

Occam is the new programming language.

Occam is based on the concepts of concurrency and communication.
These concepts enable today’s applications of microprocessors and
computers to be implemented more effectively. They are essential for
tomorrow’s systems built from multiple interconnected transputers.

Occam is designed for the professional programmer. The language
is oriented to interactive use. It enables complex systems to be
programmed in a concise and readable form. As a result,
programmer productivity is enhanced.

Occam has a formal basis and uses the minimum of concepts. It is
easy to understand and easy to compile for a wide variety of
microprocessors and computers.

The choice of what is to be omitted
from a new language is in practice
much more critical than the choice of
what is to be added

Niklaus Wirth

Programmers are always surrounded

by complexity; we cannot avoid it. If our

basic tool, the language in which we
design and code our programs, is also
complicated, the language itself
becomes part of the problem rather
than part of its solution

CAR Hoare

Sequential systems will not be
adequate for the future. There are an
additional four orders of magnitude in
computational capability available
through concurrent systems

Carver Mead

Entia non sunt multiplicanda praeter
necessitatem
William of Occam

Niklaus Wirth is renowned as the designer of Pascal. Together with Dijkstra
and Hoare, he has been influential in establishing the principles of good
programming practice. Ada, the most ambitious language development
ever attempted, is largely based on Pascal. Wirth’'s quote is from the
original ‘Green’ submission to DoD for the Ada contest. Green won, but
Wirth’s comment was omitted from the final version.

Professor Hoare, Director of the Programming Research Group at Oxford
University, is well known for his concern over the unnecessary elaboration
of languages. He fears that systems programmed in complex languages
may pose dangers in the real world. He received the Turing Award — the
ACM'’s highest honour for technical contributions to the computing
community — for his ‘fundamental contributions to the definition and
design of programming languages’ with work ‘characterised by an
unusual combination of insight, originality, elegance and impact.’

Tony Hoare has been closely involved in the design of occam, the new
language developed at INMOS Limited by David May to provide a better
tool for programming microprocessors and future systems. The precursors
of occam are well structured languages like Algol 60 and Pascal, system
languages like BCPL and C and experimental languages like Hoare’s CSP
— which established the communication primitives subsequently
elaborated in Ada.

Carver Mead is the foremost advocate of structured VLS| design. He holds
the chair at Caltech endowed by Gordon Moore, Chairman of Intel. Carver
Mead was joint winner (with Lynn Conway, manager of VLSI system
design at Xerox PARC) of the Electronics 1981 Achievement Award. He is
said to have significantly influenced the design of the Motorola 68000 and
the Intel IAPX 432.

Concurrency is clearly the key to higher performance systems. Occam is
designed to unlock the potential of VLSI by providing the concepts for
describing and programming systems containing many interconnected
processing elements — the fifth generation systems of the future.

Occam’s Razor —that entities are not to be multiplied beyond necessity —
has been the guiding principle in designing this new language. William of
Occam was a fourteenth century Oxford philosopher, whose teaching was
condemned by the Pope. He is now recognised as having anticipated a
basic principle of modern scientific method.

Example occam program

The use of occam is illustrated by the updating of an old fashioned tea
maker. This wakes you up in the morning with a traditional message and
offers a hot cup of tea. It is also a clock and will make tea at any other time,
on request.

The tea maker has a number of units which interact with each other: the
tea brewer which makes and pours the tea, a speech synthesiser for
saying ‘good morning’ and telling the time, request buttons and an overall
controller.

These units can be represented as a network.

e

machine

— speaker—>| |speech.synthesis speak

&—made —

controller tea.brewer pour
— brewer—>
&— button—{ | control.panel |k press

Tyl

In occam, each of the units is described by a process and each connection
by a channel. The processes communicate by sending messages via the
channels. A process can be constructed from smaller processes, as in the
case of this machine which has a number of parts. Indeed the collection of
protcesses is itself a process in occam, and could be part of some larger
system.

This network is represented by defining the channels and the processes.
CHAN introduces the channels through which the processes
communicate, and the PAR construct causes the various processes to
operate concurrently.

CHAN speaker, made, brewer, button:
PAR ——tea.maker
——controller
PAR ——machine
——speech.synthesis
——tea.brewer
——control.panel

The controller may do one of three things. Firstly, it may receive a message
from the request buttons asking it to make tea, or tell the time.

button ? request
IF

(request =tea.please) AND NOT brewing
PAR
brewer | make.tea
brewing :=TRUE
request =time.please
speaker ! say.time; NOW

This inputs a request from the button channel, and uses IF to determine
whether it is a request for tea, or a request for the time. If it is a request for
tea, a message is output to the brewer channel telling the tea brewer to
make the tea, and the boolean variable brewing is set to prevent further
attempts to initiate tea making. If the request is for the current time, a
message is output to the speaker channel requesting the speech
synthesiser to tell the time, which is the value NOW.

Secondly, the controller may receive a message from the tea brewer,
telling it that the tea is made.

made ? ANY
SEQ
speaker | say.message; tea.made
brewer | pour.tea
brewing :=FALSE

This uses SEQ to stop the tea being poured until the tea maker has said
‘tea is made’ Finally, at daily intervals, the tea maker may say ‘good
morning’ and make the tea.

WAgE'\éQOW AFTER alarm.time
alarm.time :=alarm.time + one.day
speaker | say.message; good.morning
IF

NOT brewing
PAR
brewer | make.tea
brewing :=TRUE

These individual program sections, each of which is a process, are
combined into the complete controller process by declaring the local
variables, and by using WHILE and ALT to enable the controller to perform
whichever alternative is required.

