
inmmos®®

Conor O’Neill

SW-0044-4

INMOS Limited Confidential

APPROVED 21 September, 1990

occam-2 language implementation manual

INMOS Limited Confidential occam-2 language implementation manual

1 Introduction 3
2 Change history 3

2.1 Changes since SW0044-03. 3
2.2 Changes since SW0044-02. 3
2.3 Changes since issue of January 24, 1990. 3
2.4 Changes since issue of January 4, 1990. 4

3 Language differences 4
3.1 Compiler keywords 4
3.2 Syntax permitted at outermost level 5
3.3 INLINE keyword 5
3.4 String escape characters 5
3.5 Vectorspace 6
3.6 PLACE name AT WORKSPACE n 6
3.7 RETYPING channels 8
3.8 Channel constructors 8

4 Implementation restrictions 9
5 Implementation limits 9
6 Implementation defined areas 9
7 Usage and Alias checking 11

7.1 Usage checking 11
7.2 Alias checking 11
7.3 Other checks 12

8 Error behaviour 12
9 Compiler directives 13

9.1 #COMMENT directive 13
9.2 #IMPORT directive 13
9.3 #INCLUDE directive 13
9.4 #OPTION directive 13
9.5 #PRAGMA directive 14

9.5.1 EXTERNAL pragma 14
9.5.2 LINKAGE pragma 15
9.5.3 TRANSLATE pragma 15

9.6 #SC directive 15
9.7 #USE directive 16

10 Predefined routines 17
10.1 Multiple length integer arithmetic functions 17
10.2 Floating point functions 18
10.3 Full IEEE arithmetic functions 19
10.4 Transputer-specific predefined routines 20

10.4.1 General purpose routines 20
10.4.2 Block Move routines 21
10.4.3 Cyclic redundancy checking 22
10.4.4 Bit manipulation routines 23
10.4.5 Floating point support routines 23
10.4.6 Dynamic code loading 24

11 Other Standard libraries 25
11.1 Elementary function library 25
11.2 Value and string conversion procedures 25

12 Inline transputer code insertion 26
12.1 GUY Construct 26
12.2 ASM Construct 27

12.2.1 ASM instructions 28
12.2.2 Pseudo operations 29
12.2.3 Special names 29

APPROVED 21.9.90 1 SW-0044-4

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Contents

INMOS Limited Confidential occam-2 language implementation manual

12.3 Differences between ASM and GUY 30
12.4 Sequential code insertion 30
12.5 Full code insertion 31

13 The end 31

APPROVED 21.9.90 2 SW-0044-4

� �

� �

� �

� �

INMOS Limited Confidential occam-2 language implementation manual

This document describes the language which the occam 2 compiler () compiles. This is basically
the language as described in “occam 2 Reference Manual”, Prentice-Hall 1988 (ISBN 0-13-629312-3).
It should be read in conjunction with the Reference Manual; any differences are as described below.

Tabs inside character literals and strings are not expanded.

No longer a limit of 2000 names in scope.

and pseudo ops can take a list of args.

No labels allowed inside routines.

Improved detail on channels.

Inserted detail on channels.

Channel constructors.

No hard limits on size of compiler libraries.

No restrictions on nested ALT levels.

Added predefines and .

Hard limit of 200 entrypoints in a library has been removed.

and not supported on 16-bit processors.

Better description of .

Constant arrays subscripted by replicators are not constant.

Better description of .

Changed maximum number of nested files to 20.

Better description of ‘complicated’ abbreviations.

Better explanation of .

Error behaviour of etc. (again).

APPROVED 21.9.90 3 SW-0044-4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2.1 Changes since SW0044-03.

2.2 Changes since SW0044-02.

2.3 Changes since issue of January 24, 1990.

1 Introduction

2 Change history

oc

BYTE WORD ASM

INLINE

RETYPED

PLACED

IEEE32REM IEEE64REM

UNPACKSN ROUNDSN

PLACE name AT WORKSPACE n

KERNEL.RUN

INLINE

SHIFTRIGHT

INMOS Limited Confidential occam-2 language implementation manual

Error behaviour of . (again).

Completely revamped specification.

Changed definition of , etc.

Addition of LINKAGE pragma.

Nesting of is always checked at compile time.

EXTERNAL pragma doesn’t default to 1 workspace slot.

Named the order of return values from .

Added .

Multiple assignment of fixed length arrays is OK.

Tabs are every 8 stops.

no longer supported.

as well as .

Arrays are aligned to word boundary on definition.

aligned to half-word boundary on 32-bit processors.

Error behaviour of etc.

Error behaviour of .

TRANSLATE pragma must precede its .

Any number of selections allowed in a .

This section describes the differences between the language as implemented, and that described in
“occam 2 Reference Manual”, Prentice-Hall 1988.

The additions to the list supplied in “occam 2 Reference Manual”, Prentice-Hall 1988 are:

These keywords are and as such cannot be used by a programmer as variable names, etc.
This is a full list of the keywords reserved to the compiler:

APPROVED 21.9.90 4 SW-0044-4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

n

reserved

2.4 Changes since issue of January 4, 1990.

3.1 Compiler keywords

3 Language differences

BITREVNBITS

ASM

LOAD.INPUT.CHANNEL.VECTOR

PRI PAR

UNPACKSN

PLACE AT WORKSPACE

#SC

‘*L’ ‘*l’

INT16 RETYPES

SHIFTRIGHT

BITREVNBITS

#USE

CASE

ASM GUY INLINE STEP VECSPACE WORKSPACE

INMOS Limited Confidential occam-2 language implementation manual

The compiler places restrictions on the syntax which is permitted at the outermost level of a compilation
unit; ie. not enclosed by any function or procedure.

No variable declarations are permitted.

The file must contain at least one or ; a null source file is illegal.

No abbreviations containing function calls or s are allowed, even if they are actually
constant. For example:

You may add the keyword immediately before the or keyword of any pro-
cedure or function declaration. This will cause its body to be expanded inline in any call, and the
declaration will not be compiled as a normal routine. Note that the is marked with the
keyword, but the is affected. This means that you cannot inline expand procedures and functions
which have been declared by a directive; to achieve that effect you may put the source of the
routine in an include file, marked with the keyword, and include it with an directive.

For example:

There is an implementation restriction that labels may not be defined within an or
.

The compiler accepts the string escape characters as described in Appendix I of “occam 2 Reference
Manual”, Prentice-Hall 1988. The compiler also accepts or as the first character of a string

APPROVED 21.9.90 5 SW-0044-4

�

�

�

declaration
call

3.2 Syntax permitted at outermost level

3.3 INLINE keyword

3.4 String escape characters

AFTER ALT AND ANY ASM AT BITAND
BITNOT BITOR BOOL BYTE CASE CHAN ELSE
FALSE FOR FROM FUNCTION GUY IF IN
INLINE INT INT16 INT32 INT64 IS MINUS
MOSTNEG MOSTPOS NOT OF OR PAR PLACE
PLACED PLUS PORT PRI PROC PROCESSOR PROTOCOL
REAL32 REAL64 REM RESULT RETYPES ROUND SEQ
SIZE SKIP STEP STOP TIMER TIMES TRUE
TRUNC VAL VALOF VECSPACE WHILE WORKSPACE

PROC FUNCTION

VALOF

VAL x IS (VALOF
SKIP
RESULT 99) : -- This is illegal

VAL m IS max (27, 52) : -- so is this

INLINE PROC FUNCTION

#USE
INLINE #INCLUDE

INT INLINE FUNCTION sum3 (VAL INT x, y, z) IS x + (y + z) :

INLINE PROC seterror ()
error := TRUE

:

ASM INLINE PROC
FUNCTION

‘*l’ ‘*L’

INMOS Limited Confidential occam-2 language implementation manual

literal. This is expanded to be the length of the string excluding the character itself. For example,
and are identical:

The use of is illegal if the string (excluding the) is longer than 255 bytes, and will be
reported as an error.

