RG-750 VME Graphics Board User's Manual

Rastergraf, Inc.

1804-P SE First St. Redmond, OR 97756

(541) 923-5530 FAX (541) 923-6575

web: http://www.rastergraf.com

email: support@rastergraf.com

Release 2.0

November 8, 2006

NOTICES

Information contained in this manual is disclosed in confidence and may not be duplicated in full or in part by any person without prior approval of Rastergraf, Inc. Its sole purpose is to provide the user with adequately detailed documentation to effectively install and operate the equipment supplied. The use of this document for any other purpose is specifically prohibited.

The information in this document is subject to change without notice. The specifications of the RG-750 graphics board and other components described in this manual are subject to change without notice. Although it regrets them, Rastergraf, Inc. assumes no responsibility for any errors or omissions that may occur in this manual. Customers are advised to verify all information contained in this document.

The electronic equipment described herein generates, uses and may radiate radio frequency energy, which can cause radio interference. Rastergraf, Inc. assumes no liability for any damages caused by such interference.

Rastergraf, Inc.'s products are **not** authorized for use as critical components in medical applications such as life support equipment, without the express consent of the president of Rastergraf, Inc. This product has been designed to operate with VMEbus computers and other compatible user-provided equipment. Connection of incompatible hardware is likely to cause serious damage. Rastergraf, Inc. assumes no liability for any damages caused by such incompatibility.

Rastergraf, Inc. assumes no responsibility for the use or reliability of software or hardware that is not supplied by Rastergraf, or which has not been installed in accordance with this manual.

Rastergraf is a trademark of Rastergraf, Inc.

All other trademarks and copyrights are the property of their respective owners.

Copyright © 2006 by Rastergraf, Inc.

PREFACE

This manual contains hardware and operating information for the RG-750 color graphics board. The standard configuration for the RG-750 includes 1 Mbyte of DRAM for instruction storage, 1Mbyte of VRAM, an RS-232 serial interface for mouse or serial use, an AT keyboard interface, on-board AFGIS firmware, interface PAL set -PS25, and programmable video displayed in a 60Hz non-interlace format for use with VGA & SVGA video monitors. The RG-750 also has an optional interface for the Planar EL7768MS electroluminescent flat panel.

The RG-750 offers the following six programmable resolutions:

640h x 480v x 4 640h x 480v x 8 800h x 600v x 4 800h x 600v x 8 1024h x 768v x 4 1024h x 768v x 8

The RG-750 is available in one basic configuration with the options listed below.

Options

To specify an option(s), add the option letter(s) to the basic part number. For example, RG-750-M4 would specify the basic configuration with 4 Mbytes of DRAM.

Opt <u>i</u> on	Description	A24 Address	A32 Address	
-PS25	Interface PAL Set E00000h E000 0000h			
-PS26	Interface PAL Set D00000h D000 0000h			
-PS27	Interface PAL Set 800000h 8000 0000h			
-PS28	Interface PAL Set A00000h A000 0000h			
-CP	Custom Interface PAL Set xxxxxh xxxxh			
-50Hz	Specifies 50 Hz video timing			
-M4	Specifies 4 Mbytes of DRAM			
-EL1	Interface and Firmware for EL7768MS			
-BNC	Optional RGB BNC video connectors			

Related Documents

AFGIS Instruction Set Manual AFGIS Programming Manual AFGIS Assembler Manual AFGIS C Graphics Library Reference Manual AFGIS C Programming Manual AFGIS Application Interface Manual TMS34010 User's Guide (available from Texas Instruments

Limited Warranty

Rastergraf, Inc warrants to the original purchaser that this product is free from defects in material and workmanship under normal use for a period of 1 year from date of shipment.

Rastergraf, Inc. will, at its option, repair or replace the product if Rastergraf, Inc. determines it is defective within the warranty period and it is returned to Rastergraf, Inc., freight prepaid.

Rastergraf, Inc. shall be under no obligation to furnish warranty service if:

- 1. Attempts to repair or service the product are made by personnel other than representatives of Rastergraf, Inc.
- 2. Modifications are made to the hardware or software by personnel other than representatives of Rastergraf, Inc.
- 3. Damage results from connecting the hardware to incompatible equipment.

There is no implied warranty of fitness for a particular purpose. Rastergraf, Inc is not liable for any consequential damages.

TABLE OF CONTENTS

1.0 Introduction	1.0
1.1 Overview	1.1
1.2 Features	1.2
2.0 Installation	2.0
2.1 Board Installation	2.1
2.2 Board Layout	2.1
2.3 Jumper Options	2.2
2.3.1 J1 Interrupt Request Select	2.3
2.3.2 J2 A24/A32 Address Select	2.4
2.3.3 J3 Run/Halt at Power-up	2.4
2.3.4 J5 Resolution Select/Configuration	2.5
2.3.5 J6 Clock Select	2.6
2.3.6 J7 RS-232 TxD/RxD	2.6
2.3.7 J8 RS-232 RTS/CTS	2.6
2.3.8 J19 Testable Strap	2.7
2.4 LEDs	2.7
2.5 Connectors	2.7
2.5.1 DB15 Video Output Connector	2.8
2.5.2 BNC Video Connectors	2.8
2.5.3 Planar EL7768MS Electroluminescent Display Connector	2.9
2.5.4 AT Keyboard Connector	2.11
2.5.5 RS-232 Serial Connector	2.12
2.5.6 VMEbus Pin Assignment	2.13
3.0 Operation	3.0
3.1 Power Up Display	3.1
3.2 Operation Overview	
3.3 RG-750 Host Interface Registers	
3.3.1 Data Transfer Convention	
3.3.2 Transferring Data	3.3
3.4 RG-750 Memory	
3.4.1 RG-750 Memory Map	
3.4.2 EPROM	
3.4.3 DRAM	
3.4.4 Fixed RAM	3.5

TABLE OF CONTENTS

3.4.5 VRAM	3.6
3.4.6 RS-232 Interface	3.7
3.4.7 Programing the 2691 UART	3.7
3.4.8 Keyboard Interface	
3.4.9 Video DAC	3.9
3.4.10 Control Register	
3.4.11 Remapping DRAM with ROMDIS	3.10
3.5 Status Register	3.10
3.6 Interrupts	3.11
3.7 Interrupts to the RG-750 from the VMEbus	3.11
3.7.1 From host to the RG-750	
3.7.2 Resetting the RG-750 with the NMI Interrupt	
3.8 Interrupts to the VMEbus from the RG-750	3.13
3.9 Coordinate System	
) Specifications	4.0
4.1 Operating Environment	4.1
4.2 DC Power Requirements	4.1
4.3 Video Output	4.1
····	

Appendix A

Interface PAL Set EquationsA.0

Appendix B

VME CPU to RG-751 Data Transfers B.0

1.0 INTRODUCTION

Chapter Contents:

The RG-750 Color Graphics Board
1.1 Overview
1.2 Features

The RG-750 Color Graphics Board

1.1 Overview

The RG-750 is a high performance 6U graphics board, powered by the TMS34010 graphics processor, and designed for VMEbus applications. Major features of the RG-750 are its on-board AFGIS firmware with over 250 highly optimized graphics primitives for easy graphics programing, its ability to support real-time multi-tasking operating systems with its unique pointer based graphics environment, its advanced hardware architecture with mouse and keyboard interfaces, and extensive C programing support.

The RG-750 is ideal for simple embedded system applications, because it is easy to program and because it does its own local graphics processing, freeing the VMEbus host to do other things while the RG-750 is creating graphics in parallel.

The real power and versatility of the RG-750 is evident when it is used with real-time multi-tasking operating systems that require several tasks to independently generate graphics on the video screen. Each task can have its own colors, font, screen position, etc., and can independently create graphics on the video screen without affecting the colors, font, screen position, etc. of any other task.

Each task can have its own private pointer based graphics environment with all the necessary buffers, variables, and low level drawing parameters. The host processor (typically the driver) selects the environment for the current task by updating a pointer in Fixed RAM before the task runs any graphics code. Because the graphics environment is pointer based, switching the environment takes little time, typically less than 15 usecs, which has a minimal impact on the task's allocated time slice.

The RG-750 is supported with the AFGIS C Graphics Library which has over 125 high level C functions which have been optimized for use with the on-board AFGIS firmware. A driver is typically required for use with the AFGIS C Graphics Library and today's modern real-time operating systems. Drivers are available for several of the popular real-time operating systems, and custom driver development is available from Rastergraf, Inc. for operating systems not currently supported with drivers.

The driver and AFGIS C Graphics Library are easy to install, and once installed, allow the user to begin using the RG-750 without regard for the details of the hardware interface, as these are handled by the driver. The C functions provided by the AFGIS C Graphics Library are linked at compile time, and in effect extend the C functions of the system's C compiler to include those provided by the AFGIS C Graphics Library.

