
inmmos®®

Paul Sidnell, Martin Day, Andy Pepperdine, Andy Whitlow

SW-0011-7

INMOS Limited Confidential

APPROVED 1 March, 1991

Transputer Common Object File Format

INMOS Limited Confidential TCOFF

1 Introduction 2
2 Objectives 2

2.1 Migration to the new standard 2
2.2 The file format 2
2.3 Design strategy 2
2.4 Contents of the object file 3
2.5 Run time initialisation 5

3 Detailed description 6
3.1 High level syntax 7
3.2 Interpretation by a Linker 9

3.2.1 Directives 11
3.2.2 Values and Expressions 21

3.3 Encoding Methods 23
3.3.1 Numbers 23
3.3.2 Strings 24
3.3.3 Sets 24

3.4 Specifying Transputer Attributes 25
3.4.1 T Architecture 26
3.4.2 H Architecture 32

4 Alphabetic List 34
4.1 Syntax of TCOFF 34
4.2 Bit Representations 42

5 References 45

APPROVED 1.3.91 1 SW-0011-7

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

Contents

INMOS Limited Confidential TCOFF

This document sets out the reasons for the creation of the transputer common object format, TCOFF.
It falls into two main sections. First there is a general description of the motivations behind the design
and features required. This is followed by a more detailed description of the format.

The major objective in defining a standard object file format for transputer software is to increase the
compatibility of software products from different companies. This will allow users to mix object modules
and libraries built with different compilers and assemblers and for vendors to supply object modules
and libraries compatible with a large range of compilers. This should lead to an even more rapidly
increasing software base for the transputer range of processors.

In defining the object format we hope to enable all current manufacturers to switch to the new object
format without any major changes in the way they compile their code. Obviously all compilers are
going to have to be modified to some extent but we hope that everyone will be able to switch to the
new format by simple changes.

Whilst this description is to be freely available, it isn’t going to be possible for all manufacturers to
switch straight to the new standard simultaneously. There is going to be a changeover period during
which customers are going to have object modules in both old and new formats which they are going
to want to link together.

The chosen solution is to supply a conversion program to convert object files in the old format to the
new one. This program would initially be used to convert all object and library files that the customer
has produced and will also be needed after each compilation that produces object code in the old
format.

It would be useful if other software tools were able to read and copy object files without any knowledge
of the operand types and data record formats that make up the file. It is therefore proposed that an
object file is made up of records composed of a tag and then a length count followed by that many
bytes of data. This means that tools do not need to know the format of every record type in order to
quickly read through a file only searching for certain kinds of record. The tag indicates the meaning
and format of the remainder of the data in the block.

Parameters of various record types can be either numbers or strings. Numbers are be stored using a
compaction technique. Strings are represented as a number giving the length of the string followed by
that many bytes.

The object file format should enable a large number of linking strategies to be used. For example the
relative positioning of items of static data may take place at compile, link or run time. It should be

APPROVED 1.3.91 2 SW-0011-7

2.1 Migration to the new standard

2.2 The file format

2.3 Design strategy

1 Introduction

2 Objectives

INMOS Limited Confidential TCOFF

possible to convert all current object file formats to the new standard format.

Because of the need to support these different linking schemes the linker will need to be relatively
complicated compared to most current implementations. This extra complication will, however, add a
lot of flexibility and it should be possible to convert most current object file formats to the new standard
using only a subset of the new linker commands.

The following is a description in fairly general terms of the proposed object file format giving some
justification for the features included. A concise description of the linker command tags follows in the
next section.

An object file is composed of one or more modules. A module is a self-contained collection of code,
data and linking information together with definitions of imported and exported symbols and symbols
local to the module.

A collection of C functions and static data definitions in one file would typically produce, after com-
pilation, an object file containing a single module. FORTRAN would produce an object file with one
module per subroutine.

Code may be compiled for execution on only a particular set of processors running in certain modes.
Current processors may be run in one of two modes, halt on error or ignore error. Code can be
compiled to behave in various ways when an error occurs. Those currently supported by the occam
compiler are to halt the entire processor or stop only the process that set the error. Code can also be
compiled in a universal error mode which is compatible with both of the above.

Libraries will be created and maintained by a librarian utility prorgam. Libraries will consist of an object
file with an index at the front. This will make selection of the appropriate object modules for inclusion
more efficient. Libraries may also be built from linked units to allow for configuration programs to
choose from a selection of loaders.

The linker will check that all code being linked is compatible with the target processor type and will
all run in the same mode. When searching libraries only those modules compatible with the target
processor will be considered for inclusion in the output file. Since more than one module in a library
may be used for the same purpose, eg the same function but compiled for two compatible processor
classes, linkers must have some algorithm for picking the ’best’ module for the job. The simplest
method would be for a librarian to order the library modules by increasing target generality, ie. more
specific (and therefore efficient) first. A linker may then pick the first compatible module it finds and be
sure that it is the best choice.

Future variants and new generations of transputers may support different instruction sets and execution
modes. The compatibility checking scheme must be able to cope with this.

To reduce the number of object files in a system several object files may be combined into one file.
This is done by simple concatenation of the files.

Compilers will direct the linker to place text (all data is referred to as text whether executable code, fixed
tables, initial values for variables or uninitialised blocks) in one of a number of named sections. These
sections could then be concatenated together into a single contiguous image or scattered throughout

APPROVED 1.3.91 3 SW-0011-7

(1) Modules

(2) Placing text

2.4 Contents of the object file

INMOS Limited Confidential TCOFF

memory, possibly, in the case of executable code, being shared by several concurrent processes. The
run time environment will dictate what approach is to be used. By including the appropriate relocation
information in the linker output file the decision could be put off until run-time. It is the compilers
responsibility to supply linker directives such that this is possible.

Sections can either be externally visible or local to a particular module (note that even when a section is
local to one module labels can still be defined inside it that are externally visible). They will be tagged to
indicate whether the text inside them is executable, readable, writable etc. or any combination thereof.

Text records specify initial data values or code to be placed in a particular section. Each text record is
appended to the end of the previous text record added to the section. The first text record is placed at
offset zero inside the section.

Sections may be extended with text blocks initialised to all zeros. Whether these zeros need to appear
in the binary image file produced by the linker will be implementation dependent.

Totally uninitialised blocks of text may be declared. These are useful where data does not need to be
given any particular initial value.

The current load point in a section can be altered by a linker directive. One use of this is to support
FORTRAN style common blocks (see Detailed description later).

Symbols can be either section names or labels. Each type of symbol may be local to the module in
which it is defined or global and externally visible, shared between all the modules that are being linked
together.

As symbols are declared they will be allocated symbol numbers. These numbers will then be used to
refer to the symbol in the linker directives that follow.

A section symbol is a name used to refer to a section. Attribute bits in the symbol definition record
indicate whether the symbol is a section symbol. When a module wishes to refer to a section it will
use the symbol number assigned to the section symbol.

Label symbols are defined by expressions giving their value. This could be at a fixed offsets within
a section, an address or a more complicated value. Label symbols may only be defined once. If the
symbol is global only one module may define it but all may reference it.

It is also possible to declare local anonymous symbols which do not have a name, only a reference
number. This saves compilers having to invent a unique name for each local symbol.

Expressions in linker directives will be stored in a prefix form. Operands can either be symbols,
constants or other expressions.

Symbols are represented by a value indicating that a symbol operand follows. This is followed by the
symbol number.

Constants are represented by a value indicating that a constant operand follows, followed by the value
of the constant.

APPROVED 1.3.91 4 SW-0011-7

(3) Text records

(4) Symbols

(5) Expressions

INMOS Limited Confidential TCOFF

Special operands include the address of the current load point, the size of a specified section and the
size in bytes of the machine word of the target processor.

When a label symbol is used as an operand the value used will be the position in the final text that
corresponds to the location at which it was defined, as an offset in bytes from the zeroth byte of that
text.

When a section symbol is used as an operand the value is taken to be a label, corresponding to the
first byte of the section, as above.

Operators in expressions include add, subtract, multiply, divide, remainder, minimum and maximum.
All arithmetic is carried out as unchecked signed 32 bit integer arithmetic.

Some directives may require expressions to be evaluated at the time they are first encountered by the
linker. Other expressions may not need to be evaluated until all object modules and libraries have
been read.

Linker text patching directives specify what adjustments the linker should make to the text.

There are two basic types of patch: patching a transputer instruction including a prefix sequence and
patching values of various sizes.

Transputer instructions can be patched in one of two ways. Either the compiler must leave a slot in the
code big enough for the linker to patch in the instruction sequence or the linker must be able to open
up a hole in the code to the minimum size necessary.

The first method is easiest to implement but will produce bulkier and less efficient code than the second
method.

The second method is more complicated and requires many more patches at link time since jumps
around an instruction to be patched cannot be resolved at compile time. The linker will also have to
adjust the positions of any labels that get moved as a result of changing the instruction size. A word
alignment directive will also be needed to force certain pieces of code onto word boundaries (eg. any
constant tables built into the code). An algorithm to perform this operation is given in the Transputer
Instruction Set - A compiler writer’s guide [INMOS’86] (section 4.4 Generating prefix sequences). This
will need a small modification in order to support word alignment but otherwise remains unchanged.

When patching a value, it will be written into the text with the least significant byte first.

It may be useful to perform each patch type with either the value of the expression given, or the value
divided by the machine word size in bytes, since most references to global static data will require this.

There are two methods of initialising writable global data.

The first method is to provide an initialisation routine in each module to set up the global data defined
in that module.

It is proposed that a convention be adopted that a certain section name is reserved for use by the
initialising part of the run-time system. Each module would contain linker directives to place into this
section the addresses of any routines that need to be run to initialise data before the program proper

APPROVED 1.3.91 5 SW-0011-7

(6) Patching text

2.5 Run time initialisation

INMOS Limited Confidential TCOFF

is started. At startup this section would be scanned and all the routines specified would be called. It
may be useful to specify a priority level for each routine so that they can be run in a certain order.

The second method is to include linker directives to initialise the text in a global data section. This is
then included as an image in the binary file produced by the linker.

If a program is to be run in parallel with itself or is restarted in memory without the data area being
reloaded then the second method presents a problem since the two instances of the program cannot
share the same data. The controlling program or operating system will have to provide support in order
to make copies of the initialised static data areas for each instance of the program.

