printing character (see isgraph)
which is not a letter, a digit or a space.

isspace I MACRO I1 SA 11 T21 white space character?

'include <ctype.b>
int isspace(int cval);

Returns =1= 0 ifcval is a space, horizontal or vertical tab, carriage
return, newline or form feed character, 0 otherwise.

isupper I MACRO 11 SA I1 T21 is character uppercase?

'include <ctype.b>
int isupper(int cval);

Returns 1= 0 if cval is an uppercase letter, 0 otherwise.

isxdigit I MACRO I~ 1T21 printing hexadecimal digit?

'include <ctype.h>
int isxdigit(int cval);

Returns 1= 0 if cval is a printing hexadecimal digit, 0 otherwise.

282 Chapter 11

The printing hexadecimal digits are '0' to '9', 'a' to 'f' and 'A' to 'F'.

labs 1INLINE 11 SA I long int absolute value

'include <etdlib.h>
long int labs (10111 int j).

labs returns the absolute value of j.

If j is the most negative long int value, LONG_HIR, the result cannot
be represented and the value returned is undefined.

ldexp ISA I calculate x X 2exp

'include <.ath.h>
double Idexp(double x, int exp);

ldexp returns the result of x multiplied by the value of two raised
to the power exp. If the result is too large, the function returns
HUGE_VAL and errno is set to the value of ERANGE.

Idiv I NEW 11 SA I long int division

'include <stdlib.h>
ldiv_t Idiv(long int dividend. long int divisor;

This function divides dividend by divisor and returns both the
quotient and the remainder in a structure of type ldiv_t. This type
is defined in <stdlib .h> and includes the following fields:

long int quot;
long int re.;

/* contains the quotient */
/* contains the remainder */

If the division is inexact, the quotient returned is the integer of lesser
magnitude which is nearest to the algebraic quotient. If the result
cannot be represented, the behaviour of ldiv is undefined.

Alphabetic List of Run-time Library Entries 283

localeconv INEW I~ IT21 return numeric formatting parameters of
current locale

'include <locale.h>
struct lconv *localeconv(void);

localeconv returns a pointer to an object of type struct lconv.
The format of this structure is described in section 4.4 of the ANSI
standard[3], and the type is defined in locale.h. The fields of this
structure contain information about the way in which numeric val
ues, including monetary values, are output by the run-time library
with the current locale.

As the current version of Parallel C only supports locales "C" and
1111, as laid down by the standard, and as both of these have the same
characteristics, the values returned for the various members of the
lconv structure are always those laid down in 4.4 of the standard.

log ISA I calculates logex

'include <aath.h>
double log(double x);

log returns the natural logarithm of x.

If x is negative, log returns HUGE_VAL, and ermo is set to the value
of EDOM. If x is zero, it returns HUGE_VAL and sets errno to ERANGE.

log10 ISA I calculates loglox

'include <aath.h>
double log10(double x);

log10 returns the base-ten logarithm of x.

If x is negative, log returns HUGE_VAL, and errno is set to the value
of EDDM. If x is zero, it returns HUGE_VAL and sets errno to ERANGE.

284

longjmp ISA 11 T21 non-local goto

'include <Betjap.b>
void longjap(jap_buf env. int val)j

Chapter 11

This function, together with setjmp, is useful for dealing with errors
encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its env argument by
an earlier call on s8tjmp. This has the effect of resuming execution
immediately after that s8tjmp call.

88tjmp's caller can distinguish between the original return from
s8tjmp and the second return caused by longjmp by examining
S8tjIlP'S return value. This is always 0 for the initial return, and
the value of longjllp's val argument for subsequent returns. If val
is set to 0, longjmp will change it to a 1 in order to preserve this
condition.

The function which originally called setjmp must not itself have
returned before the call to longjmp. All accessible data still have
their values as of the time longjmp was called.

malloe ISA 11 T21 allocates the specified number of contiguous bytes of
memory

'include <atdlib.b>
void .aalloc(Bize_t nbytes)j

malloe allocates space for an object whose size is specified by
nbytes. The function returns a pointer to the start of the allocated
space. If the space cannot be allocated, the malloe function returns
a null pointer.

Space allocated by malIoe is not initialised by the run-time library,
and may contain arbitrary values. If a zeroed area of stora.ge is
required, the function eaIloe should be used. Note that the eaIIoe

Alphabetic List of Run-time Library Entries 285

function has two arguments compared to malloe's one. Thus, calls
to malloe must be rewritten" from malloe(n) to ealloe(n,1).

ICAREFUL! IIf a request for a zero-length block is made, a pointer to a
short-but real-block will be returned by malloe. Note, however,
that programs intended to be portable to other implementations
of C should not make the assumption that this is so; some other
implementations return a null pointer instead.

mblen INEW 11 SA 11 T21 return width of multi-byte character

'include <stdlib.h>
int ablen(const char .s, size_t D);

If s is a null pointer, mblen returns 0, indicating that, for the current
version of Parallel C, multibyte character codings are never state
dependent. Otherwise, it returns the width in bytes of the multibyte
character pointed to by s. In the current version, this will be 1,
unless s is pointing at a null character, in which case it will be o.

mbstoves 1NEW 11 SA 11 T21 convert multibyte string to wide character
string

'include <stdlib.h>
size_t abstovcs(vchar_t .pvcs, CODst char .s.

aize_t D);

The multibyte string pointed to by s is converted to a wide character
string and stored in the array pointed to by pves. Conversion stops
when a null character has been converted, or when n elements have
been converted. mbstoves returns the number of elements converted,
excluding the terminating zero, if any.

Note that, in the present version of Parallel C, multibyte characters
and wide characters are both one byte in length and there is no
state-dependent encoding, so this function is equivalent to a string

286 Chapter 11

copy. All possible element values are valid, so no error return can
happen.

mbtovc INEW I1 SA I1 T21 convert multibyte character to wide. character

'include <stdlib.h>
int abto.c (.char_t .p.c. const char .s.

aize_t n) i

If s is a null pointer, mbtovc returns 0, indicating that, for the
current version of Parallel C, multibyte character codings are never
state dependent. Otherwise, it returns the width in bytes of the
multibyte character pointed to by s. In the current version, this will
be 1, unless s is pointing at a null character, in which case it will be
o.

In addition, the character pointed to by s will be converted to a
wide character and stored in the location pointed to by pvc. In the
current version, as both wide and multibyte characters are always
1 byte in length, this is equivalent to copying the character. The
argument n specifies the maximum number of bytes to be scanned.

memchr 1SA 11 T21 locate character in memory block

'include <string.h>
void .aeachr(const void .s, int c, size_t n);

The memchr function searches for the value c (converted to an
unsigned char) in the n-byte memory block starting at s.

The function returns a pointer to the first occurrence of c within
the merIlory block. If the character is not located, a null pointer is
returned.

Alphabetic List of Run-time Library Entries

memcmp ISA 11 T21 memory block compare

'include <string.h>
int .eacap(conat void .sl. conat void .s2,

size_t n);

287

The memcmp function compares the first n bytes of the two objects
pointed to by s1 and s2. The result returned will be less than,
greater than, or equal to zero according to whether the object
pointed to by s1 is less than, greater than, or equal to the object
pointed to by s2.

The comparison operation is performed one character at a time; a
result will be returned when the first· difference between the objects
is located.

I CAREFUL! 1When comparing complex objects, particularly when
these were allocated using malloe from the heap, remember to take
account of the following:

1. "Holes" are sometimes introduced into struct or union ob
jects by the compiler to ensure that fields of the struct or
union are correctly aligned on appropriate address boundaries.
The contents of such "holes" are not defined, unless the struct
or union is statically allocated, or has been explicitly initialised
in its entirety by use of memset or calloe. For more detail on
alignment in structures, see section 9.8.

2. Character arrays used as string variables may contain string
values whose length is less than that of a previous string value
held in the same array. In this case, the value may be followed
by parts of the previous value, which may cause problems in a
comparison using memcmp.

288

memcpy IINLINE 11 SA I~ memory block move

'include <string.h>
void ••e.cPJ(void .sl. const void .s2. size_t n).

Chapter 11

memcpy copies n characters from the object pointed to by s2 into the
object pointed to by 81. memcpJ returns the value of 81.

ICAREFUL! IIf the two objects pointed to by 81 and s2 overlap, the be
haviour of melDcpy is undefined. To copy from one object to another
which overlaps it, or when it is not known whether the two objects
overlap, you can use the me_ove function instead of memcpy.

memmove I SA 1I T21 "safe" memory block move

'include <atring.h>
void ••e..ove(void .sl. const void .s2.

8ize_t D).

memmove copies n characters from the object pointed to by s2 into
the object pointed to by sl. memmove returns the value of sl.

If the two objects pointed to by sl and s2 overlap, memmove will still
perform the copy correctly. This is in contrast to memcpy, for which
the behaviour would be undefined. If it is known that the objects
pointed to by s1 and s2 definitely do not overlap, you can use the
faster memcpy function instead of memmove

memset ISA 11 T21 fill object with repeated byte value

'include <string.h>
void ••easet(void .ptr, int cval, size_t nua);

The memset function copies the value of cval (converted to an
unsigned char) into each of the first num characters of the object
pointed to by ptr.

The memset function returns the value of ptr.

Alphabetic List of Run-time Library Entries

modf IINLINE I~ split argument into integral and fractional parts

'include <aath.h>
double aodf(double value, double .iptr);

289

modf splits value into its integral and fractional parts. The function
returns the signed fractional part and the integral part is pointed to
by *iptr.

net_broadcast ISA I send a flood-filled network broadcast

'include <net.h>
int net_send(int nbytes, char .packet);

This function can be used by the master task of a flood-filled appli
cation to send a message to every worker task. It should not be used
by any worker task.

The message to be sent is found starting at the location pointed to by
packet. The nbytes parameter specifies the length in bytes of the
message. This function is unlike net_receive and net_send in that
the nbytes parameter is not restricted to NET_MAX_PACKET_LENGTH.
This means that the programmer does not have to split the message
up into packets; this is done by net_broadcast. The worker tasks
receive the message by calling net_receive in the usual way, pos
sibly several times; net_broadcast ensures that the when the last
packet is read, the complete parameter has the value 1 as usual.

The net_broadcast function can only be used when all the worker
tasks are known to be idle. Typically, this would be at the beginning
of the program run, before any work packets have been sent out.
Later, the master task can broadcast new data, provided a result
packet has been received corresponding to every work packet sent
out.

290

net_receive ISA I receive a flood-filled network message

'include <net.h>
int net_receive(char .packet. tot .co~lete);

Chapter 11

This function can be called by tasks participating in a flood-filled
application to receive a message from the network; the function uses
the task's input port 0 to communicate with the router task.

The next (or only) packet of the message being received is read into
the buffer pointed to by packet.

Ifnet_receive is called by the master task it reads the next available
result packet returned by a worker task; if it is called from a worker
task, it reads the next work packet sent out by the master.

The size of the packet (in bytes) is returned as the result of the
function.

If the packet is the final or only packet of the message, the location
pointed to by complete will be set to 1; otherwise it is set to 0
and the receiving task must repeatedly call net_receive to read
the remaining part of the message.

No more than NET_MAI_PACKET_LENGTH bytes will be read into the
packet buffer. Less space may be allocated if it is certain that the
sending task will not send messages longer than some smaller limit
(for example, if only fixed-length messages are being used).

net_send ISA I send a flood-filled network message

'include <net.h>
int net_send(int Ilbytes. char .packet.

int coaplete)j

This function can be called by tasks participating in a flood-filled
application to send a message into the network; the function uses
the task's output port 0 to communicate with the router task. If
net_send is called by the master task, the message packet is sent to

Alphabetic List of Run-time Library Entries 291

any free worker task; jf the ~unction is called by a worker task, the
packet is sent back to the master task.

nbytes is the number of bytes of data in the buffer pointed to by
packet. The complete argument should be 1, except for the case
described next.

nbytes cannot be longer that NET_MAX_PACKET_LENGTH, which is
defined in net.h to be 1024. If you need to send a longer message,
it must be broken up into a number of packets, each smaller than
this limit. These packets must then each be sent by a separate call
to net_send. The last packet of such a chained message should be
sent with complete set to 1; all the others should have complete
set to o. The packet argument should be updated for each call to
point to the next part of the data to be sent. The routing software
guarantees that multiple packets sent in this way are always received
by the destination task in the same order they were sent.

If at all possible, you should try to design your application so that
chained messages are unnecessary. This is because a circuit has to
be held open between the two tasks until the last packet is sent. As
a result, sending long chained messages can clog up the network,
blocking packets being delivered to other nodes.

If nbytes is less than zero or greater than NET_MAX_PACKET_LENGTH
no message is sent and the function returns a negative value. Oth
erwise the function returns the number of bytes sent, which will be
nbytes if no error occurs.

NULL IMACRO I null pointer constant

NULL is defined in stddef. h, and also in locale. h, stdio. h,
stdlib.h and string.h. It may be used as a null pointer value
of any type, such as, for example, (char .)0 or (int .)0.

292 Chapter 11

offsetof 1MACRO 11 NEW 11 SA 11 T21 offset of structure member

'include <atddef.h>
offsetof (tf/pe. member-de.ignator) i

This macro expands to a constant expression of type size_t, which
has the value of the offset in bytes from the beginning of the structure
to member-designator. The member may not be a bit-field.

outp 1DOS I write to host output port

'include <doe.h>
Yoid outp(uaai.ped int port. int byte);

outp writes the low-order byte of the integer value given as its second
argument to one of the host PC's output ports. The first argument,
port, specifies the target output port address.

par_free 1SA 11 T21 deallocate space allocated by par_malIoe

'include <par.h>
Yoid par_free(char *ap);

par_free provides access to the function free in circumstances
where multiple threads are active; access to the memory allocation
structures in the fun-time library is interlocked through the sema
phore par_sema.

Alphabetic List of Run-time Library Entries

par_fprintf formatted output

'include <stdio.h>
'include <par.h>
int par_fprintf(FILE *strea., const char *foraat,

...);

293

par_fprintf provides access to the function fprintf in circum
stances where multiple threads are active; access to the standard
I/O structures in the run-time library is interlocked through the
semaphore par_sema.

The first call on fprintf, printf, sprintf, par_fprintf or
par_printf causes a lKB buffer to be allocated from the heap.

par_printf formatted output on stdout

'include <par.h>
int par_printf(const char *foraat, .•.);

par_printf provides access to the function printf in circumstances
where multiple threads are active; access to the standard I/O struc
tures in the run-time library is interlocked through the semaphore
par_sema.

The first call on fprintf, printf, sprintf, par_fprintf or
par_printf causes a lKB buffer to be allocated from the heap.

par_malloe 1SA 11 T21 allocate the specified number of contiguous bytes
of memory

'include <par.h>
char *par_aalloc(unsigned nbytes);

par_malloe provides access to the function malloe in circumstances
where multiple threads are active; access to the memory allocation
structures in the run-time library is interlocked through the sema
phore par_sema.

294 Chapter 11

par_sema I SA 11 T21 semaphore for synchronising access to the run-time
library

'include <se.a.h>
SEllA par_8.aa j

When more than one thread is running, steps must be taken to
ensure that only one thread at a time makes use of certain run
time library functions. A thread can ensure that this rule is not
broken by waiting for the semaphore par_88aa before using one of
these functions. After finishing with the run-time library, the thread
should signal par_B8IDa so that other threads can get access.

par_sema is also used by all the functions of the par package.

perror print error message

'include <8tdio.b>
yoid perror(con8t char .8).

The perror function maps the value in the global variable ermo
into a textual message, which is printed on the standard error stream
stderr.

If s is not a null pointer, perror first prints the string pointed to
by s followed by a colon and a space. Regardless of the value of 5,

perror next prints a message corresponding to errno followed by a
new-line character.

The error messages produced by perror are the same as those which
can be obtained by calling the function strerror (see page 312) with
errno as argument.

For example, if the current value of errno is EDOM, a call such as
perror("myprog") might produce the following output:

.yprog: do.ain error

Alphabetic List of Run-time Library Entries

pow ISA I calculates xf

.include <.ath.h>
double pov(double x, double f);

pow returns the value of x raised to the power of y.

295

If x is negative and y is not an integral number, pow returns HUGE_VAL
and sets errno to the value of EDOM. If x is zero, and y is zero or
negative, pow returns HUGE_VAL amd sets ermo to EDOM. If the result
of the function is too large, pow returns HUGE_VAL and sets errno to
the value of ERANGE.

printf formatted output on stdout

'include <stdio.h>
int printf(const char .foraat, ..•);

printf writes output to the standard output stream, stdout. It re
turns the number of characters which have been output, or a negative
value if an output error occurred.

The arguments of printf have the same meaning as the fprintf
arguments of the same name. See the description of fprintf. A call
to printf is equivalent to a call to fprintf as follows:

fprintf(stdout, foraat, •••);

The first call on fprintf, printf, sprintf, par_fprintf or
par_printf causes a lKB buffer to be allocated from the heap.

putc IMACRO I writes a single character to a file

'include <stdio.h>
int putc(int cval, FILE .strea.);

putc appends the character cval to the specified output stream. It
returns the character written.

296

EOF is returned on error.

Chapter 11

Because it is implemented as a macro, putc treats a stream ar
gument with side-effects improperly. In particular, the following
example causes the pointer f to be incremented several times, which
is unlikely to be intended:

putc(c ••1++);

putchar IMACRO I write a character to standard output

'include <atdio.b>
int putchar(iDt Cyal);

putchar(cval) is a macro defined as putc(cval, stdout). The
character cval is written to the standard output stream, stdout
(normally the VDU).

EOF is returned on error.

puts write string to standard output

'include <atdio.h>
int puta(conat char .pstr);

puts copies the NUL-terminated string pstr to the standard output
stream stdout and appends a newline character. The terminating
NUL character is not copied. stdout is normally the VDU.

puts appends a newline to the output string but fputs (q.v.) does
not.

Alphabetic List of Run-time Library Entries

qsort ISA I~ "quick" sort

'include <8tdlib.h~

void q8ort(yoid *base, size_t nae.b, size_t size,
int (.co.par) (CODst Yoid .,
const Yoid .»;

297

This function sorts an array of items into ascending order. The array
of items is pointed to by base; in the array, there are nmemb elements,
with each element in the array being size bytes long.

Note that the type of the elements in the array is completely general:
it might be in't in a simple program or some complex struc't type in
a more sophisticated program. The definition of "ascending order"
for this arbitrary data type is provided by the function compar which
is passed to qsort as a parameter.

The function pointed to by compar takes two arguments, each a
pointer to an item of the type which makes up the array pointed
to by base. The function returns an integer less than, equal to, or
greater than, zero according to whether the object pointed to by its
first argument is to be regarded as less than, equal to, or greater
than, that pointed to by its second argument. For example, the
following function could be used as a comparison function when it is
desired to sort an array of doubles into ascending order:

static int co~are_double8(double.d1, double .d2)
{

if (.d1 < .d2) return -1; /. les8 ./
if (.d1 > .d2) return 1; /. greater ./
return 0; /. else equal ./

}

The corresponding call on qsort might be as follows, assuming an
array a of 1000 doubles:

qsort(a. 1000. sizeof(double), co.pare_doubles);

Although qsort nominally sorts the array into ascending order, it
can sort into any desired order by appropriate choice of the function
passed as the compar argument. The array of doubles used in the

298 Chapter 11

previous example could have been sorted into descending order of
absolute value using the following comparison function:

'include <.ath.h>
static int co-pare_aba_double.(double *d1. double *d2)
{

if (fab.(.dl) < fabs(*d2» return 1. /* lea. -> .ore */
if (faba(*d1) > fab.(*d2» return -1. /* .ore -> le•• */
return 0;

}

Here, fabs has been used to obtain the absolute value of the variables
pointed to by each argument. The sign of the return value is opposite
from that in the previous example to give the effect of reversing the
order in which qsor't will sort the array.

Once an array has been sorted into the correct order using qsor't, the
function bsearch (page 247) can be used to search for a particular
element within the array.

ICAREFUL! IIt is not usually advisable to code as follows, for exam
ple:

return .dl - .d2.

This is because in some circumstances there could be an overflow,
resulting in the items being sorted wrongly.

raise I NEW 11 SA I1 T21 raise a signal

'include <signal.h>
int raise(int sig);

This function raises the signal specified in sig. Macros are provided
to represent the allowed values of sig; they are SIGABRT, SIGFPE,
SIGILL, SIGINT, SIGSEGV and SIGTERM. The action taken when the
signal is raised depends on what action has been specified for that
signal by a call to the signal function. If no such call has been
made, the default action will be taken; that is, to return to the

Alphabetic List of Run-time Library Entries 299

caller's program. If such a return is made, 0 is returned if the call
was successful, or 1 if there was an error.

Note that the allowed signals will only be raised in the current version
by means of calls to raise; they will never happen spontaneously.

rand ISA I pseudo-random number generator

'include <stdlib.h>
int rand(yoid);

rand function returns successive pseudo-random integers in the range
oto RAND_MAX, a macro which is defined in <stdlib.h> to be 32767.

reaIIoe ISA 11 T21 changes the size of an area allocated by malloe or
ealloe

'include <stdlib.h>
void *realloc(void .ptr, size_t size);

realloe changes the size of the object pointed to by ptr to the size
specified by size. The function returns a pointer to the start of the
possibly moved object. If the space cannot be allocated, the reaIloe
function returns a null pointer and the object pointed to by ptr is
unchanged.

If ptr is a null pointer, the equivalent of a call to malloe is per
formed, with the specified value of size as the number of bytes
required.

300 Chapter 11

remove removes a file from the file system

'include <stdio.b>
int reaove(conat char *filenaae);

The remove function causes the file whose name is the string pointed
to by filename to be removed. Subsequent attempts to open the
file will fail, unless it is created anew.

Zero is returned if the file has been removed, non-zero if the operation
failed.

rename rename a file

'include <atdio.b>
int renaae(conat char *old. con8t char ~e.) i

The file named old is renamed new. old and new are pointers to NUL
terminated character strings which must be valid host file names.

Zero is returned if th~ rename operation succeeds, non-zero if it fails.

The host operating system determines whether or not a particular
file renaming operation will succeed.

rewind reposition stream to beginning

'include <stdio.h>
void revind(FILE *streaa);

rewind(stream)isequiv~entto(void)fseek(streamJOLJSEEK_SET).

It repositions stream to the first byte of the associated file (byte 0).
It is a no-op if the stream is associated with a device rather than a
file (e.g. the keyboard or the VDU).

Alphabetic List of Run-time Library Entries

scanf formatted input from stdin

'include <stdio.h>
int scanf(const char -for.at ••..);

301

scanf reads input from the standard input stream stdin. It reads
characters (via gatc), interprets them according to the given format
and stores the resulting values in the locations pointed to by the
pointer arguments following format.

The exact meaning of the arguments to scanf is the same as that
of the arguments of the same name to the function fscanf. In fact,
the call

scanf(foraat••..);

is equivalent to

fscanf(stdin. foraat ••••);

If an end-of-file or input error occurs before any conversion is done,
fscanf returns EOF. Otherwise, it returns the number of input items
successfully converted and stored.

segread IDOS I read host segment registers

'include <dos.h>
void segread(struct SREGS .segregs):

This function reads the current values of the host 80x86 processor's
segment registers into segregs.

sema_init ISA IIT21 initialise a semaphore

'include <se.a.h>
void se.a_init(SEKA .s, int v):

This function initialises the semaphore variable pointed to by s to
an initial state in which:

302 Chapter 11

• the queue of threads waiting for the semaphore is empty

• the value of the semaphore is v.

If a static or external semaphore is left uninitialised, it defaults
to an empty queue of threads and an initial value of o. If an auto
semaphore is left uninitialised, the first seaa_signal or s8Dla_vait
operation on the semaphore will cause the transputer system to
behave unpredictably.

sema_signal ISA I1 T21 perform a signal operation on a semaphore

'include <...a.h>
Yoid 8..a_.~I(SEMl .8)i

If there are threads waiting for the semaphore pointed to by s, one
of them will be chosen and made able to execute again. The value
of the semaphore under these conditions will always be 0, and will
remain uncha.nged.

Otherwise, when there are no threads waiting for the semaphore
pointed to by s, its value will simply be increased by 1.

Note that any particular semaphore must be accessed only by threads
executing at one particular priority. For example, it would be
acceptable for a set of "urgent" threads to synchronise through a
semaphore, or for a set of "not urgent" threads to do this, but not
for a mixture of threads executing at different priorities. Threads
executing at different priorities can synchronise by passing messages
along channels.

sema_signal_n 1SA 11 T21 perform n signal operations on a semaphore

'include <se.a.h>
void se.a_signal_nCSEMA .8, int n);

This function calls the function sema_signal n times, in sequence.

Alphabetic List of Run-time Library Entries

The parameter n may be greater than or equal to zero.

303

sema_test_vait ISA 11 T21 test whether waiting on a semaphore would
block

'include <se.a.h>
int se.a_test_vait(SEMl .s);

If the semaphore pointed to by s has a non-zero count value,
sema_test_vait decrements the semaphore count and returns a
non-zero value.

Otherwise, the count in the semaphore is zero and a call on
sema_vait would have blocked. In this case, sema_test_vait sim
ply returns o.

This allows a task to check to see if waiting on a semaphore would
cause its execution to be suspended.

sema_vait I SA 11 T21 perform a wait operation on a semaphore

'include <se.a.h>
void se.a_vait(SEMA .s);

If the value of the semaphore pointed to by s is not zero, its value
is decreased by 1.

Otherwise, the value of the semaphore is o. In this case, the value is
left unchanged and the current thread is added to the list of threads
waiting for the semaphore, and paused. It will be resumed by some
future call on sema_signal.

Programs should not rely on any relationship between the order in
which threads start to wait on a semaphore and the order in which
they will be resumed. At present, threads are simply "pushed down"
onto the list of waiting processes, so that the last thread to start
waiting on a semaphore will be the first to be resumed.

304 Chapter 11

Note that any particular semaphore must be accessed only by threads
executing at one particular priority. For example, it would be
acceptable for a set of "urgent" threads to synchronise through a
semaphore, or for a set of "not urgent" threads to do this, but not
for a mixture of threads executing at different priorities. Threads
executing at different priorities can synchronise by passing messages
along channels.

sema_vait_n ISA I[!!] perform n wait operations on a semaphore

'include <...a.h>
void ...a-wait_D(SEMA ••• iDt D);

This function calls the function s_a_vait n times, in sequence. The
calling thread may be forced to wait at any point in the sequence.

The parameter n may be grea.ter than or equal to zero.

serv_filter J SA I start Inmos file server protocol filter threads

'include <serv.h>
void serv_filter(CHll -nora_in. CHll -nora_out.

CHll -vide_in. CHlI -.ide_out);

A historical problem involving first-silicon T414A transputers was
solved by making the file server protocol used by the afserver pro
gram different to the documented protocol used by user programs.
In programs which use the standard harness, the mismatch is han
dled by a pair of "filter" processes written in occam. In configured
programs, the mismatch is usually dealt with by the purpose-built
filter task.

This function allows a program to start a pair of threads which
emulate the function of these filter processes or tasks. l'he workspace
for these threads is roughly 1200 bytes in total; this is allocated

Alphabetic List of Run-time Library Entries 305

from the heap. After the filter threads have been started, control is
returned to the caller.

norm_in and norm_out are connected to the "normal" task (i.e.,
the one using the protocol as documented by Inmos) while vide_in
and vide_out are connected to the task using the T414A-tolerant
variant protocol. The latter will normally be the pair of physical
links connected to the host.

The sense of the in/out labels on the arguments to this function
is from the point of view of the tasks to which the filter is being
attached. For example, norm_in is an input channel to the normal
protocol task; it will therefore be an output channel to the task
containing the serv_filter call.

Note that the maximum size of a variable-length data item (specified
by the reeord32. value protocol tag) which may be passed through
the filter in either direction is 512 bytes. This restriction is the same
as that imposed by the occam version of the link filter.

setbuf assign buffering to a stream

'include <stdio.h>
void setbuf(FILE -strea.. char -buf);

setbuf is used after a stream has been opened but before it is read
or written. It causes the character array buf to be used instead of an
automatically allocated buffer. If buf is the constant pointer NULL,
I/O will be performed without any buffering being interposed by the
stdio package. A macro BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malIoe upon the first gete or
putc on the file, except that output streams directed to the VDU
and the standard error stream stderr are normally not buffered.

306

setjmp I SA 11 T 2 1 save environment for longjmp

'include <aetjap.b>
int aetjap(jap_buf eBV);

Chapter 11

This function, together with longjmp, is useful for dealing with errors
encountered in a low-level subroutine of the program.

longjmp restores the stack environment saved in its eDV argument by
an earlier call on 8etjap. This has the effect of resuming execution
immediately after that Betjmp call.

8etjmp's caller can distinguish between the original return from
88tjmp and the second return caused by longjap by examining
8etjmp's return value. This is always 0 for the initial return, and
the value of longjmp's val argument for subsequent returns. If val
is set to 0, longjap will change it to a 1 in order to preserve this
condition.

The function which originally called s8tjmp must not itself have
returned before the call to longjmp. All accessible data still have
their values as of the time longjlDp was called.

setlocale 1NEW 11 SA 11 T21 query or change all or part of the locale

'include <locale.h>
char *aetlocale(int category.

COBat char *locale);

s8tlocale enables the user to change or query all or part of the cur
rent locale. The part of the locale to affect is specified in category;
the following macros are provided to do this: LC_ALL, LC_COLLATE,
LC_CTVPE, LC_MONETARY, LC_NUMERIC and LC_TIME.

