occam* user group - newsletter

for all users of occam and the transputer

NO14 January 1991
Contents
EDITORIAL : 2
Contributions to the newsletter 2
Proceedings of group meetings 3
TRANSPUTING 91 5
FORTHCOMING 9
Working seminar on parallel computing and transputers 9
Workshop on abstract machine models for highly parallel computers 10
Parallel processing: the future for computing 12
Transputer applications 91 14
Fourteenth occam user group technical meeting 16
Austrian centre for parallel computation 17

continued on back cover

TRANSPUTING

occam is a trade mark of INMOS Limited

2 ' occam user group newsletter

EDITORIAL

F j This coming April all the various user groups associated with this Newsletter

© are organising a joint meeting. This is quite a venture — for organisations as
L=I_| informal as ours, our own local meetings are often quite an undertaking —
but it promises well. There is a full programme of technical presentations arranged
for the middle of the week, as well as tutorials and workshops for the beginning
and end of the week, and there will be an exhibition running alongside the meeting.
Details appear on page 5, and in leaflets which you will doubtless find in mail with
this Newsletter.

The bulk of the technical papers in this issue would appear to be devoted to
familiar topics: the discussion of semaphores and of ALT follow on from earlier
contributions on the same subjects. I am glad to be able to draw your attention
to some new threads of discussion, though! It is nice to see a hardware paper once
in a while.

Through technical difficulties — and not least for fear of injuring too many post-
men — I have had to hold back one paper reacting to the proposed alterations to the
occam language (see page 27). Now that Geoff Barrett’s paper has appeared in the
proceedings of the latest (York) OUG technical meeting, I expect that there will be
more of us wanting to join in the discussion that he invites, and I urge you to put
your thoughts in order and send them to this Newsletter.

Let me finally draw your attention to some new addresses in the back of the
Newsletter (see page 102) giving contacts for related groups. In notices of forthcom-
ing meetings you will also find contacts in Poland which were new to me.

...and farewell

It’s been great fun, honestly — well, it has for me anyway. However, a few weeks
ago the men in suits paid me a visit, and after they left I found there was a loaded
revolver on my desk. This is my last Newsletter: after ten years in the post — well,
10 (in base two) years — I think perhaps I would make a really good back-seat driver.
In years to come this will be talked of as the end of an era, but I firmly believe that
Stephen Turner is the candidate to unite the party.

Geraint Jones, 14 December 1990

CONTRIBUTIONS TO THE NEWSLETTER

Please contribute announcements, articles, letters about anything that looks as
though it belongs in your Newsletter. In particular we welcome letters, short articles
or news about work being done with occam or transputers; calls for, discussion of,
and reports on meetings of the group or related societies; ideas for new ways the
group could help its members, or better ways of organizing what we do; details of
material published elsewhere in books and journals; information about new products
and courses.

N9 14 January 1991 ' 3

Life would be easier for the editor if you were able to submit material (particularly
longer contributions) by electronic mail to steveQuk.ac.exeter.cs; or on an IBM
PC compatible floppy disk to the editor at the address below. IATEX format is
preferred, but unformatted ASCII files are also acceptable. If these methods cannot
be used, clean camera-ready copy should be sent to the address below.

Camera-ready copy should be arranged not to look out of place when its linear
dimensions are reduced to about 70%, i.e. from A4 originals to the A5 page size
of this booklet. (This means: make sure your type is not too small!) Pictures are
welcome as black-and-white prints, and will be subjected to the same reduction in

size.
ICopy for the next edition must arrive by Friday, 17th May 199ﬂ
Dr Stephen Turner steve@uk.ac.exeter.cs
Department of Computer Science Tel: +44 392 264048
University of Exeter Fax: +44 392 264067
Prince of Wales Road Telex: 42894 EXUNIV G

Exeter EX4 4PT
United Kingdom

PROCEEDINGS OF GROUP MEETINGS

Proceedings of the meetings of the occam user group, the North American
transputer user group, and other sister groups are now published for the
L _J_I groups by the IOS Press, and should be ordered directly from the publishers.

The following volumes are available: in the Occam User Group Progress Reports
series (prices in Dutch guilders/US dollar prices in the USA and Canada only)

> OUG-7, 14-16 September 1987, Grenoble, Parallel programming of transputer
based machines, ed. Traian Muntean (pp. x+480, 1.230/$110).

> OUG-8, 27-29 March 1988, Sheflield, Developments using occam, ed. Jon Ker-
ridge (pp. vii+214, 1.92/850).

> OUG-9, 19-21 September 1988, Southampton, Occam and the transputer — re-
search and applications, ed. Charlie Askew (pp. vii4176, f1.92/$50).

> OUG-10, 3-5 April 1989, Enschede, Applying transputer based parallel machines,
ed. André Bakkers (pp. viii+318, 11.130/865).

> OUG-11, 25-26 September 1989, Edinburgh, Developing transputer applications,
ed. John Wexler (pp. x+206, f1.115/$55).

> OUG-12, 2-4 April 1990, Exeter, Tools and techniques for transputer applica-
tions, ed. Stephen J. Turner (pp. vii4+244, 1.130/369).

> OUG-13, 18-20 September 1990, York, Real-time systems with transputers, ed.
Hussein Zedan (pp. viii+351, 1.130/$69).

and in the NATUG Progress Reports series

> NATUG-1, 5-6 April 1989, Salt Lake City, Utah, ed. G. S. Stiles (pp. 166, 1.120/
$60).

> NATUG-2, 18-19 October 1989, Durham, North Carolina, ed. John A. Board,
Jr. (pp. 462, 1.230/$115).

> NATUG-3, 26-27 April 1990, Santa Clara, California, ed. Alan Wagner (pp.
x+352, 1.190/895).

4 occam user group newsletter

> NATUG-4, 10-11 October 1990, Ithaca, New York, ed. David L. Fielding (pp.
viii+250, 1.130/$69).
IOS also publish the most recent proceedings of others of the user groups,
> Proceedings of the 3rd transputer/occam international conference, Tokyo 1990,
ed. Tosiyasu L. Kunii and David May (pp. x-+308, f1.170/$89).
> ATOUG-3, Proceedings of the 3rd Australian transputer and occam user group
conference, Melbourne, 1990, ed. T. Bossomaier, T. Hintz and J. Hulskamp,
(approximately 200 pages, 11.120/$60).
and the proceedings of the international conferences on the applications of transput-
ers organised under the auspices of the UK SERC/DTT ‘Transputer Initiative’.
They are available from bookshops or direct from the publisher, either individu-
ally or on continuation orders. '
108 Fax: +31 20 22 60 55
Van Diemenstraat 94
1013 CN, Amsterdam
The Netherlands

or in the USA and Canada
10S Press Inc. Fax: +1 703 250 47 05
Postal Drawer 10558
Burke, VA 22009-0558
United States of America
or on the US West Coast
Computer Literacy Bookshops, Inc. Fax: +1 408 435 0689
2590 N. First Street
San Jose, CA 95131
United States of America
or in Japan
I0S Japan Department Fax: +81 35 72 86 72
Highway Development Co. Ltd
1st Golden Building, 8-2-9 Ginza
104 Tokyo — Chuoku
Japan

SIG publications

The proceedings of last year summer’s international conference organised by the Arti-
ficial Intelligence SIG have appeared as the first volume of the Wiley Communicating
Process Architecture Series, series editor David May.
> Parallel Processing and Artificial Intelligence, ed. Mike Reeve and Steven Ericsson
Zenith, (pp. xvi+291; £29-95); John Wiley & Sons, 1989.
The proceedings of the OUG AT SIG’s second meeting are also available from IOS,
through bookshops and the agents listed above.
> Proceedings of the 2nd International Conference of the OUG Artificial Intelligence
SIG (London, UK, 1st October 1990), ed. Joachim Stender and Tom Addis (pp.
viii4252, 11.120/$65).

NO14 January 1991 » 5

TRANSPUTING 91

THE WORLD’S LEADING CONFERENCE
ON MULTIPROCESSING

Organized by
The World Transputer User Group Committee

Sponsored by

SGS-Thomson Microelectronics, ESPRIT,
Parsytec, Paracom, Parasoft, Transtech Devices,
JMI Software, Yarc Systems Corporation,
Distributed Software Ltd, 3L and others.

Transputers are the revolutionary microprocessors for multiprocessing which have
outsold all other 32-bit RISC architectures. They are fuelling explosive growth in
-sclence and engineering by extending the ability to solve complex problems fast,
elegantly and at reasonable cost.

If you're investigating the use of paralle] or multiprocessing in any application, be
sure not to miss TRANSPUTING ’'91. This international event includes five days of
selected presentations, tutorials and workshops on the powerful concepts of parallel
computing based upon communicating process architectures, and will feature a full
technical disclosure of the next generation transputer, codenamed H1.

Invited speakers include representatives from Fujitsu Labs, Harvard University,
and IBM’s T. J. Watson Research Centre. A concurrent exhibition will support the
conference themes of performance and scalability, porting existing systems, paral-
lelization paradigms, formal methods and security, programming languages, support
environments, standards, and applications.

Applications discussed and demonstrated at TRANSPUTING 91 will include em-
bedded real-time systems, workstations, supercomputers, laser printers, disk arrays,
image processing, global positioning by satellite, artificial intelligence, databases, and
the testing of scientific and mathematical theories.

So...plan to find out what transputing is all about. See state-of-the-art appli-
cation demonstrations and product exhibitions from around the world. Gain an
in-depth understanding of the new software and hardware technologies enabled by
the transputer. Discover H1. Learn why transputers make sense — today and for the
future.

Endorsers of this conference include:

> ESPRIT

> The Institute of Physics
The Institute of Electrical Engineers
The British Computer Society
The Parallel Processing Connection
The New Zealand Computer Society

v

v v v

6 occam user group newsletter

> The Oregon Advanced Computing Institute
> The Edinburgh Parallel Computing Center
and others

Special invited speakers

MR. RiicHIROU TAKE AND MR. YASUO NOGUCHI Researchers, Artificial Intelli-
gence Laboratory, Fujitsu Laboratories Ltd.

An architecture for parallel database computing The paper proposes an MIMD com-
puter aimed at database processing and general purpose applications. An experimen-
tal system has been made using 32 T800s as processing nodes and 32 for Dragon Net,
a binary n-cube structured network which can optimally process all-node-to-all-node
communication based on a simple rule.

Mr. Take and Mr. Noguchi are researching into concurrency control for distributed
database management systems, and parallel architecture and algorithms for speeding
up database operations. Mr. Take has a degree in Mathematical Engineering and
Information Physics from the University of Tokyo. Mr. Noguchi has a Masters degree
in Pharmaceutical Science from the University of Tokyo.

MR. JonaH McLeop Editor, Electronics

An industry-wide perspective on parallel and multiprocessing Jonah McLeod has been
with Electronics and Electronic Design since 1979, writing on the whole spectrum of
electronic equipment. Prior to this he managed the Apple Computer and Intel Corp.
accounts at Regis McKenna PR, before which he was west coast editor of Computer
Design. He has written several books on computers, computer peripherals and CAD,
and has a Batchelor of Science from the University of Texas.

Dr DavID MAY Manager, Transputer Architecture and Developmert, Inmos
Towards general purpose parallel computers David May is currently working at
Inmos on the architecture of a new product range for introduction in 1994. He
graduated from Cambridge University with a degree in Computer Science and has
published about 45 papers and 15 patents. He is Visiting Professor of Engineering
Design at Oxford University and has an honorary DSc from Southampton University
for his contributions to the development of parallel computing.

PROFESSOR LESLIE VALIANT Harvard University -

Bulk-synchrony: a bridging model for parallel computation The success of the Von
Neumann model of sequential computation is attributed to the fact that it is an
efficient bridge between software and hardware. This paper argues that an analogous
bridge between software and hardware is required for parallel computation if it is
to become more widely used, introduces the bulk-synchronous parallel model as a
candidate for this role, and supports the suggestion by giving a number of results
that quantify its efficiency.

Professor Valiant is currently Gordon McKay Professor of Computer Science
and Applied Mathematics at Harvard University. His current research interests are
computational complexity, machine learning, and the theory of parallel algorithms
and architectures. In 1986 he received the Navanlinna prize for theory of information
processing from the International Mathematical Union.

N9 14 January 1991 7

MR. DENNIS G. SHEA Modular Microsystems Group Manager, IBM T. J. Watson
Research Center

IBM Victor V256 Victor is a family of partitionable transputer-based multipro-
cessors that have been designed at IBM Research to provide researchers with a
platform for experimentation in the area of highly parallel message passing MIMD
machines with distributed memory. Applications running on Victor cover a variety of
scientific and engineering topics such as VLSI waveform relaxation based circuit sim-
ulation and Quantum Monte Carlo simulations for exploration of high temperature
superconductors.

Dennis Shea’s research focuses on the design and development of high perfor-
mance distributed memory parallel processors and their use in solving real appli-
cations. He is a Ph.D. candidate in the Department of Computer and Information
Science at the University of Pennsylvania, and has a Master’s degree in Computer
Systems from Florida Atlantic University.

H1 transputer disclosure

IAN PEARSON Director of Technology, Inmos Wednesday afternoon’s session will
feature a complete technical disclosure of Inmos’ next generation transputer, code-
named HI.

The key features of H1 are a high performance pipelined superscalar processor and
major support for multiprocessing applications. Peak performance will be more than
150 MIPS and 20 MFLOPS. Inmos, a member of the SGS-Thomson Microelectronics
group, is the recognized leader in parallel and multiprocessing, and H1 represents a
major advancement in parallel computing and high speed communications.

The transputer architecture is unique in providing hardware support for pro-
cess scheduling and specific instructions for interprocess communication. As the
computational loads on embedded processors increase, the ability to produce scal-
able multiprocessor systems is crucial. H1 represents a significant advance in the
transputer’s already proven capabilities in parallel and multiprocessing.

The design goals for H1 were to enhance the transputer’s position as the premier
multiprocessing microprocessor, and to establish a new standard in single processor
performance, while maintaining compatibility with existing transputer products.
This session will disclose the means by which these have been achieved, and time has
been scheduled for Mr. Pearson to field questions from the audience.

Calendar of events

Monday April 22
REGISTRATION

TUTORIALS on the fundamental principles underlying transputer technologies and
various design paradigms for exploiting them.

> Communicating process architectures and transputer overview

> Designing parallel — going sequential

> Parallelizing existing code

> Transputer programming environments

8 occam user group newsletter

> Practical use of formal methods
> Mixed language programming on the transputer

EVENING RECEPTION

Tuesday April 28

TECHNICAL SESSION Morning and afternoon: papers for these sessions are currently
being refereed.

Wednesday April 24
TECHNICAL SESSION Morning

H1 TECHNICAL DISCLOSURE
CONFERENCE DINNER

Thursday April 25

TECHNICAL SESSION Morning and afternoon.
AWARD DINNER

Friday April 26

WORKSHOPS on transputer applications and advanced techniques
Embedded real-time control systems

Real-time kernels for C programmers

Designing parallel — a hands-on workshop

. Image processing — a hands-on workshop

‘Scientific computing

Office automation applications

Communications applications

Artificial intelligence

Helios operating system — a hands-on workshop

vV VVVVVYV VYV

Logic programming on transputers

Registration, accommodation and travel

Main conference 23-25 April including three nights hotel accommodation $650 US
Main conference 23-25 April without hotel accommodation $450 US
Extra night’s lodging $100 US

These hotel rooms have been made available at specially discounted rates and will
sleep up to four occupants.

Student discount — deduct $225 US

Early registration before 31st January 1991 — deduct $100 US

(Only one discount allowable per person)

One half-day tutorial/workshop on 22 or 26 April $100 US

Two half-day tutorials/workshops on 22 or 26 April $150 US

N9 14 January 1991 9

International airfare available through American Express +31 20 520 77 77 or
Brian Raines (number given below).

Registration forms will be circulated in December but early registration is wel-
come. Forms are available from Brian Raines (below).

Some exhibitors booths are still available.

All enquiries about the above should be directed to

Brian Raines Tel: +1 717 731 9295
Executive Meeting Management Fax: +1 717 731 9295 and
PO Box 434 push * after tone

Camp Hill, PA 17001
United States of America

FORTHCOMING

WORKING SEMINAR ON PARALLEL COMPUTING AND

TRANSPUTERS
10 am—4 pm, 17th January 1991
Tamka str 38, 1st floor, Warsaw, Poland

Organisers

Systems Research Institute, Warsaw, Poland
Microvex Ltd, Warsaw Poland
Quintek Ltd, Bristol, United Kingdom
Katal Co, Warsaw, Poland
(Participation of other foreign firms is also expected)

The aim of this seminar is to bring together researchers, practitioners, and business
people active in Poland in the field of parallel computing and making use of the
transputer technology.

This will be the second meeting of this kind. The previous one was organised
by the Systems Research Institute and Microvex Ltd and held in autumn 1988 in
Warsaw. There were about forty participants.

We hope that the seminar will give all the participants a good opportunity to
exchange, disseminate or collect information on the subject.

A preliminary programme includes:

> concise presentations of recent activities of the seminar organizers in the field of
parallel computing and transputers,

> presentations prepared by the participants,

> demonstrations of transputer hardware, software and applications,

> discussion.

A call is made to all interested persons and institutions to prepare short (ap-
proximately ten minute long) presentations reporting scientific results, scientific or
application projects, problems to be solved or any other matter related to the subject
of the seminar. The title and an abstract of the presentation should be sent to the

10 occam user group newsletter

contact person, dr inz. Leon Slommskl at the address below, before 10th January
1991.

The seminar room is conveniently located in the centre of Warsaw. It can be
easily reached from the Central Railway Station in 15 min by bus 175 and a short
walk.

dr inz. Leon Stominski Tel: +48 22 36 41 58
Systems Research Institute Fax: +48 22 37 27 72
PAS Tlx: 812 397

01-447 Warsaw
Newelska str 6
Poland

WORKSHOP ON ABSTRACT MACHINE MODELS FOR

HIGHLY PARALLEL COMPUTERS

Organised by the British Computer Society Parallel Processing Specialist Group
University of Leeds, United Kingdom, 25-27 March 1991

Call for papers

Aim of the workshop

The workshop aims to provide a forum for the discussion of abstract machine models
for highly parallel computers. Particular attention will be given to the specification,
implementation and application of such models and to the identification of key issues
for future research.

Workshop format

A number of invited speakers will give keynote presentations. Working groups will
focus on major issues identified through position papers. The main purpose of the
workshop is to provide a forum for discussion and as many participants as possible
will be given the opportunity to present a position paper. The workshop will be
restricted to 60 delegates and it is expected that all participants will be active
researchers in relevant fields. In the event that more than 60 applications are received,
selection will be on the basis of position papers submitted.
Invited speakers include:

Dr J. P. Banatre, IRISIA;

Prof. C. Jesshope, Surrey University; -

Dr D. May, INMOS Ltd;

Prof. R. Milner, Edinburgh University;

Dr D. Nicole, Southampton University;
Prof. E. Odijk, Philips Research;

Prof. S. Peyton Jones, Glasgow University;

vV vV VvV vV VvV VvV v Vv

Prof. I. Watson, Manchester University.

N9 14 January 1991 11

Position papers

Potential participants should submit a position paper or extended abstract of around
1500 words indicating the current direction of their research. The position papers
of all participants will be made available at the workshop. It is hoped that fuller
versions of selected papers will be published more formally.

Suitable topics for position papers include, but are not limited to:

low level abstract machine models,

impact of machine models on operating system design,

models for general purpose parallel computing,

performance models,

high level programming models,

parallel system architectures,

application-specific language interfaces,

hardware support for abstract machine models,

portable distribution runtime environments,

vV vV vV VvV VvV VvV VvV VvV vV

> open standards.
Position papers should be submitted no later than 31st January 1991 to:

Mrs J. A. Thursby
Abstract Machine Workshop Secretary
School of Computer Studies
The University
Leeds LS2 9JT
United Kingdom

Cost

The basic cost of the workshop will be approximately £100, which includes lunch
and light refreshments on each day, and a copy of the position papers.

Optional costs will be approximately: bed and breakfast (24 to 26 March) £20
for each day, dinner (24 to 25 March) £9, workshop dinner (Tuesday 25 March) £25
(including wine).

Vegetarian meals are available on all occasions.

Intending participants should send no money at this stage. Payment forms will
be sent with acceptance of position papers.

Programme committee

Prof. P. M. Dew, Leeds University (co-chair); Dr Tom Lake, GLOSSA (co-chair);
Mr J. R. Davy, Leeds University (local organiser); Dr R. Allen, SERC Daresbury
Laboratory; Dr J. P. Banatre, IRISA; Prof. J. Gurd, Manchester University; Prof. A.
Hey, Southampton University; Prof. C. Jesshope, Surrey University; Dr D. May,
INMOS Ltd; Prof. R. Milner, Edinburgh University; Mr M. Platt, IBM UK Scientific
Centre; Dr C. P. Wadsworth, SERC Rutherford Appleton Laboratory.

For further details contact the Workshop Secretary, whose postal address is
given above or contact the Local Organiser Mr J. R. Davy by electronic mail to
davyjr@dcs.leeds.ac.uk

12 occam user group newsletter

PARALLEL PROCESSING: THE FUTURE FOR COMPUTING

A British Council course
12-22 May 1991, Abingdon, Oxfordshire, England

Parallel processing is already well established as the most effective method of obtain-
ing massive computational power at an affordable price. In future it will be the only
means of achieving the speeds demanded by advances in computing applications.

The course is designed to bring together senior scientists, directors and adminis-
trators who make or influence decisions on computer strategy. Current achievements
in parallel processing and future directions will be discussed with an emphasis on
the interchange of views and experience. Participants will be asked to provide
information in advance on computing activities and needs in their own countries
and to highlight areas where parallel processing is most likely to be important.

The course will include seminars, discussions and panel sessions. There will
be technical visits provisionally to the Inmos silicon fabrication facility and to the
Rutherford Appleton Laboratory. An optional two-day workshop will be provided
to enable participants to gain hands-on experience of a parallel processing system at
the Rutherford Appleton Laboratory.

The course will be directed by Professor Tony Hoare, FRS, Professor of Compu-
tation, University of Oxford, and Dr Mike Jane, Co-ordinator, Transputer Initiative,
Rutherford Appleton Laboratory. The Oxford University Computing Laboratory
was amongst the recipients of The Queen’s Award for Technological Achievement
1990.

The following topics are planned:

Hardware

Physical limits to sequential computing
Survey of parallel architectures
Shared memory multi-processors
Communication networks (distributed memory MIMD)
Connection machines (SIMD)

Applications

Medicine
Communications
Finance and commerce
CAD/CIM
Petrochemicals
Environment
Engineering and scientific research
Expert systems
Safety critical
Software
Running a parallel processing service
Migration aids
Portability and standards
Languages and libraries
Tools and operating systems

N9 14 January 1991 13

Contributors to the programme are expected to include: Professor I. Barron, Found-
ing director of Inmos Ltd and chairman of Division Ltd; Mr David Barrow, Director,
Chiron Business and Technology Counsellors Ltd; Dr N. Carmichael, Shell UK Ltd;
Mr Miles Chesney, Managing Director, Meiko Ltd; Professor L. M. Delves, University
of Liverpool; Professor A. de Pennington, University of Leeds; Professor T. Durrani,
University of Strathclyde; Dr M. Guest, Daresbury Laboratory; Professor C. A. R.
Hoare, University of Oxford; Dr A. J. G. Hey, University of Southampton; Profes-
sor Peter A. Lee, University of Newcastle upon Tyne; Professor A. Linney, University
College London; Dr Geoffrey Manning, Chief Executive Officer, Active Memory
Technology Ltd; Dr Philip Mattos, Consultant Engineer, Inmos Ltd; Dr D. May,
Inmos Ltd; Professor R. H. Perrot, Queen’s University of Belfast; Mr D. Talbot,
Head of Division Software Technology and Advanced Information Processing, Com-
mission of the European Community, Brussels; Mr Kenneth R. Johnson, University
of Edinburgh; Professor D. J. Wallace, University of Edinburgh; Professor P. Welch,
University of Kent; Dr C. Whitby-Strevens, Inmos Ltd.

The course will conclude with a British Council keynote lecture on Future Plans
and Prospects for Parallel Processing, which is expected to be given by Mr David
Talbot.

Optional two-day workshop

The main course will be followed by an optional two-day workshop for participants
who wish to gain hands-on experience from 22-24 May 1991.
Those interested in taking part should mention this when applying for the main
course.
4

Qualification of members
The course is aimed at senior scientists, engineers, directors and administrators who
make or influence decisions on computer strategy.

Numbers

There are vacancies for 30 participants.

Fee and accommodation charges

Course fee: £720
Accommodation charge: £415
Total fee: £1135

The course is residential only. The total fee includes academic programme, accom-
modation and all meals.

We are unable to accept non-residential participants and regret that no requests
for reduction or refunds can be accepted.

Optional two-day workshop fee: £220 (this includes academic programme, ac-
commodation and meals)

Location and accommodation

Participants will be accommodated in single rooms at The Cosener’s House, Abing-
don, where the course sessions are to take place. A few bedrooms have en suite

14 occam user group newsletter

bathrooms and these will be allocated to the earliest applicants to send their forms
to us. The remaining bedrooms have their own hand washbasins but share bathroom
facilities.

Applications

Applicants are advised to apply before 18 January 1991. Application forms may be
obtained from your nearest British Council Office or from
Courses Department Tel: +44 71 389 4406/4264/4252
The British Council ‘
10 Spring Gardens
London SW1A 2BN
United Kingdom

TRANSPUTER APPLICATIONS 91

The third international conference on the applications of transputers
28-30 August 1991, Glasgow, Scotland

Sponsors

SERC/DTI Transputer Initiative

Hosts
Scottish Transputer Centre

Transputer Applications 91 is the third in a series of International Conferences
sponsored by the. SERC/DTI Transputer Initiative. The conferences are widely
acclaimed as highly successful international events, and the accompanying exhibitions
are increasingly seen as curtain raisers for new products, systems and tools.