The combination of advanced hardware architecture, optimized on-board graphics primitives, and extensive C programing support, make the RG-750 an ideal low cost, high performance solution for many of today's challenging graphics opportunities.

1.2 Features

The RG-750 provides the following major features and options:

• Programmable Resolutions:

640h x 480v x 4/8

800h x 600v x 4/8

1024h x 768v x 4/8

- 16/256 Colors
- Interlaced or non-interlaced video
- TMS34010 Graphics Processor
- 1 Mbyte of DRAM (option for 4 Mbytes)
- 1 Mbyte of VRAM
- Mouse and Keyboard Interfaces
- Video DAC with 256x24 color look up table (Bt478)
- On-board firmware with over 250 highly optimized graphics primitives to draw text, windows, circles, arcs, polygons, fills, fatlines, pattern fills and more!
- Fast graphics environment switching, less than 15 usec to support real-time tasks
- Supports parallel processing for improved system performance
- Interrupts to and from the VMEbus
- Sync polarity options
- Sync on green option
- Application interface to extend the on-board graphics primitives with downloaded TMS34010 code.

2.0 INSTALLATION

Chapter Contents:	
	2.1 Board Installation
	2.2 Board Layout
	2.3 Jumper Options
	2.3.1 J1 Interrupt Request Select
	2.3.2 J2 A24/A32 Address Select
	2.3.3 J3 Run/Halt at Power-up
	2.3.4 J5 Resolution Select/Configuration
	2.3.5 J6 Clock Select
	2.3.6 J7 RS-232 TxD/RxD
	2.3.7 J8 RS-232 RTS/CTS
	2.3.8 J19 Testable Strap
	2.4 LEDs
	2.5 Connectors
	2.5.1 DB15 Video Connector
	2.5.2 BNC Video Connectors
	2.5.3 Planar@ EL7768MS Electroluminescent Display Connector
	2.5.4 AT Keyboard Connector
	2.5.5 RS-232 Serial Connector
	2.5.6 VMEbus Connector

_

2.1 Board Installation

Install the RG-750 board in a VMEbus card slot. The RG-750 must plug into VMEbus connectors P1 and P2.

CAUTION!

Switch off power to the VMEbus before installing the RG-750 to avoid possible damage to the graphics board or host hardware.

2.2 Board Layout

The RG-750 graphics board contains several jumper options, connectors and status LEDs, as shown in Figure 2.1. Connectors are provided for interfacing the RG-750 to a video monitor (J10, J11, J12 and J13), Planar® electroluminescent display (J17 and J18), keyboard (J14), and serial device (J15).

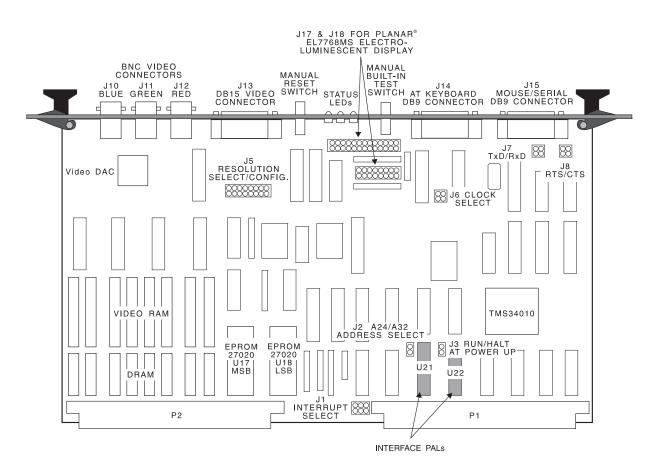


Figure 2.1 RG-750 Board Layout

2.3 Jumper Options

The following jumper options, as shown in Figure 2.2, are available on the RG-750. Figure 2.1 indicates the jumper locations. Use shorting clips or wirewrap wire to select the jumper options.

JUMPER	DESCRIPTION	
J1	Interrupt Request Select	
J2	A24/A32 Address Select	
J3	Run/Halt at Power-up	
J5	Resolution Select/Configuration	
J6	Clock Select	
J7	RS-232 TxD/RxD Swap	
J8	RS-232 CTS/RTS Swap	
J19	Testable Strap	

Figure 2.2 Jumper Summary

2.3.1 J1 Interrupt Request Select

The RG-750 generates an interrupt to the host and outputs an 8 bit interrupt vector in response to an interrupt acknowledge, as shown in Figure 2.4. The interrupt can be routed to any of the 7 VMEbus interrupt lines, IRQ1-IRQ7, by installing jumpers in J1 as shown below in Figure 2.3.

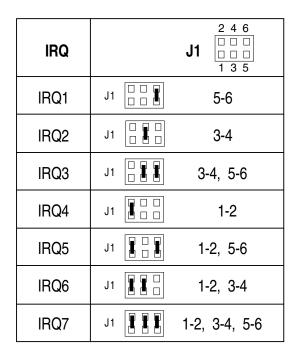
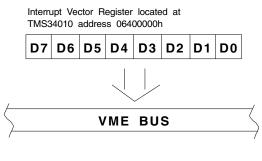



Figure 2.3 IRQ Select

2.3.2 J2 A24/A32 Address Select

The VMEbus interfaces to the RG-750 via four 16-bit Host Interface Registers located in a 256-byte page in VMEbus memory space (see Figure 2.5). All data transfers between the VMEbus and the RG-750 are via these registers. The four 16-bit Host Interface Registers can be located in 24-bit or 32-bit VMEbus address space by configuring jumper J2 (see Figure 2.6). With a jumper installed in J2, a 32-bit address is selected. With no jumper installed in J2, a 24-bit address is selected.

The base addresses are determined by the Interface Register PALs U21 and U22, and can be changed by programing a new PAL set (see Appendix A for PAL equations) or by ordering a custom Interface PAL set from Rastergraf, Inc.

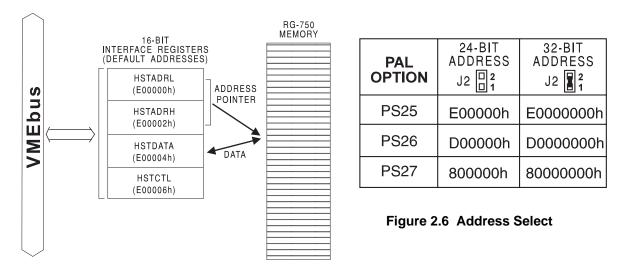


Figure 2.5 VMEbus Interface

2.3.3 J3 Run/Halt at Power-up

The RG-750 can be jumpered at J3 to come up running (no jumper at J3) or halted (jumper installed in J3) at power-up. For normal operation, the RG-750 should be jumpered to come up running.

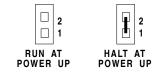


Figure 2.7 Run/Halt at Power-Up Jumper

2.3.4 J5 Resolution Select/Configuration

Jumper J5:1-2, 3-4, 5-6, and 7-8 are used to select the graphics board resolution (see Figure 2.8). The remaining jumpers of J5 are used for other options as shown in Figures 2.9 and 2.10.

RESOLUTION	J5 $(2 4 6 8 0 12 14 16)$ (1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
640h x 480v x 4	J5 00000000
640h x 480v x 8	J5 1 0000000
800h x 600v x 4	J5
800h x 600v x 8	J5
1024h x 768v x 4	J5
1024h x 768v x 8	J5
	J5
	J5
EL7768MS 640h x 480v x 4	J5
	J5 J 5
	J5 L B B B L L L L
	J5 1 1 1 1 1 1 1 1 1 1

Figure 2.8 Resolution Jumper Select

FUNCTION		J5 1 3 5 7 9 11 13 15
SYNC ON	ENABLED	J5
GREEN	DISABLED	J5
H SYNC	NEGATIVE	J5
POLARITY	POSITIVE	J5
V SYNC	NEGATIVE	J5
POLARITY	POSITIVE	J5

Figure 2.9 Function Select

	J5 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15
DEBUG DISABLED	J5
DEBUG ENABLED	J5

Figure 2.10 Debug Enable

2.3.5 J6 Clock Select

This jumper is used to select the clock for the TMS34010 graphics processor (see Figure 2.11).

TMS34010 CLOCK	2 4 J6 □ □ 1 3
not used	J6
40.00 MHz	J6 📕 1-2
not used	J6 🗌 🖁 3-4
not used	J6 📕 1-2, 3-4

Figure 2.11 Clock Select Jumper

2.3.6 J7 RS-232 Transmit/Receive (TxD/RxD)

RS-232 transmit (TxD) and receive data (RxD) can be swapped by installing a jumper in J7, as shown in Figure 2.12.

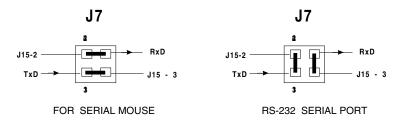


Figure 2.12 RS-232 TxD and RxD Data Lines

2.3.7 J8 RS-232 Handshake (RTS/CTS)

Two RS-232 handshake signals, RTS and CTS can be swapped by installing jumpers in J8 as shown in Figure 2.13.



