

VMEBOOK

i

Table of
Contents

Introduction
How to Use This Book
Section 1. The VICO068A VMEbus Interface Controller
Chapter 1.1 Introduction to the VIC068A

1.1.1 Description
1.1.2 Features Summary

Chapter 1.2 VIC068A Signal Descriptions
1.2.1 VMEbus Signals
1.2.2 Local Signals
1.2.3 Buffer Control Signals

Chapter 1.3 Overview of the VIC068A
1.3.1 Resetting the VIC068A
1.3.2 The VIC068A VMEbus System Controller
1.3.3 VIC068A VMEbus Master Cycles

1.3.3.1 Master Write-Posting
1.3.3.2 Indivisible Cycles
1.3.3.3 Deadlock
1.3.3.4 Self-Access

1.3.4 VIC068A VMEbus Slave Cycles
1.3.4.1 Slave Write-Posting

1.3.5 Address Modifier (AM) Codes
1.3.6 VIC068A VMEbus Block Transfers

1.3.6.1 MOVEM Master Block Transfers
1.3.6.2 Master Block Transfers with Local DMA
1.3.6.3 Slave Block Transfers

1.3.7 VIC068A Interrupt Generation and Handling Facilities
1.3.8 Interprocessor Communication Facilities

Chapter 1.4 System Controller Operations
1.4.1 VMEbus Arbitration
1.4.2 The VMEbus Arbitration Timeout Timer
1.4.3 The VMEbus Transfer Timeout Timer
1.4.4 The BGi Daisy-Chain Driver
1.4.5 The IACK* Daisy-Chain Driver

Contents

ii

Chapter 1.5 VIC068A VMEbus Master Operations
1.5.1 VMEbus Requests
1.5.2 Release Modes

1.5.2.1 Release On Request (ROR)
1.5.2.2 Release When Done (RWD)
1.5.2.3 Release On Clear (ROC)
1.5.2.4 VMEbus Capture and Hold (BCAP)
1.5.2.5 Release Under RMC* Control

1.5.3 VIC068A VMEbus Master Write Cycle
1.5.4 VIC068A VMEbus Master Read Cycle
1.5.5 Master Write Posting
1.5.6 Indivisible Cycles

1.5.6.1 Indivisible Single-Address Cycles (ISACs)
1.5.6.2 Indivisible Multiple-Address Cycles (IMACs)

1.5.7 Deadlock
1.5.7.1 Undetectable Deadlocks

1.5.8 Self-Access
1.5.9 VMEbus/Local Bus Data and Port Size
1.5.10 Fair Request Timeout
1.5.11 Address-Only Cycles
1.5.12 The Address Modifiers for Master Cycles

Chapter 1.6 VIC068A VMEbus Slave Operations
1.6.1 The Valid Slave Select
1.6.2 The Local Bus Request
1.6.3 The Local Bus Grant
1.6.4 Local Bus Timing
1.6.5 VMEbus/Local Bus Data and Port Size
1.6.6 The Latched Bus Interface
1.6.7 Slave Write Posting
1.6.8 Slave Acknowledge Timing (SAT)

Chapter 1.7 VIC068A Control Register Access
1.7.1 Control Registers
1.7.2 Control Register Access

Chapter 1.8 Interprocessor Communication Facilities
1.8.1 Valid ICF Selection
1.8.2 Interprocessor Communication Registers
1.8.3 Interprocessor Communication Global Switches
1.8.4 Interprocessor Communication Module Switches

Chapter 1.9 Interrupts
1.9.1 VMEbus Interrupter
1.9.2 The VIC068A VMEbus Interrupt Handler
1.9.3 Local Interrupt Handler
1.9.4 The FCIACK Cycle
1.9.5 The Error/Status Interrupts
1.9.6 Interrupt Priority Order

Contents

iii

1.9.7 Clock-Tick Interrupt Generator
1.9.8 Interrupt Control Registers

Chapter 1.10 VIC068A Block Transfer Functions
1.10.1 VIC068A Master Block Transfer

1.10.1.1 Block Transfers with Local DMA
1.10.1.2 MOVEM Block Transfers
1.10.1.3 Buffer Control Signals During Master Block Transfers
1.10.1.4 Performing Block Transfers to VMEbus Slaves Not Supporting

Block Transfers
1.10.2 VIC068A Slave Block Transfers
1.10.3 Buffer Control Signals During Slave Block Transfers
1.10.4 Using the CY7C964 for Additional Block Transfer Support

Chapter 1.11 Miscellaneous Features
1.11.1 Resetting the VIC068A

1.11.1.1 Internal Reset
1.11.1.2 Global Reset
1.11.1.3 System Reset
1.11.1.4 Power-On Reset

1.11.2 The Local Bus Timeout Timer
1.11.3 The DRAM Refresh Controller
1.11.4 Rescinding Outputs
1.11.5 Turbo Mode
1.11.6 Metastability Delays

Chapter 1.12 VIC068A Register Map and Descriptions
Chapter 1.13 VIC068A AC Performance Specifications
Chapter 1.14 VIC068A Signal List and Pinouts
Chapter 1.15 VIC068A Simulation Waveforms
Chapter 1.16 DC Performance Specifications
Chapter 1.17 Package Diagrams

Section 2. The VIC64 VMEbus Interface Controller
Chapter 2.1 Introduction
Chapter 2.2 Compatibility
Chapter 2.3 64-Bit Operations

2.3.1 VMEbus Specification
2.3.2 Address Modifier Codes
2.3.3 Boundary Crossing
2.3.4 External Circuit Complexity

Chapter 2.4 VIC64: Additional Information
2.4.1 VIC64 Signal Description (Chapter 1.2)
2.4.2 System Controller Operations (Chapter 1.4)
2.4.3 VMEbus Master Operations (Chapter 1.5)

2.4.3.1 D64 Master Write Cycles

Contents

iv

2.4.3.2 D64 Master Read Cycles
2.4.4 VMEbus Slave Operations (Chapter 1.6)

2.4.4.1 D64 Slave Read Cycles
2.4.4.2 D64 Slave Write Cycles

2.4.5 Interrupts (Chapter 1.9)
2.4.6 VIC64 Block Transfer Functions (Chapter 1.10)

2.4.6.1 D64 Transfers, VMEbus Boundary Crossing
2.4.7 Miscellaneous Features (Chapter 1.11)

2.4.7.1 Selection of System Controller Functionality
2.4.7.2 Enhanced Turbo Mode

2.4.8 Register Map and Descriptions (Chapter 1.12)
2.4.8.1 Interprocessor Communications Register 5
2.4.8.2 Block Transfer Definition Register
2.4.8.3 Release Control Register
2.4.8.4 Block Transfer Length Register 2

2.4.9 AC Performance Specifications (Chapter 1.13)

Chapter 2.5 DC Performance Specifications
Chapter 2.6 Pin Configurations
Chapter 2.7 Package Diagrams

Section 3. The CY7C960/961 Slave VMEbus Interface Controllers
Chapter 3.1 Introduction

3.1.1 Feature List
3.1.2 Family Overview
3.1.3 CY7C960 Architectural Overview
3.1.4 Key Concepts

3.1.4.1 Local Bus Concepts
3.1.4.2 VMEbus Concepts

3.1.5 Address Mapping

Chapter 3.2 System Block Diagrams
Chapter 3.3 Pin Description

3.3.1 VMEbus Signals
3.3.2 Local Signals
3.3.3 Local Buffer Control Signals

Chapter 3.4 Programming the CY7C960
3.4.1 Configuration Bit Stream
3.4.2 Operation at Power-On or Reset
3.4.3 VMEbus Method
3.4.4 Serial PROM Method
3.4.5 Combination Method
3.4.6 Configuration Software
3.4.7 Programmable Features

Contents

v

Chapter 3.5 VMEbus Interface Description
3.5.1 Definition of Terms
3.5.2 Overview
3.5.3 Region Mapping

3.5.3.1 AM/LA Multiplexing
3.5.4 Bus Holdoff

3.5.4.1 Transaction Type Detection
3.5.5 Decode Delay Timing
3.5.6 Slave Addressing Before Initialization
3.5.7 Address and Data Strobe Event Processing
3.5.8 Slave Data Transfer Acknowledgmen
3.5.9 Slave Write Posting
3.5.10 Slave Read-Ahead Cycles
3.5.11 Interrupt Cycle Support
3.5.12 Interrupt Handshake Support

Chapter 3.6 CY7C964 Interface
3.6.1 CY7C964 Overview
3.6.2 CY7C964 Connections
3.6.3 Swap Buffer Control

Chapter 3.7 Interfacing without CY7C964
3.7.1 Reduced Cost, Fewer Features

Chapter 3.8 DRAM Control Description
3.8.1 Overview
3.8.2 Types of DRAM
3.8.3 VMEbus Implications
3.8.4 Refresh Cycles
3.8.5 Refresh Timing
3.8.6 DBE Refresh Enable Feature
3.8.7 Refresh and Reset
3.8.8 Local Acknowledge Behavior
3.8.9 DBE Signal Behavior
3.8.10 Formal Signal Description

3.8.10.1 RAS*, CAS*, ROW, COL
3.8.11 Programmable Features

3.8.11.1 Refresh Enable
3.8.11.2 Cycle Timing
3.8.11.3 Refresh Period
3.8.11.4 DBE Refresh
3.8.11.5 DBE Polarity
3.8.11.6 ROW, COL Polarity

Chapter 3.9 I/O Control Description
3.9.1 Region Mapping
3.9.2 Chip Select Output Control
3.9.3 Chip Select Output Timing

3.9.3.1 Overview

Contents

vi

3.9.3.2 Read-Aheads
3.9.3.3 Local Acknowledge Timing

3.9.4 Data Byte Enable Usage
3.9.5 Using I/O In DRAM Mode

Chapter 3.10 Design Considerations
3.10.1 Design Philosophy
3.10.2 CY7C964 Interface
3.10.3 Local Bus Philosophy
3.10.4 Read-Ahead Cycles
3.10.5 Write Posting
3.10.6 VMEbus Error Considerations

Chapter 3.11 CY7C961 Description
3.11.1 Introduction
3.11.2 CY7C961 Lock Cycle Support

3.11.2.1 Overview
3.11.2.2 Description

3.11.3 CY7C961 Master Block Facility
3.11.3.1 Overview
3.11.3.2 Master Block Transfer Control from VMEbus
3.11.3.3 Master Block Transfer Control from Local Side of Interface
3.11.3.4 Programming the Master Block Facility
3.11.3.5 Register Definitions

3.11.4 Pin Description Addendum
3.11.4.1 VMEbus Signals
3.11.4.2 Local Buffer Control Signals
3.11.4.3 Local Signals
3.11.4.4 Master Block Transfer Performance

3.11.5 Examples of Block Transfers

Chapter 3.12 AC Parameters
Chapter 3.13 DC Performance Specifications
Chapter 3.14 Package Diagrams

Section 4. The CY7C964 Bus Interface Logic Circuit
Chapter 4.1 Introduction
Chapter 4.2 Features
Chapter 4.3 Interfacing to Cypress VMEbus Interface Controllers

4.3.1 VMEbus Signal Group
4.3.2 Buffer Control Signal Group
4.3.3 CY7C964 Local Signal Group
4.3.4 CY7C964 Address Comparison and Local Signal Group
4.3.5 Local Data Swap Buffer Logic

Chapter 4.4 Signal Descriptions
4.4.1 VMEbus Signals
4.4.2 Local Signals

Contents

vii

Chapter 4.5 CY7C964 Operation
4.5.1 Overview
4.5.2 Master Block Transfer Local Address Counter (C1)
4.5.3 Local Address Multiplexer (S5)
4.5.4 Slave Block Transfer Local Address Counter/Latch (C2)
4.5.5 Master Block Transfer VMEbus Address Counter (C3)
4.5.6 VMEbus Address Latch (L8) and Multiplexer (S3)
4.5.7 VMEbus Address Comparator
4.5.8 VMEbus D64 Block Transfer Data Pipeline and Multiplexer
4.5.9 VMEbus D64 Block Transfer Data Demultiplexer

Chapter 4.6 CY7C964 Alternate BLT Initiation Operation for VIC068A and VIC64
Chapter 4.7 DC Performance Specifications
Chapter 4.8 AC Performance Specifications
Chapter 4.9 Pin Description

4.9.1 Pin Definitions
4.9.2 Pin Configurations

Chapter 4.10 Package Diagrams

Section 5. The VAC068A VMEbus Address Controller
Chapter 5.1 Introduction to the VAC068A

5.1.1 Features Summary
5.1.2 General Description

Chapter 5.2 VAC068A Signal Descriptions
5.2.1 VMEbus Signals
5.2.2 CPU/Local Interface Signals
5.2.3 Parallel I/O-Shared Function Signals
5.2.4 Data Flow Control Signals

Chapter 5.3 VAC068A Overview
5.3.1 Applications
5.3.2 VMEbus Address Decoding

5.3.2.1 Master Access
5.3.2.2 Programmable VMEbus Space
5.3.2.3 A24 VMEbus Space
5.3.2.4 A16 VMEbus Space

5.3.3 VMEbus Slave Access
5.3.4 Local Memory Map Decoding

5.3.4.1 DRAM Decode
5.3.4.2 Programmable Decode
5.3.4.3 EPROM Decode
5.3.4.4 Local I/O Select Decode

5.3.5 Local Decode Control/Status
5.3.5.1 Function Code Decode

5.3.6 Programmable Input/Output
5.3.6.1 Serial I/O

Contents

viii

5.3.6.2 I/O Select
5.3.7 Interrupt Support

5.3.7.1 Interrupt Status Register
5.3.7.2 PIO Interrupt

5.3.8 Miscellaneous Features
5.3.8.1 PIO9 Debounce
5.3.8.2 Isolated Data Bus
5.3.8.3 Programmable DSACKi* Timing
5.3.8.4 VIC068A/VAC068A DMA Support
5.3.8.5 IORD* and IOWR*
5.3.8.6 I/O Recovery Timer
5.3.8.7 IACK Cycle Emulation for Non-680X0 Processors
5.3.8.8 Cache Inhibit Output

Chapter 5.4 VAC068A Operation
5.4.1 Resetting the VAC068A

5.4.1.1 Global Reset
5.4.1.2 Soft Reset
5.4.1.3 RESET* Termination

5.4.2 System Initialization
5.4.3 Configuring the Local Memory Map

5.4.3.1 DRAM Size
5.4.3.2 VSB Space
5.4.3.3 VMEbus A32, D32 Access
5.4.3.4 Shared Resource Area
5.4.3.5 EPROM Space

5.4.4 Configuring the VMEbus Address Map
5.4.4.1 SLSEL0* Access
5.4.4.2 SLSEL1* Access
5.4.4.3 ICFSEL* Access
5.4.4.4 VME A24 Master Cycle
5.4.4.5 VME A16 Master Cycle
5.4.4.6 Decode Control Register

5.4.5 VME Master Access
5.4.6 VME Slave Operation

5.4.6.1 Slave Transfer Sequence
5.4.7 VME Master Block Transfer
5.4.8 VIC068A/VAC068A Interconnect Diagram

Chapter 5.5 VAC068A Register Map and Descriptions
Chapter 5.6 VAC068A AC Performance Specifications
Chapter 5.7 VAC068A Signal List and Pinout
Chapter 5.8 DC Performance Specifications
Chapter 5.9 Package Diagrams

Glossary

xvii

Introduction

Thank you for your interest in Cypress’s line of VMEbus Interface Products! Cypress provides

a wide range of solutions to help you design almost any VMEbus interface. This Handbook

explains the use of each product individually. Diagrams and examples are shown where

needed to help clarify the operation of each part. This book is broken into five sections as

follows:

Section 1: The VIC068A VMEbus Interface Controller

Section 2: The VIC64 VMEbus Interface Controller

Section 3: The CY7C960/961 Slave VMEbus Interface Controllers

Section 4: The CY7C964 Bus Interface Logic Circuit

Section 5: The VAC068A VMEbus Address Controller

We also offer the Cypress Applications Handbook, which contains design examples using

our VMEbus products. Although these examples may not show the exact solution you need,

they can be used as building blocks to create an interface that fits your design.

Cypress also manufactures high speed SRAMs, Programmable Logic Devices (PLDs), Clock

devices, and many Datacom devices as an aid for your design. Call (800)858-1810 to obtain

a copy of one of our data books or the Cypress Applications Handbook.

For further help using any Cypress device, to download datasheets or application notes, or

for general information about Cypress Semiconductor, check out our web page at www.cy-

press.com. Datasheets or applications notes can be sent directly to your fax machine by

calling (800)213-5120. For direct technical assistance call (408)943-2821 to reach our appli-

cations hotline or email us at cyapps@cypress.com.

xviii

How to Use This Book

This guide provides the hardware and software designer with detailed information on the
Cypress Semiconductor VMEbus Interface Products. It may also be used to provide detailed
information regarding existing off-the-shelf VMEbus modules that utilize the Cypress line of
interface products.

This document is not intended to instruct the reader on VMEbus standards and protocol. First-
time VMEbus designers and users requiring such information are encouraged to refer to the
VMEbus specification (ANSI/VITA-1-1994).

Throughout this specification, specific conventions are used when referring to VMEbus sig-
nals, terms, and register bit and bit fields.

• The terms High or H are used to specify actual >VIH or >VOH levels. The terms Low or L

are used to specify actual <VIL or <VOL levels.

• Active Low signals are followed by an asterisk (*).

• Active High signals, clock signals, and address/data buses do not have an asterisk.

• The terms assertion and deassertion are used to indicate the forcing of a signal to a
particular state. Assertion means forcing a signal to its TRUE or active state. Deassertion
refers to forcing a signal to its FALSE or inactive state. These terms are used independent
of the actual voltage levels represented.

• Address and data buses (or portions thereof) are referred to using a bus[MSB:LSB] format.
For example, the entire VMEbus data bus is referred to as D[31:0].

• An individual bit of an address or data bus is referred to using a bus[bit] format. For
example, bit 0 of the local address bus is referred to as LA[0] or, where space was
restrictive, LA0.

• When referring to address and data buses with a user-specific limit, a “+” character is
used to indicate the limit. For example, to refer to the range from LA bit 0 to some user-
specified or unknown limit, the term LA[+:0] is used. LA bit 31 to a lower user-specified
or unknown limit is referred to as LA[31:+].

• When referring to one or more related signals or registers containing numbers, the low-
ercase letter “i” is used to indicate the signal(s). For example, when referring to one or
more of the VMEbus bus request signals (BR3*, BR2*, BR1*, and/or BR0*), the term BRi*
is used. When referring to the SS0CR0 and/or the SS1CR0 register, the term SSiCR0 is
used.

• When referring to a specified group of signals ending in a number, a slash (/) is used to
separate the signals. For example, when referring to the SIZ1 and SIZ0 signals, the term
SIZ1/0 is used.

How to Use This Guide

xix

• Specific bits of a register are referred to in a register[bit] format. Ranges of bits are referred
to in a register[upper:lower] format.

• Setting register bit or bits refers to writing a 1 (one) into the respective bits.

• Clearing register bit or bits refers to writing a 0 (zero) into the respective bits.

• The term module refers to a VMEbus circuit board. Depending on the context, module
may or may not imply a VMEbus circuit board.

• The terms local or local side refer to CPU, memory, or other resources that connect to
the non-VMEbus signals of the VMEbus interface device.

• The terms master write and slave write both imply a VMEbus write operation where data
is transferred from a VMEbus master to a VMEbus slave. Master read and slave read both
imply VMEbus read operations where data is transferred from a VMEbus slave to a VME-
bus master.

• All hexadecimal values are preceded by a dollar sign ($).

• The term byte is used to indicate 8 bits. The term word is used to indicate 16 bits. The
terms longword and lword are used to indicate 32 bits.

• The term 68K is used to indicate a member of the Motorola CISC family of microprocessors
(i.e., MC68000 through MC68040).

• The letter “T” is used to indicate the clock input period.

• The term rescinding is used to indicate a three-state output that is driven High before it
is three-stated. See section 1.11.4.

• The letters “L” and “H” are used to indicate a High or Low value driven by the VMEbus
interface device. The numbers “1” and “0” are used to indicate a High or Low value driven
to the VMEbus interface device.

Section 1

The VIC068A VMEbus

Interface Controller

1-1

1.1
Introduction to the VIC068A

1.1.1 Description

The Cypress Semiconductor VMEbus Interface Controller, VIC068A, is a single, integrated
circuit designed to minimize the cost and board-area requirements of VMEbus boards,
while at the same time maximizing their performance. The VIC068A was designed using
Cypress’s high-performance standard cells on a CMOS process. The VIC068A provides
all VMEbus system controller functions plus many other features that simplify the devel-
opment of VMEbus-based modules. The VIC068A utilizes Cypress’s patented and mili-
tary-approved high-drive CMOS drivers. These CMOS drivers connect directly to the
VMEbus signal pins.

The VIC068A was developed through the joint efforts of Cypress Semiconductor and the
VMEbus Technology Consortium under the auspices of the VMEbus International Trade
Association (VITA). Because of this cooperation, the VIC068A offers an implementation
that provides the broadest feature set and multi-vendor compatibility available on the
market.

A block diagram of the VIC068A is shown in Figure 1-1. A typical 68030 application is shown
in Figure 1-2.

1.1.2 Features Summary

The complete VMEbus Interface Controller and Arbiter includes

• PRI, SGL, and RRS arbitration

• the capability to drive arbitration signals directly

• arbitration timeout timer

• VMEbus timeout timer

• the capability to drive BGOUT*, IACK* daisy-chain

The complete VMEbus Master Interface includes

• five release modes

• write posting

• indivisible cycle support

• deadlock detection

• fair requesting

Introduction to the VIC068A

1-2

• user-defined AM code generation

The complete VMEbus Slave Interface includes

• write posting

• configurable local access timing

• slave block transfer support

Interleaved Block Transfer support includes

• block transfers with local DMA

• programmable transfer length, burst length, interleave period, and access timing

• “dual-path” option

The compete VMEbus, Local Interrupt Handler/Generator includes

• seven local interrupt signals

• seven VMEbus interrupt signals

• seven-level local encoding

• error/status interrupts

• periodic “heartbeat” interrupt

Interprocessor Communication Support includes

• four global mailbox interrupts

• four module mailbox interrupts

• five mailbox registers

Other features include

• local DRAM refresh control

• local timeout timer

• “turbo” mode

• programmable metastability delay

The VIC068A meets the IEEE VMEbus Specification 1014 Rev C.1.

Introduction to the VIC068A

1-3

Figure 1-1. VIC068A Block Diagram

LA0 - LA7

LD0 - LD7

A01 - A07

D00 - D07

REGISTER
SELECTION

ADDRESS
MODIFIER EN-

ADDRESS
MODIFIER DE-

0 1 ICF ICF

SLAVE
SELECTION

LOCAL BUS
REQUESTER

DRAM
REFRESH

BLOCK TRANSFER
CONTROL

BUFFER
CON-
TROL

LOCAL
TIME-

LOCAL
BUS TIM-
ING CON-

CONTROL SIGNAL
TRANSFORMATION

VMEbus
TIME-

RE-
SET

REQUEST-

VMEbus
ARBI-

SYSCLK
DIVIDER

INTERRUPT-
ER

INTERRUPT
HANDLER

INTERPROCES-
SOR COMMUNICA-
TIONS REGISTERS

AND SWITCHES

7

4

4

4

CS*

ASIZ0, ASIZ1
FC2, FC1

AM0 - AM5

SLSEL0*
SLSEL1*
ICFSEL*

LBR*
LBG*

DEDLK*

BLT*

ABEN*
LADO

LEDI
LEDO
DDIR

DENO*
DENIN1*

DENIN*
SWDEN*

ISOBE*
LAEN

LADI

PA
S

*
D

S
*

LB
E

R
R

*
H

A
LT

*
R

/W
*

S
IZ

(0
,1

)
A

S
*

D
S

(0
,1

)*
D

TA
C

K
*

B
E

R
R

*
W

R
IT

E
*

D
S

A
C

K
(0

,1
)*

LW
O

R
D

*
W

O
R

D
*

ACFAIL*
LIRQ1* - LIRQ7*
IPL0 - IPL2
SYSFAIL*
LIACK0*

IRQ1* - IRQ7*
IACKIN*
IACKOUT*
IACK*

CLK64M

SYSCLK

SCON*

BR0* - BR3*
BCLR*
BG0OUT* - BG3OUT*
BBSY*
BG0IN* - BG3IN*

MWB*

IRESET*
RESET*
SYSRESET*

Introduction to the VIC068A

1-4

Figure 1-2. VIC068A on 68030 Board

DRA DRA

LATCHED
TRANSCEIV-

ADDRESS
MULTI- LATCHED

TRANSCEIV-

PARITY
LOGIC

EPROM BANK

MC6803

DATA[31:0]

ADDR[31:0]
FC2/1
SIZ1/0

DSACK1/0*
LBERR*

R/W*
RMC*
ILP2-0
HALT*

RESET*

BR*
BG*

BGA*

LOCAL BUS
ARBITER

X543
LATCHED
 TRANS-
CEIVER

X543
LATCHED
 TRANS-
CEIVER

8 D[31:24]

D[23:16]8

A[7:1]7

D[7:0]8

7

AM[5:0]6

IACKIN*/OUT*, IRQ[7:1]*, IACK*10

BR3-0*, BGIN3-0*,
BGOUT3-0*, BBSY*, BCLR*14

SYSRESET*,
SYSFAIL*4

A[15:8]8

A[23:16]8

A[31:24]8

AS*, DS1/0*, DTACK*
WRITE*, LWORD*, BERR*

X543
LATCHED
 TRANS-
CEIVER

X543
LATCHED
 TRANS-
CEIVER

X543
LATCHED
 TRANS-
CEIVER

X245
BIDIRECTION-

AL TRANSCEIV-

X245
BIDIRECTION-

AL TRANSCEIV-

CS*
MWB*

ASIZ1/0
WORD*

LOCAL
DECODE

LOGIC

VIC068

LA[0:7]

LD[0:7]

CPU CON-

LBR*/LBG*

LOCAL SE-

BUFFER CON-

ADDRESS

DATA

VMEbus
CONTROL

ADDRESS
MODIFI-

INTER-

ARBITRA-

UTILITY

X543
LATCHED
 TRANS-
CEIVER

D[15:8]8

1-5

1.2
VIC068A Signal Descriptions

1.2.1 VMEbus Signals

This chapter lists VMEbus-specified signals that are driven and received directly by the
VIC068A. For complete definitions and descriptions of these signals, refer to the VMEbus
specification (IEEE 1014).

SYSRESET*

Input: Yes
Output: Yes, open collector
Drive: 48 mA

This is the VMEbus system reset signal. A Low level on this signal resets the internal logic
of the VIC068A and asserts the signals HALT* and RESET*. These signals remain asserted
for a minimum of 200 ms. If the VIC068A is configured as VMEbus system controller, a Low
level on IRESET* asserts SYSRESET* for a minimum of 200 ms. See section 1.11.1.

ACFAIL*

Input: Yes
Output: No
Drive: None

This is the VMEbus AC fail signal. This signal should be driven by the VMEbus power monitor
(if installed), not the VIC068A. The VIC068A can be enabled to provide a local interrupt when
this signal is asserted. See section 1.9.5.

SYSFAIL*

Input: Yes
Output: Yes, open collector
Drive: 48 mA

As an output, the SYSFAIL* signal is asserted when it detects that HALT* has been asserted
for more than 6 µs by a source other than the VIC068A.

This signal is asserted by the VIC068A after a global reset. It may be masked by clearing
ICR6[6] or by setting ICR7[7]. The VIC068A can also be enabled to provide a local interrupt
on the assertion of this signal. See section 1.9.5.

VIC068A Signal Descriptions

1-6

Figure 1-3. VIC068A Signal Diagram

BUFFER CONTROL

LOCAL ADDRESS/DATA

VMEbus ADDRESS/DATA

VMEbus CONTROL

LOCAL BUS CONTROL

PAS*
DS*
DSACK1,0*

LBERR*
HALT*
RESET*

RMC*
R/W*

FC2,1

SIZ1,0
IPL2,1

IPL0

LBR*
LBG*
LIRQ7-3,1*
LIRQ2*

FCIACK*
LIACK0*
MWB*

SLSEL1,0*
ICFSEL*
CS*

ASIZ1,0

WORD*
BLT*

DEDLK*
SCON*
IRESET*
CLK64M

A
B

E
N

*
LA

D
O

LA
E

N
LA

D
I

D
E

N
O

*

LE
D

O
D

E
N

IN
*

D
E

N
IN

1
*

LE
D

I

S
W

D
E

N
*

IS
O

B
E

*
D

D
IR

LA[7:0]
LD[7:0]

A[7:1]
D[7:0]

AM[5:0]

AS*
DS1,0*

DTACK*
BERR*

LWORD*

WRITE*
BR3-0*

BG3IN*-BG0IN*
BG3OUT*-BG0OUT*

BBSY*
BCLR*

IRQ7-1*

IACK*
IACKIN*

IACKOUT*
SYSFAIL*

SYSRESET*
ACFAIL*
SYSCLK

8

8

7

8

6

2

4

4

4

7

2

2

2

2

6

2

2

VIC068A Signal Descriptions

1-7

SYSCLK

Input: No
Output: Yes, three-state
Drive: 64 mA

This is the VMEbus system clock signal. This signal is driven by the VIC068A when configured
as system controller (SCON* asserted). The output frequency is one-fourth the frequency
delivered to the VIC068A CLK64M signal. To deliver the required 16 MHz on this signal, the
VIC068A must run at 64 MHz. The VIC068A does not use this signal internally.

BR3*–BR0*

Input: Yes
Output: Yes, open collector
Drive: 48 mA

These are the VMEbus Bus Request signals.

BG3IN*–BG0IN*

Input: Yes
Output: No
Drive: None

These are the VMEbus daisy-chained Bus-Grant-In signals.

BG3OUT*–BG0OUT*

Input: No
Output: Yes
Drive: 8 mA

These are the VMEbus daisy-chained Bus-Grant-Out signals.

BBSY*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Bus-Busy signal.

BCLR*

Input: Yes
Output: Yes, three-state
Drive: 64 mA

This is the VMEbus Bus-Clear signal.

VIC068A Signal Descriptions

1-8

D7–D0

Input: Yes
Output: Yes, three-state
Drive: 48 mA

These are the VMEbus low-order data lines.

A7–A1

Input: Yes
Output: Yes, three-state
Drive 48 mA

These are the VMEbus low-order address lines.

AS*

Input: Yes
Output Yes, rescinding
Drive: 64 mA

This is the VMEbus Address Strobe signal.

DS1*–DS0*

Input: Yes
Output: Yes, rescinding
Drive: 64 mA

These are the VMEbus Data Strobe signals.

DTACK*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Data-Transfer-Acknowledge signal.

BERR*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Bus-Error signal.

WRITE*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Data-Direction signal.

VIC068A Signal Descriptions

1-9

LWORD*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Longword signal.

AM5–AM0

Input: Yes
Output: Yes, three-state
Drive: 48 mA

These are the VMEbus Address-Modifier signals.

IACK*

Input: Yes
Output: Yes, rescinding
Drive: 48 mA

This is the VMEbus Interrupt Acknowledge signal.

IACKIN*

Input: Yes
Output: No
Drive: None

This is the VMEbus daisy-chained Interrupt-Acknowledge-In signal.

IACKOUT*

Input: No
Output: Yes
Drive: 8 mA

This is the VMEbus daisy-chained Interrupt-Acknowledge-Out signal.

IRQ7* - IRQ1*

Input: Yes
Output: Yes, open collector
Drive: 48 mA

These are the VMEbus Interrupt request signals.

1.2.2 Local Signals

These signals define the local bus structure of the VIC068A. They are modeled after Motorola
68K signals.

VIC068A Signal Descriptions

1-10

LD7–LD0

Input: Yes
Output: Yes, three-state
Drive: 8 mA

These are the Local Data 7–0 signals. These signals are typically connected to the local
processor data lines D[7:0] through an isolation buffer. VIC068A register accesses are also
made through these data signals.

LA7–LA0

Input: Yes
Output: Yes, three-state
Drive: 8 mA

These are the Local Address 7–0 signals. These signals are typically connected to the local
processor address lines. VIC068A registers are also addressed through these signals. When
acting as the local bus master, the VIC068A drives these lines with the LAEN (active High)
signal to supply the local address.

CS*

Input: Yes
Output: No
Drive: None

This is the VIC068A chip select signal. This signal should be asserted whenever access to
the VIC068A internal registers is required. See section 1.7.2.

PAS*

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

This is the physical/processor address strobe. This signal is used to qualify an incoming
address when performing VMEbus master operations or register operations. This signal is
driven when performing slave transfers, DRAM refresh, slave block transfers and block trans-
fers with local DMA. When acting as an output, the minimum assertion and negation timing
for this signal is configured by the Local Bus Timing register (LBTR).

DS*

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

This is the local data strobe. This signal is used to qualify incoming data when performing
VMEbus master operations or register operations. This signal is driven when performing slave
transfers, DRAM refresh, slave block transfers, and block transfers with local DMA. When

VIC068A Signal Descriptions

1-11

acting as an output, the minimum assertion and negation timing for this signal is directed by
the Local Bus Timing register (LBTR).

DSACK1*, DSACK0*

Input: Yes
Output: Yes, three-state
Drive: 8 mA

These are the local data-size-acknowledge signals. One or both of these signals should be
asserted to the VIC068A whenever the VIC068A is local bus master to acknowledge the
successful completion of each cycle of a slave transfer, slave block transfer, or block transfers
with local DMA. The VIC068A asserts one or both of these signals to acknowledge the
successful completion of a VMEbus master operation (after receiving the VMEbus DTACK*
signal). The following should be noted about the DSACK1/0* signals:

• The VIC068A asserts a 16-bit DSACKi* code when the WORD* signal is asserted, indi-
cating access to a D16 VMEbus resource is complete. See section 1.5.3.

• The VIC068A treats the assertion of any DSACK1/0* signal as a 32-bit acknowledge for
slave accesses.

• The VIC068A does not directly support 16- or 8-bit local bus sizes.

• The VIC068A always asserts both DSACK*s for register accesses as well as for interrupt
acknowledge cycles.

LBERR*

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

This is the local bus-error signal. This signal should be asserted to the VIC068A whenever
the VIC068A is local bus master to acknowledge the unsuccessful completion of a slave
transfer, slave block transfer, and block transfers with local DMA, in which case the VIC068A
asserts the VMEbus BERR* signal. The VIC068A asserts this signal to acknowledge the
unsuccessful completion of a VMEbus master operation (after receiving the VMEbus BERR*
signal).

During deadlocks, LBERR* may also be configured to assert with the HALT* signal to initiate
a Motorola 68K retry sequence. LBERR* may also be configured to assert without HALT* for
RMC cycle deadlocks. See section 1.5.7.

RESET*

Input: No
Output: Yes, three-state
Drive: 8 mA

This is the local reset indication signal. This signal is asserted whenever the VIC068A is in a
reset state. An internal, global, or system reset causes the VIC068A to start its 200-ms reset
timer and to assert RESET* for a minimum of one reset timer period. If a reset condition is

VIC068A Signal Descriptions

1-12

present at the end of the reset timer period (200 ms), the reset timer is retriggered for an
additional 200-ms period and continues to assert RESET*. This reset timer retrigger operation
repeats until the reset condition is not present when the reset timer period ends. Once the
VIC068A stops driving RESET* Low, this pin is three-stated. Since the VIC068A does not
actively drive RESET* to its inactive state, a pull-up resistor should be used on this signal to
ensure that any device monitoring the RESET* signal will see its removal. See section 12.1.

HALT*

Input: Yes
Output: Yes, three-state
Drive: 8 mA

This is the “halted” condition indication signal. This signal, along with RESET*, is asserted
during reset conditions. An internal, global, or system reset causes the VIC068A to assert
HALT* for a minimum of 200 ms. If the reset condition continues for longer than 200 ms, HALT*
begins additional 200-ms timeouts until all reset conditions are cleared. Assertion of HALT*
for more than 6 µs by anything other than the VIC068A causes the VIC068A to assert
SYSFAIL*.

HALT* may be configured to assert during deadlock conditions along with LBERR* to initiate
a retry sequence for Motorola 68K processors. See section 1.5.7.

R/W*

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

This is the local data direction signal. This signal is driven while the VIC068A is a local bus
master to indicate local data direction. As an input, R/W* indicates data direction for VMEbus
master cycles. In this case, the VMEbus signal WRITE* reflects the value of R/W*. A Low
condition indicates a write operation.

FC2, FC1

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

These are the local function code signals. These signals identify the type of local cycle in
progress. As inputs, they should reflect the type of operations in terms of User/Supervisory
Code/Data. They may be connected directly to the Motorola FC2/1 outputs for 68000-30
processors. For the 68040, the FC2/1 inputs may be connected to the TM2/1 outputs, respec-
tively. Additional qualification may be required for 68040 applications because the 68040 uses
previously reserved/unused function codes.

VIC068A Signal Descriptions

1-13

FC2 FC1 Description

0 0 User Data
0 1 User Program
1 0 Supervisor Data
1 1 Supervisor Program

As outputs, the VIC068A drives these signals whenever it is local bus master to indicate the
type of local cycle the VIC068A is performing. See section 1.6.3.

FC2 FC1 Description

0 0 Slave Block Transfer
0 1 Local DMA
1 0 Slave Access
1 1 DRAM Refresh

SIZ1, SIZ0

Input: Yes
Output: Yes, rescinding
Drive: 8 mA

These are the local data size signals. As inputs, these signals identify the width of the VMEbus
data to be transferred. The SIZi signals should not be used to indicate the physical port size
of the slave device (D16, or D32). This is done with the WORD* signal. As outputs, they are
driven by the VIC068A as local bus master to identify the width of the incoming data. See
sections 1.5.9, 1.6.5, and 1.6.8.

SIZ1 SIZ0 Data Width

0 0 Longword
0 1 Byte
1 0 Word
1 1 3-Byte

LBR*

Input: No
Output: Yes
Drive: 8 mA

This is the local bus request signal. This signal is asserted whenever the VIC068A desires
mastership of the local bus. This signal remains asserted for the entire bus tenure.

Local bus mastership is requested when each of the following operations is desired:

• Standard slave accesses

• Slave block transactions

• Block transfers with local DMA

• DRAM refresh

VIC068A Signal Descriptions

1-14

LBG*

Input: Yes
Output: No
Drive: None

This is the local bus grant signal. The signal is asserted by local resources in response to the
LBR* signal. The VIC068A does not incorporate a local-bus-grant-acknowledge protocol, so
the LBG* signal must remain asserted for the duration of LBR*.

MWB*

Input: Yes
Output: No
Drive: None

This is the “Module-Wants-Bus” signal. This signal is asserted by local resources to begin a
VMEbus transaction. When qualified by the PAS* signal, the VIC068A asserts the VMEbus
BRi* signal. This signal is usually asserted by local-to-VMEbus address decoders.

FCIACK*

Input: Yes
Output: No
Drive: None

This is the local interrupt acknowledge signal. This signal is asserted (qualified by DS*) to
acknowledge all VIC068A-generated local interrupts. See Chapter 1.9.

SLSEL1*, SLSEL0*

Input: Yes
Output: No
Drive: None

These are the slave select signals. These signals indicate the VIC068A has been selected
to perform a VMEbus slave operation. When qualified by AS* and valid AM codes, the
VIC068A requests the local bus to perform the slave cycle. These signals are usually asserted
by VMEbus-to-local-address decoders.

The SLSEL1/0 signals may be used independently of each other to provide unique slave
characteristics as defined by the Slave Select Control registers. See section 1.6.1.

ICFSEL*

Input: Yes
Output: No
Drive: None

This is the Interprocessor Communication Facility (ICF) Select signal. This signal indicates
that the ICF functions of the VIC068A have been selected. These include the ICF registers
and the ICF switch interrupts. This signal is qualified with AS* and A16 AM codes (A16/
Supervisory for global switches). See Chapter 1.8.

VIC068A Signal Descriptions

1-15

ASIZ1, ASIZ0

Input: Yes
Output: No
Drive: None

These are the VMEbus address size signals. These signals are driven to indicate the VMEbus
address size of master VMEbus transfers. The address size information is issued on the
VMEbus AM codes. User-defined address spaces may be accessed by asserting both ASIZ1/
0 signals. In this case, the AM codes are issued according to the programming of the Address
Modifier Source register.

ASIZ1 ASIZ0 Address Size

0 0 User defined
0 1 A32
1 0 A16
1 1 A24

WORD*

Input: Yes
Output: No
Drive: None

This is the VMEbus data width control signal. This signal, when asserted, indicates the re-
quested VMEbus transaction should be treated as a D16 data path. When deasserted, the
VMEbus data path is assumed to be D32. This signal should be used to configure VMEbus
data width for master cycles only. Data width for slave cycles is configured in the Slave Select
Control registers.

This signal is also used to configure the data width for block transfers with local DMA. When
this signal is asserted during the block transfer initiation cycle, the block transfer is assumed
to be a D16 block transfer.

This signal may be changed dynamically for individual transfers, or strapped Low at power-
up for permanent D16 operation. If WORD* is strapped Low at power-up, the VIC068A is
configured as a D16 slave, independent of the slave configuration in the Slave Select Control
registers.

WORD* should not be used to indicate data size (i.e., byte, word, or longword) only VMEbus
data port size (i.e., D16 or D32).

BLT*

Input: Yes
Output: Yes, open collector
Drive: 8 mA

This is the block transfer with local DMA indication signal. This signal is used to indicate that
a block transfer with local DMA is in progress. This signal remains asserted for the entire
block transfer including interleave periods with the exception of local page boundary cross-

VIC068A Signal Descriptions

1-16

ings. BLT* toggles during local boundary crossings to increment the external LA[+:8] counters.
See section 1.10.1.1.

DEDLK*

Input: No
Output: Yes
Drive: 8 mA

This is the deadlock indication signal. This signal indicates that a deadlock condition has
occurred. This signal should be used by local logic to remove its request for the VMEbus.
DEDLK* remains asserted until the slave transaction is complete.

DEDLK* is also asserted to indicate that a VMEbus master cycle is being attempted during
the interleave period of a block transfer with local DMA, without the dual-path feature enabled.
In this case, DEDLK* is asserted while MWB* is asserted. If, during the interleave period, the
MWB* signal is asserted after the VMEbus has been re-obtained, the VIC068A will assert
DEDLK* for the duration of the burst. See section 1.5.7.

IPL2, IPL1, IPL0

Inputs: IPL0 only
Output: Yes, open collector
Drive: 8 mA

These are the local priority encoded interrupt request signals. These signals are asserted to
interrupt the local processor. All local VIC068A interrupts are issued with these signals. These
signals emulate the Motorola 68K interrupt mechanism. The assertion of one or more of these
signals indicates a single interrupt with a priority given by the negative-logic value of the IPLi
signals. Level 7 is the highest priority. These signals are open collector to allow the wire-
ORing of multiple interrupt sources. See Chapter 1.9.

