

Contents

Occam Tutorial

1 Introduction

2 Signposts

3 The Concepts

4 Fundamentals of occam programming

5 Arrays in occam

6 Channel communication

7 Characters and Strings

8 Replicators

9 Real·Time Programming in occam

10 Configuration

11 Terminating Concurrent Programs

12 Occam Programming Style

Occam Tutorial

Contents

Occam 2 language definition

A Introduction

B Notation

C Process

0 Replicator

E Case

F Multiple assignment

G Types

H Scope

Protocol

J Procedure

K Variable, Channel and Timer

L Literal

M Expression

N Function

0 Timer input

P Character set

Q Configuration

R Invalid processes

S Retyping

T External input and output

Occam Tutorial

1 Introduction

Introduction
The aim of this tutorial is to introduce the reader to concurrent programming using the occamlanguage. It
will provide examples of occam programs, and discuss the novel concepts which occam employs. It is not
however the definitive guide to the syntax of occam; that you will find in the Formal Definition by David May
which forms the second half of this book.

Occam is rapidly being recognised as a solution to the problem of programming concurrent systems of all
kinds, and as a powerful and expressive calculus for describing concurrent algorithms.

Occam bears a special relationship with the INMOS Transputer, a high performance single chip computer
whose architecture facilitates the construction of parallel processing systems. The Transputer executes occam
programs more or less directly (ie. occam is the "assembly language of the Transputer").

Parallel computer systems can be designed in occam, and then implemented using Transputers as "hardware
occam processes". This intimate relation between the software and hardware will be novel to most system
designers, who are perhaps used to a more rigid division of labour.

The approach taken in this manual is therefore governed by the realisation that some of its potential readers
will not be professional programmers, but rather professional engineers and system designers who wish to
use occam to design hardware systems.

For this reason we do not assume extensive knowledge of any other high-level computer language, nor of
machine level programming, on the part of the reader. We do however assume a familiarity with the general
concepts of computing and computer programming; it is not a manual for the novice to computing.

The tutorial is concerned purely with the language occam and will only briefly address the issues of installing
occam programs onto Transputer systems. It is intended as a general introduction to the language, equally
suitable for those reader$ who intend to use occam on conventional computers.

We shall not insist that any particular computer/compiler combination (or indeed any hardware at all) be
available to the reader; hardware dependent aspects of occam are concentrated into a single chapter at the
end of the course.

For the same reasons, there will be no instruction in the detailed workings of particular occam compilers. Error
reporting will not be covered except in a general way. Details of this kind are to be found in the Programmer's
Manual which accompanies an occam compiler.

Acknowledgements:- Many thanks to the Inmos staff who took time out from writing the compiler to check
this text and to improve the examples. In particular to David May and Ron Laborde. Any mistakes that have
crept back in are the responsibility of the author.

72 ace 043 07 Occam Tutorial

2 Occam Tutorial

2 Signposts

Signposts
As an aid to the reader, the author has placed a variety of signposts throughout the text, to signal points of
special interest. The meaning of these signposts is as follows.

Take care: Sections so marked are those which explain concepts which are especially likely to trip up novice
occam programmers. This may be because :-

1) This concept is intrinsically difficult.

2) Occam handles this area in a different way from traditional languages with which the reader may be familiar.

3) This is a limitation or restriction in current implementations of occam.

These sections will repay frequent re-reading, especially if you have written an occam program that doesn't
work!

Hint: These are tricks and devices which proved useful to the author while learning occam.

Key Idea: A concept which is fundamental to the understanding of occam. Make sure you thoroughly grasp
it.

Aside: A brief digression from the main thread of the tutorial into broader computing matters. Experienced
programmers might wish to skip them.

Technical Note: A brief explanation of some implementation issue. If you don't understand it, don't let it hold
you up but skip it and return later.

3 Occam Tutorial

4 Occam Tutorial

3 The Concepts

The Concepts
Concurrency

Since John Von Neumann discovered the principles over 40 years ago, all digital computers have been
designed in a fundamentally similar way.

A processor, which can perform a set of basic numeric manipulations, is connected to a memory system
which can store numbers. Some of these numbers are the data which the computer is required to process.
The other numbers are instructions to the processor and tell it which of its basic manipulations to perform.

The instructions are passed to the processor one after the other, and executed. Execution of a computer
program is sequential, consisting of a series of primitive actions following one another in time.

Everyday examples of similar activities in the real world could be reading a book (one word at a time), or
"executing" a knitting pattern by following the instructions in sequence.

Computers are mainly employed to model the real world. Even the simple act of adding 2 and 2 is a model of
the real world, except when it is performed by or for a mathematician who is interested in the pure properties
of numbers. Far more frequently 2+2 is a model for the act of adding two pounds, or dollars, or apples, or
aeroplanes, to an existing stock of two.

Certainly the major applications of computers, such as accounting, banking, weather forecasting, process
control and even word processing, are explicitly modelling objects, events and activities in the real world.

The world which we inhabit is inherently concurrent. At the scale of human affairs, indeed at any scale
between the cosmological and the quantum mechanical, the world behaves as if it were organised into three
spatial dimensions and one time dimension.

Events happen in both time and space. It is possible for two events to occur in the same place one after the
other in time (ie. sequentially), and equally possible for events to occur in different places at the same time
(ie. concurrently, or in parallel).

Concurrency is so much a feature of the universe that we are not normally concerned with it at all. The fact
that, for instance, the population of this planet all live different lives in different places at the present time is
so obvious that one feels slightly embarrassed in stating it.

However it is worthwhile to reflect on the contrast between the concurrent nature of the world, and the
sequential nature of the digital computer. Since the main purpose of the computer is to model the world,
there would seem to be a serious mismatch.

In order to model the world with a computer, programmers of conventional computers have to find ways
to mimic concurrent events using a sequence of instructions. This is not a problem in an application like
accounting, where it is perfectly reasonable to regard goods despatched, materials and moneys flowing in
and out as happening sequentially in time.

It is more of a problem when you wish to control a petro- chemicals plant by computer. Every process in
every part of the plant must be monitored and controlled at the same time, all the time. It is not acceptable for
a crisis in one reaction vessel to be overlooked because the computer happened to be looking at a different
reactor at the time.

Concurrent Programming

The earliest digital computers were programmed using the basic numeric intructions understood by the pro
cessor. Such programming is so tedious and error prone that computer scientists soon began to design
"high-level" languages, starting with Fortran and leading to the current proliferation which includes Basic,
Pascal, Modula 2, C, Ada, Forth, Lisp, Prolog and hundreds of others.

These languages allow programmers to express the logic of a program in notations which use readable

5 Occam Tutorial

3 The Concepts

English (or French etc...) words, albeit with a tightly constrained and reduced syntax. A program called a
compiler then translates these notations into the basic numeric instructions which the computer understands.

For the majority of languages, the product of the compiler is again a sequence of instructions, to be executed
one at a time by the processor just as if they had been produced by hand. In other words these languages
faithfully reflect the nature of the underlying sequential Von Neumann computer in a form more palatable to
human programmers.

To adequately model the concurrency of the real world, it would be preferable to have many processors all
working at the same time on the same program. There are also huge potential performance benefits to be
derived from such parallel processing. For regardless of how far electronic engineers can push the speed of
an individual processor, ten of them running concurrently will still execute ten times as many instructions in
a second.

Conventional programming languages are not well equipped to construct programs for such multiple proces
sors as their very design assumes the sequential execution of instructions.

Some languages have been modified to allow concurrent programs to be written, but the burden of ensuring
that concurrent parts of the program are synchronised (ie. that they cooperate rather than fight) is placed on
the programmer. This leads to such programming being perceived as very much more difficult than ordinary
sequential programming.

Occam is the first language to be based upon the concept of parallel, in addition to sequential, execution,
and to provide automatic communication and synchronisation between concurrent processes.

Synchronisation

It's possible to write concurrent programs in conventional programming languages, and to run them on con
ventional computers; in essence what happens is that the programmer writes a number of programs and the
computer pretends to run them all at the same time by running a piece of each one in turn, swapping at very
short intervals, until they are all done.

However, this kind of programming is more difficult than straightforward "do this, then do this, then do this"
sequential programming. Crudely put, this is because a sequential program has only one beginning and one
end, but a concurrent program may have many beginnings and many ends.

A sequential program starts, runs and then finishes; it's either running or it's not. Often we are not even
concerned about exactly when it finishes (though we usually want it to be as quick as possible on a given
computer).

The well worn metaphor of a knitting pattern can be instructive here. A knitting pattern consists of a list of
instructions on how to manipulate wool and needles, which if followed faithfully lead to the production of, say,
a sweater.

Some instructions will have to be repeated many times, and the pattern will use an appropriate notation which
tells the knitter to do this without having to write out every single step, just like the repetition structures of
computer languages.

For a single knitter who isn't in a hurry, the sweater will take as long as it takes to knit; the sweater is finished
when they've performed every instruction in the pattern.

In occam this could be represented by, say :-

SEQ
...knit body
... knit sleeve
... knit sleeve
.. . knit neck

where the SEQ means "do all these in sequence".

6 Occam Tutorial

3 The Concepts

Aside: The convention of using of three dots . . . will be used throughout the rest of this tutorial to describe
parts of a program, in ordinary English, whose internal details are not relevant to the example, as with
... knit body. They should be distinguished from pure comments, introduced by two dashes, as in -
This is a Comment. Such comments are purely for explanation purposes and do not form part of the
program.

But what about a small firm of knitters, who split up the sweaters into components (bodies, necks, sleeves)
and share out the jobs? They have orders to fulfill and so time now matters.

The most efficient way to proceed is for everyone to knit their individual bits concurrently. Unfortunately the
finishers who put sweaters together can't make a sweater until they have a neck, two sleeves and a body....

From a picture of unconcerned rural bliss by the fireside we switch to one of irascible finishers screaming
"hurry up with that sleeve". The point being that finishing the pattern for a sleeve is no longer sufficient
indication that the sweater is finished.

The time of finishing now matters very much and, more importantly, finishing one job may depend on the
finishing of other jobs outside the individual knitter's control. Unless all the knitters' activities can be suitably
synchronised the result is very inefficient production, with everyone waiting on the slowest knitter.

Computers magnify this problem enormously. They are not as intelligent nor as patient as even the the most
bad tempered of knitters. If several cooperating programs don't finish their parts of the job at the right times,
the result is usually that the program won't run at all, rather than it merely running inefficiently.

Computers are infinitely patient in another sense, for a program is perfectly prepared to wait forever for
something which will never arrive because the synchronisation is wrong (a situation known to concurrent
programmers as deadlock).

This being so, concurrent programs can be difficult to write. Achieving the necessary synchronisation between
parts has up until now been largely the responsibility of the programmer, who has to write in an elaborate
system of signals by which each part can tell the others whether or not it is ready.

Each part of the program must continually look at these signals to see whether or not it can carry on. The
program code required to achieve this is often considerable, and writing it consumes a lot of time which the
programmer could have spent writing those parts of the program which actually do the job (knitting sweaters
so to speak).

Given a concurrent program of any complexity it becomes difficult for the programmer to even understand
how the parts should relate at all.

Occam simplifies the writing of concurrent programs by taking most of the burden of synchronisation away
from the programmer. For instance, our concurrent knitters could be described by :-

SEQ
PAR

... knit body

... knit left sleeve

... knit right sleeve

... knit neck
... sew sweater

This expresses the fact that the parts are knitted in parallel (PAR) but that sewing follows sequentially when
all the parts are finished.

Communication between the different parts of a program is built into the language itself, and it is synchronised
communication - that is, a message will only be sent when both the sender and the receiver are ready.

If one party becomes ready before the other, it will automatically wait for the other without any explicit
command from the programmer. The only responsibility left with the programmer is that of avoiding deadlock
by ensuring that the second party becomes ready sometime (that someone actually is knitting that sleeve!).

7 Occam Tutorial

3 The Concepts

We could add such communications to our knitting description like this :-

PAR
SEQ

... knit body
· .. output body

SEQ
... knit right s1eeve
... output right s1eeve
... knit 1eft s1eeve
... output 1eft s1eeve

SEQ
... knit neck
· .. output neck

SEQ
PAR

... input body
SEQ

... input right s1eeve

... input 1eft s1eeve
... input neck

· .. sew sweater

body
knitter

s1eeve
knitter

neck
knitter

finisher

This is a description of the making of one sweater by four knitters all working at the same time, and all the
synchronisation required is implied in its structure. It works by combining simple processes ("knit body") into
larger processes (each kind of knitter) which can themselves be combined into a still larger process (make a
sweater).

Processes and Channels

In occam programming we refer to the parts of a program as processes.

Key Idea: A process starts, performs a number of actions and then finishes.

This definition fits an ordinary sequential program, but in occam more than one process may be executing at
the same time, and processes can send messages to one another.

In conventional programming languages such as BASIC, much of the activity of a program consists of changing
the values, such as numbers or strings of characters, stored in variables. Take for example this rather
unexciting BASIC program :-

10 LET A = 2
20 LET B = A
40 PRINT B
50 END

The result of running this program is that the value in both variables A and B becomes 2, and line 40 causes
this value to be printed out on a VDU screen.

There is communication of a limited sort going on in this program. The PRINT command provides one-way
communication between the program and an external device, the VDU screen.

There is also a sense in which the value 2 has been communicated from A to B, though we wouldn't normally
dignify this act with the name "communication" because there is only one BASIC program running and it's
being executed one line after another. Instead we tend to regard the value 2 as being stored in both A and
B.

Now imagIne that we could have two such programs running at the same time on different computers and
that in some as yet unspecified way they can communicate across space:-

8 Occam Tutorial

3 The Concepts

---------------+ +---------------
I 1

10 LET A = 2 1/\/\/\/\/\/\110 LET B =A
20 END I magi.c 120 END

I I
---------------+ +---------------

computer 1 computer 2

The desired result is that the value of A somehow crosses the gap between the computers and sets B to 2.

It is of course possible to achieve this end with a BASIC program; one could for instance connect the
computers together by means of serial communication ports. But the BASIC programs would both need to
have extra lines added containing special input and output instructions to send or receive data from the serial
port, and to match the physical attributes of the ports (eg. bits/second and word length), something like:-

---------------+ +---------------
10 LET A = 2 I I
20 RSCONFIG I 110 RSCONFIG ..
30 RSOUTPUT A 1/\/\/\/\/\/\120 RSINPUT A
40 END I RS232 130 LET B = A

I li.nk 140 END
---------------+ +---------------

computer 1 computer 2

Occam permits this sort of communication as a normal feature of programming, and doesn't require special
instructions which have to be different for each kind of communications device.

More importantly, occam doesn't mind whether the two programs which so communicate are running on
different computers, or are just two processes running concurrently on the same computer.

As well as variables for storing values, occam uses channels for communicating values. Channels look in
many ways like variables, except that rather than assigning a value to them for storage (eg. LET A = 2 in
BASIC) we output to thGm or input from them.

The value output by one process is input by another process, the channel behaving like a pipe joining the
two processes. A single channel can only join two processes; it's like a person-to-person call rather than a
conference. Channels are one-way only, so two would be needed for a two way communication.

Key Idea: A channel is a one-way, point-to-point link from one process to one other process.

A transfer over a channel is actually an act of copying; if the value is output from a variable, then that variable
retains its value and a copy of it is sent over the channel.

Occam uses the symbol ! to mean output and? to mean input so we could express the above examples by :-

---------------+ +---------------
I I

A ! 2 1/\/\/\/\/\/\1 A ? B
I I
1 I

---------------+ +---------------
process 1 process 2

where A is a channel and B is·a variable. This reads as "output 2 to A" and" input from A to B".

Since processes 1 and 2 are independent, they might well be executed at different times. The act of trans
ferring a value from one end of the channel to the other can only happen when both processes are ready.

In other words, if the output in process 1 is executed before the input in process 2 executes, process 1 will
automatically wait for process 2 before sending a value. Vice versa, if the input in process 2 were executed

9 Occam Tutorial

3 The Concepts

before process 1 had output, process 2 would wait for a value to appear. There is no way for a value to be
output into "thin air" and lost.

With our hypothetical BASIC programs above there is no such assurance. What would happen should the
programs be "out of step" depends on the detailed workings of the particular link we used.

It might well be that if program 1 reached RSOUTPUT A before program 2 reached RSJ:NPUT A, the value
of A would be sent and lost. Equally if program 2 arrived first it might stop the program and report an error
such as "bad connection".

The two novel features which distinguish channels from variables are:-

1) A channel can pass values either between two processes running on the same computer, or between two
processes running on different computers. In the first case the channel would in fact be just a location in
memory, rather like a variable. In the second case the channel could represent a real hardware link, such
as a Transputer link or other serial communication line. Both cases are represented identically in an occam
program.

Key Idea: An occam channel describes communication in the abstract, and does not depend upon its physical
implementation. You can thus write and test a program using channels without having to worry about exactly
where the different processes will be executed. The program can be developed on a single processor
workstation; when it's finished and proved you may decide to distribute various processes in the program
qnto different computers, and do so by making a few simple declarations at the beginning of the program.

2) Channels are patient and polite. If an input process finds that no value is ready it will wait until one
is supplied, without any explicit instruction from the programmer. Equally an output will not send until the
receiver is ready. This introduces the time factor into programming, but in a way which lifts much of the
responsibility for "timekeeping" off the programmers shoulders.

The description of our knitters could now be written using channels to transport the parts :-

PAR
SEQ body knitter

... knit body
bodychan ! body

SEQ -- s1eeve knitter
... knit right s1eeve
s1eevechan ! right.s1eeve
... knit 1eft s1eeve
s1eevechan ! 1eft.s1eeve

SEQ neck knitter
... knit neck
neckchan ! neck

SEQ -- finisher
PAR

bodychan ? body
SEQ

s1eevechan ? right.s1eeve
s1eevechan ? 1eft.s1eeve

neckchan ? neck
... sew sweater

Three different channels are needed because each may only join two processes; for example bodychan joins
the body knitter to the finisher. As we shall see in the next chapter, when occam is used as a computer
language, rather than for an informal description as here, channels and variables must be declared before
they are used.

Communication over self-synchronising channels is a novel and powerful part of occam, and it can render
the writing of concurrent programs a far less formidable task than it is with conventional languages. In the
next chapter we shall start in earnest to construct occam programs from the simple processes just outlined.

10 Occam Tutorial

4 Fundamentals of occam programming

Fundamentals of occam programming
Primitive Processes

All occam programs are built from combinations of three kinds of primitive process. We have seen all three
kinds already; they are assignment, input and output.

Assignment Process

An assignment process changes the value of a variable, just as it would in most conventional languages. The
symbol for assignment in occam is : =. So the assignment process :-

fred := 2

makes the value in variable fred two. The value assigned to a variable could be an expression such as :-

fred := 2 + 5

and this expression could contain other variables :-

fred := 5 - jim

Take care: Be sure not to mix up = and : =. In occam = means a test for equality, not an assignment.

Input Process

An input process inputs a value from a channel into a variable. The symbol for input in occam is ? The input
process :-

chan3 ? fred

takes a value from a channel called chan3 and puts it into variable fred.

Input processes can only input values to variables. It is quite meaningless to input to a constant or to an
expression.

An input process cannot proceed until a corresponding output process on the same channel is ready.

Hint: As an aid to memory think of the question mark as meaning "Where's my value ?"

Output Process

An output process outputs a value to a channel. The symbol for output in occam is !. The output process :-

chan3 ! 2

outputs the value 2 to a channel called chan3.

The value output to a channel can be anything that you could assign to a variable, so it may be a variable or
an expression, and the expression may contain variables.

An output process cannot proceed until a corresponding input process on the same channel is ready.

Hint: As an aid to memory, think of the exclamation mark as meaning "Here's your value i".

11 Occam Tutorial

4 Fundamentals of occam programming

Communication

Communication over a channel can only occur when both input and output processes are ready. If during
the execution of a program, an input process is reached before its corresponding output process is reached,
the input will wait until the output becomes ready. Should the output be reached first, it will wait for its input.

A value communicated over a channel is copied to the input variable and the value of the output variable
remains unchanged.

Key Idea: Communication is synchronised.

These then are the building blocks from which occam programs are made. Each such primitive process must
occupy a separate line in an occam program, and is the simplest action that occam can perform, an "atom"
of occam programming.

Key Idea: Occam programs are built by combining primitive processes.

SKIP and STOP

Occam has two special processes called SKIP and STOP.

. Key Idea: The process SKIP starts, does nothing and then finishes.

SKIP may be thought of as representing a process which does nothing. It might be used in a partly completed
program in place of a process which will be written later, but which for the moment can be allowed to do
nothing.

For example a process which is to drive an electric motor could be replaced by SKIP when testing the
program without a motor. There are also occasions when you want nothing to happen, but the syntax of
occam requires a process to be present.

