
No. 3

CONTENTS

Summer 1985

Editorial note 2
Second Technical Meeting of the oug 2
Occam Portakit implementations 4
Occam products from Inmos 6
Occam at Peking University 7
An occam compiler 7
Commercial application packages 12
Some experiences of occam implementations 13
An occam interpreter for Unix 16
Experience with the occam Portakit 19
New books 21
Bibliography update 24
Occam user group update 27
Back numbers 30
Occam user group - general information 32

Translation:

"Occam's Razor

Do not add any inessential material"

(See page 7)

occam is a trade mark of the INMOS Group of Companies

- 2 -

ED I TOR IAL NOTE

We continue to welcome items for inclusion in the newsletter.
They should not normally exceed about 2000 words; longer
offerings may require editing. Submission in machine-readable
form can provide great savings in retyping - the Editor (address
on back cover) will be pleased to give further details.

Martin Bolton (Editor), Michael Barton (Assistant Editor)

SECOND TECHNICAL MEETING OF THE occam USER GROUP

Michael Poole, Inmos

The second technical meeting of the group was held at st
Catherine's College, Oxford on 29th March 1985. The College is
one of few in Oxford which has ample parking space for
visitors' cars, but compensates for this by being very
difficult to get to around the one-way traffic system.
Nearly 150 people attended the meeting split fairly evenly
between academic and industrial organisations. We were
particularly pleased to welcome visitors from the USA and from
Germany.

Professor Tony Hoare of Oxford University opened the meeting by
describing some of the history of "Communicating
Sequential Processes" showing how many of the ideas now in
occam originated in his work from 1974 onwards, first widely
publicised in his well-knownCACM paper published in 1978. He
explained that he omitted named channels (in favour of named
processes) from that paper, not because he did not like
them, but because he was worried about introducing too many new
ideas at the same time. He now supports the occam model in this
area.

Alan Burns from the University of Bradford, who teaches
occam both in the University and commercially for The
Instruction Set Ltd, gave an account of his experience
teaching occam. He finds that concurrency comes easily to
students who have not had to struggle with previous
inadequate language features for para.llel systems. The one most
important attribute of occam for teaching purposes is that it
is a small language and there is no difficulty in getting the
whole language over in a short course.

Alistair Munro from the University of Bristol showed us some of
his computer-generated pictures showing the structure of
processes expressed in occam. This system was described in the
previous OUG newsletter.

Ian Page of Oxford University spoke of his ambition to
invent a fully dynamic animated graphical version of the
Adventure style of personal computer game. This desire has
motivated his research into the problems of distributing the

- 3 -

various stages of the "Graphics pipeline" on to a network of
processors (transputers?). He mentioned the idea of a
"square word" whose bits represent a square set of raster dots
in a picture, rather than the much less appropriate linear
words used in most current systems. Occam would seem to be a
very useful tool in aiding the discussion of design problem in
this kind of system.

~lssell Wayman, a software project leader at Inmos, then gave
an exposition of the programming style that has been adopted
in writing the occam programming system, the integrated
editor and compiler for occam itself. The ability to structure a
large body of software as a collection of nearly autonomous.
process communicating in a limited number of different ways with
each other has been a great benefit of using occam as the
implementation language for this software. He emphasised the
need for a language to describe the protocol of message
interactions.

After lunch Jon Kerridge of Sheffield Polytechnic gave an
entertaining account of his experience implementing the
occam Portakit on a Unix system. He managed to get the
system compiling the first example program 12 days after
first loading the tape. He used the Fortran example
interpreter and mentioned some of the problems which arise
because no two Fortran systems at:e the same. The talk led to a
plea for someone to wt:ite an optimised compiler generating the
same PIS code, but avoiding the significant workspace
requit:ements and interpt:etive execution time penalty of the
system as distt:ibuted.

Peter Welch, who at the time of the talk was an industrial
fellow at Mat:coni Avionics, but who is now back at the
University of Kent, then gave a talk on a functional style of
progt:amming, and his views on ways in which occam could be
enhanced to facilitate this. He achieved this with dual
ovet:head projectors the provision of which had been a
mystery until he spoke. This talk was related to his article in
the previous newslettet:.

We then had a complete change - Dave Simpson of SCICON gave an
introduction to some of the pt:oblems of testing a neWly designed
and constructed circuit boat:d based around transputers.
This brought out the difficult problems which are facing
engineers now that more and more is getting inside
increasingly complex chips in which it is no longer possible to
insert logic probes into data paths, etc. A need for a "Link
Breakout Unit" which could be inserted into a link between
transputers to enable the traffic to be monitored in some
way emerged.

The meeting closed with a position statement from Peter
Cavill, Director of the Microcomputer group at Inmos on the
progress of Transputer silicon. He mentioned the
difficulties that had been experienced, ~n getting the
manufacturing process implemented at Colorado Springs and the
decision to transfer development to Newport. He expressed
confidence that significant numbers of working chips would
be available for customer evaluation later this year, even if the
memo~y size might have to be yeduced foy a shoyt while. 'He also

- 4 -

discussed longer term plans for silicon systems which is a new
business area intended to capitalise on Inmos silicon design
skills for the production of semi-custom VLSI devices of
various kinds.

The meeting was well received by most of those present, but the
plea for more informal discussion time was made again. We hope
that the next meeting which will extend over two days will
meet people's needs in this area.

I should like to close by thanking Geraint Jones for making the
initial contact with the College, the College for their excellent
facilities, Gordon Harp for chairing the meeting, and my
colleagues Janice Seymour and Kathy Yarnold for managing all
the administrative work so effectively.

occam PORTAKIT IMPLEMENTATIONS

John Wright, Inmos

This list contains the names of those people and organisations
who have returned implementor registration cards and have agreed
that their names may be published.

I have added the makes and names of the computers and operating
systems which each implementor was considering.

We have produced a document describing an occam runtime support
syutems. This document will be of interest to anyone designing a
native code implementation of the portakit. It is available from
Software Support at Inmos.

Steve Taylor, Dept of Applied Maths, Weizmann Institute, Rehovot,
Israel

Peter Horan, Div. Computing and Maths., Deakin University,
Geelong, Victoria 3217, Australia

Gould PS2000 Unix

T Muntean, Laboratoire de Genie Informatique de
Institut lMAG, BP68, 68402 St-Martin-D'Heres, France

VAX Unix
BULL-Sems SPS7/SM90

Grenoble,

Mr Donguy Epshom, 13 Rue du Chatellier, BP426, 29275 Brest
Cedex, France

Hewlett Packard HP9000

Thierry Gagnebin, LAMI-EPFL, Av. de Cour 37, CH-1007 Lausanne,
Switzerland

Werner Hett, Ingenieurschule HTL, Quellgasse 12, CH-2500 Biel 3,
Switzerland

Data General AOS/VS

- 5 -

Paul Kussmaul, Hewlett Packard Gmbh, Herrenberger Str. 110, 7030
Boblinger, W Germany

HP 9000 HPUX

Dr Schroder, TU Hamburg-Harburg, Ha.rburger Schloss-Str 20, 0-2100
Hamburg 90, Germany

Prime 9950 Primos

Craig Davidson, Gryphon Systems, 922 Grange Hall Rd, Cardiff, CA
92007, USA

IBM pc
Apple Macintosh

Robert Gustafson, Simulation Specialists Inc., 609 W Stratford
Pl., Chicago, USA

Wicat MCS

Charles Askew, Dept of Physics, Univ. of Southampton, Highfield,
S09 5NH, England

PERQ PNX

G P otto, Dept of Computer Science, UCL, Gower Street, London
WC1E 6BT, England

VAX UNIX

Geraint Jones, Oxford University P.R.G., 8-11 Keble Road, Oxford,
OXl 3QD, England

HLH Orion UNIX

F J Maddix, Bristol Poly, CSM Dept., Coldharbour Lane, Frenchay,
Bristol, England

Prime Primos
VAX VMS

R M A Peel, Dept of E & E Engineering, Univ. of Surrey,
Guildford, GU2 5XH, England

DEC VAX 11/750 UNIX
Prime 750/9950 Primos/UNIX
RCA 1802

Bob Bird, Dept of Computer Science, Univ. of Kent, Canterbury,
CT2 7NF, England

DEC VAX UNIX

J M Kerridge, Dept of Computer Studies, Sheffield City Poly.,
Sheffi~ld, Sl lWB, England

Perkin Elmer PE3210 UNIX
IBM pc PCDOS
IBM 4341 VMCMS

Alan Mycroft, Computer Lab, Cambridge University, Cambridge,
England

IBM 3081 MVS

B Jane Curry, Computer Centre, Chelsea College, London, England
Perkin Elmer PE3205 UNIX

Peter Lynch, Prime Computer Ltd, The Merton Centre, Bedford, MK40
2PN, England

Prime 50 Series

- 6 -

Nick Jeffery, ICL, Westfields West Av., Kidsgrove, Stoke-on-Trent
ST7 lTL, England

ICL 2900 series VME/b

Cyrus Hazari, IT Research Centre, University of Bristol, Bristol
BS8 lTR, England

Apollo Aegis

occam PRODUCTS FROM Inmos

Chris Followell, Inmos

We offer a range of support products for the occam language. For
customeLs who wish to evaluate the benefits of parallel
programming we offer the occam Evaluation Kit. This is an
interpretive implementation of a subset of the occam language
based on the UCSD P system. It is available from our distributors
for a range of computers and costs £175.