Figure 2.13 RS-232 RTS and CTS Handshake Lines

2.3.8 J19 Testable Strap

This jumper provides two testable bits that may be sampled to provide configuration information. The state of the bits in the status register reflect the configuration of J19. If a jumper is installed between pins one and two, bit D10 of the status register will be read as a zero, otherwise it will be a one. If a jumper is installed between pins three and four, bit D11 of the status register will be read as a zero, otherwise it will be read as a zero, otherwise it will be read as a zero, otherwise it will be read as a zero.

In AFGIS firmware versions 3.11a and later, J19 1-2 is used to enable or disable the power-up display as shown in Figure 2.14. In AFGIS firmware versions 3.11 and below, J19 1-2 is not used.

TESTABLE STRAP	2 4 J19 □ □ 1 3
Power-up Display enabled	J19
Power-up Display disabled	J19

Figure 2.14 Testable Strap Jumper

2.4 LEDs

Three LEDs on the RG-750 provide status information (see Figure 2.1).

Red LED:

The red LED lights when an error is detected. The red LED can be user programmed with the LED opcode.

Yellow LED:

The yellow LED lights when the board is accessed by the VMEbus.

Green LED:

The green LED blinks when the TMS34010 is in the idle loop. The green LED can be user programmed with the LED opcode.

2.5 Connectors

The RG-750 board has connectors for VMEbus, VGA/SVGA video monitor, an AT keyboard, a serial port, and a Planar EL7768MS EL Flat Panel display (see Figures 2.17 and 2.18). Connector signals and cabling requirements are described in the following pages.

REFERENCE NUMBER	DESCRIPTION	CONNECTOR TYPE
P1	VMEbus connector	96-pin
P2	VMEbus connector	96-pin
J10	Video Connector - Blue [optional]	BNC
J11	BNC	
J12	BNC	
J13	Video Connector	DB15
J14	AT Keyboard Connector	DIN-5F
J16	Serial Port Connector	DB9M
J17	J17 Video Connector for Planar® EL7768MS Electroluminescent VGA Display	
J18	Video Connector for Planar® EL7768MS Series Electroluminescent Display	2x8 pin header

2.5.1 DB15 Video Output Connector and 2.5.2 BNC Video Connectors

A VGA or SVGA video monitor can be connected to the RG-750 DB15F connector J13 (see Figure 2.15) or to BNC connectors J12 (red), J11 (green), and J10 (blue), as shown in Figure 2.16.

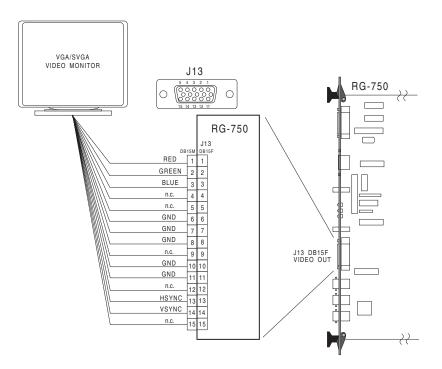


Figure 2.15 DB15 Connection To Video Monitor

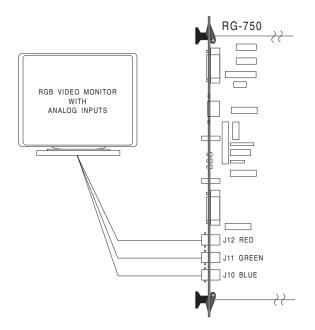


Figure 2.16 BNC Connection To Video Monitor

2.5.3 Planar@ EL7768MS Electroluminescent VGA Display Connector

A Planar EL7768MS electroluminescent flat panel display can be connected to the RG-750 with two flat ribbon cables as shown in Figures 2.17 and 2.18.

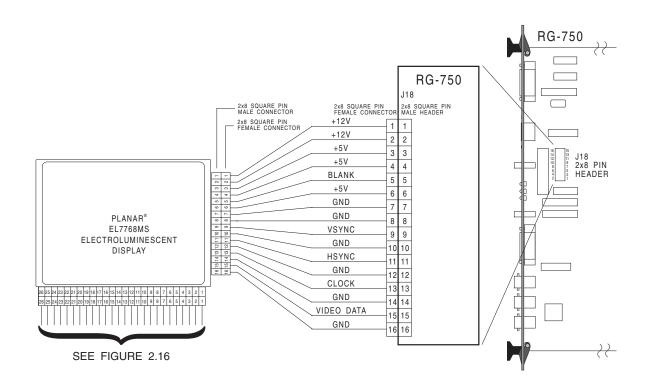


Figure 2.17 16 Pin Connection To Planar EI7768MS Display

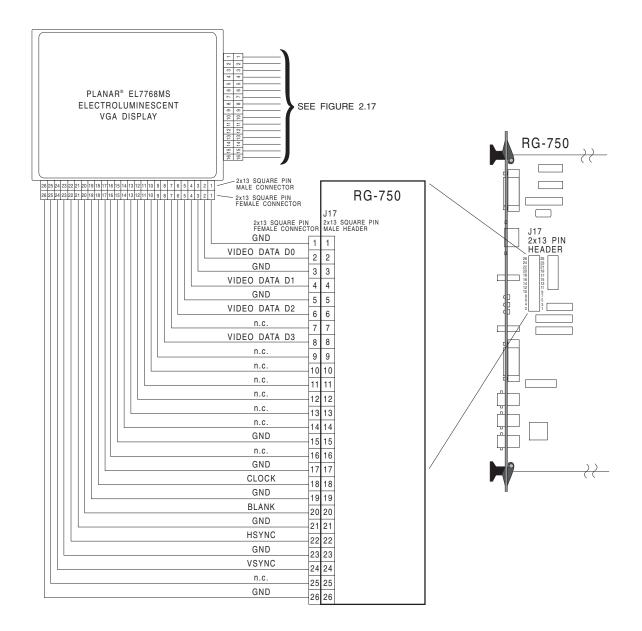


Figure 2.18 26 Pin Connection To Planar EI7768MS Display

2.5 Connectors (continued)

2.5.4 AT Keyboard Connector

Connector J14 provides an interface to a standard AT keyboard (see Figure 2.19). The RG-750 keyboard firmware works with an AT style keyboard - it does not operate with PC or XT keyboards, which have a different interface.

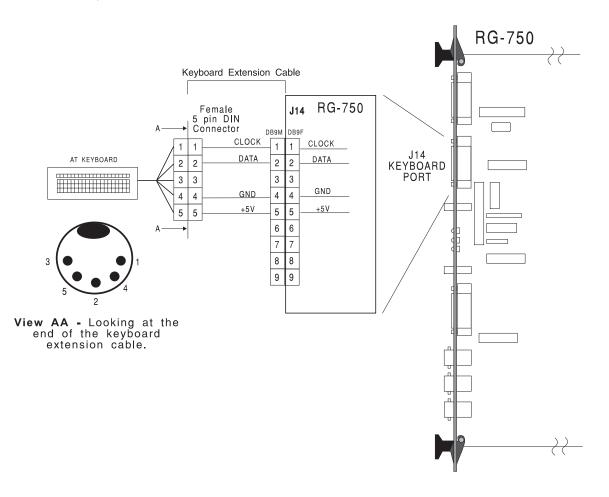


Figure 2.19 AT Keyboard Connection To J14

2.5 Connectors (continued)

2.5.5 RS-232 Serial Connector

RS-232 connector J15 can be configured for serial data transfer or for use with a serial mouse by configuring the jumpers at J7 & J8, as shown in Figures 2.20 & 2.21.

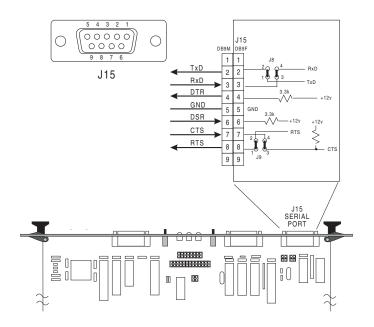


Figure 2.20 RS-232 Serial Data Configuration

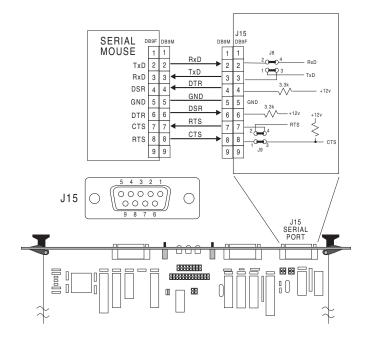


Figure 2.21 Serial Mouse Configuration

2.5 Connectors (continued)

2.5.6 VMEbus Pin Assignments

Figure 2.22 shows the VMEbus P1 and P2 connector pin assignments used by the RG-750 Graphics board.