Key Idea: The process STOP starts but never proceeds and never finishes.

STOP may be thought of as representing a process which doesn't work, or is "broken". It might be used, like
SKIP, to stand in for a process which has yet to be written.

For example a process to handle errors could be replaced by STOP in the early stages of testing a program.

The effect of a "broken" process tends to spread, because any process which communicates with a broken
process will itself never finish, and hence it becomes broken too.

Termination and Stopping

So far we have loosely used the term "finish" when referring to processes. Concurrent programming in occam
requires us to be rather more precise than this.

A process which completes all its actions is said to terminate. Normally a process starts, proceeds and then
terminates.

A process which cannot proceed is said to be stopped which is not at all the same thing. A stopped program
never terminates. A process might be stopped by waiting for an event which will never happen, due to a
programming error, in which case it is said to be deadlocked.

Correct termination of concurrent programs is not a trivial matter, since they may have many parallel processes
which communicate with one another. This topic is of sufficient importance to merit a chapter to itself (see
Chapter 9).

12 Occam Tutorial

4 Fundamentals of occam programming

Constructions

Several primitive processes can be combined into a larger process by specifying that they should be performed
one after the other, or all at the same time. This larger process is called a construction and it begins with an
occam keyword which states how the component processes are to be combined.

SEQ construction

The simplest construction to understand is the SEQ (pronounce it "seek"), short for sequence, which merely
says "do the following processes one after another". Here is an example :-

SEQ
chan3 ? fred
ji.m := fred + 1
chan4 ! ji.m

This says, "do in sequence, input from chan3 to fred, assign fred + 1 to ji.m and output ji.m to
chan4". In sequence means, to be more precise, that the next process does not start until the previous
one has terminated. A SEQ process therefore works just like a program in any conventional programming
language; it finishes when its last component process finishes.

Notice the way that the processes which make up this SEQ process are indented by two characters from the
word SEQ, so that they line up under the Q. This is not merely to make the program look prettier, but is the
way that occam knows which processes are part of the SEQ.

Whenever a construction is built, we indicate the extent of the new process by indenting all its component
processes by two characters. Other languages use special characters like { ... } or begi.n ... end for this
purpose, but occam uses indentation alone.

Key Idea: A SEQ construction terminates when its last process terminates.

Take care: SEQ is compulsory in occam whenever two or more processes are to run in sequence. In
conventional programming languages, sequence is taken for granted and merely writing one statement after
another guarantees they will execute in sequence. Because occam offers other modes of execution apart
from the sequential, sequence must be explicitly requested.

PAR construction

The PAR construction, short for parallel, says "do the following processes all at the same time", ie. in parallel.
All the component processes of a PAR start to execute simultaneously. For example :-

PAR
SEQ

chan3 ? fred
fred := fred + 1

SEQ
chan4 ? J1m
ji.m := ji.m + 1

says "at the same time, input from chan3 to fred and then add one to the result, while inputting from
chan4 to ji.m and then adding one to the result".

Notice again the indentation. The first two character indent tells occam that the PAR process consists of
two SEQ processes. The second level of indentation shows that each SEQ is composed of two primitive
processes.

Notice also that the processes which are to run in parallel are still written in sequence just as in any ordinary
program. This is purely a matter of writing convenience. The designers of occam could have chosen to make
us write parallel processes side by side, which would give a stronger impresslon of what is going on :-

13 Occam Tutorial

4 Fundamentals of occam programming

PAR
SEQ

chan3 ? fred
fred := fred + 1

SEQ
chan4 ? jim
jim := jim + 1

As you will quickly see though, this would become hopelessly clumsy once you had more than two or three
parallel processes in a PAR; it would exceed the width of standard VDU screens and printer paper, as well
as involving the typist in tedious tabulation.

The important thing to keep in mind is that in a PAR, the written order of the component processes is irrelevant
as they are all performed at the same time. PAR is not quite so easy to understand as SEQ, because the
idea of things happening simultaneously in computer programs is new to many programmers.

For instance we can now no longer know for sure which of the two parallel processes in the above example
will finish first; it depends upon which input becomes ready first, which in turn depends upon a couple of
output processes elsewhere in the program.

The beauty of occam is that this doesn't matter, because the PAR construction itself has a single well defined
beginning and a single well defined end. We know that the two SEQ processes will start at the same time,
run when their inputs become ready and then terminate.

All the component processes in a PAR start at the same time, and the PAR itself terminates when all its
component processes have terminated and that is all we need to know.

Key Idea: This is the central principle of occam programming; compound processes built up from simpler
processes behave just like simple processes ie. they start, perform actions and then terminate. They can in
turn become the components of a still more complex process.

There is a lot more to be said about PAR, especially in relation to communication over channels. Moreover
there are several more constructions in occam, which build processes that repeat or make conditional choices.

But before going on to such matters, something needs to be clarified. Up till now we have been using
channels and variables like chan3 and fred as if they, so to speak, grew on trees. This is most definitely
not the case; in occam both channels and variables need to be specified before they can be used. It makes
sense to discuss specifications and types before we go any further, so that the examples we study can be
valid occam programs.

Types, Specifications and Scope

Occam, like Pascal and many other languages, but unlike BASIC, requires that every object that is used by
a program should have a type which tells occam what sort of object it is dealing with. Furthermore the type
of an object must be specified before it can be used in a process.

We have been using named channels (chan3 and chan4) and variables (fred and jim) without any
specification so far, a situation which will now be rectified.

Names

First let's deal with names themselves. In occam the names of objects can be as long as you like, and they
must start with a letter of the alphabet. The rest of the name, if there is one, can be made up of letters,
digits and the dot character. Upper and lower case are distinguished by occam, so that fred and Fred are
different names. These are all valid names :-

x Y fred chan3 Chan3 new.fred old.fred

Occam keywords such as SEQ, PAR and CHAN are always in upper case and they are reserved. In other
words they cannot be used as names that you create.

14
Occam Tutorial

4 Fundamentals of occam programming

These are not valid names :-

3chan
ol.d-fred
fred$
ol.d fred
CHAN

Data Types

doesn't start with a l.etter
contains il.l.egal. character
contains il.l.egal. character
contains a space
reserved word CHAN

'-'
'$'

Variables may take on one of several data types, ie. kinds of value. The following are the types which are
always provided by occam :-

INT
BYTE

BOOL

an integer or whol.e number.
an integer between 0 and 255;
very often used to
represent characters.
one of the l.ogical. truth
val.ues TRUE or FALSE.

We could specify the variables in the above examples as ;-

INT fred, jim :

which means that they can be used to represent positive or negative whole numbers. Several variables may
be specified at once, as above, by listing them separated by commas.

Technical Note: Occam actually provides more data types than those outlined above. Catering for non
integral numbers by supplying various Real Number types. These types also provide fixed length number
representation. INT16, INT32, INT64, REAL32 , REAL64 are numeric types represented using 16,32 or
64 bits respectively. The details of these types can be studied in the Formal Definition at the rear of this book.
For the purposes of this tutorial we will work only with INT, BYTE and BOOL and will make no assumptions
about the physical size of an INT.

Channel type and protocol

Channels are all of the type CHAN OF protocol. It is necessary to specify the data type and structure of the
values that they are to carry. This is called the channel protocol. For the present we shall be content to
regard channels as able to carry single values of a single data type, rather like variables.

A channel which carries single integer values would be specified by :-

CHAN OF INT chan3 :

where the INT specifies the type of values which may pass along the channel chan3. The type of chan3
is CHAN OF INT. In general the protocol of a channel is specified by CHAN OF protocol.

Timer Type

The type TIMER allows the creation of timers which can be used as clocks by processes. Timers will be
discussed further in Chapter 7.

Characters and Strings

Occam does not have any type CHAR or STRING to represent alphabetic characters or words. Instead
characters are represented as numbers of type BYTE and strings as arrays of numbers of type BYTE. We
shall return to this sUbject in a later chapter.

15
Occam Tutorial

4 Fundamentals of occam programming

Soolean Type

Boolean values, or truth values are produced as the result of tests performed by comparison operators.
Occam provides the following tests :-

= equal. to
<> not equal. to
> greater than
< l.ess than
>= greater than or equal. to
<= l.ess than or equal. to

These tests may only be applied to two values of the same type, and they always yield a value of type BOOL.
For example the test 2 <> 3 yields the value TRUE since 2 does not equal 3.

The truth values TRUE and FALSE are occam constants which can be used in any situation where a test
could be used; you may like to think of them as tests whose outcome is decided in advance.

Constants

A name can be given to a constant value by specifying it with VAL type name IS value:. So we could write :

VAL INT year IS 365:
VAL INT l.eap.year IS 366:

The type can be omitted as occam can deduce it from the value :-

VAL year IS 365:

Possible ambiguities over BYTE and INT are resolved by explicitly specifying the type of the value, which
we'll see later on.

Notice the colon, which is used to end all the different kinds of specification. This colon joins a specification
to the process which follows it.

Scope

In occam, variables, channels and other named objects are local to the process which immediately follows
their specification. What this means is that the object to which the name refers effectively does not exist
inside any other process. For instance in this example :-

PAR
INT fred :
SEQ

chan3 ? fred
...more processes

INT jim
SEQ

chan4 ? fred
...more processes

an error will be reported, because fred exists only inside the first SEQ and jim exists only inside the second
SEQ. The second fred will therefore look to occam like an unspecified variable.

The colon which ends a specification in effect joins the specification to the process which follows it and, to
reinforce the connection, specifications are indented to the same level as the process. This following process
is the scope throughout which the specification holds.

16 Occam Tutorial

4 Fundamentals of occam programming

The same name may be used for different objects with different scopes. For instance, we could use fred
for both variables in the above example :-

PAR
INT fred :
SEQ

chan3 ? fred
...more processes

INT fred :
SEQ

chan4 ? fred
•.•more processes

the two freds are now different variables, each local to its own SEQ process, and altering the value of fred
in the first process has no effect on the second.

If inside the scope of a variable (or other named object), another variable is specified with the same name,
then within its own scope this namesake replaces the original. The original object is masked by the newcomer.
For example :-

INT fred :
SEQ

chan3 ? fred
INT -fred :
SEQ

chan4 ? fred
••.more processes

...more processes

In this case, the input from chan4 goes into the second fred, and the first fred is effectively invisible
throughout the second, nested SEQ.

Let's now fix up the PAP. example we saw in an earlier section with some correct declarations :

CHAN OF INT chan3, chan4:
PAR

INT fred:
SEQ

chan3 ? fred
fred := fred + 1

INT jim:
SEQ

chan4 ? JJ.m
jim := jim + 1

Now the channels chan3 and chan4 are known throughout the PAR process; we could legally refer to
either of them in either of the SEQs. On the other hand fred and jim are known only within their respective
SEQs.

Take care: Specifying a variable in occam does not initialise its value to zero. The value of a variable is
undefined garbage until it has been assigned to or has input a value. The value of a variable only has
meaning during the execution of the process for which it is declared. Since the variable doesn't exist outside
this process, it makes no sense to ask what is its value outside the process. But more importantly, it makes
no sense either to ask what is its value once the process has terminated. The next time that process is
executed, the variable starts out as undefined garbage again. You cannot and must not assume that it keeps
the value which it had at the end of the previous execution. For example :-

17 Occam Tutorial

4 Fundamentals of occam programming

WHILE x >= 0 --ILLEGAL! x not dec1ared here
INT x
SEQ

input ? x
output ! x

INT x
WHILE x >= 0 unwise: x is garbage here

SEQ
input ?x
output ! x

INT x :
SEQ

x := 0
WHILE x >= 0 -- correct

SEQ
input ? x
output ! x

(WHILE is one way that occam uses to repeatedly execute a process; we'll see it in more detail soon).

Hint: If you need a variable to keep its value from one execution of a process to another, declare it in an
outer scope that is, before a process which contains the process which is being repeatedly executed.

Communicating Processes

Communication between parallel processes is the essence of occam programming.

At its simplest it requires two processes executing in parallel and a channel joining them :

INT x :
CHAN OF INT comm :
PAR

comm ! 2
comm ? x

This trivial program merely outputs the value 2 from one process and inputs it into the variable x in the
second. Its overall effect is exactly as if we had a single process which assigned 2 to x.

Shared Variables: A Warning

Communication between the component processes of a PAR must only be done using channels. Occam
doesn't allow us to pass values between parallel processes by using a shared variable.

In fact if a component of a PAR contains an assignment or input to a variable, then the variable must not be
used at all in any other component :-

INT x, y :
PAR

SEQ
x := 2
... more

SEQ
y := x
... more

processes

-- ILLEGAL!
processes

Keeping variables local to component processes and using channels to communicate values is the right way
to do it.

18 Occam Tutorial

4 Fundamentals of occam programming

This may seem like a severe restriction to programmers who have experience with conventional languages.
It will certainly be the biggest source of errors when first programming in occam.

Like all prohibitions it will be more easily borne if the reason for it is understood. The reason is both simple
and necessary.

Parallel processes run at the same time, and in general they run asynchronously ie. at their own pace, only
coming into synchronisation with each other briefly when forced to by communication over a channel.

If occam allowed one parallel process to read from a variable which has its value altered in another parallel
process, what value will be read? It depends upon whether or not the other process has altered it yet, and
this can't be known since the processes are asynchronous. And what if the altering process chooses to alter
the variable's value at the precise moment that the second process is reading it? What would the value be
then?

Such a scheme is obviously unworkable, hence the prohibition. But couldn't we organise it so that a variable
warns the other process that it has had its value changed? We could indeed; the resulting object already
exists in occam and is called a channel! Q.E.D.

Key Idea: In occam variables are used for storing values, while channels are used for communicating values.

Let's now return to the main track with a more complicated example of a PAR which performs some arithmetic
on a value before passing it on :-

CHAN OF INT comm:
PAR

INT x:
SEQ

input ? x
comm ! 2 * x

INT y:
SEQ

comm ? y
output ! y + 1

Here we have two channels called input and output which lead to other processes or perhaps to the
outside world. We assume that they have been declared elsewhere in a larger program. This piece of
program uses two processes working in parallel one of which multiplies an input value by two, the other adds
one to the result and sends it on its way to the output. The times-two process and the add-one process
communicate on channel comm.

Aside: In case it worries you, this is not a particularly useful thing to do; it is purely for illustration. It would
be much simpler to do times-two and add-one in a single SEQ process, or indeed in a single expression. But
later on when we have more of occam at our disposal, we shall see how this sort of thing can be very useful
indeed. At this early stage, all examples of communicating PARs will tend unfortunately to appear trivial.

It's been said several times already that an occam channel is a one-way link between a pair of processes,
but it is useful to now examine exactly what this implies. In a communicating PAR construct it means that :-

1) Only two component processes of the PAR may use any particular channel, one as the sender and the
other as receiver.

19 Occam Tutorial

ILLEGAL! two processes
inputting from same channe1

4 Fundamentals of occam programming

CHAN OF INT comm:
PAR

SEQ
comm 2

INT y:
SEQ

comm ? y
INT z:
SEQ

comm ? z

2) The sender process must only contain outputs to the channel and the receiver must only contain inputs
from the channel.

CHAN OF INT comm:
PAR

SEQ
comm 2

INT y:
SEQ

comm ? y
comm ! y+l

ILLEGAL! input and output
-- from the same channe1 in
-- the same process

For mo-way communication bemeen mo processes we would need mo channels :

CHAN OF INT comml, comm2:
PAR

INT x:
SEQ

comml ! 2
comm2 ? x

INT y:
SEQ

comml ? y
comm2 ! 3

The effect is that each process sends a value to the other; x ends up with the value 3 and y with the value
2. The order of the inputs and outputs in each SEQ matters very much here and it's important to understand
why.

If we were to write :-

CHAN OF INT comml, comm2:
PAR

INT x:
SEQ

comm2 ? x
comml ! 2

INT y:
SEQ

comml ? y
comm2 ! 3

then the program would never terminate; we have the dreaded deadlock.

Why deadlock? Because both SEQs wait patiently for an input to become ready. But since each is waiting for
the other to output, neither can proceed to make the necessary output! It's rather like those comical scenes
when mo people passing in a narrow doorway repeatedly step to the same side to make way, so repeatedly
blocking each other. Swapping the input and output in either process resolves the deadlock.

20 Occam Tutorial

4 Fundamentals of occam programming

Take care: Sequence your programs to ensure that two parallel processes are never each waiting for a
sequentially later output from the other. This is the only circumstance in which occam requires you to worry
about such matters, but watch out for it. Like certain stalemates in the game of chess, it may be disguised
in complex processes.

Repetitive Processes

All programming languages provide some means of looping, ie. performing an action repeatedly. In general
it's convenient to distinguish two kinds of repetition; repeat for a specified number of times, or repeat while a
given condition holds. Occam has both types of repetition. The first, or counted loop we'll see later on. The
second conditional loop is performed by a construction called WHILE, which includes a test such as x < 0
or fred = 100. The resulting process is executed while the test result is true, or looked at another way,
until it becomes false.

For example :

INT x
SEQ

x := 0
WHILE x >= 0

SEQ
input ? x
output ! x

will continue to read values from channel input and send them to output so long as the value is not less
than zero. Every time the inner SEQ process terminates, the WHILE process will be performed again and
the test repeated. This continues so long as the test result is TRUE ie. so long as x is greater than or equal
to zero. When a negative value is received the WHILE process terminates.

Aside: The net effect of this process is to buffer (ie. store) a single value on its way from input to output.
Occam programs are often designed by making the major processes communicate on a channel, then inserting
simple processes like this into the channel to buffer, filter, or transform the transmitted values, almost as if
they were electrical components rather than programs.

The logical values TRUE and FALSE can be used as constants in an occam program, anywhere that a test
could be used. So :-

WHILE TRUE
INT x :
SEQ

input ? x
output ! x

will continue to read values for ever (or until you pull the plug!), whereas :

WHILE FALSE
INT x :
SEQ

input ? x
output ! x

is a pointless sort of process which terminates immediately and will read no values at all.

Conditional Processes

In addition to repetition, all programming languages need to provide a way for programs to choose to do
different things according to a condition ie. the results of a test. In occam one form of conditional choice is
provided by the construction called IF.

IF can take any number of processes, each of which has a test placed before it, and make them into a single
process. Only one of the component processes will actually be executed, and that will be the first one (in the
order in which they are written) whose test is true :-

21 Occam Tutorial

4 Fundamentals of occam programming

:IF
x = 1

chan1 y
x = 2

chan2 y

In this fragment of program (we assume x, y, chan1 and chan2 are declared elsewhere), the value of y
will either be output on chan1 or chan2 depending upon whether the value of x is 1 or 2.

The tests x = 1 and x = 2 are boolean expressions which are used to choose which component of the :IF
is to be executed. The component parts of the :IF, each composed of a boolean expression and a process,
are called choices.

What if the value of x were 3? Then the :IF process would cause the program to stop just as if STOP had
been executed. The program can only proceed if one of the choices is executed.

(An :IF with no choices in it just acts like a STOP. A PAR or SEQ with no component processes on the other
hand acts like SK:IP ie. the program continues as if it were not there at all).

In many cases it will not be acceptable to have the program stop if x is not either 1 or 2. In that case we
must add another choice which will be executed no matter what the value of x. This is accomplished by
using TRUE :-

:IF
x = 1

chan1 y
x = 2

chan2 y
TRUE

chan3 y

Now y will be output on chan3 if x has any other value but 1 or 2, because the test on the last choice is
always true so it will always be executed by default if no previous choice has been executed.

If we wanted nothing to happen at all when x was not 1 or 2 we could say :-

:IF
x = 1

chan1 y
x = 2

chan2 y
TRUE

SK:IP

This provides one example of the utility of SK:IP; occam requires some sort of process after the guard and
won't allow just blank space.

A better way of writing the above is to explicitly state each case as in the following example :

:IF
x = 1

chan1 ! y
x = 2

chan2 ! y
(x <> 1) AND (x <> 2)

SK:IP

Aside: This is a much better way to write conditional processes as it is totally unambiguous. For convenience
and simplicity in this tutorial we will, in places, continue to use TRUE as a con<;Jition. In real programs you
should avoid doing so.

22 Occam Tutorial

4 Fundamentals of occam programming

To make more complex choices, IFs can be nested by using an IF process in a choice of another IF
construct.

IF
x = 1

chanl y
x = 2

IF
Y = 1

chan2 y
TRUE

chan3 y
TRUE

SKIP

In this process, chan3 is used for the output if x is 2 and y has any other value than 1.

Alternative Processes

In occam, choice has an extra dimension lacking in ordinary programming languages. We have just seen
how to make choices according to the values of variables in a program using IF. But we can also make
choices according to the state of channels. This is made possible by the ALT construction, whose name is
short for alternation.