The occam compiler allocates space for local scalar variables on a falling stack known as the .
By default, arrays larger than 8 bytes are allocated into another stack known as the . This
optimises use of the workspace, creating more compact and quicker code. It can also make better use
of a transputer’s on-chip RAM.

This can be overridden in two ways. Firstly, by using either a command line switch, or the
directive (see below), the default can be totally overridden, forcing all variables into the workspace.
Secondly, the current ‘default’ may be overridden on an array-by-array basis by using extra allocations
as follows:

Only arrays may be placed in vectorspace; scalar variables must reside in workspace. Arrays smaller
than 8 bytes may be explicitly placed in vectorspace.

It may be desirable to change the default vectorspace allocation for various reasons. Using vec-
torspace can actually slow down execution, since an extra parameter is passed to each subroutine
which requires it. However, this cost is normally overwhelmed by the reduction in workspace size, and
the associated compaction in the number of prefix instructions required to address local variables. In
certain circumstances it may be useful to place a commonly used array into workspace, particularly if it
is heavily used in array assignment (block moves). Alternatively it may be useful to place most arrays
in workspace, but move any large arrays into vectorspace.

The compiler implements another allocation; , where is a constant
integer. This is used to ensure that a variable is allocated a particular position within a procedure
or function’s workspace. This is normally required only if various specialised transputer instructions
which require specific workspace placings are used within a code insert. For example,
uses workspace location 0; , and the disabling instructions also use workspace
location 0.

On a , the instruction can be used to pack a floating point number; it requires an
exponent to be previously stored at workspace offset 0. See “Transputer Instruction Set - A compiler
writer’s guide”, Prentice-Hall 1988 for this example.

APPROVED 21.9.90 6 SW-0044-4

workspace
vectorspace

n n

3.5 Vectorspace

3.6 PLACE name AT WORKSPACE n

string1 string2

VAL string1 is "*lFred" :
VAL string1 is "*#04Fred" :

‘*l’ ‘*l’

#OPTION

[100]BYTE a :
PLACE a IN WORKSPACE : -- forces a to reside in workspace

[100]BYTE b :
PLACE b IN VECSPACE : -- forces b to reside in vectorspace

PLACE name AT WORKSPACE

POSTNORMSN
OUTBYTE OUTWORD ALT

T414 POSTNORMSN

REAL32 FUNCTION pack (VAL INT guard, frac, exp, sign)
REAL32 result :

INMOS Limited Confidential occam-2 language implementation manual

The compiler ensures that at least words of workspace are allocated for that procedure or function,
and that no other variables are placed at that address. The compiler will warn if a variable

is in scope when its own workspace allocation requires to use that workspace location,
or when another is at the same location.

APPROVED 21.9.90 7 SW-0044-4

n

n

VALOF
INT temp :
PLACE temp AT WORKSPACE 0 :
SEQ

temp := exp
ASM

LDAB guard, frac
NORM
POSTNORMSN
ROUNDSN
LDL sign
OR
ST result

RESULT result
:

PLACED AT
WORKSPACE

PLACED

INMOS Limited Confidential occam-2 language implementation manual

Channels may now be d.

Firstly this allows you to change the protocol on a channel, in order to pass it as a parameter to another
routine, for example. This facility should be used with care.

Channels may also be d to and from data items. The data items map onto a pointer to the
channel word. This can be used to determine the address of the channel word, or to create an array
of channels pointing at particular addresses:

Note that this can be achieved more portably by means of the predefines.

The following code demonstrates how to create a channel array whose channels point at arbitrary
addresses.

Arrays of channels may be constructed out of a list of other channels. For example.

APPROVED 21.9.90 8 SW-0044-4

Note that this ability is extremely non-portable, and its effect may change even with different compiler
command line options, (eg the option), but these options are currently not user documented.

3.7 RETYPING channels

3.8 Channel constructors

RETYPE

PROTOCOL PROT32 IS INT32 :
PROC p (CHAN OF INT32 x)

x ! 99(INT32)
:
PROC q1 (CHAN OF PROT32 y)

SEQ
p (y) -- this is illegal
CHAN OF INT32 z RETYPES y :
p (z) -- this is legal

:

RETYPE

ZW

CHAN OF protocol c :
VAL INT x RETYPES c : -- Must be a VAL RETYPE
... use x as the address of the channel word

LOAD.INPUT.CHANNEL

[10]INT x :
SEQ

... initialise elements of x to the addresses of the channel words
[10]CHAN OF protocol c RETYPES x :
... use channel array c

PROC p (CHAN OF protocol a, [2]CHAN OF protocol b)
[3]CHAN OF protocol c IS [a, b[0], b[1]] : -- channel constructor
ALT i = 0 FOR SIZE c

c[i] ? data
...

:

INMOS Limited Confidential occam-2 language implementation manual

s may not return arrays, not even with fixed sizes.

Multiple assignment of arrays of unknown size is not permitted.

Replicated count must be constant.

There must be exactly 2 branches in a .

Replicated s are not allowed.

Table sizes must be known at compile time. For example:

Constant arrays which are indexed by replicator variables are not considered to be constants
for the purposes of compiler constant folding, even if the start and limit of the replicator are
also constant. This restriction does not apply during usage checking.

labels are not permitted inside routines.

Maximum number of nested files is 20.

Maximum source line length is 255 characters (including leading spaces).

Maximum filename length is 128 characters.

Maximum 256 tags allowed in s.

Maximum number of lexical levels is 254. (Nested s and replicated s).

Maximum number of variables in a procedure or function is 512.

See SW-0064 (“occam 2 Run time model”) for more details of the run-time layout of variables.

Identifiers.
There is no limit to the number of significant characters in identifiers, and the case of characters
is significant.

Values given to protocol tags.
Protocol tags are given values consecutively from zero.

APPROVED 21.9.90 9 SW-0044-4

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

4 Implementation restrictions

5 Implementation limits

6 Implementation defined areas

FUNCTION

PAR

PRI PAR

PRI PAR

PROC p ([]INT a, []INT b)
VAL [][]INT x IS [a] : -- this is illegal
VAL []INT y IS b : -- this is legal
...

:

ASM INLINE

PROTOCOL

PROC PAR

BYTE

INMOS Limited Confidential occam-2 language implementation manual

Implementation of statement.
statements are implemented as a combination of explicit tests, binary searches, and

jump tables, depending on the relative density of the selection values. The choice has been
made to optimise the general case where each selection is equally probable. The compiler
does not make any use of the order of the selections as they are written in the source code.

Implementation of statement.
No assumption can be made about the relative priority of the guards of an statement; if
priority is required, you must use a .