During the assertion of IRESET*, IPL0 becomes an input. If IPL0 is asserted at this time, a
global reset is performed. See section 1.11.1.2.

LIRQ7*–LIRQ1*

Input: Yes
Output: LIRQ2* only
Drive: 8 mA (LIRQ2* only)

These are the local interrupt request signals. These signals serve as local interrupt request
signals for the VIC068A. If enabled to handle the particular local interrupt, the VIC068A issues
a processor interrupt with the IPLi signals at the assertion of a LIRQi*. Configuration of local
interrupts is allowed through the Local Interrupt Configuration registers. See section 1.9.3.

LIRQ2* may also be configured to issue periodic “heartbeat” interrupts at user-defined inter-
vals. See section 1.9.6.

VIC068A Signal Descriptions

1-17

LIACKO*

Input: No
Output: Yes
Drive: 8 mA

This is the “autovectoring” indication signal. This signal is asserted when the VIC068A is
configured to allow the interrupting device to place its status/ID vector on the local data bus
in response to a VIC068A-handled local interrupt acknowledge. This signal may be used to
signal an autovectored interrupt acknowledge cycle for 68020/30/40 processors. This signal
may be connected directly to the AVEC signal for these processors. See section 1.9.3.

IRESET*

Input: Yes
Output: No
Drive: None

This is the internal reset signal. This signal is used to issue both internal and global resets
to the VIC068A. If asserted with IPL0*, a global reset is performed. If asserted without IPL0*,
an internal reset is performed. All internal state machines and selected register bits are reset
during the assertion of IRESET*. HALT* and RESET* are both asserted during the assertion
of IRESET*. If configured as system controller, SYSRESET* is also asserted during the
assertion of IRESET*. See Chapter 1.12.

SCON*

Input: Yes
Output: No
Drive: None

This is the system controller enabling signal. This signal is used to configure the VIC068A as
VMEbus system controller. This signal must be strapped Low at power-up and remain Low
for VIC068A to reliably assume the role of VMEbus system controller, otherwise this signal
should be tied High. See Chapter 1.4.

CLK64M

Input: Yes
Output: No
Drive: None

This is the VIC068A master clock input. This 64-MHz clock input is used to clock internal
arbitration, timing, and delay functions within the VIC068A. Clock speeds as low as 1 MHz
may be used, but all synchronous delays as well as VMEbus and local timing are affected.

VIC068A Signal Descriptions

1-18

RMC*

Input: Yes
Output: No
Drive: None

This is the Read-Modify-Write control signal. This signal may be used to control indivisible
cycles on the VMEbus. Its operation is controlled with the Interface Configuration register,
bits 5–7. See section 1.5.6.

1.2.3 Buffer Control Signals

These signals control the latching and enabling of the external address and data latches and
buffers. For block transfers with local DMA, some of these signals are used to control the
counting and enabling of external counters required for page boundary crossing. These sig-
nals can be directly connected to Cypress CY7C964s which simplifies the VME interface by
replacing 8 bit wide external latches, buffers and counters with one CY7C964. A complete
32 bit wide VME interface would consist of the VIC068A and three CY7C964s. See Section
4, The CY7C964 Bus Interface Logic Circuit, for more information.

For simple VME designs (i.e. single-cycle only) the VIC068A can directly drive the control
lines of discrete buffers and latches (Figure 1-4).

Figure 1-4 shows typical connections between the external latches/buffers and the buffer
control signals.

ABEN*

Input: No
Output: Yes
Drive: 8 mA

This is the VMEbus Address Bus ENable signal. This signal is used to enable the external
VMEbus address drivers for VMEbus master operations. It is typically connected to the OEAB
input of a ’543 address transceiver.

LAEN

Input: No
Output: Yes
Drive: 8 mA

This is the Local Address ENable signal. This signal is used to enable the external local
address drivers for slave accesses. It is typically connected to the OEBA input of a ’543
address transceiver through an inverter.

Note that this signal is an active-High signal.

VIC068A Signal Descriptions

1-19

Figure 1-4. VIC068A Control Signals for Shared Memory Implementation

LA[31:8]

LD[31:16]

LD[15:0]

LA[7:0]

DDIR

ISOBE*

AB

DDIR

SWDEN*

1 = A TO B
0 = B TO A

ENABLE

1
=

A
 T

O
 B

0
=

B
 T

O
 A

E
N

A
B

LE

A

B2x245

245

LD[7:0]

LADO

ABEN*

’543

LAEN

LADI

A[31:8]

DENIN1*

D[31:16]

DENIN*

LEDI

D[15:8]

D[7:0]

A[7:1]

OEBA*

LEBA*

LEAB*

OEAB*

CEBA*CEAB*

A

D
LE

Q

Q
LE
D

B

’543
OEBA*

LEBA*

LEAB*

OEAB*

CEBA*CEAB*

A

D
LE

Q

Q
LE
D

B

’543
OEBA*

LEBA*

LEAB*

OEAB*

CEBA*CEAB*

A

D
LE

Q

Q
LE
D

B

LEDO

DENO*

VIC068

VIC068A Signal Descriptions

1-20

LADO

Input: No
Output: Yes
Drive: 8 mA

This is the Latch ADdress Out signal. This signal is used to latch the outgoing VMEbus address
for VMEbus master operations. When this signal is asserted (High), it is assumed that the
latches are in a latched state. When deasserted, the latches should be in a flow-through state.
This allows direct connection to the ’543 address driver LEAB input. LADO is very important
for proper operation of master write posting and block transfers with interleave periods. For
these operations, the VIC068A may use LADO in combination with LADI and ABEN* to
temporarily store the contents of a VMEbus address during intervening slave accesses.

LADI

Input: No
Output: Yes
Drive: 8 mA

This is the Latch ADdress In signal. This signal is used to latch the incoming VMEbus address
for slave accesses. When this signal is asserted (High), it is assumed that the latches are in
a latched state. When deasserted, the latches should be in a flow-through state. This allows
direct connection to the ’543 address driver LEBA input. LADI is used in conjunction with
LADO to temporarily store outgoing VMEbus master transaction addresses during intervening
slave accesses.

DENO*

Input: No
Output: Yes
Drive: 8 mA

This is the Data ENable Out signal. This signal enables data onto the VMEbus data bus for
master write and slave read cycles. This signal is typically connected to the OEAB input of
the ’543 data latches.

DENIN* (formerly LWDENIN*)

Input: No
Output: Yes
Drive: 8 mA

This is the Lower Word Data ENable IN signal. This signal enables data onto the lower word
of the local data bus LD[15:8] for master read and slave write cycles. This signal is typically
connected to the OEBA input of the ’543 lower data latch.

VIC068A Signal Descriptions

1-21

DENIN1* (formerly UWDENIN*)

Input: No
Output: Yes
Drive: 8 mA

This is the Upper Word Data ENable IN signal. This signal enables data onto the upper word
of the local data bus LD[31:16] for master read and slave write cycles. This signal is typically
connected to the OEBA input of the upper ’543 data latches.

LEDO

Input: No
Output: Yes
Drive: 8 mA

The Latch Enable Data Out signal. This signal latches the outgoing VMEbus data for master
write and slave read cycles. When this signal is asserted (High), it is assumed that the latches
are in a latched state. When deasserted, the latches should be in a flow-through state. This
allows direct connection to the ’543 address driver LEAB input. This signal may be used in
conjunction with LEDI to temporarily store outgoing master write post data (data switchback).

LEDI

Input: No
Output: Yes
Drive: 8 mA

This is the Latch Enable Data In signal. This signal latches the incoming VMEbus data for
master read and slave write cycles. When this signal is asserted (High), it is assumed that
the latches are in a latched state. When deasserted, the latches should be in a flow-through
state. This allows direct connection to the ’543 address driver LEBA input. This signal may
be used in conjunction with LEDO to temporarily store outgoing master write post data.

ISOBE*

Input: No
Output: Yes
Drive: 8 mA

This is the ISOlation Buffer Enable signal. This signal, along with the SWDEN* signal, steers
data from LD[31:16] to/from LD[15:0], which is referred to in this document as byte-lane
switching. This signal is typically connected to the EN input of the ’245 isolation buffer.

VIC068A Signal Descriptions

1-22

SWDEN*

Input: No
Output: Yes
Drive: 8 mA

This is the SWap Data ENable signal. This signal, along with the ISOBE* signal, provides
byte-lane switching. It provides for swapping LD[31:16] to LD[15:0]. This signal is typically
connected to the EN input of the ’245 swap buffer.

DDIR

Input: No
Output: Yes
Drive: 8 mA

This is the Data DIRection signal. This signal provides the data direction (i.e., read/write)
information to the isolation and swap buffers. When asserted, buffers should be configured
in the local-to-VMEbus (A-to-B) direction. This signal is typically connected to the DIR input
of the ’245 isolation/swap buffers.

1-23

1.3
Overview of the VIC068A

The VIC068A provides an economical and convenient means to interface between a local
CPU bus and the VMEbus. The local bus interface of the VIC068A emulates Motorola’s
family of 32-bit CISC processor interfaces (68K). Other processors can easily be adapted
to interface to the VIC068A with appropriate logic. All of the following items are discussed
in further detail in later sections of this manual.

1.3.1 Resetting the VIC068A

The VIC068A can be reset by any of three distinct reset conditions.

• Internal Reset. This reset is the most common means of resetting the VIC068A. It
resets most register values and all mechanisms within the device. This reset is usually
issued as a push-button reset.

• System Reset. This reset provides a means of resetting the VIC068A through the
VMEbus backplane. The VIC068A may also signal a SYSRESET* by writing a con-
figuration register.

• Global Reset. This is the most complete reset of the VIC068A. This resets all of the
VIC068A’s configuration registers. This reset should be used with caution since SY-
SCLK is not driven and the BG*/IACK* daisy-chains are disabled while a global reset
is in progress (while it is system controller). This is usually issued as a power-up reset.

All three reset options are implemented in a different manner and have different effects
on the VIC068A configuration registers. See section 1.11.1.

1.3.2 The VIC068A VMEbus System Controller

The VIC068A is capable of operating as the VMEbus system controller. It provides VME-
bus arbitration functions including:

• priority (PRI), round-robin (RRS), and single-level (SGL) arbitration schemes

• driving IACK* daisy-chain

• driving BGiOUT* daisy-chain (all four levels)

• driving SYSCLK output

• VMEbus arbitration timeout timer

• VMEbus transfer timeout timer

The system controller functions are enabled by the SCON* pin of the VIC068A. When
strapped Low, the VIC068A functions as the VMEbus system controller. See Chapter 1.4.

Overview of the VIC068A

1-24

1.3.3 VIC068A VMEbus Master Cycles

The VIC068A is capable of becoming the VMEbus master in response to a request from
local resources. In this situation, the local resource requests that a VMEbus transfer is
desired. The VIC068A then makes a request for the VMEbus. When the VMEbus is granted
to the VIC068A, it then performs the transfer, acknowledges the local resource, and the
cycle is complete. The VIC068A is capable of all four VMEbus request levels (see section
1.5.1). The following release modes are supported (see section 1.5.2):

• Release On Request (ROR)

• Release When Done (RWD)

• Release On Clear (ROC)

• Release under RMC* control

• Bus Capture And Hold (BCAP).

The VIC068A supports A32, A24, and A16 as well as user-defined address spaces.

1.3.3.1 Master Write-Posting

The VIC068A is capable of performing master write-posting (bus-decoupling) during both
block and single-cycle transactions. In this situation, the VIC068A acknowledges the local
resource immediately after the request to the VIC068A is made, thus freeing the local
bus. The VIC068A latches the local data to be written and performs the VMEbus transfer
without the local resource having to wait for the VMEbus. See section 1.5.5.

1.3.3.2 Indivisible Cycles

Read-modify-write cycles and Indivisible Multiple-Address Cycles (IMACs) are easily per-
formed using the VIC068A. Significant control is allowed to:

• request the VMEbus on the assertion of RMC* independent of MWB* (this prevents
any slave access from interrupting local indivisible cycles)

• stretch the VMEbus AS*

• make the above behaviors dependent on the local SIZi signals

See section 1.5.6.

1.3.3.3 Deadlock

If a master operation is attempted when a slave operation to the same module is in
progress, a deadlock has occurred. The VIC068A signals a deadlock condition by assert-
ing the DEDLK* signal. This should be used by the local resource requesting the VMEbus
to try the transfer after the slave access has completed. See section 1.5.7.

Overview of the VIC068A

1-25

1.3.3.4 Self-Access

If the VIC068A is selected as the slave while it is VMEbus master, a self-access has
occurred. The VIC068A asserts both BERR* and LBERR* in this situation.

BESR[2,1] also indicates when a self-access has occurred.

1.3.4 VIC068A VMEbus Slave Cycles

The VIC068A is capable of receiving slave accesses (see Chapter 1.6). The VIC068A contains
a highly programmable environment to allow for a wide variety of slave configurations. The
VIC068A allows for:

• D32 or D16 configuration

• A32, A24, A16, or user-defined address spaces

• programmable block transfer support including:

— accelerated block transfer (PAS* held asserted)

— non-accelerated-type block transfer (toggle PAS*)

— no support for block transfer

• programmable data acquisition delays

• programmable PAS* and DS* timing

• restricted slave accesses (supervisory accesses only)

When a slave access is required, the VIC068A requests the local bus. When local bus
mastership is obtained, the VIC068A reads or writes the data to/from the local resource
and asserts the DTACK* signal to complete the transfer.

1.3.4.1 Slave Write-Posting

The VIC068A is capable of performing a slave write-post operation (bus-decoupling) dur-
ing single cycle transactions. When enabled, the VIC068A latches the data to be written
and acknowledges the VMEbus (by asserting DTACK*) immediately thereafter. This pre-
vents the VMEbus from having to wait for local bus access. See section 1.6.7.

1.3.5 Address Modifier (AM) Codes

The VIC068A encodes and decodes the VMEbus address modifier codes. For VMEbus
master accesses, the VIC068A encodes the appropriate AM codes through FCi status,
ASIZi status, and the block transfer status. For slave accesses, the VIC068A decodes the
AM Codes and checks the Slave Select Control registers to determine if the slave request
is to be supported with regard to address spaces, supervisory accesses, and block trans-
fers. The VIC068A also supports user-defined AM codes. That is, the VIC068A can be
configured to assert and respond to user-defined AM codes. See section 1.6.1.

Overview of the VIC068A

1-26

1.3.6 VIC068A VMEbus Block Transfers

The VIC068A is capable of both performing (as master) and receiving (as slave) block
transfers. The master VIC068A performs a block transfer in one of two modes:

• MOVEM-type block transfer

• master block transfer with local DMA

The VMEbus specification restricts block transfers from crossing 256-byte boundaries.
The VIC068A works around this problem by simply toggling the AS* at VMEbus page
boundaries. The VIC068A is also able to break the total transfer length into smaller bursts.
The VIC068A allows for easy implementation of large block transfers by releasing the
VMEbus and local bus between these bursts and, at the appropriate time, re-requesting
the buses at a programmed time later. This in-between time is referred to as the interleave
period. All of this is performed without processor/software intervention until the transfer
is complete. See section 1.10.1.1.

The VIC068A contains two separate address counters for the VMEbus and the local
address buses. In addition, a separate address counter is provided for slave block trans-
fers. The VIC068A address counters are 8-bit up-counters that provide for transfers up to
256 bytes. For transfers that exceed the 256-byte limit, Cypress CY7C964s, Cypress
VAC068A or external counters and latches are required.

The VIC068A allows slave accesses to occur during the interleave period. Master access-
es are also allowed during interleave with programming and external logic. This is referred
to as the dual-path option. See section 1.10.1.1.6.

The Cypress Semiconductor CY7C964s or VAC068A may be used in conjunction with the
VIC068A to provide much of the external logic required for extended block transfer modes
such as the 256-byte boundary crossing and dual path. Three CY7C964s extend the 8-
bit counters in the VIC068A to support full 32-bit incrementing addresses on both the local
bus and VMEbus. The CY7C964s also contain the latches required for extended address
block transfers as well as those required for supporting the dual-path option. The CY7C964
enhances boards that support block transfers by greatly reducing the necessary support
logic.

The Cypress Semiconductor VAC068A may also be used to provide the latching and
counting of upper data and addresses also reducing necessary support logic.

1.3.6.1 MOVEM Master Block Transfers

This mode of block transfer provides the simplest implementation of VMEbus block trans-
fers. In this mode, the local resource configures the VIC068A for a MOVEM block transfer
and proceeds with the consecutive-address cycles (such as a 68K MOVEM instruction).
The local processor continues as the local bus master in this mode. See section 1.10.1.2.

Overview of the VIC068A

1-27

1.3.6.2 Master Block Transfers with Local DMA

In this mode, the VIC068A becomes the local bus master and reads or writes the local
data in a DMA-like fashion. This provides a much faster interface than the MOVEM block
transfer, but with less control and error detection. See section 1.10.1.1.

1.3.6.3 Slave Block Transfers

The process of receiving a block transfer is referred to as a slave block transfer. The
VIC068A is capable of decoding the address modifier codes to determine if a slave block
transfer is desired. In this mode, the VIC068A captures the VMEbus address, and latches
it into internal counters. For subsequent cycles, the VIC068A increments this counter for
each transfer. The local protocol for slave block transfers can be configured in a full
handshake mode by toggling both PAS* and DS* and expecting DSACKi* to toggle, or in
an accelerated mode in which only DS* toggles and PAS* is asserted throughout the cycle.

The VIC068A is capable of acting as a DMA controller between two local resources. This
mode is similar to that of master block transfers with local DMA except that a local I/O
acts as the second source or destination.

1.3.7 VIC068A Interrupt Generation and Handling Facili-
ties

The VIC068A is capable of generating and handling a seven-level prioritized interrupt
scheme similar to that used by the Motorola 68K processors. These interrupts may be the
result of the seven VMEbus interrupts, seven local interrupts, five VIC068A error/status
interrupts, and eight interprocessor communication interrupts.

The VIC068A can be configured as an interrupt handler for any of the seven VMEbus
interrupts. The VIC068A can generate the seven VMEbus interrupts as well as supplying
a user-defined status/ID vector. The local priority level (IPL) for VMEbus interrupts is
programmable. When configured as the system controller, the VIC068A drives the VME-
bus IACK daisy-chain.

The following characteristics of local interrupts may be configured in VIC068A registers:

• user-defined local Interrupt Priority Level (IPL)

• option for VIC068A to provide the status/ID vector

• edge or level sensitivity

• polarity (rising/falling edge, active High/Low)

The VIC068A is also capable of generating local interrupts on certain error or status
conditions. These include:

• ACFAIL* asserted

• SYSFAIL* asserted

Overview of the VIC068A

1-28

• failed master write-post (BERR* asserted)

• local DMA completion for block transfers

• arbitration timeout

• VMEbus interrupter interrupt

The VIC068A can also issue interrupts by setting a module or global switch in the inter-
processor communication facilities (mailbox interrupts).

1.3.8 Interprocessor Communication Facilities

The VIC068A includes interprocessor registers and switches that can be written and read
through VMEbus accesses. These are the only registers that are directly accessible from
the VMEbus. Included in the interprocessor communication facilities are:

• four general-purpose 8-bit registers

• four module switches

• four global switches

• VIC068A version/revision register (read-only)

• VIC068A Reset/Halt condition (read-only)

• VIC068A interprocessor communication register semaphores

When set through a VMEbus access, the switches can interrupt a local resource. The
VIC068A includes module switches that are intended for a single module, and global
switches that are intended to be used as a broadcast.

1-29

1.4
System Controller

Operations
The VIC068A is able to assume the system controller functions (also known as slot 1
functions) by strapping the SCON* signal Low. For reliable operation, the SCON* signal
must remain asserted for the duration of operation. As the system controller, the VIC068A
performs the following functions:

• priority, round robin, or single-level arbitration

• driving IACK* daisy-chain

• driving BGiOUT* daisy-chain (all four levels)

• driving SYSCLK output

• driving SYSRESET* output

• driving BCLR*

• VMEbus arbitration timeout timer

The following VIC068A registers are used as the system controller:

• Transfer Timeout Register (TTR), bits 5–7

• Arbiter/Requestor Control Register (ARCR), bit 7

• Error Group Interrupt Control Register (EGICR), bit 5

1.4.1 VMEbus Arbitration

The arbitration scheme is programmed by writing ARCR[7]. In PRI (priority) mode, BR3*
has the highest priority and BR0* has the lowest. Higher priority bus requests will be
handled before lower priority bus requests when in PRI mode. In the RRS (round robin)
scheme, arbitration priority is assigned on a rotating basis. When the bus is granted to a
requester on bus request line BR[n]*, then the highest priority for the next arbitration is
assigned to bus request line BR[n–1]* (or BR3* if previous level was BR0*). Single-level
arbitration is obtained by programming the VIC068A for PRI and setting all requestors to
the same level.

When the VIC068A is system controller, it senses the state of the BRi* inputs. One of the
four BGiOUT* signals is asserted, corresponding to the highest pending request level
during that arbitration cycle. If the VIC068A, as system controller, has a BRi* pending
along with another potential master at the same request level, the VIC068A does not
assert the BGiOUT* for itself.

System Controller Operations

1-30

An arbitration cycle begins with the deassertion of the BBSY* signal. The VIC068A waits
a minimum of 3T after the deassertion of BBSY* before asserting the BGiOUT* signal.
The VIC068A deasserts the BGiOUT* signal when the BBSY* is again reasserted.

The VIC068A asserts the BCLR* signal as part of its arbiter function when it senses a
request at a higher priority than the level of the current VMEbus master. This may occur
when the VIC068A is enabled for both PRI and RRS arbitration schemes. In either case,
the VIC068A deasserts BCLR* when BBSY* is deasserted.

In systems containing many contending VMEbus masters, the use of RRS arbitration and
fair requests is strongly recommended to prevent excessive bus latency to some of the
VMEbus masters. To allocate an unequal share of bus bandwidth to a particular master,
assign that master to a BR* level shared with fewer masters.

1.4.2 The VMEbus Arbitration Timeout Timer

After the VIC068A has asserted the BGiOUT* signal, the VIC068A system controller
monitors how long the grant is active. Failure to assert BBSY* within 8 ms causes the
VIC068A to issue its own BBSY* for the VMEbus-required 90 ns. The EGICR can be used
to generate an interrupt for a VMEbus arbitration timeout condition. This timeout feature
may not be disabled. See section 1.9.5.

1.4.3 The VMEbus Transfer Timeout Timer

The VIC068A contains a VMEbus transfer timeout timer. When the VIC068A is configured
as the system controller, and the transfer timeout timer is enabled, the VIC068A starts
this timer at the assertion of a DSi*. If the timer expires before the assertion of DTACK*
or BERR*, BERR* is asserted by the system controller. BERR* remains asserted until the
DSi*s are removed. The timer is configured in the TTR[7:5]. BESR[4] is set when this
timeout condition occurs.

1.4.4 The BGi Daisy-Chain Driver

The VIC068A, as system controller, drives the BGiOUT* daisy-chain in response to VME-
bus requests. When the VIC068A is the system controller, the BGiIN* lines are inactive,
but need to be pulled High externally at the VIC068A (4.7–10KΩ).

1.4.5 The IACK* Daisy-Chain Driver

The VIC068A, as system controller, is the first device to drive the IACK* daisy chain (Figure
1-5). When the VIC068A is performing duties as the system controller, the IACK* input is
internally tied to the IACKIN* input. When a VMEbus interrupt handler drives IACK* Low

System Controller Operations

1-31

on the VMEbus, the system controller VIC068A will see this as a Low on its IACK* input
and will react just like a VIC068A located elsewhere on the VMEbus would when its
IACKIN* is driven Low. See section 1.9.2.

Figure 1-5. IACK* Daisy-Chain

IACKIN*
IACK-

IACK*

IACKIN*

IACKOUT*

IACK*

IACKIN*

IACK-

IACK*

VIC068A VIC068A VIC068A

IACKIN*

IACKOUT*

IACK*

VIC068A

system control-
ler slot 2 slot 3 slot n

IACK* Daisy-Chain

logically tied together internally

1-32

1.5
VIC068A VMEbus Master

Operations
The transfer of data is initiated by a VMEbus master module. The master module controls
the type of transfer (read, write, interrupt acknowledge, etc.) and provides the address and
address modifiers for the transfer. The timing of the start of the transfer is also controlled by
the master.

The following VIC068A registers are used for master operations (block transfer registers not
included):

• Transfer Timeout Register (TTR), bits 1, 2–4

• Interface Configuration Register (ICR), bits 1–7

• Arbiter/Requester Configuration Register (ARCR), bits 0–3, 5, 6

• Address Modifier Source Register (AMSR)

• Bus Error Status Register (BESR), bits 0–3

• Slave Select 1 Control Register 0 (SS1CR0), bit 6

• Release Control Register (RCR), bits 6–7

See Chapter 1.12 for descriptions of these registers.

1.5.1 VMEbus Requests

There are many types of cycles in which the VIC068A requests the VMEbus. These include:

• SINGLE-cycle data transfer requests (SINGLE)

• status/ID fetches for Interrupt ACKnowledge cycles (IACK)

• Indivisible Single-Address Cycles (ISAC) such as read-modify-write cycles

• Indivisible Multiple-Address Cycles (IMAC)

• Block Transfer Requests (BLT)

• VMEBus Capture And Hold (BCAP) requests

The actual assertion of the BRi* signals are made in response to the following signals:

• assertion of MWB* qualified by PAS* for single-cycle and block-transfer accesses

• assertion of FCIACK* qualified by PAS* for VMEbus interrupt acknowledge cycles

• assertion of RMC* qualified by PAS* (when the ICR is appropriately programmed) for
ISAC and IMAC cycles

• setting the BCAP bits in the ICR for BCAP and IMAC cycles

The request level is set in ARCR[6:5]. The default level is BR3*.

VIC068A VMEbus Master Operations

1-33

1.5.2 Release Modes

The VIC068A supports the four VMEbus release modes:

• Release On Request (ROR)

• Release When Done (RWD)

• Release On Clear (ROC)

• VMEbus Capture And Hold (BCAP)

In addition to these, the VIC068A also allows an extension of the above items to provide for
the use of the RMC* signal. This is referred to as Release Under RMC* Control. These modes
are selected by writing RCR[7:6]. The Release Under RMC* Control mode is programmed
by setting ICR[5].

1.5.2.1 Release On Request (ROR)

In this release mode, the VIC068A deasserts BBSY* when a BRi* is asserted by another
VMEbus module and the VIC068A has no need for the VMEbus. The VIC068A does not
assert the ABEN* signal if there is no data transfer in progress and the VIC068A is currently
the VMEbus master.

1.5.2.2 Release When Done (RWD)

In this mode, the VIC068A deasserts the BBSY* signal as soon as the following conditions
occur:

1. BBSY* has been asserted by the VIC068A for a minimum of 90 ns

2. AS* has been deasserted by the VIC068A

3. The VIC068A has no further need for the VMEbus (the VIC068A has not asserted BRi*
for the last 2T)

4. BGiIN* is not asserted to the VIC068A

1.5.2.3 Release On Clear (ROC)

In this mode, the VIC068A continues to assert BBSY* until the BCLR* signal is asserted by
the system controller.

1.5.2.4 VMEbus Capture and Hold (BCAP)

In this mode, the VIC068A asserts BBSY* continuously for as long as the BCAP mode is
selected. The release of BBSY* occurs by programming the release control bits to another
release mode. If RWD is selected, BBSY* is released immediately. If ROR is selected, BBSY*
is released at a pending VMEbus request. The VIC068A deasserts BBSY* on the assertion

VIC068A VMEbus Master Operations

1-34

of BCLR* if ROC is selected. Do not enter the BCAP mode if the VIC068A is currently the
VMEbus master.

1.5.2.5 Release Under RMC* Control

In this mode, the VIC068A both requests and holds the VMEbus under control of the RMC*
signal. When appropriately programmed by setting ICR[5], the assertion of RMC* and PAS*
causes the VIC068A to request the VMEbus, accept the BGiIN*, and assert BBSY*. The
deassertion of RMC* allows the deassertion of BBSY* based upon the release mode pro-
grammed.

1.5.3 VIC068A VMEbus Master Write Cycle

If the VIC068A is not the current VMEbus master, the VIC068A bids for access to the VMEbus
when it receives the MWB* and PAS* signals asserted. When all of the following conditions
occur:

1. AS* is deasserted from the previous cycle

2. DTACK* and BERR* are deasserted

3. the BGiIN* has been received

4. all appropriate metastability settling delays have elapsed

the VIC068A drives the D[7:0] data buffers onto the VMEbus and asserts DENO*, which
should be used to enable the remaining data buffers. At the same time, the VIC068A enables
the A[7:0] address lines onto the VMEbus in addition to asserting the ABEN* signal to drive
the remaining VMEbus address lines. The VIC068A also drives AM[5:0], WRITE*, and
LWORD* as required. At this time, the VIC068A initiates an internal delay to insure appropriate
address set-up time before the assertion of the AS*. After AS* is asserted, the VIC068A
latches the LA[7:0] and asserts the LADO signal, which should be used to latch the remaining
local address lines.

After the AS* signal has been asserted, the VIC068A initiates an internal delay to assert the
data strobes (DSi*). When this delay has elapsed, the VIC068A asserts the appropriate data
strobes as determined by the size and alignment of the transfer. The DSi* signals remain
asserted until either DTACK* or BERR* have been asserted to the VIC068A. If DTACK* is
asserted, the VIC068A asserts the DSACKi* signals according to the port size. That is, if the
WORD* signal was deasserted, the VIC068A acknowledges this D32 operation by asserting
both the DSACK0* and DSACK1* signals. If the WORD* signal was asserted, the VIC068A
acknowledges this D16 transfer by asserting only the DSACK1* signal. For example, when
performing a longword transfer to a D16 device, asserting only DSACK1* would notify the
processor that the additional word of data needs to be transferred. This is consistent with the
Motorola 68K dynamic bus sizing capabilities using DSACKi*.

VIC068A VMEbus Master Operations

1-35

When turbo mode is enabled by setting ICR[1], the VMEbus address and data set-up times
are decreased by 1T.

Tables 1-1 through 1-4 show the buffer control signals for various master cycles.

Table 1-1. Buffer Control Signals: D32 VMEbus Master Write Operation

Data Path
Size

Local Bus
Stimulus

VMEbus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1
/0

L
A

[1
:0

]

D
S

A
C

K
1/

0*

D
S

1/
0*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D
E

N
IN

1*

Longword 1
1
1
1

0 0
0 0
0 0
0 0

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LL
HL
LL
HL

L
L
H
H

L
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

Three-Byte 1
1
1
1

1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LH
HL
LL
HL

L
L
H
H

L
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

Word 1
1
1
1

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LL
LL
LL
HL

L
H
H
H

H
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
H
H
H

H
L
L
L

H
H
H
H

H
H
H
H

Byte 1
1
1
1

0 1
0 1
0 1
0 1

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LH
HL
LH
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
H
H

H
H
L
L

H
H
H
H

H
H
H
H

VIC068A VMEbus Master Operations

1-36

Table 1-2. Buffer Control Signals: D32 VMEbus Master Read Operation

Data Path
Size

Local Bus
Stimulus

VMEbus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1
/0

L
A

[1
:0

]

D
S

A
C

K
1

/0
*

D
S

1/
0*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D
E

N
IN

1
*

Longword 1
1
1
1

0 0
0 0
0 0
0 0

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LL
HL
LL
HL

L
L
H
H

L
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

H
H
L
L

L
L
L
L

L
L
L
L

L
L
H
H

Three-Byte 1
1
1
1

1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LH
HL
LL
HL

L
L
H
H

L
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

H
H
L
L

L
L
L
L

L
L
L
L

L
L
H
H

Word 1
1
1
1

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LL
LL
LL
HL

L
H
H
H

H
L
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
H
L
L

L
L
L
L

L
L
L
L

H
L
H
H

Byte 1
1
1
1

0 1
0 1
0 1
0 1

0 0
0 1
1 0
1 1

LL
LL
LL
LL

LH
HL
LH
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

VIC068A VMEbus Master Operations

1-37

Table 1-3. Buffer Control Signals: D16 VMEbus Master Write Operation

Data Path
Size

Local Bus
Stimulus

VMEbus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

L
A

[1
:0

]

D
S

A
C

K
1/

0*

D
S

1/
0

*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D
E

N
IN

1*

Longword 0
0
0
0

0 0
0 0
0 0
0 0

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LL
HL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

Three-Byte 0
0
0
0

1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LH
HL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

Word 0
0
0
0

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LL
LL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

Byte 0
0
0
0

0 1
0 1
0 1
0 1

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LH
HL
LH
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

H
H
H
H

VIC068A VMEbus Master Operations

1-38

1.5.4 VIC068A VMEbus Master Read Cycle

This cycle is identical to that of the master write cycle, as described in section 1.5.3, with the
following exceptions:

• The VMEbus data buffers are not driven.

• DENO* is not asserted.

• The DENIN1* and DENIN* are asserted.

• DDIR is not asserted. The address and AS* considerations are the same as well as the
DSACKi* conventions.

1.5.5 Master Write Posting

The VIC068A is enabled for master write-posting by setting SS1CR0[6]. When enabled, the
VIC068A captures the local address, data and control signals, requests the VMEbus, and
immediately acknowledges the local processor. This frees the local processor from waiting

Table 1-4. Buffer Control Signals: D16 VMEbus Master Read Operation

Data Path
Size

Local Bus
Stimulus

VMEbus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

L
A

[1
:0

]

D
S

A
C

K
1/

0*

D
S

1/
0

*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D
E

N
IN

1*

Longword 0
0
0
0

0 0
0 0
0 0
0 0

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LH
HL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

Three-Byte 0
0
0
0

1 1
1 1
1 1
1 1

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LH
HL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

Word 0
0
0
0

1 0
1 0
1 0
1 0

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LL
HL
LL
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

Byte 0
0
0
0

0 1
0 1
0 1
0 1

0 0
0 1
1 0
1 1

LH
LH
LH
LH

LH
HL
LH
HL

L
L
H
H

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

H
H
H
H

VIC068A VMEbus Master Operations

1-39

for VMEbus arbitration. When VMEbus mastership is obtained, the VIC068A performs the
transfer according to normal VMEbus protocol. Further write-posts are disabled until a
DTACK* or BERR* is asserted by the slave. If a BERR* is signaled, the VIC068A can be
configured to issue a local interrupt by clearing EGICR[6].

If a slave read occurs after a write has been posted but not yet transferred, the latched write
data is “toggled” to the B-to-A latch of the ’543s by asserting the LEDI signal. The slave read
then occurs normally without the write data being written over by the slave read data. After
the VIC068A asserts DTACK*, the DENIN1* and DENIN* signals are asserted to drive the
write data to the A-to-B latch of the ’543. Then LEDO is asserted to again latch the data for
the write operation. This toggling of data is referred to as a Master Write-Post Data Switchback.

1.5.6 Indivisible Cycles

Indivisible cycles can be divided into two categories:

• Indivisible Single-Address Cycles (ISACs)

• Indivisible Multiple-Address Cycles (IMACs)

The VIC068A supports both ISACs and IMACs through many different protocols. Indivisible
cycles can be configured as follows:

1. Request the VMEbus on the assertion of RMC* independent of MWB* (this prevents any
slave access from interrupting local indivisible cycles).

2. Stretch the VMEbus AS*.

3. Make the above behaviors dependent on the local SIZi signals.

These modes are summarized in Table 1-5.

Table 1-5. RMC* Control Map

ICR[7:5] First Operation
VMEbus Requested on

RMC* Assertion AS* Stretched
VMEbus Held During

RMC* Assertion

X 0 0 Any No No No
0 0 1 Any Yes No Yes
0 1 0 Any No Yes Yes
0 1 1 Any Yes Yes Yes
1 0 1 Byte No No No
1 0 1 Non-byte Yes No Yes
1 1 0 Byte No Yes Yes
1 1 0 Non-byte No No No
1 1 1 Byte No Yes Yes
1 1 1 Non-byte Yes No Yes

VIC068A VMEbus Master Operations

1-40

Address strobe stretching is performed for ISACs in accordance with the VMEbus RMC
specification. For IMACs, the address strobe is typically not stretched in order for slave mod-
ules to latch each address.

In the 68K family of processors, ISACs and IMACs are distinguished by the fact that the first
read of an IMAC is never of byte size. This allows for AS* stretching for all RMCs, no RMCs,
or only RMCs in which the first transfer was of byte size.

If a processor is not capable of generating indivisible cycles or does not distinguish ISACs
from IMACs, cycle indivisibility may be guaranteed by using the BCAP release mode outlined
below:

1. Set the VIC068A to a BCAP release mode by setting RCR[7:6].

2. Wait for VMEbus grant (BGiIN*).

3. Perform indivisible cycles.

4. Release the VIC068A from BCAP mode in the RCR.

When the VIC068A is the VMEbus slave to a ISAC, the VIC068A maintains the local bus by
keeping LBR* asserted as long as AS* is asserted.

1.5.6.1 Indivisible Single-Address Cycles (ISACs)

The most common implementation of ISACs are of the read-modify-write (RMC) category.
This is the only ISAC supported by the VMEbus. The Motorola TAS (Test And Set) instruction
is an example of a read-modify-write cycle. The VMEbus specification requires that, for RMC
cycles, the VMEbus address strobe be held asserted between the read and the write cycles.
Motorola processors prior to the 68020 performed ISACs in the same manner by asserting
their address strobes for the duration of the cycle. The Motorola processors such as the
68020/30/40 provide a signal (RMC* for the 68020/30, and LOCK* for the 68040) to indicate
that a RMC is being performed. The VIC068A has an RMC* signal that is typically connected
to these signals to control ISACs. For RMC cycles, the AS* should be programmed to be
stretched.

1.5.6.2 Indivisible Multiple-Address Cycles (IMACs)

The Motorola CAS and CAS2 instructions are examples of IMACs. The VIC068A allows for
the support of IMACs without using the BCAP protocol given in section 1.5.6. In this case,
the RMC* signal should be set to request and hold the VMEbus. The local cycle is not allowed
to complete until the VMEbus has been obtained. In addition, AS* stretching should be dis-
abled so that address latching may be performed by the slave.

VIC068A VMEbus Master Operations

1-41

1.5.7 Deadlock

If the VMEbus is requested in response to MWB* or FCIACK* being asserted, and at the
same time a valid slave select has been signaled, a deadlock has occurred. The VIC068A
may be programmed in the ICR to signal a deadlock in the following ways:

• assert DEDLK*

• assert DEDLK*, LBERR*, and HALT*

• assert DEDLK* and LBERR* (without HALT*) for RMC deadlocks

The first option is typically used for non-Motorola processors without a retry capability. In that
case, DEDLK* should be used to signal the processor to vacate the local bus (deassert
MWB*).

For Motorola 68K applications, the second option may be used to signal the processor to
retry the current bus cycle using the Motorola BERR*/HALT* retry mechanism.

For Motorola 68K processors, the HALT*/BERR* retry mechanism is disabled for RMC cycles.
In this condition, the third option should be used to signal a generic BERR* to the processor.
The BERR* exception processing routines should include software code that checks the
Special Status Word (SSW) of the 68K BERR* exception stack frames to indicate RMC status.

In all of the above cases, DEDLK* is not deasserted until the slave access causing the
deadlock is compete.

When a cycle is DEDLKed, the VMEbus is still requested. If the VMEbus is granted (after the
slave access is complete) and is still available when MWB* is reasserted, the cycle proceeds
as normal. If the VMEbus is granted and MWB* is not reasserted, the VIC068A asserts BBSY*
for the 90 ns required by the VMEbus specification if it is configured as RWD. If configured
for ROR, the VIC068A maintains the BBSY* until requested to release it.

1.5.7.1 Undetectable Deadlocks

Poor system design can lead to deadlocks that the VIC068A cannot detect and from which
it cannot recover. Consider the following example:

1. Two boards, CPUa and CPUb, contain a local processor that has dual-ported memory
connected to both the VMEbus and a VSBbus.

2. CPUa is local bus master and VSBbus master and desires data from CPUb’s memory
over the VSBbus.

3. CPUb is local bus master and VMEbus master and desires data from CPUa’s memory
over the VMEbus.

4. Because both CPUs are their own local bus masters, neither will be able gain access to
the others local bus. DEADLOCK!

VIC068A VMEbus Master Operations

1-42

The VIC068A is not able to detect this deadlock because the VIC068A is only able to monitor
the status of the local bus and the VMEbus. Deadlocks due to the existence of other buses,
such as VSB, will not be detected.

The only way to recover from these types of deadlocks is to use bus timeout timers.

1.5.8 Self-Access

If a slave select is signaled while it is the VMEbus master, a self-access has occurred. The
VIC068A signals a self-access by asserting both the LBERR* and BERR* signals. The BESR
also indicates self-access status.

Self-accesses may be used to determine the slave address map of a module.

1.5.9 VMEbus/Local Bus Data and Port Size

A distinction should be made regarding the terms transfer size and port size. Transfer size
indicates the size of the data in terms of bytes, words, and longwords. The port size indicates
the physical size of the bus the data will be transferred on. Port sizes for the VMEbus are
usually given in terms of D8, D16, and D32 for 8-bit, 16-bit, and 32-bit-wide buses respectively.

The transfer size of the master operation is indicated to the VIC068A by the SIZ1/0 signals
according to the following table:

SIZ1 SIZ0 Data Size

0 0 Longword (32 bits)
0 1 Byte (8 bits)
1 0 Word (16 bits)
1 1 3-byte

This information insures proper VMEbus protocol in terms of LWORD*, A01, and DS1/0*. In
addition, the VIC068A buffer control signals will be properly asserted for the size of the transfer.

The port size of the transfer is indicated by the WORD* signal. When asserted, the master
transfer is treated as a D16 transfer. For D16 operations, the LWORD* signal is not asserted,
and the DS1/0* signals behave appropriately. In addition, the SWDEN* and ISOBE* signal
may be asserted differently in that the D16 VMEbus data located on D[15:0] may be swapped
onto the LD[31:16]. This depends on the size of the transfer, the alignment of the transfer,
and whether performing a read or a write. Refer to Tables 1-3 to 1-6 for more details on these
signals for particular cases.

The WORD* signal may be changed dynamically to enable the VIC068A to deal with both
D16 and D32 slaves.

When performing D16 operations, the VIC068A asserts only the DSACK1* signal to indicate
to the processor the port size is 16 bits. This would indicate to a 68K processor that when

VIC068A VMEbus Master Operations

1-43

transferring a longword of data, two transfers are required. This is consistent with the Motorola
68K DSACKi* dynamic bus-sizing convention.

When using a 16-bit local processor, the WORD* signal must be asserted for all master
transfers, or strapped Low at power-up to perform D16 transfers. The VIC068A does not
support using a 16-bit local bus to a 32-bit VMEbus (D32).

1.5.10 Fair Request Timeout

A fair request timeout scheme may be used to prevent VMEbus starvation of any master in
a bus request daisy-chain. When operating in a fair request mode, the VIC068A does not
assert its BRi* signal until or unless that request level is in its deasserted state. If all boards
in a system obey this fairness doctrine, VMEbus starvation will not occur.