If a locale is specified, the locale for the specified category will
be changed to that locale, and the new locale will be returned. If
NULL is specified for locale, the current value of the locale for that
category will be returned. If the request cannot be honoured, NULL
is "returned.

Alphabetic List of Run-time Library Entries 307

In the current version of Parallel C, the only recognised locales are
"C" and 1111; these have the same characteristics, as defined in section
4.4 of the ANSI standard[3].

setvbuf INEW I determine how stream will be buffered

'include <stdio.h>
int setvbuf (FILE .streaa, char .buf, int .ode,

size_t size);

After the specified stream has been opened, and before any other
I/O has been performed on it, the function setvbuf may be used to
change its buffering method to use the the specified lDode. Macros
are provided to specify the allowed modes; they are _IOFBF, _IOLBF
and _IONBF. Details may be found in section 4.9.5.6 of the ANSI
standard[3].

In the current version of Parallel C, calls to setvbuf are not hon
oured, and a non-zero value is returned to indicate this.

signal I NEW 11 SA 11 T 2 1 define method of handling signal

'include <signal.h>
void (.signal(int sig, void (.func)(int»)(int);

signal defines how a specified signal will be handled from now on.
The allowed values for sig are listed in the discussion of raise.

For the second argument, func, the programmer may specify the
macros SIG_DFL or SIG_IGN, both of which result in the specified
signal being ignored. Alternatively, the name of a function, called
a signal handler, may be specified. In this case, when the signal
is raised the signal handler is called. During the execution of the
signal handler, that signal is ignored. Execution of the signal handler
may be ended by calling longjmp, exit or abort; or by executing

308 Chapter 11

a return, in which case execution will resume from the point where
the signal was raised.

If there is an error in the call of signal, it will return the value of the
macro SIG_ERR, and set errno to EINVAL. Otherwise it will return
the value of the tunc argument.

In the present version of Parallel et signals may only be raised by
calling the raise function. They do not happen spontaneously.

sin ISA I sine function

'include <aath.h>
double ein(double x);

sin returns the sine of its radian argument.

sinh ISA I hyperbolic sine function

'include <aath.h>
double ainh(double x):

sinh returns the hyperbolic sine of its argument. If the magnitude
of x is too large, HUGE_VAL is returned, and errno is set to the value
of ERANGE.

sprintf ISA I formatted output to a string

.include <stdio.h>
int sprintf(char .pstr. const char *foraat •...);

sprintf writes formatted output into a character array via a pointer
pstr supplied by the caller. It returns the number of characters
written into the array.

Alphabetic List of Run-time Library Entries 309

The meaning of format string and the use of the other arguments is
as for fprintf.

The output string pstr is automatically terminated by a NUL charac
ter. Note that this terminator is not included in the character count
returned by sprintf.

The first call on fprintf, printf, sprintf, par_fprintf or
par_printf causes a lKB buffer to be allocated from the heap.

sqrt ISA I calculates Vi
'include <.ath.h>
double eqrt(double x);

sqrt returns the square root of x.

sqrt returns HUGE_VAL when J: is negative; errno is set to EDOM.

srand ISA I new seed for rand function

'include <etdlib.h>
void srand(uoeigned int eeed);

The srand function uses its argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand.

sscanf formatted input from string

'include <etdio.h>
int sscanf(char .pstr. conat char *foraat •...);

sscanf reads input from the string pstr. It interprets the characters
it reads according to the given format string and stores the resulting
values in the locations pointed to by the pointer arguments following
format.

310 Chapter 11

The exact meaning of the arguments to sscanf is the same as for
fscanf.

If the end of the string is found before any conversion is done, fscanf
returns EOF. Otherwise, it returns the number of input items success
fully converted and stored.

strcat ISA 11 T21 concatenates two strings

'include <string.h>
char *strcat(char .sl, conat char *.2);

strcat appends a copy of string s2 to the end of string sl. A pointer
to the NUL-terminated result is returned.

strchr ISA 11 T21 find a specified character in a string

'include <string.h>
char *.trchr(coDst char .pstr, int cval);

strchr locates the first occurrence of cval (converted to a char)
in the string pointed to by pstr. The terminating NUL character is
considered to be part of the string. The function returns a pointer
to the located character, or a null pointer if the character does not
occur in the string.

strcmp I SA 11 T21 string compare

'include <string.h>
int strcap(const char .s1 t const char .s2);

strcmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on whether s1 is lexicographically
greater than, equal to or less than 82.

Alphabetic List of Run-time Library Entries

strcoll ISA 1I T21 string compare using current locale's collating
sequence

'include <string.h>
int strcoll(const char .s1, const char .s2);

311

strcmp compares its arguments, interpreting both in the light of the
LC_COLLATE category of the current locale. It then returns an integer
greater than, equal to, or less than 0, depending on whether s1 is
lexicographically greater than, equal to or less than s2.

Note that as the current version of Parallel C only supports the "C"
and 1111 locales, strcoll is equivalent to a call on strcmp.

strcpy 1SA 11 T21 string copy

'include <string.h>
char .strcpy(char .sl, const char .s2);

strcpy copies string s2 to sl, stopping after the NUL character has
been moved. sl is returned. If copying takes place between objects
that overlap, the behaviour is undefined.

strcspn ISA 11 T21 find length of string that does not contain specified
characters

'include <string.h>
size_t strcspn(const char .sl, const char .s2);

strcspn calculates the length of the initial part of the string pointed
to by sl which consists of characters not from the string pointed to
by 82. The terminating NUL character is not considered part of s2.
The function returns the length of the part.

312

strerror map error number to message

'include <string.h>
char *strerror(int errnua);

Chapter 11

This function maps the error number in errnum into a textual er
ror message string, to which it returns a pointer. For example,
an errnum argument of EDOM might return a pointer to the string
"domain error".

ICAREFUL! IThe string whose address is returned by strerror must
not be modified by the caller of strerror. In addition, subsequent
calls to strerror may overwrite this string with a new error message.
Thus, if the result of strerror is not to be used immediately (for
example, to be printed out) it should be copied elsewhere until it is
needed to avoid being overwritten.

strlen I SA 11 T21 string length

'include <string.h>
size_t strlen(const char *petr);

strlen returns the number of non-NUL characters in pstr.

strncat ISA 11 T21 string concatenate

.include <string.h>
char *strncat(char *sl, const char *s2,

size_t nua);

strncat appends a copy of string s2 to the end of string st. It copies
at most num characters. A pointer to the NUL-terminated result is
returned.

Alphabetic List of Run-time Library Entries

strncmp ISA 11 T21 string compare

.include <string.h>
int strncap(const char *sl. COD8t char *82.

8ize_t nUll);

313

strncmp compares its arguments and returns an integer greater than,
equal to, or less than 0, depending on whether sl is lexicographically
greater than, equal to or less than 82. At most num characters are
looked at.

strncpy ISA 11 T21 string copy

'include <8tring.h>
char *strncpy(char *.1. conat char *s2.

size_t DUll);

strncpy copies string s2 to sl. Exactly num characters are copied:
82 is truncated or NUL-padded as required. The target may not be
NUL-terminated if the length of s2 is n or more. sl is returned.

strpbrk 1SA 11 T21 locate first character from character set

'include <8tring.h>
char *strpbrk(const char *str. COD8t char *cset);

The strpbrk function scans the string pointed to by str for the first
character in that string which is also contained in the string pointed
to by cset. It returns a pointer to this character once located. If the
string pointed to by str does not contain any of the characters from
the string pointed to by cset then strpbrk returns a null pointer.

The following example shows how strpbrk might be used to scan a
string, replacing any vowels with the character '.':

char str 0 • "this is soae eXaJlple text";
char .p;

314

while (p • strpbrk(str. "aeiouAEIOU"»
*p • '.';

Chapter 11

After execution of this code fragment, the array str would contain
the string "th.s .s s.me .x.llpl. t.xt".

strrchr ISA 11 T21 find last copy of specified character in string

'include <string.h>
char .strrcbr(char .s. iDt c):

This function locates the last occurrence of c (converted to a char)
in the string pointed to by s. It returns a pointer to the located copy
of c. If no copy of c can be located in the string, a null pointer is
returned.

Note that strrchr treats the NUL character which terminates the
string pointed to by s to be part of that string; therefore, a call such
as strrchr(s ,0) will locate that NUL terminator.

strspn ISA 11 T21 find length of string which contains specified
characters

'include <string.h>
size_t strspn(const char *sl. const char .s2);

strspn calculates the length of the initial part of the string pointed
to by s1 which consists of characters from the string pointed to by
s2. The function returns the length of the segment.

Alphabetic List of Run-time Library Entries

strstr ISA 11 T21 locate substring within string

'include <string.h>
char *strstr(const char *str. const char *sub);

315

This function searches for the string pointed to by sub within the
string pointed to by str. If the substring cannot be located, a null
pointer is returned. Otherwise, strstr returns a pointer to the first
occurrence of the substring.

If sub points to an empty string (Le., just to a NUL character) then
strstr returns str.

As an example of the use of strstr, consider the following code
fragment:

char *str • "The quick fox jUllpe.".
char .sub1 • "fox";
char .sub2 • "dog";
char .ans1 • strstr(str. sub1);
char *ans2 • strstr(str, sub2).

After the execution of this code fragment, ans! will contain a pointer
to the part of str starting at "fox", i.e., IIfox jumps. 11 • On the
other hand, str does not contain the substring "dog", so ans2 will
contain a null pointer.

strtod I NEW 11 SA I convert string to double value

'include <stdlib.h>
double strtod(const char *nptr, char ••endptr);

Starting from the place pointed to by nptr, strtod skips over initial
white space, then attempts to interpret characters as forming part
of a floating-point constant. Conversion stops at the first character
which does not fit into the format of the constant.

The format expected is: an optional sign, a sequence of digits op
tionally including a decimal point, then an optional exponent part,

316 Chapter 11

consisting of an 'e' or 'E', followed by an optionally-signed integer.
The value of this constant is returned as the value of the function,
and the object pointed to by endptr is set to point to the first
character which is not converted (unless eDdptr is null).

If no conversion could be performed or" if the string is empty, zero is
returned, and the initial value of nptr is stored in the object pointed
to by endptr (unless endptr is null). If the value is out of range,
+HUGE_VAL or -HUGE_VAL, depending on the sign of the value, is
returned. If the value causes underflow, zero is returned. In both
these cases, errno is set to ERAIGE.

strtok ISA 11 T21 break strings into tokens

'include <.trios.h>
char .strtok(char .s1. COBst char .s2) i

strtok breaks the string pointed to by s1 into tokens, each of which
is delimited by a character from the string pointed to by 82. The
first use of strtok must have 81 pointing at a string. Subsequent
use can either have s1 pointing at a new string or a null pointer as
its first argument. If a null pointer is used, the function· starts from
the position the last call terminated. s2 can be different for each
call. The function returns a pointer to a token or a null pointer if
there is no token found.

strtol ISA I convert string to long int

'include <stdlib.h>
long int strtol(const char .nptr. char ••endptr,

int base);

This function converts the initial portion of the string pointed to
by nptr to long int representation. First the string is split into
three parts: an initial string of white-space characters (which may
be empty), a subject string resembling an integer, to be decoded

Alphabetic List of Run-time Library Entries 317

using the radix information specified in base, and a final string
which starts at the first character which is not acceptable in the
expected format of the subject string, and extends to and includes
the term.inating NUL character of the input string. Then it attempts
to convert the subject string to an integer, and returns the result.

If the value of base is in the range 2-36, the expected form of
the subject string is a sequence of digits and letters representing
an integer with the radix specified in base. The letters 'a' to 'z'
(or 'A' to 'Z') are ascribed the values 10-35. Only those characters
which are representations of values less than base are allowed. If
base has the value 16, the characters "Ox" (or "01") may precede
the sequence of letters and digits, but have no effect.

If the value of base is 0, the subject string is treated as hexadecimal
(if it starts with "Ox" or "OX"), octal (if it starts with '0') or decimal
(for any other case). All other values of base are illegal.

Uppercase letters are everywhere equivalent to lowercase ones, and
the subject string may start with a plus or minus sign. However,
suffixes (like 'L' or 'U') are not allowed.

The function attempts to trap overflows, and if this happens the
value LONG_MAl or LONG_MIN is returned (these are defined in
<limits .h», and errno is set to ERANGE.

If the subject string is empty, or base has an illegal value, then zero
is returned and errno is set to EDOM. In this case, the object pointed
to by endptr is set to the value of nptr (unless endptr is equal to
NULL); in all other cases, including overflows, this object is set to
the address of the start of the final string. The subject string will
be empty if, for example, the input string is empty or contains only
white space. Here are some other input strings whose subject strings
are empty:

+
Ox
I

318

-uuu1
Ox-5

strtoul 1SA I convert string to unsigned long int

'include <stdlib.h>
unsigned 10111 iDt atrtoul(conat char *Dptr,

char ••endp'tr, int baae)
char *nptr. • ••ndptr;
int bue;

Chapter 11

This function operates in the same way as strtol, except:

• It returns an unsigned long int;

• In the event of an overflow being trapped, the value returned
is always ULONG_MAI.

strxfrm I NEW I1 SA 11 T21 transform string using locale's collating
sequence

'include <string.h>
aize_t atrxfra(char *al. CODet char *a2,

aize_t D);

The function transforms the string pointed to by s2 and places the
result in the string pointed to by sl. The nature of this trans
formation is controlled by the LC_COLLATE category of the current
locale, and the effect is that two strings which have been transformed
in this way can be correctly compared using strcmp. A maximum
of n characters is transformed, including the final null character;
in any case, transformation stops after a null character has been
converted. strxfrm returns the number of characters which have
been transformed, excluding the null character. The s1 argument
may be NULL if n is zero.

Alphabetic List of Run-time Library Entries 319

Note that, as the current version of Parallel C only supports the lie"
and locales, this function simply performs a copy operation.

system call command interpr~ter

'include <stdlib.h>
int 8Jstea(const char *string);

string is passed to the host command-line interpreter and executed
as if it had been entered as a command. The string argument to the
system function should he a valid host command line.

system returns 0 if the server accepts the command; otherwise it
returns a nonzero value. Any host return code generated hy the
command is not passed hack to the calling program.

ICAREFUL! INote that it is not normally possible to use a host com
mand which involves the use of the transputer system. Attempting
to do this will normally result in the program calling system being
overwritten by the requested program: when the requested command
terminates, the server associated with the original program will not
he able to communicate with it and will probably appear to "hang".

IDOS IRemember that the backslash character '\' used in MS-DOS
file names is an escape character in C string literals and must he
written as "\\". For example:

systea(tldir \\aJdir*.c");

tan ISA I tangent function

.include <aath.h>
double tan(double x);

tan returns the tangent of its radian argument. The magnitude of
the argument should be checked by the caller to make sure the result
is meaningful.

320

tanh ISA I hyperbolic tangent function

'include <aath.h>
double tanb(double x);

Chapter 11

tanh returns the hyperbolic tangent of its argument. The magnitude
of the argument should be checked by the caller to make sure the
result is meaningful.

thread_create ISA 11 T21 create a simple thread

'include <thread.h>
char .thread-create(Yoid (.fD)(), iDt •••ize,

iDt BarSB, •••),

The function fn is started as a new thread, running at the same
priority as the current thread, with a workspace of vssize bytes.
This workspace is taken from the heap (using par_malloc) and a
pointer to it is returned from thread_create so that, if desired,
the workspace can be returned to the heap (using par_free) once
the thread is known to have stopped. If there is insufficient heap
space remaining to create the requested workspace, this function
will return NULL.

The nargs argument specifies the number of arguments which are
to be passed to the new thread's function fn. The arguments them
selves follow nargs. When counting the arguments for nargs, each
argument of whatever type counts for 1, except for arguments of
type double, which counts for 2.

This function is a shorthand way of calling the more general thread
creation function thread_start in the most usual circumstances.

ICAREFUL! IBecause thread_create calls par_malloc to allocate the
workspace frorn the heap, and because par_malloc in turn waits for
the par_sema semaphore to protect its access to the common data
structures in the heap, a thread which calls thread_create should
not have claimed the par_sema semaphore. If it has, the call to

Alphabetic List of Run-time Library Entries 321

thread_create will never return because the second wait request
for par_sema will block unnecessarily.

thread_deschedule 1INLINE I~ IT21 make current thread
momentarily unable to execute

'include <thread.h>
void thread_deschedule(Yoid);

This function causes a thread to become momentarily unable to
execute (usually for one timer tick); this will cause it to be de
scheduled from the processor, thus allowing some other thread to
resume execution in its place. Eventually, the thread which called
thread_deschedule will resume.

This function can be used by a thread performing some background
computation to prevent it from "hogging" the processor to the detri
ment of other threads executing at the same priority level. In effect,
a priority level even less urgent than THREAD_NOTURG can be achieved
for use by threads performing long-term CPU-intensive tasks whose
results are not expected to be immediately required.

thread_priority 1INLINE 11 SA 1[!!] return current thread's priority

'include <thread.h>
int thread_priority(yoid);

This function returns the priority of the current thread, which will
be either THREAD_URGENT or THREAD_NOTURG.

322 Chapter 11

thread_restart 1INLINE 11 SA I@] restart a thread given its workspace

'include <thread.h>
Yoid tbread_restart(char .p);

p should be a pointer to the workspace of the thread which we
wish to restart. Currently, the only value that should be passed
to thread_restart is one produced by cban_reset.

This function can be used to restart threads which have been stopped
because the channel on which they were attempting to communicate
has been reset using a call to chan_re8et, which returns a handle
suitable for use by thread_restart.

thread_start I SA 1r T21 start a general thread

'include <thread.h>
Yoid tbread_8tart(Yoid (.fn)(), char ••a, int .ssize,

int 11.8, iDt narss, •••).

This function starts a new thread based on the function fn. The new
thread uses the area vs as its workspace. The size of the workspace
(vssize) is a number of bytes.

The new thread will stop either when it executes the function
thread_stop, or when fn returns.

The flags argument is a set of attributes for the new thread.
At present, the only attribute available is the thread's priority,
which should be either THREAD_URGENT or THREAD_NOTURG. Normally,
new threads should be started at the same priority as the current
thread. This is achieved by passing the result of the function
thread_priority described below as the value of this argument.
Other than the priority specification, all bits in the flags argument
are reserved, and should be o.

The nargs argument specifies the number of arguments which are
to be passed to the new thread's function fn. The arguments them-

Alphabetic List of Run-time Library Entries 323

selves follow nargs. When counting the arguments for nargs, each
argument of whatever type· counts for 1, except for arguments of
type double, which counts for 2.

The workspace supplied as the vs parameter must have been allo
cated by the caller of thread_start. It may have been allocated in
any of a number of ways, including allocation from the heap using
malloc, or allocation as a simple static or automatic array variable.

See also the description of thread_create, which simplifies thread
creation by starting a thread at the current priority and allocates
the thread's workspace from the heap.

thread_stop IINLINE 11 SA 11 T21 stop the current thread

'include <thread.h>
void thread_8top(Yoid);

This function stops the current thread. The current thread is also
stopped if its main function returns.

time IDOS I returns the current calendar time

'include <tt.e.h>
tiae_t tDe(tt.e_t *tiaer);

The time function determines the current calendar time. The type
(time_t) of the value returned by time is int. The value returned
is the number of seconds that have elapsed since 00:00:00 GMT on
1st January, 1970, according to the host system clock.

If the timer argument is not a null pointer, the result of time is also
assigned to the variable pointed to by time. Therefore, the time
function can be used in either of two ways, as shown in the following

324 Chapter 11

example, where the two statements each assign the current calendar
time to the variable t:

t • tiae«tiae_t .)0);
(yoid)tiae(at) ;

IDOS IAlthough the PC software on which time depends attempts to
give you the time in GMT, by default it does this on the assumption
that you are in the Pacific Standard Time zone. If you are not
actually in this time zone, you must make the system aware of the
fact. This is done by defining the MS-DOS environmental variable
TZ. For example, if you live in Great Britain, you could define TZ
like this:

C>aet tz~MT

C>aet tz-GKT1BST (during Summer Time)

timer_after IINLINE 11 SA 11 T21 compare two transputer timer values

'include <t~er.h>

int tiaer_after(int tl. int t2);

This function returns non-zero if timer value tl is after timer value
t2, and zero otherwise.

timer_delay 1INLINE 11 SA I[E] delay for some number of timer ticks

'include <tiaer.h>
void tiaer_delay(int d);

This function causes the current thread to wait for at least d ticks
of the timer associated with the current thread's priority.

Alphabetic List of Run-time Library Entries

timer_now IINLINE I~ IT21 return the current timer value

'include <t~er.h)

int tiaer_Dov(void).

325

This function returns the value of the timer associated with the
current thread's priority.

For a high priority ("urgent") thread, the timer has a resolution of
IllS, so that it ticks one million times per second. For a low priority
("not urgent") thread, the resolution is 64JJs and only 15625 ticks
occur in one second.

timer_vait I INLINE 11 SA I1 T21 wait until current timer reaches some
value

'include <tiaer.h>
void tiaer_vait(int t);

This function causes the current thread to wait until the value of
the timer associated with the the priority of the current thread is at
least t.

tmpfile INEW I create temporary binary file

'include <8tdio.h>
FILE *tapfile(void);

This function creates a temporary binary file which will automati
cally be deleted at the end of the program run. The file is opened
for update with vb+ mode.

326

tmpnam 1NEW I generate unique filename

'include <8tdio.h>
char *t.pnaa(char 8);

Chapter 11

This function generates a unique filename which is not the name
of any existing file. Despite the name of the function, a file opened
with this name is not automatically deleted at the end of the program
run. If the argument 8 is a null pointer, the filenarne is generated
in an internal buffer; otherwise, 8 is. assumed to be a pointer to an
array of at least L_tmpnam chars, and the filenarne is written there.
The value returned is in both cases a pointer to the place where the
filename has been written.

You may call tmpnam a maximum of TMP_MAl times, and each time
it will generate a different filenarne. The internal buffer is only
guaranteed to remain unchanged until the next call to tmpnam.

In the current implementation, TMP _MAXis 1000016, and L_tmpnam is
9. The form of the generated filenames is tmp$nnnn, where nnnn is
a hexadecimal number.

tolover 'SA 11 T21 convert char to lower case

'include <ctype.h>
int tolover(int cval);

If cval is the ASCII code for an upper case letter, tolover returns
the code for the corresponding lower case letter. Otherwise, the value
of cval is returned unchanged.

Alphabetic List of Run-time Library Entries

toupper I SA I1 T21 convert char to upper case

'include <ctype.h>
int toupper(int cval);

327

If cval is the ASCII code for a lower case letter, toupper returns the
code for the corresponding upper case letter. Otherwise, the value
of cval is returned unchanged.

to86 1DOS I transfer memory block to host

'include <dOB.b>
int to86(int lent char .here. pcpointer there);

This function transfers len bytes of transputer memory starting at
here to a corresponding block starting at there in host memory.
The function returns the number of bytes actually transferred. The
host memory block will normally have been allocated by a previous
call to alloc86.

ungetc push character back jnto input stream

'include <stdio.h>
int ungetc(int cval. FILE .strea.)j

ungetc pushes the character cval back on an input stream. That
character will be returned by the next gete call on that stream.
ungetc returns cval.

One character of pushback is guaranteed provided something has
been read from the stream and the stream is actually buffered. At
tempts to push EOF are rejected.

fseek (q.v.) erases all memory of pushed back characters.

ungetc returns EOF jf jt can't push a character back.

328

va_arg 1MACRO 11 NEW 11 SA 11 T 2 1 access next argument in
variable-length list

'include <atdarg.h>
I~ ya_arg(va_liat apt 'MPe),

Chapter 11

The va_arg macro is used to access the next argument in a variable
length argument list. The parameter ap should be a variable of
the type va-list, which is defined in the <stdarg.h> header; it
must have been initialised by va_start. The macro expands into an
expression which has the value of the next argument and the specified
type; if this is not in fact the type of the argument, or if there are
no more arguments, the behaviour is undefined. For example:

'include <atdarg.h>
void ourfunc (char ••••8..e, •••),
{

ya_liat api
int iYali
Ya_8tart (ap, .eaBage),
ival • va_arg (ap. int)i

}

On each call of va_arg, the parameter ap is modified to point to the
next argument in the list.

va_end 1MACRO 11 NEW 11 SA 11 TI] finish with variable-length argument
list

'include <stdarg.h>
void ya_end(va_liat ap);

When accessing a variable length argument list, a function should
call this macro once all the arguments have been processed. This
ensures a correct return to the calling function. The parameter ap
should be a variable of the type va-list, which is defined in the
<stdarg.h> header; it must have been initialised by va_start.

Alphabetic List of Run-time Library Entries

va_start IMACRO I[NEW I1 SA 11 T~ I initialise argument pointer

'include <stdarg.h>
void va_start(va_Iist ap, parmlV);

329

va_start is called before accessing a variable-length argument list.
The parameter ap should be a variable of the type va_list, which
is defined in the <stdarg.h> header. The parameter parmN should
be the parameter in the variable-argument list immediately before
the" J ••• ".

vfprintf INEW I formatted output using argument pointer

'include <stdarg.h>
'include <stdio.h>
int vfprintf(FILE *streaJI, char *for.at,

va_Iist ap);

This function corresponds to fprintf, and performs formatted out
put to the specified stream. As with fprintf, the format argument
controls the conversions to be performed. However, the variable
argument list has been replaced by the single argument ap, which
should be an argument pointer initialised by va_start. For example:

'include <stdarg.h>
'include <stdio.h>
void error (char *func_naae, char *fonaat. . ..)
{

va_Iist ap;
va_start (ap, foraat);
fprintf (stderr, "Error in %s: ", func_naae);
vfprintf (stderr. foraat, ap);
va_end(ap);

}

The function returns the number of characters output, or a negative
value if an output error occurred.

330 Chapter 11

vprintf 1NEW I formatted output to stdout using argument pointer

'include <stdarg.h>
'include <atdio.h>
int vprintf (char *foraat t Ya_Iiat ap);

This function corresponds to printf, and performs formatted output
to the standard output stream, stdout. As with printf, the format
argument controls the conversions to be performed. However, as with
vfprintf, the variable argument list has been replaced by the single
argument ap, which should be an argument pointer initialised by
va_start.

The function returns the number of characters output, or a negative
value if an output error occurred.

vsprintf 1NEW 11 SA 1 formatted output to a string using argument
pointer

'include <stdarg.h>
'include <stdio.h>
int vprintf (char *patr. char *foraat t

va_list ap);

This function corresponds to sprintf, and writes formatted output
into a character array via a pointer pstr supplied by the user. As
with sprintf, the format argument controls the conversions to be
performed. However, as with vfprintf, the variable argument list
has been replaced by the single argument ap, which should be an
argument pointer initialised by va_start.

The function returns the number of characters output, or a negative
value if an output error occurred.

Alphabetic List of Run-time Library Entries

vcstombs I NEW 11 SA 11 T21 convert wide character string to multibyte
string

'include <stdlib.h>
size_t vcstoabs(char .s, CODst vchar_t .pvcs,

size_t D);

331

The sequence of wide characters pointed to by pVCB is converted to a
multibyte string and stored in the array pointed to by s. Conversion
stops when a null character has been converted, or when the next
character stored would exceed the limit of n bytes. If the two string
overlap, the effect is undefined.

vcstombs returns the number of bytes stored, excluding the null
character, if any.

Note that, in the present version of Parallel C, multibyte characters
and wide characters are both one byte in length and there is no
state-dependent encoding, so this function is equivalent to a string
copy. All possible element values are valid, so no error return can
happen.

vctomb 1NEW 11 SA 11 T21 convert multibyte character to wide character

'include <stdlib.h>
int vctoab(char *s, vchar_t vchar);

If s is a null pointer, mbtovc returns 0, indicating that, for the
current version of Parallel C, multibyte character codings are never
state dependent. Otherwise, it returns the width in bytes of the
multibyte character corresponding to value of vchar. In the current
version, this will always be 1.

In addition, the multibyte character corresponding to the value of
vchar will be stored at the location pointed to by s. In the current
version, as both wide and multibyte characters are always 1 byte in
length, this is equivalent to storing vchar at .s.

332 Chapter 11

Chapter 12

The Linker

The linker utility, linkt, is compatible with all versions of the 3L
compilers for C, Fortran and Pascal. It can be used in place of the
linker distributed with earlier versions of these compilers. The linker
is also compatible with Tbug, 3L's interactive source-level debugger.

The linker's function is to create an executable file from a number of
object files. It can also be used to create libraries of object modules,
which may themselves be searched by the linker when it is creating
executable files.

12.1 Command Line

The linker is invoked by the command linkt. This command is
followed by an ordered list of items giving the names of the object
files and libraries to be linked, the name to be used for the executable
file, and switches to control the linking operation.

The name of the executable file must be separated from the object
file names by a comma' ,'; each object file may be separated from
the next by either a space or a plus sign, '+'. Switches all start with

334 Chapter 12

a slash, 'I', and so do not need to be separated one from another,
but spaces may be inserted between them for clarity.

The following are all valid examples of link commands.

