
inmmos®®

Conor O’Neill and Stephen Clarke

SW-0063-5

INMOS Limited Confidential

APPROVED 4 March, 1991

occam-2 compiler library specification



INMOS Limited Confidential occam-2 compiler library specification

1 Change history 2
1.1 Changes since issue of SW-0063-4. 2
1.2 Changes since issue of SW-0063-3. 2
1.3 Changes since issue of SW-0063-2 of February 1, 1990 2
1.4 Changes since issue of January 24, 1990 2

2 Introduction 2
3 Operations 4

3.1 operations 4
3.2 operations 5
3.3 operations 5
3.4 operations 6
3.5 operations 7

4 Type conversions 8
4.1 conversions 8
4.2 conversions 8
4.3 conversions 8
4.4 conversions 9
4.5 conversions 9

5 Predefined routines 10
5.1 Multiple-length integer arithmetic functions 10
5.2 Floating point functions 11
5.3 Full IEEE arithmetic functions 12
5.4 Transputer-specific predefined routines 13

5.4.1 General purpose routines 13
5.4.2 Block Move routines 14
5.4.3 Cyclic redundancy checking 14
5.4.4 Bit manipulation routines 14
5.4.5 Floating point support routines 15
5.4.6 Dynamic code loading 15

6 Summary 16
7 Interactive debugger support 19

APPROVED 4.3.91 1 SW-0063-5

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Contents

INT16
INT32
INT64
REAL32
REAL64

INT16
INT32
INT64
REAL32
REAL64



INMOS Limited Confidential occam-2 compiler library specification

Changed names of routines to end in or .

to conversion routines only required for 16-bit.

Added predefines and .

The compiler libraries have been coalesced from nine into three.

Added TA and TB tables in the summary.

TA version of is compiled inline.

Compiler libraries are now provided in UNIVERSAL mode.

This document lists all the library routines which may be called implicitly by code compiled by the Inmos
occam compiler, and the conditions in which they will be called. It also lists the predefined routines
which must be supplied in library form.

The occam compiler can compile in HALT, STOP or UNIVERSAL error mode; therefore it may expect
to find these routines in any of these error modes in the compiler libraries.

The table in section 6 details which processors each routine should be available for.

The occam compiler needs to read a compiler library when it has to compile a call into that compiler
library, as it needs to know the workspace and vector space requirements of the called routine. For
efficiency reasons, the compiler insists that the library routines do not use vectorspace, hence a vec-
torspace parameter is never needed. Theoretically, the compiler should also check that the formal
parameters are of the correct types. This is not done at present.

The occam compiler assumes the following names for the compiler libraries:

APPROVED 4.3.91 2 SW-0063-5

�

�

�

�

�

�

�

1.1 Changes since issue of SW-0063-4.

1.2 Changes since issue of SW-0063-3.

1.3 Changes since issue of SW-0063-2 of February 1, 1990

1.4 Changes since issue of January 24, 1990

1 Change history

2 Introduction

%O %CHK

REAL INT16

IEEE32REM IEEE64REM

NOTFINITE



INMOS Limited Confidential occam-2 compiler library specification

Target processor
T212 T414 T800
T222 T425 T801
T225 T400 T805

Error mode M212 TA / TB
Any occam2.lib occama.lib occam8.lib

A routine is a routine which is automatically defined by the compiler before the first line of
user source. These may be descoped in the same way as any other identifier. Predefined routines
are in some cases translated into inline code sequences and in other cases into calls into the compiler
libraries. For the sake of completeness, this document lists predefined routine names recognised
by the compiler: those predefined routines which are compiled inline for particular target processors
will not appear in the compiler library for that processor. Those predefined routines which are
compiled inline will not appear in any compiler library.

This document only details the entry points of the compiler libraries as required by the compiler: any
routines which are internal to the compiler libraries are not listed. These are currently implemented in
another library which holds routines for all processor types and error modes.

APPROVED 4.3.91 3 SW-0063-5

predefined

all

always

occamutl.lib



INMOS Limited Confidential occam-2 compiler library specification

A routine of the form

performs the occam operation upon operands of occam type , where is one of ,
, , or , and is one of , , , , , , , ,

, , , , , , , or .

For example, performs the occam operation upon two operands of type .

