
inmmos®®

Andy Whitlow

SW-0064-4

INMOS Limited Confidential

APPROVED 11 June, 1990

Occam Run-time Model Specification

INMOS Limited Confidential Occam Runtime Specification

1 Introduction 2
2 Scheduling 2
3 Communication 2
4 Error Modes 2
5 Type Mapping 3

5.1 32 Bit Machine 3
5.2 16 Bit Machine 4
5.3 Aggregate Types 5
5.4 Virtual Channels 8
5.5 Timers 8

6 Parameter Passing 8
6.1 VAL parameters 8
6.2 Non-VAL parameters 8

7 Calling Sequence 9
7.1 Registers 9
7.2 Invocation stack 9
7.3 Iret 10
7.4 Parameters 10

8 Function return state 10
8.1 Registers 10
8.2 Return values 10

9 Memory Allocation 11
9.1 Workspace Allocation 11
9.2 Vectorspace Allocation 12

10 Initialisation 12
10.1 Occam Program Interface 12

APPROVED 11.6.90 1 SW-0064-4

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Contents

INMOS Limited Confidential Occam Runtime Specification

This document describes the runtime environment for the product Occam compiler, .

Processes in occam may have one of two priorites, high or low. A high priority process will be executed
in preference to a low priority process if both are active, so that the low priority process will be inter-
rupted. A high priority process is initiated by using the PRI PAR construct which takes two processes,
the first of which is to be executed at high priority. PRI PAR constructs may not be nested.

Scheduling in occam is achieved using the transputer’s scheduler. This scheduler enables any number
of concurrent processes to be executed together, sharing processor time.

At any time a concurrent process may be :

1 - being executed or waiting to be executed.

2 - ready to communicate or waiting until a specified time.

The scheduler maintains lists of processes. These lists are implemented using special registers pointing
to the list head and list tail in workspace. Each process uses special below workspace slots (see section
9.1) to chain the workspaces in the list together.

There exist two compiler predefines which affect scheduling. They are:

1 : This inserts a instruction into the program. An additional
is inserted if the program is compiled in STOP or UNIVERSAL mode.

2 : This inserts enough instructions into the program to cause the current
process to be placed onto the back of the process queue.

For more information on scheduling see [1].

Communication between occam processes is achieved by means of channels. occam communication
is point-to-point, synchronised and unbuffered.

Communication takes place when both the inputting and outputting processes are ready. Consequently,
the process which first becomes ready must wait until the second one is also ready.

For more information on communication see [1].

supports 3 levels of error handling. These are:

APPROVED 11.6.90 2 SW-0064-4

1 Introduction

2 Scheduling

3 Communication

4 Error Modes

oc

Active

Inactive

CAUSEERROR() seterr stoperr

RESCHEDULE()

oc

INMOS Limited Confidential Occam Runtime Specification

In this mode an error causes the transputer to halt. The transputers flag should
be TRUE.

In this mode an error in a process will cause that particular process to stop. The transputers
flag should be false.

This mode is a generic error mode that can be used with modules compiled in Halt
or Stop mode. It behaves like Halt or Stop mode depending on the state of the transputer

flag. A module compiled in Halt or Stop mode may call a module compiled
in Universal mode but NOT vice versa. A module compiled in Universal mode may only call
another Universal module.

mode is no longer directly supported, however it can be implemented by use of a compiler
pragma or switch which disables run-time checks.

For more information on the occam error modes see [2].

This section defines all the occam types and how they are represented in the processors.

All items are word aligned and are little-endian.

The occam types are represented on a 32-bit transputer as described in the following table.

APPROVED 11.6.90 3 SW-0064-4

5.1 32 Bit Machine

5 Type Mapping

Halt HaltonError

Stop
HaltonError

Universal

HaltonError

Undefined

INMOS Limited Confidential Occam Runtime Specification

BOOL Represented in a word in which the lowest
bit is significant, the upper bits are zero.

BYTE Represented in a word in which the lower eight
bits are significant, the upper bits are zero.

INT Represented in a word in which all 32 bits are significant
INT32 using twos complement form.