Like IF, ALT joins together any number of components into a single construction, but the component parts
of an ALT, called alternatives are rather more complicated than IF choices.

The simplest kind of ALT has as each alternative an input process followed by a process to be executed.
The ALT watches all the input processes and executes the process associated with the first input to become
ready. Thus ALT is basically a first-past-the-post race between a group of channels, with only the winner's
process being executed :-

CHAN OF IN~ chanl, chan2, chan3
INT x:
ALT

chanl ? x
... first process

chan2 ? x
... second process

chan3 ? x
... third process

If chan2 were the first to produce an input, then only the second process would be executed.

Here choice is being decided in the time dimension, the inputs causing the program to wait until one of them
is ready.

An alternative may start with a test in addition to an input, just like the tests in an IF. If this is done, the
associated process can only be chosen if its input is the first to be ready and the test is TRUE. Occam makes
this easy to remember by using the & sign, as in :-

I
CHAN OF INT chanl, chan2, chan3 :
INT x:
ALT

(y < 0) & chanl ? x
... first process

(y = 0) & chan2 ? x
... second process

(y > 0) & chan3 ? x
... third process

23 Occam Tutorial

4 Fundamentals of occam programming

If Y is, say, 3 and chan3 is the first to be ready then the third process will be executed. This form of
alternative is most often used to impose limits on some process, by using a test such as (vol.tage <
maximum) .

As with IF, ALT behaves like STOP if there are no alternatives. Also like IF, an ALT can be nested as
inside an outer ALT.

The ALT is an extremely powerful construction. It allows complex networks of channels to be merged and
switched in a simple and elegant way.

Because of this power, and because it is unlike anything in conventional programming languages, ALT is
far-and-away the most difficult of the occam constructions to explain and to understand. Fortunately we have
now seen enough of occam to be able to work through some more serious examples, which should clarify its
usage.

A Simple Controller Program

Let's suppose that we are designing a program to control a portable music cel')tre. Like so many modern
appliances it has digital controls rather than rotating knobs.

To control the sound volume, there are two buttons, marked louder and softer. Pressing louder increases the
volume one notch, and likewise pressing softer reduces it.

We have two occam channels, also called l.ouder and softer which produce an input whenever a button
is pressed, and a third channel called ampl.ifier which transmits a value to the amplifier section, where a
control chip sets the volume to that value.

The processes which increase or decrease the volume value are easily written (we'll leave declarations until
we have a complete program) :-

SEQ
vol.ume := vol.ume + 1
ampl.ifier ! vol.ume

and :-

SEQ
vol.ume := vol.ume - 1
ampl.ifier ! vol.ume

Now the program needs to decide which button was pressed most recently, and hence which action to take.
Combining the two processes in an ALT will achieve this :-

ALT
l.ouder ? any

... increase vol.ume
softer ? any

... decrease vol.ume

The actual value sent by the button press is not important, so we'll declare a variable called any just to
dispose of the input value. As things stand this process will only operate once, on the first button press, and
then terminate. It needs to be continually repeated to scan the buttons.

The full program would look like th.is :-

24 Occam Tutorial

4 Fundamentals of occam programming

INT vo1ume, any :
SEQ

v01ume := 0
amp1ifier ! v01ume
WHILE TRUE

ALT
10uder ? any

SEQ
v01ume := v01ume + 1
amp1ifier ! vo1ume

softer ? any
SEQ

v01ume := v01ume - 1
amp1ifier ! v01ume

Notice that v01ume is initially set to 0 so that the volume starts off low, rather than at just any random value.

This program does the job, but using WHILE TRUE means that it can never end; when the music centre
is switched off the program will just "die" wherever it happens to be at the time. Good programmers don't
like that sort of messy ending so let's add another channel which reads the OFF button (call it off), and a
variable called active, which is TRUE so long as the music centre is switched on :-

BOOL active:
INT v01ume, any :
SEQ

active:= TRUE
vo1ume := 0
amp1ifier ! v01ume
WHILE active

ALT
10uder ? any

SEQ
v01ume := vo1ume + 1
amp1ifier ! v01ume

softer ? any
SEQ

v01ume := v01ume - 1
amp1ifier ! v01ume

off ? any
active := FALSE

This now terminates tidily when the OFF button is pressed.

Aside: For convenience and simplicity in this tutorial we will continue to use WHILE TRUE from time to time.
In real programs you should avoid doing so, taking good care to ensure correct termination.

As a further refinement we can add tests to the volume increase and decrease processes to limit the values
to the range which the control chip can accept (let's say the range is from 0 to 100 units).

We could merely add the tests vo1ume < 100 and v01ume > O. As a matter of good programming
style though it would be better to define the limits as named constants at the beginning of the program; if
the values ever have to be changed (say a new control chip is introduced) then you will only have to change
them in one place rather than searching the whole program to find out everywhere they have been used.

The final program looks like this :-

25 Occam Tutorial

4 Fundamentals of occam programming

VAL maximum IS 100
VAL minimum IS 0 :
BOOL active
INT volume, any :
SEQ

active := TRUE
volume := minimum
amplifier ! volume
WHILE active

ALT
(volume < maximum) , louder ? any

SEQ
volume := volume + 1
amplifier ! volume

(volume > minimum) , softer ? any
SEQ

volume := volume - 1
amplifier ! volume

off ? any
active := FALSE

The use of named constants can also make a program more readable than if it were strewn with unexplained
numbers.

Two points arise from this program :-

1) Notice that we have not declared the channels louder, softer, off and amplifier. That's because
they connect to the hardware rather than to other occam processes; ultimately they represent physical bits
of wire connected to a button. Later on we'll see how to connect channels to hardware in occam.

2) In a real control program there might be many other things for the program to do besides reading the
volume buttons, for example auto-search for selected tunes on a tape. Processes to do these tasks could
be combined with the above program using a PAR in place of the main SEQ so they all proceed at the same
time.

Arithmetic in occam

So far we have not discussed what arithmetic operations are available in occam, though we have taken for
granted that it has addition, subtraction and multiplication.

The basic arithmetic operations are these :-

x + y add y to x
x y subtract y from x
x * y multiply x by y
x / y quotient when x is divided by y
x REM y remainder when x is divided by y

These operations can be performed on numbers of type INT or REAL. (see the Formal Definition for precise
details of how remainders, overflow and other such matters are treated).

All operators have the same priority in occam so parentheses must be used in complex expressions to enclose
component operations and allow them to be treated as single operands. This also establishes the order of
evaluation. For example :-

(2+3) * (4+5)
2+(3*(4+5»

(2+ (3*4)) +5
2+3*4+5

answer 45
answer 29
answer 19
illegal

26 Occam Tutorial

fred = (2+jim)
(fred+jane) > jim
fred+jane > jim
fred+(jane > jim)

4 Fundamentals of occam programming

The tests are also operators in this sense and so parentheses will be needed to avoid incorrect interpretation.
For example :-

1ega1 expression
1ega1 expression
i11ega1 expression
i11ega1 expression
(mixed types)

For integers only there is a further set of modulo arithmetic operators. Modulo arithmetic, for those who have
not encountered it before, deals with number systems where there is a limited range of numbers. Ordinarily
we prefer to think of numbers as going on forever, so that there is always one bigger than any number you
can think of.

As an example, (unsigned) arithmetic modulo 8 only allows the numbers 0 to 7 to be used - the result of
adding 1 to 7 is zero again. So (5 + 7) modulo 8 is 4. An everyday example of modulo arithmetic is the
arithmetic of clock times (modulo 12 or 24 with no zero); adding 3 hours to 11 o'clock gives 2 o'clock, not 14
o'clock.

Modulo arithmetic is important in computers because they always work with numbers that are limited by the
size of memory used to store them. For example the largest signed number that can be represented by a
16-bit INT is 32,767.

Occam has the operators PLUS, MINUS and TIMES for addition, subtraction and multiplication modulo
2**(number of bits in an INT).

For boolean truth values, occam has the operators AND, OR and NOT which are defined by :-

NOT FALSE = TRUE
FALSE AND x = FALSE
FALSE OR x = x

NOT TRUE = FALSE
TRUE AND x = x
TRUE OR x = TRUE

where x is any boolean value ie. either TRUE or FALSE.

Type Conversions

Sometimes it's convenient to convert one type to another in a program; it may for instance save having
to declare several extra variables for a value that is only required once. Type conversion should be used
sparingly as the whole point of types is to prevent values being used in inappropriate situations.

If number has been declared as INT and digit as BYTE, we could still add them together like this :-

number := (number * 10) + (INT digit)

The reverse conversion, of INT to BYTE is only legal if the value is within the BYTE range of 0 to 255. For
example, to output a number between 0 and 9 as a character we could write :-

output! BYTE (number + (INT '0'))

Values of type BOOL can be converted to type INT or BYTE and vice versa, using the following definitions :-

INT TRUE or BYTE TRUE
INT FALSE or BYTE FALSE
BOOL 1
BOOL 0

is 1
is 0
is TRUE
is FALSE

so if the value of active is FALSE, INT active is O.

27 Occam Tutorial

4 Fundamentals of occam programming

Bit Operators

To allow low level operations on the individual bits in a value, occam provides bitwise operators - (bitwise
not), /\ (bitwise and), \/ (bitwise or) and >< (bitwise exclusive-or) plus the left and right shift operators «
and ». These operators work only on integer values.

Aside: There isn't space here to explain the effect of these operators, which requires knowledge of binary
arithmetic. If you are not already familiar with binary arithmetic, any good introductory computing book (eg.
A. Osborne's "An Introduction to Microcomputers - Vol Oil) will explain it. But if you don't understand them
already, you probably don't need them.

Numeric constants can be entered in hexadecimal notation by preceding them with the # sign :

#FE (equivalent to 254 decimal)

This covers occam arithmetic in more than enough depth to follow all the examples in this tutorial. Readers
who are greatly concerned with numerical calculations should study the full details presented in the Formal
Definition.

Abbreviations

The notation we saw earlier for naming constants (eg. VAL maximum IS 1000) is nothing but a particular
form of a more powerful and general device called an abbreviation.

Abbreviations can be used to give a name to any expression in occam, providing a form of universal shorthand.
For example :-

VAL exp IS «x + y) / (fred * 128» :

defines exp to be an abbreviation for the value of the complex expression on the right. The fact that this
specification ends with a colon tells us that abbreviations are local, like other occam objects, and their scope
is the following process.

An expression abbreviation may, as above, contain variables on its right-hand side, but these variables must
remain constant throughout the scope of the abbreviation, and the compiler will report an error if any of
the variables are changed (by assignment or input). As a result, an expression abbreviation behaves like a
constant throughout its scope.

The full form of an expression abbreviation includes a type before the name :-

VAL INT exp IS «x + y) / (fred * 128» :

but this can always be omitted as occam can deduce the type from the types of the values on the right hand
side. Programmers may nevertheless wish to sometimes include a type specifier as a reminder of the type
of a complicated expression.

Occam assumes that numbers below 256 are INTs unless told otherwise, which can be done :-

VAL Esc IS 27 (BYTE) :

We shall see later on in Chapter 5 that abbreviations can also be used to name arrays and parts of arrays.

Procedures

A procedure is a process with a name, and this name can be used to represent the procedure in other
processes. To define a procedure, the keyword PROC and a name is followed by a process which is called
the procedure body.

The body of a procedure is executed whenever its name is found in a program; such an occurence of the
name is called an instance of the procedure.

28 Occam Tutorial

4 Fundamentals of occam programming

A procedure definition looks like this :-

PROC delay 0
VAL interval IS 1000
INT n :
SEQ

n := interval
WHILE n > 0

n .- n - 1

INT y:
SEQ

input1 ? y
delay ()
output1 ! y
delay ()
input2 ? y
delay ()
output2 ! y

procedure heading

procedure body

main process
starts here

instance

instance

instance

All this procedure does is to count downwards from 1000 to 0, so it could be used as a crude way of introducing
a time delay into a program (the proper way to introduce a delay in occam, using timers, will be introduced
later in Chapter 9). The empty parentheses after delay 0 show that this procedure takes no parameters;
we'll discuss parameters a little further on.

Note that like all specifications this is attached by a colon to the following process. This tells us that the
procedure name obeys the same scope rules as variable and other names - the procedure is only known
throughout the process which immediately follows, to which it is linked by the colon. Occam puts the colon
which ends a procedure definition on a new line, as above, to mark clearly the end of the body. The colon
must appear directly below the "P" in PROC.

Execution of this program begins at the main process; it reads values from two input channels (assumed to
be declared elsewhere), and is delayed for a while before sending them to the output channels. Whenever an
instance of delay is encountered, it is executed exactly as if the body of the procedure had been substituted
for the name, like this :-

INT y :
SEQ

input1 ? y
VAL interval IS 1000
INT n :
SEQ

n := interval
WHILE n > 0

n := n - 1
output1 ! Y
VAL interval IS 1000
INT n :
SEQ

n := interval
WHILE n > 0

n := n - 1
input2 ? y
VAL interval IS 1000
INT n:
SEQ

n .- interval
WHILE n > 0

n := n - 1
output2 ! Y

29 Occam Tutorial

4 Fundamentals of occam programming

PROC thus provides us with a shorthand; the name delay is not only much shorter than the code it replaces,
but here it replaces this code three times over. So the main process becomes much more compact, and
more readable too since the name delay gives us an idea of what it does.

Technical Note: A procedure can always be compiled either by substituting its body as above, or as a closed
subroutine.

This is by no means the only benefit bestowed by procedures though. They provide a way of designing better
structured programs. By breaking down a program design into the smallest parts which still make sense
(called "factorising" the problem), and then writing these parts as procedures, the logic of the whole program
is made clearer and easier to follow.

Often such procedures will be used more than once, hence reducing the size of the program, and some may
be sufficiently general-purpose to be used again in other programs.

Sensibly factorised programs are easier to modify, debug and maintain because by modifying a single pro
cedure declaration, the changes are automatically effected everywhere in the program that procedure is
used.

Hint: There isn't space in this tutorial to cover the subject of structured programming and "top-down" design
techniques in proper detail. Readers who are not familiar with these techniques are referred to the numerous
books on the subject, of which a recommended example is "Structured Programming" by Dahl, Dijkstra and
Hoare.

Parameters

Procedures can be made more useful still by introducing parameters, which allow different values to be
passed to different instances of a procedure.

In the delay example above, the length of delay is fixed as 1000 in the text of its definition (by the abbreviation
VAL interval IS 1000) and it can only be changed by editing the program. A more flexible way would
be to pass the delay length as a parameter ;-

PROC delay (VAL INT interval)
INT n :
SEQ

n := interval
WHILE n > 0

n .- n - 1

INT Y main process
SEQ starts here

inputl ? y
delay (1000)
outputl ! y
delay (2000)
input2 ? y
delay (500)
output2 ! y

The name interval in the definition of delay is called a formal parameter. Formal parameters may be of
any type, including CHAN, and a type specification is compulsory in the procedure heading. Occam cannot
read your mind, so it cannot work out what type a formal parameter is meant to be if you don't tell it. (In an
abbreviation specification on the other hand, occam has an example value to look at, and so will always be
able to deduce its type).

A formal parameter behaves like an abbreviation attached to the procedure body (in fact here it has replaced
the abbreviation VAL interval IS 1000).

30 Occam Tutorial

4 Fundamentals of occam programming

When the procedure body is substituted for an instance of the procedure name in a process, this formal
parameter name becomes an abbreviation for a value called the actual parameter. In the above example,
the actual parameters are 1000, 2000 and 500. In the first case interval. becomes an abbreviation
for 1000 throughout the procedure body so del.ay (1000) has exactly the same effect as our original
non-parameterised procedure.

A procedure can have any number of formal parameters, which must be separated by commas in the definition
heading. The actual parameters of an instance are similarly separated by commas. One actual parameter
must be supplied for each formal parameter, and they correspond by position (the first actual parameter
matches the first formal etc.) :-

PROC box.vol.ume (VAL INT l.ength, breadth, depth)
• •. body definition

box.vol.ume (24, 16, 20) -- instance

Procedures with parameters provide a still more powerful shorthand, for now we can use the same procedure
in different places with different internal values. In the above program for instance, the second delay will last
twice as long as the first and the third will last half as long.

We are not limited to calling del.ay with constants like 1000 as the actual parameter. Any variable of type
INT could be used as an actual parameter ego del.ay (x).

Occam Parameter Passing Convention

In occam, when a variable is passed as an actual parameter to a procedure, it is as if the vai,able replaces
the formal parameter throughout the procedure. Anything that is done to the formal parameter, is done to the
variable, which may therefore have its value changed.

Take this example :-

PROC decrement (INT number)
number := number - 1

If we l;Jse decrement (x) as an instance of the procedure, the value of x will be reduced by one when
decrement (x) terminates.

Take care: This behaviour differs from that found in certain other widely used languages. The commonly
used call-by-value convention (available in C and Pascal) has the effect of evaluating the variable (actual)
parameter, and using the result as the initial value of the formal parameter, which behaves as a local variable
of the procedure body. Consequently, an assignment to the formal parameter has no effect on the actual pa
rameter. The occam convention is more nearly equivalent to Pascal's call-by-reference (or VAR) parameters.
This point is emphasised because it may trip up programmers who are experienced in these other languages.

Sometimes it is preferable that a procedure should not alter the value of a variable passed to it as a parameter.
We have already seen how to achieve this in our delay example; decant the value of the parameter into a
local variable (n in the example) and do any manipulations on this local value. Use this method if you need
to translate Pascal procedures or similar with value parameters, into occam.

If only the original value of a variable is needed in a procedure, ie. if the formal parameter is never altered
by assignment or input, then a more efficient program may result if we explicitly say that only the value is to
be passed, using VAL :-

PROC del.ay (VAL INT l.imit)
INT n :
SEQ

n := 0
WHILE n < l.imit

n := n + 1

31 Occam Tutorial

4 Fundamentals of occam programming

When VAL is used like this, the formal parameter can be thought of as representing a constant throughout the
procedure body, and the compiler (after checking that it's true) may exploit the fact to produce more efficient
code.

The volume controller program we developed in the last section could be rewritten using a procedure :

VAL step.up IS 1 :
VAL step. down IS -1 :
BOOL active :
INT vo1ume, any :
PROC change.vo1ume (VAL INT step)

SEQ
vo1ume := vo1ume + step
amp1ifier ! vo1ume

SEQ
vo1ume .- 0
amp1ifier ! vo1ume
active := TRUE
WHILE active

ALT
10uder ? any

change.vo1ume (step.up)
softer ? any

c~ange.v01ume (step. down)
off ? any

active := FALSE

Notice that a single procedure now serves both to increase and decrease the volume.

Another point to note is that this PROC body uses the variable vo1ume even though that variable is not
declared in the PROC, either as a local variable or a formal parameter. This is quite acceptable to occam;
vo1ume is called a free variable with respect to PROC change. vo1ume and has the useful property of
being able to retain its value from one call of the procedure to the next, which is precisely why it is used here.
Note that vo1ume must be declared somewhere before the PROC definition, otherwise occam would reject
it as an undeclared name.

A variable is free with respect to a procedure when the procedure is defined inside the scope of the variable.

Functions

A function gives a name to a special kind of process which returns a result, called a value process. Occam
functions have the advantage of being side effect free. Practically, this means that occam is very strict about
how you construct functions. The great advantage of this however. is that when you use a function you can
guarantee it will have no effect upon any other part of your program. Many of the bugs which mysteriously
appear in programs written in other languages are due to the fact that you cannot make the same guarantees.

Function definitions take the general form :-

type FUNCTION name ((, formal parameter})
specification :
VALOF

Process
RESULT expression

And, for example, a function which returns the value of the largest of two integers would look like this :-

32 Occam Tutorial

4 Fundamentals of occam programming

INT FUNCTION max (VAL INT aT b)
INT answer:
VALOF

SEQ
IF

a > b
answer := a

b > a
answer .- b

a = b
answer := a -- cou1d in fact be either va1ue

RESULT answer

Notice that a type specifier precedes the keyword FUNCTION.. This is important as it specifies the type of
the value returned by the function.

The rules for constructing functions and value processes are very strict. The formal parameters of a function
can only be VAL parameters. PARallel and ALTernation constructs cannot be used within the function. Also
input and output must not be used within the function. You can only assign to variables declared within the
scope of the function; "free variables" can be read but not assigned to. Only procedures defined within the
scope of the function and adhering to the above rules may be used.

A function returns a value and is defined as an operand, so functions can appear where-ever an expression
would appear. Using ,our function to return the maximum of two values in an assignment for example :-

x := max (aT b)

Or in an expression to gain twice the maximum value :-

x := max (aT b) * 2

Functions share many of the advantages of procedures and extend the facility to factorise programs written
in occam.