For the development of full occam programs we have available the
occam programming system for VAX computers running the VMS
operating system. This is available for £1500.

We also have available the occam portakit. This package contains
details of how to create your own interpretive version of occam
for your own host computer. It is available from our
distributors for £250.

The Transputer will be made available in the 4th quarter of this
year on a range of Evaluation boards, priced from £1500. The
first board will comprise a 32bit Transputer, some fast RAM and 2
serial ports for communication with the Host computer. Full
details are available from Inmos on request.

In order to develop code for the Transputer we will be offering a
Transputer Development System. This will comprise a standalone
computer system (C.P.U., LMegaByte of memory and 15 MegaBytes of
Winchester mass storage.) running the development software. This
will comprise an occam compiler, transputer code generator, debug
software, performance estimator and memory interface
configuration program. It will sell for £8,500.

We will be offering the same software package for the VAX/VMS
system. This will cost £3000 or will be offered to existing
users of the o.P.S. as an upgrade at £1500.

Finally the Transputer itself will be available from the 1st
quarter of 1986 in production volumes at a competitive price.

- 7 -

occam AT PEKING UNIVERSITY

M.H. Rogers, Department of Computer Science
University of Bristo1

Earlier this year I visited the Department of Computer Science at
Peking University, People's Republic of China, and had
discussions with Professor Cho-Chun Hsu and his colleagues who
are planning to use occam as a hardware description language for
database applications. Readers expecting to see occam program
listings in Chinese will be disappointed; the Department is
currently using the evaluation kit and the portakit and has no
immediate plans to implement a Chinese character set version.
However, a Chinese translation of Occam's Razor, kindly supplied
by the Department, appears on the front cover of this issue.
(Thanks to Dr W. Fong of Bristol for redrawing the script.)

AN occam COMP ILER

John Ainscough* and Alistair Brightman
BruneI University, Uxbridge, Middlesex, England.

(* now at Manchester Polytechnic)

ABSTRACT

The paper describes an occam Programming System designed as
a final-year project for the Special Engineering Programme,
Brunel University. The system compiles programs written in occam.
It incorporates a single-pass, recursive descent type compiler,
written in PASCAL, which produces p-code for a hypothetical stack
machine.

An interpreter, also written in PASCAL, runs the p-code. It
simulates concurrent execution of up to 64 processes by switching
from one to another after every occam statement.

There has been much interest recently in the introduction of
the occam programming language, and in particular its simplicity
and ease of use. The purpose of this paper is to demonstrate
that these features relate not only to the language but to its
implementation.

1. Introduction

The compiler itself is written in PASCAL and compiles code
for a P machine interpreter which is again written in PASCAL.
The language that is compiled is due to Inmos (1), and has some
minor variations from that used in Proto occam.

2. Lexical Analyser and Parser

The lexical analyser is complex. This is because of the
textual significance of the end of source line, and the use of

- 8 -

indentation to identify the structure, and the large number of
special character sequences.

The occam parser was constructed by producing a set of
syntax diagrams for occam, then using the rules described in
Wirth (2) the diagrams were converted into a PASCAL program. A
procedure TESTENDLINE was included to enable the lexical analyser
to compute the level of indentation for the current line which is
held in a global variable INO. This must be checked after every
invocation of TESTENDLINE and before every component of a
construct.

The data structures of the compi.ler are based on those of
Ben-Ari's modified version of PASCAL-S (3).

3. The P-Machine

The p-machine is a modified version of the machine of
PASCAL-S with p-code and data stores, S; process and channel
tables; and a top of stack pointer T; an instruction register
I.R.; program counter PC; and a base address register B. The
static link is held in a DISPLAY table.

3.1 Machine architecture for parallel processing

Additional facilities must be provided within the machine if
parallel processing is to be simulated, some of these features
are derived from Ben-Ari's p-machine (3).

The machine must be able to retain the state vector of
several processes, this is achieved by a process table PTAB.
Each PTAB entry contains the pc, s, b and display. The NPR field
contains the number of parallel sub-processes activated by the
process attached to this entry.

The allocation of PTAB entries to parallel processes occurs
at run-time. The asynchronous nature of the parallel construct
in occam means that processes can terminate in any order, so the
PTAB entries actually in use at any time are not necessarily
contiguous. To utilise the array effectively, the array FREELIST
contains a list of those entries which are free. When a component
process of a parallel command is activated, the number
of the next available PTAB entry is taken from the free­
list and the pointer FP is incremented. On termination a
parallel process decrements FP and puts the number of its PTAB
entry into the free-list for re-allocation.

A dynamic data structure is required to keep a record of the
processes which are ready to run. This is done by the LAST and
NEXT fields of PTAB, which are used to link active processes into
a circular, doubly-linked list. Parallel execution of a number
of processes is simulated by switching from one PTAB entry to the
next in the chain, at appropriate intervals, and using registers
from that entry to fetch and execute instru~tions.

Channels are represented within the p-machine as an array of
records CTAB, containing fields for data-transfer and handshaking
between processes. This is not used as a stack, because it is

that channels to physical links, the addresses
of which are known at time.

- 9 -

3.2 Scheduling of Parallel Processes

Scheduling the execution of a number of processes on a
single processor can be implemented in some of several ways, the
simplest being to switch from one process to another at the end
of every machine cycle (i.e. instruction-level concurrency).
Another strategy is to run a process until it cannot proceed,
then choose a different one.

In this implementation statement-level concurrency was
implemented by simply adding an instruction to switch process to
the p-code instruction that terminates ordinary sequential
processes. A switch is also made as the last instruction of the
SUSPEND procedure, so that the chosen process is one from the
active list. Changing from executing one process to another is
done by the procedure SWITCH, which normally just finds the PTAB
index of the next process in the active list, and assigns this to
the current process pointer.

The algorithm has been refined slightly in line with work
done by Roper and Barter (4) who have implemented a CSP-type
language. They noted that the use of a PASCAL 'read' statement
to input from a terminal stops all the other processes
unnecessarily if no data is ready. Therefore, input from the
terminal should be delayed until no other process can execute, in
which case any extra delay is immaterial. A queue of processes
waiting to execute a PASCAL 'read' is maintained within PTAB
using the link fields. The procedure SWITCH chooses the first
process in the queue allowing the 'read' to execute if no other
process can proceed. Processes in a 'wait' state (i.e.
alternative constructs waiting for a guard to become ready and
wait primitives) are considered unable to proceed - the number of
such processes is NWAIT, which is incremeted at the start of a
wait or alternative and decremented when it has executed.

The execution cycle of the p-machine is repeated until the
end of the program or until a run-time error occurs. The status
of the processor is indicated by the processor status register
PS. During operation, PS = RUN, but when an error is detected, a
p-machine instruction can modify this to signify which error has
occurred and stops the processor. The source line being executed
when the error was detected is found from a "map" of the p-code
in the array MAP and is printed with the error message.

4. P-Code and Code Generation

The design of the p-code instructions and the
generation parts of the compiler were implemented together.
of the features in this section are derived from Ben-Ari.

code­
Many

The wait primitive is implemented as a busy wait similar to
a WHILE loop. The WHILE, SEQ and IF are straightforward. The
sequential construct with a replicator is very similar to the
PASCAL "for" statement and the WHILE is identical to its PASCAL
counterpart. The IF is implemented as a sequence of expression
evaluations and conditional jumps past the component processes.
A 'computed jump' instruction was added to the p-machine, used to
jump to the next construct on completion of a component process.