INT16 Represented in a word in which the lower sixteen bits
are significant using twos complement form, the upper bits are undefined.

INT64 Represented in two words in which all 64 bits are significant
using twos complement form.

REAL32 Represented in a word, in IEEE single-precision format.

REAL64 Represented in two words, in IEEE double-precision format.

TIMER A timer occupies no storage.

CHAN A channel is implemented as a pointer to a channel word.

Previous compilers implemented a channel as a word in memory
containing the channel value. This implementation can be
obtained by use of a compiler switch.

PORT Ports are represented the same way as the datatype for which they
are a port.

The occam types are represented on a 16-bit transputer as described in the following table.

APPROVED 11.6.90 4 SW-0064-4

5.2 16 Bit Machine

INMOS Limited Confidential Occam Runtime Specification

BOOL Represented in a word in which the lowest
bit is significant, the upper bits are zero.

BYTE Represented in a word in which the lower eight
bits are significant, the upper bits are zero.

INT Represented in a word in which all 16 bits are significant
INT16 using twos complement form.

INT32 Represented in two words in which all 32 bits are significant
using twos complement form.

INT64 Represented in four words in which all 64 bits are significant
using twos complement form.

REAL32 Represented in two words, in IEEE single-precision format.

REAL64 Represented in four words, in IEEE double-precision format.

TIMER A timer occupies no storage.

CHAN A channel is implemented as a pointer to a channel word.

Previous compilers implemented a channel as a word in memory
containing the channel value. This implementation can be
obtained by use of a compiler switch.

PORT Ports are represented the same way as the datatype for which they
are a port.

Arrays are packed. The following table denotes the representation of each element in an array for a
given type on a 32 bit transputer:

APPROVED 11.6.90 5 SW-0064-4

5.3 Aggregate Types

INMOS Limited Confidential Occam Runtime Specification

BOOL Each element is represented as a byte in which the
lowest bit is significant, the upper bits are zero.

BYTE Each element is represented in a byte in which all the
bits are significant, the upper bits are zero.

INT Each element is represented in a word in which all 32 bits
INT32 are significant using twos complement form.

INT16 Each element is represented in two bytes in which all
16 bits are significant using twos complement form.

INT64 Each element is represented in two words in which all
64 bits are significant using twos complement form.

REAL32 Each element is represented in a word, in IEEE
single-precision format.

REAL64 Each element is represented in two words, in
IEEE double-precision format.

TIMER An array of timers occupies no storage.

CHAN Each element is represented as a pointer to a word
in memory containing the channel contents.

Previous compilers implemented each element as a word in memory
containing the channel value. This implementation can be
obtained by use of a compiler switch.

PORT Each element is represented in the same way as the
array element representation for the datatype for
which it is a port.

The following table denotes the representation of each element in an array for a given type on a 16 bit
transputer:

APPROVED 11.6.90 6 SW-0064-4

INMOS Limited Confidential Occam Runtime Specification

BOOL Each element is represented as a byte in which the
lowest bit is significant, the upper bits are zero.

BYTE Each element is represented in a byte in which all the
bits are significant, the upper bits are zero.

INT Each element is represented in a word in which all 16 bits
INT16 are significant using twos complement form.

INT32 Each element is represented in two words in which all
32 bits are significant using twos complement form.

INT64 Each element is represented in four words in which all
64 bits are significant using twos complement form.

REAL32 Each element is represented in two words, in IEEE
single-precision format.

REAL64 Each element is represented in four words, in
IEEE double-precision format.

TIMER An array of timers occupies no storage.

CHAN Each element is represented as a pointer to a word
in memory containing the channel contents.

Previous compilers implemented each element as a word in memory
containing the channel value. This implementation can be
obtained by use of a compiler switch.

PORT Each element is represented in the same way as the
array element representation for the datatype for
which it is a port.

Protocol tags are represented by 8-bit values. The compiler allocates such values from 0(BYTE)
upwards in order of declaration .

APPROVED 11.6.90 7 SW-0064-4

INMOS Limited Confidential Occam Runtime Specification

Virtual channels are represented as a pointer to an area of memory which is used for the communication.
Communication on a virtual channel is achieved by passing the virtual channel pointer to the virtual
channel communication routines in a similar fashion to a normal communication where the address of
a channel word is used as an operand to one of the channel communication instructions.

