Language Overview
ocCam

Entia non sunt multiplicanda praeter
necessitatem
William of Occam

The choice of what is to be omitted
from a new language is in practice
much more critical than the choice of
what is to be added

Niklaus Wirth

Programmers are always surrounded
by complexity, we cannot avoid it. If
our basic tool, the language in which
we design and code our programs,
is also complicated, the language
becomes part of the problem rather
than part of its solution

C.A.R.Hoare

Sequential systems will not be
adequate for the future. There are an
additional four orders of magnitude
in computational capability available
through concurrent systems

Carver Mead

Occam'’s Razor — that entities are not to be multiplied beyond
necessity — has been the guiding principle in designing this new
language. William of Occam was a fourteenth century Oxford
philosopher, whose teaching was condemned by the Pope. He is now
recognised as having anticipated a basic principle of modern scientific
method.

Niklaus Wirth is renowned as the designer of Pascal. Together

with Dijkstra and Hoare, he has been influential in establishing the
principles of good programming practice. Ada, the most ambitious
language development ever attempted, is largely based on Pascal.
Wirth’s quote is from the original ‘Green’ submission to DoD for the
Ada contest. Green won, but Wirth’'s comment was omitted from the
final version.

Professor Hoare, Director of the Programming Research Group at
Oxford University, is well known for his concern over the unnecessary
elaboration of languages. He fears that systems programmed in
complex languages may pose dangers in the real world. He received
the Turing Award — the ACM'’s highest honor for technical contribution
to the computing community — for his ‘fundamental contributions

to the definition and design of programming languages’ with work
‘characterised by an unusual combination of insight, originality,
elegance and impact’.

Tony Hoare has been closely involved in the design of occam, the
new language developed at INMOS by David May to provide a better
tool for programming microprocessors and future systems. The
precursors of occam are well structured languages like Pascal and C
and experimental languages like Hoare’'s CSP — which established the
communication primitives subsequently elaborated in Ada.

Carver Mead is the foremost advocate of structured VLS| design. He
holds the chair at Caltech endowed by Gordon Moore, Chairman of
Intel.

Concurrency is clearly the key to higher performance systems.
Occam is designed to unlock the potential of VLS| by providing the
concepts for describing and programming systems containing many
interconnected processing elements — the fifth generation systems of
the future.

Occam is the new programming language.

Occam is based on the concepts of concurrency and communication.
These concepts enable today's applications of microprocessors and
computers to be implemented more effectively. They are essential to
tomorrow’s systems built from multiple interconnected transputers.

Occam is designed for programmers and engineers. The language
is oriented towards interactive use. It enables complex systems to be
described in a concise and readable form. As a result, programmer
productivity is enhanced.

Occam has a formal basis and uses the minimum of concepts. It is
easy to understand and efficiently implemented on a wide range of
microprocessors and computers.

The use of occam is illustrated by the design of a simple interactive
system, concentrating on the design of a screen handler. The top level
description is that of a system reflecting the characters typed on a
keyboard, and displaying the results of an application process. It also
includes a timeout which prompts for input.

The system is implemented by three distinct tasks, one to accept
characters from the keyboard, one performing the application, and one
to merge the results and the reflected characters and output them to
the screen.

These tasks can be represented as a network.
Keyboard

LEBTN

Keyboard
handler

App. in

Application

Screen
handler
N

Screen

In occam, each task is represented by a process, and each
connection by a channel. The processes communicate by sending
messages via the channels. A process can be constructed from
smaller processes. Indeed this collection of processes is itself a
process in occam, and the system as described could be part of some
larger system.

This network is represented by defining the channels and processes.
CHAN introduces the channels through which the processes
communicate, and the PAR construct causes the various processes

to operate concurrently. Each process is independent and so the three
processes can execute in parallel:

CHAN Echo, App.in, App.out:
PAR

... keyboard handler

... application

... screen handler

If this were a large system, then each component process could be
given to an individual programmer or team to design.

The screen handler process may do one of three things. Firstly, it may
receive a character from the keyboard handler, which it reflects to the

screen:

Echo ? ch
Screen ! ch

Secondly, the screen handler process may receive a character from
the application. The IF construct is used to test the character to see if
the whole process should be terminated:

App.out ? ch
IF
ch = terminating.character
running := FALSE
ch <> terminating.character
Screen ! ch

Finally, at five second intervals, the screen handler process outputs a
prompt:

TIME ? AFTER alarm.time
Screen ! '>!