Hint: There isn't space in this tutorial to go into functions in any great depth or to cover the many issues
involved. A full description of functions in occam can be found in the Occam 2 Reference manual published
by INMOS.

33 Occam Tutorial

34 Occam Tutorial

5 Arrays in occam

Arrays in occam
An array is a group of objects of the same type, joined into a single object with a name. Each object in an
array can be individually referred to by stating the number of its position in the array - such a number is called
an array subscript, and the individual object it refers to is called a component of the array.

In occam array variables are declared in the same way as single variables of any type, but with the number
of components in brackets prefixed to the type specifier :-

[20] INT fred:
[100]CHAN OF INT

[12]BOOL jury:

-- an array of twenty integers called fred
switchboard: -- an array of 100 channels

called switchboard
-- an array of 12 truth values called jury

Technical Note: In occam the size of an array must be fixed when the program is compiled; it cannot be
decided or changed while the program is running.

A component of such an array variable is selected by stating the array name suffixed with the subscript
number in brackets. SUbscripts start at zero, so the first component in an array is component O. Here are
some sample array components :-

fred[O] the first integer in fred
switchboard [20] -- the 21st channel in switchboard
jury[ll] -- the last component of jury

Take care: Attempting to use a subscript which is larger than the size of an array (eg. fred [200]) will
cause an error, but exactly how and when this error is reported may vary between different implementations
of occam.

Components of array variables behave just like ordinary variables of the same type and can be used anywhere
a variable could be used. They can be assigned or input to, and output to a channel :-

chan1 ? fred[15]
jury [4] := TRUE
switchboard[99] !

-- input from chan1 to the 16th component of fred
-- assign TRUE to the 5th component of jury

fred[l] -- output the 2nd component of fred
on the last switchboard channel

By way of example, here is a process to read values from a channel (declared in another process) into the
successive components of an array ;-

INT index :
[100]INT array:
SEQ

index := 0
WHILE index < 100

SEQ
chan1 ? array[index]
index := index + 1

Whole array variables may also be input, output or assigned to in occam, with the proviso that for input and
assignment, the receiving variable must be an array of the same type, and the protocol of the channel used
must be compatible with the type of the array.

Array Types

The type of an array reflects both its size and the type of its components, so the type of fred is [20] INT.

The whole array fred could be sent to another process like this :-

35 Occam Tutorial

5 Arrays in occam

PAR
comm ! fred
•.•more processes
comm ? jane

if jane is an array of type [20] INT. The channel comm would need to be declared as :-

CHAR OF [20]INT comm :

that is, the type of data values passed on the channel must be type [20] INT.

Arrays may be used as parameters to procedures. Occam, in contrast to many languages, does not require
the size of an array parameter to be specified when the procedure is declared, which means that an array of
any size, but of the correct data type, may be passed as an actual parameter.

This is an extremely powerful property, which allows the same procedure to manipulate arrays of any size.
The type specifier for an array formal parameter looks like an array type with the size omitted (eg. [] INT,
which means an array of INTs of any size).

Since a procedure needs to know how big an array it has been given, occam provides the operator SIZE,
which measures the size of an array:-

PROC read.in (CHAR OF INT input, []INT array)
INT index :
SEQ

index := 0
WHILE index < (SIZE array)

SEQ
input? array[index]
index := index + 1

This procedure. which reads in single values from a channel to an array, can be legally called with an integer
array of any size, say read. in (switchboard [12] , fred). SIZE always produces a value of type
INT.

Array Segments

A segment of an array is expressed using the form :

[array FROM subscript FOR count]

Both subscript and count may be variables.

A segment of an array consists of several consecutively numbered components of the array. As a result,
the segment can itself be treated as an array. As an example [fred FROM 10 FOR 5] would be an array
composed of the five components fred[10] to fred[14]. [fred FROM 0 FOR 20] would select the
whole array and is the same as writing fred.

Array segments may be input, output or assigned to, but as with whole arrays, only if the expression which
is assigned is an array of the same type as the segment. This is legal :-

[fred FROM 10 FOR 5] := [fred FROM 1 FOR 5]

and so would be :-

[fred FROM 10 FOR 5] := jane

if jane had been declared as [5] INT.

36 Occam Tutorial

or subscripted directly :-

5 Arrays in occam

Tables

Occam provides a powerful means of generating an array value, called a table. If x is a variable of type INT,
and its current value is 10, the table :-

[x, x+l, x+2, x+3]

generates an array of type [4] INT and value [10, 11, 12, 13].

This array can be assigned to a variable :-

INT x :
[4]INT xarray :
SEQ

xarray .- [x, x+l, x+2, x+3]

j
chan3 ! [x, x+l, x+2, x+3] [2]

or abbreviated to a name for later use :

INT x :

VAL xarray IS [x, x+l, x+2, x+3]
SEQ

chan3 ! xarray[2]

More on Abbreviations

Since the description of an array segment or table becomes rather cumbersome if it has to be referred to
often in a program, the use of abbreviations is to be encouraged.

The declaration :-

f IS [fred FROM 10 FOR 5] :

allows f to be treated as an array of size 5 with subscripts running from 0 to 4. So f [2] refers to the same
component as fred [12] .

Notice that VAL is not used, as it is when abbreviating a constant or expression; we are not merely naming
a value here. An abbreviation for an array, array component, array segment or simple variable behaves just
like the object itself. In other words it is permissible to change the value of the object referred to by the
abbreviation name, either by assignment or input.

The array assignment example above could thus be written more succinctly as :

f := jane

What is not permissible, in the case of an abbreviation for an array component or array segment, is to alter
which component or components are referred to. So if we declare an abbreviation like :-

1ine IS switchboard[i] :

then it is illegal to change the value of the subscript i within the scope of 1ine. 1ine must always refer
to the same component of switchboard, defined by the value of i at the time it was specified. Si~ilar
considerations would apply if 1ines were a segment of switchboard defined by two variable subSCripts.

In short, an abbreviation for a component of a subscripted array behaves like the component itself, with a
constant SUbscript, throughout the scope of the abbreviation.

37 Occam Tutorial

5 Arrays in occam

Technical Note: Such use of abbreviations can often bring performance benefits as well as conciseness.
Using an abbreviation for an array component inside an inner loop, instead of subscripting the array, has two
beneficial consequences.

1) The compiler recognises that the subscripts are constant and so does not compile runtime range checks.

2) The address of the array component becomes local to the loop process, rather than global, and occam
processes handle local data faster than global.

An abbreviation can also be used to set up an array constant such as :-

VAL powers2 IS [1,2,4,8,16,32,64,128] :

The 90mponents of powers2 can be accessed just as in any other array so powers2 [3] is 8.

VAL must be used when defining an array constant or table abbreviation, to indicate that only the values
of the components, rather than the components themselves are being referred to. The effect is that these
components become read-only; they may not have their values changed.

Multidimensional Arrays

Occam supports arrays with any number of dimensions and they are declared in a way consistent with what
we have seen so far. A two dimensional array resembles a table, in which any component can be referred
to by supplying two subscripts, to specify which row and column it occupies. If only one subscript is supplied
then a whole row is accessed at once ie. the value is a single dimensioned array.

For instance a chess board can be simulated by a two dimensional array of 8 rows by 8 columns ie. 64
components. It could be declared in occam as :-

[8] [8]BYTE chessboard:

If we create constants to represent the pieces :-

VAL empty,
VAL bl.ack. pawn
VAL bl.ack.knight
VAL bl.ack.rook

IS 0
IS 1
IS 2
IS 3

(BYTE)
(BYTE)
(BYTE)
(BYTE)

then a program could set up the board like this :-

chessboard[O] [2] .- white.bishop

and a move would look like :-

chessboard[3] [4] := chessboard[4] [5]
chessboard[4] [5] := empty

Tables can be used to generate multi-dimensional array values. For example, a two-dimensional array
constant could be given the name curve by this abbreviation :-

VAL curve IS [[0,0], [1,1], [2,4], [3,9], [4,16]]

The value of curve [2] is [2,4] and the value of curve [2] [1] is 4.

38 Occam Tutorial

6 Channel communication

Channel communication
Occam programming is mainly concerned with communication between processes, and channels are the
primary means by which this communication takes place. It is therefore important that channels should be
able to carry data of any type. We have seen in Chapter 2 that channels must be specified to be of a certain
type, just as variables are.

It is equally important however that channels should be able to carry data of mixed types when required;
otherwise we would find that we had to declare several channels of different types just to achieve a sin
gle communication, and large unwieldy programs would result. One solution would be to make channels
unchecked, but this would hinder the compiler in its efforts to create efficient and secure programs.

Occam instead provides a number of ways for grouping types together and creating a protocol for commu
nication. Such a protocol can be used to specify the sequence of types of object that may be sent down a
channel. In effect a protocol is a template which describes the format of messages composed of groups of
occam data types. The protocol for a channel is specified by type of channel declared :-

CHAN OF protocol name:

Every input and output on a channel must be compatible with the protocol of the channel, which means it
must match it in both the type and the number of objects. Incompatible inputs and outputs will be detected
by the compiler and signalled as errors.

Simple protocol

The simplest kind of protocol consists merely of a primitive type, such as we have been using so far. The
declaration :-

CHAN OF INT comm :

means that channel comm may only carry single values of integer type, while :-

CHAN OF [20]INT x :

permits x only to carry arrays of 20 integers.

Inputs and outputs from channels with simple protocols are only legal if the receiving or sending variable is
of the type specified by the protocol. The program fragment :-

[30]INT x :
CHAN OF [20]INT Y :
SEQ

y ? x

results in an error because x is not of the type specified by the protocol of y.

Naming protocols

Protocol requirements can become more complex, and require the communication of a sequence of simple
protocols. Such a sequential protocol is given a name in a protocol definition.

PROTOCOL Word IS INT
PROTOCOL Pair IS INT ; INT :

CHAN OF Word words:
CHAN OF Pair pairs:

39 Occam Tutorial

6 Channel communication

Sequential protocol

A sequential protocol specifies that a certain sequence of values, possibly of mixed types, may be sent over
a channel.

For example, the protocol definition and declaration :

PROTOCOL Message IS BYTE; INT; INT:

CHAN OF Message comm :

says that comm may on Iy carry messages consisting of a byte value followed by two integers. So 40 (BYTE) ; 999
could legally be output on comm but 999; 505; 40 (BYTE» could not (starts with an INT) and neither
could 40 (BYTE); 999; 505; 234) (too many values).

In general, a sequential protocol is just a list of any number of types, all separated by semicolons.

A value to be output on channels with a specified sequential protocol, can be 90nstructed by listing the
component values separated by semicolons :-

comm ! 40(BYTE); 999; 505

In a similar way a sequential protocol can be input as :-

comm ? x; y; z

A program which sends records of numbers over a channel might look like :

PROTOCOL Message IS BYTE; INT; INT:
CHAN OF Message comm :
PAR

SEQ
processes

comm ! 40(BYTE); 999; 505
BYTE x
INT y, z
SEQ

comm ? x; y; z
... more processes

Variable length array protocol

One particular kind of protocol is so commonly used that a special type has been provided for it. In the above
section on Primitive types it was stressed that arrays may only be sent over a channel with a protocol of the
same type. This is a very restrictive requirement, especially as we have seen that occam permits arrays of
arbitrary size to be passed as parameters to procedures.

Accordingly a special kind of simple protocol is provided, which concisely permits the size of an array to be
sent before the array itself. Such a protocol is defined as :-

type 1 :: type2

which says that the channel can carry pairs of values consisting of a size value of type1 followed by that
number of components, corresponding to the first components in the specified array type. A channel capable
of carrying integer arrays of any size could be declared as :-

CHAN OF INT::[]INT comm :

or, if only arrays of up to 255 elements are anticipated, as :-

40 Occam Tutorial

6 Channel communication

CHAN OF BYTE:: []INT comm :

The following process outputs two integer arrays of differing sizes on the same channel :

CHAN OF INT::[]INT comm :
[20]INT fred :
[35]INT jane :
SEQ

comm ! 20:: fred
comm ! 35:: jane

A corresponding input process is as follows :-

INT size
[256]INT array:
SEQ

comm? size::array

comm ? size: : array

The above process is invalid if an attempt is made to input an array larger than the size of array.

Occam treats variable length array protocols just like other simple protocols. They may therefore be used as
components in sequential protocols. For example the protocol in this declaration :-

PROTOCOL Doubles IS BYTE:: []BYTE; BYTE:: []BYTE :

allows a channel to carry pairs of arrays of bytes. Such arrays, as we shall see in the next chapter, can be
used to represent text strings so this channel could carry pairs of English words.

Variant protocol

Sequential protocols permit us to specify the format of the messages which can be sent between two occam
processes over a channel. Often however it will be convenient for a single channel to be able to carry
messages of several different formats. This is possible if we use a variant protocol.

A variant protocol is, in effect, a set of different protocols, anyone of which may be used when communicating
on the channel. Each of these protocols must be identified in some way, and this is done by giving them tags.
A tagged protocol is simply a protocol whose first component is a unique name which identifies the protocol.
The set of tagged protocols is grouped together in a CASE construct. Variant protocols are always given a
name by a protocol definition. The following definition defines a variant protocol with the name Messages :-

PROTOCOL Messages
CASE

a; INT
b; BYTE; INT
c; BYTE; BYTE

where a, band c are the respective tags. A declaration of a channel with this variant protocol set looks like
this :-

CHAN OF Messages comm :

The meaning is quite straightforward; comm may carry messages of variant a, or of variant b, or of variant c.

When inputting from a channel which has a variant type, it is necessary to know which of the possible kinds
of message has actually been sent. The purpose of the tag is to enable us to perform this identification.

It is not possible to simply perform an input from the channel because we cannot decide what type (or number)
of receiving variables to use. For instance :-

41 Dccam Tutorial

6 Channel communication

INT x :
SEQ

comm ? x

would be compatible with a message of variant a above, but not with a message of variant b or c.

Case Input

To perform such an input, occam provides a case input. Take for example :

PROTOCOL Message
CASE

a; INT; INT
b; BYTE:: [] BYTE

CHAN OF Message comm
PAR

INT x, y :
BYTE size :
[256]BYTE v
comm ? CASE

a; x; y
... process

b; size::v
... process

input to variant a

input to variant b

The other processes in the PAR may now send messages such as :-

comm ! a; 100; 250

or :-

comm ! b; 5:: "hello"

and the above input selection will correctly receive either kind of message, by first inspecting its tag and then
performing the appropriate input process with receiving variables of the correct type.

A case input can be used as a guard process in an ALT construction.

INT x, y :
BYTE size
[256]BYTE v

ALT
comm ? CASE

a; x; y input to variant a
... process

b; size::v input to variant b
... process
more alternatives

Known Input

In processes where the input is a single known component of a variant protocol the following kind of fixed
input may be used

comm ? CASE a; x; y
I

This will cause an error if an input of any structure other than that defihed by the tag a is attempted.

42 Occam Tutorial

6 Channel communication

Tag-Only types

It is sometimes useful to declare channels which accept nothing but tags. For instance the channel :

PROTOCOL Tags
CASE

one
two
three

CHAN OF Tags signa1 :

can only carry one of the three tags one, two or three.

signa1 ? CASE
one

action 1
two

action 2
three

action 3

In the chapter on ALT we saw the use of a variable called any to receive and dispose of an arbitrary input
value from a channel which functioned purely as a signal. A more concise and rigorous way of creating such
a signal channel is to limit its protocol, and hence the traffic it can carry, to a single signal value :-

PROTOCOL Command
CASE .

p1ay
dance
quit

CHAN OF Command signa1
BOOL going

SEQ
going := TRUE
WHILE going

signa1 ? CASE
p1ay

ham1et
dance

tango
quit

going := FALSE

The quit signal would be issued by another process using the output :-

signal ! quit

This is inherently more secure than the any method. The compiler can detect any erroneous attempt to send
a value other than p1ay, dance or quit down the signa1 channel because it would violate the channel's
protocol.

43 Occam Tutorial

44 Occam Tutorial

7 Characters and Strings

Characters and Strings
Character strings are used in computer languages to represent text data such as words and sentences.
"The cat sat on the mat" is a single string of 22 characters to most computer languages, the spaces being
characters just as the letters are.

Aside: Characters are represented in a computer as numbers, using a coding system which allocates a
unique number to each letter of the alphabet (both upper and lower case), the numerals, the punctuation
marks (including space) and various special characters like $, % and @. The most common coding for small
computers is ASCII (American Standard Code for Information Interchange). Occam uses the ASCII standard
code with a guaranteed subset.

It would be tedious in the extreme if text could only be handled by translating each letter into a number, so
occam allows two notations for describing text data.

Single characters may be written as the character contained in single quotes ego ' a'. Such a constant is
translated into a one byte number by occam.

A text string may be written in double quotes ego "antidisestab1ishmentarianism". Occam trans
lates such a string constant into an array of type [n] BYTE where n is the length of the string. The value of
the string "he11o" is equivalent to the value of the table [' h' , , e' , , 1', , l' , , 0'] .

When text is output on a printer or VDU screen certain codes like carriage return, newline and tab don't
produce a printed symbol but instead affect the way the following text is printed. For example the newline
character causes sUbsequent output to continue on the line below the current position.

Because these codes don't have a printing symbol, occam gives them a special representation so that you
can include them in strings. For instance newline is represented as *n and tab is *t. More generally any
character can be represented by an asterisk followed by its code in hexadecimal notation. For more details
see the Formal Definition at the rear of this book.

I

String constants can be assigned to arrays, and manipulated in a variety of ways. Single characters can
be selected from them by ordinary subscripting, or whole parts of the string may be selected as an array
segment.

As an illustration, here is a function which returns a pointer to the first occurence of a given character found
in a string :-

INT FUNCTION find. char (VAL BYTE char,
VAL []BYTE string)

INT index
VALOF

SEQ
index := 0
WHILE (index < (SIZE string» AND

(char <> string[index])
index := index + 1

RESULT index

An occurence of our function in the assignment :-

c := find.char ('a' , "dinga1ing")

causes c to become 4, which is the subscript of the letter a in the string "dinga1ing". Note that if the
charact,er is not found the function returns a value equal to the length of the string. A more elegant way to
express this function is given later in the chapter on replicators.

45 Occam Tutorial

7 Characters and Strings

String Output

Since strings are merely arrays, they can be sent over channels in one chunk, provided that the variable used
for input is an array of the right length and the channel has a suitable protocol.

If we declare an array string to be large enough to hold any string we need to send, then it can be
"tailored" to individual strings by sending the size first :-

PROTOCOL
CHAN OF
PAR

SEQ

String IS BYTE: : []BYTE
String comm :

VAL message IS "England expects" :
comm ! BYTE(SIZE message): :message

[80]BYTE string :
BYTE size :
SEQ

comm? size::string

Note that here we have chosen to restrict the count to byte size (hence the type conversion BYTE (SIZE
message») and only strings of 255 or less characters can be sent.

Strings can also be output a character at a time, by using a subscript in a loop :

PROC output.string (CHAN OF BYTE out, []BYTE message)
INT i :
SEQ

i := 0
WHILE i < (SIZE message)

SEQ
out! message[i]
i := i + 1

Though this appears to be less efficient than the previous block output method, it has the advantage that the
characters of the string become individually available, and so could be processed in some way. A variation
of this procedure could, for example, convert the string to upper-case before output.

Lower-case ASCII characters have codes which are larger by 32 than the upper-case character code (eg.
, a' is ASCII code 97, while' A' is 65). Expressed in binary, this means that the sixth bit is 1 in the lower
case version, but is 0 in the upper-case. To make any character upper-case (leaving it unchanged if already
upper) therefore we need to /\ (bitwise and) it with binary 11011111, ie. hexadecimal DF, to set this .bit to
o :.-

PROC output.ucstring (CHAN OF BYTE out, []BYTE message)
INT i :
SEQ

i := 0
WHILE i < (SIZE message)

SEQ
out! message[i] /\ #DF
i := i + 1

In both of these latter two procedures we are outputting the string as a stream of BYTEs (so any actual channel
parameter must be of type CHAN OF BYTE) and no size information is sent. This raises the question of
how any receiving process would know that the stream had ended. If it tried to keep inputting characters
once the WHILE in the output procedure had terminated, deadlock would result.

46 Occam Tutorial

7 Characters and Strings

One solution is to send the the size of the string as the first item, as in previous examples. Another would
be to send a special "end-of-stream" character after the WHILE finishes. For example :-

PROC input. string (CHAN OF BYTE in, []BYTE message)
INT i :
SEQ

i := 0
WHILE message[i] <> end.of.file.char

SEQ
in ? message[i]
i := i + 1

Our output routine would need to complete its output with a suitable, "end of file character".

out! end.of.file.char

47 Occam Tutorial

48 Occam Tutorial

6 Replicators

Replicators
One of the most powerful features of occam is that it allows the construction of arrays of processes in addition
to data and channel arrays.