Implementation of .
The compiler implements two priorities; high and low. These match exactly the transputer’s
two priorities.

The compiler does not permit a statement to be nested inside the high priority branch
of another. This is checked at compile time, even across separately compiled units.

variables.
The address used in a allocation is converted to a transputer address by considering
the address to be a word offset from .

For example, suppose we require to access a memory mapped peripheral located at
machine address , on a 32 bit processor.

Individual channels which are placed use the specified address as the channel word. Arrays
of channels which are placed map the array of pointers onto the specified address.

To create an array of channels on the transputer’s links, you should use the following:

Alignment of data.
The first element of an array is always aligned to a word boundary. (This obviously does not
apply to segments of arrays, etc.)

.
Values accessed through must be aligned to the natural alignment for that datatype;

s and s may be aligned to any byte; s on a 32 bit processor must be aligned
to a half-word boundary; all other datatypes must be aligned to a word boundary. This will
be checked at run-time if it cannot be guaranteed at compile time. Some which should be
detected at compile time are actually checked at run time.

APPROVED 21.9.90 10 SW-0044-4

�

�

�

�

�

�

Note that this is different from the behaviour of the ‘old’ occam compiler which was supplied
with and equivalent products.

CASE
CASE

ALT
ALT

PRI ALT

PRI PAR

PRI PAR

PLACED
PLACE

MOSTNEG INT

BYTE
#1234

PORT OF BYTE peripheral :
PLACE peripheral AT (#1234 >< (MOSTNEG INT)) >> 2 :
peripheral ! 0(BYTE)

IMS D705B

PLACED

CHAN OF protocol link0, link1, link2, link3 :
PLACE link0 AT 0 :
PLACE link1 AT 1 :
PLACE link2 AT 2 :
PLACE link3 AT 3 :
[4]CHAN OF protocol out.links IS [link0, link1, link2, link3] :

BYTE

RETYPES
RETYPES

BYTE BOOL INT16

[20]BYTE array : -- This will be word aligned
INT32 x RETYPES [array FROM 1 FOR 4] : -- Run-time check is inserted
INT32 y RETYPES [array FROM i FOR 4] : -- Run-time check is inserted

INMOS Limited Confidential occam-2 language implementation manual

Tabs.
The compiler expands tabs in source files to be every 8th character position. Tabs are per-
mitted within a line as well as at the beginning of a line, but tabs within strings or character
constants are not expanded.

Formal parameter names.
If a name is used more than once in a single formal parameter list, the definition is used.

See Appendix C of “occam 2 Reference Manual”, Prentice-Hall 1988for a description of the rules.

The compiler supports two switches which can be used to disable either Usage checking, or both Alias
and Usage checking together. These can be set either by command line switches, or by use of the

compiler directive directive.

The following rules apply in addition to those described in the language manual.

A variable which is named on the right hand side of a non- abbreviation is considered to be modified,
whether or not it actually is.

Arrays as procedure formal parameters are considered to be wholly accessed if any component of the
array is accessed, whether or not by a constant subscript. Similarly, free arrays (ie arrays which are
accessed non-locally) of any procedure are also considered to be wholly accessed if any component
of the array is accessed.

If an array is referenced in the expression of a VAL abbreviation, for example:

in

then the following rules apply to the use of the array within the scope of the abbreviation:

If the subscript is constant then elements of the array may be assigned to as long as they are only
subscripted by constant values different from the abbreviated subscript. Any element of the array may
also appear anywhere in the expression of a VAL abbreviation. Any other elements of the array may be
non-VAL abbreviated, and run time checking code is generated if subscripts used in the abbreviation
are not constant.

If the subscript is not constant then no element of the array may be assigned to unless it is first non-VAL
abbreviated. The non-VAL abbreviation will have to generate run time code to check that it does not
overlap the VAL abbreviation. The array may be used in the expression of a VAL abbreviation.

Elements of the array may be accessed anywhere within the scope of the abbreviation except where
restricted by further abbreviations.

APPROVED 21.9.90 11 SW-0044-4

�

�
last

7.1 Usage checking

7.2 Alias checking

7 Usage and Alias checking

INT32 z RETYPES [array FROM 8 FOR 4] : -- No Run-time check is inserted

#OPTION

VAL

x VAL a IS x[i] :

INMOS Limited Confidential occam-2 language implementation manual

If an array is abbreviated in a non-VAL abbreviation, for example:

in

then the following rules apply to the use of the array within the scope of the abbreviation:

If the subscript is constant then elements of the array may be read and assigned to as long as they
are accessed by constant subscripts different from the abbreviated subscript. Other elements of the
array may be abbreviated in further VAL and non-VAL abbreviations, and run time checking code is
generated if subscripts used in the abbreviation are not constants.

If the subscript is not constant then the array may not be referenced at all except in abbreviations
where run time checking code is needed to check that the abbreviations do not overlap.

A channel formal parameter, or a free channel of a procedure, may not be used for both input and
output in a procedure. This check cannot be disabled.

The compiler supports the occam error modes and . The mode only affects a single
transputer at a time; it also requires the transputer to be executing with its flag set .
The mode requires the transputer to be executing with its flag set .

The compiler also supports a mode, in which the code will behave in or mode
according to the state of the flag.

The compiler can implement occam (or REDUCED) mode by use of the directive,
or by use of a command line option which disables the insertion of run-time checks (see SW-0062
(“occam 2 Compiler specification”)).

APPROVED 21.9.90 12 SW-0044-4

haltonerror TRUE
haltonerror FALSE

haltonerror

7.3 Other checks

8 Error behaviour

x a IS x[i] :

HALT STOP HALT

STOP

UNIVERSAL HALT STOP

UNDEFINED #OPTION

INMOS Limited Confidential occam-2 language implementation manual

The occam 2 compiler accepts a variety of compiler directives. These all begin with a hash (#).

The directive allows comments to be placed into the object code file, which are then readable
by the appropriate lister program. The ordering of comments in the object file will be the same as that of
the directives in the source, but may bear no relationship to their position in the source code.
directives are mainly intended for indicating version number, etc, in an object file.

For example:

[]

The directive is treated in exactly the same way as a directive. It is included to indicate
to other tools that the imported file has not been generated by the occam toolset, and therefore should
not be searched when generating makefile dependencies.

[]

The contents of the named file is inserted into the program source at the point where the directive
occurs, with the same indentation as the directive. The filename must be explicitly supplied; there is no
default extension. By convention, occam source files have the suffix , and header files consisting
only of constant declarations have the suffix . The file is searched for using the normal
rules; see SW-0062 (“occam 2 Compiler specification”).

