
May 12, 1995

SGS-THOMSON Microelectronics Limited

occam 2.1 reference manual®

iv

First published 1988 by Prentice Hall International (UK) Ltd as the occam 2 Reference Manual.

SGS-THOMSON Microelectronics Limited 1995.

SGS-THOMSON Microelectronics reserves the right to make changes in specifications at any time and without
notice. The information furnished by SGS-THOMSON Microelectronics in this publication is believed to be
accurate, but no responsibility is assumed for its use, nor for any infringement of patents or other rights of
third parties resulting from its use. No licence is granted under any patents, trademarks or other rights of
SGS-THOMSON Microelectronics.

The INMOS logo, INMOS, IMS and occam are registered trademarks of SGS-THOMSON Microelectronics
Limited.

Document number: 72 occ 45 03

All rights reserved. No part of this publication may be reproduced, stored in a retrival system, or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior
permission, in writing, from SGS-THOMSON Microelectronics Limited.

SGS-THOMSON Microelectronics Limited

occam 2.1 REFERENCE MANUAL

©

v

ix

xi

1

3

5
5
6
7

9
9

11
13
14
15
19
24

25
25
26
27
30
31

35
35
36
39
39
42
43
44

45
45
45
45
47
54

Contents
Contents

Contents overview

Preface

Introduction

Syntax and program format

1 Primitive processes
1.1 Assignment
1.2 Communication
1.3 and

2 Constructed processes
2.1 Sequence
2.2 Conditional
2.3 Selection
2.4 loop
2.5 Parallel
2.6 Alternation
2.7 Processes

3 Data types
3.1 Primitive data types
3.2 Named data types
3.3 Literals
3.4 Array data types
3.5 Record data types

4 Variables and values
4.1 Declaring a variable
4.2 Array components and segments
4.3 Record fields
4.4 Scope of names
4.5 Abbreviation of variables
4.6 Abbreviation of values
4.7 Disjoint arrays in parallels

5 Channels and their protocols
5.1 Channel type
5.2 Declaring a channel
5.3 Arrays of channels
5.4 Channel protocol
5.5 Abbreviation of channels

SKIP STOP

WHILE

vi

57
58
59
65
66

69

75
75
76

81
81
81
82
82
83

85
85
86
87

89

91
91
91
92
92

93
93
94
94

96

98

99
99
99

100
100

101

Contents

6 Expressions
6.1 Tables and strings
6.2 Operations on values
6.3 Operations on types
6.4 Data type conversion

7 Procedures

8 Functions
8.1 Value processes
8.2 Functions

9 Timers
9.1 Timer type
9.2 Declaring a timer
9.3 Timer input
9.4 Timers in alternations
9.5 Timer abbreviation

10 Retyping and reshaping
10.1 Retyping variables and values
10.2 Retyping channels
10.3 Reshaping

Appendices

A Implementation dependent features
A.1 Compiler directives
A.2 Special keywords introducing language extensions
A.3 Target word size
A.4 Endianness

B Configuration
B.1 Execution on multiple processors
B.2 Execution priority on a single processor
B.3 Allocation to memory

C Ports

D Rounding errors

E Usage rules check list
E.1 Usage in parallel
E.2 The rules for abbreviations
E.3 The rules for procedures
E.4 The rules for value processes and functions

F Invalid processes

vii

102
102
103
103
105

106

116
116
117
117
118
119
119

120
122
128
129

130
130
130
131
131
131
131
132
132
132
133
133
133
134
134
134
135

136
136
137

138
139
139
139
140
140
141
141
141

Contents

G Lexical program components
G.1 Keywords
G.2 Symbols
G.3 Character set
G.4 Names and literals

H Ordered syntax of occam

I Library procedures and functions
I.1 Multiple length integer arithmetic functions
I.2 Floating point functions
I.3 Full IEEE arithmetic functions
I.4 Elementary function library
I.5 Value, string conversion procedures
I.6 Programming support routines

J Multiple length integer arithmetic functions
J.1 The integer arithmetic functions
J.2 Arithmetic shifts
J.3 Word rotation

K Floating point functions
K.1 Not-a-number values
K.2 Absolute
K.3 Square root
K.4 Test for Not-a-Number
K.5 Test for Not-a-Number or infinity
K.6 Scale by power of two
K.7 Return exponent of floating point number
K.8 Unpack floating point value
K.9 Negate
K.10 Copy sign
K.11 Next representable value
K.12 Test for orderability
K.13 Perform range reduction
K.14 Fast multiply by two
K.15 Fast divide by two
K.16 Round to floating point integer

L Full IEEE floating point arithmetic
L.1 ANSI/IEEE real arithmetic operations
L.2 ANSI/IEEE real comparison

M Elementary functions
M.1 Logarithm
M.2 Base 10 logarithm
M.3 Exponential
M.4 X to the power of Y
M.5 Sine
M.6 Cosine
M.7 Tangent
M.8 Arcsine

viii

142
142
142
143
143
143
144

145
145
146
146

148
148
148

149
149
149

151

155
155
155
156

Contents

M.9 Arccosine
M.10 Arctangent
M.11 Polar Angle
M.12 Hyperbolic sine
M.13 Hyperbolic cosine
M.14 Hyperbolic tangent
M.15 Pseudo-random numbers

N Value, string conversion routines
N.1 Integer, string conversions
N.2 Boolean, string conversion
N.3 Real, string conversion

O Programming support routines
O.1 Rescheduling the processor
O.2 Assertion checking

P Changes from occam 2
P.1 Language changes
P.2 Manual changes

Q Glossary of terms

R Occam Bibliography
R.1 Books
R.2 Conference Proceedings
R.3 Journals, etc

A few words about the language.
A few words about the book.
Describes the modified BNF used in syntax, and details
program format and annotation.

Describes the basic building blocks of pro-
grams.
Describes how smaller processes may be combined
into larger processes to make programs.
Describes data types of integers, bytes, booleans,
and reals and literal values of these types; also in-
troduces named types, arrays and records.
Describes how to declare and abbreviate variables,
values, arrays and records.
Describes channel types, detailing the declaration
of channels, and the definition of channel protocol
and communications conforming to it.
Describes expressions and tables in , arith-
metic and other operators, type conversions, etc.
Describes the method of defining names for

processes and their parameters and of calling
these procedures.
Describes value processes, and the naming of
value processes as functions and the use of func-
tions in expressions.
Describes timer types, detailing the declaration of
timers, timer input, and delayed input.
Describes how to reinterpret values and variables
as different types or reshaped arrays.

occam

occam

occam

oc-
cam

Contents overview

Primitive processes

Constructed processes

Data types

Variables and Values

Channels and their protocols

Expressions

Procedures

Functions

Timers

Retyping and reshaping

Preliminaries

Preface
Introduction
Syntax and program format

The chapters

1

2

3

4

5

6

7

8

9

10

x

Discusses compiler directives and language exten-
sions that an implementation may add and other
implementation dependent features.
Discusses the allocation of processes to individual
processors, how to give priority to processes run-
ning on a single processor, and how to place ele-
ments at absolute locations in memory.
Describes how to communicate with memory
mapped devices.
Describes the rounding modes of the ANSI/IEEE
standard.
A check list of the rules which apply to names used
in parallel processes and abbreviations.
Describes the three error modes for invalid pro-
cesses.
A complete list of the keywords, symbols and char-
acter set used in .
A complete list of the syntax. Each syn-
tactic category is presented in context, and also al-
phabetically.
Lists of the procedures and functions in standard
libraries.
Describes the routines available for multiple length
arithmetic.
Describes the routines available for floating point
operations.
Describes the routines available for floating point
operations.
Describes the routines in the elementary function
library.
Describes the routines to convert between values
and strings.
Describes routines to help the programmer
Enumerates principal language and manual
changes.
A glossary of terms used when describing .
A list of other books on .
A comprehensive index

occam
occam occam

occam
occam

occam
occam occam

Implementation dependent
features

Configuration

Ports

Rounding errors

Usage rules check list

Invalid processes

Lexical program components

Ordered syntax of

Library procedures and
functions
Multiple length integer
arithmetic functions
Floating point functions

Full IEEE arithmetic functions

Elementary functions

Value, string conversion
routines
Programming support routines
Changes from 2

Glossary of terms
bibliography

Contents overview

Appendices

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O
P

Q
R

THE INDEX

The programming language is designed to express concurrent algorithms and their implementation
on a network of processing components.

The 2.1 serves to provide a single reference and definition of the 2.1
language. The manual describes each aspect of the language, starting with the most primitive components
of an program, and moving on to cover the whole language in detail. The manual is addressed to
the wider audience, including not only the computer scientist, software engineer and programmer, but also
the electronics engineer and system designer. This manual describes the extended version of the language
called 2.1 which was defined in 1994; it has undergone extensive revision since the original
2 edition of the book published in 1988.

enables an application to be described as a collection of , where the processes execute
concurrently, and communicate with each other through . Each process in such an application
describes the behaviour of a particular aspect of the implementation, and each channel describes a connection
between two processes. This approach has two important consequences. Firstly, it gives the program a clearly
defined and simple structure. Secondly, it allows the application to exploit the performance of a system which
consists of many parts.

Concurrency and communication are the prime concepts of the model. captures the hier-
archical structure of a system by allowing an interconnected set of processes to be regarded as a unified,
single process. At any level of detail, the programmer is only concerned with a small, manageable set of
processes.

is an ideal introduction to a number of key methodologies in modern computer science.
programs can provide a degree of security unknown in conventional programming languages such as C,
FORTRAN or Pascal. semantics simplify the task of program verification, by allowing application
of mathematical proof techniques to prove the correctness of programs. Transformations, which convert a
process from one form to a directly equivalent form, can be applied to the source of an program to
improve its efficiency in any particular environment. makes an ideal language for specification and
behavioural description. programs are easily configured onto the hardware of a system or indeed,
may specify the hardware of a system.

has a minimalist approach which avoids unnecessary duplication of language mechanism, and is
named after the 14th century philosopher William of Occam who proposed that invented entities should not
be duplicated beyond necessity. This proposition has become known as “Occam’s razor”.

The programming language arises from the concepts founded by David May in EPL (Experimental
Programming Language) and Tony Hoare in CSP (Communicating Sequential Processes). Since its con-
ception in 1982 has been, and continues to be, under development at INMOS Limited, now SGS-
THOMSON Microelectronics Limited in the United Kingdom. The development of the INMOS transputer, a
family of devices which place one or more microcomputers on a single chip, has been closely related to

, its design and implementation. The transputer reflects the architectural model, and may be
considered an machine. However, this manual does not make any assumptions about the hardware
implementation of the language or the target system.

is a trademark of SGS-THOMSON Microelectronics.

occam

occam occam

occam

occam occam

occam

occam occam

occam occam

occam

occam
occam

occam

occam

occam

occam

occam occam
occam

occam

Preface

Reference Manual

processes
channels

A process A process
A channel

Combined
processes

This manual describes the programming language 2.1. 2.1 is an extension of 2
with new constructs to support named and structured data types. In particular, 2.1 has mechanisms
for the definition of such data types, for efficient access to their components and for the construction of literal
values of these types. Many other minor improvements to the 2 language described in earlier editions
of this manual have also been made in response to the comments of a wide community of users in many
countries. New features are not explicilty noted as such in the body of the manual, but are summarised in
appendix P.

The first edition of this manual was completed during 1986 and 1987 in parallel with the development of the
2 language at the INMOS Microcomputer Centre, Bristol, UK.

This revised edition was prepared in 1994 to support the work on language extensions to define 2.1
by INMOS Limited, now SGS-THOMSON Microelectronics Group Limited, at Bristol.

In the rest of this manual the name should be understood to mean the extended 2.1 language.
When necessary the previous version of the language will be explicitly referred to as 2.

This book is designed primarily to be used as a reference text for the programming language 2.1.
However, the manual should also serve as an introduction to the language for someone with a reasonable
understanding of programming languages. The primitive aspects of the language are presented at the start
of the manual, with as few forward references as possible. It is therefore possible to read the manual from
cover to cover, giving the reader an insight into the language as a whole. The manual is cross referenced
throughout, and a glossary of terms, a bibliography and a comprehensive index are provided at the end of
the manual.

Keywords and example program fragments appear in a throughout, for example:

Words which appear in often indicate a syntactic object, but may also serve to emphasise a need to cross
reference and encourage referral to the index. Mathematical symbols and names referring to mathematical
values use a .

Figure 0.1 Figure conventions

Figures are used in the chapter on constructed processes to illustrate examples. They use the following

occam occam occam
occam

occam

occam

occam

occam occam
occam

occam

Introduction

����� �����	
���

italic

Using this manual

bold program font

-- example program fragment
IF

occam
programming := easy

2

conventions: an arrowed line represents a , a round cornered box represents a (referred to
here as a), and a lighter coloured process box combines a number of smaller processes. The
conventions are illustrated in figure 0.1.

channel process
process box

Introduction

0

1

The syntax of programs is described in a simple metalanguage close to that known as Backus-Naur
Form (BNF) from its introduction by those authors in the definition of Algol60. Syntax is described in terms of
a set of each defining the meaning of a syntactic category (or) in terms of
a sequence composed of literal language elements () and further syntactic categories. The
names used for syntactic categories are made up of lower case letters and dots and are always printed in an

font. As an example, the following shows the syntax of the syntactic category , discussed
on page 5:

This means “An assignment is a followed by the symbol , followed by an ”.
Where two or more characters in appear adjacent in a production, e.g. or , they
comprise a or a . Symbols and keywords are lexical units and may not contain embedded
spaces (see appendix G).

A vertical bar () means “or”, so for example:

is the same as:

The meaning of this syntax is “A specification is a , a , or an ”.

The written structure of programs is specified by the syntax. Each statement in an program
normally occupies a single line, and the indentation of each statement forms an intrinsic part of the syntax of
the language. The following example shows the syntax for discussed on page 9:

The syntax here means “A sequence is the keyword followed by zero or more processes, each on a
separate line, and indented two spaces beyond ”. Instead of BNF’s recursive definitions, curly brackets

and are used to indicate that a syntactic object may occur a number of times. There are two styles.
means, “zero or more processes, each on a separate line”. , means “A list

of zero or more expressions, separated by commas”, and , means “A list of one or more
expressions, separated by commas”.

It is important to note that spaces at the start of a line are significant as they define the indentation which
determines program structure. After the first visible lexical unit, arbitrary numbers of additional spaces may
be added between units to improve readability. Leading spaces in groups of 8 may be replaced by TAB
characters.

Syntactic rules must always be considered in conjunction with relevant semantic rules which are given infor-
mally in words following each group of productions. For example the production above defining
is qualified by a semantic rule stating that the data types of the expression being assigned and of the variable
must be the same.

A complete summary of the lexical units and syntax of the language is given in appendices (starting on
page 102). This summary refers back to the pages where supporting semantic rules are given.

occam

occam occam

Syntax and program format

� �

� �
� � � �

� �

productions non-terminal symbol
terminal symbols

italic assignment

assignment variable expression

production variable expression

symbol keyword

specification definition
declaration
abbreviation

specification definition
specification declaration
specification abbreviation

definition declaration abbreviation

sequence

sequence
process

process expression
expression

assignment

Syntactic notation

�

�

�

�

�

�

:=

:=
program font := SEQ

|

|
|

SEQ

SEQ
SEQ

,
,

4

The syntax of presented in this manual includes definitions of some syntactic categories that may
be more conveniently handled by lexical analysis. An implementation is free to choose its own distinction
between lexical and syntactic analysis as long as the overall effect is to accept all programs
specified by this manual and to reject all illegal ones with appropriate error messages.

A long statement may be broken immediately after one of the following:

an operator e.g. etc.. (see page 58)
a comma
a semi-colon
assignment
one of the keywords , , , or

A statement can be broken over several lines providing the continuation is indented at least as much as the
first line of the statement.

As the format of programs is significant, there are a number of rules concerning how programs are
annotated. A comment is introduced by a double dash symbol (), and extends to the end of the line.
Consider the following sequence:

Comments may not be indented less than a legal following statement, i.e. a statement conforming the syntax
and the supporting semantic rules.

A sequence of three dots is used in this manual to indicate any source code whose contents
are not of importance to the reader at this point.

Names used in programs must begin with an alphabetic character. Names consist of a sequence
of alphanumeric characters and dots. There is no length restriction. is sensitive to the case of
names, e.g. is considered different from . With the exception of the names of channel protocols and
user-defined types, names in the examples presented in this manual are usually all lower case. However,
the following are all legal names in :

All keywords are upper case (e.g.), possibly with digits (e.g.). All keywords are reserved, and
thus may not be used by the programmer. A full list of the keywords appears on page 102. The names of
library routines are given in the appendix starting on page 116; these are not reserved but should only be
reused if new routines for the same purpose are being defined.

occam

occam

occam

occam

occam

occam

occam
occam

occam

legal

Syntax and program format

Continuation lines

The annotation of programs

Names and keywords used in programs

+, -, *, /, REM,
,
;
:=
FROM FOR IS RETYPES RESHAPES

--

SEQ
-- This example illustrates the use of comments
-- A comment may not be indented less than

-- the following statement
...
SEQ -- A sequence

...

...

Say say

PACKETS transputer
vector6 terminal.in
LinkOut terminalOut
NOT.A.NUMBER dotty..

SEQ REAL64

1

1

programs are built from processes. The simplest process in an program is an . An
action is either an , an or an . Consider the following example:

This simple example is an , which assigns the value of the expression to the variable .
The syntax of an assignment is:

The on the left of the assignment symbol () is assigned the value of the on the right
of the symbol. The value of the expression must be of the same as the variable to which it is to be
assigned; otherwise the assignment is not legal.

Variables are discussed on page 35, data types are discussed on page 25, and expressions on page 57.

A assigns values to several variables, as illustrated in the following example:

This assignment assigns the values of , and to the variables , and respectively. The
expressions on the right of the assignment are evaluated, and the assignments are then performed in parallel.
Consider the following example:

The effect of this multiple assignment is to swap the values of the variables and .

The syntax of multiple assignment extends the syntax for assignment:

A list of expressions appearing to the right of the assignment symbol () is evaluated in parallel, and then
each value is assigned (in parallel) to the corresponding variable of the list to the left of the symbol.

The expression on the right of the assignment symbol () may be a function instance, or a value process in
parentheses.

An instance of a function, or a value process, with multiple results can also be an expression list in a multiple
assignment. It may not be any combination of these three. Value processes and functions are discussed in
chapter 8 starting on page 75, where examples of such multiple assignments are given.

The rules which govern the names used in the variable list of a multiple assignment follow from those for
names used in parallel constructions (see page 16). Practically, this means that no variable may appear twice
on the left hand side of a multiple assignment, nor may any variable in a such a variable list also appear in
an expression (page 37) which selects a component from an array or defines a segment of an array used in
the variable list.

occam occam

1 Primitive processes

� �
� �

action
assignment input output

assignment

assignment variable expression

variable expression
data type

multiple assignment

assignment variable.list expression.list

variable.list variable

expression.list expression

1.1 Assignment

�

�

�

�

x := y + 2

y + 2 x

:=

:=

a, b, c := x, y + 1, z + 2

x y + 1 z + 2 a b c

x, y := y, x

x y

:=

,

,

:=

:=

6

Communication is an essential part of programming. Values are passed between concurrent pro-
cesses by communication on . Each channel provides unbuffered, unidirectional point-to-point com-
munication between two concurrent processes. The format and of communication on a channel is spec-
ified by a referenced in the of the channel. Channel protocols are discussed in
section 5.4, and channel declarations are discussed on page 45.

Two exist in which perform communication on a channel. They are: and .

An receives a value from a and assigns the received value to a . Consider the following
example:

This simple example receives a value from the channel named and assigns the value to the
variable . The input waits until a value is received.

The syntax of an input is:

An input receives a value from the channel on the left of the input symbol (), and assigns that value to the
variable on the right of the symbol. The value input must conform to the channel protocol and be of the same

as the variable to which it is assigned, otherwise the input is not legal. Variables are discussed on
page 35, and data types are discussed on page 25.

An transmits the value of an to a . Consider the following example:

This simple example transmits the value of the variable to the channel named . The output
waits until the value has been received by a corresponding input on the same channel.

The syntax of an output is:

An output transmits the value of the expression on the right of the output symbol () to the channel named
on the left of the symbol. The value output must conform to the channel protocol, otherwise the output is not
valid.

Variables are discussed on page 35 and expressions on page 57.

occam

occam

channels
type

channel protocol declaration

actions input output

input channel variable

input channel variable

data type

output expression channel

output channel expression

1 Primitive processes

1.2.1 Input

1.2.2 Output

1.2 Communication

�

�

keyboard ? char

keyboard
char

?

?

screen ! char

char screen

!

!

7

The primitive process starts, performs no action and terminates.

The primitive process starts, performs no action and never terminates.

To explain how behaves, consider the following (sequences are introduced on page 9):

This sequence executes the input , then executes , which performs no action. The
sequence continues, and the output is executed.

The behaviour of is illustrated by the following sequence:

This sequence performs the input as before, then executes , which starts but
does not terminate and so does not allow the sequence to continue. The output is never
executed.

programs which are syntactically legal (page 4) but for some reason or under some circumstances
are semantically are said to behave like the process (see also appendix F). The word
should normally be assumed to have this meaning in this manual. Note that all valid constructs are legal, but
that all legal constructs are not valid.

occam

sequence

invalid invalid

1.3 and

1.3 and

SKIP STOP

SKIP

STOP

SKIP

SEQ
keyboard ? char
SKIP
screen ! char

keyboard ? char SKIP
screen ! char

STOP

SEQ
keyboard ? char
STOP
screen ! char

keyboard ? char STOP
screen ! char

STOP

SKIP STOP

8 1 Primitive processes

programs are built from processes. Primitive processes are described in the previous chapter. Larger
processes are built by combining smaller processes in a . A construction builds a process of one
of the following kinds:

sequence
conditional
selection
loop

parallel
alternation

A sequential process is built by combining processes in a sequence, conditional or selection construction.
A loop is built by combining processes in a loop. Concurrent processes are built with parallel and
alternation constructions, and communicate by inputs and outputs using channels.

The constructions , , and can all be . A replicated construction the
constructed , or a specified number of times. The application of replication to each
of these constructions is given in the following sections.

A sequence combines processes into a construction in which one process follows another. Consider the
following example:

This process combines two processes which are performed sequentially. The input
receives a value which is assigned to the variable , then the following output is
performed.

Programs are built by constructing larger processes from smaller ones. Thus a construction may contain
other constructions, as shown in the following example:

This simple example combines five processes, and suggests how embedded sequences may be used to
show the hierarchical structure of a program. Embedding constructions of the same kind has no effect on the
behaviour of the process. This example is equivalent to the following:

The syntax for a sequence is:

occam

2 Constructed processes

� �

construction

replicated replicates
process choice alternative

sequence
process

2.1 Sequence

�

SEQ
IF
CASE
WHILE

PAR
ALT

WHILE

SEQ IF PAR ALT

SEQ
keyboard ? char
screen ! char

keyboard ? char
char screen ! char

SEQ
SEQ

screen ! ’?’
keyboard ? char

SEQ
screen ! char
screen ! cr
screen ! lf

SEQ
screen ! ’?’
keyboard ? char
screen ! char
screen ! cr
screen ! lf

SEQ

10

The keyword is followed by zero or more processes at an indentation of two spaces.

A sequence can be to produce a number of similar processes which are performed in sequence.
A replicated sequence is used for a counted loop in which the number of repetitions is known at the start of
the loop. This type of loop should be contrasted with the loop described below (page 14) which is
terminated only when a certain condition becomes false. Consider the following:

This example uses an ; arrays are explained later in the manual (page 30). The process performs the
output the number of times specified by the value of . The initial
value of the is the value of the base (in this case 0). The replication index is incremented
by 1 after each execution of the output. If has the value 2, the example can be expanded to
show the effect of the replication as follows:

Consider the following example in which the base value is 14:

This example may also be expanded to show the value of the index for each replication, as follows:

Arrays may also be communicated in a single output (see page 47).

The syntax for a replicated sequence extends the syntax for sequences:

The keyword and a replicator are followed by a process which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index (i.e. the name does
not need to be declared elsewhere). The value of the index for the first replication is the value of the
expression, and the number of times the process is replicated is the value of the expression at the
start of the sequence.

The index may be used in expressions but cannot be changed by an input or assignment. The index has a
value of . The base and count expressions must also be of data type . Data types (page 25)
are explained later in the the manual. If the count expression has a negative value the process is .
See appendix F, page 101 for an explanation of how behave. If the value of the count
expression is zero, the replicated sequence behaves like the primitive process (page 7) and does
nothing.

replicated

array

replication index

sequence replicator
process

replicator name base count
base expression

count expression

base
count

type
invalid

invalid processes

2 Constructed processes

2.1.1 Replicated sequence

�

�

�

�

SEQ

WHILE

SEQ i = 0 FOR array.size
stream ! data.array[i]

stream ! data.array[i] array.size
i

array.size

SEQ
stream ! data.array[0]
stream ! data.array[1]

SEQ i = 14 FOR 2
stream ! data.array[i]

SEQ
stream ! data.array[14]
stream ! data.array[15]

SEQ

= FOR

SEQ
SEQ

INT INT

SKIP

11

A conditional combines a number of processes each of which is guarded by a boolean expression. The
conditional evaluates the boolean expressions in sequence; if a boolean expression is found to be true the
associated process is performed, and the conditional terminates. If none of the boolean expressions is true
the conditional behaves like the primitive process (page 7), for example:

Consider this example in detail: if is true, the associated process is performed, however
if the expression is false, the next boolean expression is evaluated. If is true, then
the associated process is performed. In this example, one of the boolean expressions must be true.
However, consider the next example:

This conditional has a single component. If the expression is false then the conditional will behave
like the primitive process (page 7). It is often convenient to use a form of conditional where the final
choice is guaranteed to be performed, as illustrated by the following example:

The expressions and will each be either true or false. The final expression uses the boolean
constant which is always true, and acts as a catch-all which causes the associated process to be per-
formed if none of the previous boolean expressions is true. In this context may be read as “otherwise”.

The syntax for a conditional is:

The keyword is followed by zero or more choices, indented two spaces. A choice is either a
choice or another conditional. A guarded choice is a boolean expression followed by a process, indented two
spaces.

A choice which is itself a conditional has the same behaviour if “expanded” in a similar way to the embedded
sequences shown earlier (page 9). Consider the following example:

� �
conditional

choice

choice guarded.choice
conditional

guarded.choice boolean
process

boolean expression

guarded

2.2 Conditional

2.2 Conditional

�

�

�

�

STOP

IF
x < y

x := x + 1
x >= y

SKIP

x < y x := x + 1
x < y x >= y x >= y

SKIP

IF
x < y

x := x + 1

x < y
STOP

IF
x > y

order := gt
x < y

order := lt
TRUE

order := eq

x > y x < y
TRUE

TRUE

IF

|

IF

IF
IF

x > y
x := x + 1

TRUE
SKIP

12

This has the same effect as:

Boolean expressions (page 63) are discussed later in the manual.

A conditional may also be replicated, just as a sequence may (page 10). A replicated conditional constructs a
number of similar choices. In a replicated conditional each choice may be guarded by a boolean expression
involving the replication index. The following example compares the two strings and :

The first choice in this example is a replicated conditional. This has created a number of similar choices each
guarded by a boolean expression comparing components of the array and the array . The
replication may be expanded to show its meaning. If has the value 2, this example has the same
effect as:

The syntax for the replicated conditional is:

The keyword and a replicator are followed by a choice which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index. The value of the index
for the first replication is the value of the expression, and the number of times the choice is replicated
is the value of the expression.

The index may be used in expressions but cannot be changed by an input or assignment. The index has a
value of . The base and count expressions must also be of data type . Data types (page 25)
are explained later in the manual. If the count expression has a negative value the process is . See
appendix F, page 101 for an explanation of how behave. If the value of the count expression
is zero, the replicated conditional behaves like a conditional with no true conditions.

or

conditional replicator
choice

replicator name base count
base expression

count expression

base
count

type
invalid

invalid processes

2 Constructed processes

2.2.1 Replicated conditional

�

�

�

�

IF
x > y

x := x + 1
TRUE

SKIP

string object

IF
IF i = 1 FOR length

string[i] <> object[i]
found := FALSE

TRUE
found := TRUE

string object
length

IF
IF

string[1] <> object[1]
found := FALSE

string[2] <> object[2]
found := FALSE

TRUE
found := TRUE

IF
string[1] <> object[1]

found := FALSE
string[2] <> object[2]

found := FALSE
TRUE

found := TRUE

IF

= FOR

IF
IF

INT INT

1

13

A selection combines a number of , one of which is selected by matching the value of a
with the value of a constant expression (called a) associated with the option. Consider the
following example:

In this example the value of is compared to the value of the case expressions and . If
has a value equal to then is performed; if has a value equal to

then is performed; however if no match is found, the selection behaves like the primitive
process (page 7). Several case expressions may be associated with a single option, for example:

If has the value , , , , or , then the variable is assigned the value ,
otherwise the selection behaves like the primitive process . Here it is useful to use a special form of
selection where one of the is guaranteed to be performed, as illustrated below:

The process associated with in a selection will be performed if none of the case expressions match the
selector.

The syntax for a selection is:

The keyword is followed by a expression and then by zero or more , indented two
spaces. An option starts with either a list of case expressions or the keyword . This is followed by a
process, indented two spaces. All case expressions used in a selection must have distinct constant values
(i.e. each must be a different value from the other expressions used). The selector and the case expressions
must be the same data type, which may be either an integer, byte or boolean data type. A selection can
have only one option.

Constant case expressions may be given a name in an (page 43). Data types (page 25) and
expressions (page 57) are also discussed later.

� �
� �

options selector
case expression

options

selection selector
option

option case.expression
process

process

selector expression

case.expression expression

selector options

abbreviation

2.3 Selection

2.3 Selection

�

�

�

�

CASE direction
up

x := x + 1
down

x := x - 1

direction up down
direction up x := x + 1 direction
down x := x - 1

STOP

CASE letter
’a’, ’e’, ’i’, ’o’, ’u’

vowel := TRUE

letter ’a’ ’e’ ’i’ ’o’ ’u’ vowel TRUE
STOP

CASE letter
’a’, ’e’, ’i’, ’o’, ’u’

vowel := TRUE
ELSE

vowel := FALSE

ELSE

CASE

,

| ELSE

CASE
ELSE

ELSE

14

A loop repeats a process while an associated is true. Consider the following
example:

This loop repeatedly copies a value from the channel to the channel . The copying continues while
the boolean expression is true. The sequence is not performed if the boolean expression
is initially false.

To further illustrate how processes combine, consider the following process:

This example searches the array for a character (). Note how the process is built from primitive
processes and constructions. In fact this kind of bounded search is better written using a replicated conditional
(page 12) as follows:

The syntax for a loop is:

The keyword and a boolean expression are followed by a process which is indented two spaces. The
boolean expression appears to the right of the keyword .

boolean expression

loop boolean
process

boolean expression

2 Constructed processes

2.4 loop

�

�

WHILE

WHILE buffer <> eof
SEQ

in ? buffer
out ! buffer

in out
buffer <> eof

SEQ
-- initialise variables
pointer := 0
finished := FALSE
found := FALSE
-- search until found or end of string
WHILE NOT finished

IF
string[pointer] <> char

IF
pointer < end.of.string

pointer := pointer + 1
pointer = end.of.string

finished := TRUE
string[pointer] = char

SEQ
found := TRUE
finished := TRUE

string char

IF
IF i = 0 FOR string.size

string[i] = char
found := TRUE

TRUE
found := FALSE

WHILE

WHILE
WHILE

WHILE

editor

ed.to.screen screen

keyboardkbd.to.ed

15

A parallel combines a number of processes which are performed concurrently. Consider the following exam-
ple:

This parallel combines instances of three named processes (known as procedures, page 69), which are
performed together. They start together and the parallel terminates when all three combined processes have
terminated. The editor and keyboard process communicate using channel ; the screen and editor
communicate using channel .

Figure 2.1 Communicating concurrent processes

Values are passed between concurrent processes by communication on (page 45) using input
and output (page 6). Each channel provides unbuffered unidirectional point-to-point communication between
two concurrent processes. Figure 2.1 illustrates the channels connecting the three processes in the above
example.

The example above shows the parallel being used to tie together the major components of a system. However,
a parallel may also be used simply to allow communication and computation to proceed together, as in the
following example:

The parallel in this example inputs the next value to be processed from one channel while the previous value
is being processed and used in an output on another.

The syntax of a parallel is similar to that of a sequence:

The keyword is followed by zero or more processes at an indentation of two spaces.

Note that changing the order of the processes combined in a parallel does not change the effect of that parallel.
Parallels may be nested to form the hierarchical structure of a program. The behaviour of the following process

� �

channels

parallel
process

2.5 Parallel

2.5 Parallel

�

PAR
keyboard (kbd.to.ed)
editor (kbd.to.ed, ed.to.screen)
screen (ed.to.screen)

kbd.to.ed
ed.to.screen

WHILE next <> eof
SEQ

x := next
PAR

in ? next
out ! x * x

PAR

PAR

16

is the same as the earlier example, and is reflected in the use of nested boxes in Figure 2.1:

Writing a parallel like this helps later in program development when a program must be to its
environment (when its processes are allocated to physical processors). See appendix B.

A parallel construction which specifies a priority of execution on a single processing device able to perform
several tasks (i.e. a multi-tasking processor) is described in appendix B.2.1, page 94.

In variables and channels used in parallels are subject to usage rules which prevent them from being
accidentally shared between processes in potentially dangerous ways.

Parallel processes which share channels (page 45) and variables (page 35) can be subtly dependent on the
way in which parallel composition is implemented. For instance, a variable which is written by one process
and read by another depends upon the scheduling of the processes to ensure that the variable is not read
before it has been written. The scheduling can be affected by events outside the control of the processes
and can differ between implementations. This means that errors in the program can become apparent on
rare occasions and are therefore difficult to repeat. The following usage rules ensure that such errors cannot
happen.

Variables which are changed by input or assignment in one of the processes of a parallel may not be used in
expressions or for assignment in any other process in the parallel. A variable may appear in expressions in
any number of components of a parallel so long as it is not assigned in any parallel component. The following
process, for example, is INVALID:

This process is invalid because it assigns to the variable in the assignment in the first
component of the parallel and also in the input in the second component.

A channel may not be used for input in more than one component of a parallel and may not be used for
output in more than one other component of the parallel. The following process, for example, is INVALID:

This process is invalid because it uses the channel for output in more than one parallel component.

A check list of the usage rules which apply to parallel processes is given in appendix E.

A parallel can be replicated, in the same way as sequences and conditionals described earlier. A replicated
parallel constructs a number of similar concurrent processes, as shown in the following example:

occam

configured

2 Constructed processes

2.5.1 Restrictions on parallel use of variables and channels

2.5.2 Replicated parallel

PAR
editor (kbd.to.ed, ed.to.screen)
PAR

keyboard (kbd.to.ed)
screen (ed.to.screen)

PAR -- this parallel is INVALID!
SEQ

mice := 42 -- the variable mice is assigned . .
c ! 42

c ? mice -- . . in more than one parallel component

mice mice := 42
c ? mice

PAR -- this parallel is INVALID!
c ! 0 -- the channel c is used for output . .
SEQ

c ? x
c ? y

c ! 1 -- . . in more than one parallel component

c

PAR i = 3 FOR 4
user[i] ! message

farmer worker

PAR i = 0 FOR 4

(0)
worker
(1)

worker
(2)

worker
(3)

17

This replication performs the four outputs concurrently, and is equivalent to

Now consider the following example:

Figure 2.2 A farm of parallel processes

The replicated parallel in this example starts 4 processes, each an instance of the procedure , and
terminates when all four processes are finished. Figure 2.2 shows the structure of this process, which is
elaborated upon in the following section. Implementations of usually require that, unlike in sequence
and conditional replications, the value (here 4) must be constant. The procedure takes a
single (page 69), for each (page 69) of the procedure the value of the index is passed.
Expanding the replication shows that the above example is equivalent to the following:

The syntax of a replicated parallel is similar to that of the replicated sequence shown earlier in the manual:

The keyword and a replicator are followed by a process, indented two spaces. The replicator appears
to the right of the keyword . The replicator specifies a name for the index. The value of the index for the

occam
count

parameter instance

parallel replicator
process

replicator name base count
base expression

count expression

2.5 Parallel

�

�

�

�

PAR
user[3] ! message
user[4] ! message
user[5] ! message
user[6] ! message

PAR
farmer ()
PAR i = 0 FOR 4

worker (i)

worker

worker
i

PAR
farmer ()
PAR

worker (0)
worker (1)
worker (2)
worker (3)

PAR

= FOR

PAR
PAR

18

first replication is the value of the base expression, and the number of times the process is replicated is the
value of the count expression.