To minimize starvation caused by unfair masters, the VIC068A is also equipped with a fair
request timeout timer. If the VIC068A is unable to obtain VMEbus mastership within a pro-
grammed delay, the VIC068A stops using the fairness doctrine and asserts its BRi* without
delay.

Fairness is controlled by writing the ARCR. Fairness is disabled by clearing bits ARCR[3:0].
Fairness is enabled (with no timeout) by setting bits ARCR[3:0]. The timeout timer is enabled
by writing any other combination to these bits. The value of the timeout is 2 µs times the
number written. A difference of 2 µs may exist between the value written and the actual delay
observed.

1.5.11 Address-Only Cycles

The VIC068A will not perform address-only cycles. The VIC068A, as slave, can accept ad-
dress-only cycles.

1.5.12 The Address Modifiers for Master Cycles

When the VIC068A performs master cycles, it examines the ASIZ1/0 and FC2/1 signals to
determine the value of the AM[5:0] signals that will be driven. The information that the AM
codes specify indicates address sizing and supervisory/user and program/data information.
Under normal circumstances, the VIC068A outputs standard VMEbus AM codes. The
VIC068A may also be configured to output user-defined AM codes. This is done with the
ASIZ1/0 signals and the AMSR. If the ASIZ1/0 signals are both Low, the VIC068A uses the
AMSR to determine the value of the AM codes.

If AMSR[7] is clear, VIC068A issues the contents of AMSR[5:0] to the AM[5:0] signals. If
AMSR[7] is set, the VIC068A issues AM codes based on AMSR[5:3] and the FC2/1 inputs.

Table 1-6 summarizes the AM codes for various VIC068A operations and configurations.

VIC068A VMEbus Master Operations

1-44

Table 1-6. Master Transfer AM Code Control Map

VIC068A Master Access Inputs VIC068A AM Code Output

ASIZ1/0 Address Size Block Transfer FC2/1 Operation Type AM[5:0]

0 1 A32 Addressing No 0 0
0 1
1 0
1 1

User Data
User Program
Supervisory Data
Supervisory Program

$09
$0A
$0D
$0E

0 1 A32 Addressing Yes 0 X
1 X

User Block
Supervisory Block

$0B
$0F

1 1 A24 Addressing No 0 0
0 1
1 0
1 1

User Data
User Program
Supervisory Data
Supervisory Program

$39
$3A
$3D
$3E

1 1 A24 Addressing Yes 0 X
1 X

User Block
Supervisory Block

$3B
$3F

1 0 A16 Addressing No 0 X
1 X

User Access
Supervisory Access

$29
$2D

0 0 User Defined
AMSR[7] = 0

Yes/No User Defined AMSR[5:0]

0 0 User Defined
AMSR[7] = 1

Yes/No

0 0
0 1
1 0
1 1

User Defined AMSR[5:3]
+
$01
$02
$05
$06

1-45

1.6
VIC068A VMEbus Slave

Operations
The act of writing or retrieving data for a VMEbus master is referred to as a slave operation.
The VIC068A is able to perform slave operations with extensive configuration options.

The following VIC068A registers are used in performing and configuring slave operations:

• Slave Select 0 Control Register 0 (SS0CR0), bits 0–5

• Slave Select 0 Control Register 1 (SS0CR1)

• Slave Select 1 Control Register 0 (SS0CR0), bits 0–5

• Slave Select 1 Control Register 1 (SS0CR1)

• Local Bus Timing Register (LBTR)

• Address Modifier Source Register (AMSR)

1.6.1 The Valid Slave Select

The VIC068A contains two separate signals that are used to indicate that the VIC068A has
been selected for a slave access. These signals are SLSEL0* and SLSEL1*. These signals
are usually the result of external VMEbus address decoding. When the VIC068A detects a
SLSELi* asserted, the VIC068A waits for:

• AS* asserted

• DSi* asserted for the current cycle (not left over from previous cycle)

• DTACK* or BERR* deasserted from previous cycle

The VIC068A then checks the AM codes for:

• address sizing (A32/A24/A16)

• transfer type (supervisory/user)

If the VIC068A is configured, in SSiCR0, to accept the slave access as indicated by the AM
codes, the VIC068A proceeds with the slave request by asserting the LBR* signal to obtain
the local bus. If the VIC068A is not configured for the particular type of slave access, the
VIC068A ignores the request and does not assert LBR*.

If the VIC068A has been selected for valid D32 slave access and the VIC068A is configured
to accept only D16 operations, the VIC068A asserts BERR*. If the WORD* signal is asserted,
the VIC068A will only accept D16 slave cycles, independent of how the VIC068A may be
configured in the SSiCR0. If the VIC068A is not configured to accept block transfers, any
block transfer request will be BERRed.

VIC068A VMEbus Slave Operations

1-46

The VIC068A is also capable of bypassing the standard VMEbus AM codes and qualifying
the SLSELi* with user-defined AM codes. If enabled for this operation (in SSiCR0[3:2]), the
VIC068A compares the AM codes with the value contained in the AMSR[5:0]. If the values
match, a valid slave select has occurred. The VIC068A may also be configured to only com-
pare AM[5:3] to AMSR[5:3]. When enabled for this operation by setting AMSR[6], the address
size is also qualified by the address size information in the SSiCR0. Table 1-7 summarizes
the AM code operations for VIC068A slave accesses.

In some situations, it is possible for both SLSEL1* and SLSEL0* to be asserted simultaneous-
ly. In this case, the VIC068A checks each SLSELi*’s register configuration with the AM codes
to determine which, if any, valid slave select has occurred.

Also included in the AM codes is information specifying if the transfer is a block transfer. The
VIC068A checks the SSiCR0 register to determine if the VIC068A is enabled to receive slave
block transfers. Slave block transfers are discussed in detail in section 1.10.2.

1.6.2 The Local Bus Request

After a valid slave select has been signaled, the VIC068A bids for the local bus by asserting
the LBR* signal. This signal should be input to a local bus arbiter, which in turn issues a bus
grant (assert LBG*) to the VIC068A. The VIC068A does not perform local bus arbitration.

Table 1-7. Slave Transfer AM Code Control Map

VIC068A AM Code Inputs VIC068A Slave Access Outputs

Operation Type AM[5:0] Address Size Block Transfer FC2/1

User Data
User Program
Supervisory Data
Supervisory Program

$09
$0A
$0D
$0E

A32 Addressing No 1 0

User Block
Supervisory Block

$0B
$0F

A32 Addressing Yes 0 0

User Data
User Program
Supervisory Data
Supervisory Program

$39
$3A
$3D
$3E

A24 Addressing No 1 0

User Block
Supervisory Block

$3B
$3F

A24 Addressing Yes 0 0

User Access
Supervisory Access

$29
$2D

A16 Addressing No 1 0

User Defined User Defined User Defined No 1 0

User Defined User Defined User Defined Yes 0 0

VIC068A VMEbus Slave Operations

1-47

1.6.3 The Local Bus Grant

Once the VIC068A issues the LBR*, the VIC068A waits for the assertion of the local bus
grant. If the local processor expects BGACK-type signaling in response to the assertion of
BG*, this must be generated by external logic. This BGACK must continue to be asserted
until LBR* is deasserted.

After the assertion of LBG*, the VIC068A waits for 3T+tPD before enabling the local address

drivers (and data drivers if writing). At this point, the VIC068A waits 1T+tPD before driving

PAS*. If local resources cannot be guaranteed to be off the local bus by these times after the
assertion of LBG*, additional delay may need to be introduced between the assertion of a
bus grant from the local arbiter and the assertion of LBG* to the VIC068A. See Figure 1-30
in Chapter 1.13 for more details on local bus timing.

When the VIC068A begins driving the local bus, it also drives the FC2/1 signals with infor-
mation on the type of local cycle it is performing. These function codes should not be confused
with the function codes that are driven to the VIC068A when it is performing VMEbus master
cycles (see section 1.5.12). The function code outputs for the VIC068A are as follows:

FC2 FC1 Description

0 0 Slave Block Transfer
0 1 Block Transfer with Local DMA
1 0 Standard Slave Access
1 1 DRAM Refresh

1.6.4 Local Bus Timing

The VIC068A contains a Local Bus Timing Register (LBTR) for configuring the minimum PAS*
assertion and deassertion and DS* deassertion times. For single cycle slave accesses, the
minimum deassertion time is not considered in that PAS* and DS* are asserted according to
the timing discussed in section 1.6.3. The minimum deassertion times for PAS* and DS* are
usually used when performing multiple back-to-back local cycles such as DRAM refresh
cycles, slave block transfers, and master block transfers with local DMA. The minimum as-
sertion time for PAS* should be set so that illegal memory access cycles can never occur for
the particular memory devices being used. Minimum PAS* asserted time is usually dictated
by the assertion of the DSACKi* signals, which start an additional delay circuit called the SAT
delay (see section 1.6.8). Figures 1-6 and 1-7 show an example of local reads and writes.

VIC068A VMEbus Slave Operations

1-48

Figure 1-6. Local Bus Cycle—Write

Figure 1-7. Local Bus Cycle—Read

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

LA[7:0]
SIZ1/0
FC2/1

ASIZ1/0
WORD*

LAEN

R/W*

PAS*

DS*

LD[7:0]

LBR*

LBG*

DSACK*

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

LA[7:0]
SIZ1/0
FC2/1

ASIZ1/0
WORD*

LAEN

R/W*

PAS*

DS*

LD[7:0]

LBR*

LBG*

DSACK*

VIC068A VMEbus Slave Operations

1-49

1.6.5 VMEbus/Local Bus Data and Port Size

After receiving a valid slave select, the VIC068A examines the DS1/0*, A01, and LWORD*
signals to determine the size and the alignment of the transfer. The VIC068A then drives the
SIZ1/0 and LA[1:0] signals with the appropriate values. The SIZ1/0 codes are given below:

SIZ1 SIZ0 Transfer Size

0 0 Longword
0 1 Byte
1 0 Word
1 1 3-byte

The ability to handle D32 transfers is configured in the SSiCR0[4]. If configured as a D32
port, the VIC068A accepts any size VMEbus transfer. If programmed as a D16 port only, the
VIC068A will assert BERR* for all D32 requests. The VIC068A determines D32 and D16 from
the LWORD* signal.

1.6.6 The Latched Bus Interface

When a slave read is performed, data is read from local memory and latched into the VMEbus
data transceivers. LD[7:0] is latched into the VIC068A and LD[31:8] is latched into external
devices such as the CY7C964s. After DSACKi* is asserted, the VIC068A begins the SAT
delay(SSiCR1[3:0]). After this delay times out, the VIC068A asserts both DTACK* and LEDO.
These signals are held until both DS1/0* are deasserted.

During a slave write access, the VIC068A asserts the LEDI signal immediately after receiving
a valid slave select latching the data into the data transceivers.

1.6.7 Slave Write Posting

The VIC068A is able to perform slave write posting, when SS1CR0[7] is set. In this mode,
the VIC068A, after receiving a valid slave select, latches the incoming data (asserts LEDI)
and immediately asserts DTACK*. The VIC068A requests the local bus and then performs
the local write cycle independent of VMEbus activity.

If a slave write post is requested while a previous slave write post is currently being serviced,
DTACK* is not asserted until the local write is complete. At this point, the VIC068A posts the
write normally. Slave write posts should be used with caution. If there was a problem with the
local portion of the cycle (i.e., LBERR* was asserted), the initiator of the cycle may never
know that the cycle did not complete since DTACK* was already asserted.

VIC068A VMEbus Slave Operations

1-50

1.6.8 Slave Acknowledge Timing (SAT)

Once DSACKi* is asserted, the delay defined by SSiCR1[3:0] begins. After this delay expires,
DTACK* is asserted, and PAS* and DS* deassert. LEDO is also asserted if the slave cycle
is a read. An assertion of any or both of the DSACKi* signals is considered an acknowledge
and begins this timeout. The default value for these delays is 0. Usually delays need only be
used for memory designs that use an advance acknowledge or late bus-error algorithms.
Once DTACK* is asserted, the VIC068A maintains DTACK* until the VMEbus DSi* signals
are deasserted.

If the LBERR* signal is asserted, the VIC068A asserts BERR* until the DSi* signals are
deasserted. If LBERR* is asserted after either DSACKi* has been asserted, and the DSACK*-
to-DTACK* delay has not yet expired, DTACK* is inhibited and the BERR* signal will be
asserted on the VMEbus without delay. If the user employs some delayed LBERR* algorithm
(such as late parity check), the SAT delay must be programmed sufficiently long to allow for
this delay of LBERR*.

Table 1-8. Buffer Control Signals: D32 VMEbus Slave Write Operation

Data Path
Size

VMEbus
Stimulus

Local Bus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

L
A

[1
:0

]

D
S

A
C

K
1/

0*

D
S

1/
0

*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D32
D32, UAT (0-2)
D32, UAT (1-3)
D32, UAT (1-2)

0 0
0 1
1 0
0 0

0
0
0
1

0
0
0
0

LL
HH
HH
HL

LL
LL
LH
LH

0
0
0
0

H
H
H
H

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

D16 (0-1)
D16 (2-3)

0 0
0 0

0
1

1
1

HL
HL

LL
HL

0
0

H
H

L
L

H
H

L
L

L
L

L
L

L
L

L
L

H
H

D8 (0)
D8 (1)
D8 (2)
D8 (3)

0 1
1 0
0 1
1 0

0
0
1
1

1
1
1
1

LH
LH
LH
LH

LL
LH
HL
HH

0
0
0
0

H
H
H
H

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

VIC068A VMEbus Slave Operations

1-51

.

Table 1-9. Buffer Control Signals: D32 VMEbus Slave Read Operation

Data Path
Size

VMEbus
Stimulus

Local Bus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

LA
[1

:0
]

D
S

A
C

K
1/

0
*

D
S

1
/0

*

A
0

1

LW
O

R
D

*

A
B

E
N

*

LA
D

I

LA
D

O

D
E

N
O

*

LE
D

I

LE
D

O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D32
D32, UAT (0-2)
D32, UAT (1-3)
D32, UAT (1-2)

0 0
0 1
1 0
0 0

0
0
0
1

0
0
0
0

LL
HH
HH
HL

LL
LL
LH
LH

0
0
0
0

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

H
H
H
H

L
L
L
L

H
H
H
H

H
H
H
H

D16 (0-1)
D16 (2-3)

0 0
0 0

0
1

1
1

HL
HL

LL
HL

0
0

H
H

L
L

L
L

L
L

H
H

L
H

H
L

H
H

H
H

D8 (0)
D8 (1)
D8 (2)
D8 (3)

0 1
1 0
0 1
1 0

0
0
1
1

1
1
1
1

LH
LH
LH
LH

LL
LH
HL
HH

0
0
0
0

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
H
H

H
H
L
L

H
H
H
H

H
H
H
H

Table 1-10. Buffer Control Signals: D16 VMEbus Slave Read Operation

Data Path
Size

VMEbus
Stimulus

Local Bus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

L
A

[1
:0

]

D
S

A
C

K
1/

0*

D
S

1/
0

*

A
01

LW
O

R
D

*

A
B

E
N

*

L
A

D
I

L
A

D
O

D
E

N
O

*

L
E

D
I

L
E

D
O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D16 (0-1)
D16 (2-3)

0 0
0 0

0
1

1
1

HL
HL

LL
HL

0
0

H
H

L
L

L
L

L
L

H
H

L
H

H
L

H
H

H
H

D8 (0)
D8 (1)
D8 (2)
D8 (3)

0 1
1 0
0 1
1 0

0
0
1
1

1
1
1
1

LH
LH
LH
LH

LL
LH
HL
HH

0
0
0
0

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

L
L
H
H

H
H
L
L

H
H
H
H

H
H
H
H

VIC068A VMEbus Slave Operations

1-52

Table 1-11. Buffer Control Signals: D16 VMEbus Slave Write Operation

Data Path
Size

VMEbus
Stimulus

Local Bus
Response

Address
Control

Data
Control Swap Control

W
O

R
D

*

S
IZ

1/
0

LA
[1

:0
]

D
S

A
C

K
1/

0
*

D
S

1
/0

*

A
0

1

LW
O

R
D

*

A
B

E
N

*

LA
D

I

LA
D

O

D
E

N
O

*

LE
D

I

LE
D

O

D
D

IR
1

S
W

D
E

N
*

IS
O

B
E

*

D
E

N
IN

*

D16 (0-1)
D16 (2-3)

0 0
0 0

0
1

1
1

HL
HL

LL
HL

0
0

H
H

L
L

H
H

L
L

L
L

L
L

L
L

L
L

H
H

D8 (0)
D8 (1)
D8 (2)
D8 (3)

0 1
1 0
0 1
1 0

0
0
1
1

1
1
1
1

LH
LH
LH
LH

LL
LH
HL
HH

0
0
0
0

H
H
H
H

L
L
L
L

H
H
H
H

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

L
L
L
L

H
H
H
H

1-53

1.7
VIC068A Control Register

Access
1.7.1 Control Registers

The VIC068A contains 58 8-bit internal registers addressable from the local bus. These
registers provide complete control and monitoring of the VIC068A.

1.7.2 Control Register Access

Access to internal registers of the VIC068A is accomplished through the assertion of CS*,
PAS* and DS*. It is the value of R/W* that determines if the access is a read or a write.

When CS*, PAS* and DS* are all driven Low (in any order) to the VIC068A, access to an
internal register is initiated (i.e., REGISTER_ACCESS* = 0 when (CS*[0] and PAS*[0]
and DS*[0]). Register access completes when either CS*, PAS*, or DS* deassert (i.e.,
REGISTER_ACCESS* = 1 when (CS*[1] or PAS*[1] or DS*[1]). Figure 1-8 shows a timing
diagram of the VIC068A internal register accesses. The timing values are explained in Table
1-12.

Although the registers are 8 bits wide, the VIC068A always acknowledges a register
access with both DSACK*s. This is because the VIC068A registers are addressed on
longword boundaries and occupy 32 bits of address space.

Table 1-12. Register Access Timing Values

Operation
Commercial Industrial Military

Min. Max. Min. Max. Min. Max.
REGISTER ACCESS
M1 PAS*[0] & DS*[0] & CS*[0] to

DSACKi*[L]
4T+5 5T+34 4T+5 5T+35 4T+4 5T+38

M2 PAS*[0] & DS*[0] & CS*[0] to
LD[7:0] Valid

3T+5 4T+28 3T+5 4T+29 3T+4 4T+37

M3 AS*[0] & ICFSEL*[0] to
DTACK*[L]

4T+6 4T+30 4T+5 4T+31 4T+5 4T+34

M4 PAS*[0] & DS*[0] & CS*[0] to
LD[7:0], LA[7:0] Valid

2T+6 3T+30 2T+5 3T+31 2T+5 3T+34

VIC068A Control Register Access

1-54

Figure 1-8. VIC068A Internal Register Access Timing

When reading a register, the VIC068A delivers data on LD[7:0]. When writing data, the
VIC068A must see data on LD[7:0]. Because of this, the VIC068A only acknowledges a
register access that is addressed “correctly” according to the following table:

PAS*

DS* INPUT

INPUT

INPUT

INPUT

OUTPUT

INPUT

CS*

R/W*

DSACK1/0*

LD[7:0]

Write

M1

Read
PAS*

DS* INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

CS*

R/W*

DSACK1/0*

LD[7:0]

M1

M2

INTERNALREGISTER
ACCESS*

INPUTLA[7:0]

valid

valid

M4

INPUTLA[7:0] valid

M4

INTERNALREGISTER
ACCESS*

valid

VIC068A Control Register Access

1-55

SIZ1, SIZ0 VIC068A acknowledges if LA[1:0] is:

0 0 0 0
0 1 1 1
1 0 1 0
1 1 1 1

This insures that data will be available to/from LD[7:0] according to 68K protocol.

The VIC068A addresses given in this user’s guide are byte addresses located at the
LA[1:0] = 1 1 position. This implies that if the registers are to be addressed through a
longword access, LA[1:0] must be 0 0. If accessed though a word access, LA[1:0] must
be 1 0.

For example, if the variable vic contains the VIC068A register base address for a particular
application, the following Motorola instructions would identically move the DMASR data
(address = $BF) to the Motorola D0 register:

move.b (vic,$bf), d0

move.w (vic,$be), d0

move.l (vic,$bc), d0

1-56

1.8
Interprocessor

Communication Facilities
The VIC068A contains three categories of interprocessor communication facilities (ICFs):

• Interprocessor Communication Registers (ICRs)

• Interprocessor Communication Global Switches (ICGSs)

• Interprocessor Communication Module Switches (ICMSs)

The ICRs are 8-bit registers that may be accessed from either the local bus or the VMEbus.

The ICGSs and the ICMSs are switches that may be set to interrupt the local processor.

These facilities are located in seven registers that are visible from both the local bus and
the VMEbus. When accessed via the local bus, the registers are read/written by normal
VIC068A register access methods. When accessed via the VMEbus, the ICFSEL* signal
is used as a register select signal. The register addresses, when accessed from the local
bus are not the same as when accessed from the VMEbus. The VIC068A contains an
internal arbiter to arbitrate between local and VMEbus accesses to these facilities.

Additional registers used for the ICFs are as follows:

• ICGS Interrupt Control Register (ICGSICR)

• ICMS Interrupt Control Register (ICMSICR)

• ICGS Interrupt Vector Base Register (ICGSIVBR)

• ICMS Interrupt Vector Base Register (ICMSIVBR)

• Interprocessor Communication Switch Register (ICSR)

1.8.1 Valid ICF Selection

The ICFSEL* signal is used to signal that the VMEbus master desires access to the
VIC068A interprocessor communication facilities. This signal is usually driven from VME-
bus address decoders. When ICFSEL* is asserted, the VIC068A checks A[5:1] to deter-
mine what ICF is desired. Self-access to the ICF facilities is not detected by the VIC068A.
The VIC068A then verifies the AM codes against the following table:

Interprocessor Communication Facilities

1-57

ICF AM code(s)

ICR $29, $2D (A16, user or supervisory data)

ICGS $2D (A16, supervisory data)

ICMS $29, $2D (A16, user or supervisory data)

Once a valid ICF select has occurred, the VIC068A then processes the request. The ICF
VMEbus address is shown in Table 1-13.

1.8.2 Interprocessor Communication Registers

The VIC068A contains seven interprocessor communication registers (ICRs). These reg-
isters are accessible from both the local bus and the VMEbus. ICRs 4–0 are considered
general-purpose read/write registers. ICR5 is the VIC068A version/revision register. The
value of this register indicates the mask revision of the device. ICR6 contains HALT* and
RESET* status of the VIC068A. ICR7 provides semaphores for ICRs 5–0. These sema-

Table 1-13. ICF VMEbus Address Map

A7 A6 A5 A4 A3 A2 A1 LWORD Function

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

1
1
1
1
1
1
1
1

ICR0 Access
ICR1 Access
ICR2 Access
ICR3 Access
ICR4 Access
ICR5 Access
ICR6 Access
ICR7 Access

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Clear ICGS0
Set ICGS0
Clear ICGS1
Set ICGS1
Clear ICGS2
Set ICGS2
Clear ICGS3
Set ICGS3

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

1
1
1
1
1
1
1
1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Clear ICMS0
Set ICMS0
Clear ICMS1
Set ICMS1
Clear ICMS2
Set ICMS2
Clear ICMS3
Set ICMS3

X X 1 1 X X X X Undefined/Reserved

Interprocessor Communication Facilities

1-58

phores are set whenever ICRs 5–0 are written. In addition, ICR7 also indicates VMEbus
mastership and a mask for SYSFAIL*. Refer to Chapter 1.12 for detailed register descriptions.

1.8.3 Interprocessor Communication Global Switches

The ICGSs are software switches that may be set over the VMEbus to interrupt a group
of VMEbus modules.

When the VIC068A issues the global switches, it is performing a VMEbus byte-wide write
to the pre-defined global switch address.

If the global switch interrupts are enabled in the ICGSICR of the VIC068A slave, a local
interrupt is generated on a clear-to-set transition of the selected switch. When acknowl-
edged (FCIACK* asserted), the slave VIC068A handles the interrupt by returning the
status/ID value from the ICGSVBR. See Chapter 1.9 for details on VIC068A interrupt gener-
ation and handling. Once a switch is set, it must be cleared before it can be re-set.

Because the global switches are meant to be issued to several modules, the VIC068A as
VMEbus master must assert DTACK* to complete the VMEbus cycle. The VIC068A issues
DTACK* if the ICFSEL* signal is asserted while performing the VMEbus master cycle.

Notice that if a valid ICF select has occurred, A[2:1] selects the ICGS switch and A0 (i.e.,
DS1* and DS0*) indicates whether the switch is to be set or cleared. That is, a byte-wide
write to an even address clears the selected switch and a byte-wide write to an odd address
sets the selected switch.

The ICSR may be used to provide monitoring of the global switches.

1.8.4 Interprocessor Communication Module Switches

Like the ICGSs, the ICMSs are software switches that may be set over the VMEbus to
interrupt the local processor. The module switches, however, are meant to be issued to a
specific module.

As in the global switches, the VIC068A issuing the module switches performs a VMEbus
byte-wide write to the pre-defined switch address.

Because the module switches are meant for a specific module, the VIC068A as VMEbus
slave (the module whose switch was just set) must assert the DTACK*. The VIC068A
issuing the ICMS need not have its ICFSEL* signal asserted.

The interrupt and addressing mechanisms are the same for ICMSs as they were for ICGSs.

The ICSR may be used to provide monitoring of the module switches. Unlike the global
switches, this register may be written by local resources to interrupt the CPU.

1-59

1.9
Interrupts

The VIC068A offers complete VMEbus and local bus interrupt generation and handling
functions. In addition, the VIC068A also offers error and status interrupts for various
VIC068A features. Local interrupt 2 (LIRQ2) may also be used as a periodic “heartbeat”
timer. Significant control over the VIC068A interrupt generation/handling capabilities
through the control registers listed below (32 of the 59 VIC068A control registers are for
interrupt generation/handling):

• VMEbus Interrupter Interrupt Control Register (VIICR)

• VMEbus Interrupt Control Registers 1–7 (VICR1–7)

• DMA Status Interrupt Control Register (DMASICR)

• Local Interrupt Control Registers 1–7 (LICR1–7)

• ICGS Interrupt Control Register (ICGSICR)

• ICMS Interrupt Control Register (ICMSICR)

• Error Group Interrupt Control Register (EGICR)

• ICGS Interrupt Vector Base Register (ICGSIVBR)

• ICMS Interrupt Vector Base Register (ICMSIVBR)

• Local Interrupt Vector Base Register (LIVBR)

• Error Group Interrupt Vector Base Register (EGIVBR)

• VMEbus Interrupt Request/Status Register (VIRSR)

• VMEbus Interrupt Vector Base Registers 1–7 (VIVBR1–7)

1.9.1 VMEbus Interrupter

The VIRSR controls the assertion of the VMEbus interrupts. VIRSR[7:1] control the as-
sertion (and deassertion if desired) of IRQ*7–1 signals respectively. VIRSR[0] enables
the setting and clearing of these bits. To issue an interrupt, both the interrupt bit and
VIRSR[0] must be set. To clear an interrupt, the interrupt bit must be set and VIRSR[0]
must be cleared. VIRSR[7:1] may also be read to indicate the status of pending VMEbus
interrupts. For example, if vic contains the base address of the VIC068A registers, the
following 68K code could be used to assert IRQ4*:

move.b #$11,(vic,$83)

This code would clear the interrupt:

move.b #$10,(vic,$83)

Interrupts

1-60

Once the interrupt is issued, the handler for that interrupt proceeds with the interrupt
acknowledge cycle. Once the VIC068A recognizes a valid interrupt acknowledge cycle
(IACKIN* asserted), it places the status/ID vector, located in the VIVBRi, on the D[7:0]
lines. The VIC068A is capable of issuing 8-bit status/IDs only. The VIC068A uses a Re-
lease-On-AcKnowledge (ROAK) for the normal deassertion of the IRQi* signals.

More than one VMEbus interrupt may be issued or pending simultaneously by the same
VIC068A interrupter.

1.9.2 The VIC068A VMEbus Interrupt Handler

The VIC068A may be enabled to handle VMEbus interrupts. If VICR1–7[7] is clear, the
VIC068A handles all pending interrupts on that respective level. Only one VMEbus module
should be configured to handle any given interrupt level per VMEbus system.

The VIC068A performs D8 interrupt acknowledge cycles only.

When the VIC068A detects a pending VMEbus interrupt, it performs the following func-
tions:

1. Assert the IPLi signals with the value programmed in the VICRi.

2. Wait for the assertion of the FCIACK* signal, which indicates the local processor is
acknowledging a local interrupt.

3. Once FCIACK* is asserted, sample LA[3:1] to determine the IPL value of local interrupt
being acknowledged.

4. If matched, obtain VMEbus mastership, assert IACK*, drive A[3:1]=interrupt-level and
enable D[7:0] to the local data bus LD[7:0].

5. Once DTACK* is asserted by the VMEbus interrupter indicating the status/ID byte is
valid on D[7:0], the VIC068A asserts DSACKi* to complete the local interrupt acknowl-
edge cycle and indicates that the status/ID is available on LD[7:0].

The LA[3:1] matching described in step 3 is discussed in section 1.9.3.

Table 1-14 summarizes the VMEbus interrupt acknowledge cycle.

Interrupts

1-61

Table 1-14. VMEbus Interrupt Acknowledge Cycle

Step VIC068A Interrupter VIC068A Handler Local Processor

1 Generate IRQi* (write to
VIRSR)

2 Detect IRQi* asserted
(VICRi enabled to
handle interrupt)

3 Assert inverted version of
IPLi value as programmed
in the VICRi

4 Detect IPLi asserted

5 Place inverted IPL level of
interrupt being handled on
LA[3:1]

6 Assert FCIACK*, PAS*,
DS*

7 Detect FCIACK* asserted

8 Sample LA[3:1] for request
level being acknowledged

9 If matched, obtain VMEbus
mastership

10 Assert IACK* and place
number of IRQ being ac-
knowledged on A[3:1]

11 Enable D[7:0] to capture
status/ID vector

12 Detect IACKiIN* asserted and
sample A[3:1]

13 If A[3:1] matches IRQ number
requested, drive status/ID vec-
tor programmed in the VIVBRi

14 Assert DTACK*

15 Generate interrupt acknowl-
edged interrupt if enabled in the
VIICR

Assert DSACKi*

16 Capture status/ID

17 Enter Interrupt Service
Routine

Interrupts

1-62

1.9.3 Local Interrupt Handler

The VIC068A may be enabled to handle local interrupts in addition to VMEbus interrupts.
Local interrupt handling is enabled through the LICRs 1–7. If bit 7 is cleared in any of
these registers, the corresponding local interrupt is handled by the VIC068A. The local
interrupts may be configured in a variety of ways including edge or level sensitivity, active
High/Low levels, or rising/falling edges. The VIC068A may be configured to supply, or
autovector, the status/ID. If VIC068A is configured to supply the status/ID vector, the vector
is supplied from the LIVBR. Unlike the VIVBRs, this is a single register. The upper 5 bits
are user-defined, and the lower 3 bits are dynamic to indicate the interrupt value
(LIRQ7*...LIRQ1*, etc.). These lower 3 bits are place-holders only. They may not indicate
the interrupt value if read, even during an interrupt acknowledge cycle. If the VIC068A is
configured for autovectoring (VIC068A does not supply status/ID), the VIC068A asserts
the LIACKO* signal after the interrupt is acknowledged (FCIACK* asserted) by the local
processor. This should indicate to the interrupter to place the status/ID on D[7:0] signal
lines and assert DSACKi*. LIACK0* may be connected to the 68K AVEC signal for internal
generation of the interrupt vector.

Once the VIC068A detects LIRQi* asserted, and the VIC068A is enabled to handle that
interrupt, the VIC068A proceeds as follows:

1. Assert the IPLi signals with the value programmed in the LICRi.

2. Wait for the assertion of the FCIACK* signal, which indicates the local processor is
acknowledging a local interrupt.

3. Once FCIACK* is asserted, sample LA[3:1] to determine the IPL value of local interrupt
being acknowledged.

• If matched,

— drive LD[7:0] with status/ID if enabled to supply vector and assert DSACKi*.

— or, assert LIACK0* if not enabled to supply vector (autovectoring).

The LA[3:1] matching described in step 3 is required to distinguish an acknowledge from
among multiple pending interrupts. If the value of LA[3:1] does not match the value of the
IPL signals (see section 1.9.8 for positive/negative logic issues regarding the IPL signals),
the VIC068A assumes the acknowledge is not for it. The 68K family of processors asserts
LA[3:1], as described above, automatically. Table 1-15 summarizes the local interrupt ac-
knowledge cycle.

Interrupts

1-63

1.9.4 The FCIACK Cycle

When the VIC068A detects an interrupt (either VME or local) that it has been programmed
to handle, the VIC068A begins a FCIACK cycle. The IPL value associated with that inter-
rupt (as programmed in VIICR, VICR1–7, DMASICR, LICR1–7, ICGSICR and ICMSICR)
is placed into an internal lookup table and driven (inverted) onto the IPL lines. The value
placed onto LA[3:1] by the local processor during a FCIACK cycle is compared with the
lookup table within the VIC068A. If a match is found, the interrupt that the local processor
has agreed to service is handled.

Since interrupts occur asynchronous to each other, it is possible for the value of the IPL
lines to change without warning. If the IPL lines were not sampled prior to them changing,
that interrupt will not be seen by the local processor until all higher priority interrupts have
been handled. Once FCIACK* is asserted to the VIC068A, the IPLi lines will be frozen
until the Interrupt Acknowledge cycle is complete. Since the value placed onto LA[3:1] by
the local processor is compared against a lookup table and not the current value of the

Table 1-15. Local Interrupt Acknowledge Cycle

Step Local Interrupter VIC068A Handler Local Processor

1 Generate LIRQi*

2 Assert inverted version of IPLi val-
ue programmed in the LICRi

3 Detect IPLi asserted

4 Place inverted IPL
level of interrupt be-
ing handled on
LA[3:1]

5 Assert FCIACK*,
PAS*, DS*

6 Detect FCIACK* asserted

7 Sample LA[3:1] for request
level being acknowledged

8a If matched, drive status/ID on
LD[7:0] programmed in the LICRi

9a Assert DSACKi*

8b Assert LIACK0*

9b Drive status/ID, DSACKi*

10 Capture status/ID

11 Enter ISR

Interrupts

1-64

IPL lines the VIC068A will handle any pending interrupt that the local processor agrees
to handle during a FCIACK cycle.

1.9.5 The Error/Status Interrupts

The VIC068A is capable of generating local interrupts on certain error or status conditions.
The error group interrupts include:

• SYSFAIL* assertion. An interrupt is generated when SYSFAIL* is detected by some-
thing other than the VIC068A.

• ACFAIL* assertion. An interrupt is generated when ACFAIL* is detected.

• Write post failure. An interrupt is generated when a master write post has failed due
to a LBERR* or BERR* assertion.

• VMEbus arbitration failure. An interrupt is generated if the VIC068A is system controller
and the VMEbus arbitration timeout timer expires.

The IPL value asserted for these error group interrupts is contained in the EGICR. There
is only one IPL value for the error group interrupts.

The VIC068A contains two status interrupts:

• The DMA complete interrupt. An interrupt is generated when a block transfer with local
DMA is complete (successful or unsuccessful). The IPL value issued is also contained
in the DMAICSR.

• The Interrupter interrupt acknowledge. An interrupt is generated upon the acknowl-
edgment of a previously issued VMEbus interrupt. The IPL value issued is contained
in the VMEIICR.

Upon local acknowledgment of both the error and status group interrupts, the VIC068A
issues the status/ID byte located in the EGIVBR. EGIVBR[7:3] are user defined.
EGIVBR[2:0] are dynamic to indicate the particular interrupt being acknowledged.

1.9.6 Interrupt Priority Order

The 29 interrupt sources of the VIC068A are grouped into 19 priority categories. With
multiple interrupts pending, the VIC068A issues the interrupts in the following order:

Priority Interrupt

1 LIRQ7*
2 Error Group
3 LIRQ6*
4 LIRQ5*
5 LIRQ4*
6 LIRQ3*

Interrupts

1-65

7 LIRQ2*
8 LIRQ1*
9 ICMS Group
10 ICGS Group
11 IRQ7*
12 IRQ6*
13 IRQ5*
14 IRQ4*
15 IRQ3*
16 IRQ2*
17 IRQ1*
18 DMA Complete
19 VMEbus Interrupter

Notice that the priority of the interrupts within the VIC068A is not dependent on the IPL
values programmed in the interrupt control registers. This, combined with the fact that
VMEbus interrupt priority is also governed by the position of the module within a VMEbus
system, makes determining actual interrupt priority for a given processor in a given VME-
bus system flexible.

If an interrupt is pending, and another higher-priority interrupt (according to the above
table) is issued to the VIC068A, the VIC068A will change the state of the IPL lines to that
of the higher-priority interrupt. The VIC068A, however, still handles the lower-priority in-
terrupt if it is acknowledged before the higher one. If the lower-priority interrupt is being
acknowledged (FCIACK* asserted) at the time of the assertion of the higher-priority in-
terrupt, the IPL signals will not change until the interrupt acknowledge cycle is complete.

While an interrupt is pending, all lower-priority interrupts subsequently issued are queued
within the VIC068A and issued at the completion of the pending interrupt’s acknowledge
cycle.

1.9.7 Clock-Tick Interrupt Generator

LIRQ2 may be enabled to function as a “heartbeat” interrupt generator issuing periodic
interrupts. If the interrupt generator is enabled by configuring SS0CR0[7,6], the LIRQ2*
pin is converted to an output and issues periodic interrupts in 50-, 100-, or 1000-Hz
frequencies. This interrupt should be considered an edge-triggered interrupt since it may
be deasserted before the interrupt is acknowledged. The VIC068A may also be configured
to handle the interrupt by enabling LIRQ2* in LICR2. In this case, the interrupt is considered
to be like any other interrupt issued to the VIC068A and normal interrupt acknowledge
procedures apply.

Interrupts

1-66

1.9.8 Interrupt Control Registers

The IPL values programmed in the interrupt control registers are positive logic values.
This is unlike the value of the IPL signals asserted to the processor by the VIC068A, which
are negative logic. The VIC068A performs this complementing of values internally. That
is, if a value of 010 (positive logic 2) is programmed into an interrupt control register, the
value of 101 (negative logic 2) is driven on the IPL signals.

When local resources are acknowledging an interrupt and driving LA[3:1] with the level
of the interrupt being acknowledged, LA[3:1] should contain the positive logic value of the
interrupt.

Mask bits exist for every interrupt the VIC068A is capable of generating. These mask bits
are set (interrupts disabled) after a global reset. When changing the level and/or polarities
of the local interrupts, it is recommended that the interrupts be masked prior to this and
re-enabled after.

1-67

1.10
VIC068A Block Transfer

Functions
The ability to transfer large blocks of data at a high-sustained transfer rate is paramount
in today’s VMEbus market. When implemented properly, transfer rates exceeding 30
Mbyte/sec can be obtained using a high-speed processor, high-speed memory and high-
speed VMEbus interfaces such as the VIC068A.

1.10.1 VIC068A Master Block Transfer

The VIC068A can be configured for block transfers while the local processor is bus master.
This is referred to as a MOVEM block transfer. The term MOVEM is derived from the
Motorola 68K MOVEM (move multiple registers) instruction. The VIC068A can also be-
come the local bus master and implement block transfers using DMA on the local side.
This is referred to as block transfers with local DMA. For master VMEbus block transfers
with local DMA, the VIC068A contains two 8-bit address counters that can automatically
increment the address for both the local or CPU side and the VMEbus side.

The VMEbus specification prohibits the crossing of 256-byte boundaries during block
transfers without giving up the VMEbus or toggling the VMEbus AS*. The VIC068A allows,
with external logic (such as CY7C964s), implementing block transfers that exceed the
256-byte limit. The VIC068A is able to give up the bus at the 256-byte limit (or any limit),
then re-arbitrate for the bus at a programmed time later. The time between sub-block
transfers is called the interleave period. The number of VMEbus cycles between interleave
periods is called the burst length. The total number of bytes to be transferred is called the
block transfer length.

The VIC068A also allows for single-cycle VMEbus cycles to be performed during the
interleave period. This feature is called the dual-path feature and requires external logic
such as either the VAC068A or the CY7C964. As the name implies, the dual-path feature
requires that a dual address path exist so that the block transfer address is not lost if a
local interleave cycle is performed. Slave cycles can be interleaved between master block
transfer bursts without external logic or programming.

The VIC068A only supports D32 and D16 block transfers. D8 block transfers are not
supported.

VIC068A registers relevant to master block transfers are as follows:

• Block Transfer Control Register (BTCR)

• Block Transfer Definition Register (BTDR)

• Release Control Register (RCR)

VIC068A Block Transfer Functions

1-68

• Block Transfer Length Registers (BTLRs)

• Local Bus Timing Register (LBTR)

• Slave Select 0 Control Register 1 (SS0CR1)

• DMA Status Register (DMASR)

• DMA Status Interrupt Control Register (DMASICR)

It is important to note that the BTLRs contain the number of bytes to be transferred, and
the burst length in the RCR contains the number of VMEbus cycles, independent of the
number of bytes per cycle.

1.10.1.1 Block Transfers with Local DMA

The block transfer with local DMA is a block transfer in which the VIC068A becomes not
only the VMEbus master but the local bus master as well. Upon becoming the local bus
master, the VIC068A accesses memory in a DMA-like fashion. As in any DMA operation,
this increases the throughput of a system by making memory accesses memory-speed
dependent, as opposed to processor-speed dependent. As in any block transfer, the
VMEbus slave needs to be enabled for block transfers.

After the VIC068A registers are initialized, a VMEbus write must be performed to the
VMEbus destination address with the local starting address as the data. This is referred
to as a pseudo write cycle (since an actual VMEbus write is not performed) or the BLT
initialization cycle. This pseudo cycle must be a VMEbus write. A read cycle would not
place the correct data on the local data bus. Figure 1-9 shows the BLT initiation cycle (pseudo
cycle). This pseudo cycle only starts the block transfer mechanisms and loads the addresses.
Since any assertion of MWB* after BTCR[6] is set is interpreted as the pseudo cycle, it is
important that no normal VMEbus read/writes be performed until after the completion of the
block transfer, or during the next interleave period if the dual-path feature (described later) is
enabled. It also may be necessary to disable interrupts or have an interrupt service routine
that saves the block transfer registers.