For example:

[]

The directive allows you to specify compiler command line options within the source text of
a compilation unit. The options apply to the whole compilation, and are added to the command line
when the compiler is invoked. Only compiler options that relate directly to the source can be specified,
namely:

APPROVED 21.9.90 13 SW-0044-4

string

filename comment

filename comment

string comment

9.1 #COMMENT directive

9.2 #IMPORT directive

9.3 #INCLUDE directive

9.4 #OPTION directive

9 Compiler directives

#COMMENT " "

#COMMENT

#COMMENT

#COMMENT "Company wide library, V2.04, 7 Dec 1989"
#COMMENT "Routine: payroll, V1.23"

#IMPORT " "

#IMPORT #USE

#INCLUDE " "

.occ
.inc ISEARCH

#INCLUDE "header.inc"

#OPTION " "

#OPTION

INMOS Limited Confidential occam-2 language implementation manual

A Disable alias (and usage) checking
E Disable access to the compiler libraries

(See SW-0063 (“occam 2 Compiler Library specification”))
G Allow sequential code inserts (and)
K Disable the insertion of run-time range checks
N Disable usage checking
U Disable the insertion of any extra run-time error checks
V Disable the use of a separate vector space
W Enable full code inserts (and)
Y Use instruction i/o rather than library calls

The options characters are simply listed in the string in upper or lower case. No ‘escape’ character is
required or allowed. Spaces are allowed in the string. All other text on the line is ignored. For example:

The directive can only appear in the main file of the compilation unit to which it applies; it
cannot be nested in an include file. It must also be the first non-blank or non-comment text in the
source file.

[]

If the is not recognised, the compiler will generate a warning.

[]

This allows access to other language compilations. is a PROC or FUNCTION heading,
with formal parameters, which indicates the required calling convention for calls to the external routine
(see SW-0064 (“occam 2 Run time model”) for details of occam calling conventions). This is followed
(within the string) by two numbers in decimal, indicating the number of workspace and vectorspace
slots (words) to reserve for that call. The number of workspace slots should not include those needed
to set up the parameters for the call. The number of vectorspace slots defaults to 0 if not explicitly
provided. Note that if the vectorspace requirement is zero, then no vectorspace pointer parameter will
be passed to the routine.

Note that it is important to ensure that enough space is allocated, both for workspace and vectorspace,
because the compiler cannot check for overruns.

The syntax of the is as follows:

[]

Examples:

APPROVED 21.9.90 14 SW-0044-4

� �pragma-name values

pragma-name

declaration comment

declaration

declaration

formal procedure or function heading workspace vectorspace

9.5.1 EXTERNAL pragma

9.5 #PRAGMA directive

ASM GUY

ASM GUY

#OPTION "A W V" -- disable alias checking, full code inserts, no vecspace

#OPTION

#PRAGMA

#PRAGMA EXTERNAL " "

= ,

#PRAGMA EXTERNAL "PROC p1 (VAL INT x, y) = 20"
#PRAGMA EXTERNAL "PROC p2 (VAL INT x, y) = 20, 100"
#PRAGMA EXTERNAL "INT FUNCTION f1 (VAL INT x, y) = 50"
#PRAGMA EXTERNAL "INT FUNCTION f2 (VAL INT x, y) = 50, 0"

INMOS Limited Confidential occam-2 language implementation manual

The procedure or function name is the name by which the external routine is accessed from the occam
source. It is also the name which will be used by the linker to access the external language function,
though this may be modified by use of the TRANSLATE pragma.

[] []

This is used to enable you to change the order in which code modules are linked together; this may
help use faster on-chip RAM.

Normally the compiler creates the object code into a section named . This pragma
causes the compiler to change the name of the section to that supplied by the user in the string. If
no string is present, is used, this section being inserted at the front by the linker
in the default case. A user can override the default section ordering, to place the named sections in
any required ordering, by supplying linkage commands when invoking the linker (see SW-0041 (“Linker
Command File Reference Manual”)).

The linkage directive should appear at the start of the source code, immediately following the
directive (if it exists).

[]

This is used to enable linkage with routines whose entrypoint names do not correspond to occam
syntax for identifier names; both imported names to be called by this compilation unit, and exported
names defined in this compilation unit. An entrypoint is a name which is visible to the linker. Thus
procedures and functions declared at the outermost level of a compilation unit are entrypoints, whereas
nested procedures and functions are not.

Any entrypoint defined in the compilation unit whose name matches is translated to
when inserted into the object file, and hence can only be referenced as when linking. may
not contain the NULL character ().

Any entrypoints in d libraries and other compilation units whose names match can be
referred to within the compilation unit as . This also applies to identifiers defined by EXTERNAL
pragmas. TRANSLATE pragmas must any reference to their identifier.

For example:

[]

This directive used to be available for compatibility with existing TDS code. It is no longer supported,
and will generate an error message. The directive should be used instead.

APPROVED 21.9.90 15 SW-0044-4

section-name comment

identifier string comment

identifier string
string string

string
identifier
precede

filename comment

9.5.2 LINKAGE pragma

9.5.3 TRANSLATE pragma

9.6 #SC directive

#PRAGMA LINKAGE " "

"text%base"

"pri%text%base"

#OPTION

#PRAGMA TRANSLATE " "

‘*#00’

#USE

#PRAGMA TRANSLATE c.routine "c_routine"
#PRAGMA EXTERNAL "PROC c.routine () = 100"

#SC " "

#USE

INMOS Limited Confidential occam-2 language implementation manual

[]

This imports all the procedure and function declarations from the named file so that they are visible in
the scope of the directive. The file may be either a simple compilation unit object file (in TCOFF
object file format), or a file consisting of several object files concatenated together, or a TCOFF library
file.

Only those declarations of occam procedures and functions which have been compiled for a ‘compatible’
processor and error mode are imported. Any ‘incompatible’ declarations are ignored. See SW-0062
(“occam 2 Compiler specification”). Any names in the library which do not conform to occam syntax,
and which have not been translated by means of a TRANSLATE pragma will be ignored. Note that
this means that a TRANSLATE pragma must precede its related .

If no suffix is supplied as part of the filename, the same suffix as the current output file is used. The file
is searched for using the normal rules. For details of how the output file name is generated,
and of , see SW-0062 (“occam 2 Compiler specification”).

For example:

APPROVED 21.9.90 16 SW-0044-4

filename comment

9.7 #USE directive

#USE " "

#USE

#USE

ISEARCH
ISEARCH

#USE "module"
#USE "library.lib"
#USE "module.tco"
#USE "module.t2h"

INMOS Limited Confidential occam-2 language implementation manual

The compiler supports a number of routines. These are procedure and function definitions
which are automatically visible to the programmer, needing no explicit library directive to reference
them. The names are not . Therefore it is perfectly legal to reuse these names. However this
should be discouraged.

Many of these predefined routines are compiled inline into sequences of transputer instructions, but oth-
ers are compiled as calls to standard libraries. See SW-0063 (“occam 2 Compiler Library specification”)
for details.

The functions listed here and described in Appendix K of “occam 2 Reference Manual”, Prentice-Hall
1988, are available as predefined routines. These routines are all compiled inline into sequences of
transputer instructions (see SW-0078 (“Code generated for predefined routines”)).

and return zeroes when the number of places to shift is negative, or is
greater than twice the transputer’s wordlength, in which case they may take a long time to execute.

, , , and are all invalid when the number of
places to shift is negative or exceeds the transputer’s word length.