The index may be used in expressions but cannot be changed by an input or assignment. The index has a
value of . The base and count expressions must also be of data type . Data types (page 25)
are explained later in the manual. If the count expression has a negative value the process is .
See appendix F, page 101, for an explanation of how behave. If the value of the count
expression is zero, the replicated parallel behaves like the primitive process (page 7) and does nothing.

type
invalid

invalid processes

2 Constructed processes

INT INT

SKIP

left ? packet

right ? packet

left

right

stream
stream ! packet

ALT

19

An alternation combines a number of processes, only one of which is executed. Each of the combined
processes is guarded by a guard which may or may not be ready to proceed. Examples of such guards are
inputs on channels and delayed inputs on timer channels (page 82). The alternation performs the process
associated with a guard which is ready. Consider the following example:

The effect of this process, if used in a loop, would be to merge the input from the two channels and
, on to the channel . The alternation (illustrated in figure 2.3) receives an input from either

channel or channel . A ready input is selected, and the associated process is performed. An
input is ready if a process running in parallel has executed the corresponding output on the same channel
and is unable to proceed until this communication has completed. Consider this example in detail. If the
channel is ready, and the channel is not ready, then the input is selected. If
the channel is ready, and the channel is not ready, then the input is selected.
If neither channel is ready then the alternation waits until an input becomes ready. If both inputs are ready,
only one of the inputs and its associated process are performed; the language does not define which one.

Figure 2.3 Merging the flow of data

A boolean expression may be included in a guard of an alternation to selectively exclude guards from being
considered ready, as shown in the following example:

This alternation places the (page 35) before the first input using the op-
erator. If is true, the input is included for consideration by the alternation. If

boolean variable

2.6 Alternation

2.6 Alternation

ALT
left ? packet

stream ! packet
right ? packet

stream ! packet

left
right stream

left right

left right left ? packet
right left right ? packet

ALT
left.enabled & left ? packet

stream ! packet
right ? packet

stream ! packet

left.enabled &
left.enabled left.enabled

farmer

regulator
to.workers

from.workers

generator

gen.to.regreg.to.gen

20

is false, the input is excluded. To clarify this behaviour, consider the following example:

Figure 2.4 Regulating the flow of data

This is an example (part of the farmer process first illustrated in figure 2.2 and fully illustrated in figure 2.4)
of a process which regulates the flow of work into a processor . A processor farm can be thought of as
a number of machines (), each able to perform some task and output a result. The above
example controls the amount of work (as packets of data) given to a farm which consists of a network of
worker processes. Work may be received by the input , but is only accepted if a
worker is idle (i.e.). As a packet of work is sent to the farm, the counter is decremented
to indicate the number of worker processes which are idle. The worker processes are sent work on the
channel (see figure 2.4), and the variable is decremented to keep a count of the idle
machines in the farm.

farm
worker processes

2 Constructed processes

-- Regulator:
-- regulate flow of work into a networked farm
SEQ

idle := processors
WHILE running

ALT
from.workers ? result

SEQ
reg.to.gen ! result
idle := idle + 1

(idle >= 1) & gen.to.reg ? packet
SEQ

to.workers ! packet
idle := idle - 1

gen.to.reg ? packet
(idle >= 1) idle

to.workers idle

21

The syntax for alternation is:

The keyword is followed by zero or more , indented two spaces. An alternative is either a
alternative or another alternation. A guarded alternative is a followed by a process on the

following line undented two spaces. A guard is an input, or a boolean expression to the left of an ampersand
() with an input or on the right. can take the place of an input in a guard which includes a
boolean expression, as shown in the following example:

If the boolean is true then is treated as though it where a ready input, and may be selected
immediately. If the input is also ready, only one of the processes is performed; which process
will be performed is undefined.

An alternation with no component alternatives behaves as .

Alternation with priority selection is explained on page 23. , explained on page 82, will delay
before they become ready, and may be used in guards wherever an input may be used.

Inputs (page 6) and (page 7) are discussed in chapter 1. Expressions (page 57) are discussed later in
the manual. Details of boolean expressions are given on page 63.

An alternation can be replicated in the same way as sequences, conditionals and parallels described earlier
in the manual. A replicated alternation constructs a number of similar alternatives. The alternation performs
a single process which is associated with a ready guard. Consider the following example:

This example presents an alternate version of the process discussed in the previous section and is
illustrated in figure 2.5. This version also regulates the flow of work into the farm, but does so by maintaining an
array of booleans () which indicate when a worker is busy. This version of the farmer process
is most suitable where several worker processes in the farm are able to input directly from the process.

� �
alternation

alternative

alternative guarded.alternative
alternation

guarded.alternative guard
process

guard input
boolean input
boolean

alternatives
guarded guard

Delayed inputs

2.6 Alternation

2.6.1 Replicated alternation

�

�

�

�

ALT

|

| &

| & SKIP

ALT

& SKIP SKIP

ALT
in ? data

out ! data
monday & SKIP

out ! no.data

monday SKIP
in ? data

STOP

SKIP

ALT
ALT i = 0 FOR number.of.workers

free.worker[i] & gen.to.reg ? packet
SEQ

to.workers[i] ! packet
free.worker[i] := FALSE

ALT i = 0 FOR number.of.workers
from.workers[i] ? result

SEQ
reg.to.gen ! result
free.worker[i] := TRUE

farmer

free.worker

ALT i = 0 FOR 2

to.workers[0]

from.workers[0]

gen.to.reg

ALT i = 0 FOR 2
reg.to.gen

to.workers[1]

from.workers[1]

ALT

22

Figure 2.5 A tree structured farm of parallel processes

Work packets are input on the channel and distributed to an array of worker processes. The
completed result is returned to the farmer process via the channels . Consider first the upper
half of this alternation. Each alternative is guarded by a boolean (which has the value true
if the worker process is idle), and an input which inputs packets of work. A selected
component of this replication will, after completing the input of a packet, perform the output

(i.e. pass work to an idle worker process), and then set the boolean to false,
indicating the worker is no longer idle.

Now consider the lower half of this example, which handles the results returning from worker processes.
Each component of the replication is guarded by an input which receives
results from a worker process. A selected component of this replication will, after completing the input from
the worker process, perform the output (i.e. pass the result back to the generator
process which sent the work), and reset the boolean to true to indicate the worker is now idle.

A number of these farmer processes in parallel can form a tree of worker processes (see figure 2.5), enabling
large and effective farms to be built.

2 Constructed processes

gen.to.reg
from.workers

free.worker[i]
gen.to.reg ? packet

to.workers[i]
! packet free.worker[i]

from.workers[i] ? result

reg.to.gen ! result
free.worker

23

If has the value 2, the example has the same effect as:

As for the earlier descriptions of replication, the value of the index for the first replication is the value of the
base expression, and the number of replications is the value of the count expression. The syntax for the
replicated alternation is:

The keyword and a replicator are followed by an alternative which is indented two spaces. The replicator
appears to the right of the keyword . The replicator specifies a name for the index.

The index may be used in expressions but cannot be changed by an input or assignment. The index has a
value of . The base and count expressions must also be of data type . Data types (page 25)
are explained later in the manual. If the count expression has a negative value the process is . See
appendix F, page 101 for an explanation of how behave. If the value of the count expression
is zero, the replicated alternation behaves like an alternation with no alternatives that can proceed.

The inputs which guard alternatives in an alternation may be given a selection priority. Priority is determined
by textual order, the alternative appearing first having the highest priority for selection. Consider the following
example:

This priority alternation will input values from the channel in preference to inputs from the channel
. If both channels and become ready then will be selected as it has the

highest priority.

alternation replicator
alternative

replicator name base count
base expression

count expression

type
invalid

invalid processes

2.6 Alternation

2.6.2 Priority alternation

�

�

�

�

number.of.workers

ALT
ALT

free.worker[0] & gen.to.reg ? packet
SEQ

to.workers[0] ! packet
free.worker[0] := FALSE

free.worker[1] & gen.to.reg ? packet
SEQ

to.workers[1] ! packet
free.worker[1] := FALSE

ALT
from.workers[0] ? result

SEQ
reg.to.gen ! result
free.worker[0] := TRUE

from.workers[1] ? result
SEQ

reg.to.gen ! result
free.worker[1] := TRUE

ALT

= FOR

ALT
ALT

INT INT

PRI ALT
disk ? block

d ()
keyboard ? char

k ()

disk
keyboard disk keyboard disk

24

Consider the following example:

This process inputs if an input from is ready, and performs the process . Otherwise if the
boolean is true the process is performed.

An alternative guarded by is always ready and so can only usefully appear within a priority
alternation after all other alternatives.

The syntax for priority alternation is:

The keywords are followed by zero or more alternatives at an indentation of two spaces. The
alternative may be replicated.

The constructs introduced in this chapter and the previous chapter are all kinds of process. The following
tabulation presents the syntax of an process. This syntax is extended in later chapters where further
kinds of process are introduced, (see pages 41, 52 and 73):

occam

� �
alternation

alternative
replicator

alternative

process assignment
input
output

sequence
conditional
selection
loop
parallel
alternation

2 Constructed processes

2.7 Processes

�

�

PRI ALT
stream ? data

P ()
busy & SKIP

Q ()

data stream P
busy Q

TRUE & SKIP

PRI ALT

| PRI ALT

PRI ALT

|

|

| SKIP
| STOP
|

|
|
|

|

|

31 31

63 63

(127)

126

(1023)

1022

programs act upon , and . A variable has a value, and may be assigned a
value in an or . Channels communicate values. Timers produce a value which represents
time.

This chapter describes the of values and variables and literal representations of known values.
Channels are discussed on page 45, and timers are discussed on page 81.

Values are classified by their . A data type determines the set of values that may be taken by
objects of that type and the set of operators which may be applied to objects of that type.

These are the primitive data types built into :

Boolean values true and false. A boolean type.

Integer values from 0 to 255. A byte type.

Signed integer values represented in twos complement form using the word size most effi-
ciently provided by the implementation. An integer type.

Signed integer values in the range 32768 to 32767, represented in twos complement form
using 16 bits. An integer type.

Signed integer values in the range 2 to (2 1), represented in twos complement form
using 32 bits. An integer type.

Signed integer values in the range 2 to (2 1), represented in twos complement form
using 64 bits. An integer type.

Floating point numbers stored using a sign bit, 8 bit exponent and 23 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. A real type. The magnitude of the value is:

(2) 1 if 0 and 255
(2) 0 if = 0 and = 0
0 if = 0 and = 0

Floating point numbers stored using a sign bit, 11 bit exponent and 52 bit fraction in ANSI/IEEE
Standard 754-1985 representation. The value is positive if the sign bit is 0, negative if the
sign bit is 1. A real type. The magnitude of the value is:

(2) 1 if 0 and 2047
(2) 0 if = 0 and = 0
0 if = 0 and = 0

As the above list shows, all signed integer values are represented in twos complement form using the number
of bits indicated by the type. All real values are represented according to the representation specified by the
ANSI/IEEE standard 754-1985, for binary floating-point arithmetic.

A primitive type is either a real type, an integer type, a byte type or a boolean type. These properties of types
determine which operators may legally be applied to them, except in the cases where an operator is defined
to apply to an operand of only one type such as .

occam

occam

3 Data types

��������

��������

�

�

�

�

�
��	���� � ������ ������ �
�
��	���� ������
��	����

������
��	����

�
��	���� � ������ ������ �
�
��	���� ������
��	����

������
��	����

�

� �

� �

�
� �

�
� �

variables channels timers
assignment input

data type

data type

3.1 Primitive data types

BOOL

BYTE

INT

INT16

INT32

INT64

REAL32

REAL64

INT

26

Objects which have values in have one of the following forms:

Literals Textual representation of known values
Constants Symbolic names which have a constant value
Variables Symbolic names which have a value, and may receive a new value by input or assignment
Index Replication index value

A literal is a known value (, , , , etc). A variable has a value of a specified type, and may
receive a new value in an input or assignment. Names with a constant value are specified by an
(page 43). (page 57) and (page 75) also have a data type and value. The name
specified as the index of a replication has a different value for each component of the replication.

The syntax of primitive data types is:

An accepted limitation in the use of floating point representations of real values is that only a finite set of
all possible real values can be represented, thus any real value will be rounded to produce a result which
is the nearest value that can be represented by the type. For example, where the type is , the next
representable value after 1 0 is the value 1 000000119209 (to the nearest 12 digits past the decimal point),
any value lying between 1 0 and this value cannot be exactly represented using the representation of type

. Thus, values which do lie between 1 0 and 1 00000019209 which are of type must be
to one of these values.

The rounding of real numbers occurs in arithmetic expression evaluation (page 57), in explicit
(page 66), and also when literals are converted to the IEEE representation. An explanation of the IEEE
rounding modes is given in the appendix (page 98).

In addition to the primitive data types built into the language it is possible to define new data types derived
from these. Each derived type has a name introduced in its . These derived types include
array types (page 30) and record types (page 31). This section describes how to define new types which
have the same values as existing data types.

Consider the definition:

This creates new types called and with the same properties as the type .

Named data types might be used in a context in which many different sorts of variable all have the same
primitive data type representation. For instance, by defining a type and an type, the type
checking system can be used to ensure that a length is not assigned to an area, or that an area is not passed
to a procedure where a length is expected.

occam

� �
�

� �

abbreviation
Expressions functions

data.type

rounded

type conversions

type definition

3 Data types

Rounding of real values

3.2 Named data types

�

1 2 ’H’ 1.0E+6

BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64

REAL32

REAL32 REAL32

DATA TYPE LENGTH IS REAL32 :
DATA TYPE AREA IS REAL32 :

LENGTH REAL REAL32

LENGTH AREA

27

Named types may also be used for type abstraction. If a fragment of code defining a computation using
floating point arithmetic may be used in programs where arithmetic of different precision may be required,
then one of the definitions:

may be used, followed by code which uses only the named type .

Any legal name may be used to name a data type, but it may be desirable to adopt the convention
that type names do not use lower case letters. Such conventions are merely to improve readability of code.

The syntax of named types is:

The data type which is defined may be referred to by its name. Two named data types are only equal when
their references are equal. For example, in:

the types of and are the same, but the type of is different. In:

the types of and are different because, although the representation of the name of each type is the same,
the two type definitions introduce different types.

Any named type derived directly or indirectly by its definition from a primitive type is either a real type, an
integer type, a byte type or a boolean type.

By following a chain of one or more type definitions it is possible to determine the type of any
named type.

A literal is a textual representation of a known value, and has a data type. For example, the following are all
legal literals:

an integer literal in decimal
an integer literal in hexadecimal
a byte literal
a boolean literal

A number (e.g.) representing a decimal value, or a hexadecimal value introduced by the hash symbol (),
is an integer of type . A character enclosed within a pair of quotation marks () has a value of type

.

Literal values of other types may be expressed by decorating the textual representation of the value with the

occam

definition name data.type

data.type name

underlying

eg

3.3 Literals

3.3 Literals

�

�

DATA TYPE REAL IS REAL64 :
DATA TYPE REAL IS REAL32 :

REAL

DATA TYPE IS :

DATA TYPE MONEY IS INT64 :
MONEY a, b :
INT64 c :

a b c

DATA TYPE MONEY IS INT64 :
MONEY a :
DATA TYPE MONEY IS INT64 :
MONEY b :

a b

42
#2A
’T’
TRUE

42 #
INT ’z’

BYTE

24

24

28

data type in parentheses, for example:

a byte value
an integer value
an integer value with 64 bit representation
a 32 bit floating point value
a 64 bit floating point value
a value of a user-defined type
a 64 bit floating point value
a 64 bit floating point value
a 32 bit floating point value

The exponent of a literal should have no more than 2 digits, and the exponent of a literal no
more than 3 digits. All real number literals must be explicitly decorated with their data type in parentheses
after the real number unless the rules in section 3.3.2 allow the decoration to be omitted. A literal of type

or or a named type derived from one of these will be rounded (page 26) when the value is
converted into the representation of the type. The effect of this rounding can be seen particularly in the last
example shown here. The value 16777216 0 is 2 and can be represented precisely in the representation
of 32-bit real numbers with a fraction of 23 bits. However, the value 16777217 0 is (2 + 1) and cannot be
represented precisely in this representation, and will round to the value 16777216 0. The nearest unique
value of a conversion of a literal of type can be determined from the first 9 significant digits, and
from the first 17 significant digits of a literal of type . For example:

has a nearest representable value of 54321766400 0
also has a nearest representable value of 54321766400 0

An explanation of the IEEE rounding is given in the appendix (page 98).

The syntax for literals is:

The data type which may appear in parentheses after a literal constant is called a . A decoration
of a real literal must be a real data type. A decoration of an integer or byte must be an integer or byte type of
size appropriate to the value of the literal. A compiler performs any arithmetic to the precision required by the
type and may reject literals which produce values which overflow. Only literal constants may be decorated
and the decoration serves to inform the compiler of the type of constant value to be created. Type conversion,
which may be applied between arbitrary values of most data types, uses type names as operators and is
described elsewhere (page 66).

�
�

�

�
�

literal integer
byte
real
integer data.type
byte data.type
real data.type

integer digits
hex.digits

byte character
real digits digits

digits digits exponent

exponent digits
digits

decoration

3 Data types

�

�

�

�

�

42(BYTE)
’T’(INT)
42(INT64)
42.0(REAL32)
386.54(REAL64)
1760.0(LENGTH) REAL
587.0E-20(REAL64)
+1.0E+123(REAL64)
16777217.0(REAL32)

REAL32 REAL64

REAL32 REAL64

REAL32
REAL64

54321765439.54(REAL32)
54321765400.00(REAL32)

|

|
| ()

| ()

| ()

| TRUE
| FALSE

| #

’ ’

.

| . E

+

| -

29

The syntactic category represents a sequence of one or more of the characters and
a sequence of one or more of the characters . Literals of the types

and may not contain any embedded spaces.

All characters are coded according to their ASCII code. The character , for example, has a value 65, and
so on. A table of the ASCII character set is given in appendix G (page 103). A character enclosed in a pair
of quotes (e.g.) is a byte value, unless explicitly stated otherwise by decoration with an integer data type
in parentheses to the right of the enclosing quotes.

The literals and represent the boolean values true and false respectively.

Literals of a named type derived from a primitive data type are denoted in the same way as literals of the
underlying type except that they are decorated with the name of the new type. For example:

The rules for rounding literals of the new type are the same as those for the underlying type so that if the
underlying type is then the nearest representable value of this literal is 54321766400 0.

In many expressions the explicit data type decoration is superfluous as a compiler can easily discover the
intended type of the literal from the context.

The rules defining when a decoration may be omitted are governed by the principle that where only one
possible type decoration would create a legal occam expression then the decoration may be omitted.

The rules are shown below. Some of these rules refer to language features not yet mentioned in this manual.
However it is appropriate to include this subsection in the section describing literals. In any case where there
is doubt as to whether a decoration may be omitted it is always safe to leave the decoration in.

A type decoration may be omitted when there is only one decoration which would satisfy all the type checks
performed by the compiler. In the following circumstances contextual information is used to deduce type:

Inside a single expression.

In this context, no information about expression types is passed either ‘into’ or ‘out of’ a value process
(page 75).

Expressions in process constructs where only one data type is permitted are assumed to have that
type:

Array size (page 31) and subscript (page 37) expressions must be of type .

Base and count expressions of replicators (page 10) and segments (page 37) must be of
type .

Guards of conditional processes (page 11), expressions following (page 14), and
boolean guards of alternatives (page 21)), must be of type .

Shift counts (page 62) must be of type .

In an assignment (page 5) or output (page 6) the types of the expressions are inferred from the
types of the variables or the protocol of the channel.

In value abbreviations (page 44), the type of the expression is inferred from the specifier of the
abbreviation. This rule also applies to the actual parameters of functions and procedures.

In a selection (page 13) the types of the constant case expressions are inferred from type of

�

�

�

�

�

�

digits
hex.digits integer

real

3.3 Literals

3.3.1 Literals of named types

3.3.2 Omitting type decorations from literals

–

–

–

–

0123456789
0123456789ABCDEF

A

’T’

TRUE FALSE

54321765439.54(LENGTH)

REAL32

INT

INT

WHILE
BOOL

INT

CASE

30

the selector.

Inside a record literal (page 32) the type of each expression is inferred from the context of the literal,
together with any optional decoration.

Inside a table construct (page 59) the type of each expression is inferred from the context of the
table and the types of any other components of the table, together with any optional decoration.

In the list of a function (page 78) The types of expressions are inferred from the return
type(s) of the function.

The following code fragments are legal for the reasons shown:

Examples of undecorated literals in record literals and tables are given on pages 32 and 58.

An array has a number of consecutively numbered components of the same type which are stored contiguously
in memory. Arrays of channels and timers are discussed in chapters 5 and 9. Array data types are non-
primitive data types. Such array types may be named in type definitions (page 26). An example of an array
type is:

Arrays of this type have components each of type . The components are numbered 0, 1, 2, 3, 4. Arrays
may have further dimensions specified by adding the size of the dimension, enclosed in square brackets, to
the type. The following is an array type with two dimensions:

An array of this type has four components each of type . Equally, an array of type
is an array with three components of type , and so on. In this way, arrays with any number of
dimensions may be constructed. The type named after the dimension(s) of an array is called the
of the array. The base type of a data type array may be any primitive or named data type.

In theory there is no limit to the number of dimensions an array type may have. In practice however, arrays
of data type require memory, both in the compiler and at run time, and an implementation may impose limits.
Here are some more array types:

a byte array with components
a three dimensional array of values of type
an array with boolean components.

�

�

�

base type

3 Data types

3.4 Array data types

RESULT

1(INT32) + 10 -- operands of + must be the same

CHAN OF INT32 c :
c ! 4 -- 4 must conform to the protocol of c

REAL32 x :
x := 2.0 -- value assigned to x must be REAL32

VAL BYTE ESC IS 13 : -- 13 must match specifier BYTE

INT reply:
CASE reply

’Y’ -- ’Y’ must match type of reply
...

REAL32 FUNCTION pi() IS 3.14159 : -- result must match function type

[5]INT

INT

[4][5]INT

[5]INT [3][4][5]INT
[4][5]INT

[n]BYTE n
[3][3][3]LENGTH LENGTH
[50]BOOL

1

31

These examples show the definition of named types which are arrays:

The size of each dimension in an array declaration must be specified by a value of type , and be a value
greater than zero. Two arrays are considered to have the same type if they have the same number and type
of components. The value of an array is the ordered set of values of its components. An array may receive a
new value by input or assignment. An input or assignment to an array is legal only if the value to be assigned
is of the same type as the array.

The syntax for array data types is:

The syntax shows that any type can be preceded by a value given as an expression in square brackets to
denote an array of that base type. The value specifies the number of components in the array and must
must be a constant of type . The syntax is defined recursively showing how multidimensional arrays are
defined as arrays of arrays, as illustrated in the examples above.

The declaration of variables of named and unnamed array data types is discussed on page 35. The con-
struction of values of array types is discussed on page 58.

The previous sections have shown how to use primitive and array data types. This section shows how record
data types may be defined and used.

A record has a number of fields, each of which is of a data type. Records are used to gather together
components of data which make a logical unit. For instance, the real and imaginary components of a complex
number form a logical unit:

This definition creates a new type named . It is a record type with two fields of type
named and .

The declaration of variables of record types and the accessing of fields of such records by subscripting record
names with field names is discussed in the next chapter (page 35).

The syntax of record types is:

A structured data type definition consists of the keywords followed by a name and, indented
by two spaces on the following line, a structured type. A structured type consists of the keyword
followed by one or more on succeeding lines indented two spaces. Although a record with
no fields is permitted by the syntax, it is not useful as there are no values of records of such a type. Each
field declaration consists of a primitive or named data type followed by a comma separated list of field names.
Fields of named array or record data types may be defined.

� � � �

data.type expression data.type

definition name
structured.type

structured.type
data.type field.name

field.name name

field declarations

3.5 Record data types

3.5 Record data types

�

�

�

�

DATA TYPE DOSFNAME IS [12]BYTE : -- a filename for MSDOS
DATA TYPE MATRIX3 IS [3][3]REAL32 : -- a 3 * 3 matrix

INT

[]

INT

DATA TYPE COMPLEX32
RECORD

REAL32 real :
REAL32 imag :

:

COMPLEX32 REAL32
real imag

DATA TYPE

:

RECORD
, :

DATA TYPE
RECORD

1

1

32

The same field name may be used in the definition of more than one record type. A field name may also be
the same as a name defined in any other specification in the scope. Consider:

In this example, both kettles and heaters have a power field. The field refers to the second field of
variables or values of type and to the first field of variables or values of type . The name

is used both for a field and for a variable.

The types of the fields of a record may be any primitive or named types or arrays of such types. Consider:

The fields of this record are respectively a named record type, an array of bytes and a primitive integer type.

A literal representation of a record gives values for each field and the name of the type. Consider:

This is a literal with data type (defined above). The value of the field is and
the value of the field is . The association of field values with fields is strictly by position
with reference to the record data type definition. An implementation may reorder the fields of a record in the
computer’s memory for efficiency of storage or access. The type decoration in parentheses may be omitted
in contexts where it may be inferred by the rules on page 29.

Syntactically a record literal is a table and this syntax is based on that of tables of array data type (page 58):

The name used to decorate a record literal must be the name of a record data type. The expressions in a
record literal must have the type of the corresponding field in the type definition. For instance, a record literal
of type must have two expressions, the first of type and the second of type .
The will itself be a record literal constructed from two expressions of type . For example:

� �
� �

table expression name
expression

3 Data types

3.5.1 Record literals

�

DATA TYPE VOLUME IS REAL32 :
DATA TYPE RECTANGLE

RECORD
INT height, width :

:
DATA TYPE KETTLE

RECORD
REAL32 power :
VOLUME capacity :

:
DATA TYPE HEATER

RECORD
RECTANGLE size :
REAL32 power :

:
INT height :

power
HEATER KETTLE

height

DATA TYPE DIRENTRY
RECORD

DOSFNAME fname :
[4]BYTE access :
INT32 loc :

:

[0.0(REAL32),1.0(REAL32)](COMPLEX32)

COMPLEX32 real 0.0(REAL32)
imag 1.0(REAL32)

[,]()

| [,]

HEATER RECTANGLE REAL64
RECTANGLE INT

[[550, 1000](RECTANGLE),750.0](HEATER)
[[200,500],250.5] -- in a context where the type may be inferred

1

33

It may be desirable to use record structures to map onto data formats defined by hardware or software outside
the programmer’s control. Redundant copying or unpacking of such data structures may often be avoided by
treating them as arrays of bytes or integers for communication and then accessing the data by as
defined on page 85. Retyping into a record type enables efficient access to fields within the data.

In these circumstances it is possible for the programmer to inhibit the compiler’s freedom to choose how
fields of a record are set out in memory. This is achieved by putting the keyword in front of the word

in the data type definition.

An implementation may impose restrictions on the alignment of fields of particular types on boundaries defined
by the target machine architecture (see page 92). In the absence of the compiler is free to reorder
the fields of a record and insert implicit padding fields when mapping the type on to the target machine’s
memory. In a packed record the fields are mapped onto memory strictly in the order of declaration with no
implicit padding. Explicit padding fields may need to be inserted to avoid alignment problems.

Using the keyword guarantees that fields will be assigned positions in order of declaration. A compiler
may reject a packed record type definition which cannot be implemented without insertion of padding bytes
in order to meet alignment requirements. Programs using are therefore potentially non-portable.

The syntax of packed record types is:

It is possible to use information derived by the compiler concerning the size and position of records and their
fields. This uses the keywords and , see page 65. Values created in this way may be
implementation dependent.

� � � �

retyping

structured.type
data.type field.name

3.5 Record data types

3.5.2 Packed records

�

PACKED
RECORD

PACKED

PACKED

PACKED

PACKED RECORD
, :

BYTESIN OFFSETOF

34 3 Data types

1

programs act upon and communicate using and . A variable has a value,
and may receive a new value in an or . Channels communicate values. Timers produce a
value which represents the time.

This chapter describes variables, the declaration of names for variables and values, and their scope.

Channels (page 45) and timers (page 81) are discussed elsewhere in the manual.

The declaration of a variable associates its name with its data type. Consider the following example:

This declaration introduces an integer variable with the name and of the data type . The variable is
not initialised, and therefore the value of the variable is unspecified until it receives a value by an input or
assignment. An assignment or input to a variable is valid only if the value to be assigned is of the same data
type as the variable. Here is a sequence of variable declarations:

Variables of named types are declared in the same way as variables of any of the primitive or array data
types. For instance, using data types introduced in the previous chapter:

The syntax for the declaration and use of variables of any data type is :

A variable declaration consists of the data type, and a name to identify the variable. The declaration appears
on a single line, and is terminated by a colon. The name introduced by a declaration may then be used to
represent the variable in its scope (page 39). The compiler will allocate memory for a variable and translate
uses of the name into uses of the memory allocated.

Where a number of variables of the same type need to be declared, permits a single declaration for
several names in a comma separated list, as shown in the following example:

The type of the declaration is determined, and then the declarations are performed. The compiler is not
constrained to allocate consecutive memory locations to such variables. This declaration is equivalent to the
following sequence of declarations:

occam

occam

4 Variables and values

� �

variables channels timers
assignment input

declaration data.type name

variable name

4.1 Declaring a variable

�

�

INT n :

n INT

BOOL flag :
BYTE char :
INT64 big :
REAL32 x :
[5]INT fingers :

LENGTH width :
COMPLEX32 z :
DOSFNAME autoexec :
RECTANGLE rect1 :
DIRENTRY ent1 :

, :

REAL64 a, b, c :

REAL64 a :
REAL64 b :
REAL64 c :

36

The variable names specified in a multiple declaration are separated by commas. A line break is permitted
after a comma. Here are a few more multiple declarations:

The declaration of an array follows the same form as other declarations, for example:

The declaration of introduces an integer array with five components.

The declaration of an array with multiple dimensions is similar to other declarations, as shown in the following
example:

The declaration of introduces a 4 by 5 array of integers. The declaration of introduces a variable
of type which was defined above (page 31) to be a 3 by 3 array of real numbers. Note that it is
optional to name an array data type, but that a record can only be declared with a named type defined in a
previous data type definition in whose scope the record is declared.

Here are a few more examples of array declarations:

Several arrays of the same type can be declared together, for example:

In all declarations the type of the declarations is determined, and then the declarations are performed. This is
especially important in the declaration of arrays as it is important to know that the size of the array is computed
once only and cannot use variables declared within the declaration. Consider the following declaration:

This declaration introduces two new array variables, and . The size of the arrays is deter-
mined by the value , which is evaluated before the declarations are performed and therefore refers to
a variable already in scope when the declaration is performed. See the discussion of scope below (page 39).

Individual components of an array may be selected by subscripting. A segment of an array is a sub-array
comprising a sequence of consecutively subscripted components.

A subscripted name selects a component of an array. Suppose , and are declared as follows:

4 Variables and values

4.2 Array components and segments

BOOL flag, switch :
INT16 i, j, k :
REAL64 x, y :
INT64 chains,

more.chains :
COMPLEX32 u, v, w :
KETTLE k1, k2 :

[5]INT x :

x

[4][5]INT bigx :
MATRIX3 rot :

bigx rot
MATRIX3

[4]BOOL flag :
[xsize][ysize]REAL64 matrix :
[3][3][3]INT16 cube :
[100]LENGTH histogram :
[256]DOSFNAME directory :
[20]HEATER heating.installation :

[users]INT id, privilege :

[forms]INT forms, teachers :

forms teachers
forms

clock sf data

[9]INT clock :
DOSFNAME sf :
[8][9][10]REAL32 data :

37

Consider these examples:

the second component of the array , of type .
the first component of a dimension of , of type .
the first component of another dimension of , of type .
the th component of , of type .

A subscript appears in square brackets after the name of an array. The component selected has one
dimension less than its type for each subscript. A subscript must be an expression of integer type .
A subscript is valid only if the value of the expression is within the bounds of the array. A negative value
subscript is always invalid and the value of a subscript must be in the range 0 to (1), where is the
number of components in the array.

The syntax of array components is:

The simplest subscripted variable is a name followed by a single subscript expression (which must be a value
of type) in square brackets to the right of the name. This is itself a variable and may also be followed by
another subscript in square brackets, and so on, limited only by the number of dimensions in the array. Note
that this syntax is also used for the selection of a field from a record (page 39) in which case the expression
in square brackets can only be a name which is a field name.

A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

the first two components of , of type
the first components of ,
of type .
six components of the array from ,
of type .
an “empty” segment,
of type .
a sub-array of , of type .
same as above if and is an array of 12 bytes.

A segment of an array has the same number of dimensions as the array, and always defines a set of
contiguously stored components. A segment with zero components can only be used in an assignment, in a
counted array communication (page 48), or as the right hand side of an abbreviation (page 42).

Short forms of segment may be used if the segment starts at the first component of the array or finishes with
the last component. The segment denotes the first components of the array . It is
equivalent to . The segment denotes the components of
starting with and continuing to the end of the array. In the scope of the above declarations it is
equivalent to .

The syntax of segments is:

The syntax is defined recursively, and shows how more complex variables can be built. A segment begins
with a square bracket, followed on the right by a variable. This may be followed by the keyword and a
base, which is a value of type , indicating the first component of the segment. This in turn may be followed

� ��

variable variable expression

variable variable base count
variable base
variable count

4.2 Array components and segments

�

�

clock[1] clock INT
data[0] data [9][10]REAL32
data[i][0] data [10]REAL32
sf[dotpos] dotpos+1 sf BYTE

INT

[]

INT

[clock FROM 0 FOR 2] clock [2]INT

[data FOR n] n data

[n][9][10]REAL32

[data FROM n FOR 6] data n

[6][9][10]REAL32

[data FROM m FOR 0]

[0][9][10]REAL32

[sf FROM dotpos FOR 4] sf [4]BYTE

[sf FROM dotpos] dotpos = 8 sf

[data FOR n] n data
[data FROM 0 FOR n] [data FROM 4] data
data[4]
[data FROM 4 FOR 4]

[FROM FOR]
| [FROM]
| [FOR]

FROM
INT

38

by the keyword and a count, which is a value of type which specifies the number of components in
the segment. or , but not both may be omitted.

Line breaks are permitted immediately after the keyword and the keyword . The segment is valid
only if the value of the count is not negative, and does not violate the bounds of the array. That is (+)
must not exceed the size of the array. Here is another example to consider:

This complex looking segment selects the first five components of a variable which is itself a segment, it is
in fact equivalent to provided 5. Segments may also be subscripted, for example:

The subscript in this example selects component number 3 from the segment which starts at and
continues to the last component of ; so it is equivalent to .

An assignment to a variable selected by a subscript is an assignment to that component of the array, and
has no effect on any other component in the array. Consider the following example:

The effect of an assignment to an array or a segment of an array, is to assign to each component the value
of the corresponding component of the expression. Assignment to a segment of a variable which is an array,
is not valid if a component of the expression is also a component of the array to which it is to be assigned.
Thus, the following assignment is not valid:

Both these segments share the component , but in different positions, so that the meaning could depend
on the order in which an implementation causes the component assignments to be performed. However an
assignment which assigns a segment of an array to itself is not invalid as it must always be implemented to
have no effect whatsoever.

The combined effect of an input and output, in parallel processes on the same channel, of an array or a
segment of an array is equivalent to an assignment from the outputting process to the inputting process.
Consider the following example:

This is a valid assignment, and has the same effect as the following:

Also consider the following assignment of to , where both are arrays of type :

This assignment assigns each component of the array to each respective component of the array , and
has the same effect as the following communication:

Assignment is discussed earlier on page 5, input and output are also described earlier on page 6. See the
appendix (page 101) to discover how invalid processes behave.

��� 	����

�

base count

4 Variables and values

FOR INT
FROM FOR

FROM FOR

[[c FROM j FOR i] FOR 5]

[c FROM j FOR 5] i

[x FROM n][3]

x[n]
x x [n + 3]

x[3] := 42

[x FROM 6 FOR 6] := [x FROM 8 FOR 6] -- INVALID!

x[8]

[x FOR 10] := [y FOR 10]

PAR
c ! [y FOR 10]
c ? [x FOR 10]

v1 v2 [12]INT

v1 := v2

v2 v1

PAR
c ! v1
c ? v2

39

As has been seen in example declarations above, variables of a record type such as are declared
in the same way as variables of any other named type. Consider:

This declaration introduces a variable, , of type . This variable may be assigned and communi-
cated in the same way as a variable of a primitive or array data type.