C>linkt prog.bin librarJ.bin.prog.b4
C>linkt prog.bin+librarJ.biD. prog.M
C>linkt progl.biD prog2.biD lib.biD, .JPr0g.b4
C>linkt progl. bin+prog2 . biD+lib.biD, .Jpr0S. b4
C>li.nkt prog.biD lib.bin, .JProg.M IQ/SaJprog.aap/Okernel
C>lintt proS.bin lib. biD, .yprol.b4 IQ IS.JProl ••ap IOkernel

The order of the object file names in the liIlk command is used to
order the placement of the information they contain in the resulting
executable file. Often this ordering is of no interest but it can be used
to improve the performance of programs. This subject is discussed
further in section 12.6.

12.2 File Name Conventions

In order to simplify commands, the linker will insert file name exten
sions where none has been given. If an explicit extension has been
given it will be used without change.

The actual extension that will be appended to a file name depends
on the sort of file being identified. The following table gives each
sort of file known to the linker along with the appropriate extension.

executable file
indirect file
input library file
map file

.b4

.dat

.bin

.map

object file
optimization file
output library file

.bin

.opt

.lib

As a result the exanlples given previously would have the identical
effect if written in the following ways:

C>linkt prog library,prog
C>linkt prog+library, prog
C>linkt prog! prog2 lib, aJProg

The Linker

C>linkt prog1+prog2+lib,._yprog
C>linkt prog lib, .yprog IQ/S.yprog/Okernel
C>linkt prog lib, .yprog IQ IS_yprog IOkernel

12.3 The Output File

335

The output from a linking operation is usually a file containing a
complete program in a form ready for execution. This file is called
an executable file. The output may also be a library suitable for input
to a subsequent link operation. Section 12.5 describes libraries.

The name for the output file is either specified explicitly on the
command line (as in all the examples so far) or is inferred by the
linker from the name of the first object file (or library file) seen, by
removing any extension and then appending the extension .b4.

For example, each of the following commands generates an exe
cutable file named test. b4:

C>linkt test.bin fns.bin lib.bin, test.b4
C>linkt test fns lib, test
C>linkt test fns lib
C>linkt fns test lib, test

12.4 Indirect Files

It is quite common for programs to be built from a large number
of object files, perhaps more than can comfortably be fitted into a
single linkt command line.

The linker addresses this problem with indirect files, each of which
contains one or more file names on separate lines. Indirect files may
be given wherever object files are expected and the file names they
contain are interpreted as the names of object files to be included in
the linking operation.

336 Chapter 12

In linker command lines, indirect files are always marked with the
symbol 'G' to distinguish them from other sorts of file. It is also
possible to mark names within indirect files in this way. Such names
are then taken to be the file names of nested indirect files. Indirect
files may only be nested to a depth of 5.

For example, assume the file list. dat contains the following:

filet.bin
file2
file3.ux

In the following example, the first four commands will all have the
same effect, while the fifth command will generate an identical exe
cutable file but will write it to a file named prog.b4:

C>lintt .list
C>linkt .list, file1.b4
C>linkt file1 file2 file3.xxx
C>linkt file! file2 file3.xxx, file1.b4
C>linkt .list, prog

Note that in the examples above, the first object file name in the
indirect file will be the first object file seen by the linker and so it
will be that file name which will be used, if necessary, to deduce the
name for the output file.

Indirect files are also used to supply a list of optimization symbols
to the linker. This is described in section 12.6.

12.5 Libraries

It is often convenient to be able to treat a group of object files as a
single unit known as a library file. Accordingly, the tinker provides
the option of combining object files (and library files) into a new
library file rather than the more usual executable file.

The Linker 337

Once a library file has been ~enerated it may be used wherever an
object file is expected; unlike indirect files there is no need to mark
the library file name in any way.

Library files have two advantages over indirect files. Firstly, moving
a single library file to another place is simpler than moving many
component object files and making sure that the corresponding in
direct file is kept up to date. Secondly, accessing a single library file
is faster than accessing an indirect file and several object files.

During the development of components which will eventually make
up a library, indirect files may be more convenient as there will be
no need to re-link the library whenever a component object file is
changed.

The linker command to create a library is similar to that used to cre
ate an executable file, but includes the switch IL. When this switch
is used the output file will be a library file and not an executable
file. The name of the library file will be deduced, if necessary, in the
same way as for executable files; that is, from the name of the first
object file or library file found. The default extension .lib will be
added if no extension is given.

The example below shows a graphics library being built from a core
graphics module and two device driver modules. The library is then
linked in the ordinary way with a user program. Indirect files are
used to simplify the required linker commands.

C>type graflib.dat
core. bin
tek.bin
hp.bin

C>linkt Igraflib,graflib/L

C>type .yprog.dat
.yprog.bin
graflib.lib
library.bin
harn.bin

338

C>linkt layprog,.yprog.b4

Chapter 12

The switch IP can be used in place of IL and has exactly the same
meaning.

The following switches are ignored when the IL or IP switches are
used: IB, le, 10, IS and IX. Section 12.10 contains a full description
of the switches.

If the IG option is used when creating a library, any debug infor
mation present in the object files is passed through into the library.
Otherwise this information is left out of the library.

12.6 The Executable Image

Unless otherwise instructed, the linker will place object files it has
selected into the executable file in the order in which those object
files were specified on the command line. This order is important if
a program wishes to make use of the on-chip RAM.

When the on-chip RAM is used to hold programs, the code which
has been 'placed at the beginning of an executable image is more
likely to reside in RAM than code towards the end. Ifence, in order
to improve the performance of a program, the object file containing
the code which is executed most frequently should be specified as
the first object file in the link command.

In many cases, it may not be easy or possible to know which order
to place the object files in. For example, the user may know which
functions are executed most frequently, but not know which object
files contain them, because they are part of a library. In this case,
the user can specify a symbol to search for, and the linker will look
for an object file which contains a definition of that synlbol. Symbols
used liked this are known as optimization symbols, and are specified
by using the 10 command-line switch. Note that the switch uses the
letter '0' and not the digit '0'.

The Linker 339

As an example, the following will place the object files which contain
definitions of fread and malIoe at the beginning of the resulting
executable file t. b4:

C>linkt t library harn!Ofread!O.alloc

In this case, the object file containing the external symbol fread is
placed at the start of the executable image. The object file containing
the external symbol malloe is placed second in the executable image.

If an optimization symbol does not exist then the linker issues a
warning. Sometimes the object file containing the symbol is not
needed in the executable image; in other words, there are no refer
ences to it. In this case, if the object file is part of a library, the
module is excluded from the executable image, and no warning is
issued. If, on the other hand, the symbol is found in an object file
named in the command line or in an indirect file, the object file is
included in the executable image regardless.

Two or more optimization symbols may refer to the same object file,
in which case the position of the object file will be determined by
the position of the first symbol to refer to it.

After all optimization symbols have been processed and the object
files which define optimized symbols have been placed at the start
of the executable image, the linker will add the remaining object
files to the executable image in the order they were found on the
command line. In the previous example this would mean that object
file t would be the third object file in the executable image and the
object file harn would be the last.

It is often easier to place the list of optimization syITlbols in a file
rather than keeping them on the command line. This may be done
using indirect files in the same way as for object files except that the
default extension is now .opt.

An example optimization file optsyms . opt might contain the follow
ing text:

fread

340

aalloc

Chapter 12

This file could then be used to optimize the position of the object
files defining fread and malIoe as in the following command:

C>linkt t library harn!Olopt.Ja.

A warning is issued if the symbol is not defined in any of the object
files.

12.7 Map Files

The linker can be requested to produce a map file which will contain
a list of all the symbols (both code and data) that have been defined
in the executable image. The map file will also contain information
about the sizes of the code and static areas for each object file.

Map files are requested with the /S switch. By default, the name
of the map file is derived automatically from the first object file
name. In the following example a map file called test .map would
be generated.

C>linkt teat library barn!S

Alternatively, the map file name can be specified explicitly on the
command line by placing a file name immediately after the /S as in
the following example:

C>lintt teat library harn/Safile

The default extension .map will be added jf no extension is given.
The above example would create a map file called mfile .map.

12.8 T2 Support

A special set of linker command-line switches are used to support
the use of 16-bit transputers. These switches should only be used

The Linker 341

when linking code for T2 transputers; they should not be used when
linking code for T4 or T8 transputers.

The command-line switches for T2 support are described below.

12.8.1 Switch /M~ize

This switch gives the total number of bytes of read-write memory
available to the program. The memory will be used to hold the static
data, heap and stack for the running program. In addition, it will
hold the executable code of the program unless the code is to be held
in read-only memory.

You must give a IM switch when linking for T2 systems unless you
intend to control the linker's memory allocation by means of modified
IF switches.

The batch file t2clink provides a default value of 64K for this switch
(/MMK) but you may override this default with another IM switch of
your own, e.g.,

C>t2clink .ain bits pieceslM241

If more than one IM switch appears on a command line, only the last
will have any effect.

The linker will give a warning if you specify less than 2048 bytes or
more than 65536 bytes of read-write memory.

12.8.2 Switch / Asize

This switch controls the number of bytes of read-write memory to
be used for the stack ("automatic" storage in C terminology). The
linker will give a warning if you specify less than 128 bytes of stack.
Memory for the stack is taken from the read-write memory remaining
after the code and static data areas have been allocated.

342 Chapter 12

If you do not specify this switch then the whole of the remaining
memory will be used for a combined heap and stack area. The stack
will grow towards the heap from the more positive end of the area
while the heap will grow towards the stack from the mor~ negative
end of the area.

IHeap _ - Stack I
If you do give a I A switch, the given amount of memory will be
allocated to the stack and the whole of the remaining memory will
be used for the heap. In this case the stack and heap areas will be
considered distinct and will not interact.

12.8.3 Switches IFC, IFA, IFS, and IFH

These switches are used to control the order in which the various
areas of the program are loaded. into the available memory: IFC for
code, IFA for the stack (automatic) area, IFS for static data, and
IFH for the heap.

The tinker will usually construct an executable image by laying out
the various areas (code, static data, heap, and stack) in memory,
starting at the most negative address usable-in the fast, on-chip
memory. Consequently the parts of the image which are placed first
will. benefit from the speed of this memory.

The IF switches give you control over the order in which the areas
will be laid out. Any area mentioned in a IF switch will be considered
a candidate for "optimisation"-you can think of the 'F' as standing
for "fast". For example, the switches IFC/FS indicate that the code
and static data areas are to be optimised. The order in which you
give the IF switches is of no significance.

The linker will lay out all of the optimised areas before it lays out any
non-optimised areas. The order in which areas (optimised or not)
are laid out depends on the presence or absence of the I A switch.

The Linker 343

If you do not specify the IA switch, then the stack and heap areas
will be combined, as described above. In this case the Iinker will lay
out the areas in the order: code, static data, and then the combined
stack and heap.

If you do specify the I A switch, then the stack and heap areas will
remain distinct, and the linker will layout the areas in the order:
stack, code, static data, and then heap.

The following pictures should clarify this procedure. Note that in
these pictures addresses grow more positive towards the right hand
side.

more negative
~emory addresses

C>liDkt prog

more positive ---+

memory addresses

ICode I Static Data I Heap+Stack I
C>liDkt prog/FS

I Static Data~ Heap+Stack I
C>linkt prog/A81

IStack~ Static Data IHeap I
C>linkt prog/A81/FC

ICode~ Static Data IHeap I
C>linkt prog/A81/FS/FA

IStack I Static Data~ Heap I
The system described is designed to allow the most common require
ments to be specified simply.

344 Chapter 12

12.8.4 Modified IF Switches

The IF switches may be modified so that instead of simply marking
areas for optimisation they explicitly specify the memory· locations
to be used.

To modify the switches you append an address and size specification
of the form start: size, where start is the address for the start (small
est address) of the area and size is the size of the area in bytes.
If start or size begin with a 'I' character they will be interpreted
as hexadecimal, otherwise they will be interpreted as decimal. All
values of start and size must be even. Note that the start address
of the stack area is not the initial value for Wptr; that value will be
start + size. For example:

C>lintt x J Z IFCl1000:80 IFHI2000:.2000 IFI.8000:4096 IF80:8

The linker will check that these areas do not overlap and issue an
error message if they do. Similarly, the linker will issue an error
message if either the code area or the static data area is too small
for the linked image. The total size of the static data area for a task
will be:

modulea

2 X modules + E statici
i=l

There are several implications of modifying IF switches in this way:

1. If you specify one modified IF switch then you must specify
and modify all four. The only exception to this rule is when
you are linking for ROM (described later);

2. There will he no automatic optilnisation or memory allocation.
Memory allocation is fully under your control;

3. The stack and heap areas will he considered separate, even
though they may be. adjacent. This means that while the
program is running the heap will never extend into the stack
area.

The Linker 345

12.8.5 Switch IRsize

The IR switch instructs the linker to generate an image suitable for
burning into ROM. The image size will be exactly the number of
bytes specified in the IR switch.

When a ROM program starts execution, it copies its static data from
the ROM into read-write memory.

The code may either be left in the ROM or copied into the read-write
memory. This is controlled by the IFC switch. If no IFC switch is
specified then the code will be executed from the ROM. If a IFC
is specified (modified or not) then the code will be copied into the
read-write memory before being executed.

Note that when linking for ROM with modified IF switches you may
omit the modified IFC switch if you wish the code to be executed
from ROM. Of course, you should make sure that none of the areas
overlaps any ROM addresses.

12.9 Debug Tables

Object files created using the 3L compilers may contain information
intended for use by Tbug, the 3L debugger. By default, the linker
will discard this information in order to produce small executable
files.

The switch IG will make the linker incorporate any debugging infor
mation present in the object files into the output file, which may be
either an executable file or a library file.

12.10 . Summary of Switches

The operation of the linker can be controlled by means of switches.
Each switch starts with a slash character 'I' and an identifying letter;

346 Chapter 12

it does not matter if this letter is given in upper case or lower case.
The switches can be placed anywhere in the command line but they
may not occur in indirect files. No spaces are allowed between a
switch's identifying letter and the rest of the switch.

IAsize This switch defines the size of the stack area. This
should only be used when linking code for T2 trans
puters.

IBfile-name This switch specifies that the file file-name is to be
used in preference to the default bootstrap file. There
is no default extension for file-name.

IC This switch stops the linker adding the bootstrap file
to the executable file.

IFA This switch instructs the linker to optimise the stack
(automatic) area. This should only be used when link
ing code for T2 transputers.

IFAstart : size
This switch defines the start address and size of the
stack area. This switch should be used along with the
other modified IF switches and should only be used
when linking code for T2 transputers.

IFC This switch instructs the linker to optimise the code
area. This should only be used when linking code for
T2 transputers.

IFCstart : size
This switch defines the start address and size of the
code area. This switch should be used along with the
other modified IF switches and should only be used
when linking code for T2 transputers.

IFH This switch instructs the linker to optimise the heap
area. This should only be used when linking code for
T2 transputers.

The Linker 347

IFHstart : size
This switch defines the start address and size of the
heap area. This switch should be used along with the
other modified IF switches and should only be used
when linking code for T2 transputers.

IFS This switch instructs the linker to optimise the static
data area. This should only be used when linking code
for T2 transputers.

IFSstart: size
This switch defines the start address and size of the
static data area. This switch should be used along
with the other modified IF switches and should only
be used when linking code for T2 transputers.

IG

11

IL

IMsize

This switch results in the linker creating a debugger
information area in the executable or library file. This
switch should not be used when linking code for T2
transputers.

This switch causes the linker to display its identity and
along with various statistics about the executable file
such as the code and static sizes and the maximum
patch size used.

This switch makes the linker generate a library file
rather than an executable file.

This switch specifies the size of read-write memory
area (including on-chip memory.) This should only be
used when linking code for rr2 transputers.

10optim ization-symbol
This switch gives priority to the position in the
executable image of the object file which defines
optimization-symbol.

348 Chapter 12

IOGoptimization-jile
This switch gives priority to the position in the
executable image of the object files which define
the symbols whose names are contained in the file
optimization-file. The default extension for optimization
file is .opt.

IP This switch has the same effect has the IL switch.

IQ This switch suppresses all warning messages (see sec
tion 12.13).

IQn This switch suppresses every occurrence of warning
message number n (see section 12.13).

I Rsize This switch gives the size of the read-only memory
area. This should only be used when linking code for
T2 transputers.

IS This switch generates a map file taking its name from
the first name in the list of object files.

ISmap-jile This switch generates a map file called map-file. The
default extension for map-file is .map.

Ilentry-point
This switch causes the linker to use the symbol entry
point in preference to INMOS •ENTRY .POINT, which is
the default.

12.11 Using Batch Files

A batch file is a convenient way of calling the linker with the ap
propriate run-time library and harness. The linker accepts spaces
between object file names, so the batch file can pass more than one
parameter to the linker; unused parameters will be ignored. Switches
can appear in any position on the command line, so they can be

The Linker 349

passed as parameters to the batch file, For example, the batch file
tlink. bat might look like this:

C>linkt 11 12 %3 %4 %5 %6 %7 %8 19 library.bin harn.bin

The following example shows how the batch file could then be used
to link two files file1. bin and file2. bin into a library file1.lib:

C>tlint filel file2/L

The batch file will then invoke the linker with the following com
mand:

linkt filel file2/L library barn

It is not possible include a comma in a batch file parameter. For this
reason, you cannot explicitly pass an output file name to a batch file
in its command line.

12.12 Duplicate Definitions

A duplicate definition occurs if two or more object files define the
same symbol. The linker will issue a warning message about each
occurrence of a duplicate definition and will use the first definition
encountered. Object files are processed in the order in which they
appear on the command line.

This facility can be useful when it is necessary to rewrite or alter an
object file contained in a library. It can also be used to substitute
one object file for another when creating a new library.

Occasionally, for example when several libraries are being used, it
may be desirable to suppress a very large number of duplicate defi
nition warning messages. This can be done by using the switch /Ql.

This facility may be useful for OEM users of the linker.

350 Chapter 12

12.13 Messages

The linker may issue one or more messages during a linking opera
tion. These messages are used to draw the user's attention to unusual
or incorrect situations.

There are two types of message: warnings, which indicate acceptable
but possibly erroneous conditions, and fatal efTOrs which result from
conditions which are serious enough to terminate the linking opera
tion. The IQ switch may be used to suppress all warning messages;
the form IQn can be used to suppress all occurrences of message
number n.

In order to give as much useful information as possible, the linker will
often expand messages by including such things as symbol names and
numerical values. In the description of the messages, terms in italics
will be replaced appropriately according to the following scheme:

filename

module

number

switch

symbol

text

type

The name of a file, such as an object file name

The name of an object file or a module within a library

An integer value

A letter used to identify a command-line switch

A symbol defined or referenced by an object file or
module

Various pieces of descriptive or illustrative text

A code for a specific type of transputer, such as T414

WARNING (0): data symbol symbol referenced as a code
symbol in module

Description The given symbol has been defined as a data symbol
but the given module references it as a code synlbol.

The Linker 351

User Action Check that the code symbol references are specifying
the correct symbol and that the symbol has been de
fined appropriately.

WARNING (1): using definition of symbol in modulel J

ignoring duplicate in module2

Description The given symbol has already been defined by mod
ulel. Another definition has subsequently been found
in module2. This latter definition will be ignored.

User Action Check that the correct definition is being used. If the
second definition was the one that was really wanted,
change the order of the object files in the link command
so that the file (or library) containing the wanted def
inition comes before the unwanted definition.

FATAL ERROR (3): multiple INIT tags

Description This error indicates that an object file is internally
inconsistent.

User Action Check that the files being linked together are proper
object files or libraries.

FATAL ERROR (4): mUltiple MAININIT tags

Description This error indicates that an object file is internally
inconsistent.

User Action Check that the files being linked together are proper
object files or libraries.

352 Chapter 12

FATAL ERROR (5): object file fikname is corrupt; illegal
patch/number

Description This error indicates that an object file is' internally
inconsistent.

User Action Check that the files being linked together are proper
object files or libraries.

FATAL ERROR (6): object tile filename is corrupt; unknown

tag/number

Description This error indicates that an object file is internally
inconsistent.

User Action Check that the files being linked together are proper
object files or libraries.

FATAL ERROR (7): incompatible processor types; typel in
modulel and type2 in module2

Description Code compiled for one type of transputer may not be
able to execute correctly on a different type of trans
puter. This error indicates that object files compiled
for a processor of typel are being linked with object
files compiled for a processor of type2.

User Action Decide the type of the target processor and recom
pile those object files which had been compiled for a
different processor type. Also check that the correct
run-time library has been specified.

The Linker

FATAL ERROR (8): reserved symbol symbol defined in
module

353

Description The Iinker reserves certain symbols for its own use.
This error indicates that the given module has at
tempted to define such a symbol. The reserved symbols
all start with two consecutive underline characters.
Users should avoid using any symbols which start with
these characters.

User Action Avoid using the reserved symbol.

FATAL ERROR (9): internal error/number

Description Th.s message is issued when the linker discovers that
its internal tables are in an inconsistent state.

User Action Submit a fault report to your distributor including the
exact text of the error message.

WARNING (10): module module refers to undefined symbol
symbol

Description The given module contains a reference to the given
symbol. By the time all of the object files and libraries
given in the command line have been examined, no
module has been found which contains a definition of
the symbol. Although this is really a fatal error, it is
treated as a warning so that further undefined sym
bols may be discovered and reported. A fatal error
(47 or 48) will be issued on the completion of the link
operation.

User Action Check that the module which defines the symbol has
been included in the link command and that the name

354 Chapter 12

of the symbolbas been given correctly in both the mod
ule which defines it and the module which references
it.

FATAL ERROR (11): multiple .ain static initialization
aodules

Description This error indicates that an object file is internally
inconsistent.

User Action Check that the files being linked together are proper
object files or libraries.

FATAL ERROR (12): entry point 8J1lbol symbol has not been
defined

Description The given symbol has been specified as the entry-point
for the program being linked, either by default (in
which case the symbol will be INMOS. ~NTRY •POINT)
or explicitly using the IX linker switch. This error
indicates that no module has defined that symbol.

User Action Check that the entry-point symbol has been specified
correctly in the IX switch or that the list of object files
to link includes one which defines the main entry point
(a C main function, a Fortran PROGRAM, or a Pascal
PROGRAM).

WARNING (13): no definition found for optimization
symbol symbol

Description The given symbol has been nonlinated for optinlization
by means of the /0 linker switch. The warning is issued
if no definition for that symbol has been found by the
end of the linking operation.

The Linker 355

User Action Check that the symbol has the correct spelling and that
the module containing its definition has been included
in the list of files to be linked.

WARNING (14): cannot optimize position of debug area

Description It is not possible for the linker to optimize the position
of the debug area. This area is identified by means of
a reserved symbol, __debug_area, which is defined by
the linker itself. The warning is issued if the name of
the debug area is nominated in a /0 linker switch.

User Action Remove the debug area symbol from the list of opti
mization symbols.

FATAL ERROR (15): no MAININIT found: language run-time
library missing?

Description This error indicates that the linker has been unable to
find the definition of an initialization module which is
assumed by the 3L compilers. The problem is usually
caused by omitting the run-time library from the list
of files to be linked.

User Action Include the appropriate run-time library in the list of
files to be linked.

FATAL ERROR (18): code position exceeds declared size in
module

Description This error is usually caused by an error during the
compilation of the given module.

User Action Recompile the given module and attempt the link op
eration again. If the fault persists, please contact your
distributor.

356

FATAL ERROR (21): not enough memory

Chapter 12

Description This error indicates that the linker has run out of avail
able memory.

User Action If the memory available on the transputer board is
more than 2MB use the _.patch program on the
linker to set the correct memory size for the linker.
The _eapatch program is described in the 3L Parallel
language manuals.

FATAL ERROR (22): patch over valid code in aodule module

Description When compiling the instructions used to access exter
nal objects, the compiler leaves a certain amount of
room for the linker to patch in the actual address of the
object. This error indicates that the size of the image
file is such that the space left in the given module is
not big enough to hold the actual address.

User Action Recompile the offending module and increase the
amount of space left by the compiler for patches us
ing the appropriate compile-time switch. Refer to the
compiler's documentation for details.

FATAL ERROR (23): intern~l limitation -- too many
references (number)

Description The lioker cannot complete the linking operation be
cause the files being linked have more references to
external symbols than can be held in the linker's inter
nal tables. The linker's tables have space for approxi
mately 150,000 external references.

User Action The only appropriate action is to reduce the number
of external references by concatenating SODle of the
original source files into a single file.

The Linker 357

FATAL ERROR (24): internal limitation ~- too many common
blocks (number)

Description The linker's internal tables used for describing defi
nitions of and references to Fortran common blocks
have been. filled and so the linker cannot complete the
linking operation. The linker allows a total of approx
imately 64,000 such references and definitions.

User Action The only appropriate action is to attempt to concate
nate some of the source programs that reference the
same common blocks. For example, if five source pro
grams refer to common block X then concatenating
those files into a single source file and recompiling
will reduce the number of references to common blocks
from five (one per original source file) to one (in the
resulting combined file).

FATAL ERROR (25): internal limitation -- unexpected end
of file/number

Description This error is the result of attempting to link a corrupt
object file or a file which is not an object file.

User Action Check that all of the files being linked are object files.

FATAL ERROR (26): internal limitation -- vector size
(number) exceeds limit (number)

Description This error indicates that a record in the object file
exceeds the maximum size allowed.

User Action Check that all files being linked together are proper
object files or libraries.

358

FATAL ERROR (27): internal limitation
optimization symbols (number)

Chapter 12

too many

Description The linker can only process a limited number of opti
mization symbols. The linker allows for approximately
1024 symbols. This error indicates that too many op
timization symbols have been specified.

User Action Remove some optimization symbols.

FATAL ERROR (30): all object tiles are libraries;
nothing to link

Description This error indicates that all of the files given on the
command line are library files.

User Action Add an object file to the list of library files, Of, if you
mean to generate a new library file, use the IL switch.

FATAL ERROR (31): unknown processor type type in module

Description The given module has indicated that the code it con
tains is for a transputer of the given type. This type
does not correspond to a transputer known to the
linker.

User Action Recompile the offending module, specifying a known
transputer type.

FATAL ERROR (32): unable to vrite to file filename

Description This error indicates that the named file cannot be cre
ated successfully.

User Action Check that the file name has been specified correctly
and that the device on which the file is to reside has
enough free space.

The Linker 359

FATAL ERROR (33): internal limitation -- cannot process
more than number object files

Description The linker can only process the limited nurrlber of ob
ject files and libraries. The linker allows for approxi
mately 16,000 files. This error indicates that too many
object files and libraries have been specified.

User Action Combine some of the object files into a single library
file and use that library instead of the individual files.

FATAL ERROR (34): unable to open filename

Description This error is issued when the linker is unable to access
a file.

User Action Check that the given file exists and that its name has
been specified correctly.

FATAL ERROR (35): internal limitation -- too many
modules (number)

Description The linker can only process a limited number of mod
ules. The linker allows for approximately 16,000 mod
ules. The error indicates that too many modules have
been specified.

User Action Combine individual modules together at the source
code level.

FATAL ERROR (36): internal limitation -- too many
symbols (number)

Description The linker can only process a limited number of sym
bols. The linker allows for approximately 128,000 sym
bols. The error indicates that too many symbols have
been specified.

360 Chapter 12

User Action Remove any unnecessary external symbols from the
source programs.

FATAL ERROR (37): command line: text expected

Description This error indicates that the command line has been
incorrectly formed.

User Action Correct the command line.

FATAL ERROR (38): cannot specify output file twice

Description This error indicates that two or more commas have
been found on the linker command line. A comma is
used to separate the name of the linker's output file
from the files to be linked, and there may only be one
such output file.

User Action Check the format of the linker command line. In par
ticular, make sure that the list of object files does not
include commas.

FATAL ERROR (39): option /switch not recognised

Description The given switch is not a linker option.

User Action Correct the specification of the option.

FATAL ERROR (40): internal limitation -- too many nested
data files

Description The linker imposes a limit on the depth to which data
files (indirect files) can be nested. Currently, this limit
is 5.

The Linker 361

User Action Replace the most deeply nested references to indirect
files with their contents.

FATAL ERROR (47): 1 symbol undefined

Description This error is issued at the end of a linking operation in
which a single "undefined symbol" warning was pro
duced

User Action Refer to WARNING (10)

FATAL ERROR (48): number symbols undefined

Description This error is issued at the end of a linking operation
in which several "undefined symbol" warnings were
produced.

User Action Refer to WARNING (10)

WARNING (51): object file fikname is corrupt; missing T2
items

Description This error should not occur.

User Action Submit a fault report to your distributor including the
exact text of the error message

WARNING (52): command line must specify memory size when
linking T2 objects

Description This error is issued when no /M option is given when
linking code for T2 transputers.

User Action Specify the memory size using the /M option on the
linker command line. This size should be between 2KB
and 64KB.

362 Chapter 12

FATAL ERROR (53): memory size specified (number) is less
than 2048 bytes

Description This error indicates that, when linking for T2 trans
puters, the IN option was used to specify a memory
size smaller than the minimum of 2048 bytes.

User Action Use a larger value with the IN option switch on the
linker command line.

FATAL ERROR (54): memory size specified (number) is
greater than 64K bytes

Description This error indicates that the memory size given, us
ing the IN option when linking for T2 transputers, is
greater than the address space of a 16-bit transputer.

User Action Use the I" option to specify a memory size between
2KB and 64KB.

FATAL ERROR (55): stack size specified (number) is less
than 128 bytes

Description This message indicates that, when linking for T2 trans
puters, the size specfied for the stack area, using either
the lA or the IFA option switch, was less than the
minimum or 128 bytes.

User Action Change the option parameter to allow a larger stack.