APPROVED 21.9.90 17 SW-0044-4

Predefined

reserved

10.1 Multiple length integer arithmetic functions

10 Predefined routines

#USE

INT FUNCTION LONGADD (VAL INT left, right, carry.in)

INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

INT, INT FUNCTION LONGDIV (VAL INT dvd.hi, dvd.lo, dvsr)

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

INT FUNCTION ASHIFTRIGHT (VAL INT argument, places)

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

INT FUNCTION ROTATERIGHT (VAL INT argument, places)

INT FUNCTION ROTATELEFT (VAL INT argument, places)

SHIFTRIGHT SHIFTLEFT

ASHIFTRIGHT ASHIFTLEFT ROTATERIGHT ROTATETLEFT

INMOS Limited Confidential occam-2 language implementation manual

The functions listed here and described in Appendix L of “occam 2 Reference Manual”, Prentice-Hall
1988, are available as predefined routines. Some of these routines are compiled inline into sequences
of transputer instructions, others are compiled as calls to standard libraries. This may depend on
the processor type (see SW-0063 (“occam 2 Compiler Library specification”) and SW-0078 (“Code
generated for predefined routines”)).

APPROVED 21.9.90 18 SW-0044-4

10.2 Floating point functions

REAL32 FUNCTION ABS (VAL REAL32 X)

REAL64 FUNCTION DABS (VAL REAL64 X)

BOOL FUNCTION ISNAN (VAL REAL32 X)

BOOL FUNCTION DISNAN (VAL REAL64 X)

BOOL FUNCTION NOTFINITE (VAL REAL32 X)

BOOL FUNCTION DNOTFINITE (VAL REAL64 X)

BOOL FUNCTION ORDERED (VAL REAL32 X, Y)

BOOL FUNCTION DORDERED (VAL REAL64 X, Y)

REAL32 FUNCTION MULBY2 (VAL REAL32 X)

REAL64 FUNCTION DMULBY2 (VAL REAL64 X)

REAL32 FUNCTION DIVBY2 (VAL REAL32 X)

REAL64 FUNCTION DDIVBY2 (VAL REAL64 X)

REAL32 FUNCTION SQRT (VAL REAL32 X)

REAL64 FUNCTION DSQRT (VAL REAL64 X)

REAL32 FUNCTION FPINT (VAL REAL32 X)

REAL64 FUNCTION DFPINT (VAL REAL64 X)

REAL32 FUNCTION MINUSX (VAL REAL32 X)

REAL64 FUNCTION DMINUSX (VAL REAL64 X)

REAL32 FUNCTION SCALEB (VAL REAL32 X, VAL INT n)

REAL64 FUNCTION DSCALEB (VAL REAL64 X, VAL INT n)

REAL32 FUNCTION COPYSIGN (VAL REAL32 X, Y)

REAL64 FUNCTION DCOPYSIGN (VAL REAL64 X, Y)

REAL32 FUNCTION NEXTAFTER (VAL REAL32 X, Y)

REAL64 FUNCTION DNEXTAFTER (VAL REAL64 X, Y)

REAL32 FUNCTION LOGB (VAL REAL32 X)

REAL64 FUNCTION DLOGB (VAL REAL64 X)

INT, REAL32 FUNCTION FLOATING.UNPACK (VAL REAL32 X)

INT, REAL64 FUNCTION DFLOATING.UNPACK (VAL REAL64 X)

BOOL, INT32, REAL32 FUNCTION ARGUMENT.REDUCE (VAL REAL32 X, Y, Y.err)

BOOL, INT32, REAL64 FUNCTION DARGUMENT.REDUCE (VAL REAL64 X, Y, Y.err)

INMOS Limited Confidential occam-2 language implementation manual

The functions listed here and described in Appendix M of “occam 2 Reference Manual”, Prentice-Hall
1988, are available as predefined routines. These routines are all compiled as calls to standard libraries
(see SW-0063 (“occam 2 Compiler Library specification”)).

The following functions are analogous, but were omitted from “occam 2 Reference Manual”, Prentice-
Hall 1988. They calculate according to the IEEE standard, returning two results, a boolean
which is if an error has occured, and the result of the remainder operation. No rounding mode
is required since remainder is exact.

APPROVED 21.9.90 19 SW-0044-4

10.3 Full IEEE arithmetic functions

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)

REAL64 FUNCTION REAL64OP (VAL REAL64 X, VAL INT Op, VAL REAL64 Y)

BOOL, REAL32 FUNCTION IEEE32OP (VAL REAL32 X, VAL INT Rm, Op,

VAL REAL32 Y)

BOOL, REAL64 FUNCTION IEEE64OP (VAL REAL64 X, VAL INT Rm, Op,

VAL REAL64 Y)

REAL32 FUNCTION REAL32REM (VAL REAL32 X, VAL REAL32 Y)

REAL64 FUNCTION REAL64REM (VAL REAL64 X, VAL REAL64 Y)

BOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)

BOOL FUNCTION REAL64EQ (VAL REAL64 X, Y)

BOOL FUNCTION REAL32GT (VAL REAL32 X, Y)

BOOL FUNCTION REAL64GT (VAL REAL64 X, Y)

INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)

INT FUNCTION DIEEECOMPARE (VAL REAL64 X, Y)

X REM Y
TRUE

BOOL, REAL32 FUNCTION IEEE32REM (VAL REAL32 X, VAL REAL32 Y)

BOOL, REAL64 FUNCTION IEEE64REM (VAL REAL64 X, VAL REAL64 Y)

INMOS Limited Confidential occam-2 language implementation manual

The following functions and procedures are supplied as predefined routines to enable use of the more
advanced features of the transputer instruction set.

These routines are all compiled inline into sequences of transputer instructions (see SW-0078 (“Code
generated for predefined routines”)).

This inserts instructions into the code to set the transputer error flag. This is then treated
in exactly the same way as any other error would be treated in the error mode in which the
program is compiled. For example, in HALT mode the whole processor will halt.

This causes the current process to be moved to the end of the current priority scheduling
queue; in effect, it forces a ‘timeslice’ (even in high priority).

Assigns the machine address of the byte array to . This can be used in conjunction
with to find the address of any variable.

Assigns the machine address of the channel word of to .

Assigns the machine address of the base element of the channel array (ie. the base of
the array of pointers) to .

Assigns the machine address of the channel word of to .

Assigns the machine address of the base element of the channel array (ie. the base of
the array of pointers) to .

APPROVED 21.9.90 20 SW-0044-4

�

�

�

�

�

�

�

10.4.1 General purpose routines

10.4 Transputer-specific predefined routines

PROC CAUSEERROR ()

PROC RESCHEDULE ()

PROC LOAD.BYTE.VECTOR (INT here, VAL []BYTE bytes)
bytes here

RETYPES

PROC LOAD.INPUT.CHANNEL (INT here, CHAN OF ANY in)
in here

PROC LOAD.INPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY in)
in

here

PROC LOAD.OUTPUT.CHANNEL (INT here, CHAN OF ANY out)
out here

PROC LOAD.OUTPUT.CHANNEL.VECTOR (INT here, []CHAN OF ANY out)
out

here

INMOS Limited Confidential occam-2 language implementation manual

These routines are all compiled inline into sequences of transputer instructions on processors which
support the appropriate instructions, or as calls to standard library routines for other processor types
(see SW-0063 (“occam 2 Compiler Library specification”) and SW-0078 (“Code generated for predefined
routines”)).

This is to:

This block moves a block of size which starts at byte to
the block starting at byte .

This is to:

This does the same as , but destination bytes corresponding to zeroes in the source
are not modified.