These individual program sections are combined into the complete
screen handler process by declaring the local variables, by using
WHILE and ALT to enable the process to perform whichever alternative
is required, by using a timer input to reset the alarm clock immediately
before waiting for a message from one of the two channels, and by
using SEQ to control the initialisation of the variables:

VAR ch, running, alarm.time :
SEQ
running := TRUE
WHILE running
SEQ
TIME ? alarm.time
alarm.time := alarm.time + five.secs
ALT
Echo ? ch
Screen ! ch
App.out ? ch
IF
ch = terminating.character
running := FALSE
ch <> terminating.character
Screen ! ch
TIME ? AFTER alarm.time
Screen ! >

Model

Values

Structure

Assignment

Communication

Time

Sequence

Parallel

Conditional

Alternative

Repetition

Procedure

Syntax

Entia

Programs are expressed in terms of concurrent processes, which
communicate using channels. An obvious implementation of an occam
program is a network of microcomputers, each executing one of

the concurrent processes. However, the same occam program can
also be execured by a single computer sharing its time between the
concurrent processes.

Values correspond to numbers, characters, truth values and bit
patterns. Arrays are provided. There is a wide range of logical and
arithmetic operators for use in expressions.

Programs are contructed from a small number of primitive processes:
assignent, input and output. Processes are combined using the
constructors sequence, parallel, conditional and alternative, and may
be replicated in arrays.

An assignment may be used to set the value of a variable to the value
of an expressions.

A channel provides communications between two concurrent
processes. The communication is synchronised, and takes place only
when both the input and the output process are ready; the values
being copied from the output process to the input process.

Execution of a process may be related to the passage of time. A timer
input may be used to delay execution until a specified time is reached.

The component processes are executed one after the other. A
sequence construct terminates after the last of its components has
terminated.

The component processes are executed concurrently. Each
component process operates on its own variables, communicating
with other concurrent processes using channels. A parallel construct
terminates only after all of its components have terminated.

The component processes are tested in sequence. If one is ready, it is
executed. At most one of the component processes is executed.

An alternative waits for input from one of a number of channels, and
then executes a corresponding component process.

A while construct causes its component process to be executed
repeatedly until the result of evaluating a condition is false.

Procedures may be defined, and may take channel parameters,
allowing a form of process abstraction. A completely self—contained
form of abstraction is provided. This is an independent unit of
compilation, and may be transmitted around a system, or loaded when
a system is initialised.

Each primitive process and each constructor is represented by a
single line of program. The component processes combined by a
constructor follow it on successive lines. This makes interactive editors
and compilers simple and efficient.

Semantics

Use of Occam

Products

Publications

Occam user group

The design of occam is based on a formal model which facilitates
reasoning about the properties of the language constructs, and the
behaviour of specific programs. Each process can be described

by an assertion in the predicate calculus, and the composition of
processes into networks can be described by the logical conjunction
of the assertions describng each process.

Since its introduction in 1982, occam has been widely used for many
purposes, including :

Programming concurrent systems containing hundreds of processors;
Systems programming, operating systems and compilers, eg the
occam programming system;

Real time industrial control systems;

Signal processing and image processing;

Teaching the principles of concurrent and real time programming;
Hardware description, eg as an HDL for the transputer;

Simulation, eg electronic systems, manufacturing systems.

Occam has been successfully used in the construction of large
systems by teams of programmers. This has exploited the capability
in occam for an interconnected set of processes to be regarded
from the outside as a single process. At any level of detail, each
individual designer is only concerned with a small and manageable
set of processes.

The occam language is supported by a wide range of products from
INMOS. These include introductory products for language evaluation,
integrated support environments, and portable versions of the compiler.

Occam Programming Manual Prentice Hall International
(English) ISBN 0-13-629296-8

Occam Programming Manual Keigaku
(Japanese) ISBN 4-7665—0133-0

The occam user group is an informal organisation run by its own
members. Its main aim is to act as a forum for the interchange of
information among members and as a channel for communication with
INMOS. It organises meetings twice yearly, and issues a newsletter,
also twice yearly. Membership is free upon submission of an enrolment
form, available from Software Support at INMOS.

nNMoSs®

®

INMOS Limited
Whitefriars

Lewins Mead

Bristol BS1 2NP

England

Telephone (0272) 290861
Telex 444723

INMOS Corporation

PO Box 16000

Colorado Springs

CO 80935

USA

Telephone (303) 630 4000
TWX 910 920 4904

INMOS GmbH

Danziger Strasse 2

8057 Eching

Munich

West Germany

Telephone (089) 31910 28
Telex 522645

INMOS SARL
Immeuble Monaco

7 rue Le Corbusier
SILIC 219

94518 Rungis Cedex
France

Telephone (1) 687 22 01
Telex 201222

INMOS reserves the right to change the materials and the products described therein at any time and without notice.
Copyright 1985 INMOS Limited. All rights reserved.
@, IMS and occam are trade marks of the INMOS Group of Companies.

September 1985

72-0OCC-027-000