The routines and implement the occam operations , ,
and upon and operands respectively. The parameter takes the following values:

Value Meaning
0 Add (occam )
1 Subtract (occam )
2 Multiply (occam )
3 Divide (occam )

The routines and implement the occam remainder opera-
tion upon and operands respectively. They are equivalent to , ,

and (see “occam 2 Reference Manual”, Prentice-Hall 1988) except that they
perform occam error checking for errors and overflows, rather than the IEEE method of using infinities
and Not-a-Numbers.

The routines , , , and
perform the occam operations and upon and operands. They are equivalent to

, , and (see “occam 2 Reference Manual”, Prentice-Hall
1988) except that they perform occam error checking for errors and overflows, rather than the IEEE
method of using infinities and Not-a-Numbers.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

APPROVED 4.3.91 4 SW-0063-5

�

�

�

�

�

�

type op

op type type
op

3.1 operations

3 Operations

%CHK

INT16
INT32 INT64 REAL32 REAL64 ADD SUB MUL DIV REM PLUS MINUS TIMES
BITAND BITOR XOR BITNOT LSHIFT RSHIFT XOR GT EQ

INT32PLUS%CHK PLUS INT32

REAL32OPERR%CHK REAL64OPERR%CHK + - *
/ REAL32 REAL64 Op

+

-

*

/

REAL32REMERR%CHK REAL64REMERR%CHK
REAL32 REAL64 REAL32OP REAL64OP

REAL32REM REAL64REM

REAL32EQERR%CHK REAL64EQERR%CHK REAL32GTERR%CHK REAL64GTERR%CHK
= > REAL32 REAL64

REAL32EQ REAL64EQ REAL32GT REAL64GT

INT16 FUNCTION INT16ADD%CHK (VAL INT16 A, VAL INT16 B)
+ INT16

INT16 FUNCTION INT16SUB%CHK (VAL INT16 A, VAL INT16 B)
- INT16

INT16 FUNCTION INT16MUL%CHK (VAL INT16 A, VAL INT16 B)
* INT16

INT16 FUNCTION INT16DIV%CHK (VAL INT16 A, VAL INT16 B)
/ INT16

INT16 FUNCTION INT16REM%CHK (VAL INT16 A, VAL INT16 B)
REM INT16

INT16 FUNCTION INT16PLUS%CHK (VAL INT16 A, VAL INT16 B)
PLUS INT16

INT16



INMOS Limited Confidential occam-2 compiler library specification

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 32-bit processor.

This routine is called to perform upon an on a 32-bit processor.

This routine is called to perform upon an on a 32-bit processor.

This routine is called to perform upon an on a 32-bit processor.

This routine is called to perform , , and upon two s on a 32-bit processor.

This routine is called to perform , and upon two s on a 32-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on all processors.

This routine is called to perform upon two s on all processors.

APPROVED 4.3.91 5 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3.2 operations

3.3 operations

INT16 FUNCTION INT16MINUS%CHK (VAL INT16 A, VAL INT16 B)
MINUS INT16

INT16 FUNCTION INT16TIMES%CHK (VAL INT16 A, VAL INT16 B)
TIMES INT16

INT16 FUNCTION INT16BITAND%CHK (VAL INT16 A, VAL INT16 B)
BITAND INT16

INT16 FUNCTION INT16BITOR%CHK (VAL INT16 A, VAL INT16 B)
BITOR INT16

INT16 FUNCTION INT16XOR%CHK (VAL INT16 A, VAL INT16 B)
>< INT16

INT16 FUNCTION INT16LSHIFT%CHK (VAL INT16 A, VAL INT B)
<< INT16

INT16 FUNCTION INT16RSHIFT%CHK (VAL INT16 A, VAL INT B)
>> INT16

INT16 FUNCTION INT16BITNOT%CHK (VAL INT16 A)
BITNOT INT16

BOOL FUNCTION INT16GT%CHK (VAL INT16 A, VAL INT16 B)
< <= >= > INT16

BOOL FUNCTION INT16EQ%CHK (VAL INT16 A, VAL INT16 B)
= <> INT16

INT32 FUNCTION INT32MUL%CHK (VAL INT32 A, VAL INT32 B)
* INT32

INT32 FUNCTION INT32DIV%CHK (VAL INT32 Dvd, VAL INT32 Dvsr)
/ INT32

INT32 FUNCTION INT32REM%CHK (VAL INT32 Dvd, VAL INT32 Dvsr)
REM INT32

INT64 FUNCTION INT64ADD%CHK (VAL INT64 A, VAL INT64 B)
+ INT64

INT64 FUNCTION INT64SUB%CHK (VAL INT64 A, VAL INT64 B)
- INT64

INT64 FUNCTION INT64MUL%CHK (VAL INT64 U, VAL INT64 V)
* INT64

INT64 FUNCTION INT64DIV%CHK (VAL INT64 U, VAL INT64 V)
/ INT64

INT32

INT64



INMOS Limited Confidential occam-2 compiler library specification

This routine is called to perform upon two s on all processors.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon two s on a 16-bit processor.