The description of the Transputer Common Object File Format (TCOFF) given here is in a modified
form of IDL (Interface Description Language [L83], [N86]). In particular, the use of IDL here should be
read to imply that the order of the fields in each instance of an object is the lexical order found in the
object type’s description. For example, in the object of the class , the field
immediately precedes the field with no padding between them.

An extension to IDL specifies the representation(s) an identifier may have. These values are given in
definition statements, where the syntax of the value is:

is any constant in the syntax of occam, and defines the representation size and form
of . Eg. 10 (INT32) defines the constant value 10 in 2’s complement form, 32 bits long.
Occam was chosen because it defines the representation of all types in an unambiguous manner. The
intent is that if real values were ever required, then the IEEE representations would be adopted.

Another extension is used to express the case that a generic object is instantiated with a given param-
eter. (See for an example of a definition of such an object, and for a reference to
one.)

Class and constant names are in upper case, and object names are in lower case. All fields in objects
start conventionally with two characters which uniquely identify the object to which they belong.

The definition of the format of the TCOFF falls into two forms; the form that allows any tools to read
the file and pick out only those directives it is interested in; and the form that describes what the linker
will do with all the directives herein defined. In the last chapter, there is a list of all the IDL definitions
in the alphabetic order of their left-hand sides.

APPROVED 1.3.91 6 SW-0011-7

3 Detailed description

OBJECT FILE of linkable
of directives

constant (TYPE)

constant TYPE
constant

header sm header

INMOS Limited Confidential TCOFF

First, the description of the form of the data. All tools can scan this form and select only the directives
which are relevant to the tool.

An is an object with two components. It can be read as a sequence of directives, the
first one being a directive. identifies this file as an object file. It is defined
as a (qv.), whose representation is such that the linkers can distinguish this format from
all previous formats.

A is an object identical in structure to an object file except that it begins with a
directive. These files are produced by the linker and must therefore be distinguishable from linkable
files.

enables the commands to be scanned without having to look inside them.

This generic object is described in an extension to IDL. It specifies that a object consists of two
fields which may depend on the parameter (). In fact, is defined as of class
but must have the value of the parameter . These values are defined at the end of this description.

precedes the length field in this object because we want to define a tag value which must be
different from all possible initial records of the older linker files. This tag can then be used to identify
this file as being of this new format.

is the number of bytes in . It is non-negative (ie. zero is a valid length).

APPROVED 1.3.91 7 SW-0011-7

3.1 High level syntax

object_file => of_linkable : linkable,
of_directives : OPT SEQUENCE OF directive ;

linkable => ln_header : header (LINKABLE_TAG) ;

object file
linkable of linkable

directive

linked_file => lf_linked : linked,
lf_directives : OPT SEQUENCE OF directive ;

linked => lk_header : header (LINKED_UNIT_TAG) ;

linked file linked

directive => dr_header : header,
dr_command : OPT SEQUENCE OF BYTE ;

dr header

header (TAG) => hd_tag : DIRECTIVE_TAG = TAG ;
hd_length : length ;

length => number ;

header
TAG hd tag DIRECTIVE TAG
TAG

hd tag

hd length dr command

DIRECTIVE_TAG ::= LINKABLE_TAG
| LINKED_UNIT_TAG
| START_MODULE_TAG
| END_MODULE_TAG
| SET_LOAD_POINT_TAG
| ADJUST_POINT_TAG
| LOAD_TEXT_TAG
| LOAD_PREFIX_TAG
| LOAD_EXPR_TAG
| LOAD_ZEROS_TAG
| ALIGN_TAG

INMOS Limited Confidential TCOFF

These tags define the directive which the linker will recognise. They will always be found immediately
preceding a length field in a directive.

APPROVED 1.3.91 8 SW-0011-7

| SECTION_TAG
| SYMBOL_TAG
| DEFINE_MAIN_TAG
| SPECIFIC_SYMBOL_TAG
| LOCAL_SYMBOLS_TAG
| DEFINE_LABEL_TAG
| DEFINE_SYMBOL_TAG
| DESCRIPTOR_TAG
| KILL_ID_TAG
| BYTE_PATCH_TAG
| WORD_PATCH_TAG
| REP_START_TAG
| REP_END_TAG
| COMMENT_TAG
| MESSAGE_TAG
| VERSION_TAG
| LIB_INDEX_START_TAG
| LIB_INDEX_END_TAG
| INDEX_ENTRY_TAG
;

INMOS Limited Confidential TCOFF

In order that the definition can be read easily, there is a convention that wherever a is defined
it is found immediately within the object that corresponds to the full . Thus is
equivalent to the remainder of the object containing the and is of length .

An object of class is either a sequence of modules, or is a library. It is assumed that
the librarian is a separate tool that combines a number of objects of type into one of
type , but which can still be described by essentially the same description.

An object of class is identical in format to a except that a directive is
used in place of directive.

defines functionality that the transputer must have for the code to execute correctly. The
linker can check the compatibility of all modules being linked together.

defines which attributes the module has. These attributes include such things as word
size, error response, and communication method (direct instruction or via library calls).

defines the source language used to create the module.

APPROVED 1.3.91 9 SW-0011-7

3.2 Interpretation by a Linker

header
directive dr command

header hd length

OBJECT_FILE => module_list
| library
;

OBJECT FILE
object file

library

LINKED_FILE => lk_module_list
| lk_library
;

LINKED FILE unit linked
linkable

module_list => ml_body : OPT SEQUENCE OF unit ;

lk_module_list => lm_body : OPT SEQUENCE OF lk_unit ;

unit => un_linkable : linkable,
un_body : module ;

lk_unit => lu_linkable : linked,
lu_body : module ;

module => md_start : start_module,
md_body : OPT SEQUENCE OF LINK_COMMAND,
md_end : end_module ;

start_module => sm_header : header (START_MODULE_TAG),
sm_cpus : SET OF TRANS_FUNCTION,
sm_attrib : SET OF ATTRIBUTES,
sm_language : LANGUAGE,
sm_name : string ;

sm cpus

sm attrib

sm language

LANGUAGE ::= LANG_NOT_KNOWN
| LANG_LINKED
| LANG_OCCAM
| LANG_OCCAM_HARNESS
| LANG_ANSI_C
| LANG_FORTRAN_77

INMOS Limited Confidential TCOFF

is the name of the module. Some languages such as Modula 2 require named modules.
Other languages may leave this field unused or simply use the source file name.

Modules may be nested in this format, although it is not anticipated that any of the existing compilers
can make use of this fact. (See also).

It is expected that compilers will generate a single for each compilation of a source file. A unit
starts with an indication of the format it is in and the generated code follows. Several s can be
combined into a single by simple concatenation, hence the format indicators can occur
between units in this case.

This directive merely shows where the most recent module terminates. If it is nested within another
module, then the state is unstacked.

APPROVED 1.3.91 10 SW-0011-7

| LANG_ISO_PASCAL
| LANG_MODULA_2
| LANG_ADA
| LANG_ASSEMBLER
;

sm name

symbol

unit
unit

LINKED FILE

end_module => em_header : header (END_MODULE_TAG) ;

INMOS Limited Confidential TCOFF

These are the directives that the linkers are expected to recognise. Other tools need recognise only a
subset.

The linker operates with the concept of a . This is the position at which all text
is placed. The loading of text increments current load point by the size of the text.

The loading is done into s. These can be named. Linkers and compilers can choose their
names appropriately for the areas of text to be located in proximity to one another. Linkers can state
preferred names if it is required to combine output from different compilers in a sensible way.

The load point is initially undefined and each module which is loaded must direct the linker to place
the load point in an existing section. Thereafter, text is loaded at the current load point unless it is
explicitly reset.

Sets the load point to current end of section . The in must have
been defined by a directive specifying it as a section. If the section is empty then the end of
the section is in fact the start of the section.

This directive increments the current load point by the value in . It remains in the same
section.

APPROVED 1.3.91 11 SW-0011-7

3.2.1 Directives

LINK_COMMAND ::= SIMPLE_DIRECTIVE
| replicator
| module
;

SIMPLE_DIRECTIVE ::= set_load_point
| adjust_point
| load_text
| load_prefix
| load_value
| load_zeros
| align
| section
| symbol
| define_main
| specific_symbol
| local_symbols
| define_label
| define_symbol
| descriptor
| kill_id
| patch
| comment
| message
| version
;

current load point

section

set_load_point => sl_header : header (SET_LOAD_POINT_TAG),
sl_location : ident ;

sl location ident sl location
section

adjust_point => aj_header : header (ADJUST_POINT_TAG),
aj_offset : VALUE ;

aj offset

INMOS Limited Confidential TCOFF

The value in must be determined at the time the directive is found. There
can be no unresolved symbols in the expression.

is defined in the next subsection.

This directive can be used in defining FORTRAN COMMON blocks and their initial values. When
a BLOCKDATA statement is used to initialise a COMMON block (named ’common’, say), then the
sequence:

will do the job. The directive sets the load-point to the of the section named
’common’. The then adds to the current position the value of (”location of ’common’”
minus ”location of current load-point”); in other words, it sets the load point at the start of the section
’common’. Text is now overlayed at this point.

If there is no initial value, then the sequence:

can be used. This sets the load point to be ’size of common’ bytes from the start of the section. If the
section was smaller, it will have been stretched. If the section was larger, it remains the same size.
Note that in the second example the contents of this section is undefined, since no initialised text has
been loaded.

Loads into the next bytes from the current load point. The load point is updated to the byte
beyond the loaded text.

Places into the text and fixes up the prefixes to occupy the minimum space. The value of
the prefix will be taken from .

is the number of bytes the instruction must take. The linker will leave that number and fill
in the prefix with . As a special case, a size of zero indicates that the linker will use the
fewest number of prefix operations that will accommodate the value. Otherwise, the instruction will
use the fewest prefixes at the least significant end of the space, with the remainder padded with
operations.

contains the instruction to be included in the final byte of the patch. This is the transputer
opcode in the range [0 15].