- 10 -

4.1 Scheduling

There are two procedures local to the interpreter. SUSPEND
and ACTIVATE are used to suspend and activate parallel processes.
Activation of a process involves taking the PTAB entry for an
existing process and adding this to the list of active processes
after the last entry. The process may then be chosen for
execution at some time by the scheduling algorithm; which is a
simple "round robin" scheduler. A suspended process is simply
removed from the list. If the process is to be terminated, its
PTAB entry can be added to the free-list, for possible re­
allocation.

The activation record for a parallel process consists of:

STATIC LINK

PARALLEL LINK

REPLICATOR INDEX (if necessary)

The static link performs exactly the same function as for
any other process. However, it points to a location in the stack
space of the parent process. The "Parallel link" is a record of
the PTAB index of the process which activated this process. This
is required to inform the parent process when the child process
has terminated. The replicator index is only allocated if
required when it holds the value of the replicator for this
process - each parallel process in a PAR construct with a
replicator must be supplied with its own copy of the replicator
value with which it is associated. The compiler takes account of
this when declaring the replicator index: if the construct is a
PAR, then its address is recoded as being the base address for
the current data segment plus a two location offset, otherwise,
the index is allocated a location in the previous data segment,
as normal.

4.2 Alternative Processes

The alternative construct was quite complex to implement
because of the complicated syntax and the number of possible way
of evaluating a guard.

The evaluation of a guard leaves three data items on the
stack. These are: -

1) The address of the code to be executed should the guard
succeed

2) The address of the channel

3) The state of the guard

An instruction at the end of the construct will use this
data to decide whether or not to execute the option.

The instruction choqses which guard
random basis, and will select the
encounters.

to check first on a
first ready guard it

- 11 -

If a guard is chosen, its record replaces the first one.
The stack is then cleared of all other records and the top of the
stack now will indicate a guard is ready by being set to true and
the next two locations will contain the data needed to execute
the guarded process. When an ALT is used as an option, this
ensures that it behaves just like any other, leaving a single
record on the stack. The last instruction of the construct
examines the top of the stack, if a process is chosen the address
is fetched from the stack, and executes a jump to that location.
If no guard is chosen execution jumps to the beginning of the
construct and the cycle repeats.

The first instruction executed when an input guard is chosen
performs the input operation. Then the main process itself is
executed. After this the computed jump instruction clauses a
jump to the exit address previously stores on the stack.

4.3 Input and Output primitives

Input and output between p-machine processes use the channel
table CTAB. Each record has a data register which holds one word
value, and two "handshaking" registers. The handshaking is used
to activate and suspend processes.

There are two pre-defined channels KEYBOARD and SCREEN,
which use standard Pascal 'read' and 'write' procedures. The
output buffer is compiled by checking for ASCII line feed
characters in the data, and issuing a 'writeln'.

5. System Testing and Performance

The testing of the compiler was accomplished using a suite
of ten occam programs that were supplied by Inmos and modified to
the occam definition used here. These tested most aspects of the
execution including allocation of variable storage, expression
evaluation, communications and constructs. Also they use most of
the valid forms of all the syntactic entities except slices.

A problem encountered as a result of running these test
programs was the slowness of execution of the ALT construct
particularly when used with a replicator.

The computer compiles code at approximately 2000 lines per
minute when listing the occam code to a file and this reduces to
1500 lines/minute when listing directly to the screen on a VAX
11/730.

Internal debugging facilities are included in the compiler
and the interpreter.

6. Conclusions

The object~ve of the project, to produce a working, portabl~

occam programming system, has been achieved. A simple and fast
compiler has been written, which compiles all the features of the
language except constant expressions prioritised constructs and
PLACED processes. Channels are currently defined globally. The
system successfully compiled a modified suite of test programs
supplied by Inmos which exercises almost all the features of the
language.

- 12 -

Acknowledgement

The authors would like to acknowledge the support given to
this project by Dave May and his colleagues at Inmos.

(1) occam Definition. Due to David May (Inmos) November 1983.

(2) Wirth, N. 'Algorithms + Data structures = Programs'
Prentice-Hall International (1976)

(3) Ben-Ari, M. 'Principles of Concurrent Programming'
Prentice-Hall International (1982)

(4) Roper, T.J. and Barter, C.J. 'A Communicating Sequential
Programming Language and Implementation' Software ­
Practice and Experience (vll) 1215-1234 (1981)

Commercial Application Packages

Cliff Dilloway - Independent Consultant

The purpose of this note is to outline a technique for
implementing a wide ranging commercial application package in
occam. The intention is to be practical and to throw up ideas,
the author has no intention of taking the proposition any
further. Commercial applications packages are systems used in
business for accounting, stock control and the like.

The notion is based on two observations that have not been
disputed and a reflection based on their truth. Every commercial
implementation of a system is different from every other
commercial implementation. Secondly, no commercial
implementation does any "thing" that is unique. The reflection
derived from those two statements is that there must be a (large)
set of things which in some combination or other will meet the
requirements of every commercial implementation. (1)

Whatever these "things" are they have an interesting
property in common with a process in occam. Every "thing" must
be able to co-exist with every other "thing" just as every
process must be able to co-exist with every other process. The
interesting notion is that if all "things" can be imp1emented in
occam we have the makings of a universal system. There are two
problems, the purely technical one of finding a means of ensuring
that the right "things" get done and the practical problem of
ascertaining what all the "things" are. Our interests are in the
second problem.

There are two pressures that are leading to the
identification of "things". The first is the process of
selection of commercial applications packages for purchase. A
book (2) intended to assist in ascertaining the requirements of a
commercial implementation lists all the possible "macro-things"
that might be required. As a first book of this nature it does
not go into the detail required for "things" but it is
aQmp~ehenBive and a good starting point for further research.

- 13 -

The second pressure is really the converse of the book. Taking
as a group all the commercial applications packages for a
particular type of system there is a distinct tendency for each
of them to be enhanced to the point where they are all able to
carry out the same functions. These functions are "macro­
things". Market place pressures are identifying what needs to be
done in a commercial system.

If it were possible to implement a "thing" system it would
help overcome one of the greatest difficulties in commercial
applications. Businessmen do not in general know what they want
a computer to do for them and in any case commercial pressures
are such that requirements can change quite rapidly. A "thing"
system would be able to cope with anything that needed to be done
providing the control mechanism we have not discussed can be
provided.

It will be interesting to observe whether commercial systems
develop on these lines.

References

(1) Applications Packages. Cliff Dilloway "Software World" Vol.
13

No. 2 1982

(2) The Software Sifter. Philip Franket and Ann Grass. Collier
Macmillan 1984.

SOME EXPERIENCES OF occam IMPLEMENTATIONS

Zedan and C Hazari IT Research Centre, University of Bristol

Summary

This article attempts to present a methodological technique for
testing some occam implementations. An attempt is made to rectify
deficiencies in two current implementations

(a) by the introduction of a new primitive

(b) via alteration to the Portakit implementation.

1. [The following is by no means a complete assessment of the
current occam implementations. However, it is more toward a
report of some deficiencies in the implementation].

An implementation of a programming language should conform t9
the same rules which the language itself satisfies. We shall
demonstrate that some of the current occam implementations do
not conform to the most basic algebraic rules of occam. The two
implementations in mind are the OPS occam (running on VAX
under UNIX) and the Portakit implementation (running on Apollo
undez AEGIS) . The basic algebraic rules which we are interested

- 14 -

in a~e those conce~ning PAR and ALT:

(Ri) PAR is commutative. I.e PAR (a , b) = PAR (b ,a).

(R2) ALT is commutative. I.e ALT (gl sl , g2 s2) = ALT(g2 s2, gl
sl). Mo~eove~, in the case whe~e both gl and g2 a~e

Conside~ the following simple occam PROCs:

Pi:: ALT
ci?x

sc~een!x;-3

c2?y
SKIP

Pl':: ALT
c2?y

SKIP
cl?x

screen!x;-3

P2:: cl!'l' P3:: c2! '2'

Note that Pl and Pl' a~e (algebraically) equivalent.