This routine is called to perform upon an on a 16-bit processor.

This routine is called to perform upon an on a 16-bit processor.

This routine is called to perform upon an on a 16-bit processor.

This routine is called to perform , , and upon two s on a 16-bit processor.

This routine is called to perform and upon two s on a 16-bit processor.

This routine is called to perform , , and upon two s on a processor with no
floating-point unit.

This routine is called to perform upon two s on a processor with no floating-point
unit.

This routine is called to perform , , and upon two s on a processor with no
floating-point unit.

This routine is called to perform , and upon two s on a processor with no floating-
point unit.

APPROVED 4.3.91 6 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3.4 operations

INT64 FUNCTION INT64REM%CHK (VAL INT64 U, VAL INT64 V)
REM INT64

INT64 FUNCTION INT64PLUS%CHK (VAL INT64 A, VAL INT64 B)
PLUS INT64

INT64 FUNCTION INT64MINUS%CHK (VAL INT64 A, VAL INT64 B)
MINUS INT64

INT64 FUNCTION INT64TIMES%CHK (VAL INT64 U, VAL INT64 V)
TIMES INT64

INT64 FUNCTION INT64BITAND%CHK (VAL INT64 U, VAL INT64 V)
BITAND INT64

INT64 FUNCTION INT64BITOR%CHK (VAL INT64 U, VAL INT64 V)
BITOR INT64

INT64 FUNCTION INT64XOR%CHK (VAL INT64 U, VAL INT64 V)
>< INT64

INT64 FUNCTION INT64LSHIFT%CHK (VAL INT64 B, VAL INT Places)
<< INT64

INT64 FUNCTION INT64RSHIFT%CHK (VAL INT64 B, VAL INT Places)
>> INT64

INT64 FUNCTION INT64BITNOT%CHK (VAL INT64 B)
BITNOT INT64

BOOL FUNCTION INT64GT%CHK (VAL INT64 U, VAL INT64 V)
<= < >= > INT64

BOOL FUNCTION INT64EQ%CHK (VAL INT64 U, VAL INT64 V)
= <> INT64

REAL32 FUNCTION REAL32OPERR%CHK (VAL REAL32 X,VAL INT Op,VAL REAL32 Y)

+ - * / REAL32

REAL32 FUNCTION REAL32REMERR%CHK (VAL REAL32 X,VAL REAL32 Y)
REM REAL32

BOOL FUNCTION REAL32GTERR%CHK (VAL REAL32 X,VAL REAL32 Y)
< <= >= > REAL32

BOOL FUNCTION REAL32EQERR%CHK (VAL REAL32 X,VAL REAL32 Y)
= <> REAL32

REAL32



INMOS Limited Confidential occam-2 compiler library specification

This routine is called to perform , , and upon two s on a processor with no
floating-point unit.

This routine is called to perform upon two s on a processor with no floating-point
unit.

This routine is called to perform , , and upon two s on a processor with no
floating-point unit.

This routine is called to perform , and upon two s on a processor with no floating-
point unit.

APPROVED 4.3.91 7 SW-0063-5

�

�

�

�

3.5 operations

REAL64 FUNCTION REAL64OPERR%CHK (VAL REAL64 X,VAL INT Op,VAL REAL64 Y)

+ - * / REAL64

REAL64 FUNCTION REAL64REMERR%CHK (VAL REAL64 X,VAL REAL64 Y)
REM REAL64

BOOL FUNCTION REAL64GTERR%CHK (VAL REAL64 X,VAL REAL64 Y)
< <= >= > REAL64

BOOL FUNCTION REAL64EQERR%CHK (VAL REAL64 X,VAL REAL64 Y)
= <> REAL64

REAL64



INMOS Limited Confidential occam-2 compiler library specification

A routine of the form

performs the occam type conversion from to , where and are one of ,
, , or . type conversions take a rounding mode if the conversion

cannot be performed exactly, which may take the values:

Mode Meaning
0 Round to zero (occam )
1 Round to nearest (occam )

This routine is called to type convert an to an on a 16-bit processor.