VIC068A Block Transfer Functions

1-69

Figure 1-9. Master Block Transfer with Local DMA Initiation Cycle (pseudo cycle)

During the pseudo write, the VIC068A loads the values on the LA[7:0] into its internal
VMEbus address counter and asserts LADO to signal external latches to load the remain-
der of the LA[+:8] as the VMEbus address. The VIC068A at this time also loads the values
of LD[7:0] into internal local address counters and asserts BLT* to latch the remainder of
the LD[+:8] as the local address. The VIC068A then asserts the DSACKi* signals to
terminate the local cycle, and requests the VMEbus. After the VMEbus is granted, the
local bus is requested by asserting LBR*. After the local bus is granted, the VIC068A
drives the local DMA address onto the local address bus. CY7C964s, or external logic,
should decode BLT*, LBG*, PAS*, LAEN, and the FCi signals to drive the upper portion
of the address lines. See section 1.10.1.1.8.1.3 for more details. The VIC068A then accesses
the local data by asserting the local address and data strobes. The local resource then

PAS*

DS*

MWB*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

BLT*

LADO

LBR*

BRi*

BGiIN*

Local Bus Signals

VMEbus Signals

VIC068A Block Transfer Functions

1-70

acknowledges the VIC068A that local data has been read or written by asserting the DSACKi*
signals. Local data is held in the interface while the local address is incremented.

1.10.1.1.1 DMA Burst Length

Recall that the VIC068A is able to divide block transfers into a programmable number of
bursts. The length of a burst is programmable from 1 to 64 cycles through writing RCR[5:0].
Clearing these bits (the default value) implies a burst length of 64, not 0. The burst count
is independent of the number of bytes transferred per cycle.

1.10.1.1.2 Block Transfer Length

The total length of a block transfer is programmed separately from the burst length. The
length is programmed by writing the BTLRs. The LSB of the number is programmed into
register BTLR1. Since the VIC068A does not support D8 block transfers, if BTLR0[0] is
set, the BTLRs are ignored and only a single burst, as defined in RCR[5:0], will be per-
formed.

1.10.1.1.3 256-Byte Boundary Crossing on the VMEbus

The VMEbus specification prohibits the crossing of 256-byte address boundaries. It is
possible, when transferring large amounts of data, to simply deassert the AS* at the
boundary crossing and reassert it after the address has incremented without releasing
the VMEbus. In this case, BBSY* is held Low so that VMEbus mastership is not lost during
the toggle of the AS*. Once the boundary has been crossed, the VIC068A releases BBSY*
(if configured for RWD) after AS* is reasserted. The VIC068A, when enabled for VMEbus
boundary crossing in the BTDR, does this without any user intervention. External circuitry
is required to increment any address bits other than the lower 7 bits driven by the VIC068A.
LADO, ABEN*, and the FCi function codes may be used to control the loading, holding,
and incrementing of external latches and counters. During the VMEbus cycle before the
boundary crossing, LADO will toggle. External counters should increment after two edge
transitions of LADO. This is because LADO pulses Low if dual-path is not enabled and
pulses High if dual-path is enabled. If the VAC068A or CY7C964 is used in conjunction
with the VIC068A, no external hardware for boundary crossing is required.

1.10.1.1.4 256-Byte Boundary Crossing on the Local Bus

Just as the VIC068A allows for 256-byte boundary crossing on the VMEbus, similar pro-
visions are made for the local address bus. Local boundary crossing is enabled in the
BTDR. External circuitry is again required to increment any address bits other than the
lower 8 bits driven by the VIC068A. BLT* and the FCi function codes may be used to
control the loading and incrementing of these upper address bits. During the local cycle
before the boundary crossing, the BLT* will toggle. External counters should increment
on the falling edge of BLT*. If the VAC068A or CY7C964 is used in conjunction with the
VIC068A, no external hardware for boundary crossing is required.

VIC068A Block Transfer Functions

1-71

1.10.1.1.5 Interleave Period

The time between bursts is known as the interleave period. The length of the interleave
period is configurable in BTCR[3:0]. During the interleave period, slave cycles can be
performed. Master cycles are allowed if the dual-path feature is enabled.

1.10.1.1.6 Dual Path

Normally, during the interleave period no VMEbus master cycles are allowed by the
VIC068A. All requests for VMEbus master cycles are DEDLKed by the VIC068A. If, how-
ever, the VIC068A is configured for dual-path operation, the VIC068A will allow master
cycles. If the dual-path option is to be used, external logic such as the VAC068A or
CY7C964 is required to maintain the local and VMEbus addresses at the completion of
the last burst. If the VIC068A is enabled for local and VMEbus address boundary crossing,
the external counters (assuming all 32 bits are handled by counters) may be used. If the
VAC068A is used in conjunction with the VIC068A, no external hardware is required for
the dual-path option.

All VMEbus interrupt acknowledge cycles are DEDLKed by the VIC068A whether dual-
path is enabled or not.

1.10.1.1.7 The Block Transfer with Local DMA Enable Bit

When the BLT enable bit (BTCR[6]) is set, any assertion of MWB* (qualified by PAS* and
DS*) will begin the block transfer. Special care must be taken to insure that this bit is set
and cleared as close as possible to the actual block transfer. This means that once the
block transfer begins the BLT enable bit must be cleared. It is not necessary to wait for
the completion of the block transfer before clearing BTCR[6], this bit can be cleared during
an interleave period. This is important if retry logic is employed for deadlocked VMEbus
transfers. For example, if an attempted VMEbus cycle is DEDLKed during an interleave
period when dual-path is not enabled, the processor, such as a 68K processor, may
continually retry the cycle waiting for the VIC068A to complete the block transfer. At the
completion of the block transfer, this retry could initiate another block transfer since the
BLT enable bit has not been cleared. For this reason, retry logic may have to be disabled
during block transfers with local DMA.

1.10.1.1.8 Example Configurations

The following paragraphs further explain some application details regarding the different
modes of block transfer operation.

1.10.1.1.8.1 Boundary Crossing Disabled

This is the simplest form of the block transfer with local DMA. In this mode, block transfers
are restricted to those that do not cross a 256-byte boundary on either the local bus or
the VMEbus. Enabling dual path has no effect since there will not be an interleave. This
cycle is initiated by writing the following registers on the master module:

VIC068A Block Transfer Functions

1-72

• BTCR, to set up block transfer

• BTDR, to set up block transfer

• BTLRs, to configure length of block transfer

• LBTR, to configure local timing

• SS0CR1, to configure programmable delays

• DMASR, for DMA status

• DMASICR, to enable DMA complete interrupt

To enable the slave module for block transfers, configure the SS0CR0 or SS1CR0 register
in the slave’s VIC068A as appropriate.

1.10.1.1.8.1.1 Sample 68K Code (Write)

If we assume that the VIC068A registers start at a base location of vic_reg, a sample of 68K
code that would configure the VIC068A for a block transfer with local DMA could be as follows:

; Set up VIC068A to block transfer 128
; bytes in the BTLRs.

move.b #$00, (vic_reg, $db)
move.b #$80, (vic_reg, $df)

;
; Disable boundary crossing and dual
; path in the BTDR. This is the default configuration,
; but it is good to confirm the value.

move.b #$00, (vic_reg, $ab)
;
; Configure the local bus timing for:
; PAS* asserted time = 90ns
; PAS* deasserted time = 45ns
; DS* deasserted time = 15ns
; in the LBTR.
; (These were probably set up at
; power-up configuration)

move.b #$44, (vic_reg, $a7)
; Configure for:
; no interleave period
; write to VMEbus
; and enable block transfer w/ local
; DMA in the BTCR.

move.b #$40, (vic_reg, $d7)

After the block transfer bit is set, the local processor performs a 32-bit write to the VMEbus
location. This causes MWB* to be asserted to the VIC068A, which then requests the
VMEbus. Any VMEbus access through the VIC068A then causes the VIC068A to enter
the block transfer mode. It is important that this first transfer contain the starting address
of local memory, not the data to be transferred.

VIC068A Block Transfer Functions

1-73

If the 68K A0 register contains the local starting address and VME contains the VMEbus
starting address, then the following instruction can be used to start the block transfer.

; Start the block transfer
move.l vme, A1
move.l local, A0
move.l A0, (A1)

The local processor can check for the end of the block transfer by checking the DMASR.
The following code does this:

; Test the DMA bit of the DMASR.
LOOP:
btst #0, (vic_reg, $BF)
bne LOOP

Also, the VIC068A can be programmed to issue an interrupt to the local processor to
indicate the end of the transfer. Use the DMSICR to enable this operation.

1.10.1.1.8.1.2 Sample 68K Code (Read)

For this example, the set-up is the same as in the previous example with the exception
that the BTCR would be set as follows:

; Configure for:
; no interleave period
; read from VMEbus
; and enable block transfer w/
; local DMA in the BTCR.

move.b #$50, (vic_reg,$d7)

The transfer could be started with the same code fragment used for the write example.
As before, the completion of the DMA could be indicated by testing DMASR[0], or by an
interrupt.

1.10.1.1.8.1.3 External Hardware Implementation

Figure 1-10 shows the hardware required for implementing the block transfers described
above. The additional logic required is for latching the upper address bytes, LA[31:8].
Notice that for normal transfers, the ’543 drives the address bus. For block transfers, the
address bus is driven by the ’373. The ’373 is loaded from LD[31:8] at the assertion of BLT*.

The simplest solution is to use CY7C964s in place of using discrete components (’373s
and ’543s).

VIC068A Block Transfer Functions

1-74

Figure 1-10. Minimum BLT Logic

1.10.1.1.8.2 Boundary Crossing Enabled, Dual-Path Feature Disabled

This mode allows implementing block transfers that are larger than the 256 bytes restricted
by the VMEbus specification. The VIC068A does this by giving up the VMEbus after a
256-byte burst (or any size burst) and re-arbitrating for it at a later time (specified in the
BTCR). The VIC068A system keeps track of all information required during the transfer
so no additional software overhead is required. Some of the additional logic required for
this operation consists of external counters that increment the LA[+:8] and A[+:8] counters
as required. The VIC068A counts the lower 8 address bits only.

This cycle is initiated by writing the following registers on the master module:

• BTCR, to set up block transfer

• BTDR, to set up block transfer

• BTLRs, to configure length of block transfer

• LBTR, to configure local timing

• RCR, to specify burst length

• SS0CR1, to configure programmable delays

• DMASR, for DMA status

• DMASICR, to enable DMA-complete interrupt

Notice that the RCR must now be configured in order to specify the burst length.

The slave module must always be enabled for block transfers.

The software set-up for this operation is very similar to that of any block transfer with local
DMA. The RCR must be configured to specify the burst length.

LA[31:8]

FC2 * FC1 * LAEN

LADI

A[31:8]

F
C

2 * F
C

1 * LA
E

N

B
LT

*

LD
[31:8]

’373

’543

B

A

OEBA*

LEBA*

CEBA*CEAB*

OEAB*

LEAB*

D
LE

Q

LE
D

Q

LADO

ABEN*

LED
Q

VIC068A Block Transfer Functions

1-75

1.10.1.1.8.2.1 Sample 68K Code (write)

If we assume that the VIC068A registers are at vic_reg, as in the previous example, a sample
of 68K code that would configure the VIC068A for a block transfer with local DMA and boundary
crossing could be as follows:

; Set up VIC068A to block transfer 512
; bytes in the BTLRs.

move.b #$02, (vic_reg, $db)
move.b #$00, (vic_reg, $df)

;
; Specify a burst length of 64 cycles
; in the RCR
; ($00 specifies 64 cycles)

move.b #$00, (vic_reg, $d3)
;
; Enable boundary crossing for both
; the local bus and the VMEbus.
; Disable dual path. Use the BTDR

move.b #$0c, (vic_reg, $ab)
;
; Configure the local bus timing for:
; PAS* asserted time = 90ns
; PAS* deasserted time = 45ns
; DS* deasserted time = 15ns
; in the LBTR.

move.b #$44, (vic_reg, $a7)
;
; Configure for:
; interleave period = 0
; write to VMEbus
; and enable block transfer w/ local
; DMA using the BTCR.

move.b #$40, (vic_reg, $d7)

As in any block transfer with local DMA, the VMEbus is requested at the assertion of
MWB*. In the above example, two bursts of 256 bytes (64 cycles of longwords) are per-
formed. Between these bursts, an interleave time of “0” was specified. In this case, the
VMEbus is immediately requested after it is given up after the first burst and the local bus
will not be released. If a VMEbus master cycle is attempted during the interleave period,
it will be DEDLKed (dual-path is not enabled).

The block transfer could be started as in any of the previous examples. Program the
VIC068A to issue an interrupt or check for the completion of the transfer with the DMASR.

Notice that no additional software overhead is required (with the exception of writing the
RCR) to perform a boundary crossing block transfer.

VIC068A Block Transfer Functions

1-76

1.10.1.1.8.3 Boundary Crossing Enabled, Dual-Path Enabled

This mode of operation is similar to that of the previous example except that master cycles
are allowed during the interleave period. If a master cycle is desired (MWB* asserted),
the VMEbus is requested and the transfer takes place like any other master cycle. A
request for a master cycle is DEDLKed if dual-path is not enabled.

The same registers that were used in the previous example are used in this example.
Namely:

• BTCR, to set up block transfer

• BTDR, to set up block transfer

• BTLRs, to configure length of block transfer

• LBTR, to configure local timing

• RCR, to specify burst length

• SS0CR1, to configure programmable delays

• DMASR, for DMA status

• DMASICR, to enable DMA-complete interrupt

The required software set-up is no different from that of any block transfer with local DMA
except that the dual-path bit (BTDR[0]) must be enabled.

1.10.1.1.8.3.1 Sample 68K Code (Write)

A sample of 68K code that would configure the VIC068A for a block transfer with local
DMA with boundary crossing and dual-path could be as follows:

; Set up VIC068A to block transfer 512
; bytes in the BTLRs.

move.b #$02, (vic_reg, $db)
move.b #$00, (vic_reg, $df)

; ;
; Specify a burst length of 64 cycles
; in the RCR.
; ($00 specifies 64 cycles)

move.b #$00, (vic_reg, $d3)
;
; Enable boundary crossing for both
; the local bus and the VMEbus.
; Disable dual path. Use the BTDR.

move.b #$0d, (vic_reg, $ab)
;
; Configure the local bus timing for:
; PAS* asserted time = 90ns
; PAS* deasserted time = 45ns
; DS* deasserted time = 15ns
; in the LBTR.

VIC068A Block Transfer Functions

1-77

move.b #$44, (vic_reg, $a7)
;
; Configure for:
; interleave period = 1000ns
; write to VMEbus
; and enable block transfer w/ local
; DMA using the BTCR.

move.b #$44, (vic_reg, $d7)

The VMEbus is requested at the assertion of MWB*.

In this scenario, a block transfer of 512 bytes is performed in two blocks of 256 bytes.
During the interleave period (1000 ns), master cycles can be performed.

1.10.1.1.9 D16 Block Transfers

The VIC068A is capable of performing D16 block transfers. If the WORD* signal is asserted
during the initiation cycle, the VIC068A performs the block transfer with D16 protocol on
the VMEbus.

The SWDEN* and ISOBE* signals can be configured to alternately toggle between the
lower and the upper word banks, or swap all data to the upper word bank. If SS0CR0[4]
(D32 enable) is set, SWDEN* and ISOBE* will toggle for 32-bit memory. If it is cleared,
the data will not switch between the upper and lower banks; only SWDEN* is asserted.

1.10.1.1.10 Data Acquisition Delays

The programmable delays in SS0CR1 take on different meanings depending on whether
the system is reading, writing, or even whether it is the first transfer or subsequent transfers.
During block transfer writes, the MBAT timing reflects the minimum delays. The actual
delays will depend on the speed in which DTACK* for the previous cycle is asserted. Notice
that the VIC068A asserts the DS* signals before the DTACK* signal has been asserted
in an attempt to read-ahead the next data. During the read-ahead cycle, the VIC068A
cannot deassert the LEDO and DS* signals before DTACK* is asserted from the previous
cycle.

Master Write Block Transfer (MBAT1/0)

DSACKi*(L) & DS*(L) to DS*(H)
DSACKi*(L) & DS*(L) to LEDO(H)
DSACKi*(L) & DS*(L) to DSi*(L)
DSACKi*(L) & DS*(L) to LA(7:0)

Master Read Block Transfer (MBAT1/0)

DSACKi*(L) & DS*(L) to DS*(H)
DSACKi*(L) & DS*(L) to LEDI(H)
DSACKi*(L) & DS*(L) to DSi*(L)
DSACKi*(L) & DS*(L) to LA(7:0)

VIC068A Block Transfer Functions

1-78

The terms MBAT refer to the following bit fields:

MBAT0 = SSiCR1[3:0]
MBAT1 = SSiCR1[7:4]

Figures 1-11 through 1-15 demonstrate these delays. See Chapter 1.13 for the actual AC
performance specifications.

1.10.1.2 MOVEM Block Transfers

The MOVEM block transfer is one in which the local CPU continues to be the local bus
master. The VMEbus block transfer protocol is the same as it was for block transfers with
local DMA. This cycle is initiated by writing the registers:

• RCR, to configure burst length

• BTCR, to configure block transfer

Once BTCR[5] is set, the first assertion of MWB* qualified with the assertion of PAS*,
causes the VIC068A to start the MOVEM transfer. The MOVEM block transfer will termi-
nate if any of the following occur:

• BTCR[5] is cleared

• BERR* is asserted

• any local bus cycle occurs in which MWB* is not asserted

BTLR1/0 are not used for MOVEM block transfers. During MOVEM block transfers, there
is no latching of addresses. The VIC068A passes the local address onto the VMEbus
address lines directly.

VIC068A Block Transfer Functions

1-79

Figure 1-11. Master Block Transfer—Read, First Cycle

Cycle 1

MBAT0
PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDI

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

VIC068A Block Transfer Functions

1-80

Figure 1-12. Master Block Transfer—Read, Second and Subsequent Cycles

Cycle N

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDI

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

MBAT1 MBAT1

COMPLETION OF CYCLE N-1

(N>2)

VIC068A Block Transfer Functions

1-81

Figure 1-13. Master Block Transfer—Write, First Cycle

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

Cycle 1

MBAT0

DST

VIC068A Block Transfer Functions

1-82

Figure 1-14. Master Block Transfer—Write, Second and Subsequent Cycles (Fast Sl ave)

Cycle N

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

MBAT1

DST

VIC068A Block Transfer Functions

1-83

Figure 1-15. Master Block Transfer—Write (Slow Slave)

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

MBAT0

VIC068A Block Transfer Functions

1-84

1.10.1.2.1 Sample MOVEM 68K Code

If, for example, we assume the VIC068A registers start at the base address vic_reg, a
sample of 68K code that would configure a MOVEM block transfer and dump the word contents of
the 68K d0 through d7 registers to memory could be as follows:

; Write burst length in to the RCR.
move.b #$0f, (vic_reg, $d3)

;
; Set the MOVEM bit in the BTCR.

move.b #$20, (vic_reg, $d7)
;
; Perform the MOVEM instruction.
; (a0 contains the destination
; address)

movem.l 0xffff, (a0)
;
; Clear the MOVEM bit.

move.b #$00, (vic_reg, $d7)

1.10.1.3 Buffer Control Signals During Master Block Transfers

The buffer control signals provide latching and bus-driving control for the address and
data lines on both local and VMEbus sides. For MOVEM block transfers, the buffer control
signals are identical in behavior to that of normal master transfers. For block transfers with
local DMA, the behavior of the buffer control signals may act slightly differently. When
using block transfers with local DMA, the loading, holding, and incrementing of the address
counters and latches is controlled by LADO, ABEN* and the FC2/1 function codes.

Initialization Cycle

LADO is asserted as a result of PAS*, DS*, and MWB* being asserted for the initiation
cycle.

VMEbus Read (Local Write)

LEDI is asserted as a result of the VMEbus DTACK* being asserted by the slave, indicating
that valid data is available on the VMEbus. LEDI is deasserted as a result of MBAT1/0
expiring.

VMEbus Write (Local Read)

During block transfer writes, the MBAT timing reflects the minimum delays. The actual
delays will depend on the speed in which DTACK* for the previous cycle is asserted. The
VIC068A asserts the DS* signal before the DTACK* signal has been asserted in an attempt
to read-ahead the next data. During the read-ahead cycle, the VIC068A cannot deassert
the LEDO and DS* signals before DTACK* is asserted from the previous cycle.

VIC068A Block Transfer Functions

1-85

1.10.1.4 Performing Block Transfers to VMEbus Slaves Not Supporting
Block

Transfers

The VIC068A may be used to perform block transfers with local DMA to cards that do not
accept block transfers. This is accomplished by performing the block transfer in bursts of
1 and using single-cycle AM codes (set BTDR[1]). This makes the VMEbus data appear
to be single-cycle data, but data is transferred on the local bus by DMA. Because the
VIC068A is in a block transfer mode, the LADO signal operates by deasserting after DS*
is asserted (recall that the address for single-cycle transfers must be held for the duration
of the cycle, but for block transfers the slave is responsible for latching the address at the
beginning of the cycle). When the VIC068A is configured for bursts of 1, LADO may be
configured to behave differently depending on certain register configurations. If BTDR[3]
is set (VMEbus boundary crossing enabled), LADO is deasserted when DSi* is asserted
for the final transfer. If BTDR[3] is clear, LADO will hold until the final DTACK* of the final
transfer. Therefore, it is recommended that boundary crossing be disabled when perform-
ing these burst-of-1 transfers to non-block slaves.

1.10.2 VIC068A Slave Block Transfers

The VIC068A as a slave may be configured, in SSiCR0, to perform in one of three modes
for block transfers:

• does not support block transfers

• supports block transfers, but emulates single-cycle transactions on the local slave side
(toggle PAS* and DSACKi* for each transfer)

• supports block transfers in a DMA-type mode where PAS* and DSACKi* are asserted
throughout the cycle and not toggled (accelerated transfers)

The VIC068A contains a slave block-transfer address counter separate from either of the
address counters used for master block transfers. This counter, initialized by the VMEbus
address, drives the local bus during the slave block transfer, and is incremented by the
amount of data transferred with each local acknowledgment.

The timing for the slave’s response to a block transfer is the same for that of a master
block transfer with local DMA. VIC068A registers relevant to slave block transfers are as
follows:

• Slave Select Control Registers (SS0CRi, SS1CRi)

• Local Bus Timing Register (LBTR)

The DMASR, DMASIR, RCR, BTCR, and the BTLRs are not used for slave block transfers.
Slave block transfers that cross 256-byte boundaries are not supported in accordance
with the VMEbus specification.

VIC068A Block Transfer Functions

1-86

1.10.3 Buffer Control Signals During Slave Block Trans-
fers

When the VIC068A is selected as a valid slave, LADI is asserted to latch the first address.
From that point on, the VIC068A increments the lower 8 local address bits for each transfer.
The data latches work as follows:

VMEbus Write (Local Write)

LEDI is asserted as a result of the VMEbus DSi* being asserted. LEDI is deasserted as
a result of SBAT1/0 expiring.

VMEbus Read (Local Read)

Similar to master block transfer writes, the VIC068A attempts to read ahead the next data
while the cycle is completing on the VMEbus. If DSi* from the previous cycle is not deas-
serted before SBAT1 expires for the read-ahead cycle, LEDO and DS* are deasserted at
the deassertion of DSi*. If DSi* is deasserted before SBAT1 expires, LEDO and DS* are
deasserted at that point.

1.10.4 Using the CY7C964 for Additional Block Transfer
Support

The CY7C964s are perfect companion chips for designs for which all of the VAC068A’s
functionality is not required, or for designs that cannot incorporate the VAC068A’s address
mapping.

The CY7C964 provides all logic necessary for

• local boundary crossing

• VMEbus boundary crossing

• dual-path functionality

See Section 4, The CY7C964 Bus Interface Logic Circuit, for details on a VIC068A/
CY7C964 interface.

VIC068A Block Transfer Functions

1-87

Figure 1-16. Slave Block Tran sfer—Read, First Cycle

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SLSEL1*

LBR*

Cycle N

SBAT1

VIC068A Block Transfer Functions

1-88

Figure 1-17. Slave Block Tran sfer—Read, Sec ond and Subsequent Cycles

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SLSEL1*

LBR*

COMPLETION OF CYCLE N–1

(N>2)
Cycle N

SBAT1

VIC068A Block Transfer Functions

1-89

Figure 1-18. Slave Block Tran sfer—Read, Slow Master

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SLSEL1*

LBR*

SBAT0

VIC068A Block Transfer Functions

1-90

Figure 1-19. Slave Block Tran sfer—Write, First Cycle

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SBAT0

Cycle 1

SLSEL1*

LBR*

VIC068A Block Transfer Functions

1-91

Figure 1-20. Slave Block Tran sfer—Write, Sec ond and Subsequent Cycles

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDI

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SBAT1

Cycle N

SLSEL1*

LBR*

1-92

1.11
Miscellaneous Features

This chapter describes additional miscellaneous features of the VIC068A.

1.11.1 Resetting the VIC068A

The VIC068A is reset by any of three distinct reset conditions. These reset conditions are
initiated by asserting various inputs or, in the case of a system reset, writing a VIC068A
register. Since it is possible for more than one reset condition to be present simultaneously,
the resets have the following priority:

1. global reset

2. internal reset

3. system reset

Upon completion of a VIC068A reset, ICR6[6] is set, thus causing SYSFAIL* to be as-
serted. To remove the SYSFAIL* set ICR7[7], which is cleared by a global or power-up
reset.

IMPORTANT

It is vital to the proper operation of the VIC068A that a global reset be performed at power-
up. It is not necessary to wait for a system reset (caused by an assertion of SYSRESET*
on the VMEbus) to complete before asserting a global reset. See section 1.11.1.2.

1.11.1.1 Internal Reset

The internal reset is the most common and easiest to implement of the VIC068A resets.
This resets all the VIC068A internal circuitry and selected register bit fields. This reset is
typically used as a push-button reset after power-up.

The internal reset is initiated by asserting the IRESET* signal for a minimum of 20 ns.
Immediately after the assertion of IRESET*, the VIC068A asserts the LBR* signal. The
VIC068A then waits 1 ms for the assertion of LBG*. If LBG* is asserted within the 1-µs
timeout, the VIC068A asserts HALT* and RESET* immediately. If LBG* is not asserted
within this timeout period, the VIC068A asserts HALT* and RESET* as if LBG* had been
received. The VIC068A attempts this reset handshaking sequence to provide an orderly
reset of local resources.

After the VIC068A asserts HALT* and RESET*, the VIC068A deasserts LBR*, places all
three-state outputs to a high-Z state, and begins a 200-ms timeout period. If IRESET* is

Introduction to the VIC068A

1-93

still asserted after this timeout expires, the VIC068A begins an additional 200-ms timeout.
The reset does not complete until the 200-ms timeout expires after IRESET* is deasserted.

If the VIC068A is the VMEbus system controller, the VIC068A also asserts SYSRESET*
with the RESET* and HALT* signals.

After the conclusion of an internal reset, the HALT* and RESET* signals (and SYSRESET*
if VMEbus is system controller) are deasserted and all outputs are brought to their quies-
cent states.

1.11.1.2 Global Reset

The global reset provides the most complete reset to the VIC068A. This resets all VIC068A
internal circuitry and all register bit fields to predefined states. A global reset must be
issued at power-up to insure proper operation of the VIC068A.

The global reset is initiated by asserting the IPL0 signal after the IRESET* signal is
asserted. It is important that IPL0 be asserted 16 ns (commercial) or 20 ns (industrial/
military) after the IRESET* signal. This allows IRESET* to reverse the direction of the
IPL0 line to an input. For a reliable global reset, the IPL0 signal should be asserted for a
minimum of 50 ns.

Two notes should be observed when using global resets:

• SYSCLK is not driven while IPL0 is being asserted.

• The BGiOUT* daisy-chain is disconnected during the global reset.

The characteristics of the global reset are present only while IPL0 is asserted. This implies
that the aforementioned behaviors are present only during the time IPL0 is asserted.
Before the IPL0 signal is asserted, the VIC068A is in an internal reset state. After IPL0 is
asserted, the VIC068A is in an internal reset state except that the registers have already
had their bit fields set to their default global reset state.

If a global reset is needed when the VIC068A is configured as VMEbus system controller,
assert IPL0 for a minimum time. This causes SYSCLK to be disabled only for the minimum
time IPL0 is asserted. The same is true for the BGiOUT* daisy-chain behavior.

The global reset mechanism is identical to the internal reset (LBG* and HALT* or RESET*
timeouts, etc.) with the following two exceptions:

• All register bit fields are set to their default states.

• If the IPL0 signal is deasserted first (i.e., before IRESET*), the reset continues until a
200-ms timeout expires.

• If the IRESET* signal is deasserted first (i.e., before IPL0), the reset concludes imme-
diately instead of waiting for the 200-ms timeout to expire.

SYSRESET* is asserted during a global reset when configured as VMEbus system con-
troller, as it is during an internal reset.

Introduction to the VIC068A

1-94

1.11.1.3 System Reset

The system reset is a VMEbus-defined reset that is signaled by the assertion of the
VMEbus signal SYSRESET*. The system reset is typically issued from another module
to reset an entire VMEbus system. The system reset resets all the VIC068A internal
circuitry and selected register bit fields. The VIC068A may both issue and receive a system
reset. If the VIC068A issues a system reset, it also resets itself.

There are two ways to issue a system reset:

• Write the SRCR with the value of $F0.

• Implement an internal or global reset while configured as a VMEbus system controller.

The VIC068A receives a system reset by having its SYSRESET* signal asserted. When
this occurs, the VIC068A begins the same procedures as if an internal reset had been
performed.

The system reset is identical in function to the internal reset with the following exceptions:

• The effect on certain VIC068A register bit fields are different.

• If SYSRESET* is asserted beyond the 200-ms timeout described by the internal reset,
the reset completes immediately after SYSRESET* is deasserted.

If an internal or global reset is performed on a system controller VIC068A while SYSRE-
SET* is being asserted by another board, the VIC068A will not assert SYSRESET*. This
implies that any SYSRESET* asserted to a system controller VIC068A should be asserted
for the 200 ms required by the VMEbus specification.

1.11.1.4 Power-On Reset

To reliably reset the VIC068A at power-on, a global reset must be performed. In addition,
the VIC068A must be in a “stable” operating environment at the initiation of the reset. A
stable operating environment is defined by the following conditions:

• VCC has reached 5V dc.

• The CLK64M signal is within the specified operating range (see Chapter 1.16).

• All inputs are in a negated state (excluding address/data buses).

If the VIC068A is not in a stable environment when IRESET* is asserted, the VIC068A
may not reset reliably. If the power-on reset is performed when the environment is not
stable, re-issue the global reset when the environment is stable.

Because a global reset causes certain VMEbus system controller operations to be sus-
pended (see section 1.11.1.2), the power-on reset circuitry must be designed to assert the
IPL0 signal for a “minimum” time while the VIC068A is the VMEbus system controller. Minimum
is defined to be greater than the required 50 ns but less than the time the disabled features
are required to be enabled for a particular application.

Introduction to the VIC068A

1-95

1.11.2 The Local Bus Timeout Timer

The VIC068A contains a local bus timeout timer that may be used to time certain local
timeout conditions for the local bus. The timer begins on the assertion of DS*. If the timer
period expires without an assertion of either the DSACKi* or LBERR* signals, the VIC068A
asserts LBERR* and sets BESR[3].

The local timeout timer may be configured to include or not include time waiting for VMEbus
acquisition. If enabled to include VMEbus acquisition time, BESR[0] is set when a timeout
occurs. Once VMEbus mastership is obtained, the local timeout timer is reset and does
not expire. At this point a VMEbus timeout timer (if one exists for the particular VMEbus
system) is used to indicate timeout conditions. If the VIC068A is used as the system
controller, this VMEbus timeout timer is located internal to the VIC068A.

If the local timeout timer is configured not to include VMEbus acquisition time, the timer
resets at the assertion of BRi* and does not expire.

The local bus timeout periods are configurable for 4, 16, 32, 64, 128, 256, and 512 ms.

1.11.3 The DRAM Refresh Controller

The VIC068A contains a DRAM refresh controller. When enabled in the ARCR, the
VIC068A increments a DRAM refresh counter every 15 µs. When the count of this counter
reaches 4, the VIC068A requests the local bus by asserting LBR*. After the local bus is
granted, the VIC068A performs a CAS-before-RAS refresh (that is, DS*-before-PAS*).
The VIC068A increments the refresh counter until the local bus is granted so the actual
number of cycles that are performed would equal the number in the refresh counter when
the local bus is granted to the VIC068A. If a VMEbus slave request is pending, the VIC068A
gives priority to the slave transfer and the DRAM refresh is performed after the slave
transfer is complete, but within the same assertion of LBR*.

When the VIC068A receives the local bus, the VIC068A drives the FC2/1 signals with the
DRAM refresh function codes. It then asserts PAS* and DS* according to the timing
configured in the LBTR. Insure that the minimum High time specified for PAS* is greater
then the minimum precharge time for the particular DRAMs being used. The VIC068A
drives the LA[7:0] signals High and asserts LAEN when performing DRAM refresh. The
SIZ1/0 signals are driven with a 32-bit code.

The refresh counter is a modulo-64 counter. If it reaches 64 without having the VIC068A
obtain the local bus, DRAM refresh cycles may be lost. The VIC068A local bus timer may
be used to insure that DRAM refresh cycles are not lost due to excessive local bus latency.

Introduction to the VIC068A

1-96

1.11.4 Rescinding Outputs

The VIC068A contains selected output signals that utilize a rescinding feature. A rescind-
ing output is a three-state output driver that first drives the output High before three-stating.
This is necessary for proper functionality of high-speed buses. The VIC068A rescinding
outputs are as follows:

VMEbus Local bus

DTACK* PAS*
AS* DS*
LWORD* LBERR*
WRITE* R/W*
BERR* SIZ1/0*
IACK* FC2/1*
DS1/0*
BBSY*

1.11.5 Turbo Mode

By setting ICR[1], it is possible to reduce certain delays within the VIC068A. When set,
the VIC068A reduces the following by 1 CLK64M period:

• VMEbus address set-up time

• VMEbus data set-up time

• DTACK* asserted time for slave block transfers

Because VMEbus times may be violated with this mode enabled, this mode should be
used with caution.

1.11.6 Metastability Delays

Because the VMEbus is an asynchronous bus (the local bus may also be), the VIC068A
must insure that its synchronous logic is protected from possible metastable conditions.
The VIC068A accomplishes this using a traditional double-sampling latch. The VIC068A
samples an input, then a specified settling time later samples it again. This allows for any
metastability that may have occurred to settle to a stable value. This settling time is pro-
grammable to 3T or 4T in the ICR.

1-97

1.12
VIC068A Register Map and

Descriptions
This chapter describes the VIC068A internal configuration registers. These registers en-
able and disable various features of the VIC068A. (Refer to the specific sections of this
guide for details on specific features.)

Table 1-16 provides information on the various reset states of the VIC068A registers. The
following notes should be observed regarding this table:

• An asterisk (*) indicates a bit that is not affected by the particular reset.

• An “X” indicates a bit that is affected by that state of a particular VIC068A pin.

• ICR5 is the VIC068A-version register. Its contents will vary depending on the revision
of the device being used.

Unless otherwise specified, the reset status is given in this chapter by the values located
in the parentheses by each bit field. The (X/X/X) format indicates the Global/Internal/
System reset state of each bit or bit field.

For compatibility with the VIC64, it is recommended that all reserved register bits be written
with a 0.

Table 1-16. VIC068A Register Values After Reset Operations

Address
(hex) Name Description

Global
Reset

Internal
Reset

System
Reset

03 VIICR VMEbus Interrupter Interrupt Control Register 11111000 11111*** 11111***

07–1F CICR1–7 VMEbus Interrupt Control Registers 1–7 11111000 11111*** 11111***

23 DMASR DMA Status Register 11111000 11111*** 11111***

27–3F LICR1–7 Local Interrupt Control Registers 1–7 1000X000 1***X*** 1***X***

43 ICGSICR ICGS Interrupt Control Register 11111000 11111*** 11111***

47 ICMSICR ICMS Interrupt Control Register 11111000 11111*** 11111***

4B EGICR Error Group Interrupt Control Register 1111X000 1111X*** 1111X***

4F ICGSVBR ICGS Vector Base Register 000011XX 000011XX 000011XX

53 ICMSVBR ICMS Vector Base Register 000011XX 000011XX 000011XX

57 LIVBR Local Interrupt Vector Base Register 00001XXX 00001XXX 00001XXX

5B EGIVBR Error Group Interrupt Vector Base Register 00001XXX 00001XXX 00001XXX

5F ICSR Interprocessor Communications Switch Register 00000000 ****0000 00000000

63–73 ICR0-4 Interprocessor Communications Registers 0–4 00000000 00000000 00000000

77 ICR5 Interprocessor Communications Register 5 Version Version Version

7B ICR6 Interprocessor Communications Register 6 X11111XX X1111111 X1111110

7F ICR7 Interprocessor Communications Register 7 00X00000 *0XX**** 00X00000

VIC068A Register Map and Descriptions

1-98

83 VIRSR VMEbus Interrupt Request Status Register 00000000 *******0 00000000

87–9F VIVBR1–7 VMEbus Interrupt Vector Base Registers 1–7 00001111 ******** 00001111

A3 TTR Transfer Timeout Register 01101000 01101000 01101000

A7 LBTR Local Bus Timing Register 00000000 ******** ********

AB BTDR Block Transfer Definition Register 11110000 11110000 11110000

AF ICR Interface Configuration Register 0000000X 0000000X 0000000X

B3 ARCR Arbiter/Requester Configuration Register 01100000 011*0000 011*0000

B7 AMSR Address Modifier Source Register 00000000 00000000 00000000

BB BESR Bus Error Status Register X0000000 X0000000 X0000000

BF DMASR DMA Status Register 00000000 00000000 00000000

C3 SS0CR0 Slave Select 0 Control Register 0 00000000 00****** 00******

C7 SS0CR1 Slave Select 0 Control Register 1 00000000 ******** ********

CB SS1CR0 Slave Select 1 Control Register 0 00000000 00****** 00******

CF SS1CR1 Slave Select 1 Control Register 1 00000000 ******** ********

D3 RCR Release Control Register 00000000 00000000 00000000

D7 BTCR Block Transfer Control Register 00000000 00000000 00000000

DB BTLR1 Block Transfer Length Register 1 00000000 00000000 00000000

DF BTLR0 Block Transfer Length Register 0 00000000 00000000 00000000

E3 SRR System Reset Register 11111111 11111111 11111111

EB-FF Reserved Locations 11111111 11111111 11111111

VMEbus Interrupter Interrupt Control Register

Name: VIICR

Address: $03

Description: Provides enabling and IPL level encoding for the local interrupt issued
when a VMEbus interrupt is acknowledged.

Bits 2–0:
(0/*/*)

IPL value. Value is inverted and driven onto the IPL lines when an
interrupt is acknowledged

Bits 6–3:
(1/1/1)

Undefined/Reserved. Bits will read as 1s.

Bit 7:
(1/1/1)

VMEbus interrupt mask. When clear, the VIC068A signals a local in-
terrupt at the acknowledgment of a previously issued VMEbus interrupt.
When set, the VIC068A will not issue a local interrupt.

Table 1-16. VIC068A Register Values After Reset Operations (continued)

Address
(hex) Name Description

Global
Reset

Internal
Reset

System
Reset

VIC068A Register Map and Descriptions

1-99

VMEbus Interrupt Control Registers 1–7

Name: VICR1–7

Addresses:
For interrupt:

$07, $0B, $0F, $13, $17, $1B, $1F
 1 2 3 4 5 6 7

Description: Provides enabling of the VIC068A as VMEbus interrupt handler for any
or all of the VMEbus interrupts. Seven registers exist to provide unique
masking and IPL values for the seven VMEbus interrupts.

Bits 2–0:
(0/*/*)

IPL value. Value is inverted and driven onto the IPL signals when a
VMEbus interrupt is acknowledged.

Bits 6–3:
(1/1/1)

Undefined/Reserved. Bits will read as 1s.

Bit 7:
(1/1/1)

VMEbus interrupt mask. When clear, the VIC068A acts as a VMEbus
interrupt handler by signaling a local interrupt at the specified IPL level.
When set, the VIC068A does not handle the VMEbus interrupt and no
local interrupt is issued.

DMA Status Interrupt Control Register

Name: DMASICR

Address: $23

Description: Provides enabling and IPL-level encoding for the DMA-complete inter-
rupt issued by the VIC068A when any VIC068A local DMA operation
completes (successfully or unsuccessfully).

Bits 2–0:
(0/*/*)

IPL value. Value is inverted and driven onto the IPL lines when interrupt
is acknowledged.

Bits 6–3:
(1/1/1)

Undefined/Reserved. Bits will read as 1s.

Bit 7:
(1/1/1)

DMA status interrupt mask. When clear, the VIC068A signals a local
interrupt at the completion of any VIC068A local DMA operation. When
set, the VIC068A will not issue a local interrupt.

Local Interrupt Control Registers 1–7

Name: LICR1–7

Address:
For LIRQ:

$27, $2B, $2F, $33, $37, $3B, $3F
 1 2 3 4 5 6 7

Description: Provides enabling, IPL level, and control of local interrupts 1–7
(LIRQ1–7*).

Bits 2–0:
(0/*/*)

IPL value. Value is inverted and driven onto the IPL lines when a local
interrupt is presented on the LIRQ1–7* signals and bit 7 of this register
is clear (enabled).

Bit 3:
(X/X/X)

LIRQ1–7* voltage state. A cleared bit indicates the LIRQ1–7* signal
is asserted at the VIC068A.

VIC068A Register Map and Descriptions

1-100

Bit 4:
(0/*/*)

Autovector enable. When set, the VIC068A will supply the interrupt
status/ID vector for the local interrupt acknowledge cycle. When
cleared, the VIC068A will assert the LIACK0* signal to indicate an 68K
“autovector” condition or that the interrupting source should provide
the Status/ID vector to the processor.

Bit 5:
(0/*/*)

Edge/level enable. When cleared, the VIC068A responds to the LIRQ1-
7* as a level-sensitive interrupt. When set, the VIC068A responds to
LIRQ1–7* as an edge-sensitive interrupt.

Bit 6:
(0/*/*)

Polarity set. When set, the VIC068A responds to interrupts as active
High if bit 5 is clear (level sensitive) or on a rising edge if bit 5 is set
(edge sensitive). When clear, the VIC068A responds to interrupts as
active Low if bit 5 is clear (level sensitive) or on a falling edge if bit 5 is
set (edge sensitive).

Bit 7:
(1/1/1)

Local interrupt mask. When clear, the VIC068A is enabled to handle
the corresponding local interrupt asserted on the LIRQ1–7* signals.

ICGS Interrupt Control Register

Name: ICGSICR

Address: $43

Description: Provides enabling and IPL encoding for the four global switch inter-
rupts.

Bits 2–0:
(0/*/*)

IPL Value. Value is inverted and driven onto the IPL signals when a
global switch is acknowledged.

Bit 3:
(1/1/1)

Undefined/Reserved. Bit will read as a 1.

Bit 4:
(1/1/1)

ICGS0 mask. When clear, the VIC068A will issue and handle a local
interrupt when global switch 0 is set.

Bit 5:
(1/1/1)

ICGS1 mask. When clear, the VIC068A will issue and handle a local
interrupt when global switch 1 is set.