Also consider the following programs:

(a) PAR
Pi
P2
P3

(b) PAR
P3
Pl
P2

(c) PAR
P3
Pl'
P2

On running these programs on OPS occam we get the
su~p~ising ~esults:

(a) 1 DEADLOCK (b) DEADLOCK (c) 2 DEADLOCK

f9 110wing

Anothe~ st~iking drawback in this implementation
trated in the following example. Consider

is illus-

P4:: SEQ
sc~een! ' l' i-3
screen! '2' i-3

ps:: screen!'x'i-3

PAR
P4
ps

PAR
PS
P4

imple-gave 12x and x12 ~espectively.(Note that a sensible
mentation should give DEADLOCK in both cases!.)

On the othe~ hand ,when experimenting with the Portakit
implementation similar problems were found. For example, let

PG:: sc~een!'l' P7:: STOP

PAR
PG
P7

PAR
P7
PG

gave stop and 1 respectively. In he~e the schedule~ starts with
the last component of the PAR, and if it encounters a STOP

- 15 -

process then the entire program aborts. Also,
scheduler a passable guard in ALT is picked
example consider

ps:: ALT
cl?x

screen!x
c2?y

screen!y

then

because of the
accordingly. For

(a)' PAR
P2
PS
P3

(b)' PAR
P3
PS
P2

(c)' PAR
PS
P3
P2

will give: 1 Deadlock, 2 Deadlock, and
tively.

1 Deadlock respec-

We conclude that these simple examples are among many (not
included here for the lack of space) which show that both
implementations do not conform to occam rules. However, it was
not only intended to report some faults in the implementations
but also to give a methodological technique for testing an
implementation of a language. For simulation purposes,for
instance, the above mentioned implementations are obviously not
suitable.

2. In the literature there are two kinds of nondeterminism. The
two types do differ in the way nondeterminism is resolved
, and have a different effect on the way the process
terminates. The first kind, which is known as 'local
nondeterminism', i~ the 'old' notion which was introduced by
Dijkstra [1]. In this type, the process P, which can
communicate with any of the processes P, P, ... ,P, for example,
decides 'on its own', i.e locally,which one to communicate
with. In the second type, which is known as 'global
nondeterminism '[2],the other process's willingness to
communicate is taken into the process decision. In the light of
[2],we suggest having a new primitive which enables a clean
termination of a process which depends on the communication guard
of another: Upon termination process P signals an END signal
which will be sensed by all processes communicating with it.
Thus if this signal is sensed by a process then its decision
will be either to abort itself or to wait for the communication
may take place in the future. For example (a)',(b)' and (c)'
above will terminate properly if PS takes the new form:

ps:: ALT
cl?x

SEQ
screen!x
END

c2?y
SEQ

screen!y
END

- 16 -

3. Tampering with Portakit. The current implementation of the
Portakit interpreter aborts the program being executed if a
'STOP' is encountered in a process inside a PAR. This should
not occur. The compiler generates an 'error' instruction (PIS
code) in response to a 'STOP'. A simple solution is to force a
'start_next_process' when an 'error' is encountered. In the
'start_next_process',if the active process queue is not
empty, the process which called 'error' is list is empty, and
the number of processes waiting for synchronization, n,is
zero, then the interpreter can be stopped~ otherwise
either deadlock has occurred or a process has been abandoned. (n
may be deduced from the number of unsuccessful inword and
outword calls.)

The primitive introduced in the previous section can bring
about distributed termination by arranging for an abandoned
process to self-abort. The Portakit interpreter could support
distributed termination, but in the general case ,it should
distinguish deadlock and process abandoned.

In the case of example l,after the ALT has communicated with P2,
say, it will force a start_next_process. P2 is then active and
successfully terminates with an endp instruction. This
forces a start_next_process. The active list is empty but the
process count is non-zero. Arrange for that part of
start_next_process to be executed according to a process count
of 1. This will pick up execution at the next instruction in
the parent process.

[1] E W Dijkstra--"A
Hall 1976.

discipline of programming"--Prentice

[2] N Francez, CAR Hoare--"Semantics of nondeterminism,
concurrency and communication"--In "Mathematical
Foundations of Computer Science 1978", Lecture Notes in
Computer Science, Vol 64.

An occam Interpreter for Unix

Malcolm K. Crowe and Martin E. Corr, Paisley College of Technology

1. Introduction

The purpose of this note is to announce the completion of an
occam interpreter for the UNIX operating system. The present
implementation is on a VAX, but it is written in C and should be
fairly portable. It is available free of charge for educational
and research purposes. All features of the occam language have
been implemented, including named processes, tables, and
replicated constructs; but excluding vector and configuration
operations.

The interpreter uses a single Unix process for the occam program,
with the various component processes of the program being
scheduled and executed in a timeshared fashion. The interpreter

- 17 -

also allows the programmer to fo.llow the progress of the program
in terms of the processes within it. Since the programming of
real time and concurrent applications is much more difficult than
conventional ones, this facility is a very useful one.

The interpreter enforces all the run-time checking required by
the occam reference manual, including the use of variables in the
PAR construct. This ensures that parallel processes are
genuinely independent and can be shared among different
transputers. Future work at Paisley will implement the extended
features not currently supported, and will allow the monitoring
of such aspects as data flow, parallelism and local storage
limits for a given distribution of an occam program over
different processing elements.

2. Structure of the Interpreter

The interpreter consists of a translator based on Yacc which
translates the given occam program into a tree-like data
structure, and an interpreter for this execution tree.

The Yacc grammar for occam may be of general interest. One
feature is that changes in indentation level in the occam source
are converted by the lexical analyser into BEGIN/END pairs. The
only departure from the language as specified in the reference
manual is that at the end of the declaration of a named process,
the colon must appear on a line by itself, at the correct
indentation level. .

The translator builds the execution tree, assigning tree
addresses for all variables, channels, etc, declared by the
program: These addresses consist of a (depth, offset) pair: the
depth lS the static depth, i.e. the depth of each constituent
process of a construct being one more than the construct itself,
and the offset is the offset within either the constant table of
the process, or the variable storage of the activation of that
process.

Constants and descriptors for references are held in the constant
table. To assist in error checking for use of variables by
parallel processes, a use structure is built for any variable, or
channel, that is potentially used by more than one of a set of
parallel processes. This is necessary for tables, or replicated
processes, since it is usually not possible to check at compile
time whether the proposed use is legal. Shared variables or
channels are then accessed via their use structure, which is part
of the activation of each parallel construct intermediate between
the declaring process and the accessing process.

3. The Execution Phase

The execution tree contains the static information about all
processes. Each process is a node of the tree, with primitive
processes at the leaves, and constructs as internal nodes. When
a_ process is started, an activation record for it is created,
including space for its local storage, and this activation is
placed on the ready list. Selection of a ready process from this
list is performed at random.

All ~efe~ences to va~iables and channels are converted to storage

- 18 -

location offsets for the tree. Hence, at execution time, when
the variables/channels are being used, the memory allocated for
them is referenced directly, instead of using names, for which
searches must be made.

A channel is implemented as a pair of activation pointers. An
activation waiting to do I/O waits in the channel until the
matching operation on this channel is selected. Then the I/O
takes place, and the activations are terminated.

Whenever an activation terminates, its parent process is
rescheduled. If it is a SEQ construct, it will schedule the next
of its offspring if any; if a PAR, it will terminate if it has no
more children.

4. Running the Interpreter

Command format is:- occam [-Y] [-T] [-d] [-D] [<filename]

This command compiles and runs an occam program. Occam programs
may be either typed straight into the interpreter
"interactively", or, preferably, read from files. "filename
specifies such a source file. The protocol is for these files to
have ".oc" suffix, although this is not enforced.
-Y: Trace the path of the parser through the grammar. i .. e. it

produces a description of the movement of the parser state
machine through the states describing the grammar.

-T: This option will:-

1. print out the symbol table

2. print out a description of the program directly from the
execution tree on completion of the program parse and
before execution. This can be useful because it describes
exactly the input program in terms of the arrangement of
all the processes, static depths, dynamic storage within
and the filling-in of the contents of named processes when
called.

-d dD: These flags provide the means for run time checking of the
progress of the program. As processes within the program
are scheduled, executed, and terminated, these flags
produce descriptions of these events. With the -0 flag,
complete process descriptions are given for the process
involved in any run time event. This flag tends to be
quite verbose and should only be used in very detailed
examination of the execution is required.

With the -d flag, only the run time events are described,
with just a reference to the process in question being
produced. Thus a more concise description of execution is
producedi when used with the

-T flag, the progress of the occam program may be easily
followed.

- 19 -

5. Error Reporting

The Parser's error reporting is quite basic, and leaves room for
improvement. When a syntax error occurs, the line at which the
error was detected is displayed. Depending on the error, some
information concerning its type may be produced.