Fields of a record are selected by subscripting the name of the record variable or value of a record literal with
a field name in square brackets. The fields and may be used like ordinary variables in
expressions, assignments and communications, in fact in any context where a variable or value of that type
may be used. A field that is itself an array or another record may in turn be further subscripted appropriately.

Here are some examples of record fields:

field of record of type
field of record of type

field of record literal
field of field of array component
component of array that is a field
segment of array that is a field

Note in particular the way that field selection has the form of array subscripting, but is distinguishable by the
compiler which notes the use of a record name being subscripted and a field name as a subscript.

As the selection of a field from a record is syntactically indistinguishable from the subscripting of an array,
there is no need for a separate definition of this syntax. The syntax of array subscripting was given in the
preceding section (page 37). When the variable being subscripted is a record, then the subscript must be
one of the field names declared in the definition of the type of the record.

Earlier sections have explained the declaration of names for variables. This section explains the of a
name, which is the region of the program in which the name may legally be used.

Later chapters of the manual show how to declare other sorts of name, for instance:

A name in denotes one of the following:

page 26 page 43
page 31 page 54
page 35 page 69
page 10 page 78
page 45 page 81
page 48 page 83
page 49 page 85
page 42 page 88

We have considered the declaration of variables and the definition of data types. Declarations and definitions
are examples of . A specification specifies the meaning of one or more names and the scope
of those names is the scope of the specification.

occam

scope

Data Type Value abbreviation
Field Channel abbreviation
Variable Procedure
Replication index Function
Channel Timer
Protocol Timer abbreviation
Tag Retypes
Variable abbreviation Reshapes

specifications

4.3 Record fields

4.3 Record fields

4.4 Scope of names

COMPLEX32

COMPLEX32 z :

z COMPLEX32

z[real] z[imag]

k1[power] REAL32 KETTLE
rect1[height] INT RECTANGLE
[COS(pi/6.0), SIN(pi/6.0)](COMPLEX32)[imag]
heating.installation[i][size][width]
ent1[access][2]
[ent1[fname] FROM 8]

CHAN OF BYTE c :

PROC add.to (INT x, y)
x := x + y

:

40

The syntax of specifications is:

A specification is a declaration, an abbreviation (e.g. a variable abbreviation, page 42) or a definition (e.g. a
protocol definition, page 47).

All specifications are terminated by a colon. The scope of a specification begins at the start of the line
following the colon. A specification may appear immediately before a process, choice (in an), option (in a

), alternative (in an), variant (in a case input or an), or value process (See page 75).
Any name specified is then in scope for that process, choice, option, alternative, variant or value process.

The scope of a name can be seen by the level of program indentation. The scope of a name starts on the
line following the colon which terminates its specification. The scope includes any other specifications which
may immediately follow at the same level of indentation and any further following lines at greater levels of
indentation. The scope of a specification concludes when the level of indentation returns to the same level
as, or a lesser level than, the original specification.

The following example shows the scope of two declarations of variables and :

This example increments if it is less than the value specified by . The scope associated with the variable
in this example begins at the declaration of earlier in the program.

The association of a name with any particular scope is either or A local name is specified at the
start of the scope under consideration, or the name is of local association as are and in the
above example. A free name is specified at an outer level of scope (as for in the above example) which
includes the scope under consideration, as is in the above example.

Generally all names within a scope in are distinct. That is, a name may only have one meaning
within any scope. This rule is modified for names of record fields (page 32) or protocol tags (page 53) which
may be reused in the same scope as they can always be associated with a particular data type or protocol
definition.

occam

specification declaration
abbreviation
definition

functions

local free
free

4 Variables and values

�
|
|

IF
CASE ALT ALT

min max

SEQ
INT max : -- specify max
INT min : -- scope of max -- specify min
SEQ -- -- scope of min

c ? max -- --
c ? min -- --
IF -- --

p < max -- --
p := p + 1 -- --

p = max -- --
p := min -- --

SEQ
...

p max
p p

max min
p

p

41

The following syntax shows where a specification may occur:

A specification is in scope within any immediately following specifications, as shown by the recursion in the
productions above.

In most cases, if a specification is performed which uses an existing name then the new meaning supersedes
the old meaning for the duration of the scope of the new specification. This effect is called .

The only exceptions to this rule are for names of record fields (page 31) and protocol tags (page 49). These
names may be reused in the same scope without hiding as they can always be associated with a particular
data type or protocol definition. Examples of such use are given on pages 32 and 53.

The hiding of names is illustrated by the following example:

The declaration of the in the above example has the effect of hiding the earlier use of the name
for the duration of its scope.

Because of this hiding rule, all names (except record fields and protocol tags) within a scope are distinct.

Consider the following declaration, which illustrates the use of the same name with more than one meaning
in a single line:

The two names refer to completely different objects. The scope of the new name being declared as an
array does not begin until after the colon, and so the name which is used in the array size expression must
be an constant with the same name which was already in scope before the declaration.

Keywords may not be redefined in specifications. Such names are said to be , and an implementation
may extend the list of reserved words beyond those defined in this manual (page 102). By convention no
names containing lower case letters are ever reserved. An implementation may also introduce further names
of routines, which may be respecified by the programmer.

process specification
process

choice specification
choice

option specification
option

alternative specification
alternative

variant specification
variant

value.process specification
value.process

hiding

reserved

library

4.4 Scope of names

�

�

�

�

�

�

INT x : -- integer variable x
SEQ -- scope of INT x

dm ? x --
ALT --

REAL32 x : -- REAL32 x hides INT x
rs ? x -- scope of REAL32 x

... --
dm ? y --

... --
... --

REAL32 x
x

[n+1]INT n:

n n
n

INT

42

A variable abbreviation specifies a new name for a variable. Consider

This abbreviation specifies the name as the new name for . Also, consider the following example:

This abbreviation specifies the name for a component of the array . All subscript expressions
used in an abbreviation must be valid. The type of the abbreviated variable must be the same as the data type
specified, so in this example, has to be an array of . Other components of the array may
be used only in abbreviations within the scope (page 39) of , but they must not include the component

. Here are some more examples of abbreviations:

specifies a new name for
specifies a name for a component of the array
specifies a name for a segment of
specifies the used part of an array

An abbreviation simply provides a name to identify an existing variable. The name in the above example
identifies the existing variable . In the scope of the abbreviation, is an assignment to the original
variable . A variable used in a subscript to select a component or components of an array may not be
assigned to within the of the abbreviation. For example, no assignment or input can be made to
within the scope of . As a result the abbreviation always refers to the same variable throughout its scope.
This allows various optimisations to be performed, such as evaluating any expression within the abbreviated
variable only once. The original variable may not be used within the scope of the abbreviation .

The abbreviation of as a leading sub-array of a previously declared array of the same name is a
common device for allocating an array whose size is the upper bound of possible sizes and then only using
part of it in a particular scope.

The specifier can usually be omitted from an abbreviation, as the type can be inferred from the type of the
variable. A specifier with one or more empty dimensions defines the abbreviation as being any array
with components of the specified type. The type of an array on the right hand side of an abbreviation whose
specifier has an empty dimension is said to be with the specifier.

Where an abbreviation is of a component of an array no other reference may be made to any other part of
that array, except in a further abbreviation. Consider the following example:

Also consider the following example:

scope

type

compatible

4 Variables and values

4.5 Abbreviation of variables

INT n IS m :

n m

INT user IS lines[8] :

user lines

lines INT lines
user

lines[8]

x IS y : x y
INT c IS a[i] : a
[]REAL32 s IS [a FROM 8 FOR n] : a
[]BYTE fname IS [fname FOR len] :

c
a[i] c := e

a[i]
i

c

a[i] c

fname

[]

[60][72]INT page :
...

first.line IS page[0] :
last.line IS page[59] :
SEQ

first.line := last.line
last.line := page[58] -- This assignment is INVALID!
...
next.to.last.line IS page[58] : -- This abbreviation is valid
last.line := next.to.last.line -- and so too, this assignment
...

WHILE i < limit
this.line IS page[i] :
next.line IS page[i+1] :
SEQ

this.line := next.line
...
i := i + 1 -- this assignment is INVALID!

43

The assignment in the above example is invalid as is used to select components of the array in an
abbreviation within the scope of the assignment. This is how the above should be written:

It is important to ensure that all the components of an array remain identified by a single name within any
given . Identification of any component of an array by more than one name constitutes an invalid usage
of the component, and it is especially important to be aware of this of when abbreviating components of an
array. Once any component of an array is abbreviated then reference to other components of the array must
be made by further abbreviation. Checks are made to ensure that two abbreviations which identify segments
from the same array do not overlap. When necessary a compiler may generate code to perform this check
at run time. Further discussion on abbreviation is given in the chapter on procedures (page 69).

The syntax for abbreviations of variables is:

The abbreviation of a variable begins with an optional specifier, specifying a data type. The name specified
appears to the right of the optional specifier followed by the keyword , the abbreviated variable appears to
the right of the keyword . The line on which the abbreviation occurs may be broken after the keyword
or at some legal point in the variable. The type of the variable must be the same as the data type specified.

The last section described variable abbreviations. This section describes abbreviations of values. Consider
the example:

This abbreviation specifies the name for the value 7. This construct is always used in occam
for named constants. Here are some more abbreviations for values:

specifies a name for the current value of an expression
specifies a name for the current value of the variable

specifies a name for a table of values

The abbreviated value must be a valid expression, so it must not overflow, and all subscripts must be in range.
Variables used in an abbreviated expression may not receive new values by input or assignment within the

(page 39) of the abbreviation. This ensures that the value of the expression remains constant for the
scope of the abbreviation. For example, in the following abbreviation

no assignment or input may be made to , , or within the scope of this abbreviation defining . The effect
of the abbreviation may be obtained by replacing each occurrence of in its scope by the abbreviated value

. Similarly for the following abbreviation of the value

scope

abbreviation specifier name variable
name variable

specifier data.type
specifier
expression specifier

scope

4.6 Abbreviation of values

4.6 Abbreviation of values

�

�

i page

WHILE i < limit
SEQ

this.line IS page[i] :
next.line IS page[i+1] :
SEQ

this.line := next.line
...

i := i + 1

IS :

| IS :

| []

| []

IS
IS IS

VAL INT days.in.week IS 7 :

days.in.week

VAL REAL32 y IS (m * x) + c :
VAL INT n IS m : m
VAL []BYTE vowels IS
[’a’, ’e’, ’i’, ’o’, ’u’] :

VAL REAL32 y IS (m * x) + c :

m x c y
y

((m * x) + c) [screen FROM line FOR length]

VAL []INT scan IS [screen FROM line FOR length] :

44

no assignment or input may be made to , or within the scope of . The effect of
the abbreviation is the same as each instance of being replaced by the abbreviated value, thus

is equivalent to

The syntax for abbreviations of values is:

The abbreviation of a value begins with the keyword . An optional specifier (which specifies the data type
of the abbreviation) appears to the right of , followed by the name, and the keyword . The abbreviated
value appears to the right of the keyword . Line breaks are permitted after the keyword . The type of
the value must be compatible with the specifier. The specifier can usually be omitted from the abbreviation,
as the type can be inferred from the type of the value. An important exception to this is if the value is an
undecorated literal constant. The following will be treated as equivalent by the compiler:

The choice between these is a matter for individual preference.

Abbreviations may be used to decompose an array into a number of disjoint parts, so that each part may
have a unique name in all or several processes in parallel. Components of each disjoint part may then be
selected by a variable subscript (a subscript whose value is dependent on a procedure parameter, a variable,
or a replicator index whose base or count is not a constant value), for example:

This example divides the array into two parts, and provides a name for those parts in each of the two
parallel processes. These parts may then be selected by using variable subscripts.

abbreviation specifier name expression
name expression

4 Variables and values

4.7 Disjoint arrays in parallels

�

screen line length scan
scan

VAL []INT scan IS [screen FROM line FOR length] :
SEQ

row := scan
...

SEQ
row := [screen FROM line FOR length]
VAL []INT scan IS [screen FROM line FOR length] :
...

VAL IS :

| VAL IS :

VAL
VAL IS
IS IS

VAL REAL32 pi IS 3.14159(REAL32) :
VAL pi IS 3.14159(REAL32) :
VAL REAL32 pi IS 3.14159 :

frame1 IS [page FROM 0 FOR 512] :
frame2 IS [page FROM 512 FOR 512] :
PAR

INT i :
SEQ

...
c1 ? frame1[i]
...

INT j :
SEQ

...
c2 ? frame2[j]
...

page

1

programs act upon , and communicate using and . A variable has a value,
and may receive a new value in an or . Channels communicate values. Timers produce a
value which represents time.

This chapter describes communication channels, their declaration, the specification of the format and data
type of communications, and the construction of arrays of channels.

Variables (page 25) and timers (page 81) are discussed elsewhere in the manual.

A Communication channel provides unbuffered, unidirectional point-to-point communication of values between
two concurrent processes, which are components of a parallel or of constructions which are themselves
components of a parallel. The format and type of values passed on a channel is specified by the channel

. The name and protocol of a channel are specified in a channel declaration.

The type of a channel is:

The keyword is always followed by the keyword which is followed by a protocol according to syntax
elaborated below (page 47). Channel types cannot be named, but protocols can.

A channel is declared in the same way as variables are declared. Consider the following example:

This declaration introduces a channel named with a protocol of type . The protocol in this
example specifies that each communication on this channel must be a value of type . An output on this
channel could be:

Several channels with the same protocol can be declared together, for example:

The type of the declarations is determined, and then the declarations are made.

The syntax of channel declarations is:

A channel declaration consists of the channel type, and a comma separated list of names to identify the
channels. The declaration appears on a single line, which may be split after any comma, and is terminated
by a colon.

Arrays of channels can be declared in the same way as arrays of variables (see page 36). The following, for
example, declares an array of channels:

occam

5 Channels and their protocols

� �

variables channels timers
assignment input

protocol

channel.type protocol

declaration channel.type name

channel name

5.1 Channel type

5.2 Declaring a channel

5.3 Arrays of channels

�

�

�

CHAN OF

CHAN OF

CHAN OF BYTE screen :

screen BYTE
BYTE

screen ! ’H’

CHAN OF BYTE screen, keyboard :
CHAN OF INT from.a, from.b, from.c :

, :

[4]CHAN OF BYTE screens :

46

This declaration introduces an array of four channels.

Multidimensional arrays of channels are built in the same way as multidimensional arrays of variables, for
example:

There is a subtle semantic distinction to be made between an array of data type and an array of channels.
An array of variables is itself a variable, as it may receive a new value by assignment or input. However, an
array of channels is not itself a channel, as only single components of the array may be used in input/output,
but a means of referencing a number of distinct channels identified by consecutive subscripts. This distinction
is not made in the description of the syntax of channels.

Several arrays of the same type can be declared together. Consider the following example:

The type of the declarations is determined, and then the declarations are made.

The syntax of channel types is extended with:

A channel type may be preceded by an expression in square brackets. The value of the expression must be
a constant and is the number of components in arrays of the channel type.

Components and segments of channel arrays are denoted in the same way as components and segments
of variable arrays.

Subscripted names select a component of an array. Suppose is declared as follows:

Consider the example:

the tenth component of the array , of type .

A segment of an array is itself an array. The segment has zero or more components, as shown in the
following examples:

the tenth component of the array ,
of type .
the tenth, eleventh and twelfth components of the array ,
of type .

A segment of an array has the same number of dimensions as the array.

The syntax is:

This syntax matches exactly the corresponding syntax for variables (page 37).

channel.type expression channel.type

channel channel expression
channel base count
channel base
channel count

5 Channels and their protocols

5.3.1 Channel array components and segments

�

�

screens

[5][5]CHAN OF PACKETS node :

[users]CHAN OF BYTE screen, keyboard :

[]

user.in

[12]CHAN OF MESSAGES user.in :

user.in[9] user.in CHAN OF MESSAGES

[user.in FROM 9 FOR 1] user.in

[1]CHAN OF MESSAGES

[user.in FROM 9] user.in

[3]CHAN OF MESSAGES

[]

| [FROM FOR]
| [FROM]
| [FOR]

1

1

In occam 2, the count was input first and the parallel assignment rules did not apply. Some occam 2 programs are invalidated by
the new rule and implementors may provide a compiler option to accept programs written assuming the old definition.

47

A channel communicates values between two concurrent processes. The format and data type of these
values is specified by the channel protocol. The channel protocol is specified when the channel is declared.
Each input and output must be compatible with the protocol of the channel used. Channel protocols enable
the compiler to check the usage of channels, and to ensure the same effect whether the sending or the
receiving process is ready to communicate first.

The simplest protocols consist of a data type. Examples of channels with byte and integer protocols have
already been given. A protocol with an array or record type can be declared in the same way, for example,
using types declared in chapter 3:

The first declaration introduces a channel with a byte array protocol which is identified by the name .
The protocol of this channel specifies that each communication on the channel consists of a byte array with
36 components. The second declaration declares to be a channel on which are communicated file
names of type , defined on page 31 to be arrays of 12 bytes. The third declaration declares a
channel for communicating complex numbers, each constructed as a record of type (page 31).

The following outputs use these channels:

The variable in the third example must be an array of 12 bytes of type . Note that in
the fourth example it would be possible to omit the type decoration because the type of the
record can be inferred from the type of the protocol.

It is often desirable to have a channel that will pass arrays of values, where the number of components in
the array is not known until the output occurs. A special protocol, called a protocol, enables
this kind of array communication by passing a length and that number of components from the array. A
declaration for such a channel looks like this:

This declaration introduces a channel which passes an integer value and that number of components from
the array. An output on this channel will look like this:

This has the effect of outputting the integer and then the string , the first bytes
of the array. The associated input could look like this:

This input receives an integer value (in this example), which is assigned to the variable , and that
number of components, which are assigned to components of the array starting at . The
assignments to and happen in parallel and therefore the same rules apply as for parallel as-
signment. That is, no name appearing to the left of may be used in the array variable on its right and

. The input is invalid if the number of components in the destination array is less than the count value
input to .

counted array

vice
versa

5.4 Channel protocol

5.4.1 Simple protocols

Counted array protocols

5.4 Channel protocol

CHAN OF [36]BYTE message : -- explicit array type
CHAN OF DOSFNAME fdir : -- named array type
CHAN OF COMPLEX32 imp : -- named record type

message

fdir
DOSFNAME

COMPLEX32

message ! "The vorpal blade went snicker-snack."
fdir ! "AUTOEXEC.BAT"(DOSFNAME)
fdir ! sourcename
imp ! [cosx, sinx](COMPLEX32)

sourcename DOSFNAME
(COMPLEX32)

CHAN OF INT::[]BYTE message :

message ! 16::"The vorpal blade went snicker-snack."

16 "The vorpal blade" 16

message ? len::[buffer FROM start]

16 len
buffer[start]

len buffer
::

len

48

All the above protocols are called , the syntax of these and of inputs and outputs using them
is:

This syntax has extended the earlier syntax for and (page 6). A simple protocol is either a data
type or a counted array as described above. A counted array is specified by the data type of the count (which
may be either an integer or byte type), followed by a double colon, square brackets (), and the specifier
indicating the type of the components.

An input is a channel followed by the symbol and an input item. An input item may be either a variable, of
any data type, or a variable of integer or byte type followed by a double colon () and a variable of an array
data type.

An output is a channel followed by the symbol and an output item. An output item may be either an
expression, of any data type, or an expression of integer or byte type followed by a double colon () and
an expression of an array data type.

A protocol can be given a name in a , as shown in the following example:

A channel can now be declared with the protocol , for example:

While the naming of simple protocols is optional, a protocol definition must be used if more complex protocols,
like the described in the following section are required.

The syntax for protocol definition is:

A protocol definition defines a name for the simple protocol or sequential protocol (described in the following
section) which appears to the right of the keyword . A simple or sequential protocol definition appears on a
single line, and is terminated by a colon. The line may be broken after the keyword or after a semi-colon
in a sequential protocol.

Simple protocols have been discussed earlier. Sequential protocols specify a protocol for communication
which consists of a sequence of simple protocols. Consider the following example:

simple protocols

simple.protocol data.type
data.type data.type

input channel input.item

input.item variable
variable variable

output channel output.item

output.item expression
expression expression

protocol simple.protocol

input output

protocol definition

sequential protocol

definition name simple.protocol
name sequential.protocol

protocol name

5 Channels and their protocols

5.4.2 Naming a protocol

5.4.3 Sequential protocol

�

�

�

�

�

�

�

�

| ::[]

?

| ::

!

| ::

::[]

?
::

!
::

PROTOCOL CHAR IS BYTE :

CHAR

CHAN OF CHAR screen :

PROTOCOL IS :

| PROTOCOL IS :

IS
IS

PROTOCOL COMPLEX IS REAL32; REAL32 :

1

1

1

49

Channels declared with this protocol () pass pairs of values. An input or output on a
channel with sequential protocol is a sequence of distinct inputs or outputs. An input on a channel with the
above protocol is shown below:

Each value is input in sequence and assigned to each variable in turn.

It is important to note the difference between this protocol and the simple protocol derived from
the record data type declared on page 31. Communications using a simple protocol derived from a single
record type pass a complete record value of several fields in a single communication, but communications
using a sequential protocol use a sequence of separate communications and so do not require either the
outputting or the inputting processes to have declared variables of record type from which and to which the
data will be communicated. There will be situations in which each of these alternatives is the better choice
of coding style.

Consider also the example:

This is a legal program, but the effect of the named protocol definition is to introduce a new meaning
of as a protocol and so in the scope of that declaration it would not be possible to declare new
variables of the record type . However variables of the record type which were declared before
the protocol definition are still in scope after it and may be used in processes within its scope. In the absence
of the protocol definition the channel declaration would still be legal as it would reference the simple protocol
derived from the type definition of . In this case new variables of this type may be declared in
the scope of the channel declaration.

Here are some more examples of sequential protocol definitions:

Declarations of channels with these protocols would look like this:

The syntax of sequential protocols, which can only appear in protocol definitions, is:

A sequential protocol is one or more simple protocols separated by semicolons. A communication on a
channel with a sequential protocol is legal provided the type of each item input or output is compatible with
the corresponding component of the protocol.

It is often convenient to use a single channel to communicate messages with different formats. A
protocol specifies a number of possible formats for communication on a single channel. Consider the following

occam

� �
� �
� �

sequential.protocol simple.protocol

input channel input.item

output channel output.item

5.4 Channel protocol

5.4.4 protocol

�

�

�

CHAN OF COMPLEX

COMPLEX

items ? real.part; imaginary.part

COMPLEX32

COMPLEX32 z1, z2 : -- COMPLEX32 already declared as a record data type
PROTOCOL COMPLEX32 IS COMPLEX32 : -- unnecessary protocol definition
CHAN OF COMPLEX32 cz :
PAR

cz ! z1
cz ? z2

COMPLEX32
COMPLEX32

COMPLEX32

PROTOCOL DIR.ENTRY IS INT16; [14]BYTE :
PROTOCOL INODE IS INT16;INT16;INT32;INT32;INT16;[7]INT16;INT16;INT16 :
PROTOCOL LINE IS INT16::[]BYTE :

CHAN OF DIR.ENTRY directory :
CHAN OF INODE sys :
CHAN OF LINE blocks :

;

? ;

! ;

CASE

CASE

1

50

example:

This example defines a case protocol named . combines a number of , each of which may
identify a tagged sequential protocol. The case protocol defined here has six variants.

A channel declared with this protocol would look like this:

A communication on this channel first sends a tag to inform the receiving process of the format for the rest
of the communication. So, for example

first sends the tag followed by a value (). Consider the output:

This output sends only the tag and according to the above protocol definition requires no further
output.

The syntax for a case protocol and the associated output is:

In a definition of a case protocol the name which identifies the protocol appears to the right of the keyword
, this is followed at an indentation of two spaces by the keyword , which in turn is followed on

succeeding lines at a further indentation of two spaces by a number of tagged protocols. The definition of a
case protocol is terminated by a colon, which appears on a line by itself, at the same level of indentation as
the of the keyword . A tagged protocol is either a tag by itself or a tag followed by a semi-colon,
and a sequential protocol.

A name may be used as a tag within multiple protocols in the same scope. A tag name may also be the
same as a name defined in any other specification in the scope.

An output on a channel of case protocol is a tag by itself or a tag followed by a number of output items
separated by semi-colons. The output is valid only if the tag and the associated output items are compatible
with one of the tagged protocols specified in the definition of the protocol.

An implementation may restrict the number of tags in a protocol definition so that a tag may be represented
by a value in a limited range, but this range must be at least 0 to 255.

� �

� �

tags

definition name

tagged.protocol

tagged.protocol tag
tag sequential.protocol

tag name
output channel tag

channel tag output.item

5 Channels and their protocols

�

�

�

�

PROTOCOL FILES
CASE

request; BYTE
filename; DOSFNAME
word; INT16
record; INT32; INT16::[]BYTE
error; INT16; BYTE::[]BYTE
halt

:

FILES CASE

CHAN OF FILES to.dfs :

to.dfs ! request; get.record

request BYTE get.record

to.dfs ! halt

halt CASE

PROTOCOL
CASE

:

| ;

!

| ! ; ;

PROTOCOL CASE

P PROTOCOL

51

So far only output on a channel with case protocol has been shown. A special form of input is required (called
) to provide for input on channels with a case protocol. The previous example is suggestive of

a with a , and is a reminder that channels are unidirectional. So, for a user
process to “listen to” the other side of this conversation, another channel must be declared, as shown below:

This example declares another channel with the protocol . The process which outputs
, might reasonably expect to receive a reply on a channel with this protocol. Consider a more

complete example of this conversation:

Illustrated in the above example is a case input on the channel . This accepts a variant input with
either the tag or the tag ; any other tag would be invalid and the input would behave like the
primitive process .

A special form of case input simply receives a tag from the channel named on the left of the case input
symbol (), and then compares the tag for equality with the tag of the tagged list which appears to the
right of the symbol. A tag is input, then if the tags match the process next inputs the remainder of the tagged
list. If the tags do not match, the process next behaves like the primitive process . For example:

This process inputs a tag. If the tag is the input is completed, and a value assigned to the variable
. Otherwise, no further input is performed, and the input behaves like the primitive process

(page 7). A case input is legal only if the tagged lists are compatible with tagged protocols specified in
the definition of the case protocol.

Consider the following:

In this example the input will behave like the primitive process as the tags do
not match. The associated output will also behave like , for although the output of the tag
succeeds, the output does not. In this example the procedures and will not
be performed. Also consider the following:

case input
conversation disc filing system

5.4 Channel protocol

Input on a channel with case protocol

CHAN OF FILES from.dfs :

FILES request;
get.record

SEQ
to.dfs ! request; get.record
from.dfs ? CASE

record; rnumber; rlen::buffer
... do whatever

error; enumber; elen::buffer
... handle error

from.dfs
record error

STOP

? CASE

STOP

from.dfs ? CASE filename; name.buffer

filename
name.buffer
STOP

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
CHAN OF COMMS route :
PAR

SEQ
route ! packet; 11::"Hello world"
R ()

SEQ
route ? CASE sync
S ()

route ? CASE sync STOP
STOP packet

11::"Hello world" R() S()

PAR
SEQ

route ! sync
P ()

SEQ
route ? CASE packet; length::message
Q ()

1

52

Each communication of a sequential protocol, or of a tagged sequential protocol is in fact a sequence of sep-
arate communications. So, in the above example, the input
will behave like the primitive process because the tags do not match. However, the associated output

will succeed as the output of the tag has completed, and the variant requires no further
output. Thus, the (page 69) will be performed, and the procedure will not be performed.

The syntax for case input is:

A process which is a case input receives a tag from the channel named on the left of the case input symbol (
), and then the tag is used to select one of the variants. These appear on the following lines, indented

by two spaces and optionally preceded by local specifications. A tag is input, then if a variant with that tag
is present the process next inputs the remainder of the tagged list, and an associated process, indented
a further two spaces, is performed. If no variant with that tag is found the process next behaves like the
primitive process .

An input may contain the case input symbol followed by a single tagged list only, as shown in the earlier
examples.

A case input may also be used as an input in an alternation (chapter 2, page 19). Consider the following
example:

This alternation accepts input from either of the two channels (and). These inputs
are explained in the previous section. This alternation could have included a mix of case inputs, and the
alternatives described on page 19. The syntax for case inputs in an alternative is:

� �

� �

� �

� �

procedure

case.input channel
variant

variant tagged.list
process

specification
variant

tagged.list tag
tag input.item

process case.input

input channel tagged.list

alternative channel
variant

boolean channel
variant

5 Channels and their protocols

Variants in alternatives

�

�

�

�

�

�

route ? CASE packet; length::message
STOP

route ! sync
P() Q()

? CASE

|

| ; ;

? CASE

?
CASE

STOP

ALT
from.dfs ? CASE

request; query
... do query

error; enumber; elen::buffer
... handle dfs error

record; rnumber; rlen::buffer
... accept record

from.network ? CASE
request; query

... do query
error; enumber; elen::buffer

... handle network error
record; rnumber; rlen::buffer

... accept record

from.dfs from.network

? CASE

| & ? CASE

53

A case input as an alternative is either a case input with variants as described in the earlier syntax, or such
a case input preceded by a boolean guard and an ampersand () to the left of the channel name. The case
input is not considered by the alternation if the boolean guard is false.

A name may be used as a tag within more than one case protocol in the same scope. For example:

It is possible for a tag name of a tagged protocol to be used again in a specification or as a field name in a
record during the scope of the protocol. For example:

However, it is still possible to use the name to denote a tag of the protocol in outputs and
inputs on channels with protocol . Consider the following simple program:

The name is used to denote the variant tag in both the input and the output. The name is also used
to specify the destination of the input. Confusing usages such as this are usually better avoided.

In some situations it may be necessary to specify a channel protocol where the format of the protocol for some
reason cannot be defined. Such situations are rare, and are likely to occur only when communicating with

5.4 Channel protocol

Scope of tag names

5.4.5 Anarchic protocol

&

PROTOCOL LINES
CASE

aline; INT::[]BYTE
eof

:
PROTOCOL HEATING

CASE
kettle; KETTLE
heater; HEATER
eof

:
CHAN OF LINES document:
CHAN OF HEATING installation:
PAR

...
SEQ

...
document ! eof -- eof of LINES
...
installation ! eof -- eof of HEATING
...

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
[4]BYTE packet :

packet COMMS
CASE COMMS

PROTOCOL COMMS
CASE

packet;INT::[]BYTE
sync

:
[4]BYTE packet :
CHAN OF COMMS c :
INT len :
PAR

c ! packet; 3::"xyz"
c ? CASE packet; len::packet

packet

1

1

54

an external device such as a printer, terminal or other device controller. Such a device can be considered an
where the protocol for communication with that process is dictated by the nature of the device.

A special protocol exists which allows the input and output of any format without checking. The protocol is
specified by the keyword , as illustrated in the following examples:

The keyword may be used directly in a channel declaration such as that of above, or it may be
used as a simple protocol as in the definition of .

A channel with a protocol defined to be in either of these ways can only input or output data values. It
cannot handle case protocols. The effect of an output on a channel with an protocol is that the value
is mapped down into its constituent bytes, and output as an array of bytes. An input on a channel with any

protocol inputs the array of bytes and converts (by retyping conversion, see page 85) the value to the
type of the receiving variable.

A protocol defined to be may be redefined to have any other protocol by a channel retyping definition
(page 86). Such retypings are necessary when passing a channel with anarchic protocol as a actual parameter
to a procedure whose corresponding formal has any other protocol.

The syntax extends that of simple protocol:

Channel abbreviations are similar to variable abbreviations (see page 42). A channel abbreviation specifies
a new name for a channel or a channel array. Consider the following examples:

This introduces the name for the constructed array shown. It then introduces as the
new name for and and for non-overlapping segments of the array

.

The syntax of channel abbreviation is:

The specifier must specify a channel type but may be omitted whenever the type of the abbreviation can be
inferred from the type of the channel. Channel abbreviations are subject to the same usage restrictions as
variable abbreviations. These are summarised in appendix E.

� �
� �

alien process

simple.protocol

abbreviation specifier name channel
name channel
specifier name channel
name channel

specifier channel.type
specifier

expression specifier

5 Channels and their protocols

5.5 Abbreviation of channels

�

�

�

ANY

CHAN OF ANY mouse:
PROTOCOL PRN IS ANY :
CHAN OF PRN printer :

ANY mouse
PRN

ANY
ANY

ANY

ANY

ANY

[]CHAN OF INT clients IS [from.a, from.b, from.c, from.d, from.e] :
CHAN OF INT client2 IS clients[2] :
clients01 IS [clients FOR 2] :
otherclients IS [clients FROM 3] :

clients client2
clients[2] clients01 otherclients

clients

IS :

| IS :
| IS [,] :

| IS [,] :

| []

| []

55

In the syntax above it can be seen that a channel array in an abbreviation may be constructed as a table of
individual channels. Consider the example:

The three channels originally declared separately have been constructed into an array which can then be
named in an abbreviation so that it may be subscripted or segmented. This can be particularly useful when

is the replication index of a replicated alternation, and the construction is being used to receive input on
one of a group of channels of the same protocol.

This example shows how the constructor might be used to combine an arbitrary collection of channels of the
same protocol for use by a process which listens to all of them:

This example has been so simplified that the need for a constructor is not immediately obvious. The need
becomes greater if the individual channels are allocated to non-contiguous hardware addresses (page 94).

The channels combined in a channel array constructor must all be used in the same direction. Channel
array constructors can only be used within channel abbreviations (and as actual parameters to procedure
instances, see page 70).

5.5 Abbreviation of channels

5.5.1 Channel array constructors

sources IS [from.a, from.b, from.c] :
sources[i] ? x

i

CHAN OF BYTE from.a, from.b, from.c:
PAR

SEQ
... process a
from.a ! ’A’
...

SEQ
... process b
from.b ! ’B’
...

SEQ
... process c
from.c ! ’C’
...

sources IS [from.a, from.b, from.c]:
[3]BYTE bb:
SEQ j = 0 FOR 3

ALT i = 0 FOR 3
sources[i] ? bb[i]

SEQ
...

56 5 Channels and their protocols

This chapter is about , and describes the range of provided by . The chapter
also describes and .

An expression is evaluated and produces a result. The result of an expression has a value and a data
type. The simplest expressions are literals and variables. More complex expressions are constructed from

, and . An operand is a (page 35), a literal, a table, or an expression
in parentheses. An operator performs an operation, for example an addition, upon its operand(s). The
following are all valid expressions:

a literal value
a variable
multiplication of two literal operands
multiplication of two variable operands
shift of a variable operand by a literal
comparison of two variable operands
a boolean expression

An expression in parentheses may itself be an operand in an expression. In this way larger expressions are
built, as shown in the following examples:

subtract from the result of
multiply the results of the expressions and

There is no operator precedence and so the hierarchical structure of a large expression must be defined by
parentheses. With the exception of shift operations, where the number of bits to be shifted must be indicated
by a value of type , the data type of the two operands in a dyadic expression must be of the same type.
In an assignment the value of the expression must be of the same data type as the variable to which it is to
be assigned. Consider in detail the following example:

Each of the variables in this example (, , and) must be of the same data type. The value of an
expression is of the same type as its operand(s). The expression in this example - - has two
operators. The parentheses indicate that the expression is an operand of the operator , and thus
must be evaluated before the operation can be performed.

The right hand second operand of a shift operator must always be, or be converted to be, of the explicit
type . Apart from this, where an operator is defined in this chapter to operate on operands of a particular
primitive data type, it may be assumed also to operate on operands of a named type derived from that
underlying type. The two operands of a dyadic operator (excluding shifts) must both be of the same type,
and so must be explicitly converted (see page 66) to the same type if they are declared as, or computed to
be, of different types.

The syntax for expressions includes:

occam

6 Expressions
expressions operators

tables data type conversions

operands operators parentheses variable

expression monadic.operator operand
operand dyadic.operator operand
operand
conversion

operand variable
literal
table

expression

variable name
monadic.operator

dyadic.operator

�

�

�

�

�

5(INT64)
x
6 * 4
x * y
y << 2
x = y
NOT TRUE

(1 + 2) - 1 1 (1 + 2)
(x * y) * (w * z) (x * y) (w * z)

INT

y := (m * x) + c

y m x c
(m * x) + c

(m * x) +
+

INT

|

|

|

|
|
| ()

- | MINUS | ~ | BITNOT | NOT | SIZE

+ | - | * | / | \ | REM | PLUS | MINUS | TIMES
| /\ | \/ | >< | BITAND | BITOR | AND | OR
| = | <> | < | > | >= | <= | AFTER

58

A monadic operator precedes its one operand. A dyadic operator appears between its two operands.
Tables, operators and conversions are detailed in the following sections. Variables (page 35) and literals
(page 27) have been explained earlier. An operand which is a table can only be used where an array may
be used. Conversions are decribed on page 66.