Bit 6:
(1/1/1)

ICGS2 mask. When clear, the VIC068A will issue and handle a local
interrupt when global switch 2 is set.

Bit 7:
(1/1/1)

ICGS3 mask. When clear, the VIC068A will issue and handle a local
interrupt when global switch 3 is set.

ICMS Interrupt Control Register

Name: ICMSICR

Address: $47

Description: Provides enabling and IPL encoding for the four module switch interrupts.

Local Interrupt Control Registers 1–7 (continued)

VIC068A Register Map and Descriptions

1-101

Bits 2–0:
(0/*/*)

IPL Value. Value is inverted and driven onto the IPL signals when a
module switch is acknowledged.

Bit 3:
(1/1/1)

Undefined/Reserved. Bit will read as a 1.

Bit 4:
(1/1/1)

ICMS0 mask. When clear, the VIC068A will issue and handle a local
interrupt when module switch 0 is set.

Bit 5:
(1/1/1)

ICMS1 mask. When clear, the VIC068A will issue and handle a local
interrupt when module switch 1 is set.

Bit 6:
(1/1/1)

ICMS2 mask. When clear, the VIC068A will issue and handle a local
interrupt when module switch 2 is set.

Bit 7:
(1/1/1)

ICMS3 mask. When clear, the VIC068A will issue and handle a local
interrupt when module switch 3 is set.

Error-Group Interrupt Control Register

Name: EGICR

Address: $4B

Description: Provides enabling and IPL encoding for the error group interrupts.

Bits 2–0:
(0/*/*)

IPL Value. Value is inverted and driven onto the IPL signals when an
error group interrupt is acknowledged.

Bit 3:
(X/X/X)

SYSFAIL* asserted. This bit is set whenever SYSFAIL* is detected
asserted.

Bit 4:
(1/1/1)

SYSFAIL* interrupt mask. When clear, the VIC068A generates a local
interrupt when SYSFAIL* is asserted.

Bit 5:
(1/1/1)

Arbitration timeout interrupt mask. When clear, the VIC068A generates
a local interrupt when an arbitration timeout has occurred.

Bit 6:
(1/1/1)

Write post fail interrupt mask. When clear, the VIC068A generates a
local interrupt when a write post operation has failed due to a bus error.
For master write posts, an assertion of BERR* will trigger an interrupt.
For slave write posts, an assertion of LBERR* will trigger an interrupt.

Bit 7:
(1/1/1)

AC Fail interrupt mask. When clear, the VIC068A generates a local
interrupt when ACFAIL* is detected as asserted.

ICMS Interrupt Control Register (continued)

VIC068A Register Map and Descriptions

1-102

ICGS Interrupt Vector Base Register

Name: ICGSIVBR

Address: $4F

Description: Provides the status/ID vector for the global switch interrupts. This reg-
ister must be written after any VIC068A reset to enable identification
encoding for bits 1-0.

Bits 1–0:
(X/X/X)

Global switch number (read-only). This value indicates which global
switch is pending during a global switch interrupt acknowledge cycle.
These bits are used with bits 7–2 to provide a unique status/ID vector
for each global switch. The numeric value of this field indicates the
switch number. These bits are valid only during the interrupt acknowl-
edge cycle.

Bits 7–2: Status/ID. These bits are user-definable and are used with bits 1–0 to
provide a unique global switch interrupt status/ID vector.

ICMS Interrupt Vector Base Register

Name: ICMSIVBR

Address: $53

Description: Provides the status/ID vector for the module switch interrupts. This
register must be written after any VIC068A reset to enable identification
encoding for bits 1-0. This register is reset to $F0 during any VIC068A
reset.

Bits 1–0:
(X/X/X)

Module switch number (read-only). This value indicates which module
switch is pending during a module switch interrupt acknowledge cycle.
These bits are used with bits 7–2 to provide a unique status/ID vector
for each module switch. The numeric value of this field indicates the
switch number. These bits are valid only during the interrupt acknowl-
edge cycle.

Bits 7–2: Status/ID. These bits are user-definable and are used with bits 1–0 to
provide a unique module switch interrupt status/ID vector.

Local Interrupt Vector Base Register

Name: LIVBR

Address: $57

Description: Provides the status/ID vector for the local interrupts. This register must
be written after any VIC068A reset to enable identification encoding
for bits 2–0. This register is reset to $F0 during any VIC068A reset.

VIC068A Register Map and Descriptions

1-103

Bits 2–0:
(X/X/X)

Local Interrupt number (read-only). This value indicates which local
interrupt is pending during a local interrupt acknowledge cycle. These
bits are used with bits 7–3 to provide a unique status/ID vector for each
local interrupt. The numeric value of this field indicates the local inter-
rupt number. These bits are valid only during the interrupt acknowledge
cycle.

Bits 7–3: Status/ID. These bits are user-definable and are used with bits 1–0 to
provide a unique local interrupt status/ID vector.

Error Group Interrupt Vector Base Register

Name: EGIVBR

Address: $5B

Description: Provides the status/ID vector for the error group interrupts. This register
must be written after any VIC068A reset to enable identification en-
coding for bits 2–0. This register is reset to $F0 during any VIC068A
reset.

Bits 2–0:
(X/X/X)

Error/Status Group Interrupt number (read-only). This value indicates
which group interrupt is pending during the interrupt acknowledge cy-
cle. These bits are used with bits 7–3 to provide a unique status/ID
vector for each error group interrupt. These bits are valid only during
the interrupt acknowledge cycle.

Bits 2–0 Error/Status Interrupt

0 0 0 ACFAIL* asserted
0 0 1 Write post failed
0 1 0 Arbitration timeout
0 1 1 SYSFAIL* asserted
1 0 0 VMEbus Interrupter interrupt acknowledge
1 0 1 DMA complete

Bits 7–3: Status/ID. These bits are user-definable and are used with bits 1-0 to
provide a unique interrupt status/ID vector.

Interprocessor Communications Switch Register

Name: ICFSR

Address: $5F

Description: Provides setting, clearing, and monitoring of the interprocessor switch
interrupts via the local bus. If the switch interrupts are enabled, setting
these bits (more precisely, a clear-to-set transition) causes a local in-
terrupt to occur in the same way as if the switch was set over the
VMEbus.

Bits 3–0:
(0/0/0)

Module switches. Bits 0, 1, 2, and 3 correspond to ICMSs 0, 1, 2, and
3 respectively.

Bits 7–4:
(0/*/0)

Global switches. Bits 4, 5, 6, and 7 correspond to ICGSs 0, 1, 2, and
3 respectively.

Local Interrupt Vector Base Register (continued)

VIC068A Register Map and Descriptions

1-104

Interprocessor Communication Registers 0–4

Name: ICR0–4

Addresses:
For registers:

$63, $67, $6B, $6F, $73
 0 1 2 3 4

Description: These are general-purpose read/write registers that can be accessed
from either the local bus or the VMEbus. The addresses listed above
are the local addresses. See Chapter 1.8 for details on accessing these
registers from the VMEbus.

Bits 7–0:
(0/0/0)

Data field.

Interprocessor Communication Register 5

Name: ICR5

Address: $77

Description: This register provides the VIC068A version/revision number. The first
VIC068A device contains a value of $F1. Contact your local Cypress
Semiconductor sales office for current VIC068A revision status. The
address listed above is the local address. See Chapter 1.8 for details on
accessing this register from the VMEbus.

Bits 7–0: VIC068A version/revision (read-only).

Interprocessor Communication Register 6

Name: ICR6

Address: $7B

Description: This register provides local or remote reset and HALT*. The address
listed above is the local address. See Chapter 1.8 for details on accessing
this register from the VMEbus.

VIC068A Register Map and Descriptions

1-105

Bits 1–0: Reset/HALT* status (read-only from VMEbus). These bits provide re-
set/HALT* status of the VIC068A and local resources according to the
following table:

Bits 1–0 Reset/HALT* Status.

0 1 HALT* has been asserted longer than 6 ms by a source
other then the VIC068A. These bits may both be reset
by the local CPU to indicate local resources are running
and operational.

1 0 The VIC068A has performed a local reset function and
the VIC068A is not the system controller. These bits may
both be reset by the local CPU to indicate local resources
are running and operational.

1 1 Indicates that the CPU has just been released from a
system reset.

0 0 Local resources are running and operational. This pat-
tern must be written by the local CPU after a reset con-
dition to indicate that local resources are running and
operational.

Bits 5–2:
(1/1/1)

Undefined/Reserved. Bits will read as 1s.

Bit 6:
(1/1/1)

IRESET* and HALT* status (read-only from VMEbus). This bit is set
upon assertion of IRESET*, and/or HALT*. It is set whether HALT* is
asserted by external sources or by the VIC068A. SYSFAIL* is asserted
when this bit is set if the SYSFAIL* mask bit (ICR7, bit 7) is cleared.

Bit 7:
(X/X/X)

IRESET* status (read-only). On a VMEbus read, this bit indicates that
the VIC068A is in a reset state. On a local bus read, this bit is set
whenever ACFAIL* is asserted.

Interprocessor Communication Register 7

Name: ICR7

Address: $7F

Description: This register provides semaphores to the five general-purpose inter-
processor communication registers (ICR4–0). The remaining bits indi-
cate VMEbus master status, generate HALT* and RESET*, and mask
SYSRESET*. The address listed above is the local address. See Chap-
ter 1.8 for details on accessing this register from the VMEbus.

Bits 4–0:
(0/*/0)

ICR4–0 semaphores. These bits provide semaphores to the five inter-
processor communication registers ICR4–0 respectively. Each bit is
set when the corresponding ICR is written. These bits must be cleared
by the user (i.e., they are not cleared automatically). These bits can
be read or written from the local bus or the VMEbus.

Interprocessor Communication Register 6 (continued)

VIC068A Register Map and Descriptions

1-106

Bit 5:
(X/X/X)

VMEbus master status (read-only). This bit is set whenever the
VIC068A is the VMEbus master, and the VIC068A is asserting AS*.
This bit is not set when the VIC068A is VMEbus master to an idle bus
in ROR and BCAP release modes. Bit 7 of the BESR may be used to
indicate that the VIC068A is VMEbus master when AS* is not asserted.

Bit 6:
(0/0/0)

HALT* and RESET* control. This bit may be used to assert the HALT*
and RESET* pins via software. Whenever this bit is set, the VIC068A
asserts HALT* and RESET* until this bit is cleared or any reset occurs.

Bit 7:
(0/*/0)

SYSFAIL* mask. When set, the VIC068A is prohibited from asserting
SYSFAIL* in response to bit 6 of ICR6 being set (which, by default, is
set after any reset). This bit must be written after resetting the VIC068A
to deassert SYSFAIL*.

VMEbus Interrupt Request/Status Register

Name: VIRSR

Address: $83

Description: This register provides status and control of the VMEbus interrupts 7–1.

Bit 0:
(0/0/0)

Register enable/disable. This bit provides enabling and disabling for
the remainder of this register.

Bits 7–1:
(0/0/0)

VMEbus interrupt switches. Setting any of these bits asserts the VME-
bus IRQi* signals corresponding to the bit positions, if bit 0 is set during
the write. These bits are cleared automatically when the interrupt is
serviced.

VMEbus Interrupt Vector Base Registers 1–7

Name: VIVBR

Address:
for IRQ:

$87, $8B, $8F, $93, $97, $9B, $9F
 1 2 3 4 5 6 7

Description: Provides the status/ID vector for the VMEbus interrupts.

Bits 7–0: Status/ID Vector. These bits provide the status/ID vector for VMEbus
interrupt acknowledge cycles. Address $87 corresponds to IRQ1*.
These bits are set to a value of $0F for global and system resets and
are unchanged by internal resets.

Transfer Timeout Register

Name: TTR

Address: $A3

Description: Provides control of the local and VMEbus timeout timers.

Interprocessor Communication Register 7 (continued)

VIC068A Register Map and Descriptions

1-107

Bit 0:
(0/0/0)

Include VMEbus acquisition. When set, the local bus timer will include
waiting for VMEbus acquisition. When clear, the local bus timer will
stop and reset when the VMEbus is requested.

Bit 1:
(0/0/0)

Arbitration timeout. When set, the VIC068A as VMEbus arbiter has
detected a VMEbus arbitration timeout. This is only used when con-
figured as the VMEbus system controller (SCON* asserted).

Bits 4–2: Local bus timeout period. Defines the local bus timeout.

Bit 4 Bit 3 Bit 2 Local Bus Timeout (ms)

0 0 0 4
0 0 1 16
0 1 0 32 (default)
0 1 1 64
1 0 0 128
1 0 1 256
1 1 0 512
1 1 1 Infinite (timer disabled)

Bits 7–5: VMEbus timeout period. Defines the VMEbus timeout.

Bit 7 Bit 6 Bit 5 VMEbus Timeout (ms)

0 0 0 4
0 0 1 16
0 1 0 32 (default)
0 1 1 64
1 0 0 128
1 0 1 256
1 1 0 512
1 1 1 Infinite (timer disabled)

Local Bus Timing Register

Name: LBTR

Address: $A7

Description: Provides timing control for PAS* and DS* signals when the VIC068A
is local bus master. In the following descriptions, n is the binary value
specified in the bit fields, and T is one CLK64M clock period. Clock latency
may add one additional clock period to these times.

Bits 3–0:
(0/*/*)

Minimum PAS* asserted time. This field specifies the minimum asserted
time for the PAS* signal whenever the VIC068A is the local bus master.
The time is specified by (n + 2)T. The actual asserted time depends
on a number of factors including local and VMEbus acknowledge tim-
ing.

Transfer Timeout Register (continued)

VIC068A Register Map and Descriptions

1-108

Bit 4:
(0/*/*)

Minimum DS* deasserted time. This field specifies the minimum deas-
serted time for the DS* signal whenever the VIC068A is the local bus
master. A time of 1T is selected when this bit is clear; 2T is selected
when this bit is set.

Bits 7–5:
(0/*/*)

Minimum PAS* deasserted time. This field specifies the minimum deas-
serted time for the PAS* signal whenever the VIC068A is the local bus
master. The time is specified by (n + 1)T.

Block Transfer Definit ion Register

Name: BTDR

Address: $AB

Description: Configures master block transfers (both MOVEM and block transfers
with local DMA) for boundary crossings, dual-path, and user-defined
address modifiers. See Chapter 1.10 for more details on implementing
these features.

Bit 0:
(0/0/0)

Dual-path enable. When set, the VIC068A is enabled with the dual-
path feature during master block transfers with local DMA. External
logic is required when this option is enabled.

Bit 1:
(0/0/0)

AMSR Enable. When set, the VIC068A will issue the AM codes based
in the address modifier source register for block transfers. This bit
effects the AM codes for block transfers only.

Bit 2:
(0/0/0)

When this bit is set, it enables local address 256-byte boundary cross-
ings during DMA block transfer operations. External logic is required
to increment latched address lines when this option is enabled.

Bit 3:
(0/0/0)

When this bit is set, it enables VMEbus address 256-byte boundary
crossings during DMA block transfer operations. External logic is re-
quired to increment latched address lines when this option is enabled.

Bit 7–4:
(1/1/1)

Undefined/Reserved. Bits will be read as 1s.

Interface Configuration Register

Name: ICR

Address: $AF

Description: Controls various features of the VIC068A including RMCs, deadlock
signaling, metastability delays, and the “turbo” feature.

Bit 0:
(X/X/X)

SCON* value (read-only). Reads the value of the SCON* pin. When
set, the VIC068A is not the VMEbus system controller. When clear, the
VIC068A is the VMEbus system controller.

Local Bus Timing Register

VIC068A Register Map and Descriptions

1-109

Bit 1:
(0/0/0)

Turbo enable. When set, the VIC068A accelerates VMEbus transfers
by reducing selected timings by one CLK64M clock period. VMEbus
protocols may be violated when the turbo mode is enabled (see section
1.11.5).

Bit 2:
(0/0/0)

Metastability interval. When set, the VIC068A adds one additional
CLK64M clock period of metastability delay on asynchronous inputs
(from 3 CLK64M periods to 4).

Bits 4, 3:
(0/0/0)

Deadlock signaling. These bits configure deadlock signaling. Bit 4 is
used to enable the assertion of HALT* and LBERR* in addition to the
DEDLK* signal in deadlock situations. If bit 4 is enabled, bit 3 may be
used to prevent the assertion of HALT* for RMC deadlocks.

Bit 4 Bit 3 Deadlock Signaling

0 X DEDLK* only (default)
1 0 HALT*, LBERR*, DEDLK*
1 1 HALT*, LBERR*, DEDLK*

(HALT* is not asserted for RMC cycles)

Bit 5:
(0/0/0)

RMC control bit 1. When set, the VIC068A will request the VMEbus
whenever the RMC* is asserted independent of the MWB* signal.

Bit 6:
(0/0/0)

RMC control bit 2. When set, the VMEbus AS* is stretched when RMC*
is asserted for VMEbus transfers.

Bit 7:
(0/0/0)

RMC control bit 3. When set, the VIC068A qualifies the RMC control
bits 5 and 6 with the SIZ1/0 signals. If RMC control bits 5 or 6 are set
and the first cycle of the RMC transfer is of byte size, the “set” behaviors
are not implemented.

Arbiter/Requester Configuration Register

Name: ARCR

Address: $B3

Description: This register provides configuration of the fairness timeout and DRAM
refresh features. The VMEbus request level is also configured from
this register.

Bits 3–0:
(0/0/0)

Fairness timer enable. The VMEbus fair requester is enabled in this bit
field according to the following table:

Bits 3–0 Timeout Period/Mode

$0 Fairness disabled (default)
$F Timeout disabled
All other patterns 2 µs times number

Bit 4:
(0/*/*):

DRAM refresh. When set, the VIC068A will perform CAS-before-RAS
(DS* before PAS*) refresh functions.

Interface Configuration Register (continued)

VIC068A Register Map and Descriptions

1-110

Bits 6, 5: VMEbus request level. The VMEbus request level is set according to
the following table:

Bit 6 Bit 5 VMEbus Request Level

0 0 BR0
0 1 BR1
1 0 BR2
1 1 BR3 (default)

Bit 7:
(0/0/0)

Arbitration mode. When set, the VIC068A performs priority VMEbus
arbitration. When clear, the VIC068A performs round-robin arbitration.
This bit is only relevant when the VIC068A is configured as the VMEbus
system controller (SCON* asserted).

Address Modifier Source Register

Name: AMSR

Address: $B7

Description: This register provides the user-definable address modifiers (AM codes)
that can be sourced by the VIC068A for VMEbus master cycles, or
used in validating AM codes during VMEbus slave cycles.

Bits 5–0:
(0/0/0)

Address modifier code. The AM code that is issued during master
cycles or used for qualifying slave cycles. This register is used only
when enabled for user-defined AM codes. Otherwise, standard VME-
bus AM codes are used.

Bit 6:
(0/0/0)

AM5–3 qualification. When set, the VIC068A uses bits 5–3 in qualifying
for slave accesses in addition to the address space size information
defined by bits 3 and 2 of the SSiCR0s. This bit is overridden if bits 3
and 2 of the SSiCR0s are both set.

Bit 7:
(0/0/0)

AM2–0 generation. When set, the VIC068A issues the AM2–0 codes
based on the FC2/1 signals. AM5–3 will be issued from bits 5–3 of this
register.

Bus Error Status Register

Name: BESR

Address: $BB

Description: This register provides BERR*/LBERR*, self-access, VMEbus master-
ship, and timeout status. All bits except bit 7 are flags that must be
cleared manually by the local processor after being set by status con-
ditions. If these bits are to be used for a specific operation, it is important
that they be cleared prior to starting that operation.

Bit 0:
(0/0/0)

Local timeout during VMEbus acquisition. This bit, when set, indicates
that a local bus timeout has occurred during an attempted acquisition
of the VMEbus.

Arbiter/Requester Configuration Register (continued)

VIC068A Register Map and Descriptions

1-111

Bit 1:
(0/0/0)

SLSEL1* self-access. This bit is set when the VIC068A is selected by
the assertion on the SLSEL1* signal, while operating as VMEbus mas-
ter.

Bit 2:
(0/0/0)

SLSEL0* self-access. This bit is set when the VIC068A is selected by
the assertion on the SLSEL0* signal, while operating as VMEbus mas-
ter.

Bit 3:
(0/0/0)

Local bus timeout. This bit, when set, indicates a local bus timeout
occurred without qualification.

Bit 4:
(0/0/0)

VMEbus timeout. This bit, when set, indicates the VIC068A has sig-
naled a VMEbus timeout. This bit is relevant only if the VIC068A is
system controller and the VMEbus timeout is enabled.

Bit 5:
(0/0/0)

VMEbus bus error. This bit is set when a VMEbus bus error is signaled
(BERR* asserted).

Bit 6:
(0/0/0)

Local bus error. This bit is set when a local bus error is signaled by a
source other then the VIC068A (LBERR* asserted to the VIC068A).

Bit 7:
(X/X/X)

VMEbus mastership. This bit is set whenever the VIC068A is VMEbus
master.

DMA Status Register

Name: DMASR

Address: $BF

Description: This register provides status of a VIC068A DMA transfer. This includes
the block transfer with local DMA function. Status bits are included to
show various BERR* and LBERR* statuses and DMA termination sta-
tuses.

Bit 0:
(0/0/0)

Block transfer in progress. This bit, when set, indicates an interleaved
block transfer is in progress. Once set, this bit is cleared automatically
by the VIC068A after completion of the local DMA operation, or by
resetting the VIC068A.

Bit 1:
(0/0/0)

LBERR* during DMA transfer. This bit, when set, indicates a LBERR*
was signaled during a DMA transfer. Once set, this bit must be cleared
manually by writing a 0 (zero) to this bit location, or by resetting the
VIC068A.

Bit 2:
(0/0/0)

BERR* during DMA transfer. This bit, when set, indicates a BERR*
was signaled during a DMA transfer. Once set, this bit must be cleared
manually by writing a 0 (zero) to this bit location, or by resetting the
VIC068A.

Bit 3:
(0/0/0)

Local bus error (read-only). This bit is set when a local bus error is
signaled by a source other then the VIC068A (LBERR* asserted to the
VIC068A). This bit is a read-only copy of bit 6 of the BESR.

Bus Error Status Register (continued)

VIC068A Register Map and Descriptions

1-112

Bit 4:
(0/0/0)

VMEbus bus error. This bit is set when a VMEbus bus error is signaled
(BERR* asserted). This bit is a copy of bit 5 of the BESR.

Bits 5, 6:
(1/1/1)

Undefined/Reserved. These bits will be read as 1s.

Bit 7:
(0/0/0)

Master write post information stored. This bit is set whenever master
write post information is stored.

Slave Select 0 Control Register 0

Name: SS0CR0

Address: $C3

Description: This register provides control of the slave selection 0 facilities of the
VIC068A. Enabling of the LIRQ2* timer interrupt is also configured in
this register.

Bits 1–0:
(0/*/*)

Local transfer mode. These bits set the local transfer mode when the
VIC068A is local bus master for both slave and master block transfers.

Bit 1 Bit 0 Mode

0 0 No support is given for slave block transfers on
SLSEL0*. The VIC068A will BERR* any attempt
to receive a VMEbus block transfer. Master block
transfers with local DMA will not function in this
mode.

0 1 Emulate single-cycle transfers on the local bus.
In this mode, the VIC068A emulates single-cycle
transfers when performing slave block transfers
and master block transfers with local DMA. By
emulating single-cycle transfers, the VIC068A
toggles the PAS* for each cycle. DSACKi must
toggle for each transfer and not be held asserted.

1 0 Accelerated transfers on the local bus. In this
mode, the VIC068A asserts the PAS* signal for
the entire slave block transfer and master block
transfer with local DMA. The DSACKi* signals
should be held asserted in this mode.

1 1 Undefined/Reserved.

Bits 3–2:
(0/*/*)

Address space configuration. The SLSEL0* address space is config-
ured according to the following table:

Bit 3 Bit 2 Address Space

0 0 A32 (extended) (default)
0 1 A24 (standard)
1 0 A16 (short)
1 1 User defined, uses AMSR

DMA Status Register (continued)

VIC068A Register Map and Descriptions

1-113

Bit 4:
(0/*/*)

D32 enable. D32 slave operations are enabled for SLSEL0* when this
bit is set. This bit has no effect for enabling D32 master accesses. This
bit also controls byte-lane switching for D16 Block transfers. When set
ISOBE* and SWDEN* alternate states thus alternating which D16 bus
data is placed. When clear, only SWDEN* is asserted for D16 block
transfers.

Bit 5:
(0/*/*)

Supervisory access. When set, SLSEL0* slave accesses are restricted
to supervisory accesses. Other accesses are BERRed. Supervisory
accesses are checked with the AM(2) signal.

Bits 7–6:
(0/0/0)

Periodic interrupt timer enable. These bits enable and determine the
frequency of the periodic LIRQ2* interrupt. If the VIC068A is to handle
this local interrupt, LICR2 must be enabled. The frequencies for this
interrupt are given below:

Bit 7 Bit 6 Timer Mode

0 0 Timer disabled (default)
0 1 50-Hz output on LIRQ2*
1 0 1000-Hz output on LIRQ2*
1 1 100-Hz output on LIRQ2*

Slave Select 0 Control Register 1

Name: SS0CR1

Address: $C7

Description: This register provides the various access and acquisition timings for
slave transfers and slave block transfers for SLSEL0* in addition to
data acquisition timing for master block transfers with local DMA.

Slave Select 0 Control Register 0 (continued)

VIC068A Register Map and Descriptions

1-114

Bits 3–0:
(0/*/*)

Timing field 0. This bit field establishes the following data access/ac-
quisition timings:
• single-cycle slave access timing for SLSEL0* (SAT)
• first cycle of a slave block transfer for SLSEL0* (SBAT0)
• first cycle of a master block transfer with local DMA (MBAT0)
The delays are programmed in multiples of the CLK64M clock period
according to the following table
Bit 3 Bit 2 Bit 1 Bit 0 CLK64M Clock Period Delay
0 0 0 0 0
0 0 0 1 2.0
0 0 1 0 2.5
0 0 1 1 3.0
0 1 0 0 3.5
0 1 0 1 4.0
0 1 1 0 4.5
0 1 1 1 5.0
1 0 0 0 5.5
1 0 0 1 6.0
1 0 1 0 6.5
1 0 1 1 7.0
1 1 0 0 7.5
1 1 0 1 8.0
1 1 1 0 8.5
1 1 1 1 9.0

Slave Select 0 Control Register 1 (continued)

VIC068A Register Map and Descriptions

1-115

Bits 7–4:
(0/*/*)

Timing Field 1. This bit field establishes the following data access/
acquisition timings:
• second and subsequent cycle of a slave block transfer for SLSEL0*

(SBAT1)
• second and subsequent cycle of a master block transfer with local

DMA (MBAT1)
The delays are programmed in multiples of the CLK64M clock period
according to the following table:
Bit 7 Bit 6 Bit 5 Bit 4 CLK64M Clock Period Delay
0 0 0 0 0
0 0 0 1 2.0
0 0 1 0 2.5
0 0 1 1 3.0
0 1 0 0 3.5
0 1 0 1 4.0
0 1 1 0 4.5
0 1 1 1 5.0
1 0 0 0 5.5
1 0 0 1 6.0
1 0 1 0 6.5
1 0 1 1 7.0
1 1 0 0 7.5
1 1 0 1 8.0
1 1 1 0 8.5
1 1 1 1 9.0

Slave Select 1 Control Register 0

Name: SS1CR0

Address: $CB

Description: This register provides control of the slave selection 1 facilities of the
VIC068A. Master and slave write posting is enabled in this register as
well.

Slave Select 0 Control Register 1 (continued)

VIC068A Register Map and Descriptions

1-116

Bits 1–0:
0/*/*

Local Transfer Mode. These bits set the local transfer mode when the
VIC068A is local bus master for both slave and master block transfers.

Bit 1 Bit 0 Mode

0 0 No support is given for slave block transfers on
SLSEL1*. The VIC068A will BERR* any attempt
to receive a VMEbus block transfer.

0 1 Emulate single-cycle transfers on the local bus.
In this mode, the VIC068A emulates single-cycle
transfers when performing slave block transfers.
By emulating single-cycle transfers, the VIC068A
toggles PAS* for each cycle. DSACKi* must tog-
gle for each transfer and not be held asserted.

1 0 Accelerate transfers on the local bus. In this
mode, the VIC068A asserts PAS* for the entire
slave block transfer. The DSACKi* signals should
be held asserted in this mode.

1 1 Undefined/Reserved.

Bits 3–2:
(0/*/*)

Address Space Configuration. The SLSEL1* address space is config-
ured according to the following table:

Bit 3 Bit 2 Address Space

0 0 A32 (extended)
0 1 A24 (standard)
1 0 A16 (short)
1 1 User defined, uses AMSR

Bit 4:
(0/*/*)

D32 enable. D32 slave operations are enabled for SLSEL1* when this
bit is set. This bit has no effect for enabling D32 master accesses.

Bit 5:
(0/*/*)

Supervisory access. When set, SLSEL1* slave accesses are restricted
to supervisory accesses. Other accesses are BERRed. Supervisory
accesses are checked with the AM(2) signal.

Bit 6:
(0/0/0)

Master write post enable. When set, master write posting is enabled.

Bit 7:
(0/0/0)

Slave write post enable. When set, slave write posting is enabled.

Slave Select 1 Control Register 1

Name: SS1CR1

Address: $CF

Description: This register provides the various access and acquisition timings for
slave transfers and slave block transfers for SLSEL1*.

Slave Select 1 Control Register 0 (continued)

VIC068A Register Map and Descriptions

1-117

Bits 3–0:
(0/*/*)

Timing field 0. This bit field establishes the following data access/ac-
quisition timings:
• single-cycle slave access timing for SLSEL1* (SAT)
• first cycle of a slave block transfer for SLSEL1* (SBAT0)
The delays are programmed in multiples of the CLK64M clock period
according to the following table:
Bit 3 Bit 2 Bit 1 Bit 0 CLK64M Clock Period Delay
0 0 0 0 0
0 0 0 1 2.0
0 0 1 0 2.5
0 0 1 1 3.0
0 1 0 0 3.5
0 1 0 1 4.0
0 1 1 0 4.5
0 1 1 1 5.0
1 0 0 0 5.5
1 0 0 1 6.0
1 0 1 0 6.5
1 0 1 1 7.0
1 1 0 0 7.5
1 1 0 1 8.0
1 1 1 0 8.5
1 1 1 1 9.0

Slave Select 1 Control Register 1 (continued)

VIC068A Register Map and Descriptions

1-118

Bits 7–4:
(0/*/*)

Timing field 1. This bit field establishes the following data access/ac-
quisition timing:
• second and subsequent cycle of a slave block transfer for SLSEL1*

(SBAT1)
The delays are programmed in multiples of the CLK64M clock period
according to the following tables:
Bit 7 Bit 6 Bit 5 Bit 4 CLK64M Clock Period Delay
0 0 0 0 0
0 0 0 1 2.0
0 0 1 0 2.5
0 0 1 1 3.0
0 1 0 0 3.5
0 1 0 1 4.0
0 1 1 0 4.5
0 1 1 1 5.0
1 0 0 0 5.5
1 0 0 1 6.0
1 0 1 0 6.5
1 0 1 1 7.0
1 1 0 0 7.5
1 1 0 1 8.0
1 1 1 0 8.5
1 1 1 1 9.0

Release Control Register

Name: RCR

Address: $D3

Description: This register configures the VMEbus release mode. The burst count
for block transfers with local DMA is also configured in the RCR.

Bits 5-0:
(0/0/0)

Block transfer burst length. The burst length for both MOVEM block
transfers and block transfers with local DMA are configured in this bit
field. The value indicates the number of cycles per block transfer (not
the number of bytes). A value of 0 in this bit field indicates the maximum
64 cycles per burst. All other values correspond directly to the burst
count.

Bits 7,6:
(0/0/0)

Release mode. This bit field defines the release mode used by the
VIC068A when releasing the VMEbus after the completion of a VME-
bus transfer.

Bit 7 Bit 6 Release Mode

0 0 ROR—Release on Request (default)
0 1 RWD—Release When Done
1 0 ROC—Release on BCLR* assertion
1 1 BCAP—VMEbus Capture and Hold

Slave Select 1 Control Register 1 (continued)

VIC068A Register Map and Descriptions

1-119

Block Transfer Control Register

Name: BTCR

Address: $D7

Description: The BTCR provides control of the VIC068A block transfers. The local
interleave periods and data direction are defined in this register. The
enabling bits for all of the VIC068A’s block transfer modes are located
here as well. These enabling bits are mutually exclusive and more than
one should not be set at the same time.

Bits 3–0:
(0/0/0)

Interleave period. The interleave period for block transfers is defined
here. The interleave period is 250 ns times the value programmed in
this bit field.

Bit 4:
(0/0/0)

Data direction. This bit defines the direction of a block transfer with
local DMA (MOVEM data direction determined by the R/W* signal).
When set, VMEbus block reads occur. When clear, VMEbus block
writes occur.

Bit 5:
(0/0/0)

MOVEM enable. When set, MOVEM transfers are enabled. After this
bit is set, the next VMEbus transfer is treated as the start of a VMEbus
block transfer. Clearing this bit concludes a MOVEM block transfer in
progress. It is important to set this bit immediately before and clear this
bit immediately after the actual MOVEM transfer.

Bit 6:
(0/0/0)

Block transfer with local DMA enable. When set, block transfers with
local DMA are enabled. After this bit is set, the next assertion of MWB*
is considered the initiation cycle of a VMEbus block transfer with local
DMA. It is important to set this bit immediately before and clear this bit
immediately after the actual block transfer.

Bit 7:
(0/0/0)

Special purpose. For normal operation set this bit to 0.

Block Transfer Length Registers 1–0

Name: BTLR1–0

Addresses: $DB (BTLR1), $DF (BTLR0)

Description: These registers configure the byte count for block transfers with local
DMA. BTLR1 is considered the most significant byte and BTLR0 the
least significant. Bit 0 of BTLR0 must never be set because this implies
at least one 8-bit transfer is required to complete the block transfer.
Only D16 and D32 block transfers are supported. If bit 0 of BTLR0 is
set, the block transfer length is ignored and only one burst is performed.

Bits 7–0:
(0/0/0)

Block transfer length. Defines the block transfer length in bytes. BTLR1
contains the most significant 8 bits of the length, and BTLR0 the least.

VIC068A Register Map and Descriptions

1-120

System Reset Register

Name: SRR

Address: $E3

Description: The system reset register provides the means to perform a VMEbus
system reset (SYSRESET* asserted). Writing a value of $F0 causes
this function to occur. A system reset is also performed within the
VIC068A.

Bits 7–0:
(1/1/1)

System reset field. Writing this bit field with a value of $F0 causes
SYSRESET* to be asserted for a minimum of 200 ms and a system
reset to be performed within the VIC068A.

1-121

1.13
VIC068A AC Performance

Specifications
Clock Input

Note:

1. A 60/40 to 40/60 duty cycle must be maintained.

AC Specifications [2]

Num. Characteristic Min. Max.

Frequency of Operation (MHz) 1 64

1 Cycle Time (ns) 15.6 1000

2, 3 Clock Pulse Width (Measured from 1.5V to 1.5V) Note 1 Note 1

4, 5 Rise and Fall Time (ns) — 5

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

ARBITRATION

A1 BRi*[0] to BBSY*[H] 3, 4 2½T+5 3T+25 2½T+4 3T+26 2½T+4 3T+31⁄
A2 BRi*[0] to BBSY*[L] 4, 5 3T+8 3½T+28 3T+7 3½T+34 3T+7 3½T+35

A3 BRi*[0] to BGiOUT*[L] 4, 5 3T+4 4T+25 3T+4 4T+26 3T+3 4T+28

A4 BRi*[0] to BCLR*[L] 4 2 16 2 16 2 19

A5 BGiIN*[0] to BGiOUT*[L] 4 2 18 2 18 2 20

A6 BGiIN*[0] to BBSY*[L] 6 4 23 4 24 3 25

A7 BGiIN*[0] to BRi*[H] 4, 6 5 3T+26 4 3T+27 4 3T+31

A8 BGiIN*[1] to BGiOUT*[H] 4 3 20 2 21 2 23

A9 BBSY*[0] to BGiOUT*[H] 4, 5 4 21 3 22 3 24

A10 BBSY*[1] to BGiOUT*[L] 4 3T+5 4T+25 3T+4 4T+26 3T+3 4T+29

A11 BBSY*[1] to BCLR*[H] 4 1T+4 2T+24 1T+4 2T+25 1T+3 2T+27

MASTER ACCESSES

B1 BGiIN*[0] to DENO*[L] 4, 6, 7 8 3T+36 7 3T+37 6 3T+42

B2 BGiIN*[0] to LADO[H] 4, 6 14 3T+59 13 3T+61 12 3T+67

0.8V

2.2V

4 5

1

32

VIC068A AC Performance Specifications

1-122

B3 BGiIN*[0] to AS*[L] 4, 6 3T+5 6T+28 3T+5 6T+29 3T+4 6T+31

B4 BGiIN*[0] to A[7:1] Valid 4, 6 6 3T+31 6 3T+32 5 3T+37

B5 BGiIN*[0] to LWORD*[H/L] 4, 6 6 3T+31 6 3T+32 5 3T+37

B6 BGiIN*[0] to WRITE*[H/L] 4, 6 6 3T+31 6 3T+32 5 3T+37

B7 BGiIN*[0] to ABEN*[L] 4, 6 7 3T+34 6 3T+36 6 3T+38

B8 PAS*[0] & MWB*[0] to
BRi*[L]

4 4 22 3 22 3 24

B9 PAS*[0] & MWB*[0] to
ISOBE*[L]

4 4 22 3 23 3 25

B10 PAS*[0] & MWB*[0] to
LADO[H]

4 15 60 13 62 12 68

B11 PAS*[0] & MWB*[0] to BB-
SY*[L]

4, 8 7 32 5 33 5 36

B12 PAS*[0] & MWB*[0] to
ABEN*[L]

4, 8 1½T+8 2½T+36 1½T+7 2½T+37 1½T+6 2½T+41

B13 PAS*[0] & MWB*[0] to
A[7:1]

4, 8 1½T+7 2½T+36 1½T+6 2½T+37 1½T+5 2½T+41

B14 PAS*[0] & MWB*[0] to
LWORD*[H/L]

4, 8 1½T+7 2½T+36 1½T+6 2½T+37 1½T+5 2½T+41

B15 PAS*[0] & MWB*[0] to
WRITE*[H/L]

4, 8 1½T+7 2½T+36 1½T+6 2½T+37 1½T+5 2½T+41

B16 PAS*[0] & MWB*[0] &
DS*[0] to DS1/0*[L]

4, 8 4½T+10 5½T+46 4½T+9 5½T+47 4½T+9 5½T+57

B17 PAS*[0] & MWB*[0] to
SWDEN*[L]

4 7 36 4 12 3 14

B18 PAS*[0] & MWB*[0] to DE-
NIN*[L]

4, 9 3 20 3 20 2 22

B19 PAS*[0] & MWB*[0] to
DENIN1*[L]

4, 9 3 20 3 21 3 23

B20 PAS*[0] & MWB*[0] &
DS*[0] to AS*[L]

4, 8 4½T+6 5½T+28 4½T+5 5½T+29 4½T+5 5½T+32

B21 R/W*[0] to DDIR[H] 4, 7 4 22 3 23 2 25

B22 R/W*[1] to DDIR[L] 4, 7 2 14 1 14 1 15

B23 D[7:0] to LD[7:0] Valid 4, 9 3 18 2 18 2 22

B24 DTACK*[0] to LEDI[H] 4, 9 3T+6 4T+28 3T+4 4T+29 3T+4 4T+32

B25 DTACK*[0] to DSACKi*[L] 4 4 30 3 31 3 36

B26 PAS*[1] & DS*[1] to
DSACKi*[H]

4 2 19 2 20 2 27

B27 PAS*[1] to AS*[H] 4 6 30 5 31 5 41

B28 DS*[1] to ISOBE*[H] 4 4 23 3 24 3 26

B29 DS*[1] to SWDEN*[H] 4 4 10 3 10 2 13

B30 DS*[1] to DENIN1*[H] 4, 9 3 19 3 20 2 22

B31 DS*[1] to DENIN*[H] 4, 9 3 19 3 20 2 22

B32 DS*[1] to LD[7:0] Invalid 4, 9 3 20 2 22 2 28

B33 DS*[1] to LD[7:0] Hi-Z 4, 9 3 20 2 22 2 28

B34 DS*[0] to DSACKi*[L] 4, 10 6 T+30 5 T+32 5 T+35

B35 DS*[0] to LADO[H] 4, 10 8 38 7 39 7 43

B36 DS*[0] to LEDO[H] 4, 10 4 T+16 3 T+18 3 T+20

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-123

LOCAL BUS TIMING (VIC068A AS LOCAL BUS MASTER)

C1 LBG*[0] to PAS*[L] 4 5T+6 6T+31 5T+5 6T+33 5T+5 6T+44

C2 LBG*[0] to LA[7:0] Valid 4 3T+8 4T+36 3T+7 4T+37 3T+6 4T+46

C3 LBG*[0] to SIZ[1:0] Valid 4 1T+3 2T+20 1T+3 2T+21 1T+2 2T+28

C4 LBG*[0] to FC[2:1] Valid 4 1T+3 2T+20 1T+3 2T+21 1T+2 2T+27

C5 LBG*[0] to LD[7:0] Driven 7 3T+8 4T+38 3T+7 4T+39 3T+7 4T+48

C6 LBG*[0] to LAEN[H] 4 3T+10 4T+43 3T+9 4T+44 3T+8 4T+48

C7 LBG*[0] to ISOBE*[L] 4 3T+8 4T+37 3T+7 4T+39 3T+7 4T+42

C8 LBG*[0] to SWDEN*[L] 4 3T+9 4T+39 3T+8 4T+41 3T+7 4T+45

C9 LBG*[0] to DDIR[H] 4, 7 3T+8 4T+37 3T+7 4T+39 3T+7 4T+42

C10 LBG*[0] to DENIN1*[L] 4, 7 3T+7 4T+36 3T+6 4T+38 3T+6 4T+42

C11 LBG*[0] to DENIN*[L] 4, 7 3T+7 4T+32 3T+6 4T+35 3T+5 4T+38

C12 LBG*[0] & DS1/0*[0] &
WRITE*[0] to R/W*[L]

4, 7 3T+8 4T+38 3T+7 4T+40 3T+7 4T+47

C13 LBG*[0] & DS1/0*[0] to
DS*[L]

4 5T+8 6T+39 5T+7 6T+42 5T+7 6T+56

C14 PAS*[0] to DS*[L] 4, 11 0 12 0 15 0 15

C15 LBR*[H] to LBG*[1] 4, 12 T T T

SLAVE ACCESSES

D1 SLSELi*[0] & AS*[0] to
LBR*[L]

4 7 35 6 36 6 40

D2 SLSELi*[0] & AS*[0] & DS1/
0*[0] to LADI[H]