Transputer Applications 91 offers a unique platform to application developers
from industry, government and academia for the presentation of results and experi-
ences arising from the use of transputer based systems. N

Transputer Applications 91 represents an important forum for the review of
progress in this rapidly growing field, and for the identification of current trends
and future directions.

The conference

The conference programme will include keynote presentations by leading experts,
and will span over several parallel sessions of contributed papers. Papers may be
presented in either oral or poster form.
To reflect the applications flavour of the Conference, submissions are invited from

the following non-exclusive list of topics:

> real time control,

> industrial and commercial applications,

> image processing and pattern analysis,
software tools and programming environments,
signal processing,
standards,

v v v

N© 14 January 1991 15

computational fluid dynamics,
molecular modelling,
applications in communications,

v v v Vv

application on proprietary operational systems.

Submission of abstracts

Authors are invited to submit papers on original and unpublished work which can
be described as a ‘transputer application’. Submissions must adhere to the following
instructions:
> Three copies of an extended abstract of approximately four pages should be
submitted for consideration by referees.
> Two copiestof a short abstract of at most one page should also be submitted
for publication in the Transputer Applications 91 edition of the SERC/DTI
Transputer Initiative Mailshot.
> Where possible, all material should be typeset on an A4 page in 12 point Times
Roman fount.
> For papers with multiple authors, the presenter should be identified.
> Full mailing address, telephone and fax numbers of the author to be notified
should be indicated.
> Proceedings of the conference will be published prior to the event.
> Abstracts and enquiries should be addressed to:
TA 91 Conference Abstracts
Scottish Transputer Centre
Exchange House
229 George Street
Glasgow GI 1RX
Scotland
United Kingdom

Deadlines

The following deadlines for the submission of abstracts and papers must be observed:

29 March 1991 Submission of abstracts.

3 May 1991 Notification of acceptance.

14 June 1991 Submission of camera-ready papers for inclusion in Transputer Appli-
cations 91 Conference Proceedings.

Scottish Transputer Centre Tel: +44 41 552 4400 x2499
Exchange House Fax: +44 41 552 2487

229 George Street

Glasgow G1 1RX

Scotland

United Kingdom

16 occam user group newsletter

FOURTEENTH OCCAM USER GROUP

TECHNICAL MEETING
Monday 16th September to Wednesday 18th September 1991
Loughborough University of Technology, England

ﬁl The occam user group invites all those interested in the programming and

application of transputer based architectures to attend its 14th technical
L J meeting at the Loughborough University of Technology. The conference in-
cludes invited and refereed lectures, an exhibition, a panel session with key speakers,
and meetings of the Special Interest Groups.

The conference will be concerned with both the applications of transputers and
the techniques and tools that allow transputers to be used effectively.

The meeting and exhibition will take place on the University campus which
is situated less than two miles from the mainline railway station, six miles from
FEast Midlands International Airport and less than a mile from the town centre.
Accommodation will be available on campus. There will be a conference dinner on
Tuesday 17th September.

Call for papers

Authors are requested to submit five copies of an extended abstract of between 1000
and 1500 words outlining the content of their paper. Abstracts should be sent to the
conference organiser to arrive by Thursday 25th April 1991. As well as the name
and title of all authors, each paper should include the full name and title of the
individual(s) giving the presentation, a telephone number and, if possible, e-mail
address and fax number where the presenter can be reached. Submitted abstracts
will be refereed by three members of the OUG committee.

The emphasis of the conference is both on the applications of transputers and the
techniques and tools that allow transputers to be used effectively. Contributions are
invited in all relevant areas of interest, for example: simulation, real time control,
image and signal processing, graphics and CAD, databases, neural networks and
Al, parallel programming languages, functional and object oriented languages, en-
vironments, software tools, formal methods, design methodologies and performance
evaluation.

Papers will be presented at the meeting in half-hour sessions (including time for
questions).

Deadlines

Abstracts must be received by: 25th April 1991
Acceptance Notification by: 23rd May 1991
Submission of Complete Papers: 20th June 1991

Accepted papers will appear without subsequent revision in the proceedings, which
will be published by IOS, Amsterdam, and will be distributed at the meeting. Papers
not received by this date will not be included in the proceedings.

N9 14 January 1991 17

Conference organiser

All enquires should be made to the Conference Organiser:

Janet Edwards Tel: +44 509 222677
Department of Computer Studies Fax: +44 509 610815
Loughborough University of Technology J.Edwards@uk.ac.lut
Loughborough

Leicestershire LE11 3TU

England

AUSTRIAN CENTRE FOR PARALLEL COMPUTATION

First international conference
30 September — 2 October 1991, Salzburg, Austria

Call for papers

The Austrian Center for Parallel Computation (ACPC) is a co-operative research
organization founded in 1989 to promote research and education in the field of
software for parallel computer systems.

The first international conference of the ACPC will take place at the University
of Salzburg and is intended as a forum for both researchers and practitioners in the
field.

We invite submissions of papers presenting original research in topics including
the following areas:

> Algorithms
> Languages
> Compilers
> Programming Environments
> Applications
for parallel computation including high-performance computing.

Contributors are invited to send five copies of a full paper not exceeding 12 pages
in English to

Prof. Hans P. Zima

Institute for Statistics and Computer Science

University of Vienna

Rathausstrasse 19/3

A-1010 Vienna

Austria

Tel: +43-1-401032788

Fax: +43-1-4089250

A4424DAJG@AWIUNIL1.BITNET

Submissions must arrive before 1st March 1991. Authors will be notified of ac-
ceptance or rejection by 15 May 1991. The final versions of accepted papers must
arrive in camera-ready form before 30 June 1991, to ensure the availability of the
proceedings at the conference. The proceedings will most probably be published in
the Springer Verlag Series Lecture Notes in Computer Science.

18 occam user group newsletter

Program committee

Chairman: H. Zima (Vienna); G. Balbo (Turin); A. Bode (Munich); J. Boyle (Ar-
gonne); B. Buchberger (Linz); M. Chytil (Prag); G. Haring (Vienna); U. Hofmann
(Dresden); W. Kleinert (Vienna); I. Plander (Bratislava); P. Schuster (Vienna);
U. Trottenberg (Bonn); C. Ueberhuber (Vienna); J. Volkert (Linz); M. Wolfe (Port-
land); P. Zinterhof (Salzburg).

If you intend to attend the conference, please send your name and address and
telephone and fax numbers and electronic mail address, together with an indication
of whether or not you intend to present a paper, as soon as possible to:

Mag. R. Schiller

Research Institute for Software Technology

University of Salzburg

Hellbrunner Strasse 34

A-5020 Salzburg

Austria

REPORTS

TRANSPUTER USER GROUP ARGENTINA

The first meeting of TUGA, with the purpose of formalizing the creation of the group,
was held on Wednesday 25th April 1990 with around twenty people attending. Group
co-ordination was decided as follows:

Co-ordinator: Lic. Guillermo Navas

Academic Committee:

Dr Enrique D’Atellis — Numerical Control

Dr Armando Menendez — Electromagnetism

Dr Roberto Perazzo — Neural Networks

Lic. Gustavo Sanchez Sarmiento ~ Computational Mechanics

Dr Hugo Scolnik — Combinatorial Optimization

Ing. Jorge Sinderman — Electronics and hardware
Secretary: Sr Guillermo Marshall — Numerical Methods
Relations with Industry and Commerce:

Ing. Mario Frigerio

Secretary: Ing. Daniel Lamela
For the time being the group’s activities are being supported by KEYDATA S.A.
and her sister companies KEYSOFT S.A. and KEYTECH S.A., members of the
CNEA (National Atomic Energy Commission), and the CONICET (National Science
Council).

Planned activities centre around informing probable users about this new tech-
nology and include: an inaugural meeting in Buenos Aires in the summer, a set of
tutorials and courses about occam and the transputer, a series of conferences during
the Winter Computing School at the University of Buenos Aires in August, and

NO914 January 1991 19

possibly an event during the September Latin American Meeting of the CLAIO,
Latin American Conference on Informatics and Operations Research.

Esteban R. Gillanders Tel: +54 1 70-4467/3281
Keydata S.A. Telex: 23096 KEYSA AR
Crisblogo Larraide 1801 Fax: 4+54-1-11-2426
(1429) Buenos Aires

Argentina

FIRST NORDIC TRANSPUTER SEMINAR
Turkku, Finland, 6th and 7th October 1990
Lars Estreen and Martin Tgrngren

After having had two seminars in Sweden, in May and November last year, the
Swedish Transputer User Group, STUG, wanted to try gathering more people and
more experience, even though 40-50 people attended the last seminar.

As we had heard about a lot of activities in the other Nordic countries, a natural
way to expand the STUG seminars was to arrange a Nordic Transputer Seminar. A
committee with two members from each of Sweden, Norway, Denmark and Finland
was formed by STUG. Administrative parts of the arrangements were handled by
Inmos and SGS Thomson’s representatives in the Nordic Countries.

The initial expectations of 20 persons from each country in the end turned out
to be realistic as around 95 persons visited the seminar.

A successful seminar

Most people attending the seminar gathered Friday evening in Stockholm to take the
ferry to Turkku in Finland. After a pleasant pub session at sea the seminar began
Saturday morning at Abo Akademi in Turkku, Finland.

It was about time that the transputer users in the Nordic countries met! There
were representatives from several Universities, Technical Institutes and companies in
the Nordic countries, most of them having a lot of experience with transputers. The
informal contacts were very rewarding.

A contributing reason for the success of the seminar were the pleasant arrange-
ments made by our hosts at Abo Akademi.

The keynote speakers were Richard Forsyth from Inmos who talked about the H1,
the next generation transputers, Bart Veer from Perihelion software who presented
Helios, Philip Mattos who presented a transputer based GPS (Global Positioning
System) in the perhaps most appreciated talk during the seminar. Finally Mark
Jones from Inmos talked about the current status of the transputer. He reported a
strong position for the transputer compared to other RISC processors like M88000
and AMD?29000. However, he did not mention the 680x0, 80x86 or the National
family of processors. Can it thus be deduced that Inmos is ‘the fourth bestseller’ in
the realm of 32bit micros?

The general impression of the Inmos talks was that there was not much news,
either about the H1 or occam 3. However, people enjoyed hearing the small pieces of
information available.

20 occam user group newsletter

The other talks (15 in total) were generally very interesting, too. The main
field of interest seemed to be speed-up efforts, followed by vision applications and
development/debugging tools.

One part of the seminar that did not work out so well was the workshops, because
they were scheduled for Sunday afternoon. Another thing, where were all potential
exhibitors? Only three showed up. These are things that can be improved.

The overall impression is that the seminar was a success. Look out for a new one
next year.

The Swedish Transputer User Group aims at continuing publishing a newsletter.
The newsletter will from now on be published to an audience in the Nordic coun-
tries. We think that there is a need for such a newletter (complementing the OUG
newsletter).

Peter Ygberg is publishing coordinator and contributions to the newsletter (in
English or Swedish) should be sent to him before 1st February 1991.

Enquiries or contributions to the newsletter should be directed to:
Peter Ygberg
Fridhemsgatan 8, 5 trapipor
11240 Stockholm
Sweden
or by electronic mail to Martin Tgrngren at stug@damek.kth.se.

EDUCATION AND TRAINING SIG WORKSHOP
National Transputer Support Centre, Sheffield, 3rd July 1990

This workshop was attended by ten educators or transputer users, who normally are
associated in some way with parallel computer training in the commercial, industrial
or educational fields.

The intention of this workshop was to provide the opportunity for these educators
to come together and design a real-time control application, and then to discuss the
results and how such programming experiences could be passed on to students.

The task provided by Dr Jon Kerridge was to write a photocopier simulator which
would run on one of the NTSC’s T222 boards. These are equipped with a range of
peripheral interfaces capable of emulating the buttons and displays of a photocopier.
Following an introductory session on the facilities available, the attendees split into
two groups, and tackled the task in two very different ways.

One group, keen to try out the hardware provided, immediately embarked on a
bottom-up design exercise, attempting to write driver code for the various periph-
eral interfaces. During the three or so hours available, they made good progress,
investigating the complexities of key switch debouncing, matrix switch encoding
and 7-segment LED display multiplexing. No real effort was made, however, to
produce interfaces to these routines which would be suitable for the code of the main
simulator. .

The second team embarked on a much more ambitious design exercise, based
around the hope that the various elements of the copier (controller, input paper
feeder, scanner and output fuser) could be implemented as a string of independent

N9 14 January 1991 21

parallel processes. Much effort was spent designing all the interfaces to the parallel
processes controlling the peripheral devices, in order to avoid deadlock. The major
area of heated debate was how a single reset switch (provided on most photocopiers
to recover from paper jams and other failures) could be interfaced to several pipelined
functional units when only one of these might have failed, and others were still buffer-
ing partly-processed copies! Needless to say, no time was left for implementation,
but the design was completed successfully.

Before the workshop, Jon had already produced his photocopier simulation.
Partly as a consequence of initially testing the peripheral hardware using individ-
ual processes, his solution just harnessed these processes with a single sequential
controller, which requested that each perform its action in turn.

The author has since implemented the parallel, pipelined design; it worked with-
out modification, and provides a user interface identical to that of Jon’s code.

In the discussion which followed the three group presentations, it was clear that
a purely top-down design could produce problems at the device-driver process level
unless they are successfully anticipated. In contrast, the initial coding of the lowest-
level processes independent of the design of the higher-level ones was shown to be
inviting deadlock problems. A middle approach — not surprisingly — was considered
optimum.

It was agreed that the workshop had been a stimulating event, and that seeing
other people’s design processes at work was useful. The workshop material will form
the basis of a tutorial at the forthcoming TRANSPUTING ’91 conference, where the
principles of teaching parallel programming methodologies will be examined from
the viewpoint of those setting up new courses as well as those looking to improve
current ones. Roger M. A. Peel

NORTH AMERICAN TRANSPUTER USERS GROUP

FALL MEETING
Ithaca, New York, 11-12 October 1990

The Fourth Meeting of the North American Transputer Users Group was held in
Ithaca, NY on 11-12 October. There were 82 attendees and 23 presentations. Vendor
exhibits included Transtech Devices Ltd., Yarc, MicroWay, and Inmos.

The meeting opened with the keynote address entitled ‘Portable paralle]l prog-
ramming’ by Dr Geoffrey C. Fox, currently the Director of the Northeast Parallel
Architectures Center at Syracuse University, and recently the Director of Caltech’s
Concurrent Computation Program. Dr Fox discussed future directions in parallel
computing and ideas for a machine-independent programming environment.

The technical presentations focused on applications which dealt with a wide va-
riety of topics including graphics ‘Parallel radiosity methods’, industrial control ‘An
application of transputers to a metal milling machine’, medical treatment ‘Interactive
dose calculation for 3-D radiation treatment’, industrial visualization ‘Real-time
turbine engine visualization’ just to highlight a few of the many fine technical papers.
The proceedings from this meeting, ‘Transputer research and applications 4, are
available through I0S Press.

The presentations were excellent, and at the conclusion of the meeting atten-

22 occam user group newsletter

dees voted for the top presentations. The award for the best presentation went to
William T. Carter, Jr. from GE Corporate Research and Development for his talk
on ‘Finite element analysis on a transputer system.’ The second place award went
to Alan G. Chalmers of the University of Bristol for his talk on ‘Parallel radiosity
methods’. B

The meeting’s banquet dinner was held on Thursday evening, following which
there were a number of vendor announcements. Martin Shumway, from the Inmos
Division of SGS Thomson, highlighted the finer points of the upcoming H1, including
details of H1 routing and H1 instructions. Tanya Schmah, from JMI Software
Consultants discussed a real-time kernel for the transputer, and Bernt Roelofs, of
YARC, discussed their transputer products along with their product line based on
the AMD 29000 RISC CPU. Judging from the numerous questions from attendees the
after dinner announcements were of great interest to attendees and a nice addition
to the meeting.

The fall meeting here in Ithaca was quite successful in all aspects except for the
weather. The beautiful colors of a fall in the fingerlakes region and the historical
Cornell University campus nearby more than made up for any slight downturn

“in weather. The weekend following the meeting was spectacular, if this is any
consolation.

The desire for portable parallel programming has existed for a period of time,
™\ Dr Fox stressed its importance in making parallel computing more appealing to in-
dustrial concerns. While some level of portability has been achieved by the transputer
software environments available today, each has been developed independently and
vary in their degrees of portability. In the future I would like to see these groups
come together to look at standards being developed for multiprocessor systems and
to make their own significant contribution to future standards. We can look forward
to more on portability at upcoming meetings.

Excitement surrounding the H1 was clearly evident here in Ithaca and can only
be expected to pervade at the world conference next April where unveiling of the
H1 is expected. I look forward to seeing you all in Santa Clara at the first world
conference. R
The technical sessions were as follows:

Fluid dynamics on express: an evaluation of a topology-independent parallel prog-

ramming environment, Lon-rong Hu and G. S. Stiles, Department of Electrical

Engineering, Utah State University;

Topology-independent mapping for transputer networks, Mahendra Ramachan-

dran, Manas Mandal, and Prasad Vishnubhotla, Department of Computer and

Information Science, The Ohio State University;

> Interrupt driven transputer file server, R. M. H. Cheng, S. C. L. Poon, Ramesh
Rajagopalan, Center for Industrial Control, Department of Mechanical Engineer-
ing, Concordia University;

> Mapping rings onto arbitrary transputer networks, Raju Karia and Alejandro
Teruel, Departamento de Computacion, Universidad Simon Bolivar, Caracus,
Venezuela;

v

\4

> Tmon: a real-time performance monitor for transputer-based parallel systems,
J. Jiang, A. Wagner and S. Chanson, Department of Computer Science, The

N© 14 January 1991 23

v

v

v

v

v

v

v

University of British Columbia;

A distributed algorithm for the 3D compressible Navier-Stokes equations, Kwan-
Liu Ma and Kris Sikorski, Department of Computer Science, University of Utah;
Real-time preprocessing of multiple images using an unconventional pipeline ap-
proach, Hamid R. Arabnia, Department of Computer Science, The University of
Georgia;

TransLogic: a transputer based brute force digital logic simulator, G. J. Porter,
B. M. Hutson and S. N. Lonsdale, Department of Electrical Engineering, Univer-
sity of Bradford;

A generalized FFT algorithm on transputers, Herman Roebbers, University of
Twente;

Finite element analysis on a transputer system, William T. Carter, Jr., GE
Corporate Research and Development;

An application of transputers to a metal milling machine, James C. Irrer, Control-
O-Mation Inc.; ’

Evaluating communication overhead in Helios, Wouter Joosen, University of Leu-
ven;

Occam configuration as a task assignment problem, Howard E. Motteler, Depart-
ment of Computer Science, University of Maryland, Baltimore County Campus;
Software controlled shared virtual memory management on a transputer-based
multiprocessor, Sanjay Raina, Department of Computer Science, University of
Bristol;

A dataflow implementation of functional language FP on transputers, L. Yang and
L. Jin, Department of Computer Science, California State University — Fresno;
A parallel genetic algorithm for the graph partitioning problem, Gregor von Lasz-
ewski, Gesellschaft fiir Mathematik und Datenverarbeitung;

Static vs. dynamic scheduling in cellular automaton, M. S. Laghari and F. Der-
avi, Department of Electrical and Electronic Engineering, University College of
Swansea;

Parallel radiosity methods, Alan G. Chalmers and Derek J. Paddon, Department
of Computer Science, University of Bristol;

Implementation of the dynamic time warping algorithm for speech recognition on
a transputer network, Varma R. Manthena and John A. Board, Jr., Department
of Electrical Engineering, Duke University;

Real-time turbine engine data visualization, Theodore Bapty, Ben Abbott, and
Janos Sztipanovits, Department of Electrical Engineering, Vanderbilt University;
Interactive dose calculation for 3D radiation treatment planning, Fred U. Rosen-
berger and John W. Matthews, Washington University, Institute for Biomedical
Computing;

Transputer performance in digital signal processing applications, G. M. Guisewite,
HRB Systems; L

Topological network of vector processors, Runping Qi and Ying Zhang, Depart-
ment of Computer Science, University of British Columbia.

Also contained in the proceedings of NATUG4 are:

4

Transputers at work: real-time distributed robot control, Louis L. Whitcomb, Yale
Robotics Laboratory, Department of Electrical Engineering;

24 occam user group newsletter

> A parallel implementation of robot control equations on IMS T414 transputers,
Ruiguang Zhang, Eduardo B. Fernandez, and Jie Wu, Department of Computer

Engineering, Florida Atlantic University;
David L. Fielding

WHEN IS A RAZOR NOT A RAZOR?

The joke session at the technical meeting held in Wentworth College in York was
dominated — as was the end of the meeting itself — by the muted outrage which
Geoff Barrett’s language proposals caused. Perhaps the most restrained comment
was that
Occam’s razor seems to be suffering from the distinct lack of shaver sockets at
Wentworth!
There was the usual attention to the competition:
Q: What does the i stand for in i8607
A: It is the tmaginary part of the performance figures.
as well as Inmos:
@Q: What is the real meaning of ‘INMOS’?
A: Industry Needs More Sources.
Oh, and did I mention Geoff’s proposals?
Q: What’s the methodology behind the increasing version numbers of occam?
A: The version number is about log,, of the number of keywords.
Of course ‘real-time’ is the buzz-word these days:
There was a real-time programmer called Walt,
Who had one too many guards in his ALT,
The world wouldn’t wait,
He was scheduled too late,
And now the population is nought!
I happened to be in the SIG where this one was heard:
Quote from Inmos Diplomacy department:
“Inmos will provide tools to prevent people screwing themselves. ..
... and switches so that they may enjoy themselves.”
And then there was the obsession with Geoff’s occam development paper again:
The Ada 90.z Standard is definied as a subset of occam 3.
Of course there are some favourite targets:
There were several transputers in York,
In deadlock they always would baulk,
C was the way,
But it crashed the first day,
In occam, however, they’d talk.
Then there was the reaction to Inmos’ plans for a H-series of transputers, and the
talk of the open-microprocessor project, codenamed the E-series:
There’s a wonderful fam’ly of transputer:
Each is a splendid computer.
The T eight is great,

NO14 January 1991 25

The H1 is late,
And the E’s far away in the future.

In fact, as Geoff Barrett let slip the following day, the rationale behind these names is
just that Inmos wanted to become T-H-E microprocessor manufacturer. And talking
of Geoff reminds me of the occam development paper. ..

A transputer user and gent,
Found his programs all bugged and bent,
He tried a PRI PAR,
An ALT, SEQ, TYPE, STREAM, JOIN, BUS, RECORD,
CLASS, RESOURCE, FINAL, SERVE, CLAIM and PAR,
Gave up and went - spent — back to Kent.

That was the winner: written by Chris Jones of British Aerospace, as were a number
of the others. q7

SPECIAL INTEREST GROUPS

REAL TIME SIG

There was a meeting of the SIG at the York user group meeting, but the presentation
on occam3 the previous day did cast its shadow ahead on the workers in the Real
Time and embedded systems. This OUG meeting did have a definite emphasis on
real time systems. The contending scheduling papers by Welch and Sunter indicated
that something is still missing. Too bad we missed the paper on Trans-RTXc by
Verhulst. It shows one implementation that allows rate monotonic scheduling on the
transputer. For the rest there was not much hope for Real-Time systems. Although
the paper on the assessment of the use of occam for dependable real-time systems by
Burns made suggestions that there might be different occam 3s like: one for real-time
systems; one for Object Oriented Programming etc.

One of the conclusions that came out of the discussions was that occam is a good
base for RT systems. However a straight realization of a real-time kernel will probably
not result in a state of the art system because many current RT kernels don’t use
up to date theory. Most RT kernels only have fast context switches and priorities
that will guarantee scheduling in finite time but not before certain deadlines. It was
doubted whether current RT kernels can handle transputer processes.

Alan asked: What are the scheduling hooks? Inmos won’t tell although Roger
Shepherd said previously that the hooks will probably not be sufficient for an all
inclusive RT system. Also one is led to believe that occam already contains the
necessary things for fixed priority scheduling namely PRI PAR. Besides that the
transputer has already the necessary hardware to do deadline driven scheduling: the
timer queue. Both papers mentioned before have showed that this is not sufficient for
deadline driven scheduling. What is needed for this is exactly known and proposals
for implementation have been made whereby the high priority remains intact with
lightning fast pre-emption time. Low priority pre-emption takes longer but will be

26 occam user group newsletter

fast enough. However to quote Roger Shepherd: We don’t make what is best for
them, we make what they know.

A large part of the market is the embedded systems market. Why is Inmos not
actively supporting RT systems? Routing chips are pretty fast, but is there an upper
bound for the delay? Otherwise RT kernels are not going to use them. The same
thing for the cache, the cache of the H1 will be turned off in RT systems. Real
time constructs do not have to have zero probabilities. Probabilities equal to the
probability that the hardware fails are low enough to live with.

When priorities can be changed by other processes, priority inheritance becomes
possible. Deadline scheduling is the basic layer from which the higher layers of RT
systems can be built. Also it was reported that the formal semantics of a multi
priority CSP has been worked out in Italy. André Bakkers

HARDWARE SIG

A meeting of the hardware SIG was held on 18th September 1990 during the York
OUG meeting. As usual, the meeting consisted of several short presentations about
items of current interest.

Virtual reality

Neil Miller of Division Ltd described his company’s prototype ‘virtual reality sys-
tem’ which was demonstrated at the SIG-GRAPH meeting the previous month. A
simulated environment is offered to a user equipped with

> a pair of goggles with a video screen for each eye,

> headphones,

> a position detector on her forehead, and

> a glove to record hand movements.
The system as demonstrated offers a three-dimemnsional cursor which flies around a
room, giving the ability to pick up a table, chair or teapot. They ‘clunk’ and ‘clink’
as they are moved. The user is even offered a menu which allows her to enter a room
with ‘Boris the spider’.

We were amused to learn that, as the company had forgotten the necessary
calibration software, Stephen Gee had to spend eight hours a day for three days
locked in this virtual world.