FATAL ERROR (56): debug table generation disabled when
linking T2 objects

Description This message is issued when IG option was used when
linking code for T2 transputers. A fatal error (9) will
be issued on the completion of the link operation

The Linker 363

User Action Remove the IG option from the linker command line"

WARNING (59): image is larger than memory size specified
(number)

Description The size of the image exceeds the memory size specified
with the I" option when linking code for T2 transput
ers.

User Action Specify a larger memory size-this should of course
correspond to the memory size available on the target
transputer.

FATAL ERROR (60): area positions specified on command
line overlap

Description This indicates that when linking code for T2 transput
ers the modified IF switches have been used to define
memory areas which overlap each other.

User Action Check the start address and size of each memory area
to determine which are overlapping. Change the start
address or size of one or more of the memory areas so
that there are no overlaps.

FATAL ERROR (61): la cannot be used if area positions
are specified

Description The modified IF switches have been used with the I A
switch on the command line when linking code for T2
transputers.

User Action When the modified IF switches are used the IA switch
can be omitted. The IFA switch can be used to specifiy
the start address and size of the stack area.

364 Chapter 12

FATAL ERROR (62): Im cannot be used if area positions
are specified

Description The modified IF switches have been used with the IN
switch when linking code for T2 transputers.

User Action When the modified IF switches are used to specify each
of the memory areas the I" switch should be omitted.

FATAL ERROR (63): all area positions must be specified

Description One or more of the modified IF switches has been
omitted from the command line.

User Action Supply all four of the switches, for a further description
of these see section 12.8.4.

FATAL ERROR (64): all area positions and sizes must be
word aligned

Description The modified IF switches used define a memory area
which does not begin and end on word boundaries.
This message only occurs when linking code for T2
transputers.

User Action Check that the start addresses and sizes of all the
memory areas are even.

WARNING (65): code size specified is smaller than actual
code size of number (hex) bytes

Description This message indicates that the space required for the
program code exceeds the size of the memory set aside
for code using the /FC switch.

User Action Increase the size of the code area specified with the
/FC switch.

The Linker 365

WARNING (66): data size specified is smaller than actual
data size of number (hex) bytes

Description This message indicates that the static data require..
ment of the program being linked is exceeds the mem
ory area set aside for static data using the IFS switch.

User Action Increase the size of the static data area specified with
the IFS switch.

FATAL ERROR (67): memory area overlaps ROM area

Description The memory region specified by one of the modified IF
switches overlaps the ROM area, defined with the IR
switch. memory will be one of static data, stack,
code, or heap.

User Action Change the size or start address of the memory area
that overlaps the ROM. The size of the ROM deter
mines its start address since its last address will be
FFFF.

FATAL ERROR (68): no space in heap or stack area for
bootstrap of length number bytes

Description The memory set aside for the stack is too small to hold
the bootstrap code.

User Action The bootstrap used for T2 transputers is usually
placed in the memory that will be used for stack and
heap when the program has been booted. In this case
the space is too small to hold the bootstrap so it should
be increased using the lA switch or the modified IFA
and IFH switches.

366 Chapter 12

FATAL ERROR (69): ROM image requires a ROM size of
number (hex) bytes

Description This message indicates that the size of ROM specified
with the IR switch is not big enough to hold the pro
gram image.

User Action Increase the size of ROM used and change the IR
switch to reflect this.

Chapter 13

The mempatch Utility

The linker program, linkt, normally produces an executable image
file prefixed by a short bootstrap program which allows the afserver
to load the image into an empty transputer: the bootstrap initialises
the transputer and reads in the rest of the image file.

The bootstrap produced by the Iinker is designed to work with the
Inmos B004 transputer board, or with an exact copy. These boards
have either 1 or 2MB of RAM: the bootstrap may not work properly
with partially B004-compatible boards which have different amounts
of memory.

This problem does not affect task image files produced by the linker
for use with the 3L configurers, since the configurers ignore any
bootstrap code prefixed to the input task images and add their
own bootstrap to the output application image file. The configurer
generated bootstrap can handle any amount of memory which is a
multiple of 64KB.

The linker-generated bootstrap is only used if a single image file is
run on its own on one transputer as described in chapter 3. In that
case, the following problems may occur on a transputer board with
other than 1 or 2MB of RAM:

368 Chapter 13

• On systems with more than 2MB of memory, .b4 files produced
by the linker will assume that only 2MB of memory is available;
the program will not be able to take advantage of the rest of
the physical memory in the configuration.

• On systems with less than 1MB of memory, .b4 files produced
by the linker will assume too much memory is available, and are
likely to fail when memory above the amount actually available
is used.

• On systems with more than 1MB but less than 2MB of memory,
one or other of the above effects will be observed, depending
on the details of the board's address decoding hardware.

The mempatch utility allows you to modify. b4 files so that they will
execute correctly with a particular memory configuration other than
1 or 2MB.

The compiler, linker and other utilities provided in this release all
use the standard bootstrap, and may therefore require to be modified
using mempatch if they are to be run on a transputer board with other
than 1 or 2MB of RAM. Note that 3L does not guarantee that the
compiler, linker and other programs will necessarily operate correctly
if insufficient memory is available.

13.1 Identifying mempatch

If the mempatch utility is invoked without arguments, it will print
identifying information similar to the following:

C>aeapatch
usage: aeapatch filenaae.b4 kilobytes'
e.g. aeapatcb ayprog.b4 128
aeapatch V1.2, Copyright (C) 1988, 3L Ltd.

A given version of mempatch can only be guaranteed to operate
correctly with particular versions of the 3L high-level languages.

The lIelDpatch Utility 369

You should only use the version of mempatch supplied with this
release in conjunction with the corresponding compiler and linker.
mempatch will detect and reject any program image with which it is
not compatible.

13.2 Invoking mempatch

The mempatch utility is invoked with a command line of the following
form:

aeapatch image-file-name number-of-kilobyte.

For example, to patch the file myprog. b4 for a system with only
64 kilobytes of memory, the following command line would be used:

C>.eapatch ayprog.b4 64
standard secondary bootstrap recognised
iaage now patched to 64 kilobytes

Note that the full filename of the program image file-including any
.b4 extension-must be supplied.

13.3 Re-invoking mempatch

A program image file may be patched more than once if, for example,
available memory in the target system changes. The program file
myprog. b4 modified in the previous example might be modified again
for a 128 kilobyte system as follows:

C>.eapatch ayprog.b4 128
previous patch value was 64 kilobytes
iaage now patched to 128 kilobytes

370 Chapter 13

Chapter 14

The decode Utility

A separate decoder utility is supplied with Parallel C which takes
as its input the binary output file of the compiler, and produces a
listing including both the source code and the disassembled machine
code for each source line.

An example of decode's output may be found in figure 14.1.

14.1 Usage

14.1.1 Compilation for the Decoder

The decoder uses the debugging information generated by the com
piler to enable it to produce tables of variable locations and to
associate the binary code of the program with the lines of the source
file.

For this reason, programs to be decoded should be compiled with
the Zi switch. For details, see section 9.4.5.

372 Chapter 14

14.1.2 Running the Decoder

The decoder is started by a command of this format:

decod~ filename

Here, filename is the name of a binary output file from the compiler.
If no extension is typed, .bin is assumed.

The decoder attempts to find the source file, using the source file
name given at compilation time, which is stored in the binary file.
It applies this name in the context of the current directory when the
decoder is rUD. Thus, if at compilation time the source file was spec
ified as down\cats, and the current directory when the decoder is
run is \mine, the decoder will attempt to open \mine\dovn\cats.c
as the source file. The decoder should therefore be invoked with the
current directory set to be the directory which was current when the
file being decoded was compiled.

If decode cannot find the source file, it outputs a warning message
and produces a disassembly listing without source lines.

The decoder's output is normally sent to the display. It may, how
ever, be redirected or piped in the usual way, for example:

C>decode cats> cats. lis
C>decode cats I .ore

14.2 Features of the decode Program

The line TOTALCODE 16 0 in the example reports the size of the
program code for the module: in this case, 176 (decimal) bytes. The
second number can be disregarded.

The line STATIC 0 in the example reports the size of the static space
required by the module. In this case, the module has no static
requirements. This value is expressed this time in words (decimal).

The decode Utility 373

Machine-code instructions are decoded into mnemonics. A complete
list of all mnemonics produced can be found in appendix E. The
decoder automatically merges pfix's and nfix's with the following
opcode. There is full support for all T2, T4 and TB instructions,
including the TB's 'fpu' operations. Unrecognised indirect instruc
tions are decoded as 'opr n', and unrecognised fpentry instructions
as'ldc n; fpentry'.

The destinations of j and cj instructions are shown as addresses in
hexadecimal, rather than relative displacements. Calls to external
symbols are shown symbolically if possible. The operand fields of all
other direct instructions are shown in decimal.

The initialisation values of static data are shown in hexadecimal and
ASCII.

The source code contents of files added to the program by means of
'include statement files are not shown, but binary code generated
from them is decoded and appears at the right point in the main
source file.

At the bottom of the decoder's output we see a decoded represen
tation of the debugging information, including the names of the
functions and the displacements of the variables. The size of the
debugging information is not included in the TOTALCODE and STATIC
lines above.

14.3 Other Languages

The decoder can handle binary object files which are of the format
described· in the Inmos Stand-Alone Compiler Implementation Man
ual[14]. As well as Parallel C, the 3L Fortran and Pascal compilers
generate binary files of this kind, and these can therefore be decoded.
If source files are available, the Fortran or Pascal source program will
be correctly included in the listing.

374

Transputer DECODE (V1.4) of decodex.bin
ID T8 IIOCCa.. 2 V2.1 11 IICC_transputer V2.2.2"
SC 0
TOTALCODE 16 0
STATIC 0

20 0000' pfiz 0
1 void aaiD ()

CODESYIIB "aainll 00000000
BE 60 00000 aj. -2

2 {
3 iDt a. bi
4 a • 100i

44 26 00002 Idc 100
DO 00004 etl 0

6 b • a/2Si
70 00006 Idl 0

49 21 00006 Idc 26
FC 22 00008 diw

D1 0000& etl 1
6 }

B2 OOOOB aj. 2
FO 22 OOOOC ret

Debugger Inforaation
Begin Function aain 00000000(14) aj. 2 0I110VI

811T32 Vptr 00000000 a
811T32 Vptr 00000004 b

End Function

Figure 14.1: Example of output from decode

Chapter 14

The Inmos stand-alone occarn 2 compiler also generates binary files
in this format, and should therefore be decoded correctly, although
this cannot be guaranteed. The source programs are not shown,
as the occarn compiler does not generate the necessary line-number
information.

The decoder cannot handle executable (. b4) files.

Chapter 15

The worm Utility

The vorm utility is for exploring transputer networks. In its simplest
form, it just counts the number of nodes in the network.

C>.or.
one processor found

The IF option switch provides fuller information about each node,
including:

• processor type (T414 or T800);

• processor clock speed;

• amount of external memory, in kilobytes (K);

• the number of extra processor cycles (penalties) required to ac
cess external memory as opposed to on-chip RAM (a minimum
of two for a T414 or T800);

• the number of nodes through which work packets in a f1ood
configured application will be routed to get from the root
transputer to this node. This number of "hops" may be greater

376 Chapter 15

than the theoretical minimum imposed by the network config
uration; it reflects the network spanning tree constructed by
the flood-loading software.

On a single-processor system the output might look like this:

C>vora/f
ODe proce••or found
processor ROOT type-T414 20.0MHz, 3.0 penalties, 0 hops 20481

lint. to 809T[O],-------.-------,-------

The link connections from each node are listed from left to right
in the order link 0, link 1, link 2, link 3. Here link 0 of the root
transputer is connected to the host computer's link adapter and
the other three links are unconnected. A dashed line, "-------"
indicates an unconnected link.

The le option makes the VOI1l generate the node interconnection
information in the form of a configuration file suitable for use with
the static configurer.

! ODe processor found
proce8sor HOST
processor ROOT
vire ? 8001[0] HOS1[O]

15.1 Notes

The vorm will not discover "bare" nodes with little or no external
memory. This is because the network loader on which it relies re
quires about 5-10KB of external RAM to function properly.

There may be a short delay before network information is displayed.
This is because the vorm waits for a certain amount of time before
deciding that a link over which nothing is being received is uncon
nected and not just connected to a "slow" processor.

The vorm writes its output on the standard output stream, normally
the screen. Its output may be redirected to a file, or to a device

The 1fon Utility 377

like a printer, using the DOS ,)' facility. For example, to put a full
description of a network into a file called net .lis:

C>vora/f >net.lis

378 Chapter 15

Chapter 16

The tnm Utility

tnm shows the external symbols defined or referenced by an object
file or library. For libraries, the names of the constituent object
modules are also shown.

tnm is invoked like this:

tllll filename

The filename must be the name of an object (. bin) file produced
by the compiler, or a library file produced by the linker. No default
extension is supplied by tnm.

Object files and libraries are made up of sequences of object file
records of various types. tnm scans the input file and writes (to
standard output) the following types of record in a printable format.
Other record types are skipped.

COMPILER ID records show the target processor (T4 or T8) for which
a module 'was compiled, and the version of the compiler used to
compile it.

LIBRARY records delimit object modules within a library. They also
contain the name of the following object module, except for occam

380 Chapter 16

modules which do not have names and are therefore given numbers
instead.

REF records name external symbols referred to by the current module.
Note that simply referring to a symbol does not cause the module
which defines it to be loaded. Only symbols which are actually used
in "patch" records cause modules to be loaded. Patch records are
not shown by tnm, because each symbol may be used in many places
in an object file, requiring many patch records which would obscure
the output produced.

CODE SYMBOL records define the locations of external symbols in the
code area of the current module.

DATA SYMBOL records define the locations of external symbols in the
static data area of the current module.

Figure 16.1 shows the start of the output produced by running tnm
on the standard C run-time library.

The output from tnm normally appears on the screen, but it may be
redirected to a file or device using the DOS '>' facility, like this:

C>tna \tc2v2\crtlt4.bin >rtl.lia

The tnm Utility

LIBRARY MODULE 1: \Uie\bin\c\rtlt4\renaJIe. bin
COMPILER ID occaa 2 '2.1 CC_transputer '2.2.2
REF _put_int
REF _put_rec
REF etrlen
REF _set_int
REF _iob
CODE SYMBOL renaae

LIBRARY MODULE 2: \iae\bin\c\rtlt4\ctable.bin
COMPILER ID occaa 2 V2.1 CC_transputer '2.2.2
REF _ctype
DATA SYMBOL _ctype

Figure 16.1: tnm Output

381

382 Chapter 16

Chapter 17

The tunlib Utility

Individual object files can be extracted from a library using the
tunlib command.

tunlib input-library output-library output-objfile ~ymbol

All four command-line arguments are required. No default exten
sions are supplied by tunlib.

tunlib extracts an object module from the input-libmry and writes
it to the output-objfile. The input-libmry, minus the extracted mod
ule, is copied to the output-libmry.

The module to be extracted is specified by giving the name of any
external symbol it defines. Symbol matching is case sensitive.

Do not use the same file name as both an input file and an output
file. The effects of doing so are undefined.

In the example below, the module which defines the function
PlotPoini is extracted from a library caIJed graphlib. bin and
written to an object file of its own called point. bin. The remainder
of the library is written to a new file, rest. bin.

C>tunlib graphlib.bin rest.bin point.bin PlotPoint

384 Chapter 17

If we had wanted simply to delete the module containing PlotPoint
from the library, we could have discarded the extracted object file
by writing it to the null file, like this:

C>tunlib grapblib.bin ne.lib.bin nul PlotPoint

nevlib. bin is just graphlib. bin with the module which defined
PlotPoint removed.

Chapter 18

Configuration Language
Reference

The 3L configuration language is the language accepted by the vari
ous 3L configuration utilities. It is designed to allow easy description
both of physical processor networks and of user applications built up
out of tasks, without the user being concerned with the details of how
the tasks are actually loaded into the processor network.

Each of the configuration utilities will, in general, accept a subset
of the language described here, according to its needs. For example,
the flood-fill configurer accepts the barest descriptions of the user
tasks; it needs no description of the physical network because that
information will be discovered at load time.

18.1 Standard Syntactic Metalanguage

In a formal description of a computer language, itis often conveni
ent to use a more precise language than English. This language
description language is referred to as a metalanguage. The metalan
guage which will be used to describe the configuration language is

386 Chapter 18

that specified by British Standard 6154[9]. A tutorial introduction to
the standard syntactic metalanguage is available from the National
Physical Laboratory[10].

The BS6154 standard syntactic metalanguage is similar in concept
to many other metalanguages, particularly those of the well-known
Backus-Naur family. It therefore suffices to give a very brief informal
description here of the main points of B86154; for more detail, the
standard itself should be consulted.

1. Terminal strings of the language-those not built up by rules
of the language-are enclosed in quotation marks.

2. Non-terminal phrases are identified by names, which may con
sist of several words.

3. A sequence of items may be built up by connecting the com
ponents with commas.

4. Alternatives are separated by vertical bars ('I').

5. Optional sequences are enclosed in square brackets ('[' and ']').

6. Sequences which may be repeated zero or more times are en
closed in braces ('{' and '} ').

1. Each phrase definition is built up using an equals sign to sep
arate the two sides, and a semi-colon to terminate the right
hand side.

18.2 Configuration Language Syntax

To simplify the explanation of the configuration language, the formal
definition which follows in subsections 18.2.2 onwards deals only with
the higher level syntax of the language. At this level, we can deal
with how the significant characters of the language are built up into
tokens and statements. The lower level syntax deals with the way in

Configuration Language Reference 387

which multiple input files are handled, with comments and with line
continuation. This topic is treated informally in subsection 18.2.1.

The high level syntax given here has an additional simplification
intended to make it more readable. To show this, consider the
following syntax rule written in the BS6154 metalanguage:

example rule =
"first", "second";

Interpreted strictly, thJs rule would be satisfied only by an input text
which read "firstsecond". In the syntax presented here, it should
be taken to match "first" followed by "second", but in such a way
that the two items are distinguishable. For example, the two words
here might be separated by a space character in the input file. When
the two items are distinguishable in the input file without a space
between them, then they may be abutted. This would be the case
for the two items in the following example:

second example rule =
"first ", "=";

Valid input text for this rule could be, for example, "first=" or
"first =".

18.2.1 Low Level Syntax

The general form of a configuration language "program" is designed
to be as simple as possible to use.

The following example show the ways in which the formatting, com
menting and continuation facilities available in the configuration
language can be used:

this is an exaaple of a co..ent
a blank line follows ...

next, a state.ent continuation•..
PROCESSOR -

388

host

now. both features in coabination...
PROCESSOR - ! co..ent 'ID continuation

root

Chapter 18

The above sequence is, to the configurer, exactly equivalent to the
following:

PROCESSOR HOST
PROCESSOR ROOT

The various facilities used above can be summarised as follows:

• Case of letters is not significant to the configurer; in other
words, upper and lower case letters may be used interchange
ably.

• White space within a line (space characters, tab characters and
so forth) is compressed; for example, three consecutive spaces
would be seen as one.

• Everything from an exclamation mark character '!' to the end
of the line is taken to be a comment, and is discarded.

• If the last non-whitespace character on a line is a hyphen '-',
the line is taken to be continued onto the next line.

• Continuation and commenting can be used together; the hy
phen must then be the last non-whitespace character before
the comment.

In addition to these line formatting considerations, note that the
configurer can accept any number of input files rather than simply
one. This facility is designed to allow different parts of the descrip
tion of an application to be held in separate files. For example, the
description of the physical network might be held in one file and
the description of the user's application in another. The configurer
simply treats each input file in order as part of one long input stream.

Configuration Language Reference

18.2.2 Numeric Constants

389

Several different kinds of numeric constant are available to meet the
different uses of constants within the configuration language. For
example, a constant may be expressed in decimal notation or in
hexadecimal.

A special notation is provided to extend the decimal constant with a
scaling letter; this is most commonly used in specifications of memory
allocation, which are conveniently specified in units of kilobytes or
megabytes. The scaling letters 'K' and 'M' scale the decimal con
stant they follow by 1024 and 1024 x 1024 (1048576) respectively.
Note that it is not possible to add a scaling letter to a hexadecimal
constant; the configurer would interpret such a combination as the
hexadecimal constant followed by a single-character word containing
the scaling letter.

Although all numeric constants in the configuration language repre
sent integer values, a representation including a decimal point can
be used for input: the number is simply truncated towards zero
before use. For example, 1.6 would simply represent 1. Because this
truncation occurs after the scaling letter, jf any, has been applied, the
decimal point can be used to express fractions of the scaling value.
For example, 1.6M would represent 1677721, which is the truncated
integer part of 1.6 X 1024 X 1024.

constant =
decimal constant I hex constant;

hex constant =
"1:", he.x digits;

hex digits =
hex digit, { hex digit };

hex digit =
digit I "A" I ... I "F";

390 Chapter 18

decimal constant =
decimal digits, [" . ", { decimal digit}], [scaling letter];

scaling letter =
"K" I "M";

decimal digits =
decimal digit, { decimal digit };

decimal digit =
"0" I ... I "9";

Some examples of numeric constants are given here, along with their
values, expressed in decimal.

10
1:10
10K
10M
1.6
1.6t

18.2.3

10
16
10240
10485760
1
1638

String Constants

The only circumstance in which a string constant is required in
the configuration language is when an operating system file must
be identified. Such string constants in the configuration language
are simply enclosed in double quotes. No notation is available for
including double quotes within the string; this is unnecessary as MS
DOS file names may not contain this character.

The trailing string quote may be omitted if the string is terminated
by the end of the line.

string constant ==
"11", { ? any ASCII character other than newline or
double quote? }, ["11"];

Configuration Language Reference

Some examples of valid string constants are as follows:

"string"
"c:\.ytasks\x.b4"
tlfred.b4

391

Note that the case of the characters in file names is significant, even
though MS-DOS does not use this distinction. This is to help when
the software is ported to other environments.

18.2.4 Identifiers

Each object in the physical transputer system (processors a.nd wires)
and in the user's application (tasks and connections) has a unique
identifier. This is used by the configurer in error reports, and is also
used to specify relationships between the objects. For example, a
wire runs between links on two named processors.

Identifiers for objects in the configuration language are simply se
quences of letters, digits and the special symbols underline '_' and
dollar sign '$'. The sequence must start with a letter.

identifier =
letter, { identifier character};

identifier character =
letter I digit I "$" I

letter =
"A" I ... I "Z";

" ".- ,

Some examples of valid identifiers follow. Note that the last three
examples would all be treated identically by the configu rer, because
the case of let ters is not significant.

proc_5
do$llork
root
a_very_lons_nue

392

'_Very_Long_laae
'_VERY_LOIG_IAKE

Chapter 18

Part of the syntax of each of the configuration language.statement
types which declare an object is the identifier which is to be used to
refer to that object in later statements. For example, the identifier
given to a processor is used again in placing tasks on that processor
or in wiring the processor's links to those of other processors.

It is sometimes convenient, when an object will not be referred to
later, to allow the configurer itself to choose an identifier for an
object rather than for the user to invent meaningless identifiers for
every object. The declaration statement types all allow a question
mark to be used in place of an identifier.

new identifier =
identifier I "?";

Normally, this special form of identifier is used when declaring wires
and connections, as there is at present no statement type which
refers back to these objects. Declarations of processors and tasks
will almost always require an explicit identifier to be used, as these
identifiers are used later when placing the tasks onto the network of
processors.

An example of using the question mark form of identifier would be
as follows:

wire? host[O] root[O]

This statement declares a wire running from link nunlber 0 on pro
cessor host to link number 0 on processor root. The configurer will
be able to report errors concerning this wire by reference to the line
number and file name of the declaration, but the user will not be
able to refer to the wire again.

Configuration Language Reference

18.2.5 Statements

393

Given the definitions of such primitives as numeric constants and
identifiers, the high-level syntax of the configuration language can
now be presented. The combined input file consists of a number of
newline-separated statements, as follows:

input file =
{ [statement], newline };

Note that the statement part of the above is optional, allowing for
blank lines appearing between statements. This may come about
either deliberately, perhaps to improve the readability of the input
file, or because the line contained only a comment, which is of course
not visible at this level.

Each statement in the input file is one of the following statement
types. The different statement types are covered in the subsections
which follow.

statement =
processor statement I
wire statement I
task statement I
connect statement I
place statement I
bind statement;

There is no restriction on the order in which statements appear in
the input file, except that no object may be referred to before it has
been declared.

18.2.6 'PROCESSOR Statement

processor statement =
"PROCESSOR", new identifier, { processor attribute };

394

processor attribute =
"TYPE", "=", processor type I
"BOOT", "=", boot file specitier I
"RAM", "=", constant;

processor type =
"PC";

boot file specifier =
string constant;

Chapter 18

The PROCESSOR statement declares a physical processor. Every
processor in the physical network must be declared, including the
host processor from which the network is to be bootstrapped (nor
mally an IBM PC-type macbine). The configurer assumes that the
processor named host is the host processor; thus, each configuration
must contain a statement as follows:

processor hoat

Most processors declared in a configuration file will be declared so
that user tasks can be placed on them by later statements. However,
it is sometimes necessary to simply describe the tasks placed on
a particular processor without causing them to be loaded into the
processor. For example, the physical network may contain some
processors which will already be executing tasks at the time the rest
of the network is bootstrapped.

A trivial example of this case is the host processor itself. In the case
of an IBM PC host processor, the host will usually be executing the
afserver program when the network is loaded, simply because that
is the program which loads the rest of the network. It is necessary
to be able to specify the afserver task to the configurer so that its
ports can be connected to ports in user tasks, but without forcing
the configurer to attempt to bootstrap the IBM PC. Similarly, some
processors in the network might be set to bootstrap from ROM rather
than from link; here, too, there is a need to describe the tasks running
in those processors without attempting to bootstrap them.

Configuration Language Reference 395

A processor is declared to t~e configurer as having already been
bootstrapped by means of the TYPE attribute. For example, a
physical network containing one transputer and two IBM pes might
be described as follows:

processor host
proces8or root_proces8or
processor other_IBM_PC tJPe-pc

Note that the default for the host is that it is TYPE=PC already. The
default for all other processors is to be normal, bootable, transputer
processors.

Every processor is assumed to be able to support any user task placed
on it by the configuration file; specifically, there is no way to ask
the configurer to check the memory requirements of tasks placed
on the processor against the amount of physical memory available.
Similarly, although certain tasks may not be able to execute on
particular types of processor (for example, a task making use of the
floating point instructions found only on the T800 cannot execute on
a T414), the configurer cannot check for this and the responsibility
for ensuring a valid configuration is the user's.

Every processor in the network is assumed to have four Inmos links,
numbered 0 to 3. These may be referred to (in the WIRE statement)
by means of a link specifier construct, which consists of the processor
identifier followed by the link number enclosed in square brackets:

link specilier =
processor identifier, "[", constant, "J";

For example, link number 3 of the processor called extra would be
specified as extra [3] .

18.2.6.1 BOOT Attribute

The BOOT attribute is used to indicate that a processor should not
be loaded in the conventional manner but should be booted with the

396

contents of a named file.

processor edIe boot· ltse.Gr.b41t

processor sat••a, boot·........l •.,p"

Chapter 18

At load time a copy of the raw data in the boot file is simply sent to
the processor: this can be any code suitable for booting a transputer,
including an application image file generated by either the static or
flood-fill configurers. In other words, a processor declared with the
BOOT attribute can be thought of as the root processor of a sub
network to be booted using the named boot file.

In this way, a main statically-configured network can include static
sub-networks or processor farm sub-networks "on the side". How
ever, these sub-networks must be connected at the edge of the main
network. There must be only one connection between a sub-network
and the main network. If this restriction is not followed, the network
may fail to load.

Only the root processor of the sub-network should be described in
the main configuration file. If the boot file for the sub-network is
a configured application, then a sub-network configuration file will
have been used to create it. If the static configurer was used for
the sub-network, the sub-network configuration file defines the sub
network topology; this description must be accurate, as no checking
can be done during the main network configuration. The processor
in the main network which has a BOOT attribute appears in the
sub-network configuration file as the host processor.

The task in the main network which is to communicate with the
root processor in the sub-network must have its ports bound to the
appropriate Hnk addresses. The programmer must use the actual
hardware addresses for the links to do this. These addresses are as
follows:

Configuration Language Reference

Output address Input address
Link 0 &80000000 &80000010
Link 1 &80000004 &80000014
Link 2 &80000008 &80000018
Link 3 &8000000C &8000001C

397

The main task of the sub-network application should be linked with
the stand-alone run-time library unless the task it will communicate
with in the main network can respond to server protocol (e.g., if the
main network task is a file multiplexer).

As an example of a sub-network, if the upc application described
in chapter 5 were to be split into a main and sub-network using the
BOOT attribute, the main network configuration file would look like
this:

MAIIIET.CFG
Configuration file for upper casing exaaple
using "boot-" to boot sub-network with upe

processor host
processor root
processor POOl BOOT-"subnet.app"

vire ? host [0] root [0]
wire? root[l] P001[2]

! connect PC to transputer

! Task declarations
task afserver ins-I outs-!
task filter ins-2 outs-2 data-tOI
task driver ins-3 outs-3

!. Assign software tasks to physical processors
place afserver host
place driver root
place filter root

! Set up the connections between the tasks.
connect ? afserver[O] filter[O]
connect ? filter[O] afserver[O]

connect ? filter[l] driver[l]

398

connect ? driver[l] filter[l]

! bind port8 to lint to 8ub-network root proce88or
bind input driver[2] value -180000014 ! I/O oyer
bind output driver[2] value -180000004 ! lint 1

The sub-network configuration file would look like this:

SUBIET.CFG
Configuration file for uppercaaing exaaple. When
configured this application can be used to boot a
proce88or 8ub-network vith the upe prop-aa.