Errors such as illegal use of shared variables and process
deadlock are trapped with suitable messages being produced. Use
of the run time flags provides for easier isolation of the
problem.

6. Terminal I/O

This is achieved using a pre-declared channel called "TTY".

e.g. VAR x:
SEQ

TTY? x
TTYl x + 1

i.e. read x from terminal and output its value +1 back to the
terminal. Both processes will wait until the desired operation
may be performed.
Note that the value read in by the process

TTY? x
is in ASCII format and must be converted appropriately.
It is important to note that the TTY channel is a non-standard
facility: it ,is provided for ease of use of the interpreter.

7. References

1. Inmos Ltd [1984] - occam Programming Manual. (Prentice-Hall).

Compiler
Edition,

[1978] Yacc: Yet Another
Programmer's Manual, Seventh

2. Stephen C. Johnston
Compiler. (Unix
Volume 2B)

3. D.May [1983] - "occamn (Sigplan Notices, Vol. 18, No.4)

4. D.Q.M. Fay [1984] - "Experiences Using Inmos
(Sigplan Notices, Vol. 19, No.9)

Proto-occam"

Experience with the OCCam Portakit

Jon Kerridge, Sheffield City Polytechnic, Pond ,Street,
Sheffield, SI lWB

Introduction

Experience with the porting of the occam portakit is described.
A brief overview of the portakit occam system is given including
details of changes which have been incorporated into the
language. The transportation of the software to a UNIX system is
de6c~ibed together with the problems incurred. The results of

- 20 -

the exe~cise a~e then given. The intended use of the portakit
system is then presented and finally some conclusions are drawn.

Overview of the Portakit

The software is supplied on a tape together with some
documentation comprising an "Implementor's Guide" and an "occam
Compiler Guide". Also enclosed was a single sheet giving the
tape fo~mat and blocking information.

The Implementor's Guide contained the syntax and semantics of the
po~takit machine, which is understood to be very close to the
transputer itself. A description of how files and input/output
are related to the host operating system is also given. A
suggested implementation strategy, especially if one of the
supplied interprete~s could not be used, is described.

The software included on the tape was some test files to help
debug an interpreter, some example inte~preters written in a
variety of languages, the object of the compiler and some files
containing the source of the occam compiler. The test files
gene~ally included three files for each test. A .occ" file
which contains the occam source coding. A ".pis" file which
contained the diagnostic listing generated by the Pascal
inte~preter. For some of the tests the diagnostic file was not
included. It should also be noted that the different
inte~preters supplied produce slightly different diagnostic
output.

Language Modifications

The major change to the language has been the incorporation of
"hard channels" so that communication with the host environment
can be easily undertaken. Each device or handler has associated
with it a specific channel number. (screen is 1, keyboard is 2).
The channel numbe~ is incorporated into the channel declaration
by "CHAN name AT n". Each file has two channels associated with
it, one to send data to the handler, the other to receive data
from the handler. Associated with all the handlers are a set of
predefined control codes.

Other language modifications include a process called STOP which
starts but never stops. The semantics of IF have been changed so
that the process stops if none of the conditionals is true rather
than terminating. The determination of time is now found by means
of a channel TIME rather than the variable NOW. All keywords of
the language must be in upper-case and case is differentiated in
identifiers.

Transportation of the Software

The tape was written in ANSI format at 1600 bpi. This format was
not amenable to being read by the UNIX TAR command. The tape
could be read by the DD command however. In this case a program
had to be written which inserted an nend of linen character at
the end of each record. Using DD there were eight records which
had to be skipped between the end of one file and the start of
the next. The name of a file could be extracted five records
after the end of the previous file.

- 21 -

It had been decided to use the Fortran 77 based interpreter as no
le' ve~sion was available. This was done because the Pascal on
our Unix system was interpreted. We found some errors in the
Fo~t~an system which included equivalence not working. The
supplied inte~preter used Z and Q formats which were not
available on the Unix fortran.

Some problems were encountered with the portakit software itself.
Generally non-standard usage was well commented except that the
use of Q fo~mat was not noted in the subroutine INFlLE. The
interpreter allocated Logical Unit Numbers 11, 12 and 13 to disc
files and the Unix fortran system only assigns LUN's up to 10.
The implementation assumes the ability to dynamically create the
diagnostic file at one point to generate error messages, when a
file is "opened" which cannot be accessed.

Results

The inte~preter was fully tested and working in twelve days of
very part-time effort. Unfortunately, it only compiled at ten
lines per minute. On discussion with other people it was found
that this was particularly slow but not too unrepresentative of
high level language implementations. Inmos have a version
w~itten in VAX assembler which runs at about 250 lines per minute
on a 780.

Intended Use

The hard channels are easy to extend and thus a version·is being
c~eated which will ~un on a set of Z80 micros connected to a
Camb~idge Ring. Thus two hard channels will be defined to
inte~face to the ring. A similar project is being undertaken on
a network of IBM PC's using a Corvus network.

Conclusions

The supplied interpreters are only models of what can be done.
The intention would be to use the high-level language versions as
a basis for producing an assembler language version. As a means
of getting a more flexible implementation of occam which is not
tied to a particular implementation such as the occam evaluation
kit l the portakit provides a viable route.

~WBOO~

Programming in 'occam' - an introductory text

Occam, as the Programming Manual announces in its first sentence,
is a new prog~amming language: a language, therefore, to which
there a~e as yet few published introductions. It is a tribute to
the simplicity of the language that the fifty short pages of the
Inmos refe~ence manual serve it so well. What that manual does
not address l however I is the radically different style which is
appropriate to occam programs.

The occam programmer is encouraged to think of process creating

- 22 -

and synchronization as being as cheap as the other primitive
operations of the language. Even implementations on a
conventional single processor machine need make process creation
and scheduling no more expensive than procedure invocation. This
startling scale of costs gives much greater freedom of
expression l and leads naturally to a,coding style with which few
programmers are yet familiar.

RProgramming in occamR is a tutorial introduction to parallel
programming, based on the lecture notes that I have been using at
the Programming Research Group for the past two years. It
consists of three more of less distinguishable sections: an
introduction to occam, a catalogue of common program fragments,
and a number of complete occam programs.

The summary of the language, being only ten pages long, does not
claim to stand in place of the reference manual. It describes
the core of the language, and should be sufficient to make the
presentation in the rest of the monograph self contained. The
description is informal without imprecision, and I trust is the
more t:eadable for that.

There follows a section in which the reader is introduced to the
arcana of concurrent programming: buffers and synchronizing
signals; pipelines and division of labour. Like the joints of
carpentry; it is as well for the uninitiated to become familiar
with these earlYI ~ut their value is seen in their subsequent
application to larger constructions.

The largest part of the monograph describes a number of ac.tual
occam programs of different types. There is an interrupt
handler I the discussion of which deals with 'real time'
programming in occam. There are examples of highly parallel
programs I such as might be run on special purpose multiprocessor
machines l or which might be used to simulate such machines. An
implementation of an adaptive Huffman coding algorithm, on the
other hand I demonstrates the use of parallelism to simplify the
programmer's task in a less exotic environment.

An appendix contains the'complete text of each of the programs
discussed in the monograph. Of course, code is not the most
palatable form of literature, so these programs are necessarily
compro~ises between realism and readability. The longest is some
hundred and fifty lines l6ng, which I trust is long enough to
give a true flavour of the language in use, without being too
long to be useful to the reader.

RProgramming in occamR (80pp + 25pp appendix) is published py
Oxford University Computing Laboratory as one of a series of
monographs on topics in computation. Copies can be obtained from
the Programming Research Group (Technical Monographs), 8-11 Keble
Road; Oxford OXl 3QD 1 price £2.50.

Geraint Jones
21st May 1985

- 23 -

Communicating Sequential Processes - C.A.R. Hoare

(P~entice/HallInte~national, pp256, £27.95)

It was during the first meeting of the occam user group, in
Bristol., that someone in the audience asked "Excuse me, but what
is this CSP that everyone keeps mentioning?". Quite. As one of
the mathematicians who was seduced into computing science by the
Dijkstra & Hoaredouble-act, it had not occurred to me that there
could be someone who had not read the 1978 Communications of the
ACM article in which Tony Hoare set out his recipe for a
pa~allel-programming language. This recipe is one whose flavour
comes out in occam, which is the reason so many people at oug
meetings talk about Communicating Sequential Processes.