APPROVED 1.3.91 12 SW-0011-7

��

end

pfx 0

aj offset adjust point

VALUE

set_load_point common
adjust_point MINUS_OP common load_point
load_text text

set load point
adjust point

set_load_point common
adjust_point PLUS_OP MINUS_OP common load_point size_of_common

load_text => lt_header : header (LOAD_TEXT_TAG),
lt_text : string ;

lt text

load_prefix => lx_header : header (LOAD_PREFIX_TAG),
lx_size : number,
lx_value : VALUE,
lx_instr : instruction ;

instruction => in_op_code : number ;

lx instr
lx value

lx size
lx value

lx instr

load_value => lv_header : header (LOAD_EXPR_TAG),
lv_size : number,

INMOS Limited Confidential TCOFF

Places into the text at this point using bytes. The value will be stored with the
least significant bit at the lowest address (ie. ”little-endian” like the transputers). If the size is given as
zero, then the machine wordsize is used.

Places bytes containing binary zeros at the current load point and updates the load point to
the next byte beyond them.

Causes the load point to be aligned on the next higher offset from the start of the current section (mod
). It is assumed that the linkers and configurers will be sensible and that each section will

start at an address with the most stringent alignment requirement for the target machine. If
is zero, then the alignment is taken to be to the wordsize of the target machine (ie, 2 or 4 bytes). The
gap will be filled with operations.

Assigns to the ident next in sequence. The first in a module defines the symbol
to have the ident 0, and subsequent ones have idents incremented by one for each in sequence. The
idents are valid only within a module, the numbering starting afresh with each new module encountered.

If a module is nested inside another one, then the count of identifiers is not re-initialised to zero when
the module starts. Instead, the count continues upward until the end of the module is found, when
the count is reset to what it was on entry to the module. This enables references to be made from
the inner one to symbols defined in the outer one without ambiguity, and without having to make them
globally known.

The usage of a symbol is given by . At the end of a module, all the local symbols become
out of scope and can no longer be referenced.

is the name given to the symbol for humans to read. For local symbols that the compiler
generates for its own use, can be a null string.

Note: The sizes of workspace and vectorspace are required by some systems. These values are
attributes of entry points to routines. One method of implementing it in this format is as follows:

Define a convention for naming the attributes (eg. add ’WS to the name to get a symbol meaning the
worspace size for this entry point). Use the linker’s expression handling to give this symbol a value.

APPROVED 1.3.91 13 SW-0011-7

pfx 0

lv_value : VALUE ;

lv value lv size

load_zeros => lz_header : header (LOAD_ZEROS_TAG),
lz_count : number ;

lz count

align => al_header : header (ALIGN_TAG),
al_modulo : number ;

al modulo
al modulo

symbol => sy_header : header (SYMBOL_TAG),
sy_usage : SET OF USAGE,
sy_symbol : string ;

sy symbol symbol

sy usage

sy symbol
sy symbol

USAGE ::= LOCAL_USAGE
| EXPORT_USAGE
| IMPORT_USAGE
| WEAK_USAGE
| CONDITIONAL_USAGE
| UNINDEXED_USAGE
| PROVISIONAL_USAGE

INMOS Limited Confidential TCOFF

means that the identifier is known only within this module - the linker can expect it to
be defined before the end of the module, and it is not kept beyond the end.

means that the definition of the symbolic name is passed to all other modules. Only
one module can export a given name.

means that the references to this name are defined elsewhere.

A symbol may have only one of the , or attributes.

means that the label does not have to be resolved during linking. If it is not, then the
value is zero (absolute). This can be used to set up chains of control blocks at link time, as well as
only including library modules if the compiler dictates that they are actually necessary. Such a symbol
may only have the attribute.

means that the definition of the name should only be done if it has not already
been defined, ie. if this symbol is defined many times, only the first definition is used. This enables
a compiler to provide a reference to a label to be used as the head of a chain without knowing which
entry in the chain will be the head.

means that the librarian should not include this symbol in the index at the head
of the library. It is meaningful only if the symbol is also defined in the module and is marked as

.

means that the definition of the name is when that name is no longer in
scope, when it has been killed or at the end of linkage, ie. if this symbol is defined many times, only
the last definition is used. Any new definition overrides an existing one. Symbols of this type are used
in situations where the value may have to be changed as linkage progresses. For example, many
expressions may depend upon the size of some module table, but they must not be evaluated until the
final size of this table is known, ie. at the end of linkage.

A symbol may have only one of the or attributes.

specifies that a symbol may be used by directives (see later).
Such a symbol may only be either or . It is an error to attempt to define such a symbol
or use it in an expression. The compiler must ensure that this symbol must not corrupt the users name
space, for example by being a valid function name. Only one such symbol may be exported by a
module.

APPROVED 1.3.91 14 SW-0011-7

fixed

| ORIGIN_USAGE
;

LOCAL USAGE

EXPORT USAGE

IMPORT USAGE

LOCAL USAGE EXPORT USAGE IMPORT USAGE

WEAK USAGE

IMPORT USAGE

CONDITIONAL USAGE

UNINDEXED USAGE

EXPORT USAGE

PROVISIONAL USAGE

CONDITIONAL USAGE PROVISIONAL USAGE

ORIGIN USAGE specific symbol
IMPORT EXPORT

section => se_header : header (SECTION_TAG),
se_section : SET OF SECTION_TYPE,
se_usage : SET OF USAGE,
se_symbol : string ;

SECTION_TYPE ::= WRITE_SECTION
| READ_SECTION
| EXECUTE_SECTION
| DEBUG_SECTION
| VIRTUAL_SECTION
;

INMOS Limited Confidential TCOFF

Symbols may also be used to represent sections by using the directive. This directive is
similar to the directive, but has an extra set of protection attributes in . It should
be noted that the effect of is identical to if no protection attributes are given, ie. a
normal symbol is produced.

Since section names are generated by compilers, it is the responsibility of the compiler that they do
not corrupt the users name space.

The symbol formed by creating a section will take the value of the offset from the start of all output text
to the location in the text where the section was placed.

Sections may have only the or attributes. Sections are assumed to
have the attribute by the librarian.

When a symbol defines a section, then the section can be used in various ways, specified by the
following section types.

means that the section contains data, and can be written to. This would be used for
static variables and FORTRAN COMMON blocks.

means that the data in it may only be read. This would be used for constant pools
and initialisation values.

implies that the section contains code.

Any combination of , and may be used to repre-
sent the intended limitations of the section contents . If hardware support for such protection mecha-
nisms exist, then these mechanisms will be used to enforce the protection regime.

causes the linker to build a section that contains no actual text. Valid operations
within such a section include adjusting the load point and defining labels. No patches or text my be
placed in such a section. Such a section is used as a convienient method of calculating offsets and
sizes of some run time resource. This section will not occupy any space in the output. All labels defined
within such a section will take the value of their position within (offset from the start of) the section.

Since the section will never be output, the location of the section in the output is always set to zero.
The size of the section will be the maximum load point position used.

causes the linker to build a section for the loader to keep as debug information. This
section will be kept separate from other text sections. Labels will be calulated in an identical manner
to s.

A section may not be both virtual and debug. Also, the read, write and execute attributes do not apply
to debug or virtual sections.

This directive defines as the main entry point to the program. It will normally be in the
run-time system for the language, which will then call the user’s program.

APPROVED 1.3.91 15 SW-0011-7

section
symbol se section

section symbol

LOCAL USAGE EXPORT USAGE
UNINDEXED USAGE

WRITE SECTION

READ SECTION

EXECUTE SECTION

WRITE SECTION READ SECTION EXECUTE SECTION

VIRTUAL SECTION

DEBUG SECTION

VIRTUAL SECTION

define_main => dm_header : header (DEFINE_MAIN_TAG),
dm_entry : ident ;

dm entry

specific_symbol => sp_header : header (SPECIFIC_SYMBOL_TAG),
sp_usage : SET OF USAGE,
sp_symbol : string,
sp_origin : ident ;

INMOS Limited Confidential TCOFF

This directive defines a symbol in a similar manner to except that it associates the symbol
with an origin symbol. The linker will treat the the name of the symbol as an extension of

.

This mechanism allows names to have scope by distinguishing symbols of the same name with differing
origin symbols.

Similarly, the name of the origin symbol may be a function of some aspect of the module from which
it was exported, providing security for languages such as occam with strict module dependancies.

Note that must be of type .

Typically, when exporting such a symbol, a single origin symbol name is first formulated such that it
does not corrupt the users name space and is then exported with the directive. All symbols
subsequently exported from the module use the id of this origin symbol in the field of the

directive.

When importing such a symbol, the module of origin is scanned until the origin symbol is encountered
and a symbol of the same name imported into the module under construction. This id is then placed
in the sp origin field of all symbols subsequently imported that must originate from the module being
scanned.

The linker must consider two identical symbols with differing origins as being unique.

If a non specific symbol is imported with the directive then it may be resolved by a symbol
exported by the directive. This allows for mixed language programming. There is,
however, no way of determining which specific version is used if there is more than one.

The linker must consider it an error if it detects a specific and non specific symbol of the same name
to be exported in a single link.

This is a quicker and more compact way of defining local labels. It is equivalent to copies
of a definition of an anonymous local label by means of the directive.

Assigns the address where the current load point is as the value of the symbol given by . If
this ident is used within an expression, then the intent is that it is the actual address which is used (and
not eg. the offset within a named section). Linkers are expected to place restrictions on the contexts
where such labels can be used (see). It is an error to attempt to define a label which is
already defined (unless it is a or symbol).

Assigns the value in as the value of the symbol defined in . Note that all the
attributes of the expression in should be passed on as attributes of the symbol. Eg. if A
is a label in section X, and c is a numerical constant, then it would be expected that (+ A c) would
represent another location in section X at offset c from A.

APPROVED 1.3.91 16 SW-0011-7

symbol
sp origin

sp symbol

sp origin ORIGIN USAGE

symbol
sp origin

specific symbol

symbol
specific symbol

local_symbols => lo_header : header (LOCAL_SYMBOLS_TAG),
lo_count : number ;

lo count
symbol id

define_label => dl_header : header (DEFINE_LABEL_TAG),
dl_ident : ident ;

dl ident

expression
CONDITIONAL USAGE PROVISIONAL USAGE

define_symbol => ds_header : header (DEFINE_SYMBOL_TAG),
ds_ident : ident,
ds_value : VALUE ;

ds value ds ident
ds value

INMOS Limited Confidential TCOFF

The descriptor is primarily to allow occam compilers to find the parameter profile, channel usage and
workspace requirements for an entry point, defined by . The contents of the descriptor in

can be in any format suitable for the appropriate compiler. Note that a C compiler could
put a prototype here for documentation purposes.