A table constructs an array of values from a number of expressions which must yield values of the same data
type. A string is a compact representation of a table of bytes. The value of each component of the array is
the value of the corresponding expression. Consider the following example:

This example constructs an array with three components, each of type . Here are some more examples:

a table of three bytes (equivalent to)
a table of three values
a table with two component values
a table with a single component
a table of two integers
a string literal
a string literal of a named type

A table that is not a string is one or more expressions of the same data type, separated by commas, and
enclosed in square brackets, optionally followed by the type name of an array or record type in parentheses.
Line breaks are permitted after a comma.

A table is a value of an array type. If the variables , and are of type , then the table
is an expression whose type is . is an expression whose type is ,

and so on.

A table may be subscripted or segmented like an array variable (page 35).

If a table appears in a context where its type is known, the type of its components are then known and may
be untyped literals (page 29) whose type is implicitly determined. However if a table appears in a context
where its type is not known the type of its components will be inferred from the first component found to have
a known type. Consider:

The type of is determined from the specifier . The type of is determined from its
first component which is an explicitly decorated literal. The type of is determined from its second
component which is an explicitly decorated literal. The type of cannot be determined and so the
abbreviation is illegal. The type of is determined by the explicit decoration of the table, which must be
done by a type name rather than a type specifier including subscript brackets.

A string is a sequence of characters enclosed in double quotes. A string of a named byte array type may
be decorated with a type name in parentheses. Note that though a string is lexically a literal constant, it is
treated syntactically as a table of bytes.

The type of a string is an array of type . The string is an array of type . Each
component of the array is the ASCII value of the corresponding character in the string.

Special character sequences allow certain control values such as Tabulation and Carriage Return to be
included in strings. Full details of the character set and special characters are given in the appendix
(page 103).

occam

6 Expressions

6.1 Tables and strings

[1, 2, 3]

INT

[’a’, ’b’, ’c’] "abc"
[x, y, z]
[x * y, x + 4]
[(m * x) + c]
[6(INT64), 8888] INT64
"occam"
"RUNHELLO.BAT"(DOSFNAME)

m x c INT [(m * x) +
c] [1]INT [’a’, ’b’, ’c’] [3]BYTE

VAL []REAL32 tab1 IS [0.0, 1.1] :
VAL tab2 IS [2.0(REAL32), 2.1, 2.2] :
VAL tab2a IS [1.9, 2.0(REAL32), 2.2] :
VAL tab3 IS [3.0, 3,1] : -- ILLEGAL
DATA TYPE VEC2 IS [2]REAL32 :
VAL tab4 IS [4.0, 4.1](VEC2) :

tab1 []REAL32 tab2
tab2a

tab3
tab4

[]BYTE "zen" [3]BYTE

1

1

59

A string may be broken over several lines by terminating broken lines with an asterisk, and starting the
continuation on the following line with another asterisk. The indentation of the continuation should be no less
than the current indentation, as illustrated in the following example:

The syntax for tables and strings is:

A table is either a string or is a sequence of expressions separated by commas inside a pair of square
brackets. It may optionally be decorated by a an array data type name in parentheses. A table may be
subscripted or segmented in the same way as an array variable (see page 37). A segmented or subscripted
table may not be decorated.

Tables are syntactically very similar to record literals, (page 32), the difference being that all components of
a table must be of the same type, and so the application of the rules of literal type inference are different
within a table.

An operation evaluates its operand(s) and produces a result. The result of an operation has a value and a data
type. These are the operators which operate on values, which are defined in related groups in subsections
below:

addition
subtraction
multiplication
division
remainder
modulo addition
modulo subtraction
modulo multiplication
bitwise and
bitwise or
bitwise exclusive or
bitwise not
array size

shift right
shift left
boolean and
boolean or
boolean not
equal
not equal
less than
greater than
less than or equal
greater than or equal
later than
element size

Some operators are symbols, others keywords. Those symbols which use characters which may be absent
in some national variants of ASCII (i.e. or) have alternative representations as keywords.

� �
� �

table string
string name

expression
expression name

table expression
table base count
table base
table count

6.2 Operations on values

6.2 Operations on values

�

occam := "Beware the jabberwock my son, the jaws that bite, the*
* claws that catch, beware the jubjub bird, and shun the*
* frumious bandersnatch."

| ()

| [,]

| [,] ()

| []

| [FROM FOR]
| [FROM]
| [FOR]

+
-
*
/
\ REM
PLUS
MINUS
TIMES
/\ BITAND
\/ BITOR
><
~ BITNOT
SIZE

>>
<<
AND
OR
NOT
=
<>
<
>
<=
>=
AFTER
BYTESIN

\ ~

60

The arithmetic operators are:

addition
subtraction
multiplication
division
remainder

Arithmetic operators perform an arithmetic operation upon operands of the same real, integer or byte type
(not on booleans), for example:

produces a value of 42
produces a value equal to
produces a value of 42
produces a value of 42
produces an approximation to 2
produces a value of 42
produces a value of 2

The final example in this list may also be written: . The symbols and both signify the
remainder operation. A remainder operation produces a value which is the remainder of the division of the
two operands. The sign of an integer remainder operation is the sign of the left hand operand (except where
the result is zero) regardless of the sign of the right hand operand. The result of an integer division is rounded
toward zero (i.e. truncated), for example:

produces a value of 1
produces a value of 1
produces a value of 2
produces a value of 1

The operator is also a monadic negation operator, which has the effect of negating the value of its operand
which must be of an integer or real type, for example:

has the value (0)
minus 5
minus one million

An arithmetic operation produces a result of the same data type as the operands. An arithmetic operation is
not valid if the resulting value cannot be represented by the same data type as the operands, for example
where the result of a multiplication of two large integers produces a value which exceeds the range of the
type (arithmetic overflow). Division by zero is also treated as invalid.

Remainder operations, on both integers and reals, obey the following law:

(()) + () =

Here are some examples of real expressions, in which is a value of , and is a value of
:

produces a value of 42 0 of type
produces a value of 36 0 of type
produces a value of 117 0 of type
produces a value of 13 0 of type
produces a value of 0 0 of type

�

��� � � � �

�
�
�

�
�

�
�
�

�

�

6 Expressions

6.2.1 Arithmetic operators

+
-
*
/
\ REM

39 + 3
’T’ + 32 ’t’
45 - 3
6 * 7
2.0(REAL32) * 3.14159
126 / 3
128 REM 3

128 \ 3 REM \

3 / 2
(-3) / 2
(-9) / 4
(-9) REM 4

-

- x x
- 5
- 1.0E+06(REAL32)

REM

x 39.0(REAL32) y
3.0(REAL32)

x + y REAL32
x - y REAL32
x * y REAL32
x / y REAL32
x REM y REAL32

61

The result of a real arithmetic expression (which is considered to be infinitely precise) is rounded to the
nearest value which can be represented by the type. That is, the value will be adjusted, if necessary, to fit
into the representation of its type. The precision of an operation is that of the type of the operands.

It is possible for the result of a real remainder operation to be negative. Consider the following example:

The result of this expression is (0 5). If and are real values, the result of is (()), where
is the result of dividing and rounded toward zero. Applying this to the above example, is 0 75 rounded
to the nearest integer (1), leaving : (1 5 (2 0 1)) = (0 5).

Full details of IEEE rounding modes are given in the appendix (page 98).

The modulo arithmetic operators are:

modulo addition
modulo subtraction
modulo multiplication

These modulo arithmetic operators perform an operation upon operands of the same integer or byte data
type (not on reals or booleans). Whilst the effect of these operations is similar to the corresponding arithmetic
operations, no overflow checking takes place, and thus the values are cyclic. For example, adding one to the
most positive integer will produce a value equal to the most negative integer (i.e. (1) =

), and subtracting one from the most negative integer will produce a value equal to the most
positive integer (i.e. (1) =). Consider these examples:

causes an arithmetic overflow.
produces the value 32768.
causes an arithmetic overflow.
produces the value 32767.
causes an arithmetic overflow.
produces the value 3392
causes an arithmetic overflow.
produces the byte value 0
produces the byte value 128

is also a valid monadic operator. is always equivalent to and so if is of a
byte type then it is equal to .

Bitwise operators perform operations on the bit pattern of a value of an integer or byte type. The bitwise
operators are:

bitwise and
bitwise or
bitwise exclusive or
bitwise not

� � � � � � � � �
� � � �

� � �

�������
�������

������� �������

� � �

� � �

�

6.2 Operations on values

Rounding the results of real operations

6.2.2 Modulo arithmetic operators

INVALID!

INVALID!

INVALID!

INVALID!

6.2.3 Bit operations

1.5(REAL32) REM 2.0(REAL32)

REM

PLUS
MINUS
TIMES

PLUS

MINUS

32767(INT16) + 1(INT16)
32767(INT16) PLUS 1(INT16)
(-32768(INT16)) - 1(INT16)
(-32768(INT16)) MINUS 1(INT16)
20000(INT16) * 10(INT16)
20000(INT16) TIMES 10(INT16)
255(BYTE) + 1(BYTE)
255(BYTE) PLUS 1
128(BYTE) TIMES 3

MINUS MINUS z 0 MINUS z z
256 - z

/\ BITAND
\/ BITOR
><
~ BITNOT’

62

Here are some example expressions using the bitwise operators. The results shown are correct if the value
of is , and the value of is , and their type is :

produces a result
produces a result
produces a result
produces a result

The operands of , and must both be of the same integer or byte type. The following table illustrates
how each bit of the result is produced from the corresponding bits in the operand.

1 0 = 1 1 0 = 0 1 0 = 1
0 0 = 0 0 0 = 0 0 0 = 0
1 1 = 0 1 1 = 1 1 1 = 1
0 1 = 1 0 1 = 0 0 1 = 1

The bitwise not operator () has a single operand which must be of an integer or byte type. Each bit of the
result is the inverse of the corresponding bit in the operand, as shown in the following table:

˜1 = 0
˜0 = 1

The result of a bitwise operation is of the same integer or byte type as the operand(s). The keywords ,
and are equivalent to , , respectively, and are included especially for implementations

which have a restricted character set.

The shift operators perform a logical shift on a value of an integer or byte type. The shift operators are:

shift right
shift left

The shift operators shift the bit pattern of a value of any integer or byte type by a number of places determined
by a count value which must be of type . For example, if the value of is , and of type :

produces a result
produces a result

The result is of the same integer or byte type as . The bits vacated by the shift become zero, the bits shifted
out of the pattern are lost. The left shift operator shifts toward the most significant end of the pattern, the
right shift operator shifts toward the least significant end of the pattern.

Consider these further examples, where is a value of type :

produces the value
produces the value
produces the value 0
produces the value 0

A shift by a negative value, or by a value which exceeds the number of bits in the representation, is invalid.

�� � �
�� � �
�� � �
�� � �

� �
� �
� �
� �

6 Expressions

6.2.4 Shift operations

pixel #1010 pattern #FFFF INT16

pixel /\ pattern #1010(INT16)
~ pixel #EFEF(INT16)
pixel \/ pattern #FFFF(INT16)
pixel >< pattern #EFEF(INT16)

/\ \/ ><

~

BITAND
BITOR BITNOT /\ \/ ~

>>
<<

INT n #FFFF INT16

n << 4 #FFF0(INT16)
n >> 4 #0FFF(INT16)

n

n INT32

n << 0 n
n >> 0 n
n >> 32
n << 32

63

The boolean operators operate on operands of boolean type, and produce a boolean result. The boolean
operators are:

boolean and
boolean or
boolean not

The following table shows the results for each operation:

= = =
= = =
= =
= =

The operand to the left of a boolean operator is evaluated, and if the result of the operation can be determined
evaluation ceases. This differs from the behaviour of other expressions. Consider the following example:

Note that parentheses may be omitted between expressions containing adjacent or operators. The
evaluation of the boolean expression ceases if the expression

is false, in which case the evaluation of the expression does not take place. If the
result is true, the expression to the right of is not evaluated. The
rule is that evaluation of a boolean expression will cease if the operand to the left of is false, or if the
operand to the left of is true.

The relational operators perform a comparison of their operands, and produce a boolean result. The relational
operators are:

equal
not equal
less than
greater than
less than or equal
greater than or equal

Here are examples of relational expressions using and . In these examples the operands, and , can
be any primitive data type:

is true if the value of is equal to the value of
the result is false otherwise
is true if the value of is not equal to the value of
the result is false otherwise

��� ���
���
��� ��� ���
��� ���

���
���
���
���
���
��� ���
���
���
���
��� ���
��� ���
��� ��� ��� ��� ��� ���

6.2 Operations on values

6.2.5 Boolean operations

6.2.6 Relational operations

AND
OR
NOT

AND OR NOT
AND OR NOT
AND OR
AND OR

IF
((ch >= ’a’) AND (ch <= ’z’)) OR ((ch >= ’A’) AND (ch <= ’Z’))

...
(ch = cr) OR (ch = down) OR (ch = up)

...
((ch = escape) AND shift)) OR ((ch = escape) AND control))

...

AND OR
((ch >= ’a’) AND (ch <= ’z’)) (ch

>= ’a’) (ch <= ’z’)
((ch >= ’A’) AND (ch <= ’Z’)) OR

AND
OR

=
<>
<
>
<=
>=

= <> x y

x = y x y

x <> y x y

64

The following are examples using the other relational operators. In these examples the operands, and ,
can be an integer, byte or real type, but may not be a boolean:

is true if the value of is less than the value of
the result is false otherwise
is true if the value of is greater than the value of
the result is false otherwise
is true if the value of is less than or equal to the value of
the result is false otherwise
is true if the value of is greater than or equal the value of
the result is false otherwise

The special modulo operator performs a comparison operation, and returns a boolean result, for
example:

This expression is true if is later in a cyclic sequence than , just as one o’clock can be considered
later than eleven o’clock . The first operand is considered the starting point on a “clock face” of integer
values. If the shortest route to the value of the second operator is clockwise, then the value is later than the
first operand and the result of the expression is true. If the shortest route to the value of the second operand
is anticlockwise, or the routes are equal in length, then the value of the second operand is earlier, and the
result of the expression is false.

If the type of the operands is a (signed) integer type () produces the same value as () 0.

If the type of the operands is a byte type (which is unsigned) () produces the same value as
(() 1) 127.

The special operator may have a single operand of any array type, and produces an integer value of
type , equal to the number of components in the array. For example, if is an array of type ,
then:

produces the value 8

If is of type (see page 31), then:

produces the value 8
produces the value 4
produces the value 12

This operator is most often used to determine the size of an array passed as a formal parameter in a procedure
or function (pages 69 and 76). The operator may also be applied to named array data types (page 65).

The operation of on operands is discussed below together with its operation on types (page 65).

� � � � �

� �
� � �

pm
am

6 Expressions

(later than)

6.2.7 (number of components in an array)

6.2.8 (bytes occupied by implementation of array element)

x y

x < y x y

x > y x y

x <= y x y

x >= y x y

AFTER

AFTER

(a AFTER b)

a b

AFTER MINUS

AFTER
MINUS MINUS

SIZE

SIZE
INT a [8]INT

SIZE a

b [8][4]DOSFNAME

SIZE b
SIZE b[1]
SIZE b[0][0]

SIZE

BYTESIN

BYTESIN

65

An operation on a type produces a result based on a property of the implementation of all values of the type.
The result of an operation on a type has a value and a data type.

most negative
most positive

The operator produces the most positive value of an integer or byte type. The operator
produces the most negative value of a (signed) integer type, and the value 0 for an (unsigned) byte type.
The type of the result is the same as the operand. Consider the following examples:

has the value 255
has the value 32767
has the value 2147483647
has the value 9223772036854775807
has the value 0
has the value 32768

The syntax for these operators extends that of , and is:

The keyword (or) appears to the left of the name of an integer or byte data type.

array size

The operator may have a single operand which is an array data type, and produces an integer value
of type , equal to the number of components in arrays of that type. For example, if is a name
defined as an array of type , then:

produces the value 12

The syntax for applied to types extends that of , and is:

where the data type is any array data type. The operator may also be applied to arrays, see page 64.

bytes in a record
offset of record field

It is sometimes necessary to discover how the compiler has mapped the fields of a record data type onto
the computer’s memory. The mapping may be determined by applying the operator to discover

�

expression

expression data.type
data.type

expression

expression data.type

6.3 Operations on types

6.3.1 and (integer range)

6.3.2 (number of components in an array type)

6.3.3 and (field positions in records)

6.3 Operations on types

�

�

MOSTPOS MOSTNEG

MOSTNEG
MOSTPOS

MOSTPOS MOSTNEG

MOSTPOS BYTE
MOSTPOS INT16
MOSTPOS INT32
MOSTPOS INT64
MOSTNEG BYTE
MOSTNEG INT16

MOSTPOS

| MOSTNEG

MOSTPOS MOSTNEG

SIZE

SIZE

SIZE
INT DOSFNAME

[12]BYTE

SIZE DOSFNAME

SIZE

SIZE

SIZE

BYTESIN OFFSETOF

BYTESIN
OFFSETOF

BYTESIN

66

the total number of bytes occupied by a variable of the record type, and the operator to a pair of
names to discover the offset of a field within variables of a particular record type. The values returned by
these operators are of type .

The operator may be applied to any data type or to any expression yielding a value of that type
and returns the number of bytes that would be occupied by a component of that type in an array. This takes
account of any need to add padding at the end of a record to meet implementation dependent alignment
restrictions. This implies that:

=

It is illegal to apply to an object whose size cannot be represented as an integral number of bytes.

The operator is applied to two operands in parentheses. The first operand must be the name of
a record data type and the second operand the name of a field declared in the definition of that type. The
value returned is the offset in bytes from the start of the record in memory and the start of the field indicated.

is invalid if its first operand is not the name of a record or packed record type, or if its second
operand is not a field of that record type. It is invalid to apply to a field whose offset cannot be
represented as an integral number of bytes.

Let us assume that the following record type meets any restrictions on alignment imposed by the implemen-
tation and that the compiler has not needed to force the insertion of padding bytes. If so the operations yield
the results indicated:

The syntax for operands using these operators is:

The operand of may be syntactically either an operand or any data type. The operands of
must be names, the first of a structured data type and the second of a field of that type. Note that
and its operand in parentheses and and its operands in parentheses are treated syntactically as
operands, as if they were function instances, see page 78.

With the exception of logical shifts (where the number of bits to shift must be of type), the types of the
operands in an expression must be of the same type. Operands may explicitly have their data type converted.

� � �type type

operand operand
data.type

name field.name

6 Expressions

6.4 Data type conversion

�

OFFSETOF

INT

BYTESIN

BYTESIN([]) (BYTESIN())

BYTESIN

OFFSETOF

OFFSETOF
OFFSETOF

DATA TYPE MIXED
PACKED RECORD

BYTE b1, b2:
INT16 i1:
REAL32 r1:
REAL64 r2:
DOSFNAME n1:

:
MIXED m1 :
INT a, b, c, d, e, ob1, ob2, or2, on1 :
SEQ

a := BYTESIN (MIXED) -- 28
b := BYTESIN (m1) -- 28
c := BYTESIN (m1[r1]) -- 4
d := BYTESIN (m1[n1]) -- 12
e := BYTESIN (m1[n1][0]) -- 1
ob1 := OFFSETOF (MIXED, b1) -- 0
ob2 := OFFSETOF (MIXED, b2) -- 1
or2 := OFFSETOF (MIXED, r2) -- 8
on1 := OFFSETOF (MIXED, n1) -- 16

BYTESIN ()

| BYTESIN ()

| OFFSETOF (,)

BYTESIN OFFSETOF
BYTESIN

OFFSETOF

INT

67

A data type conversion permits a value of any non-array data type to be converted to a numerically similar
value of another non-array data type. A data type conversion produces the value of its operand as a value
of the specified data type, for example:

The value of in this example is converted to a value of type . Note that is a literal
value of type , whereas is a data type conversion of the value of .

The syntax for data type conversions is:

The data type must be a primitive data type, or a named type derived from a primitive data type and appears
to the left of the operand. A data type conversion which includes the keyword as described by the
syntax, produces a value rounded to the nearest value of the specified type. Where two values are equally
near, the value is rounded toward the nearest even number. A data type conversion which includes the
keyword as described by the syntax, produces a value truncated (rounded toward zero) to a value
of the specified type. A real value of appropriate magnitude can be rounded or truncated to a value of type

.

A conversion between any of the integer types, and conversions between those types and type , is valid
only if the value produced is within the range of the receiving type. Byte and integer values may be converted
to boolean values if their value is one or zero. The boolean value is true if the value is one, and false if the
value is zero. That is:

evaluates to
evaluates to
evaluates to 1
evaluates to 0

Conversions from integer or byte values to real values, and vice versa, must specify whether the result is
to be rounded or truncated. A value of type can be extended to an exact value of type .
Values of type can be converted to values of type , providing the value is in the range of
the type. The conversion must specify if the value is to be rounded or truncated. Consider these
examples, where , and are integers of type , and has a value 255 and has a value 3:

produces a byte value 255
produces a value 255 0
produces a value 255 0
produces a value 765 0
produces a value 765 0

Conversions may be applied to operands of the same type, but will have no effect. The truncation and
rounding of integer types to real types occurs where the integer cannot be exactly represented as a value of
the real type. Consider the following example:

The value in this example has been chosen specifically to illustrate the behaviour of explicitly rounding an
integer value which cannot be directly represented in the floating point representation of . The value
of after this sequence is 33554436 0, and the value of is 33554432 0. For , the two least significant bits
of the integer representation have been lost (they had held the value 3). For the value of those bits has
been rounded to the next nearest representable value. Further detail of rounding is given in the appendix on
page 98.

�
�
�
�

� �

conversion data.type operand
data.type operand
data.type operand

6.4 Data type conversion

�

j := (k * 4.5(REAL64)) * (REAL64 n)

n REAL64 4.5(REAL64)
REAL64 (REAL64 n) n

| ROUND

| TRUNC

ROUND

TRUNC

BYTE

BYTE

BOOL 1 TRUE
BOOL 0 FALSE
INT TRUE
INT FALSE

REAL32 REAL64
REAL64 REAL32

REAL32
n m INT64 n m

BYTE n
REAL32 ROUND n REAL32
REAL64 TRUNC n REAL64
REAL64 ROUND(n * m) REAL64
(REAL64 ROUND n) * (REAL64 ROUND m) REAL64

SEQ
i := 33554435 (INT32) -- hex #2000003
a := REAL32 ROUND i
b := REAL32 TRUNC i

REAL32
a b b

a

68

Conversion of real values to integers has the effect illustrated by the following examples:

produces a value of 1
produces a value of 0
produces a value of 0
produces a value of 0

Consider these examples, where , and are type , has a value 3 5, has a value 2 5.:

produces the value 2, truncated
produces the value 2, rounded to nearest even
produces the value 4, rounded to nearest even
produces the value 1
produces the value 40
produces the value 3 5

A full explanation of the IEEE rounding modes is given in the appendix (page 98).

Type conversions may be needed if named types have been introduced to improve type abstraction in a
program. For example if the types and (page 26) have been defined with real underlying types
then it may be necessary to convert expressions of this type if they are to be used as actual parameters of
calls to mathematical functions:

This example shows a named type being used as a conversion operator. As the conversion from to
may not be exact then a rounding operator must also be used.

Similarly if a named integer type has been defined then conversions will be needed in contexts which explicitly
require a value of type . Consider:

� �

�

6 Expressions

INT32 ROUND 0.75(REAL32)
INT32 ROUND 0.25(REAL32)
INT32 TRUNC 0.75(REAL32)
INT32 TRUNC 0.25(REAL32)

x y REAL32 x y

INT16 TRUNC y y
INT16 ROUND y y
INT32 ROUND x x
INT16 TRUNC (x / y)
(INT ROUND x) * 10
REAL64 x

AREA LENGTH

AREA a:
LENGTH b:
b := LENGTH ROUND (DSQRT (REAL64 a))

REAL64
LENGTH

INT

DATA TYPE INDEX IS INT :
INDEX i :
VAL INDEX max IS 8192 :
[INT max]INT heap : -- explicit conversion for array size
SEQ

i := max - 3 -- 3 is an implicitly typed INDEX
heap [INT i] := 4 -- explicitly converted INDEX
...

This chapter describes in . A procedure definition in defines a name for a process.
Consider the following example:

This example defines as the name for the process, . of a
procedure are specified in parentheses after the procedure name. In this example, is a formal parameter,
and its specifier is the type . The procedure may be used as shown in the following example:

A formal parameter is an of the used in an of a procedure. The type
of the actual parameter matches the type of the corresponding formal parameter.

An of a procedure has the same effect as the substitution of the process named in the procedure’s
definition. This instance of can be expanded to show its effect:

which is equivalent to

Here is a further example:

This procedure takes a channel () and an array value () as parameters, and outputs the
components of the array to the channel. Note the use of the operator (page 64) on the formal to obtain
the number of components in the actual parameter when the specifier of a formal has an empty dimension.

An instance of the procedure looks like this:

The type of the second actual parameter is compatible (page 42) with the specifier of the formal parameter.

Again, this instance can be expanded to show the effect:

occam occam

7 Procedures
procedures

Formal parameters

abbreviation actual parameter instance

instance

PROC increment (INT x)
x := x + 1

:

increment x := x + 1
x

INT increment

INT y :
SEQ

...
increment (y)
...

increment

INT y :
SEQ

...
x IS y : -- variable abbreviation
x := x + 1
...

INT y :
SEQ

...
y := y + 1
...

PROC writestr (CHAN OF BYTE stream, VAL []BYTE string)
SEQ i = 0 FOR SIZE string

stream ! string[i]
:

stream string
SIZE

writestr

SEQ
...
writestr (screen, "Hello world!")
...

SEQ
...
CHAN OF BYTE stream IS screen : -- channel abbreviation
VAL []BYTE string IS "Hello World!" : -- value abbreviation
SEQ i = 0 FOR SIZE string

stream ! string[i]
...

70

To show the use of a user defined named type this example may be rewritten to use the type
defined on page 31, together with the use of the operator on such a type (page 65):

This procedure has the same effect as but is restricted in its application to strings of type
.

An instance of the procedure looks like this:

Again, this instance can be expanded to show the effect:

The correspondence between formal parameters and actual parameters is defined in terms of abbreviations.
There are three kinds of abbreviation: value abbreviations (page 43), variable abbreviations (page 42) and
channel abbreviations (page 54) and procedure parameters may also be of these three kinds (they may also
be timers, page 83).

If the formal is qualified by , then it is a value parameter and the corresponding actual must be an
expression as the abbreviation is a value abbreviation (page 43). If the formal is a data type not qualified by

, then the actual must be a variable which can receive a value by input or assignment as the abbreviation
is a variable abbreviation (page 42).

A name which is in the body of the procedure (page 40) is statically bound to the specification of the
name in scope at the position of the procedure definition, for example:

The free variable , in scope when the procedure was defined, is to the occurrence
of the name in the procedure . The rules of ensure that distinct names identify distinct
objects. The second declaration of a variable with the name introduces a distinct new name. This
means that in the example, the scope and binding of the variables can be seen more clearly by making

occam

free

bound

7 Procedures

DOSFNAME
SIZE

PROC writefname (CHAN OF BYTE stream, VAL DOSFNAME string)
SEQ i = 0 FOR SIZE DOSFNAME

stream ! string[i]
:

writestr
DOSFNAME

writefname

SEQ
...
writefname (screen, "autoexec.bat"(DOSFNAME))
-- the decoration (DOSFNAME) could have been omitted here!
...

SEQ
...
CHAN OF BYTE stream IS screen : -- channel abbreviation
VAL DOSFNAME string IS "autoexec.bat" : -- value abbreviation
SEQ i = 0 FOR SIZE DOSFNAME

stream ! string[i]
...

VAL

VAL

INT step :
SEQ

step := 39
PROC next.item (INT next, VAL INT this)

next := this + step
:
INT g, step :
SEQ

step := 7
next.item (g, 3)
... -- at this point the value of g is 42

step next.item
next.item

step

71

systematic changes of name. Once this is done, the example is equivalent to:

In this transformation of the earlier example, it can be seen that the variable used in the instance of
is the variable named declared before the procedure definition of , and not the second
variable declared with the same name.

Further rules for procedure parameters follow from those for abbreviations (see appendix E). The principal
purpose of these rules is to ensure that at any one point in a program there is only one name that refers
to any one variable. is the name given to the checks performed by a compiler to ensure the
absence of illegal .

The rules for abbreviations (page 99) lead to restrictions on the actual parameters which may be used in
procedure instances. Consider the procedure:

And now consider the following equivalences of instances that may appear in the scope of the procedure:

is equivalent to:

is equivalent to:

is equivalent to: which is

is equivalent to: which is

Here it can be seen how the meaning of each procedure parameter is defined in terms of an abbreviation,
the ordering of parameters corresponds to a sequence of abbreviations. is illegal
because the variable is used in the expression , after it has been abbreviated,
and the example is illegal as has already been used in the previous abbreviation of
the variable (and the rules state that a variable used in such an abbreviation may not be used within the
associated scope). Notice also the effect with the order of parameters used in changed:

Alias checking
aliases

Procedures 7

ILLEGAL!

ILLEGAL!

INT step :
SEQ

step := 39
INT g, curb : -- name step changed to curb
SEQ

curb := 7
INT next IS g : -- expand instance of next.item
VAL INT this IS 3 :
next := this + step
... -- at this point the value of g is 42

next.item
step next.item

INT x, y, step :
PROC next.item (INT next, VAL INT this)

next := this + step
:

next.item (x, y) INT next IS x :
VAL INT this IS y :
next := this + step

next.item (x, step) INT next IS x :
VAL INT this IS step :
next := this + step

next.item (step, x) INT next IS step :
VAL INT this IS x :
next := this + step

next.item (x, x) INT next IS x :
VAL INT this IS x :
next := this + step

next.item (step, x)
step next := this + step

next.item (x, x) x
x

next.item

INT x, y, step :
PROC next.item (VAL INT this, INT next)

next := this + step
:

72

With this re-ordering, is still illegal, although now for a different reason, as follows:

is equivalent to: which is

is illegal here as there is an assignment to (via) within the scope of the first
abbreviation. Now consider the following example:

This procedure should leave the value of the variable used as the actual parameter for , unchanged, as the
following expansion shows:

is equivalent to:

and by substitution:

The value of after this instance is , as might be expected. However, the following instance is illegal, which
is just as well, as the effect is non-intuitive:

is equivalent to: which is

and by substitution: a non-intuitive effect!

The value of after this instance, if it were legal, would be 0, which is counterintuitive. The following example
highlights the problem further.

is equivalent to: which is

and by substitution: a non-intuitive effect!

If this instance were legal, the value of after the instance of would be difficult to predict, as
in each of the assignments will probably reference a different component of , as the value of the
subscript may be changed by the first assignment.

7 Procedures

ILLEGAL!

ILLEGAL!

ILLEGAL!

next.item (x, x)

next.item (x, x) VAL INT this IS x :
INT next IS x :
next := this + step

next.item (x, x) x next

PROC nonsense (INT x, VAL INT y)
SEQ

x := x + y
x := x - y

:

x

nonsense (n, 3) INT x IS n :
VAL INT y IS 3 :
SEQ

x := x + y
x := x - y

SEQ
n := n + 3
n := n - 3

n n

nonsense (n, n) INT x IS n :
VAL INT y IS n :
SEQ

x := x + y
x := x - y

SEQ
n := n + n
n := n - n

n

nonsense (i, v[i]) INT x IS i :
VAL INT y IS v[i] :
SEQ

x := x + y
x := x - y

SEQ
i := i + v[i]
i := i - v[i]

i nonsense
v[i] v

i

0

1

1

0

73

The syntax for a procedure definition is:

The keyword , the name of the procedure, and a formal parameter list enclosed in parentheses is
followed by a process, indented two spaces, which is the body of the procedure. Any data type may be used
as a specifier following , any type as a specifier otherwise. The procedure definition is terminated by a
colon which appears on a new line at the same indentation level as the start of the definition.

The syntax for a procedure instance is:

An instance of a procedure is the procedure name followed by a list of zero or more actual parameters in
parentheses. An actual parameter is a variable, channel, timer or expression. The list of actual parameters
must correspond directly to the list of formal parameters used in the definition of the procedure. The actual
parameter list must have the same number of entries, each of which must be compatible with the kind (
or non-) and type of the corresponding formal parameter. In a program in which all names are distinct,
an instance of a procedure behaves like the substitution of the procedure body. Notice that all programs can
be expressed in a form in which all names are made distinct by systematic changes of name. A channel
parameter or free channel may only be used for input or output (not both) in the procedure.

Procedures in cannot be recursive as the procedure name is not defined until the end of its body
and so cannot itself be used inside it. It is, however, possible to produce the effect of recursion, to a fixed
maximum depth, by means of multiple definitions of the same procedure, in each of which a reference to the
procedure name identifies the immediately preceding definition.

An instance of a procedure defined with zero parameters must be followed by empty parentheses. Where a
number of parameters of the same type appear in the formal parameter list, a single specifier may specify
several names. For example:

This example, is equivalent to:

The optimisation of procedure instances by generation of inline code is discussed in appendix A.

occam

� �

� �
� �

� �

definition name formal
process

formal specifier name
specifier name

proc.instance name actual

actual variable
channel
timer
expression

process proc.instance

Procedures 7

�

�

�

�

�

PROC (,)

:

,

| VAL ,

PROC

VAL

(,)

|
|
|

VAL
VAL

PROC snark (VAL INT butcher, beaver, LENGTH boojum, jubjub)
...

:

PROC snark (VAL INT butcher, VAL INT beaver,
LENGTH boojum, LENGTH jubjub)

...
:

74 7 Procedures

() 1

=0

The previous chapter discusses named processes (called). This chapter describes in
. A function defines a name for a special kind of process, called a . A value process

produces a result of any data type, and may appear in expressions. Value processes may also produce
more than one result, which may be assigned in a multiple assignment. functions are free from all
side effects, as they are forbidden to communicate or to assign to free variables. This helps to ensure that
programs are clear and easy to maintain.

A value process performs an enclosed process and produces a result. Consider the following example:

In the example shown here, the value process produces the sum of the array , and is equivalent to

[]

The syntax of value processes is:

A value process consists of zero or more specifications which precede the keyword , followed by a
process at an indentation of two spaces, and the keyword at the same indentation. The keyword

is followed by an expression list on the same line. The expressions in this list may be of any fixed
size data type. The line may be broken after a comma, or at a legal point in an expression. An operand of
an expression may consist of a left parenthesis, a value process, and a right parenthesis. The structured
parentheses appear at the same indentation as each other, and are equivalent to the left hand and right hand
parentheses of a bracketed expression respectively. So, where the value process produces a single result,
the upper bracket may be preceded by an operator, or the lower bracket may be followed by an operator.

occam

occam

8 Functions

��	
�

�

�

� �

procedures functions
value process

value.process
process

expression.list
specification
value.process

operand value.process

expression.list value.process

8.1 Value processes

�

�

�

total := subtotal + (INT sum :
VALOF

SEQ
sum := 0
SEQ i = 0 FOR SIZE v

sum := sum + v[i]
RESULT sum

)

v

VALOF

RESULT

|

(

)

(

)

VALOF
RESULT

RESULT

�

76

More commonly the value process is the body of a function definition, as illustrated in the following example:

This function definition defines the name for the associated value process. The type of the result of this
function is . The result type or types, which may be any explicit or named fixed size data types appear in
a comma separated list before the keyword .

Just as the behaviour of procedure instances is defined by the substitution of the procedure body, instances
of functions behave like a substitution of the function body. In fact the value process is introduced into the
language for the purpose of providing a clean definition of function instances in terms of substitution, rather
than as a construct that will normally be used in its own right. It follows that the example which starts this
chapter is an expansion of the following:

A function definition may also define a name for an expression list which does not need a value process for
its evaluation, so that simple, single line functions can be defined in the following fashion:

Each of these functions returns a single byte or boolean result. The definition of the function is
equivalent to the following:

A number of rules apply to functions to ensure they are free from side effects. As for procedures, the
correspondence between the formal and actual parameters of a function is defined in terms of ,
and follows the associated scope rules. However, an argument of a function may only be a value parameter.
Only variables declared within the body of a value process or function may be assigned to. There may be no
parallels within a value process. There can be no inputs, outputs or alternations within a value process. The
evaluation of a function can therefore never be explicitly delayed by the action of another process running
concurrently.