CSP is widely known in the academic computing science community,
both as a tool and as an object of research. Now at last it has
become more accessible outside the research lab, with the
publication of a book of the same name. In this book, Professor
Hoa~e sets out what I might call a Grand Unified Theory of
computing. Although the subject of the book is a theoretical
programming language - CSP - the book is about almost all that is
interesting in computing science: about programs and
specifications., what it is for a program to satisfy a
specificationi about concurrency and communication; about
synchronization and the sharing of resources; about non­
determinism., divergence., deadlock., and their control.

"This is a book.," claims the preface, "for the aspiring
programmer; the prog~ammer who aspires to a greater und~rstanding

and skill in the practice of an intellectually demanding
profession." If I may venture to interpret this claim, I would
suggest that when Tony Hoare says "programmer" he is talking of
coders., designers., computer scientists, and mathematicians, and
this is a book addressed to them all. It is suggested that this
is a text book suitable for use in a university computing science
course., and it does contain material that has been used in
academic courses and in Oxford's courses for -industry. This is
not to deny that it is an eminently readable introduction to the
theoretical background of occam and other parallel programming
languages.

The first thing that strikes the reader is that the programs in
this book look more like mathematical formulae than like the
programs to which he is used: the author, of course, holds that
programs are mathematical formulae. A reader who ventures to
cross this small notational barrier will find he is rewarded.
The pursuit of elegance is not an end in itself, but a means to
making rigorous programming more tractable. Experience suggests
that exposure to this material can cause CSP addiction, and that
the addict will find CSP a useful way of organizing' his thought
about all sorts of computing problems.

Get:aint Jones
22nd June 1985

- 24 -

BIBLIOGRAPHY UPDATE

compiled by Inmos and the Editor

Papers about occam and the Transputer by Inmos

M.Harrison, P.Wilson, "Transputer development using the occam
Programming System," Wescon'83 Proceedings.

P.Eckelmann, "occam - Die Sprache fuer Multiprozessorsysteme,"
E1ektronik Industrie Vol. 15, No. 4, 1984, pp 56-62.

P.Eckelmann, "occam und Transputer: Im Einsatz fuer parallele
Signalverarbeitung,UU Elektronik Industrie Vol. 15, No.
5, 1984, pp 63,64,68.

P.Cavil1., E.Mi1ani., uuTransputer Systems," Elettronica Oaai
. No. 10, October 1984, pp 81,82,84,86,88. (In Italian)

R.Tay1or., "Signal processing with occam and the Transputer,,,
lEE Proceedings Part F Vol. 131, No. 6, October 1984, pp
610-614.

P.Eckelmann., "Methodisches Programmieren in
E1ektronik No. 21, Oct 19, 1984, pp 218-223.

occam, ..

P.Eckelmann., "Mu1tiprozessorsysteme als eine
Konsequenz.," Markt & Technik No. 46, 1984, pp 67-73.

logische

P.Mattos, "The
Microprocessors

transputer, .. _ IEE___ Colloquium on New
(Digest No. 97) Nov 20, 1984, pp 3/1-3.

C.Mansfie1d,
processors,"
18.

A.Baker,
Computing

"Intercommunication between
the Magazine Jan 31, 1985, P

transputer

D.May, "occam," Computer Bulletin
March 1985, p 14.

Vol. 1. Part 1,

P.Eckelmann, "Portakit," E1ektronik Industrie No. 3,
1985, pp 34-41.

P.Walker., "The transputer,"~ Vol. 19, No. 5, May
1985, pp 219,220,222,224,225,227,230,232,235.

C.Whitby-strevens, "The
International Symposium
June 17-19, 1985)

transputer architecture," 12th
on Computer Architecture (Boston,

C.Whitby-Strevens l "RISe and the 11 instruction set for the
transputer.r" ibid.

I.Barron., Invited talk., VLSI 85
1985) IF IP.

(Tokyo, Aug 26-28,

- 25 -

Papers on occam and the Transputer authored outside Inmos

D.Q.M.Fay, nAn implementation of the Fast
the transputer," Computer Science and
(India), Vol. 14, No. 2, 1984.

Fourier Transform
Informatics

on

"Transputer - a new microcomputer
Vyber Inf. Organ. Vypocetni Tech.
1984, pp 341-345. (In Czech)

building component,"
(Czechoslovakia), No. 3,

D.Benchley, "occam's edge," IT...World March 1984, pp
60-65.

F.D.Greco, "RISC, transputers and mass storage," Program.
J. Vol. 2, No. 4, 1984, pp 13-16.

D.Q.M.Fay, "Experiences using Inmos proto-occam," SIGPLAN
Notice~ Vol. 19, No. 9, Sept 1984, pp 5-11.

W.Hromoda, "Die Sprache des Transputers,"
E1ektroni~schau (Austria), No. 10, 1984, pp 48-52.

D.A.Reed, "The performance of multimicrocomputer
supporting dynamic workloads," IEEE Transactions
~omputers, Vol. C-33, No~ 11, Nov 1984, pp 1045-1048.

networks
on

M.Stevens, "Transputers: lego for fifth generation
Computer Bulletin Ser. 2, No. 42, Dec 1984, pp 21-23.

machines,"

A.Cockroft, "You've never had it so fast," .eeL Interface
Winter 1984.

D.Q.M.Fay, "occam - a language for the 1980s and beyond,"
BCS (Belfast BranQbJ 1985 Handbook.

Fuj itsu Ltd., "Prolog-based expert system for logic design, n .

Proceedings of the Intern. Conf. on Fifth Generation Computer
Systems 1985.

M.D.Harrison, "Monitoring a target network to support subsequent
host simulation," Journal of Microcomputer Applications
. Vol. 8, No. 1, Jan 1985, pp 75-85.

H.Ebert, "Ein Transputer korrunt selten allein,"
Industrie No. 1, 1985, pp 80-88.

Elektronik

10 Views from the top - Niklaus Wirth," Electronic Design
Vol. 33, No. 1, Jan 10, 1985, pp 266,267.

T.Durham,"The transputer route to supercomputing,"
Computing the Magazine February 10, 1985, pp 4,5.

G.Jones, Prograrruning in
Laboratory Programming
43, March 1985.

"occam", Oxford University Computing
Research Group, Technical Monograph PRG-

- 26 -

D.Fay, "Interrupts and the hardware software rendezvous,"
Microprocessors and Microsystems Vol. 9, No. 2, March 1985,
pp 57-63.

R.Chapman, T.S.Durrani, T.Wi11ey, "Design strategies for
implementing systolic and wavefront arrays using occam," .
Proc. of the IEEE Int. Conf. on Acoustics, Speech and Sig.
Proc. (Tampa, FL, March 1985)

R.Dettmer, "occam and the transputer," Electronics and
Power Vol. 31, No. 4, April 1985, pp 283-287.

M.J.P.Bolton, D.A.Cowling, "Real-time flight simulation with
transputers," 16th Annual Modeling and Simulation
Conference (Pittsburgh, April 25,26, 1985)

B.Heal, "~ultiprocessor solution in occam to an NP-complete
problem," Microprocessors and Microsystems Vol. 9, No.
4, May 1985, pp 162-170.

M.McLean, "Breaking the trend of microprocessor evolution,"
Electronics Times No. 320, June 27, 1985, pp 34,35.

T.Mano, F.Maruyama, K.Hayashi, T.Kakuda, N.Kawato, T.Uehara,
"occam to CMOS: exper imental log ic des ign support system," .
IFIP 7th International Symposium on Computer Hardware Description
Languages (Tokyo, Aug 29-31, 1985)

F.Vajda, "Critical issues in the application of a transputer in a
concurrent system," Euromicro 85 (Brussels, Sept 3-5,
1985)

000000000

OCCAN USER GROUP

THIRD TECHNICAL MEETING

The next technical meeting of the group will be held
at the Universiy of Kent, Canterbury, from midday
Monday 23rd September to afternoon Tuesday 24th
September 1985. A charge of i

4

30 per person will be made.

For details see the enclosed green sheet or contact
Michael Poole or Kathy Yarnold at INMOS.

- 27 -

oeeam USER GROUP UPDATE

Members who joined or moved between 12 Dee 1984 and 7 June 1985.