The symbol defined by is removed from the symbol name table. This will allow a redefinition
by another module for the same name. All existing resolutions to the name are not changed; ie. if a
reference to the ident has already been seen, it continues to refer to the old definition.

The means that in the directive will be added into the patch
location. will divide the value by the wordsize of the target machine before adding it
into the patch. It is expected that there will be a lot of such patches, and hence this will save 2 bytes
per patch (and).

The final value of is added to the contents of what has been loaded into the text at
. The location can be a in order to allow patching of fixed size tables with-

out generating large numbers of local s (eg. the debug information from compilers is typically in
this form). In this case, the patch location can be represented as ”debug-section-name plus offset”.

The value will be added in a ”little-endian” way (ie. least significant bit at the lowest address). The size
of the patch is given by in bytes, where a length of 0 means that the length is that of a word
in the target processor. The intent of this directive is to allow language systems to extract information
from various compilation units so that the run-time system can allocate the appropriate resources.

It is expected that linkers will restrict some combinations of values of the fields in this directive (eg.
sizes must be less than 16, or must be a power of 2, etc.).

APPROVED 1.3.91 17 SW-0011-7

descriptor => de_header : header (DESCRIPTOR_TAG),
de_symbol : ident,
de_language : LANGUAGE,
de_string : string ;

de symbol
de string

kill_id => ki_header : header (KILL_ID_TAG),
ki_ident : ident ;

ki ident

patch => pt_header : header (PATCH_TAG),
pt_location : VALUE,
pt_size : number,
pt_value : VALUE ;

PATCH_TAG ::= BYTE_PATCH_TAG
| WORD_PATCH_TAG

BYTE PATCH TAG pt value patch
WORD PATCH TAG

DIVIDE word length

pt value
pt location VALUE

ident

pt size

replicator => rp_start : rep_start,
rp_body : OPT SEQUENCE OF REPL_DIR,
rp_end : rep_end ;

rep_start => rs_header : header (REP_START_TAG),
rs_count : number ;

rep_end => re_header : header (REP_END_TAG) ;

REPL_DIR ::= set_load_point
| adjust_point
| section

INMOS Limited Confidential TCOFF

The directives in will be executed times. Replicators can be nested to any im-
plementation limit. This is intended to reduce the amount of text required to implement initialisation of
large data area with replication of values (eg. FORTRAN DATA statements with implied DO loops).

It is expected that the directives in the body of the replicator will normally only be directives
and that linkers may restrict what they will allow there. defines the directives it seems
reasonable to expect can be implemented everywhere. Note that the definition directives are only
sensible if they are conditional, provisional, or if there is also a in the replicator too.

This is designed for use with other tool’s where the linker is required to ignore . Eg. the
compilers could supply filenames and version numbers in comments in the linker file.

If is TRUE, then the comment directive is copied into the linker’s output in an implementation
defined manner. If it is FALSE, then it is discarded. This provides a mechanism for compilers to pass
information through to other tools. For instance, the date and time of compilation and the language the
module was written in could be stored in the linker output for each component module.

If is FALSE then a lister tool knows that the is not ascii.

The text in is printed out on some implementation defined device. This is designed to provide
the language implementations with a way of informing the user of error cases and levels of library
modules included. The linker may or may not copy the directive to its output in some form.

In addition, if has the value , then the linking is terminated immediately with a
suitable operating system dependent return code. If is , then when the linking

APPROVED 1.3.91 18 SW-0011-7

| symbol
| local_symbols
| patch
| load_text
| load_prefix
| load_value
| load_zeros
| align
| define_label
| define_symbol
| kill_id
| replicator
| comment
| message
;

rp body rs count

load text
REPL DIR

kill id

comment => cm_header : header (COMMENT_TAG),
cm_copy : BOOLEAN,
cm_print : BOOLEAN,
cm_text : string ;

cm text

cm copy

cm print cm string

message => ms_header : header (MESSAGE_TAG),
ms_level : ERROR_LEVEL,
ms_text : string ;

ERROR_LEVEL ::= NORMAL_MSG
| WARNING_MSG
| ERROR_MSG
;

ms text

ms level ERROR MSG
ms level WARNING MSG

INMOS Limited Confidential TCOFF

is finished, the linker will return to the operating system with a warning level return code (if applicable).
If the value is , then the message is simply printed. (The division is explicitly given in the
directive because different host operating systems use different conventions for what is a normal return
and what is not. The linker should know its host and convert the code appropriately.)

This record is used for information concerning the history of the module. holds the name
of the tool used to create the module and holds the name of that tools primary input file.

A has an index at the front to cut down the search times when the linker is searching for
unresolved references. The presence of determines that the file contains a . A
tool is available for combining several s into a . This tool may make use of

to store information concerning the origin of the modules.

An is a library consisting exclusively of linked units. This is envisaged to be a variety of
bootstrap loaders for use by a configurer.

The is searched by the linker first. Only those entries that refer to symbols that are
unresolved at the time of search are included in the final output. Hence, if a defines more
than one symbol, then there should be one entry for each label, each referring to the same in
the .

The value held by defines the position within the library of the module which will resolve
the identifier . Its value is the number of bytes from the start of the file at which the first
byte of the module (ie. the byte is to be found. It is represented in a 32-bit integer
form in order to make the sizes of the index entries determinable as they are created. Then only the

APPROVED 1.3.91 19 SW-0011-7

NORMAL MSG

version => vn_header : header (VERSION_TAG),
vn_tool_id : string,
vn_origin : string ;

vn tool id
vn origin

library => lb_linkable : linkable,
lb_lookup : lib_index,
lb_version : OPT version,
lb_body : OPT SEQUENCE OF module ;

lk_library => ll_linkable : linked,
ll_lookup : lib_index,
ll_version : OPT version,
ll_body : OPT SEQUENCE OF module ;

library
lib index library

module list library
lb version

lk library

lib_index => li_start : lib_index_start,
li_entries : OPT SEQUENCE OF index_entry,
li_end : lib_index_end ;

lib_index_start => ls_header : header (LIB_INDEX_START_TAG),

lib_index_end => le_header : header (LIB_INDEX_END_TAG) ;

lib index
module

module
library

index_entry => ie_header : header (INDEX_ENTRY_TAG),
ie_position : INT32 (unsigned),
ie_cpus : SET OF TRANS_FUNCTION,
ie_attrib : SET OF ATTRIBUTES,
ie_language : LANGUAGE,
ie_descriptor : string,
ie_symbol : string ;

ie position
ie symbol

START MODULE TAG

INMOS Limited Confidential TCOFF

values of need be filled in.

In common with the other forms integer in the transputer, the value is stored in the file in a ”little-endian”
manner; ie. the first byte in the file represents the least significant part.

Althought this restricts the size of a library to 4Gb, this is not expected to cause a problem in the lifetime
of the product.

and can be used either to check the compatibility or to select from alternatives
where a includes multiple definitions for the same label.

is copied from the symbols module of origin and is copied from any
descriptor associated with the symbol, or is zero length.

APPROVED 1.3.91 20 SW-0011-7

ie position

ie cpus ie attrib
library

ie language ie descriptor

INMOS Limited Confidential TCOFF

Every symbol has a . If the symbol is a label, then the value is the address of the location where
it will be found in the final text, as an offset in bytes from the first byte of text. This means that, in
general, labels are only used as a means of locating a point in the text relative to some base point.
The resulting file should be relocatable without further patching.

The symbol could be given a value by means of a directive. In this case, a general
expression can be given from which a value can be computed. This value could be an address, with
the same restrictions as if it had been defined like a label; or it could be independent of where the
program is loaded (”position independent”).

Note that the difference between two labels defined in the same section is always position independent,
although if the labels are in the code section and there are instructions to be patched between them,
then the actual value is not known until the patching has been done. If the labels are in different
sections, then it depends on the loading strategy of the operating system whether the linker can treat
it as position independent or not.

It is expected that linkers might not implement the full generality for expressions in this format. For
example, a linker might prepare a program where each code section can be placed independently of
all others (”scatter loading”). It might then insist that labels can only be used in expressions which take
the difference between two labels in the same section, or which add or subtract constants to/from a
label.

A might be known at the time it is encountered, or it might contain relocatable references which
will only be established at the end of the loading process.

Defines a constant value, which is assumed to be an integer. Linkers may restrict the sizes of the
acceptable values.

Has the value of the current load point. This need not be computable at the time it is encountered. It
is invalid if the load point has not been initialised.

Has the value of the symbol. If the symbol is a label, then the value is the address at which the linker
has placed or will place it. If the symbol usage is and it is not resolved, then the value is zero.

Only in the case where the linker is preparing the module for execution at a predetermined location,
can it assume that the label has a known address; in other cases, it is interpreted as a base-point plus

APPROVED 1.3.91 21 SW-0011-7

3.2.2 Values and Expressions

value

define symbol

VALUE ::= constant
| load_point
| symbol_value
| section_size
| expression
| word_length
| adjust_prefix
;

value

constant => co_value_tag : CO_VALUE_TAG,
co_value : number ;

load_point => lp_value_tag : LP_VALUE_TAG ;

symbol_value => sv_value_tag : SV_VALUE_TAG,
sv_identifier : ident ;

WEAK

INMOS Limited Confidential TCOFF

offset. The offset is always computable at link time, but the base-point will be known only symbolically.
For linkers that are preparing modules for execution by an operating system, then the base-point may
be the start of the module on loading. If the operating system can support scatter-loading (ie. sections
are to be loaded wherever the OS decides), then the base-point may be the start of the containing
section.

The index number of the symbol (see).

Has the value of the number of bytes in the section at the end of linking. This enables run-time systems
to get the sizes of tables (eg. the module table for module linkage).

Has the value of minus the length of when it is prefix encoded. This is
used in prefix patches where the position of the patch is known but the actual patched value must be
relative to the end of the patch.