Proposed uses for the system, which was to be formally launched the next week
at the Royal Society, include:

> An executive toy.

> A training aid for dangerous environments.

> A flight simulator — for those of us who fly without an aeroplane.
> Previewing architectural projects.

The image rendering system for virtual reality ran on sixteen transputers, but
Neil confessed that the image quality was not very high as they have insufficient
processing power.

N9 14 January 1991 27

C104 emulator

Mark Hill of Southampton University described a message routing system that is
under development for the Esprit PUUM A project. The system uses a cluster of four
T222 transputers, linked in a square by dual-port memories, to provide a sixteen-link
message routing engine. Eight such engines can provide complete single hop routing
for a thirty-two transputer machine, such as a fully populated Supernode backplane.
While there is some small improvement in message latency, Mark claimed that

the principal advantages of the system were

> improved security for a multi-user system,

> improved message throughput, and

> greatly reduced message processing load on the ‘compute’ transputers.
The system is fully integrated with a virtual occam compiler that provides unlimited
inter-processor occam channels.

"Prototype cards

Roger Peel of the University of Surrey described some transputer prototyping cards
that he had designed and was willing to make available. These single extended
Eurocards will accommodate a T4 or T8 processor and two to eight megabytes of DIL
DRAM memory, with a PAL providing full address decoding and memory timing.
Four subsystem ports are also provided on the board. External interfaces include
an extended B003-type connector and a 96 way expansion connector which carries
latched transputer addresses and all other appropriate transputer signals. The whole
board consumes 300mA from a 5V supply.

Jon’s boards

Jon Kerridge promised to write a note for this Newsletter about his transputer
prototyping boards. .. Denis Nicole

OCCAM DEVELOPMENT SIG

Partly because a number of people had been pressing for a forum to discuss develop-
ment of occam, and largely because Geoff Barrett presented a proposal for substantial
additions to the language, we held a SIG at the York meeting which was variously
known as an occam development SIG and a Geoff Barrett SIG. Judging by the vast
attendance there was a great deal of special interest either in Geoff Barrett or — more
likely — in the development of occam.

Geoff summarised the main proposals from the paper [1] which he had presented
the previous day, calling for four classes of addition to the language: some new
data-structuring; some assistance with code structuring, re-use and encapsulation;
support for sharing of objects; and improved error-handling.

There was general acceptance of the relatively modest data-structuring proposals,
essentially the re-introduction of the records that briefly flitted into and out of
the occam?2 proposal. The mechanisms equivalent to enumerated types seemed

28 occam user group newsletter

cumbersome to some of us. Classes were where the argument started; several people
were concerned that there were too many different ways of structuring code in much
the same way. Peter Welch and Chris Jones were variously concerned about separate
compilation units, libraries and classes all being similar but different. In defence of
classes, Geoff said that separate compilation was essentially a separate concern (he
really did, hones’ injun) and that libraries are stateless, whereas classes will not be
and capture initialisation of their state and so on.

The proposed mechanism for sharing — something like, but more general than
an arbitrarily wide ALT — matches ‘claim’s and ‘accept’s rather as though they were
communications on shared channels, but governing a region in which the shared
resource ‘knows’ to which process it is allocated. There was some discussion of
whether it is possible to hide obscure interactions between process in the claim/accept
mechanism for extended rendezvous. The assertion is that since claims are forbidden
in the critical region governed by a claim there is no interesting way to obscure a
deadlock. (Anyone recognise a challenge when they see one... ?)

The server is a particularly common construction for which Geoff had proposed
a language cliché, bundling a great deal of housekeeping into a standard package.
When Jon Kerridge claimed not to understand the termination of servers, Alan Burns
raised a laugh by explaining it in terms of Ada. There was common concern that
the proposal was for a much larger language — certainly one with a great many more
key-words. Perhaps the absence of printed copies of the paper (the proceedings not
having been published in advance of this meeting) made this worry greater than it
would otherwise have been.

As the timetable bore us on inexorably into a much needed coffee break, it was
concluded that what we needed now was a ‘serious’ example of the proposed language
in use.

References

[1] G. Barrett, The development of occam: types, sharing and modules, in
H. Zedan (ed.), Real-time systems with transputers, Proc OUG TM-13, York
(September 1990), 10S, 1990.

Geraint Jones

FORMAL METHODS SIG

For the second time running, a baker’s dozen of people attended the meeting, which
was held during the 13th OUG technical meeting at York in September. There was
again quite a cosmopolitan mix among the attendees (four countries, and a fairly
even split between industrial and academic organisations).

There was very little news of interesting research being started in the area. Given
the Technical Meeting’s theme of real-time concurrency, there was quite a lot of
interest in how well the established formal methods for untimed analysis and design
extend to deal with real-time aspects: how, for instance, could one treat deadline
scheduling in a formal framework?

Much of the meeting was spent discussing how the SIG could best promote and

N9 14 January 1991 29

promulgate formal methods. It became apparent that there was a wide range of
prior experience and knowledge among the attendees, and presumably among the
potentially interested world at large: ranging from people who want to know what
formal methods are, and what they are good for, to those with considerable expertise
who want to exchange techniques with other experts.

It was decided that it would be good to try and organise some more technical
meetings, in addition to the general chat during the SIG sessions of full OUG
meetings. Two subjects in particular attracted support: a fairly broad survey
of formal methods for the non-expert, and a guru session for those into real-time
methods such as Timed CSP and Timed CCS. The first of these will form the topic
of one of the tutorial sessions at TRANSPUTING ’91, and may very well be repeated
(probably in an abridged version) on this side of the Atlantic at some future date.
It was hoped that the second might be organised for early in 1991, but at the time
of going to press it has not yet proved possible to arrange; this probably means that
it will slip to the end of next summer. Any details will be circulated to anyone on
the SIG’s list of interested parties, and sent to the occam and transputer electronic
mailing lists, as well as appearing in the Newsletter if time allows.

Once again, I opened the meeting with a statement of good intentions, to try and
make more happen in the Formal Methods SIG; once more, I close the report with
the reminder that, in the way of the world, things are much more likely to occur if
I am given encouraging prods from time to time, or even constructive suggestions.
Anyone who can come up with either is most welcome to contact me at the address
on page 105. Michael Goldsmith

EDUCATION AND TRAINING SIG

Members at the York technical meeting started by summarising the various hardware
and software environments which are suitable in a teaching environment. The
discussion examined the various hosting possibilities (PC, software-only schemes on
multi-user machines, transputer access from multi-user machines), as well as the
benefits of TDS versus standalone toolkit products, folding editors and so on. The
problems of how to resource large groups of students were aired, but not solved!
The meeting also heard a report on the Education and Training SIG Workshop
at the Sheffield Transputer Support Centre in July, for which see page 20. This
was followed by a discussion on the educational benefits of the exercise, and how
the aspects of top-down and bottom-up design which had been seen could best be
demonstrated in a teaching context. Roger M. A. Peel

GRAPHICAL PROGRAMMING TOOLS SIG

Although many programmers would like to see usable tools for software visualisation
and graphical programming, only eight people attended to the SIG meeting at the
13th OUG Meeting at York University.

It was anticipated if there was any complete or partial products for occam pro-
gram development with graphical tools. Alan Knowles from Manchester University

30 occam user group newsletter

mentioned that his colleague Adrian West is working on a software environment
which also includes graphical tools. Indeed Adrian gave a talk on the subject in the
12th OUG meeting at Exeter. With this, pictorial representation of the programs
and editing with icons would be possible. However the tool could not have a general
purpose usage as it was designed for T-rack machine in Manchester.

Ed Hart from Polytechnic of Central London announced that they are sell-
ing Transim/Gecko package. Transim simulates the behaviour of a program on a
transputer network. Gecko visualises the activity of the program. Transim/Gecko
combination need Sun workstations. Transim alone can also run on the IBM-PC.
However, the development of these products ceased a long time ago.

At Kent, I have been developing graphical representation and manipulation of
program objects as a by-product of a Version Management System.

In order to enhance the discussions, it was suggested that this SIG could be
combined with the Environments SIG. S. Vedat Demiralp

TECHNICAL CONTRIBUTIONS

SENDING OVER A TRANSPUTER LINK WITHOUT
ACKNOWLEDGE

Dieter Homeister, Universitat Stuttgart, Germany

In this article an algorithm is presented to send data trough a transputer link without
the need of acknowledge packets for each byte. If the bytes are lost, no error occurs.
This is useful to resynchronise disconnected links.

A star topology with transputers

The algorithm was developed for a master-slave system in star topology. For a
time critical application a star network was necessary to avoid a multihop message
passing. The realisation of a star network with more than four slaves is difficult,
because Transputers have only for links. So a reconfigurable network with a C004
crossbar switch was used to simulate a star network in time multiplexing. If the slave
has finished a task, it cannot send the result to the master, because in this network
a slave is disconnected from the master most of the time. The slave would run into
a deadlock. Before sending, a synchronisation between master and slave must be
performed and the master has to reconfigure the network.

Resynchronisation of disconnected links

The first solution was a polling algorithm. The master processor establishes a direct
connection to all slaves in a round-robin fashion. A byte is sent to wake up an
interrupt process in the slave, telling the master whether the task is finished or not.
If a result is ready, the slave sends it now. Otherwise, the next slave is tested. If the
master polls the slaves too fast, the interrupt process on the slave consumes a lot of

N9 14 January 1991 31

time and the working process slows down. Too slow a polling speed causes long idle
times on the slaves.

To avoid these disadvantages a better algorithm with no need for an interrupt
process was developed. When the task is done, the slave tries to send any data to
the master. This fails in most cases and the data bytes are lost. The slaves get no
link acknowledge, but a timeout avoids a deadlock. The slave tries to send again
in a loop until a synchronisation with the master succeeds. To poll the slaves, the
master connects to a slave and ‘listens’ into the line. If the line is quiet the slave is
still working on the task. The master now switches to the next slave. If the master
receives data on the line, an idle slave has been found. The master sends a byte
to stop the continuous data stream from the slave. The slave now knows that the
connection to the master is established and sends the result of the task. The master
now may send a new task to this slave.

While working on the task the slave is never interrupted. The whole CPU capacity
is used for the task. When the task is finished the slave is idle and it does not matter
how much CPU time the synchronisation consumes.

The master has to listen for a time interval including at least one byte from an
idle slave. This time interval may be decreased if the slave sends the bytes without
acknowledge as fast as possible. The master is able to poll more slaves in the same
time and the synchronisation becomes faster.

How can a transputer send bytes without acknowledge?

The link receivers use a one byte buffer. A link is ready to receive data if this buffer
is free. After the reception of one byte the DMA controller writes this byte into the
memory and sends an acknowledge packet back to the sender. The link sender now
knows that the receiver is ready for the next byte. The sender is blocked until the
acknowledge arrives. A lost acknowledge or a lost data byte causes a deadlock in the
sending or the receiving process or in both communication partners.

One method to send bytes without waiting for the link acknowledge uses the
occam procedures described in reference [2]. The procedure OutputOrFail.t was
designed to send over an unreliable channel with timeout. OutputOrFail.t is
repeated in a loop until the master transputer sends a stop byte. A byte is sent
without acknowledge every 65 microseconds. A transputer with the old (slow) link
protocol needs 2-4 microseconds per byte in the regular operation with acknowledge.
(All results are measured on a system with a link speed of 10 Mbit/s.) This solution
was not fast enough for the application.

The analysis of OutputOrFail.t shows why this is not the fastest solution. (I
had no sources, but disassembling and understanding the procedure was a good
exercise to learn transputer assembler and the implementation of an ALT statement.)
To implement an OutputOrFail.t procedure an ALT statement for a timer and an
output statement would be needed. This could look like this:

ALT.OUTPUT -- this language construct does not exist

unreliable.chan ! data

ok := TRUE
timer ? AFTER timeout
ok := FALSE

32 occam user group newsletter

The non-existent output alternative has to be transformed in an input alternative:
PAR
SEQ
unreliable.chan ! data
help.chan ! any.data -- this simulates the ALT.OUTPUT
ALT
help.chan 7 dummy
ok := TRUE
timer ? AFTER timeout
. GUY RESETCH -- reset link and test if still hanging

IF
hanging
SEQ
. restart hanging process with GUY RUNP
help.chan ? dummy
ok := FALSE
SKIP
SEQ

help.chan ? dummy

ok := TRUE -- or FALSE if this should be an error
There are two parallel processes. The first one sends to the unreliable channel, and
after the successful termination it sends an end message to the second process. In
this second process an ALT waits for a timer or the input from the first process.
This is (with the help of the internal channel help.chan) the desired output ALT.
An input from help.chan tells the second process that the communication via the
unreliable channel succeeded, the procedure ends without an error message. The
timer input causes a RESETCH-instruction [3]. The instruction returns an indication
of whether the communication is hanging or was finished in the meantime. If
the communication is hanging, the procedure ends with an error message. In the
procedure OutputOrFail.c the timer alternative is replaced by a stopper channel.

There is another way to synchronise a master and a disconnected slave. To test if

the slave’s task is finished the master sends a byte to the slave. A busy slave ignores
this byte and the master is blocked. After a timeout the master knows that the slave
is busy. If the slave answers, the master has found an idle slave. This variant was
implemented in reference [4] under Helios.

A fast algorithm

The fastest possibility to send without acknowledge is based on two twin processes
in the style of DutputOrFail.c. One process sends a byte and hangs, because it
receives no acknowledge. If no other processes are running, the second twin process
is scheduled immediately. The first action of this process is to abort the failed
communication in the other process with a RESETCH, so that the hanging process is
appended at the end of the process queue. Now the active process sends a byte, hangs,
and so on. A third process waiting for the stop byte from the master transputer is
used to stop this mechanism, if the synchronisation between master and slave is
completed.

N9 14 January 1991 33

stop = 0; /* clear the shared variable */
parallel
{
process: /* sends FF(hex) until a stop byte comes from the master */
process: [* second, identical process sharing the same code %/
/*$NOSCHEDULE#*/ /* compiler switch: avoid descheduling points */
for (; !stop ;)
{
process_id = RESETCH (link_to_master);
if (process_id !'= MINT()) /% if other process hangs */
RUNP (process_id); /* restart hanging process */
if (stop)
break;
OUTBYTE (link_to_master, OxFF);
[stkokoksksk kR sk ARk SRR R KR sk ok KRR KRR K oK

*% at this point the process hangs and *ok
*x% the scheduler gives the CPU to the twin #*x*
%% process to '"reanimate" this process *k
sk kR kR kol oskiok kool okl kool sk kR otk sk ok /
¥
/*$SCHEDULE*/
process: /* stopper process */

{

IN (&dummy, link_from_master, 1);

stop = 1; /* set the shared variable */
}

Figure 1: the fast algorithm, coded in parallel C

The following listing shows the principle function of the two twin processes.
Uppercase words are assembler instructions, and stop is a shared variable, only
writable by the stopper process not shown here. Each process runs until it reaches
the OUTBYTE instruction. At this moment the process is descheduled and the other
process continues with the instruction after OUTBYTE. You need GUY statements to
write this in occam.

loop: loop:
RESETCH RESETCH
if hanging if hanging

RUNP RUNP
if stop if stop

exit_loop deschedule exit_loop
OUTBYTE to_master <==========> (QUTBYTE to_master
if not stop if not stop

goto loop goto loop

An implementation of the program written in parallel C is shown in figure 1.

34 occam user group newsletter

Results

The parallel C implementation sends a byte every 6-2 microseconds. In assembler this
time could be reduced to 5-5 microseconds. After placing the code and all variables
(including the shared variable) into the on-chip RAM a data rate of 327900 Bytes
per second (at 10 Mbit/s) was reached. A byte is now sent every 3-05 microseconds.
This is about 75% of the data rate of a T414-20 at 10 Mbit/s with acknowledge.
This speed is only possible if there are

> no process creations and terminations,

> no internal channels (they are replaced by the shared variable), and

> no ALT statements (the occam compiler generates 22 instructions for an ALT).
The control between the processes is switched by the hardware scheduler, not with
channels. This unstructured implementation is useful in this case because the syn-
chronisation must run as fast as possible, otherwise the system performance is not
optimal. The number of instructions between the sending of two bytes is reduced
from about 100 (for the OutputOrFail solution) to 15 (for the two twin processes).
The program works in high or low priority, because there are no other processes
running at this time. The program is extensively tested and runs without problems.

If the reconfiguration of the C004 is done at the moment when the slave sends
a data packet, the master can receive a fragment of this packet. A single one-bit is
interpreted as a link acknowledge. The link hardware tolerates a single unexpected
acknowledge. The best bit pattern to use is FF(hex). Other bit combinations
containing two or more single one-bits can confuse the receiver link hardware. Before
polling the next slave the master link hardware has to be put into a defined state
with a RESETCH instruction. -

The disadvantage of this algorithm is that the waiting time between two tasks
cannot be used for a reserve task because this synchronisation needs the whole CPU
capacity. To use these waiting times, extra hardware has to catch the synchronisation
bytes from the slave and tell the master which slave is ready. In this case the slaves
send only one byte without acknowledge. During the waiting time a reserve task
may work on the slave until the master fetches the result and sends a new task.

Experiments [5] show that this algorithm works faster than the polling algorithm
with interrupts. Conventional message-passing implementations on a static tree
network are significant slower in case of short tasks. Only implementations using the
gaps between the tasks are faster. On 24 slave transputers a speedup of 23 is reached
with an average task size of 30 milliseconds. The speedup of the interrupt polling is
20-5. The message-passing program spends most of the time on the communication,
the speedup is only four at this task size.

If your transputer system will not boot any more

If you try to restart your system and a transputer sends without acknowledge in
the direction of the root transputer, booting may be impossible. The host boots
the root node with a hardware reset followed by the boot code on the link between
host and root. Transputers are very fast, in most cases the uncontrolled sending
slave transputer sends bytes into the gap between reset and boot code. The root
transputer interprets the bytes from the slave as boot code and ignores the host. A

N9 14 January 1991 35

program made of lots of hex FFs followed by the old memory contents is not very
useful and the root transputer does undefined things. So you first have to send a
hardware reset to the uncontrolled sending slave.

References

[2] Roger Shepherd, Eztraordinary use of transputer links — Inmos technical
note 1, Bristol, 1987.

[3] Inmos Ltd, The transputer instruction set — a compiler writers’ guide, Bristol,
1987. ;

[4] Jirgen Dammert, Paralleles Ray-Tracing, Diplomarbeit, Fakultdt Informatik
der Universitdt Stuttgart, Jan 1990.

(5] Dieter Ebhart, Entwurf und Vergleich von Auftragsverteilungsalgorithmen fiir
punktweise entkoppelte Probleme auf parallelelen Transputersystemen,
Diplomarbeit, Fakultat Informatik der Universitat Stuttgart, Oct 1990.

Dieter Homeister

Universitat Stuttgart

Institut fiir parallele und verteilte Hochstleistungsrechner

7000 Stuttgart 1

Azenbergstrafie 12

Germany
Tel: +49 711-121-1342
Fax: +49 711-121-1424

homeister@informatik.uni-stuttgart.dbp.de

USING THE HIGH PRIORITY TRANSPUTER TIMER FROM

WITHIN LOW PRIORITY PROCESSES
G. De Pietro and U. Villano
Centro di Studio sui Calcolatori Ibridi, Napoli, Italy

One of the most common problems for transputer users is the measurement of time
intervals with a fairly high degree of accuracy. As is well known, every transputer
provides free-running internal timers which can be straightforwardly used for local
time measurements, i.e. for measurements concerning the activities of processes
running in the same processor, as well as for suspending the execution of a process
for a given interval of time. In particular, every transputer contains two timers,
one that can be read only by high priority processes and another that can be
accessed only by the low priority ones. The important thing to remember is that
they have different resolutions: the hi-pri timer is incremented every 1 usec, while
the low-pri one every 64 ms. The rationale of the choice of a ‘coarser’ tick for the
low priority timer is that a fairly high resolution would typically be of little use
for low priority processes, as these run in quasi-concurrence time-slicing processor
time, and can hence be descheduled several times during execution. It is clear,
for example, that a descheduling which precedes a timer reading by a low pri-
ority process may introduce a non-negligible error in a time measurement. The

36 occam user group newsletter

time needed for the measuring process to regain CPU control, spent waiting in
the queue of active processes (active process list), can in fact be quite long and
cannot be estimated in advance. A substantially analogous problem, affected by
similar difficulties, is the suspension of a low priority process for a given interval
of time. A low priority process suspended on a timer is placed onto the active
process list as soon as the instant of time indicated in the delayed input con-
struct is reached. Nevertheless, its actual wake-up comes with an unpredictable
delay, which is highly dependent upon the number of processes preceding it in the
list [6].

It could be concluded that a low priority process should never be used when a high
degree of time measurement accuracy is essential. However, the above mentioned
problems very often do not exist (e.g. because there is only one low-pri process
running), and the utilization of a high priority process is not desirable or possible.
In these cases it is possible to make use of some tricky solutions for reading the high
priority timer from within a low priority process. The only way for a low priority
process to access the high priority processes’ timer by means of pure occam code is
to execute a PRI PAR construct, as in the following scheme

SEQ
PRI PAR
read timer
SKIP

Most people (including ourselves) are not completely sure of the actual meaning of
a PRI PAR comstruct which is not the outermost level of a program. However the
occam compiler currently available supports this use of PRI PAR, which can be useful
in many situations, as shown above. Nevertheless, some limitations on the use of
the construct do exist, since PRI PARs cannot be nested. This essentially precludes
the reading of the high priority timer from within a low priority process running in
parallel with one or several high priority processes. In this case the only possibility
is to use a suitable assembler code that can temporarily raise the priority of the
running process. This is the solution discussed in this article.

In the following sections we will first of all introduce some preliminary consider-
ations on the transputer management of concurrent processes, showing the machine
code that makes it possible to alter the priority of the current process. We will then
present a function, written partly in occam and partly in transputer assembler code,
that returns the current value of the high priority timer to a low priority calling
process. Finally the adopted method will be extended to delayed inputs, illustrating
a simple procedure that allows a low priority process to be descheduled for an interval
of time measured by means of the hi-pri timer.

The transputer management of concurrent processes

In the first part of this section we will briefly recall the principal notions required
for understanding the code presented below. However, for obvious space limitations
we will assume that the reader has some familiarity with the transputer model of

N9 14 January 1991 37

execution and machine code programming. For any further detail the reader is
referred to reference [7].

Every transputer process has a reserved area of memory, called its workspace,
which is allocated at compile time and is used for holding the process local variables.
The workspace is organized as a falling stack with end-of-stack addressing: during
the execution of a process the workspace pointer (W,) points to the bottom of
the workspace, and the local variables are addressed as positive offsets from W,,.
On the other hand, a number of locations with small negative offsets from W,
are directly used by the transputer hardware for scheduling, communications and
timer input purposes. In particular the word of memory at location Wy, — 1 is
used to store the instruction pointer (I,;) of the process whenever this is held in
the list of the processes waiting for CPU control or is unable to proceed because
it has to wait for a communication/timer. It should be remembered that when a
low priority process is interrupted by a high priority one that has become ready, the
computation status (including the current value of I,) is saved in particular memory
locations at the bottom of the transputer memory map. The interrupted process will
be restarted using this information as soon as the high priority process relinquishes
CPU control, following its termination or a wait for an event (a future time, or a
communication). According to this mechanism, at interrupt time the interrupted
process is not placed onto the active process list, nor is its instruction pointer saved
at location Wy — 1.

Every transputer process is completely identified by a descriptor, composed of the
process workspace pointer Wy, and the process priority (0 for high priority processes,
1 for low priority ones). Since workspaces are word-aligned in memory and hence the
least significant bit of W, is always low, the descriptor of a process can be obtained
by storing its priority in the least significant bit of W,.

The transputer instruction set provides several instructions for starting and ter-
minating processes. The runp and stopp instructions are of particular interest for
our purposes, as they allow a new concurrent process to be initiated at either priority
level and to be terminated, respectively. When a runp is executed, the register A,
should contain the descriptor of the process to be started, and the location at offset
—1 from the W, supplied in A, the starting address of the process code. The
priority level of the newly started process can be determined by setting or clearing
the least significant bit of the descriptor supplied in A,,,. A stopp terminates the
executing process and saves the current value of the instruction pointer (i.e. the
address of the instruction that immediately follows the stopp) at location W — 1.

The transputer provides no instruction for changing the priority of a running
process in a straightforward way. The only possibility is to spawn a new process
at different priority with a runp, and to terminate the current one with a stopp,
as shown in greater detail below. Let us firstly suppose that we want to lower the
priority of a hi-pri process. The sequence of instructions

1dlp 0

adc 1

runp

stopp
firstly builds in A, the descriptor of a process that has the same workspace as the
current one (1dlp 0 loads in A,., the content of W) and low priority (adc 1 sets

38 occam user group newsletter

the least significant bit of A,,). The runp places this new process onto the low-pri
active process list, for which no starting address has yet been provided at location
Wi — 1. The initial value of I, for the spawned process is supplied by the stopp
instruction, which terminates the high priority process and saves the current value
of the instruction pointer at address Wy — 1 (remember that the activating and the
activated process share the same workspace). The overall effect of the previous code
is to lower the priority of the executing process, which is just what we intended to
do. It should be noted that the spawned process has no possibility to run before
the stopp has suitably loaded the memory location Wy, — 1, because the process
that performs the priority change cannot loose control of the CPU until the stopp
is executed. There are two reasons for this: firstly because it is a high priority
process, and secondly because the above code does not contain any descheduling
instructions.

The dual problem, i.e. that of raising the priority of a low-pri process, is more
complicated. The instruction sequence

1ldlp O
runp
stopp

is completely analogous to the one shown above, except that the priority bit of
the descriptor built in A, is left equal to 0. However this code does not work
properly: as soon as the runp is executed the spawned hi-pri process gains CPU
control interrupting the activating process, which is not placed onto the scheduling
list. So — unlike the previous case — the activation of the high priority replica of the
executing process precedes the loading of W, — 1, leading to unpredictable results.