This is to:

This does the same as , but only zeroes those destination bytes corresponding to
zeroes in the source.

APPROVED 21.9.90 21 SW-0044-4

�

�

�

equivalent

equivalent

equivalent

10.4.2 Block Move routines

PROC MOVE2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,

VAL INT width, length)

SEQ y = 0 FOR length
[dest[y+dy] FROM dx FOR width] := [source[y+sy] FROM sx FOR width]

width,length source[sy][sx]
dest[dy][dx]

PROC DRAW2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,

VAL INT width, length)

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS source[line+sy][point+sx] :
IF

temp <> (0(BYTE))
dest[line+dy][point+dx] := temp

TRUE
SKIP

MOVE2D

PROC CLIP2D (VAL [][]BYTE source, VAL INT sx, sy,
[][]BYTE dest, VAL INT dx, dy,

VAL INT width, length)

SEQ line = 0 FOR length
SEQ point = 0 FOR width

VAL temp IS source[line+sy][point+sx] :
IF

temp = (0(BYTE))
dest[line+dy][point+dx] := 0(BYTE)

TRUE
SKIP

MOVE2D

INMOS Limited Confidential occam-2 language implementation manual

These routines are all compiled inline into sequences of transputer instructions on processors which
support the appropriate instructions, or as calls to standard library routines for other processor types
(see SW-0063 (“occam 2 Compiler Library specification”) and SW-0078 (“Code generated for predefined
routines”)).

This is to:

It performs a cyclic redundancy check over the single word using the CRC value obtained
from the previous call. is the CRC polynomial generator.

This is to:

As but performs the check over a single byte. The byte processed is contained in
the byte of the word .

APPROVED 21.9.90 22 SW-0044-4

�

�

equivalent

equivalent

most significant

10.4.3 Cyclic redundancy checking

INT FUNCTION CRCWORD (VAL INT data, CRCIn, generator)

INT MyData, CRCOut, OldCRC :
VALOF

SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR BitsPerWord -- 16 or 32

SEQ
OldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 -- MSB of CRC = 1
CRCOut := CRCOut >< generator

TRUE
SKIP

RESULT CRCOut

data
generator

INT FUNCTION CRCBYTE (VAL INT data, CRCIn, generator)

INT MyData, CRCOut, OldCRC :
VALOF

SEQ
MyData, CRCOut := data, CRCIn
SEQ i = 0 FOR 8

SEQ
OldCRC := CRCOut
CRCOut, MyData := SHIFTLEFT (CRCOut, MyData, 1)
IF

OldCRC < 0 -- MSB of CRC = 1
CRCOut := CRCOut >< generator

TRUE
SKIP

RESULT CRCOut

CRCWORD
data

31 15

INMOS Limited Confidential occam-2 language implementation manual

These routines are all compiled inline into sequences of transputer instructions on processors which
support the appropriate instructions, or as calls to standard library routines for other processor types
(see SW-0063 (“occam 2 Compiler Library specification”) and SW-0078 (“Code generated for predefined
routines”)).

Counts the number of bits set to 1 in , adds it to , and returns the total.

Forms an containing the bit reversal of .

Forms an containing the least significant bits of in reverse order. The upper bits are
set to zero. The operation is invalid if is negative or greater than the number of bits in a
word.

These routines are all compiled inline into sequences of transputer instructions on processors which
support the appropriate instructions, or as calls to standard library routines for other processor types
(see SW-0063 (“occam 2 Compiler Library specification”) and SW-0078 (“Code generated for predefined
routines”)).

Performs a fixed point multiplication of and , treating each as a binary fraction in the range
[-1, 1), and returning their product rounded to the nearest available representation. The value
of the fractions represented by the arguments and result can be obtained by multiplying their

value by 2 (or 2 on a 16-bit processor). The result can overflow if both and
are -1.

This predefine is compiled inline into a sequence of transputer instructions on 32-bit processors
(see SW-0078 (“Code generated for predefined routines”)), or as a call to a standard library
routine for 16-bit processors.

This returns three parameters; from left to right they are , , and . It unpacks
, regarded as an IEEE single length real number (ie a), into , the

(biased) exponent, and , the fractional part. It also returns an integer defining the
of , ignoring the sign bit:

Reason
0 is zero
1 is a normalised or denormalised number
2 is
3 is

This predefine is compiled inline into a sequence of transputer instructions on 32-bit processors
such as the , which do not have a floating point unit, but do have specialised in-
structions for floating point support (see SW-0078 (“Code generated for predefined routines”)).
It is compiled as a call to a standard library routine for other 32-bit processors. It is invalid on
16-bit processors, since cannot fit into an .

APPROVED 21.9.90 23 SW-0044-4

� �

�

�

�

�

�

10.4.4 Bit manipulation routines

10.4.5 Floating point support routines

Inf
NaN

INT FUNCTION BITCOUNT (VAL INT Word, CountIn)
Word CountIn

INT FUNCTION BITREVWORD (VAL INT x)
INT x

INT FUNCTION BITREVNBITS (VAL INT x, n)
INT n x

n

INT FUNCTION FRACMUL (VAL INT x, y)
x y

INT x y

INT, INT, INT FUNCTION UNPACKSN (VAL INT X)
Xfrac Xexp Type

X RETYPED REAL32 Xexp
Xfrac Type

X

Type

X

X

X

X

IMS T425

Xfrac INT

INMOS Limited Confidential occam-2 language implementation manual

This takes a possibly unnormalised fraction, guard word, and exponent, and returns the IEEE
floating point value it represents. It takes care of all the normalisation, postnormalisation,
rounding, and packing of the result. The rounding mode used is round to nearest. The
exponent should already be biased.

The function normalises and postnormalises the number represented by , and
into local variables , and . It then packs the (biased) exponent

and fraction into the result, rounding using the extra bits in . The sign
bit is set to 0. If overflow occurs, is returned.

This predefine is compiled inline into a sequence of transputer instructions on 32-bit processors
such as the , which do not have a floating point unit, but do have specialised in-
structions for floating point support (see SW-0078 (“Code generated for predefined routines”)).
It is compiled as a call to a standard library routine for other 32-bit processors. It is invalid on
16-bit processors, since cannot fit into an .

This is supplied to enable a user to call a piece of transputer code without using an occam
call.

Note that the calling convention for arrays of channels has changed for this compiler; it now
passes arrays of channels as arrays of pointers to channels. See SW-0064 (“occam 2 Run
time model”) for details of occam calling conventions.

If the code has been compiled with an INMOS compiler, then the first byte of the array
be aligned to a word boundary. The code is executed starting at .

The user must have already supplied any necessary parameters into the array.
The topmost word is reserved for use by ; the next
words are assumed to have been set up by the user, and the code is entered with the
transputer’s pointing at the next word, running in the same priority as the
process which called it. That process will not proceed until the executing code restores the

to the value it had upon entry and executes a instruction.

It is the user’s responsibility to ensure that the array is large enough to accom-
modate all the stack usage requirements. If the code requires a vectorspace pointer, the user
should set up an extra parameter which points to an area of memory (eg an array) which
is large enough to accommodate all the vectorspace requirements. Note that the compiler
requires that is a compile-time constant, and has value 3.

The predefine is compiled inline into a sequence of transputer instructions (see SW-0078
(“Code generated for predefined routines”)).