Chapter 18

proce8sor host
proce8sor P001

wire? h08t[l] P001[2]

! reallJ root iD .aiD network

! task8
task driver ina-3 outs-3
task upe in8-1 outs-l data-It

place driver host
place upc POOl

connect? upe[O] driver[2]
connect ? driver[2] upc[O]

18.2.6.2 RAM Attribute

The RAM attribute overrides the default mechanism which dynam
ically determines the amount of memory available to a processor at
boot time. The default mechanism probes memory to do this and
with certain board designs this is not desirable.

When the RAM attribute is used the configurer will assume that the
processor has the amount of memory specified as the parameter to
the RAM attribute and the dynamic method of memory deterlnina
tion will not be used. For this reason, care should be taken to ensure
that the processor really does have the amount of memory specified
with the RAM attribute.

Configuration Language Reference 399

The following RAM attributes declare that processor pet has 4MB
of memory and processor pe2 has only 500KB of memory.

processor pet raa-40961
processor pe2 raa=5001

Use of the RAM attribute may affect the size of the application file
as it may cause extra loading software to be included.

18.2.7 WIRE Statement

wire statement =
"WIRE", new identifier, link specifier, link specifier;

The WIRE statement declares a physical wire connecting links on
two physical processors. Each wire supports two connections, one in
either direction. The two·link specifiers in the WIR.E statement may
therefore be interchanged without affecting the statement's meaning.
For example, the following statements both declare a wire named
yellow_wire running between link 2 of processor proc_one and
link 3 of processor proc_tvo:

wire yellow_wire proc_one[2] proc_two[3]
wire yellow_wire proc_two[3] proc_one[2]

Although it is only necessary to declare the wires which are actually
used by the application, in practice it is advisable to declare all the
wires. This is because the configurer may be able to use the extra
wires for booting the application, and as a result may be able to
reduce the size of the boot file by eliminating some of the loading
software.

18.2.8 TASK Statement

task statement =
"TASK", new identifier, { task attribute };

400

task attribute :=

"INS" "= " constan t I, ,
"OUTS" "=" constant I, ,
"FILE", "=", task file specifier I
"OPT", "=", opt area I
"URGENT" I
memory area, "=", memory amount;

opt area =
memory area I "CODE";

memory area :=

"STACK" I "HEAP" I "STATIC" I "DATA";

memory amount =
constant I "?";

task file specifier =
identifier I string constant;

Chapter 18

The TASK statement declares a task, which may be either a user
supplied task or one of the standard tasks provided with the config
urer. Each task statement may contain a number of task attribute
clauses, each of which describes some aspect of the task. The task's
attributes may appear in any order within the statement.

18.2.8.1 INS Attribute

Each task declaration must include an INS attribute, which specifies
the number of elements in the task's vector of input ports. If the
task needs no input ports (because it only requires to send messages
to other tasks, never to receive) then the number of input ports may
be specified as o.

Configuration Language Reference

18.2.8.2 OUTS Attribute

401

Each task declaration must include an OUTS attribute, which spec
ifies the number of elements in the task's vector of output ports. If
the task needs no output ports (because it only requires to receive
messages from other tasks, never to send) then the number of output
ports may be specified as o.

18.2.8.3 FILE Attribute

This attribute specifies the file in which the memory image of the
task is to be found. Task image files are produced by the linker
program linkt.

The FILE attribute is ignored for any processor which is declared as
already having been bootstrapped, and may be omitted. This state
is assumed for the host processor and for any processor for which
the processor attribute type=pc has been specified.

If the FILE attribute is omitted for a normal (bootable) processor,
the configurer will scan the current directory and the directories
specified in the MS-DOS environmental variable PATH for a file whose
name is the same as the task's name, with the suffix ". b4". The
search stops at the first directory in which a file with the appropriate
name is found. For example, take the TASK statement TASK THIS
with no FILE attribute, with the MS-DOS PATH variable set up as
follows:

PATH=c:_ytasks;c:\dos;c:\tputer

In this case, the configurer would search for the task image in the
following files, in order:

.\this.b4
c:_ytasks\this.b4
c:\dos\this.b4
c:\tputer\this.b4

402 Chapter 18

If the FILE attribute is present, its argument is either a string
constant, or a word with the same syntax as an identifier. In the
former case, the string is the name of the file which will be opened,
as in the following example:

task x fil.· llc:\.JtaBks\.Jtaak.b411
•••

If the identifier-like option is taken, the identifier given is used in a
search through the MS-DOS PATH in the same way as the task's own
identifier would have been if the FILE attribute had been omitted:

task x file..ytaBk ...

18.2.8.4 Memory Size Attributes

The various memory size attributes specify the size of the various
areas used as workspace for the task, as well as specifying which
memory allocation strategy should be used.

The argument to one of the memory size attributes is an integer
expressing the number of bytes of memory to be allocated to the area
in question. Sizes smaller than 128 bytes will not be accepted, to pre
vent accidental entry of unreasonably small amounts (for example,
by typing 1.6 instead of 1. 6K). It is also possible to specify "the rest
of memory available on the processor" by entering a question mark
instead of an integer. Only one task may request this treatment on
any particular processor.

The single-vector allocation strategy is used if the DATA attribute
appears. In this strategy, the task uses a single area of memory for
all workspace requirements, whether stack, heap or static data. The
stack and heap are allocated at opposite ends of this area, and grow
towards each other. For example:

task x ... data-50k ...

The double-vector allocation strategy is used if the STACK and
HEAP attributes appear (STATIC is available as a synonym for

Configuration Language Reference 403

HEAP). In this strategy, the stack occupies a separate area of mem
ory to all the other workspace used by a task. This can be useful
when a task has a small stack requirement, as it can allow for the
stack area to be placed into the transputer's on-chip memory using
the task OPT attribute; this technique can produce large perfor
mance benefits. An example of double-vector allocation is as follows:

task I ... stack-tt heap-tOt ...

The two allocation strategies are mutually exclusive. Thus, if the
DATA size for the task is given, neither STACK nor HEAP should
appear. If the two-vector allocation strategy is chosen, both STACK
and HEAP must be specified. If no memory size attributes at all
appear for a task, the default is the same as DATA=?; in other words,
single-vector allocation of the rest of memory available on the pro
cessor.

18.2.8.5 OPT Attribute

This attribute specifies that the memory area given as its argument
should be placed, if possible, into the transputer's on-chip memory
area. The CODE specifier indicates the area of memory which will
contain the executing code of the task; the other memory area spec
ifiers have the same interpretation as for the memory size attributes.

If not all of the memory areas specified will fit into the on-chip
memory, then some will be placed instead into the slower external
memory, which is the default allocation for all memory areas. The
order of precedence between memory areas in the same task is: stack,
code, heap. In other words, if OPT=STACK and OPT=CODE are both
specified, then the stack area is more likely to be placed in on-chip
memory. No order of precedence is guaranteed between memory
areas in different tasks.

It is possible for only part of a memory area to be placed in the
on-chip RAM; this is useful in respect of the code area, where the
modules which appeared first in the linker command line will have

404 Chapter 18

been placed at the start of the code area. If the most critical pro
cedures are placed in the first module, then the likeHhood of their
being executed from on-chip memory will be increased.

The on-chip memory is quite small (2KB on the T414, 4KB on the
T800), so the OPT attribute should be used sparingly to ensure
that critical memory areas are not displaced into the slower external
memory by less critical memory areas.

An example of a critical task with small stack and large data re
quirements might be as follows:

task t atack-tk heap-tOOk
opt-atack opt-eode

18.2.8.6 URGENT Attribute

This attribute specifies that the task's initial thread is to be started
at the urgent priority level. The default is that the task's initial
thread is started at the not-urgent priority level. For example:

task x ... urgent ...

18.2.8.7 Port Specifiers

After the declaration of a task, its ports may be referred to in much
the same way as the links of a processor, by a port specifier construct
consisting of the task identifier followed by a number enclosed in
square brackets:

port specifier =
task identifier, "[", constant, "]";

For example, either input or output port number 5 on task user
would be specified as user [5] .

Note that a port specifier as given here does not indicate whether the
port concerned is an input port or an output port, that is, whether

Configuration Language Reference 405

the index given is into the task's vector of input ports or into its
vector of output ports. This information is provided by the context
in which the port specifier appears. In the CONNECT statement,
the port specifier's direction is determined by its position within the
line. In the BIND statement, the port specifier is preceded by a
direction word (INPUT or OUTPUT).

18.2.9 CONNECT Statement

connect statement =
"CONNECT", new identifier, output port specifier,
input port specilier;

output port specilier =
port specilier;

input port specilier =
port specilier;

The CONNECT statement connects an output port on one task with
an input port on another task. For example:

connect ? afserver[O] filter[O]
connect ? filter[O] afserver[O]

Whereas the WIRE statement describes a hardware connection be
tween links on two transputers, the CONNECT statement describes
a logical connection between two tasks. Two kinds of connection are
possible:

• A connection between two tasks on the same processor. In this
case, the configurer will create a channel word in memory, to
which both of the ports will pointed.

• A connection between tasks on adjacent processors, between
which there is a free wire.

In the second case, the configurer will map the connection onto a
wire. Each wire can support a total of two connections, one in each

406 Chapter 18

direction. If there is no spare wire for the connection, and error
message will be output.

Note that the order of the ports given in the CONNECT.statement
is significant, unlike the order of the links in the WIRE statement
which CONNECT otherwise resembles.

18.2.10 PLACE Statement

place statement =
"PLACE", task identifier, processor identifier;

processor identifier =
identifier;

task identifier =
identifier;

The PLACE statement determines which processor a particular task
is to execute on; every task must be placed on some processor. A
simple example of the use of this statement might be as follows:

place user_task root
place afserver host

Where multiple tasks which have the same image file are placed on
the same processor, they all share a single instance of the iIna.ge
code. This helps to save space and can be particularly useful for
the simulation of large regular systems on fewer processors than will
eventually be used.

Note that it is incorrect to PLACE a task on a processor which was
declared with a BOOT attribute or on any processor which ca.n only
be reached from the host via processors declared with the BOOT
attribute.

Configuration Language Reference

18.2.11 BIND Statement

bind statement =
"BIND", binding type, port specilier, binding value;

binding type =
"INPUT" I "OUTPUT";

binding value =
"VALUE", "=", constant;

407

The BIND statement allows the contents of a port to be explicitly
set to some literal value. Normally, ports are only bound by means
of the CONNECT statement; ports left unbound are pointed at
unique transputer channel words so that attempts to send or receive
messages through them cause the minimum of harm; the thread
causing the attempt to communicate over the unbound port simply
pauses indefinitely rather than causing failure of possibly all threads
running on the processor.

One application of the BIND statement is to give a task access to the
transputer's external event mechanism. This appears as a channel
word at address 8000002016• Input port 5 of task event_handler
could be initialised to point to this channel word as follows:

bind input event_handler[5] value-aa0000020

Another application of the BIND statement is to pass an integer
parameter to a user task. Here, the same input port as before is
bound to the value 5:

bind input event_handler[5] value=5

This technique can be used to allow several otherwise identical tasks
to behave differently. For example, tasks executing on a fast proces
sor can have this fact indicated to them by means of a parameter
value, and use a more processing-intensive algorithm for the solution
of some problem. Another use of this parameter facility is to "label"
each task with a unique identifier.

408 Chapter 18

Note that if an arbitrary value is supplied for a port binding and an
attempt is then made to send or receive a message using that port,
the processor on which the task resides will most probably crash.

Chapter 19

Flood-Fill Configurer
Reference

There are two types of user task in a flood-fill configured application.
One task, referred to as the master, divides up the computation to be
performed into small work packets. The other task, which is known
as the worker, is replicated all over the network; it accepts work
packets originating from the master, performs some computation
and sends a reply packet or packets back.

19.1 User Task Protocol

This section describes the protocol used by the user tasks in a flood
filled application. Note that a different protocol may well be used
by the router tasks, for example to avoid problems with T414A
restrictions on minimum length of messages sent across links.

410 Chapter 19

19.1.1 Master Task's Ports

The master task has two input ports and two output ports. The
input and output ports master[l] are connected in the ·usual way
to a file server task such as afserver (probably via a protocol filter
task such as filter).

The input and output ports Dlaster[O] are connected to the router
task. The router task is provided by the flood-fill configurer, and has
the function of transporting work packets from the master through
the network to idle workers to be processed.

19.1.2 Worker Task's Ports

Each worker task has one input port and one output port. These
ports vorker[O] are connected to the part of the routing system
which exists on each processing node of the network.

19.2 Packet ForIllat

Work and response packets have identical format, consisting of a
fixed-length portion and an optional variable-length portion. The
two portions of the packet are send as separate messages. Each
packet starts with a message containing a 4-byte integer header, as
shown in Figure 19.1.

The various fields of this 32-bit message are used as follows:

• The least-significant sixteen bits of the message are used to
indicate the length of the data block following the header. If
the length is zero, no data block follows; otherwise this many
bytes of additional data follow as a separate message of that
length .

• Bit number 16 (value 0001000016) is always 1.

Flood-Fill Conligurer Reference 411

B R M
Must he Zero C D B Data Length

y 1

31 (msb) 1918171615

Figure 19.1: Format of Packet Header

(Ish) 0

• Bit number 17 (value 0002000016) is set to 1 to signify that
the sending task is ready. A worker task can set RDY = 0 to
indicate that further response packets will be issued before the
next work packet will be accepted.

• Bit number 18 (value 0004000016) is set to 1 to signify that
this packet is a broadcast.

• Bits number 19-31 are always O.

412 Chapter 19

Chapter 20

Task Data Sheets

This chapter contains descriptions of the standard "building block"
tasks which are provided with Parallel C.

The description of each task starts with a diagram indicating the way
in which the ports of the task should be connected to those of other
tasks. Small digits inside the box representing the task are used
to indicate port numbers corresponding to the connections visible
outside the box.

This diagrammatic description is then backed up by a detailed de
scription of the function of the task, along with examples of how a
reference to the task might appear in a configuration file.

414 Chapter 20

Data Sheet: afserver

af.erver 0
to

filter

The afserver task is used in configured applications to represent an
afserver program executing on the host computer. It is therefore
not provided in true task-image form.

The afserver task should be described to the configurer as follows:

task afserver ins-! outs-t
place afaerver hoat

The afserver program (and therefore the afserver task) provides
access to the host computer for tasks running in the transputer
system, with which it communicates over its port pair o.

The protocol used by the afserver is a special variant of the Inmos
tagged file-server protocol, adjusted to be tolerant of a problem in
the T414A which prevents one-byte messages being sent over links.
The afserver would therefore normally be attached to a filter
task so that this variant protocol could be converted back into the
protocol which is used by user tasks.

Task Data Sheets 415

Data Sheet: f ilter

0 filter 1
to to

afserver user task

The filter task is used to convert between the two extant variants
of the Inmos tagged file-server protocol. The two variants arise
because of a problem with T414A transputers, which cannot send
one-byte messages across links. A filter task would be described
in a configuration file as follows:

tast filter ins=2 outB-2 data-tOt

A filter task's port pair 0 communicates using the T414A-tolerant
variant of the Inmos protocol. This is normally attached to an
afserver task running on the host computer. Port pair 1 of a fil ter
task communicates using the standard version of the Inmos protocol.

Thus, if a filter task is interposed between an afserver and a
user task, they will be able to communicate normally although each
is using a different protocol.

416 Chapter 20

Data Sheet: frouter

"up" link

3

to
master • 1router &

o ~

"down" links

to
vorker

The frouter task is used by the flood-filling configurer as the stan
dard task which resides on each node of a flood-filled network and
manages the flow of work packets and responses through the network.

The attributes used by the flood-filling configurer for the frouter
task are as follows:

task router file=frouter ina-6 outs-6
data-Ilk urgent

The following list summarises the way in which the frouter task is
used by the flood-filling configurer:

0-2 Each of these pairs of "down" ports are either set to zero by the
loader, or are connected to the "up" ports of nodes deeper in
the network which were bootstrapped from this node. For each
non-zero port pair in this range, the frouter task will start a
pair of threads to carry packets to and from the subnetwork
attached through that link.

3 If this node is not the root of the network, these "up" ports
are connected to a pair of "down" ports of the router on the

Task Data Sheets 417

node which bootstrapped this node. In this case, the frouter
task will read work packets and send responses to the booting
node (and thus ultimately to the master task executing on the
root node) through this pair of ports. If this node is the root
of the network, these ports are set to zero by the loader and
are ignored by the frouter task: port pair 4 (attached to the
master task) will be used instead.

4 If this node is the root of the network, these ports are connected
to the master task. In this case, the frouter task will read
work packets and send responses to the master task through
this port pair. Otherwise, these ports are set to zero by the
loader and the frouter task will use port pair 3 to reach the
master task.

5 These ports are connected to the worker task executing on this
node.

The standard frouter task uses two protocols in communicating
with the tasks to which it is connected:

4-5 Port pairs connected directly to user tasks use the standard
"net" protocol described in section 19.1.

0-3 Port pairs connected to other routers through Inmos links use
a variant of the "net" protocol which is tolerant to the T414A
problem with one-byte messages. In this variant, a two-byte
message is actually transferred whenever the message header
indicates that a one-byte message should follow.

Note that a communications task like frouter should normally be
specified as having the urgent attribute. This prevents worker tasks
in the network becoming idle because there is too little CPU time
available elsewhere in the network for the router to operate.

418 Chapter 20

Data Sheet: f ilemux

2

D

to
clients

The filemux task allows several client tasks to share a single file
server task by merging (multiplexing) the clients' request streams
into a single stream of requests. This allows more than one task in a
Parallel C application to use standard file I/O. Chapter 6 describes
various ways in which this can be done.

In a simple system, the "to afserver" ports are connected to the
afserver via a filter task. However, they may be connected to
any task which accepts the afserver protocol. In particular, they
may be connected up as the client of another filemux task to build
multiplexer chains.

In general, filemux simply passes on service requests from its clients
and forwards the responses. The exception is the "server terminate"
request. The multiplexer will only pass on "server terminate" once
all its clients have requested server termination.

Figure 20.1 shows the basic problem with which the multiplexer task
is intended to assist. Here, the task server runs on the host a.nd
provides file services via a protocol filter task filter to a client
task client_l. The filter, client_l and client_2 tasks all run
in the transputer system. The difficulty is in arranging that the
second client task client_2 can gain access to files stored on the
host processor.

Task Data Sheets 419

One possibility is to connect. the two client tasks together and ar
range for client_2 to request file services from client_l. An
other possibility, illustrated in figure 20.2, is to introduce a new
task multiplexer designed to solve this particular problem. The
multiplexer task is connected to both client tasks and passes their
file service requests through to the filter and thus the server on the
host system.

Although it is possible to build any required multiplexing system
by combinations of the 2 --+ 1 multiplexer shown in figure 20.2, the
filemux task is more general in that it can handle any number of
client tasks: it performs an n --+ 1 multiplexer function. Port pair 0
(Le., input port 0 and output port 0) of the multiplexer is always
connected to the task from which file services may be obtained; in
this example, the filter task. All other port pairs supplied to the
multiplexer in configuration language statements like ins=n, outs=n
are connected to a total of n - 1 client tasks. Any number of client
tasks may thus be served by one multiplexer as long as it is provided
with sufficient storage to support them all.

An example of a configuration file which represents the configuration
of tasks shown in figure 20.2 is given in figure 20.3 (the processor
and place statements required have been omitted for clarity.)

The multiplexer task may also be used to support client tasks which
are not running in the root processor. When they are running in

server 0 o filter 1 lclient_l

Figure 20.1: Limitation on Server Connections

420

Host

Chapter 20

Root Processor---- --- --- --- --- --- ---- --- --- --- --- --- --- ---- --- --- --- --- --- --- ---

aulti
server 0.....-_... 0 filter 1_ 0 plezer

Figure 20.2: Using the Multiplexer

an adjacent processor and there is a spare wire connecting the two
processors, as in figure 20.4, then no additional work needs to be
done; the configurel' will simply run the connection between the client
and the mult.iplexer across any available wire. Note that each wire
between processors, defined in the configuration file, supports bi
directional communication between two tasks, one on each processor.

However, if the client task is some distance away, the multiplexer
can be used in a 1 --+ 1 configuration (Le., serving only one client)
to pass file service requests through processors in the middle of the
network until finally reaching the multiplexer in the root processor,
which is connected to the filter task and thus the server as shown in
figure 20.5. Thus, a network of transputers might contain a tree of
multiplexer tasks, each passing file service requests up towards the
root.; This kind of arrangement can be continued indefinitely as long
as the server task has sufficient resources to handle all the clients
together.

As mentioned earlier, the multiplexer can be used in an n -+ 1 man
ner. An example of its use with eight client tasks (Le an 8 -+ 1
multiplexer) is shown in figure 20.6. It should be noted tha.t the
multiplexer port pair 0 may be connected to one of the client port
pairs of another multiplexer task. This allows multiplexers to be

Task Data Sheets

tast server ins=1 outs-1

tast filter ins=2 outs-2 data-tOt
connect ? filter[O] seryer[O]
connect ? seryer[O] filter[O]

tast .ultiplexer file-file.ux ins-3 outs-3 data-tOt
connect ? filter[1] aultiplexer[O]
connect ? aultiplexer[O] filter[l]

tast client_l ins-2 outB-2 data-SOt

connect? aultiplexer[l] client_l[l]
connect? client_l[l] aultiplexer[l]

tast client_2 ins-2 outs-2 data-SOt
connect ? aultiplexer[2] client_2[1]
connect ? client_2[1] aultiplexer[2]

Figure 20.3: Example Configuration File

421

chained together to provide file services across a network, if there
are sufficient links available to do this. Similarly, the client_8 task
might itself be a multiplexer providing file services to tasks on an
adjacent processor.

422 Chapter 20

Host Root
Processor

Second
Processor

-- ---
r---- leli••t

I
~

_1

-. -.. IIUlti-servem ofilterl °ple.er
~ fe-

2
lelie.t

_2

Figure 20.4: Using the Multiplexer on an Adjacent Processor

Third
Processor

Second
Processor--- -- --- -- ------------ ------

Root
ProcessorHost

-- -----.---- .-- --I
I

I

4 ~ IlUlti- aulti-
.er.el() I afilt.n Q..l pl r......__~1 I-- I' e][er-

2 0 2 lclient
......------1 _3

..------------ .---- --- --- -- -- -- -- -------- --- --- --- -- -- --- ---

Figure 20.5: Using the Multiplexer from Within a Network

Task Data Sheets

Processor

423

to
afserver

0 aultiplexer •
1 2 3 ... 7

1 1 1 1
client client client client

_1 _2 _3
...

_7

Figure 20.6: Using an 8 --+ 1 Multiplexer

424 Chapter 20

Data Sheet: stub

stub 0
to

client

Tasks which are not connected to the afserver or a file multiplexer
task are normally linked with the stand-alone C run-time library.
There are some standard library functions like exit and sscanf
which do not strictly require file server support but are not in the
stand-alone run-time library. The stub filer task allows you to write
stand-alone tasks which make use of such functions.

All library functions which do not actually require afserver support
can be made available to a stand-alone task by linking it with the
full standard run-time library. If no functions like printf are called
which require server support, the standard library will only attempt
to communicate with the server when it tries to read command-line
arguments at program startup and set the exit status at shutdown.
The stub filer task acts as a sink for these communications: it accepts
this limited subset of the afserver protocol from its client task and
sends back stylised dummy replies.

Note that if the stub filer's client task does call a library function
which requires server support, e.g., fvri ta, the stub filer will either
send back a meaningless response, or terminate and leave the client
task deadlocked waiting for a response to its request.

The stub filer task is connected to its client as shown in the example
below. The run-time library always uses output port 1 and input

Task Data Sheets 425

port 1 to communicate with the server, so the client's port pair 1
must be connected to the stub filer's port pair o.

task stub ins-1 outs-1 data-20k
task client ios-3 outs-3

connect? client[1] stub[O]
connect ? stub[O] client[1]

The stub filer and its client task act together like an ordinary stand
alone task. In the example above the client task has been given
three input and three output ports. Port pairs 0 and 1 are reserved
for use by the run-time library, so port pair 2 is left free for commu
nication with other tasks.

Use the stand-alone run-time library in preference to the stub filer
if possible. It is simpler, and the memory used for the stub task
and some of the startup and shutdown overhead in the full run-time
library is saved.

The stub filer can only be used with the static configurer, config; it
cannot be used with the worker task of a flood-filled application. The
flood configurer, fconfig, will not allow you to specify that a task
other than· the worker is to be replicated throughout the network.

426 Chapter 20

Appendix A

Distribution Kit

This appendix lists the files which are installed on the user's hard
disk when the process described in chapter 1 is followed. Each file
name is accompanied by a short description of the file's function.

A.1 Directory \tc2v2

afserver.exe

t2c.exe
t4c.exe
t8e.exe
tc.exe
tc.b4

linkt.b4
linkt.exe
t2clink.bat
t4clink.bat
t8elink.bat
t4etask.bat
t4estask.bat

generic transputer board loader program

C compiler driver program for T2
C compiler driver program for T4
C compiler driver program for TB
generic C compiler driver program
C compiler code for T4 and TB

linker code
linker driver program
batch file to invoke linker for T2
batch file to invoke linker for T4
batch file to invoke linker for TB
batch file to link a task for T4
batch file to link a stand-alone task for T4

428

t8ctask.bat
t8cstask.bat

t4harn.bin
t8harn.bin
crtlt4.bin
crtlt8.bin
sacrtlt2.bin
sacrtlt4.bin
sacrtlt8.bin

alt.h
ascii.h
assert.h
boot.h
chan.h
chanio.h
ctype.h
dos.h
errno.h
float.h
limits.h
locale.h
math.h
net.h
par.h
sema.h
serv.h
setjmp.h
signal.h
stdarg.h
stddef.h
stdio.h
stdlib.h
string.h
thread.h
time.h

Appendix A

batch file to link a task for TB
batch file to link a stand-alone task for TB

T4 harness code
T8 harness code
C run-time library for T4 only
C run-time library for TB only
stand-alone C run-time library for T2
stand-alone C run-time library for T4
stand-alone C run-time library for T8

run-time library header files

Distribution Kit

timer.h
varargs.h

429

decode.b4
decode.exe
mempatch.b4
mempatch.exe
tnm.b4
tnm.exe
tunlib.b4
tunlib.exe
vorm.b4
vorm.exe

config.exe
config.b4
gloader.b4
taskharn.t4
taskharn.t8
occharn.t4
occharn.t8
fconfig.exe
fconfig.b4
frollter.b4
floader.b4

filemux.b4
filter.b4
stub.b4

code of disassembler utility
decode utility driver program
mempatch utility code
mempatch utility driver program
code of object file analyser utility
tnm utility driver program
utility to extract object module from a library
tunlib utility driver program
transputer network explorer utility
vorm utility driver program

configurer driver program
configurer code
loader code used by conf ig
harness for tasks on T4
harness for tasks on T8
harness for occam tasks on T4
harness for occam tasks on T8
flood configurer driver program
flood configurer
standard flood router task
loader code used by fconfig

file server multiplexer task
afserver protocol filter task
stub filer task

A.2 Directory \tc2v2\examples

hello. c "hello, world" program

cga. c source package of functions to access PC's CGA
display hardware from the transputer. Provides an
example of use of DOS-access functions.

cga. h header file for the above

430

mandelm.c
mandelv.c
mandel.h

mandel.cfg
fmandel.cfg

mandelt4.bat

mandelt8.bat

driver.c
upc.c
upc.cfg
upct4.bat

upct8.bat

Appendix A

source of "master" part of Mandelbrot example
source of "worker" part of Mandelbrot example
header file giving packet formats used by Mandel
brot example
configuration file for Mandelbrot example
configuration file for flood-filled version of Mandel
brot example
batch file to compile, link and configure Mandelbrot
exampIe for T4
same for TB

source of upper-case I/O task
source of upper-case conversion task
configuration file for upper-case example
batch file to compile, link and configure upper-case
example
same for TB

Appendix B

Compatibility with
T414A and T800A

This appendix describes the problems which you may encounter if
you run Parallel C programs on early transputer chips.

We recommend that if you have one of the development systems
sold with these early pre-production processors, you should have
it upgraded with a production processor. Failing this, the various
problem areas are listed here so that you can program round them.

B.l Problems lVith T4l4A

Note that the pre-production T414 (mask revision A) cannot simply
be replaced by a later revision T414 without making changes to the
support circuitry. This is because various details of the external
clock and, phase-locked-loop circuitry differ between the T414A and
all later transputer processors. For their own B004 board, Inmos can
provide an upgrade kit (IMS B901) which includes a T414B chip, an
extraction/insertion tool and full instructions on the modifications
required.

432 Appendix B

B.1.1 Restriction on Message Lengths

The T414A cannot reliably transmit a single-byte message across a
link. Message transfer across internal channels is not affected.

This problem should not affect users of single-transputer systems, as
the filter task used to communicate with the afserver task takes
care of this problem. Similarly, the private protocol used between
routers in a flood-filled network avoids this problem by padding out
I-byte messages to two bytes for transmission. User tasks in both of
these cases are unaware of the protocol conversions.