This routine is called to type convert an to a on a 16-bit processor.

This routine is called to type convert an to a on a 16-bit processor.

This routine is called to type convert an to an on a 16-bit processor.

This routine is called to type convert an to a on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert an to a on a processor with no floating-
point unit.

This routine is called to type convert an to an on a 16-bit processor.

This routine is called to type convert an to an on a 16-bit processor.

This routine is called to type convert an to a on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

APPROVED 4.3.91 8 SW-0063-5

�

�

�

�

�

�

�

�

�

type1 type2

type1 type2 type1 type2

4.1 conversions

4.2 conversions

4.3 conversions

4 Type conversions

TO %CHK

INT16
INT32 INT64 REAL32 REAL64 REAL

TRUNC

ROUND

INT64 FUNCTION INT16TOINT64%CHK (VAL INT16 B)
INT16 INT64

REAL32 FUNCTION INT16TOREAL32%CHK (VAL INT16 N)
INT16 REAL32

REAL64 FUNCTION INT16TOREAL64%CHK (VAL INT16 N)
INT16 REAL64

INT64 FUNCTION INT32TOINT64%CHK (VAL INT32 B)
INT32 INT64

REAL32 FUNCTION INT32TOREAL32%CHK (VAL INT Mode,VAL INT32 N)
INT32 REAL32

ROUND
TRUNC

REAL64 FUNCTION INT32TOREAL64%CHK (VAL INT32 N)
INT32 REAL64

INT16 FUNCTION INT64TOINT16%CHK (VAL INT64 B)
INT64 INT16

INT32 FUNCTION INT64TOINT32%CHK (VAL INT64 B)
INT64 INT32

REAL32 FUNCTION INT64TOREAL32%CHK (VAL INT Mode,VAL INT64 N)
INT64 REAL32

ROUND
TRUNC

INT16

INT32

INT64



INMOS Limited Confidential occam-2 compiler library specification

This routine is called to type convert an to a on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert a to an on a 16-bit processor. The
rounding mode will be round to nearest if a conversion is specified, or round to zero if
a conversion is specified.

This routine is called to type convert a to an on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert a to an on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert a to a on a processor with no floating-
point unit.

This routine is called to type convert a to an on a 16-bit processor. The
rounding mode will be round to nearest if a conversion is specified, or round to zero if
a conversion is specified.

This routine is called to type convert a to an on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert a to an on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

This routine is called to type convert a to a on a processor with no floating-
point unit. The rounding mode will be round to nearest if a conversion is specified, or
round to zero if a conversion is specified.

APPROVED 4.3.91 9 SW-0063-5

�

�

�

�

�

�

�

�

�

4.4 conversions

4.5 conversions

REAL64 FUNCTION INT64TOREAL64%CHK (VAL INT Mode,VAL INT64 N)
INT64 REAL64

ROUND
TRUNC

INT16 FUNCTION REAL32TOINT16%CHK (VAL INT Mode,VAL REAL32 X)
REAL32 INT16
ROUND

TRUNC

INT32 FUNCTION REAL32TOINT32%CHK (VAL INT Mode,VAL REAL32 X)
REAL32 INT32

ROUND
TRUNC

INT64 FUNCTION REAL32TOINT64%CHK (VAL INT Mode,VAL REAL32 X)
REAL32 INT64

ROUND
TRUNC

REAL64 FUNCTION REAL32TOREAL64%CHK (VAL REAL32 X)
REAL32 REAL64

INT16 FUNCTION REAL64TOINT16%CHK (VAL INT Mode,VAL REAL64 X)
REAL64 INT16
ROUND

TRUNC

INT32 FUNCTION REAL64TOINT32%CHK (VAL INT Mode,VAL REAL64 X)
REAL64 INT32

ROUND
TRUNC

INT64 FUNCTION REAL64TOINT64%CHK (VAL INT Mode,VAL REAL64 X)
REAL64 INT64

ROUND
TRUNC

REAL32 FUNCTION REAL64TOREAL32%CHK (VAL INT Mode,VAL REAL64 X)
REAL64 REAL32

ROUND
TRUNC

REAL32

REAL64



INMOS Limited Confidential occam-2 compiler library specification

The occam compiler automatically recognises a large number of predefined routines, which are in some
cases translated into inline code sequences and in other cases into calls into the compiler libraries.
Note that all the compiler libraries have entry point names which are formed by adding to the end
of the predefine name. This section lists all of these names, and describes when they will be generated
inline, and when they will be calls into the compiler libraries. The actual code which is generated for
the inline expansions is described in SW-0078 (“Code generated for predefined routines”).