	P1				F	2	
PIN #	ROW A	ROW B	ROW C	PIN #	ROW A	ROW B	ROW C
1	D0	D8	1				
2	D1	D9	2				
3	D2	BG0IN*	D10	3			
4	D4	BG0OUT*	D11	4	A24		
5	D4	BG1IN*	D12	5	A25		
6	D5	BG1OUT*	D13	6	A26		
7	D6	BG2IN*	D14	7	A27		
8	D7	BG2OUT*	D15	8	A28		
9	BG3IN*	9	A29				
10	BG3OUT*	10	A30				
11	11	A31					
12	DS1*	12					
13	DS0*	LWORD*	13				
14	WRITE*	AM5	14	D16			
15	A23	15	D17				
16	DTACK*	AM0	A22	16	D18		
17	AM1	A21	17	D19			
18	AS*	AM2	A20	18	D20		
19	AM3	A19	19	D21			
20	IACK*	A18	20	D22			
21	IACKIN*	A17	21	D23			
22	IACKOUT*	A16	22				
23	AM4	A15	23	D24			
24	A7	IRQ7*	A14	24	D25		
25	A6	IRQ6*	A13	25	D26		
26	A5	IRQ5*	A12	26	D27		
27	A4	IRQ4*	A11	27	D28		
28	A3	IRQ3*	A10	28	D29		
29	A2	IRQ2*	A9	29	D30		
30	A1	IRQ1*	A8	30	D31		
31	-12 VDC	+12 VDC	31				
32	+5 VDC	32					

Figure 2.22 VMEbus Connectors P1 & P2 Pin Assignments

3.0 OPERATION

Chapter Contents:

- 3.1 Power Up Display
- 3.2 Operation Overview
- 3.3 RG-750 Host Interface Registers
 - 3.3.1 Data Transfer Convention
 - 3.3.2 Transferring Data
- 3.4 RG-750 Memory
 - 3.4.1 RG-750 Memory Map
 - 3.4.2 EPROM
 - 3.4.3 DRAM
 - 3.4.4 Fixed RAM
 - 3.4.5 VRAM
 - 3.4.6 RS-232 Interface
 - 3.4.7 Programming the 2691 UART
 - 3.4.8 Keyboard Interface
 - 3.4.9 Video DAC
 - 3.4.10 Control Register
 - 3.4.11 Remapping DRAM
 - 3.4.12 Status Register
- 3.5 Interrupts
- 3.6 Interrupts to the RG-750 from the VMEbus
 - 3.6.1 Host Interrupts
 - 3.6.2 Resetting the RG-750 with NMI Interrupt
- 3.7 Interrupts to the VMEbus from the RG-750
- 3.8 Coordinate System

3.0 Overview of RG-750 Operation

3.1 Power Up Display

The RG-750 creates a display at power up, indicating the resolution of the current display mode. The display resolution is programmable, and can be changed with the CONFIG opcode. The parameter following the CONFIG opcode changes the resolution as follows:

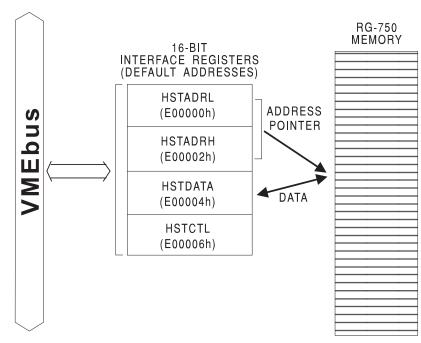
0000 = 640h x 480v x 4 0001 = 640h x 480v x 8 0002 = 800h x 600v x 4 0003 = 800h x 600v x 8 0004 = 1024h x 768v x 4 0005 = 1024h x 768v x 8

The default resolution is 640h x 480v x 4.

3.2 Operation Overview

When programing the RG-750 using an RGI driver and AFGIS C graphics library, the details of loading and executing instructions are transparent to the user, as the driver interfaces to both the operating system and the RG-750. The user merely calls the specified C graphics functions from the AFGIS C graphics library, and the resulting code is passed to the driver, which interfaces appropriately with the RG-750.

However, the RG-750 can be programed directly with AFGIS opcodes. AFGIS opcodes are 16 bit instructions which may have 16 bit parameters, similar to most assembly languages. AFGIS opcodes are executed by the on-board firmware after they have been loaded into RG-750 memory. The default location for loading AFGIS opcodes is 03100000h. Execution of these opcodes begins when the host issues a HINT0 interrupt to the RG-750. The list of AFGIS opcodes (display list) must end with the EODL opcode, which causes display execution to cease when the EODL opcode is processed. When the EODL instruction has been executed by the RG-750, AFGIS firmware will issue an interrupt to the VMEbus or set the EODLFLAG, indicating to the host that display execution has been completed.


HINTO causes execution to begin at the address in Fixed RAM location HINTO_AFG_ENTRY. The default value in HINTO_AFG_ENTRY is 03100000h, but can be changed by the host to any valid TMS34010 address, and display execution will begin at the specified address in response to HINTO. HINTO_AFG_ENTRY is located in Fixed RAM at 030000C0h.

See the AFGIS Instruction Set Manual for more information.

3.3 RG-750 Host Interface Registers

The VMEbus interfaces to the RG-750 via four 16-bit Host Interface Registers located in a 256-byte page in VMEbus address space. All data transfers between the VMEbus and the RG-750 are via these registers, and data must be transferred 16 bits at a time. The four

16-bit Host Interface Registers can be located at one of two base addresses by configuring jumper J2. The two base addresses are determined by the Interface Register PALs U21 and U22, and can be changed by programing new PALs (see Appendix A for

PAL equations) or by ordering a custom Interface PAL set from Rastergraf, Inc.

Figure 3.1 Host Interface Registers

3.3.1 Data Transfer Conventions

The RG-750 supports little endian format. Words, 16 bit values, can be transferred from VMEbus memory to RG-750 memory across the VMEbus without modification. Bytes (8 bit values) must be byte swapped and longs (32 bits values) must be word swapped before transfer. See Appendix B for more information.

3.3.2 Transferring Data

Data is transmitted to or from the RG-750 by specifying the TMS34010 32-bit memory address in HSTADRL and HSTADRH, and then by writing or reading a 16-bit data word to or from the HSTDATA register. The TMS34010 moves the data from RG-750 memory to the HSTDATA register for a read operation, or from the HSTDATA register to the specified memory location on the RG-750 graphics board for a write operation. The TMS34010 is a bit-addressable machine. AFGIS opcodes must be loaded on word boundaries (the four lsbs of the address loaded into HSTADRL must be zero). Bits in the HSTCTL register can be set to cause the address value in HSTADRL/H to increment automatically on reads or writes, to pass interrupts to the RG-750, and to control the TMS34010 graphics processor. See the TMS34010 User's Guide available from Texas Instruments for a complete description of the TMS34010 host interface.

HSTADRL

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1	A0
--	----

HSTADRH

A31	A30	A29	A28	A27	A26	A25	A24	A23	A22	A21	A20	A19	A18	A17	A16
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

HSTDATA

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6	6 D5 D4 D3 D2 D1 D0
-------------------------------------	---------------------

HSTCTL

BIT	NAME	DESCRIPTION
15	HLT	Halts TMS34010 processing
14	CF	Flushes the cache
13	LBL	Lower byte last
12	INCR	Increments address after each read
11	INCW	Increments address after each write
10		reserved
9	NMIM	Selects the mode for the nonmaskable interrupt
8	NMI	Enables the nonmaskable interrupt
7	INTOUT	Sends output interrupt from TMS34010 to host
4-6	MSGOUT	Buffers an output message code
3	INTIN	Sets input interrupt from host to TMS34010
0-2	MSGIN	Buffers an input message code

Figure 3.2 Host Interface Registers Bit Assignments

3.4 RG-750 Memory

3.4.1 RG-750 Memory Map

Memory on the RG-750 board includes EPROM, DRAM, video RAM, and memory-mapped registers, as shown in Figure 3.3.