Currently a virtual channel is distinguished from a normal channel by means of the bottom bit of its
address. If this bit is set then the channel is a virtual channel.

For more information on virtual channels see [3].

Timers make use of the transputer’s clock. The low priority clock increments at a rate of 15625 ticks
per second (1 tick = 64 microseconds). The high priority clock increments at a rate of 1000000 ticks
per second (1 tick = 1 microsecond).

Parameters are divided into VAL and non-VAL parameters. These have different semantics and may
be passed differently.

Scalar values that fit within the wordlength of the target machine are represented as items one word
long containing the value of the parameter.

In the case of BYTE and BOOL, the value is found in the low-order byte of the word and the high order
bytes are guaranteed to be zero.

In the case of an INT16 parameter on a 32-bit processor, the value resides in the low-order 2 bytes of
the word. The high-order bytes are undefined.

If the parameter is a primitive type that will not fit into a processor word, then it is passed as a pointer
to the actual value.

If the parameter is an array, it may have some of its strides undefined in the source. In this case, extra
parameters are passed containing the integer values of the missing strides. These parameters are
placed immediately after the address of the first element of the array, which constitutes the parameter
representation. They appear in the same order as the missing strides appear in the source.

Timers, channels and ports can never be VAL parameters.

Since these parameters change the actual parameters passed, the formal parameters are always
represented as pointers to the actuals (except for timers - see below).

APPROVED 11.6.90 8 SW-0064-4

5.4 Virtual Channels

5.5 Timers

6.1 VAL parameters

6.2 Non-VAL parameters

6 Parameter Passing

INMOS Limited Confidential Occam Runtime Specification

If the parameter is an array, then it is treated the same way as a VAL parameter with any missing
strides following the address of the first element.

If the parameter is a timer, it occupies no storage and so no parameter slot is reserved for it.

This section describes the state on entry to the called routine.

Areg is undefined. In fact, if the occam code calls a library routine, then the is done by means of
a call instruction to a stub, which then does a to the true entry point. The linker patches the code
where this is to provide the correct offset. This could destroy the register stack contents because
of the possibility of a timeslice occuring, in this case all three registers would be undefined. (Calls to
procedures and functions defined within the same compilation module cannot timeslice).

In the T800, the floating point registers are never assumed to have any values.

Iptr addresses the first instruction of the invoked procedure or function.

Wptr addresses the invocation stack frame (see next section). It must be word aligned.

The invocation stack at entry to a procedure or function is addressed by non-negative offsets from
Wptr. Negative offsets are in the free (unused) part of the invocation stack.

APPROVED 11.6.90 9 SW-0064-4

����

�

� �

7.1 Registers

7.2 Invocation stack

7 Calling Sequence

word | | (high addresses)
offset | |

|---------------|
n | parm n | (last parameter passed in)

| |
: :

4 | parm 4 | (first parm stored by caller)
|---------------|

3 | parm 3 | (C reg as saved by call instruction)
|---------------|

2 | parm 2 | (B reg as saved by call instruction)
|---------------|

1 | parm 1 | (A reg as saved by call instruction)
|---------------|

0 | Iret | (return address if call used)
|---------------| <--- Wptr

-1 | free |
: :
|---------------| (top of stack)

INMOS Limited Confidential Occam Runtime Specification

In all cases, the value of Iret has been stored before the first instruction of the called proc is executed.

The parameters to the procedure are found at successive words from Wptr+ (words), where 1 = = 3.
The first two parameters are optionally the static link and vector space address (In some cases the
vector space address may be the last parameter - see below). Each parameter occupies just one word.
The source code parameters are placed in the appropriate number of parameter words (see below for
details) in the lexical order in the source program.

The pointers to indicate the FUNCTION return value positions (if there are any) come before all the
source parameters (see below).

In some cases, the procedure needs the address of the outer level stack frame (the static link). In this
case, it is the first parameter to the procedure or function. (Note that this is never true for externally
visible functions).