G Adshead, International Computers Ltd, Wentlock Way, West
Gorton, MANCHESTER, M12 50R

Greg Aharonian, Software Manager, Rosetta Software Services, PO
Box 404, Belmont, Mass, 02178, USA

John Ainscough, Dept of E&E Engineering, J Dalton Faculty of
Technology, Manchester Polytechnic, Chester Street,
Manchester

Simon Anthony, Smith Associates, 45-47 High Street, Cobham,
Surrey, KTll 3DP

Professor Arvind, Lab for Computer Science, Masschusetts
Institute of Tech, 545 Technology Square, Cambridge,
Massachusetts 02139, USA

Charles Askew Esq, University of Southampton, S09 5NH
Prof D Aspinall, Dept of Computation, UMIST, Sackville Street,

MANCHESTER, M60 lQD
M Atiquzzaman, B22 Main Bldg, Dept of E.E.&E, UMIST, PO Box 88,

Manchester, M60 lQD
DLA Barber, Department of Trade & Industry, Millbank Tower,

Millbank, London, SWIP 4QU
Prof D.W.Barron, Dept of Computer Studies, The University,

Southampton, S09 5NH
David Bell, Department of Geography, University College London,

26 Bedford Way, LONDON, WC1
Mike Bell, CCL Design & Development, Cambridge Consultants Ltd,

Science Park, Milton Road, Cambridge, CB4 4DW
Robert L Belleville, Apple Computer, 20525 Mariani Avenue,

Cupertino, California 95014, USA
Dr Klaus Berkling, CASE Centre, Syracuse University, Hinds Hall,

Syracuse, New York 13210, USA
Wolfgang Bernard, Sabine Bernard Electronik, Edenkobener Str. 2,

6800 Mannheim 31, West Germany
Michael Biscoe-Taylor, Smith Associates, 45-47 High Street,

Cobham, Surrey, KTll 3DP
Dr T Buckley, Computer Studies Dept, Leeds University, Leeds, CS2

9JT
Or Alan Burns, University of Bradford, Bradford, West Yorkshire,

BD7 lOP
Prof RM Burstall, Dept of Artificial Intelligence, Hope Park

Square, Meadow Lane, Edinburgh, EH8 9NW
Dr P C Capon, Dept of Computer Science, University of Manchester,

M13 9PL
C.Y.Chan, Dept of Computer Studies, University Leeds, Leeds 2
S.K.R Chan, Dept Electrical & Electronic Eng, University College

of Swansea, Swansea, SA2 8PP .
Li Chang, Institute of Computing, Technology Academia, Sinica, PO

Box 2704,1, Beijing, CHINA
Or Chris Chatwin, Dept of Mechanical Engineering, James Watt

Building, University of Glasgow, GLASGOW, G12 8QQ
GUy Chemla, Iomos SARL, Immeuble Monaco, 7 rue Le Corbusier,

SILIC 219, 94518 Rungis Cedex, FRANCE
Peter Clayton Esq, Rhodes University, Dept Computer Science, PO

Box 94, Grahamstown 6140, South Africa
Alex D'Agapeyeff, 60 Wildwood Road, LONDON, NWll

- 28 -

P~of E L Dagless, Unive~sity of B~istol, Dept Elect~ical Eng.,
University Walk, BRISTOL, BS8 lTR

Michael Dalton, Icon Holographics, 133 No~ring Hill Gate, London,
Wll 3LB

John Da~lington, Impe~ial College, South Kensington, LONDON, SW7
2AZ

Prof A.C.Davies, The City University, Northampton Square, London,
EC1V OHB

Michael Davison, ARE Portsdown, XCC2.1 Room 512, Block 3,
Po~tsdown, Portsmouth HANTS, P06 4AA

S Vedat Demi~alp, Dept of Computer Science, Unive~sity of Kent,
Cante~bury, Kent, CT2 7NS

Be~na~d Donguy, EPSHOM, 13 rue du Chateflier, BP426, 29275 B~est

Cedex, F~ance

G Donnan, Univ of Ulster at Jo~danstown, Dept of Computing
Science, Shore Road, Newtownabbey, Co Antrim BT37 OQB,

.N. IRELAND
George Edge, PA Technology, PAT Centre, Back Lane, Melbou~ne,

Royston, HERTS
Terry Ellison, SCICON Ltd, Wavendon Tower, Milton Keynes, Bucks,

MK17 8LX
M.Fe~nando, Logica Ltd, Cobham, Su~rey

Prof Nissim Francez, Technion, Israel Inst of Tech, Compute~

Science Department, Haifa, ISRAEL
Michael Gehret, Silcherstr. 15, D-8944 Groenenbach, West Ge~many

Kevin Greene, CASE Centre, Syracuse University, Hinds Hall,
Syracuse, New York 13210, USA

Bengel Guenther, Brown Boveri & Cie AG, Neustradter Str. 62, D­
6800 Mannheim, WEST GERMANY

Robert Harris, CORD Designs Ltd, 89 Eastworth Road, Chertsey,
SURREY, KT16 80X

Stephen Hart, Icon Holographics, 133 Notting Hill Gate, London,
Wll 3LB

JC Harwell Esq, Harwell Data Processing, 7 Swallow Street, LONDON
B.W.Heal, Portsmouth Polytechnic, School of Information Science,

Mercantile House, Hampshire Terrace, Portsmouth, POl 2EG
Dr A Hey, Dept of Physics, University of Southampton,

Southampton, Hants, S09 5NH
Richard Hiett, Data General Ltd, Hounslow House, 723-734 London

Road, Hounslow, Middlesex, TW3 lPD
Dr O.R.Hinton, University of Kent at Cante~bury, The Electronics

Laboratories, The University, Canterbury, KENT, CT2 7NT
Hsu, Cho-Chun, Computer Science Dept, Peking University, Beijing,

CHINA
Yohoshua Imber Ph 0, Dept of Elect Eng, Faculty of Engineering,

Tel Aviv University, ISRAEL
Nr Paul G Jenkins, University College Cardiff, Dept Mineral

Exploitation, .Newport road, Cardiff, CF2 lTA
Chris Jesshope, Dept of Electronics, & Information Eng., The

University, Southampton, S09 5NH
Or Mike Kemp, Logica Technical Centre, Betjeman House, 104 Hills

Road, Cambridge, CB2 lLQ
Falk-Oietrich Kuebler, Tannenweg 7, D-5102 Wuerselen, West

Germany
Or A.E.Lawrence, 87 Early Road, Witney, Oxon, OX8 6ET
J.W.Lockton, Micro Consultants Ltd, 31 Turnpike Road, Shaw,

Newbury, Berks, RG13 2HA
Stewart McKechnie, Sigmex Ltd, Sigmex House, North Heath Lane,

Horsham, W.Sussex
AndJ~W NAakie J CAP (Reading) Ltd, Trafalgar House, Richfield

Avenue, Reading I Bel:ks, RGl 8QA

- 29 -

Lt Cdr P.E.Marshall RN; Defence ADP Training, Centre, Blandford
Camp, Blandford Forum, Dorset, DTll 8SP

Dr P.Martin, Thorn EMI Central Research, Laboratories, Dawley
Road, Hayes, Middlesex, UB3 lHH

Or H Mehlo, Carl Zeiss, PO Box 1369, D7082 Oberkochen, West
Germany

Martin Meindl, Wurmstr.13, D-8000 Munchen 50, West Germany
P.E.Mitchell, PA Technology, Cambridge Laboratory, Melbourn,

Royston, Herts, SG8 6DP
Or W.R.Moore, Dept of Electronics and, Information Engineering,

The University, Southampton, S09 5NH
Klaus Moritzen, Schwalbenweg 12, D-8520 Erlangen , W Germany
Naoyuki Motomura; Yaskawa Electric Mfg Co Ltd, Yahata Nishi,

Kitakyushu, 806 Japan
Al Mudrow Esq, CSA, 950 North University Avenue, Provo, UTAH,

84604, USA
Or Peter Muller; Dept Photogrammetry & Surveying, University

College; GowerStreet, LONDON, WCl 6BT
Dr A Mycroft; AnR, Computer Lab; Cambridge University, Corn

Exchange st; Cambridge; CB2 3QG
Kei Nakada; Personal Media Corporation; 8-1-11 Nishi-gotanda,

Shinagawa-ku; Tokyo, Japan
Chris Nettleton Esq; Systems Designers Scientific, Pembroke

House; Pembroke Broadway, Camberley GU15 3XD
Dan Oestreicher; 3 West London Studios, Fulham Road, LONDON, SW6
Rikio Onai; Institute for New Generation, Computer Technology,