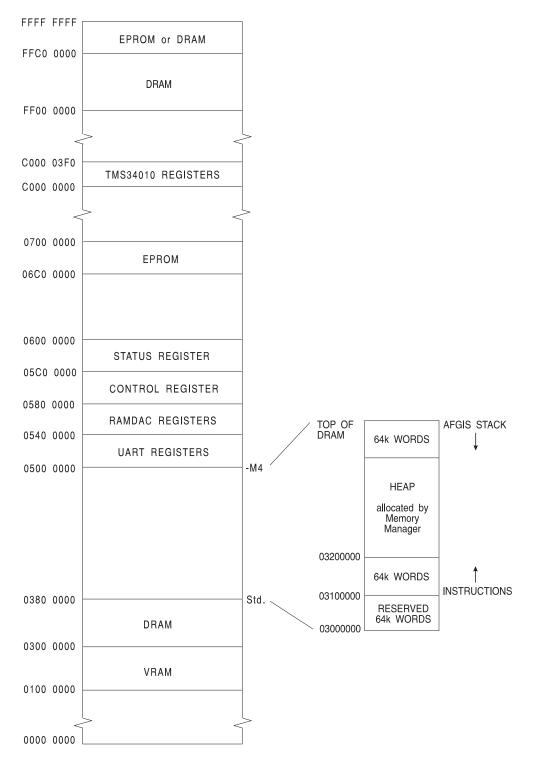


Figure 3.3 RG-750 Memory Map

3.4.2 EPROM

AFGIS firmware resides in two 27020 EPROMs on the RG-750 graphics board. U17 is the msb EPROM, which contains data bits D8 through D15. U18 is the lsb EPROM, which contains data bits D0 through D7.

3.4.3 DRAM

The RG-750 can be configured with 1 or 4 Mbytes of DRAM. DRAM is used by AFGIS firmware for instruction storage, for temporary storage of screen data, and for downloaded code. The first 64k words of DRAM are reserved for use by AFGIS firmware. The rest of DRAM, starting at 03100000h, is available for user code, and is managed by the AFGIS memory manager.

The AFGIS memory manager returns an address to the start of a block of DRAM requested by the user with the R_ALLOC opcode. Memory is allocated starting at the beginning of available DRAM (03100000h).

The default location for downloading and executing AFGIS opcodes is also 03100000h. DRAM at this address and above (AFGIS heap) is controlled by the AFGIS memory manager and will be allocated to the first request for memory with the R_ALLOC opcode. To avoid memory usage conflict, a block of memory should be requested from the AFGIS memory manager for AFGIS opcode processing (If the R_ALLOC opcode is never used to allocate memory for any other purpose, AFGIS opcodes can be safely run at 03100000h without allocating memory for opcode processing).

3.4.4 Fixed DRAM Interface

The first 24 words of DRAM, starting at 03000000h are designated as Fixed RAM and contain flags, addresses, and parameters for access by the VMEbus host. Fixed RAM values are either 16 or 32 bits long, and may have restricted access. R means the location may be read by the host, but it may not be modified. R/W means that the location may be read from or written to by the host. Fixed RAM is organized as shown on the next page. See the *AFGIS Instruction Set Manual* for additional information.

ADDRESS	NAME	SIZE	ACCESS	DESCRIPTION
03000000h	EODLFLAG	16	R/W	= 0 when the RG-750 is busy. = 1 when the RG-750 is not busy.
03000010h	KBDFLAG	16	R/W	= 0 when there is no keyboard data.= 1 when keyboard data is available
03000020h	MSEFLAG	16	R/W	= 0 when there is no mouse/serial data.= 1 when mouse/serial data is available
03000030h	ERRFLAG	16	R/W	= 0 when no errors have been detected.= 1 when an error has been detected.
03000040h	IDLEFLAG	16	R/W	Set to 1 on each pass of idle loop, approx. every 10 usec. Not cleared by AFGIS firmware.
03000050h	DI_COUNT	16	R	60hz continuous counter, updated by AFGIS.
03000060h	INTOUTMASK	16	R/W	RG-750 to host interrupt enable mask.
03000070h	HOST_FIELD0	16	R/W	Reserved for host use.
03000080h	HOST_FIELD1	32	R/W	Reserved for host use.
030000A0h	ENV_PTR	32	R/W	Address of current graphics environment.
030000C0h	HINT0_AFG_ENTRY	32	R/W	AFGIS display list address. Used by HINT0
030000E0h	HINT1_TMS_ENTRY	32	R/W	TMS assembly code address. Used by HINT1
03000100h	GPTABLE_PTR	32	R	Address of global pointer table.
03000120h	DEFAULT_ENV_PTR	32	R	Address of default environment.
03000140h	DPAGEADDR	32	R	Current display page address.

Figure 3.4 Fixed RAM Parameters

3.4.5 VRAM

Video RAM, VRAM, holds the image displayed on the video screen. VRAM is normally written to by the TMS34010 graphics processor on the RG-750 as a consequence of AFGIS opcode processing. However, image data can also be downloaded directly into VRAM by the VMEbus host. The beginning of VRAM, 0200 0000h, corresponds to the top left corner of the video screen.

VRAM is organized as a 1K x 1K buffer for 8 bits/pixel configurations, and as a 1K x 2K buffer for 4 bits/pixel configurations.

RG-750 Memory (continued)

3.4.6 RS-232 Serial Interface

The RS-232 Serial Interface can be used for a serial mouse (with Microsoft format) or it can be used to connect a serial device to the RG-750. The handshake lines (RTS, DTR, etc.) can be reversed at J7 and J8 to allow use of a flat cable connected to a DB9 connector. The serial interface uses the Signetics 2691 UART, which is a programmable device with many options. The bit assignments for the 2691 registers are shown below.

3.4.7 Programing the 2691 UART

The 2691 Universal Asynchronous Receiver/Transmitter (UART) has quadruple buffered receiver data registers and a fully programmable data format. The baud rate for the receiver and transmitter can be selected from 9 fixed rates. The UART contains eight registers that determine its mode of operation (see Figure 3.5 and Figure 3.6). Refer to the Signetics 2691 UART data sheet for additional information

ADDRESS	DESCRIPTION	DEFAULT CONTENTS
05000000h	MR1 - Mode Register 1	13h
05000000h	MR2 - Mode Register 2	17h
05000010h	CSR - Channel Status Register	0BBh
05000020h	CR - Command Register	0A5h
05000040h	ACR - Auxillary Control Register	78h
05000050h	IMR - Interrupt Mask Register	04h
05000060h	CTUR - Counter Register High	00h

Figure 3.5 2691 UART Power Up Register Values

The 2691 UART is configured by the AFGIS firmware at power up as follows:

- 9600 baud
- 8bits/character
- 1 stop bit
- \cdot no parity
- Transmit Data line controlled by CTS handshake
- RTS asserted. RTS is deasserted when the receive buffer becomes full.
- DTR always asserted
- DSR always asserted

Use the SERUART opcode to reprogram the 2691.

3.4 RG-750 Memory (continued)

	BIT 7	BIT 6	BIT 5	BIT 4	BIT 3	BIT 2	BIT 1	BIT 0	
MR1	RxRTS CONTROL	RxINT SELECT	ERROR MODE	PARITY MC		PARITY BITS PER CHAR TYPE			
	0 = no 1 = yes	0=RXRDY 1 = FULL			0 = even 1 = odd				
MR2	CHANNEL	MODE	Tx RTS CONTROL	Tx CTS ENABLE	STOP BIT I	ENGTH			
	00 = norma 01 = auto e 10 = local	cho oop	0 = no 1 = yes	0 = no 1 = yes	0 = 0.563 1 = 0.625 2 = 0.688 3 = 0.750	4 = 0.183 5 = 0.875 6 = 0.938 7 = 1.000	8 = 1.563 9 = 1.625 A = 1.688 B = 1.750	C = 1.813 D = 1.875 E = 1.938 F = 2.000	
CSR	ACR(7) = 0	CLOCK SEL): 50 - 38.4k : 75 - 19.2k b	baud		ACR (7) = 0	MITTER CLOCK SELECT) = 0: 50 - 38.4k baud) = 0: 50 - 38.4k baud			
CR		NEOUS CON			DISABLE Tx	ENABLE Tx	DISABLE Rx	ENABLE Rx	
	see UART o	data sheet			0 = no 1 = yes	0 = no 1 = yes	0 = no 1 = yes	0 = no 1 = yes	
ACR	BRG SET SELECT	COUNTER	MODE & SO	URCE	POWER DOWN MODE	MPO FUNC	TION SELE		
	0 = set1 1 = set2	see UART o	data sheet		0 = on 1 = off	see UART	data sheet		
ISR	MPI PIN CHANGE	MPI PIN STATE		COUNTER READY	DELTA BREAK	RxRDY/ FULL	TxEMT	TxRDY	
	0 = no 1 = yes	0 = low 1 = high	not used	0 = no 1 = yes	0 = no 1 = yes	0 = no 1 = yes	0 = no 1 = yes	0 = no 1 = yes	
CTUR	8 MSBs OF	COUNTER/	TIMER VALU	JE					
CTLR	8 LSBs OF	COUNTER/T	IMER VALU	E					

Figure 3.6: 2691 UART Register Contents

3.4.8 Keyboard Interface

An AT style keyboard can be connected to the RG-750 at J14. AFGIS firmware decodes the keyboard scan codes, stores the ASCII codes in RAM, and informs the VMEbus host of available keyboard data via an interrupt or a polling register in fixed RAM.