It can be easily seen that even the following sequence for changing from low to
high priority is not correct

ldc L

1ldpi

stl -1

ldlp

runp

stopp

L:
In this case the high priority process is correctly initiated, since its activation is
preceded by the loading of the address L of the instruction that immediately follows
the stopp at the location Wi, — 1. However, if the hi-pri process is descheduled
before terminating (e.g. if it has to wait for an event) the value of its I, at the
time of suspension is stored at location W, — 1, and the processor returns to the
pre-interrupt state. Then the stopp of the activating process is executed, which
saves the address L in Wy, — 1, overwriting the information stored at that location,
indispensable for the future re-activation of the high priority spawned process. In
other words, this time not only does the stopp not load the location W,,, — 1 before
the actual activation of the process replica, but it is also dangerous, as the same
workspace is shared between the high and the low priority ‘twin’ processes.

The simplest method for avoiding the drawback of the above code is to move the
low-pri process W, by using the ajw instruction. The shift of the pointer should be

N©14 January 1991 39

such that the memory location Wy, — 1 could be overwritten by the stopp without
producing any undesirable effects, for example as shown below

ldc L

1dpi

stl -1

1dlp

runp

ajw S-Wptr+i

stopp

L:
where S — Wy, is the displacement (in words) between the bottom address of the
process workspace, held in W,,,, and a ‘safe’ location S.

An alternative — and more complex — solution requires the effect of the ‘delayed’
stopp to be considered beforehand. Sometimes, if suitable coding is adopted, it is
possible to exclude any dangerous erasing of useful data. An obvious solution, for
example, is to use (when possible) an instruction sequence such that the address
stored by the stopp at location Wi — 1 is equal to the one that is overwritten, i.e.
the one that was saved for successive re-activation of the spawned process. However,
there is no general rule for doing this, and finding the right code to be used is a
challenging exercise.

Input and delayed input using the high priority timer

In this section we will propose the code for performing inputs and delayed inputs
using the hi-pri timer from within a low priority process. This code is fundamentally
based upon the priority changing techniques shown above, and therefore all the
readers who survived the previous section should be able to understand quite easily
how it works. All the others can include the proposed routines in their occam
programs without worrying any further. The hi.time function, shown in figure 2,
returns the current value of the high priority timer to a low priority calling process.
When the function is executed, the instructions

ldc O

cj change.priority
cause a jump to the code corresponding to the label change.priority. Note that this
coding, as opposed to the use of a single jump instruction — j change.priority —
prevents the process from being descheduled while executing the function [7, p 22].
The code

ldc -10

1ldpi

stl -1

1dlp ©

runp
builds the descriptor of a hi-pri process with the same workspace as the current
one, prepares at location W,;, — 1 the pointer to the instruction corresponding to
the label read.timer which is located 10 bytes before the instruction that follows
the 1dpi, and spawns the new process. This high priority process is immediately
executed, interrupting the low priority one. It reads the (hi-pri) timer, stores the

40 occam user group newsletter

INT FUNCTION hi.time()
INT time:
VALOF
SEQ
GUY
LDC 0
CJ .change.priority
:read.timer
LDTIMER
STL time
STOPP
:change.priority
LDC -10
LDPI
STL -1
LDLP 0
RUNP
RESULT time

Figure 2: the Ai.time function

result in the variable time, and stops (stopp). After the pre-interrupt state has been
restored, the low priority process returns the value contained in time to the calling
process. It should be noted that during the execution of the hi.time function the
running process cannot be descheduled (it is interrupted for a short time, but this is
substantially different) and hence the calling of the proposed function is functionally
equivalent to executing an occam timer input.

The procedure hi.delay shown in figure 3 can be used for suspending a low
priority calling process on the high priority timer for delay ticks of time (i.e. for
delay microseconds). The instruction sequence

ldc 8

ldpi

stl -1

1dlp 0

runp
as usual spawns a hi-pri process with the same workspace as the current one. The
twin hi-pri process is executed starting from the instruction with label use.hi.timer
(which is located 8bytes after the instruction that follows 1dpi). It is activated
immediately, as for the above shown function. The substantial difference between
the two cases is that for positive (and sufficiently high) values of the input variable
delay the spawned process is suspended on the delayed input before terminating,
thus returning control to the low-pri twin process. However, the stopp of the
low priority process does not overwrite the value of I,;, that was previously saved,
since its execution is preceded by the movement of the (low-pri) process workspace
pointer (ajw 1), in such a way that W, — 1 points to the address of the variable

‘NO© 14 January 1991 41

PROC hi.delay (VAL INT delay)
TIMER time:
INT now:
INT dummy:
SEQ
GUY
LDC 8
LDPI
STL -1
LDLP O
RUNP
AJW 1
STOPP
:use.hi.timer
time 7 now
time 7 AFTER now PLUS delay
GUY
LDLP O
ADC 1
RUNP
STOPP

Figure 3: the hi.delay procedure

dummy. Hence at the end of the timer wait the high priority process will be correctly
reactivated, and will lower its priority by executing the sequence

1ldlp 0

adc 1

runp

stopp
which, as discussed in the previous section, spawns a low-pri twin process and
terminates the hi-pri one. If, on the other hand, the value now PLUS delayis before
the value of the hi-pri timer when the delayed input is executed, the high priority
process is not descheduled, and terminates itself placing a further low priority replica
process onto the active process list. Then the pre-interrupt state is restored and
CPU control returns to the ‘original’ low-pri process, which terminates overwriting
the contents of the location corresponding to the dummy variable.

It should be noted that the code in figure 3 adopts the first of the two approaches
discussed in the previous section for raising the priority of a process. The procedure
in figure 4, on the other hand, is based upon the second one, since the effect of the
stopp executed by the low priority process before the termination of the suspended
hi-pri twin is ‘controlled’. However, it would be quite hard to explain how this code
works, and it will not therefore be illustrated here.

Both versions of the hi.delay procedure are functionally equivalent to an occam
delayed input, as performed by a low priority process. In other words, at wake-

42 occam user group newsletter

PROC hi.delay (VAL INT delay)
TIMER time:
INT now:
SEQ
GUY
LDC 0
CJ .change.to.hi
time ? now
time ? AFTER now PLUS delay
GUY
LDC 0
CJ .change.to.low
:change.to.hi
LDC -15
LDPI
STL -1
LDLP 0
RUNP
STOPP
:change.to.low
LDLP 0
LDC 1
OR
RUNP
STOPP

Figure 4: alternative hi.delay procedure

up time the waiting process is placed onto the low-pri active queue, and will be
scheduled only after an unknown interval of time, with all the obvious consequences.
Nevertheless, it should be borne in mind that any time-critical action can be executed
before lowering the priority of the hi-pri spawned process, i.e. immediately after the
delayed input statement contained in the proposed procedures.

References

[6] Martin Tgrngren, Transputer and occam based control systems in electronic
control of machines, OUG Newsletter N9 12, January 1990, pp 66-70.

[7] Inmos Limited, The transputer instruction set — a compiler writer’s guide,
Prentice-Hall International, Hemel Hempstead, UK, 1988.

G. De Pietro and U. Villano Tel: +39 81 636683
Centro di Studio sui Calcolatori Ibridi Fax: +39 81 611826
via Claudio 21

80125 Napoli

Italy

N9 14 January 1991 43

A HARDWARE RANDOM NUMBER GENERATOR FOR

TRANSPUTER SYSTEMS
Leslie Smith and Frank Kelly, Department of Computing Science, Stirling

A hardware random number generator based round a noise generating diode is
presented. Although fast, the spread of numbers produced is not as smooth as
hoped. Some suggestions are made for its improvement.

Introduction

Research in Neural Networks at the University of Stirling has frequently required
large numbers of random numbers for generating noise for signals and stochastic
pseudo-neurons. In simulations of neural nets processing time-varying signals, many
thousands of such numbers may be required each second, making fast random number
generation important. There is no requirement that precisely the same sequence
of random numbers be repeated, so that we need not be restricted to seed-based
random number generation. Hardware random number generation was perceived as
a relatively straightforward task, something not really borne out by later experience.

The generator

Figure 5 shows a block diagram of the generator. Noise generation is achieved by
the reverse biased noise generating diode (NC202). This is guaranteed to produce
white noise from 20 Hz to 25 MHz. This very small signal (about 0-1 xv) was then
amplified by a four stage amplifier based on the Signetics NE5539 wideband oper-
ational amplifier. The resulting analogue signal is converted to TTL levels by one
channel of a DS26LS32 line receiver, followed by a Schmitt trigger. The resultant
‘digital’ noise signal is then fed to an 8-bit shift register clocked at 10 MHz. This
gives a theoretical limit to the time for number generation of 0-8 us. This part of the
circuit runs continuously.

Analog Analo TTL Transputer
- - —B>
Noise Noise . .
Noise Link
0.1uv 8v p-p
PP 8 bits
Noise Amplifier Level Shift Register Link interface
Generator Converter

Figure 5: noise generator block diagram

The shift register is interfaced to a transputer link by a C011 link interface chip,
running as a parallel interface. It is set up so that the receipt of a byte on the

44 occam user group newsletter

link causes the generator to send out a stream of random bytes, stopping only when
another byte is received on the link. When the CO011 is ready to send out a new
random byte, it waits for the shift register to receive a new set of eight bits, and
then causes the output of the serial to parallel converter to be latched. The data is
then sent out by the C011. Running the link at 10 MHz, it has been found that the
remote transputer receives a new random byte every 2-74 us. A more detailed circuit
description is available from the authors.

Testing the generator

Three tests have been tried on the generator: frequency checks on single number
generation, simple frequency of ones and noughts, and frequency of pairs of numbers
rising, falling, or staying the same. Additionally, the frequency of recurrence of single
bytes, of pairs of bytes, and of sequences of three bytes have been checked.

The generator performs worst on frequency of single number generation. Experi-
mentally, it has been found that certain numbers, notably those with strings of ones,
occur more frequently. This sort of systematic error results in very high values of
x? when large numbers of random bytes are produced. The actual effect is most
pronounced on the number 255, which occurs about 1-8 times as often as it should;
the results for other numbers are much less pronounced, with 127 being produced
1-2 times as often, though values for 63 and 191 vary widely.

The results for simple frequency of ones and noughts are better; the system is
slightly biased towards ones. On a sample of 100 000 bytes (i.e. 800000 bits) the x2
value produced varies between 3-5 and 11-2, when it should be between 0-00016 and
6-635. Again, this value rises on larger samples.

For the test of pairs of numbers rising or falling, or staying the same, the results
are better: using 2560000 numbers, values of x? of between 0-35 and 8-49 were
found, when reference (8] suggests 0-0201 to 9-21. We also looked at recurrence of
numbers: these were found to occur at about the correct frequency for single bytes
(i.e. about once per 28), for double bytes (about once per 2¢) and triple bytes (about
once per 2%4).

Comments and conclusions

Many difficulties were encountered in the construction of the equipment. Largely,
these came from an underestimation of what was involved in the mixing of sensitive
analogue and standard digital circuitry in one box. Eventually, the analogue circuitry
was completely enclosed, and used an entirely independent power supply. There were
also problems with oscillation due to the large amount of wideband gain required.
These problems can be laid at the door of our lack of experience in non-digital
construction. Before trying the noise-generating diode, we tried a number of ordinary
and zener diodes. The magnitude of the noise signal generated by these was an order
of magnitude smaller, making the problems of amplification much greater.

The results are a little disappointing, although good enough for the application
itself. We believe the problems causing the systematic lack of randomness come
from two sources: the level conversion, and the bandwidth of the noise signal. The
level conversion circuit is originally a balanced line receiver: it is perhaps not as

N©14 January 1991 45

accurate in its detection of a 0V signal as required. This could lead to the slight
preponderance of ones over noughts. The noise generating diode is supposed to give
out noise evenly over a very large band: however, we believe that the noise falls away
a little towards the high frequency end of the spectrum, leading to numbers which
contain strings of the same digit. We do find numbers with strings of ones, but do
not find numbers with strings of noughts. Further, the imbalance between noughts
and ones is very small, so we remain rather uncertain of the precise nature of this
problem.

Since the results were good enough for the application, and since the primary
aim of the project is in neural net simulation, not random number generation, we
have not pursued the matter further. Were we to do so, we would try a higher
bandwith noise generating diode, plus some filtering to achieve an optimal spread of
noise frequencies (though we note that we are not certain of what that should be).

References

[8] D. E. Knuth, Seminumerical algorithms, Addison-Wesley, 1981.

Leslie Smith and Frank Kelly
Department of Computing Science
University of Stirling

Stirling

Scotland

United Kingdom

TRANSPUTER HARDWARE STANDARDS SURVEY
James Kidd, Altis

There are many designers and manufacturers who have been assembling systems
containing several transputers. Since most designers have been unaware of the work
of others, there are now almost as many ways of connecting these systems together.
To help rectify this situation, this document collects together information about
existing methods of building transputer based systerns.

It is intended that this document should be used by designers of transputer based
systems as and aid to selecting suitable methods for connecting transputers. It is
recommended that, where necessary, readers write or phone the relevant contact
(given on page 46) in order to obtain the most complete and up-to-date information.

At the Hardware SIG session of the 12th technical meeting of the Occam Users
Group at Exeter it was felt worthwhile to conduct a survey of existing transputer
standards. Two areas of compatability were identified as important to allow in-
terworking between equipment. Firstly, hardware issues such as transputer link
buffering, control signalling and connector arrangement. Secondly, software issues
such as the port maps of the transputers and any host computer. Many designers
and manufacturers were then sent questionnaires requesting information about these
issues. The replies have been assembled to form this document.

Any readers wishing to contribute to this survey are invited to contact James
Kidd at Altis for further copies of the questionnaire. All replies will be included in

46

Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Organisation
Address

Telephone
Engineering Contact
Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Engineering Contact
Organisation
Address

Telephone
Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Engineering Contact
Organisation
Address

Telephone
Engineering Contact
Position
Organisation
Address

Telephone
Engineering Contact
Position

Altis

occam user group newsletter

9 Brackley Street, Warrington WA4 6DY, UK

(+44) 925 601 735
James Kidd
Proprietor

Computer System Architects

950 N. University Avenue, Provo, Utah, USA 84604

(41) 801 374 2300
Gnome Computers Ltd

16 Histon Road, Cambridge CB4 3LE, UK

(+44) 223 461 520
Steve Temple

Impuls Computer-systeme GmbH & Co KG
A-1232 Wien, Jochen Rindt-Strasse 9, Austria

(+43) 222 616 24 01-0
DI Herbert Widner
Head of Development

Inmos Ltd

1000 Aztec West, Almondsbury, Bristol BS12 45Q, UK

(+44) 454 616 616
Paul Walker

Meiko Ltd

650 Aztec West,‘ Almondsbury, Bristol BS12 4SD, UK

(+44) 454 616 171
Paramax Corporation

101B Halmar Cove, Georgetown TX 78628, USA

(+1) 512 869 0115
David Smith
Engineering Manager
Parsys Ltd

Boundary House, Boston Road, London W7 2QE, UK

(+44) 81 579 8683
Stuart Kennedy
Design Engineer

SJ Research Ltd

Intercell, 1 Coldhams Lane, Cambridge CB1 3EP, UK

(+44) 223 461 406
Kim Spence-Jones

Managing Director, Technical

T2 Systems Ltd

62 Longmead Avenue, Bishopstoke, Eastleigh, Hants SO5 6ET, UK

(+44) 703 641 276
Patrick Pope

Telmat Informatique

BP12, route de I'Industrie, 68360 Soultz, France

(+33) 89 76 55 55
Mr Bertrand Blum

Supercomputer Department Engineer
White Cross Systems Ltd

90 London Road, London SE1 6LN, UK

(+44) 71 922 8824
Roger Gaskell
Technical Manager

N© 14 January 1991

Summary of transputer link buffering

Signal levels Line term
TTL 422 ECL Oth TXr RXr
1 T2 Systems Ltd b S . 4
2 T2 Systems Ltd X x
3 T2 Systems Ltd X X
4 Paramax Corporation b .
5 Gnome Computers Ltd x x .
6 Impuls Computer-Systeme . X . X
7 Telmat Informatique X X x . X X
8 Parsys Ltd . . X X
9 Parsys Ltd .X . . x
10 Parsys Ltd) b'd . . .x .
11 White Cross Systems Ltd . . X X . X
12 SJ Research Ltd . X . . . X
13 Altis . .0x . X .
14 Altis x . . .0x
15 CSA .oox . . .
16 Meiko Ltd .0x . b'd

Remarks: 1 Tx:47ohm series, Rx:4k7ohm pull down
2 Compatible with TRAMs/B008
11 Optical links
TTL = TTL; 422 = RS422; ECL = ECL; Oth = Other
TXr = Transmitter; Rxr = Receiver

Summary of control signalling

Configuration Signals Levels
U/DSSs MSsOth Res Ana Ers Erth OthTTL422 423 Oth
1 T2 Systems Ltd X x .
2 T2 Systems Ltd X X X X X . . X
3 T2 Systems Ltd .o0Xx X x X b'd
4 Paramax Corporation X X X X X
5 Gnome Computers Ltd X X X X X x .
6 Impuls Computer-Systeme x X X X ¢
7 Telmat Informatique X X X X X X X
8 Parsys Ltd X X X X X
9 Parsys Ltd
10 Parsys Ltd PR FE
11 White Cross Systems Ltd .. X . X x . X X . X . X
12 SJ Research Ltd T D 3
13 Altis A
14 Altis X x . . X X X . . X
15 CSA X X . . X X X . . X . .
16 Meiko Ltd X . X X x X . . . X

Remarks: 1 TRAM compatible
4 Also provide O/C Error
5 Conform to Inmos TN49
11 Optical signals
U/D = Up / Down; SSs = Single Subsystem; MSs = Multiple Subsystem; Oth = Other
Res = Reset; Ana = Analyse; Ers = Error (software); Erth = Error (hardware)
TTL = TTL; 422 = RS422; 423 = RS423

47

48 occam user group newsletter

Summary of connectors and cabling

Config Use
ComSep LukWthBtw Remarks

1 T2 Systems Ltd L

2 T2 Systems Ltd . x . x . DB37

3 T2 Systems Ltd S S

4 Paramax Corporation SIMM

5 Gnome Computers Ltd . X . x . Inmosstyle 5-way

~ 6 Impuls Computer-Systeme x . . x 96w DIN 41612 connector

7 Telmat Informatique . X . x x several standards

8 Parsys Ltd . . x x x 16wIDC

9 Parsys Ltd . .
10 Parsys Ltd X . . . x DB37(as B008)
11 White Cross Systems Ltd x . . x x SMA/Optical
12 SJ Research Ltd ..0x x DB9/MiniDIN
13 Altis . . x . x DBY
14 Altis . x . x . 2rowr/aPCB header
15 CSA X . x x x MiniDIN
16 Meiko Ltd x . x . x DBY9/DB37

Com = Combined links and control; Sep = Separate links and control; Lnk = Links only
Wth = Within equipment; Btw = Between equipment

Summary of transputer port maps

I/0 ports Remarks

SSs MSsRPLOth
1 T2 Systems Ltd x
2 T2 Systems Ltd X
3 T2 Systems Ltd x .
4 Paramax Corporation No current ParaSIMMs have a
subsystem port
5 Gnome Computers Ltd X . . . B004/B008 compatible
6 Impuls Computer-Systeme x
7 Telmat Informatique X .
8 Parsys Ltd .. . x Supernode control bus interface
9 Parsys Ltd
10 Parsys Ltd o
11 White Cross Systems Ltd . ..0Xx
12 SJ Research Ltd L.
13 Altis X . . x B004/B008 compatible superset
14 Altis
15 CSA

16 Meiko Ltd L
SSs = Single subsystem; MSs = Multiple subsystem; RPL = Reset only per link; Oth = Other

N©14 January 1991 49

Summary of host port maps

Host machine
ISAMCAMac Sun ApoVAX Arc Oth
T2 Systems Ltd e
T2 Systems Ltd X
T2 Systems Ltd
Paramax Corporation . .
Gnome Computers Ltd P ¢
Impuls Computer-Systeme
Telmat Informatique ..
Parsys Ltd X X . X
9 Parsys Ltd
10 Parsys Ltd

]

O =1 D T WD
]
»
»
]

11 White Cross Systems Ltd . L . .0X
12 SJ Research Ltd R ¢

13 Altis X . . . X

14 Altis

15 CSA

16 Meiko Ltd

Remarks: 4 Do not mnf mothercards
11 Self-hosted
13 B008 compatible superset

ISA = PC/XT/AT (ISA bus); MCA = PS/2 (MCA bus); Mac = Macintosh; Sun = Sun
workstation; Apo = Apollo workstation; VAX = DEC VAX; Arc = Acorn Archimedes;
Oth = Other

later versions of this document.

It must be said that not all replies received so far have been of a high standard
or contained much relevant information. The summaries in this document contain
extracts from all replies but, where the replies contained little or no further infor-
mation, they have been omitted from the main body of the report and relegated to
appendices in the full document [editor’s note: only the summaries appear in this
article]. Interested readers are invited to write or phone the relevant contact in order
to obtain any further details.

Paul Walker replied on behalf of Inmos stating that they would prefer that users
refer to the published literature rather to an abbreviated summary. Computer
System Architects and Meiko Ltd were unable to complete the survey forms but
instead supplied copies of relevant parts of their literature.

Worthy of special attention are the Nexus standards supplied by Kim Spence-
Jones of SJ Research Ltd and which are currently supported by Atari, Active Book
Company, Microrobotics and Capricorn Computing. These standards include, not
only the connectors and signalling, but also the link, network and transport protocols.
Full details are available from Kim.

Although it is not really covered by this survey, details of a board level standard
were supplied by David Smith of Paramax Corporation. These boards are similar
to TRAMs in concept but are based on the SIMM connector often used for DRAM
modules. Full details of their standards and products are available from David.

The list on page 46, in alphabetical order, provides details of the organisations

50 occam user group newsletter

that have supplied information to this survey.
James Kidd +44 925 601 735
Altis
9 Brackley Street
Warrington WA4 6DY
United Kingdom

TRANSPUTER IMPLEMENTATION OF

GENERAL SEMAPHORES
Murat Tayli, Mohamed Benmaiza, King Saud University

This article presents a dynamic and general solution for the implementation of
predictable and high performance primitives operating on general semaphores. The
solution is coded in assembly, using occam as the harness language.

Introduction

Dijkstra’s concurrency control paradigm, the semaphore [9], has ever been the ulti-
mate building block for the implementation of synchronization mechanisms in shared
memory systems. Systems based on the Communicating Sequential Process (CSP)
model [10] adopted the point-to-point handshaking communication scheme as the
basic synchronization mechanism. Despite the duality of these models, there are
instances where systems built on CSP model may still resort to the use of semaphores.
A major incentive is the restrictions exerted by a static interpretation of CSP model.
Another is a more efficient implementation of some concurrency control structures
using semaphores [12].

Our interest in semaphores stemmed from the need to define dynamic, fast,
and predictable synchronization primitives for a real-time kernel, implemented on
a network of transputers [11]. Design objectives of this system required the adoption
of a dynamic process management model and provisions for dynamic concurrency
control mechanisms, capable of handling ever changing populations of processes.

In what follows we will first analyze implementation problems, review a number of
proposed solutions, and then present an alternative approach that satisfies stringent
requirements of our real-time environment.

Presentation of the problem

Primitives operating on semaphores are defined as indivisible actions [9]. Their
correctness rely on the atomicity of the operations that preserves the integrity of
shared objects (i.e. semaphore’s process queue, counter, lock etc.). Implementation
of predictable and general semaphore operations on the unconventional transputer
hardware represents a real technical challenge. Difficulties stem not only from the
lack of direct hardware support to implement indivisible operations, but also from a
blurred vision of the system through high-level programming languages.

Atomicity of the operations in a system is only endangered by the pre-emption
of the CPU on the occurrence of uncontrolled events. A brief analysis of transputer

N9 14 January 1991 51

)

architecture reveals that it mainly uses non-preemptive process management policies.
For instance, high priority processes relinquish the CPU only voluntarily (on blocking
requests), and low priority processes are descheduled to the benefit of each other only
on limited occasions (on blocking requests, iterations and unconditional jumps).
Consequently, for processes on the same priority level, the atomicity is naturally
guaranteed, if the use of descheduling and blocking instructions can be avoided
in critical sections. Assuming that this constraint can be easily met, at least at
machine code level, the only uncertainty left stems from high priority processes that
are allowed to interrupt low priority processes at any time. This problem can be
overcome either by executing critical sections at high priority level, or by devising
adequate serialization mechanisms that guarantee exclusive access to critical sections.
Previous issues of this Newsletter included several implementation proposals that can
be analyzed to gain better understanding of the problem area.

Barrett proposed in [12] an elegant solution for processes running at the same
priority-level. Though his primitives were defined in an occam-like language, he
exclusively used the properties of the underlying hardware to guarantee the integrity
of his operations (i.e. priority levels restricted to high and low, uninterruptibility
guarantee for high priority processes, non-preemptive scheduling policy between low
priority processes, synchronized and non-busy channel communication). Barrett’s
single priority solution has a number of static or dynamic implementation alterna-
tives, depending on the interpretation of the abstract data type LIST OF CHANNELS.
However, a static implementation would be too restrictive, and would render its
usage inadequate for the dynamic context defined in the introduction. Unfortunately,
Barrett’s multiple priority implementations do not match the efficiency and elegance
of his single priority solution. This is because he disregarded the properties of the
transputer hardware, which he exploited so well in the single priority solution. The
resulting primitives are expensive, and introduce coding disparities between processes
of different levels.

S. W. Lau and F. C. M. Lau’s single priority solution [14] is a successful imple-
mentation of Barrett’s ideas. They efficiently used the duality of communication
and process management primitives to build a dynamic LIST OF PROCESSES, as
a substitute for the original LIST OF CHANNELS. However, their multiple priority
solution is still prone to the same drawbacks as Barrett’s proposal.