All predefined routines named here are specified in SW-0044 (“occam 2 Language Implementation
Manual”) or “occam 2 Reference Manual”, Prentice-Hall 1988.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

APPROVED 4.3.91 10 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

5.1 Multiple-length integer arithmetic functions

5 Predefined routines

‘%O’

INT FUNCTION LONGADD (VAL INT left, right, carry.in)

INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

INT, INT FUNCTION LONGDIV (VAL INT dvd.hi, dvd.lo, dvsr)

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

INT FUNCTION ASHIFTRIGHT (VAL INT argument, places)

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

INT FUNCTION ROTATERIGHT (VAL INT argument, places)

INT FUNCTION ROTATELEFT (VAL INT argument, places)



INMOS Limited Confidential occam-2 compiler library specification

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a 32-bit processor, otherwise compiled as a library call. Uses the floating
point unit, or the floating point support instructions, if they are available.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a 32-bit processor, otherwise compiled as a library call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

APPROVED 4.3.91 11 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

5.2 Floating point functions

REAL32 FUNCTION ABS (VAL REAL32 X)

BOOL FUNCTION ISNAN (VAL REAL32 X)

BOOL FUNCTION NOTFINITE (VAL REAL32 X)

BOOL FUNCTION ORDERED (VAL REAL32 X, Y)

REAL32 FUNCTION MULBY2 (VAL REAL32 X)

REAL32 FUNCTION DIVBY2 (VAL REAL32 X)

REAL32 FUNCTION SQRT (VAL REAL32 X)

REAL32 FUNCTION FPINT (VAL REAL32 X)

REAL32 FUNCTION MINUSX (VAL REAL32 X)

REAL64 FUNCTION DABS (VAL REAL64 X)

BOOL FUNCTION DISNAN (VAL REAL64 X)

BOOL FUNCTION DNOTFINITE (VAL REAL64 X)

BOOL FUNCTION DORDERED (VAL REAL64 X, Y)

REAL64 FUNCTION DMULBY2 (VAL REAL64 X)



INMOS Limited Confidential occam-2 compiler library specification

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Compiled inline on a processor which has a floating-point unit, otherwise compiled as a library
call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

APPROVED 4.3.91 12 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

5.3 Full IEEE arithmetic functions

REAL64 FUNCTION DDIVBY2 (VAL REAL64 X)

REAL64 FUNCTION DSQRT (VAL REAL64 X)

REAL64 FUNCTION DFPINT (VAL REAL64 X)

REAL64 FUNCTION DMINUSX (VAL REAL64 X)

REAL32 FUNCTION SCALEB (VAL REAL32 X, VAL INT n)

REAL64 FUNCTION DSCALEB (VAL REAL64 X, VAL INT n)

REAL32 FUNCTION COPYSIGN (VAL REAL32 X, Y)

REAL64 FUNCTION DCOPYSIGN (VAL REAL64 X, Y)

REAL32 FUNCTION NEXTAFTER (VAL REAL32 X, Y)

REAL64 FUNCTION DNEXTAFTER (VAL REAL64 X, Y)

REAL32 FUNCTION LOGB (VAL REAL32 X)

REAL64 FUNCTION DLOGB (VAL REAL64 X)

INT, REAL32 FUNCTION FLOATING.UNPACK (VAL REAL32 X)

INT, REAL64 FUNCTION DFLOATING.UNPACK (VAL REAL64 X)

BOOL, INT32, REAL32 FUNCTION ARGUMENT.REDUCE (VAL REAL32 X, Y, Y.err)

BOOL, INT32, REAL64 FUNCTION DARGUMENT.REDUCE (VAL REAL64 X, Y, Y.err)

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)



INMOS Limited Confidential occam-2 compiler library specification

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled as a library call.

Always compiled inline.

Always compiled inline.