An expression is given in prefix form. is what is normally written on the left side of the
operator, and is the right-hand side.

It is expected that linkers will restrict the type of expressions that they will allow. For example, they
could restrict labels to operands in expressions of the form (- A B), where A and B are labels in the
same named section, thus making the expression relocatable.

All operations are carried out as unchecked signed 32 bit integer arithmetic.

These operators do the obvious for the names they have.

is the number of bytes in the target machine’s word. This may be required for linking
modules that may execute on both 16 and 32 bit machines.

APPROVED 1.3.91 22 SW-0011-7

ident => id_index : number ;

section

section_size => ss_value_tag : SS_VALUE_TAG,
ss_identifier : ident ;

adjust_prefix => ap_value_tag : AP_VALUE_TAG,
ap_operand : VALUE ;

ap operand ap operand

expression => ex_oper_tag : OPER_VALUE_TAG,
ex_operand1 : VALUE,
ex_operand2 : VALUE ;

ex operand1
ex operand2

OPER_VALUE_TAG ::= PLUS_OP
| MINUS_OP
| TIMES_OP
| DIVIDE_OP
| REM_OP
| MAX_OP
| MIN_OP
;

word_length => WL_VALUE_TAG ;

word length

251

INMOS Limited Confidential TCOFF

The general encoding methods used within the TCOFF format are described below.

The intention is that the format of will allow flexible extension in the future and not seriously
inconvenience us now.

The decoding algorithm for numbers can be described as follows:

Look at the first byte; let the code be (unsigned, 0 = = 255).
If = 250, then the value is .
If 251 = = 254, then the value is (unsigned) in next 2 bytes.
If = 255, then the ones-complement of the value follows in coded form.

If the number is negative, then it is represented as the sign bit followed by its ones-complement in
coded form. If the number is greater than 250, then it placed in the smallest field of 1, 2, 4 or 8 bytes
and the appropriate prefix is prepended (251, 252, 253 or 254 respectively).

This algorithm looked most attractive when we examined some real data from various compilers. There
are very few negative numbers and a large number of small positive ones.

Note that the combination of 255 (meaning negative) can not be followed by another 255; so we have
at least one reserved combination for the future.

APPROVED 1.3.91 23 SW-0011-7

��

� � � �

� � �

� � �

�

3.3.1 Numbers

3.3 Encoding Methods

number => nm_sign : OPT SIGN_INDICATOR,
nm_pos_number : CODED_NUMBER ;

CODED_NUMBER ::= simple_number
| prefix_1_number
| prefix_2_number
| prefix_4_number
| prefix_8_number
;

simple_number => sn_number : <0 .. 250>(BYTE) ;

prefix_1_number => p1_prefix : PFX_1_TAG,
p1_number : BYTE ;

prefix_2_number => p2_prefix : PFX_2_TAG,
p2_number : INT16 ;

prefix_4_number => p4_prefix : PFX_4_TAG,
p4_number : INT32 ;

prefix_8_number => p8_prefix : PFX_8_TAG,
p8_number : INT64 ;

number

INMOS Limited Confidential TCOFF

is used in TCOFF in library indices where a fixed size field is required. An number has
bits. The bytes are ordered in increasing significance, i.e. smallest first (little endian).

64 bit numbers of any format can not presently be supported.

Strings are used in TCOFF for storing sequences of bytes

is the length of . It does not include itself and is non-negative.

Sets are encoded numbers which represent groups of attributes. The position of a set bit signifies the
fact that a particular attribute is present. Each individual item in a particular set is represented by a
power of two. A set is constructed by or’ing together the elements required in a set. It should be noted
that where a bit is not used by any member of a set, it is reserved as being clear. This allows for
compatible future extension. A set may also be accompanied by a ”reserved” number which represents
a group of unused bits which must at all times be set to ’1’. This enables some as yet unspecified
attribute to be removed , should the need arise with some future transputer.

APPROVED 1.3.91 24 SW-0011-7

3.3.2 Strings

3.3.3 Sets

INT32 INTnn
nn

string => st_length : number,
st_chars : OPT SEQUENCE OF BYTE ;

st length st chars

INMOS Limited Confidential TCOFF

Transputer attributes are define using two words, the word and the
word. In order to provide maximum expandability the meaning of these words is defined according to
the architecture of the transputer in question.

Currently 2 architectures are defined:

1 : T212, T222, T225, M212, T400, T414, T425, T800, T801, T805, TA, TB.
(T426, T806).

2 : H1

The architecture of a transputer is encoded in TCOFF by a set of 5 bits in the word.

The reserved architecture bits are reserved unset. Note that the architecture bits are mutually exclusive.

The definition of the rest of the bits in the and word depends on which
of the architecture bits is set. The IDL definition of the is thus given by:

The type is currently defined as follows:

Those values marked with a are for use with the T architecture only, similarly for .

The word is easier to define as it is simply a set of bits. Possible values are given by

APPROVED 1.3.91 25 SW-0011-7

3.4 Specifying Transputer Attributes

TRANS FUNCTION ATTRIBUTES

T Architecture

H Architecture

TRANS FUNCTION

ARCHITECTURE ::= ARCH_T
| ARCH_H
| ARCH_RESERVED_1
| ARCH_RESERVED_2
| ARCH_RESERVED_3
;

TRANS FUNCTION ATTRIBUTES
TRANS FUNCTION

trans_function => tf_arch : ARCHITECTURE;
tf_functionality : SET OF TRANS_FUNC;

TRANS FUNC

TRANS_FUNC ::= INSTR_CORE -- (T)
| INSTR_FMUL -- (T)
| INSTR_FP_SUPPORT -- (T)
| INSTR_DUP -- (T)
| INSTR_WSUBDB -- (T)
| INSTR_MOVE2D -- (T)
| INSTR_CRC -- (T)
| INSTR_BITOPS -- (T)
| INSTR_FPU_CORE -- (T)
| INSTR_FPTESTERR -- (T)
| INSTR_LDDEVID -- (T)
| INSTR_DEBUG_SUPPORT -- (T)
| INSTR_TIMER_DISABLE -- (T)
| INSTR_LDMEMSTARTVAL -- (T)
| INSTR_POP -- (T)
| INSTR_RESERVED_SET -- (T)
| H_INSTR_RESERVED_SET -- (H)
;

(T) (H)

ATTRIBUTES

INMOS Limited Confidential TCOFF

the following IDL definition:

The use of the and is the same as for .

Each architecture is now discussed in more detail.

The subset of applicable to the T architecture can be given by the following IDL definition:

Each of these values represents some functionality of the transputer that will execute the code. The
code can be executed only if the target cpu implements ALL the functionality in the set, or a super-set
of it. If a value is not in the set, then the code does not use it (eg. no floating point operations). It
is expected that linkers will do some checking on these values for consistency. Below is listed each
attribute and the instruction capabilities it represents.

APPROVED 1.3.91 26 SW-0011-7

3.4.1 T Architecture

ATTRIBUTES ::= ATTRIB_WORD_16 -- (T) 16 bit words
| ATTRIB_WORD_32 -- (T) 32 bit words
| ATTRIB_MEMSTART18 -- (T) memstart at 18
| ATTRIB_MEMSTART28 -- (T) memstart at 28
| ATTRIB_MEMSTARTLEQ28 -- (T) either 18 or 28
| ATTRIB_INSTR_IO -- (T) direct channel I/O
| ATTRIB_CALL_IO -- (T) I/O as calls
| ATTRIB_FPU_CALLING -- (T) fpu calling convention
| ATTRIB_NON_FPU_CALLING -- (T) non fpu calling convention
| ATTRIB_UNIVERSAL -- (T) compatible with halt or stop
| ATTRIB_HALT -- (T) halt processor on error
| ATTRIB_STOP -- (T) stop process on error
| H_ATTRIB_UNIVERSAL -- (H) compatible with halt or stop
| H_ATTRIB_HALT -- (H) halt processor on error
| H_ATTRIB_STOP -- (H) stop process on error
| H_ATTRIB_RESERVED_SET -- (H)
;

(T) (H) TRANS FUNC

TRANS FUNC

T_TRANS_FUNC ::= INSTR_CORE
| INSTR_FMUL
| INSTR_FP_SUPPORT
| INSTR_DUP
| INSTR_WSUBDB
| INSTR_MOVE2D
| INSTR_CRC
| INSTR_BITOPS
| INSTR_FPU_CORE
| INSTR_FPTESTERR
| INSTR_LDDEVID
| INSTR_DEBUG_SUPPORT
| INSTR_TIMER_DISABLE
| INSTR_LDMEMSTARTVAL
| INSTR_POP
| INSTR_RESERVED_SET
;

INMOS Limited Confidential TCOFF

j ldlp pfix ldnl ldc
ldnlp nfix ldl adc call
cj ajw eqc stl stnl
opr and or xor not
shl shr add sub mul
div rem gt diff sum
prod ladd lsub lsum ldiff
lmul lshl lshr norm rev
xword cword xdble csngl mint
bsub wsub bcnt wcnt lb
sb move ldtimer tin talt
taltwt enbt dist in out
outword outbyte resetch alt altwt
altend enbs diss enbc disc
ret ldpi gajw gcall lend
startp endp runp stopp ldpri
csub0 ccnt1 testerr seterr stoperr
clrhalterr sethalterr testhalterr testpranal saveh
savel sthf sthb stlf stlb
sttimer

fmul

unpacksn roundsn postnormsn ldinf cflerr

dup

wsubdb

move2dinit move2dall move2dnonzero move2dzero

crcword crcbyte

bitcnt bitrevword bitrevnbits

APPROVED 1.3.91 27 SW-0011-7

INSTR CORE

INSTR FMUL

INSTR FP SUPPORT

INSTR DUP

INSTR WSUBDB

INSTR MOVE2D

INSTR CRC

INSTR BITOPS

INMOS Limited Confidential TCOFF

fpldnlsn fpldnldb fpldnlsni fpldnldbi fpldzerosn
fpldzerodb fpldnladdsn fpldnladddb fpldnlmulsn fpldnlmuldb
fpstnlsn fpstnldb fpstnli32 fpentry fprev
fpdup fpurn fpurz fpurp fpurm
fpgt fpeq fpordered fpnan fpnotfinite
fpuchki32 fpuchki64 fpur32tor64 fpur64tor32 fprtoi32
fpi32tor32 fpi32tor64 fpb32tor64 fpunoround fpint
fpadd fpsub fpmul fpdiv fpuabs
fpremfirst fpremstep fpusqrtfirst fpusqrtstep fpusqrtlast
fpuexpinc32 fpuexpdec32 fpumulby2 fpudivby2 fpchkerror
fpuseterror fpuclearerror

fptesterr

lddevid

break clrj0break setj0break testj0break

timerdisableh timerdisablel timerenableh timerenablel

ldmemstartval

pop

is a number which defines a bit pattern. This bit pattern defines which remaining
instruction bits must be set. These bits have no defined meaning but allow for future extension.