If the procedure being called allocates arrays in the vector space, the current value of the vector space
pointer is also passed in as a parameter. For calls to externally visible procedures or functions the
parameter is the last one of all. Otherwise, the parameter is the first following the static link (if any).
This parameter is optional.

The Areg, Breg and Creg contain the first three word scalar values in that order; except in the case of
a floating point transputer, e.g. the T800, returning a single floating value (either REAL32 or REAL64).

For the floating point transputers only, if there is a single floating point return value (and no other return
values at all), then the value is returned in FAreg. Otherwise, floating values are returned in the same
manner as other return values, i.e. in an integer register if they fit, or via a pointer for values larger
than a word (see below). In all cases, FBreg and FCreg have undefined contents.

Wptr has the same value as before the instruction which was used to enter the routine.

Iptr addresses the instruction following the call.

Return values are found in various places depending on their datatype and the number of them.

The first three values of a word scalar type are returned in the Areg, Breg and Creg respectively.

For the floating point transputers only, if there is a single return value, and it is of a floating point type
(REAL32, REAL64), then it is returned in FAreg. If there are at least two return values, then all the
floating type values are returned like any other values, ie. REAL32 are returned in an integer register,
if they fit, and REAL64 values are returned in slots as described next.

APPROVED 11.6.90 10 SW-0064-4

� � � �

7.3 Iret

7.4 Parameters

8.1 Registers

8.2 Return values

8 Function return state

call

INMOS Limited Confidential Occam Runtime Specification

All other values are returned in slots, whose addresses were passed as extra parameters to the function.
These extra parameters are added at the start of the list of normal parameters in the order defined in
the list in the source code.

The memory map of the default occam run-time system is as follows:

Note that a separate workspace (stack memory) may be allocated by the bootstrap tool. This extra
workspace is positioned at , below the occam workspace. (see section 10 for more details).

Scalar variables are placed in the workspace area and addressed via the Wptr. The compiler will
allocate them and supply the debugger with information on where each variable is found. Variables
in workspace are allocated on the basis of their estimated usage. The most used variables are given
smaller offsets in workspace.

There are a number of different situations in which workspace is allocated. They are as follows:

: The workspace for a called routine is allocated from higher to lower
addresses, i.e. it grows down memory. This means that the workspace for a called procedure
is nearer than the workspace for the caller.

: In a PAR or PRI PAR construct the last textually defined
process is allocated the lowest addressed workspace.

: In a replicated PAR construct the instance with the highest replication
count is allocated the lowest workspace address.

There are also situations where special workspace slots are used for scheduling, communication and
timer input. These special slots have small negative offsets from the Wptr. A small number of in-
structions use the slot (Wptr + 0) as an extra register. These instructions are , ,

APPROVED 11.6.90 11 SW-0064-4

�

�

�

9.1 Workspace Allocation

9 Memory Allocation

MOSTNEG INT + IBOARDSIZE --> +---------------+
| |
| FREE |
| MEMORY |
| |
+---------------+
| VECTOR |
| SPACE |
+---------------+
| |
| CODE |
| |
+---------------+
| SCALAR SPACE |
| (WORKSPACE) |

MemStart --> +---------------+
| RESERVED |

MOSTNEG INT --> +---------------+

MemStart

Called Routines

MOSTNEG INT

PAR or PRI PAR constructs

Replicated PAR

outword outbyte

INMOS Limited Confidential Occam Runtime Specification

and instructions to implement .

The following table describes the situations where special slots or workspace zero will be used by a
process:

Process with no I/O 2 words
Process with only unconditional I/O using and 3 words
Process with only unconditional I/O using or 3 words
Process with alternative input 3 words
Process with timer input 5 words
Process with alternative timer input 5 words

For more information on special workspace slots see [2].

If vectorspace is enabled then objects larger than 8 bytes (apart from those explicitly placed in workspace)
are allocated in a separate data space. Objects in vectorspace are accessed via a vectorspace pointer
which is passed as a parameter to each routine which uses vectorspace or has descendants which
use vectorspace.

The allocation of vectorspace is similar to that of workspace. The difference being that vectorspace
grows upward in memory, i.e. the data space for a called procedure is at a higher address than the
data space of its caller.