This problem can be easily avoided in new systems by ensuring that
protocols never include single-byte messages.

B.1.2 Problems with Timers

B.l.2.1 Timer Rate Problem

In production transputers, the timer associated with high-priority
("urgent") threads ticks once every IllS, while the low-priority timer
(that associated with "not urgent" threads) ticks once every 641lS.

In the T414A, both timers tick every 1.6Ils.

This problem will affect the functions in the timer package, those
functions in the chan package whose names end with _t, and the
functions in the boot package.

B.l.2.2 Short Delay Problem

The T414A cannot reliably delay for small amounts of time (below
about 5 ticks). When such an operation is attempted, the thread
requesting the operation may hang forever.

Compatibility with T414A and TBOOA 433

This problem affects the timer_vait and timer_delay functions
when small delays are specified, and the thread_deschedule func
tion, which is equivalent to a I-tick delay.

B.2 Problellls w-ith T800A

B.2.1 Floating-Point Conversion Problems

The T800A has a problem in its floating-point microcode; the wrong
result may be obtained for expressions containing integer to floating
point conversions.

The Parallel C compiler has an option switch to avoid such instruc
tion sequences; refer to section 9.4.3 for details of the IT8A option.

Note that the run-time library supplied with Parallel C has been
compiled with this option and can therefore be used safely on a
T800A.

B.2.2 Instruction Decode Problems

The T800A decodes the move2dzero and move2dnonzero instruc
tions wrongly, with the effect that when one is requested, the other is
executed. Later T800 processors decode these instructions correctly,
however.

Note that the IT8A compiler option does not change the behaviour
of the assembler with respect to these instructions. The compiler
always generates the code for the instruction as written.

434 Appendix B

Appendix C

Building a Network

In order to make use of the multi-processor facilities provided by
Parallel C, it is of course necessary to build a multi-transputer net
work on which to run the programs. This appendix describes the
principles involved, and shows how to build such a network out of
plug-in transputer development cards for the IBM PC.

e.l Net-work Principles

There are two sets of connections to make when building a net
work of transputer processors. The most obvious of these are the
links connecting one transputer to another; it is through these wires
that the tasks running on each processor communicate with their
neighbours, and through which the network is bootstrapped. An
application running on a transputer network is usually aware of the
topology of link connections.

Less obviously, another set of connections must be made in order to
arrange that various system services are available to the network.
Specifically, each transputer processor has reset and analyse inputs

436

host host

Appendix C

root
1

root
2

root

WRONG RIGHT

Figure e.l: "One Root" Condition

and an error output. The topology of the system service connections
need not be related to that of the link connections.

C.2 Network Requirements

C.2.1 Requirements for Links

When building a network, there are two conditions which the ar
rangement of link connections must satisfy:

• Exactly one processor must be connected to the host processor.
The former is referred to as the root processor, because it
forms the root of the structure of processors in the network.
Figure C.I shows two networks, one of which is not acceptable
because it attempts to have two root processors.

• Each processor in the network must be reachable by a series of
"hops" through links, starting at the host processor. In other
words, the network must be connected; i.e., have no isolated
nodes. Figure C.2 shows two networks, one of which is not
acceptable because it has isolated processors.

Building a Network

host

root

extra
1

extra.
2

host

root

extra
1

extra
t------t1 2

431

WRONG RIGHT

Figure C.2: "Connected" Condition

up

subsystem

down

Figure C.3: Inmos System Services Scheme

C.2.2 Requirements for System Services

The only requirement which Parallel C places on the arrangement of
system service connections is that, immediately prior to a network
being bootstrapped, all of the processors in that network must have
been reset. Parallel C makes no use of the transputer analyse and
error signals at present.

The reset signal may be carried to each of the processors in the net
work in many different ways. Ilowever, one popular scheme is shown
in figure C.3. In this scheme, each processor has three connectors:

• UP leads to a processor closer to the host.

• DOWN leads to a processor further from the host.

438 Appendix C

Figure C.4: System Service Daisy Chain

• SUBSYSTEM leads to a sub-tree of processors under the
control of this one.

The system service signals are carried through from "up" to "down"
so that several processors can be "daisy-chained" together. The
unconnected "up" port of such a chain can be used to control the
entire chain, as shown in figure C.4.

The purpose of the "subsystem" connector is to allow one proces
sor to control others; system service signals are sometimes, but not
always, also carried through to the "subsystem" connector.

C.3 Connecting a Netw-ork

This section describes how to connect up a network using boards
compatible with the Inmos IMS B004 development board for the
IBM PC. The BOO4 board is shown in figure C.5.

At the far right-hand side of this board, visible from the back of the
PC in which the board has been installed, is an array of connectors
by which the board may be connected to other boards. There are
two columns of five connectors in this array, defined as follows:

PC link unused
Link 0 Link 1
Link 2 Link 3
PC Reset Subsystem
Up Down

Building a Network

View from Component Side

2MB of
Dynamic RAM

transputer

439

PC Bus Edge Connector

Figure C.5: B004-type Single-transputer Development Board

Boards are supplied with two "jumper" plugs and three cables.
These objects are arranged so that they can only fit into the connec
tors for which they are intended.

When only one development board is in use,. the two jumpers are
installed. These connect "PC Link" to "Link 0" and "PC Reset" to
"Up"; in other words, the board will be reset by the PC in which it
is installed, which will load it through its link o.

To extend this basic configuration with another processor, the second
board could be placed in an adjacent PC bus slot (normally to the
right) and connections made to carry system services and application
messages. For example, link 1 on the root transputer (the original
one) could be connected to link 0 on the second board, and "Down"
on the root could be connected to "Up" on the add-on. If the two
boards are in adjacent slots in the PC card cage, these connectors
will be adjacent as well.

This scheme can he extended to any number of development boards;
the root (placed on the left) is controlled by the PC, while each board
other than the right-most passes the system service signals on to the
one on its right.

440 Appendix C

Appendix D

Summary of Option
Switches

D.l Compiler Switches

Further information can be found in section 9.4, in the subsections
specified below for each switch. In the table below, the following
notations are used to describe the formats of the switches.

In An MS-DOS filename. It may be omitted in whole
or in part; the compiler's behaviour in this case is
described in section 9.4.

dir An MS-DOS filename, which will be assumed to refer
to a directory.

mac Any sequence of characters which is acceptable to the
compiler as a macro name.

str Any sequence of characters which is acceptable to the
compiler as the value of a macro.

n A decimal integer.

442 Appendix D

Switches and their arguments are not case sensitive, except as noted
in section 9.4.

IC
IDmac
IDmac=str
IFBfn
IFHfn
IFLfn
IFOfn
IGI

IGD

IGS
IH

II
Ildir

IL

IM
IPCn

IPMn

IS

IT2
IT4
ITB
ITBA

IUmac
IV
IWn

9.4.3 Check: do not generate object file.
9.4.7 Define mac with the value 1.
9.4.7 Define mac with the value str.
9.4.2 Put binary object output in fn.
9.4.2 Put hexadecimal object output in fn.
9.4.2 Put listing in In.
9.4.2 Identical to IF8.
9.4.3 Prevent in-line code generation for library func
tion calls.
9.4.3 Perform all floating-point arithmetic in double
precision.
9.4.3 Generate 32-bit short variables.
Equivalent to IFH (obsolescent). A In may not be
specified.
9.4.8 Print the compiler's identification.
9.4.6 Add dir to the 'include list.
Equivalent to IFL (obsolescent). A /n may not be
specified.
9.4.8 Include macro expansions in the listing.
9.4.4 Set the number of bytes required for an extern
function call.
9.4.4 Set the number of bytes required for a module
number.
9.4.3 Perform floating arithmetic in single precision
(ignored).
9.4.3 Generate object code for the T2 processor.
9.4.3 Generate object code for the T4 processor.
9.4.3 Generate object code for the T8 processor.
9.4.3 Generate special object code for the Rev A T800
processor.
9.4.7 Undefine a predefined macro.
9.4.8 Verbose: display progress messages.
9.4.8 Suppress warning messages below severity level
n.

Summary of Option Switches 443

IX 9.4.6 Discard the standard 'include list.
IZD 9.4.5 Generate line number tables for decode and de

bugger.
III 9.4.5 Generate line number tables and debug tables

for variables.
IZD 9.4.5 Generate old format diagnostic information.

D.2 Linker S\Vitches

The format of the linker's command line and full details of all the
switches are discussed in chapter 12. The following is a brief sum
mary of the switches recognised by the linker.

Each switch starts with a slash character 'I' and an identifying letter;
it does not matter if this letter is given in upper case or lower case.
The switches can be placed anywhere in the command line but they
may not occur in indirect files. No spaces are allowed between a
switch's identifying letter and the rest of the switch.

When the size of an area is required, you may specify it either as
number of bytes (e.g., 4096) or a number of kilobytes (e.g., 4K).

IAsize This switch defines the size of stack area

IBfile-name This switch specifies that the file file-name is to be
used in preference to the default bootstrap file. There
is no default extension for file-name.

IC This switch stops the linker adding the bootstrap file
to the executable file.

IFA This switch causes the linker to optimise the stack
(automatic) area.

IFC This switch causes the linker to optimise the code area.

444 Appendix D

IFH This switch causes the Iinker to optimise the heap area.

IFS This switch causes the lioker to optimise the static
area.

IG

11

/L

/Msize

This switch results in the linker creating a debugger
information area in the executable or library file.

This switch causes the linker to display its identity and
along with various statistics about the executable file
such as the code and static sizes and the maximum
patch size used.

This switch makes the linker generate a library file
rather than an executable file.

This switch defines the size of the read-write memory
area (including on-chip memory).

/0optimization-symbol
This switch gives priority to the position in the
executable image of the object file which defines
optimization-symbol.

IOGoptimization-file
This switch gives priority to the position in the
executable image of the object files which define
the symbols whose names are contained in the file
optimization-file. The default extension for optimization
file is . opt.

/P

IQ

IQn

IRsize

This switch has the same effect has the /L switch.

This switch suppresses all warning messages (see sec
tion 12.13).

This switch suppresses output of message n (see sec
tion 12.13).

This switch defines the size of read-only memory area.

Summary of Option Switches 445

IS This switch generates a map file taking its name from
the first name in the list of object files.

IS map-file This switch generates a map file called map-file. The
default extension for map-file is .map.

11entry-point
This switch causes the linker to use the symbol entry
point in preference to INMOS.ENTRY. POINT, which is
the default.

D.3 afserver S-witches

The file server program, afserver, is used to load programs from
the MS-DOS host into the B004, and to enable programs on the
B004 to communicate with the MS-DOS file system and devices.
The program should be called like this:

afserver command-line redirection~

where:

command-line
is a sequence of switches and program parameters.
Anything which is not recognised as a switch is treated
as a program parameter.' Switches are interpreted by
the afserver, and not passed to the program. Pro
gram parameters are passed to the program, and are
ignored by the afserver.

redirections are used to redirect standard input and output in the
usual MS- DOS way. In the case of a Fortran program,
standard input and output are preconnected to units
5 and 6 respectively.

For example:

C>afserver -:b \tc2v2\tf.b4 Ita test >errors.lis

446 Appendix D

Here, '-:b \tc2v2\tf. b4' is an afserver switch, and directs it to
boot a program, in this case the Fortran compiler. 'Its' and 'test'
are parameters for the Fortran compiler, and ')errors .lis' redirects
the compiler's console output to the file errors .lis.

Only afserver switches which are relevant to the Parallel C en
vironment are discussed here. Further information may found in
the Stand-Alone Compiler Implementation Manual[14]. Note that
switches may start with '-:', as cited below, or 'I:'. Switches must
be specified in lower case.

- :b file-name
Boot transputer. The afS8rver will boot the program
in file-name into the transputer board and start it.
Normally, file-name will be a .b4 file output by the
linker or one of the configurers. Note that the complete
file name must be specified, including the extension.

If a -:b switch is not used, the afserver assumes that
the transputer board has already been booted, and will
try to communicate with the program there.

- :1 link-address
Specify link address. By default, the afserver uses a
block of I/O addresses starting at either 15016 or 30016
to communicate with the transputer board. It decides
which by looking at the host's BIOS Machine ID. For
all hosts except the original IBM PC, 15016 is used.
However, the IBM PC uses these I/O addresses for
other purposes, and consequently when the machine
ID indicates that the host is an IBM PC, the afserver
uses 30016 instead. (There are special varieties of the
transputer boards to cope with this.) Unfortunately,
the machine ID's of certain IBM-compatible machines
(such as the Amstrad PC1512) indicate that they are
IBM PCs, even though they more closely resemble the .
PC/AT. In this case, a -:1 1150 switch may be used
to force the afserver to use the correct link address.

Summary of Option Switches 447

-:i

-:0 flags

A hexadecimal link-address is indicated by preceding
it with ,.'.

Information. The afserver prints out its version num
ber, etc.

Set program flags. The flags are used to set modes for
program execution. At present, only two values are
recognised.

-:0 0

-:0 1

The default. Locate the program's stack
on the transputer's on-chip RAM.

Locate the whole of the program's stack
in external (off-chip) storage, and use the
on-chip RAM (or the start of the pro
gram code.

More information about these flags may be found in
section 3.5.

D.4 General Purpose Configurer Sw-itches

The General-Purpose Configurer, config, is used to assemble a net
work of tasks into an application file. Its operations are controlled
by instructions taken from a configuration file, which is written in a
special configuration language. This is described fully in chapter 18.

The use of the configurer is described in chapter 5. The program
should be called like this:

config configuration-file application-file switches

where:

configumtion-file
is the name of the configuration file containing the

448 Appendix D

instructions for building this application. By conven
tion, configuration files have the extension . cfg, but
the configurer does not assume this, and the whole file
name must be give.

application-file
is the name of the application file to be created. Once
again, there is no default extension, and the whole
name must be supplied.

switches control the configurer's options.

Currently, only one option switch is recognised by the configurer.

IK Normally, the configurer removes dubugging informa
tion from the task images it loads into the application
file. The information is not needed, since Thug loads
a networked application direct from the task-image
files, and ignores the application file. Omission of the
debugging information also makes the application file
smaller.

This switch makes the configurer keep the debugging
information. At present we do not recommend using it;
it has been implemented now in preparation for future
developments in the 3L product range.

Appendix E

Transputer Instructions

This appendix provides a quick reference for the transputer instruc
tion set as supported by Parallel C's asm statement. The syntax of
the asm statement is covered in detail in section 9.7.

It is not anticipated that this appendix would be used as the sole
reference for the transputer instruction set by a programmer un
familiar with the transputer. For a detailed specification of each
of the instructions available, refer to the Inmos Compiler lVriter's
Guide[13].

Except for those listed in sections E.5 and E.6 below, all the instruc
tions are available for T2, T4 and TB transputers.

E.l Pseudo-Instructions

Pseudo-instructions are instructions to the assembler, rather than
true transputer instructions. At present, only one pseudo-instruction
is implemented, as follows:

byte This instruction takes as argunlent a list of con
stant values in the range 0 to 255. The assembler

450 Appendix E

copies the literal bytes into the instruction stream.

E.2 Prefixing Instructions

The transputer instruction set is built up from 16 direct instructions,
each with a 4-bit argument field. The direct instructions include pre
fix instructions which augment the 4-bit field in a direct instruction
which follows them by their own 4-bit argument field, effectively
allowing the argument to be extended to 32 bits.

Normally, the assembler will compute the prefix instructions required
for operand values greater than 4 bits automatically. However, you
may wish to use explicit pfix and nfix instructions in conjunction
with with the byte pseudo-instruction to synthesise special instruc
tion sequences, for example for future transputer processors with
additional instructions to those supported by Parallel C at present.

pf ix prefix
nfix negative prefix

E.3 Direct Instructions

The direct instructions form the core of the transputer instruction
set. Each direct instruction has a single operand, normally an in
teger constant, which will be encoded in the instruction itself and,
if it is larger than will fit into the 4-bit argument field of the direct
instruction, into a series of pfix and nfix instructions as well.

The transputer architecture is based around a three-register et7alua
tion stack and a single base register Wreg. The load and store "local"
instructions access a word in memory at a displacement from Wreg

given by the operand value used. The displacement is scaled by the
word size. The load and store "non-local" instructions use the top

Transputer Instructions 451

evaluation stack register (Arag) as the base instead of Wrag, allowing
computed base addresses to be used.

The operand of the j, cj and call instructions is interpreted as a
byte displacement from the instruction pointer (program counter)
register Iptr. ldpi is similar but takes its operand from Areg.

opr "operate": the argument to this instruction is a
code indicating a zero-operand indirect instruction
to be executed. Most of the transputer instruction
set is made up of these indirect instructions. Nor
mally you would use the mnemonic for the spe
cific indirect instruction which you require: the
assembler will encode this as an opr instruction
on your behalf. However, it is possible to use opr
explicitly, for example to synthesise the instruc
tion sequence for a new indirect instruction not
supported by the T4 and TB transputers.

ldc load constant
ldl load local word
atl store local word
ldlp load pointer to local word
adc add constant operand value to Arag
eqc test if Arag equals constant; Arag gets 1/0 result
j jump: the argument may be an identifier indicat

ing a label for the jump to go to; the assembler
will compute the displacement required.

cj conditional jump: as with j, a label identifier may
be used as argument to this instruction.

ldnl load non-local word
stnl store non-local word
ldnlp load pointer to non-local word
call call
ajv adjust workspace pointer Wreg by constant operand

value (scaled by word length)

452 Appendix E

E.4 Operations

The instructions in this section are all indirect instructions built out
of the opr instruction. None of these instructions takes an argument;
instead, they work solely with the transputer evaluation stack.

The· arithmetic instructions take their operands from the top of the
evaluation stack (Areg, Brag) and push the result value back on the
stack in Areg.

rev reverse top two stack elements
add add
sub •............. subtract
mule multiply
div divide
rem remainder
sum sum
diff difference
prod product
and bit-wise and
or bit-wise inclusive or
xor bit-wise exclusive or
not bit-wise not
shl shift left
shr shift right
gt greater than (1/0 result in Areg)
lend loop end
bent byte count
vent word count
ldpi load pointer to instruction (Areg is byte displace-

ment from Iptr)
mint minimum integer
bsub byte subscript (Areg = Areg + Breg)
vsub word subscript (Areg = Areg + 4*Breg)
move move block of memory (src: Creg dest: Breg len:

Areg)
in input message

Transputer Instructions

out output message
Ib load byte
ab store byte
outbyte output byte
outvord output word
gcall general call (swap Areg+-+Iptr)
gajv general adjust workspace
ret return
startp start process
endp end process
runp run process
stopp stop process
Idpri load current priority
Idtimer load timer
tin timer input
alt alt start
altvt alt wait
altend alt end
talt timer alt start
taltvt timer alt wait
enbs enable skip
diss disable skip
enbc enable channel
disc disable channel
enbt enable timer
dist disable timer
csubO check subscript from 0
cent1 check count from 1
testerr test error false and clear
stoperr stop on error
seterr set error
xword extend to word
cvord check word
xdble extend to double
csngl check single
ladd long add

453

454

lsub long subtract
lswn long sum
Idiff long difference
Imul long multiply
Idiv long divide
lshl long shift left
lshr long shift right
norm normalise
resetch reset channel
testpranal test processor analysing
sthf store high priority front pointer
stlf store high priority back pointer
sttimer store timer
sthb store high priority back pointer
stlb store low priority back pointer
saveh save high priority queue registers
savel save low priority queue registers
clrhalterr clear halt-on-error
sethalterr set halt-on-error
testhalterr test halt-on-error
fmul fractional multiply

E.5 T4-only Instructions

Appendix E

The indirect instructions in this section may only be executed on T4
processors, although you may use them in asm statements even when
compiling for a different processor.

unpacksD unpack single-length floating-point number
roundsD round single-length floating-point number
postnormSD post-normalise correction of single-length floating

point number
Idinf load single-length infinity
cflerr check single-length floating-point infinity or not-a

number

Transputer Instructions

E.6 TB-only Instr~ctions

455

The instructions in this section may only he executed on TB pro
cessors, although you may use them in asm statements even when
compiling for a different processor.

E.6.1 Floating Point Instructions

The indirect instructions in this section provide access to the TB's
built-in floating-point processor. Note that the instructions begin
ning with 'fpu... ' are doubly indirect: they are accessed by loading
an entry code constant with a Idc instruction, then executing an
fpentry instruction, which is itself indirect. As with ordinary in
direct instructions, this indirection is handled transparently by the
assembler, although the fpentry instruction is also available.

The floating point load and store instructions use the integer Areg
as a pointer to the operand location.

fpentry floating point unit entry: used to synthesise the
'fpu... ' instructions.

fpdup floating duplicate
fprev floating reverse
fpldnlsn floating load non-local single
fpldnldb floating load non-local double
fpldnlsni floating load non-local indexed single
fpldnldbi floating load non-local indexed douhIe
fpstnlsn floating store non-local single
fpstnldb floating store non-local double
fpurn set rounding mode to round nearest
fpurz set rounding mode to round zero
fpurp set rounding mode to round positive
fpurm set rounding mode to round Ininus
fpadd floating-point add
fpsub floating-point subtract
fpmul floating-point multiply

456 Appendix E

fpdiv floating-point divide
fpusqrtfirst floating-point square root first step
fpusqrtstep floating-point square root step
fpusqrtlast floating-point square root end
fpremfirst floating-point remainder first step
fpremstep floating-point remainder iteration step
fpldzerosn floating-point load zero single
fpldzerodb floating-point load zero double
fpumulby2 multiply by 2.0
fpudivby2 divide by 2.0
fpuexpinc32 multiply by 232

fpuexpdec32 divide by 232

fpuabs floating-point absolute
fpldnladdsn floating load non-local and add single
fpldnladddb floating load non-local and add double
fpldnlmulsn floating load non-local and multiply single
fpldnlmuldb floating load non-local and multiply double
fpchkerr check floating error
fptesterr test floating error false and clear
fpuseterr 0 •••• set floating error
fpuclrerr clear floating error
fpgt floating point greater than
fpeq floating point equality
fpordered floating point orderability
fpnan floating point not-a-number
fpnotfinite floating point finite
fpur32tor64 convert single to double
fpur64tor32 convert double to single
fpint round to floating integer
fpstnli32 store non-local 32-bit integer
fpuchki32 check in range of 32-bit integer
fpuchki64 check in range of 64-bit integer
fprtoi32 convert floating to 32-bit integer
fpi32tor32 0. convert 32-bit integer to 32-bit real
fpi32tor64 convert 32-bit integer to 64-bit real
fpb32tor64 convert 32-bit unsigned integer to 64-bit real

Transputer Instructions 457

fpunoround convert 64-bit real to 32-bit real without rounding

E.6.2 Other T8-only Instructions

The indirect instructions in this section supplement the T4's integer
instruction set.

dUp duplicate top of stack
move2dinit initialise data for 2-dimensional block move
move2dall 2-dimensional block copy
move2dnonzero .. 2-dirnensional block copy non-zero bytes
move2dzero 2-dimensional block copy zero bytes
crcvord calculate Cyclic Redundancy Check (eRC) on

word
crcbyte calculate eRe on byte
bitcnt count the number of bits set in a word
bitrevvord reverse bits in a word
bitrevnbits reverse bottom n bits in a word
vsubdb form double-word subscript

458 Appendix E

Appendix F

Compatibility Functions

F.l Introduction

This appendix describes all those members of the run-time library
which are classified as Compatibility functions. This means that
they are neither defined by the ANSI standard nor supplied by 3L
to support the special facilities of the transputer. Functions which
fall into one of these groups are dealt with in chapters 10 and 11.

Users should note that none of these functions are recommended
for general use. They are non-standard and likely to cause prob
lems with portability, and the run-time library contains equivalent
functions with the same or more powerful facilities.

As we saw in chapter 10, declarations of the library functions are
held in a number of header files. This (lpplies to the compatibility
functions as well, and in the synopsis fur each function below, the
appropriate header file is indicated by a 'include statement. In
addition, there are three header files which are supplied only for the
compatibility functions. They will be considered next.

460 Appendix F

F.l.l ASCII Control Codes <ascii.h>

This header file contains macros defining symnbolic names for all the
ASCII control codes. The symbolic names defined are those shown
in the ASCII code chart in appendix H.

The header file contains no function declarations.

F.l.2 Channel Communications <chanio.h>

This header file gives access to a group of functions which were used
in the earlier versions of Transputer C to perform channel commu
nications. Note that they require the inclusion of chan.h as well as
chanio.h.

_outword

_outbyte

_inmess

_outmess

output a word to a channel

outpu t a byte to a channel

input a message from a channel

output a message to a channel

F .1.3 Variable Arguments <varargs. h>

This traditional method of accessing variable numbers of arguments
has been supplanted in ANSI C by the stdarg.h package.

The header defines a type, va_list, which can be used to define a
pointer to access the arguments. The following macros are defined:

used in a function header to specify a variable argu
ment list

declares va_alist

initialise a pointer to the start of the argument list

Compatibility Functions 461

return next argument

finish accessing arguments

As an example, consider the following function:

'include <varargs. h>
int func(va_alist)
va_dcl /. declare variable arguaent list ./
{

va_Iist ap.; /. pointer to get arsu-ents ./
int arg;
va_8tart(ap); /. start gettiag arguaent8 ./
for (;.) {

arg • va_arg(ap. int); /- Den arguaent ./
if (arg •• 0) break;

/- proce88 arguaent ./
}

va_end(ap) ; /. atop gettiag arguaent8 ./
}

F.2 Lo~-Level I/O

The low-level I/O functions transfer 'raw' user data to or from files
or devices in variable length blocks (down to one byte). The low
level I/O functions are provided mainly for compatibility with other
implementations of C; normally, standard I/O should be used. In
low-level I/O files are accessed via 'file descriptors', small integers
returned by the system when a file is opened. Other functions are
provided to create new files and directly control the position in a file
where data transfers will take place.

The low-level I/O functions are:

close

creat

isatty

closes a file

creates a new file

determines if a file descriptor is associated with a ter
minal

462 Appendix F

lseek places you at a byte offset within a file and returns
the new position as an integer

open opens a file for reading, writing or both

read reads a specified number of bytes from a file and places
them in a buffer

tell returns the current byte offset within a file

vrite writes a number of bytes from a buffer to a file

F .3 Alphabetic List of Compatibility Func
tions

The format of the synopses presented here is the same as for those
in chapter 11. The boxed indicators have the same ,meanings.

_exit IT21 terminate execution

void _exit(int statu8);

_exit closes all the task's files then terminates program execution.
It never returns.

status is returned to the host operating system as the program
result code.

This function is provided for compatibility purposes only, and is
not recommended for use in new applications. exit should be used
instead.

_fmode set default file type

extern int _f.ode;

Compatibility Functions 463

The variable _fmode can be used to change the default behaviour of
the fopen function. _fmode can take two values, which are defined
in the file <stdio .h> as O_TEXT and O_BINARY. Note that _fmode
itself is not declared by <stdio .h> and must therefore be explicitly
declared as described in the synopsis if it is to be used.

In the default state (_fmode equal to 0_TEXT) a request to fopen
which does not explicitly request a binary file will result in opening
a text file. Some applications written for operating systems in which
no distinction is made between text and binary files may have prob
lems with this default, as the effect is to cause expansion of newline
characters to the host's local newline convention on output, and to
perform a reverse transformation on input.

If the _fmode variable is set to O_BINARY, the behaviour of fopen

is changed to opening in binary mode unless text mode is explicitly
requested. This means that newline translation to and from the
host's local conventions will not take place and an application which
makes the assumption that text and binary files are not distinguished
may be more easily ported to the Parallel C environment.

The use of _fmode in this way should be regarded as a last resort
for use with applications too large to treat by the preferred method
of changing the type strings passed to calls on fopen to explicitly
request binary file access. It is not recommended for use in new
applications.

_inmess I SA 11 T21 read message from channel

'include <chan.h>
.include <chanio.h>
void _i~e88(CHAN .chanp, char buf[] ,

int nbytes);

Reads a message of length nbytes from the channel pointed to by

chanp into the bl:lffer buf.

464 Appendix F

This function is provided only for compatibility with older ver
sions of the run-time library. New programs should use the equiv
alent function chan_in_message. Note that the parameters to
chan_in_message appear in a different order to those of _inmess.

_outbyte ISA 11 T21 write byte to channel

'include <chan.h>
'include <chanio.h>
void _outbyte(char b, CHAt .chanp)i

Writes a single-byte message consisting of the value b to the channel
pointed to by chanp.

This function is provided only for compatibility with older versions
of the run-time library. New programs should use the equivalent
function chan_out_byte.

_outmess 1SA 11 T21 write message to channel

'include <chan.h>
'include <chanio.h>
void _out.e88(CHAI *chanp, char buf[] ,

int nbyte8);

Writes a message of length nbytes from the buffer buf to the channel
pointed to by chanp.

This function is provided only for compatibility with older ver
sions of the run-time library. New programs should use the equiv
alent function chan_out_message. Note that the parameters to
chan_out_message appear in a different order to those of _outmess.

Compatibility Functions

_outword 1SA 11 T21 write word to channel

'include <chan.h>
'include <chanio.h>
void _outvord(int v, CHAI *chanp)i

465

Writes a four-byte message consisting of the value w to the channel
pointed to by chanp.

This function is provided only for compatibility with older versions
of the run-time library. New programs should use the equivalent
function chan_out_word.

_tolower 1MACRO 11 SA 11 T21 convert char to lower case

'include <ctype.h>
int _tolover(int cwal)j

If cval is the ASCII code for an upper case letter, _tolower returns
the code for the corresponding lower case letter. Otherwise, the value
of cval is returned unchanged.