APPROVED 21.9.90 24 SW-0044-4

�

�

�

must

Workspace pointer

Workspace pointer

Inf

10.4.6 Dynamic code loading

INT FUNCTION ROUNDSN (VAL INT Yexp, Yfrac, Yguard)

Yexp Yfrac
Yguard Xexp Xfrac Xguard
Xexp Xfrac Xguard

IMS T425

Xfrac INT

PROC KERNEL.RUN (VAL []BYTE code, VAL INT entry.offset,
[]INT workspace,
VAL INT number.of.parameters)

code
code[entry.offset]

workspace
KERNEL.RUN number.of.parameters

ret

workspace

INT

number.of.parameters

INMOS Limited Confidential occam-2 language implementation manual

The functions etc, as listed in Appendix J.4 and described in Appendix N of “occam 2 Refer-
ence Manual”, Prentice-Hall 1988, are available as predefined routines. They must be explicitly
referenced by -ing a library. See SW-0114 (“occam 2 User Library Specification”).

The functions etc, as listed in Appendix J.5 and described in Appendix O of “occam
2 Reference Manual”, Prentice-Hall 1988, are available as predefined routines. They must be
explicitly referenced by -ing a library. See SW-0114 (“occam 2 User Library Specification”).

APPROVED 21.9.90 25 SW-0044-4

not

not

11.1 Elementary function library

11.2 Value and string conversion procedures

11 Other Standard libraries

SIN

#USE

INTTOSTRING

#USE

INMOS Limited Confidential occam-2 language implementation manual

The occam compiler supports the insertion of transputer code directly into an occam program. See
“Transputer Instruction Set - A compiler writer’s guide”, Prentice-Hall 1988 for details of the transputer
instruction set. These facilities must be specifically enabled (see SW-0062 (“occam 2 Compiler spec-
ification”)). Two levels are available; ‘Sequential’ instructions are enabled by an option. This allows
access to all transputer instructions for a particular processor which cannot normally affect parallel
processes and scheduling. ‘Full’ instructions can be enabled by a different option. This allows access
to the complete range of instructions supported by that processor.

For compatibility with existing occam compilers, code inserts are provided by the construct. The
syntax of this construct is:

=

=

=

=

=

=

=

= any primary instruction (in upper-case letters)

= any secondary instruction (in upper-case letters)

=

expressions must be scalar variables, or array accesses with constant subscripts (expressions
may, of course, be constant). Access to channels is no longer supported within code.

There are some problems with the semantics of code.

1 Any primary instruction may take a label as operand even though it is meaningless for anything
other than a jump or load constant. (The operand is evaluated as the difference between the
address of the label and the address of the next instruction.)

2 When given a constant operand, the local / nonlocal load and store instruction pairs (ie.
, ,) behave as expected and produce the appropriate

APPROVED 21.9.90 26 SW-0044-4

� �

� �

process guy.construct

guy.construct
guy.line

guy.line primary
secondary

labeldef

primary primary.op label
primary.op constant.expression
load.or.store.op guy.expr

labeldef label

secondary secondary.op

guy.expr name constant.expression

primary.op

secondary.op

load.or.store.op

guy.expr

12.1 GUY Construct

12 Inline transputer code insertion

GUY

GUY

| [STEP]

|

.

|

|

:

[]

LDL | LDNL | LDLP | STL | STNL

GUY

GUY

LDL
/ LDNL LDLP / LDNLP STL / STNL

INMOS Limited Confidential occam-2 language implementation manual

instruction with the given operand. However, when given a operand, both instructions
in a pair behave identically and not necessarily at all as expected. are treated
as , are treated as , and are treated as .
These operations may include chaining back down static links to load a variable (given
on a non-local variable), or not (given on a local variable, will be generated!), or
even loading up a pointer in order to store into an array subscription.

The form is provided to allow testing of transputer instructions. It can be replaced by use of the
primary instruction so is obsolete.

The construct provides the ability to insert transputer code sequences into occam programs. Its
syntax is similar to (but not identical to) that of the obsolete construct which has just been described,
except that it is introduced by the keyword. However, the are much more secure. A
primary instruction in code will now always generate that primary instruction in the object file; this
was not the case with the construct.

APPROVED 21.9.90 27 SW-0044-4

guy.expr

load load pointer store

semantics

12.2 ASM Construct

LDL / LDNL
LDLP / LDNLP STL / STNL

LDL
LDNL LDL

STEP
OPR

ASM
GUY

ASM
ASM

GUY

INMOS Limited Confidential occam-2 language implementation manual

=

=

=

=

= any primary instruction (in upper-case letters)

=

=

= any secondary instruction (in upper-case letters)

=

,
,

=

The primary instructions which perform loads and stores are allowed to take a symbolic name as
their operand; they evaluate to the primary instruction with an operand

. Note that this means, for example, that where is a non- parameter, will
return the pointer to . This also means that if is a non-local variable, the operand used will be the
variable’s offset in the non-local workspace. Primary instructions with symbolic name operands should
only be used in special cases; you would normally use the pseudo ops as described below.

The assembler will optimise away primary instructions which are known to be no-ops. These are

APPROVED 21.9.90 28 SW-0044-4

� �

� �

� �

process asm.construct

asm.construct
asm.line

asm.line primary.op constant.expression
load.or.store.op name
branch.op label
secondary.op
pseudo.op
labeldef

labeldef label

primary.op

load.or.store.op

branch.op

secondary.op

pseudo.op asm.exp
asm.exp, asm.exp

asm.exp, asm.exp, asm.exp
element

element, element
element, element, element
constant.expression
constant.expression

label label

asm.exp element
expression

equal to that symbol’s offset
in workspace

12.2.1 ASM instructions

ASM

|

| :

|

|

|

:

LDL | LDNL | LDLP | LDNLP

| STL | STNL

J | CJ | CALL

LD

| LDAB

| LDABC

| ST

| STAB

| STABC

| BYTE

| WORD

| ALIGN

| LDLABELDIFF : - :

ADDRESSOF

|

LDL x x VAL
x x

AJW 0
ADC 0
LDNLP 0

INMOS Limited Confidential occam-2 language implementation manual

should be used where a byte is required, or the pseudo-op could be used.

Secondary instructions, and the instructions, simply expand out to the correct byte sequence,
as expected.

You may only branch to a label defined within the same procedure or function. It is illegal to declare
two labels with the same name in the same procedure. It is currently illegal to use labels inside a
procedure or function which will be d.

The operations are defined as follows:

Loads a value into the Areg. May use other stack slots and/or temporaries.

Loads values into the Areg and Breg. The left hand expression ends up in Areg.
May use other stack slots and/or temporaries.

Loads values into the Areg, Breg and Creg. The leftmost expression ends up in
Areg. May use temporaries.

Stores the value from the Areg. May use other stack slots and/or temporaries.

Stores values from the Areg and Breg. The left hand element receives Areg.
May use other stack slots and/or temporaries.

Stores values into the Areg, Breg and Creg. The leftmost element receives Areg.
May use temporaries.

Inserts the following constant value(s) into the code. The expression may
be either a single , or a table or string, or a comma separated list of
such items.
Inserts the following constant value(s) into the code. The expression may
be either a single integer, or an integer table, or a comma separated list of such
items.
Calculates the difference, , between two labels and inserts a .