Mita Kokusai Building 21F, 4-18 Mita l-chome, Minato-ku,
Tokyo 108 JAPAN

DJ Otway, GEC Hirst Research Centre, East Lane, Wembley, HA9 7PP
Or Derek J Paddon, Dept of Electrical Engineeering, Keio

University, 14-1, Hiyoshi, 3 Chome, Kohokuku, Yokohama
223, Japan

Or Ian Page, Oxford University, Programming Research Group, 8-11
Keble Road, Oxford, OXl 3QD

Professor Dr Y Paker, Polytechnic of Central London, Fac of
Engineering and Science, 115 New Cavendish Street,
London, WlM 8JS

Prof David Park, Dept of Computer Science, Warwick University,
Coventry, CV4 7AL

Ralph A Phraner, 516 Shrader Street, San Francisco, California
94117, USA

G.D. Plotkin, Dept of Computer Science, University of Edinburgh,
JCMB, The Kings Buildings, Mayfield Road, Edinburgh EH9
3JZ

Patrick Pope, Dept of Physics, University of Southampton,
Southampton, Hants, S09 5NH

Prof rc Pyle, University of York; Heslington, YOl SOD
Prof B Randall, Newcastle University, Claremont Tower, Claremont

Road, Newcastle-on-Tyne, NE17 lRU .
B Reynolds, Micro Focus; 58 Acacia Road; London, NW8 6AG
Mike Richardson, eeL Design & Development; Cambridge Consultants

Ltd, Science Park; Milton Road! Cambridge, CB4 4DW
Harald Richter; MPI f. Plasmaphysik, Abt. Informatik, 8046

Garching! W Germany
Doug Robertson! Sigmex Ltd! Sigma. House, North Heath Lane,

Horsham; W.Sussex
Lawford Russell; CAP, 233 High Holborn, LONDON, WC1
Andy Rutter The Instruction Set Ltd, 17-18 Bedford Square,

LONDON, WC1B 3JA

- 30 -

Dr Patricia Samwell, Centre for Information Eng., The City
University, Northampton Square, London, EC1V OHB

Mr N.R.Saville, Algorithmic Systems, Engineering Limited, 5
Valentine Court, Kings Heath, Birmingham, B14 7AN

Heinz. Schleuttler, CASE Centre, Syracuse University, Hinds Hall,
Syracuse, New York 13210, USA

Abraham Seidmann Ph D, Dept of Ind Eng, Faculty of Engineering,
Tel Aviv University, ISRAEL

Prof CH Sequin, Univ of California, Computer Science Div,
Berkeley, California, 94720, USA

D Shorter, Systems Designers Ltd, 57 High Street, Frimley, Surrey
Thomas Sigl, Heckenrosenweg 28, 85 Nurnburg 60, WEST GERMANY
Dave Simpson, SCICON Ltd, Wavendon Tower, Milton Keynes, Bucks,

MK17 SLX
R Sleep, University of East Anglia, Norwich, NR4 7TJ
Dr David J Stanley, Logica OK Ltd, Cobham Park, Downside Road,

Cobham, Surrey
Dr Gardiner Stiles, CASE Centre, Syracuse University, Hinds Hall,

Syracuse, New York 13210, USA
Or John M Taylor, Hewlett Packard Limited, Filton Road, Stoke

Gifford, BRISTOL
M Tedd Esq, Caemawr, Eglwysfach, Machynlleth, Powys, Wales
Mrs Shimei Tian, 2061 Cornell Road, £212, Cleveland, Ohio 44106,

USA
Raglan Tribe, Info Technology Dept, British Aerospace plc,

Dynamics Group, Bristol Division, SPC 267, PO Box 5
Filton, Bristol 8Sl2 7QW

DA Turner, University of Kent, Canterbury, Kent, CP2 7NS
A.M.Tyrrell, st Peters College, The University of Aston, College

Road, Saltley, Birmingham, B8 3TE
Nr I Walker, Dept Elec & Electronic Eng, University of Aston, in

Birmingham, Gosta Green, Birmingham, B4 7ET
Dr P.H.Wel~h, Computing Laboratory, University of Kent,

Canterbury, Kent, CP2 7NS
Timm Werner, DKF7 Heidelberg Inst. 08, 6900 Heidelberg, Im

Nevenheimer Feld, W Germany
Stewart Wilson, Institut Laue Langevin, 156X Centre de Tri, 38042

Grenoble, Cedex, FRANCE
Bernd Wolff, Sch10ssstr. 30, D 5300, Bonn 1, West Germany
Or J.C.P.Woodcock, Dept of Electronic, and Electrical

Engineering, University of Surrey, Guildford,. Surrey, GU2
5XH

Copies of Issues 1 and 2 of the occam User Group Newsletter are
available while stocks last on application to the secretary .at
Inmos. Issue 1 included 6 pages of bibliography on CSP, occam
and the Transputer. Issue 2 included a complete list of members,
and a bibliography update.

The term "UnixR~ used throughout this newsletter, is a trademark
of American Telephone and Te~egraph.

-31-

continued from back cover

Program Exchange

The User Group does not provide a library but maintains a
catalogue and, via the newsletter, allows members to
pUblicise programs that they are willing to make available.

Contributors :- Please send a one page description to the
coordinator of what your program does, its form
(source/compiled etc), its hardware/operating system
dependence, the exchange medium (type, format etc) and the
name and address of the provider. It is advised that
appropriate disclaimers be included.

Requestors :- Please make your request to the provider and
not to the User Group. The User Group can itself provide no
support for such programs nor can it accept any
responsibility for problems that might arise due to their
use.

Program exchange coordinator:

Mr Hugh Webber,
RSRE, St Andrews Road,
GREAT MALVERN,
Worcs WR14 3PS

User Group Committee

Tel: 06845 2733 (x2228)

In addition to the individuals mentioned above the following
are members of the informal committee and would be willing
to answer any queries about the groupls activities.

Mr Gordon Harp,
RSRE, St Andrews Road,
GREAT MALVERN,
Worcs WR14 3PS

(Chairman)

Tel: 06845 2733 (x2824)

Dr Geraint Jones,
Programming Research Group, University of Oxford,
8-11 Keble Road,
OXFORD OX1 3QD Tel: 0865 54141

Mr Chris Nettleton,
System Designers Scientif~c,

Pembroke House, Pembroke Broadway,
CAMBERLEY, Surrey GU15 3XD Te1:0276 686200

Mr Simon Turner,
Plessey Electronic Systems Research Ltd,
Roke Manor, ROMSEY,
Hants SOS 0ZN Tel 0794 515222(x2219)

Dr Peter Welch,
Computing Laboratory, The University,
CANTERBURY, Kent CP2 7NS Tel 0227 66822 (x629)

rd
L~d!IJ
·O·U·G·

The User Group is an informal organisation run by its own
members. Its primary concern is the occam programming
language, developed by INMOS Ltd. By virtue of its. special
relevance to occam, the INMOS transputer hardware is also
included in the Group's area of interest. .

The main aim of the User Group is to act as a forum for the
interchange of information among existing and potential
users of these products and as a channel for communication
with INMOS. These aims will be met by organising meetings,
issuing a newsletter, and supporting the exchange of
programs between members.

Membership is free upon submission of an enrolment form. The
User Group is mainly dependent upon its own members to
contribute to meetings, to provide material for the
newsletter and to make their occam programs available to
other members.

Occam User Group Newsletter

This is the main vehicle for communication between members
and is sent out free of charge. It is issued approximately
twice yearly in June and December. Members are encouraged to
submit short descriptions of their interest in and intended
uses of occam. Text may be retyped, but diagrams should be
suitable for reproduction. Please submit articles, letters,
comments, enquiries on any occam or transputer-related
sUbjects to the Editor:

Dr Martin Bolton,
Department of Electrical and Electronic Engineering,
University of Bristol,
Queens Building, University Walk,
BRISTOL BS8 lTR. Telephone: 0272 24161 (x4l2)

Technical Meetings

These are held aproximately twice yearly in September and
March. Apart from any necessary business they will include
informal presentations by members and by INMOS. If you are
prepa~ed to give a presentation or act as host to a future
meeting, please inform the User Group Secretary:

Dr Michael Poole,
Software Support,
INMOS Limited,
Whitefriars, Lewins Mead,
BRISTOL BSl 2NP.

-32-

occam is a trade mark of the INMOS Group of Companies

Telephone: 0272 290861