Homeister [13] used the ‘Reset Channel’ (RESETCH) instruction as an effective sub-
stitute of traditional ‘test-and-set’ type instructions to guard his critical sections. His
approach falls into ‘algorithmic solutions to the critical section problem’ category [15],
rather than being a direct implementation of semaphores. Consequently, proposed
solutions are neither general nor dynamic. Moreover, the ‘Busy Implementation’
does not work properly for multiple priority processes as claimed. For instance, a
high priority process that pre-empts a low priority one, in a critical section, will
monopolize the CPU and cause a deadlock.

Proposed solution

Solutions analyzed in the previous section have all adopted complex synchronization
schemes to implement atomic actions. Also, they considered single and multiple
priority cases separately. In our view, transputers provide sufficient architectural

52 occam user group newsletter

support for the implementation of atomic actions. Thus, the use of heavy algorithmic
mechanisms (that already rely somehow on the hardware characteristics) is neither
necessary nor desirable. Moreover, adequate solutions to the problem should be
general enough to address both the single and multiple priority cases. Furthermore,
these solutions should incur similar and predictable costs for all priority levels.
Finally, they must be efficient.

Given the criteria we defined and the characteristics of the target system, it is
clear that satisfactory solutions cannot but be machine dependent. Therefore, the
proposed primitives will be coded at transputer instruction level, in order to avoid
the unaccounted overhead that could be introduced by high level language compilers,
as well as to exclude all possibility of generating blocking and descheduling actions
in critical sections. As for the serialization mechanism (that is needed to solve
high versus low priority contentions), it will simply differ the execution of conflicting
operations until the interrupted process is pushed out of the critical section. In other
words a high priority process pre-empting a low priority process in a conflicting
situation will resume the interrupted sequence, exit from the pre-empted critical
section, and then proceed with its own operation. This approach has the merit of
being free of extra process synchronization idiosyncrasies, and preserves the real-time
sequencing of the events.

Implementation details

The implementation of proposed primitives, namely the P (for resource-request/wait)
and the V (for resource-release/signal) operations, is given in figure 6. Primitives are
coded as occam procedures, using the TDS-PC environment. Figure 7 corresponds
to the context switching sequence common to both primitives. The semaphore object
is implemented using an integer array of four elements. The variable Sem.lock guards
the access of the semaphore, while it is in use. The RESETCH operation (described
in detail in [13]) is used as an indivisible operation to test and set the lock variable.
The value 0 represents a free semaphore, and the smallest integer (MININT) a busy -
semaphore. Processes waiting on the semaphore queue are linked following tHe
conventions used in other transputer lists, such as ‘active process lists’ and ‘timer
lists’ [16]. In the workspace of each process, the location Wptr — 2 points to the
workspace of the next process in the queue. Queues are organized in FIFO, but
a priority based ordering can also be easily implemented. In P and V procedures,
the number and placement of local variables are context sensitive. A high priority
process can pre-empt a low priority process in a P (or a V) operation, and invoke a .
P (or a V) primitive itself, accessing the same semaphore. Therefore, a P (or a V)
may have to finish a pending P or V primitive. Consequently these primitives should
have similar workspaces to cope with this constrained type of re-entrancy. Moreover
it is essential that the variable Low.Iptris assigned to the location Wptr+ 0 (that is
what the TDS occam compiler generates for the code provided in figure 6) to start
properly the interrupted process (see the ALTEND instruction in the next paragraph).
. The context switching sequence (figure 7) consists of the following steps:

> compute and save the restart address of the high level process (it may be either

in a P or V operation),
> restore the working context (workspace) of the interrupted process,

N© 14 January 1991

-- definition of semaphore structure

VAL Sem.lock IS O : == Lock to guard semaphore access
VAL Sem.val IS Sem.lock+1l : -- Semaphore value

VAL Sem.q.head IS Sem.lock+2 : -- Process wait queue head pointer
VAL Sem.q.tail IS Sem.lock+3 : -- Process wait queue tail pointer

-- definition of the workspace frame

VAL Wptr IS 0 ¢ == Word used by ALTEND instruction
VAL Wdesc.iptr IS Wptr-1 : -- Iptr save area
VAL Wdesc.next IS Wptr-2 : -- Pointer to next process in queue

-- process save area layout

VAL WdescIntSaveLoc IS 11

VAL IptrIntSaveloc IS 12

VAL AreglntSaveLoc IS 13

VAL BregIntSaveLoc IS 14

VAL CregIntSavelLoc IS 15

-- miscellaneous constants

VAL mint IS MOSTNEG INT :
VAL low.priority Is 1 :
VAL sem.unlocked Is o

VAL sem.locked IS mint

PROC Init.Sém ([JINT Sem , VAL INT n)
INT Sem.lock IS Sem[Sem.lock]
INT Sem.val IS Sem[Sem.val]

SEQ
Sem.val = n ~- set semaphore count
Sem.lock =0 -- set semaphore access to "free"

Figure 6: implementation of the semaphore operations

53

54

occam user group newsletter

PROC P ([JINT Sem)

INT Process.to.awake, Original.priority :
INT Save.High.Wptr, Save.High.Iptr
INT Low.Iptr :-- must be AT Wptr+0
SEQ
GUY
LDPRI
STL Original.priority -- save priority of calling process
LDLP Sem ~-- test and set semaphore lock
RESETCH -- Sem.lock <- MINT ; Areg<-Sem.lock
cJ .itisfree -- jump if (Sem.lock was = MINT)
. switch to the context of pre-empted low priority process
ritisfree -~ semaphore access is free
-- sem.val := sem.val - 1
LDLP Sem
LDNL Sem.val
ADC -1
LDLP Sem

STNL Sem.val
-~ Test Sem.val

LDC 0

LDLP Sem

LDNL Sem.val

GT

cJ .accessgranted -- jump if Sem.val >= 0

-- ifcase : Sem.val < O block the process

LDLP Sem -- test if process queue is empty
LDNL Sem.val -
EQC -1

cJ .nonemptyqueue -- jump if (Sem.val <> -1)

-- empty queue => enqueue at the beginning of the list
LDLP Wptr

LDL Original.priority

SUM

LDLP Sem

STNL Sem.q.head ~- update process queue head pointer
LDC 0

cJ .updatetail

Figure 6: implementation of the semaphore operations (P)

N9 14 January 1991

:nonemptyqueue

LDLP Wptr

LDL Original.priority -- restore the original priority
SUM

LDLP Sem

LDNL Sem.q.tail

STNL Wdesc.next -~ [tail->Wptr.next]<-current Wptr
:updatetail

LDLP Wptr -- update process queue tail pointer
LDLP Sem

STNL Sem.q.tail
-- stop process

LDPRI

LDL Original.priority

DIFF

CcJ .nopreemption

-- preemption

LbC 11 -- reinitialize Iptr of pre-empted process

LDPI -- to restart at 'STOPP' instruction

:buildcontext

MINT

STNL IptrIntSaveLoc

LDL Save.High.Wptr

GAJW -- restore original Wptr

LDL Save.High.Iptr

GCALL -=>>>>>>> resume the execution of high priority
-=>>>>>>> process alone in the critical section

:nopreemption

LDC sem.unlocked

LDLP Sem -- free semaphore access

STNL Sem.lock
-- <<<<<< restart point of preemted low priority

STOPP -~ <<<<<< process which is being queued
J .endP)
-- ifcase : Sem.val >= 0
raccessgranted
LDPRI
LDL Original.priority -- if original priority=current pri.
DIFF -- then
cJ .passingsemaphore -- no pre-emption occurred
LDC 5 -- reinitialize Iptr of pre-empted process
LDPI -- to restart at endP
J .buildcontext
:passingsemaphore
LDC sem.unlocked
" LDLP Sem -- free the semaphore access

STNL Sem.lock

:endP

Figure 6: implementation of the semaphore operations (P continued)

56

occam user group newsletter

PROC V ([JINT Sem

)

INT process.to.awake, Original.priority :

INT Save.High.Wpt
INT Low.Iptr
SEQ
GUY
LDPRI
STL Original
LDLP Sem
RESETCH
CJ .itisfree

. switch to
:itisfree
-- sem.val :=
LDLP Sem
LDNL Sem.v
ADC 1
LDLP Sem

STNL Sem.v

~-- Test Sem.v
LDLP Sem
LDNL Sem.v
LDC 0

GT

cJ .freep

-- ifcase : S

r, Save.High.Iptr
:-- must be AT Wptr+0

.priority -- save priority of calling process
-- test and set semaphore lock
-- Sem.lock <- MINT ; Areg<-Sem.lock
-- jump if (Sem.lock was = MINT)

the context of pre-empted low priority process
-- semaphore access is free

sem.val + 1

al

al
al

al

rocess -- jump if Sem.val <= 0

em.val > 0

:NoProcessToAwake

LDPRI

LDL Original.priority

DIFF

CJ .exitV -- no pre-emption to consider

LDC 25 -- compute displacement to endV

LDPI

—————————————————— > (this_address - afteraltend) = 25 bytes
MINT

STNL IptrIntSaveLoc

LDL Save.High.Wptr -- restore the original context

GAJW

LDL Save.High.Iptr

GCALL -->>>>>> resume the execution of high priority

-=>>>>>> process alone in the critical section

Figure 6: implementation of the semaphore operations (V)

N9 14 January 1991 57

-- ifcase : Sem.val <= 0

:freeprocess
LDLP Sem -- get the workspace @ of the first
LDNL Sem.q.head -- process waiting in semaphore queue

STL process.to.awvake
LDL process.to.awake

LDNL Wdesc.next -- get next proc. wptr @ in the gqueue
LDLP Sem
STNL Sem.q.head ~-- update wait queue head pointer
LDL proéess.to.awake -- awake dequeued process
. RUNP
LDC 0
CcJ .NoProcessToAwake
rexitV
LDC sem.unlocked
LDLP Sem
STNL Sem.lock -- free the semaphore access
:endV

Figure 6: implementation of the semaphore operations (V completed)

> save the workspace reference of the high priority process in the context of the
interrupted process,

> restore registers of the interrupted process,

> start executing the remaining code of the interrupted critical section (as the
execution continues in high priority, no other pre-emption can occur).

The transfer of control to the interrupted code is achieved using the ALTEND in-

struction. ALTEND is just a conventional relative jump instruction. It also has the

interesting property of preserving the contents of CPU register, which is not the case

of the dynamic procedure call, the GCALL instruction. Note that ALTEND uses the

location Wptr+ 0 to get the displacement for the jump relative to the instruction

pointer. Thus this location has to be reserved and not used by the P and V operations.

Jump (J) instructions that are deliberately used in both primitives will not cause

any descheduling since they will be only executed by high priority processes.

Correctness proof

The correctness of the proposed solution is based on:

> the atomicity of the execution of P and V operations. By construction, any
semaphore operation comes to a completion before another operation on the same
semaphore can start. This is true independently of the priorities of the processes.
Consequently, processes can be simultaneously in the same critical section.

> free progress in the P and V operations. Both operations are loop-free and do
change neither the status nor the priority of racing processes. Any process will
eventually leave or will be pushed out of the critical section.

58 occam user group newsletter

-- Switch to the context of low priority process being pre-empted

LDC 28 -- restart address of the high priority
LDPI -- process is 'afteraltend'
———————————————— > (afteraltend - this_address) = 28 bytes
STL Save.High.Iptr

MINT

LDNL WdescIntSaveLoc -- Areg<-Wdesc of low priority process
ADC -1 -- remove priority bit

GAJW -- exchange workspaces of low and high

-- priority processes

STL Save.High.Wptr -- save Wdesc of high priority.process
MINT -- compute entry point of pre-empted process
LDNL IptrIntSaveloc
LDC 13
LDPI
---------------- > (afteraltend - this_address) = 13 bytes
DIFF
STL Low.Iptr -- [Wptr+0] <- (Saved_low_priority_Iptr-13)
MINT
LDNL CreglntSaveLoc -- restore Creg
MINT
LDNL BregIntSaveloc -- restore Breg
MINT
LDNL AreglntSavelLoc -- restore Areg
ALTEND -- relative jump to (NextInst+[Wptr+0])

-- (preemtion point of low priority process)
:afteraltend -- high priority process resumes here

Figure 7: context switching sequence common to P and V

Performance analysis

The table in figure 8 summarizes execution costs for P and V primitives, expressed
in transputer cycles and in microseconds (assuming 50 nanosecond machine cycles).
Listed figures correspond to the performance of the primitives under various cir-
cumstances, and do not include procedure invocation costs. In the TDS occam
implementation, a call of a P or V may take from 9 to 16 cycles, depending on
the linkage sequence and the size of the program. Assuming an even distribution
of blocking and non-blocking cases, average costs (including invocation sequence)
are approximatively 4 microseconds for a P, and 3-6 microseconds for a V operation.
Minimum execution times for both operations is around 3 microseconds. The worst
and unlikely case is the pre-emption of a low priority process in a P or V operation,
using the same semaphore as the pre-empting process. Worst case figures come to

N9 14 January 1991 59

Non-preemption Preemption
and contention
cycles pusec cycles pusec

. non-blocking 49 2.45 99 4.95
P
. blocking 88 4.4 136 6.8
without activation 46 2.3 95 4.65
\')
with activation 75 3.75 122 6.1

Figure 8: performance of semaphore primitives
7-5 microseconds for a P, and to 6-8 microseconds for a V operation.

Conclusion

The proposed solution meets general criteria observed in the implementation of
synchronization tools. It ensures mutual exclusion and free progress of concurrent
processes; it does not cause starvation (although mechanisms built with it can); it
induces non-busy waits; and it is fair. In addition, it encompasses both single and
multiple priority cases, and offers a unique system interface. More importantly,
it addresses stringent requirements of our real-time environment. In particular,
execution costs of P and V primitives are:

> low (averaging less than 4 microseconds),

> independent of process priorities, and

> predictable, since they do not rely on asynchronous events (e.g. channel synchro-

nization, process scheduling) to ensure the serialization.

References

[9] E. W. Dijkstra, Solution of a problem in concurrent programming control,

Commun ACM Vol.8, N9 5, September 1965, p 569.

[10] C. A. R. Hoare, Communicating sequential processes, Commun ACM, Vol.21,
NO8, August 1978, pp 666-677.

[11] M. Tayli et al, RT-DOS - a real-time distributed operating system, in
Proceedings of OUG-13, 18-20 September 1990, IOS.

[12] G. Barrett, Two implementation of semaphores in occam, OUG Newsletter,
N©12, January 1990, pp 49-57.

[13] D. Homeister, Semaphores at the transputer instruction level, OUG
Newsletter, N9 13, July 1990, pp 46-49.

[14] S. W. Lau, F. C. M. Lau, More on the implementation of semaphores in
occam, QUG Newsletter, N9 13, July 1990, pp 50-54.

60 occam user group newsletter

[15] J. L. Peterson, A. Silberschatz, Operating systems concepts, Addison Wesley,
1985, pp 327-344.

[16] J. Nicoud, A. M. Tyrell, The transputer T414 instruction set, IEEE Micro,
June 1989, pp 60-75.

Murat Tayli F60C002@SAKSUO0.BITNET
Mohamed Benmaiza F60C023@SAKSUO0.BITNET
College of Computer and Information Sciences Tel: 4966 1 4676580
King Saud University Fax: 4966 1 4675630

P.O. Box 51178
Riyadh 11543
Saudi Arabia

AN ALTERNATIVE TO ALT
H. Tempelman and D. Millot
Institut National des Telecommunications and Universite Paris-Sud, France

The problem is well-known: there is that very fast transputer (network), with a fast
programming language called occam. It all runs fine unless... an ALT is used. We
propose an ‘enqueuing mechanism’ as an alternative to an ALT-multiplexer (as might
be encountered in a routing layer, for instance). It provides both speed (especially
when there are many data-sources) and flexibility (dynamically varying number of
sources). We assume some knowledge of the transputer instruction set [17, 18].

The cost of ALT

A frequent use of ALT is for multiplexing purposes, like for example in an operating
system where more applications can be loaded on one transputer. The different
sources (applications) get access to the operating system through an ALT-construct:
WHILE TRUE
ALT i = 0 FOR N
input[il 7 x

out ! x
This ALT block will be compiled to something like:
clk again:
2 ALT
-- enable channels
5/17 ALTWT
-- disable channels
4 ALTEND
4 j again

The ‘clk’ column indicates the number of clock cycles required for each instruction.
The 17 is for the situation when no guard was ready during enable, so descheduling
occurs with ALTWT. Remark that this also implies another process has to be scheduled,
which takes about 19 clock cycles! This means the ‘body’-cost of an ALT is

> 15 clock cycles if a guard is ready (high load),

> 46 clock cycles if no guard was ready (low load).

N9 14 January 1991 61

For each input there is the need for an enable/disable pair:

ENABLE:
2/3 1d1l channel
1 1dc 1 ~-- boolean true
5/7 ENBC
DISABLE:
2/3 1d1 channel
1 ldc 1 -- boolean true
2 ldc process.offset
8 DISC

which brings 22 clock cycles on average for each guard. (There are some variations

depending on a guard being ready and the offset to channel and process.) For N

channels (guards), the ALT-cost becomes:

> 15+ 22N under high load,

> 46 4+ 22N under low load.

The use of ALT has the following disadvantages:

1. The ALT-construct is proportionally slower when there are more input channels
(guards).

2. The number of guards is fixed at compile time. Because of (1) one tends to make
the number of inputs small, whereas for maximum flexibility the number of inputs
should be high.

3. An ALT is not fair.

Reference [19] suggests to split a big ALT into a tree of smaller ones, which partly

solves the problem of large ALTs — the time-per-packet in relation to the number of

inputs being logarithmic instead of proportional. Reference [20] improves the ALT
itself by not enabling channels (guards) when one has already been found to be ready.

This is a bit better for high-load situations (and worse for low-load) and also deals

with unfairness, using inline assembly code. Other (occam)-solutions are known to

problem 3, but the total performance remains bad.

Enqueuing mechanism

In the following, we assume that several applications want to get access to a link.
These applications (sources) are shielded by communication tasks (CT) which will
try to get access to the link if the sources want to send something to it. Otherwise the
CTs remain inactive. When the source sends something to the CT, the CT will try
to input a link.is.free signal from the last CT using the link. In so doing, it may be
descheduled on this communication, appending itself at the end of a communication
chain. This chain is handled as a queue. The first CT in the queue is using the link.
When it has finished, it will send a link.is.free signal to a kick-channel. The signal
is received by the second CT in the queue (assuming there is a second one). This
second one will therefore be put in the scheduling list of the processor, and can now
use the link. You might sat that the second CT got a ‘kick’.

The last CT in the queue will try to output to a non-existing CT, so nothing
happens. If some time later a CT wants to use the link, it will do an input from this
channel, and get kicked immediately (because the queue was empty). The trick is

62 occam user group newsletter

that there is no central queue-handler, and that the on-chip communication-scheduler
is used. Because it is dangerous to depend on applications to take actions correctly,
they should be shielded by CTs, ready-to-use processes, part from the operating
system, and linked to the application at load-time. These CT's can also do end-to-end
flow-control, so that the network can never get blocked. They can also be responsible
for routing: the CTs can directly enqueue for a link, and special CT's on every input
link can send an incoming packet further to another link — by getting access to it
using the enqueuing mechanism, in competition with the CTs of the applications —
or pass the packet to a local process when the destination processor is reached.
The enqueuing mechanism can also be used to manage access to a (local) operat-
ing system shared service. Reference [21] shows it is also suitable for implementing
broadcast services.
The main points:
> A process wanting to use the link appends at the end of the queue, otherwise it
has no effect on the queue. In the queue it will not spoil any processing power.
Therefore the processing cost per packet is independent of the number of inputs.
> Because it is a queue it is fair. :
> There are no limitations on the number of inputs.

Implementation

After using the link, a CT kicks the next CT by writing some byte to a channel. If
there is no next CT, the current CT will be descheduled. Now suppose the same
application wants to use the link again. This is not possible for the CT will not
accept the request before the ‘kick’ has been given and vice-versa. Therefore the
kick should be given by a separate process. Now the CT can handle a request from
the application and give a kick at the same time, so it can also kick itself if it is the
only user of the link. The kick.channel of a CT is defined in its local workspace. In
order to be able to input the kick from the previous CT), it has a pointer last pointing
to the kick.channel of the previous CT. Additionally, every CT has a pointer to a
global workspace (of the operating system), where at some location a ‘back-pointer’
(BPTR) is stored, pointing to the last CT in the queue. This enables new CTs to
append to the queue, and change the back-pointer to point at themselves. In order
to start the enqueuing mechanism the first time, the operating system should set the
BPTR to point to a location — a dummy channel — to which the system then outputs
an initial kick.

This results in the implementation shown in figure 9 using the transputer instruc-
tion set. Because for the kick-task another process has to be (de)scheduled, 19 clock
cycles have to be added bringing the total to 109 clock cycles overhead per packet for
the enqueuing mechanism. This means this mechanism is-better than the repeated
ALT-construct for values of N greater than

(109 — 15)/22 = 4.2 (more than 4 channels for high load),

(109 — 46)/22 = 2.8 (more than 2 channels for low load).

Note that this implementation does not allow a mixture of low and high priority
communication tasks. Low priority CTs cannot interfere with each other, because
the transputer can only deschedule on the instructions J and LEND, and of course on
channel communication and process management.-

NO© 14 January 1991 63

mint; stl kick.channel -- initialise kick.channel
again:

-- wait for a request from the application

-- do flow control

4 1dl global_wptr; 1ldnl BPTR -- get back-pointer which points
1 T stl 1last -- to the last CT in the queue.
1 1dlp kick.channel
4 1dl global_wptr; stnl BPTR -- modify back-pointer: now this
-- is the last CT in the queue
——————————————————————————————————————— wait for kick:
1 1dlp dummy.buffer -- pointer to store kick
1dl 1last -- input from previous CT
1 lde 1 -- input 1 byte
21 in -- if the previous CT is not
-~ ready, this CT deschedules
-- now.
-- Now scheduled again (kick received), so use the link.
-- After using the link start up a separate task kicking
-~ the next CT in the queue.
1 ldc kick-base -- offset to kick.task
2 1dlp -offset -- workspace for kick.task
12 startp
base:
4 j again -- handle next request
e m e e e e oo --- kick process:
kick:
1dlp kick.channel
1 ldc any
23 outbyte -- kick next CT
11 stopp -- and abort this task

Figure 9: implementation of the enqueing mechanism

Problems

1. The kick is generated by a separate task. This task will not execute immediately,
but will be appended at the end of the schedule list. Then it kicks the next
CT, which will also be appended to the end of the schedule list. This means
that between two successive link accesses, the time which elapses is twice the
round-robin time of the schedule list. In this ‘dead-time’ the link or service
remains unused. If n processes are already waiting on the schedule list, then the
time to wait becomes:

dead-time=2 x n x (2 x 5120/(5 MHz)) = 4n ms

Remarks:

> This assumes that each process uses its full time-slice period, i.e. that it does
not get blocked on communication or timer input — otherwise this figure is
improved.

> When an ALT deschedules (under low load), there is also a dead time (once

64

2.

occam user group newsletter

the round-robin time) of 2n ms. For high load the ALT is better with respect
to the dead-time.
> If these processes are run under high priority however, n will generally be
small. The enqueuing mechanism will be optimised below, resulting also in
improved dead-time.
After the kick-task has given the kick it is descheduled immediately because of
the STOPP instruction, so we lose 19 clock cycles. This will also be dealt with by
the optimisation.

. There are some problems if the link/service enqueued for is not always the same

(for example if a CT also does routing and uses different links; this is not however
possible at all using ALT): suppose CT-A accesses link 1 and is the only one. At
the end it will startup a kick-task saying link 1 is free. Suppose CT-A now uses
link 2, and at the end it starts up the same kick-task saying link 2 is free, both
times using the same (local) kick-channel address. Now a CT-B uses link 2, it will
be kicked by the kicktask of CT-A and reset it to MinInt (the IN is performed).
This means a CT-C will find link 1 blocked for ever. A comparable problem
could occur if the task which is supposed to give a kick is aborted (because the
application it belongs to was aborted by the user), leaving its kick-channel address
in some undetermined state. For the same reason a task may not migrate when
it is queuing. These problems are addressed in the next section.)

Optimisations and improvements

From the first implementation on four optimisations were done — see reference [21]
for details — according to the following considerations:

|

The fact that the queue is empty can be saved in a global flag. In that case
a new CT can continue immediately if the queue is empty. It also means that
problem (3) is solved, since the ‘queue-empty’ information is no longer stored in
the last CT that used the link. The queue is empty if the back-pointer holds the
value MinInt. This is possible since it does not need to store the last CT any
longer if the queue is empty.

The effect of sending a byte on the kick-channel is just to schedule the next
CT, which has stored its PID (process identifier) in this kick-channel, on the
assumption that there is a next CT! So if the current CT notices there is another
CT waiting (kick-channel holds a non-MinInt value), it can also schedule this
process using a STARTP instruction. If there is no CT waiting, it sets the global
BPTR to MinInt — see previous consideration.

According to the first two considerations, it is no longer necessary to start up
a separate kickprocess, which means problem (1) is solved, and problem (2) is
partly solved. There is still a dead time however: the next CT is still appended
at the end of the queue, so the dead time becomes 2n ms, where n is the number
of processes in the queue.

The IN instruction has the only effect that the PID of the process is saved in the
kick-channel address of the previous CT! The byte transfer is not used at all, so
this code-part can be optimised, and nothing has to be done when a CT arrives
on an empty queue (when BPTR is MinInt).

NO14 January 1991 65

The resulting assembly code for the enqueuing mechanism is shown in figure 10.
Note that the initialisation of the kick.channel is in the loop now. Note that there is
no extra (de-)scheduling of other processes now since there is no separate kick-task,
so this results in the following processor load:

low load: 41 clock cycles (46 + 22N for an ALT)

high load: 62 clock cycles (15 + 22N for an ALT)

This means that for low load the enqueuing mechanism is even better than just the
overhead of the ALT construct (ALT-ALTWT-ALTEND)! For high load the calculation is:

N = (62 —15)/22 = 2.1 (more than two channels for high load)

In practical implementations however a few clock cycles have to be added. In the
listing it is assumed that the BPTR can be found at a fixed place; in reality it
will be in some table. But the same kind of overhead also applies for practical
ALT-implementations.