Note that bits that are unused by any of the above instructions are reserved as being cleared.

The subset of used by the T architecture is as follows:

is a set, as in . It can be further sub-divided into groups, each
of which is itself a set. A single item from each subset must be present to make a valid attribute set.
These further subsets are as follows:

APPROVED 1.3.91 28 SW-0011-7

INSTR FPU CORE

INSTR FPTESTERR

INSTR LDDEVID

INSTR DEBUG SUPPORT

INSTR TIMER DISABLE

INSTR LDMEMSTARTVAL

INSTR POP

INSTR RESERVED SET

ATTRIBUTES

T_ATTRIBUTES ::= ATTRIB_WORD_16 -- (T) 16 bit words
| ATTRIB_WORD_32 -- (T) 32 bit words
| ATTRIB_MEMSTART18 -- (T) memstart at 18
| ATTRIB_MEMSTART28 -- (T) memstart at 28
| ATTRIB_MEMSTARTLEQ28 -- (T) either 18 or 28
| ATTRIB_INSTR_IO -- (T) direct channel I/O
| ATTRIB_CALL_IO -- (T) I/O as calls
| ATTRIB_FPU_CALLING -- (T) fpu calling convention
| ATTRIB_NON_FPU_CALLING -- (T) non fpu calling convention
| ATTRIB_UNIVERSAL -- (T) compatible with halt or stop
| ATTRIB_HALT -- (T) halt processor on error
| ATTRIB_STOP -- (T) stop process on error
;

ATTRIBUTES TRANSPUTER FUNCTION

AT_WORD_LENGTH ::= ATTRIB_WORD_16 -- 16 bit words
| ATTRIB_WORD_32 -- 32 bit words
;

INMOS Limited Confidential TCOFF

defines the word length to be either 16 or 32 bits.

defines the start of memory to be 18, 28 or ‘don’t care’.

defines the error behavior.

defines the channel communication behaviour of a module as being implimented directly
by instructions or by calls to some external routine which may alter the routing of the channel.

defines floating point calling conventions, ie. whether the fpu stack is used to hold
parameters and return values.

is a number which defines a bit pattern. This bit pattern defines which re-
maining attribute bits must be set. These bits have no defined meaning but allow for future extension.

Note that bits that are unused by any of the above attribute groups are reserved and defined as being
cleared.

The above sets specify the relevant characteristics of all current T transputers with room for extension
in the future. Below is listed the bit masks of these transputers and supported transputer classes. The

given below require that relevent items from and be added
to reflect the attributes of the code. (Note that these definitions are not IDL).

APPROVED 1.3.91 29 SW-0011-7

AT_MEMSTART ::= ATTRIB_MEMSTART18 -- memstart at 18
| ATTRIB_MEMSTART28 -- memstart at 28
| ATTRIB_MEMSTARTLEQ28 -- don’t care
;

AT_ERR_MODE ::= ATTRIB_UNIVERSAL -- compatible with halt or stop
| ATTRIB_HALT -- halt processor on error
| ATTRIB_STOP -- stop process on error
;

AT_IO_MODE ::= ATTRIB_INSTR_IO -- direct channel I/O
| ATTRIB_CALL_IO -- I/O as calls
;

AT_FP_MODE ::= ATTRIB_FPU_CALLING -- fpu calling convention
| ATTRIB_NON_FPU_CALLING -- non fpu calling convention
;

ATTRIB_RESERVED_SET ::= reserved_bits : number; -- reserved for extension

AT WORD LENGTH

AT MEMSTART

AT ERR MODE

AT IO MODE

AT FP MODE

ATTRIB RESERVED SET

ATTRIBUTES AT ERR MODE AT IO MODE

T212_INSTR => ARCH_T
| INSTR_CORE
| INSTR_RESERVED_SET

T212_ATTRIB => ATTRIB_WORD16
| ATTRIB_MEMSTART18
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

T222_INSTR => T212_INSTR

T222_ATTRIB => T212_ATTRIB

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 30 SW-0011-7

T225_INSTR => ARCH_T
| INSTR_CORE
| INSTR_DUP
| INSTR_CRC
| INSTR_BITOPS
| INSTR_LDDEVID
| INSTR_DEBUG_SUPPORT
| INSTR_TIMER_DISABLE
| INSTR_LDMEMSTARTVAL
| INSTR_POP
| INSTR_WSUBDB
| INSTR_RESERVED_SET

T225_ATTRIB => ATTRIB_WORD_16
| ATTRIB_MEMSTART18
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

T400_INSTR => T425_INSTR

T400_ATTRIB => T425_ATTRIB

T414_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_FP_SUPPORT
| INSTR_RESERVED_SET

T414_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTART18
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

T425_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_FP_SUPPORT
| INSTR_DUP
| INSTR_WSUBDB
| INSTR_MOVE2D
| INSTR_CRC
| INSTR_BITOPS
| INSTR_FPTESTERR
| INSTR_LDDEVID
| INSTR_DEBUG_SUPPORT
| INSTR_TIMER_DISABLE
| INSTR_LDMEMSTARTVAL
| INSTR_POP
| INSTR_RESERVED_SET

T425_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTART28
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 31 SW-0011-7

T800_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_DUP
| INSTR_WSUBDB
| INSTR_MOVE2D
| INSTR_CRC
| INSTR_BITOPS
| INSTR_FPU_CORE
| INSTR_FPTESTERR
| INSTR_RESERVED_SET

T800_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTART28
| ATTRIB_FPU_CALLING
| ATTRIB_RESERVED_SET

T801_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_DUP
| INSTR_WSUBDB
| INSTR_MOVE2D
| INSTR_CRC
| INSTR_BITOPS
| INSTR_FPU_CORE
| INSTR_FPTESTERR
| INSTR_LDDEVID
| INSTR_DEBUG_SUPPORT
| INSTR_TIMER_DISABLE
| INSTR_LDMEMSTARTVAL
| INSTR_POP
| INSTR_RESERVED_SET

T801_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTART28
| ATTRIB_FPU_CALLING
| ATTRIB_RESERVED_SET

T805_INSTR => T801_INSTR

T805_ATTRIB => T801_ATTRIB

TA_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_RESERVED_SET

TA_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTARTLEQ28
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

INMOS Limited Confidential TCOFF

It is expected that for the H architecture the and words can be thought
more of a set of 64 bits rather than two disjoint 32 bit sets although the terms and

are still used for clarity.

At this time there is only one example of the H architecture and so most information required can be
gleaned from the H architecture bit alone. However for maximum future expansion half of the unused
bits are defined set and half defined unset.

The subset of the set applicable to the H architecture can be represented thus:

No specific functionality bits exist because at present the ARCH H bit is used to define the entire
functionality of the H1. This definition is expandable in that future H series transputers with more or less
functionality can be easily represented while remaining backwards compatible. As for T architecture, it
is expected that linkers will do some checking on these values for consistency.

is a number which defines a bit pattern. This bit pattern defines which re-
maining instruction bits must be set. These bits have no defined meaning but allow for future extension.

The subset of the set applicable to the H1 is as follows:

As for the T architecture this set can be further subdivided as follows:

Since there is currently only one example of an H architecture processor there is only one variable
which needs representing in the word, that is, the error mode.

APPROVED 1.3.91 32 SW-0011-7

3.4.2 H Architecture

TB_INSTR => ARCH_T
| INSTR_CORE
| INSTR_FMUL
| INSTR_FP_SUPPORT
| INSTR_RESERVED_SET

TB_ATTRIB => ATTRIB_WORD32
| ATTRIB_MEMSTARTLEQ28
| ATTRIB_NON_FPU_CALLING
| ATTRIB_RESERVED_SET

TRANS FUNCTION ATTRIBUTES
TRANS FUNCTION

ATTRIBUTES

TRANS FUNC

H_TRANS_FUNCTION ::= H_INSTR_RESERVED_SET;

H INSTR RESERVED SET

ATTRIBUTES

H_ATTRIBUTES ::= H_ATTRIB_UNIVERSAL -- (H) compatible with halt or stop
| H_ATTRIB_HALT -- (H) halt processor on error
| H_ATTRIB_STOP -- (H) stop process on error
| H_ATTRIB_RESERVED_SET -- (H)
;

H_AT_ERR_MODE ::= H_ATTRIB_UNIVERSAL -- compatible with halt or stop
| H_ATTRIB_HALT -- halt processor on error
| H_ATTRIB_STOP -- stop process on error
;

H_ATTRIB_RESERVED_SET ::= reserved_bits : number; -- reserved for extension

ATTRIBUTES

INMOS Limited Confidential TCOFF

defines the error behavior.

is a number which defines a bit pattern. This bit pattern defines which
remaining attribute bits must be set. These bits have no defined meaning but allow for future extension.

Note that bits that are unused by any of the above attribute groups are reserved and defined as being
cleared.