3.4 RG-750 Memory (continued)

3.4.9 Video DAC (Bt478)

RS-343 video is generated by the RG-750 with a Bt478 type Video DAC. The Video DAC has a 256 x 24 color look up table, allowing a user to select 256 colors from a palette of 16 million. The Video DAC registers are located as shown below:

ADDRESS	DESCRIPTION
05400000h	Write Address Register
05410000h	Data Register

3.4.10 Control Register

The RG-750 has a Control Register to control on-board hardware functions. The Control Register is located at 05800000h and has the following bit assignments. Use the CONTREGX opcode to modify the contents of the Control Register.

	led Led	0 = off, 1 = on
	ebug Enable	0 = off, 1= on
D13 R	OMDIS	0 = EPROM 1= RAM
D12 V	sync Polarity	0 = active low 1 = active high
D11 H	lsync Polarity	0 = active low 1 = active high
D10 Pi	ixel Clock Select	0 = internal clock 1 = auxiliary clock
D9 VI	RAM Mapping, bit 0	
D8 G	areen Led	0 = off, 1= on
D7 S	ync on Green	0 = sync on green 1 = no sync on green
D6 Ke	eyboard Serial Data	
D5 Ke	eyboard clock	
D4 M	lemory Devices Installed	0 = 1 Mbyte 1 = 4 Mbyte
D3 8	bit video.	0 = 4 bit video 1 = 8 bit video
D2 VI	RAM Mapping, bit 1	
D1 Pi	ixel Clock Divisor	0 = divide by $1 1 = $ divide by 2
D0 SI	hift Clock enable	0 = off 1 = enabled

* These bits are user configurable with the CONTREG opcode.

Figure 3.8 Control Register Bit Assignments

3.4.11 Remapping DRAM with ROMDIS (D13)

The ROMDIS bit, D13, in the Control Register remaps DRAM to the top portion of the address space (see Figure 3.9). This feature allows code to be downloaded into DRAM for execution independent of AFGIS firmware. If 1 Mbyte of DRAM is installed, DRAM is mapped to the top of the address space, starting at FFC00000h. If 4 Mbytes of DRAM are installed, DRAM starts at FF000000h.

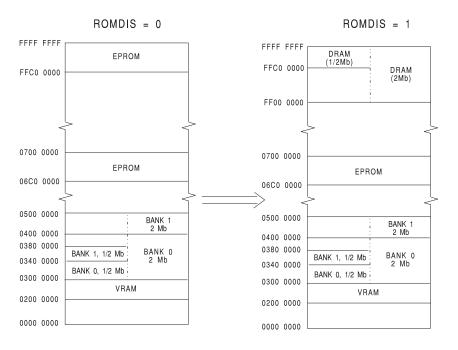


Figure 3.9 EPROM/DRAM Swap

3.4.12 Status Register

The Status Register, located at memory address 05C00000h, provides information on the current state of RG-750 operations (see Figure 3.10).

BIT	NAME	DESCRIPTION
D0	config	
D1	config	
D2	config	
D3	config	
D4	CSYNC	
D5	KBDCI	kbd clock
D6	KBDDI	kbd data
D7	HSYNC	
D8	VSYNC	
D9		
D10		J19: 1-2 (0 = jumper installed)
D11		J19: 3-4 (0 = jumper installed)

Figure 3.10: Status Register

3.5 Interrupts

Interrupts are sent to the RG-750 from the VMEbus host to initiate display list processing, to run TMS34010 code, and to reset the RG-750.

Interrupts can also be sent from the RG-750 to the VMEbus host to indicate the completion of display list processing, to indicate that RS-232, mouse, or keyboard data is ready, to indicate a 60Hz interrupt, or to indicate an error condition.

3.6 Interrupts to the RG-750 from the VMEbus

Interrupts are sent to the RG-750 by setting the appropriate bits in the HSTCTL register, located at TMS34010 address C0000100h or at VMEbus Host Interface Register address xxxx06h. Two types of interrupts can be sent to the RG-750 from the host CPU via the HSTCTL register: host interrupts and non-maskable interrupts.

BIT	NAME	DESCRIPTION
15	HLT	Halts TMS34010 processing
14	CF	Flushes the cache
13	LBL	Lower byte last
12	INCR	Increments address after each read
11	INCW	Increments address after each write
10		reserved
9	NMIM	Selects the mode for the nonmaskable interrupt
8	NMI	Enables the nonmaskable interrupt
7	INTOUT	Sends output interrupt from TMS34010 to host
4-6	MSGOUT	Buffers an output message code
3	INTIN	Sets input interrupt from host to TMS34010
0-2	MSGIN	Buffers an input message code

Figure 3.11 HSTCTL Bit Assignments

3.6.1 Host Interrupts

Host interrupts are sent to the RG-750 via the VMEbus, and are used to initiate display list processing and execute TMS34010 code. A host interrupt is asserted by setting bit D3 (INTIN)=1 in the TMS34010 HSTCTL register. A host interrupt is identified by bits D(0-2) (MSGIN) in the HSTCTL register. Use HINT0 to execute a display list starting at the address contained in HINT0_AFG_ENTRY located at addresss 030000C0h (its default value is 03100000h). HINT0 is asserted by writing 0008h to the HSTCTL register (default address for -PS25 = E00006h). HINT1 is asserted by writing 0009h to HSTCTL. Use HINT1 to execute TMS34010 assembly code at the address contained in HINT1_TMS_ENTRY located at address 030000E0h (its default value is also 03100000h).

MSGIN	MSGIN	HSTCTL		L	
NUMBER	NAME	D2	D1	D0	DESCRIPTION
0	HINTO	0	0	0	Process AFGIS opcodes beginning at the address specified in HINT0_AFG_ENTRY (at RAM location 0300 00C0h). The default address in HINT0_AFG_ENTRY is 03100000h.
1	HINT1	0	0	1	Process TMS34010 opcodes at address specified in HINT1_TMS_ENTRY (at RAM location 0300 00E0h). The default address in HINT1_TMS_ENTRY is 03100000h.
2	HINT2	0	1	0	reserved
3	HINT3	0	1	1	reserved
4	HINT4	1	0	0	reserved
5	HINT5	1	0	1	reserved
6	HINT6	1	1	0	reserved
7	HINT7	1	1	1	reserved

Figure 3.12 Host Interrupts to RG-750

3.6.2 Resetting The RG-750 With The NMI Interrupt

An NMI interrupt with message value 1 may be used to abort display list processing, and cause the RG-750 to enter the idle loop. NMI 1 does not affect DRAM parameters.

An NMI interrupt with a message value of 0 totally resets the RG-750, putting it into a power up condition.

An NMI interrupt is issued by setting the NMI bit, D8, in the HSTCTL register and by setting the appropriate message bits in D0-D2.

3.8 Interrupts to the VMEbus from the RG-750

The RG-750 can send an interrupt to the VMEbus host by setting D7=1 in HSTCTLL along with a 3 bit code (D4 - D6) identifying the different interrupt (see Figure 3.13). The interrupts are individually enabled or disabled by setting the corresponding bits in the INTOUTMASK RAM location (03000060h). The code (or message number) for the interrupt is determined by bits D4-D6 in the HSTCTL register and identifies 1 of 8 interrupts. The VMEbus interrupt service routine would normally read the HSTCTL register to determine which of the eight interrupts occurred. *On exit, the interrupt service routine must clear HSTCTL bit D7 (set D7=0), as the RG-750 will not issue another interrupt until bit D7 in HSTCTL has been cleared*.

MSGOUT	MSGOUT	INTOUTMASK	HSTCTL		Ľ	
NUMBER	NAME	BIT	D6	D5	D4	DESCRIPTION
0	RGIOUT0	D0	0	0	0	An AFGIS EODL instruction has been executed.
1	RGIOUT1	D1	0	0	1	A character is ready from the keyboard port.
2	RGIOUT2	D2	0	1	0	Data is ready from the serial/mouse port.
3	RGIOUT3	D3	0	1	1	An error has occurred and is recorded in DRAM.
4	RGIOUT4	D4	1	0	0	An interrupt is generated at approximately 60 Hz.
5	RGIOUT5	D5	1	0	1	Reserved
6	RGIOUT6	D6	1	1	0	Reserved.
7	RGIOUT7	D7	1	1	1	Reserved.

Figure 3.13	Interrupt	Output	Messages	to	VMEbus
-------------	-----------	--------	----------	----	--------

Note: HSTCTL is a 16 bit register located at the default address 0326h, and has the bit assignments shown in Figure 3.2. When viewed from the TMS34010 side, the HSTCTL appears as two 16 bit registers, HSTCTLL and HSTCTLH, with each register containing half the data bits (in the same bit positions as shown for HSTCTL) that are in HSTCTL, HSTCTLL is located at C0000F0h, and HSTCTLH is located at C000100h.