Any procedure used within a function must also be free from side effects on variables outside the function. A
variable which is free within the result list or value process (Scope, page 39) can be used only in expressions
within the value process or function body; it may not receive new values by assignment. Consider the
following:

abbreviations

8 Functions

8.2 Functions

INT FUNCTION sum (VAL []INT values)
INT accumulator :
VALOF

SEQ
accumulator := 0
SEQ i = 0 FOR SIZE values

accumulator := accumulator + values[i]
RESULT accumulator

:

sum
INT

FUNCTION

total := subtotal + sum (v)

BYTE FUNCTION noparity (VAL BYTE ch) IS (ch /\ #7F) :
BOOL FUNCTION lowercase (VAL BYTE ch) IS (ch >= ’a’) AND (ch <= ’z’) :
BOOL FUNCTION uppercase (VAL BYTE ch) IS (ch >= ’A’) AND (ch <= ’Z’) :
BOOL FUNCTION isletter (VAL BYTE ch) IS uppercase (ch) OR lowercase (ch) :

isletter

BOOL FUNCTION isletter (VAL BYTE ch)
VALOF

SKIP
RESULT uppercase (ch) OR lowercase (ch)

:

[]THING stack:
INT stack.pointer:
SEQ

...
THING FUNCTION read.top.of.stack () IS stack[stack.pointer] :
BOOL FUNCTION empty () IS (stack.pointer = 0) :

77

and are free in the definition of and in the
definition of , but can be used in expressions in those definitions.

A value process may produce more than one result, which may then be assigned using a multiple assignment.
Consider the following example:

This value process searches the byte array for the character . The result is produced from the
expression list which follows , and is then assigned to , and . This value process can
be given a name in a function definition, as follows:

This example finds the position of in the string . After the multiple assignment in this example,
the value of will be , and the value of will be .

Single line functions with multiple results may also be defined:

This function produces the quotient and remainder when is divided by . If an error occurs within a function
or value process, it will behave like the primitive process . This behaviour is equivalent to the behaviour
of a numerical overflow in an arithmetic expression (see page 101 for details of the behaviour of invalid

8.2 Functions

stack stack.pointer read.top.of.stack stack.pointer
empty

point, found := (VAL BYTE char IS ’g’ :
VAL []BYTE string IS message :
BOOL ok :
INT ptr :
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr := i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok
)

string ’g’
RESULT point found

INT, BOOL FUNCTION instr (VAL BYTE char, VAL []BYTE string)
BOOL ok :
INT ptr :
VALOF

IF
IF i = 0 FOR SIZE string

string[i] = char
SEQ

ok := TRUE
ptr := i

TRUE
SEQ

ok := FALSE
ptr := -1

RESULT ptr, ok
:
VAL message IS "Twas brillig and the slithy toves" :
INT point :
BOOL found :
SEQ

point, found := instr (’g’, message)
...

’g’ message
point 11 found TRUE

INT, INT FUNCTION div.rem (VAL INT x, y) IS x / y, x REM y :

x y
STOP

0

1

1

0

0

78

processes). Consider the behaviour of an instance of the following function:

This function will behave like the primitive process if is less than zero, or if an overflow occurs in the
evaluation of the factorial. In either case the behaviour is equivalent to the behaviour of any other in valid
expression (page 101).

The syntax for functions is:

A function header consists of the keyword , followed by the name of the function and a formal
parameter list enclosed in parentheses. A function definition consists of a comma separated list of the types
of the result(s) produced by the function, followed by a function header. This is followed by a value process,
indented two spaces, which forms the body of the function. The function definition is terminated by a colon
which appears on a new line at the same indentation level as the start of the definition. Alternatively, a
function definition may consist of the result type list and function header followed by the keyword , an
expression list, and a colon, on the same line. The line may be broken after the keyword , a comma, or at
a legal point in an expression.

An instance of a function is an operand and consists of a function name followed by a list of actual parameter
expressions in parentheses. An operand that is a function instance or value process returning a single result
of an array or record type may be subscripted by an expression or a field name respectively. An instance
of a function defined to have zero parameters must be followed by empty parentheses. Where a number
of parameters of the same type appear in the formal parameter list, a single specifier may specify several
names. For example, using the type declared on page 31:

This example is equivalent to:

A function may return results of a record type such as . For example the multiplication of complex

� �
� �

� �
� �

� �

function.header name formal

definition data.type function.header
value.process

data.type function.header expression.list

operand name expression
operand subscript

expression.list name expression

8 Functions

�

�

�

�

INT FUNCTION factorial (VAL INT n)
INT product :
VALOF

SEQ
product := 1
SEQ i = 1 FOR n

product := product * i
RESULT product

:

STOP n

FUNCTION (,)

,

:
| , IS :

(,)

| []

(,)

FUNCTION

IS
IS

COMPLEX32

INT FUNCTION alice (VAL COMPLEX32 tweedle.dum, tweedle.dee,
VAL INT cheshire.cat)

...
:

INT FUNCTION alice (VAL COMPLEX32 tweedle.dum,
VAL COMPLEX32 tweedle.dee,
VAL INT cheshire.cat)

...
:

COMPLEX32

79

numbers may be expressed by this function:

The final example of a function shows both the use of a named array type as a result type and the use of
two results to return two values. An explicit array type could have been used here instead of a named one.
Given an array of program names separated by commas this function will select one of these names, append

to it and return it with its length:

Use of this function to select a name from a list and then use of that name as a parameter to a procedure is
shown in this example:

Note that the expression list returned as a function result cannot be used directly as an actual parameter list,
but must be assigned to a variable list (or used after or in another function definition).

The optimisation of function instances by generation of inline code is discussed in appendix A.

8.2 Functions

COMPLEX32 FUNCTION cmul (VAL COMPLEX32 z1, z2)
COMPLEX32 z :
VALOF

SEQ
z[real] := (z1[real] * z2[real]) - (z1[imag] * z2[imag])
z[imag] := (z1[real] * z2[imag]) + (z1[imag] * z2[real])

RESULT z
:
COMPLEX32 w1, w2, w3 :
SEQ

...
w1 := cmul (w2, w3)
...

".exe"

INT, DOSFNAME FUNCTION exename (VAL[]BYTE names, VAL INT j)
-- extract (j-1)’th name from comma separated names and append ".exe"
DOSFNAME fname :
INT n :
VALOF

INT m, s :
SEQ

m, s := 0, 0
SEQ i = 0 FOR j

SEQ
WHILE names [m] <> ’,’

m := m + 1
s := m + 1 -- names [s] starts next name
m := s

WHILE isletter (names [m]) -- instance of FUNCTION isletter
m := m + 1

n := m - s -- n is length of j’th name
[fname FOR n] := [names FROM s FOR n]
[fname FROM n FOR 4] := ".exe"

RESULT n + 4, fname
:

VAL prognames IS "oc,occonf,ilink,icollect,imakef,":
DOSFNAME tool :
INT len :
SEQ

len, tool := exename (prognames, 2)
callprog ([tool FOR len])

IS RESULT

80 8 Functions

1

Timers produce a value which represents the time, and allow processes to be delayed until the time has
reached or passed a particular value. The use of timers is essential in most real time control systems.

This chapter describes timers, the declaration of timers, and access to them.

Syntactically timers have many similarities to channels (discussed on page 45).

A timer provides a clock which can be accessed by any number of concurrent processes. The relationship be-
tween the time returned by an timer and real time is not defined by the language, i.e. implementations
may differ in the granularity of timers and consequently in their cycle period.

The type of a timer is:

Timer arrays have type similar to channel arrays, for example:

The syntax of timer array types is:

A timer is declared in a manner similar to channels and variables. Consider the following example:

This declaration introduces a timer which is identified by the name . Several timers may be declared
together, for example:

The type of the declarations is determined, and then the declarations are made. Timer arrays are declared
in the same way as other arrays, for example:

Components and segments of timer arrays are denoted in the same way as components and segments of
variable arrays (page 36) and channel arrays (page 46).

The syntax of timer declarations is:

A value input from a timer provides an integer value of type representing the time. The value is derived
from a clock, which changes by an increment at regular intervals. The value of the clock is cyclic (when

occam

9 Timers

� �

timer.type

timer.type expression timer.type

declaration timer.type name

timer name
timer expression

timer base count
timer base
timer count

ie

9.1 Timer type

9.2 Declaring a timer

�

�

�

�

TIMER

[10]TIMER

[]

TIMER clock :

clock

TIMER clockA, clockB :

[10]TIMER clocks :

, :

| []

| [FROM FOR]
| [FROM]
| [FOR]

INT

82

the value reaches the most positive integer value, an increment results in the most negative integer value).
The special operator can be used to compare times even though the value may have crossed from
most positive to most negative, just as one o’clock may be considered later than eleven o’clock . If

and are successive inputs from the same timer, then the expression is true if is
later than . This behaviour is only sensible if the second value () is input within half a cycle of the timer.

is also explained in the chapter on expressions (page 57).

The rate at which a timer is incremented is implementation dependent, and may depend on the priority at
which a process is run (see page 94).

Timers are accessed by special forms of called , which are syntactically similar to channel
inputs, for example:

This example inputs a value from the timer and assigns the value to the variable . Unlike channels,
inputs from the same timer may appear in any number of components of a parallel.

Another special timer input (called a) specifies a time, after which the input terminates, for
example:

This input waits until the value of the timer is later than the value of . In other words, if is the value
of the timer , then the input will wait until is true. The value of is unchanged.

A delay can be caused by this sequence:

The first input inputs a value representing the current time and assigns it to the variable . The second
(delayed) input waits until the value input from is later than the value of .
(page 61) is a . Note that because of the cyclic nature of timers it is important to use
and when adding and subtracting integers derived from a timer.

The syntax for timer inputs is:

A timer input receives a value from the timer named on the left of the input symbol (), and assigns that value
to the variable named on the right of the symbol. A delayed input waits until the value of the timer named on
the left of the input symbol () is later than the value of the expression on the right of the keyword .

Timer inputs and delayed inputs may be used as guards in alternations. This gives a simple way in which
to program timeouts wherein a process waits for one or more inputs on communication channels for up to

pm am

input timer inputs

delayed input

modulo operator

input timer.input
delayed.input

timer.input timer variable
delayed.input timer expression

9 Timers

9.3 Timer input

9.4 Timers in alternations

�

�

�

AFTER

t1 t2 t1 AFTER t2 t1
t2 t2

AFTER

clock ? t

clock t

clock ? AFTER t

clock t c
clock (c AFTER t) t

SEQ
clock ? now
clock ? AFTER now PLUS delay

now
clock now PLUS delay PLUS

PLUS
MINUS

|

?

? AFTER

?

? AFTER

83

some maximum time and performs some other action if no input was received. Consider the process:

In this example, the process sends a request to a server and notes the time at which the request was sent.
When the process is ready to receive the reply, it waits alternatively for the server to become ready with
the reply or for the timeout period to pass. If the server has not become ready to reply before the end of
the timeout period, then the process will execute the branch of the alternation associated with the delayed
input. Notice that the timeout period starts from the time of the timer input following the request, not from the
beginning of the alternation.

Timers may be abbreviated in the same way as variables (page 42) and channels (page 54). The same rules,
summarised in appendix E, apply to abbreviated timer names as apply to abbreviated variable or channel
names. Timers may be used as actual parameters in procedure instances.

The syntax of timer abbreviation is

This syntax is closely related to the corresponding syntax for channels.

abbreviation specifier name timer
name timer

specifier timer.type
specifier

expression specifier

actual timer

9.5 Timer abbreviation

9.5 Timer abbreviation

�

�

�

SEQ
to.server ! request
time ? request.time
...
ALT

from.server ? reply
... the server has replied in time

time ? AFTER request.time PLUS time.out
... the server has missed the deadline

IS :

| IS :

| []

| []

84 9 Timers

This chapter describes retyping conversions. A retyping conversion is syntactically a specification (a definition)
in whose scope the data type of a bit pattern is changed from one data type to another. There are three
kinds of retyping conversions: conversions which convert a variable, conversions which convert the value of
an expression, and conversions which change the protocol of a channel. There is also the related reshaping
conversion.

The length (i.e. the number of bits) of the new type specified must be the same as the length of the bit pattern
being retyped. A retyping conversion has no effect upon the bit pattern, and differs from
(page 66) where the value of one type is converted into an equivalent value of another type.

As retyping conversions are dependent on the exact mapping of types in the computer, the word size, the
significance of the order of bytes in a word, etc., their use can lead to programs which are not portable
between different target computer types. See also the discussion of word size on page 92 in appendix A.

The retyping conversion of a value may be used to specify a name for a particular bit pattern described by a
hexadecimal constant. Consider the following example:

The advantage of the above conversion is that it has been possible to specify the exact representation of a
value otherwise difficult to represent. Use of this conversion may be dependent on the target machine’s use
of IEEE floating point arithmetic. Consider also the following example:

The bit pattern for the real representation of the value 42 0 is mapped to a name of type . As
for the (page 43) of expressions, no variable used in the expression may receive a new value
by input or assignment within the scope of the conversion.

The retyping conversion may also specify a name of a new type for an existing variable of the same length.
For example:

In this example, , a variable of type , is made accessible as an array of 8 bytes. Each byte
is accessible via subscript, any change to the bit pattern as a result of an assignment or input will directly
affect the value of the original variable.

The same rules apply to names specified by retyping conversions as apply to abbreviations (page 99). That
is, no variable used in a subscript, base or count expression which selects a component or segment of an
array may receive a new value by input or assignment within the (page 39, the region of a program
where use of the name is legal) of the conversion. The variable converted may not be used within the scope
of the conversion.

The syntax for retyping conversion is:

A retyping conversion is syntactically a definition. The retyping conversion of a variable begins with a specifier,
followed by the name specified, and the keyword , the variable appears to the right of the keyword

. The retyping conversion of a value begins with the keyword , a data type specifier appears to

10 Retyping and reshaping

�

type conversion

abbreviation

scope

definition specifier name variable
specifier name expression

10.1 Retyping variables and values

�

VAL REAL32 root.NaN RETYPES #7F840000(INT32) :

VAL INT64 pattern RETYPES 42.0(REAL64) :

pattern INT64

INT64 condition :
...
SEQ

[8]BYTE state RETYPES condition :
...

condition INT64

RETYPES :

| VAL RETYPES :

RETYPES
RETYPES VAL

86

the right of , followed by the name specified, and the keyword ; the expression appears to the
right of the keyword . The number of bytes in the representation of values of the type of the specifier
must be the same as in the variable or value retyped. The line on which a retyping conversion occurs may
be broken after the keyword , or at any legal point in the expression.

A retyping conversion where the destination type is an array type may use a specifier with one empty di-
mension. The size of this dimension is determined from the size of the variable or value being retyped. For
example:

If a variable being retyped is implemented with different alignment requirements to the destination type then
the retyping conversion is invalid unless it is determined that alignment mismatches do not occur. This can be
important when using retyping to pack binary values into a buffer for sending to a file. Consider the following
example:

An implementation may reject an invalid definition as above at compile time or may cause the generation of
code to reject it at run time.

The protocol of a channel is used by a compiler to check the format and content of messages that are
communicated by inputs and outputs. Sometimes it is necessary to allow different protocols to be used for
communications using the same channel at different places within a program.

10 Retyping and reshaping

10.2 Retyping channels

VAL RETYPES
RETYPES

RETYPES

[10]REAL64 w :
SEQ

[]BYTE bw RETYPES w :
-- here we can send the binary array to a file
...
[10][]INT iw RETYPES w :
-- here we can look at each REAL as a bit pattern
...

[4096]BYTE diskbuff :
INT di :
DATA TYPE MYINT IS INT :
MYINT x :
SEQ

...
MYINT db0 RETYPES [diskbuff FOR BYTESIN (MYINT)] :
-- ok because start of array always aligned
di := x
[]BYTE bx RETYPES x :
[diskbuff FROM di FOR SIZE bx] := bx
...
MYINT dbi RETYPES [diskbuff FROM di FOR BYTESIN (MYINT)] : -- INVALID!
-- fails because value of di might cause misaligment
...

87

This may be achieved by using a retyping conversion applied to channels. Consider this example:

This is a trivial example of a situation that sometimes arises in programming. The procedure
represents an existing general purpose procedure that it is not convenient to rewrite. This

happens to buffer single values. Similarly the procedure has been written to output
complex numbers as pairs of values using the protocol . As this is a sequential protocol each value
will be sent as a single communication and so will match one input in the buffer procedure. The use of
channel retyping allows these separately written procedures to be called without changing either.

If channel retyping is used in only one of the processes that use a channel as here, then it is important
to ensure that individual inputs and outputs remain compatible in terms of the numbers of bytes in each
communication. Channel retyping may also be used to change the protocol both in the process that outputs
on a channel and the process which inputs on the channel. In this case there is no need to take special care
about the details of implementation of communication.

A common use of channel retyping is to apply protocol checking to the use of one or both ends of a channel
that was declared with an anarchic protocol (see page 53).

The syntax of channel retyping is similar to variable retyping:

The specifier must be of the form protocol. Channel arrays may be retyped or reshaped (see
below).

A special kind of retyping conversion may be used to change the interpretation of an array in terms of its
subdivision into arrays of fewer dimensions. A reshaping conversion may increase or decrease the number
of dimensions or may merely change the sizes of the dimensions. A reshaping conversion is independent
of details of representation and therefore programs using them are portable to different target computer

occam

definition specifier name channel

10.3 Reshaping

10.3 Reshaping

�

PROC real.buffer (CHAN OF REAL32 rin, rout)
REAL32 r :
WHILE TRUE

SEQ
rin ? r
rout ! r

:
PROTOCOL COMPLEX IS REAL32; REAL32 :
PROC generate.complex (CHAN OF COMPLEX c)

... process outputting complex values on c
:
PROC consume.complex (CHAN OF COMPLEX c)

... process inputting complex values on c
:
CHAN OF COMPLEX cin, cout :
PAR

generate.complex (cin)
CHAN OF REAL32 crin RETYPES cin :
CHAN OF REAL32 crout RETYPES cout :
real.buffer (crin, crout)
consume.complex (cout)

real.buffer
generate.complex

COMPLEX

RETYPES :

CHAN OF

88

architectures. Consider this example:

In all the reshapings shown the number of components of the array base type on the two sides of the keyword
must be the same. One pair of brackets in the specifier on the left may be empty, and such a

reshaping is valid if and only if there is an integer such that the product of the sizes of all dimensions on
the left is equal to the number of base type components in the array on the right. The empty brackets
may be in any position. In the example shown the type of will be found by the compiler to be

.

The syntax for reshaping conversion is:

A reshaping conversion of a variable begins with a specifier for an array type, followed by the name specified,
and the keyword . The variable which must be an array built from components of the same base
type as the specifier appears to the right of the keyword .

A reshaping conversion of a value begins with the keyword , a data type specifier appears to the right
of , followed by the name specified, and the keyword . The expression which must be of an
array type built from components of the same base type as the specifier appears to the right of the keyword

.

A reshaping conversion of a channel begins with a specifier for a channel array type, followed by the name
specified, and the keyword . The channel which must be an array built from components of the
same base type as the specifier appears to the right of the keyword .

The line on which a conversion occurs may be broken after the keyword , or at any valid point
in the variable or expression. Specifiers appearing in reshaping conversions may contain one empty pair of
brackets (open dimension).

definition specifier name variable
specifier name expression

specifier name channel

10 Retyping and reshaping

�

VAL [2][6]REAL32 nums IS [[0.0, 1.0, 2.1, 3.1, 4.2, 5.2]
[6.3, 7.3, 8.4, 9.4, 10.5, 11.5]] :

SEQ
-- here we want to use two arrays of six reals each
...
VAL [6][2]REAL32 nums.6.2 RESHAPES nums :
SEQ

-- here we want to use six arrays of two reals each
...

VAL [12]REAL32 nums.12 RESHAPES nums :
SEQ

-- here we want to use one array of twelve reals
...

VAL [2][2][]REAL32 nums.2.2. RESHAPES nums :
SEQ

-- here we want a 3-dimensional subdivision
...

RESHAPES

nums.2.2.
[2][2][3]REAL32

RESHAPES :

| VAL RESHAPES :

| RESHAPES :

RESHAPES
RESHAPES

VAL
VAL RESHAPES

RESHAPES

RESHAPES
RESHAPES

RESHAPES

Appendices

90 Appendices

As far as possible an implementation of should place no unreasonable quantitative restrictions on the
components of an program. If any restrictions that impact the class of acceptable programs
are imposed by a compiler then they must be described in accompanying documentation. Examples of such
limits and restrictions would be those concerning the length of names, length of formal parameter lists, number
of tags in a protocol or requirements that certain constants be known at compile time.

An implementation of may need to extend the language in various ways to facilitate the solution of
common software engineering problems such as source code management, optimisations and interfacing to
other software and special purpose hardware. Such extensions should always obey the spirit of in
keeping things as simple as possible and should as far as possible be limited to structures introduced by
explicit keywords easily recognised by a compiler or human reader.

Directives to a compiler which can occupy a line on their own should always do so and be introduced by
a keyword whose first character is the special character . This should be the first lexical item on a line
and should be allowed at any indentation consistent with the surrounding source code. Allowable
indentations match those for comments (page 4). Any such compiler directive line must be allowed to end
with an comment, and apart from its interpretation at compile time is treated as a comment.

These keywords and others which need to be embedded within source should all obey the convention
that no keyword contains a lower case letter.

It is not the purpose of this appendix to describe any such language extensions in detail, but to mention
some of those that have been found useful in existing implementations, and so reduce the likelihood of new
extensions being devised for similar purposes when existing ones could sensibly be reused. Readers should
consult detailed documentation accompanying a particular compiler for details of the syntax and semantics
of these extensions.

From the strict syntactic point of view compiler directives behave as comments and may appear wherever
a comment can appear. They are interpreted by the compiler. Particular directives may be allowed by a
compiler only in a more restricted set of positions, and their indentation may be significant if they introduce
additional specifications, whose scope they will determine.

introduces (by name in some filing system or operating system name space) a source text file to
be inserted at the current source line position and indentation.

introduces an object file or library file from which interface information from a pre-compiled body of
code is to be inserted at the current source line position and indentation.

introduces a list of compilation options.

introduces further information that may influence what a compiler does to the source text during
compilation. Versions of this directive have also been used to define interfacing to code compiled from
languages other than , selective control of usage checking, etc.

introduces a text string that is to be explicitly copied to an object file. This may be needed to
ensure that copyright etc is identified.

This keyword may be inserted before or to suggest to the compiler that calls to the routine
should be compiled to inline code rather than to a closed subroutine.

occam
occam occam

occam

occam

occam

occam

occam

occam

occam

A Implementation dependent features

A.1 Compiler directives

A.2 Special keywords introducing language extensions

#

#INCLUDE

#USE

#OPTION

#PRAGMA

#COMMENT

INLINE

PROC FUNCTION

92

This keyword is used in the transputer implementations of to introduce, on following indented lines,
sequences of target processor instructions in a simple assembly language. Similar extensions designed for
other target processor types should allow reference to names declared in the surrounding scope,
and should follow all the usual conventions concerning the indentation of source text lines.

Target processors for which programs will be compiled differ in such matters as word length and
the addressing of bytes within words. Documentation accompanying an implementation must fully define the
mapping of data types onto the words in the target processor’s memory, and specify any requirement for
alignment of values with respect to word boundaries and/or need for padding bytes within records or arrays.

In order to optimise computations on integers, the programmer is given a choice between explicit
specification of the length of all integer variables as , or which will maximise portability
of code between targets, or declaring all integers as which will allow the compiler to choose the length
of integer which is natural in the target.

There are, however, contexts in where type is always assumed. These include the values
returned by timers, the sizes of arrays and the bases and counts of replicators and segments. Programmers
must be aware that if the target word length is only 16 bits, then there will be classes of program that they
might reasonably wish to write whose portability is compromised by the limited size of integers.

Particular care is necessary when designing code that is to be distributed across a network of processors,
not all having the same word length. The protocols of channels connecting dissimilar processors should not
include components of type .

An compiler is required to perform any arithmetic on constants that are known at compile time using
the word length of the target processor. Any such computations that would overflow on the target will produce
a compile time error message.

The word has been adopted by computer engineers to define the relationship between the ad-
dressing of bytes within words and the positional significance of these bytes in the representation of integer
values.

A processor architecture may be implying that bytes with lower addresses have least significance
in integers, or implying that bytes with lower addresses have most significance.

An program which does not include any of the keywords , , , , or
is capable of compilation to target code whose behaviour will be identical whether the processor is

little-endian or big-endian.

If an program is to be ported from a little-endian target processor, such as a transputer, to a big-
endian one, then it will be necessary to inspect all uses of these keywords and either to confirm that the bit
patterns mapped will be treated identically by the two implementations, or to make the necessary adjustments
to the code for the new target processor.

occam

occam
occam

occam

occam

occam

occam

occam

occam

endianness

little-endian
big-endian

A Implementation dependent features

A.3 Target word size

A.4 Endianness

ASM

INT16 INT32 INT64
INT

INT

INT

ASM RETYPES BYTESIN OFFSETOF
PACKED

This appendix describes the aspects of which specify the of an program.
Configuration associates the components of an program with a set of physical resources. During
configuration the processes which make up an program are distributed over the number of intercon-
nected processing devices available in the environment in which the program will execute. The processes
which execute on a single processor may be given a priority of execution, and the channels which intercon-
nect the distributed processes may be mapped onto the physical communication links between processing
devices. Configuration does not affect the logical behaviour of a program.

An implementation may extend the syntax of configuration to take advantage of the features of particular
target computer and network architectures. Readers are advised to consult documentation accompanying
a particular implementation for the details of such extensions, which may introduce additional reserved key-
words to the language. A single processor implementation may omit these language features altogether. An
implementation may choose to arrange for the configuration of programs by means outside the language.

The component processes of a parallel may each be executed on an individual processor. This can be
specified by a which assigns a process for execution on a specified processor. Consider the
following example:

In this example, the processes , and , are placed on three individual processors
numbered , and . Each process is executed on the assigned processor; each process uses local memory,
and communicates with the other processes via channels.

The syntax for a placed par is:

The keywords are followed by zero or more processor allocations. A processor allocation is
the keyword , and an expression of type which serves to identify the processor on which the
associated process is to be placed. As for normal parallels (page 16), the placed parallel may be replicated.
An implementation may extend this syntax to identify the type of processor on which the process is placed.
All variables and timers used within the placement must be declared within it.

occam occam
occam

occam

B Configuration

� �

configuration

placed parallel

placedpar
placedpar

replicator
placedpar

expression
process

parallel placedpar

B.1 Execution on multiple processors

�

�

PLACED PAR
PROCESSOR 1

terminal (term.in, term.out)
PROCESSOR 2

editor (term.in, term.out, files.in, files.out)
PROCESSOR 3

network (files.in, files.out)

terminal editor network
1 2 3

PLACED PAR

| PLACED PAR

| PROCESSOR

PLACED PAR
PROCESSOR INT

94

The component processes of a parallel (page 15) executing on a single processor may be assigned a priority
of execution. Consider the following example:

This process will always execute the process in preference to the process . Each process
executes at a separate priority, the first process is the highest priority, the last is the lowest. Lower priority
processes may only continue when all higher priority processes are unable to. The process may also be
replicated, as shown in the following example:

The process with the highest index is executed at the lowest priority.

The syntax for priority execution is:

The keywords are followed by zero or more processes at an indentation of two spaces. As for
parallels detailed in the main body of the manual (page 16), the process may be replicated.

An implementation for a target processor without hardware support for process priority may omit this extension
or may implement it as though the keyword were not present. If hardware only implements a limited
number of priorities an implementation may impose restrictions on the nesting of constructs or may
not permit replicated s.

Priority alternations have been discussed with other alternations above (page 23). They are not concerned
with process priority and are not dependent on hardware support for priority.

This section explains how a , , or may be placed at an absolute location in the
memory of a target processor. presents a consistent view of a processor’s memory map. Memory
is considered to be an array of type ; each address in memory is considered a subscript into that array.
The location used an refers to the lowest address occupied by the variable, etc, in memory. It is
therefore the location of first byte of a scakar or the first byte of the zeroth component of an array or the first
field defined in a packed record type.

Consider the following example:

occam

� �
parallel

process
replicator

process

variable channel timer array

allocation

B Configuration

B.2.1 Priority parallel

B.2.2 Priority alternation

B.2 Execution priority on a single processor

B.3 Allocation to memory

�

PRI PAR
terminal (term.in, term.out)
editor (term.in, term.out)

terminal editor

PRI PAR i = 0 FOR 8
users (term.in[i], term.out[i])

PRI PAR

| PRI PAR

PRI PAR

PRI
PRI PAR

PRI PAR

INT

PLACE term.in AT link1in :

95

This allocation places at the location specified by . Here are some further examples:

The syntax for allocation is:

An allocation begins with the keyword , followed by the name of the variable, channel, timer or array
to be placed. This in turn is followed by an expression of type which indicates the absolute location in
memory.

Although not explicitly determined by the syntax, it is usual for an implementation to require that an allocation
appear immediately after the declaration of the variable whose place it defines. A compiler may reject an
allocation which appears at a position violating this guideline, especially after code may have been generated
referring to the variable.

An allocation must place a channel, timer or variable at a compatible location. That is, a timer should be
placed at a location which acts as a timer, and a channel should be placed at the location which implements
a channel. Also, arrays must not be placed so that the components of an array overlap other allocations.

An implementation may extend the concept of allocation to give the user further control over the placement
of variables in a way meaningful only in that particular implementation.

process allocation
process

allocation name expression

B.3 Allocation to memory

�

�

term.in link1in

[80]INT buffer :
PLACE buffer AT #0400 :

[5]REAL32 points :
PLACE points AT #0800 :

CHAN OF INT term.out :
PLACE term.out AT 3 :

PLACE AT :

PLACE
INT

1

This appendix describes how memory mapped devices may be addressed in . A process may
communicate with external devices which are mapped into the processor’s memory map, using a special
input or output in a way similar to communication on channels. A special type declares a which must
then be placed using an allocation (page 94). Consider the following example:

This example declares a port which is then allocated to a location in memory. The following
sequence includes an input which reads the value of the port, and also an output which writes a value
to the port location. Consider the following examples of port declarations:

one port of type
eight ports of byte type

A port declaration is similar to a channel declaration, and must obey the same rules of scope (page 39);
that is, a port may not be used for input or output in more than one component process in a parallel. It is,
however, possible to use a port for both input and output in sequence, as in the example above.

The syntax for ports and the necessary extensions to other syntax are:

A port is declared in the same way as a channel. Instead of a defined (page 47) the port definition
specifies a data type as the type for communication. A declaration of a port must be followed by an allocation
(see page 94) defining its address in the memory of the target processor.

Although port input and output are treated syntactically as communications, in practice they behave more
like assignments from and to variables mapped onto the processor’s address space. They do not cause a
process to wait for input or output.

Ports may be abbreviated, and therefore passed as parameters to procedures. The necessary syntax exten-
sions are:

A specifier used in a port abbreviation must be a port type.

occam

C Ports

� �

port

port.type data.type
expression port.type

declaration port.type name

port name
port expression

port base count
port base
port count

input port variable

output port expression

protocol

specifier port.type

abbreviation name port
specifier name port

actual port

�

�

�

�

�

�

�

�

PORT OF INT16 status :
PLACE status AT uart.status :
SEQ

...
status ? state
status ! reset
...

uart.status
reset

PORT OF [8]INT uart : [8]INT
[8]PORT OF BYTE transducer :

PORT OF

| []

, :

| []

| [FROM FOR]

| [FROM]

| [FOR]

?

!

IS :

| IS :

97

Ports may be retyped and arrays of ports reshaped. If a port is retyped the types on the left and right must
be of the same size. An array of ports may be retyped from or to a scalar port or another array of the same
total size. The extensions to the syntax are:

The specifier in a port retyping or reshaping definition must be a port type. A specifier which is an array port
type with an empty dimension is allowed only in a retyping or reshaping definition.

The following code fragment illustrates port retyping and reshaping by example:

definition specifier name port
specifier name port

Ports C

� RETYPES :

| RESHAPES :

PORT OF INT32 pi :
PLACE pi AT #2000 : -- at word #2000 of memory map
[4]PORT OF BYTE p4b RETYPES pi :
SEQ

pba IS p4b[1] :
pba ! ’z’
[2]PORT OF INT16 pia16 RETYPES p4b :
pia16[0] ! 32767
PORT OF [4]BYTE pir RETYPES p4b :
pir ! "dead"
[][2]PORT OF BYTE pirs RESHAPES p4b :
pirs[0][1] ! ’g’

1

Earlier sections of this manual have discussed rounding and the possibility of rounding errors. These occur
because the types and only contain a subset of the real numbers. This is because it is
not possible to store all the possible real values in the format for real numbers available on a machine.
Rounding takes a value, which is considered infinitely precise and, if necessary, modifies it to a value which
is representable by the type. By default, values are rounded to the nearest value of the type; if the nearest
greater value and the nearest smaller value are equally near, then the result which has the least significant
bit zero is chosen. Other modes of rounding are selectable using the library routines. These
modes round values toward plus infinity, minus infinity or toward zero. A value rounded to plus infinity is the
value nearest to and not less than the value to be represented; a value rounded to minus infinity is the value
nearest to and not greater than the value to be represented; a value rounded toward zero is the value no
greater in magnitude than the value to be represented.

A value is rounded to the precision of its type. A value of type is equivalent to IEEE single precision,
and a value of type is equivalent to IEEE double precision.

Values in the and formats are stored in the following formats

where is the sign bit, is the exponent and is the fraction. For the type is 1 bit wide,
is 8 bits wide and is 23 bits wide. For the type is 1 bit wide, is 11 bits wide and is
52 bits wide. Whenever the field is not 0 the actual fraction of the number represented has an “implied”
1 placed on the left of the value.

The value of finite s is given by

= (1) 1 2 if = 0;
(1) 0 2 if = 0;

where is 127 for and 1023 for .

In the type the value 1.0 is represented by an unset sign bit , an equal to 127, and a
of 0. The next larger number has an unset sign bit, of 127 and a of 1. This has the value
1 000000119209 Hence any number lying between 1.0 and this value cannot be exactly represented in
the type – such values have to be to one of these values. Now consider the assignment:

The previous sections show that the result of this operation cannot be exactly represented by the type
. The exact result has to be rounded to “fit” the type. Here the exact result will be rounded to the

nearest value 1 000000119209

Other rounding modes – Round to Zero (truncation), Round to Plus infinity and Round to Minus infinity – can
be obtained through the use of the function. Because of the presence of rounding, programmers
should be wary of using equality tests on real types. Consider the following example:

never terminates as rounding errors cause and to differ.

The nearest unique value of a conversion of a literal of type can be determined from the first 9
significant digits, and from the first 17 significant digits of a literal of type . Complete details of the
IEEE Standard for Binary Floating-Point Arithmetic can be found in the published ANSI/IEEE Std 754-1985
standard.

D Rounding errors

 ��� ���

 ���

�

�

�
��	 ��
�
��	 ��

�

�

� 	 	 �
� 	 	

s exp frac

s exp frac s exp
frac s exp frac

exp
frac

val s exp frac

bias

s exp frac
exp frac

rounded

REAL32 REAL64

IEEEOPnn

REAL32
REAL64

REAL32 REAL64

REAL32
REAL64

REAL

REAL32 REAL64

REAL32

REAL32

X := 1.0(REAL32) + 1.0E-7(REAL32)

REAL32
REAL32

IEEEOP

SEQ
X := 1.0(REAL32)
WHILE X <> 1.000001(REAL32)

X := X + 0.0000005(REAL32)

1.000001 1.0 + 0.0000005 + 0.0000005

REAL32
REAL64

�

This appendix summarises the rules which govern the use of variables, channels, timers, ports (page 96)
and arrays in parallel constructions, and the rules which govern abbreviations and parameters. These rules
are discussed in context throughout the manual, and are gathered here as a check list. Programs violating
these rules are deemed as alias and usage checking can usually be performed at compile time. If the
compiler has to generate run-time checks then a violation is treated as an invalid process.

The purpose of these rules is to prevent parallel processes from sharing variables, to ensure that each
channel connects only two parallel processes, and to ensure that the connection of channels is unidirectional.
The rules allow most of the checking for valid usage to be performed by a compiler, thus reducing runtime
overheads.

A channel implements a point-to-point communication between two parallel processes. The name
of a channel may only be used in one component of a parallel for input, and in one other component
of the parallel for output.

A timer may be used for input by any number of components of a parallel.

A variable or component of an array variable, which is assigned to in a component of a parallel, may
not appear in any other component of the parallel.

Components of an array variable may be assigned to in more than one component of a parallel,
if and only if the used subscripts are compile-time constants and select distinct components of the
array variable. However, an implementation may use the following more general rule: components
of an array may be assigned to in parallel, if and only if it can be determined at compile time that
the used subscripts select distinct components of the array.