Inserts zero or more instructions until aligned to a word boundary.

Expressions used in pseudo-ops must be word sized or smaller. To load a floating point value,
use a to load its address, then a or as required. Elements used in
pseudo-ops must be word sized (or smaller?).

The following special names are available as constants inside expressions.

APPROVED 21.9.90 29 SW-0044-4

pseudo.op

n n

Currently not implemented.

load
store

12.2.2 Pseudo operations

12.2.3 Special names

PFIX 0 NOP BYTE

fpentry

INLINE

LD

LDAB

LDABC

ST

STAB

STABC

BYTE BYTE
BYTE BYTE

WORD INT

LDLABELDIFF LDC

ALIGN PFIX 0

LD FPLDNLSN FPLDNLDB

ASM

INMOS Limited Confidential occam-2 language implementation manual

Evaluates to the size of the current procedure’s workspace. This will be the
workspace offset of the return address, except within a replicated , where it
will be the size of that replication’s workspace requirement.

Evaluates to the workspace offset of the vectorspace pointer. If inside a repli-
cated , it points to the vectorspace pointer for that branch only. A compile
time error is generated if there is no vectorspace pointer because no vectors
have been created.
Evaluates to the workspace offset of the static link. If inside a replicated , it
points to the static link for that branch only. A compile time error is generated if
there is no static link.

For example, to determine the return address of a procedure, you would use:

There is no checking of ‘suitability’, hence , etc, is legal.

A summary of the differences between and follows:

Symbolic access to primaries.
The instructions now have a different behaviour.
Whereas in , each behaved as simply a , , or , in they will
evaluate to the primary instruction followed by the offset of that variable in workspace.

A sequence of loads or stores in should be changed to one of the pseudo operations.

References to labels.
References to labels in code are preceded by a dot. This must be changed to a colon
() in .

In some cases, where in you would , you can now do this better with in
with .

Channel accesses.
Symbolic access to channels is not permitted in code although it was previously. (This
has been disallowed because the internal representation of channels has changed).

In , will return a pointer to the channel word.

Here follows the total list of the transputer instructions which are permitted when ‘sequential’ code
insertion is enabled. You may only use those instructions which exist on the target processor.

The pseudo-operations are also permitted when sequential code insertion is enabled.

ADC, ADD, AND, BCNT, BITCNT, BITREVNBITS, BITREVWORD, BSUB, CCNT1, CFLERR, CJ, CR-
CBYTE, CRCWORD, CSNGL, CSUB0, CWORD, DIFF, DIV, DUP, EQC FMUL, FPADD, FPB32TOR64,
FPCHKERR, FPDIV, FPDUP, FPEQ, FPGT, FPI32TOR32, FPI32TOR64, FPINT, FPLDNLADDDB,
FPLDNLADDSN, FPLDNLDB, FPLDNLDBI, FPLDNLMULDB, FPLDNLMULSN, FPLDNLSN, FPLDNL-
SNI, FPLDZERODB, FPLDZEROSN, FPMUL, FPNAN, FPNOTFINITE, FPORDERED, FPREMFIRST,
FPREMSTEP, FPREV, FPRTOI32, FPSTNLDB, FPSTNLI32, FPSTNLSN, FPSUB, FPTESTERR, FPUABS,
FPUCHKI32, FPUCHKI64, FPUCLRERR, FPUDIVBY2, FPUEXPDEC32, FPUEXPINC32, FPUMULBY2,

APPROVED 21.9.90 30 SW-0044-4

�

�

�

x x x

12.3 Differences between ASM and GUY

12.4 Sequential code insertion

.WSSIZE
PAR

.VSPTR
PAR

.STATIC PAR

LDL .WSSIZE

J .WSSIZE

ASM GUY

LDL, LDNL, LDLP, LDNLP, STL, STNL
GUY LD LD ADDRESSOF ST ASM

GUY ASM

GUY
: ASM

GUY LDC .label ASM
LDLABELDIFF

GUY

ASM LDL chan

ASM

INMOS Limited Confidential occam-2 language implementation manual

FPUNOROUND, FPUR32TOR64, FPUR64TOR32, FPURM, FPURN, FPURP, FPURZ, FPUSETERR,
FPUSQRTFIRST, FPUSQRTLAST, FPUSQRTSTEP, GT, J, LADD, LB, LDC LDDEVID, LDIFF, LDINF,
LDIV, LDL, LDLP, LDMEMSTARTVAL, LDNL, LDNLP, LDPI, LDPRI, LDTIMER, LMUL, LSHL, LSHR,
LSUB, LSUM, MINT, MOVE, MOVE2DALL, MOVE2DINIT, MOVE2DNONZERO, MOVE2DZERO, MUL,
NORM, NOT, OR, POP, POSTNORMSN, PROD, REM, REV, ROUNDSN, SB, SETERR, SHL, SHR,
STL, STNL, STTIMER, SUB, SUM, TESTERR, TESTHALTERR, TESTPRANAL, UNPACKSN, WCNT,
WSUB, WSUBDB, XDBLE, XOR, XWORD

You can use any instruction listed in the compiler writer’s guide, or listed in a datasheet for that
processor.

APPROVED 21.9.90 31 SW-0044-4

12.5 Full code insertion

13 The end

	1 Introduction
	2 Change history
	2.1 Changes since SW0044-03
	2.2 Changes since SW0044-02
	2.3 Changes since issue of January 24, 1990
	2.4 Changes since issue of January 4, 1990

	3 Language differences
	3.1 Compiler keywords
	3.2 Syntax permitted at outermost level
	3.3 INLINE keyword
	3.4 String escape characters
	3.5 Vectorspace
	3.6 PLACE name AT WORKSPACE n
	3.7 RETYPING channels
	3.8 Channel constructors

	4 Implementation restrictions
	5 Implementation limits
	6 Implementation defined areas
	7 Usage and Alias checking
	7.1 Usage checking
	7.2 Alias checking
	7.3 Other checks

	8 Error behaviour
	9 Compiler directives
	9.1 #COMMENT directive
	9.2 #IMPORT directive
	9.3 #INCLUDE directive
	9.4 #OPTION directive
	9.5 #PRAGMA directive
	9.5.1 EXTERNAL pragma
	9.5.2 LINKAGE pragma
	9.5.3 TRANSLATE pragma

	9.6 #SC directive
	9.7 #USE directive

	10 Predefined routines
	10.1 Multiple length integer arithmetic functions
	10.2 Floating point functions
	10.3 Full IEEE arithmetic functions
	10.4 Transputer-specific predefined routines
	10.4.1 General purpose routines
	10.4.2 Block Move routines
	10.4.3 Cyclic redundancy checking
	10.4.4 Bit manipulation routines
	10.4.5 Floating point support routines
	10.4.6 Dynamic code loading

	11 Other Standard libraries
	11.1 Elementary function library
	11.2 Value and string conversion procedures

	12 Inline transputer code insertion
	12.1 GUY Construct
	12.2 ASM Construct
	12.2.1 ASM instructions
	12.2.2 Pseudo operations
	12.2.3 Special names

	12.3 Differences between ASM and GUY
	12.4 Sequential code insertion
	12.5 Full code insertion

	13 The end