4 5 25 4 26 4 29

D3 LD[7:0] to D[7:0] 4, 9 2 16 2 16 2 18

D4 DSACKI*[0] to LEDO[H] 4, 9 SAT+8 SAT+½T
+35

SAT+7 SAT+½T
+36

SAT+6 SAT+½T
+39

D5 DSACKi*[0] to DTACK*[L] 4 SAT+10 SAT+½T
+45

SAT+9 SAT+½T
+47

SAT+9 SAT+½T
+53

D6 DS1/0*[0] to DTACK*[L] 4, 13 2T+5 3½T+28 2T+5 3½T+29 2T+4 3½T+33

D7 DS1/0*[0] to LEDI[H] 4, 13 9 41 8 43 8 47

D8 AS*[1] to LA[7:0], R/W*
Invalid

4 5 38 4 42 4 55

D9 AS*[1] to LA[7:0], R/W*
High-Z

4 5 38 4 42 4 55

D10 AS*[1] to FC2/1, Invalid 4 10 42 8 44 8 56

D11 AS*[1] & DSACKi*[1] to
FC2/1, High-Z

4 10 42 8 44 8 56

D12 AS*[1] to SIZ1/0, Invalid 4 7 32 6 34 6 37

D13 AS*[1] & DSACKi*[1] to
SIZ1/0, High-Z

4 3 1T+17 2 1T+19 2 1T+24

D14 AS*[1] to ISOBE*[H] 4 6 30 5 31 5 34

D15 AS*[1] to SWDEN*[H] 4 4 24 4 25 3 27

D16 AS*[1] to DENIN1*[H] 4, 7 5 27 4 28 4 30

D17 AS*[1] to DENIN*[H] 4, 7 5 27 4 28 4 30

D18 AS*[1] & DSACKi*[1] to
LBR*[H]

4 5 26 4 27 4 30

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-124

D19 AS*[1] to LAEN[L] 4 9 40 8 43 7 56

D20 DS*1/0[1] to LD[7:0]
Invalid

4, 7 2 27 2 30 2 39

D21 DS*1/0[1] to LD[7:0] High-Z 4, 7 2 27 2 30 2 39

D22 DSACKi*[0] to PAS*[H] 4 SAT+10 SAT+½T
+44

SAT+9 SAT+½T
+46

SAT+8 SAT+½T
+56

D23 DSACKi*[0] to DS*[H] 4 SAT+9 SAT+½T
+40

SAT+8 SAT+½T
+41

SAT+7 SAT+½T
+48

D24 DSi*[1] to DTACK*[H] 4 3 27 3 28 3 35

INTERRUPT

E1 IACKIN*[0] to
IACKOUT*[L]

4 2 16 2 17 2 18

E2 IACKIN*[1] to
IACKOUT*[H]

4 3 18 2 19 2 20

E3 FCIACK*[0] & PAS*[0] to
BRi*[L]

4 5T+9 6T+41 5T+8 6T+42 5T+7 6T+48

E4 FCIACK*[0] & PAS*[0] to
IACK*[L]

4, 8 7½T+7 8½T+34 7½T+6 8½T+35 7½T+6 8½T+39

E5 FCIACK*[0] & PAS*[0] to
LD[7:0] Driven

4, 14 5T+12 6T+50 5T+10 6T+52 5T+10 6T+57

E6 FCIACK*[0] & PAS*[0] to
LD[7:0] valid

4, 15 9T+5 10T+29 9T+5 10T+33 9T+4 10T+37

E7 FCIACK*[0] & PAS*[0] to
LIACK0*[L]

4, 16 5T+7 6T+32 5T+6 6T+33 5T+5 6T+36

E8 IRQi*[0] to IPL 4 5 33 5 34 4 37

E9 BGiIN*[0] to BBSY*[L] 4 7 32 5 33 5 36

E10 BGiIN*[0] to AS*[L] 4 3T+5 4T+27 3T+4 4T+28 3T+4 4T+31

E11 BGiIN*[0] to DS1/0*[L] 4 3T+10 4T+45 3T+9 4T+46 3T+8 4T+55

E12 BGiIN*[0] to IACK*[L] 4, 15 39 7 40 7 44

E13 PAS*[0] to ISOBE*[L] 4 5T+9 6T+39 5T+7 6T+40 5T+7 6T+44

E14 PAS*[0] to SWDEN*[L] 4 5T+8 6T+37 5T+7 6T+38 5T+6 6T+42

E15 IPLi to IPLi 4, 11 10 12 12

MASTER BLOCK TRANSFER WITH LOCAL DMA (INITIATION CYCLE)

F1 MWB*[0] & PAS*[0] &
DS*[0] to BRi*[L]

4 T+7 2T+32 T+6 2T+33 T+5 2T+38

F2 BGiIN*[0] to LBR*[L] 4 4T+10 5T+42 4T+8 5T+44 4T+8 5T+50

F3 MWB*[0] & PAS*[0] &
DS*[0] to LBR*[L]

4, 8 5T+10 6T+42 5T+8 6T+44 5T+8 6T+50

F4 MWB*[0] & PAS*[0] &
DS*[0] to LADO[H]

4 T+7 2T+35 T+6 2T+36 T+6 2T+39

F5 MWB*[0] & PAS*[0] &
DS*[0] to BLT*[L]

4 T+6 2T+28 T+5 2T+29 T+4 2T+37

MASTER BLOCK TRANSFER WITH LOCAL DMA (WRITE)

** First cycle **

G1 DSACKi*[0] and DS*[0] to
DS*[H]

4 MBAT0+9 MBAT0+⁄ T+4
1

MBAT0+8 MBAT0+½T+4
3

MBAT0+7 MBAT0+½T+5
2

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-125

G2 DSACKi*[0] and DS*[L] to
LEDO[H]

4 MBAT0+8 MBAT0+½T+3
6

MBAT0+7 MBAT0+½T+3
7

MBAT0+6 MBAT0+½T+4
0

G3 DSACKi*[0] and DS*[L] to
LA[7:0] valid

4 MBAT0+T+
11

MBAT0+
1½T+32

MBAT0+T+
9

MBAT0+
1½T+36

MBAT0+T+
9

MBAT0+
1½T+40

G4 DSACKi*[0] and DS*[L] to
DSi*[L]

4 MBAT0+
3T+6

MBAT0+
3½T+37

MBAT0+
3T+5

MBAT0+
3½T+39

MBAT0+
3T+5

MBAT0+
3½T+42

G5 DTACK*[0] to LEDO[L] 4 7 32 6 33 6 38

G6 DTACK*[0] to DSi*[H] 4 10 49 9 51 9 56

G7 DTACK*[0] to A[7:0] Valid 4 11 46 10 48 9 64

G8 DS*[H] to DS*[L] 4 DST+1½T–13 DST+1½T
–6

DST+1½T–14 DST–1½T
–5

DST+1½T–15 DST+1½T
–4

** Second and subsequent cycles **

G9 DSACKi*[0] and DS*[L] to
DS*[H]

4 MBAT1+9 MBAT1+½T+4
1

MBAT1+8 MBAT1+½T+4
3

MBAT1+7 MBAT1+½T+5
2

G10 DSACKi*[0] and DS*[L] to
LEDO[H]

4 MBAT1+8 MBAT1+½T+3
6

MBAT1+7 MBAT1+½T+3
7

MBAT1+6 MBAT1+½T+4
0

G11 DSACKi*[0] and DS*[L] to
LA[7:0] Valid

4 MBAT1+T+
11

MBAT1+
1½T+32

MBAT1+T+
9

MBAT1+
1½T+36

MBAT1+T+
9

MBAT1+
1½T+40

G12 DSACKi*[0] and DS*[L] to
DSi*[L]

4 MBAT1+
3T+6

MBAT1+
3⁄ T+29

MBAT1+
3T+5

MBAT1+
3⁄ T+30

MBAT1+
3T+5

MBAT1+
3⁄ T+38

G13 DTACK*[0] to LEDO[L] 4 7 32 6 33 6 38

G14 DTACK*[0] to DSi*[H] 4 10 45 9 46 9 59

G15 DTACK*[0] to A[7:0] Valid 4 11 46 10 48 9 64

G16 DTACK*[0] to DS*[H] 4, 17 T + 15 1⁄ T + 45 1⁄ T + 14 1⁄ T + 46 T + 13 1⁄ T + 47

G17 LEDO[L] to LEDO[H] 4, 17 T + 11 1⁄ T + 25 1⁄ T + 10 1⁄ T + 26 T + 9 1⁄ T + 27

MASTER BLOCK TRANSFER WITH LOCAL DMA (READ)

** First Cycle **

H1 DTACK*[0] to LEDI[H] 2T+6 3T+23 2T+4 3T+25 2T+4 3T+27

H2 DTACK*[0] to DSi*[H] 2T+9 3T+28 2T+8 3T+30 2T+7 3T+32

H3 DTACK*[0] to A[7:0] Valid 4 1½T+10 2½T+44 1½T+9 2½T+45 1½T+8 2½T+53

H4 DTACK*[0] to DS*[L] 4 1½T+8 2½T+38 1½T+7 2½T+40 1½T+7 2½T+47

H5 DSACKi*[0] and DS*[L] to
DS*[H]

MBAT0+9 MBAT0+½T+3
8

MBAT0+8 MBAT0+½T+4
0

MBAT0+7 MBAT0+½T+4
5

H6 DSACKi*[0] and DS*[L] to
LEDI[L]

MBAT0+9 MBAT0+½T+4
8

MBAT0+8 MBAT0+½T+5
0

MBAT0+7 MBAT0+½T+5
5

H7 DSACKi*[0] and DS*[L] to
LA[7:0] Valid

4 MBAT0+T+
11

MBAT0+
1½T+30

MBAT0+T+
9

MBAT0+
1½T+32

MBAT0+T+
9

MBAT0+
1½T+35

H8 DSACKi*[0] and DS*[L] to
DSi*[L]

4 MBAT0+11 MBAT0+½T+7
4

MBAT0+10 MBAT0+½T+7
6

MBAT0+10 MBAT0+½T+8
3

** Second and subsequent cycles **

H9 DTACK*[0] to LEDI[H] 4 2T+6 3T+23 2T+4 3T+25 2T+4 3T+27

H10 DTACK*[0] to DSi*[H] 4 2T+9 3T+28 2T+8 3T+30 2T+7 3T+32

H11 DTACK*[0] to A[7:0] Valid 4 10 44 9 45 8 53

H12 DTACK*[0] to DS*[L] 4 8 38 7 40 7 47

H13 DSACKi*[0] and DS*[0] to
DS*[H]

4 MBAT1+9 MBAT1+½T+3
6

MBAT1+8 MBAT1+½T+3
8

MBAT1+7 MBAT1+½T+4
5

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-126

H14 DSACKi*[0] and DS*[0] to
LEDI[L]

4 MBAT1+9 MBAT1+½T+4
4

MBAT1+8 MBAT1+½T+4
6

MBAT1+7 MBAT1+½T+5
5

H15 DSACKi*[0] and DS*[0] to
LA[7:0] Valid

4 MBAT1+T+
11

MBAT1+
1½T+31

MBAT1+T+
9

MBAT1+
1½T+33

MBAT1+T+
9

MBAT1+
1½T+35

H16 DSACKi*[0] and DS*[0] to
DSi*[L]

4 MBAT1+11 MBAT1+½T+7
2

MBAT1+10 MBAT1+½T+7
6

MBAT1+10 MBAT1+½T+8
3

MASTER BLOCK TRANSFER WITH LOCAL DMA (BOUNDARY CROSSING)

J1 DS*[L] to BLT*[H] 2 30 2 32 2 35

J2 DS*[H] to BLT*[L] 2 17 2 19 2 21

J3 DSi*[L] to LEDO[H/L] 2 21 2 23 2 25

J4 DSi*[H] to LADO[L/H] 4 1 16 2 18 2 20

SLAVE BLOCK TRANSFER (WRITE)

** First Cycle **

See: Local Bus Timing (VIC068A as local bus master)

** Second and subsequent cycles **

K1 DSi*[0] to LEDI[H] 4 4 20 4 22 4 24

K2 DSi*[0] to DS*[L] 6 35 5 36 5 39

K3 DSACKi*[0] and DS*[L] to
DS*[H]

4 SBAT+9 SBAT+½T+41 SBAT+8 SBAT+½T+42 SBAT+7 SBAT+½T
+52

K4 DSACKi*[0] and DS*[L] to
DTACK*[L]

4 SBAT+12 SBAT+½T+51 SBAT+11 SBAT+½T+53 SBAT+10 SBAT+½T
+67

K5 DSACKi*[0] and DS*[L] to
ISOBE*[H]

4 SBAT+13 SBAT+½T+54 SBAT+11 SBAT+½T+56 SBAT+11 SBAT+½T
+62

K6 DSACKi*[0] and DS*[L] to
SWDEN*[H]

4 SBAT+12 SBAT+½T+50 SBAT+10 SBAT+½T+52 SBAT+10 SBAT+½T
+61

K7 DSACKi*[0] and DS*[L] to
LA[7:0] Invalid

4 SBAT+T
+10

SBAT+1½T+3
4

SBAT+T+8 SBAT+1½T+3
6

SBAT+T+8 SBAT+1½T
+40

K8 DSACKi*[0] and DS*[L] to
LEDI*[L]

4 SBAT+8 SBAT+½T
+46

SBAT+7 SBAT+½T
+48

SBAT+6 SBAT+½T
+53

K9 DS1/0*[1] to DTACK*[H] 4 5 27 5 28 4 35

SLAVE BLOCK TRANSFER (READ)

** First Cycle **

See: Local Bus Timing (VIC068A as local bus master)

** Second and subsequent cycles **

L1 DS1/0*[1] to LEDO[L] 4 23 3 24 3 30

L2 DS*[H] to DS*[L] 4 DST+1½T
–13

DST+1½T
–2

DST+1½T
–14

DST+1½T
–3

DST+1½T
–15

DST+1½T
–4

L3 DS1/0*[0] to DENO*[L] 4 3 20 3 22 3 24

L4 DSACKi*[0] and DS*[0] to
LEDO[H]

4 SBAT+8 SBAT+½T+36 SBAT+7 SBAT+½T+37 SBAT+6 SBAT+½T
+41

L5 DSACKi*[0] and DS*[0] to
DS*[H]

4 SBAT+9 SBAT+½T+41 SBAT+8 SBAT+½T+43 SBAT+7 SBAT+½T
+52

L6 DSACKi*[0] and DS*[0] to
DTACK*[L]

SBAT+11 SBAT+½T+47 SBAT+9 SBAT+½T+48 SBAT+9 SBAT+½T
+53

L7 DSACKi*[0] and DS*[0] to
LA[7:0] Invalid

4 SBAT+T+9 SBAT+1½T+3
4

SBAT+T+8 SBAT+1½T+3
6

SBAT+T+8 SBAT+½T
+40

L8 DS1/0*[1] to DENO*[H] 4 3 19 3 20 2 22

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-127

Notes:

L9 DS1/0*[1] to DTACK*[H] 4 3 20 3 21 3 24

L10 LEDO[L] to LEDO[H] 4, 18 T + 11 1½ + 25 T + 10 1½ + 26 1½ + 9 1½ + 27

L11 DTACK*[0] to DS*[H] 4, 18 T + 15 1½ + 45 1½ + 14 1½ + 46 1½ + 13 1½ + 47

REGISTER ACCESS

M1 PAS*[0] & DS*[0] & CS*[0]
to DSACKi*[L]

4 4T+5 5T+34 4T+5 5T+35 4T+4 5T+38

M2 PAS*[0] & DS*[0] & CS*[0]
to LD[7:0] Valid

4, 9 3T+5 4T+28 3T+5 4T+29 3T+4 4T+37

M3 AS*[0] & ICFSEL*[0] to
DTACK*[L]

4 4T+6 4T+30 4T+5 4T+31 4T+5 4T+34

RESET

N1 LBG*[0] to HALT*[L], RE-
SET*[L]

4 8 36 7 37 6 48

N2 IRESET*[0] to LBR*[L] 4 6 29 5 30 5 33

N3 IRESET*[0] to IPL0[Z] 4 2 16 2 16 2 20

SET-UP TIMES

P1 LA, ASIZ[1:0] Valid to
PAS*[0]

4 –2T –2T –2T

P2 SIZ[1:0], WORD*, FC[2:1]
Valid to PAS*[0]

4 –2T –2T –2T

P3 LD[7:0] Valid to DS*[0] 4 0 0 0

HOLD TIMES

Q1 PAS*[1] to LA, ASIZ[1:0] In-
valid

4 0 0 0

Q2 PAS*[1] to SIZ[1:0],
WORD*, FC[2:1] Invalid

4 0 0 0

Q3 DS*[1] to LD[7:0] Invalid 4 0 0 0

Q4 DS1/0*[1] to DTACK*[H] 4 0 0 0

2. T = CLK64M clock period
SAT = Slave Access Timing
MBAT0 = Master Block Transfer Timing 0
MBAT1 = Master Block Transfer Timing 1
SBAT = Slave Block Transfer Timing
DST = Data Strobe Timing

3. ROR mode.

4. Timing specified but not tested.

5. While VMEbus system controller.

6. Synchronous delay depends on speed in which
BGiIN* is returned. If BGiIN* is returned in zero time
after request, synchronous delay will be maximum.

7. Write operation only.

8. While VMEbus master.

9. Read operation only.

10. Master write post only.

11. Skew.

12. Input requirement.

13. Slave write post only.

14. VMEbus interrupt only.

15. Local interrupt (LICR[4] = 1) only.

16. Local interrupt (LICR[4] = 0) only.

17. “Slow” Slave.

18. “Slow” Master.

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC068A AC Performance Specifications

1-128

Figure 1-21. VMEbus Arbitration—VIC068A as Arbitor, priority interrupt

Figure 1-22. VMEbus Arbitration—VIC068A as System Controller (granting bus internally)

Figure 1-23. VMEbus Arbitration—VIC068A (not System Controller) Honoring ROR

OUTPUT

INPUT

BRi*

BGiOUT*

BBSY*

BCLR*

INPUT

OUTPUT

A11A4

A10

A9 A3

OUTPUTBRi*

BGiOUT*

BBSY*

A2

OUTPUT

OUTPUT

OUTPUT

INPUT

BRi*

BGiOUT*

BBSY*

BGiIN*

INPUT

OUTPUT

A1 A5 A8

VIC068A AC Performance Specifications

1-129

Figure 1-24. VMEbus Arbitration—VIC068A (not System Controller) Taking the VMEbus

OUTPUT

BRi*

BBSY*

BGiIN* INPUT

A6

OUTPUT

A7

VIC068A AC Performance Specifications

1-130

Figure 1-25. Master Write

OUTPUT

PAS*

DS*

INPUT

P1
P3

B26

Q3

B29

B28

Q1B25
B10

B9

B22

B17

B21

B2
B1

B8
B3

B27

B5

B4

B6

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

MWB*

DSACKi*

R/W*

LA[7:0]

LD[7:0]

LEDO

DENO*

LADO

ABEN*

ISOBE*

SWDEN*

DDIR

BRi*

BGiIN*

AS*

DS1/0*

LWORD*

WRITE*

BBSY*

DTACK*

A[7:1]

D[7:0]

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-131

Figure 1-26. Master Read

OUTPUT

PAS*

DS*

INPUT

B5

B4

B6

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

MWB*

DSACKi*

R/W*

LA[7:0]

LD[7:0]

LEDI

DENIN/1*

LADO

ABEN*

ISOBE*

SWDEN*

DDIR

BRi*

BGiIN*

AS*

DS1/0*

LWORD*

WRITE*

BBSY*

DTACK*

A[7:1]

D[7:0]

P1
P3

B26

Q3

B28

Q1
B25

B10

B18,
B19

B7 B23

B24
B32

B33

B30, B31

B3
B27

B17
B9

B2

B8

B29

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-132

Figure 1-27. Slave Write

INPUT

PAS*

DS*

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

SLSELi*

DSACKi*

R/W*

LA[7:0]

FCi

SIZi

LD[7:0]

LEDI

DENIN/1*

LADI

LAEN

ISOBE*

SWDEN*

DDIR

LBR*

LBG*

AS*

DS1/0*

WRITE*

DTACK*

A[7:1]

D[7:0]

D22

D23

D2

D1

D8

D9D10

D12 D11

D13
D21D20

D16, D17

D19

D15
D14

D18

D5

D24

VALID

VALID

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-133

Figure 1-28. Slave Read

INPUT

PAS*

DS*

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

SLSELi*

DSACKi*

R/W*

LA[7:0]

FCi

SIZi

LD[7:0]

LEDO

DENO*

LADI

LAEN

ISOBE*

SWDEN*

DDIR

LBR*

LBG*

AS*

DS1/0*

WRITE*

DTACK*

A[7:1]

D[7:0]

D2

D1

D8

D9D10

D12 D11

D13

D4

D3

D16, D17

D19

D15
D14

D18

D5
D24

D22

D23

VALID

VALID

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-134

Figure 1-29. Master Write Post

OUTPUT

PAS*

DS*

INPUT

P1
P3

B26

Q3

B29
B28

Q1

B9
B17

B21

B2
B1

B8
B3

B5

B4

B6

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

MWB*

DSACKi*

R/W*

LA[7:0]

LD[7:0]

LEDO

DENO*

LADO

ABEN*

ISOBE*

SWDEN*

DDIR

BRi*

BGiIN*

AS*

DS1/0*

LWORD*

WRITE*

BBSY*

DTACK*

A[7:1]

D[7:0]

B36

B35

B34

B10

B7

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-135

Figure 1-30. Slave Write Post

INPUT

PAS*

DS*

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

SLSELi*

DSACKi*

R/W*

LA[7:0]

FCi

SIZi

LD[7:0]

LEDI

DENIN/1*

LADI

LAEN

ISOBE*

SWDEN*

DDIR

LBR*

LBG*

AS*

DS1/0*

WRITE*

DTACK*

A[7:1]

D[7:0]

D22

D23

D2

D1

D8

D9D10

D12 D11

D13

D16, D17

D15
D14

D6

D7

VALID

VALID

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-136

Figure 1-31. Local Bus

INPUT

PAS*

DS* OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

DSACKi*

R/W*

LA[7:0]

FCi

SIZi

LD[7:0]

DENIN*

LADI

LAEN

ISOBE*

SWDEN*

DDIR

LBR*

LBG*

C7

DENIN1*

C8

C9

C6

C11

C10

C5

C3

C4

C2

C12

C14

C13

C1

C15

VIC068A AC Performance Specifications

1-137

Figure 1-32. While VME Master

PAS*

DS*

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

MWB*

AS*

DS1/0*

LWORD*

WRITE*

A[7:1]

B13

ABEN*

B15

B14

B16

B20

B12

VIC068A AC Performance Specifications

1-138

Figure 1-33. VME IACK

OUTPUT

PAS*

FCIACK*

E1

INPUT

INPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

DSACKi*

IPLi

IRQi*

LD[7:0]

LIACKO*

ISOBE*

SWDEN*

BRi*

BGiIN*

AS*

DS1/0*

LWORD*

IACK*

BBSY*

DTACK*

D[7:0]

INPUT

OUTPUT

IACKIN*

IACKOUT*

E2

E9

E12

E11

E10

E13

E6

E4

E5E8

E15 E3

E14

INPUT

VALID

VALID

VIC068A AC Performance Specifications

1-139

Figure 1-34. Local IACK

Note:

19. If VIC068A is configured to supply vector.

PAS*

FCIACK*

DSACKi*

IPLi

LD[7:0]

LIACKO*

ISOBE*

SWDEN*
E6

E5

E15
E7

E14

LA[3:1]

OUTPUT[19]VALID

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

VIC068A AC Performance Specifications

1-140

Figure 1-35. Initiation

OUTPUT

PAS*

DS*

INPUT

INPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

MWB*

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LADO

LBR*

BRi*

BGiIN*

BLT*

Initiation

F2

F4

F3

F5

F1

VALID

VALID

VIC068A AC Performance Specifications

1-141

Figure 1-36. First MBLT Write

INPUT

PAS*

DS*

G4

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDO

LBG*

AS*

DSi*

DTACK*

A[7:1]

D[+:0]

G2

G3

G1

G5
G6
G7

G8

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-142

Figure 1-37. Second MBLT Write

INPUT

PAS*

DS*

G12

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDO

LBG*

AS*

DSi*

DTACK*

A[7:1]

D[+:0]

G10

G11

G9

G13
G14
G15

G8

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-143

Figure 1-38. Master Block Transfer—Write (Slow Slave)

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

MBAT0

G8

G17

G16

VIC068A AC Performance Specifications

1-144

Figure 1-39. First MBLT Read

INPUT

PAS*

DS*

H8

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDI

LBG*

AS*

DSi*

DTACK*

A[7:1]

D[+:0]

H6

H7

H5

H1
H2
H3
H4

VALID

VALID

VALID

VALID

VIC068A AC Performance Specifications

1-145

Figure 1-40. Second MBLT Read

INPUT

PAS*

DS* OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDI

LBG*

AS*

DSi*

DTACK*

A[7:1]

D[+:0]

H16

H14

H15

H13

H9
H10
H11
H12

H9
H10
H11
H12

H16

H14

H15

H13

VALID VALID

VALID VALID VALID

VALID VALID

VIC068A AC Performance Specifications

1-146

Figure 1-41. Boundary Crossing

J2

J3

J4

J1

BLT*

Local Boundary Crossing

DS*

LADO

VMEbus Boundary Crossing

DSi*

VIC068A AC Performance Specifications

1-147

Figure 1-42. Slave Write BLT

INPUT

PAS*

DS*

INPUT

K2

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

INPUT

INPUT

INPUT

INPUT

OUTPUT

SLSELi*

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDI

LBR*

LBG*

ISOBE*

SWDEN*

AS*

DSi*

DTACK*

A[+:1]

D[+:0]

K3

K7

K5

K6

K4

K1

K9

VALID

VALID

K8

VIC068A AC Performance Specifications

1-148

Figure 1-43. Slave Read BLT

INPUT

PAS*

DS*

INPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

OUTPUT

INPUT

OUTPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

SLSELi*

DSACKi*

R/W*

LA[31:0]

LD[31:0]

LEDO

LBR*

LBG*

DENO*

AS*

DSi*

DTACK*

A[+:1]

D[+:0]

L7

L3

L4

L6

L1

L8

L5

L9

VIC068A AC Performance Specifications

1-149

Figure 1-44. Slave Block Tran sfer—Read, Slow Master

PAS*

DS*

DTACK*

LA[31:0]

LD[31:0]

R/W*

DSACKi*

LEDO

AS*

DSi*

A[+:1]

D[+:0]

Local Bus Signals

VMEbus Signals

LBG*

SLSEL1*

LBR*

L2

L10

L11

L4

VIC068A AC Performance Specifications

1-150

Figure 1-45. Register Operations

PAS*

DS* INPUT

INPUT

INPUT

INPUT

OUTPUT

INPUT

CS*

R/W*

DSACK1/0*

D[7:0]

Write

M1

Read

PAS*

DS* INPUT

INPUT

INPUT

INPUT

OUTPUT

OUTPUT

CS*

R/W*

DSACK1/0*

D[7:0]

ICF Select

INPUT

INPUT

OUTPUT

AS*

ICFSEL*

DTACK*

M1

M2

M3

VIC068A AC Performance Specifications

1-151

Figure 1-46. Global Reset

Figure 1-47. Internal Reset

N1

N3

OUTPUT

INPUT

OUTPUT

INPUT

INPUT

HALT*/RESET*

IRESET*

LBR*

LBG*

IPL0

N2 200 ms

N1N2 200 ms

OUTPUT

INPUT

OUTPUT

INPUT

HALT*/RESET*

IRESET*

LBR*

LBG*

1-152

1.14
VIC068A Signal List and

Pinouts
Table 1-17. VMEbus Signals

Name
PGA
Pin

QFP
Pin Type Description

D07 H15 99 Three-State I/O VMEbus Data

D06 H14 98 Three-State I/O VMEbus Data

D05 J15 97 Three-State I/O VMEbus Data

D04 K15 96 Three-State I/O VMEbus Data

D03 J14 94 Three-State I/O VMEbus Data

D02 L15 93 Three-State I/O VMEbus Data

D01 K14 92 Three-State I/O VMEbus Data

D00 K13 91 Three-State I/O VMEbus Data

A07 N2 33 Three-State I/O VMEbus Address

A06 L3 32 Three-State I/O VMEbus Address

A05 M2 31 Three-State I/O VMEbus Address

A04 M1 29 Three-State I/O VMEbus Address

A03 L2 28 Three-State I/O VMEbus Address

A02 L1 27 Three-State I/O VMEbus Address

A01 K2 25 Three-State I/O VMEbus Address

AM5 R10 63 Three-State I/O VMEbus Address Modifier

AM4 R9 62 Three-State I/O VMEbus Address Modifier

AM3 R8 59 Three-State I/O VMEbus Address Modifier

AM2 P8 58 Three-State I/O VMEbus Address Modifier

AM1 R7 57 Three-State I/O VMEbus Address Modifier

AM0 R6 56 Three-State I/O VMEbus Address Modifier

BG3IN* N14 84 Input VMEbus Bus Grant Input

BG3OUT* M15 90 Output VMEbus Bus Grant Output

BG2IN* M13 83 Input VMEbus Bus Grant Input

BG2OUT* N15 88 Output VMEbus Bus Grant Output

BG1IN* P14 77 Input VMEbus Bus Grant Input

BG1OUT* L13 87 Output VMEbus Bus Grant Output

BG0IN* N13 76 Input VMEbus Bus Grant Input

BG0OUT* M14 86 Output VMEbus Bus Grant Output

VIC068A Signal List and Pinouts

1-153

BR3* P13 73 Open Collector I/O VMEbus Request

BR2* N11 72 Open Collector I/O VMEbus Request

BR1* P12 71 Open Collector I/O VMEbus Request

BR0* R12 69 Open Collector I/O VMEbus Request

IACK* P6 52 Rescinding Three-State I/O VMEbus Interrupt Acknowledge

IACKIN* N6 51 Input VMEbus Interrupt Acknowledge Input

IACKOUT* R4 50 Output VMEbus Interrupt Acknowledge
Output

IRQ7* R2 45 Open Collector I/O VMEbus Interrupt Request

IRQ6* P3 44 Open Collector I/O VMEbus Interrupt Request

IRQ5* N4 43 Open Collector I/O VMEbus Interrupt Request

IRQ4* R1 38 Open Collector I/O VMEbus Interrupt Request

IRQ3* P2 37 Open Collector I/O VMEbus Interrupt Request

IRQ2* N3 36 Open Collector I/O VMEbus Interrupt Request

IRQ1* M3 35 Open Collector I/O VMEbus Interrupt Request

BBSY* N12 75 Rescinding Three-State I/O VMEbus Busy

BCLR* R14 74 Three-State I/O VMEbus Clear

AS* P7 54 Rescinding Three-State I/O VMEbus Address Strobe

DS1* P11 68 Rescinding Three-State I/O VMEbus DataStrobe

DS0* R11 67 Rescinding Three-State I/O VMEbus Data Strobe

DTACK* R5 53 Rescinding Three-State I/O VMEbus Data Transfer Acknowledge

BERR* N10 66 Rescinding Three-State I/O VMEbus Error

LWORD* P9 64 Rescinding Three-State I/O VMEbus Long-Word

WRITE* P10 65 Rescinding Three-State I/O VMEbus Data Direction

SYSCLK* P15 85 Three-State Output VMEbus Syatem Clock

SYSRESET* P5 49 Open Collector I/O VMEbus System Reset

ACFAIL* R3 48 Input VMEbus AC Fail

SYSFAIL* N5 47 Open Collector I/O VMEbus System Fail

Table 1-17. VMEbus Signals (continued)

Name
PGA
Pin

QFP
Pin Type Description

VIC068A Signal List and Pinouts

1-154

Table 1-18. Local Signals

Name
PGA
Pin

QFP
Pin Type Description

LD7 C4 155 Three-State I/O Local Data

LD6 A2 154 Three-State I/O Local Data

LD5 B3 153 Three-State I/O Local Data

LD4 C5 152 Three-State I/O Local Data

LD3 B4 151 Three-State I/O Local Data

LD2 A3 150 Three-State I/O Local Data

LD1 A4 149 Three-State I/O Local Data

LD0 B5 148 Three-State I/O Local Data

LA7 A5 147 Three-State I/O Local Address

LA6 C6 146 Three-State I/O Local Address

LA5 B6 145 Three-State I/O Local Address

LA4 B7 144 Three-State I/O Local Address

LA3 A6 143 Three-State I/O Local Address

LA2 A7 142 Three-State I/O Local Address

LA1 A8 139 Three-State I/O Local Address

LA0 B8 138 Three-State I/O Local Address

SCON* C13 116 Input System Controller Enable

IRESET* B14 117 Input Internal Reset Input

RESET* C10 131 Open Collector Output Reset Output

HALT* A12 130 Open Collector I/O Halt Status

CLK64M D13 115 Input 64-MHz Clock Input

PAS* A10 136 Rescinding Three-State I/O Physical/Processor Address Strobe

DS* C9 135 Rescinding Three-State I/O Processor Data Strobe

DSACK1* B9 134 Three-State I/O Data Size Acknowledge 1

DSACK0* A11 133 Three-State I/O Data Size Acknowledge 0

LBERR* B10 132 Rescinding Three-State I/O Local Bus Error

R/W* B11 129 Rescinding Three-State I/O Local Data Direction

RMC* B12 126 Input Read-Modify-Write

CS* A9 137 Input VIC068A Chip (Register) Select

SIZ1 A14 125 Rescinding Three-State I/O Data Transfer Size 1

SIZ0 B13 124 Rescinding Three-State I/O Data Transfer Size 0

FC2 A13 128 Rescinding Three-State I/O Function Code 2

FC1 C11 127 Rescinding Three-State I/O Function Code 1

LBG* A15 118 Input Local Bus Grant

LBR* C12 123 Output Local Bus Request

VIC068A Signal List and Pinouts

1-155

IPL2 B1 5 Output Interrupt Priority Level 2

IPL1 C2 4 Output Interrupt Priority Level 1

IPL0 D3 3 Three-State I/O Interrupt Priority Level 0/Global Reset

BLT* B2 157 Open Collector I/O Block Transfer Status

DEDLK* C3 156 Output Deadlock Status

LIACKO* C1 8 Output Local Interrupt Autovector

LIRQ7* G3 15 Input Local Interrupt Request 7

LIRQ6* G2 14 Input Local Interrupt Request 6

LIRQ5* E1 13 Input Local Interrupt Request 5

LIRQ4* F2 12 Input Local Interrupt Request 4

LIRQ3* F3 11 Input Local Interrupt Request 3

LIRQ2* D1 10 Three-State I/O (w/PU) Local Interrupt Request 2

LIRQ1* E2 9 Input Local Interrupt Request 1

MWB* J2 24 Input Module Wants Bus

FCIACK* K1 23 Input Interrupt Acknowledge

WORD* J1 22 Input D16/D32 Control

SLSEL1* H1 19 Input Slave Select 1

SLSEL0* J3 21 Input Slave Select 0

ICFSEL* H2 18 Input ICF Select

ASIZ1 F1 16 Input Address Size 1

ASIZ0 G1 17 Input Address Size 0

Table 1-18. Local Signals (continued)

Name
PGA
Pin

QFP
Pin Type Description

VIC068A Signal List and Pinouts

1-156

Table 1-19. Buffer Control Signals

Name
PGA
Pin

QFP
Pin Type Description

ABEN* B15 114 Output VMEbus Address Buffer Enable

LADO C14 113 Output Latch Outgoing VMEbus Address

LADI E13 112 Output Latch Incomming VMEbus Address

LEDO D15 109 Output Latch Outgoing VMEbus Data

LEDI D14 111 Output Latch Incomming VMEbus Data

DDIR E14 108 Output Local Data Direction

DENIN1* E15 107 Output Local Data Enable In (Upper Word)

DENIN* F14 105 Output Local Data Enable In (Lower Word)

SWDEN* F15 103 Output Swap Local Data Enable

DENO* G14 104 Output VMEbus Data Buffer Enable

ISOBE* G15 102 Output Isolation Buffer Enable

LAEN E3 7 Output Local Address Buffer Enable

VIC068A Signal List and Pinouts

1-157

Note:

1. For QFP power supply signals, see Table 1-21.
.

Table 1-20. Power Supplies [1]

Name
PGA
Pin Type Description

VSS Core H3 Ground Ground

VSS K3 Ground Ground

VSS P1 Ground Ground

VSS N7 Ground Ground

VSS N8 Ground Ground

VSS R13 Ground Ground

VSS R15 Ground Ground

VSS L14 Ground Ground

VSS H13 Ground Ground

VSS F13 Ground Ground

VSS C7 Ground Ground

VSS A1 Ground Ground

VCC Core G13 Power +5 Volts DC

VCC D2 Power +5 Volts DC

VCC N1 Power +5 Volts DC

VCC P4 Power +5 Volts DC

VCC N9 Power +5 Volts DC

VCC J13 Power +5 Volts DC

VCC C15 Power +5 Volts DC

VCC C8 Power +5 Volts DC

VIC068A Signal List and Pinouts

1-158

Table 1-21. Pinout for VIC068A Plastic and Ceramic Quad Flatp ack (160-Pin): Cavity Up

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

1 VSS 32 A06 63 AM5 94 D03

2 VSS 33 A07 64 LWORD* 95 VDD

3 IPL0 34 VSS 65 WRITE* 96 D04

4 IPL1 35 IRQ1* 66 BERR* 97 D05

5 IPL2 36 IRQ2* 67 DS0* 98 D06

6 VDD 37 IRQ3* 68 DS1* 99 D07

7 LAEN 38 IRQ4* 69 BR0* 100 VSS

8 LIACKO* 39 VSS 70 VSS 101 VDD CORE

9 LIRQ1* 40 VSS 71 BR1* 102 ISOBE*

10 LIRQ2* 41 VDD 72 BR2* 103 SWDEN*

11 LIRQ3* 42 VDD 73 BR3* 104 DENO*

12 LIRQ4* 43 IRQ5* 74 BCLR* 105 DENIN*

13 LIRQ5* 44 IRQ6* 75 BBSY* 106 VSS

14 LIRQ6* 45 IRQ7* 76 BGIN0* 107 DENIN1*

15 LIRQ7* 46 VDD 77 BGIN1* 108 DDIR

16 ASIZ1 47 SYSFAIL* 78 VSS 109 LEDO

17 ASIZ0 48 ACFAIL* 79 VDD 110 VDD

18 ICFSEL* 49 SYSRESET* 80 VDD 111 LEDI

19 SLSEL1* 50 IACKOUT* 81 VSS 112 LADI

20 VSS CORE 51 IACKIN* 82 VSS 113 LADO

21 SLSEL0* 52 IACK* 83 BGIN2* 114 ABEN*

22 WORD* 53 DTACK* 84 BGIN3* 115 CLK64M

23 FCIACK* 54 AS* 85 SYSCLK 116 SCON*

24 MWB* 55 VSS 86 BGOUT0* 117 IRESET*

25 A01 56 AM0 87 BGOUT1* 118 LBG*

26 VSS 57 AM1 88 BGOUT2* 119 VSS

27 A02 58 AM2 89 VSS 120 VSS

28 A03 59 AM3 90 BGOUT3* 121 VDD

29 A04 60 VSS 91 D00 122 VDD

30 VDD 61 VDD 92 D01 123 LBR*

31 A05 62 AM4 93 D02 124 SIZ0

125 SIZ1 134 DSACK1* 143 LA3 152 LD4

VIC068A Signal List and Pinouts

1-159

126 RMC* 135 DS* 144 LA4 153 LD5

127 FC1 136 PAS* 145 LA5 154 LD6

128 FC2 137 CS* 146 LA6 155 LD7

129 R/W* 138 LA0 147 LA7 156 DEDLK*

130 HALT* 139 LA1 148 LD0 157 BLT*

131 RESET* 140 VDD 149 LD1 158 VSS

132 LBERR* 141 VSS 150 LD2 159 VDD

133 DSACK0* 142 LA2 151 LD3 160 VDD

Table 1-21. Pinout for VIC068A Plastic and Ceramic Quad Flatp ack (160-Pin): Cavity Up (continued)

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

VIC068A Signal List and Pinouts

1-160

Figure 1-48. VIC068A Pin Grid Array (PGA), Bottom View

A B C D E F G H J K L M N P R

1

2

3

4

5

6

9

10

11

12

13

14

15

7

8

VSS

LD6

LD2

LA7

LA3

LA2

LA1

CS*

PAS*

DSACK0*

HALT*

FC2

SIZ1

BLT*

LD5

LD3

LD0

LA5

LA4

LA0

DSACK1*

LBERR*

R/W*

IPL2

RMC*

SIZ0

IRESET*

ABEN*

LIACKO*

IPL1

DEDLK*

LD7

LD4

LA6

VSS

VCC7

DS*

RESET*

FC1

LBR*

SCON*

LADO

VDD

LIRQ2*

VDD

IPL0

LOCATOR
PIN

CLK64M

LEDI

LEDO

LIRQ5*

LIRQ1*

LAEN

ASIZ1

LIRQ4*

LIRQ3*

LADI

DDIR

DENIN1*

VSS

DENIN*

SWDEN*

ASIZ0

LIRQ6*

LIRQ7*

VDD

DENO*

ISOBE*

SLSEL1*

ICFSEL*

VSS

VSS8

D06

D07

WORD*

MWB*

SLSEL0*

VCC5

D03

D05

FCIACK*

A01

VSS

D00

D01

D04

A02

A03

A06

BG1OUT*

VSS7

D02

A04

A05

IRQ1*

BG2IN*

BG0OUT*

BG3OUT*

VDD

A07

IRQ2*

IRQ5*

SYSFAIL*

IACKIN*

VSS

VSS

VDD

BERR*

BR2*

BBSY*

BG0IN*

BG3IN*

BG2OUT*

VSS

IRQ3*

IRQ6*

VDD

SYSRE-
SET*

IACK*

AS*

AM2

LWORD*

WRITE*

DS1*

BR1*

BR3*

BG1IN*

SYSCLK

IRQ4*

IRQ7*

ACFAIL*

IACKOUT*

DTACK*

AM0

AM1

AM3

AM4

AM5

DS0*

BR0*

VSS

BCLR*

VSSLBG*

LD1

VIC068A Signal List and Pinouts

1-161

Figure 1-49. VIC068A Quad Flatp ack (QFP), Top View

1VSS 120 VSS
2VSS 119 VSS
3IPL0 118 LBG*
4IPL1 117 IRESET*
5IPL2 116 SCON*
6VDD 115 CLK64M
7LAEN 114 ABEN*
8LIAKO* 113 LADO
9LIRQ1* 112 LADI
10LIRQ2* 111 LEDI
11LIRQ3* 110 VDD
12LIRQ4* 109 LEDO
13LIRQ5* 108 DDIR
14LIRQ6* 107 DENIN1*
15LIRQ7* 106 VSS
16ASIZ1 105 DENIN*
17ASIZ0 104 DENO*
18ICFSEL* 103 SWDEN*
19SLSEL1* 102 ISOBE*
20VSS 101 VDD
21SLSEL0* 100 VSS
22WORD* 99 D07
23FCIACK* 98 D06
24MWB* 97 D05
25A1 96 D04
26VSS 95 VDD
27A2 94 D03
28A3 93 D02
29A4 92 D01
30VDD 91 D00
31A5 90 BGOUT3*
32A6 89 VSS
33A7 88 BGOUT2*
34VSS 87 BGOUT1*
35IRQ1* 86 BGOUT0*
36IRQ2* 85 SYSCLK
37IRQ3* 84 BGIN3*
38IRQ4* 83 BGIN2*
39VSS 82 VSS
40VSS 81 VSS

41
V

D
D

16
0

V
D

D
42

V
D

D
15

9
V

D
D

43
IR

Q
5*

15
8

V
S

S
44

IR
Q

6*
15

7
B

LT
*

45
IR

Q
7*

15
6

D
E

D
LK

*
46

V
D

D
15

5
LD

7
47

S
Y

S
FA

IL
*

15
4

LD
6

48
A

C
FA

IL
*

15
3

LD
5

49
S

Y
S

R
E

S
E

T
*

15
2

LD
4

50
IA

C
K

O
U

T
*

15
1

LD
3

51
IA

C
K

IN
*

15
0

LD
2

52
IA

C
K

*
14

9
LD

1
53

D
TA

C
K

*
14

8
LD

0
54

A
S

*
14

7
LA

7
55

V
S

S
14

6
LA

6
56

A
M

0
14

5
LA

5
57

A
M

1
14

4
LA

4
58

A
M

2
14

3
LA

3
59

A
M

3
14

2
LA

2
60

V
S

S
14

1
V

S
S

61
V

D
D

14
0

V
D

D
62

A
M

4
13

9
LA

1
63

A
M

5
13

8
LA

0
64

LW
O

R
D

*
13

7
C

S
*

65
W

R
IT

E
*

13
6

PA
S

*
66

B
E

R
R

*
13

5
D

S
*

67
D

S
0*

13
4

D
S

A
C

K
1*

68
D

S
1*

13
3

D
S

A
C

K
0*

69
B

R
0*

13
2

LB
E

R
R

*
70

V
S

S
13

1
R

E
S

E
T

*
71

B
R

1*
13

0
H

A
LT

*
72

B
R

2*
12

9
R

/W
*

73
B

R
3*

12
8

F
C

2
74

B
C

LR
*

12
7

F
C

1
75

B
B

S
Y

*
12

6
R

M
C

*
76

B
G

IN
0*

12
5

S
IZ

1
77

B
G

IN
1*

12
4

S
IZ

0
78

V
S

S
12

3
LB

R
*

79
V

D
D

12
2

V
D

D
80

V
D

D
12

1
V

D
D

1-162

1.15
VIC068A Simulation

Waveforms
Note: LWDENIN* is now called DENIN* and UWDENIN* is now called DENIN1*.