BIT	NAME	DESCRIPTION
8-15	Reserved	Not Used
7	INTOUT	Sends output interrupt from TMS34010 to host
4-6	MSGOUT	Buffers an output message code
3	INTIN	Sets input interrupt from host to TMS34010
0-2	MSGIN	Buffers an input message code

Figure 3.14 HSTCTLL located at C00000F0h

BIT	NAME	DESCRIPTION
15	HLT	Halts TMS34010 processing
14	CF	Flushes the cache
13	LBL	Lower byte last
12	INCR	Increments address after each read
11	INCW	Increments address after each write
10		reserved
9	NMIM	Selects the mode for the nonmaskable interrupt
8	NMI	Enables the nonmaskable interrupt

Figure 3.15 HSTCTLH located at C0000100h

3.8 Interrupts to the VMEbus from the RG-750 (continued)

The RG-750 generates an interrupt to the VMEbus when HSTCTLL bit D7 is set to 1 and if the corresponding message value is enabled by INTOUTMASK. When D7=1 in HSTCTL, the HINT line, which is connected to the VMEbus interrupt line via a PAL, is enabled active low, initiating the interrupt. The VMEbus interrupt line used by the PAL (IRQ 1-7) is selected using jumper J1. An 8-bit interrupt vector register, located at TMS34010 address

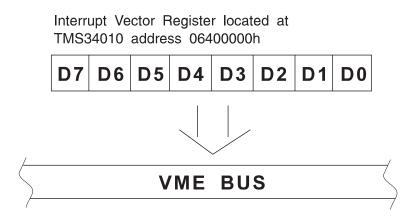


Figure 3 .16 Interrupt Vector Register

3.9 Coordinate System

The screen coordinates are shown in Figure 3.17. 0,0 is in the upper left, x increases to the right, and y increases downward.

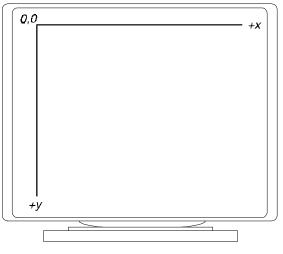


Figure 3.17 Display Coordinate System

4.0 SPECIFICATIONS

Chapter Contents:

4.1 Operating Environment	
---------------------------	--

- 4.2 DC Power Requirements
- 4.3 Video Output
- 4.4 Video Timing

4.1 Operating Environment

Operating Temperature: 0°C to 55°C

Storage Temperature: -40°C to 65°C

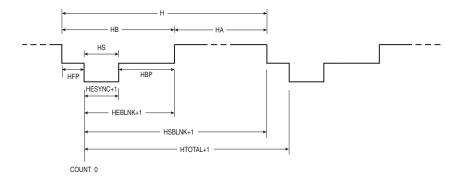
Relative Humidity: 0% to 95% (non-condensing)

Altitude: 7500 ft.

4.2 DC Power Requirements

+ 5V at 3.0 Amps +12V at 0.2 Amps - 12V at 0.2 Amps

When the Planar El7768MS electroluminescent flat panel is connected to the RG-750, the following additional DC power is required:


+ 5V at .2 Amps +12V at 2.0 Amps

4.3 Video Output

Analog 1.0V, RS-343 video, with sync on green and sync polarity (options) is output at BNC connectors J10, J11, & J12, and at DB15, J13.

4.4 Video Timing

The RG-750 video timing is resolution dependent, as shown in Figures 4.1 through 4.3

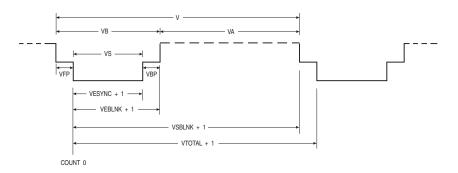


Figure 4.2 Vertical Video Timing

	640h x 480v	640h x 480v EL7768MS	800h x 600v	1024h x 768v
PCLOCK	25.175MHz	25.175 MHz	36.000MHz	63.960MHz
HFREQ	31.468KHz	31.468KHz	35.156KHz	48.454KHz
н	31.777µs	31.777 μs	28.444 µs	20.638µs
HS	3.4957 μs	3.813 μs	2.000 μs	1.001µs
HBP	1.90 μs	1.588 μs	3.555µs	2.877 μs
HA	25.422µs	25.422µs	22.222µs	16.010µs
HFP	0.953µs	0.953 µs	0.666 µs	0.758µs
HB	6.333µs	6.333 µs	6.222µs	4.628 μs
VFREQ	59.940Hz	59.940Hz	56.250Hz	59.968Hz
V	16,683µs	16,683 µs	17,777μs	16,675µs
VS	63 µs	63 µs	56µs	82µs
VBP	1,016µs	762 µs	625µs	661µs
VA	15,253µs	15,761 μs	17,060 μs	15,850µs
VFP	349µs	95µs	28 µs	82µs
VB	1,430 μs	922µs	717µs	825 µs
HESYNC	10 (000A)	11 (000B)	8 (0008)	7 (0007)
HEBLNK	16 (10010)	16 (10010)	24 (0018)	30 (001E)
HSBLNK	96 (0060)	96 (0060)	124 (007C)	158 (009E)
HTOTAL	99 (0063)	99 (0063)	127 (007F)	164 (00A4)
VESYNC	1 (0001)	1 (0001)	1 (0001)	3 (0003)
VEBLNK	33 (0021)	25 (0019)	23 (0019)	35 (0023)
VSBLNK	513 (0201)	521 (0209)	623 (026F)	803 (0323)
VTOTAL	524 (020C)	524 (020C)	624 (0270)	807 (0327)

Figure 4.3 Video Timing

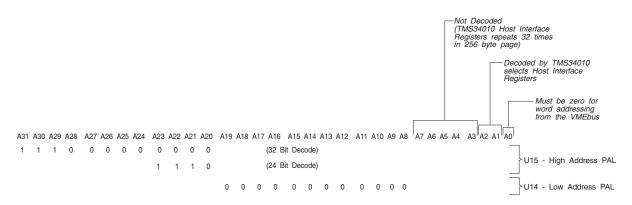
APPENDIX A: Interface PAL Equations

RG-750 Interface PAL Set, U21 and U22.

This appendix contains the PAL equations, written in PALASM format, for the -PS25 PAL set. The PALs U21 and U22 may be reprogrammed by the user to locate the RG-750 at a different location in VMEbus address space.

The RG-750 is located in VMEbus address space with the interface PALs U21 and U22. The U21 and U22 decode a 256 byte page in VMEbus address space. The RG-750 Host Interface Registers are located in this 256 byte page.

The default PAL set, U21 and U22 (-PS25) locates the RG-750 at E00000h or at E000 0000h, depending on the jumper configuration of J2.


U22 decodes the AM lines and the upper 12 address lines, A20-A31. The AM decode determines the data transfer modes that the RG-750 will respond to. The - PS25 PAL U22 decodes the following AM codes:

32-BIT ADDRESS	24-BIT ADDRESS	
0E	3E	Standard Supervisory Program Access
0D	3D	Standard Supervisory Data Access
0A	ЗA	Standard Non-privileged Program Access
09	39	Standard Non-privileged Data Access

The address line A20-A31 decode a 1M block of memory. In the case of the -PS25 PAL, U22 decodes a 1M block of memory starting at E00000h or E0000000h, depending on the jumper configuration of J2.

U21 decodes address lines A8-A19, which selects a 256 byte page within the 1M block decoded by U22. In the case of the -PS25 PAL, U21 decodes the first page (0) of 256 bytes in the 1M block. Thus, the RG-750 is located at E000000 or at E0000000h.

Both PALs are required to decode the complete 24 bit or 32 bit addresses. The address decoding is split between the PALs. The decoding for the -PS25 PAL set is shown belo Both PALs are required to decode the complete 24 bit or 32 bit addresses. The address decoding is split between the PALs. The decoding for the -PS25 PAL set is shown below.