APPROVED 4.3.91 13 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

5.4.1 General purpose routines

5.4 Transputer-specific predefined routines

REAL64 FUNCTION REAL64OP (VAL REAL64 X, VAL INT Op, VAL REAL64 Y)

BOOL, REAL32 FUNCTION IEEE32OP (VAL REAL32 X, VAL INT Rm, Op,
VAL REAL32 Y)

BOOL, REAL64 FUNCTION IEEE64OP (VAL REAL64 X, VAL INT Rm, Op,
VAL REAL64 Y)

REAL32 FUNCTION REAL32REM (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION REAL64REM (VAL REAL64 X, VAL REAL64 Y)

BOOL, REAL32 FUNCTION IEEE32REM (VAL REAL32 X, VAL REAL32 Y)

BOOL, REAL64 FUNCTION IEEE64REM (VAL REAL64 X, VAL REAL64 Y)

BOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)

BOOL FUNCTION REAL64EQ (VAL REAL64 X, Y)

BOOL FUNCTION REAL32GT (VAL REAL32 X, Y)

BOOL FUNCTION REAL64GT (VAL REAL64 X, Y)

INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)

INT FUNCTION DIEEECOMPARE (VAL REAL64 X, Y)

PROC CAUSEERROR ()

PROC RESCHEDULE ()

PROC LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)



INMOS Limited Confidential occam-2 compiler library specification

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Always compiled inline.

Compiled inline on a processor which has the instructions, otherwise compiled as a
library call.

Compiled inline on a processor which has the instructions, otherwise compiled as a
library call.

Compiled inline on a processor which has the instructions, otherwise compiled as a
library call.

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call.

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call.

Compiled inline on a processor which has the instruction, otherwise compiled as a library
call.

APPROVED 4.3.91 14 SW-0063-5

�

�

�

�

�

�

�

�

�

�

�

move2d

clip2d

draw2d

crcword

crcbyte

bitcnt

5.4.2 Block Move routines

5.4.3 Cyclic redundancy checking

5.4.4 Bit manipulation routines

PROC LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)

PROC LOAD.INPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY in)

PROC LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)

PROC LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY out)

PROC MOVE2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,
VAL INT width, length)

PROC CLIP2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,
VAL INT width, length)

PROC DRAW2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,
VAL INT width, length)

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

INT FUNCTION CRCBYTE (VAL INT data, CRCIn, generator)

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)

INT FUNCTION BITREVWORD (VAL INT X)



INMOS Limited Confidential occam-2 compiler library specification

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call.

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call.

Compiled inline on a processor which has the instruction, ie. all 32-bit processors,
otherwise compiled as a library call.

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call. Invalid on a 16-bit processor, since the mantissa, etc, of a cannot fit into
an .

Compiled inline on a processor which has the instruction, otherwise compiled as a
library call. Invalid on a 16-bit processor, since the mantissa, etc, of a cannot fit into
an .

Always compiled inline. Note that the compiler requires that is
compile-time constant, and has value 3.

APPROVED 4.3.91 15 SW-0063-5

�

�

�

�

�

�

bitrevword

bitrevnbits

fmul

unpacksn

roundsn

5.4.5 Floating point support routines

5.4.6 Dynamic code loading

INT FUNCTION BITREVNBITS (VAL INT X, n)

INT FUNCTION FRACMUL (VAL INT x, y)

INT, INT, INT FUNCTION UNPACKSN (VAL INT X)

REAL32
INT

INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

REAL32
INT

PROC KERNEL.RUN (VAL []BYTE code, VAL INT entry.offset,
[]INT workspace,
VAL INT number.of.parameters)

number.of.parameters



INMOS Limited Confidential occam-2 compiler library specification

The following table summarizes which routines are needed on each processor type. A tick indicates
that the routine is required compiled for that processor. The name of another processor (or class) also
indicates that the routine is required, but that it can use the one compiled for the indicated processor
type, since the code generated for that library routine would be identical. Note that technically this
information is an issue, not a specification (ie. it depends upon how etc.
are implemented), but it is included here for completeness. To read this as a , consider
any column containing a processor type simply as a tick.