The above sets specify the relevant characteristics of all current H transputers with room for extension
in the future. Below is listed the definition of these transputers and supported transputer classes. The

given below require that relevent items from be added to reflect the
attributes of the code. (Note these definitions are not IDL)

APPROVED 1.3.91 33 SW-0011-7

H AT ERR MODE

H ATTRIB RESERVED SET

ATTRIBUTES H AT ERR MODE

H1_INSTR => ARCH_H
| H_INSTR_RESERVED_SET

H1_ATTRIB => H_ATTRIB_RESERVED_SET

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 34 SW-0011-7

4.1 Syntax of TCOFF

4 Alphabetic List

adjust_point => aj_header : header (ADJUST_POINT_TAG),
aj_offset : VALUE ;

adjust_prefix => ap_value_tag : AP_VALUE_TAG,
ap_operand : VALUE ;

align => al_header : header (ALIGN_TAG),
al_modulo : number ;

ARCHITECTURE ::= ARCH_T
| ARCH_H
| ARCH_RESERVED_1
| ARCH_RESERVED_2
| ARCH_RESERVED_3
;

ATTRIBUTES ::= ATTRIB_WORD_16 -- (T) 16 bit words
| ATTRIB_WORD_32 -- (T) 32 bit words
| ATTRIB_MEMSTART18 -- (T) memstart at 18
| ATTRIB_MEMSTART28 -- (T) memstart at 28
| ATTRIB_MEMSTARTLEQ28 -- (T) either 18 or 28
| ATTRIB_INSTR_IO -- (T) direct channel I/O
| ATTRIB_CALL_IO -- (T) I/O as calls
| ATTRIB_FPU_CALLING -- (T) fpu calling convention
| ATTRIB_NON_FPU_CALLING -- (T) non fpu calling convention
| ATTRIB_UNIVERSAL -- (T) compatible with halt or stop
| ATTRIB_HALT -- (T) halt processor on error
| ATTRIB_STOP -- (T) stop process on error
| H_ATTRIB_UNIVERSAL -- (H) compatible with halt or stop
| H_ATTRIB_HALT -- (H) halt processor on error
| H_ATTRIB_STOP -- (H) stop process on error
| H_ATTRIB_RESERVED_SET -- (H)
;

BOOLEAN ::= BOOL_TRUE
| BOOL_FALSE ;

CODED_NUMBER ::= simple_number
| prefix_1_number
| prefix_2_number
| prefix_4_number
| prefix_8_number
;

comment => cm_header : header (COMMENT_TAG),
cm_copy : BOOLEAN,
cm_print : BOOLEAN,
cm_text : string ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 35 SW-0011-7

constant => co_value_tag : CO_VALUE_TAG,
co_value : number ;

define_label => dl_header : header (DEFINE_LABEL_TAG),
dl_ident : ident ;

define_main => dm_header : header (DEFINE_MAIN_TAG),
dm_entry : ident ;

define_symbol => ds_header : header (DEFINE_SYMBOL_TAG),
ds_ident : ident,
ds_value : VALUE ;

descriptor => de_header : header (DESCRIPTOR_TAG),
de_symbol : ident,
de_language : LANGUAGE,
de_string : string ;

directive => dr_header : header,
dr_command : OPT SEQUENCE OF BYTE ;

DIRECTIVE_TAG ::= LINKABLE_TAG
| LINKED_UNIT_TAG
| START_MODULE_TAG
| END_MODULE_TAG
| SET_LOAD_POINT_TAG
| ADJUST_POINT_TAG
| LOAD_TEXT_TAG
| LOAD_PREFIX_TAG
| LOAD_EXPR_TAG
| LOAD_ZEROS_TAG
| ALIGN_TAG
| SECTION_TAG
| SYMBOL_TAG
| DEFINE_MAIN_TAG
| SPECIFIC_SYMBOL_TAG
| LOCAL_SYMBOLS_TAG
| DEFINE_LABEL_TAG
| DEFINE_SYMBOL_TAG
| DESCRIPTOR_TAG
| KILL_ID_TAG
| PATCH_TAG
| REP_START_TAG
| REP_END_START
| COMMENT_TAG
| MESSAGE_TAG
| VERSION_TAG
| LIB_INDEX_START_TAG
| LIB_INDEX_END_TAG
| INDEX_ENTRY_TAG
;

end_module => em_header : header (END_MODULE_TAG) ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 36 SW-0011-7

ERROR_LEVEL ::= NORMAL_MSG
| WARNING_MSG
| ERROR_MSG
;

expression ::= ex_oper_tag : OPER_VALUE_TAG,
ex_operand1 : VALUE,
ex_operand2 : VALUE ;

header (TAG) => hd_tag : DIRECTIVE_TAG = TAG ;
hd_length : length ;

ident => id_index : number ;

index_entry => ie_header : header (INDEX_ENTRY_TAG),
ie_position : INT32 (unsigned),
ie_cpus : trans_function,
ie_attrib : SET OF ATTRIBUTES,
ie_language : LANGUAGE,
ie_descriptor : string,
ie_symbol : string ;

instruction => in_op_code : number ;

kill_id => ki_header : header (KILL_ID_TAG),
ki_ident : ident ;

LANGUAGE ::= LANG_NOT_KNOWN
| LANG_LINKED
| LANG_OCCAM
| LANG_OCCAM_HARNESS
| LANG_ANSI_C
| LANG_FORTRAN_77
| LANG_ISO_PASCAL
| LANG_MODULA_2
| LANG_ADA
| LANG_ASSEMBLER
;

lib_index => li_start : lib_index_start,
li_entries : OPT SEQUENCE OF index_entry,
li_end : lib_index_end ;

lib_index_end => le_header : header (LIB_INDEX_END_TAG) ;

lib_index_start => ls_header : header (LIB_INDEX_START_TAG),

library => lb_linkable : linkable,
lb_lookup : lib_index,
lb_version : OPT version,
lb_body : OPT SEQUENCE OF module ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 37 SW-0011-7

LINK_COMMAND ::= SIMPLE_DIRECTIVE
| replicator
| module
;

linkable => ln_header : header (LINKABLE_TAG) ;

linked_file => lf_linked : linked,
lf_directives : OPT SEQUENCE OF directive ;

LINKED_FILE => lk_module_list
| lk_library
;

linked => lk_header : header (LINKED_UNIT_TAG) ;

lk_library => ll_linkable : linked,
ll_lookup : lib_index,
ll_version : OPT version,
ll_body : OPT SEQUENCE OF module ;

lk_module_list => lm_body : OPT SEQUENCE OF lk_unit ;

lk_unit => lu_linkable : linked,
lu_body : module ;

load_point => lp_value_tag : LP_VALUE_TAG ;

load_prefix => lx_header : header (LOAD_PREFIX_TAG),
lx_size : number,
lx_value : VALUE,
lx_instr : instruction ;

load_text => lt_header : header (LOAD_TEXT_TAG),
lt_text : string ;

load_value => lv_header : header (LOAD_EXPR_TAG),
lv_size : number,
lv_value : VALUE ;

load_zeros => lz_header : header (LOAD_ZEROS_TAG),
lz_count : number ;

local_symbols => lo_header : header (LOCAL_SYMBOLS_TAG),
lo_count : number ;

message => ms_header : header (MESSAGE_TAG),
ms_level : ERROR_LEVEL,
ms_text : string ;

module => md_start : start_module,
md_body : OPT SEQUENCE OF LINK_COMMAND,
md_end : end_module ;

module_list => ml_body : OPT SEQUENCE OF unit ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 38 SW-0011-7

number => nm_sign : OPT SIGN_INDICATOR,
nm_pos_number : CODED_NUMBER ;

object_file => of_linkable : linkable,
of_directives : OPT SEQUENCE OF directive ;

OBJECT_FILE ::= module_list
| library
;

OPER_VALUE_TAG ::= PLUS_OP
| MINUS_OP
| TIMES_OP
| DIVIDE_OP
| REM_OP
| MAX_OP
| MIN_OP
;

patch => pt_header : header (PATCH_TAG),
pt_location : ident,
pt_size : number,
pt_value : VALUE ;

PATCH_TAG ::= BYTE_PATCH_TAG
| WORD_PATCH_TAG
;

prefix_1_number => p1_prefix : PFX_1_TAG,
p1_number : BYTE ;

prefix_2_number => p2_prefix : PFX_2_TAG,
p2_number : INT16 ;

prefix_4_number => p4_prefix : PFX_4_TAG,
p4_number : INT32 ;

prefix_8_number => p8_prefix : PFX_8_TAG,
p8_number : INT64 ;

rep_end => re_header : header (REP_END_TAG) ;

rep_start => rs_header : header (REP_START_TAG),
rs_count : number ;

REPL_DIR ::= set_load_point
| adjust_point
| section
| symbol
| local_symbols
| patch
| load_text
| load_prefix
| load_value
| load_zeros

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 39 SW-0011-7

| align
| define_label
| define_symbol
| kill_id
| replicator
| comment
| message
;

replicator => rp_start : rep_start,
rp_body : OPT SEQUENCE OF REPL_DIR,
rp_end : rep_end ;

section => se_header : header (SECTION_TAG),
se_section : SET OF SECTION_TYPE,
se_usage : SET OF USAGE,
se_symbol : string ;

section_size => ss_value_tag : SS_VALUE_TAG,
ss_identifier : ident ;

SECTION_TYPE ::= WRITE_SECTION
| READ_SECTION
| EXECUTE_SECTION
| DEBUG_SECTION
| VIRTUAL_SECTION
;

set_load_point => sl_header : header (SET_LOAD_POINT_TAG),
sl_location : ident ;

SIMPLE_DIRECTIVE ::= set_load_point
| adjust_point
| load_text
| load_prefix
| load_value
| load_zeros
| align
| symbol_id
| define_main
| specific_symbol
| local_symbols
| define_label
| define_symbol
| descriptor
| kill_id
| patch
| comment
| message
| version
;

simple_number => sn_number : <0 .. 250>(BYTE) ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 40 SW-0011-7

specific_symbol => sp_header : header (SPECIFIC_SYMBOL_TAG),
sp_usage : SET OF USAGE,
sp_symbol : string,
sp_origin : ident ;

start_module => sm_header : header (START_MODULE_TAG),
sm_cpus : trans_function,
sm_attrib : SET OF ATTRIBUTES,
sm_language : LANGUAGE,
sm_name : string ;

string => st_length : number,
st_chars : OPT SEQUENCE OF BYTE ;

symbol => sy_header : header (SECTION_TAG),
sy_usage : SET OF USAGE,
sy_symbol : string ;

symbol_value => sv_value_tag : SV_VALUE_TAG,
sv_identifier : ident ;