A novel device called the replicator is used together with one of the occam constructs SEQ, PAR, ALT and
IF to create an array of similar processes of the corresponding kind. Individual processes in a replicated
construct can be referred to using the replicator index, in just the same way that components of an array are
selected using a subscript. The general form of a replicator is :-

REP index = base FOR count
process

where REP is one of SEQ, PAR, ALT or IF.

Take care: If the count in a replicator is zero, the process behaves like a single construct with no components
le. SEQ and PAR will act like SKIP (do nothing) but IF and ALT act like STOP (stop the process).

Replicated SEQ

Lets start with the most straightforward replicated construct, the replicated SEQ. If input is specified as a
channel then :-

INT x:
SEQ i = 0 FOR 5

input ? x

says "create five replicas of the input process and execute them in sequence". The effect is as if we had
written :-

INT x:
SEQ

input ? x
input ? x
input ? x
input ? x
input ? x

which in its turn is as if we had specified a loop with five iterations :

INT x, i:
SEQ

i := 0
WHILE i < 5

SEQ
input ? x
i := i + 1

In other words, a replicated SEQ is equivalent to a counted loop. Using a replicated SEQ is more concise
than using WHILE because there's no need to specify and increment an index variable and test its value
each time round.

The replicator index variable, which can be given any name, increases by one from the base value for count
times, and can be used to reference a particular pass through the loop. Note that the index does not need
to be separately specified, and is always of type INT. An array of any size could be filled with input values
like this :-

SEQ i = 0 FOR SIZE big.array
input? big.array[i]

which has the same effect as :-

49 Occam Tutorial

SEQ
input? big. array [0]
input? big.array[l]

input? big.array[(SIZE big.array) - 1]

Occam allows either or both base and count values in a replicated SEQ to be variables rather than constants.

Take care: It is forbidden to input or assiQjn to the replicator index. There is no way to cause partial
execution of a replicated SEQ (or any other replicated construct); remember that they are not loops but arrays
of processes which only terminate when all their processes have terminated.

Replicated PAR

A replicated PAR builds an array of structurally similar parallel processes. Any process can be referred to by
means of the replicator index.

The replicated PAR is of paramount importance in occam proQjramminQj. Used in conjunction with an array
of channels, it permits economical and eleQjant expression of some of the stock data structures used by
proQjrammers, such as buffers and queues, but furthermore it allows the exploitation of multiple concurrent
processors usinQj pipelininQj and other techniques.

Technical Note: Current implementations of occam do not allow the count in a replicated PAR to be a
variable value. This is in order that the compiler can know all the resources needed by a process at compile
time.

As an example let's look first at a simple queue. A queue is precisely what you would expect from the
everyday meaninQj of the word, a structure throuQjh which a number of values pass, with the first value to
arrive beinQj also the first value to leave :-

-> $
incoming
vaJ.ue

$$$$$$$$$$$$$$$$$$$$
queue of J.ength 20

-> $
outgoing
vaJ.ue

Queues are used extensively in proQjramminQj, often as buffers for processes which consume data more
slowly than they are beinQj supplied. In order that no data should be lost, they are buffered or queued to wait
their turn. Such buffers are often called FIFa buffers, short for First 1nl First Out.

A typical application would be in a computer terminal's keyboard. Some proQjrams may accept characters
slower than a fast typist can enter them. If a queue is used to accept the characters, then users can type as
fast as they wish, the queue QjrowinQj as they type ahead of the proQjram.

In occam a queue can be simulated by an array of parallel processes passinQj data from one to the other like
a bucket chain :-

[,21]CHAN OF INT sJ.ot
PAR i = 0 FOR 20

WHILE TRUE
INT x :
SEQ

sJ.ot[i] ? x
sJ.ot[i+1] ! x

The replicated PAR sets up 20 parallel processes each of which continually transfers values between two
slots in the queue, which is represented by an array of 21 channels. The net effect is that each value has to
pass throuQjh the whole queue before leavinQj from sJ.ot [20] :-

50 Occam Tutorial

8 Replicators

slot[O] -> x ~> slot[l]
I I
+-- process 0 ---+

slot[19] -> x -> slot [20]
I I
+-- process 19 --+

As it stands this is not a complete program, because the first process in the queue needs somewhere to input
its values from, and the last process needs somewhere to output to. Otherwise each will be waiting, and the
whole queue will be deadlocked. We assume that the queue is part of a larger program which feeds data
into slot [0] and bleeds data from slot [20] , like this :-

PAR
... feed
... queue
.. .bleed

If the supply of data were temporarily interrupted, data already in the queue would continue to be passed
along, the earlier processes waiting automatically by the very nature of the occam input process.

When the supply starts again, the early processes can proceed, but later processes will now be waiting. Thus
it is possible for processes anywhere in the line to be waiting even as the flow of data goes on - only if the
queue is allowed to become empty or full will all the processes be waiting.

A type-ahead buffer program could look something like :

[41]CHAN OF INT typeahead.buff
PROC keyboard. input ()

WHILE TRUE
INT x :
SEQ

keyboard ? x
typeahead.buff [0] x

PROC queue ()
PAR i = 0 FOR 40

WHILE TRUE
INT x :
SEQ

typeahead.buff[i] ? x
typeahead.buff[i+l] ! x

PROC terminal. output ()
WHILE TRUE

INT x :
SEQ

typeahead.buff[40] ? x
terminal ! x

PAR main program
keyboard. input ()
queue ()
terminal. output ()

Here it's assumed that keyboard and terminal are channels which already exist in the system; we shall
see more on this topic in Chapter 9.

Hint: Please study these examples carefully, if necessary working through them with pencil and paper until
you thoroughly understand them. Replicated PAR exemplifies the occam approach to programming and its
difference from conventional languages.

51 Occam Tutorial

8 Replicators

Pipelined Processing

The pipeline goes a step beyond the simple queue; it more resembles a factory production line than a bucket
chain. Instead of merely passing data from one slot to another unchanged, a pipeline transforms the data it
passes.

Problems suitable for processing by a replicated PAR pipeline are those which can be broken down into a
number of simple identical steps. A pipeline then consists of this number of "processors" arranged in a linear
array, each capable of performing one step.

Raw data is fed into the pipeline, and a finished result is produced from the far end. In between, the
transformation is performed one step at a time on the passing data.

How is this better than a simple loop which performs the required number of steps? Because much of the
processing of successive steps can proceed at the same time. The individual steps are overlapped in time,
and new data can be fed into the pipeline as soon as the first step is complete rather than waiting until all
the steps have been completed.

The analogy with a car production line is instructive. At each workstation on such a line, some component
gets bolted onto a car (represented in the following diagram by the letters A .. E). When the line is running
properly there will be a car at each workstation in a different stage of construction :-

+---------+ +---------+ +----------+
I I --> lA I --> lAB I --> Cl •• Cl

+----------+ +----------+ +----------+
A A A

AAAAAA BBBBBB CCCCCC

+----------+ +---------+
.... --> IABCD I --> IABCDEI

+----------+ +----------+
A finished

EEEEEE car

The throughput of cars would obviously be much slower if only one car passed down the line at once, a new
one not being put on until the first was finished. But this is precisely what happens in a simple program loop.

The speed advantage produced by pipelining is due to this overlapping of processes. A single value takes
just as long to pass through the line as it would if processed by a simple loop. The saving of time is thus zero
for a single value, and only shows up when there is a stream of numbers to process; successive numbers
will be available at much shorter intervals from a pipeline. In diagrammatic form :-

1) pipeline

<one item>
<--------------->

<------------->
<---------------->

I ... tota1 time I

2) loop

<one item>
<---------------->

<--------------->
<--------------->

I .. · '" · · tota1 time I

Aside: The time savings can be dramatic; in principle the time to process n numbers using a pipeline can
be better than n times faster than a single processor, because by using smaller local memories, the memory
fetch time can be reduced (cf. the car workers have less far to fetch the components). But don't forget that

52 O'ccam Tutorial

8 Replicators

the maximum time saving is only obtained when each stage of the pipeline has its own processor. Simulated
pipelining on a single processor by time sharing achieves little, as the speed of each stage is reduced in
proportion; you can't have something for nothing. Pipelined processing is used in supercomputers such as
the Cray 1 to perform fast multiple precision arithmetic, using hardware array processors.

Occam allows this form of pipelining to be described using the replicated PAR. The resulting program could
be run on a single processor, or using a separate processor for each stage, or any combination in between
these extremes. To illustrate the method we shall develop a pipeline program to sort values into order.

A Pipelined Sort Program

The basic principle of the program will be that a stream of unsorted numbers is passed into a pipeline which
has as many parallel processes as there are numbers. Each replicated process has local variables called
highest and next.

As a number enters a new process, it will be compared with the value in highest. If it is not larger than
highest, then it will be passed straight on to the next process in the pipe. If it is larger than highest
then it will be kept ie. it will be put into highest and the previous value of highest will be sent on to the
next process in its stead. When all the numbers have been through the process, the final value of highest
is passed on.

By this means the numbers gradually "sediment out" with the "heaviest", ie. largest, being held back in the
stream. In the first process the largest number migrates to the last position in the stream, in the second
process the second largest migrates to the second from last, and so on adding one sorted number to the
back of stream at each stage.

Work through an example with pencil and paper to convince yourself that it works, something along these
lines :-

-------------> 4
----------> 7
-------> 2
----> 5
-> 8

1st process
next

4
8
2
5

unsorted highest
5 2 8 4 7 -> 7

7
8
8
8

8 5 2 7 4 ->

8 7 5 2 4 ->

4
7
7
7
8
etc.

2nd
7
2
5
8

process
-------------> 4
----------> 2
-------> 5
----> 7
-> 8

Overall the pipeline looks like this :-

5 2 8 4 7 -> PO -> Pl -> P2 -> P3 -> P4 ->
cO cl c2 c3 c4 c5

87542

where P means process and c means channel.

We'll write an example program to sort 100 numbers. First Of all we need to define an array of channels to
form the pipeline :-

[101]CHAN OF INT pipe :

Note that as in the queue example above, we need one more channel than the number of processes; the
last diagram, makes clear why.

At the heart of the program is the process which compares values. For the i'th pipe of the pipeline, it can be
written :-

53 Occam Tutorial

input next vaJ.ue

not J.arger?
then pass it on
J.arger?

highest := next

SEQ
pipe[i] ? next
IF

next <= highest
pipe [i+l] ! next

next > highest
SEQ

pipe [i+l] ! highest -- then pass on
oJ.d vaJ.ue and
substitute next

This does exactly what was described in words above, except for the initial inputting and final outputting of a
value for highest. It has to be repeated 99 times in each process to pass through all the numbers. Hence :-

INT highest
SEQ

pipe[i] ? highest
SEQ j = 0 FOR 99

INT next :
SEQ

pipe[i] ? next
IF

next <= highest
pipe [i+l] ! next

next > highest
SEQ

pipe [i+l] ! highest
highest := next

pipe [i+l] ! highest

Since we know in advance how many times it has to execute, a replicated SEQ is preferable to a WHILE
loop.

This is the whole process which must be executed at each stage of the pipeline, so we can just replicate
it, using the index i. We can make the program a little tidier at the same time by using abbreviations for
pipe [i] and pipe [.i+l]. Note the choice of j as the index for the SEQ to avoid confusion :-

PAR i = 0 FOR 100
input IS pipe[i] :
output IS pipe[i+l]
INT highest :
SEQ

input ? highest
SEQ j = 0 FOR 99

INT next :
SEQ

input ? next
IF

next <= highest
output ! next

next > highest
SEQ

output ! highest
highest := next

output ! highest

Although this array of parallel processes does all the, necessary work, it isn't yet a whole program. As in the
queue example above, we need two extra processes, to run in parallel with our main one, one of which feeds
numbers into the pipeline at pipe [0] , and another which bleeds the sorted numbers from pipe [100] .

These are quite straightforward to write; we'll assume that the numbers to be sorted come from a channel

54 Occam Tutorial

8 Replicators

called input and that the sorted results go out on a channel called output, both of which connect to
processes elsewhere in a larger program :-

SEQ i = 0 FOR 100
INT unsortednumber :
SEQ

input ? unsortednumber
pipe [0] ! unsortednumber

SEQ i = 0 FOR 100
INT sortednumber
SEQ

pipe [100] ? sortednumber
output ! sortednumber

The whole program can now be put together. As a finishing gloss we can use an abbreviation for the number
of values to be sorted to make it easier to alter :-

VAL numbers IS 100
[numbers+1]CHAN OF INT pipe
PAR

PAR i = 0 FOR numbers -- Set up pipeline
input IS pipe[i] :
output IS pipe[i+1]
INT highest :
SEQ

input ? highest
SEQ j = 0 FOR numbers - 1 -- Move data

INT next : through pipe
SEQ

input ? next
IF

next <= highest
output ! next

next > highest
SEQ

output ! highest
highest .- next

output ! highest

SEQ i = 0 FOR numbers Feed unsorted
INT unsortednumber : numbers
SEQ

input ? unsortednumber
pipe [0] ! unsortednumber

SEQ i = 0 FOR numbers Bleed sorted
INT sortednumber : numbers
SEQ

pipe [numbers] ? sortednumber
output ! sortednumber

The feed, pipeline and bleed processes are combined into a PAR so they all run at once. Don't give yourself
a headache trying to prove that.they all work in synch. This is occam in action; the patient input and output
processes guarantee that the three processes will work in harmony.

This program can in fact be made more efficient if we take note of the fact that the end of the number stream
comes progressively into sorted order as we move down the pipe. These last, sorted, numbers n:ay be
copied straight through without any testing, so that the workload diminishes as they move down the pipe. At
process pipe [i] , i numbers are already in sorted order and numbers-i remain unsorted. Hence :-

55 Occam Tutorial

8 Replicators

copy sorted

-- sort unsorted
still. unsorted IS numbers - i :
highest :

PAR i = 0 FOR numbers
input IS pipe[i] :
output IS pipe[i+l]
SEQ

VAL
INT
SEQ

input ? highest
SEQ j = 0 FOR still. unsorted

INT next :
SEQ

input ? next
IF

next <= highest
output ! next

next > highest
SEQ

output ! highest
highest := next

output ! highest
VAL already.sorted IS i :
SEQ j = 0 FOR already.sorted

INT pass.on :
SEQ

input? pass.on
output ! pass.on

- 1

Hint: It is by no means a trivial exercise to spot those problems which are suitable for this kind of pipelined
solution using replicated PAR. In general a program which would otherwise be written as two nested loops :-

WHILE testl

WHILE test2

is a likely candidate; see if the outer loop can be replaced by a replicated PAR. There will be no speed
advantage from pipelining unless the inner loop produces a value to pass on early in its execution. If it only
produces such a value when it terminates there will be no overlapping, hence no parallelism:

Termination

In this sorting example, the number of values to be sorted is known in advance, so the feed and bleed
processes could be programmed with a self terminating replicated SEQ.

In programs where indefinite numbers of values are required to pass through a pipeline until told to stop, the
feed and bleed processes will need to use WHILE loops, and a problem arises about how to stop the pipeline
gracefully. This problem is such a general one in concurrent programming that it warrants a chapter to itself;
see Chapter 11 .

For a pipeline program the best scheme is for the feed process to send a message, through the pipeline
itself, which terminates the bleed process and ensures that pipeline is "flushed out" before activity ceases.
Merely terminating the feed process on exhaustion of the input stream would cause the pipeline to deadlock
while still containing needed results.

Our car production line analogy is again instructive. There are at least two ways to get the workers to knock
off for the night; sound a hooter that they can all hear, or tell the first worker in the line "knocking-off time,
finish what you're doing then pass it on!".

Occam forbids us the "hooter" solution, because it would violate the rule which disallows assignment to shared
variables in a PAR. The "hooter" would have to be a global variable which gets changed from "go" to "stop";

56 Occam Tutorial

8 Replicators

therefore it could not be legally shared by the components of a PAR, and so the message could not be
disseminated.

But in any case, the "pass it on" solution is preferable because it leaves the line empty and ready for an
orderly shut down.

Replicated ALT

A replicated ALT consists of a number of identically structured alternatives each of which is triggered by input
from a channel. Like the replicated PAR, it is an immensely powerful and significant construct for occam
programmers.

As a simple example :-

[80]CHAN OF INT incoming :
CHAN OF INT outgoing :
PAR

... processes feeding incoming channels

WHILE TRUE
INT x :
ALT i = 0 FOR 80

incoming[i] ? x
outgoing ! x

...process taking from outgoing channel

The replicated ALT has the effect of an ALT with 80 alternatives :

ALT
incoming [0] ? x

outgoing ! x
incoming [1] ? x

outgoing ! x
incoming [2] ? x

outgoing ! x
etc .

What the process does is to monitor the array of channels; every time a value is ready on one of them,
it is transferred to the single output channel outgoing. The process acts as a multiplexer, merging all
communications from the 80 lines down onto a single channel.

+----+
incoming [0] -->1 I
incoming [1] -->1 1
incoming [2] -->1 1--> outgoing
incoming [3] -->1 1
............ -->1 1

+----+

Replicated ALT provides an elegant and concise way to build and control switching networks of all shapes
and sizes. The array of channels could carry readings from a battery of instruments, or control information
from sensors distributed throughout a machine.

Replicated IF

The replicated IF produces a conditional construct with a number of similarly structured choices.
I

A simple replicated IF such as :-

57 Occam Tutorial

8 Replicators

IF i = 0 FOR 5
array[i] = 0

array[i] .- 1

would check the first 5 elements of array and replace the first one which was 0 by a 1. If no zeroes were
found though it would stop the program; by the nature of the replication process it is not possible to conclude
a replicated IF with TRUE SKIP (unless of course you want an array of TRUE SKIPs for some bizarre
reason!).

Most uses of replicated IF therefore involve nesting it within an outer IF. In this case the behaviour if no
conditions are met is more appropriate; the next choice in the outer IF is considered :-

IF
IF i = 0 FOR 5

array[i] = 0
array[i] .- 1

TRUE
SKIP

This will now SKIP and continue the program if no zeroes are found in array. Such a construct can be used
to rewrite the function we defined earlier to find the first occurence of a character in a string :-

INT FUNCTION find. char (VAL BYTE char,
VAL []BYTE string)

VAL INT not. found IS -1 :
INT answer
VALOF

IF
IF index = 0 FOR SIZE string

string [index] = char
answer := index

TRUE
answer := not. found

RESULT answer

Note that in this case, the function returns -1 to indicate the character has not been found.

58 Occam Tutorial

9 Real-Time Programming in occam

Real-Time Programming in occam
Occam concerns itself with the time dimension in a far more profound way than do most conventional lan
guages; the issues of concurrency and synchronisation are tackled in its deep structure. This being so, it is
necessary to have ways of measuring and apportioning time in occam programs.

Timers

Timing in occam is provided by declaring named objects of the type TIMER. A timer behaves like a channel
which can only provide input. The value input from a timer is, not surprisingly, the current time represented
as a value of type INT.

The simplest kind of timer process would look like this :

TIMER clock:
INT time:
clock ? time

Technical Note: The "ticks" of this clock will vary from one implementation of occam to another, depending
upon the hardware on which it is running. On the INMOS Transputer, the ticks will be in units of (input
clock rate)/(5*64) which will normally work out at 64 microseconds per tick; details must be obtained from the
ha'rdware manuals for a given system. The time starts from the moment at which the system was switched
on, unless the system is provided with a battery backed clock and suitable software to synchronise the occam
clock with the real time. Whenever the value of time exceeds the maximum value that can be represented by
an INT it will become negative and begin to count back towards zero (in accordance with 2's complement
signed arithmetic). With a 64 microsecond tick and a 16-bit INT this would happen approximately every 4.2
seconds, with a 32-bit INT approximately every 76 hours. Time differences must therefore exclusively be
calculated using the modulo arithmetic operators, and a long interval can only be timed by breaking it into a
series of shorter intervals. Note that one second is exactly 15,625 ticks of 64 microseconds each.

It can be useful to declare more than one timer in a program, even though the value returned from all of them
may be the same (if the program is running on a single processor). If there are several independent parallel
processes which all require timing, their independence is better expressed if they each have their own timer.
For the same reason it may sometimes be useful to declare an array of timers.

Delays

Delays can be added to a program by using a delayed input. This is an input from a timer which cannot
proceed until the time reaches a stated value. The operator AFTER followed by an expression representing
a time is used to cause the delay.

The crude delay procedure we wrote in Chapter 2 can now be replaced by :-

PROC delay (VAL INT interval)
TIMER clock
INT timenow :
SEQ

clock ? timenow
clock ? AFTER timenow PLUS interval

An instance of this procedure, say delay (6000), would pause for 6000 ticks before terminating.