Several abbreviations can decompose an array into non-overlapping disjoint parts; components of
these parts may then be selected using variable subscripts.

A port may be used in only one component of a parallel.

The purpose of these rules is to ensure that each name identifies a unique object, and that the substitution
semantics are maintained.

All reference to an abbreviated element must be via the abbreviation only, with the exception that ar-
ray elements may be further abbreviated providing the later abbreviations do not include components
of the array already abbreviated.

Variables used in an abbreviated expression may not receive new values by input or assignment
within the scope of the abbreviation.

The abbreviated expression must be valid, i.e. in range and not subject to overflow, and all subscript
expressions must be in range.

All subscript expressions used in an abbreviation must be valid, i.e. not subject to overflow and in
range.

All references to a or variable must be via the new name only, with the exception
that array variables may be further retyped providing the later retyping conversions do not include
components of the array already retyped.

Variables used in a retyping or reshaping conversion may not receive new values by input or as-
signment within the scope of the new name.

E Usage rules check list

�

�
�

�

�

�

�

�

�

�

�

�

illegal

retyped reshaped

E.1 Usage in parallel

E.2 The rules for abbreviations

100

The rules for procedure parameters follow from those for abbreviations, but in addition a channel
parameter or free channel may not be used for both input and output in a procedure.

Functions may only have value parameters.

Only variables declared within the scope of a value process may be assigned to. Free names may
be used in expressions.

A value process may not contain inputs, outputs parallels or alternations.

The body of a procedure used within a function must also obey these rules. Such a procedure may
include assignments to variables declared in the enclosing function.

�

�
�

�
�

E Usage rules check list

E.3 The rules for procedures

E.4 The rules for value processes and functions

Processes which become invalid during program execution may behave in one of three ways, determined by
a compiler option or otherwise. An invalid process may behave in one of these ways: the process may stop,
the system may halt, or the behaviour of the process may be undefined.

The three in detail are:

In this mode, processes which become invalid behave like the primitive process ,
thus allowing other processes to continue. The invalid process stops, and in particular does not
make erroneous outputs to other processes. Other processes continue until they become depen-
dent upon communication with the stopped process. In this mode it is therefore possible to write
communications which will timeout to warn of a stopped process, and to construct a system with
redundancy in which a number of processes performing the same task may be used to enable the
system to continue after one of the processes has failed.

In this mode an invalid process may cause the whole system to halt, and is useful for
the development of programs, particularly when debugging concurrent systems. In this mode the
primitive process will also cause the whole system to halt.

In this mode, an invalid process may have an arbitrary effect, and is only useful for allowing
a compiler to optimise programs known to be correct!

F Invalid processes

error modes

Stop process mode

Halt system mode

Undefined mode

STOP

STOP

The lexical components of an program are the keywords, symbols, names and literals. The distinction
between lexical and syntactic components is not rigid and may vary between different compilers. For example,
in the following appendix H the categories and it real are defined by syntactic productions, whereas
a compiler will probably recognise these by lexical analysis.

The sections of this appendix are a table of keywords, a table of symbols, informally classified into
groups, and a table of the ASCII character set for strings and byte literals. The final section of this appendix
defines in words the syntactic categories for names and literals that are not defined in the syntax summarised
in appendix H.

The keywords are:

later than operator
alternation
boolean and operator
anarchic protocol
assembly language insertion
at
bitwise and operator
bitwise not operator
bitwise or operator
boolean type
byte type
width operator
selection, variant protocol, case input
channel type
data type definition
default selection
boolean constant
count
base
function definition
conditional
inline code indicator
integer type
16bit integer type
32bit integer type
64bit integer type
specification introduction
modulo subtraction/negation operator
most negative
most positive
boolean not operator

record layout
boolean or operator
record type qualifier
parallel
allocation
placed processes
modulo addition operator
port type
prioritised construction
procedure
processor allocation
protocol definition
32bit real type
64bit real type
record type
remainder operator
reshaping conversion
value process result
retyping conversion
rounding operator
sequence
array size operator
skip process
stop process
timer type
modulo multiplication operator
boolean constant
truncation operator
type definition
value
value process
loop

If an implementation adds further reserved words, then the names used will not include lower case letters.
Programmers should consult documentation supplied with a particular compiler to see if there are other words
which cannot be used as occam names.

occam

occam

occam

G Lexical program components

integer

location

G.1 Keywords

AFTER
ALT
AND
ANY
ASM
AT
BITAND
BITNOT
BITOR
BOOL
BYTE
BYTESIN
CASE
CHAN OF
DATA
ELSE
FALSE
FOR
FROM
FUNCTION
IF
INLINE
INT
INT16
INT32
INT64
IS
MINUS
MOSTNEG
MOSTPOS
NOT

OFFSETOF
OR
PACKED
PAR
PLACE
PLACED
PLUS
PORT OF
PRI
PROC
PROCESSOR
PROTOCOL
REAL32
REAL64
RECORD
REM
RESHAPES
RESULT
RETYPES
ROUND
SEQ
SIZE
SKIP
STOP
TIMER
TIMES
TRUE
TRUNC
TYPE
VAL
VALOF
WHILE

103

The symbols of each composed of one or two ASCII characters are tabulated here according to a
simple classification. They all appear explicitly in one or more syntactic productions in appendix H.

plus
minus
times
divide
remainder

and
or
exclusive or
not
left shift
right shift

equal
less than
greater than
less than or equal to
greater than or equal to
not equal

Input
Output

Hexadecimal or compiler directive
Ampersand: used in a guard
Parentheses: used to delimit expressions,

the type of literals and a parameter list
Square brackets: used to delimit array subscripts,

and to construct segments and tables
Array type specifier
Counted array communication
Assignment symbol
Double quote: used to construct a string byte table
Single quote: used to delimit character byte literal
Comma: separator for specifications, parameters,

expression or variable lists and tables
Sequential protocol separator
Specification terminator
Comment introduction

Characters in are represented according to the American Standard Code for Information Interchange
(ASCII). Where the full character set is not available guarantees the following subset:

For reference, here is a table of all printable ASCII characters, and their values:

occam

occam
occam

G.2 Symbols

Arithmetic operators

Bit operators

Relational operators

Communication symbols

Other symbols

G.2 Symbols

G.3 Character set

+
-
*
/
\

/\
\/
><
~
<<
>>

=
<
>
<=
>=
<>

?
!

#
&
(
)
[
]
[]
::
:=
"
’
,

;
:
--

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
0123456789
!"#&’()*+,-./:;<=>?[]

104

SPACE 32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 3A
59 3B
60 3C
61 3D
62 3E
63 3F

64 40
65 41
66 42
67 43
68 44
69 45
70 46
71 47
72 48
73 49
74 4A
75 4B
76 4C
77 4D
78 4E
79 4F
80 50
81 51
82 52
83 53
84 54
85 55
86 56
87 57
88 58
89 59
90 5A
91 5B
92 5C
93 5D
94 5E
95 5F

96 60
97 61
98 62
99 63

100 64
101 65
102 66
103 67
104 68
105 69
106 6A
107 6B
108 6C
109 6D
110 6E
111 6F
112 70
113 71
114 72
115 73
116 74
117 75
118 76
119 77
120 78
121 79
122 7A
123 7B
124 7C
125 7D
126 7E
127 7F

The characters , and may not be used directly in strings or as character constants. These and non-
printable characters (such as carriage return, tab .) can be included in strings, or used as character
constants, in the following form:

carriage return = *#0D
newline = *#0A
tab = *#09
space = *#20
quotation mark
double quotation mark
asterisk

In addition, any byte value can be represented in a byte literal or within a string by followed by two
hexadecimal digits, for example:

is a byte constant.

An implementation may accept national variants of the ASCII character set both in comments and in strings
and character constants, subject only to the restriction that characters are all held in 8-bit bytes. Programs
using such extended character sets may not be portable between implementations.

&c

G Lexical program components

ASCII Dec Hex ASCII Dec Hex ASCII Dec Hex

!
"
#
$
%
&
’
(
)
*
+
,
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

‘
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

* ’ "

*c *C
*n *N
*t *T
*s *S
*’
*"
**

*#

soh := ’*#01’ ’*#01’

105

The tables of syntax in appendix H leave 5 categories undefined as it is assumed, but not required,
that these will be recognised by lexical analysis. Semi-formal definitions of these (

and) are given below:

An must begin with an alphabetic character. Names consist of a sequence of one or more
upper or lower case alphabetic characters, digits or dots.

The syntactic category represents a sequence of one or more of the characters and
a sequence of one or more of the characters .

A is either an explicit ASCII character, a special character escape introduced by , or a hexadecimal
coded character introduced by . For further details see page 103.

A is a sequence of s between a pair of double quotes (). A string may be broken over
several lines by terminating broken lines with an asterisk, and starting the continuation on the following line
with another asterisk at an indentation no less than the line where the string starts. An additional character
escape (or) may be defined for use as first character of a string of less than 256 bytes. The value of
this byte is the length in bytes of the string following this byte.

occam

occam

name, digits, hex.digits,
character string

name

digits
hex.digits

character

string character

G.4 Names and literals

G.4 Names and literals

0123456789
0123456789ABCDEF

*
*#

"

*l *L

1

1

The following tables present the syntax of , with each syntactic category placed in alphabetical order.
In this tabulation all productions for each category appear together, including those introduced in appendices
B and C which may not be implemented by all compilers.

The metalanguage of these descriptions is introduced on page 3. Note that these rules must be read in
conjunction with the semantic rules given informally in the text of the definition, as it is possible to construct
programs which obey the syntax rules but are not legal .

Opposite the productions for each syntactic category is given a list of page numbers where these productions
first appear together with the qualifying semantic rules which restrict the class of legal programs.

Certain syntactic categories are not defined in this tabulations. These are (see page 28),
(see page 29), (see page 4) and (see page 58). The definitions of these categories

were repeated in appendix G above.

(43)
(43)
(44)
(44)
(54)
(54)
(54)
(54)
(83)
(83)
(96)
(96)

(73)
(73)
(73)
(96)
(73)

(95)

(21)

(23)

(24)

(24)

occam

occam

occam

occam

H Ordered syntax of occam

� �
� �

� �

� �

digits, hex.digits
character name string

abbreviation name variable
specifier name variable

name expression
specifier name expression

name channel
specifier name channel
name channel
specifier name channel
name timer
specifier name timer
name port
specifier name port

actual variable
channel
timer
port
expression

allocation name expression

alternation
alternative
replicator

alternative

alternative
replicator

alternative

�

�

�

�

IS :
| IS :

| VAL IS :

| VAL IS :

| IS :
| IS :

| IS [,] :

| IS [,] :

| IS :
| IS :

| IS :

| IS :

|
|
|

|

PLACE AT :

ALT

| ALT

| PRI ALT

| PRI ALT

107

(21)
(21)
(52)

(52)

(41)

(5)

(10,12,17,23)

(11)

(28)

(13)

(52)

(45)
(46)
(46)
(46)
(46)

(45)
(46)

(11)
(11)
(41)

� �

� �

� �

alternative guarded.alternative
alternation
channel

variant
boolean channel

variant
specification
alternative

assignment variable.list expression.list

base expression

boolean expression

byte character

case.expression expression

case.input channel
variant

channel name
channel expression

channel base count
channel base
channel count

channel.type protocol
expression channel.type

choice guarded.choice
conditional
specification
choice

Ordered syntax of occam H

�

�

�

�

�

�

�

�

�

�

|
| ? CASE

| & ? CASE

|

:=

’ ’

? CASE

| []

| [FROM FOR]
| [FROM]
| [FOR]

CHAN OF

| []

|
|

1

1

1

1

108

(11)

(12)

(67)
(67)
(67)

(10,12,17,23)

(26)
(26)
(26)
(26)
(26)
(26)
(26)
(26)
(27)
(31)

(35)
(45)
(81)
(96)

� �

� �
� �

� �
� �

conditional
choice

replicator
choice

conversion data.type operand
data.type operand
data.type operand

count expression

data.type

name
expression data.type

declaration data.type name
channel.type name
timer.type name
port.type name

H Ordered syntax of occam

�

�

�

�

�

IF

| IF

| ROUND

| TRUNC

BOOL
| BYTE
| INT
| INT16
| INT32
| INT64
| REAL32
| REAL64
|
| []

, :

| , :

| , :

| , :

0

1

1

109

(27)
(31)

(48)
(48)
(50)

(73)

(78)

(78)
(85)
(85)
(87)
(97)
(88)
(88)
(88)
(97)

(82)

(57)

(28)
(28)

(57)
(57)
(57)
(65)
(65)
(65)
(57)

� �

� �

� �

� �

definition name data.type
name

structured.type

name simple.protocol
name sequential.protocol
name

tagged.protocol

name formal
process

data.type function.header
value.process

data.type function.header expression.list
specifier name variable

specifier name expression
specifier name channel
specifier name port
specifier name variable

specifier name expression
specifier name channel
specifier name port

delayed.input timer expression

dyadic.operator

exponent digits
digits

expression operand
monadic.operator operand
operand dyadic.operator operand

data.type
data.type

data.type
conversion

Ordered syntax of occam H

�

�

�

�

�

DATA TYPE IS :

| DATA TYPE

:
| PROTOCOL IS :

| PROTOCOL IS :

| PROTOCOL
CASE

:
| PROC (,)

:
| ,

:
| , IS :

| RETYPES :

| VAL RETYPES :

| RETYPES :

| RETYPES :

| RESHAPES :

| VAL RESHAPES :

| RESHAPES :

| RESHAPES :

? AFTER

+ | - | * | / | \ | REM | PLUS | MINUS | TIMES
| /\ | \/ | >< | BITAND | BITOR | AND | OR
| = | <> | < | > | >= | <= | AFTER

+

| -

|

|

| MOSTPOS

| MOSTNEG

| SIZE

|

1

0

1

1

0

1

110

(5)
(78)
(75)

(31)

(73)
(73)

(78)

(21)
(21)
(21)

(21)

(11)

(6,48,49)
(52)
(82)
(82)
(96)

(48)
(48)

(28)
(28)

� �
� �

� �
� �

� �

� �

expression.list expression
name expression

value.process

field.name name

formal specifier name
specifier name

function.header name formal

guard input
boolean input
boolean

guarded.alternative guard
process

guarded.choice boolean
process

input channel input.item
channel tagged.list
timer.input
delayed.input
port variable

input.item variable
variable variable

integer digits
hex.digits

H Ordered syntax of occam

�

�

�

�

�

�

�

�

�

�

,

| (,)

| (

)

,

| VAL ,

FUNCTION (,)

| &

| & SKIP

? ;

| ? CASE

|

|

| ?

| ::

| #

0

1

1

1

111

(28)
(28)
(28)
(28)
(28)
(28)
(28)
(28)

(14)

(57)

(57)
(57)
(57)
(57)
(75)

(78)
(78)
(66)
(66)
(66)

(13)

(13)

(41)

(6,48,49)
(50)
(50)
(96)

(48)
(48)

� �

� �

� �

� �

literal integer
byte
real
integer data.type
byte data.type
real data.type

loop boolean
process

monadic.operator

operand variable
literal
table

expression
value.process

name expression
operand expression

operand
data.type

name field.name

option case.expression
process

process
specification
option

output channel output.item
channel tag
channel tag output.item
port expression

output.item expression
expression expression

Ordered syntax of occam H

�

�

�

�

�

�

�

|

|
| ()

| ()

| ()

| TRUE
| FALSE

WHILE

- | MINUS | ~ | BITNOT | NOT | SIZE

|
|
| ()

| (

)
| (,)

| []

| BYTESIN ()

| BYTESIN ()

| OFFSETOF (,)

,

| ELSE

|

! ;

| !

| ! ; ;

| !

| ::

0

112

(15)

(17)

(94)

(94)

(93)

(93)

(93)

(93)

(96)
(96)
(96)
(96)
(96)

(96)
(96)

(73)

(24)
(24)
(24)
(24)
(24)
(24)
(24)
(24)
(24)
(24)
(24)
(52)
(73)
(41)

(95)

� �

� �

� �

� �

parallel
process
replicator

process

process
replicator

process
placedpar

placedpar
placedpar

replicator
placedpar

expression
process

port name
port expression

port base count
port base
port count

port.type data.type
expression port.type

proc.instance name actual

process assignment
input
output

sequence
conditional
selection
loop
parallel
alternation
case.input
proc.instance
specification
process
allocation
process

H Ordered syntax of occam

�

�

�

�

�

�

PAR

| PAR

| PRI PAR

| PRI PAR

|

PLACED PAR

| PLACED PAR

| PROCESSOR

| []

| [FROM FOR]

| [FROM]

| [FOR]

PORT OF

| []

(,)

|

|

| SKIP
| STOP
|

|
|
|

|

|
|

|

|

|

1

1

1

113

(48)
(48)

(28)
(28)

(10,12,17,23)

(13)

(13)

(9)

(10)

(49)

(48)
(54)
(48)

(40)
(40)
(40)

(43)
(54)
(83)
(96)

(43,54,83)
(43,54,83)

(31)

(31)

� �

� �

� �

� � � �

� � � �

protocol name
simple.protocol

real digits digits
digits digits exponent

replicator name base count

selection selector
option

selector expression

sequence
process
replicator

process

sequential.protocol simple.protocol

simple.protocol data.type

data.type data.type

specification declaration
abbreviation
definition

specifier data.type
channel.type
timer.type
port.type

specifier
expression specifier

structured.type
data.type field.name

data.type field.name

Ordered syntax of occam H

�

�

�

�

�

�

�

�

�

�

�

|

.

| . E

= FOR

CASE

SEQ

| SEQ

;

| ANY
| ::[]

|
|

|

|

|

| []

| []

RECORD
, :

| PACKED RECORD
, :

1

1

114

(59)
(59)

(32,59)
(32,59)

(59)
(59)
(59)

(50)

(52)
(52)

(50)
(50)

(82)

(81)
(81)
(81)
(81)
(81)

(81)
(81)

(75)

(75)

(35)
(37)
(37)
(37)
(37)

� �

� �

table string
string name

expression
table expression

table base count
table base
table count

tag name

tagged.list tag
tag input.item

tagged.protocol tag
tag sequential.protocol

timer.input timer variable

timer name
timer expression

timer base count
timer base
timer count

timer.type
expression timer.type

value.process
process

expression.list
specification
value.process

variable name
variable expression

variable base count
variable base
variable count

H Ordered syntax of occam

�

�

�

�

�

�

�

�

�

| ()

| [,]

| []

| [FROM FOR]
| [FROM]
| [FOR]

| ; ;

| ;

?

| []

| [FROM FOR]
| [FROM]
| [FOR]

TIMER
| []

VALOF

RESULT

|

| []

| [FROM FOR]
| [FROM]
| [FOR]

1

115

(5)

(52)

(41,52)

� �variable.list variable

variant tagged.list
process

specification
variant

Ordered syntax of occam H

�

�

,

|

This appendix provides a list of the library routines that an implementation should provide.

The behaviour of routines is described in greater detail in the following appendices, but this may be amplified
or modified in further documentation accompanying an implementation.

It may be necessary to use compiler directives such as to incorporate specifications of these routines
into an program at an appropriate point (see page 91).

Some library routines (typically the most primitive routines) may be predefined in an implementation, that
is, they may be known to the compiler and so not need to be explicitly referenced by the programmer.
The names of such routines do not become reserved words as the programmer is free to redefine them in
local specifications. An implementation may define additional predefined names not mentioned here. This is
typically done to provide convenient access to special purpose instructions available in one or more target
processor types.

Other libraries may need to be explicitly referenced by the programmer, and the names used in their specifi-
cations behave like any other names and may be redeclared with different meaning in local scopes. However,
programmers are discouraged from using the names of any library routine for any purpose other than that of
naming the routine in question. The following tables include the name of the routine, and a specifier which
indicates the type of each of the parameters to the routine.

The libraries described here are not intended to be exhaustive, and a large group of additional routines have
been provided with most existing implementations and have become established by common usage.
None of the routines described here make explicit use of extensions to the language beyond 2.

The arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct multiple length
arithmetic and multiple length shift operations.

occam

occam
occam

I Library procedures and functions

I.1 Multiple length integer arithmetic functions

#USE

INT FUNCTION LONGADD (VAL INT left, right, carry.in)
INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)
INT FUNCTION ASHIFTRIGHT (VAL INT argument, places)
INT FUNCTION ASHIFTLEFT (VAL INT argument, places)
INT FUNCTION ROTATERIGHT (VAL INT argument, places)
INT FUNCTION ROTATELEFT (VAL INT argument, places)
INT,INT FUNCTION LONGSUM (VAL INT left, right, carry.in)
INT,INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)
INT,INT FUNCTION LONGPROD (VAL INT left, right, carry.in)
INT,INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)
INT,INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)
INT,INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)
INT,INT,INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

117

The floating point functions provide the list of facilities suggested by the ANSI/IEEE standard 754-1985.

I.2 Floating point functions

I.2 Floating point functions

I.3 Full IEEE arithmetic functions

REAL32 FUNCTION ABS (VAL REAL32 X)
REAL64 FUNCTION DABS (VAL REAL64 X)
REAL32 FUNCTION SCALEB (VAL REAL32 X,VAL INT n)
REAL64 FUNCTION DSCALEB (VAL REAL64 X,VAL INT n)
REAL32 FUNCTION COPYSIGN (VAL REAL32 X, Y)
REAL64 FUNCTION DCOPYSIGN (VAL REAL64 X, Y)
REAL32 FUNCTION SQRT (VAL REAL32 X)
REAL64 FUNCTION DSQRT (VAL REAL64 X)
REAL32 FUNCTION MINUSX (VAL REAL32 X)
REAL64 FUNCTION DMINUSX (VAL REAL64 X)
REAL32 FUNCTION NEXTAFTER (VAL REAL32 X, Y)
REAL64 FUNCTION DNEXTAFTER (VAL REAL64 X, Y)
REAL32 FUNCTION MULBY2 (VAL REAL32 X)
REAL64 FUNCTION DMULBY2 (VAL REAL64 X)
REAL32 FUNCTION DIVBY2 (VAL REAL32 X)
REAL64 FUNCTION DDIVBY2 (VAL REAL64 X)
REAL32 FUNCTION LOGB (VAL REAL32 X)
REAL64 FUNCTION DLOGB (VAL REAL64 X)
BOOL FUNCTION ISNAN (VAL REAL32 X)
BOOL FUNCTION DISNAN (VAL REAL64 X)
BOOL FUNCTION NOTFINITE (VAL REAL32 X)
BOOL FUNCTION DNOTFINITE (VAL REAL64 X)
BOOL FUNCTION ORDERED (VAL REAL32 X, Y)
BOOL FUNCTION DORDERED (VAL REAL64 X, Y)
INT,REAL32 FUNCTION FLOATING.UNPACK (VAL REAL32 X)
INT,REAL64 FUNCTION DFLOATING.UNPACK (VAL REAL64 X)
BOOL,INT32,REAL32 FUNCTION ARGUMENT.REDUCE (VAL REAL32 X, Y, Y.err)
BOOL,INT32,REAL64 FUNCTION DARGUMENT.REDUCE (VAL REAL64 X, Y, Y.err)
REAL32 FUNCTION FPINT (VAL REAL32 X)
REAL64 FUNCTION DFPINT (VAL REAL64 X)

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)
REAL64 FUNCTION REAL64OP (VAL REAL64 X, VAL INT Op, VAL REAL64 Y)
BOOL,REAL32 FUNCTION IEEE32OP (VAL REAL32 X, VAL INT Rm, VAL INT Op,

VAL REAL32 Y)
BOOL,REAL64 FUNCTION IEEE64OP (VAL REAL64 X, VAL INT Rm, VAL INT Op,

VAL REAL64 Y)
REAL32 FUNCTION REAL32REM (VAL REAL32 X, Y)
REAL64 FUNCTION REAL64REM (VAL REAL64 X, Y)
BOOL,REAL32 FUNCTION IEEE32REM (VAL REAL32 X, Y)
BOOL,REAL64 FUNCTION IEEE64REM (VAL REAL64 X, Y)
BOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)
BOOL FUNCTION REAL64EQ (VAL REAL64 X, Y)
BOOL FUNCTION REAL32GT (VAL REAL32 X, Y)
BOOL FUNCTION REAL64GT (VAL REAL64 X, Y)
INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)
INT FUNCTION DIEEECOMPARE (VAL REAL64 X, Y)

118 I Library procedures and functions

I.4 Elementary function library

REAL32 FUNCTION ALOG (VAL REAL32 X)
REAL64 FUNCTION DALOG (VAL REAL64 X)
REAL32 FUNCTION ALOG10 (VAL REAL32 X)
REAL64 FUNCTION DALOG10 (VAL REAL64 X)
REAL32 FUNCTION EXP (VAL REAL32 X)
REAL64 FUNCTION DEXP (VAL REAL64 X)
REAL32 FUNCTION TAN (VAL REAL32 X)
REAL64 FUNCTION DTAN (VAL REAL64 X)
REAL32 FUNCTION SIN (VAL REAL32 X)
REAL64 FUNCTION DSIN (VAL REAL64 X)
REAL32 FUNCTION ASIN (VAL REAL32 X)
REAL64 FUNCTION DASIN (VAL REAL64 X)
REAL32 FUNCTION COS (VAL REAL32 X)
REAL64 FUNCTION DCOS (VAL REAL64 X)
REAL32 FUNCTION ACOS (VAL REAL32 X)
REAL64 FUNCTION DACOS (VAL REAL64 X)
REAL32 FUNCTION SINH (VAL REAL32 X)
REAL64 FUNCTION DSINH (VAL REAL64 X)
REAL32 FUNCTION COSH (VAL REAL32 X)
REAL64 FUNCTION DCOSH (VAL REAL64 X)
REAL32 FUNCTION TANH (VAL REAL32 X)
REAL64 FUNCTION DTANH (VAL REAL64 X)
REAL32 FUNCTION ATAN (VAL REAL32 X)
REAL64 FUNCTION DATAN (VAL REAL64 X)
REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)
REAL32, INT32 FUNCTION RAN (VAL INT32 N)
REAL64, INT64 FUNCTION DRAN (VAL INT64 N)
REAL32 FUNCTION POWER (VAL REAL32 X, Y)
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

119

The library provides primitive procedures to convert a value to and from decimal or hexadecimal representa-
tions.

The library provides procedures which provide some useful facilities for the programmer.occam

I.5 Value, string conversion procedures

I.5 Value, string conversion procedures

I.6 Programming support routines

PROC INTTOSTRING (INT len, []BYTE string, VAL INT n)
PROC INT16TOSTRING (INT len, []BYTE string, VAL INT16 n)
PROC INT32TOSTRING (INT len, []BYTE string, VAL INT32 n)
PROC INT64TOSTRING (INT len, []BYTE string, VAL INT64 n)
PROC STRINGTOINT (BOOL error, INT n, VAL []BYTE string)
PROC STRINGTOINT16 (BOOL error, INT16 n, VAL []BYTE string)
PROC STRINGTOINT32 (BOOL error, INT32 n, VAL []BYTE string)
PROC STRINGTOINT64 (BOOL error, INT64 n, VAL []BYTE string)
PROC HEXTOSTRING (INT len, []BYTE string, VAL INT n)
PROC HEX16TOSTRING (INT len, []BYTE string, VAL INT16 n)
PROC HEX32TOSTRING (INT len, []BYTE string, VAL INT32 n)
PROC HEX64TOSTRING (INT len, []BYTE string, VAL INT64 n)
PROC STRINGTOHEX (BOOL error, INT n, VAL []BYTE string)
PROC STRINGTOHEX16 (BOOL error, INT16 n, VAL []BYTE string)
PROC STRINGTOHEX32 (BOOL error, INT32 n, VAL []BYTE string)
PROC STRINGTOHEX64 (BOOL error, INT64 n, VAL []BYTE string)
PROC STRINGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string)
PROC STRINGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string)
PROC REAL32TOSTRING (INT, []BYTE, VAL REAL32, VAL INT)
PROC REAL64TOSTRING (INT, []BYTE, VAL REAL64, VAL INT)
PROC STRINGTOBOOL (BOOL error, b, VAL []BYTE string)
PROC BOOLTOSTRING (INT len, []BYTE string, VAL BOOL b)

PROC RESCHEDULE ()
PROC ASSERT (VAL BOOL assertion)

The following arithmetic functions provide arithmetic shifts, word rotations and the primitives to construct
multiple length integer arithmetic and multiple length shift operations.

signed addition with a carry in.
unsigned addition with a carry in and a carry out.
signed subtraction with a borrow in.
unsigned subtraction with a borrow in and a borrow out.
unsigned multiplication with a carry in, producing a double length result.
unsigned division of a double length number, producing a single length result.
right shift on a double length quantity.
left shift on a double length quantity.
normalise a double length quantity.
arithmetic right shift on a double length quantity.
arithmetic left shift on a double length quantity.
rotate a word right.
rotate a word left.

For the purpose of explanation imagine a new type , and the associated conversion. This imaginary
type is capable of representing the complete set of integers and is presumed to be represented as an infinite
bit two’s complement number. With this one exception the following are descriptions of the various
arithmetic functions.

= 2

= (2 1)

= (2)

IS 1() :
IS 2() :

In , values are considered to be signed. However, in these functions the concern is with other
interpretations. In the construction of multiple length arithmetic the need is to interpret words as containing
both signed and unsigned integers. In the following the new type is used to manipulate these
values, and other values which may require more than a single word to store.

occam

occam

J Multiple length integer arithmetic
functions

����������

���!�

���!�

�

�

INTEGER

INTEGER
INTEGER

INTEGER

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

��������� ��	
 �� ��	 ��������
	���������

���	����

����

LONGADD
LONGSUM
LONGSUB
LONGDIFF
LONGPROD
LONGDIV
SHIFTRIGHT
SHIFTLEFT
NORMALISE
ASHIFTRIGHT
ASHIFTLEFT
ROTATERIGHT
ROTATELEFT

--
VAL bitsperword IS machine.wordsize() :
VAL range IS storeable.values() :

-- range
VAL maxint IS (MOSTPOS INT) :

-- maxint
VAL minint IS (MOSTNEG INT) :

-- minint
--
VAL one
VAL two
--
VAL wordmask IS range - one :

32

31 31

31 31

121

The sign conversion of a value is defined in the functions and . These are used in the description
following but they are NOT functions themselves.

Returns the value of as an unsigned integer value.
for example, on a 32 bit word machine :

1 = 1
1 = 2 1

Takes the and returns the signed type .
for example, on a 32 bit word machine :
2 1 becomes 2 1
2 becomes 2

� �

� �
�

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

Multiple length integer arithmetic functions J

unsign sign

FUNCTION unsign (VAL INT operand)

-- operand
--
-- unsign ()
-- unsign ()

operand.i
VALOF

IF
operand < 0

operand.i := (operand) + range
operand >= 0

operand.i := operand
RESULT operand.i

:

INT FUNCTION sign (VAL result.i)

-- result.i INT
--
--
--

INT result :
VALOF

IF
(result.i > maxint) AND (result.i < range)

result := INT (result.i - range)
TRUE

result := INT result.i
RESULT result

:

122

performs the addition of signed quantities with a carry in. The function is invalid if arithmetic overflow
occurs.

The action of the function is defined as follows:

Adds (signed) word to word with least significant bit of .

overflow may occur in the following conversion
resulting in an invalid process

performs the addition of unsigned quantities with a carry in and a carry out. No overflow can occur.

The action of the function is defined as follows:

Adds (unsigned) word to word with the least significant bit of .
Returns two results, the first value is one if a carry occurs, zero otherwise,
the second result is the sum.

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER

J Multiple length integer arithmetic functions

J.1 The integer arithmetic functions

LONGADD

INT FUNCTION LONGADD (VAL INT left, right, carry.in)

-- left right carry.in

sum.i, carry.i, left.i, right.i :
VALOF

SEQ
carry.i := (carry.in /\ 1)
left.i := left
right.i := right
sum.i := (left.i + right.i) + carry.i

--
--
RESULT INT sum.i

:

LONGSUM

INT, INT FUNCTION LONGSUM (VAL INT left, right, carry.in)

-- left right carry.in
--
--

INT carry.out :
sum.i, left.i, right.i :

VALOF
SEQ

left.i := unsign (left)
right.i := unsign (right)
sum.i := (left.i + right.i) + (carry.in /\ 1)
IF -- assign carry

sum.i >= range
SEQ

sum.i := sum.i - range
carry.out := 1

TRUE
carry.out := 0

RESULT carry.out, sign (sum.i)
:

123

performs the subtraction of signed quantities with a borrow in. The function is invalid if arithmetic
overflow occurs.

The action of the function is defined as follows:

Subtracts (signed) word from word and subtracts from the result.

overflow may occur in the following conversion
resulting in an invalid process

performs the subtraction of unsigned quantities with borrow in and borrow out. No overflow can
occur.

The action of the function is defined as follows:

Subtracts (unsigned) word from word and subtracts from the result.
Returns two results, the first is one if a borrow occurs, zero otherwise,
the second result is the difference.

assign borrow

INTEGER

INTEGER
INTEGER
INTEGER

INTEGER

INTEGER

J.1 The integer arithmetic functions

LONGSUB

INT FUNCTION LONGSUB (VAL INT left, right, borrow.in)

-- right left borrow.in

diff.i, borrow.i, left.i, right.i :
VALOF

SEQ
borrow.i := (borrow.in /\ 1)
left.i := left
right.i := right
diff.i := (left.i - right.i) - borrow.i

--
--
RESULT INT diff.i

:

LONGDIFF

INT, INT FUNCTION LONGDIFF (VAL INT left, right, borrow.in)

-- right left borrow.in
--
--

diff.i, left.i, right.i :
VALOF

SEQ
left.i := unsign (left)
right.i := unsign (right)
diff.i := (left.i - right.i) - (borrow.in /\ 1)
IF --

diff.i < 0
SEQ

diff.i := diff.i + range
borrow.out := 1

TRUE
borrow.out := 0

RESULT borrow.out, sign (diff.i)
:

124

performs the multiplication of two unsigned quantities, adding in an unsigned carry word. Produces
a double length unsigned result. No overflow can occur.

The action of the function is defined as follows:

Multiplies (unsigned) word by word and adds .
Returns the result as two integers most significant word first.

divides an unsigned double length number by an unsigned single length number. The function
produces an unsigned single length quotient and an unsigned single length remainder. An overflow will occur
if the quotient is not representable as an unsigned single length number. The function becomes invalid if the
divisor is equal to zero.

The action of the function is defined as follows:

Divides (unsigned) and by .
Returns two results the first is the quotient and the second is the remainder.

INTEGER

INTEGER

J Multiple length integer arithmetic functions

LONGPROD

INT, INT FUNCTION LONGPROD (VAL INT left, right, carry.in)

-- left right carry.in
--

prod.i, prod.lo.i, prod.hi.i, left.i, right.i, carry.i :
VALOF

SEQ
carry.i := unsign (carry.in)
left.i := unsign (left)
right.i := unsign (right)
prod.i := (left.i * right.i) + carry.i
prod.lo.i := prod.i REM range
prod.hi.i := prod.i / range

RESULT sign (prod.hi.i), sign (prod.lo.i)

:

LONGDIV

INT, INT FUNCTION LONGDIV (VAL INT dividend.hi, dividend.lo, divisor)

-- dividend.hi dividend.lo divisor
--

divisor.i, dividend.i, hi, lo, quot.i, rem.i :
VALOF

SEQ
hi := unsign (dividend.hi)
lo := unsign (dividend.lo)
divisor.i := unsign (divisor)
dividend.i := (hi * range) + lo
quot.i := dividend.i / divisor.i
rem.i := dividend.i REM divisor.i

-- overflow may occur in the following conversion of quot.i
-- resulting in an invalid process
RESULT sign (quot.i), sign (rem.i)

:

125

performs a right shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 = = 2

The action of the function is defined as follows:

Shifts the value in and right by the given number of .
Bits shifted in are set to zero.
Returns the result as two integers most significant word first.

� � �

INTEGER

J.1 The integer arithmetic functions

SHIFTRIGHT

places bitsperword

INT, INT FUNCTION SHIFTRIGHT (VAL INT hi.in, lo.in, places)

-- hi.in lo.in places
--
--

INT hi.out, lo.out :
VALOF

IF
(places < 0) OR (places > (two*bitsperword))

SEQ
hi.out := 0
lo.out := 0

TRUE
operand, result, hi, lo :

SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand >> places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

126

performs a left shift on a double length quantity. The function must be called with the number
of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 = = 2

The action of the function is defined as follows:

Shifts the value in and left by the given number of .
Bits shifted in are set to zero.
Returns the result as two integers most significant word first.