Remark: the enqueuing mechanism is safe (if all the CTs have the same priority)
if two CTs try to enqueue at the same time. The reason lies in the fact that the
transputer only switches to another process on certain instructions. These are the
instructions where this can be expected (channel communication, timer wait, process
descheduling), and the instructions j and lend. The first part of the listing in
figure 10 (the enqueue part), contains only load and store instructions, and can
therefore be regarded as an atomic instruction. It can be interrupted by a high-pri
process however, and therefore a mixture of low- and high-pri CTs is not allowed.

Future transputers

The processor overhead could reduce dramatically if some parts of the listing were
supplied in special instructions, thus being coded in microcode. Two extra instruc-
tions could be supplied:
enqueue parameters: a pointer to BPTR, and a pointer to the kick-channel of this
CT. Ensures the the process will enqueue. If the BPTR was MinInt, it will
continue directly, otherwise it deschedules itself saving its PID.
kick parameters: a pointer to BPTR, and a pointer to the kick-channel of this CT. If
the kick-channel is not MinInt, it is the PID of the next CT, which it will append
to the end of the schedule list, otherwise it will initialise BPTR to MinInt.
The j again should not be part of the kick instruction, but be programmed just
after the kick instruction. This means that the first occurrence of j again becomes
a jump in the microcode to the end of the microcode for the kick instruction.
There is a problem deciding which scheduling list it should use: the low-pri
schedule list may be too slow, the high-pri schedule list should be reserved for urgent
tasks. Here a third kind of schedule list could be introduced, with medium priority,
which is reserved for the enqueuing mechanism only. (In current types of transputer
it would hardly be possible to use a fine-grain priority — say 255 priority levels —
because it would require 255 lists.) This option would be a welcome extension and
meet many current demands for finer priority granularity. Because it will always use
the medium-pri list for this, the PID does not have to contain the priority, so that
the same principle can be used also in 16-bit transputers (where there is only one bit
available for storing the priority).

occam- user group newsletter

again:
2 mint; stl kick.channel -- initialise kick.channel
-- wait for a request from the application
-- do flow control

4 1dl global_wptr; ldnl BPTR -- get back-pointer which points

1 stl last -- to the last CT in the queue

1 1dlp kick.channel

4 1dl global_wptr; stnl BPTR -- modify back-pointer: now this
-- is the last CT in the queue.

4 1d1l 1last; mint; diff -- was BPTR MinInt 2?7

6/8 cj link_is_free -- if so, go on and use the link

------------------------------------- wait for kick:

-- (this part is done under high load only)

3 1dlp O; 1dpri; or -- get own PID

2 1dl 1last -- store in kick.channel ..

2 stnl 0O -- .. of previous CT -

1 stopp -- deschedule now.

link_is_free:
-~ Now scheduled again (kick received), so use the link.

-- kick next CT:

1 1dl kick.channel

2 mint diff -~ is there a next CT 77

2/4 cj next_to_come -- if not, set BPTR to MinInt
---------- - ---- next CT already waiting:
2 1dl kick.channel -- get PID of next CT ..

10 runp -- .. and start it

4 j again

—— was last CT for now:
next_to_come:

1 mint -- make ..

2 1dl global_wptr -- .. BPTR ..
2 stnl BPTR -- .. MinInt
4 j again

Figure 10: optimized implementation of the enqueuing mechanism

N9 14 January 1991 67

Conclusions

The enqueuing mechanism is a simple idea which results in a very nice performance
if some optimisations are done.

Characteristics are:

> More efficient than any kind of (optimised) ALT with respect to the processor
load.
Processor load is independent of the number of possible input channels, while the
ALT is linear dependent on this.
> Unlimited number of input channels, and the number can vary dynamically
whereas the ALT has a fixed number.
> Absolutely fair.
> The same source code can be used for getting access to different links/services
(such as routing).
> Smaller code than ALT because ALT needs separate code for each guard.
Disadvantages:
> Cannot be described in occam, but perhaps some GUY inline code can solve this
problem.
> Under high load the link/service cannot be used continuously: when the next

CT is kicked it is appended at the end of the scheduling list. The link/service

remains unused during the time it takes for the CT to get scheduled. This can be

solved making the CT a high priority process; the high-pri schedule list is shorter
in general than the low-pri list. (The idea suggested for a future transputer could

deal with this point.) .

Remark: In order to test the enqueuing mechanism (and other assembly sub-
jects), a cross-assembler called TRASM (transputer assembler) has been developed,
including a debugger (TRDEB) and a loader (TRLOAD). Simple programs have
tested the mechanism on all aspects and found it to be working correctly. More
advanced tests are necessary however especially where performance is concerned.

This work was carried out by Hennie Tempelman (a student electrical engineering
at the University of Twente, the Netherlands) during a six month period at Institut
National des Telecommunications, with the assistance of Daniel Millot, teacher/
researcher in the DIT Department. It is part of his master thesis report [21] which
deals with the considerations for an operating system for transputer networks, using
assembly language and sockets for occam SC-modules [22].

v

References

[17] Inmos Ltd, The transputer instruction set — a compiler writers’ guide.

[18] D. A. P. Mitchell, J. A. Thompson, G. A. Manson, G. R. Brookes, Inside the
transputer, Blackwell Scientific Publications, ISBN 0-632-01689-2, 1990.

[19] K. M. Shea, F. C. M. Lau, On the performance of ALT in occam, North
American Transputer Users Group: NATUG 3, April 1990, ISBN
90-5199-030-8.

[20] S. W. Lau, F. C. M. Lau, An efficient and flezxible implementation of ALT,
North American Transputer Users Group: NATUG 3, April 1990, ISBN
90-5199-030-8.

68 occam user group newsletter

[21] H. Tempelman, Operating system kernel for transputer networks having an
unknown topology, master thesis report, University of Twente, Department of
Electrical Engineering (BSC), B.P. 217, 7500AE Enschede, The Netherlands;
and INT, Department of Computer Science (DIT), 9 Rue Charles Fourier,
91011 Evry Cedex, France.

[22] Inmos Ltd, Transputer Development System (IMSD700D).

H. Tempelman D. Millot and
Beukenlaantje 8 INT-DIT . LR.I . .
9, Rue Charles Fourier Université Paris-Sud
7475 SK Markelo 91011 Evr 91405 Orsay
The Netherlands France ¥ France -
Tel: +31-5476-1837 millot@frint51 bitnet millot@lri Iri.fr

SOME ALGEBRA
and some of the proposed extensions to occam
Geraint Jones, Programming Research Group, Ozford

In a paper at the OUG technical meeting in York [23] there were a couple of proposals
for new ways of writing a couple of common idioms. In order that one could write the
usual sort of service-type of process that hangs off the side of most user programs,
and make it look like a ‘declaration’ of the service, Geoff Barrett proposes that
declarations
INITIAL
initialisation.process

RESOURCE
resource.management .process

FINAL
finalisation.code

user.process
should be made to mean the same as
declarations
SEQ
initialisation.process
PAR
resource.management .process
SEQ
user.process
finalisation.code
the idea being that the initialisation.process gets to set the values of any variables
in the declarations before they are used, and that the user.process gets to talk to
the resource.management.process until it (the user.process) terminates, and then the
finalisation.code gets a chance to.(tell the resource.management.process to) stomp
all over the resource before telling the resource.management.process to go away. You

‘N9 14 January 1991 69

keep wanting to write such things, and the proposed style makes it altogether more
obvious which part of the code is the user.process, and which parts are ‘service code’.

What is really neat about this is that as you can see by matching the two bits
of code above, the three new ‘declarations’ can be implemented as independent
translations, and this is what he intends:

INiTIAL SEQ
‘P is the same as i.p
w.p u.p
and
RESOURCE PAR
r.p .
. is the same as r.p
.p u.p
and
FI?AL SEQ
‘P is the same as u.p
) f.
u.p P

Where have you seen this sort of thing before? Well, if you have seen it before, you
’orobably call it sectioning. The sections of a (binary) operator are the functions you
get by fixing one of the arguments. The left section (a+) of the -+-operator is the
function that takes a number, say b, and adds a to it, giving you a + b. That is,
(a+)b = a + b, read as ‘a-plus applied to b gives you a-plus-b’.

The right-section (+a) is similar except that (+a)b= b+ a. Of course it is just
the same as the other section since plus is commutative, but for a non-commutative
operator you get different functions, for example (2/) gives you twice the reciprocal
of a number, and (/2) gives you half the a number.

Now look at the occam: if we write P; @ for the SEQ of P and @, and P||Q for
the PAR of P and @, then

INITIAL
P is the same as (P;)
and
RESOURCE
P is the same as (P||)
and
FINAL

P isthe same as (;P)

and since the || operator is commutative, (P||) = (J|P) so these are all the sections
of the ; and || operators.

You can see from the definitions that (P;)(Q;)R = P; (Q; R) which we usually
write as P; (}; R because the ; operator is associative, and moreover since P; SKIP = P
you have that P;Q; R = (P;)(Q;)(R;)SKIP. Indeed in general you can write any

70 occam user group newsletter

expression in which all the operators are ; as a repeated application of left-sections of
; to SKIP. In other words, we can now dispense with SEQ from the language altogether
because
INITIAL
P

INITIAL SEQ

. Q is the same as g

INITIAL R
R

SKIP
and similarly we can dispense with PAR because

RESOURCE
P

RESOURCE PAR
Q

is the same as

jov = s v

RESOURCE
R

SKIP

[4
I hope that you can see what comes next: if you stack up a number of FINAL
declarations, you also get a process made up from the bodies of the FINALs by
SEQ, but the order of the processes is reversed:

FINAL
P
FINAL SEQ
. Q is the same as g
FINAL P
R
SKIP ‘

so you can now get away from this annoying business of starting at the beginning of
a program and executing it step by step until you get to the end: at last a way of
writing occam programs that start at the bottom and work back to the top.
I don’t remember whether Geoff was suggesting replicated INITIAL, RESOURCE
and FINAL declarations, but if we allow for the moment things like
INITIAL i = b FOR ¢
P(i)

N9 14 January 1991 71

with the (um, er) obvious meaning
INITIAL
P(b)

INITIAL
P(b+1)

INITIAL
P(b+c-1)

then we can dispense with replicated SEQ and PAR as well, because

INITIAL i = b FOR ¢
P(i) means SEQ i = b FOR ¢
: P(1)
SKIP
and similarly for RESOURCE and PAR. What is altogether more fun is that
BINAL i = b.FOR c
P(i)

SKIP
which is that thing everyone has always wanted at some time or other — a replicated
SEQ in which the index counts down to a given value in steps of minus one — because
it is the same as
SEQ i = 1-c FOR ¢
P(b-1i)

What next? Well, something I have often wanted in occam is a commutative
sequential operator: the x for which P x @ has the same meaning as
ALT
SKIP
SEQ
P
Q
SKIP
SEQ
Q
P
It has the effect of executing both of P and), and only one of them at once, so it
is just the thing you need for a pair of exclusive accesses to some shared object in
those cases where you do not need — and so do not want — to specify the order of the
accesses. In CSP terms, it is the non-deterministic choice between P; @ and Q; P.
. This is an associative operator so you can imagine a construct with many branches,
like SEQ and PAR, but again you only need the binary operation P x @ where
PxQxR=(PxQ)xR=P x(QxR) and so on. Now what are the sections of

72 occam user group newsletter

this operator? Well, they are clearly both the same, because it is commutative, so
(Px) = (xP), and I suggest we write it
SOMETIME
P

because what this would mean is that P should be executed, but it can either be
executed now, or the machine can put it on one side and execute it after the end of
the scope of the ‘declaration’. Perhaps something like

SOMETIME
get.work.done

edit .newsletter

Does anyone have good names for the sections of the ALT and IF operations? There
are three of these, perhaps the left section of IF should be PREEMPT. IF, because

PREEMPT . IF
e

IF
e

is the same as P
IF

IF
and it is the same as the conditional in its body unless e is true; in that case the

execution of the conditional is pre-empted by the declaration, and the whole thing
behaves like P. The right-section is a sort of if-all-else-fails-then-if, because

IF.ALL.ELSE.FAILS.THEN.IF
e

IF.
IF
is the same as
IF p
and it executes P if and only if both e is true and also the conditional in its scope
would otherwise have failed.

Because ALT is commutative, it has only one section (like PAR) and it means
something like, ‘Oh, and by the way I won’t say it in the ALT, but if you happen to
hear from this channel then you could do this instead’. There is — as it happens — just
such a section lurking in the explanation of SERVER in terms of INITIAL, RESOURCE
and FINAL in Geoff’s paper[23]. He suggests something like

SERVER

g
P
h

for

N©O14 January 1991 73

PROTOCOL SIGNAL
CASE
signal

BOOL more :
CHAN OF SIGNAL user.terminated :
INITIAL

more := TRUE

RESOURCE
WHILE more
ALT
g
P
h
Q

user.terminated ? CASE signal
more := FALSE

FINAL
user.terminated ! signal

Of course, equipped with the sections of IF and ALT, and with a STOP to get
started from you could easily dispose of IF and ALT from the language.

Oh, I do hope nobody has been taking this article entirely seriously. What am
I to do when the Newsletters are published three months either side of the first of
April? This may be my very last chance to slip something silly past the editor when
he is otherwise occupied.

I would not want you, either, to do less than take seriously Geoff’s paper. All I
wanted to do is to have a bit of fun at the expense of my own style of exposition,
perhaps cutting myself on the sharp edge of Occam’s Razor.

To be briefly serious, I think these constructs are really rather neat ways of
exposing the structure of resources and their users within a program. As I hope I
have explained above they have the great virtue that you do not need to add anything
new to your concept of what an occam process is.

The only other serious thing I have to add is that right-sections of ; like

FINAL
P

are called ‘continuations’; or sometimes ‘process continuations’, by the sorts of people
who do denotational semantics, and now I think about it, I cannot think why they
do not seem to have names for the other sections that I have discussed here.

T4 occam user group newsletter

References

[23] Geoff Barrett, The development of occam: types, sharing and modules, in
Hussein Zedan (ed.), Real-time systems with transputers, OUG-13, I0S, 1990.

Geraint Jones geraint.jones@uk.ac.oxford.prg
Programming Research Group Tel: +44 865 273851
11 Keble Road Fax: 444 865 273839

Oxford OX1 3QD
United Kingdom

MAXIMISING THE PERFORMANCE OF DATA

THROUGHPUT IN A SATURATED ROUTING SYSTEM
Piers A. Shallow

Introduction

This article looks at three fundamental areas concerning the optimization of data
throughput between processes sharing common memory and describes how the effi-
ciency of a typical buffering system, buffer resource manager and the ALT command
can be improved. The performance maximisation is targeted at a-saturated routing
system because it is in a condition that requires the maximum communications
bandwidth and the minimum possible implementation overheads.

The implications of modifying the occam model to allow the use of shared vari-
ables and memory between parallel processes is not discussed this paper, however the
time saved transierring an INT index pointing to an array of elements instead of the
elements themselves is obvious and forms the fundamental basis of the techniques
suggested.

Buffering of data packets

In striving to achieve true parallelism on both input and output communication chan-
nels, D. May [24] suggested a very simple solution, in both concept and implementa-
tion, by use of I/ processes in parallel (figure 12, figure 11 ex. 1). Unfortunately the
solution suffers from an enormous degradation in the communication bandwidth as
well as latency in data transfer. Consequently the solution commonly used is one that
incorporates the use of a ‘request’ mechanism (figure 13, figure 11 ex. 2) between two
parallel processes. The main process carries out the buffer administration, accepts
blocks of data from an input channel, stores them in the buffer and transfers the
blocks of data to the second process whenever a request for data is made. The
second process only requests data from the main process when it is able to send
further data out along its output channel.

As it stands, the ‘request’ solution only allows the main process either to input
data, or accept a request, or output data at any instant, losing the true input and
output parallelism desired. The only way to improve the performance is to have the
pool of buffers accessible by both processes and only pass between them the index
of the data block to be transferred (figure 11 ex.3), reducing the output transfer

Time (Secs) to transfer 1000 packets

NO914 January 1991 5
PARallel buffering
2.500 4 (graph ex.1)
2.000
1.500
1.000
0.500
Request
0.200 ‘ (graph ex.2;
0.150 Paer gesot
(graph ex.7)
Request witl
index passin
E (graph ex.3)
‘Without re
(graph ex.4)
0.100
parallel I/O
1 (graph ex.5)
0.050
Sequential I/(
- (graph ex.6)
0 T T T T T T T T T

T T
0 1 2 4 8 16 32 64 128 256 512 1024
Packet length (BYTE:)

Figure 11: time taken to transfer data using different types of buffers of size sixteen

76 occam user group newsletter

Data
Input j1[o] O 9 9P 9 Y Ousput
"\ process /' Al process g : = S

Figure 12: PARallel buffering system

request
Input Main - Secondary Ougut
Process Data » Process

Transfer

Figure 13: ‘request’ buffering system

time to that of an INT. The use of the last.tail pointer prevents both the processes
accessing the tail buffer at the same time.

Time is still being wasted with the ‘request’ mechanism and the need continuously
to request the next block of data can be removed by implementing a synchronised
communication between the two processes whenever the buffer becomes full or empty
(program in figure refprogram, figure 11 ex. 4). The way in which this solution works
is somewhat controversial as it is not within the rules of occam 2 [25]. As well as the
buffers being accessible by both processes, the head and tail pointers used to ensure
that the two process do not access the same buffer at the same time, are themselves
accessible by both of the processes. The head pointer is used in such a way that it
is ‘read only’ by the second process and is written to by the main process. The tail
pointer is set up to be ‘read only’ by the main process and written to by the second
process.

These performance characteristics and those of a simple parallel I/O routine
(figure 11 ex. 5) and a sequential I/O routine (figure 11 ex. 6) can be seen in figure 11,
which displays the times taken to transfer 1000 blocks of data continuously through
the different types of buffering systems using internal communication channels. The
buffers were capable of storing 16 blocks of data.

Buffer resource manager

The buffer resource manager (figure 15, figure 11 ex. 7) is a process that is in control
of the pool of shared buffers accessible by all the processes associated with the
movement of data. Every time a new resource is required by a process, a request for a
resource is made to the buffer resource manager which allocates an available resource
by returning a pointer (index) to the requesting process. The index of the resource
is then transferred to another process and when that process has finished with the
resource it returns the freed resource back to the buffer resource manager which adds
it to the pool of free buffers. The great advantage of this type of mechanism is that
it is not limited in the number of requesting and discarding processes (figure 16) it
can support and that data is efficiently transferred from any requesting process to

‘N9 14 January 1991 7

PROC buffer (CHAN OF p.data.type channel.in, channel.out)
-- internal channels
CHAN OF ANY empty.strobe:
CHAN OF ANY full.strobe:
-- global vars
[buffer.size] [data.lengthldata.type buffer:

INT head:
INT tail:
SEQ
head := 0
tail := 0
PAR
-- input process
INT any:
BOOL empty:
SEQ
WHILE TRUE
SEQ
channel.in ? buffer [head]
IF
" head = tail -- was empty
SEQ
head := (head PLUS 1) REM buffer.size
empty.strobs ? any
TRUE -=- was not empty
SEQ
head := (head PLUS 1) REM buffer.size
IF
head = tail -- now full
full.strobe 7 any
TRUE -- not full
SKIP
-- output process
SEQ
empty.strobe ! O -- any
WHILE TRUE
SEQ
channel.out ! buffer [tail]
IF
head = tail -- became full while waiting to output

SEQ
tail := (tail PLUS 1) REM buffer.size

full.strobe ! 0 -- any

TRUE -- not full
SEQ
tail := (tail PLUS 1) REM buffer.size
IF

head = tail -- now empty
empty.strobe ! 0 -- any

TRUE -- not empty
SKIP

Figure 14: parallel I/0 buffer without the need for a ‘request’

78 occam user group newsletter

Resource
Manager
Resource
Request Allocated
Resource

Inpur i Output
— x

Transferred
Resource

Figure 15: buffer resource manager

Transferred
Resource

Allocated

Resource

Trl'éznsferred Resource | Transferred
esource Allocated Freed Resource
Resource Resource

Request
Process

Transferred
Resource

Figure 16: number of requesting and discarding processes

any discarding process by only passing the index.

Although the buffer resource manager is in effect implementing strict control
over which process has the right of access to a particular buffer at any instant of
time, there is a penalty in its implementation of a degradation in communication
performance (figure 11 ex.7) as the process rapidly becomes the bottleneck in any
non-small routing systems. This is because all the requests and discarding processes
have to communicate with the resource manager which can only service each process
in sequence.

This problem is solved by the removal of the resource manager altogether whilst
maintaining the strict control over the buffer allocation to its users. The way in which
this can be achieved is based upon the principle that if the discarding process is ready
to accept another buffer, it must have just finished with one, and that if the request
process is ready to transfer a buffer index to the discarding process then the process
must require another buffer to take its place. So, instead of the discarding process
passing the freed index to the resource manager and the request process requesting
another resource from the resource manager, the discarding process simply passes
the freed index straight to the request process (figure 17), which removes the need
for the resource manager altogether. This model can now be expanded to cater for
applications which have more than one destination process (discarding process), by
allowing the input process (requesting process) to only accept the freed index from
the discarding process to which it has just transferred a resource (figure 18). In this
situation, the returning freed index can act as the ‘request’ in the buffering system
allowing buffering to occur within the input and output processes of the routing
system. Instead of each process containing buffer areas to store the blocks of data,

N9 14 January 1991 79

Allocated _ Freed

Resource — Resource
Probess L { P
Process 5 Process
Transferred

Resource

Input
e

Figure 17: resource manager removed

Ougut

Freed
Resource

Transferred

Request ‘ Resource
Process
Freed
Resource
Transferred
Resource

Figure 18: multiple destination processes

Input
bk 42

Outgut

it has an array of buffered indices pointing to the buffer locations within the pool
of buffers. The model may be extended further to incorporate two or more input
processes (figure 19). Again the request process only accepts the freed resource from
the discarding process to which it has just transferred a resource. The control of the
output route is determined by the request process.

Intriguing problem — without the use of an ALT set up to use output com-
munications on internal channels, what would the code have to look like if
instead of the data being directed to a particular discarding process, as in
the case described above, data could be accepted by either discarding process
depending on which one happened to ready to accept further data?

Transferred
Resource Discard ™\ Ou
Process
Freed

Resource

Transferred
Resources Resources

Request Discard \ Output
Process < Process

Figure 19: multiple request and discard processes

Freed

Transferred
Resource

Freed
Resource

80 occam user group newsletter

Inputs

Inputs

7 Second | Ou put
\ Layer -

Inputs .

Transferred
Data

2 layered ALT
with n/4 + 4 notation
where n=16

a=2

c=4

Inputs

Figure 20: layer distributed ALT

Distributed ALTs

The problem with an ALT in a saturated routing system is that at least one channel
of an ALT is always ready and as a consequence a lot of time is being wasted enabling
(enbc) and disabling (disc) channels declared after the first ready channel has been
ascertained.

There are number of possible solutions that could be implemented in assembler,
one of which could include a pre-ALT process which checks the channels of the ALT
to see if any of them are ready. If one of them is ready, then the program jumps
straight to that channel’s associated block of code, otherwise the ALT is set up and
implemented in the normal way. Unfortunately this solution is not immediately
practical and an alternative solution can be written in occam by reducing the number
of channels within a single ALT. This is simply achieved by distributing the channels
over a number of ALTs, connected together by further ALTs (figure 20). The maximum
reduction in processor cycles [26] is obtained when n = a° where a is the number of
layers of ALT processes, ¢ is the number of channels supported by each ALT and n is
the total number of input channels.

The gains obtained can be seen in figure 21, which shows the time taken in
processor cycles to transfer an INT against a varying number of total input channels
for different ALT configurations. The notation of the configuration of each distributive
ALT is given as A+ B+ C + - - - + N where the letters represent the number of input
channels for each ALT at each layer, i.e. n/8 + 4 + 2 is a three layered distributed

N9 14 January 1991 81

1300 Single ALT (n)

1200

1100

1000

900

800 -

700

Total number of processor cycles

500

400

300

200 ~

100

(Note :- For clarity these lines
have been drawn straight
and not stepped)

0 —r T 1 T T T T T ‘1 1T ‘1 1T T T 1
0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

Total Number of input channels

Figure 21: distributed ALT

82 occam user group newsletter .

Transferred
Resources

Primary | Ouiput

Input

Figure 22: PRI ALT

ALT with 8 ALTs in the first layer each supporting n/8 input channels, 2 ALTs in the
second layer each supporting 4 input channels and 1 ALT in the third layer supporting
2 input channels.

The real gains of splitting the ALT lie with the PRI ALT where the high priority
channel is separated from the remaining channels (figure 22) enabling the PRI ALT
to only have a set up overhead of two input channels. Gains are also obtained in
situations where there are a number of channels which are very seldom used within
the ALT and they can be separated into their own secondary ALT prior to being
connected to the primary ALT. .

The savings discussed are being obtained because the indices of the buffer loca-
tions are being transferred through the network rather than the actual blocks of data.
The indices can be either transferred back through the ALTs, which would increase
the implementation overheads by having to have a second channel setup and INT
transfer (figure 23) or the ALT in the first layer could append a channel reference
number to the index which the ALT in the last layer uses to return the freed resource.
Again the buffering of indices within processes is still possible.

Summary

The implementation of buffering mechanisms within the I/O processes when using
internal channels degrades the communication bandwidth.

The use of a global pool of buffers and passing of buffer indices are fundamental
to obtaining high data throughput in routing systems.

Buffer resource managers are the bottlenecks within multi I/O routing systems.

The buffer resource manager only provides buffing for free indices and not for
‘used’ indices. The buffering of ‘used’ indices must take place in another process.

The full flexibility of the buffer resource manager can be achieved by carefully
controlling which of the processes in the routing system implement the buffering of
the indices.