Notice that the delayed input is not an ordinary input process because no variable has its value changed; the
value from clock is only compared with the value of the expression. Timers are in general rather different
from ordinary channels; several components of a PAR are allowed to input from the same timer, which would
be strictly forbidden for an ordinary channel.

59 Occam Tutorial

9 Real-Time Programming in occam

A delayed input could be used in an ALT to provide a real- time wait :

TIMER clock
VAL timeout IS 1000 :
INT timenow :
SEQ

clock ? timenow
INT x
ALT

input ? x
•..process

clock ? AFTER timenow PLUS timeout
warning ! (17 :: "Timeout on input!")

This process will send the timeout warning message if input doesn't produce an input within the prescribed
time of 1000 ticks.

AFTER can also be used as a comparison operator which returns a truth value; x AFTER y is equivalent
to (x MINUS y) > O. In other words AFTER subtracts y from x, modulo the largest INT, and sees if the
result is positive. Modulo arithmetic must always be used for times, hence the use of PLUS instead of + in
the two examples above.

AFTER can be used in conditionals to check whether one time is later than another :-

TIMER clock:
INT procl.time, proc2.time:
SEQ

PAR
SEQ

...process 1
clock? procl.time

SEQ
...process 2
clock? proc2.time

IF
procl.time AFTER proc2.time

.•• rest of program

This provides a check on which of the two parallel processes terminated first.

Take care: When writing programs of this kind it is essential to be aware of the physical details of time
representation (see Technical Note above). The test is only meaningful if the difference in the two times is
small compared to the largest value represented by an integer. Otherwise a more complex program will be
needed.

Priority

So far in this tutorial, the question of priority among processes has been ignored. But when real-time programs
are concerned, priority becomes a matter of considerable importance.

In the discussion of ALT in Chapter 2 for instance, no mention was made of what would happen if two inputs
became ready simultaneously. Which process (if any) would be executed?

The answer to that question is "it depends". In an ordinary ALT, occam will make an arbitrary choice if the
inputs guarding two processes become ready simultaneously. By arbitrary we mean that the outcome is not
defined by the language, and may vary from one implementation to another; this does not imply that a random
choice will be made, (though that would be one option open to implementors). The crux of the matter is that
the programmer cannot predict what will happen in such a case.

60 Occam Tutorial

9 Real-Time Programming in occam

In real time programs it will sometimes be necessary to know what will happen in such a case, and so occam
allows both ALT and PAR processes to be prioritised. This is signified by preceding the construct with the
word PRI.

In both a PRI ALT and a PRI PAR, the component processes are assigned a priority according to the
textual order in which they appear in the program - the first has highest priority and so on.

In a PRI ALT, when two inputs become ready simultaneously, the component process with the higher priority
will be executed. A special example of the use of a PRI ALT is this routine to guarantee that a channel
carrying an important signal will be looked at :-

WHILE cycling
PRI ALT

quit? any
cycling := false

TRUE & SKIP
...main cycle

The TRUE & SKIP option is always ready, and if used in an ordinary ALT this path could be taken at every
cycle without quit ever getting a look in. The PRI ALT however forces the program to inspect the channel
quit, because it has a higher priority, and thus guarantees that the cycle can be broken when desired.

In a PRI PAR, processes with a lower priority will only be executed if no higher priority process can proceed.
So in :-

PRI PAR
SEQ

input1 ? x
output1 ! x

SEQ
input2 ? y
output2 ! y

the second SEQ cannot proceed, even when input2 is ready, unless the first (higher priority) SEQ is waiting
on its input or output.

PRI PAR can be used in certain real-time applications to service a hardware device sufficiently quickly when
the computer has other things to do as well.

VAL blocksize IS 1024 :
CHAN OF [blocksize]BYTE nextblock
PRI PAR

WHILE TRUE
[blocksize]BYTE block
SEQ

nextblock ? block
SEQ i = 0 FOR blocksize

squirtout ! block[i]
...main proces s

In this program, the main process is allowed to proceed only in the slack moments when the device connected
to squirtout is not being serviced ie. when waiting to output. Like a spoiled child, the device must always
be given full attention when it demands it, so the main process is halted to devote the processor's full power
to the SEQ loop.

Buffering

If PRI PAR is used, the question of buffering may well arise. It is pointless to run a process at high priority to
service an impatient device if, whilst servicing that device, it can be kept waiting to communicate with another
process.

61 Occam Tutorial

9 Real-Time Programming in occam

A high priority process of this kind should have all such communications with other processes buffered,
(perhaps using the queueing technique we saw in Chapter 3) so that data can be sent without delay. The
size of buffer needed would be tuned to the actual timings of the processes involved.

VAL blocksize IS 1024 :
CHAN OF [blocksize]BYTE nextblock :
PRI PAR

CHAN OF [blocksize]BYTE bufferedblock
PAR

WHILE TRUE buffer process
[blocksize]BYTE block
SEQ

nextblock ? block
bufferedblock ! block

WHILE TRUE -- service process
[blocksize]BYTE block :
SEQ

bufferedblock ? block
SEQ i = 0 FOR blocksize

squirtout ! block[i]
...main process

In this revised example the input from nextblock has a one block buffer added. This reduces the chances
of the service routine having to wait to input the next block, which would cause it to delay service to the
device.

PRI PAR should only be used when it is necessary to impose explicit priority and should not be lightly used
when an ordinary PAR will do.

Glib Hint: If you find that you are relying heavily on PRI PAR, re-examine your problem carefully; perhaps
a differently structured program would work with ordinary PAR.

Priority and Configuration

Priority has been discussed in this chapter because of its great importance to real time programmers. In
formal occam terms it belongs in the next chapter on configuration.

Priority is, strictly speaking, a configuration issue because it does not affect the logical behaviour of a program.
Configuration issues are those which allow performance criteria to be met, but which in no way alter the
program logic; hence a program can be developed without considering them until the very last stage.

Programs should be developed using ordinary PAR and ALT, and priority, if it is required, should be left until
the logic has been correctly established and the program works.

62 Occam Tutorial

10 Configuration

Configuration
Key Idea: Configuration does not affect the logical behaviour of a program. It does enable the the program
to be arranged so that the performance requirements are met.

Hard Channels

InpuVoutput (usually abbreviated to I/O) is the computing term for communication with the outside world. In
the case of a computer, the outside world is anything outside of its own CPU and memory space, and it
includes mechanical devices such as printers, disk storage, and terminals through which human beings can
communicate with the computer.

Readers who have followed this tutorial so far may be forgiven if they have gained the impression that occam
lives in a world of Zen-like introspection, contemplating its own inner workings and communicating with itself
on a multitude of channels.

If this impression has been given, it was deliberately so. In the attempt to inculcate the general principles of
occam, the author has refrained from including anything so far which would tie it to a specific implementation
or to specific hardware.

In· most computer languages I/O is a problem area. It is always an afterthought, because conventional
languages are designed to manipulate data only inside the computer's memory space. As a result I/O tends
to be tied to specific hardware devices, and it often violates principles adhered to elsewhere in the language.
In occam this is not the case. We could safely ignore I/O until now, because we already know almost all
there is to know about it.

Occam performs I/O over channels and all we need to know further is how to attach occam channels to
real-world hardware devices, which can then be treated just as if they were further occam processes. All the
programs that have been developed so far in the tutorial can be made into "real" programs by the addition of
a bit of notation tying the abstract channel names to real hardware channels.

In any particular occam implementation there will be a number of I/O channels which can be used by programs.
These channels may in some cases lead directly to the hardware, via driver programs which the occam
compiler links to your program. In other cases they may lead to the operating system of the host computer,
which then handles I/O on behalf of occam.

A typical occam system will support at least channels for a VDU screen, a keyboard, and a filing system.
These channels are given numbers which can be found in the manual for the particular occam implementation.

Let us suppose that the "hard" channels are numbered as follows :-

1 Output to screen
2 Input from keyboard

These numbers are associated with the channel names used in an occam program as follows :

PLACE screen AT 1 :
PLACE keyboard AT 2 :

Inside the program these channels can all be input to and output from in the usual fashion. So :-

VAL message IS "Hello world!"
SEQ i = 0 FOR SIZE .message

screen! INT message[i]

would display the message on a VDU screen, and :

keyboard ? x

would input the code for a single character typed at the keyboard into variable x.

63 Occam Tutorial

10 Configuration

Take care: A keyboard channel in occam sends the coded value of a single keyboard character to the
program. If you press the 1 key, the value received by the program will be not be 1. If the keyboard uses
ASCII codes it will be 49, the ASCII code for numeral 1. The same applies in sending characters to the
screen; sending 49 will result in a 1 appearing on the screen. Clearly if your program merely receives values
from the keyboard and sends them to the screen, then the result will be what is required. But if you wish to
do arithmetical calculations with the values, they will have to be adjusted. For instance, when using ASCII
codes, you need to subtract 48 from number key values to get the number they represent. Study the example
program in Chapter 10 to see how to do numeric output to the screen.

Hardware Protocols

Some hardware devices will require various protocols to be adhered to, that is certain special commands and
non-data characters may need to be sent (and received) to control the devices, in addition to the actual data.

These are very hardware dependent and cannot be covered in any detail here. But as an example, a
screen channel might be buffered, so that characters collect in the buffer before being displayed on the
screen. Characters are only displayed when the buffer empties, which happens automatically whenever 80
characters have accumulated, or on demand if the endrecord code (let's say it's -2) is received. Hence you
would need to write :-

VAL endrecord IS -2 :

SEQ
VAL message IS "He110 wor1d!"
SEQ i = 0 FOR SIZE message

screen! INT message[i]
screen ! endrecord

to make sure that the message was displayed immediately, as otherwise it would be stored until 68 more
characters had been sent.

With file I/O it is certain that some protocol will be required, to open and close files, and to discover the status
of filing operations ego was the last record successfully written to disk? Again the manual for your particular
implementation will elaborate further.

As can be seen, all the example programs we have developed in previous chapters can be quite simply
altered to work on a real occam system. We have tended to use the channel names input and output
for channels leading in and out of a program. If these were declared :-

PLACE input AT 2 :
PLACE output AT 1 :

then the programs could be tested at a terminal with keyboard input. Bear in mind that input only supplies
single characters, so a program which requires words to be input will have to collect the characters into an
array until a terminating character, usually a carriage return, is received.

Ports

In addition to hard channels, occam can address 110 ports as used in conventional computer systems. A port
declaration has a data type, ego :- .

PORT OF BYTE seria11:

and the allowed processes are input and output only :-

seria11 ! ' a'
seria12 ? x

This allows ports to be used like channels, rather than like variables, which is more in keeping with the occam
style of using channels for all communication and variables for storage.

64 Occam Tutorial

10 Configuration

Ports behave like occam channels in that only one process may input from a port, and only one process may
output to a port. Thus ports provide a secure method of accessing external memory mapped status registers
etc.

Note that there is no synchronization mechanism associated with port input and output. Any timing constraints
which result from the use of asynchronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which the input was executed, and
inputting at an invalid time would produce unusable data.

During applications development it is recommended that the peripheral is modelled by an occam process
connected via channels.

An example of what is required when using such memory mapped devices is this set of occam procedures
to drive a UART (Universal Asynchronous ReceiverlTransmitter) device :-

PORT OF BYTE status.reg, data.reg

PLACE status.reg
PLACE data. reg

AT #3801
AT #3803

VAL rx.ready IS #01
VAL tx.ready IS #04

first bit mask
third bit mask

PROC de1ay () wait approx 1 msec
VAL interval IS 1000/64
INT timenow :
SEQ

c10ck ? timenow
c10ck ? AFTER timenow PLUS interva1

PROC p011 (INT ready) wait for status
BYTE status : bit set
SEQ

status.reg ? status
WHILE «INT status) 1\ ready) = 0

SEQ
de1ay ()
status.reg ? status

INT data :
PROC read.data () -- read a character

BYTE char :
SEQ

p011 (rx.ready) -- p011 on first bit
data.reg ? char
data := (INT char) 1\ #7F

PROC write.data ()
SEQ

p011 (tx. ready)
data.reg ! BYTE

-- write a character

-- p011 on third bit
(data 1\ #7F)

This reminds us of the perils of communication programming without the advantages of synchronised chan
nels.

Allocation

Occam programs may be designed, written, tested and debugged on a single processor workstation, and
then transferred to a network of parallel computers.

65 Occam Tutorial

10 Configuration

The final stage of such a development cycle is to allocate parallel processes in the program to different
processors. This allocation is performed by replacing PAR with PLACED PAR in the appropriate parts of
the program. PLACED PAR is followed by a placement, which consists of the number of a processor and a
process to be run on it.

As an example, the pipelined sorting program we developed in Chapter 3 could be allocated to a linear array
of 101 Transputers by the following placement :-

PLACED PAR
PLACED PAR i = 0 FOR numbers -- Pipeline

PROCESSOR i Allocate processor
input IS pipe[i] :
output IS pipe[i+l]
INT highest :
SEQ

input ? highest
SEQ j = 0 FOR numbers-l -- Move data

INT next : through pipe
SEQ

input ? next
IF

next <= highest
output ! next

next > highest
SEQ

output ! highest
highest := next

output ! highest
... rest of sort routine

The keywords PLACE ... AT ... allocate a named variable, channel, port or array to a physical memory
address. If a program has to store data directly into a range of memory addresses an array could be PLACEd
at the appropriate range. A typical example of this usage might be to write graphics data into a screen buffer

VAL screenstart IS #B800:
[32000]BYTE screenbuffer:

PLACE screenbuffer AT screenstart:

screenbuffer[57] := #FF -- set all pixels in byte 57

This is subject matter beyond the scope of this tutorial but is mentioned here to indicate that these things can
be done in occam, without resorting to any lower level of programming.

Summary

None of these operations in any way affect the logic of a program. In other words a program can be
developed with little or no thought to such matters and then the required configuration can be performed
when the program logic is proven, by text substitutions and additions on a quite minor scale.

It is in this way that occam renders the programming of large and complex arrays of multiple processors man
ageable, even to the point where much of the programming can be accomplished while the actual hardware
is still only a paper design.

66 Occam Tutorial

11 Terminating Concurrent Programs

Terminating Concurrent Programs
Ensuring the correct termination of programs is a problem inherent in concurrent programming, and one which
will be new to programmers whose only experience is in conventional sequential programs. It is a problem
faced in all concurrent programs, not merely in occam programs.

In a sequential program there is only a single path, or flow of control through the program when it is running.
Even where the program branches, only one branch can be taken at a given time. Therefore, even in
a program which is embedded in an outer infinite loop, it is always possible to arrange for control to be
"captured" at some point and the program to be stopped.

With concurrent programs employing many parallel processes, this is not the case. If the processes do not
communicate with one another, stopping one will leave the others still running. If they do communicate with
one another, stopping one may well leave the others deadlocked rather than properly terminated.

Stopping and Termination

One mistake which might tempt newcomers to occam is to use STOP to try to terminate a program. By its
definition STOP never terminates. The effect of STOP is to start but never proceed. Termination involves
completing all the instructions in the program. STOP is an instruction which can never be completed.

STOP is useful, as described earlier, to temporarily replace a yet-to-be-written error handler during program
development. On a development system, STOP may well return you to the editor with a polite message to
the effect that your program has stopped.

In a control application though, a stopped program may merely be broken or hung, and the gadget it controlled
is no longer under control. If it's a nuclear power station, then this effect of STOP should not be recommended.
However, the effect of STOP is likely to vary between implementations, so check your implementation notes.

Shared Variables

Another obvious technique to try, based on sequential programming experience, is to employ a global variable
as a flag which is set to "stop" or "go" and is read by all the processes. This is not permitted in occam if
the processes are in a PAR. Parallel processes are not allowed to share a variable which is changed by
assignment or input, for reasons which were explained in Chapter 2.

If it were possible it would not be satisfactory. When the flag is set to "stop", it may not be permissible for all
the processes to just quit; the system will be left in a confused state with operations partly finished, and data
in wrong places.

Perhaps each process could be allowed to finish what it's doing after it receives the "stop" signal. But then
it may require service from another process which has already terminated, and again deadlock results.

There'is no solution in this direction. The system has to be considered as a whole, and the shutting down
has to be propagated through it in a deliberate manner.

Terminating PAR

Let's take as an example, a pipeline similar to those we developed in Chapter 4 using replicated PAR. The
pipeline is to process a stream of numbers whose length can only be determined at run time.

+-----+ +----------------+ +-----+
->-Ifeed I->-In stage pipelinel->-Ibleedl->-

+-----+ +----------------+ +-----+

The first thing to make clear is that we must mark the end of the stream. It isn't possible to test for the
absence of an input; an absent input simply means deadlock. The last number in the stream must convey
the information that there are no more to follow. Let's say that sending a negative number means end of
stream.

67 Occam Tutorial

11 Terminating Concurrent Programs

When the feed process receives the end marker, it is not permissible for it to merely terminate :-

PROC feed ()
INT x :
BOOL more
SEQ

more := TRUE
WHILE more

SEQ
input ? x
IF

x < 0
more .- FALSE

x >= 0
pipe [0] ! x

If we do this, the pipeline will stall as its first process, and then all the subsequent ones, deadlock waiting for
input from pipe [0] that will never come. And the pipeline still contains n results which we need to have.

Catching the end marker in bleed would be better, as that at least ensures that all the results are out of
the pipeline. But it is still not possible to merely terminate bleed without deadlocking the rest of the pipe (in
this case because pipe [n] is waiting for an output that can never proceed).

What's required is the following sequence of events :-

1) feed detects the endmarker and passes it on, then terminates.

2) All the processes in the pipeline do the same.

3) bleed simply terminates when it receives the endmarker.

In occam this becomes :-

PROC feed ()
INT next :
BOOL more
SEQ

more := TRUE
WHILE more

SEQ
input ? next
IF

next < 0
SEQ

pipe[O] ! next
more := FALSE

next >= 0
pipe [0] ! next

68 Occam Tutorial

11 Terminating Concurrent Programs

PROC bl.eed ()
INT next :
BOOL more
SEQ

more := TRUE
WHILE more

SEQ
pipe[n] ? next
IF

next < 0
more := FALSE

next >= 0
output ! next

PROC pipel.ine ()
PAR i = 0 FOR n

input IS pipe[i]
output IS pipe[i+l]
INT next :
BOOL more
SEQ

more := TRUE
WHILE more

SEQ
input ? next
IF

next < 0
SEQ

output ! next
more := FALSE

next >= 0
SEQ

... some processing
output ! next

PAR
feed 0
pipel.ine 0
bl.eed ()

-- main process

69

There is an additional assumption here, namely that the process which is connected to the output of bleed
knows how many numbers were processed, and can terminate itself decently. Perhaps it is the same process
that sent the stream to feed, so all's well. If not, it needs either to be told by the process that sent the stream,
or we could let the end marker travel one step further.

It isn't possible to give a generally applicable recipe for terminating PAR processes; the details will vary from
case to case. But there are some general principles illustrated here that can be useful.

1} Correct termination requires knowledge. Processes need to know when to stop.

2} Knowledge requires dissemination. There is no magic telegraph which can let all PAR processes know
simultaneously.

3} Channels are the proper vehicles for disseminating knowledge to processes. Variables cannot be used to
spread knowledge in a PAR.

4} There is no place in computer space which is "outside" of a PAR process. Control can only come from
another component of the PAR, via a channel. If you wish to send control signals from the outside world,
then there must be a component of the PAR which monitors the signal channel.

Occam Tutorial

11 Terminating Concurrent Programs

Terminating ALT

Terminating programs which use ALT is quite straightforward, and .we have seen an example in the volume
controller process in Chapter 2. One of the alternatives of the ALT must monitor a signal channel for the quit
message :-

VAL quit IS FALSE :
CHAN OF BOOL signa1

BOOL going
SEQ

going .- TRUE
WHILE going

INT varl, var2
ALT

chanl ? varl
.. .processl

chan2 ? var2
.. .process2

signa1 ? going
SKIP

The problem which can arise here is one of performance alone. The channels in an ALT are selected on a
first past the post basis, but in the case of a tie they are selected in an arbitrary and implementation dependent
fashion. It is not possible therefore to know exactly when a quit command is going to be obeyed; it could be
kept out in the cold for an unacceptable length of time by the other alternatives.

The answer, as we saw in the chapter on configuration, is to use a PRI ALT, and to assign the highest
priority to the alternative monitoring channel signaL Now, in the event of a tie, signa1 will always win
and the response to a quit command will be predictable.

PRI ALT
signa1 ? going

SKIP
chanl ? varl

.. .processl
chan2 ? var2

.. .process2

70 Occam Tutorial

12 Occam Programming Style

Occam Programming Style
Before this tutorial ends it would be as well to look at an example of a larger occam program, and offer some
advice on programming style.