INT16ADD%CHK TA TA TA
INT16SUB%CHK TA TA TA
INT16MUL%CHK TA TA TA
INT16DIV%CHK TA TA TA
INT16REM%CHK TA TA TA
INT16PLUS%CHK TA TA TA
INT16MINUS%CHK TA TA TA
INT16TIMES%CHK TA TA TA
INT16BITAND%CHK TA TA TA
INT16BITOR%CHK TA TA TA
INT16XOR%CHK TA TA TA
INT16LSHIFT%CHK TA TA TA
INT16RSHIFT%CHK TA TA TA
INT16BITNOT%CHK TA TA TA
INT16GT%CHK TA TA TA
INT16EQ%CHK TA TA TA
INT32MUL%CHK T212
INT32DIV%CHK T212
INT32REM%CHK T212
INT64ADD%CHK T212
INT64SUB%CHK T212
INT64MUL%CHK T212 TA TA TA
INT64DIV%CHK T212 TA TA TA
INT64REM%CHK T212 TA TA TA
INT64PLUS%CHK T212
INT64MINUS%CHK T212
INT64TIMES%CHK T212
INT64BITAND%CHK T212
INT64BITOR%CHK T212
INT64XOR%CHK T212
INT64LSHIFT%CHK T212
INT64RSHIFT%CHK T212
INT64BITNOT%CHK T212
INT64GT%CHK T212
INT64EQ%CHK T212

APPROVED 4.3.91 16 SW-0063-5

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

�
�
�
�
�
� � �
� � �
� � �
�
�
�
�
�
�
�
�
�
�
�

implementation
specification

Routine T212 T225 TA TB T414 T425 T800

6 Summary

REAL32OP



INMOS Limited Confidential occam-2 compiler library specification

REAL32OPERR%CHK T212 TB TB
REAL32REMERR%CHK T212 TA TA TA
REAL32GTERR%CHK T212 TB TB
REAL32EQERR%CHK T212 TB TB
REAL64OPERR%CHK T212 TA TA TA
REAL64REMERR%CHK T212 TA TA TA
REAL64GTERR%CHK T212 TA TA TA
REAL64EQERR%CHK T212 TA TA TA

INT16TOINT64%CHK T212
INT16TOREAL32%CHK T212
INT16TOREAL64%CHK T212
INT32TOINT64%CHK T212
INT32TOREAL32%CHK T212 TA TA TA
INT32TOREAL64%CHK T212 TA TA TA
INT64TOINT16%CHK T212
INT64TOINT32%CHK T212
INT64TOREAL32%CHK T212 TA TA TA
INT64TOREAL64%CHK T212 TA TA TA

REAL32TOINT16%CHK T212
REAL32TOINT32%CHK T212 TA TA TA
REAL32TOINT64%CHK T212 TA TA TA
REAL32TOREAL64%CHK T212 TA TA TA
REAL64TOINT16%CHK T212
REAL64TOINT32%CHK T212 TA TA TA
REAL64TOINT64%CHK T212 TA TA TA
REAL64TOREAL32%CHK T212 TA TA TA

NOTFINITE%O T212
MINUSX%O T212
ABS%O T212 TB TB
ISNAN%O T212 TA TA TA
ORDERED%O T212 TA TA TA
MULBY2%O T212 TB TB
DIVBY2%O T212 TB TB
SQRT%O T212 TB TB
FPINT%O T212 TB TB
SCALEB%O T212 TB TB
COPYSIGN%O T212 TA TA TA
NEXTAFTER%O T212 TA TA TA
LOGB%O T212 TA TA TA
FLOATING.UNPACK%O T212 TA TA TA
ARGUMENT.REDUCE%O T212 TB TB

APPROVED 4.3.91 17 SW-0063-5

� � �
� �
� � �
� � �
� �
� �
� �
� �

�
�
�
�
� �
� �
�
�
� �
� �

�
� �
� �
� �
�
� �
� �
� �

�
�
� � �
� �
� �
� � �
� � �
� � �
� � �
� � � �
� � �
� � �
� � �
� � �
� � � �

Routine T212 T225 TA TB T414 T425 T800

Routine T212 T225 TA TB T414 T425 T800

Routine T212 T225 TA TB T414 T425 T800

Routine T212 T225 TA TB T414 T425 T800



INMOS Limited Confidential occam-2 compiler library specification

DNOTFINITE%O T212 TA TA TA
DMINUSX%O T212 TA TA TA
DABS%O T212 TA TA TA
DISNAN%O T212 TA TA TA
DORDERED%O T212 TA TA TA
DMULBY2%O T212 TA TA TA
DDIVBY2%O T212 TA TA TA
DSQRT%O T212 TA TA TA
DFPINT%O T212 TA TA TA
DSCALEB%O T212 TA TA TA
DCOPYSIGN%O T212 TA TA TA
DNEXTAFTER%O T212 TA TA TA
DLOGB%O T212 TA TA TA
DFLOATING.UNPACK%O T212 TA TA TA
DARGUMENT.REDUCE%O T212 TA TA TA