_tolower behaves like tolower but is implemented as a macro.

_toupper I MACRO 11 SA 11 T21 convert char to upper case

'include <ctype.h>
int _toupper(int cval)i

If cval is the ASCII code for a lower case letter, _toupper returns
the code for the corresponding upper case letter. Otherwise, the
value of cval is returned unchanged.

_toupper behaves like toupper but is implemented as a Inacro.

466

cfree [ill IT21 deallocates space obtained from heap

void cfree(char .ptr);

Appendix F

cfree has the same function as free. It frees the space pointed to
by ptr, which will have been obtained from the heap by a call to
malloc, calloc or realloc.

close close a file

int close(int fildes);

Given a file descriptor (tildes) as returned by open or creat, close
closes the associated file, i.e. breaks the connection between the file
descriptor (a small integer) and the file itself. A close of all files is
automatic on exit, but since there is a limit on the number of files
which may be open at once, close is necessary for programs which
deal with many files.

Zero is returned if a file is closed, -1 is returned for an unknown file
descriptor.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of close is fclos8.

creat create a new file

int creat(char .naae. int .ode);

creat creates a new file or prepares to rewrite an existing file called
name, given as the address of a NUL-terminated string.

The mode argument is currently ignored, but should be given by the
caller for portability. The call creat(name, mode) is equivalent to

Compatibility Functions 467

the call open(name, 3). See .the description of open on page 471 for
details.

This function is provided for compatibility purposes only, and is
not recommended for use in new applications. You can use the
high-level I/O functions instead of the low-level ones: the high-level
equivalent of creat is fapen used with a type parameter including
a 'v' character.

ecvt ISA I convert floating-point to string

char *ecvt (double Yalue. int count I int *dec I

int *.ign);

This function is provided for compatibility purposes only, and is not
recommended for use in new applications.

fcvt ISA I convert floating-point to string

char *fcvt(double value, int cOWlt, int *dec,
int *Bign);

This function is provided for compatibility purposes only, and is not
recommended for use in new applications.

fdopen open a stream

'include <stdio.h>
FILE .fdopen(int fildes. char .type);

fdopen associates a stream with a file descriptor obtained from open
or create

468 Appendix F

type is a character string specifying the way in which the file is to
be opened. Refer to the description of fopen (page 260) for a full
description of the type string.

The type of the stream must agree with the way the file was opened.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of fdopen is fopen.

fileno IMACRO I stream status enquiry

'include <stdio.b>
int fileno(FILE ••trea.);

fileno returns the low-level I/O "file descriptor" associated with
the stream, see open. It is implemented as a macro.

fileno is used to obtain the low-level file descriptor associated with
a high-level stream. The descriptor can be used in calls to the low
level I/O functions (read, write etc.) when it is desired to mix
low-level and high-level operations.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications.

gcvt ISA I convert floating-point to string

char *gcvt(double value, int digits,
char *buffer);

This function is provided for compatibility purposes only, and is not
recommended for use in new applications.

Compatibility Functions

getv read an integer from a binary file

'include <stdio.h>
int getv(FILE $streaa);

469

getv reads an integer value from the file referred to by stream. The
format assumed for the integer is that produced by the putv function.

getv returns the integer value read; EOF is returned if a write error
occurs.

getv does not assume any particular alignment of the integer value
within the file.

ICAREFUL! IThe functions putv and getv should only be used on
binary files. If they are used on a text file, the binary data within
the integer may be corrupted because of the translation between new
line characters and the host's line termination convention. Note also
that the value EOF is a valid integer value: if this is placed in a file
by putv and read out using getv, it can be different to determine
whether a true integer value is being read or the end of the file has
been reached.

This function is provided for compatibility purposes only and is
not recommended for use in new applications, where the functions
fvrite and fread can be used to replace putv and getv respectively.

index I SA 11 T21 find character in string

char .index(char .s. char c);

This function searches the string s for the first occurrence of char
acter c, and returns a pointer to it. If c does not occur in s, a null
pointer is returned.

This function is provided for compatibility purposes only, and is not
reconllnended for use in new applications. It is identical to strchr
(page 310), which should be used instead.

470

isascii 1MACRO 11 SA 11 T21 is argument an ASCII character?

'include <ctype.h>
int iSaBcii(int cval);

Appendix F

Returns ~ 0 if cval is an ASCII character (code less than 8016).

isatty is file descriptor a terminal?

'include <atdio.b>
tot isattJ(int fildes);

isatty returns 1 if the file descriptor tildes is associated with the
low-level standard input, standard output or standard error files,
and 0 otherwise.

lsask move read/write pointer

long lseek(int filde•• 1001 offset, iot whence);

The file descriptor refers to an open file. The file position for the file
is set as follows:

whence = 0 : the pointer is set to offset bytes.

whence = 1 : the pointer is set to its current location plus offset.

whence = 2 : the pointer is set to the size of the file plus offset.

The returned value is the resulting pointer location.

-1 is returned for an undefined file descriptor or a seek to a position
before the beginning of the file.

lseek is a no-op on devices (e.g., the VDU or keyboard) which are
not disk files.

Compatibility Functions 471

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of lseek is fseek.

open open for reading or writing

int open(cbar .naae. int .ode);

According to the mode parameter, open either creates a new file with
the given name, or opens an existing file either for reading, writing,
for both reading and writing.

name is the address of a string of ASCII characters representing a file
name, terminated by an ASCII NUL character. The file is positioned
at the beginning (byte 0). The returned file descriptor must be used
for subsequent calls for other input-output functions on the file.

The value -1 is returned if the file does not exist or is unreadable
or if too many files are already open.

The file is opened in a way determined by the mode parameter. This
is made up of an access mode (0-3) added to optional file-type flags.
The access mode is defined as follows:

o Open the file for reading only.

1 Open the file for writing only.

2 Open the file for both reading and writing.

3 Create the file.

The file-type flags-to be added to the basic access mode-determine
whether the file is a text file or a binary file. The flags are defined in
<stdio .h> as O_TEXT and O_BINARY respectively. If neither file-type
flag is given, the default file-type is taken from the variable _fmode
(see page 462).

472 Appendix F

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of open is fopen.

putv write an integer to a binary file

'include <etdio.b>
int putw(int iwal, FILE .str...>.

putv outputs an integer value to the file referred to by stream in a
format which can be read in again by the standard input function
getv.

putv returns the integer value written. EOF is returned jf a write
error occurs.

putv neither assumes nor causes special alignment in the file.

ICAREFUL! IThe functions putv and getv should only be used on
binary files. If they are used on a text file, the binary data within
the integer may be corrupted because of the translation between new
line characters and the host's line termination convention. Note also
that the value EOF is a valid integer value: if this is placed in a file
by putv and read out using getv, it can be difficult to determine
whether a true integer value is being read or the end of the file has
been reached.

This function is provided for compatibility purposes only and is
not recommended for use in new applications, where the functions
fvrite and fread can be used to replace putv and getv respectively.

re'ad read from file.

int read(int fildes, char *buffer, int nbytes):

A file descriptor is an integer returned by a successful call on open or

Compatibility Functions 473

create buffer is the location of nbytes contiguous bytes into which
the input will be placed. It is not guaranteed that all nbytes bytes
will be read; for example if the file descriptor refers to the keyboard
at most one line will be returned. In any event, the number of
characters actually read is returned.

Zero is returned when the end of the file has been reached. If the
read was unsuccessful for any other reason, -1 is returned. Many
conditions may cause errors: physical I/O errors, bad buffer address
etc.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of read is fread.

rindex 1SA 11 T21 find character in string

char *rindex(char .8. char c).

This function searches the string s for the last occurrence of character
C, and returns a pointer to it. If c does not occur in s, a null pointer
is returned.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. It is identical to strrchr
(page 314), which should be used instead.

tell return file position

int tell(int fd);

fd is a file descriptor returned by open or create tell returns the
current file position (byte offset) within that file.

If an error occurs, tell returns a negative value.

474 Appendix F

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of tell is ftell.

unlink remove a file from the file system

int unlink(char -8);

This function is identical to r8ll0ve, that is, the file identified by
the string parameter 8 is deleted. If the file cannot be removed, the
function returns -1.

This function is included only for compatibility purposes, and is not
recommended for new applications, which should use remove instead.

vrite write on a file

int vrite(int fildeB, char .buffer, int nbyteB);

A file descriptor is the integer returned by a successful call on open
or create

buffer is the address of nbytes contiguous bytes which are written
on the output file. The number of characters actually written is
returned. It should be regarded as an error if this is not the same as
requested.

Write returns -Ion error: bad descriptor, bad buffer address, bad
count, or physical I/O errors.

This function is provided for compatibility purposes only, and is not
recommended for use in new applications. You can use the high-level
I/O functions instead of the low-level ones: the high-level equivalent
of vrite is fvri tee

AppendixG

Mandelbrot Program
Listings

G.I Mandelbrot Example Master Task

,... IlIDELR.C

•••
••• COPJrilht (c) 1988 3L Ltd

•••
••• Ex.-ple progr..: Randelbrot s.t ••aluation and displaJ.
••• IB: This- application requir.s a Colour Graphics Adaptor .

•••
••• The application... ---------------
•••
••• The application consists of two tasks:

•••
••• (1) RAIDELI (this file). This is the aaster task, and runs in the
••• root transputer.
••• (2) R&IDELV. This is the worker task, and runs in all the other
••• transputers o~ the net .

•••
••• The flood configurer, FeOIFIG, can be used to produce an executable
••• file which will autaaaticallJ distribute the worker tasks across an
••• arbitrarJ network and route work packets fro. the aaster to the
••• workers .

•••
••• It is also possible to run the application in a single transputer.
••• This will work autoaaticallJ if the application is configured using

(3) ne RECEIVE thread .
Thi••~ply waita till
and then di.play. it.
inforaation to display
which packet" i. which.
incre.ent. tally_done,
ill co.plete .

a packet .rri.ell fra. the network of RIIOELVJa
Each packet containa all the .ece••ary

it, .0 RECEIVE doe. not need to k.ep track of
E.ery t~e it does a dillpla" RECEIVE.0 that UII can tell wh.n the whole displaJ

476 Appendix G

••• FeOIFIG. Ilternati.8ly, a .tatic .ingle-tranaputer configuration
••• could be built by hand, uains COIFIG. A auitable configuration file
••• .ay be found in RIIOEL.CFG .

•••
••• I. well as .ario•• routine. fro. the Parallel C raD-t~e library,
••• KAIOELK .ast be linked with the COl pr~iti.es .odule, CGI.BII.
••• A file RIIOELR.LII ia supplied, which .ay be used to link RIIOELR,
••• like thi.:

•••
••• LIIIT IRAIDELI.LII,KAIDELR.B4

•••
••• Function. of the t ----------------------
•••
••• IIlIDELII i. tolel by the u••r .laicla part of the lIaDd.lbrot ••t to
••• e.al••t.. It tla.. break. tlli. up iato 100 p.cket., _d .eDd. the.
••• to the n.twork of IUIDELVJ.. la tll. r ••ult. fraa each returD, theJ
••• di.played on tlae pcJ••creen .

•••
••• liltenaal. of IIODILII... --------------------
•••
••• The task contain. three thread•.

•••
••• (1) ne 1Il11 thread.
••• niB run. iD the fuDction ..iD(). It inti.lis•• the other t80 threads
••• and then goes into a loop, once round for e.ch lI_delbrot di.play.
••• For each, it let. ta.tructioD8 fro. the user, and then .ignal. the
••• SEIO thread to start work bJ u.iDS the par_et.rs_ue_r.aclJphor•.
••• It k.ep. track of co-,l.ted work bJ .zaainiDg talIJ_don., which i.
••• incre.ented by RECEIVE .YerJt~•• IESULTS pack.t is di.pl.y.d; vh.n
••• ..er it notic•• th.t tallJ_don. h•• chanc.d, it upd.t•• the PCJs
••• di.play; aDd vhen tally_don. re.ch•• lOO, 11111 know. that the di.pl.J
••• i. co-plet•.

•••
••• (2) ne SEID thread.
••• Thi. know. when to .tart work by ezaainiDg the pu..eter._.re_r.adJ
••• • •••phore. It th.n br..... the job into 100 _all jobs, plac•• the
••• detail. into a COIIIIAID .tractur. (defiDed in file UIDEL .1) and us••
••• the net_.end function to .end it off to the network of RAIDELVJ•.
••• lotic. the SEID do•• not .p.cify WIICH work.r ta.k i. to do any
••• particular job; this i. clecided bJ the network of router tuk•.

•••
•••
•••
•••
•••
•••
•••
•••
•••
••• le. 001 21-Jul-89 ADC .at•••nd(), recei.e() J.oid J instead of default

Mandelbrot Program Listings 477

••• 'int' to .atch thread_cr.ate() prototJpe for its
••• fir.t (function pointer) par..eter.
••• aey 000 16-Dec-87 JF

•••.../

'includ. <stdio.h>
'includ. <do•. h>
'include <thread.h>
'includ. <.....h>
'iaclude <par.h>
'bclude <.et.h>
'include "csa.h"
'iBclude "-.del.h"

/. Interface to SKID thread ./
atatic SEK1 par..etera_are_readJ;

/. hterface to UCEIVE thread .,
atatic int t&11J_40.e;

/. Current Kaadelbrot and dieplaJ par...tera ./
static float x_coord. J_coord. sap;
atatic int threnl. thre.h2. thr.sh3;

,. Define the vaJ the job is broke. into packet. .,
'define 1_IICREKElt «CGI_LORES_IK&I+1)/10)
'define '_IIClEIElt «CGI_YRlI+1)/10)
'define PlaETS 100

/.
• This function i. i.yoked bJ lUll usias thread_create to
• create the SElO thread.

•.,
Yoid .end ()
{

int
COJIII&ID

for (;;) {

x, Ji
c;

/. Vait her. until Rl11 signal. it'. okaJ to go ahead ./
se.a_vait (lparaaeters_are_readJ);

/. Fill in the fixed parts of the co-.and ./
c.x_coord z x_coordi
c.J_coord Z J_coordi
c.gap • gapi

478

}
}

Appendix G

,. Se.d off the packet. to be do.e. Each include. the coordi.ate.
of the top-left and botto.-right corner. of the area to do.
Thi. both tell. the worker ta.k what .alue. to se.erate and
ide.tifie. the RESULTS packet .hea it arri.e. iD the RECEIVE
thread (.iDce there'. ao par_tee that the re.ult. will arri.e
ia the order the ca....d. are .eat out) .,

for (z • 0; z < COI_LOIES_IRAI; z +- I_IICIEREIT) {
c.tlz - z; c.brz - z + I_IICIElEIT - 1;
for (J - 0; J <- CQ1_YK1I; J .. '_IICIEREIT) {

c.tlJ - J; c.brJ • J + '_IICIIIIIT - 1;
,. Sead off the nezt packet .,
net_.eDd (.izeof(CORllID). Ic. 1);

}
}

,.
• Thi. function i. iDyoked bJ 1111 ••tas thr.ad_cr.at. to
• create the IBCIIYI thr.ad.

•.,
Yoid recei.. ()
{

IESULTS
1nt

for (;;) {

r;
len. readJ. z, J, i, _. colour;

,. Thread will wait here till a packet erri.e••,
le.-.et_recei•• (Ir, IreadJ);
i • 0;

,. The re.ult. packet includ•• the coordinate. of the top-left
and bottoa-rilht corner. of the data, .0 we bow where to
di.plaJ it. .,

for (J-r.tlJ; J<-r.brJ; J++) {
for (z-r.tlz; z<-r.brz; z++) {

n • r.count.[i++];
,. lecei.ed O.eana 1; recei.e4 266 ..aJUI 256 .,
n +- 1;
,. Decide on the colour <- thre.hold., and di.plaJ ...•,
colour • (.>-thre.h1) + (.>-tbr••h2) + (n>-thre.h3);
cla_lor••_plot (I, J, colour);

}
}

,. Incre...t the tallJ of packet. di.plaJed .,
tallJ_done +- 1;

Mandelbrot Program Listings

}
}

,.
• The 11111 thread runs her•

•.,
..in ()
{

fioat rUl.'
iDt pr••ioua_tall,.

,. lak. sur••• ha.e t.n -.od. (ud cl.ar scr••a). th.a sip oa .,
.ideo_aod. (IDIO_SOCOL_TEIT_IODE).
printf (u\aCop,ript (c) 1988 3L Ltd\a\aU

).

priatf ("b..,l. progr..:d.lbrot s.t ••aluatioa and displ.y\a");
priatf (".B: nis progr_ r.quir.s a Colour Graphics Adaptor\a\aU

) ;

,. Initialise this SEll to 0 BEFORE •• start the SEIO thread.
Thi. a.ans it .ill .ait until •• t.ll it it'• • at. to go ahead .,

...._iait (lpar...t.rs_ar._r.ady, 0);
,. 10. .tart the other two thr••dB .,
thr.ad_cr.at. (••ad, 10000, 2,0,0).
thread_cr••t. (r.c.i•• , 10000, 2,0,0);

for (;;) {

,. Thi. viII ensure th.t no oth.r thre.ds are using the C
rUD-t~ libr.ry (in f.ct, in this ca•• th., won't be,
but I h••• done it h.r. a. an .x..pl•...) .,

s..._vait (ap.r_se..);
printf (lI\nInput I coordinat.: 11); scanf ("U", lz_coord);
printf (IIInput Y coordinat.: 11); .canf (lIlfll, ay_coord);
printf (IIInput Y range: 11); .canf (lIlfll, arange);
gap • rang. , (float)(CG1_Ylll+1);
y_coord • y_coord + range;

printf (IIThreshold 1: 11); scan:f ("Id", athreshl);
printf ("Thre.hold 2: 11); scant (IIU", athr.sh2);
printf ("Threshold 3: 11); scant ("Id", Ithresh3);
getchar (); ,. CODaUlle the final IL *,
,. Ve ha.e finished vith the C RTL - release it *,
se.a_signal (apar_se..);

,* Into graphics (OG& lov resolution) .ode .,
yideo_~d. (OG&_LORES_GalPBICS_"ODE);

479

U.. thread_d••ch.dule.,

480 Appendix G

,. Before •• set SEIO going, reset the count of finish.d
packets to zero - RECEIVE .ill count it back up .,

tally_don. • 0;
,. &11 ready - set it going! .,
...a_.ignal (lpar...t.r8_are_r.adJ)j

,. Until all the pack.t. ha•• be.. do•• , ju.t ke.p updating the
di.plaJ .he. ..c•••arJ

.hil. (tallJ_do•• < PiCIETS) {
.hile (tallJ_do•••.,r••iou._tallJ) {

,. V.it h.r. till aa.ethias happe••.
to •••• cpa tt.e

thr••d_d••chedul. ();
}

,. Sod the pictur. up to the PC'. di.plaJ ...orJ .,
cga_1IpCIate ()j
pre.ioua_tallJ • tallJ_do.ej

}

,. In cue talIJ_do.e ... 1Ipdated to • PiCIETS AFTEI the la.t
cga_upd.t., do another 0•• to e.eure the PC'e dieplaJ i.
up-to-date .,

cga_update ()j

,. One ag.iD, ••it for the ITL to b. fr•• ; th•• b••p and ••it
till the ...r .trik•• aDJ k.J .,

...._.ait(lpar_••••)j
putchar ('\007'):
getchar ()j
...a_.ignal(lpar_....)j

,. Cl.ar the screeD and .et t.zt .ode agaiD .,
.ideo_.od. (1010_8OCOL_TEIT_"ODE);

}

}

Mandelbrot Program Listings

G.2 Mandelbrot Example Worker Task

481

,... KAIOELV.C

•••
••• COPJright (c) 1988 3L Ltd

•••
••• bUlple pr0p''': llaDdelbrot .et e.aluation and displa,.
••• 18: Thi. application requires a Colour Graphic. Adaptor .

•••
••• The application... ---------------
•••
••• The application consist. of two task.:

•••
••• (1) II1IOELII. This i. the ...ter tau, aDd ran. iD the root
••• transputer.
••• (2) IIUDELV (this ~ile). This is the worker tuk, aDd runs iD all the
••• other traasputers o~ the net. It use. the 'net_' librarr ~UDctions

••• to obtain work packet. orilinat~ ~ro. RAlDILI aDd send back
••• re.ult packet•.

•••
••• A file IIUDELV.LII i. supplied, which aa, be ued to link IIAIOELV,
••• like this:

•••
••• LIIIT IKAIOELV.LII,KlIOELV.B4
•••
••• For further details, .ee the top of IIlIDELII.C .
•••
••• Internals of 1I110ELV... --------------------
•••
••• The task waits t ill a packet arri••s. This is a COIllllIO atruct,
••• containing details of the portion of the lIandelbrot to do. It
••• then do.s the work, storing the results in a RESULTS struct, which
••• is then sent back to K1IOELII .

•••...,
'include <net.h>
'include "aa.ndel.hU

atatic CO~'D c;
atatic RESULTS r;

aain ()
{

int
float

I, J. count, n, ready;
gap, I_coord, y_coord,
ac, bc, two=2.0, four=4.0, size, a2, b2, a, b;

482

for (;;) {

,. Task viII vait here until a packet arri.es .,
n - net_recei.e (tc, tread,);
,. Unpack so.. of the par...ter. .,
x_coord-c.x_coord;
J_coord-c.J_coord;
sap-c·sap;

Appendix G

,. The top-l.ft and botto.-rigbt coordiD.te. are s.pplied
in the co..... packet -,

• - 0;
for (J-c.t1J; J<-c.brJj J++) {

bc - J_coord - J-Iap;
for (x-e.t1x; x<-c.brx; x++) {

ac • X-lap + x_coord;
a - aCj b - be; .iz. -0.0; ccnmt - 0;
,- Do calculation _t1l ..r. th.. 2.0 a.aJ or

_tU co_t reache. 258 -,
a2 - a-a; b2- b.b;
vhile «.be < four) ea (co_t < 256» {

b - t.o•••b + be;
a • .2 - b2 + aCt
a2 • .-a; b2- b.b.
size • a2 + b2;
count++;

}
,. Stored 0 1; stored 25& 256 -,
r.counta[n++] • count-I.

}
}

,. Send the top-left and botta.-right coordinates back in the
RESULTS packet too, so th.t the RECEIVE thread of Ri.DELI can
ide.tifJ the packet. .,

r.tlx - c.tlx; r.tlJ • c.t1J;
r.brx • c.brxj r.brJ - c.brJ;
.et_send (16+&, Ir, 1);

}

}

Mandelbrot Program Listings

G.3 Header File

,... KlIDELTY.1

•••
••• Parallel Randelbrota

•••
••• Theae are the fo~ta of the packeta used to c~icate bet.ee.
••• the ..-ter task and the ca.putatio. taaka .

•••

483

••• le. 000 6-Dec-87 JF

•••..., Created

tJPedef struct c~d_structure {
float z_coorcl. r_coord. lap;
iDt tlz. t1r. bn. brJ;

} COIIIIAID;

tJPedef atract reaulta_atructure {
iDt tl.. tlJ. bn. brJ;
char couata[tOO8];

} RESULTS;

G.4 Configuration File

Processor Bost
Proces.or Root

Vire ? Bost[O] 100t[0]

Task i~8erYer Ins-t Outs=l
Task Filter Ina-2 Outs-2 Dat.-101
Task lIandelll Ina-2 Out s=2 Data-6001
Task lIandelV Ina-t Outs-1 Stack-11 .e.p-l01 Opt-Stack Opt-Code

Connect ? i~serY.r[O] Filter [0]
Connect ? Filter[O] if.erYer[O]
Connect ! Filter[l] lIandelll [1]
Connect ! lIandelJl[1] Filter[l]
Connect ? 11ande111 [0] "andeIV[O]
Connect ? lIandelV [0] lIandelll[O]

Place l~serYer Bost
Place Filter Root
Place "andelll Root
Place lIandelV Root

484 Appendix G

Appendix H

ASCII Code Chart

OxOx Oxlx Ox2x Ox3x Ox4x Ox5x Ox6x Ox7x
OxxO NUL DLE 0 G P (

Pu

Oxxl SOH DCl ! 1 A Q a q
Oxx2 STI DC2 11 2 B R b r
Oxx3 ETI DC3 • 3 C 5 c s
Oxx4 EOT DC4 $ 4 D T d t

Oxx5 ENQ IAK X 5 E U e u
Oxx6 ACK SYN t 6 F V f v
Oxx7 BEL ETB , 7 G W g v
Oxx8 BS CAN (8 H X h x
Oxx9 HT EM) 9 I Y i Y
OxxA LF SUB • : J Z j z
OxxB VT ESC + ; K [k {

OxxC FF FS , < L \ 1 I
OxxD CR GS - = M] m }

OxxE SO RS > N - n -
OxxF SI US I ? 0 - 0 DEL

486 Appendix H

Bibliography

[1] Brian W. Kernighan and Dennis M. Ritchie. The C Program
ming Language, First Edition. Prentice-Hall, 1978. ISBN 0-13
110163-3.

[2] Brian W. Kernighan and Dennis M. Ritchie. The C Program
ming Language, Second Edition. Prentice-Hall, 1988. ISBN 0
13-110362-8.

[3] American National Standard for Information Systems - Progam
ming Language - C. American National Standards Institute, Inc,
1990. X3.159-1989.

[4] Disk Operating System Version 3.10 Reference. International
Business Machines, February 1985.

[5] Microsoft MS-DOS User's Reference. Microsoft Corporation,
1986. Document Number 410630013-320-R03-0686.

[6] Disk Operating System Version 3.00 Technical Reference. Inter
national Business Machines, May 1984.

[7] A. M. Lister, Fundamentals of Operating Systems. MaclIlillan
Press, 1979. ISDN 0-333-27287-0.

[8] Andrew S. Tanenbaum, Operating Systems: Design and Imple
lnentation. Prentice-Hall, 1987. ISBN 0-13-637331-3.

488 Bibliography

[9] British Standard B$6)54 : 1982: Method of Defining Syntactic
Metalanguage. British Standards Institution, 1981. ISBN 0-580
12530-0.

[10] R. S. Scowen. An Introduction and Handbook for the Standard
Syntactic Metalanguage. National Physical Laboratory Report
DITC 19/83, February 1983.

[11] ANSI/IEEE Std 754-1985: IEEE Standard for Binary Floating
Point Arithmetic. Institute of Electrical and Electronics Engi
neers, 1985.

[12] Inmos Ltd. Transputer Reference Manual. Prentice-Hall, 1988.
ISBN D-13-929001-X.

[13] Inrnos Ltd. Transputer Instruction Set: A compiler writer's
guide. Prentice-Hall, 1988. ISBN 0-13-929100-8.

[14] Stand alone compiler implementation manual. Version 1.1,
Inmos Ltd., July 1987.

[15] TDS Compiler implementation manual. Version 1.0, Inmos Ltd.,
November 19, 1986.