Figure 1-50. Master Self-Access

VIC068A Simulation Waveforms

1-163

Figure 1-51. Master Deadlock Operation

VIC068A Simulation Waveforms

1-164

Figure 1-52. Master Write Post

VIC068A Simulation Waveforms

1-165

Figure 1-53. Master Write Post with Slave Read (shows data toggle)

VIC068A Simulation Waveforms

1-166

Figure 1-54. Master RMC1 ($AF [7:5] = 000)

VIC068A Simulation Waveforms

1-167

Figure 1-55. Master RMC2 ($AF [7:5] = 001)

VIC068A Simulation Waveforms

1-168

Figure 1-56. Master RMC3 ($AF [7:5] = 010)

VIC068A Simulation Waveforms

1-169

Figure 1-57. Master RMC4 ($AF [7:5] = 011)

VIC068A Simulation Waveforms

1-170

Figure 1-58. Master RMC5 ($AF [7:5] = 101)

VIC068A Simulation Waveforms

1-171

Figure 1-59. Master RMC6 Non-Byte ($AF[7:5] = 110)

VIC068A Simulation Waveforms

1-172

Figure 1-60. Master RMC7 ($AF [7:5] = 111)

VIC068A Simulation Waveforms

1-173

Figure 1-61. MOVEM Write Operation

VIC068A Simulation Waveforms

1-174

Figure 1-62. MOVEM Read Operation

VIC068A Simulation Waveforms

1-175

Figure 1-63. Slave Write Post

VIC068A Simulation Waveforms

1-176

Figure 1-64. Slave Write Block Transfer Accelerated Mode ($C3[1:0]=10)

VIC068A Simulation Waveforms

1-177

Figure 1-65. Slave Write Block Transfer Emulate Single-Cycle ($C3[1 :0]=01)

VIC068A Simulation Waveforms

1-178

Figure 1-66. Slave Read Block Transfers Accelerated ($C3[1:0]=10)

VIC068A Simulation Waveforms

1-179

Figure 1-67. Slave Read Block Transfer Emulate Single-Cycle ($C3[1:0]=01)

VIC068A Simulation Waveforms

1-180

Figure 1-68. Refresh Timing

VIC068A Simulation Waveforms

1-181

Figure 1-69. Register Read

VIC068A Simulation Waveforms

1-182

Figure 1-70. Register Write

VIC068A Simulation Waveforms

1-183

Figure 1-71. Interprocessor Communications Register Access Timing

Figure 1-72. Interprocessor Communication Module Switch Access Timing

Figure 1-73. Interprocessor Communications Global Switch Access Timing

VIC068A Simulation Waveforms

1-184

Figure 1-74. VMEbus Interrupt Acknowledge Cycle

VIC068A Simulation Waveforms

1-185

Figure 1-75. Local Interrupt Acknowledge Cycle

VIC068A Simulation Waveforms

1-186

Figure 1-76. Interrupter Acknowledge Cycle

VIC068A Simulation Waveforms

1-187

Figure 1-77. Block Transfer: VME Write: Burst of 2

VIC068A Simulation Waveforms

1-188

Figure 1-78. VME Boundary Crossing and Local Boundary Crossing

VIC068A Simulation Waveforms

1-189

Figure 1-79. Slave Cycle During Interleave Period

VIC068A Simulation Waveforms

1-190

Figure 1-80. Master Cycle Deadlocked During Interleave

VIC068A Simulation Waveforms

1-191

Figure 1-81. Master Cycle During Interleave with Dual-Path Option

1-192

1.16
DC Performance
Specifications

.

Table 1-22. VMEbus Signals (AS*, DS1*, DS0*, BCLR*, SYSCLK)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA, 56 mA, 64 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN=–18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±10 ±10 ±10 µA

DC Performance Specifications

1-193

.

Table 1-23. VMEbus Signals (Low Drive. All VMEbus Daisy-Chain Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN=–18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

DC Performance Specifications

1-194

.

Table 1-24. VMEbus Signals (Medium Drive. All non-High, non-Low Drive Signals, All VAC068A
VMEbus Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN=–18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

DC Performance Specifications

1-195

.

.

.

Table 1-25. Non-VMEbus Signals

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.00/VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN=–18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±5 ±10 µA

Table 1-26. Capacitance

Parameters Description Test Conditions Max. Units

CIN Input Capacitance TA = 25°C, f = 64 MHz,
VCC = 5.0V

5 pF

COUT Output Capacitance 7 pF

Table 1-27. Operating Current

Parameters Description Test Conditions Max. Units

IDD Maximum Operating
Current

No external DC load 150 mA

1-196

1.17
Package Diagrams

144-Pin Plastic Thin Quad Flat Pack (TQFP) A144

Package Diagrams

1-197

145-Pin Plastic Grid Array (Cavity Up) B144

145-Pin Grid Array (Cavity Up) G145

Package Diagrams

1-198

160-Lead Plastic Quad Flatpack N160

Package Diagrams

1-199

160-Lead Ceramic Quad Flatpack (Cavity Up) U162

Section 2

The VIC64 VMEbus
Interface Controller

2-1

2.1
Introduction

The VIC64 is a member of the industry-standard VIC family of VMEbus interface products.
The VIC64 implements 64-bit wide block transfers, in addition to 32- and 16-bit block transfers
and 32-, 16-, and 8-bit single-cycle transfers, all using the same backplane hardware. VIC64
is software and hardware compatible with the VIC068A VMEbus Interface Controller.

This document provides the designer with the information needed to evaluate and develop
VIC64-based boards. You should have already read the section on the VIC068A. This docu-
ment provides information on the enhancements found within the VIC64. Another device, the
CY7C964 Bus Interface Logic Chip, is described in Section 4 of this book.

Like the Cypress VIC068A, the VIC64 contains all the circuitry necessary to manage VMEbus
transfers, either as a slave or a master. It can also be programmed as the VMEbus system
controller. The VIC64 contains circuitry intended to minimize the problems associated with
the development of a VMEbus interface such as an interrupt controller, a DMA controller, a
DRAM refresh controller, and many other features normally on VMEbus boards. The VIC64
is a logical extension to the capabilities of the VIC068A, the industry-standard VMEbus In-
terface Controller chip, and it is fully compatible with the VIC068A.

The primary benefit of using the VIC64 is that you can perform 64-bit VMEbus transfers. The
VIC64 also contains some enhancements to the VIC068A, including some performance im-
provements and additional features.

A board that has been designed to use the VIC068A is not likely to implement D64 VMEbus
transfers, but there are several reasons why a user may choose to replace the VIC068A with
a VIC64. For example, to take advantage of the enhancements of the VIC64, or to evaluate
the device and use an existing board to speed the evaluation.

2-2

2.2
 Compatibility

All pin assignments and register assignments are the same as those of the VIC068A, therefore
the VIC64 will work flawlessly when used to replace a VIC068A. In fact, several of the VIC068’s
functions have been enhanced in the VIC64, allowing VIC068A applications to run faster in
some cases. Naturally, some attention must be paid to the additional controls for the improved
functionality to ensure that the original hardware and software supports the improvements.
Therefore, several bits have been added to the VIC068A registers to control the enhance-
ments. They map into the unused bits within the VIC068A register space; assuming that the
VIC068A developer has not inadvertently set the bits, VIC068A code will run on the VIC64
without modification.

To add 64-bit functionality to the VIC family and still retain plug compatibility, the SCON* pin
has been modified in the VIC64. Whereas previously it performed only the input function of
selecting VIC068A to be the system controller, in VIC64 the pin is sensed and latched during
reset to determine whether the system controller function is enabled. After reset the pin
becomes an output to control external circuitry during 64-bit transfers. The new name for the
pin is SCON*/D64. If you simply replace the VIC068A with the VIC64, the VIC64 will function
in an identical manner to the VIC068A, whether it is the system controller or not. It is recom-
mended that the VIC64 SCON*/D64 pin be connected via a resistive pull-down/up of greater
than 4.7 kΩ to enable/disable the system controller function.

2-3

2.3
64-Bit Operations

2.3.1 VMEbus Specification

The primary reason for the development of the VIC64 was to provide users with the capability
to perform 64-bit-wide data transfers in a manner consistent with the goals of the 64-bit
VMEbus specification, more commonly known as the VME64 specification. The protocol for
64-bit MBLT (Multiplexed Block Transfer) is specified in an ANSI document VITA1-1994. The
VIC64 implements this protocol.

2.3.2 Address Modifier Codes

VIC64 responds as a slave to the address modifier (AM) codes associated with MBLT transfers
as follows:

$3C, $38, $0C, $08; Performs D64 operation as implied by the actual AM code, and the
contents of the Slave configuration Registers $C3 and $CB, and Block Transfer Definition
Register $AB.

$00-$07; No response: these codes are associated with 64-bit address operations, and the
VIC64 does not support 64-bit address operation.

As a master, VIC64 will use the MBLT protocol to transfer data if the appropriate conditions
occur:

AM codes $3C, $38, $0C, $08 are selected, and the appropriate bits of the configuration
registers are set (see later for exact details).

In summary, VIC64 performs A32/D64 and A24/D64 operations in addition to the D8/16/32
single cycles and A16/24/32..D16/32 block transfers performed by VIC068A.

2.3.3 Boundary Crossing

There are several implications of the 64-bit VMEbus protocol and the requirement for com-
patibility that you should consider. The VIC64, being a 144-pin device, can connect to only
the lower byte of the VMEbus address. For block transfers other than D64 transfers, the
VMEbus specification requires that the VMEbus address be rebroadcast at 256-byte bound-
ary crossings; this quantity maps neatly into the byte of address that the VIC64 can monitor.
MBLT transfers, however, are required to rebroadcast the address only at 2-Kbyte boundaries.
VIC64 has no means of determining how the starting address of a master block transfer

64-Bit Operations

2-4

relates to the 2K boundary (it has access to only the lower 8 address bits), and therefore
VIC64 rebroadcasts the address at every 256-byte boundary. This is still compatible with the
specification, but has a small impact on the sustained transfer rate. If you wish to take advan-
tage of the increased performance of 2-Kbyte boundaries, then VIC64 can be programmed
to rebroadcast the address every 2048 bytes, and the starting address must then be aligned
on a 2-Kbyte boundary.

2.3.4 External Circuit Complexity

The VIC64 is a flexible building block that can be used in many different configurations. The
VMEbus specification is written to allow many levels of circuit complexity to conform to the
specification. Such circuitry may include slave address decode circuitry, local DMA transfer,
slave read modify cycles, and more. The VIC64 and the VIC068A provide dual-path operation,
a mechanism whereby the local bus master can perform single-cycle VMEbus operations
during the time that the VMEbus is between block transfer bursts (interleave period). They
also provide a mechanism allowing master write-posting, and slave read modify cycles to
occur concurrently without harming the posted data. All this circuitry must be duplicated
externally for the higher-order data byes if you want these features.

You may choose to implement only those features that your system requires, thereby simpli-
fying the necessary external circuitry. Alternatively, the user may decide to use the companion
device, the CY7C964, and gain access to all the features using only three small devices. The
CY7C964 is described in Section 4, The CY7C964 Bus Interface Logic Circuit.

2-5

2.4
VIC64:

Additional Information
The following sections are related to Section 1, The VIC068A VMEbus Interface Controller.
The chapter numbers are those chapters of Section 1 that require clarification or modification
for the VIC64. All other information in Section 1 is applicable to the VIC64.

2.4.1 VIC64 Signal Description (Chapter 1.2)

All pins are identical to those of the VIC068A with the following exception:

SCON*/D64

Input: Yes
Output: Yes
Drive: 16 mA

This is the dual-function signal by which the VIC64 determines whether system controller
functions are required, and by which the VIC64 controls external logic during 64-bit VMEbus
transfers. During the time that RESET* is asserted, this pin is the SCON* input whose state
is latched internally when RESET* goes inactive. A Low state causes VIC64 to become the
VMEbus system controller. During the time that RESET* is inactive, this pin becomes the
D64 output whose state is normally Low, becoming High only during the Data Phase of D64
transactions.

2.4.2 System Controller Operations (Chapter 1.4)

The VIC64 functions identically to VIC068A as a system controller, except that the SCON*
pin of the VIC068A has been renamed to be SCON*/D64 on the VIC64. During the period
that RESET* is asserted (Low), VIC64 assumes that the pin is an input whose state is latched
on the rising edge of RESET*. The latched state is then used to determine whether the VIC64
is the system controller: if the state is Low, then the VIC64 is the system controller.

SCON*/D64 becomes an output after the rising edge of RESET*; the state of the output is
used to enable 64-bit data transfers (Chapter 1.10, Block Transfer Functions contains infor-
mation on this operation).

2.4.3 VMEbus Master Operations (Chapter 1.5)

The VIC64 does not perform single-cycle 64-bit transfers.

VIC64: Additional Information

2-6

The VIC64 uses the same pins and register bits as the VIC068A to configure and select 64-
bit block transfers. The release modes are identical, and the address broadcast phase is
identical to the VIC068A, except that the AM code reflects the D64 transaction (see Table 2-1).

Table 2-1. Master Transfer AM Code Control Map for D64 Operations

As the VIC64 has an identical local bus interface to that of the VIC068A, some mention must
be made of the protocol used to transfer the 64-bit VMEbus data to the 32-bit local bus. First,
it should be noted that Byte(0) is transferred on VMEbus address [A31:A24], and Byte(7) is
transferred on VMEbus data [D7:D0]. Two local transactions are required for each VMEbus
transaction. For maximization of performance, a pipelined architecture is used. The VIC64
provides the appropriate timing for latch controls to implement the pipe externally for those
bytes that the VIC64 itself does not connect to.

2.4.3.1 D64 Master Write Cycles

In the case of master write cycles, the first local cycle fetches the first [Byte(0)–Byte(3)]
longword and the VIC64 places it into a two-stage pipe: the next local cycle fetches the next
longword and presents it to the VMEbus data bus, while the piped data is presented to the
VMEbus address bus. Then the next local cycle can commence without waiting for the com-
pletion of the VMEbus cycle, as the first stage of the pipe is now free. See the timing diagrams
for full details of this operation.

2.4.3.2 D64 Master Read Cycles

In the case of master read cycles, 64 bits of VMEbus data are latched under the control of
VIC64. The [Byte(4)–Byte(7)] longword is placed into a two-stage pipe, while the [Byte(0)–
Byte(3)] longword is presented to the local bus. After the local bus write cycle, the piped data
is then presented to the local bus, and the next VMEbus cycle can commence as the first
stage of the pipe is now free. See the timing diagrams for full details of this operation.

2.4.4 VMEbus Slave Operations (Chapter 1.6)

Upon detecting SLSEL0* or SLSEL1* asserted, the VIC64 behaves in an identical manner
to the VIC068A except that if the AM code for the slave transaction is $08, $0C, $38, or $3C,
the VIC64 configures itself for a D64 slave block transfer (see Table 2-2).

VIC64 Master Access Inputs VIC64 AM Code Output

ASIZ1/0 Address Size Blk FC2 Operation Type AM[5:0]

01 A32 addressing Yes 0X User block $08

01 A32 addressing Yes 1X Supervisory block $0C

11 A24 addressing Yes 0X User block $38

11 A24 addressing Yes 1X Supervisory block $3C

VIC64: Additional Information

2-7

Table 2-2. Slave Transfer AM Code Control Map for D64 Operations

2.4.4.1 D64 Slave Read Cycles

As in the case of master write cycles, the first local cycle fetches the first [Byte(0)-Byte(3)]
longword and the VIC64 places it into a two-stage pipe. The next local cycle fetches the next
longword and presents it to the VMEbus data bus, while the piped data is presented to the
VMEbus address bus. Then the next local cycle can commence without waiting for the com-
pletion of the VMEbus cycle, as the first stage of the pipe is now free.

2.4.4.2 D64 Slave Write Cycles

As in the case of master read cycles, 64 bits of VMEbus data are latched under the control
of VIC64. The [Byte(4)–Byte(7)] longword is placed into a two-stage pipe, while the [Byte(0)–
Byte(3)] longword is presented to the local bus. After the local bus write cycle, the piped data
is then presented to the local bus, and the next VMEbus cycle can commence as the first
stage of the pipe is now free.

2.4.5 Interrupts (Chapter 1.9)

The VIC64 can be programmed to perform either D8, D16, or D32 interrupt acknowledge
cycles. The method by which this is performed is simply to drive the values on SIZ1/0, in a
similar fashion to a master read or write operation. The SIZ1/0 lines are sensed by the VIC64
following the assertion of FCIACK* by the local processor. Note that no provision is made for
non-aligned status/ID vector: The VIC64 enables the appropriate local bus drivers for either
8-, 16-, or 32-bit Status/ID.

Table 2-3. VIC64 Interrupt Acknowledge Cycle Selection

VIC64 AM Code Inputs VIC64 Master Access Outputs

Operation Type AM[5:0] Address Size Blk FC2/1

User block $08 A32 addressing Yes 00

Supervisory block $0C A32 addressing Yes 00

User block $38 A24 addressing Yes 00

Supervisory block $3C A24 addressing Yes 00

SIZ1/0 VMEbus Data Width

00 32

01 8

10 16

11 32

VIC64: Additional Information

2-8

2.4.6 VIC64 Block Transfer Functions (Chapter 1.10)

As the VIC64 is a superset of the VIC068A, all the VIC068A block transfer functionality is
reproduced in the VIC64. The additional features provided by the VIC64 are D64 transfers
and performance enhancements.

2.4.6.1 D64 Transfers, VMEbus Boundary Crossing

The VME64 specification allows D64 block transfers to exceed the 256-byte boundary-cross-
ing limitation that the original VMEbus specification contains. The new specification allows
for 2-Kbyte boundaries. As the VIC64 can only discern 8 bits of address, it has no means of
determining which 256-byte boundary is the 2048-byte boundary, and therefore the VIC64
rebroadcasts the address every 256 bytes unless BTDR[7] is set: this bit causes the address
to be rebroadcast on 2-Kbyte boundaries, but the VIC64 then assumes that the transfer starts
on the 2-Kbyte boundary.

2.4.7 Miscellaneous Features (Chapter 1.11)

2.4.7.1 Selection of System Controller Functionality

The VIC068A is configured to be system controller by strapping SCON* Low. In VIC64, the
SCON”*/D64 pin performs this function: the state of the pin is latched during any of the possible
Reset operations, and this state determines whether VIC64 is system controller. Following
the Reset operation, the SCON*/D64 pin becomes an output whose state controls the external
circuitry (such as the CY7C964) used during the data phase of D64 transfers. The detailed
timing of this operation depends upon internal states such as DRAM refresh timing, in addition
to the external stimuli such as SYSRESET*, IRESET*, and IPL0. Use of an external pull-up/
pull-down resistor to determine the state of the SCON* pin during the Reset operation is all
that is required to ensure correct operation.

2.4.7.2 Enhanced Turbo Mode

In addition to the use of ICR[1], another performance enhancement is possible in the VIC64.
Setting BTDR[5] reduces the DSACK*-to-DTACK* time defined in the slave select control
registers by 0.5 clock period for both master and slave block transfers. The reduced times
are 0, 1.5, 2, 2.5, ..., 8.5 clock periods. See the AC Timing Parameters section for details on
which times are affected by this bit.

2.4.8 Register Map and Descriptions (Chapter 1.12)

There are some differences between the VIC068A and the VIC64 register assignments and
contents.

VIC64: Additional Information

2-9

2.4.8.1 Interprocessor Communications Register 5

2.4.8.2 Block Transfer Definition Register

2.4.8.3 Release Control Register

For non-MBLT operations, the burst length is simply the field contents. A value of 0 in this
field is interpreted to mean 64.

2.4.8.4 Block Transfer Length Register 2

Name: ICR5
Address: $77
Description: This register provides the VIC64 revision number.

Name: BTDR
Address: $AB
Description: Configures master block transfers for boundary crossing, dual-path and

user defined address modifiers. There are four additional bits defined for
VIC64:

Bit 4
(0/0/0)

Enables D64 Master Operations when BTCR[6] is set

Bit 5
(0/0/0)

Enables Accelerated Block Transfer Operations as discussed above.

Bit 6
(0/0/0)

Enables D64 Slave Operations

Bit 7
(0/0/0)

Enables 2-Kbyte boundary crossing for D64 Master Operations. If this bit
is set, VIC64 assumes that the transfer is aligned to a 2-Kbyte boundary.

Name: RCR
Address: $D3
Description: This register configures the VMEbus release mode, and the burst length

for block transfers with local DMA.
Bits 5–0
(0/0/0)

For MBLT operations (D64 transfers), the burst length is 4 times the actual
field contents. A value of 0 is interpreted to mean 4 x 64.

Name: BTLR2
Address: $E7
Description: This register provides the most significant byte of the 24-bit value used

to determine the byte count for block transfers with local DMA
Bits 7–0
(0/0/0)

Bits 23:16 of the block transfer length.

VIC64: Additional Information

2-10

2.4.9 AC Performance Specifications (Chapter 1.13)

AC Timing for D64 Operations [1]

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

Master D64 Block Transfer with Local DMA (Initiation Cycle) [2]

A1 MWB*[0] & PAS*[0] &
DS*(0) to BRi*[L]

T+7 2T+32 T+7 2T+33 4T+5 5T+38

A2 MWB*[0] & PAS*[0] &
DS*(0) to LADO[H]

T+9 2T+31 T+8 2T+32 T+8 2T+38

A3 MWB*[0] & PAS*[0] &
DS*(0) to BLT*[L]

T+9 2T+26 T+8 2T+27 T+8 2T+30

A4 MWB*[0] & PAS*[0] &
DS*(0) to DSACK1*[L]

T+11 2T+46 T+10 2T+48 T+10 2T+54

A5 MWB*[0] & PAS*[0] &
DS*(0) to DSACK0*[L]

T+11 2T+46 T+10 2T+48 T+10 2T+54

Master D64 Block Transfer Address Broadcast Cycle [2]

B1 DTACK*[0] to LBR*[L] 24 65 20 69 20 75

B2 DTACK*[0] to DSi*[H] 8 24 7 26 7 30

B3 DTACK*[0] to SCON*/
D64[H]

16 59 15 62 15 70

Master D64 Block Transfer with Local DMA (Write)

** First Longword Fetch **

C1 DSACKi*[0] and DS*[L] to
DS*[H]

2, 3, 4 MBAT0+8 MBAT0+T+
36

MBAT0+7 MBAT0+T+
38

MBAT0+7 MBAT0+T+
42

C2 DSACKi*[0] and DS*[L] to
LEDO[H]

2, 3, 4 MBAT0+7 MBAT0+T+
33

MBAT0+6 MBAT0+T+
35

MBAT0+6 MBAT0+T+
36

C3 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 3, 4 MBAT0+
.5T+9

MBAT0+2T+
30

MBAT0+
.5T+8

MBAT0+2T+
32

MBAT0+
.5T+8

MBAT0+2T+
35

C4 DS*(H) to DS*[L] 2, 3, 4,
5

T+8 3T+31 T+7 3T+32 T+7 3T+35

** Second Longword Fetch **

C5 DSACKi*[0] and DS*[L] to
DS*[H]

2, 4 MBAT1+14 MBAT1+T+
46

MBAT1+13 MBAT1+T+
48

MBAT1+13 MBAT1+T+
52

C6 DSACKi*[0] and DS*[L] to
DENO*[L]

4 MBAT1+11 MBAT1+T+
37

MBAT1+10 MBAT1+T+
39

MBAT1+10 MBAT1+T+
42

C7 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 4 MBAT1+
.5T+9

MBAT1+2T+
31

MBAT1+
.5T+8

MBAT1+2T+
32

MBAT1+
.5T+8

MBAT1+2T+
35

C8 DSACKi*[0] and DS*[L] to
DSi*[L]

6 MBAT1+
3T+12

MBAT1+4T+
32

MBAT1+
3T+10

MBAT1+4T+
33

MBAT1+
3T+10

MBAT1+4T+
36

C9 DSACKi*[0] and DS*[L] to
LEDO[L]

4 MBAT1+16 MBAT1+T+
56

MBAT1+15 MBAT1+T+
57

MBAT1+15 MBAT1+T+
64

C10 DS*(H) to DS*[L] 2, 4, 5 T+8 3T+31 T+7 3T+32 T+7 3T+35

C11 DTACK*[0] to DSi*[H] 7 22 6 23 6 25

C12 DTACK*[0] to DENO*[H] 2 8 24 7 26 7 30

VIC64: Additional Information

2-11

Master Block Transfer with Local DMA (Read)

** First Longword Write **

D1 LBG*[0] to DENIN*[L] 2 2T+11 3T+41 2T+10 3T+43 2T+10 3T+48

D2 DTACK*[0] to LEDI[H] 7 2T+6 3T+23 2T+5 3T+24 2T+5 3T+27

D3 DTACK*[0] to DSi*[H] 2, 6 2T+9 3T+28 2T+8 3T+29 2T+8 3T+32

D4 DTACK*[0] to DS*[L] 6 2T+13 3T+36 2T+12 3T+37 2T+12 3T+41

D5 DSACKi*[0] and DS*[L] to
DS*[H]

2, 3, 4 MBAT0+8 MBAT0+T+
37

MBAT0+7 MBAT0+T+
38

MBAT0+7 MBAT0+T+
42

D6 DSACKi*[0] and DS*[L] to
LEDI[L]

3, 4 MBAT0+13 MBAT0+T+
52

MBAT0+12 MBAT0+T+
53

MBAT0+12 MBAT0+T+
60

D7 DSACKi*[0] and DS*[L] to
DENIN1*[L]

3, 4 MBAT0+8 MBAT0+T+
35

MBAT0+7 MBAT0+T+
36

MBAT0+7 MBAT0+T+
41

D8 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 3, 4 MBAT0+
.5T+9

MBAT0+2T+
29

MBAT0+
.5T+8

MBAT0+2T+
31

MBAT0+
.5T+8

MBAT0+2T+
35

D9 DSACKi*[0] and DS*[L] to
DSi*[L]

3, 4 MBAT0+22 MBAT0+T+
56

MBAT0+20 MBAT0+T+
58

MBAT0+20 MBAT0+T+
64

D10 DS*[H] to DS*[L] 2, 4, 5 T+8 3T+29 T+7 3T+31 T+7 3T+35

** Second Longword Write **

D12 DSACKi*[0] and DS*[L] to
DS*[H]

2, 4 MBAT1+8 MBAT1+T+
36

MBAT1+7 MBAT1+T+
38

MBAT1+7 MBAT1+T+
42

D13 DSACKi*[0] and DS*[L] to
DENIN1*[H]

2, 4 MBAT1+16 MBAT1+T+
56

MBAT1+15 MBAT1+T+
59

MBAT1+15 MBAT1+T+
66

D14 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 4 MBAT1+
.5T+9

MBAT1+2T+
29

MBAT1+
.5T+8

MBAT1+2T+
31

MBAT1+
.5T+8

MBAT1+2T+
35

D15 DSACKi*[0] and DS*[L] to
LD(7:0)

2, 4 MBAT1+
.5T+12

MBAT1+2T+
39

MBAT1+
.5T+10

MBAT1+2T+
42

MBAT1+
.5T+10

MBAT1+2T+
48

Master D64 Block Transfer with Local DMA (Boundary Crossing) [2]

E1 DS*[0] to BLT*[H] 3 28 2 30 2 33

E2 DS*[1] to BLT*[L] 3 19 2 20 2 21

E3 DSi*[0] to LADO first tran-
sition

3 19 3 20 2 21

E4 DSi*[0] to LADO second
transition

3 19 3 20 2 21

Slave D64 Block Transfer Address Broadcast Cycle [2]

F1 DSi*[1] to LBR*[L] 11 36 10 39 10 42

F2 DSi*[0] to DTACK*[L] 2T+9 3T+28 2T+8 3T+29 2T+8 3T+32

F3 DSi*[1] to DTACK*[H] 9 28 8 35 8 39

F4 DSi*[1] to SCON*/D64[H] 10 33 9 35 9 39

F5 DSi*[0] and AS*[0] and
SLSELi*[0] to LADI[H]

1.5T+5 2T+25 1.5T+4 2T+26 1.5T+4 2T+29

Slave D64 Block Transfer (Write)

** First Longword Cycle **

G1 DSi*[0] to DS*[L] 2, 4 3T+11 4T+38 3T+10 4T+40 3T+10 4T+44

G2 DSi*[0] to DTACK*[L] 6 2T+9 3T+23 2T+8 3T+24 2T+8 3T+26

G3 DSi*[0] to LEDI[H] 2, 4 T+11 2T+37 T+10 2T+39 T+10 2T+42

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC64: Additional Information

2-12

G4 DSACKi*[0] and DS*[L] to
DS*[H]

2, 4, 8 SBAT0+8 SBAT0+T+36 SBAT0+7 SBAT0+T+38 SBAT0+7 SBAT0+T+42

G5 DSACKi*[0] and DS*[L] to
LEDI[L]

2, 4, 8 SBAT0+13 SBAT0+T+52 SBAT0+12 SBAT0+T+54 SBAT0+12 SBAT0+T+60

G6 DSACKi*[0] and DS*[L] to
DENIN1*[L]

2, 4, 8 SBAT0+8 SBAT0+T+31 SBAT0+7 SBAT0+T+33 SBAT0+7 SBAT0+T+37

G7 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 4, 8 SBAT0+.5T+
9

SBAT0+2T+
29

SBAT0+.5T+
8

SBAT0+2T+
31

SBAT0+.5T+
8

SBAT0+2T+
35

G8 DS*[H] to DS*[L] 2, 4, 5 T+8 3T+31 T+7 3T+32 T+7 3T+35

** Second Longword Cycle[2, 4] **

G9 DSACKi*[0] and DS*[L] to
DENIN1*[H]

SBAT1+20 SBAT1+T+64 SBAT1+19 SBAT1+T+67 SBAT1+19 SBAT1+T+74

G10 DSACKi*[0] and DS*[L] to
DS*[H]

SBAT1+11 SBAT1+T+34 SBAT1+10 SBAT1+T+36 SBAT1+10 SBAT1+T+42

G11 DSACKi*[0] and DS*[L] to
LA(7:0)

SBAT1+.5T+
9

SBAT1+2T+
29

SBAT1+.5T+
8

SBAT1+2T+
31

SBAT1+.5T+
8

SBAT1+2T+
35

G12 DSACKi*[0] and DS*[L] to
LD(7:0)

SBAT1+.5T+
11

SBAT1+2T+
40

SBAT1+.5T+
10

SBAT1+2T+
42

SBAT1+.5T+
10

SBAT1+2T+
48

Slave D64 Block Transfer (Read)

** First Longword Cycle **

H1 DSACKi*[0] and DS*[L] to
LEDO[H]

4, 8 SBAT0+7 SBAT0+T+36 SBAT0+6 SBAT0+T+37 SBAT0+6 SBAT0+T+41

H2 DSACKi*[0] and DS*[L] to
DS*[H]

4, 8 SBAT0+8 SBAT0+T+39 SBAT0+7 SBAT0+T+41 SBAT0+7 SBAT0+T+45

H3 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 4, 8 SBAT0+.5T+
9

SBAT0+T+29 SBAT0+.5T+
8

SBAT0+T+31 SBAT0+.5T+
8

SBAT0+T+35

H4 DS*[H] to DS*[L] 2, 4, 5 T+8 3T+30 T+7 3T+32 T+7 3T+35

** Second Longword Cycle **

H5 DSACKi*[0] and DS*[L] to
LEDO[L]

4 SBAT1+19 SBAT1+T+64 SBAT1+18 SBAT1+T+67 SBAT1+18 SBAT1+T+74

H6 DSACKi*[0] and DS*[L] to
DENO*[L]

4 SBAT1+11 SBAT1+T+37 SBAT1+10 SBAT1+T+39 SBAT1+10 SBAT1+T+42

H7 DSACKi*[0] and DS*[L] to
DS*[H]

2, 4 SBAT1+24 SBAT1+T+72 SBAT1+23 SBAT1+T+75 SBAT1+23 SBAT1+T+85

H8 DSACKi*[0] and DS*[L]
and DSi*[0] to DTACK*[L]

4 SBAT1+13 SBAT1+T+33 SBAT1+12 SBAT1+T+34 SBAT1+12 SBAT1+T+38

H9 DSACKi*[0] and DS*[L] to
LA(7:0)

2, 4 SBAT1+.5T+
9

SBAT1+2T+
29

SBAT1+.5T+
8

SBAT1+2T+
31

SBAT1+.5T+
8

SBAT1+2T+
35

H10 DS1/0*[1] to DENO*[H] 2 6 21 5 22 5 25

Slave D64 Block Transfer (Boundary Crossing)

H11 DS*[0] to LADI[L] 2 11 26 10 28 10 32

H12 DS*[1] to LADI[H] 2 6 13 5 14 5 15

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VIC64: Additional Information

2-13

Notes:

1. All minimum times are guaranteed, not tested.

2. These timings are specified for information, but not tested.

3. For second and all subsequent longword fetches, MBAT1 is used in the timing equations.

4. When the Enhanced Turbo Bit is set, all these times are reduced by 0.5T.

5. Min. and Max. Times are programmable: see Register Descriptions.

6. When the Enhanced Turbo Bit is set, these times become MBAT1+.5T+D min., MBAT1+1.5T+D max.

7. When the Enhanced Turbo Bit is set, all these items are reduced to 0.5T min., 1.0T max., plus appropriate
asynchronous delay from the table. Minimum times reflect unloaded device pins. Actual in-system delays will
be in accordance with the VMEbus specification.

8. For second and all subsequent longword fetches, SBAT1 is used in the timing equations.

VIC64: Additional Information

2-14

Figure 2-1. Master Address Broadcast Cycle

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

B3

B2

VIC64: Additional Information

2-15

Figure 2-2. Master D64 Write Operation: Detail

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

C3 C7

C1 C4 C5 C10

C8

C11

C2

C9

C6 C12

VIC64: Additional Information

2-16

Figure 2-3. Master D64 Write Operation: Block Transfer

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

VIC64: Additional Information

2-17

Figure 2-4. Master D64 Read Operation: Detail

D15
MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

D4

D2

D3

D6

D7 D13

D9

D5 D10 D12

D8 D14

VIC64: Additional Information

2-18

Figure 2-5. Master D64 Read Operation: Block Transfer

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

E1 E2

E3 E4

VIC64: Additional Information

2-19

Figure 2-6. Slave D64 Write Operation: Detail

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

G3

G2

G1

G7

G12

G11

G10

G6

G5

G9

G4 G8

VIC64: Additional Information

2-20

Figure 2-7. Slave D64 Write Operation: Block Transfer

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

VIC64: Additional Information

2-21

Figure 2-8. Slave D64 Read Operation: Detail

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

H3

H1

H2 H4

H9

H7

H8

H5

H6

H10

VIC64: Additional Information

2-22

Figure 2-9. Slave D64 Read Operation: Block Transfer

MWB*

R/W*

LA

LD

BLT*

PAS*

DS*

DSACK1*

DSACK0*

A[31:1]+LWORD*

AM[5:0]

D[31:0]

AS*

DS1*

DS0*

DTACK*

WRITE*

DENIN*

DENIN1*

LEDI

LEDO

DENO*

SCON*/D64

LAEN

LADO

LADI

ABEN*

A3

A4

A5

F2

F3

F5

F4

H11 H12

2-23

2.5
DC Performance
Specifications

Table 2-4. VMEbus Signals (AS*, DS1*, DS0*, BCLR*, SYSCLK)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA, 56 mA, 64 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±10 ±10 ±10 µA

DC Performance Specifications

2-24

Table 2-5. VMEbus Signals (Low Drive. All VMEbus Daisy-Chain Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

DC Performance Specifications

2-25

Table 2-6. VMEbus Signals (Medium Drive. All non-High, non-Low Drive Signals, All VAC068A
VMEbus Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

DC Performance Specifications

2-26

Table 2-7. Non-VMEbus Signals

Table 2-8. Capacitance

Table 2-9. Operating Current

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.00/VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±5 ±10 µA

Parameters Description Test Conditions Max. Units

CIN Input Capacitance TA = 25°C, f = 64 MHz,
VCC = 5.0V

5 pF

COUT Output Capacitance 7 pF

Parameters Description Test Conditions Max. Units

IDD Maximum Operating
Current

No external DC load 150 mA

2-27

2.6
Pin Configurations

144-Pin Thin Quad Flatpack (TQFP)

Top View

G
N

D

LBG*

IR
Q

5*

IPL0
2
3
4

IPL1 IRESET*

5

IPL2 SCON*/D64

6

VCC CLK64M

7

LAEN ABEN*

8

LIAKO* LADO

9

LIRQ1* LADI

10

LIRQ2* LEDI

11

LIRQ3* VCC

12

LIRQ4* LEDO

13

LIRQ5*

108

DDIR

14

LIRQ6*

107

DENIN1*

15

LIRQ7*

106

GND

16

ASIZ1

105

DENIN*

17

ASIZ0

104

DENO*

18

ICFSEL*

103

SWDEN*

19

SLSEL1*

102

ISOBE*

20

GND

101

VCC

21

SLSEL0*

100

GND

22

WORD*

99

D07

23

FCIACK*

98

D06

24

MWB*

97

D05

25

A1

96

D04

26

GND

95

VCC

27

A2

94

D03

28

A3

93

D02

29

A4

92

D01

30

VCC

91

D00

31

A5

90

BGOUT3*

32

A6

89

GND

33

A7

88

BGOUT2*

34

GND

87

BGOUT1*

35

IRQ1*

86

BGOUT0*

36

IRQ2*

85

SYSCLK
IRQ3*

84

BGIN3*
IRQ4*

83

BGIN2*

82
81

41 42 43 44

IR
Q

6*
B

LT
*

45

IR
Q

7*
D

E
D

LK
*

46

V
C

C
LD

7

47

S
Y

S
FA

IL
*

LD
6

48

A
C

FA
IL

*
LD

5

49

S
Y

S
R

E
S

E
T

*
LD

4

50

IA
C

K
O

U
T

*
LD

3

51

IA
C

K
IN

*
LD

2

52

IA
C

K
*

LD
1

53

D
TA

C
K

*
LD

0

54

A
S

*
LA

7

55

G
N

D
LA

6

56

A
M

0
LA

5

57

A
M

1
LA

4

58

A
M

2

14
3

LA
3

59

A
M

3

14
2

LA
2

60

G
N

D

14
1

G
N

D

61

V
C

C

14
0

V
C

C

62

A
M

4

13
9

LA
1

63

A
M

5

13
8

LA
0

64

LW
O

R
D

*

13
7

C
S

*

65

W
R

IT
E

*

13
6

PA
S

*

66

B
E

R
R

*

13
5

D
S

*

67

D
S

0*

13
4

D
S

A
C

K
1*

68

D
S

1*

13
3

D
S

A
C

K
0*

69

B
R

0*

13
2

LB
E

R
R

*

70

V
S

S

13
1

R
E

S
E

T
*

71

B
R

1*

13
0

H
A

LT
*

72

B
R

2*

12
9

R
/W

*

12
3

B
R

3*

12
8

F
C

2

12
2

B
C

LR
*

12
7

F
C

1

12
1

B
B

S
Y

*

12
6

R
M

C
*

12
0

B
G

IN
0*

12
5

S
IZ

1

11
9

B
G

IN
1*

12
4

S
IZ

0

11
8

G
N

D
LB

R
*

11
7

11
6

37 38 39 40

80
79
78
77
76
75
74
73

11
5

11
4

11
3

11
2

11
1

11
0

10
9

14
4

1

Pin Configurations

2-28

160-Pin Quad Flatpack (QFP)

Top View

1GND 120 GDN
2GND 119 GND
3IPL0 118 LBG*
4IPL1 117 IRESET*
5IPL2 116 SCON*/D64
6VCC 115 CLK64M
7LAEN 114 ABEN*
8LIAKO* 113 LADO
9LIRQ1* 112 LADI
10LIRQ2* 111 LEDI
11LIRQ3* 110 VCC
12LIRQ4* 109 LEDO
13LIRQ5* 108 DDIR
14LIRQ6* 107 DENIN1*
15LIRQ7* 106 GND
16ASIZ1 105 DENIN*
17ASIZ0 104 DENO*
18ICFSEL* 103 SWDEN*
19SLSEL1* 102 ISOBE*
20GND 101 VCC
21SLSEL0* 100 GND
22WORD* 99 D07
23FCIACK* 98 D06
24MWB* 97 D05
25A1 96 D04
26GND 95 VCC
27A2 94 D03
28A3 93 D02
29A4 92 D01
30VCC 91 D00
31A5 90 BGOUT3*
32A6 89 GND
33A7 88 BGOUT2*
34GND 87 BGOUT1*
35IRQ1* 86 BGOUT0*
36IRQ2* 85 SYSCLK
37IRQ3* 84 BGIN3*
38IRQ4* 83 BGIN2*
39GND 82 GND
40GND 81 GND

41
V

C
C

16
0

V
C

C
42

V
C

C
15

9
V

C
C

43
IR

Q
5*

15
8

G
N

D
44

IR
Q

6*
15

7
B

LT
*

45
IR

Q
7*

15
6

D
E

D
LK

*
46

V
C

C
15

5
LD

7
47

S
Y

S
FA

IL
*

15
4

LD
6

48
A

C
FA

IL
*

15
3

LD
5

49
S

Y
S

R
E

S
E

T
*

15
2

LD
4

50
IA

C
K

O
U

T
*

15
1

LD
3

51
IA

C
K

IN
*

15
0

LD
2

52
IA

C
K

*
14

9
LD

1
53

D
TA

C
K

*
14

8
LD

0
54

A
S

*
14

7
LA

7
55

G
N

D
14

6
LA

6
56

A
M

0
14

5
LA

5
57

A
M

1
14

4
LA

4
58

A
M

2
14

3
LA

3
59

A
M

3
14

2
LA

2
60

G
N

D
14

1
G

N
D

61
V

C
C

14
0

V
C

C
62

A
M

4
13

9
LA

1
63

A
M

5
13

8
LA

0
64

LW
O

R
D

*
13

7
C

S
*

65
W

R
IT

E
*

13
6

PA
S

*
66

B
E

R
R

*
13

5
D

S
*

67
D

S
0*

13
4

D
S

A
C

K
1*

68
D

S
1*

13
3

D
S

A
C

K
0*

69
B

R
0*

13
2

LB
E

R
R

*
70

V
S

S
13

1
R

E
S

E
T

*
71

B
R

1*
13

0
H

A
LT

*
72

B
R

2*
12

9
R

/W
*

73
B

R
3*

12
8

F
C

2
74

B
C

LR
*

12
7

F
C

1
75

B
B

S
Y

*
12

6
R

M
C

*
76

B
G

IN
0*

12
5

S
IZ

1
77

B
G

IN
1*

12
4

S
IZ

0
78

G
N

D
12

3
LB

R
*

79
V

C
C

12
2

V
C

C
80

V
C

C
12

1
V

C
C

Pin Configurations

2-29

A B C D E F G H J K L M N P R

1

2

3

4

5

6

9

10

11

12

13

14

15

7

8

A02IPL2 LIACKO*

LOCATOR

LIRQ2* ASIZ1

ICFSEL*VCC

SLSEL1* GNDVCCFCIACK*

LD6 MWB*

Pin Grid Array (PGA)

LIRQ5* ASIZ0GND WORD* A04 IRQ4*

BLT* IPL1 LIRQ1* LIRQ4* LIRQ6* A01 A03 A05 A07 IRQ3* IRQ7*

IRQ2* IRQ6*IRQ1*A06GNDSLSEL0*GNDLIRQ7*LIRQ3*IPL0LD2 LD5

LD1 LD3

LD0 LD4LA7

LA3 LA5 LA6

LA2 LA4

LA1 LA0

CS* DS*

PAS*

IRQ5* VCC

VCC

VCC

VCC D00

D01

D04

D03

D05

D06

D07 D02

GNDGND

GND

GND

GNDVCC

GND

LD7

GND

GND

BGOUT0*

BGOUT3* BGOUT2*

BGIN2*BGOUT1* BGIN0*

BGIN3* BGIN1* BCLR*

BBSY* BR1*

BR3*

BR2* DS1* DS0*

BR0*

LEDO

LEDILADO

LADIFC2

FC1

SCON*/D64

DDIR DENIN* DENO*

SIZ0

SIZ1

LBG* ABEN*

IRESET*

HALT*

DSACK0*

LBR*RMC*

R/W*

DSACK1*

RESET*LBERR*

VCC

CLK64M

DENIN1* SWDEN* ISOBE* SYSCLK

BERR* WRITE* AM5

AM3AM2

AM1

AM0

AM4

AS*

LWORD*

DEDLK* LAEN ACFAIL*

IACKOUT*

SYSFAIL* SYSRE-
SET*

IACKIN* IACK*

DTACK*

Bottom View

2-30

2.7
Package Diagrams

144-Pin Plastic Thin Quad Flat Pack (TQFP) A144

Package Diagrams

2-31

145-Pin Plastic Grid Array (Cavity Up) B144

145-Pin Grid Array (Cavity Up) G145

Package Diagrams

2-32

160-Lead Plastic Quad Flatpack N160

Package Diagrams

2-33

160-Lead Ceramic Quad Flatpack (Cavity Up) U162

Section 3

The CY7C960/961 Slave VMEbus

Interface Controllers

3-6

3.1
Introduction

3.1.1 Feature List

Optimal Performance: 80 Mbyte per second Block Transfer Rates

Next-Generation Product: VME64 transactions, including A64/D64, A40/MD32

transfers, Auto Slot ID, CR/CSR space, LOCK cycles etc.