The following program is a simple typing tester. It counts the number of words you type, and inserts this
number into the text every minute. By inspecting the text when you've finished you can see how many words
per minute you achieved in the different sections.

The program is complete and ready to compile on any system whose hardware matches the various allocations
made. It should work on any ASCII terminal which uses a buffered screen, though the endrecord character
which flushes the buffer may have to be changed (it is often carriage return). One assumption made is that
the clock has a low enough tick rate that an INT value will not 'wrap around' in less than one minute.

The word counting portion of the program works on the well established principle of distinguishing between
being in a word and not in a word, the latter being signalled if the current character is a return, space or
tab, none of which are allowed inside words. A new word is detected and counted when InWord goes from
FALSE to TRUE as its first character is typed.

71 Occam Tutorial

12 Occam Programming Style

--external channels
CHAN OF INT Keyboard
PLACE Keyboard AT 2 :
CHAN OF INT Screen :
PLACE Screen AT 1 :

--screen output
VAL Return IS
VAL Space IS
VAL Tab IS
VAL Newline IS
VAL ControlC IS
VAL Bell IS
VAL EndRecord IS

, *c'
, *s'
, *t'
, *n'

3
7 :

-2 :

(INT)
(INT)
(INT)
(INT)

PROC OutputChar (VAL INT Char)
Screen ! Char

PROC FlushScreen ()
OutputChar (EndRecord)

PROC OutputString (VAL []BYTE Message)
SEQ i = 0 FOR SIZE Message

Screen! INT Message[i]

PROC OutputNumber (VAL INT Number)
VAL Hundreds IS Number / 100 :
VAL Rest IS Number REM 100
VAL Tens IS Rest / 10 :
VAL Units IS Rest REM 10
VAL MakeDigit IS '0' (INT) :
IF

Number < 10
SEQ

OutputChar (Units + MakeDigit)
FlushScreen 0

Number < 100
SEQ

OutputChar (Tens + MakeDigit)
OutputChar (Units + MakeDigit)
FlushScreen 0

Number < 1000
SEQ

OutputChar (Hundreds + MakeDigit)
OutputChar (Tens + MakeDigit)
OutputChar (Units + MakeDigit)
FlushScreen 0

72 Occam Tutorial

12 Occam Programming Style

--time accumulation
TIMER Clock :
VAL TicksPerSecond IS 15625 :
VAL One~nute IS 60 * TicksPerSecond
INT NextMinute, Total~nutes

PROC InitTimer ()
INT TimeNow :
SEQ

Clock ? TimeNow
Next~nute := TimeNow PLUS OneMinute
Total~nutes := 0

PROC UpdateTimer ()
SEQ

NextMinute := Next~nute PLUS One~nute

Total~nutes := Total~nutes + 1

--word accumulation
INT WordsThisMinute, TotalWords

PROC InitWordCounts ()
SEQ

WordsThisMinute .- 0
TotalWords := 0

PROC UpdateWordCounts ()
SEQ

TotalWords := TotalWords + WordsThis~nute

WordsThisMinute := 0

--statistics
PROC ShowCurrentSpeed ()

VAL VeryFewWordsPerMinute IS 5 :
IF

WordsThisMinute < VeryFewWordsPer~nute

SEQ
OutputChar (Bell)
OutputString (fI [Still awake?] fI)
FlushScreen ()

WordsThisMinute >= VeryFewWordsPer~nute

SEQ
OutputStrinq (fI [fI)
OutputNumber (WordsThisMinute)
OutputString (fI words/min] fI)
FlushScreen ()

73 Occam Tutorial

12 Occam Programming Style

PROC ShowAverageSpeed ()
VAL AverageSpeed IS (Tota1Words / Tota1Minutes)
SEQ

OutputChar (New1ine)
OutputString (" You typed ")
OutputNumber (Tota1Words)
OutputString (" words in ")
OutputNumber (Tota1Minutes)
OutputString (" minutes.")
OutputChar (New1ine)
OutputString (" Average speed = ")
OutputNumber (AverageSpeed)
OutputString (" words per minute. ")
F1ushScreen ()

BOOL InWord, Active --main process
SEQ

InitTimer ()
InitWordCounts 0
Active . - TRUE
InWord .- FALSE
WHILE Active

INT Char:
ALT

NOT InWord & C10ck ? AFTER NextMinute
SEQ

ShowCurrentSpeed ()
UpdateWordCounts ()
UpdateTimer ()

Keyboard ? Char
IF

Char = Contro1C
Active := FALSE

(Char = Space) OR
(Char = Return) OR (Char = Tab)
SEQ

InWord := FALSE
IF

Char = Return
OutputChar (Newline)

Char <> Return
OutputChar (Char)

F1ushScreen ()
NOT InWord

SEQ
InWord := TRUE
WordsThisMinute :=

WordsThisMinute + 1
OutputChar (Char)
F1ushScreen ()

InWord
SEQ

OutputChar (Char)
F1ushScreen ()

ShowAverageSpeed ()

74 Occam Tutorial

12 Occam Programming Style

The following points about programming style can be illustrated using this program.

1) The program is factorised to a degree where the amount of code in PROCS far exceeds that in the main
program loop. For really large occam programs this will typically be even more so, with the great majority of
the code being in the PROCs.

The result is a main program which is free from distracting detail, and which is rendered more readable by
the high-level PROC names from which it is composed.

It is also rendered more maintainable, since the body of a PROC can be easily changed without affecting the
main process, so long as its function remains similar.

2) Abbreviations and declarations are grouped with the PROCs which use them, under the functional headings
indicated by the comments (eg --screen output, --time accumulation). Within each functional
grouping, declarations of the same sort are kept together, and a consistent order is followed.

Occam does not insist on any particular order for specifications (except that they must immediately precede
the process or procedure which is their scope, and with which the colon associates them). It is much easier
to find things if you adhere to a consistent order of your choice. Here the order used is :-

channels> timers> abbreviations> variables

3) Use named abbreviations freely. Abbreviations in occam cost nothing, and may improve performance, by
allowing the compiler to choose the most efficient implementation. For instance using an abbreviation for an
array segment :-

[1010]INT fred:
SEQ i = 0 FOR 1000

WHILE foo > 0
VAL f IS [fred FROM i FOR 10]:
SEQ

in an inner loop will yield a worthwhile speed increase because the value of f becomes local to the inner loop
process, and because it is recognised by the compiler as a constant and so run-time checks are reduced.

Named constants make a program much more readable; 'magic numbers' peppered throughout a program
are hard to understand and even more tedious to alter.

Program readability is not a matter only of aesthetics. A program which you cannot understand two months
later is a failure and a waste of time; you will have to repeat most of the mental effort of writing it whenever
it needs to be modified or a similar program needs to be written.

4) Choose for yourself a typographic style for names and stick to it. This is a matter of personal preference.
One possibility, illustrated in the typist program, is to use initial capitals for separating compound words;
others may prefer all lower case and use of the dot (eg. show. count) as used in the remainder of the
tutorial.

Use names which are as long as you need to make them meaningful; it costs nothing in program efficiency
and it's not worth creating unreadable programs to save a little typing.

5) Keep specifications of all kinds local. Normally they should be placed immediately before the process in
which they are used.

Variables are very often used solely as working stores to carry a value from an input process to an output.
They can be declared just before the process in which the input and output occur. Only when they need to
be free v?\riables (ie. retain their value) with respect to some loop need they be declared earlier, as in the
case of the variables used to accumulate time and wordcount above.

6) Occam lends itself very well to a style of factorisation in which small procedures are written to act as filters.

75 Occam Tutorial

12 Occam Programming Style

A filter is a program which accepts a stream of inputs, does something to them and sends an equivalent
stream of modified outputs.

A larger program is built up by stringing these filters together like beads. If each filter performs a very simple
action, enormous flexibility results, as new programs can often be created by a different combination of the
same filters.

This technique of programming is well expounded in the classic book "Software Tools" by Kernighan and
Plauger, using a form of Fortran (a later edition uses Pascal).

Occam is in fact far more suitable for this factorising technique than any conventional language, because
channels are natural partners to filters.

Occam allows sequences of filters to be connected in parallel, and it provides other models such as the
pipeline and the multiplexer that we have seen in this tutorial. Programming can be transformed into a sort
of circuit design, connecting filters, switches, pipelines and other "components" using channels as the "wire".

Using such techniques, occam can be employed to describe hardware as well as software systems. If the
host processor is the INMOS Transputer, the boundary between the two becomes indistinct, as any occam
process describing a hardware device can be implemented by one or more Transputers. Equally, the workings
of a Transputer can be described by an occam process.

7) Avoid preoccupation with configuration and priority until the very end of program development. Get the
logic of the program working before you consider the real hardware, using "stubs" (small stand-in procedures
which more or less emulate the absent device) or SKIP and STOP where necessary. Configuration can
always be performed without altering the logic of the program.

8) Train yourself to look for the inherent parallelism in problems. Parallel programming is in its infancy and
there is as yet no large body of knowledge to draw on; you are among the pioneers.

Occam was invented to facilitate parallel programming and the potential performance gains it offers. It is
relatively easy, if required, to make a parallel algorithm more sequential but making a sequential algorithm
more parallel usually involves starting again from scratch. If you write all your programs with SEQ you might
just as well have used Fortran.

9) Use your occam text very explicitly to guide your design. In a very practical sense, to write an occam
program is to write a specification of your problem (which happens to be executable on a computer).

Any occam text whose meaning is not crystal clear should cause you to stop and think again.

The occam programming system

Occam compilers provided by INMOS Ltd. are supplied with a programming environment called the occam
programming system. This environment includes a special editor which has the ability to conceal and reveal
text at will by "folding".

The use of this editor has a profound effect upon the way that programs are structured, which is unfortunately
rather difficult to convey well on the printed page.

A piece of text may be "folded" down to a single line on the VDU screen. Such lines are marked by a title
preceded by three dots ... , just as we have use three dots to hide the detail of processes whose internal
structure is not of immediate interest.

Folds may be nested inside other folds to any depth, dividing the program text in a hierarchical or tree
structured manner. A huge program may be folded down to appear as a single line on the screen, and then
unfolded progressively and selectively to inspect those parts of the text which need to be edited.

The typing tutor example above has been designed to give some idea of this structure. The comments
associated with the various functional groupings (eg....word accumulation) would each represent a
fold in the editor. All the text below such a comment up to the next comment could be folded away, so the

76 Occam Tutorial

12 Occam Programming Style

fully folded program would look like this :-

... external channels

... screen output
· .. time accumulation
· .. word accumulation
· .. statistics
· ..main process

If we opened, say, the word accumulation fold, we might find :-

INT WordsThisMinute, TotalWords
· .. PROC InitWordCounts ()
· .. PROC UpdateWordCounts ()

where the bodies of the PROCs had themselves been folded away. The effect could be simulated by actually
folding the page, concertina fashion, so that the comments line up! In the occam programming system any
fold may be opened or closed by moving the screen cursor onto its title and pressing a key.

The implications for program design should be apparent. The unit of occam programming in practice is not the
isolated PROC, but the fold, which may contain several PROCs and their associated abbreviations, variables
etc.

The occam programming system will be supplied with its own tutorial manual.

77 Occam Tutorial

78 Occam Tutorial

o

DITI110S

Occam 2
language definition

David May

72 044 02

A Introduction

A process starts, performs a number of actions, and then either stops or terminates. Each action may be an
assignment, an input or an output. An assignment changes the value of a variable, an input receives a value
from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or more of
its channels. Each channel provides a one way connection between two concurrent processes; one of the
processes may only output to the channel, and the other may only input from it.

Communication is synchronised. If a channel is used for input in one process, and output in another, comm
unication takes place when both processes are ready. The inputting and outputting processes then proceed,
and the value to be output is copied from the outputting process to the inputting process.

A process may be ready to communicate on anyone of a number of channels. Communication takes place
when another process is ready to communicate on one of the channels.

Occam 2 language definition

B Notation

The following examples illustrate the notation used in the description of occam.

The meaning of

assignment variable : = expression

is "An assignment is a variable followed by : =followed by an expression".

The meaning of

action assignment I input I output

is "An action is an assignment or an input or an outpuf'. This may also be written:

action
action
action

assignment
input
output

The notation { process } means "a list of zero or more processes on separate lines".

The notation {a , expression} means "a list of zero or more expressions separated from each other by , ",
and h , expression} means "a list of one or more expressions separated from each other by , ".

Program Format

The format of an occam program is specified by the syntax, and each statement in the program normally
occupies a single line. Statements are indented to reflect program structure. Indentation is measured in units
of two spaces. Long statements may be broken after an expression operator, , or ; (and a text string may
be broken using a special notation explained below). When a statement is broken, the continuation of the
statement on the following line must be indented at least as much as the first line of the statement.

A text string is broken by ending the first line of the string with *, and starting the continuation on the following
line with *.

Comments

A comment is introduced by the character pair --. A comment may follow a statement or may occupy a line
by itself at the same indentation as the following statement.

2 Occam 2 language definition

C Process

process SKIP I STOP
action
construction
instance

action assignment I input I output

construction sequence I conditional I loop
parallel I alternation

STOP starts but never proceeds, and never terminates.

SKIP starts, performs no action, and terminates.

assignment variable : =expression

An assignment evaluates the expression and assigns the result to the variable, provided that the type of the
variable is that of the expression. Otherwise the assignment is invalid. All other variables are unchanged in
value.

mput channel? variab~

An input inputs a value from the channel, assigns it to the variable and then terminates. All other variables
are unchanged in value.

output channel! expression

An output evaluates the expression, outputs the result to the channel and then terminates.

3 Occam 2 language definition

C Process

Sequence

sequence = SEQ
{ process }

A sequence starts with the start of the first process. Each subsequent process starts if and when its predeces
sor terminates. The sequence terminates on termination of the last process. A sequence with no component
processes behaves like SKIP.

Conditional

conditional

choice

IF
{ choice}

guarded.choice I conditional

guarded.choice = boolean
process

boolean expression

The value of a boolean expression is either true or false. A guarded choice behaves like STOP if its boolean
is initially false. Otherwise it behaves like SKIP and the process, in sequence.

The choices are tested in sequence. The conditional behaves like the first of the choices which can proceed,
or like STOP if none of them can proceed. A conditional with no component choices behaves like STOP.

Loop

loop = WHILE boolean
process

A loop is defined by

WHILE b = IF
P b

SEQ
P
WHILE b

P
NOT b

SKIP

4 Occam 2 language definition

C Process

Parallel

parallel PAR
{ process}

All processes of a parallel start simultaneously, and proceed together. The parallel terminates when all of the
processes have terminated. A parallel process is ready to communicate on a channel if any of its components
is ready. A parallel with no component processes behaves like SKIP.

If a channel is used for input in one process, and output in another, communication takes place when both
processes are ready. The inputting and outputting processes then proceed, and the value of the expression
specified in the output is assigned to the variable specified in the input.

No variable changed by assignment or input in any of the component processes of a parallel may be used
in any other component, no channel may be used for input in more than one component process, and no
channel may be used for output in more than one component process. A parallel is invalid unless these
non-interference conditions are satisfied.

Alternation

alternation

alternative

guarded. alternative

guard

ALT
{ alternative }

guarded.alternative I alternation

guard
process

input
boolean & input
boolean & SKIP

A guard behaves like STOP if its boolean is initially false, and like the input or SKIP otherwise. A guarded
alternative behaves like the guard and the process, in sequence.

An alternation behaves like anyone of the alternatives which can proceed, and can proceed if any of the
alternatives can proceed. An alternation with no component alternatives behaves like STOP.

5 Occam 2 language definition

Replicator

sequence replicator
process

conditional IF replicator
choice

parallel PAR replicator
process

alternation ALT replicator
alternative

replicator name = base FOR count

base expression

count expression

Let n be a name, and a and C be expressions of type INT with values band c. Let X be one of SEQ, PAR,
ALT or IF and let Y(n) be a corresponding process, choice or alternative according to the syntax above.
Then

X n = a FOR C
Y(n)

specifies the name n as a value of type INT for use within Y(n).

The meaning of a replicator is defined by

SEQ n =a FOR 0 SKIP
Y(n)

IF n= a FOR 0 STOP
Y(n)

PAR n= a FOR 0 SKIP
Y(n)

ALT n =a FOR 0 STOP
Y(n)

If c> 0
Xn= a FOR C X

Y(n) Y(b)
Y(b+1)

Y(b+c-1)

If c < 0
X n =a FOR C is invalid

Y(n)

6 Occam 2 language definition

E Case

process CASE selector
{ selection }

selection expression
process

ELSE
process

selector expression

The selector is evaluated, and its value is used to select one of the component selections. If the value of
the selector is the same as the value of the expression in one of the selections, the case behaves like the
process in that selection. Otherwise the case behaves like the process in the ELSE selection, or like STOP
if there is no ELSE selection.

A case process is invalid unless the expressions in the selections have distinct constant values. A case
process must have at most one ELSE selection.

7 Occam 2 language definition

F Multiple assignment

assignment

variable. list
expression. list

variable.list : =expression.list

{l , variable}
{l , expression}

A multiple assignment v1, v2, , vn : = e1, e2, ... , en first evaluates e1, e2, ... , en to produce
corresponding values x1, x2, , xn and then behaves like:

v1 : =x1
v2 := x2

vn := xn

8 Occam 2 language definition

G Types

Primitive types

type

primitive. type

primitive. type
array. type

CHAN OF protocol
TIMER
BOOL
BYTE
INT

A communication channel is of type CHAN OF protocol. Each communication channel enables values to
be communicated between two concurrent processes according to the specified protocol. A timer is 'of type
TIMER. Each timer provides a clock which can be used by any number of concurrent processes. All other
primitive types are data types.

Every variable, expression and value has a data type, which defines the interpretation of values of the type.

The values of type BOOL are true and false.

The values of type BYTE are nonnegative numbers less than 256.

A value of any integer type is interpreted as a signed integer n in the range

-(N/2) <= n < (N/2)

where N is the number of different values which may be represented by variables of the integer type.

INT is the type of signed integer values most efficiently provided by the implementation.

types

array. type [expression] type

Array types are constructed from component types. An array type is a channel type, timer type or data type,
depending on the type of its components. Two arrays have the same type if they have the same number of
components and the types of their components are the same.

In the array type [e] T, the value of e defines the number of components in an array of the array type, and T
defines the type of the components. A component of an array can be selected by a nonnegative value .less
than the size of the array.

9 Occam 2 IQBB~""~"~"- i"fofinnfnnn

G Types

Integer and Real types

primitive. type = INT16
INT32
INT64
REAL32
REAL64

A signed integer value represented in twos complement form using n bits is of type INTn. A signed real
value is of type REAL32 or REAL64, and is represented according to ANSI/IEEE standard 754-1985.

A value vof type REAL32 is represented using a sign bit 5, an 8 bit exponent e and a 23 bit fraction f. The
value v is positive if 5=0, negative if 5=1; its magnitude is:

(2 ** (e-127)) * 1.1
(2 ** -126) * 0.1
o

if O<e and e<255
if e=O and 1<>0
if e=O and f=O

Similarly, a value v of type REAL64 is represented using a sign bit 5, an 11 bit exponent e and a 52 bit
fraction 1. The value v is positive if 5=0, negative if 5=1; its magnitude is:

(2 ** (e-1023)) * 1.1
(2 ** -1022) * 0.1
o

if O<e and e<2047
if e=O and 1<>0
if e=O and f=O

Rounding and Truncating

Arithmetic operators with real operands round their results to produce a value of the same type as their
operands. Rounding also occurs in explicit type conversions, and in converting real literals into the above
representation. Truncation occurs only in explicit type conversions.

It is valid to round a real value v to a value of type T, provided that v differs from some value r of type T by
at most one half in the least significant bit position of r. The result is the value of type T nearest to v; if two
values of type T are equally near, the one in which the least significant bit is zero is chosen.

Similarly, it is valid to truncate a real value v to a value of type T, provided that v differs from some value t
of type T by less than one in the least significant bit position of t. The result is the value of type T nearest to
and not larger in magnitude than v.

10 Occam 2 language definition

H Scope

process specification
process

choice specification
choice

alternative

specification

A block

N
S

specification
alternative

declaration 1 abbreviation·1 definition

behaves like its scope S; the specification N specifies a name, which may be used with this specification only
within S.

Let x and y be names, and let S(x) and S(y) be scopes which are similar except that S(x) contains x wherever
S(y) contains y, and vice versa. Let N(x) and N(y) be specifications which are similar except that N(x) is a
specification of x and N(y) is a specification of y. Then

N(x) N(y)
S(x) S(y)

Using this rule it is possible to express a process in a canonical form in which no name is specified more
than once.

Declaration

declaration type name:

A declaration T x : declares x as a new channel, variable, timer or array of type T.