� � �

INTEGER

J Multiple length integer arithmetic functions

SHIFTLEFT

places bitsperword

INT, INT FUNCTION SHIFTLEFT (VAL INT hi.in, lo.in, places)

-- hi.in lo.in places
--
--

VALOF
IF

(places < 0) OR (places > (two*bitsperword))
SEQ

hi.out := 0
lo.out := 0

TRUE
operand, result, hi, lo :

SEQ
hi := unsign (hi.in)
lo := unsign (lo.in)
operand := (hi << bitsperword) + lo
result := operand << places
lo := result /\ wordmask
hi := result >> bitsperword
hi.out := sign (hi)
lo.out := sign (lo)

RESULT hi.out, lo.out
:

127

normalises a double length quantity. No overflow can occur.

The action of the function is defined as follows:

Shifts the value in and left until the highest bit is set.
The function returns three integer results
The first returns the number of places shifted.
The second and third return the result as two integers with the least significant word first;
If the input value was zero, the first result is 2 .�

INTEGER

J.1 The integer arithmetic functions

NORMALISE

INT, INT, INT FUNCTION NORMALISE (VAL INT hi.in, lo.in)

-- hi.in lo.in
--
--
--
-- bitsperword

INT places, hi.out, lo.out :
VALOF

IF
(hi.in = 0) AND (lo.in = 0)

places := INT (two*bitsperword)
TRUE

VAL msb IS one << ((two*bitsperword) - one) :
operand, hi, lo :

SEQ
lo := unsign (lo.in)
hi := unsign (hi.in)
operand := (hi << bitsperword) + lo
places := 0
WHILE (operand /\ msb) = 0

SEQ
operand := operand << one
places := places + 1

hi := operand / range
lo := operand REM range
hi.out := sign (hi)
lo.out := sign (lo)

RESULT places, hi.out, lo.out
:

128

performs an arithmetic right shift, shifting in and maintaining the sign bit. The function must
be called with the number of places in range, otherwise the implementation can produce unexpected effects.

i.e. 0 = =

No overflow can occur.

the result of this function is NOT the same as division by a power of two.

e.g. 1 2 = 0
1, 1 = 1

The action of the function is defined as follows:

Shifts the value in right by the given number of .
The status of the high bit is maintained

performs an arithmetic left shift. The function is invalid if significant bits are shifted out, signalling
an overflow. The function must be called with the number of places in range, otherwise the implementation
can produce unexpected effects.

i.e. 0 = =

the result of this function is the same as multiplication by a power of two.

The action of the function is defined as follows:

Shifts the value in left by the given number of .
Bits shifted in are set to zero.

� �

�

� �

�
� �

INTEGER

INTEGER

INTEGER

J Multiple length integer arithmetic functions

N.B

N.B

J.2 Arithmetic shifts

ASHIFTRIGHT

places bitsperword

ASHIFTRIGHT ()

-- operand places
--

INT FUNCTION ASHIFTRIGHT (VAL INT operand, places) IS
INT((operand) >> places) :

ASHIFTLEFT

places bitsperword

INT FUNCTION ASHIFTLEFT (VAL INT argument, places)

-- argument places
--

result.i :
VALOF

result.i := (argument) << places
-- overflow may occur in the following conversion
-- resulting in an invalid process
RESULT INT result.i

:

129

rotates a word right. Bits shifted out of the word on the right, re-enter the word on the left.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 = =

No overflow can occur.

The action of the function is defined as follows:

Rotates the value in by the given number of .

rotates a word left. Bits shifted out of the word on the left, re-enter the word on the right.
The function must be called with the number of places in range, otherwise the implementation can produce
unexpected effects.

i.e. 0 = =

The action of the function is defined as follows:

Rotates the value in by the given number of .

� �

� �

INTEGER

INTEGER

J.3 Word rotation

J.3 Word rotation

ROTATERIGHT

places bitsperword

INT FUNCTION ROTATERIGHT (VAL INT argument, places)

-- argument places

high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := (argument.i * range) >> places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)
:

ROTATELEFT

places bitsperword

INT FUNCTION ROTATELEFT (VAL INT argument, places)

-- argument places

high, low, argument.i :
VALOF

SEQ
argument.i := unsign(argument)
argument.i := argument.i << places
high := argument.i / range
low := argument.i REM range

RESULT INT(high \/ low)
:

Most of the floating point functions described in this appendix conform to the ANSI/IEEE standard 754-1985.
However some of the functions act as invalid processes when called with arguments which are not finite
(page 131). These behaviours do not conform to the standard and are noted as part of the description of
each function.

Each function is specified by a skeletal function declaration, a predicate stating the relationship between the
actual parameters after the function call and an informal textual description of the operation. All functions are
implemented in a way which allows the same variable to be used as both the input and receiving variable
in an assignment. The predicate gives the formal definition of the operation, although for most purposes the
text will be an adequate explanation.

and are the sets of all Not-a-Numbers and all infinities in the format.

Floating point arithmetic implementations will return the following valued Not-a-Numbers to signify the various
errors that can occur in evaluations.

Divide zero by zero #7FC00000 #7FF80000 00000000
Divide infinity by infinity #7FA00000 #7FF40000 00000000
Multiply zero by infinity #7F900000 #7FF20000 00000000
Addition of opposite signed infinities #7F880000 #7FF10000 00000000
Subtraction of same signed infinities #7F880000 #7FF10000 00000000
Negative square root #7F840000 #7FF08000 00000000

to NaN conversion #7F820000 #7FF04000 00000000
Remainder from infinity #7F804000 #7FF00800 00000000
Remainder by zero #7F802000 #7FF00400 00000000

() =

This returns the absolute value of . This is implemented clearing the sign bit so that becomes .
If is a NaN or infinity, then calls to these functions act as invalid processes.

K Floating point functions

NaN Inf

Error Single length value Double length value

K.1 Not-a-number values

K.2 Absolute

REAL64 REAL32

REAL32 FUNCTION ABS(VAL REAL32 X)
...

:
REAL64 FUNCTION DABS(VAL REAL64 X)

...
:

ABS X X

X -0.0 +0.0
X

131

() =

This returns the square root of . If is a negative number, NaN or infinity, then calls to these functions act
as invalid processes.

() =

This returns if is a Not-a-Number and otherwise.

() =

This returns if is a Not-a-Number or an infinity and otherwise.

() = 2

This multiplies by 2 . Overflow and underflow behaviour is as for normal multiplication under the ANSI/IEEE
standard 754-1985. can take any value as the operation will return the correct result even when 2 cannot
be represented in the format. If is a NaN or infinity, then calls to these functions act as invalid processes.

�

�

�

"

���

��� #�

�

�

� �

	

K.3 Square root

K.3 Square root

K.4 Test for Not-a-Number

K.5 Test for Not-a-Number or infinity

K.6 Scale by power of two

REAL32 FUNCTION SQRT(VAL REAL32 X)
...

:
REAL64 FUNCTION DSQRT(VAL REAL64 X)

...
:

SQRT X

X X

BOOL FUNCTION ISNAN(VAL REAL32 X)
...

:
BOOL FUNCTION DISNAN(VAL REAL64 X)

...
:

ISNAN X TRUE X

TRUE X FALSE

BOOL FUNCTION NOTFINITE(VAL REAL32 X)
...

:
BOOL FUNCTION DNOTFINITE(VAL REAL64 X)

...
:

NOTFINITE X TRUE X

TRUE X FALSE

REAL32 FUNCTION SCALEB(VAL REAL32 X, VAL INT n)
...

:
REAL64 FUNCTION DSCALEB(VAL REAL64 X, VAL INT n)

...
:

SCALEB X n X

X
n

X

132

= result
= 0 = ()

= 0 =
= +

=

This returns the exponent of as an integer valued floating point number; special cases for Infs, NaNs and
zero. that all denormalised numbers return the same value – this is not equivalent to rounding the
logarithm to an integer value. If is a NaN then it is returned as the result, if is an infinity then the result
is plus infinity and if is zero then the result is minus infinity.

= (n, r)
= 2 [1 2)

This “unpacks” into a real () and an integer () so that lies between 1 and 2 and that = 2 . This
is useful for reducing a value to the primary range for “exponential” type functions. If is zero, a NaN or
infinity. then calls to these functions act as invalid processes. If one of these values is possible, then it must
be tested for explicitly before calling these functions.

= result
= = =

This returns with the sign bit toggled. This is not the same as (0) as it has different behaviour on zero
and NaNs. This should not be used as a unary negation where (0) should be used. As with it does
affect the representation of NaNs even though they have no sign in their interpretation.

�

�

� #�
 ��� ����� � $���
����� ��

#�
 ����� ��

��� �����

�

��������!� ��!!� ���!� ������
��	 �
��	 �������� ���

 � � � � �
� �

 �
 �

	 �

	

�
�

where

where r r

r n r

where

K Floating point functions

NOTE

K.7 Return exponent of floating point number

K.8 Unpack floating point value

K.9 Negate

REAL32 FUNCTION LOGB(VAL REAL32 X)
...

:
REAL64 FUNCTION DLOGB(VAL REAL64 X)

...
:

LOGB (X)
X X REAL32 X exp
X
X
X X

X

X X
X

INT, REAL32 FUNCTION FLOATING.UNPACK(VAL REAL32 X)
...

:
INT, REAL64 FUNCTION DFLOATING.UNPACK(VAL REAL64 X)

...
:

FLOATING.UNPACK (X)
X

X X
X

REAL32 FUNCTION MINUSX(VAL REAL32 X)
...

:
REAL64 FUNCTION DMINUSX(VAL REAL64 X)

...
:

MINUSX (X)
X X X

X X
X ABS

133

= result
= = =

This returns with the sign bit from .

= result

=
=

This can be specified precisely but as several subsidiary definitions are required first the informal third line of
the “predicate” is used for brevity.

This returns the first floating point number from in the direction of . The major area where this will be
used is in interval arithmetic. If either or both of or is a NaN then a NaN equal to or is returned. An
overflow from a finite to an infinite result is handled in the same way as an arithmetic overflow.

() =

This returns if and are “orderable” as defined by the ANSI/IEEE standard 754-1985. This implements
the negation of the comparison in ANSI/IEEE 754-1985 5.7 and enables the full IEEE style
comparison to be derived from the standard , , ... comparisons of real types in .occam

��������!� ���!� ������
��	 �
��	 �������� ���

��� ��� ����� ��� " %

 � ��� � ���

 � � � � �
�

� �

� �

�

where

where

“result is next real after in the direction of ”

unordered

K.10 Copy sign

K.10 Copy sign

K.11 Next representable value

K.12 Test for orderability

REAL32 FUNCTION COPYSIGN(VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DCOPYSIGN(VAL REAL64 X, Y)

...
:

COPYSIGN (X,Y)
Y X X

X Y

REAL32 FUNCTION NEXTAFTER(VAL REAL32 X,Y)
...

:
REAL64 FUNCTION DNEXTAFTER(VAL REAL64 X,Y)

...
:

NEXTAFTER (X,Y)
X Y
X Y X
X Y X Y

X Y
X Y X Y

X

BOOL FUNCTION ORDERED(VAL REAL32 X,Y)
...

:
BOOL FUNCTION DORDERED(VAL REAL64 X,Y)

...
:

ORDERED X Y TRUE X Y

TRUE X Y

< >

134

() = ()

+ = (+) +
((+) 2 (= (+) 2 2 = 0))

+ :
= +

(2 (= 2 2 = 0))
=

is 20 for and 30 for .

This performs a more accurate remainder by using an extended precision value for where possible.
It is assumed that is no larger than a last bit error in . is returned as the boolean result to
indicate that the more accurate remainder has been done and the integer result will then be the quotient.
If the more accurate remainder cannot be done a normal remainder is performed and the quotient must be
calculated separately. This is designed to be used to reduce an argument to the primary range for cyclical
functions - such as the trigonometric functions.

() = 2

This returns 2 times with overflow handling as defined in the ANSI/IEEE standard 754-1985, except that if
is a NaN or infinity, then calls to these functions act as invalid processes.

() = 2

This returns divided by 2 with underflow handling as defined in the ANSI/IEEE standard 754-1985, except
that if is a NaN or infinity, then calls to these functions act as invalid processes.

� � � �

��� ��� �����&�

� � � � � � ��'

��� � ��� �����&�

 �
� � �
� � � � � � ��'

� ��&
��&
�����&�

� � � 	
� � �

� �
� � 	
� � �
�

	

�

where b n r

where

b
n

n

K Floating point functions

Z

K.13 Perform range reduction

K.14 Fast multiply by two

K.15 Fast divide by two

BOOL,INT32,REAL32 FUNCTION ARGUMENT.REDUCE(VAL REAL32 X, Y, Y.err)
...

:
BOOL,INT32,REAL64 FUNCTION DARGUMENT.REDUCE(VAL REAL64 X, Y, Y.err)

...
:

ARGUMENT REDUCE X Y error

X Y X Y error
Y error Y error

X Y
X Y
Y Y

ARGUMENT.REDUCE DARGUMENT.REDUCE

X REM Y Y
error Y TRUE

REAL32 FUNCTION MULBY2(VAL REAL32 X)
...

:
REAL64 FUNCTION DMULBY2(VAL REAL64 X)

...
:

MULBY2 X X

X
X

REAL32 FUNCTION DIVBY2(VAL REAL32 X)
...

:
REAL64 FUNCTION DDIVBY2(VAL REAL64 X)

...
:

DIVBY2 X X

X
X

135

= result
2 =
2 =

This returns rounded to a floating point integer value. If is a NaN or infinity, then calls to these functions
act as invalid processes.

����������

����������

�����
� �����

 � �

 �

where

K.16 Round to floating point integer

K.16 Round to floating point integer

REAL32 FUNCTION FPINT(VAL REAL32 X)
...

:
REAL64 FUNCTION DFPINT(VAL REAL64 X)

...
:

FPINT (X)
X X
X REAL32(INT ROUND X)

X X

and are implementations of the ANSI/IEEE 754-1985 floating point arithmetic standard.
An implementation should comply to the requirements of the standard in as much as all results returned by
them should be correct as defined in the standard. Most programmers will not need to use these functions
directly as most implementations will compile all real arithmetic as calls to these functions. In some
applications, such as interval arithmetic, the rounding modes are needed so the functions will need to be
explicitly called in those cases. Also, in some applications, the IEEE standards use of infinities and Not-a-
number to handle errors and overflows may be required in preference to the standard treatment of
them as invalid expressions.

The functions for operands are

evaluates according to the standard without error checking, using the
conventional rounding mode. The various operations are coded in where:

= 0
= 1
= 2
= 3

evaluates according to the standard without error checking.

and are defined in an similar manner to operate on s.

evaluates according to the standard without error checking. The
rounding mode to be used is indicated by where:

round mode = 0 Round to Zero
round mode = 1 Round to Nearest
round mode = 2 Round to Plus Infinity
round mode = 3 Round to Minus Infinity

The functions are:

evaluates according to the standard . The functions are:

The functions return a boolean which is true if an error has occurred, and false otherwise, and the result.

occam

occam

L Full IEEE floating point arithmetic

" �� %

" %

" �� %

" %

op

L.1 ANSI/IEEE real arithmetic operations

REALOP REALREM

REAL32

REAL32 FUNCTION REAL32OP (VAL REAL32 X, VAL INT Op, VAL REAL32 Y)
...

:

REAL32 FUNCTION REAL32REM (VAL REAL32 X, VAL REAL32 Y)
...

:

REAL32OP (X, Op, Y)
Op

+
-
*
/

REAL32REM (X, Y) REM

REAL64OP REAL64REM REAL64

IEEExxOP (X, Rm, Op, Y)
Rm

BOOL, REAL32 FUNCTION IEEE32OP (VAL REAL32 X, VAL INT Rm, Op, VAL REAL32 Y)
...

:
BOOL, REAL64 FUNCTION IEEE64OP (VAL REAL64 X, VAL INT Rm, Op, VAL REAL64 Y)

...
:

IEEExxREM (X, Y) REM

BOOL, REAL32 FUNCTION IEEE32REM (VAL REAL32 X, VAL REAL32 Y)
...

:
BOOL, REAL64 FUNCTION IEEE64REM (VAL REAL64 X, VAL REAL64 Y)

...
:

137

The comparisons on the real types provided in the language should suffice for most purposes.
However, if the comparisons detailed in the ANSI/IEEE 754-1985 standard are required then they can be
generated from the set of primitive comparisons.

A standard function will return a value which indicates which of the relations ,
, or as defined by IEEE 754 paragraph 5.7. This procedure is

Then, if really necessary, any of the 26 varieties of comparison suggested by the IEEE standard can be
derived. For instance the ? = predicate could be implemented by

Similarly () could be implemented as

In either of these cases the value returned in the first boolean is equivalent to the invalid operation flag being
set according to the ANSI/IEEE standard 754-1985.

The double length version is defined in a similar manner to .

occam

�

��� ��

less than greater
than equals unordered

L.2 ANSI/IEEE real comparison

L.2 ANSI/IEEE real comparison

BOOL FUNCTION REAL32EQ (VAL REAL32 X, Y)
-- result = (X = Y) in the IEEE sense
...

:
BOOL FUNCTION REAL32GT (VAL REAL32 X, Y)

-- result = (X > Y) in the IEEE sense
...

:

IEEECOMPARE

INT FUNCTION IEEECOMPARE (VAL REAL32 X, Y)
INT result :
VALOF

IF
ORDERED (X, Y)

IF
REAL32EQ (X, Y)

result := 0
REAL32GT (X, Y)

result := 1
TRUE

result := -1
TRUE

result := 2
RESULT result

:

BOOL, BOOL FUNCTION IEEE.UGE. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation :
VALOF

relation := IEEECOMPARE (X, Y)
RESULT FALSE,

(relation=GT) OR ((relation=EQ) OR (relation=UN))
:

BOOL, BOOL FUNCTION IEEENOT.LG. (VAL REAL32 X,Y)
VAL LT IS -1, EQ IS 0, GT IS 1, UN IS 2:
INT relation :
VALOF

relation := IEEECOMPARE (X, Y)
RESULT (relation=UN), (relation=EQ) OR (relation=UN)

:

DIEEECOMPARE IEEECOMPARE

38 308

The elementary function library provides a set of routines which provide elementary functions compatible with
the ANSI/IEEE standard 754-1985 for binary floating-point arithmetic.

All single length functions other than , and have one parameter which is a
taking the argument of the function. and have two parameters. They are both s
which receive the arguments of the function. has a single parameter which is a . In each
case the double-length version is obtained by prefixing a onto the function name, whose parameters are

or, in the case of , .

Accompanying the description of each function is the specification of the function’s and . The
specifies the range of valid inputs, those for which the output is a normal or denormal floating-point

number. The specifies the range of outputs produced by all arguments in the . The given
endpoints are not exceeded. Note that some of the domains specified are implementation dependent.

Ranges are given as intervals, using the convention that a square bracket [or] means that the adjacent
endpoint is included in the range, whilst a round bracket (or) means that it is excluded. Endpoints are
given to a few significant figures only. Where the range depends on the floating-point format, single-length
is indicated with an S and double-length with a D.

For functions with two arguments the complete range of both arguments is given. This means that for each
number in one range, there is at least one (though sometimes only one) number in the other range such that
the pair of arguments is valid. Both ranges are shown, linked by an ‘x’.

In the specifications, XMAX is the largest representable floating-point number: in single-length it is approx-
imately 3 4 10 , and in double-length it is approximately 1 8 10 . Pi means the closest floating-point
representation of the transcendental number , ln(2) the closest representation of (), and so on. In
describing the algorithm, X is used generically to designate the argument, and “result” to designate the
output.

The routines will accept any value, as specified by the IEEE standard, including special values representing
s (‘Not a Number’) and s (‘Infinity’). s are copied directly to the result, whilst s may or may not

be valid arguments. Valid arguments are those for which the result is a normal (or denormalised) floating-point
number.

Arguments outside the domain (apart from which are simply copied to the result) give rise to
, which may be , , or . s mean that the result is mathematically well-defined but too

large to be represented in the floating-point format.

Error conditions are reported by means of three distinct s :

This means that the function is mathematically undefined for this argument, for
example the logarithm of a negative number.
This means that a small change in the argument would cause a large change in the
value of the function, so any error in the input will render the output meaningless.
This means that although the mathematical function is well-defined, its value is in
range, and it is stable with respect to input errors at this argument, the limitations of
word-length (and reasonable cost of the algorithm) make it impossible to compute
the correct value.

Implementations will return the following values for these Not-a-Numbers:

#7F800010 #7FF00002 00000000
#7F800008 #7FF00001 00000000
#7F800004 #7FF00000 80000000

M Elementary functions

� �
�

� �
� �

� �

�

Domain Range
Domain ie

Range Domain

exceptional
results

loge 2

NaN Inf NaN Inf

NaNs
NaN +Inf Inf Inf

NaN

Error Single length value Double length value

POWER ATAN2 RAN VAL REAL32
POWER ATAN2 VAL REAL32

RAN VAL INT32
D

VAL REAL64 DRAN VAL INT64

undefined.NaN

unstable.NaN

inexact.NaN

undefined.NaN
unstable.NaN
inexact.NaN

139

In all cases, the function returns a if given a .

These compute : result = ().

(0, XMAX]
[MinLog, MaxLog] = [103 28 88 72] = [745 2 709 78]

All arguments outside the domain generate an .

These compute : result = ()

(0, XMAX]
[MinLog10, MaxLog10] = [44 85 38 53] = [323 6 308 25]

All arguments outside the domain generate an .

These compute : result = .

[Inf, MaxLog) = [88 72) = [709 78)
[0, XMAX)

If the result is too large to be represented in the floating-point format, is returned.

�

� � � � � '

� � � � � '

#�
 � � #�
 � '

� �

� �

� � �

M.1 Logarithm

NaN NaN

loge X

Domain :
Range :

undefined.NaN

log10 X

Domain :
Range :

undefined.NaN

Domain :
Range :

Inf

M.1 Logarithm

M.2 Base 10 logarithm

M.3 Exponential

REAL32 FUNCTION ALOG (VAL REAL32 X)
...

:
REAL64 FUNCTION DALOG (VAL REAL64 X)

...
:

REAL32 FUNCTION ALOG10 (VAL REAL32 X)
...

:
REAL64 FUNCTION DALOG10 (VAL REAL64 X)

...
:

REAL32 FUNCTION EXP (VAL REAL32 X)
...

:
REAL64 FUNCTION DEXP (VAL REAL64 X)

...
:

8 8

140

These compute : result = .

[0, Inf] x [Inf, Inf]
[Inf, Inf]

If the result is too large to be represented in the floating-point format, is returned. If X or Y is ,
is returned. Other special cases are as follows :

0 any
0 0
0 0 XMAX 0
0

0 1 0
0 1

1 XMAX XMAX 1
1

1 XMAX
1 XMAX 0

1
1 0

1 1
otherwise 0 1
otherwise 1

These compute : result = sine(X) (where X is in radians).

[Smax, Smax] = [12868 0 12868 0] = [2 1 10 2 1 10]
[1.0, 1.0]

All arguments outside the domain generate an . Implementations may provide a larger domain.

�"

" �

� %

� " �
� " �

%

� "
� "

%
%

� % �

"

� � � � � '

�
�

�
�

�
� � �

�
�
� �

� �
� � � �
�

� � � � �
�

M Elementary functions

Domain :
Range :

Inf NaN NaN

First Input (X) Second Input (Y) Result

undefined.NaN
undefined.NaN

Inf unstable.NaN
Inf
Inf Inf

Inf unstable.NaN
Inf Inf
Inf

Inf Inf Inf
Inf Inf
Inf undefined.NaN

Domain :
Range :

inexact.NaN

M.4 X to the power of Y

M.5 Sine

REAL32 FUNCTION POWER (VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DPOWER (VAL REAL64 X, Y)

...
:

REAL32 FUNCTION SIN (VAL REAL32 X)
...

:
REAL64 FUNCTION DSIN (VAL REAL64 X)

...
:

8 8

8 8

1

141

These compute : result = cosine(X) (where X is in radians).

[Smax, Smax] = [12868 0 12868 0] = [2 1 10 2 1 10]
[1.0, 1.0]

All arguments outside the domain generate an . Implementations may provide a larger domain.

These compute : result = tan(X) (where X is in radians).

[Tmax, Tmax] = [6434 0 6434 0] = [1 05 10 1 05 10]
(Inf, Inf)

All arguments outside the domain generate an . Implementations may provide a larger domain.

These compute : result = sine () (in radians).

[1.0, 1.0]
[Pi/2, Pi/2]

All arguments outside the domain generate an .

�

� � � � � '

� � � � � '

"

� � � � �
�

� � � � �
�

�
�

M.6 Cosine

Domain :
Range :

inexact.NaN

Domain :
Range :

inexact.NaN

Domain :
Range :

undefined.NaN

M.6 Cosine

M.7 Tangent

M.8 Arcsine

REAL32 FUNCTION COS (VAL REAL32 X)
...

:
REAL64 FUNCTION DCOS (VAL REAL64 X)

...
:

REAL32 FUNCTION TAN (VAL REAL32 X)
...

:
REAL64 FUNCTION DTAN (VAL REAL64 X)

...
:

REAL32 FUNCTION ASIN (VAL REAL32 X)
...

:
REAL64 FUNCTION DASIN (VAL REAL64 X)

...
:

1

1

1

142

These compute : result = cosine () (in radians).

[1.0, 1.0]
[0, Pi]

All arguments outside the domain generate an .

These compute : result = tan () (in radians).

[Inf, Inf]
[Pi/2, Pi/2]

These compute the angular co-ordinate tan () (in radians) of a point whose X and Y co-ordinates are
given.

[Inf, Inf] x [Inf, Inf]
(Pi, Pi]

(0, 0) and (,) give .

�

�

�

"

"

%�"

�

�
�

� �
�

� �

M Elementary functions

Domain :
Range :

undefined.NaN

Domain :
Range :

Domain :
Range :

Inf Inf undefined.NaN

M.9 Arccosine

M.10 Arctangent

M.11 Polar Angle

REAL32 FUNCTION ACOS (VAL REAL32 X)
...

:
REAL64 FUNCTION DACOS (VAL REAL64 X)

...
:

REAL32 FUNCTION ATAN (VAL REAL32 X)
...

:
REAL64 FUNCTION DATAN (VAL REAL64 X)

...
:

REAL32 FUNCTION ATAN2 (VAL REAL32 X, Y)
...

:
REAL64 FUNCTION DATAN2 (VAL REAL64 X, Y)

...
:

143

These compute : result = sinh(X).

[Hmax, Hmax] = [89 4 89 4] = [710 5 710 5]
(Inf, Inf)

Hmax gives , and Hmax gives .

These compute: result = cosh(X).

[Hmax, Hmax] = [89 4 89 4] = [710 5 710 5]
[1.0, Inf)

Hmax gives .

These compute : result = tanh(X).

[Inf, Inf]
[1.0, 1.0]

� � � � � '

" � " �

� � � � � '

" �

� � �
�

� �

� � �

�
�

M.12 Hyperbolic sine

Domain :
Range :

Inf Inf

Domain :
Range :

Inf

Domain :
Range :

M.12 Hyperbolic sine

M.13 Hyperbolic cosine

M.14 Hyperbolic tangent

REAL32 FUNCTION SINH (VAL REAL32 X)
...

:
REAL64 FUNCTION DSINH (VAL REAL64 X)

...
:

REAL32 FUNCTION COSH (VAL REAL32 X)
...

:
REAL64 FUNCTION DCOSH (VAL REAL64 X)

...
:

REAL32 FUNCTION TANH (VAL REAL32 X)
...

:
REAL64 FUNCTION DTANH (VAL REAL64 X)

...
:

144

This function returns two results, the first is a real between 0.0 and 1.0, and the second is an integer. The
integer, which must be used as the parameter in the next call to the function, carries a pseudo-random linear
congruential sequence , and must be kept in scope for as long as the function is used. It should be
initialised before the first call to the function but not modified thereafter except by the function itself. Consider
the following sequence:

In this example , , and are each assigned a pseudo-random value.

Integers
[0.0, 1.0) x Integers

��

M Elementary functions

Domain :
Range :

M.15 Pseudo-random numbers

REAL32, INT32 FUNCTION RAN (VAL INT32 N)
...

:
REAL64, INT64 FUNCTION DRAN (VAL INT64 N)

...
:

SEQ
x, seed := RAN (8) -- initialise seed
y, seed := RAN (seed)
z, seed := RAN (seed)

x y z

This appendix describes the standard library of string to value, value to string routines. The library provides
primitive procedures to convert a value to and from decimal or hexadecimal representations. High level
input/output routines can be easily built using these simple procedures, and a number will typically be provided
in an implementation.

The procedures described here provide conversion between integer values and their decimal or hexadecimal
representations held as a string of characters, for example:

The procedure returns the decimal representation of in and the number of characters
in the representation in .

The procedure returns in the value represented by . is set to if a non
numeric character is found in . or a are allowed in the first character position. will be the value
of the the portion of up to any illegal character with the convention that the value of an empty string
is 0. is also set if the value of overflows the range of , in this case will contain the low
order bits of the binary representation of . is set to in all other cases.

The procedure returns the hexadecimal representation of in and the number of
characters in the representation in . All the nibbles (a nibble is a word 4 bits wide) of are output so that
leading zeros are included. The number of characters will be the number of bits in an divided by 4.

The procedure returns in the value represented by the hexadecimal . is set
to if a non hexadecimal character is found in . Here will be the value of the the portion of

up to the illegal character with the convention that the value of an empty string is 0. is also
set to if the value represented by overflows the range of . In this case will contain the
low order bits of the binary representation of . In all other cases is set to .

Similar procedures are provided for the types , and . These procedures use equivalent
parameters of the appropriate type. The procedures are:

N Value, string conversion routines

N.1 Integer, string conversions

PROC INTTOSTRING (INT len, []BYTE string, VAL INT n)
...

:

INTTOSTRING n string
len

PROC STRINGTOINT (BOOL error, INT n, VAL []BYTE string)
...

:

STRINGTOINT n string error TRUE
string + - n

string
error string INT n

string error FALSE

PROC HEXTOSTRING (INT len, []BYTE string, VAL INT n)
...

:

HEXTOSTRING n string
len n

INT

PROC STRINGTOHEX (BOOL error, INT n, VAL []BYTE string)
...

:

STRINGTOHEX n string error
TRUE string n

string error
TRUE string INT n

string error FALSE

INT16 INT32 INT64

INTTOSTRING INT16TOSTRING INT32TOSTRING INT64TOSTRING
STRINGTOINT STRINGTOINT16 STRINGTOINT32 STRINGTOINT64
HEXTOSTRING HEX16TOSTRING HEX32TOSTRING HEX64TOSTRING
STRINGTOHEX STRINGTOHEX16 STRINGTOHEX32 STRINGTOHEX64

2

146

The procedures described here provide conversion between boolean values and their textual representation
“ ” and “ ”.

The procedure returns “ ” in if is and “ ” otherwise. contains
the number of characters in the string returned.

The procedure returns in b if first 4 characters of are “ ”, if first
5 characters are “ ” and is undefined in other cases. is returned in if is not
exactly “ ” or .

The procedures described here provide conversion between real values and their representation as strings,
for example:

These two procedures each take a string containing a decimal representation of a real number and convert
it into the corresponding real value. If the value represented by overflows the range of the type then
an appropriately signed infinity is returned. Errors in the syntax of are signalled by a Not-a-Number
being returned and being set to . The string is scanned from the left as far as possible while
the syntax is still legal. If there any characters after the end of the longest correct string then error is set to

, otherwise it is . For example if was then the value returned would
be 12 34 10 with set to . Strings which represent real values are those specified by the syntax
for literals, for example:

Further examples are given in the section on literals on page 27.

These two procedures return a string representing the value in the first s of . The format
of the representation is determined by and . Free format is selected by passing in and into the

� 	
real

N Value, string conversion routines

N.2 Boolean, string conversion

N.3 Real, string conversion

TRUE FALSE

PROC BOOLTOSTRING (INT len, []BYTE string, VAL BOOL b)
...

:

BOOLTOSTRING TRUE string b TRUE FALSE len

PROC STRINGTOBOOL (BOOL error, b, VAL []BYTE string)
...

:

STRINGTOBOOL TRUE string TRUE FALSE
FALSE b TRUE error string

TRUE "FALSE"

PROC STRINGTOREAL32 (BOOL error, REAL32 r, VAL []BYTE string)
...

:
PROC STRINGTOREAL64 (BOOL error, REAL64 r, VAL []BYTE string)

...
:

string
string

error TRUE

TRUE FALSE string "12.34E+2+1.0"
error TRUE

12.34
587.0E-20
+1.0E+123
-3.05

PROC REAL32TOSTRING (INT len, []BYTE string,
VAL REAL32 r, VAL INT m,n)

...
:
PROC REAL64TOSTRING (INT len, []BYTE string,

VAL REAL64 r, VAL INT m,n)
...

:

r len BYTE string
m n 0 m n

147

procedure. Where possible a fixed point representation is used when this does not indicate more accuracy
than is available and does not have more than 3 “ ”s after the decimal point before significant digits. Otherwise
exponential form is used. The number of characters returned in here depends on the input but will
be no more than 15 in and 24 in . is left justified in free format.

If is non-zero then if possible the procedure returns a fixed point representation of with digits before the
decimal point and places after with padding spaces being added when needed. If this is not possible then
an exponential representation is returned with the same field width as the fixed point representation would
have had. If and are both very small then an exponential representation may not fit in the field width so
two special values “ ” and “ ” with a sign are returned to indicate a value under or over the representable
fixed point values. In all these cases is padded with spaces so that it contains (+ + 2) characters
- before the decimal point, after, as well as the sign and decimal point characters.

If is zero but is not then an exponential representation is returned where the number of digits of fraction
returned is . The form of the fraction is except when is 1. In this case the output is not a
proper representation as the fraction will be of the form where the padding space is added due to the
absence of a decimal point. For this reason the case = 0, = 1 should not be used in general. When is
0 will contain (+ 6) characters for and (+ 7) for .

Each procedure returns a string “ ” preceded by a sign character for infinities and a string “ ” for Not-a-
Numbers. In free format a leading space on either string is dropped. Both these will be padded on the right
with spaces to fill the field width when free format output is not being used.

digit .digits
‘ ’ digit

N.3 Real, string conversion

0
string

REALTOSTRING32 REALTOSTRING64 string

m r m
n

m n
Un Ov

string m n
m n

m n
n n

m n m
string n REALTOSTRING32 n REALTOSTRING64

Inf NaN

This appendix describes some additional routines that have been added to implementations to provide
support for the programmer. For full specifications of these see documentation provided with the compiler.

In real time processing it is sometimes necessary to force the compiler to ensure that a process in a parallel
suspends itself to give another process a chance to be executed. A call of will have this
effect.

This procedure is provided to enable the programmer to make assertions involving the variables of the
program, to ensure that if such an assertion is found to be false at compile time, then the compiler will report
an error, or if it is found to be false at run time then the program will stop at that point.

An instance of may usefully be included as a “stub” at all places in a program under development
that will eventually be replaced by suitable error checking code. The careful use of assertions is at the heart
of defensive programming.

An implementation may provide compiler options to control the action which occurs when an assertion is
found to be false.

occam

O Programming support routines

O.1 Rescheduling the processor

O.2 Assertion checking

RESCHEDULE()

PROC RESCHEDULE ()
...

:

PROC ASSERT (VAL BOOL assertion)
...

:

ASSERT

This appendix enumerates the changes which have been made to 2 to derive the extended language
2.1, and the more prominent changes in the style and structure of this manual to facilitate the

description of the extended language.

The following groups of changes have been made to 2:

1 Addition of named types. (page 26)

2 Addition of record and packed record types. (page 31)

3 New operators and . (page 65)

4 Arithmetic and other operations on values of type. (page 57)

5 Implicit typing of literal constants. (page 29)

6 Functions returning results of any fixed length type. (page 78)

7 Segments with optional and . (page 37)

8 Reshaping of arrays. (page 88)

9 Scope of tags. (page 53)

10 Revised treatment of anarchic protocols. (page 53)

11 Channel retyping. (page 86)

12 Channel array constructors. (page 55)

13 Revised semantics of counted array communication. (page 47)

14 Restrictions on the positioning of allocations. (page 95)

The opportunity has been taken in this revised manual to make some structural changes, and many detailed
changes in style of presentation.

The following structural changes have been made:

A new chapter on variables and values collects together material that was previously spread over
the chapters on arrays and elements, scope and abbreviation.

The chapter on timers has been delayed until after the more familiar procedures and functions have
been introduced.

Description of priority alternation has been moved from the appendix to the chapter on constructed
processes.