VAR alarm.time, brewing :
SEQ
alarm.time :=0
brewing :=FALSE
WHILE TRUE
ALT
bu;tlt:ons ? request

“giléeSt =tea.please) AND NOT brewing
brewer | make.tea
brewing :=TRUE
request =time.please
speaker | say.time; NOW
made ? ANY
SEQ
speaker | say.message; tea.made
brewer | pour.tea
brewing := FALSE
WAIT NOW AFTER alarm.time
SEQ
alarm.time := alarm.time + one.day
ﬁ:peaker | say.message; good.morning

NOT brewing
PAR

brewer | make.tea
brewing := TRUE

Entia

Model

Values

Structure

Assignment

Communication

Time

Sequence

Parallel

Conditional

Programs are expressed in terms of concurrent processes, which
communicate using channels. An obvious implementation of an occam
program is a network of microcomputers, each executing one of the
concurrent processes. However, the same occam program can also be
executed by a single computer sharing its time between the concurrent
processes.

The basic data type is a word, which may be used to represent numbers,
characters, truth values or bit patterns. Vectors and subscript operations,
including record access, are provided. There is a wide range of logical and
arithmetic operators for use in expressions.

Programs are constructed from a small number of primitive processes:
assignment, input, output and wait. Processes are combined using the
constructors sequence, parallel, conditional and alternative.

An assignment may be used to set the value of a variable to the value of
an expression.

A channel provides communication between two concurrent processes.
The communication is synchronised, and takes place only when both the
input process and the output process are ready; the values being copied
from the output process to the input process.

Execution of a process may be related to the passage of time. A wait
process may be used to delay execution until a specified time is reached.

The component processes are executed one after the other. A sequence
construct terminates after the last of its components has terminated.

The component processes are executed concurrently. Each component
process operates on its own variables, communicating with other
concurrent processes using channels. A parallel construct terminates only
after all of its components have terminated.

The component processes are tested in sequence. If one is ready, it is
executed. At most, one of the component processes is executed.

Alternative

Repetition

Abstraction

Configuration

Syntax

Semantics

One of the component processes is chosen and executed. The alternative
constructor chooses the first component process which is ready to be
executed.

A while construct causes its component process to be executed
repeatedly until the result of evaluating a condition is false.

In the construction of a process, a name may be used in place of a
component process which is to be used or defined elsewhere in the
program. A process definition is used to associate such a name with a
process.

Configuration is used to meet speed and response requirements by
distributing programs over separate, interconnected computers, and by
placing and prioritising processes on single computers.

Each primitive process and each constructor is represented by a single
line of program. The component processes combined by a constructor
follow it on successive lines. This makes interactive editors and compilers
simple and efficient.

The design of occam is based on a formal model which facilitates
reasoning about the properties of the language constructs, and the
behaviour of specific programs. Each process can be described by an
assertion in the predicate calculus, and the composition of processes into
networks can be described by the logical conjunction of the assertions
describing each process.

Occam products

Occam programming
manual

Occam evaluation kit

Occam development
software

This is a tutorial introduction and reference manual for the first release of
the language.

This is a complete portable software kit to provide programmers with the
opportunity to experiment with occam.

The kit is inexpensive and comprises a compiler and editor together with
tutorial examples on a floppy disk. It includes manuals for occam and the
compiler itself.

The kit is based on the UCSD p-System version IV and compiles occam
into p-code. It can be used on a wide range of computers, from the Apple II
to the VAX.

For development of applications in occam, a range of support products

is provided. These include compilers, together with appropriate tools,
optimised for occam program development, which are intended to run on
a variety of widely available hosts, generating target code for a variety of
Processors.

and occam are trademarks of the INMOS Group of Companies
UCSD p-System is a trademark of the Regents of the University of California

INMOS reserves the right to make changes in specifications at any time and without notice. The information furnished
by INMOS in this publication is believed to be accurate; however, no responsibility is assumed for its use, nor for any.
infringements of patents or other rights of third parties resulting from its use: No license is granted under any patents,
trademarks, or other rights of the INMOS Group of Companies.

Designed by HSAG
Printed in England by Syon Print Limited

January 1984

72-0CC-001 000

nMOoS

INMOS Limited
Whitefriars

Lewins Mead

Bristol BS1 2NP

UK

Telephone (0272) 290861
Telex 444723

INMOS Corporation

PO Box 16000

Colorado Springs

CO 80935

USA

Telephone (303) 630 4000
Telex 910 920 4904

INMOS SARL
I[mmeuble Monaco

7 rue Le Corbusier
SILIC 219

94518 Rungis Cedex
France

Telephone (1) 687 22 01
Telex 201222

INMOS GmbH

Danziger Strasse 2

8057 Eching

West Germany
Telephone (089) 31910 28
Telex 522645

DATA12523

™

	72-OCC-001-00_occam_01
	72-OCC-001-00_occam_02
	72-OCC-001-00_occam_03
	72-OCC-001-00_occam_04
	72-OCC-001-00_occam_05
	72-OCC-001-00_occam_06
	72-OCC-001-00_occam_07
	72-OCC-001-00_occam_08
	72-OCC-001-00_occam_09
	72-OCC-001-00_occam_10
	72-OCC-001-00_occam_11
	72-OCC-001-00_occam_12