Index

'<', see I/O redirection
'>', see I/O redirection
'I', see I/O redirection
'I', see linking: with indirect files
'X', see object files: hexadecimal
'-', see afserver: options
'.', ,ee identifiers: dollar sign in
•b4, see executable files,

task image files,
application image files

· bin, see object files
· e, see source files
· efg, see configuration files
•dat, .see linker: and indirect files
.lib, ,ee linker: creating library files
.lis, see compiler: listing files
•.ap, see linker: and map files
•opt, see linker: and optimisation

files

/
IC, 125, 128
ID, 132

IF, 124-126

IFB, 125

IFL, 125-126
IFO, 125
IGd, 127
IGi, 127
IGs, 128

11, 132-133, 136
IM, 133
lP, 129-130
IPC, 129

IPII, 130
IS, 126
/T2, 126
IT4, 126
ITS, 126
IT8A, 126
/U, 133, 135
IV, 134
IV, 135
11, 132, 136
IZd, 131
IZi, 131
IZo, 131

_3L_SHORT_BITS, 128
_exit, 462
_filer_handle, 238
_f.ode, 226, 462
_inaess, 460, 463
_outbyte, 460, 464
_out.ess, 460, 464
_outword, 460, 465
_tolower, 465
_toupper, 465

3
3LCC_INC, 4, 136

A
abort, 231, 239
abs, 232, 239
acos, 218, 239

490

af8erver, 19
command-line parameters, 21
invoking, 19, 46, 445
limit on open files, 71
switches, 19, 21, 25, 46, 445
task data sheet, 414
version, 8

alloc86, 215-216, 239
alt_nowait, 209, 240
alt_nowait_yec, 209, 241
alt_vait, 209, 241
alt_vait_vec, 209, 242
application files, lee application

image files
applications, 30
argc, 22, 121, 205
argv, 22, 121, 205
ASCII, 485
a8in, 218, 243
assembler, 137

error messages, 198
labels and jumps, 144-145
literal bytes, 146, 450
opcodes, 449
operands, 139-142
syntax, 138
uses for, 137

a88ert, 209, 243
atan, 218, 244
atan2, 218, 244
ateIit, 231, 244
atof, 230, 244
atoi, 230, 245
atol, 230, 245
autoeIec.bat, 3-4

B
batch files

for linker, 13, 16, 348-349
for running, 20

bd08, 214, 216, 246
binary files, lee object files
BIND statement, 407
boot_peek, 209, 246
boot_poke, 209, 247

Index

bootstrap
and the linker, 346
configu rer, 367
{or T2, 99
standard, 367-368

bootstraps, 346
broadcasts, lee under processor

farms
ba.arch, 232, 247
BUFSIZ, 305
byte, 147
BYTEREGS, 213

C
calloc, 231, 248
ceil, 219, 248
cfree, 466
CUI, 49
chaD_iD_byte, 211, 249
cban_in_bJte_t, 211, 249
chan_in_aeasage, 211, 250
chan_in_ae88age_t, 211, 250
chan_in_vord, 211, 250
chan_~vord_t, 211, 251
chan_init, 211, 249
chan_out_byte, 211, 251
chan_out_byte_t, 211, 251
chan_out_ae88ase, 211, 252
chan_out_aessage_t, 211, 252
chan_out_word, 211, 252
cban_out_vord_t, 211, 253
chan_reset, 211, 253
channels, 27-29, 209
clearerr, 230, 254
clock, 235, 254
close, 461, 466
command-line parameters, lee aain,

afserYer
compiler, 89

and floating-point, 127
and processor types, 126
bit fields, 120, 150
code gaps, 129
controlling verbosity, 134
debug tables, 131

Index

default switches, 123
differences fro.m K&R C, 110
disassembling output from, 371
error message lists, 157, 193,

196, 198
error messages, 151-154, 156
file defaults, 124
identifying, 133
inlining functions, 127
invoking, 12, 121
list of keywords, III
listing files, 125, 133
module numbers, 130
object files, 125
options, 122
output files, 124
representation of data types, 147
shifts, 120
size of external call, 129
size of module numbers, 130
special features, 119
switch summary, 441
switches, 122
ternporary files, 122
version, 8
see also 'include, macros,

configuration files, 34, 38, 45, 77, 83
more than one transputer, 53

configuration language
anonymous identifiers, 392
file layout, 387
identifiers, 391
link specifiers, 395
numeric constants, 389
port specifiers, 404
statement syntax, 393
string constants, 390
syntax of, 385

configurer, 33-34, 37-38
and T2, 103
debug tables, 448
invoking, 44-45, 447
switches, 447
see also flood-fill configurer,

CONNECT statement, 43, 405

491

con nections between ports
declaring to configurer, 405

const, III
conventions

filename extensions, 14, 16, 18
cos, 218, 254
cosh, 218, 254
creat, 461, 466

D
data, ,ee cornpiler: representation of

data types
debug tables, ,ee under compiler,

linker, configurer
debugging

parallel systems, 62, 220
lee aI,o errors,

decode, 131
decode, 371

invoking, 372
disasseulbly, 371
distribution kit

contents, 427
installing, 1
.testing, 7

diY, 232, 255
DOS, see MS-DOS
dos.h, 214

E
ecyt, 467
entry, 111
enua, 111
environmental variables

3LCC_INC, 4, 136
TC,124
PATH, 401
TMP, 122

EOF, 206
errno, 218, 255
error messages, see under compiler,

Jinker
redirecting, 13

492

errors
bizarre, 8, 20, 25, 396
Iinker, 350-351, 353-365
patch over valid code, 129
program hangs, 25

EventReq, 210
example programs

"hello, world", 12
Mandelbrot, 77, 80, 83-84, 475
MS-DOS access, 215-216
multiplexer, 54-55
upper case, 31, 39-40

executable files, 13, 335, 338-340
as MS-DOS commands, 20
created by linker, 16
rules for inferring name of, 335
running with afserver, 19

execution, 6ee running
exit, 231, 256
exp, 218, 256

F
fabs, 219, 257
fclose, 227, 257
fcvt, 467
fdopen, 467
feof, 230, 257
ferror, 230, 257
fflush, 227, 258
fgetc, 228, 258
fgetpos, 229, 258
fgets, 228, 259
FILE, 223
fileaux, 67-76

memory requirements, 69
task data sheet, 418

fileno, 468
filter, 38

task data sheet, 415
filters, see I/O redirection
floating point

IEEE, 148
ftoati ng-point

constants, 114, 127

Index

evaluation of expressions, 113,
127

format, 148
infinity, 148, 265
Not-a-number, 148, 265

ftood-fiUconfigurer, 80, 83,409
heterogenous networks, 86
invoking, 84
task-task protocol, 409
lee 01.0 processor farms,

floor, 219, 259
f.cMI, 219, 260
fopeD, 227, 260
fprintf, 227,261
fputc, 228, 266
fput8, 228, 266
fread, 229, 267
free, 231, 267
fr••86, 215, 217, 268
freopen, 227,268
frexp, 219, 268
fro.S6, 217, 269
frouter, 80

task data sheet, 416
fscanf, 227, 269
fseek, 229, 273
f8etpoa, 229, 274
ftell, 229, 274
fwrite, 229, 274

G
gcvt, 468
general-purpose configurer , see

configurer
getc, 228, 275
getchar, 228, 275
getenv, 231, 276
get8, 229, 276
getv, 469
global I/O, 67-76

application termination, 72
see also file.ox,

Index

H
hardware

assumptions, xvi, 367
configuration, 34, 40
troobleshooting, 8

harness
standard, 17,38-39
T4 and T8 versions, 17
task, 38, 44

heap storage, .ee under memory
host processor, 40

special treatment of, 46

I
I/0

global, see global I/O
redirection, .ee I/O redirection

I/O redirection, 13, 22-23
identifiers

case distinction, 112
dollar sign in, 120
in configuration language, 40, 43
reserved as keywords, 111
significant characters, 111

• include
controlling, 132, 136
directory search, 135

index, 469
indirect files, see under linker
infinity, see under floating point
IIMOS.ENTRY.POIIT, 348
inp, 217, 277
installation

directory, 1, 3
int86, 214, 216, 277
int86x, 214, 216, 278
intdos, 214, 216, 278
intdosx, 214, 216, 279
interrupts, see under MS-DOS
isalnUDi, 212, 279
isalpha, 212, 279
isascii, 470
isatty, 461, 470
iscntrl, 212, 279

493

isdigit, 212, 280
isgraph, 212, 280
islover, 212, 280
isprint, 212, 28Q
ispunct, 212, 281
isspace, 212, 281
i.upper, 212, 281
iaxdigit, 212, 281

L
labs, 232, 282
Idexp, 219, 282
IdiY, 232, 282
library files, 17, 336-338

changing, 17
compared to indirect files, 337
creating, 17-18, 337-338, 347
debug information in, 338
extracting members, 383-384
inferring the name of, 337
listing contents, 379-380
using, 336

LinkOInput, 210
LinkOOutput, 210
Lint1Input, 210
Li.nkl0utput, 210
Link2Input, 210
Lint20utput, 210
Link3Input, 210
Link30utput, 210
lioker, 13-15, 17,333,350-351,

353-363, 365
and bootstraps, 346
and debug tables, 338, 345, 347
and indirect files, 15, 18,

335-336
and library files, 336
and map files, 348
and optimizalion files, 348
and patching gaps, 129-130
batch files for, 13, 16
co,mmand line, 333-334
creating library files, 17
duplicate definitions, 349
entry points, 348

494

error messages, 350-351,
353-363, 365

file name conventions, 334-335
invoking, 16
libraries, 5ee library files
map files, 340
messages, 350
modified IF switches, 344
more than one object file, 14
optimization files, 339-340
optimization symbols, 338-340,

347
ordering of object files, 334
patch over valid code, 129
simple programs, 13
supports only 1MB or 2MB, 25
switches, 18, 345-348, 443-445
T2 support, 93-97, 340
version number, 347

linking
stand-alone tasks, 52
tasks, 44

links, 29, 395
lintt, 16
listing files, aee under compilers
10caleconY, 217, 283
log, 219, 283
10810, 219, 283
longj.p, 221, 284
lseet, 462, 470

M
macros

defining, 132
listing expansions, 133
pre-defined, 91
predefined, 132-135

.ain, 22, 30, 121, 204
on T2, 106

.alloc, 231, 284
aaster, 83
master task, 77-79, 410

5ee al50 processor farms,
.blen, 232, 285
.bstovcs, 232, 285

Index

.btovc, 232, 286

.e.cbr, 234, 286

.e.c~, 233, 287

.e.cpJ, 233, 288

.e..oye, 233, 288
memory, 23

code storage, 23
estimating requirements, 65-66
external, 24-25
heap storage, 24
limits imposed by linker, 25
on-chip, 21, 24, 338
physical, 24
run-time library requirements,

23
speed of, 25
stack, 23
static storage, 23
storage areas, 23

.e.patcb, 25, 367-368
compatibility, 368
identifying, 368
invoking, 369

•••set, 234, 288
messages, 27-28, 350-365

length of, 48
.001, 219, 289
MS-DOS

accessing functions of, 212
filters, aee I/O redirection, 23
search path, 3, 45, 401
versus PC-DOS, xviii

N
NaN, 5ee under floati ng point
IDEBUG, 243
net package, 81

buffer sizes, 81
multiple packets, 81

net_broadcast, 82, 220, 289
IET_MlI_PACIET_LEIGTH, 81
net_receiYe, 78-81, 220, 290
net_send, 78-79, 81, 220, 290
Not-a-Number, 5ee under floating

point

Index

lotProcess_P, 210
1UL,238, 485
lULL, 206, 208, 238, 291

o
object files, 13, 16-17

format of, 16
ordering of in executable file,

334, 338-340
offsetof, 208, 292
on-chip memory, ,ee memory:

on-chip
open, 462,471
options, .ee compiler:switches,

linker:switches,
afserver:switches,
configurer:switches

outp, 217, 292

p
par_fprintf, 220, 293
par_free, 220, 292
par_.alloc, 220, 293
par_printf, 220, 293
par_se.a, 220, 294
PC-DOS, 6ee MS-DOS
pcpointer, 214
perror, 230, 294
pipes, see I/O redirection
PLACE statement, 42, 406
port vectors, 31
portabili ty, 112
ports, 30, 48-49, 404

binding, 31, 407
pow, 219, 295
printf, 228, 295
processes, 27-28
processor farms, 34-35, 77, 81-82,

289
and broadcasts, 82, 289
networking software, 80-81
rou ting software, 289
see also master task, worker

task, frouter, flood-fill
configurer,

495

PROCESSOR statement, 40, 393
BOOT attribute, 395
RAM atrribute, 398
TYPE attribute, 395

processor type
compiling for, 13, 126
differing on-chip memory, 24
harnesses for, 17
linking for, 14, 16
run-time libraries for, 17
T2,89-106
T414A, 38, 417, 431
T800A, 126, 431, 433

processors
declaring to configurer, 394

program parameters, ,ee .ain,
afs8rY8r

ptrdiff_t, 208
putc, 229, 295
putchar, 229, 296
puts, 229, 296
putw, 472

Q
qsort, 232, 297

R
raise, 222, 298
rand, 230, 299
read, 462,472
realloc, 231, 299
redirection, see I/O redirection
register, 121
REGS, 213
re.ove, 227, 300
renaae, 227, 300
rewind, 229, 300
rindex, 473
root transpu ter, 40
run-time library, 13, 17

and afserver, 19
and processor types, 204
binary I/O, 226
channel I/O fu nctions, 209

496

character testing functions, 211
compatibility functions, 459
conventions, 205
DOS functions, 212
full, 204
header files, 206
heap functions, 231
input/output, 223
list of functions, 238-261,

266-269, 273-316, 318-331,
462-474

mathematical functions, 217
memory requirements, 23
network functions, 220
parallel I/O functions, 220
purpose, 203
semaphore functions, 221
stand-alone, 51-52, 204
stream I/O, 225
string handling functions, 233
T2 version, 99
T4 and T8 versions, 17
text I/O, 226
thread functions, 235
time functions, 235
timer functions, 236
variable arguments, 222

running, 19-23, 44'J'
off-chip stack, 25
on T2, 102
on-chip stack, 24

s
scanf, 228, 301
scheduling

lee allo priority,
search path, see under MS-DOS
Begread, 214, 216, 301
Beaa_init, 221, 301
Beaa_Bignal, 221, 302
Beaa_Bignal_D, 221, 302
Beaa_teBt_vait, 221, 303
Be.a_vait, 221, 303
Beaa_vait_n, 221, 304
semaphores, ~3, 59-60, 80, 221

Index

eerY_fiIter, 221, 304
server, lee afserver
aetbuf, 227, 305
Betjllp, 221, 306
aetlocale, 217, 306
aetYbuf, 227, 307
short integer variables, 112, 128, 147
sip&1, 222, 307
sin, 218, 308
siDh, 218, 308
size_t, 208
aizeof, 119
source files

conversion from TDS, 12
creating, 12

spriDtf, 228, 308
sqrtt 219, 309
srand, 230, 309
s.caDf, 228,309
stack, .ee under memory
stand-alone library, .ee run-time

library: stand-alone
standard error, 224
standard input, 22, 224
standa.rd output, 22, 224
static storage, .ee under memory
stderr, 224
atdin, 22, 224
atdout, 22, 224
storage, .ee memory
atrcat, 233, 310
atrchr, 234, 310
~trcllp, 233, 310
strcoll, 233, 311
strcpJ, 233, 311
atrcspn, 234, 311
Btrerror, 234, 312
BtrIen, 234, 312
Btrncat, 233, 312
atrncap, 234, 313
strncpJ,233,313
Btrpbrk, 234, 313
Btrrchr, 234, 314
BtrBpn, 234, 314
Btr8tr, 234, 315

Index

strtod, 230, 315
strtok, 234, 316
strtol, 230, 316
strtoul, 230, 318
strrlr., 234, 318
stub

task data sheet, 424
switches, ,ee under compiler, linker,

afserver, configurer
BJste., 231, 319

T
T2, ,ee processor type
T4, ,ee processor type
T414A, ~ee under processor type
t4clink, 13-14
t4cBtask, 52
t4ctask, 44
t4llaster, 86
t4vorker, 86
T8, see processor type
T800A, see under processor type
t8clink, 14
t8cBtask, 52
t8ctask, 44
t8.aster, 86
t8vorker, 86
tan, 218, 319
tanh, 218, 320
task data sheets, 413

afserver task, 414
filemux task, 418
filter task, 415
frouter task, 416
stub task, 424

task files, see task image files
task image files, 30, 34, 45

locating, 45
locating with configurer, 401

TASK statement, 41,399
FILE attribute, 83, 86, 401
INS attribute, 41, 400
memory size attributes, 402
OPT attribute, 403
GUTS attribute, 41, 49, 401

497

URGENT attribute, 404
taskharn. t4, 45
taskharn. t8, 45
tasks, 30-32

declaring to configurer, 400
normal versus stand-alone, 51
specifying memory

requirements, 402
versus threads, 60
,ee al,o task image files, TASK

statement,
Thug, 62, 131, 345, 347
TC, 124
TDS, 4,12
tdaliBt, 12
tell, 462, 473
temporary files, 122
thread_create, 235, 320
thread_deachedule, 235, 321,433
THREAD_IOTURG, 235
thread_prioritJ, 235, 321
thread_restart, 235, 322
thread_Btart , 235, 322
thread_stop, 235, 323
THREAD_URGEIT, 235
threads, 33, 56, 80

creating, 56'0-59
versus tasks, 60:

tiae, 235, 323
tiaer_after, 236, 324
tiaer_delay, 236, 324, 433
tiaer_Dov, 236, 325
tiaer_vait, 236, 325, 433

timers, see under transputer
tapfile, 227, 325
tapnaa, 227, 326
tna, 379-380
to86, 217, 327
tolover, 212, 326
toupper, 212, 327
transputer

byte, 147
chan nels, 209
error ft ag, 20
links, 210

498

on-chip RAM, 8ee memory:
on-chip

timers, 236
word, 147
8ee 0180 channels, links,

processor type,
8ee 0180 processor type,

tunlib, 383-384

u
UD8ete, 229, 327
unlink,474
unsigned, 150
unsigned ahort, 147
URGENT, 404

v
Ya_aliat, 460
Ya_arg, 222, 328,461
va_del, 460
va_end, 222, 328,461
Ya_8tart, 222, 329, 460
variables

stack, 23
static, 23

vfprintf, 228, 329
void, 111
volatile, 111
Yprintf, 228, 330
vaprintf, 228, 330

w
wehar_t, 208
wcato.b8, 232, 331
weto.b, 232, 331
WIRE statement, 40, 399
wires, 29

declaring to configurer, 399
word, 147
VORDREGS, 213
work packets, 77-79, 410
worker, 83

worker task, 77-79, 410
8ee olso processor farms,

workspace, 8ee memory: stack
.Onl, 375
write, 462, 474

Index

	Contents
	Introduction
	Intended Audience
	The C Language
	Hardware Assumptions
	Document Structure
	Further Reading
	Conventions
	Text Conventions
	Installation Directory

	1 Installing the Compiler
	1.1 Installation Directory
	1.2 Installing the Software
	1.3 The Search Path
	1.4 Environmental variable 3LCC_INC

	2 Confidence Testing
	3 Developing Sequential Programs
	3.1 Editing
	3.2 Compiling
	3.3 Linking
	3.3.1 Linking More than One Object File
	3.3.2 Indirect Files
	3.3.3 Calling the Linker Directly
	3.3.4 Libraries

	3.4 Running
	3.4.1 Using C Programs as MS-DOS Commands
	3.4.2 Command-Line Arguments
	3.4.3 I/O Redirection and Piping

	3.5 Memory Use
	3.5.1 Default Memory Mapping
	3.5.2 Alternative Memory Mapping
	3.5.3 Limit on Program Memory

	4 Introduction to Parallel C
	4.1 Abstract Model
	4.2 Hardware Realisation
	4.3 Software Model
	4.4 Simultaneous Input
	4.5 Parallel Execution Threads
	4.6 Configuring an Application
	4.7 Processor Farms

	5 Developing Parallel Programs
	5.1 Configuring One User Task
	5.1.1 Hardware Configuration
	5.1.2 Software Configuration
	5.1.3 Building the Application

	5.2 More than One User Task
	5.2.1 Inter-Task Communication Functions

	5.3 Building Multi-Task Systems
	5.4 Multi-Transputer Systems
	5.5 Simultaneous Input
	5.6 Multi-Threaded Tasks
	5.6.1 Creating Threads
	5.6.2 Threads versus Tasks

	5.7 Debugging
	5.8 Estimating Memory Requirements

	6 Global Input/Output
	6.1 One Transputer
	6.2 More than One Transputer
	6.3 More than One Multiplexer
	6.4 Limits
	6.5 Termination of an Application

	7 Processor Farms
	7.1 The Worker Task
	7.2 The Master Task
	7.3 The net Package
	7.3.1 Functions net_send and net_receive
	7.3.2 The net_broadcast function

	7.4 Building the Application
	7.4.1 Configuration File

	7.5 Running the Example
	7.6 Heterogeneous Networks

	8 Developing T2 Programs
	8.1 Compiling
	8.2 The Compiler in T2 Mode
	8.2.1 Language Restrictions
	8.2.2 Pre-defined Macros
	8.2.3 Data-type Representations
	8.2.4 Compiler Error Messages

	8.3 Linking T2 Tasks
	8.4 Linker Support for the T2
	8.4.1 Linker Command Switches
	8.4.2 The Bootstrap

	8.5 The Run-Time Library
	8.5.1 Functions Defined in alt.h
	8.5.2 Functions Defined in chan.h
	8.5.3 Functions Defined in chanio.h
	8.5.4 Functions Defined in ctype.h
	8.5.5 Functions Defined in locale.h
	8.5.6 Functions Defined in par.h
	8.5.7 Functions Defined in sema.h
	8.5.8 Functions Defined in setjmp.h
	8.5.9 Functions Defined in signal.h
	8.5.10 Functions Defined in stdlib.h
	8.5.11 Functions Defined in string.h
	8.5.12 Functions Defined in thread. h
	8.5.13 Functions Defined in timer.h

	8.6 Running T2 Programs
	8.6.1 Using the Configurer to Boot a T2
	8.6.2 Piping Code into a T2

	8.7 Parameters to Main

	Introduction
	Overview
	Standard Syntactic Metalanguage

	9 C Compiler Reference
	9.1 The C Language
	9.1.1 ANSI Features
	9.1.2 Special Features
	9.1.3 System-dependent Features

	9.2 The C main Function
	9.3 Running the Compiler
	9.4 Compiler Switches
	9.4.1 Default Switches
	9.4.2 Controlling Output Files
	9.4.3 Controlling Object Code
	9.4.4 Controlling Code Patch Sizes
	9.4.5 Controlling Debugging
	9.4.6 Controlling #include Processing
	9.4.7 Macro Definitions
	9.4.8 Information from the Compiler

	9.5 Predefined Macros
	9.6 Handling of #include Files
	9.7 Assembly Language
	9.7.1 When to Use Assembly Language
	9.7.2 Assembly Language Syntax
	9.7.3 Literal Operands
	9.7.4 Variables as Operands
	9.7.5 Accessing Complex Structures
	9.7.6 Labels and Jumps
	9.7.7 Literal Machine Code
	9.7.8 Errors

	9.8 Data-type Representations
	9.8.1 Integral Data Types
	9.8.2 Pointer Types
	9.8.3 Floating Types
	9.8.4 Alignment and Complex Types

	9.9 Compiler Error Messages
	9.9.1 Compiler Error Message Format
	9.9.2 Fixing Errors Detected by the Compiler
	9.9.3 List of Error Messages
	9.9.4 Errors in Assembler Language

	10 The C Run-Time Library
	10.1 Introduction
	10.1.1 Purpose of the Run-Time Library
	10.1.2 Versions of the Run-Time Library
	10.1.3 Conventions
	10.1.4 Header Files
	10.1.5 Errors <errno.h>
	10.1.6 Limits <float.h> and <limits.h>
	10.1.7 Common Definitions <stddef.h>

	10.2 Alt Package <alt.h>
	10.3 Diagnostics <assert.h>
	10.4 Neighbouring Transputers <boot.h>
	10.5 Channels <chan.h>
	10.6 Character Handling <ctype.h>
	10.6.1 Character Testing Functions
	10.6.2 Character Mapping Functions

	10.7 Accessing DOS Functions <dos.h>
	10.8 Localisation <locale.h>
	10.9 Mathematics <math.h>
	10.9.1 Treatment of Error Conditions
	10.9.2 Trigonometric Functions
	10.9.3 Hyperbolic Functions
	10.9.4 Exponential and Logarithmic Functions
	10.9.5 Power Functions
	10.9.6 Nearest Integer, Absolute Value and Remainder Functions

	10.10 Processor Farm Communications <net.h>
	10.11 Synchronising Access to Run-Time Library <par.h>
	10.12 Sernaphores <sema.h>
	10.13 Emulating the filter Task <serv.h>
	10.14 Nonlocal Jumps <setjmp.h>
	10.15 Signal Handling <signal.h>
	10.16 Variable Arguments <stdarg.h>
	10.17 Input/Output <stdio.h>
	10.17.1 Stream I/O
	10.17.2 Binary I/O
	10.17.3 Text I/O
	10.17.4 Operations on Files
	10.17.5 File Access Functions
	10.17.6 Formatted Input/Output Functions
	10.17.7 Character Input/Output Functions
	10.17.8 Direct Input/Output Functions
	10.17.9 File Positioning Functions
	10.17.10 Error Handling Functions

	10.18 General Utilities <stdlib.h>
	10.18.1 String Conversion Functions
	10.18.2 Pseudo-Random Sequence Generation Functions
	10.18.3 Memory Management Functions
	10.18.4 Communication with the Environment
	10.18.5 Searching and Sorting Utilities
	10.18.6 Integer Arithmetic Functions
	10.18.7 Multibyte Character Functions
	10.18.8 Multibyte String Functions

	10.19 String Handling <string.h>
	10.19.1 Copying Functions
	10.19.2 Concatenation Functions
	10.19.3 Comparison Functions
	10.19.4 Search Functions
	10.19.5 Miscellaneous Functions

	10.20 Threads <thread.h>
	10.21 Date and Time <time.h>
	10.22 Transputer Timers <timer.h>

	11 Alphabetic List of Run-time Library Entries
	_filer_handle
	abort
	abs
	acos
	alloc86
	alt_nowait
	alt_nowait_vec
	alt_wait
	alt_wait_vec
	asin
	assert
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bdos
	boot_peek
	boot_poke
	bsearch
	calloc
	ceil
	chan_in_byte
	chan_in_byte_t
	chan_init
	chan_in_message
	chan_in_message_t
	chan_in_word
	chan_in_word_t
	chan_out_byte
	chan_out_byte_t
	chan_out_message
	chan_out_message_t
	chan_out_word
	chan_out_vord_t
	chan_reset
	clearerr
	clock
	cos
	cosh
	div
	errno
	exit
	exp
	fabs
	fclose
	feof
	ferror
	fflush
	fgetc
	fgetpos
	fgets
	floor
	fmod
	fopen
	fprintf
	fputc
	fputs
	fread
	free
	free86
	freopen
	frexp
	from86
	fscanf
	fseek
	fsetpos
	ftell
	fvrite
	gete
	getchar
	getenv
	gets
	inp
	int86
	int86x
	intdos
	intdosx
	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	Idiv
	localeconv
	log
	log10
	longjmp
	malloc
	mblen
	mbstowcs
	mbtowc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	net_broadcast
	net_receive
	net_send
	NULL
	offsetof
	outp
	par_free
	par_fprintf
	par_printf
	par_malloc
	par_sema
	perror
	pow
	printf
	putc
	putchar
	puts
	qsort
	raise
	rand
	reaIIoc
	remove
	rename
	rewind
	scanf
	segread
	sema_init
	sema_signal
	sema_signal_n
	sema_test_wait
	sema_wait
	sema_wait_n
	serv_filter
	setbuf
	setjmp
	setlocale
	setvbuf
	signal
	sin
	sinh
	sprintf
	sqrt
	srand
	sscanf
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	system
	tan
	tanh
	thread_create
	thread_deschedule
	thread_priority
	thread_restart
	thread_start
	thread_stop
	time
	timer_after
	timer_delay
	timer_now
	timer_wait
	tmpfile
	tmpnam
	tolower
	toupper
	to86
	ungetc
	va_arg
	va_end
	va_start
	vfprintf
	vprintf
	vsprintf
	wcstombs
	wctomb

	12 The Linker
	12.1 Command Line
	12.2 File Name Conventions
	12.3 The Output File
	12.4 Indirect Files
	12.5 Libraries
	12.6 The Executable Image
	12.7 Map Files
	12.8 T2 Support
	12.8.1 Switch /Msize
	12.8.2 Switch /Asize
	12.8.3 Switches /FC, /FA, /FS, and /FH
	12.8.4 Modified /F Switches
	12.8.5 Switch /Rsize

	12.9 Debug Tables
	12.10 Summary of Switches
	12.11 Using Batch Files
	12.12 Duplicate Definitions
	12.13 Messages

	13 The mempatch Utility
	13.1 Identifying mempatch
	13.2 Invoking mempatch
	13.3 Re-invoking mempatch

	14 The decode Utility
	14.1 Usage
	14.1.1 Compilation for the Decoder
	14.1.2 Running the Decoder

	14.2 Features of the decode Program
	14.3 Other Languages

	15 The worm Utility
	15.1 Notes

	16 The tnm Utility
	17 The tunlib Utility
	18 Configuration Language Reference
	18.1 Standard Syntactic Metalanguage
	18.2 Configuration Language Syntax
	18.2.1 Low Level Syntax
	18.2.2 Numeric Constants
	18.2.3 String Constants
	18.2.4 Identifiers
	18.2.5 Statements
	18.2.6 PROCESSOR Statement
	18.2.7 WIRE Statement
	18.2.8 TASK Statement
	18.2.9 CONNECT Statement
	18.2.10 PLACE Statement
	18.2.11 BIND Statement

	19 Flood-Fill Configurer Reference
	19.1 User Task Protocol
	19.1.1 Master Task's Ports
	19.1.2 Worker Task's Ports

	19.2 Packet Format

	20 Task Data Sheets
	Data Sheet: afserver
	Data Sheet: filter
	Data Sheet: frouter
	Data Sheet: filemux
	Data Sheet: stub

	Appendices
	A Distribution Kit
	A.1 Directory \tc2v2
	A.2 Directory \tc2v2\examples

	B Compatibility with T414A and T800A
	B.1 Problems with T414A
	B.1.1 Restriction on Message Lengths
	B.1.2 Problems with Timers

	B.2 Problems with T800A
	B.2.1 Floating-Point Conversion Problems
	B.2.2 Instruction Decode Problems

	C Building a Network
	C.1 Network Principles
	C.2 Network Requirements
	C.2.1 Requirements for Links
	C.2.2 Requirements for System Services

	C.3 Connecting a Network

	D Summary of Option Switches
	D.1 Compiler Switches
	D.2 Linker Switches
	D.3 afserver Switches
	D.4 General Purpose Configurer Switches

	E Transputer Instructions
	E.1 Pseudo-Instructions
	E.2 Prefixing Instructions
	E.3 Direct Instructions
	E.4 Operations
	E.5 T4-only Instructions
	E.6 T8-only Instructions
	E.6.1 Floating Point Instructions
	E.6.2 Other T8-only Instructions

	F Compatibility Functions
	F.1 Introduction
	F.1.1 ASCII Control Codes <ascii.h>
	F.1.2 Channel Communications <chanio.h>
	F.1.3 Variable Arguments <varargs.h>

	F.2 Low-Level I/O
	F.3 Alphabetic List of Compatibility Functions

	G Mandelbrot Program Listings
	G.1 Mandelbrot Example Master Task
	G.2 Mandelbrot Example Worker Task
	G.3 Header File
	G.4 Configuration File

	H ASCII Code Chart
	Bibliography
	Index