The description of retyping has been moved from an appendix to a new chapter together with the
new feature of reshaping.

The complete syntax in the appendix is fully annotated with cross references to the places in the
text where the semantic restrictions applicable to each production are defined.

occam
occam

occam

P Changes from occam 2

�

�

�

�

�

P.1 Language changes

P.2 Manual changes

BYTESIN OFFSETOF

BYTE

FROM FOR

PROTOCOL

150

A new appendix on implementation dependent features has been added.

In addition to material defining and illustrating the new extensions several revisions have been made to the
detailed presentation of language syntax in the manual. In particular:

The syntactic category has been dropped, to simplify the separate handling of , and
, which have many syntactic similarities but also some significant differences in how they are used.

The treatment of has been revised to emphasise its semantic closeness to .

The syntactic categories and have been replaced by the categories ,
, and , each of which may be used for scalars and arrays.

The syntactic categories , , , and which served no particularaly useful
syntactic purpose and had only descriptive value have been eliminated.

The syntactic categories and have been explicitly defined in the syntax,
and the lexical level categories , , , and in the lexical appendix.

�

element variable channel
timer

string table

primitive.type array.type data.type chan-
nel.type timer.type port.type

action function.body procedure.body valof

monadic.operator dyadic.operator
name digits hex.digits character string

P Changes from occam 2

An abbreviation specifies a as an for an existing or or
for the value of an . The meaning of the alias is defined by substitution of the abbreviated
expression, variable, etc.

An action is an assignment, an input, or an output.

A parameter used in an of a procedure or function.

Ensure all variables and channels are identified by a single name within a given .

Place a , , , or at an absolute location in memory.

Combines a number of processes guarded by inputs, and performs the process associated with
an input which is ready.

A component of an .

A protocol compatible with any communication using a simple protocol.

A parameter used in an instance of a function.

A sequence of components of the same type stored in consecutive memory locations.

Evaluates an expression or list of expressions, and assigns each resulting value to a corre-
sponding variable.

An expression defining the starting value of a or the subscript of the first component
of a .

Operation on the individual bits in the representation of a value.

A truth value used in a guard or loop.

Logical operation on truth values.

Uses tag to select the protocol of an input on a single channel with a case protocol.

A protocol comprising a collection of tagged protocols.

Unbuffered, uni-directional point-to-point connection for communication between two processes
executing in parallel.

An array of channels expressed as a sequence of component channels in square
brackets.

A literal value of byte type expressed alone between single quotes, or as part of a string in double
quotes.

A component of a conditional.

The collection of processes in a .

The communication of values between concurrent processes. Each communication involves
a rendezvous between an input and an output.

An array is a sequence of components of the same type selected by an integer subscript.

Two or more processes are concurrent if they may be executed at the same time.

A construction () which combines a number of processes each of which is guarded by a
boolean. Behaves as the first to evaluate to true.

Configuration associates the components of an program with a set of physical re-
sources on one or more processors.

A construction combines processes. programs are built from processes, by combining
primitive processes and other constructions to form constructions of (),
(), (), (), () or ().

Use of a type name as an operator to convert a value to an equivalent value of another type.

An expression defining the number of replications in a or number of components in a
.

occam

occam

Q Glossary of terms
name alias variable, channel, port timer

expression

instance

scope

variable channel timer array port

alternation

replication index
segment

construction

sequence conditional
selection loop parallel alternation

replicator
segment

Abbreviation

Action

Actual parameter

Alias check

Allocation

Alternation

Alternative

Anarchic protocol

Argument

Array

Assignment

Base

Bitwise operation

Boolean

Boolean operation

Case input

Case protocol

Channel

Channel array constructor

Character

Choice

Combination

Communication

Component

Concurrency

Conditional

Configuration

Construction

Conversion

Count

IF

SEQ
IF CASE WHILE PAR ALT

152

An array communicated on a channel, whose size is defined by an explicit count communi-
cated previously.

The data type of a variable defines which values can be stored in that variable. The data type of
a value defines which operations can be performed on the value.

A state in which two or more concurrent processes can no longer proceed due to a communication
interdependency.

Specifies the name, type and scope of a , , , or an array of one of
these types.

The use of a type name in parentheses to define the type of a literal or table.

A special which will wait until the timer has incremented beyond a specified time
before terminating. Useful for adding a simple delay in a process.

A specification introducing a name for a procedure, function, protocol, data type, retyping or
reshaping.

Decimal or hexadecimal digits as a component of a literal of a real, integer or byte type.

The representation of a value within a program. The data type of an expression can always be
determined by the compiler.

A list of expressions separated by commas; used in and .

A field is a component of a record type. A field is selected from a record by a in square
brackets following the record variable or value.

Parameter specified in the definition of a procedure or function. A formal parameter acts
as an for the used in an of the procedure or function.

A channel whose name is a free name.

A name which occurs within a process, but is not specified within the process.

A variable whose name is a free name.

Specifies a name for a value process or expression list.

Determines the execution of an associated process in a choice () or alternative (
).

An offset from the left hand edge of the page. In indentation is critical, and serves to
define the structure of processes. Indentation increases by two spaces for each nested construct in
a program, and decreases by two spaces at the end of that construct.

When the compiler implements an instance of a procedure or function by an explicit copy of the body,
with appropriate parameter substitutions, rather than by a closed subroutine.

Receive a value from a channel into a variable.

An input which guards an alternative in an alternation.

A process which is a call of a procedure or an operand or expression list which is a call of a function.

A process whose behaviour has for some reason become undefined, and as a result may
cause a system to stop.

See .

A procedure whose definition is compiled separately and whose compiled code may be
referenced within a program by an implementation dependent language extension.

A literal is a textual representation of a known value, and has a data type.

A divergent process, one which may remain internally active but not perform further communication.

A () loop executes the associated process as long as the specified condition is true; if the

occam

variable channel port timer

timer input

multiple assignment functions

field name

abbreviation actual parameter instance

boolean guard input
guard

library procedure

Q Glossary of terms

Counted array

Data type

Deadlock

Declaration

Decoration

Delayed input

Definition

Digits

Expression

Expression list

Field

Formal parameter

Free channel

Free name

Free variable

Function definition

Guard

Indentation

Inline

Input

Input guard

Instance

Invalid process

Library function

Library procedure

Literal

Livelock

Loop WHILE

153

condition is initially false the associated process is not executed.

A modulo operator performs its operation (, ,) with no check for over-
flow. The value returned as a result is the cyclic value within the range of the operand type.

A sequence of letters (and digits or dots) introduced in a specification as the name of a variable, field,
tag, channel, timer, procedure, function, data type, protocol, etc.

a network consists of a number of processing devices, microcomputers perhaps, with the facility to
communicate with each other.

The position in memory of a field within a record.

Yields a value in an expression.

A monadic operator performs an operation on a single operand and a dyadic operator performs an
operation on two operands.

Send the value of an expression to a channel.

A record in which the programmer explicitly defines the order and implicitly the offsets of all
the fields.

A configuration statement which places a process on a particular processing device.

A memory mapped peripheral control register from which input, or to which output, may be directed.

A predefined procedure or function is one that may be used in a program without explicit specifi-
cation. An implementation may define a set of such names and specify their formal parameters.

A primitive data type is a integer, boolean, byte or real type. A named type derived from
such a type or an array or structured type is not a primitive type.

Priority can be given to the component processes of a parallel executing on a single processing
device. Lower priority processes on such a device may only continue when all higher priority pro-
cesses are unable to. The inputs which guard alternatives in an alternation may be given a selection
priority. If two or more inputs are ready, then the input with the highest priority is selected.

A procedure definition specifies a name for a process.

An instance of a procedure is a use of the procedure, and behaves like a substitution
of the process named in the procedure definition. The phrase “procedure call” is used in many other
languages, to indicate the use of a procedure, and has a similar meaning. Although the behaviour
of an procedure is clearly defined as the substitution of the procedure body, a procedure
may be implemented as either a substitution or as a call to a closed subroutine.

A process starts, performs a number of actions, and then either stops without completing or termi-
nates completely. programs are built from the primitive processes (),
(), (), and . These primitives are combined in , , , , and

constructions.

The format and of values passed (communicated) on a channel, or a name defined to represent
such a format. Communication is valid only if the output and input are compatible; i.e. each
communication matches the type(s) specified by the channel protocol.

A numerical value represented according to the IEEE standard for floating point arithmetic.

The actual time taken for a physical process to occur. The time returned by a is directly
related to real time.

A record consists of a number of named each of which has a specified data type. A value of
record type associates a value of appropriate type with each of the fields.

The concrete representation of a record data type in store.

A relational operation compares its operands and yields a boolean result.

A replicator produces a number of similar components of a construction, distinguished by the
value of a .

occam

occam assignment input
output

type

timer

fields

replication index

Glossary of terms Q

Modulo operator

Name

Network

Offset

Operand

Operator

Output

Packed record

Placement

Port

Predefine

Primitive data type

Priority

Procedure definition

Procedure instance

Process

Protocol

Real

Real time

Record

Record layout

Relational operation

Replication

PLUS MINUS TIMES

:=
? ! SKIP STOP SEQ IF CASE WHILE PAR
ALT

154

A reshaping conversion changes the program’s view of the internal structure of a
(multi-dimensional) array.

A retyping conversion changes the data type of a bit pattern, from one data type to
another. There are three kinds of retyping conversions: conversions which change the protocol of
a channel, conversions which convert a variable, and conversions which convert the value of an
expression. Data type retyping has no effect upon the bit pattern, and differs from
where a value of one type is converted into an equivalent value of another type.

The region of a program in which a particular specification of a name is valid.

A segment is one or more consecutive components of an array, defined by a base and a count.
An abbreviated segment may have a computed number of components which may be zero but not
negative.

A selection process () executes a process from a list of associated options. The options are
selected by matching a selector with a constant case expression associated with the option.

A sequential process () is one where one action follows another.

A sequential protocol specifies a sequence of simple protocols as the format of com-
munication on a channel.

Perform logical shift of the bit pattern of a value.

Start, perform no action and terminate immediately.

A specification is either a declaration, an abbreviation or a definition and specifies a name
which may be used within the associated scope.

Identifies the type of an name specified in an abbreviation, formal parameter, or definition.

Start, perform no further action and do not terminate.

A sequence of characters in double quotes equivalent to a table of bytes.

An integer expression in square brackets () which selects a component of an array.

An array of values of the same type, or a record of values of possibly different types, optionally
decorated by a type name in parentheses, used in expressions.

Identifier of a protocol variant specified in a definition. Used in an output or input.

Component of a variant in a .

Specifies a possible case protocol variant, distinguished by its tag, for communication on
a single channel.

A timer is a clock which can be accessed by any number of concurrent processes.

A timer input inputs a value from a timer.

A type conversion converts the value of an expression of one data type into an equivalent
value of another data type.

A usage check performed by a compiler ensures that variables and channels are not shared
illegally between parallel components.

A value process produces one or more results, each of a data type.

A variable is declared or abbreviated and may receive a new value by input or assignment. A
variable normally requires the allocation of an addressable storage location in the computer.

A list of variables used in a .

A variable subscript is a subscript whose value depends on a variable, a procedure
parameter, or the index of a replicator with a base or count which is not a constant or constant
expression.

A variant is a component of a consisting of a tagged list of variables and an associated
process to be executed when the tag input matches the tag in the tagged list.

type conversion

case protocol

case input

multiple assignment

case input

Q Glossary of terms

Reshaping conversion

Retyping conversion

Scope

Segment

Selection

Sequence

Sequential protocol

Shift operation

Skip

Specification

Specifier

Stop

String

Subscript

Table

Tag

Tagged list

Tagged protocol

Timer

Timer input

Type conversion

Usage check

Value process

Variable

Variable list

Variable subscript

Variant

CASE

SEQ

[]

CASE

Bowler, K.C, Kenway, R.D, Pawley, G.S. and Roweth, D Chartwell-
Bratt 1989 ISBN 0 86238 227 0

Brookes, Graham R Macmillan 1989 ISBN 0 333 45340 9

Burns, Alan Addison-Wesley 1987 ISBN 0 201 17371 9

Carling, Alison Sigma 1988 ISBN 1 85058 07 4

Cok, Ronald S Prentice-Hall 1991 ISBN 0 13 651480 4

Dowsing, R.L. Van Nostrand Reinhold 1988 ISBN 0 278 00059 2

East, I Pitman 1989

Ellison, David Sigma ISBN
1 85058 206 8

Galletly, J Pitman 1990 ISBN 0 273 03067 1
Japanese edition: ISBN 4-526-02874-6

Hoare, C.A.R Prentice-Hall 1985 ISBN 0 13 153271 5

Inmos Limited Prentice-Hall 1984 ISBN 0 13 629296 8
Japanese edition: ISBN 4-7665-0133-0

Inmos Limited (tr Fontaine A.B) (in French) Masson 1989

Inmos Limited Prentice-Hall 1988 ISBN 0 13 629312 3

Inmos Limited Prentice-Hall 1988 ISBN 0 13 629320 4

Inmos Limited Prentice-Hall 1989 ISBN 0 13 929126 1

Inmos Limited Prentice-Hall 1990 ISBN 0 13 929068 0

Jones, Geraint Prentice-Hall 1987 ISBN 0 13 729773 4

Jones, G and Goldsmith, M Prentice-Hall 1988 ISBN 0 13 730334 3

Kerridge, J Blackwell Scientific 1987 ISBN 0 632 01659 0

Pountain, D and May, D Blackwell Scientific 1987 ISBN 0 632
01847 X

Roscoe, A.W. Oxford University Computing Laboratory, Programming Research
Group 1986 ISBN 0 902928 34 1

Wexler, John Ellis Horwood 1989 ISBN 745 80394 6

A large number of these have been published by IOS Press: ISSN 0925-4986

R Occam Bibliography

Introduction to OCCAM 2 Programming

Introduction to Occam 2 on the Transputer

Programming in Occam 2

Parallel Processing, Transputer and Occam

Parallel Programs for the Transputer

Introduction to Concurrency Using Occam

Parallel Processing: A First Course

Understanding Occam and the Transputer : Through Complete Working Programs

Occam 2

Communicating Sequential Processes

Occam Programming Manual

Occam 2: Manuel de Reference

Occam 2 Reference Manual

Communicating Process Architecture

Transputer Technical Notes

Transputer Development System, Second Edition

Programming in occam

Programming in Occam 2

Occam Programming: A Practical Approach

A Tutorial Introduction to Occam Programming

Laws of Occam Programming

Concurrent Programming in occam2

R.1 Books

R.2 Conference Proceedings

156

Wiley 1993- ISSN 1070-454X

(formerly) Published privately by the user group 1984-

Transputer Communications

WoTUG News OUG Newsletter

R Occam Bibliography

R.3 Journals, etc

, , 103
, , 103
, , 103

,
,

,
,

,
, , 103
, , 103
, 28, 57, 73, 75, 103
, 28, 57, 73, 75, 103
, 59, ,

,
,
,
,
,
,
,
,
,
,
,
,
,
,

, 59, , 103
, 5, 35, 58, 73, 78, 103
, 59, , 103

, 103
, 59, , 103

, 59, , 103
, 103

, , 103
,

, , 103
, , 103
, 59, , 103

, 59, , 103
, 59, , 103
, 59, , 103

, 59, , 103
, 59, , 103

, 59, , 103
, 59, , 103
, 59, , 103

, , 19, 47, 82, 96, 103
,

, , 52
, , 32, 36, 39, 58, 103

, , 47, 103
, 59, , 103

, 59, , 103
, , 32, 36, 39, 58, 103
, 59, , 103

Abbreviation, 26, , 85, 99, 151
channel,
port,
rules,

timer,
value,
variable,
,

Absolute,
,

Action,
Actual parameter, 69, , 76, 96, 151
Addition, 59

, 59, , 82, 102
Alias check, , 100, 151
Alias checking, 71
Alignment, , 86, 92
Allocation, , 95, 96, 151

,
,

, , 40, 102
Alternation, 9, , 24, 151

priority,
replicated,
timer guard,

Alternative, , 40, 41, 52, 151
Anarchic protocol, , 151

, 59, , 102
Annotation, 4
ANSI/IEEE standard 754-1985, 25, 26, , 130,

137
, , 102

Arccosine, 142
Arcsine, 141
Arctangent, 142
Argument, , 151

,
Arithmetic

compile time, 92
Arithmetic

complex, 78
Arithmetic operator, , 103
Arithmetic overflow, 28, 60, 122
Arithmetic shift, 128
Array, , 47, 99, 151

allocation, 95
assignment, 31,
channel,
component,
data type,
parallel,
port,
segment,
subscript,
table,
timer,
variable,

Array protocol,
Array size, 59, , 65
ASCII, 29,

national variant, 59
national variants, 104

,
,

,

157

Index
6
27
27

91
91

91
91

91
19
27

60 103
104
104
104
104
104
105
104
104
104
104
105
104
104
104

60

60

60
61

47
47

5
49

63
62
63
63

63
63

61
63
62

6
82

51
30

43
60

61
30

61

40
54

96
99

83
43

42
130

130
142
5

73

64
99

33
94

139
139

19
19

23
21

82
19

53
63

98

53

76
134

60

30

38
45

36
30

44
96

36
36

58
81

36
47
64

103

128
128

141

!
"
#
#COMMENT
#INCLUDE
#OPTION
#PRAGMA
#USE
&
’
(
)
*
*"
*#
*’
**
*C
*L
*N
*S
*T
*c
*l
*n
*s
*t
+
,
-
--
/
/\
:
::
::[]
:=
;
<
<<
<=
<>
=
>
><
>=
>>
?
? AFTER
? CASE
[
[]
\
\/
]
~

ABS

ACOS

AFTER

ALOG
ALOG10
ALT

AND

ANY

ARGUMENT.REDUCE

ASHIFTLEFT
ASHIFTRIGHT
ASIN

158

, , 102
Assembly language,

,
Assertion checking, 148
Assignment, , 29, 35, 38, 151

multiple, , 77
, , 102

,
,

Base, , 29, 37, 151
Base 10 logarithm, 139
Bibliography,
Big endian,
Bit operation, , 103
Bit pattern, 85

, 59, , 102
, 59, , 102

, 59, , 102
Bitwise and, 59,
Bitwise exclusive or, 59,
Bitwise not, 59,
Bitwise operation, 151
Bitwise or, 59,
BNF, 3, 106
Books on , 155

, , 29, 102
Boolean, , 63, 151
Boolean and, 59,
Boolean expression, 11, 14, 19,
Boolean literal,
Boolean not, 59,
Boolean operation, , 151
Boolean or, 59,
Boolean to string, 146
Boolean type, , 27

,
Built-in type, 25

, , 102
Byte arithmetic, 60
Byte literal,
Byte type, , 27

, 33, 59, 64, , 92, 102

Carriage return, 104
, , 40, , 102

Case expression, , 13, 30
Case input, , 151
Case protocol, , 151

, , 102
Channel, 6, , 99, 103, 151

abbreviation,
array,
array constructor,
declaration, , 47, 49
protocol,
type,

Channel abbreviation, 70
Channel retyping,
Character, 103, , 151
Character set,

Checking usage, 99
Choice, , 40, 41, 151
Clock,
Combination, 151
Combining processes,
Comment, , 91
Communication, 6, 15, , 47, 93, 151
Compatible type, 42
Compilation hints,
Compiler directives, 91
Compiler option, 47, , 101, 148
Complex arithmetic, 78
Complex numbers, 31
Component, , 151
Concurrency, 151
Concurrent process, 9
Conditional, 9, , 151

replicated,
Configuration, , 151
Constant, , 31
Constant

named, 26
Construction, , 151
Continuation line,
Conversion, , 151

,
,

,
Cosine, 141
Count, , 29, 37, 151
Counted array, 151
Counted array protocol,
Counted loop, 10
Cyclic shift, 129

,
,
,

,
,

,
, , 31

Data type, 5, 6, 25, , 152
name, 26
record, 31

Data type conversion, 57,
,

,
,

,
,

,
Deadlock, 152
Declaration, , 40, 152

channel,
port,
timer,
variable,

Decoration, , 29, 32, 58, 59, 152
Defensive programming, 148
Definition, 26, , 48, 69, 85, 87, 88, 152

occam

INDEX

92
92

148

5
5

95
142

142

10

155
92

61

61
61

61
61

61
61

61

25
11

63
57

27
63

63
63

25
146

25

27
25

65

13 49
13

51
49

45
45

54
45

55
45

47
45

86
105

103

11
81

9
4

45

91

91

36

11
12

93
26

9
3

67
133

141
143

10

47

130
142
139

139
134

141
26

25

66
142

142
133

141
143

134

39
45

96
81

35
28

40

ASM

ASSERT

AT
ATAN
ATAN2

BITAND
BITNOT
BITOR

BOOL

BOOLTOSTRING

BYTE

BYTESIN

CASE

CHAN OF

COPYSIGN
COS
COSH

DABS
DACOS
DALOG
DALOG10
DARGUMENT.REDUCE
DASIN
DATA TYPE

DATAN
DATAN2
DCOPYSIGN
DCOS
DCOSH
DDIVBY2

159

Delayed input, , 152
,

,
,

,
Digits, , 152
Dimension

array, 36
empty, , 69, 86, 88

Directives
compiler, 91

Disjoint array,
,

Distributed processor, 93
,

Division, 59
,

,
,

,
,

,
,

,
,

,
,

,
,

Dyadic operator,

Element size, 59
Elementary function, 138
Elementary function library, 118

, 13, 102
Endianness, 85,
Equal operation, 59,
Error handling, 101
Error mode,

,
Exponent

decimal, 28
floating point number,

Exponential, 139
Expression, 5, 26, 44, , 152

array size, 31
base, 10
boolean, 11, 14, 20
case, 13
count, 10, 18
output, 48
retyping, 85
selector, 13
subscript, 37
table, 57

Expression list, , 152
function result, 78
value process, 75

External device, 96

, 102

Farm, 20, 21
Fast divide, 134
Field, , 152

offset, 33
size, 33

Field name,
Filing system, 91
Floating point, 25, 26, 98, 117
Floating point arithmetic, 136
Floating point function,

,
, , 37, 59, 102

Formal array size, 64
Formal parameter, , 73, 152
Format

protocol,
,

Free channel, 152
Free name, , 76, 100, 152
Free variable, 152

, , 59, 102
, 78, 102

Function, 26, 30, , 100
multiple result, 77

Function definition, 76, 152
Function header, 78
Function instance, 5, 78
Functions

library, 116

Greater than, 59,
Guard, 11, , 152
Guarded alternative,
Guarded choice,

Halt system mode,
Hexadecimal, 85

character representation,
Hexadecimal digits,

,
Hiding, 41
Hyperbolic functions, 143

IEEE arithmetic, 117,
,

,
,

,
,

, 98
, , 40, 102

Illegal,
Implementation dependence,
Implementation restrictions, 91
Indentation, , 40, 152

, , 102
Inline, 152
Input, , 35, 47, 51, 52, 82, 96, 152
Input guard, 152
Input item, , 52
Instance, 152

INDEX

82
139

132
135

137
105

42

44
131

134

132
132
134

133
133

140
144

131
140

143
131

141
143

58

92
63

101
139

132

57

5

31

31

130
132

10

69

47
135

40

37

75

63
21

21
11

101

104
105

145

130
136

136
136

136
137

11
4

91

3
91

6

48

DEXP
DFLOATING.UNPACK
DFPINT
DIEEECOMPARE

DISNAN

DIVBY2

DLOGB
DMINUSX
DMULBY2
DNEXTAFTER
DORDERED
DPOWER
DRAN
DSCALEB
DSIN
DSINH
DSQRT
DTAN
DTANH

ELSE

EXP

FALSE

FLOATING.UNPACK
FOR

FPINT

FROM
FUNCTION

HEXTOSTRING

IEEE32OP
IEEE32REM
IEEE64OP
IEEE64REM
IEEECOMPARE
IEEEOP
IF

INLINE

160

,
,

, , 29, 92, 102
, , 102
, , 102
, , 102

Integer, 25
Integer arithmetic, 60
Integer literal,
Integer range, 65
Integer to decimal string, 145
Integer to hexadecimal string, 145
Integer type, , 27

,
Invalid process, 7, , 152

, 102
,

Keyword, 4, 41, 91, 102,

Later than, 59,
Legal,
Length byte,
Less than, 59,
Less than or equal, 59,
Lexical analysis, 4, 58
Lexical unit,
Library, 116
Library file inclusion,
Library function, 152
Library procedure, 152
Library routine, 41
Line break, , 105
Literal, 26, , 29, 57, 152
Little endian,
Livelock, 152
Local scope,
Logarithm, 132, 139

,
Logical shift, 62, 125

,
,

,
,

,
,

Loop, 9, , 152
counted, 10

Memory
allocation, 96

Memory allocation,
Memory map, 94
Memory mapped device, 96

, 59, , 82, 102
,

Modulo
addition, 59
multiplication, 59
subtraction, 59

Modulo operator, , 153

Monadic operator,
, , 102
, , 102

,
Multiple assignment, , 75, 77
Multiple length integers, 120
Multiplication, 59

Name, 4, , 153
Named constant, 26,
Named data type,
Named process, 69
Named protocol,
Network, 20, 153
Newline, 104

,
Non-terminal symbol, 3

,
, 59, , 102

Not equal operation, 59,
Not-A-Number, , 131, 138
Notation

syntax, 3
,

Object file inclusion,
2, 1

Offset, , 153
, 33, , 92, 102

Omission of type decoration, 29
Operand, , 153
Operation, , 65
Operator, , 153

dyadic,
monadic,

Operator precedence, 57
Option, , 40, 41

, 59, , 102
,

OUG, 156
Output, , 29, 47, 96, 153
Output item,
Overflow, 92

arithmetic, 60
Overflow checking

suppression, 61

, 92, 102
,

Packed record, 33, 153
Padding, 66
Padding bytes,

, , 102
Parallel, 9, , 93, 94

array,
disjointness,
placed,
priority,
replicated,
usage, , 99, 100

Parameter

occam

INDEX

78
69

25
25
25
25

27

25
145

101

131

102

64
4

105
63

63

3

91

3
27

92

40

132

122
123

124
124

123
122

14

94

61
132

61

58
65
65

134
5

105
43

26

48

133

127
63

63
130

131

91

65
65

57
59

57
58

58

13
63

133

6
48

33

33
15

15
44

16
93
94

16
16

FUNCTION
PROC

INT
INT16
INT32
INT64

INTTOSTRING

IS
ISNAN

LOGB

LONGADD
LONGDIFF
LONGDIV
LONGPROD
LONGSUB
LONGSUM

MINUS
MINUSX

MOSTNEG
MOSTPOS
MULBY2

NEXTAFTER

NORMALISE
NOT

NOTFINITE

OFFSETOF

OR
ORDERED

PACKED
PACKED RECORD

PAR

161

actual, 73, 76
formal, 73, 76

Parentheses, 57
Physical resource,

, , 96, 102
, 102

,
Placed parallel, 93
Placement, , 153

, 59, , 82, 102
Point-to-point,
Polar angle, 142

, , 102
Port, 96, , 99, 153

abbreviation,
allocation, 96
retyping,

Port type,
,

Precedence
operator, 57

Predefine, 116, 148, 153
, 102

, 23
, 94

Primitive data type, 25, 153
Priority, , 94, 153

alternation,
execution,
level,
parallel,
, , 102

Procedure, , 100
Procedure definition, , 153
Procedure instance, , 153
Procedures

library, 116
Process, , 40, 41, 95, 153

constructed,
named, 69

, , 102
Processor allocation, 93
Production,
Programming support, 119, 148

, , 102
Protocol, 29, 45, , 48–50, 153

,
case,
definition,
name,
sequential,
simple,
tagged,
variant,

Protocol definition, , 49
Pseudo-random number, 144

,
Real, 153
Real arithmetic, 60, 61, 136
Real comparison, 137

Real literal, 28
Real number, 25, 26
Real time, 148, 153
Real to string, 146
Real type, , 27

, , 102
,
,
,

,
, , 102

,
,
,

,
,

, 136
, 136

, , 102
Record, , 153
Record fields,
Record layout, , 153
Record literal, 30,
Relational operation, , 103, 153

, 59, , 102
Remainder, 59
Replicated alternation,
Replicated conditional,
Replicated parallel,
Replicated sequence,
Replication, , 10, 12, 16, 21, 153
Replication index, , 26
Replicator,
Representation, 26

,
Rescheduling,
Reserved word, 91, , 116

, , 102
Reshaping,
Reshaping conversion, 153

, 75, 102
, 85, 92, 102

Retyping
port,

Retyping conversion, , 154
,

,
, , 102

Rounding, , 61, , 135

,
Scope, , 42, 43, 49, 76, 85, 154
Scope

field name, 32
protocol tag, 50, 53

Search
bounded, 14

Segment, , 37, 154
Selection, , 154

,
Selector, 13

INDEX

93
95

93

93
61

6

96
96

96

97
96

140

23
23

94
94

94
69

69
69

69

5
9

93

3

48
47

53
49

48
48

48
47
49
49

48

144

25
25

137
137
136

136
25

137
137
136

136
146

31
31

39
31

32
63

60

21
12

16
10

9
10

10

148
148

102
87
87

97
85

129
129

67
26 98

131
39

36
13
13

PLACE
PLACED
PLACED PAR

PLUS

PORT

POWER

PRI
PRI ALT
PRI PAR

PROC

PROCESSOR

PROTOCOL

ANY

RAN

REAL32
REAL32EQ
REAL32GT
REAL32OP
REAL32REM
REAL64
REAL64EQ
REAL64GT
REAL64OP
REAL64REM
REALnnTOSTRING
REALOP
REALREM
RECORD

REM

RESCHEDULE

RESHAPES

RESULT
RETYPES

ROTATELEFT
ROTATERIGHT
ROUND

SCALEB

CASE

162

, , 102
Sequence, 9, , 154

replicated,
Sequential protocol, , 48, 154
Shift left, 59,
Shift operation, 29, , 154
Shift right, 59,

,
,

Simple protocol,
,

Sine, 140
,
, 59, , 65, 102
, , 102

Skip, 154
Source file inclusion,
Space, 104
Specification, 39, , 40, 154
Specifier, , 73, 78, 85, 88, 154

,
Square root,
Standard library, 116

, , 101, 102
Stop, 154
Stop process mode,
String, 58, , 154

length byte,
String to boolean, 146
String to integer

decimal, 145
hexadecimal, 145

String to real, 146
String to value conversion, 145

,
,
,

,
Structured type,
Subscript, 29, , 99, 154
Subscripting,
Substitution

procedure body, 69
value process, 76

Subtraction, 59
Symbol, , 103
Syntactic category, 3, 106
Syntactic notation, 3
Syntax, 3, , 106
System requirement, 93

TAB, 3, 104
Table, 30, 57, , 154
Tag, , 51, 154

scope,
Tagged list, , 154
Tagged protocol, , 154

,
Tangent, 141

,
Terminal symbol, 3

Timeout,
, , 102

Timer, , 99, 154
abbreviation,
alternation, 82
array,
declaration,

Timer input, 81, , 154
Timer type,

, 59, , 102
Transputer, 92

, 12, 102
, , 102

Twos complement,
,

Type, 25
Type abstraction, 27
Type conversion, , 154
Type definition,
Type equality, 27

Undefined mode,
Underlying type, 27, 57
Usage

parallel,
Usage check, , 100, 154
User defined type, 26
User group, 156
Using the manual, 1

, , 73, 85, 87, 102
, , 102

Valof, 41,
Value, 25
Value abbreviation, 29, , 70
Value process, 29, 40, , 100, 154
Value to string conversion, 119, 145
Variable, 5, 25, 26, , 37, 57, 99, 154

abbreviation,
array, 31
declaration,

Variable abbreviation, 70
Variable list, , 154
Variable subscript, 44, 154
Variant, 40, 41, , 154
Variant input, , 52
Variant protocol,

, , 102
Word length,
Word rotation, 129
WoTUG, 156

INDEX

9
9

10
48

62
62

62
126

125
47

140

143
64

7

91

40
43

131
131

7

101
105

105

146
145
145

146
31

36
36

103

106

58
50

53
52

49
141

143

82
81

81
83

81
81
82

81
61

67
25

26

66
26

101

16
99

43
75

75

43
75

35
42

35

5

52
51

49

14
92

SEQ

SHIFTLEFT
SHIFTRIGHT

SIN

SINH
SIZE
SKIP

SQRT

STOP

STRINGTOBOOL
STRINGTOHEX
STRINGTOINT
STRINGTOREALnn

TAN

TANH

TIMER

TIMES

TRUE
TRUNC

TYPE

VAL
VALOF

WHILE

	Contents
	Contents overview
	Preface
	Introduction
	Syntax and program format
	1 Primitive processes
	1.1 Assignment
	1.2 Communication
	1.3 SKIP and STOP

	2 Constructed processes
	2.1 Sequence
	2.2 Conditional
	2.3 Selection
	2.4 WHILE loop
	2.5 Parallel
	2.6 Alternation
	2.7 Processes

	3 Data types
	3.1 Primitive data types
	3.2 Named data types
	3.3 Literals
	3.4 Array data types
	3.5 Record data types

	4 Variables and values
	4.1 Declaring a variable
	4.2 Array components and segments
	4.3 Record fields
	4.4 Scope of names
	4.5 Abbreviation of variables
	4.6 Abbreviation of values
	4.7 Disjoint arrays in parallels

	5 Channels and their protocols
	5.1 Channel type
	5.2 Declaring a channel
	5.3 Arrays of channels
	5.4 Channel protocol
	5.5 Abbreviation of channels

	6 Expressions
	6.1 Tables and strings
	6.2 Operations on values
	6.3 Operations on types
	6.4 Data type conversion

	7 Procedures
	8 Functions
	8.1 Value processes
	8.2 Functions

	9 Timers
	9.1 Timer type
	9.2 Declaring a timer
	9.3 Timer input
	9.4 Timers in alternations
	9.5 Timer abbreviation

	10 Retyping and reshaping
	10.1 Retyping variables and values
	10.2 Retyping channels
	10.3 Reshaping

	Appendices
	A Implementation dependent features
	A.1 Compiler directives
	A.2 Special keywords introducing language extensions
	A.3 Target word size
	A.4 Endianness

	B Configuration
	B.1 Execution on multiple processors
	B.2 Execution priority on a single processor
	B.3 Allocation to memory

	C Ports
	D Rounding errors
	E Usage rules check list
	E.1 Usage in parallel
	E.2 The rules for abbreviations
	E.3 The rules for procedures
	E.4 The rules for value processes and functions

	F Invalid processes
	G Lexical program components
	G.1 Keywords
	G.2 Symbols
	G.3 Character set
	G.4 Names and literals

	H Ordered syntax of occam
	I Library procedures and functions
	I.1 Multiple length integer arithmetic functions
	I.2 Floating point functions
	I.3 Full IEEE arithmetic functions
	I.4 Elementary function library
	I.5 Value, string conversion procedures
	I.6 Programming support routines

	J Multiple length integer arithmetic functions
	J.1 The integer arithmetic functions
	J.2 Arithmetic shifts
	J.3 Word rotation

	K Floating point functions
	K.1 Not-a-number values
	K.2 Absolute
	K.3 Square root
	K.4 Test for Not-a-Number
	K.5 Test for Not-a-Number or infinity
	K.6 Scale by power of two
	K.7 Return exponent of floating point number
	K.8 Unpack floating point value
	K.9 Negate
	K.10 Copy sign
	K.11 Next representable value
	K.12 Test for orderability
	K.13 Perform range reduction
	K.14 Fast multiply by two
	K.15 Fast divide by two
	K.16 Round to floating point integer

	L Full IEEE floating point arithmetic
	L.1 ANSI/IEEE real arithmetic operations
	L.2 ANSI/IEEE real comparison

	M Elementary functions
	M.1 Logarithm
	M.2 Base 10 logarithm
	M.3 Exponential
	M.4 X to the power of Y
	M.5 Sine
	M.6 Cosine
	M.7 Tangent
	M.8 Arcsine
	M.9 Arccosine
	M.10 Arctangent
	M.11 Polar Angle
	M.12 Hyperbolic sine
	M.13 Hyperbolic cosine
	M.14 Hyperbolic tangent
	M.15 Pseudo-random numbers

	N Value, string conversion routines
	N.1 Integer, string conversions
	N.2 Boolean, string conversion
	N.3 Real, string conversion

	O Programming support routines
	O.2 Assertion checking
	O.1 Rescheduling the processor

	P Changes from occam 2
	P.1 Language changes
	P.2 Manual changes

	Q Glossary of terms
	R Occam Bibliography
	R.1 Books
	R.2 Conference Proceedings
	R.3 Journals, etc

	Index