RG-750 Low Address Decode PAL Title Pattern loaddr.pds Revision 1.0 Author Greg Harris Company Rastergraf Inc. 12 May 1992 Date ;PAL Type: 20L8B (15 nsec) ;Board Location: U21 ;Schematic Page: 1 Chip LOADDR PAL20L8 ; 1[I] 2[I] 3[I] 4[I] 5[I] 6[I] /HIDEC /AMDEC VA19 VA18 VA17 VA16 7[I] 8[I] 9[I] 10[I] 11[I] 12[GND] ; VA14 VA15 VA13 VA12 VA11 GND 14[I] 15[O] 16[I/O] ; 13[I] 17[I/O] 18[I/O] VA10 VA9 /ADEC /HCS nc /AS ; 19[I/O] 20[I/O] 21[I/O] 22[O] 23[I] 24 [VCC] SRESET /RESET /HALT /SEL VA8 VCC Equations SRESET RESET = *** NOTE: The address decodes in ADEC and HCS *** ; * * * MUST be identical * * * ; HCS is a complete decode of AM[5..0] and VA[31..8] and AS qualified ; by RESET. HCS is also asserted during RESET if the HALT jumper is not IN. ; HCS = /SEL * /RESET * HIDEC * AMDEC * AS * ;Address Select Jumper OUT /VA19 * /VA18 * /VA17 * /VA16 * ;Address Select 0 /VA15 * /VA14 * /VA13 * /VA12 * ; /VA11 * /VA10 * /VA9 * /VA8 ; + SEL * /RESET * HIDEC * AMDEC * AS * ;Address Select Jumper IN /VA19 * /VA18 * /VA17 * /VA16 * ;Address Select 1 /VA15 * /VA14 * /VA13 * /VA12 * ; /VA11 * /VA10 * /VA9 * /VA8 + RESET * /HALT ; Halt Jumper OUT ; ADEC is identical to HCS except that it is not asserted during RESET ADEC = /SEL * /RESET * HIDEC * AMDEC * AS * ;Address Select Jumper OUT /VA19 * /VA18 * /VA17 * /VA16 * ;Address Select 0 /VA15 * /VA14 * /VA13 * /VA12 * ; /VA11 * /VA10 * /VA9 * /VA8 ; SEL * /RESET * HIDEC * AMDEC * AS * ;Address Select Jumper IN /VA19 * /VA18 * /VA17 * /VA16 * ;Address Select 1 /VA15 * /VA14 * /VA13 * /VA12 * ; /VA11 * /VA10 * /VA9 * /VA8 ;

Title RG-750 High Address Decode PAL Pattern hiaddr.pds Revision 1.0 Author Greg Harris Company Rastergraf Inc. Date 12 May 1992 ; PAL Type: 20L8B (15 nsec) ; Board Location: U22 ; Schematic Page: 1 Chip HIADDR PAL20L8 ; 04/08/94 - SGO ; - version for 6000700-09 board ; - RG-70x 24-bit addresses: jumper open: D00000h ; jumper shorted: 500000h ; ;- note:address-select jumper is J2 on 6000700-09 (was J3 on 6000700-05) ; 1[I] 2[I] 3[I] 4[I] 5[I] 6[I] AM5 AM4 AM3 AM2 AM1 AM0 7[I] 8[I] 9[I] 10[I] 11[I] 12[GND] ; VA31 VA30 VA29 VA28 VA27 GND ; 13[I] 14[I] 15[0] 16[I/O] 17[I/O] 18[I/O] VA26 VA25 /HIDEC VA24 VA23 VA22 20[I/O] 21[I/O] ; 19[I/O] 22[0] 23[I] 24[VCC] VA20 /SEL /AMDEC /IACK VCC VA21 Equations ; 24 BIT ADDR: 3E -STANDARD SUPERVISORY PROGRAM ACCESS ; -STANDARD SUPERVISORY DATA ACCESS 3D ; 3A -STANDARD NONPRIVILEGED PROGRAM ACCESS ; 39 -STANDARD NONPRIVILEGED DATA ACCESS ; AMDEC = AM5 * AM4 * AM3 * AM2 * AM1 * /AM0 ;3E AM5 * AM4 * AM3 * AM2 * /AM1 * AM0 ;3D + AM5 * AM4 * AM3 * /AM2 * AM1 * /AM0 ;3A + AM5 * AM4 * AM3 * /AM2 * /AM1 * AM0 + ;39 HIDEC = /SEL * /IACK * VA23 * VA22 * /VA21 * VA20

+ SEL * /IACK * /VA23 * VA22 * /VA21 * VA20

A.3

APPENDIX B

Chapter Contents:

Т

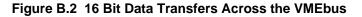
B.1 Transferring Data to TMS34010 Memory
B.2 Data in 680x0 Memory
B.3 Transferring Bytes
B.4 Transferring Words
B.5 Transferring Longs

B.1 Transferring Data from 680x0 memory to TMS34010 memory

The following discussion describes how data should be transferred from 680x0 memory via the VMEbus to TMS34010 memory on Rastergraf graphics boards.

This discussion is primarily intended for users who want to develop their own interface to the graphics board.

B.2 Data in 680x0 Memory


Data in 680x0 memory is typically described as shown in Figure B.1, and can be bytes, words, or longs. Bytes are numbered left to right (in the direction of increasing memory) and are identified as byte(0), byte(1), byte(2), and byte(3) and have the corresponding 680x0 hex addresses xxxxx0, xxxxx1, xxxx2, and xxxxx3 (or xxxxx0, etc. for 32 bit addressing mode).

	D31. (MSB	word)	(LSB	word)	D0 (Longs)	
Bit Coding		word)				
•	D7(LSB byte) D0	DD7D0) D7D(DD7. (MSB byte) DO) (Bytes)	
	byte(0)	byte(1)	byte(2)	byte(3)	→ increasing me	mory

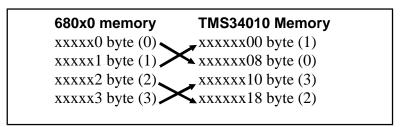
Figure B.1 680x0 Bit and Byte Numbering Conventions

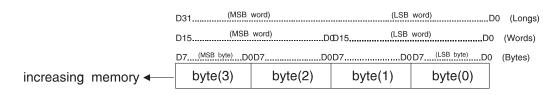
Sixteen bit data (two bytes) are transferred across the VMEbus as shown in Figure B.2.

680x0	VMEbus I	Data Lines
Byte Locations	D15-D8	D7-D0
byte(0-1)	byte (0)	byte (1)
byte(2-3)	byte (2)	byte (3)

B.2 Data in 680x0 Memory (continued)

Data may only be transferred to or from Rastergraf TMS34010 based graphics boards 16 bits at a time, and only with one of the two byte sets; byte(0), byte(1) or byte(2), byte(3). Figure B.3 shows how a long (32 bits) would be transferred from 680x0 memory to long aligned TMS34010 memory (the start address in TMS34010 memory could be any bit value, but AFGIS firmware requires that the AFGIS opcodes be loaded on word boundaries).




Figure B.3 32 Bit Data Transfers

In Figure B.1, byte(0) is the lsb byte in the byte sequence byte(0), byte(1), byte(2), and byte(3). For words, byte (0), byte(1) is the lsb word, and byte(2), byte(3) is the msb word (the next word). For a long, all four bytes are used to represent the long, and the byte pair byte(0), byte(1) is the msb word of the long, and byte pair byte(2), byte(3) is the lsb word of the long.

The two byte pairs byte(0), byte(1) and byte(2), byte(3) that may be transferred across the VMEbus to the graphics board have a different meaning for the data types bytes, words, and longs.

Our objective, for successful data transfer, is to maintain the order of bytes, words, and longs when the data is transferred from 680x0 memory to TMS34010 memory.

Data in TMS34010 memory is typically described as shown in Figure B.4.

Figure B.4 TMS34010 Bit and Byte Numbering Conventions

In Figure B.4, byte(0) is the lsb byte in the byte sequence byte(0), byte(1), byte(2), and byte(3). For words, byte(1), byte(0) is the lsb word, and byte(3), byte(2) is the msb word (the next word). For a long, all four bytes are used to represent the long, and byte pair byte(3), byte(2) is the msb word of the long, and byte(1), byte(0) is the lsb word of the long.

B.2 Data in 680x0 Memory (continued)

As can be seen by examining Figures B.1, B.2, B.3, and B.4, data transferred from 680x0 memory directly to TMS34010 memory without modification only meets our objective if the data being transferred are words.

B.3 Transferring Bytes

If the data being transferred are bytes, it is evident that the byte pairs byte(0), byte(1) or byte(2), byte(3) end up in the wrong order in TMS34010 memory. The solution is to swap the order of the bytes before the byte pair is transferred across the VMEbus as shown in Figure B.5.

Original 680x0 byte order	Byte pair ready for transfer
byte(0), byte(1)	® byte(1), byte(0)
byte(2), byte(3)	® byte(3), byte(2)

Figure B.5 Transferring Bytes

B.4 Transferring Words

If the data being transferred across the VMEbus are words, the data may be transferred without modification, as can be seen by examining Figures B.1, B.2, B.3, and B.4.

B.5 Transferring Longs

If the data being transferred across the VMEbus are longs, it is evident from Figures B.1, B.2, B.3, and B.4 that the msb and lsb words of the long are interchanged if transferred to TMS34010 memory directly from 680x0 memory without additional processing. The solutions is to transfer the lsb word first [byte(2), byte(3)], and then transfer the msb word [byte(0), byte(1)] as shown in Figure B.6.

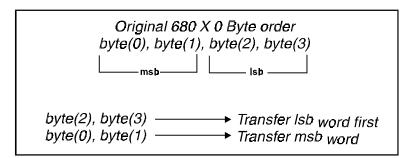


Figure B.6 Transferring a Long Word