The outermost procedure of an occam program, which is to be booted using the icollect tool, must
conform to one of two possible procedure declarations:

Default occam interface:

This represents the simplest case, where the memory map as shown above applies.

The program interface:

Note that the program name can be any valid occam identifier.

The parameters are as follows:

APPROVED 11.6.90 12 SW-0064-4

�
�

�

�

Process Type Special Slots Wptr + 0

9.2 Vectorspace Allocation

10.1 Occam Program Interface

10 Initialisation

postnormsn ALT

in out

outbyte outword

#INCLUDE "hostio.inc"
PROC program (CHAN OF SP from.link,

CHAN OF SP to.link,
[]INT free.memory)

INMOS Limited Confidential Occam Runtime Specification

: The input channel of the transputer link down which the trans-
puter was booted.

: The output channel of the transputer link down which the trans-
puter was booted.

: An array representation of the unallocated memory, i.e,
points to the first location beyond vector space and has the

same number of elements as there are words in the unallocated memory
space.

occam interface when access to stack.memory workspace is required:

In this case the memory map may have an extra area beginning at as follows:

The program interface:

Note that the program name can be any valid occam identifier.

The parameters are as follows:

: The input channel of the transputer link down which the trans-
puter was booted.

: The output channel of the transputer link down which the trans-
puter was booted.

: An array representation of the unallocated memory, i.e,
points to the first location beyond vector space and has the

same number of elements as there are words in the unallocated memory
space.

: An array representation of the non-occam workspace.
i.e, points to the and has the same number of
elements as there are words in the non-occam workspace.

The non-occam workspace is allocated by the bootstrap tool if requested by the user.

occam interface for use with the new configuration system.

APPROVED 11.6.90 13 SW-0064-4

�

�

from.link

to.link

free.memory
free.memory

MemStart

: :
| CODE |
| |
+---------------+
| SCALAR SPACE |
| (WORKSPACE) |
+---------------+
| STACK.MEMORY |
| WORKSPACE |
+---------------+ <--- MemStart
| RESERVED |
+---------------+ <--- MOSTNEG INT

#INCLUDE "hostio.inc"
PROC program (CHAN OF SP from.link,

CHAN OF SP to.link,
[]INT free.memory,
[]INT stack.memory)

from.link

to.link

free.memory
free.memory

stack.memory
stack.memory Memstart

INMOS Limited Confidential Occam Runtime Specification

The program interface:

Note that the program name can be any valid occam identifier.

The single parameter is an array containing information about the process. This information
defines the memory map and contains information about extra parameters to the process.

The array also contains a field which is the address of a further array which contains information
about the processor.

A detailed explanation of this interface is given in [4].

APPROVED 11.6.90 14 SW-0064-4

#INCLUDE "initcode.inc" -- contains definition of PROCESS.SIZE
PROC program ([PROCESS.SIZE]ProcessData)

INMOS Limited Confidential Occam Runtime Specification

[1] David May and Roger Shepherd.

INMOS Technical Note 21.

[2] INMOS Ltd.

[3] Malcolm Boffey.

[4] Antony King.

SW-0029.

APPROVED 11.6.90 15 SW-0064-4

The Transputer Implementation of occam.

Transputer Instruction Set (A compiler writers guide).

A Software Implementation of Virtual Links.

Configured Executable Interface.

References

	Contents
	1 Introduction
	2 Scheduling
	3 Communication
	4 Error Modes
	5 Type Mapping
	5.1 32 Bit Machine
	5.2 16 Bit Machine
	5.3 Aggregate Types
	5.4 Virtual Channels
	5.5 Timers

	6 Parameter Passing
	6.1 VAL parameters
	6.2 Non-VAL parameters

	7 Calling Sequence
	7.1 Registers
	7.2 Invocation stack
	7.3 Iret
	7.4 Parameters

	8 Function return state
	8.1 Registers
	8.2 Return values

	9 Memory Allocation
	9.1 Workspace Allocation
	9.2 Vectorspace Allocation

	10 Initialisation
	10.1 Occam Program Interface

	References