The size of the pool of buffers must equal the total index buffering space plus the
number of declared indices used within the other processes throughout the routing
system.

Distributing the ALT over a number of ALTs is worth adopting as the reduction

N9 14 January 1991 83

................ y Freed
................ A Resource

Resource

Inputs

Freed
Resource

Resource

Transferred
Resource

Transferred
Resource

Inputs

Freed
Resource

Figure 23: ALT returning the freed resource index

in processor cycles in quite considerable. Enormous gains are obtained by simply
splitting the total number of inputs over z ALTs and having a further single ALT with
z inputs.

Questions

Although the control of access to variables is implemented in software, should the
programmer be conforming to the limitations of the occam compiler or should the
occam compiler cater for ‘read only’ variables?

With the inherent nominal buffering present in the routing system described
above, are the overheads in implementing additional buffering within processes jus-
tified in light of the reduction in communication bandwidth they cause, let alone the
possible side effects such as starvation in one channel whilst another has a data in
its buffer, or loss of end to end communication synchronisation which results from
buffering?

Should the implementation of the ALT in assembler be altered to improve the
performance of channel communication as the communication speed appears to be
the transputer’s handicap? Does the increase in processor cycles taken in setting up
the ALT suggested in assembler really matter when there are no channels ready, as it
does not affect the communication bandwidth of the channel?

Should there be an output ALT on internal channels only and not external channels
(those using the links)? (Yes I appreciate the query:- when is an internal channel
not a external channel? And the answer to the question is:- when the pool of buffers
is in local memory and not distributed across a number of processors.)

84 occam user group newsletter

References

[24] D. Partain and D. May, A tutorial introduction to occam programming, Inmos
1987.

[25] Inmos Ltd, Occam 2 reference manual, Prentice Hall.

[26] Inmos Ltd, Transputer instruction set — a compiler writer’s guide Prentice

Hall.
P. A. Shallow

/o Danescourt
Pond Road
Woking

Surrey GU22 0JT
United Kingdom

EXPERIENCES OF A SOFTWARE BASED SCHEDULER
James Kidd, Altis

Background

Previously, when this design work was initiated, the author was employed as Senior
Software Engineer in a company involved in the manufacture of Ethernet based equip-
ment. Many of these products contained Zilog Z80 microprocessors; the software,
for which was written in assembly language by a small team of programmers. To
enhance the software development environment, several tools were created that were
based on principles similar to those of occam. This article contrasts this, software
based, scheduler with the transputer and occam and describes some of the more
useful observations.

Design goal

Since our products had to conform to the Open Systems Interconnect (OSI) layered
model of communications, much of the software was also written in layers. Con-
sequently there was a desire to reuse, within several different products, the same
blocks of tried and tested code. Perhaps typically for embedded system manufactur-
ers, the software design and development procedures had been somewhat informal.
Consequently there was also a desire to define more rigorously the interface between
modules created by different programmers.

Initial solution

A library of routines was written that formed a multi-tasking executive. The code
was very simple and fast. The kernel consisted of the following subroutines, global
variable and background task:

> SPAWN - Creates new tasks

> SNOOZE - Invokes a task switch

> INPUT/OUTPUT ~ Inter-task communication (ie message passing)

N9 14 January 1991 85

> SLEEP/WAKE - Message-less synchronisation (ie counting semaphores)
> LOCK/UNLOCK — Critical region protection
> TIME — Global variable incremented every 1 ms
> WATCHDOG — Background task to monitor the scheduler
All these constructs operate entirely at runtime and under the complete control of
the programmer. Points at which a task switch can occur are explicitly declared.
The system supports any number of tasks at a single background priority level plus
conventional vectored interrupts.

Aspects relevant to the transputer and occam

Occam had not ‘hit the streets’ when this scheduler was conceived, so our intention
had not been to produce simply a poor-man’s occam replacement. Rather, it was an
attempt to solve a similar problem; albeit with a somewhat more hands-on approach.
There are, therefore, some differences which I do not care to highlight. Instead, I will
concentrate here on some of the effects that we found and some of the differences that
could possibly be transferred to the occam and transputer world. In fact, information
about occam 1 was released while this project was being completed. This caused its
name to be changed to Razor; standing for Ruddy Awful Z80 Occam Replacement.

Although Razor’s basic message passing system is similar to the occam’s, there
is a major difference that could be exploited to create a truly fair ALT construct.
Razor’s INPUT and OUTPUT routines pass messages between tasks through channels
by copying data. This is much like occam, however, Razor’s channels are comprised
of three words of memory. The first word is counter of the number of tasks suspended
on the channel. This counter is zero if the channel is empty, positive if it contains
outputting tasks and negative for inputting tasks. The second and third words
are, respectively, head and tail pointers to a linked list of suspended tasks. Thus
several outputting tasks can share a channel to one inputting task. Tasks which
output concurrently are queued on this channel while the inputting task handles
one message at a time. Since output messages are always accepted (they are never
prevented from entering the queue) and are processed in the order they were received,
this technique could be used as a basis for a truly fair ALT.

As any programmer using Razor can, indeed must, explicitly declare each task
switch, it is possible to write efficient hardware polling routines. These are usually
not as efficient as ones using interrupts, however they are sometimes necessary. A
clear occam directive to invoke a task switch would be appreciated.

Razor provides a task called WATCHDOG, which the user may spawn. Using a pair of
counters, this task and the 1 ms timed interrupt routine monitor each other. In this
way, errant user tasks can be detected and located. A separate hardware watchdog
is also handled here. These are common among embedded control systems but sadly
one has not been integrated with the transputer.

Observations and enhancements

After extensive use, a latency problem was identified with the INPUT/QUTPUT ren-
dezvous. At any given time, most tasks are to be found waiting in an INPUT guard
for some data to process. When a corresponding OUTPUT occurs: the message is

86 occam user group newsletter

copied by the kernel to the input buffer, the inputting task is added to the end of
the scheduling queue and the outputting task is resumed. Unfortunately further
processing of this message does not occur until the inputting task is rescheduled,
which is only after all the other active tasks in the queue have had their turn. When
a message crosses several tasks, as happens frequently in our layered software, a
significant and unnecessary delay can be introduced. The solution adopted was to
ensure that, no matter which task is the first to arrive at a rendezvous, the inputting
task is always the first to be resumed. The outputting task is put to the end of the
scheduling queue. This reduces message latency with apparently no ill effects. The
transputer appears to handle the rendezvous with the original, slower, technique.

A bitswitch within each unit was assigned as a debug-/run-time indicator. When
the software finds an error and hits a trap, a monitor program examines this bitswitch.
If this indicates debug mode, it then enters the debug software which allows the
programmer to examine the state of the system. If the bitswitch indicates runtime
mode, the unit is immediately rebooted and restarted. Inevitably, equipment con-
taining software bugs was installed on site, where user pressure soon made it desirable
to know more about these runtime traps. The monitor software was subsequently
modified so as to dump this information to the Ethernet bus, before the unit was
rebooted. Another unit, in a convenient location, collected this information and
transferred it to a printer. Although crude, this technique proved to be vital in
locating errors that we could not reproduce in the lab. On a more commercial note,
this was also responsible for a regaining some customer goodwill, as he could actually
see something happening to solve his problems.

The debugging and testing of many concurrent processes were found to be difficult
problems. Small changes were made to the scheduler to record the last task entry
point and the address and length of the last message transferred. These are of
some assistance after an error trap has occurred. Most effective, however, is the
methodology of testing each task individually and in isolation. A general purpose
test harness was written. This can be run in parallel with the code under test and
provides a window into the running system. With this tool, a programmer can ‘on
the fly’ examine and edit memory, examine the timer and the scheduling queue,
send and receive messages with INPUT or OUTPUT and WAKE sleeping tasks. A simple
programming language also allows a series of events or messages to be generated.

In practice LOCK and UNLOCK were rarely if ever used. This is because task switch
points are well defined and also, instead of sharing data structures, programmers
preferred to pass messages between tasks. Similarly SLEEP and WAKE were usually
only used between interrupt and background tasks, where INPUT and OUTPUT are
obviously unavailable. Two or more shared buffers were often used to transfer the
actual data.

Further enhancements

The power and address space of the Z80 processor became limiting and so a new one
was sought. Eventually the 32000 series from National Semiconductor was selected.
It was necessary to rewrite the scheduler and this prompted us to add some extra
features. We also had to modify some of the directives to make them compatible
with the type-checking of the Pascal compiler that we intended to use. Consequently,

NO14 January 1991 ' 87

the following routines were added:

> FORK — Clone current task n times (Pascal-compatible SPAWN)
SEND/RECV — Non-blocking inter-task communication
NEW/DISP — Access to fixed-size block heap
NEWCHAN — Obtain a new channel etc. from the heap
TIMEWAKE - Initiate delayed WAKE
TIMEOUT - Initiate delayed OUTPUT (cf. Timer ALT)
The routines SEND and RECV formalise the transfer of memory blocks between in-
terrupts and background tasks. The first word of each block is reserved for use by
these directives. Interrupts may use SEND to append memory blocks to a linked list,
whilst RECV may be used by a background task to receive them. In practice, they
can be used much like OUTPUT and INPUT with the exception that the programmer
must provide a path to return unused blocks to the consumer task.

Often, we found it necessary for the software to configure itself at runtime. For
example, the same code had to run on units with 4, 8, 12 or 16 serial ports and with
varying amounts of memory. A fixed size block heap was introduced, which configures
itself on initialisation. The directive NEW allows tasks to acquire their workspace at
runtime. The remaining memory blocks can be obtained and released, as required,
with NEW and DISP. In communication systems, throughput is often directly related
to the amount of buffer space available, so this can improve system performance by
allowing memory to ‘migrate’ and supplement the buffers of busy channels.

When debugging software based on Razor, we often encountered a problem that
will be familiar to users of the TDS post-mortem debugger. Unless one knows in
which channel it is suspended, it is often difficult to locate a lost task. This is because,
in both Razor and the transputer, the tasks return address can be at virtually any
location within its stack (or workspace). A pointer to the exact location will (or
should!) be located in one of many linked lists, which can be tedious to search by
hand. All 32000 series processors have two stack pointers and this fact was exploited
to overcome this problem. To each task is assigned a task control block (TCB) at a
fixed location in the supervisor stack space. Details such as the task’s return address
are always stored at the same offset within each TCB. Thus, knowing the address of
a task’s TCB, one can quickly establish where it is suspended. Also stored in each
TCB is a pointer to the one of the previously executing task. This is updated on
every task switch and is invaluable on an error trap. It allows the monitor to list the
tasks that were executing up to the point of failure. This list is displayed together
with other information such as each task’s entry and exit points and times. This
often helps to establish the series of events that cause the problem.

James Kidd +44 925 601 735

Altis

9 Brackley Street

Warrington WA4 6DY

United Kingdom

v Vv Vv yVv

88 occam user group newsletter

ALT WHILE CONDITION
Piers A. Shallow

In the light of recent articles on the various methods of implementing “fair ALT”s [27,
28, 29] and a lack of enthusiasm by Inmos to produce one [30], I would like to suggest
an additional occam command “ALT WHILE condition” which can be compiled using
the existing transputer instruction set [31].

The reason for my suggestion stems from the need to select more than one
alternative of an ALT and the need to have fairness in the selection, in order to
prevent hogging and starvation. Current attempts to obtain this fairness are being
implemented in occam by manipulating the use of the existing ALT commands within
the WHILE loop. The fairness is being obtained from the long term effect of cycling
through the alternatives and not the individual selection of an alternative of the
ALT. By writing the solutions in occam one is incurring an enormous penalty due
to the amount of processor time wasted in implementing them. The number of
processor cycles required to implement these solutions in occam [27] is about a factor
of three [29] compared to the simple ALT command. 1t is for this reason that I believe
that a fairer ALT command should exist as an occam construct and the solution that
I am suggesting requires about the same amount of object code and processing time
as the existing ALTSs.

What I am suggesting is that there should be at least two types of ALTs, one of
which is a single ALT and another a repetitive ALT — the ALT WHILE condition of the
title. The syntax of alternation [32] would look like this:

alternation = ALT
{alternative}
| ALT replicator
alternative
| PRI ALT
{alternative}
| PRI ALT replicator
alternative
| ALT WHILE boolean
{alternative }
| ALT replicator WHILE boolean
alternative
alternative = guarded.alternative | alternation
The single ALT is the one currently implemented in occam where one and only
one alternative is selected before the ALT is terminated. The present method used
for determining which alternative should be selected, is the same for both the ALT
and PRI ALT and is dependent upon the order in which the alternatives are listed in
the code. It is the first alternative found to be ready.
The repetitive ALT is one which will keep selecting alternatives until the pre-

defined condition is no longer true, whereupon the ALT is terminated. The method
by which the alternatives are selected works on the principle of the ‘round robin’. (I

N9 14 January 1991 89

admit it is not perfect but then neither is the current ALT!) Although there are many
ways in which the round robin can be achieved, the method which I am proposing
is one based on its simplicity in its implementation in machine code. The ALT
always starts testing the first alternative and then the remaining alternatives in turn,
selecting and processing those channels found to be ready. In this implementation
the condition is only tested once every cycle, however there is no reason why the
condition should not be tested after each selected alternative.

Before 1 can describe my proposal in more detail, I will would like to briefly
describe the way the ALTs are currently implemented. Take for example the following
program:

PROC current.alt (CHAN OF p.data.type chaninA, chaninB, chaninC,

chanout)

PROC p (CHAN OF p.data.type chanout, data.type b)
chanout ! b -- or some processing of the data

data.type data:
BOOL running:
SEQ
running := TRUE
WHILE (running)
SEQ
PRI ALT
chaninA 7 data
p (chanout, data)
chaninB 7 data
p (chanout, data)
chaninC 7 data
p (chanout, data)

the object code of the ALT will take the form of:

alt;
enable (Ga); ...; enable(Gn);
altwt;
disable(Ga); ...; disable(Gn);
altend;
process(a);; process(n);
END:
where

enable(Gx) is the sequence of code: 1d1l c; 1dl e; enbs;

disable(Gx) is the sequence of code: 1d1 c¢; 1dl e; ldc L; disc;

process(x) is the sequence of code required to carry out the associated action, fol-
lowed by a jump to END.

where

e is the boolean

¢ is the channel

90 occam user group newsletter

START:
1d1l condition;
cj .END;
alt;
enable (Ga); ...; enable(Gn);
altwt;
disable(Ga); ...; disable(Gn);
altend;
TESTA:
test(Ga); cj .TESTB; process(a);
TESTB:
test(Gb); cj .TESTC; process(b);
TESTC:
TESTN;
test(Gn); cj .TESTEND process(n);
TESTEND:
3 .START
END:
where

test(Gx) has the sequence of code:
mint; 1dl c¢; 1ldnl O; xor,or 1dl -1; stl 0; 1dl ¢; 1dc 1; 1ldc o; disc.

Figure 24: implementation of the repetitive ALT

L is the offset between the altend instruction and the start of the instruction
sequence of its associated process(x)

The single ALT is initiated (alt); all the channels are enabled (enbc); the process is

de-scheduled (altwt) until data arrives on a channel where upon the process becomes

active; all the channels are tested and disabled (disc) in turn and the appropriate

processing action is taken for the first ready alternative, after the ALT has terminated

(altend), whereupon the program jumps to the end of the ALT code.

My implementation of the repetitive ALT is quite simple and is very similar to
the current implementation of the ALT. The object code takes the form shown in
figure 24. At first, the condition is tested and if it is found to be true the ALT is
initiated (alt); all the channels are enabled (enbc) and the process is de-scheduled
(altwt). When data arrives on a channel, the process becomes active; each channel is
tested and disabled (disc) in turn and the appropriate processing action is taken for
the first ready alternative after the ALT has terminated (altend). Once this processing
action has terminated the remaining channels are then tested. If any of the remaining
alternatives are found to be ready, their associated actions are taken. Once all the
channels have been tested and disabled the condition is re-tested and if it is found to
be true then the ALT is re-initiated; all the channels are re-enabled and the process
is de-scheduled. This ALT process is then repeated until the condition becomes false.

As to how the “ALT replicated WHILE condition” command could be implemented,
I do not intend to say much other than the testing, disabling and processing could
take the form shown in figure 25. As the Transputer Instruction Set manual does not
say if the are any hidden side effects when using the eleven instructions associated

N9 14 January 1991 91

with ALT, would someone from Inmos like to comment on my suggestion?
* * *

Since having written this article, it is becoming apparent that by removing WHILE
loop mechanism from the ALT WHILE suggested, would yield greater scope and flex-
ibility in its use of the command. This would producing an ALT-ish command
my.ALT.mechanism which could be nested within the existing WHILE condition com-
mand.

For example — if a time out was required on a set of channels, then the ALT WHILE
condition would be neater written as :-

WHILE condition

SEQ
ALT
TIMER 7 AFTER time.out.time

my.ALT .mechanism
chanA 7 data.type.A

chanB 7 data.type.B

chanN 7 data.type.N

TIMER 7 time

time.out.time := time + time.out.delay
As to what this command should be called and whether it is really an ALT is
questionable!)

I would like to thank N. George for his comments.

References

[27] Alan Chalmers, Useful titbits, OUG newsletter N9, Summer 1988.

[28] Geraint Jones, Carefully scheduled selection with ALT, OUG newsletter N9 10,
January 1989.

[29] P. A. Shallow, Really efficient multiple buffering in occam and efficient fair
ALTs, OUG newsletter N912, January 1990.

[30] David May, during panel session, 9th occam user group technical meeting,
Southampton, September 1988.

{31] Inmos Ltd, Transputer instruction set — a compilers writers guide,
Prentice-Hall International.

[32] Inmos Ltd, occam 2 reference manual, Prentice-Hall International.

P. A. Shallow
%o Danescourt
Pond Road
Woking

Surrey GU22 0JT

92

INIT.DISABLE

ldc start;
stl i;

ldc count;
stl i+ 1);

START.DISABLE:

disable(Gi);

cj .OMIT;
1d1 i;
stl temp;
OMIT:
1dlp i
ldc (INIT.TEST - START.DISABLE);
lend
INIT.TEST:
141 temp;
stl i;
ldc count;
stl 1+ 1)
START.TEST:
test(Gi);
cj .NEXT;
process(i);
NEXT:
1dip i;
ldc (END - START.TEST);
lend
END:

occam user group newsletter

Figure 25: implementation of ALT replicated WHILE condition

REVIEW

OCCAM 2

John Galletly, pub. Pitman, 1990, pb. £12-99

The stated aim of this book is to provide a gentle and structured introduction
to Occam. It succeeds. Eleven chapters lead the reader from primitive processes
and basic data types to timers, configuration, and general parallel programming
techniques. Throughout the book reference is made to the transputer family, and an
appendix deals with the TDS and the folding editor.
The first chapter deals with the three basic processes, going on to SEQ, PAR, and
ALT. It introduces two-way communication over channels and then considers deadlock
and graceful termination of programs. Large pictures and large fonts help to make the

N9 14 January 1991 93

book easy reading, and discussion of such conceptual novelties as deadlock benefits
from this approach. Examples abound, even when discussing simple ideas like the
nesting of blocks of code, and so if difficulty is encountered in understanding the raw
statement of a problem, a fragment of Occam is available for clarification. Despite
this emphasis of clarity over brevity, once or twice I felt that I would have liked one
more sentence to tie up a section. For example, the first discussion of SKIP and STOP
mentions that they are useful, but does not say why. It would have been better
if Galletly had stated that they can be used as place-holders for yet-to-be-written
processes.

The discussions of data types, arrays, and maths operations are exactly as might
be expected, after which we come to ALT. This chapter is very clear, and includes
important points like the fact that the implementation is free to choose the same
guard repeatedly if more than one input is available. But the section on IF again
leaves one sentence unwritten. It says that TRUE may be used as a catch-all guard,
but it must be put last. This is true, but it would be easier to remember this if we
were told that this is due to the guards being examined in textual order (i.e. from
the top of the page downwards). The contrast with the commutativity of PAR is not
made, which is a pity. .

The many Occam fragments here as elsewhere are presumably meant to be ‘lifted’
by the student, to save needless re-invention. In general they are neat and clean, but
occasionally they are simply not the best way of writing something. A WHILE loop
which copies input to output until a certain character is read is initialised by setting
the local variable to be the space character. But maybe we do not want spurious
values of this sort — why not simple have an input to the variable, and then enter
the loop 7 But this is a minor quibble.

Functions, procedures, abbreviations and retyping are dealt with in chapter 7,
and protocols are considered at length in chapter 8. These chapters, and the fol-
lowing ones on timers, priority, ports and memory allocation are all clear, and show
when software can and cannot ignore hardware considerations. After a chapter on
placement and configuration, the last chapter in the book deals with approaches
to parallel programming. It discusses geometric and algorithmic parallelism, and
then introduces pipelines and farming, with examples. It concludes with a section
on efficiency, which emphasises the communication overheads involved with the
transputer, and the necessity of differentiating between compute-bound and i/o-
bound tasks.

In general, this book is a clear introduction to Occam on the transputer. It is very
easy going, and does not require the novice to look for other sources of information.
This is achieved at the cost of a complete mixing of different levels of abstraction.
If you wanted to program in Occam on a non-transputer system, you would find it
hard to distinguish between features of the language and features of the transputer
implementation. However, as we are not exactly drowning in non-transputer versions
of Occam, this is not really a problem (until the H1 comes along).

If you want just one book on Occam, this is not it. It is not sophisticated enough
to remain the book you turn while writing your wormhole-routing algorithm. But
this was not its aim. If someone finds Jones & Goldsmith too dry, or if they have
managed to tie themselves in such knots that they wish to return to basics, this
book is a good choice. If you are teaching Occam to sixth-formers, maybe the many

94 occam user group newsletter

repetitions (formal statement, explanation, two examples) will be useful. I suggest
that this is a book to recommend to someone who claims to be flumoxed by the
ideas of parallelism. This book will start them off properly, and it is perhaps an

achievement if a book is so clear that it quickly makes itself redundant.
Summary: no substitute for the standard works, but a good gentle introduction.
Michael Jampel, Programming Research Group, Ozford University

PRODUCTS, SERVICES AND ANNOUNCEMENTS

NEW INMOS TRANSPUTER VERSION OF C EXECUTIVE
Real Time Systems Limited, Douglas, Isle of Man

RTS has developed, under contract to Inmos Limited, a complete real-time kernel for
the transputer. Device drivers for the Inmos iserver and for the transputer’s physical
and virtual links are included in the package.

C Ezecutive is a multi-tasking, ROM-able kernel already available for many CISC
and RISC processors. It provides the transputer with a general-purpose interrupt
mechanism and a deterministic pre-emptive scheduler. Multiprocessor systems may
be configured with tasks on separate processors communicating via virtual link
drivers. The package supports all current transputers and has been designed with a
view to the H1. ’ .

An optional DOS compatible file system, CE-DOSFILE, is available, providing
device drivers for SCSI, memory and Inmos iserver disks.

This is a brief summary; detailed information from:

Alan Cleary alan@rts-iom.co.uk
Real Time Systems Limited Tel: +44 624-661500
P.O. Box 70 Fax: +44 624-663453

Viking House, Nelson Street
Douglas, Isle of Man
British Isles

DYNET DYNAMIC NETWORK ROUTING CHIP FOR
TRANSPUTER LINKS

Dynet is a routing chip composed of eight switches — capable of connecting eight
transputer link inputs and eight link inputs — and eight arbiters — each of them being
associated with one or several outputs, according to the topology of the network.

On request from one of the input links, the arbiter associated with the requested
output will establish the connection. The arbitration is performed independently of
the existing connections and has the ability to solve any possible contention problems.

Once the path is established between input and output, the chip is fully trans-
parent and the transputers are directly connected.

And finally when the message gas been transmitted, the arbiter releases the path
and makes it available for any further requests. Dynet is fully cascadable to build

N© 14 January 1991 95

networks from eight to 256 transputers. Further more, it is suitable for different
topologies such as a torus, hypercube or delta.

Why custom silicon?

The objective was to design a routing device to interconnect up to 256 transputer
nodes, on a delta-like topology. The larger a single device would be in terms of
switching capabilities, the smaller the number of devices to build a 256 transputer
network. Furthermore, as technology improves a shrink and redesign of the ASIC
would increase the capacity of the device.

The current 1-5um ES2 allowed the development of an 8 x 8 routing chip.

Esprit project N© 967 — PADMAVATI

The design of Dynet was done by an engineer from Thomson-CSF in collaboration
with European Silicon Structures as part of an Esprit project, PADMAVATI. The
collaborators on this project are Thomson-CSF, GEC, First, NSL and Prologia, and
the aim is to develop a parallel architecture and an appropriate environment for
artificial intelligence applications.

Thomson-CSF Tel: +33 (1) 47 60 30 00
Division Outils Informatiques Fax: +33 (1) 47 60 33 57
Direction Commerciale . Telex: THOM 616 780 F

Parc d’Activité Kléber
160, bd de Valmy

B.P. 82

92704 Colombes Cedex

France

OCCAM2 AND TRANSPUTER ENGINEERING COURSE
Computing Laboratory, University of Kent at Canterbury

Course Objectives To acquire technical knowledge, insight and practical experience
of parallel system design using occam and transputer networks.

Background INMOS transputers form a family of VLSI components for the
elementary construction of multi-processor computing systems.
The T800 integrates on a single chip a 10 MIPS 32-bit general-
purpose processor, a 1-5 MFLOPS (ANSI-IEEE 754 standard)
floating-point processor, eight 20 Mbaud DMA channels, 4 kbytes
of fast static RAM and a programmable 32-bit external memory
interface. Transputer networks of arbitrary size, shape and power
may be created by simple wire connections of the DMA channels.
A common bus, which would cause contention bottlenecks, is not
used for combining transputers.
Harnessing the potential processing power of transputer networks
requires the development of a fluency in parallel systems design
equal to our traditional skills for sequential logic. Occam is a

96

Course Members

Course Methods

Course Materials

Course Length

Course Cost

occam user group newsletter

simple, small but powerful language which enables such fluency.
The model of parallelism provided by occam is a central (not
‘added on’) feature and is directly supported by the INMOS
transputer. This model reflects major software engineering fea-
tures such as abstraction, structuring, and information hiding
and has important benefits for the life-cycle development costs of
large systems (not least through the establishment of libraries of
reusable software/hardware components).