REAL32OP%O T212 TB TB
REAL64OP%O T212 TA TA TA
IEEE32OP%O T212 TA TA TA
IEEE64OP%O T212 TA TA TA
REAL32REM%O T212 TA TA TA
REAL64REM%O T212 TA TA TA
IEEE32REM%O T212 TA TA TA
IEEE64REM%O T212 TA TA TA
REAL32EQ%O T212 TA TA TA
REAL64EQ%O T212 TA TA TA
REAL32GT%O T212 TA TA TA
REAL64GT%O T212 TA TA TA
IEEECOMPARE%O T212 TA TA TA
DIEEECOMPARE%O T212 TA TA TA

MOVE2D%O T212 TA TA
CLIP2D%O T212 TA TA
DRAW2D%O T212 TA TA
BITCOUNT%O TA TA
CRCWORD%O TA TA
CRCBYTE%O TA TA
BITREVWORD%O TA TA
BITREVNBITS%O TA TA
FRACMUL%O T212
UNPACKSN%O - -
ROUNDSN%O - -

APPROVED 4.3.91 18 SW-0063-5

� �
� �
� �
� �
� �
� �
� �
� �
� �
� � �
� � �
� � �
� � �
� � �
� � �

� � � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
�

� �
� �

Routine T212 T225 TA TB T414 T425 T800

Routine T212 T225 TA TB T414 T425 T800

Routine T212 T225 TA TB T414 T425 T800



INMOS Limited Confidential occam-2 compiler library specification

If the compiler’s interactive debugging option is selected (see SW-0062 (“occam 2 Compiler specifi-
cation”)) then the compiler also requires a library containing the debugging input and output routines.
The compiler assumes that this library is called .

This library must contain the following routines for all processor types:

This routine is called to output a word on a channel.

This routine is called to output a byte on a channel.

This routine is called to output an object not of byte or word length, on a channel.

This routine is called to perform channel input.

VIRTUAL.OUT.WORD% T212 TA TA TA
VIRTUAL.OUT.BYTE% T212 TA TA TA
VIRTUAL.OUT% T212 TA TA TA
VIRTUAL.IN% T212 TA TA TA

APPROVED 4.3.91 19 SW-0063-5

�

�

�

�

� � �
� � �
� � �
� � �

Routine T212 T225 TA TB T414 T425 T800

7 Interactive debugger support

virtual.lib

PROC VIRTUAL.OUT.WORD% (VAL INT message.word,VAL INT chan.address)

PROC VIRTUAL.OUT.BYTE% (VAL BYTE message.byte,VAL INT chan.address)

PROC VIRTUAL.OUT% (VAL INT message.length,
VAL INT chan.address,
VAL INT message.address)

PROC VIRTUAL.IN% (VAL INT message.length,
VAL INT chan.address,
VAL INT message.address)


	Contents
	1 Change history
	1.1 Changes since issue of SW-0063-4.
	1.2 Changes since issue of SW-0063-3.
	1.3 Changes since issue of SW-0063-2 of February 1, 1990
	1.4 Changes since issue of January 24, 1990

	2 Introduction
	3 Operations
	3.1 INT16 operations
	3.2 INT32 operations
	3.3 INT64 operations
	3.4 REAL32 operations
	3.5 REAL64 operations

	4 Type conversions
	4.1 INT16 conversions
	4.2 INT32 conversions
	4.3 INT64 conversions
	4.4 REAL32 conversions
	4.5 REAL64 conversions

	5 Predefined routines
	5.1 Multiple-length integer arithmetic functions
	5.2 Floating point functions
	5.3 Full IEEE arithmetic functions
	5.4 Transputer-specific predefined routines
	5.4.1 General purpose routines
	5.4.2 Block Move routines
	5.4.3 Cyclic redundancy checking
	5.4.4 Bit manipulation routines
	5.4.5 Floating point support routines
	5.4.6 Dynamic code loading


	6 Summary
	7 Interactive debugger support