A single declaration may declare several names of the same type. Let T be a type and Ni, N2, ... , Nn names.
Then

T Ni:
T N2:

T Nn:
p

TNi, N2, ... , Nn:
p

11 Occam 2 language definition

H Scope

Abbreviation

abbreviation = specifier name IS element:
VAL specifier name IS expression:

An element is either a name, or a subscripted name which selects a component of an array. An abbreviation
5 n IS element: specifies n as an abbreviation for the element. Let e be an element, and prey be a process.
Then

5 n IS e: prey
P(n)

The abbreviation is invalid if P(n) contains an assignment or input to a variable in a sUbscript in e.

An abbreviation VAL 5 n IS expression: specifies n as an abbreviation for the expression. Let e be an
expression, and Prey be a process. Then

VAL 5 n IS e: = Prey
P(n)

The abbreviation is invalid if P(n) contains an assignment or input to a variable in e.

specifier =
I

primitive. type
[] specifier I [expression] specifier

The type of the element or expression in an abbreviation must be compatible with the specifier. A primitive
type T is compatible with a specifier T. A type [n] T is compatible with a specifier [] 5, or with a specifier
[n] 5, provided that T is compatible with 5.

The specifier can usually be omitted from an abbreviation. Let N be a name, E be an element or expression
and S a compatible specifier. Then

N IS E :

and

S N IS E :

VAL N IS E: = VAL S N IS E :

12 Occam 2 language definition

Protocol

definition

protocol

PROTOCOL name IS simple.protocol :
PROTOCOL name IS sequential.protocol :

name

Each input or output on a channel must be compatible with the channel protocol named in the declaration of
the channel.

A protocol !definition specifies the name of a protocol.

Simple protocol

simple.protocol type

Let T be a data type, P a protocol T and c a channel of type CHAN OF P. An output c ! e is compatible with
P provided that e is of type T, and an input c ? v is compatible with P provided that v is of type T.

simple.protocol

input

input. item

output

output. item

type: : [] type

channel? input.item

variable
variable :: variable

channel! output.item

expression
expression :: expression

Let Tn and Tbe data types, P a protocol Tn: : [] T, and c a channel of type CHAN OF P. An output c ! e: : a
is compatible with P provided that a is of type [n] T and e is of type Tn ; its effect is to output first e, then the
first e components of a. Similarly, an input c ? v: : a is compatible with P provided that a is of type [T
and v is of type Tn; its effect is to input first v, then the first v components of a.

protocQI simple.protocol

A simple protocol P need not be named; it can be used directly in the channel type CHAN OF P.

Sequential protocol

sequential.protocol

input

output

{l ; simple.protocol}

channel? {l ; input. item }

channel! {l ; output. item }

Let Pbe a protocol P1; P2; ... ; Pn and c be a channel of type CHAN OF P. The output c ! X1; X2; ... ; Xn
is compatible with P provided that each c ! Xi is compatible with the corresponding Pi; it outputs X1, X2, ...
, Xn in sequence.

Similarly, the input c ? X1; X2; ... ; Xn is compatible with P provided that each c ? Xi is compatible with the
corresponding Pi; it inputs X1, X2, ... , Xn in sequence.

13 Occam 2 1",__ •• "'.,._1f"III. definition

Protocol

Variant protocol

definition

tagged.protocol

tag =

PROTOCOL name
CASE

{ tagged.protocol }

tag
tag ; protocol

name

output

The tags are specified by the definition of the variant protocol and all of the tags used must be distinct
names. An input or output is compatible with a variant protocol provided that it is compatible with one of the
component tagged protocols.

channel! tag
channel! tag; {I ; outpuUtem}

An output c ! t is compatible with a tagged protocol t.

An output c ! t; L is compatible with a tagged protocol t; S provided that c ! L is compatible with S. It first
outputs tag t, and then behaves like c ! L.

case.input

variant

tagged.list

process

channel? CASE
{ variant}

tagged. list
process

specification
variant

tag
tag ; {I ; inpuUtem}

case. input

A case input is compatible with a variant protocol provided that each of its component variants is compatible
with some tagged protocol of the variant protocol.

A case input behaves first like an input of a tag t from a channel. The tag is then used to select one of the
component variants. If there is a component variant with tagged list t ; L, the list L is input from the channel,
and the case then behaves like the associated process. If there is no tagged input with tag t, the case input
behaves first like the input of tag t, then like STOP.

input channel? CASE tagged. list

An input c ? CASE t ; L behaves first like an input of a tag s, and then like an input of L is s=t and like
STOP otherwise.

alternative = channel? CASE
{ variant}

boolean & channel? CASE
{ variant }

I

A case input may be used as an alternative in an alternation. It behaves like STOP if its boolean is initially
false and like the case input otherwise.

14 Occam 2 language definition

J Procedure

definition

formal

body

The definition

PROC name (fa , formal})
body

specifier name
VAL specifier name

process

PROC n (fa , formal })
B

defines n as the name of a procedure.

instance

actual

name (fa , actual })

element
expression

Let X be a program expressed in the canonical form in which no name is specified more than once. If X
contains a procedure definition P (FD, F1, ... , Fn) with body B, then within the scope of P

P (AD, A 1, ... , An) FD IS AD :
F1 IS A1 :

Fn IS An :
B

provided that each abbreviation Fi IS Ai is valid.

A formal may specify several names. Let S be a specifier. Then

S x1, S x2, ... , S xn

and

S x1, x2, ... , xn

VAL S x1, VAL S x2, ... , VAL S xn VAL S x1, x2, ... , xn

A procedure can always be compiled either by substitution of its body as described above or as a closed
subroutine.

15 Occam 2 language definition

K Variable, Channel and Timer

An element has a type, which may be a channel type, timer type or data type. An element of data type also
has a value. Elements enable channels, timers, variables or arrays to be selected from arrays.

element

subscript

element [subscript]
[element FROM subscript FOR subscript]
name

expression

Let v be of type [n] T, and e an expression of type INT and value s. Then v[e] is valid only if 0<=5 and
s<n; it is the component of v selected by s.

Let v be of type n] T. Then [v FROM b FOR c] is valid only if c>=O, b>=O and (b+c)<=n; it is an array of
type Twith components v[b] 1 v[b+1] 1 ••• v[(b+c)-1].

The type of an element consisting of a name is that of the name.

Variable

variable element

Every variable has a value which may be changed by assignment or input. The value of a variable is the
value most recently assigned to it, or is arbitrary if no value has been assigned to it. An assignment or input
is invalid unless the type of the variable is that of the value assigned.

Let v be a variable of type [n] T, and e an expression of type T. If O<=s and s<n, then v[s] : =e assigns to
v a new value in which the value of the component selected by s is replaced by the value of e, and all other
components are unchanged. Otherwise the assignment is invalid.

Let v be a variable of type [n] T. Let s be [v FROM b FOR c] and e an expression of the same type as s,
[T. The assignment s : =e assigns to each component of s the corresponding component of e, provided
that no component of e is also a component of s. Otherwise s : = e is invalid.

Let x be a channel, s be [vFROM b FOR c] , e an expression. The combined effect of x?s and x! e is s : = e.

r"'h~"llI'\ftl and Timer

channel

timer

element

element

A channel element used for input or output is invalid unless it is of type CHAN OF protocol. A timer element
used for timer input or delayed input is invalid unless it is of type TIMER.

16 Occam 2 language definition

L Literal

A-literal has a data type and a value.

literal

integer

byte

real

exponent

integer
byte
integer (type)
byte (type)
rea/(type)
string
TRUE I FALSE

digits I #digits

, character'

digits. digits I digits. digitsEexponent

+digits I -digits

An integer literal is a decimal number, or # followed by a hexadecimal number. A byte literal is an ASCII
character enclosed in single quotation marks: '.

An integer literal is of type INT, and a byte literal is of type BYTE. Let x be an integer or byte literal, and T
be BYTE or an integer type. A literal x (7) is a value of type T and value x, provided that x can be exactly
represented as a value of type T. Otherwise x (7) is invalid.

Let Tbe a real type. The value of the literal f(7) is frounded to a value of type T, and the value of the literal
fE e (n is f * (10 ** e) rounded to a value of type T.

A string is represented as a sequence of ASCII characters, enclosed by double quotation marks: n. Let s be
a string of n characters. The value of s is an array of type [n]BYTE; the value of each component of the
array is the value of the corresponding ASCII character of the string.

The literals TRUE and FALSE represent the Boolean values true and false respectively.

17 Occam 2 language definition

operand

expression

M Expression

An expression has a data type and a value. Expressions are constructed from operands, operators and
parentheses.

element
literal
[{l , expression)J
(expression)

The value of an operand is that of an element, literal or expression.

The value of [e 1, e2, ... , enl is an array in which the value of each component is the value of the
corresponding expression. -

monadic.operator operand
operand dyadic.operator operand
conversion
operand

The arithmetic operators +, -, /, REM yield the arithmetic sum, difference, product, quotient and remainder,
respectively. Both operands of an arithmetic operator must be of the same integer or real type, and the result
is of the same type as the operands. The arithmetic operators treat integer operands as signed integer values,
and produce signed integer results. The type of -x is that of x, and its value is (0 - x).

Let m and n be integers. The result of m / n is rounded towards zero, being positive if both m and n are
of the same sign, negative otherwise. The result of m REM n is the remainder of m / n, and its sign is the
same as the sign of m. Regardless of the signs of m and n and provided that n is nonzero

m= «n * (m/n» + (mREMn»

The result of a real arithmetic expression e of type T is the value of e, rounded to the nearest value of type
T. If x and yare real, the result r of x REM Y is x - (y * n), where n is the result of x / y rounded to the nearest
integer value; REM can therefore yield a negative value.

The operators +, -, *, /, REM are invalid if the result cannot be represented as a value of the same type as
the operands.

18 Occam 2 language definition

M Expression

Both operands of the modulo operators PLUS, MINUS and TI:MES must be of the same integer type, and the
result is of the same type as the operands. Let N be the number of different values which may be represented
using the type of the expression. The modulo operators obey the following rules:

(i PLUS j) = (i + j) + (k * N)

where k is the unique integer for which

(i + j) + (k * N) >= -(N/2) and
(i + j) + (k * N) < (N/2)

Simi!arly:

(i MINUS j) = (i - j) + k * N
(i TIMES j) = (i * j) + k * N

The operator AFTER is defined by:

(i AFTER j) = (i MINUS j) > 0

The bitwise operators /\, \/, >< yield the bitwise and, or and exclusive or of their operands. Both operands
must be of the same integer type, and the result is of the same type as the operands. Each bit of the result
is produced from the corresponding bits of the operands according to the following rules:

b>< O=b
b /\ 0 = 0
b \/ 0 = b

0><1=1
b /\ 1 = b
b \/ 1 = 1

1><1=0

where b is 0 or 1.

The bitwise operator,.., yields the bitwise not of its operand, which must be of integer type. Each bit of the
result is produced from the operand as follows:

,..,1=0 ,..,0=1

19 Occam 2 language definition

1)) = n

M Expression

In a shift expression n« cor n » c, n and the result are of the same integer type, and c is of type INT.
The shift operators yield results according to the following rules:

n« 1 = n PLUS n
n» 1 = n1, where m>=O and ((m« 1)+(n

Let 0 be « or », and let b be the number of bits needed to represent a value of type n. Then

(n 0 0) = n
if c < 0 or c > b
if c> 0

n 0 c is invalid
n 0 c = (n 0 1) 0 (c-1)

The boolean operators NOT, AND, OR yield boolean results according to the following rules:

NOT false = true
false AND b = false
false b = b

NOT true = false
true AND b = b
true OR b = true

where b is a boolean value.

Let 0 be one of the operators AND, OR.

e1 0 e2 0 ... 0 en (e1 0 (e20 (... 0 en) ... »

The relational operators =, <>, <, <=, >, >= yield a result of type BOOL. The operands of =and <> must
be of the same primitive data type. The operands of <, <=, >, >= must be of the same integer, byte or real
type. The result of x =Y is true if the value of x is equal to that of y. The result of x < Y is true if the numerical
value of x is strictly less than that of y. The other operators obey the following rules:

(x<> y) =NOT (x= y)
(x > y) = (y < x)

(x >= y) = NOT (x < y)
(x <= y) =NOT (x > y)

where x and yare any values.

The operand of the monadic operator SIZE must be an array type. Let x be of type [n] T. The expression
SIZE x is of type INT; its value is n.

expression = MOSTPOS type I MOSTNEG type

Let Jbe an integer type, and N be the number of values representable using type J. The type of MOSTPOS J
is J; its value is (N/2)-1. Similarly, the type of MOSTNEG J is J; its value is -(N/2).

20 Occam 2 language definition

conversion

M Expression

type operand
type ROUND operand
type TRUNC operand

The type of a conversion T e, TROUND ear TTRUNC e is T; its value is the value of e converted to a value
of type T. Both T and the type of e must be primitive types.

Let e be an expression of value v, and of integer or BYTE type. Then BOOL e is invalid unless v=O or v=1;
its value is TRUE if v=1, FALSE if v=O. LetT be any integer type, BYTE or BOOL. Then T TRUE= 1 and
TFALSE=O.

Let e be an expression of value v, and of integer or BYTE type. Let 1be an integer type and N the number of
values representable in type I. The value of 1e is v, provided that -(N/2) <= v < (N/2). The value of BYTE e
is v, provided that 0 <= v < 256.

Let e be an expression of value vand of integer type. Let R be a real type. The value of R ROUND e is the
value of e rounded to a value of type R, and the the value of R TRUNC e is the value of e truncated to a
value of type R. R e is invalid.

Let e be an expression of value v, and of real type S. Let R be a real type. Then R e is valid if every value
of type S is exactly representable as a value of type R, and its value is v.

Let e be an expression of value v and of real type. Let Tbe an integer or real type. The result of TROUND e
is the value of e rounded to a value of type T, and the result of T TRUNC e is the value of e truncated to a
value of type T.

21 Occam 2 language definition

N Function

Valof

valof VALOF
process
RESULT expression. list

valof specification
valof

The _valot

VALOF
P
RESULT E

tirst executes process P, and then evaluates the expression list E to produce a list ot result values.

o.perand

expression list

(valof
)

(valof
)

A vaiot with a single result value may be used as an expression operand, and a valot with one or more result
values may be used as an expression list in a multiple assignment.

A valot may not contain parallel or alternative constructs and may not contain inputs or outputs. Any assign
ment in a valot must be to a variable declared within the valot.

22 Occam 2 language definition

N Function

Function definition

definition

function.body

The definition

{l , type} FUNCTION name ((a , formal})
function.body

valof

{l , type} FUNCTION n ((a , formal })
B

defines n as the name of a function with a body 8 which computes one or more values with types specified
by the list preceding FUNCTION. Each formal in the function definition must have the form VAL S n.

operand

expression list

name ((a , expression})

name ((a , expression})

Let X be a program expressed in the canonical form in which no name is specified more than once. If X
contains a function definition Tt, T2, ... , Tn F (FO, Ft, ... , Fn) with body B, then within the scope of F

F (EO, Et, ... , En) FO IS EO :
Ft IS Et :

Fn IS En :
B

provided that each abbreviation Fi IS Ei is valid.

definition {l , type} FUNCTION name ((a , formal}) IS expression.list :

An expression list may be used as a function body in place of a valof. The meaning of

{l , type} FUNCTION name ((a , formal}) IS expression.list :

is the same as that of

{l , type} FUNCTION name ((a , formal})
VALOF

SKIP
RESULT expression.list

A function can always be compiled either by substitution of its body as described above or as a closed
subroutine.

23 Occam 2 language definition

o Timer input

input = timer.input
delayed.input

timer.input = timer? variable

A timer input sets the variable to a value of type INT representing the time. The value is derived from a_
clock, which changes at regular intervals. The successive values of the clock are produced by:

clock : =clock PLUS 1

delayed.input = timer? AFTER expression

A delayed input is unable to proceed until the value of the clock satisfies (clock AFTER e), where e is the
value of the expression.

24 Occam 2 language definition

P Character set

The occam characters are:

Alphabetic characters

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijk1mnopqrstuvwxyz

Digits

0123456789

Special characters

! n #& f () *+, _. / : ; <=>? []

The space character

Strings and character constants may contain any occam character (except *, ' and n). Certain characters
are represented as follows:

*c carriage return
*n newline
*t horizontal tabulate
*s space
*, quotation mark
* n double quotation mark
** asterisk

If a string contains the character pair *1 immediately following the opening n, then the value of byte 0 of the
string is the subscript of the last character of the string.

Any character can be represented by *# followed by two hexadecimal digits.

A name consists of a sequence of alphabetic characters, decimal digits and dots (.), the first of which must
be an alptlabetic character. Two names are the same only if they consist of the same sequence of characters
and corresponding characters have the same case.

Other characters

An implementation may provide other characters for use in strir I,;.. -j character constants.

An implementation may also provide the following equivalences

REM \
BITAND /\
BITOR \/
BITNOT AI

$ #

25 Occam 2 III~U ..A~" definition

parallel

placement

Q Configuration

Configuration does not affect the logical behavior of a program. However, it does enable the program to be
arranged to ensure that performance requirements are met.

PLACED PAR
{ placement }

PLACED PAR replicator
placement

PROCESSOR expression
process

Each placement is executed by a separate processor. The value of the expression in a placement is the
number of the processor executing the component process. The variables and timers used in a placement
must be declared within the placement.

parallel PRI PAR
{ process}

PRI PAR replicator
process

Each process is executed at a separate priority. The first process is the highest priority, the last the lowest.
If P and Q are two concurrent processes with priorities p and q such that p < q, then Q is only allowed to
proceed when P cannot proceed.

alternation PRI ALT
{ alternative }

PRI ALT replicator
alternative

If several alternatives can proceed, the alternation behaves like the first in textual sequence.

process

allocation

allocation
process

PLACE name AT expression :

An allocation PLACE n AT e : allocates the variable, channel, timer or array n to address e.

26 Occam 2 language definition

R Invalid processes

Invalid p~ocesses which are not detected by the compiler can behave in one of the following th~ee ways:

Cause the process to STOP allowing other processes to continue.

Cause the whole system to halt.

Have an arbitrary (undefined) effect.

A process containing an invalid expression is ,treated in the same way as an invalid process.

27 Occam 2 language definition

S Retyping

definition specifier name RETYPES element:
VAL specifier name RETYPES expression:

An implementation of occam will normally represent variables using a number of bytes or words in a computer
memory. It is sometimes possible to interpret this representation as a variable or value of a different type.

The definition T n RETYPES e : specifies n as an element of type T, and [] T n RETYPES e : specifies
n as an element of type [x] T. The definition S n RETYPES e : is invalid if the scope of n contains an
assignment or input to a variable in a subscript in e.

The definition VAL T n RETYPES e : specifies n as an expression of type T, and VAL [] T n RETYPES e :
specifies n as an expression pf type [x] T. The definition VAL S n RETYPES e : is invalid if the scope of n
contains an assignment or input to a variable in e.

The use of the retyping conversion will normally result in implementation dependent processes, as the repres
entation of variables will vary fr-om one implementation to another.

28 Occam 2 language definition

T External input and output

Memory mapped interfaces

type PORT OF type

port element

A process may communicate with external devices which are connected to the processor's memory system.
A port specification is similar to a channel specification, and the type used in a port specification must be a
data type.

input

output

port? variable

port! expression

A port input inputs a value from the port, assigns it to the variable and then terminates. A port output evaluates
the expression and outputs the result to the port. A program is invalid if any port is used for input or output
in more than one component of a parallel.

Channels without protocol

protocol ANY

Let c be a channel with type CHAN OF ANY. Then c may be used to input or output values of data type.
Let e be an expression of type T. Let x be defined by

VAL [] BYTE x RETYPES e :

Then the meaning of c! e is that of c ! x. Similarly, let v be an expression of type T. Let x be defined by

[] BYTE x RETYPES v :

Then the meaning of c? v is that of c ? x.

29 Occam 2 IgIIMUII;,4M" definition

	Contents
	Occam Tutorial (72-OCC-043-07)
	1 Introduction
	2 Signposts
	3 The Concepts
	4 Fundamentals of occam programming
	5 Arrays in occam
	6 Channel communication
	7 Characters and Strings
	8 Replicators
	9 Real-Time Programming in occam
	10 Configuration
	11 Terminating Concurrent Programs
	12 Occam Programming Style

	Occam 2 language definition (72-OCC-044-02)
	A Introduction
	B Notation
	C Process
	D Replicator
	E Case
	F Multiple assignment
	G Types
	H Scope
	I Protocol
	J Procedure
	K Variable, Channel and Timer
	L Literal
	M Expression
	N Function
	O Timer input
	P Character set
	Q Configuration
	R Invalid processes
	S Retyping
	T External input and output