The occam and transputer technologies provide well-engineered,
production-quality and commercially available tools for parallel
processing applications. They may be used to comstruct any-
thing from high-performance fault-tolerant real-time embedded
systems through to general-purpose super-computers. They rep-
resent an early release from the parallel processing research com-
munity into practical engineering. This course will emphasise
their strengths, weaknesses and likely future developments.

If you have picked up basic occam syntax and semantics and
are wondering how to use it to engineer high-performance high-
security systems, this course is for you. If you have never seen
any occam before, so much the better! Hardware engineers are
especially welcome. C programmers beware — this course will
change your life!! [Since September 1986, this course has attracted
over 170 participants from Industry and Academia worldwide.]

Time will be divided equally between informal lectures and ‘hands-
on’ experience through practical exercises and a ‘mini-project’.
Copies of all OHP slides (approx. 300) will be provided together
with example solutions for all set exercises and a large quantity of
utility and demonstration occam software (approx. 350 kbytes).
Various printed notes (e.g. a summary of the occam language
and relevant papers) will also be distributed. Practical work will
be on the MEIKO Computing Surface and will be supervised
at the ratio of one tutor for every six attendees. The MEiKO
system provides a multi-user multi-transputer development and
applications environment. Our system will support up to 30 si-
multaneous users, each with dedicated access to a private network
of transputers including at least two T800s. The full system
comprises over 174 transputers (including 140 T800s) with a
gigabyte distributed file store and three high resolution graphics
workstations.

Five days. Our publicly advertised courses would normally be
a continuous block of five consecutive week-days. However some
companies may prefer to release people for one day per week (over
five weeks). Special arrangements can be made — see Contact
below.

£450 per person (including lunches and light refreshments, but
excluding accommodation, evening meals or breakfasts).

N9 14 January 1991 97

Dates Course NO17: 8-12 April 1991.
Course N©18: 24-28 June 1991.

Contact For further details, or to enquire about special arrangements for
‘spread-out’ courses and accommodation, please contact:
Professor P. H. Welch Tel: +44 227 764000 x7695
Computing Laboratory Fax: +44 227 762811
The University Telex: 965449 UKCLIB
Canterbury Email: phwQuk.ac.uke
Kent CT2 7NF
England

occam is a trade mark of Inmos Limited;
MEiKO and the Computing Surface are trade marks of Meiko Limited.

CRESCO DATA NEWS

Cresco Data has announced its new PC—AT transputer board and a range of TRAMs.

The PC-AT board is a new, B008 compatible motherboard with added features
for the IBM PC/AT and Apollo workstations. It supports up to eight transputers
per board in a combination of mounted components and TRAMs. The master
transputer, the high-speed interface and the link-switch (C004/T222) are integrated
on the motherboard.

In the minimum configuration, the CD-TB10/AT forms a reliable and high-
performance, cost-effective entry level solution, upgradable for future requirements.
The onboard zero wait-state memory varying from 1 to 16 Mbytes, allows even
memory intensive applications to be developed and executed without upgrading
the board. Though the motherboard is B008 compatible, it features an 8/16bit
bus interface with a FIFO construction, yielding in excess of 600kb/sec sustained
transfer rate.

The new family of high performance, size2, transputer modules — CD-TRAM
are low profile TRAMs, compatible with the Inmos B008 and Cresco motherboards.
A choice of either T800 or T425 with 1 to 8 Mbyte of zero wait-state memory are
available. The large amount of memory available makes it ideal for running very large
programs. Onboard jumpers are provided for selection of either 10 or 20 Mbit/sec
link speed and insertion of wait-states. Furthermore, the TRAMs may be stacked.

Cresco Data A/S Tel: +45 31 55 42 70
(resundvej 148 Fax: +45 31 55 01 53
DK-2300 Copenhagen S

Denmark

QUINTEK INTEGRATED IMAGE ANALYSIS SYSTEMS
Quintek Limited, Bristol, UK

In the wake of continued popularity of the HarleQuin frame grabber, Quintek proudly
announce new image processing products which combine transputer power with
Zoran floating-point vector processors for real-time image analysis.

98 - occam user group newsletter

The MosaiQ is a full-colour frame grabber designed to take full advantage of the
flexibility of high-performance CCS cameras for special applications. The SeQuin
includes high-speed buffered data-ports for capturing and processing data from dig-
ital sources. A novel feature of both these AT-format boards is a size4 TRAM slot
which enables the user to adapt his system with extra processing or I/O as needed.
Both boards are available in a number of memory/processor options.

These two boards form the basis of the Quintek Integrated Image Analysis Sys-
tem. We supply a complete workstation and camera with appropriate software
tailored to your application. The system is based on the Zoran fast vector DSP
chip, and comprises:

> a colour frame grabber with full colour display, overlay, cursor and plenty of
memory; .

> a choice of input — either from a 3-colour camera or from and 18-bit digital input
port using a FIFO at speeds up to 25 Mbyte per second;

> 2 Zoran ZR34325 DSP chips for pixel-level processing;

> an Intel i860 chip for fast high-level C programs;

> an excellent software environment including the Zoran Development System and
NEL’s IPLIB parallel processing library;

> a state-of-the-art camera.

> Optional components include a compatible standard graphics board (Splash),

a DSP22CTRAM to support existing applications, and fast optical commu-

nications between stations using the Onelan MIF card (multiple interface to

FDDI).

> The standard CCD camera we supply is capable of asynchronous sampling and
triggering and pixel clock-synchronisation with optional low-light intensifier and
fibre-optic front-ends. Also soon to be available are high-resolution systems

(1024 x 1024), X-ray sensitive and low-temperature low-light photon integration

cameras.
For further information on any Quintek products, please contact
Matthew Page Tel: +44 272 628196

Fax: 444 272 628717

ADVANCED TRANSPUTER ENGINEERING WORKSHOP

Computing Laboratory, University of Kent at Canterbury
Control Laboratory, University of Twente in Enschede, Holland

Course Objectives To go deeper into the process of designing generic occam proce-
dures. To acquire a better understanding of the inner working
of the transputer, so that you can build faster, smaller and more
efficient programs. To learn how to really use the post-mortem
analyser. A pre-requisite for this course is some reasonable expe-
rience in working with occam and transputers.

Further Details In this course, practical sides to the development of occam/trans-

: puter systems will be shown. Subjects will range from how
to design a size-independent matrix library for two-dimensional
arrays or the issue of how to do dynamic code loading on a

N©14 January 1991 99

Course Members

Course Methods

Length & Cost
Dates

Contact

EEC Recognition

transputer network. A very simple message passing network
kernel with an efficient buffering scheme will be discussed. The
techniques for overlapping communication with processing will
be presented. ‘
If you are using transputers and you want to know how to squeeze
the most out of them, this is the course for you. If you always
wanted to know what all these Iptr, Wptr things are that the
debugger keeps throwing at you, you’ve come to the right address.
What to doif it keeps telling you ‘Invalid Wptr’? We will tell you.
If you want to build more generic procedures in occam, without
sacrificing performance or memory requirements, this course will
tell you how to do it. If you want to know how to balance an
algorithm over a network of processors, join in. You want to
develop a stand-alone application which must run outside TDS/
OPS? We show you how you can do it.
Informal lectures with lost of examples to look at, exercises to
make and a small transputer network to play with. Practical
work will be on the MEiKO Computing Surface and will be
supervised at the ratio of one tutor for every six attendees. The
MEiKO provides a multi-user multi-transputer development and
applications environment. Our system will support up to 30 si-
multaneous users, each with dedicated access to a private network
of transputers including at least two T800s. The full system
comprises over 174 transputers (including 140 T800s) with a
gigabyte distributed file store and three high resolution graphics
workstations.
Two days @ £180 (including lunches and light refreshments).
Workshop N©2: 26-27 March 1991,

University of Kent at Canterbury.
Workshop N©3: 4-5 July 1991,

University of Kent at Canterbury.
For a full syllabus, application forms, fees, special arrangements
and accommodation, please contact:

Professor P. H. Welch Tel: +44 227 764000 x7695
Computing Laboratory Fax: +44 227 762811

The University Telex: 965449 UKCLIB
Canterbury Email: phw@uk.ac.uke
Kent CT2 7TNF

England

This course is one of the foundations for a series of courses and
technical workshops entitled ¢ Training for Transputer Technolo-
gtes’. These are being developed under contract with the EEC as
part of the Communities Action Programme for Education and
Training for Technology (COMETT).

occam is a trade mark of Inmos Limited;

MEiKO and the Computing Surface are trade marks of Meiko Limited.

100 occam user group newsletter

ELECTRONIC ARCHIVE SERVER AT INMOS

The Transputer Archive-Server is an automated data service whose email address is
archive~server@inmos.com. This server contains bulletins for transputer software
and copies of public domain software related to transputers. This server is continually
updated. The contents of the Transputer Archive-Server include:

> The cprot archive which contains source code for a utility program which

o converts Occam Constants to C defines
o generates C code to interpret Occam protocols

> The Check archives (checkoce, checkpe, checksre, checksun3, checksun386i, and
checksunj) contain the programs comprising the Check utility suite of programs
for various host systems.

> The disassembler archive contains the source code and a PC executable for a
transputer code disassembler. ’

> The transputer demonstration archive (demos) contains demonstration programs
for the transputer.

> The forth archive which contains documentation, source code, and executable
files for a forth interpreter for transputers.

> The iris archive contains C source code and a makefile to support the devel-
opment of a Silicon Graphics Iris host to transputer interface on B014 and
Paracom/Parsytec boards.

> The iserver archive contains C source code and makefiles for the transputer
1Server.

> The Origami archives (origami, and origamip) contain source code and PC
executable code for the Origami folding editor.

& The PROM loader (promldr) archive contains source and executable files for
program which lets you test a ‘boot from PROM’ program on a ‘boot from link’
transputer.

> The s706beta archive contains a software package which will convert toolset code
files to a form which can be loaded into eprom programmers. This archive
contains a subarchive with the source code.

> The supervis archive contains an Occam program which measures how ‘busy’ a
transputer is. This archive contains the source code and documentation.

> The unizoccam archive contains a compressed ‘tar’ format file for a Unix Occam
compiler which generates executable code for the DEC 11 series computers. This
is the compiler that was written by ‘Gil’ and posted to the net. We would like to
give full credit to the author but our news expired the original messages and we
cannot find the author’s name on any of the traffic relating to the compiler.

> The yank (Yet Another Network Konfigurer) archive contains documentation,
executable code, and source code for a utility that generates transputer network
configuration files from the output of the Check program (which is also stored in
the archive-server).

In addition to these new archives, one new command has been added to the server.
The product command will retrieve all software bulletins associated with a particular
product. For instance the command

product D705A

N914 January 1991 101

will retrieve all software bulletins related to the D705A. Please note that the letters
in the product identifier must be upper case if this command is to find the products.

Many of the commands to the archive-server will generate large amounts of data.
Therefore we recommend you use the pack or archive commands to compress the
files. The archive server currently supports the Unix compress utility and the zoo
and lharc archivers which compress files.

If you need additional information on using the Transputer Archive-Server, send
a message with the command

help
in the message body to archive-server@inmos.com and the server will send a file
listing the commands and procedures for using this server. Tony Schneider

ELECTRONIC GRAPEVINES

If you are an electronic mail user, you may want to know about two electronic
mailing lists, carrying discussions on occam and the transputer. These offer you
a mechanism rapidly to distribute information, short papers, programs, problems,
even gossip about Inmos, to the sort of people who may be interested. You may
even want to read this sort of thing. We even have subscribers from Inmos who can
sometimes be goaded into authoritative declarations.
Each list has distribution points both in the UK and the USA. To join try making
contact with the appropriate address: for the occam mailing list contact
occam-requestQuk.ac.oxford.prg (in the UK)
for the transputer list contact
transputer-request@tcgould.tn.cornell.edu (in the USA)
or transputer-requestQuk.ac.oxford.prg (in the UK).
Please choose the contact the address that is nearest you, to reduce duplicated
traffic across the Atlantic. The transputer list traffic is also available in newsgroup
comp.sys.transputer on USENET.

Request for help

There used to be an occam-request address in Syracuse which administered the
distribution of the occam list in the USA. This service has had to be withdrawn so
the occam list is not at present being distributed on what I call the other side of the
Atlantic. If you would be prepared and able to handle the task, will you please get
in touch with occam-requestQuk.ac.oxford.prg. g7

A WORD ABOUT NAMES AND NUMBERS

I have tried to be reasonably consistent about addresses and telephone numbers in
the newsletter. Human fallibility excepted, the telephone numbers are all given in
the international form: so for example a UK caller should replace the +44 of my
number by an initial nought, and in the USA you would just drop the +1 from Lyle
Bingham’s number.

102 occam user group newsletter

A word may be in order about London telephone numbers: formerly +44 1 (or
in the UK, 01) numbers have been divided into +44 71 (in the UK, 071) and +44 81
(in the UK, 081). Mind you, there rarely seem to be that many London numbers in
the Newsletter.

Would that electronic mail was as simple! Again [have tried to be reasonably
consistent: UK addresses are quoted big-end first, but in other parts of the world
geraint. jonesQuk.ac.oxford.prg for example, would be given little-end first as
geraint.jonesQ@prg.oxford.ac.uk and in the UK they prefer American addresses
like csa@adam.byu.edu the other way, in this case as csaQedu.byu.adam. If you can
tell whether you need to reverse any address from this newsletter, then you are an
expert; but if you cannot, I am afraid you will need the help of an expert.

I have been told that if you are at a BITNET site, turning a big-endian address
around does not work for all UK addresses, and in particular that it does not work for
addresses at uk.co.inmos. It ought to be the case that all UK commercial domain
addresses are known at Canterbury — uk.ac.ukc — so you may be able to render, for
example ougQuk.co.inmos, as ougluk.co.inmos@ukc.ac.uk. That particular site
address, uk.co.inmos, ought to be interchageable with inmos.com. 9

REFERENCE

CONTACTS FOR RELATED GROUPS

Transputer Users Group: Argentina

The purpose of TUGA is to prompte the use of parallelprocessing techniques via
the transputer with the occam language as the most natural starting point. The
secretary is

Esteban R. Gillanders Tel: +54 1 70-4467/3281
Keydata S.A. Telex: 23096 KEYSA AR
Cris6logo Larraide 1801 Fax: +54-1-11-2426
(1429) Buenos Aires :

Argentina

Australian Transputer and Occam User Group

The person to contact for details of future activities is:

John Hulskamp Tel: +61 3 660 2453
Department of Communication Fax: +61 3 662 1060
and Electrical Engineering rcojh@oz.rmit.xx.minyos

Royal Melbourne Institute of Technology
GPO Box 2476V

Melbourne 3001

Australia

N9 14 January 1991 103

Bulgarian Transputer and Occam User Group

Readers in Bulgaria interested in the formation of this group are invited to contact
Dr Simeon Patarinski Texlex: 22628 BANMAT BG*
Bulgarian Academy of Sciences
Block 4, Acad. G. Bonchev St
1113 Sofia
Bulgaria

French Transputer Users Working Group

Traian Muntean traian@fr.imag.imag

IMAG-LGI

b.p. 68

38402 St Martin d’Heres CEDEX
France

Deutschen Occam-Interessengemeinschaft der Transputeranwender

DO IT can be contacted through its secretary:
Heinz Ebert
Im Heidigen 3
5206 Neunkirchen-Seelscheid 2

Germany
The president is: and vice presidents are:
Joachim Stender Frank Heinemann Peter Eckelmann
%o Brainware GmbH %o Fraunhofer-Institute %o Inmos GmbH
Gustav-Meyer-Allee 25 KleiststraBe 23-26 Danziger Strafie 2
1000 Berlin 65 1000 Berlin 30 8057 Eching b. Miinchen
Germany Germany Germany
+49 89 319 10 28
Occam User Group Japan
Contact the Secretary: The chairman is:
Mr Kazuto Matsui Prof. Tosiyasu L. Kunii
Technical Marketing, INMOS Division Department of Information Science
SGS-Thomson Microelectronics K.K. University of Tokyo
4F Nisseki-Takanawa Building 2-18-10 7-3-1 Hongo, Bunkyo-ku
Takanawa Minato-ku Tokyo 108 Tokyo 113
Japan Japan

Tel: +81 3 280-4125 481 3 505 2840
Fax: 481 3 280-4131

104 occam user group newsletter

Latin American Transputer Users’ Group

For further information, contact the Chairman:

Rafael D. Lins Tel: +55 81 251 0713
Av. Dr José Rufino 656 Fax: +55 81 326 4880
Estancia

50.781 — Recife — PE

Brazil

New Zealand Transputer Users’ Group

The NZTUG is still only a small organisation. The Chairman in Bob Hogson,
Professor of Production Technology at Massey University. Contact the secretary
and treasurer:

Dr Ian Graham Tel: +64 71562889 x8204
Department of Computer Science Fax: 464 71384066

University of Waikato CSNet: i.graham@waikato.ac.nz
Private Bag JANet: i.graham@nz.ac.waikato

Hamilton, New Zealand

Swedish Transputer User Group

The purpose of STUG is to act as an information exchange forum for transputer
users in Sweden, and to stimulate discussion concerning related areas such as parallel
programming and parallel processor systems. STUG arranges seminars and publishes
a newsletter, supported by Gosta Backstrom AB, who represent INMOS in Sweden.

Martin Tgrngren Tel: +46-8-790 7849
Maskinelement Fax: 4+46-8-723 1730
Kungl. Tekniska Hogskolan stug@se.kth.damek
100 44 Stockholm

Sweden

North American Transputer Users Group

NATUG have a permanent organization with a committee of about fifteen members,
which receives secretarial support from Inmos Colorado Springs. Contacts for this
group are: the Chair, Dyke Stiles; the Secretary of the North American Transputer
Users Group, care of Mark Hopkins at Inmos Colorado; and the local agent for
newsletter submissions, who is Lyle Bingham. Their addresses appear on page 106.

SPECIAL INTEREST GROUP CHAIRMEN

Artificial intelligence

Joachim Stender

%o Brainware GmbH
Gustav-Meyer-Allee 25
1000 Berlin 65
Germany

Environments

Gordon Manson
Department of Computer Science
University of Sheffield
Sheffield S10 2TN
United Kingdom
+44 742 768555 x5580

Education and training

Roger Peel
Department of Electrical Engineering
University of Surrey
Guildford
Surrey GU2 5XH
United Kingdom
+44 483 509284
R.Peel@uk.ac.surrey.ee

Formal methods

Michael Goldsmith

Formal Systems (Europe) Ltd

Unit 7, The S.T.E.P. Centre

Osney Mead

Oxford OX2 0ES

United Kingdom
Tel: +44 865 728460
Fax: +44 865 793165

michael@uk.ac.oxford.prg

Image processing and vision

Hugh Webber
RSRE

St Andrews Road
Great Malvern
Worcs WR14 3PS
United Kingdom

+44 684 894728
hcw@uk.mod.rsre

Graphical
program development
tools

Mike Roberts
The Centre for Information Engineering
City University
Northampton Square
London EC1V 0HB
United Kingdom
+44 71 253 4399 x3889/3877
m.roberts@uk.ac.city

Hardware

Denis Nicole
University of Southampton
Department of Electronics
and Computer Science
The University
Highfield
Southampton SO9 5NH
United Kingdom
+44 703 787167
D.A.Nicole@uk.ac.soton.ecs

Numerical methods

Derek Paddon
Department of Computer Science
University of Bristol
University Walk
Bristol BS8 1TR
United Kingdom
+44 272 303030 x4336
derek@uk.ac.bristol.compsci

Real time

André Bakkers
Twente University

Tel: 431-53-892794
+31-53-892790

EL-BSC Dept. Fax: +31-53-354003
P.0. Box 217 Telex: 44200 thtes
7500 AE Enschede elbscbks@utwente.nl
Netherlands elbscbks@henut5.bitnet

NATUG STEERING COMMITTEE

Dyke Stiles
Electrical Engineering Department
Utah State University
Logan, UT 84322-4120
Chair
+1 801 750 2806
dyke@opus.ee.usu.edu

Mark Hopkins
INMOS Corporation
PO Box 16000
Colorado Springs, CO 80935-6000
Secretary
+1 719 630 4000
hopkinsm@isnet.inmos.com

Lyle Bingham
Computer Systems Architects
950 N. University Avenue
Provo, UT 84604
Newsletter contributions
+1 801 374 2300
csa@adam.byu.edu
Jim Favenesi +1 205 837 5282
¢o SPARTA, Inc.
4901 Corporate Drive
Huntsville, AL 35805
Jim Newhouse
FMC Advanced Systems Center
1300 South Second Street
Minneapolis, MN
+1 612 337 3242

David L. Fielding
Cornell University
265 Olin Hall
Ithaca, NY 14853
+1 607 255 8686
fielding@tcgould.tn.cornell.edu

Colin Whitby-Strevens
INMOS Limited
1000, Aztec West
Almondsbury
Bristol BS12 45Q
United Kingdom
+44 454 611500
colin@inmos.co.uk

Linda Pollard

Regis McKenna Inc.
220 NW 2nd, #1150
Portland, OR 97209

+1 503 222 7080

Gerald C. Johns
Computer Systems Laboratory
Washington University
724 S. Euclid Avenue
St. Louis, MO 63110
+1 314 362 3123
gerald@wuibc.wash.edu

+44 684 894824
jgh@rsre.mod.uk

Gordon Harp
RSRE

St Andrews Road
Great Malvern
Worcs WR14 3PS
United Kingdom

Ernest Miller

Computer Science Dept.

East Stroudsburg University

East Stroudsburg, PA 18301
+1 717 424 3447

John Board
Electrical Engineering Dept.
Duke University
Durham, NC 27706
+1 919 684 3123
jab@dukee.egr.duke.edu

Paul Smith
University of California at San Diego
Center for Research Language
CRL-C-008
La Jolla, CA 92093
+1 619 534 2695
Paul@amos.VESD .edu
PSSmith@UCSD.bitnet

Gerd Beckmann
Rensselaer Polytechnic Institute
Associate Director
Center for Manufacturing
110 8th Street
Troy, NY 12189
+1 518 276 6010

INFORMAL OCCAM USER GROUP COMMITTEE

Peter Welch
Computing Laboratory
The University
Canterbury
Kent CT2 7TNF
Chairman
444 227 764000 x3629
phw@uk.ac.uke

André Bakkers
University of Twente
PB 217
7500 AE Enschede
The Netherlands
+31 53 892790
elbscbks@henutb.earn

Richard Beton
Plessey Electronic Systems Research Ltd
Roke Manor
Romsey
Hants SO5 0ZN
+44 794 833458
rdb@uk.co.rokeman

+44 684 894824
jgh@uk.mod.rsre

Gordon Harp
RSRE

St Andrews Road
Great Malvern
‘Worcs WR14 3PS

Geraint Jones
Programming Research Group
Oxford University Computing Laboratory
11 Keble Road
Oxford OX1 3QD
+44 865 273851
geraint.jones@Quk.ac.oxford.prg

Jon Kerridge
Department of Computer Science
University of Sheffield
Sheffield S10 2TN
+44 742 768555 x5580
acljmk@uk.ac.sheffield.primea

Roger Peel
Department of Electrical Engineering
University of Surrey
Guildford
Surrey GU2 5XH
+44. 483 509284
R.Peel@uk.ac.surrey.ee

Michael Poole
Inmos Limited
1000 Aztec West
Almondsbury
Bristol BS12 45Q

Secretary
+44 454 616616
oug@uk.co.inmos

Stephen Turner
Department of Computer Science
University of Exeter
Prince of Wales Road
Exeter EX4 4PT
Newsletter editor
+44 392 264048
steve@uk.ac.exeter.cs

Hugh Webber
RSRE

St Andrews Road
Great Malvern
Worcs WR14 3PS

Program exchange
+44 684 894728
hew@uk.mod.rsre

John Wexler
Edinburgh University Computing Service
The King’s Buildings
Edinburgh EH9 3]Z
+44 31 667 1081 x2635
J . Wexler@uk.ac.edinburgh

Hussein Zedan
Department of Computer Science
University of York
York YO1 5DD
Tel: +44 904 432744
Fax: +44 904 432767
zedan@uk.ac.york.minster

... continued from front cover
REPORTS 18
Transputer user group Argentina 18
First Nordic transputer seminar 19
Education and training SIG workshop 20
North American transputer users group fall meeting 21
When is a razor not a razor? 24
SPECIAL INTEREST GROUPS 25
Real Time SIG 25
Hardware SIG 26
Occam development SIG 27
Formal methods SIG 28
Education and training SIG 29
Graphical programming tools SIG 29
TECHNICAL CONTRIBUTIONS 30
Sending over a transputer link without acknowledge 30
Using the high priority transputer timer from within low priority
processes 35
A hardware random number generator for transputer systems 43
Transputer hardware standards survey 45
Transputer implementation of general semaphores 50
An alternative to ALT 60
Some algebra 68
Maximising the performance of data throughput in a saturated
routing system 74
Experiences of a software based scheduler 84
ALT WHILE condition 88
REVIEW 92
Occam 2 92
PRODUCTS, SERVICES AND ANNOUNCEMENTS 94
New Inmos transputer version of C executive 94
Dynet dynamic network routing chip for transputer links 94
Occam 2 and transputer engineering course 95
Cresco data news 97
Quintek integrated image analysis systems 97
Advanced transputer engineering workshop 98
Electronic archive server at Inmos 100
Electronic grapevines 101
A word about names and numbers 101
REFERENCE 102
Contacts for related groups 102
Special interest group chairmen 105
NATUG steering committee 106
Informal occam user group committee 107
This newsletter was prepared using facilities provided by the Department of Computing
Science at the University of Glasgow, and by Oxford University Computing Laboratory;
printed and distributed on behalf of the Occam User Group courtesy of INMOS Limited.