TRANS_FUNC ::= INSTR_CORE -- (T)
| INSTR_FMUL -- (T)
| INSTR_FP_SUPPORT -- (T)
| INSTR_DUP -- (T)
| INSTR_WSUBDB -- (T)
| INSTR_MOVE2D -- (T)
| INSTR_CRC -- (T)
| INSTR_BITOPS -- (T)
| INSTR_FPU_CORE -- (T)
| INSTR_FPTESTERR -- (T)
| INSTR_LDDEVID -- (T)
| INSTR_DEBUG_SUPPORT -- (T)
| INSTR_TIMER_DISABLE -- (T)
| INSTR_LDMEMSTARTVAL -- (T)
| INSTR_POP -- (T)
| INSTR_RESERVED_SET -- (T)
| H_INSTR_RESERVED_SET -- (H)
;

trans_function => tf_arch : ARCHITECTURE;
tf_functionality : SET OF TRANS_FUNC;

unit => un_linkable : linkable,
un_body : OPT SEQUENCE OF module ;

USAGE ::= LOCAL_USAGE
| EXPORT_USAGE
| IMPORT_USAGE
| WEAK_USAGE
| CONDITIONAL_USAGE
| PROVISIONAL_USAGE
| UNINDEXED_USAGE
| ORIGIN_USAGE
;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 41 SW-0011-7

VALUE ::= constant
| load_point
| symbol_value
| section_size
| expression
| word_length
| adjust_prefix
;

version => vn_header : header (VERSION_TAG),
vn_tool_id : string,
vn_origin : string ;

word_length => WL_VALUE_TAG ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 42 SW-0011-7

4.2 Bit Representations

ARCHITECTURE (part of TRANS_FUNCTION word)

ARCH_T ::= 0x100000 (number) ;
ARCH_H ::= 0x200000 (number) ;
ARCH_RESERVED_1 ::= 0x400000 (number) ;
ARCH_RESERVED_2 ::= 0x800000 (number) ;
ARCH_RESERVED_3 ::= 0x1000000 (number) ;

BOOLEAN

BOOL_FALSE ::= 0 (number) ;
BOOL_TRUE ::= 1 (number) ;

DIRECTIVE_TAG

LINKABLE_TAG ::= 1 (number) ;
START_MODULE_TAG ::= 2 (number) ;
END_MODULE_TAG ::= 3 (number) ;
SET_LOAD_POINT_TAG ::= 4 (number) ;
ADJUST_POINT_TAG ::= 5 (number) ;
LOAD_TEXT_TAG ::= 6 (number) ;
LOAD_PREFIX_TAG ::= 7 (number) ;
LOAD_EXPR_TAG ::= 8 (number) ;
LOAD_ZEROS_TAG ::= 9 (number) ;
ALIGN_TAG ::= 10 (number) ;
SECTION_TAG ::= 11 (number) ;
DEFINE_MAIN_TAG ::= 12 (number) ;
LOCAL_SYMBOLS_TAG ::= 13 (number) ;
DEFINE_LABEL_TAG ::= 14 (number) ;
DEFINE_SYMBOL_TAG ::= 15 (number) ;
KILL_ID_TAG ::= 16 (number) ;
BYTE_PATCH_TAG ::= 17 (number) ;
REP_START_TAG ::= 18 (number) ;
REP_END_TAG ::= 19 (number) ;
COMMENT_TAG ::= 20 (number) ;
MESSAGE_TAG ::= 21 (number) ;
LIB_INDEX_START_TAG ::= 22 (number) ;
LIB_INDEX_END_TAG ::= 23 (number) ;
INDEX_ENTRY_TAG ::= 24 (number) ;
WORD_PATCH_TAG ::= 25 (number) ;
DESCRIPTOR_TAG ::= 26 (number) ;
VERSION_TAG ::= 27 (number) ;
LINKED_UNIT_TAG ::= 28 (number) ;
SYMBOL_TAG ::= 30 (number) ;
SPECIFIC_SYMBOL_TAG ::= 31 (number) ;

ERROR_LEVEL

NORMAL_MSG ::= 1 (number) ;
WARNING_MSG ::= 2 (number) ;
ERROR_MSG ::= 3 (number) ;

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 43 SW-0011-7

H_ATTRIBUTES

H_ATTRIB_UNIVERSAL ::= 0x0 (number);
H_ATTRIB_HALT ::= 0x80 (number);
H_ATTRIB_STOP ::= 0x100 (number);

H_ATTRIB_RESERVED_SET ::= 0x3F87F (number);

H_TRANS_FUNCTION

H_INSTR_RESERVED_SET ::= 0x3FFF (number) ;

LANGUAGE

LANG_NOT_KNOWN ::= 1 (number);
LANG_LINKED ::= 2 (number);
LANG_OCCAM ::= 3 (number);
LANG_ANSI_C ::= 4 (number);
LANG_FORTRAN_77 ::= 5 (number);
LANG_ISO_PASCAL ::= 6 (number);
LANG_MODULA_2 ::= 7 (number);
LANG_ADA ::= 8 (number);
LANG_ASSEMBLER ::= 9 (number);
LANG_OCCAM_HARNESS ::= 10 (number);

NUMBERS
PFX_1_NUMBER ::= 251 (BYTE) ;
PFX_2_NUMBER ::= 252 (BYTE) ;
PFX_4_NUMBER ::= 253 (BYTE) ;
PFX_8_NUMBER ::= 254 (BYTE) ;
SIGN_INDICATOR ::= 255 (BYTE) ;

OPER_VALUE_TAG

PLUS_OP ::= 6 (number) ;
MINUS_OP ::= 7 (number) ;
TIMES_OP ::= 8 (number) ;
DIVIDE_OP ::= 9 (number) ;
REM_OP ::= 10 (number) ;
MAX_OP ::= 11 (number) ;
MIN_OP ::= 12 (number) ;

SECTION_TYPE

WRITE_SECTION ::= 0x01 (number) ;
READ_SECTION ::= 0x02 (number) ;
EXECUTE_SECTION ::= 0x04 (number) ;
DEBUG_SECTION ::= 0x08 (number) ;
VIRTUAL_SECTION ::= 0x10 (number) ;

T_ATTRIBUTES

ATTRIB_WORD_16 ::= 0x1 (number);
ATTRIB_WORD_32 ::= 0x2 (number);

INMOS Limited Confidential TCOFF

APPROVED 1.3.91 44 SW-0011-7

ATTRIB_MEMSTART18 ::= 0x8 (number);
ATTRIB_MEMSTART28 ::= 0x10 (number);
ATTRIB_MEMSTARTLEQ28 ::= 0x0 (number);

ATTRIB_UNIVERSAL ::= 0x0 (number);
ATTRIB_HALT ::= 0x80 (number);
ATTRIB_STOP ::= 0x100 (number);

ATTRIB_INSTR_IO ::= 0x800 (number);
ATTRIB_CALL_IO ::= 0x0 (number);

ATTRIB_NON_FPU_CALLING ::= 0x40000 (number);
ATTRIB_FPU_CALLING ::= 0x80000 (number);

ATTRIB_RESERVED_SET ::= 0x3E040 (number);

T_TRANS_FUNCTION

INSTR_CORE ::= 0x1 (number) ;
INSTR_FMUL ::= 0x2 (number) ;
INSTR_FP_SUPPORT ::= 0x4 (number) ;
INSTR_DUP ::= 0x8 (number) ;
INSTR_WSUBDB ::= 0x10 (number) ;
INSTR_MOVE2D ::= 0x20 (number) ;
INSTR_CRC ::= 0x40 (number) ;
INSTR_BITOPS ::= 0x80 (number) ;
INSTR_FPU_CORE ::= 0x100 (number) ;
INSTR_FPTESTERR ::= 0x200 (number) ;
INSTR_LDDEVID ::= 0x400 (number) ;
INSTR_DEBUG_SUPPORT ::= 0x800 (number) ;
INSTR_TIMER_DISABLE ::= 0x1000 (number) ;
INSTR_LDMEMSTARTVAL ::= 0x2000 (number) ;
INSTR_POP ::= 0x4000 (number) ;
INSTR_RESERVED_SET ::= 0xF8000 (number) ;

USAGE

LOCAL_USAGE ::= 0x01 (number) ;
EXPORT_USAGE ::= 0x02 (number) ;
IMPORT_USAGE ::= 0x04 (number) ;
WEAK_USAGE ::= 0x08 (number) ;
CONDITIONAL_USAGE ::= 0x10 (number ;
UNINDEXED_USAGE ::= 0x20 (number) ;
PROVISIONAL_USAGE ::= 0x40 (number) ;
ORIGIN_USAGE ::= 0x80 (number) ;

VALUE_TAG

CO_VALUE_TAG ::= 1 (number) ;
LP_VALUE_TAG ::= 2 (number) ;
SV_VALUE_TAG ::= 3 (number) ;
SS_VALUE_TAG ::= 4 (number) ;
WL_VALUE_TAG ::= 5 (number) ;
AP_VALUE_TAG ::= 13 (number) ;

INMOS Limited Confidential TCOFF

D.A. Lamb. Sharing Intermediate Representations - The Interface Description Language. Tech-
nical Report CS-83-129, Computer Science Department, Carnegie-Mellon University, May
1983.

J.R. Nestor, W.A. Wulf, D.A. Lamb. IDL - Interface Description Language: Formal Description.
Technical Report, Software Engineering Institute, Pittsburgh, PA, Feb. 1986.

The Transputer Instruction Set - A Compiler Writers Guide. INMOS Ltd 72 TRN 119

APPROVED 1.3.91 45 SW-0011-7

[L83]

[N86]

[INMOS ’87]

5 References

	Contents
	1 Introduction
	2 Objectives
	2.1 Migration to the new standard
	2.2 The file format
	2.3 Design strategy
	2.4 Contents of the object file
	2.5 Run time initialisation

	3 Detailed description
	3.1 High level syntax
	3.2 Interpretation by a Linker
	3.2.1 Directives
	3.2.2 Values and Expressions

	3.3 Encoding Methods
	3.3.1 Numbers
	3.3.2 Strings
	3.3.3 Sets

	3.4 Specifying Transputer Attributes
	3.4.1 T Architecture
	3.4.2 H Architecture

	4 Alphabetic List
	4.1 Syntax of TCOFF
	4.2 Bit Representations

	5 References