Backwards Compatible: All standard VMEbus transactions implemented

VMEbus Interrupter

Simple to Use: No Local CPU required

Programmable from VMEbus or serial PROM

Highly Integrated: DRAM controller, including refresh timers,

Local I/O controller,

Innovative Architecture: Flexible VMEbus address scheme

User-configured VMEbus Personality

Ultra-Small footprint: TQFP Packaging, and other options.

3.1.2 Family Overview

The CY7C960 and the CY7C961 are members of Cypress’s industry-standard range of VME-
bus controllers. Although they are each low cost, they are highly flexible, and designed to
meet the needs of high performance VMEbus board developers. The CY7C960 is intended
for applications whose primary requirement is board space savings—it offers Slave-only
features. The CY7C961 provides Master support in addition to the Slave features of the ‘960,
and hence occupies a little more board space. Each device has been optimized for VMEbus
performance, supporting the full 80-Mbyte/sec transfer rate of the VME64 specification.

The other members of the family are VIC068A (the industry’s most popular 32-bit VMEbus
interface controller), VIC64 (the 64-bit version of the VIC068A), VAC068A (VMEbus address
controller), and CY7C964 (a useful companion for either VIC068A, VIC64, CY7C960, or
CY7C961).

This Section of the book first describes the CY7C960, then extends that description to the
CY7C961. It is necessary to understand the operation of the CY7C960 before reading the
CY7C961 sections.

Introduction

3-7

3.1.3 CY7C960 Architectural Overview

The CY7C960 Slave VMEbus Interface Controller provides the board designer with an inte-
grated, full-featured VME64 interface. This 64 pin device can be programmed to handle every
transaction defined in the VME64 specification. The CY7C960 contains all the circuitry needed
to control large DRAM arrays and local I/O circuitry without the intervention of a local CPU.
There are no registers to read or write, no complex command blocks to be constructed in
memory. The CY7C960 simply fetches its own configuration parameters during the power-
on reset period. After reset the CY7C960 responds appropriately to VMEbus activity and
controls local circuitry transparently.

Figure 3-1. Typical System Block Diagram

The CY7C960 controls a bridge between the VMEbus and the local DRAM and I/O. Once
programmed, the CY7C960 provides activities such as DRAM refresh and local I/O hand-
shaking in a manner which requires no additional local circuitry. The VMEbus control signals
are connected directly to CY7C960. The VMEbus address and data signals are connected
to companion address/data transceivers which are controlled by CY7C960. The CY7C964
VMEbus Interface Logic Circuit is an ideal companion device: the CY7C964 provides a slice
of data and address logic that has been optimized for VME64 transactions. In addition to
providing the specified drive strength and timing for VME64 transactions, the CY7C964 con-
tains all the circuitry needed to multiplex the address/data bus for multiplexed VMEbus trans-
actions. It contains counters and latches needed during block transfer (BLT) operations. And
it also contains address comparators which can be used in the board’s Slave Address De-

VMEbus

A
dd

re
ss

D
at

a

C
on

tr
ol

CY7C960 Control
CY7C964

(x 4)

A
dd

re
ss

D
at

a

C
on

tr
ol

Local Bus

D
at

a

I/O

A
dd

re
ss

D
at

a

DRAM

Introduction

3-8

coder. For a 6U or 9U application, four CY7C964 devices are controlled by a single CY7C960.
For 3U applications, the CY7C960 controls two CY7C964 devices and an address latch.

If the application does not need VME64 transactions, then the user may choose to implement
the companion logic using Cypress’s inexpensive FCT family of interface devices. The
CY7C960 also provides all of the timing and control signals needed for this application also.
(See Chapter 3.7.)

The design of the CY7C960 makes it unnecessary to know the details of the VMEbus trans-
action timing and protocol. The complex VMEbus activities are translated by the CY7C960
to be simple local cycles involving a few familiar control signals. Similarly, it is not necessary
to understand the operation of the companion device, CY7C964: all control sequences for
the part are generated automatically by the CY7C960 in response to VMEbus or local activity.
If more information is desired, consult Section 4, The CY7C964 Bus Interface Logic Circuit.

VMEbus Transactions supported by CY7C960 include all transactions defined by the VME64
specification. CY7C960 functions as a VMEbus Interrupter, and supports the new Auto Slot
ID standard and CR/CSR space. CY7C960 also handles LOCK cycles, although full LOCK
support is not possible within the constraints of the CY7C960 pinout. (For full LOCK support
see the CY7C961 description.)

On the local side, no CPU is needed to program the CY7C960, nor to manage transactions.
All programmable parameters are initialized through the use of either the VMEbus, or a serial
PROM. As the CY7C960 incorporates a reliable power-on reset circuit, parameters are self-
loaded by the device at power-up or after a system reset. If the VMEbus is used to provide
parameters, a VMEbus Master provides the programming information using a protocol, de-
scribed in a later section, which is compliant with the Auto Slot ID protocol from the VME64
specification.

Figure 3-2 shows the internal blocks that comprise the CY7C960. The architecture includes
several functions that remove most of the VMEbus problems from the board designer’s shoul-
ders. All VMEbus control and response is automatic: the user loads the Region/AM table
during configuration, and the CY7C960 then handles all appropriate VMEbus transactions.
The CY7C964 controller works in lock step with the VMEbus Control Interface, providing the
correct timing and control for the transaction in process. Local circuitry such as DRAM or I/
O is simplified by the Refresh Controller, the DRAM Controller, and the Output Pattern Table.
Block transfers are supported by the Local Address Controller together with the CY7C964
circuitry. Local timing is determined during configuration, and handshaking is available from
the Data Byte Enable Controller. Local Interrupts are supported through the VME Interrupt
Interface. The CY7C960 contains an internal Power-on Reset circuit, and responds also to a
VMEbus SYSRESET*.

To keep the size of the package as small as possible, several signal pins carry multiplexed
signals, and other pins have functions that are programmable.

The Pin Description section, and other parts of this document, provide full information on the
definition and use of these multiplexed signals.

Introduction

3-9

Figure 3-2. CY7C960 Block Diagram

3.1.4 Key Concepts

3.1.4.1 Local Bus Concepts

The CY7C960 has two modes of operation. The mode is selected during initialization. The
user has a choice of DRAM/IO or I/O mode. If DRAM/IO mode is selected, then three Chip
Select Outputs are provided along with the standard DRAM control signals. In I/O mode, six
Chip Select Outputs are provided.

The CY7C960 introduces the concept of Region Mapping. This is a flexible method for selec-
tively enabling VMEbus transactions to map to DRAM or I/O space. In DRAM/IO mode up to
8 Regions can be selectively mapped: in I/O mode up to 16 Regions are mappable. For
example in DRAM/IO mode, Region 0 transfers could provide DRAM transactions while a
transfer to Region 2 could disable DRAM, but provide Chip Select outputs.

The CY7C960 Chip Select Outputs are highly programmable: for each Region a different
pattern can be driven from the available Chip Select Outputs. This allows external expansion
if the three (six in I/O mode) outputs are insufficient. Additionally, the polarity of each chip
select is programmable.

10010011011
00101101100
11000110101
00000001000
10101011111

10010011011
00101101100
11000110101
00000001000
10101011111
11000111001
10110011000
00000000000

Refresh
Controller

Data Byte
Lane

Decoder

VME Control
Interface

AS*
DS0*
DS1*

DTACK*
WRITE*

CY7C964 Controller

D
64

S
T

R
O

B
E

D
E

N
O

*
D

E
N

IN
*

D
E

N
IN

1*
LA

D
I

LA
E

N
LE

D
I

LE
D

O
A

B
E

N
*

LD
S

Timing Generator

DRAM
Controller

R
A

S
*

C
A

S
*

R
O

W
C

O
L

SYSRESET*
Power-On

Reset
Generator

VME Interrupt
Interface

IRQ*
IACK*

IACKIN*
IACKOUT*

LI
R

Q
*

REGION/
AM TableAM[5:0]

REGION[2:0]

Local Address
Controller

LA[7:1]

Data Byte
Enable

Controller

DBE[3:0]

Chip Select
Output Pattern

Table
CS[2:0]

LACK

Local
Control
Circuit

PREN*

R/W*
SWDEN*

LDEN*

CLK

LWORD*

Introduction

3-10

The VMEbus transfer mechanism allows for D8, D16, D32, D32UAT (Unaligned Transfer),
MD32 (multiplexed), or D64 data transfers. The CY7C960 timing and control assume the use
of the companion part CY7C964 that provides multiplexing control for the D64 (and for MD32)
transfers. The CY7C964s are intended to connect to 32- or 16-bit local data buses: the
CY7C960 provides appropriate signals to control byte-lane switching, pipelining and multi-
plexing as needed for the particular transaction in progress.

Four signals are provided for data byte enabling: DBE[3:0]. The CY7C960 controls these
outputs as appropriate for the VMEbus transaction in progress. For example, in a three byte
unaligned transfer on the VMEbus the three correct DBE pins go active. In a VMEbus trans-
action that has been mapped to access local DRAM; RAS*, CAS*, ROW and COL go active
in the normal manner for a DRAM cycle, plus the appropriate DBE pins for the data size being
transferred. In a transaction that has mapped to I/O space; the Chip Select patterns plus the
appropriate DBE pins are driven.

VMEbus 8- and 16-bit transfers are carried on D[15:0]. To allow the use of 32-bit memory,
these bytes need to be swapped onto LD[31:16] for those addresses with LA[1] = 0. CY7C960
drives SWDEN* at the appropriate time to facilitate this byte swapping.

The on-chip DRAM Refresh Controller automatically provides bursts of 4 CAS*-Before-RAS*
refresh cycles at the appropriate times, in a manner that does not interfere with any ongoing
VMEbus or local transaction. No external intervention is needed on behalf of posted data that
was pre-empted by a refresh burst—the cycle completes automatically in all cases.

The CY7C960 can be configured to remain off the local bus upon assertion of a local bus
holdoff signal (LACK). This facilitates connection of the CY7C960 to a local processor, or dual
porting of local memory resources. This requires care in design, however, as long local bus
holdoff time translates to VMEbus timeout. See section 3.5.4 for a full description of Local
Bus Holdoff.

If the CY7C960 cannot provide a refresh burst to DRAM because of local bus holdoff, it will
“remember” the number of missed bursts (up to 64) and “catch up” at the first opportunity.
This also may translate to a VMEbus timeout, as a long DRAM refresh burst will delay the
acknowledgment of a VMEbus transaction directed to DRAM space.

3.1.4.2 VMEbus Concepts

The CY7C964 devices contain address comparator circuitry that can form all or part of the
user’s Slave Address Decoder. The CY7C960 provides timing and control to the CY7C964s
that assumes the CY7C964s are indeed part of the Slave Address Decoder. The CY7C964s
therefore play a key role during the initialization process, providing the base address of the
CR/CSR (Configuration ROM/Control Status Registers) space that the CY7C960 occupies
during configuration. The final step in configuration “moves” the CY7C964 base address to
the intended position in the VMEbus address space. If the application does not use CY7C964s,
the CY7C960 still provides control signals as if the CY7C964s were present. These signals
can be used by external circuitry to accomplish the same tasks.

Introduction

3-11

The CY7C960 recognizes Slave Address Regions which are selected by the use of the 4
REGION inputs (3 in DRAM/IO mode). It is the responsibility of the Slave Address Decoder
circuitry external to the CY7C960 to drive these pins in response to VMEbus address changes.
Thus 16 unique regions (8 in DRAM/IO mode) are recognized by the CY7C960, although
normally at least one region would be used as the “Board Not Selected” region.

The CY7C960 is highly flexible in the manner by which it responds to VMEbus transfers. An
Address Modifier (AM) Code table is configured during initialization which determines whether
specific AM Codes will be recognized. If a particular code is disabled, then no VMEbus DTACK*
is provided and the cycle is ignored. Furthermore, an independent AM Code table is available
for each of the possible regions in the Slave Address Map. This provides great flexibility to
the user: an I/O region could be configured to respond only to single cycle 8/16 bit transfers,
while a DRAM region could be configured to respond only to A64 Block transfers.

3.1.5 Address Mapping

The CY7C960 supports many different schemes for address mapping. The function of the
external decoder circuitry is to provide signals (REGION[3:0]) to the CY7C960 that define
whether the board is addressed in VMEbus Address Space. One simple use of the CY7C960
is shown in Figure 3-3. In this simple case, the CY7C960 has been configured to respond
only to A16 accesses in the VMEbus space 0h–ffffh; to A24 and CR/CSR accesses from
10000h–ff ffffh. From 100 0000h–ffff ffffh the CY7C960 responds to A32 accesses, and drives
local circuitry to route the data to VSB (or Raceway) in the lower part, and to DRAM in the
upper part. Above ffff ffffh, the CY7C960 is programmed to respond to A64 or A40 accesses,
routing the data to DRAM.

Of course, this fictitious example is impractical due the size of the DRAM segments described.
The CY7C960 can support simple contiguous schemes like this one, or arbitrarily complex
decoders at the will of the designer.

Introduction

3-12

Figure 3-3. Possible VMEbus Slave Address Map

0h
A16, and I/O

A24 and CR/
CSR Space

A32 DRAM
Space

VSB or
RaceWay

Space

A64 and A40
DRAM Space

ffff ffffh

 ffff ffff ffff ffffh

100 0000h

10000h

3-13

3.2
 System Block Diagrams

Four examples of system diagrams are shown: a 6U example, a 3U example, a low cost 6U
implementation, and a CY7C961 3U example.

Figure 3-4 shows an example of a 6U form factor board design. The details of the local circuitry
are at the option of the board designer: this diagram illustrates the simplicity of the CY7C960
VMEbus interface. Note that in this example, DRAM/IO mode is selected so there are three
region inputs; the VMEbus is used for configuration as no serial PROM is shown; if AM Code
multiplexing is used, the LA[7:2] pins should be connected to the external address decoder
and LADI is used to latch the code in the decoder. As CY7C964s are used, LAEN is required
to be active High, and hence the internal pull-down resistor is sufficient to define this signal
at power-on. No resistors are shown for clarity: see the Pin Description section (Chapter 3.3)
for details of which signals are required to be pulled up or down.

The four CY7C964s are controlled by the CY7C960. For more details concerning the con-
nection of the CY7C964 to the CY7C960, see the section on CY7C964 Interface (Chapter
3.6). The CY7C960 connects directly to the control signals of the VMEbus as shown. The
CY7C964s connect directly to the VMEbus Data and Address bus. If it is desired to support
8- and 16-bit VMEbus data transfers to 32-bit memory or peripherals, then the Swap Buffer
provides the data path switching needed to transfer the bytes on the appropriate byte lanes.
All timing and control for this comes from the CY7C960. If only 32- and 64-bit transfers are
required, the swap circuitry is not needed. The decoder block provides the function of Slave
Address Map decoding, and is user-defined. The CY7C960 ensures that the VMEbus Address
is available on the local address pins at the appropriate times, and the decoder compares
the value with user-defined inputs. It is the responsibility of the decoder block to provide the
REGION[2:0] inputs to the CY7C960. In very simple systems the address comparators within
the CY7C964s could be used in place of the external decoder block. In Figure 3-4 the
CY7C964s are shown providing part of the decoder function (VCOMP* connections).

Introduction to the VIC068A

3-14

Figure 3-4. CY7C960 6U Block Diagram

The DRAM is controlled by the CY7C960, including refresh, and hence the standard connec-
tions, RAS*, CAS*, and R/W* are shown. The signals ROW, COL, and DBE, are additional
signals provided by the CY7C960 to facilitate control of the array. The local handshake, LACK,
is shown connected to the DRAM array. In some cases it may be desirable to delay the progress
of a DRAM access—LACK can accomplish this. LACK is also used to handshake I/O cycles
if desired. The DBE signals connected to the I/O block provide byte addressing for peripherals
greater than 8 bits wide.

 VME Data Bus D[31:0]

D
[3

1:
24

]

D
[2

3:
16

]

D
[1

5:
8]

D
[7

:0
]

LD
[3

1:
16

]

LD
[1

5:
0]

LA[31:1]

REGION

RAS*, CAS*, ROW, COL

DBE[3:0],R/W*

VCOMP*

 VME Address Bus A[31:1], LWORD*

A
[3

1:
24

]

A
[2

3:
16

]

A
[1

5:
8]

A
[7

:1
],L

W
O

R
D

*

LA[7:1],LWORD*

DRAM
MEMORY

DECODER

I/O

CY7C960

D
S

1/
0*

VME Interrupt Bus

A
M

[5
:0

]

SWAP
BUFFER

CY7C964 CY7C964

LACK

LIRQ*

D
TA

C
K

*

IR
Q

*A
S

*

W
R

IT
E

*

IA
C

K
IN

*
IA

C
K

O
U

T
*

IA
C

K
*

S
Y

S
R

E
S

E
T

*

LA[31:1]

CY7C964 CY7C964

SWDEN*

R/W*

CS[2:0]

Introduction to the VIC068A

3-15

The I/O block is shown providing an interrupt, LIRQ*. This signal causes the CY7C960 to
provide a VMEbus Interrupt. It is the responsibility of the Interrupt Handler and local circuitry
to remove the LIRQ* signal at the appropriate time. The CY7C960 merely copies the value
of the LIRQ* through to its IRQ* pin, and handles the IACK cycles appropriately.

The CY7C960 drives the Chip Select outputs in response to a VMEbus cycle. The pattern
that is driven can be any binary pattern. In this example, the three available chip selects are
programmed to provide a different binary pattern for each of the available eight Regions. They
are connected to the decoder so as to provide a three-to-eight decoder. Thus up to eight
peripherals could be selected in this manner.

Figure 3-5 shows a 3U system diagram. In this case there are only two CY7C964s needed,
along with one 8-bit address buffer. If the AM Code is connected to the external decoder on
pins LA[7:2], then LADI is used to latch the AM Code value in the decoder at the appropriate
time. LAEN is required to be active-High as in the 6U example.

In order to add support for A40/MD32 operations the external decoder would use DENIN*
and DENIN1* to enable the local data LD[15:0] into the decoder comparator, making up the
upper 16 bits of A[39:0]. The CY7C964s provide the multiplexing for the upper 16 bits of the
32-bit data word. The controls for these transactions are provided automatically by the
CY7C960. The DBE signals require combinational logic if the local memory or peripherals
are 16 bits wide, as the CY7C960 is designed to control 32-bit local devices. Thus a VMEbus
D16 block transfer would activate first DBE[1:0], then DBE[3:2], dependent upon the starting
address. The DBEs should be logically combined to produce the desired result. Refer to
section 3.6.3, Swap Buffer Control, for more information.

Figure 3-6 shows a low-cost 6U implementation. The VMEbus address and data are buffered
by Cypress FCT parts as shown, controlled by the CY7C960 without additional logic being
required. In this case the LAEN is required to be active-Low, accomplished at power on using
the pull-up resistor externally as shown. As CY7C964s are not used, the functions that this
schematic provides are limited. For example, no multiplexed data transactions, or A64/A40
transactions are possible. The external address decoder cannot take advantage of the
CY7C964’s on-chip comparators in providing the slave address decode signals REGION[3:0].

Introduction to the VIC068A

3-16

Figure 3-5. CY7C960 3U Block Diagram

Figure 3-7 shows the system diagram for a CY7C961 3U implementation. Note that there are
additional connections to the VME arbitration bus. The block diagram shown supports A40
master operations through the use of an external upper address latch. In this implementation
the local DRAM is 32 bits wide, though the VMEbus data connections are only 16 bits wide.
A swap buffer comprised of bidirectional transceivers such as the CY74FCT162445 is used
to drive the correct byte lanes of the DRAM, controlled by the CY7C961 automatically. Refer
to section 3.6.3, Swap Buffer Control, for more information.

 VME Data Bus D[31:0]

D
[1

5:
8]

D
[7

:0
]

LD
[1

5
:0

]

LA[23:1]

REGION

RAS*, CAS*, ROW, COL

DBE[3:0],R/W*

VCOMP

 VME Address Bus A[31:1], LWORD*

A
[1

5:
8]

A
[7

:1
],L

W
O

R
D

*

LA[7:1],LWORD*

16 bit DRAM
MEMORY

DECODER

I/O

CY7C960

D
S

1/
0*

VME Interrupt Bus

A
M

[5
:0

]
CY7C964

LACK

LIRQ*

D
TA

C
K

*

IR
Q

*A
S

*

W
R

IT
E

*

IA
C

K
IN

*
IA

C
K

O
U

T
*

IA
C

K
*

S
Y

S
R

E
S

E
T

*

CS[2:0]

LA[23:1]

’373 CY7C964
LADI
LAEN

A
[2

3:
16

]

Introduction to the VIC068A

3-17

Figure 3-6. CY7C960 Low-Cost Block Diagram

VCC

LAEN

LADI

R/W*

SWDEN*

LEDI

CY74FCT162245T

C
Y

74
F

C
T

16
54

3T
C

Y
74

F
C

T
1

65
43

T
C

Y
7

4F
C

T
16

23
7

3T
C

Y
74

F
C

T
16

23
73

T

VMEbus P2

VMEbus P1

LD[15:0]

LD[31:16]

CY7C960

LA[31:2]
DENIN1*

DENIN*

LEDO

DENO*

A
[2

3:
1]

, L
W

O
R

D
*

A
[3

1:
24

]

D
[3

1:
16

]

D
[1

5:
0]

>10k

VCC

>10k

Introduction to the VIC068A

3-18

Figure 3-7. CY7C961 3U Block Diagram

These four examples illustrate the flexibility of the CY7C960 and CY7C961 in supporting many
different VMEbus and local bus configurations.

 VME Data Bus D[31:0]

D
[1

5:
8]

D
[7

:0
]

LD
[1

5:
0]

LA[23:2]

REGION

RAS*, CAS*, ROW, COL

DBE[3:0],R/W*

 VME Address Bus A[31:1], LWORD*

A
[1

5:
8]

A
[7

:1
],L

W
O

R
D

*
LA[7:1],LWORD*

32 bit DRAM
MEMORY

DECODER

I/O

CY7C961
D

S
1/

0*

VME Interrupt Bus

SWAP
BUFFER

CY7C964

LACK

LIRQ*

D
TA

C
K

*

A
S

*

SWDEN*

R/W*

CS[2:0]

A
M

[5
:0

]

S
E

LE
C

T
LM

*

VME DTB ARBITRATION BUS

IR
Q

*W
R

IT
E

*

IA
C

K
IN

*
IA

C
K

O
U

T
*

IA
C

K
*B

E
R

R
*

B
R

*
B

B
S

Y
*

B
G

IN
*

B
G

O
U

T

VCOMP*

A
[2

3:
16

]

LE
D

I

SELECTLM*

LD
E

N
M

W
B

*
LA

D
O

UPPER
ADDRESS

LATCH/
COUNTER

LA[23:1]

CY7C964

’543LADI
LAEN321

ABEN*

S
Y

S
R

E
S

E
T

*

3-19

‘

3.3
Pin Description

Figure 3-8. CY7C960 Pin Assignment (TQFP)

3.3.1 VMEbus Signals

AM[5:0] - VMEbus Address Modifier

Input: Yes
Output: No

Signals AM[5:0] are the VMEbus Address Modifier inputs. These input signals are used to
decode the VMEbus transaction type. The CY7C960 provides support for all predefined and
user-defined VMEbus Address Modifiers.

AS* - VMEbus Address Strobe

Input: Yes
Output: No
Active: Low

Address Strobe is the VMEbus signal that informs VMEbus slaves that a valid address is on

the VMEbus. This signal is used by the CY7C960 to qualify the VMEbus Address Modifiers

AM[5:0] and REGION[3:0] inputs to determine if a slave cycle should be performed.

LA7
LA6
LA5
LA4
IRQ*
LA3
Gnd
AM5
LA2
Vcc
LA1
DS1*
LWORD*
LDS
DENIN1*
LAEN

P
R

E
N

*
S

W
D

E
N

*
R

A
S

*/
C

S
4

C
A

S
*/

C
S

5
A

M
2

R
O

W
/C

S
2

C
O

L/
C

S
3

A
M

1
G

N
D

D
B

E
0

A
M

0
V

cc
D

B
E

1
D

B
E

2
D

B
E

3
R

/W
*

LACK*
LIRQ*

LDEN*
CS0
CS1
AM3

REGION3/CS2
AM4
Vcc

GND
REGION2

CLK
WRITE*

REGION1
REGION0

DENIN*

CY7C960

TQFP

Top View

D
E

N
O

*
IA

C
K

O
U

T
*

IA
C

K
IN

*
IA

C
K

*
A

S
*

LA
D

I
S

T
R

O
B

E
A

B
E

N
*

D
TA

C
K

*
G

N
D

D
S

0*
V

cc
S

Y
S

R
E

S
E

T
*

D
64

LE
D

O
LE

D
I

Pin 1

Pin Description

3-20

DS0*, DS1* - VMEbus Data Strobe

Input: Yes
Output: No
Active: Low

DS0* and DS1* are the VMEbus Data Strobe inputs. These signals inform the CY7C960 that
either an address broadcast or data phase of the VMEbus cycle has begun. These signals
in conjunction with the VMEbus LWORD* and LA[1] signals encode the data transfer width
or number of bytes, 1 through 4. This information is necessary to enable the appropriate
CY7C964 data bytes.

IRQ* - VMEbus Interrupt Request

Input: No
Output: Yes
Drive: 48 mA
Active: Low

The IRQ* signal is driven by the CY7C960 to indicate that the local interrupt request signal
is active. The IRQ* pin should be connected to one of the 7 VMEbus interrupt request signals
IRQ[7..1]* in order to implement a standard VMEbus interrupt requester. This signal may also
be used, following a power-on reset, as part of the configuration protocol using the VMEbus
to load the device configuration registers. In this case it shall be connected to VMEbus IRQ2*.

IACK* - VMEbus Interrupt

Input: Yes
Output: No
Active: Low

The IACK* signal further qualifies the VMEbus address transaction. If this signal is asserted
the CY7C960 decodes the VMEbus address transaction as an Interrupt Acknowledge cycle.
During the interrupt acknowledge cycle the CY7C960 will match three bits of the VMEbus
address (A[3:1]) against the user-programmed internal level. If the levels match, IACKIN* is
received active, and a VMEbus interrupt is pending from the device, then the VMEbus interrupt
acknowledge is completed by the enabling of a vector onto the VME data bus. This vector is
user defined, and enabled using the LDEN* signal. CY7C960 assumes that it is an 8-bit
interrupter, and hence responds to all interrupt acknowledge cycles without regard to the size
of the STATUS/ID requested. If a VMEbus interrupt is not pending or IACKIN* is not asserted
to the device this VMEbus address cycle will be disregarded.

IACKIN* - VMEbus Interrupt Acknowledge In

Input: Yes
Output: No
Active: Low

The IACKIN* signal informs the CY7C960 that no other up-stream (daisy chain) VMEbus
device has responded to the VMEbus Interrupt Acknowledge cycle. When IACKIN* is asserted
to the CY7C960 during a VMEbus Interrupt Acknowledge, cycle the device determines if a

Pin Description

3-21

VMEbus interrupt is pending of the same level being acknowledged. If so the CY7C960
generates a local interrupt acknowledge cycle to respond to the pending interrupt. If a local
interrupt is not pending the device asserts IACKOUT*, passing the chain to the next interrupter
on the VMEbus backplane.

IACKOUT* - VMEbus Interrupt Acknowledge Out

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The CY7C960 asserts the IACKOUT* signal during VMEbus interrupt acknowledge cycles if
there is no VMEbus interrupt pending on the device, or if the VMEbus interrupt level being
acknowledged does not match that being requested by the CY7C960.

SYSRESET* - VMEbus System Reset Input

Input: Yes
Output: No
Active: Low

The SYSRESET* input to the CY7C960 halts all local and VMEbus operations and causes
the device to reinitialize all internal register bits. This reinitialization is either performed by
reading the external serial PROM or by an Initialization Master on the VMEbus. When SYS-
RESET* goes Low, all outputs from the CY7C960 become three-state until the first rising
edge on the CLK input.

WRITE* - VMEbus Write Input

Input: Yes
Output: No
Active: Low

The VMEbus WRITE* input encodes the type of VMEbus data cycle in progress. This signal
is asserted when a VMEbus WRITE operation is in progress. During such a transaction, if
the VMEbus address decodes properly, the CY7C960 responds by asserting the local R/W
signal and performing the appropriate local cycle.

DTACK* - VMEbus Data Acknowledge Output

Input: No
Output: Yes
Drive: 64 mA
Active: Low

The DTACK* signal is asserted by the CY7C960 when a valid VMEbus transaction is in
progress and the transaction has remained valid for the proper length of time. The assertion
of this signal informs the VMEbus Master that the slave has either accepted the data during
write operations or has sourced the data during read operations. This signal is a rescinding
output.

Pin Description

3-22

3.3.2 Local Signals

LWORD* - Long Word

Input: Yes
Output: No
Active: Low

This is the local version of the VMEbus signal LWORD* which, when active, indicates either
a D32 or D64 transfer over the VMEbus. The VMEbus LWORD* signal is connected directly
to the A[0] bidirectional pin of the least significant CY7C964. The LA[0] bidirectional pin of
the least significant CY7C964 is in turn connected directly to the LWORD input of the
CY7C960. This signal in conjunction with the DS0*, DS1*, and LA[1] signals encode the data
transfer width or number of bytes, 1 through 4. This information is necessary to enable the
appropriate CY7C964 data bytes.

LA[1] / PCLK - Local Address Signal / Init PROM Clock

Input: Yes
Output: Yes
Drive: 8 mA

During CY7C960 initialization this pin sources or receives a serial-PROM-compatible clock.
The state of this pin is sampled immediately after the power-on reset period expires. If it is
sampled High, then the CY7C960 will source a PROM clock signal (PCLK) during local
initialization. If it is sampled Low then the CY7C960 will accept an external clock which will
advance data through its internal serial chain.

If the CY7C960 receives a High data bit on PDATA during the first initialization clock cycle,
this signal becomes LA[1] and the device expects to be configured from the VMEbus. If the
device receives a Low data bit on PDATA during the first initialization clock cycle, the CY7C960
will either source or receive a clock from this pin and proceed to load configuration data from
the local serial data source.

After initialization, this pin carries the local address signal LA[1].

LA[2] / PDATA / AM[0] - Local Address / Init PROM Data / Local AM code

Input: Yes
Output: Yes
Drive: 8 mA

During device initialization the CY7C960 receives the serial data stream on this signal: if the
local serial method is used, then the serial configuration data comes from the PROM; if the
VMEbus method of configuration is used, then the VMEbus A[2] signal is used to carry the
serially-encoded configuration data, and the appropriate CY7C964 is enabled by the
CY7C960 to provide this data to PDATA. After system initialization this signal becomes local
bidirectional address signal LA[2] or LA[2]/AM[0] depending on the programming.

Pin Description

3-23

If the CY7C960 is programmed for LA/AM multiplexing then the VMEbus signals AM[5:0] will
be driven on LA[7:2] by the CY7C960 between VMEbus accesses. A rising edge on LADI is
used by local external decoding circuitry to latch the AM codes before this bus changes from
providing AM information to providing LA information. The CY7C960 will assert LAEN after
LADI rises which disables the CY7C960 LA[7:1] drivers and at the same time enables the
CY7C964 LA[7:0] drivers. See section 3.5.3.1.

LA[7:3] / AM[5:1] - Local Address Signals

Input: Yes
Output: Yes
Drive: 8 mA

LA[7:3] make up the remainder of the local bidirectional address bus. The CY7C960 only
sources local addresses during VMEbus block transfer operations. During single cycle and
interrupt acknowledge accesses the lowest order address byte is sourced from the respective
CY7C964. The CY7C960 begins to source the least significant byte of local address informa-
tion starting with the second cycle in a VMEbus block transfer. This is done to increment the
local address by the proper amount, 1, 2, or 4, depending on the VMEbus word size of the
transfer.

If the CY7C960 is programmed for LA/AM multiplexing, then the VMEbus signals AM[5:0] will
be driven on LA[7:2] by the CY7C960 between VMEbus accesses. A rising edge on LADI is
used by local external decoding circuitry to latch the AM codes before this bus changes from
providing AM information to providing LA information. The CY7C960 will assert LAEN after
LADI rises which disables the CY7C960 LA[7:1] drivers and at the same time enables the
CY7C964 LA[7:0] drivers.

PREN* - Serial PROM Enable

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The PREN* signal enables the serial initialization PROM. The CY7C960 asserts this signal
when it receives an active SYSRESET* input from the VMEbus or after a power-on reset
period.

LDEN* - Latch Data Enable

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The LDEN* signal is used to select one of several potential latched-data sources. During the
initialization sequence LDEN* is driven Low at the time that the Address Mask and Compare
registers of the CY7C964s are to be loaded. After initialization, LDEN* driven low signifies
that an Interrupt Status/ID or an AUTO ID Status/ID cycle is in progress.

Pin Description

3-24

RAS* / CS[4] - Row Address Strobe / Chip Select 4

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The RAS*/CS[4] output on the CY7C960 is a dual-purpose pin whose function is selected
during the initialization period. When configured to do so, this output controls the row address
strobe function for DRAM. In the general-purpose I/O configuration, this output is a user-
programmable chip select.

CAS* / CS[5] - Column Address Strobe / Chip Select 5

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The CAS*/CS[5] output on the CY7C960 is a dual-purpose pin whose function is selected
during the initialization period. When configured to do so, this output controls the column
address strobe function for DRAM. In the general-purpose I/O configuration, this output is a
user-programmable chip select.

ROW / CS[2] - Row Address Enable / Chip Select 2

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The ROW/CS[2] is a dual-purpose signal whose function is selected during the initialization
period. When configured to do so, this output acts as a row address enable signal, to be used
in conjunction with RAS. In the general-purpose I/O mode, this output becomes a user-
programmable chip select.

When configured for DRAM operation, CY7C960 still provides CS[2] as an output from another
pin: CS[2]/REGION[3].

COL / CS[3] - Column Address Enable / Chip Select 3

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The COL/CS[3] is a dual-purpose signal whose function is selected during the initialization
period. When configured to do so, this output acts as a column address enable signal, to be
used in conjunction with CAS. In the general-purpose I/O mode, this output becomes a user-
programmable chip select.

Pin Description

3-25

DBE[3:0] - Data Byte Enables [3:0]

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

These four signals provide the byte enables for local circuitry, either DRAM or I/O. The size
of the VMEbus data transaction is decoded by CY7C960 from the state of the DS0*/DS1*/
LWORD*/A1 VMEbus signals, and the appropriate byte enable signals are driven. The active
state of the signal is user-programmable during configuration. DBE3 represents LD[7:0].
DBE0 represents LD[31:24].

CS[1:0] - Chip Select [1:0]

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

These two signals are chip select outputs that are available whether the CY7C960 is config-
ured for DRAM or for I/O operations. The behavior of these pins is determined during config-
uration.

R/W* - Read/Write

Input: No
Output: Yes
Drive: 8 mA

R/W* is the local signal that determines if the cycle in progress is a read operation or a write
operation. The CY7C960 asserts this signal Low during write operations.

LIRQ* - Local Interrupt Request

Input: Yes
Output: No
Active: Low

LIRQ* is the local interrupt request input. Asserting this active Low input causes the CY7C960
to assert the VMEbus IRQ* output signal.

LACK* - Local Data Acknowledge/Local Bus Hold-off

Input: Yes
Output: No

The LACK input is used to acknowledge a local data transfer cycle. Asserting this active Low
signal causes DTACK* to be driven on the VMEbus. The user may assert this signal contin-
uously, which causes the CY7C960 to time data cycle acknowledgments: or the user may
withhold assertion of LACK in order to handshake the acknowledge.

Pin Description

3-26

If the CY7C960 has been programmed for local bus hold-off mode, then LACK is also used
to keep the CY7C960 off the local bus. If LACK is deasserted after LADI falls between VMEbus
operations then the CY7C960 will three-state its local drivers and place itself in stand by until
LACK is asserted again.

REGION[2:0] - Local Slave Decode Inputs

Input: Yes
Output: No

The REGION[2:0] inputs are user-programmable address decode inputs. External decoder
circuitry, such as the CY7C964’s, drives these signals when VMEbus addresses match user-
defined values. CY7C960 uses these signals together with the REGION[3] and AM codes to
determine its reaction to the VMEbus cycle. (See section 3.9.1, Region Mapping.)

CS[2] / REGION[3] - Chip Select [2] / Local Slave Decode Input

Input: Yes
Output: Yes
Drive: 8 mA
Active: Programmable

The CS[2]/REGION[3] signal pin has two user-configurable modes of operation. If CY7C960
is configured for I/O operation, the pin becomes the REGION[3] input, providing another
decode input, a total of 4. If CY7C960 is configured for DRAM, then only three REGION inputs
are required, and the pin becomes CS[2]. (See section 3.9.1, Region Mapping.)

CLK - Clock Input

Input: Yes
Output: No

The CY7C960 will operate with any input frequency in the range of 30-80 MHz. However, the
VMEbus will suffer in performance if this clock is slower than 80MHz. All output events occur
on the rising edge of the clock input. All internal states are timed by this signal.

3.3.3 Local Buffer Control Signals

LDS - Local Data Select

Input: No
Output: Yes
Drive: 8 mA

During multiplexed data VMEbus transactions this pin is used by the CY7C964s to select
internal registers. During initialization, this signal determines which of the mask or compare
registers is loaded within the CY7C964s.

Pin Description

3-27

LADI - Latch Address In

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The Latch Address In signal controls the address latches within the CY7C964 that contain
address information to be written to the local bus. The LADI signal is asserted shortly after
the CY7C960 detects an assertion of the VMEbus AS* signal and can be used externally to
latch local AM codes or LA[31:1] values. In system designs that use the CY7C960 with the
CY7C964s this signal can directly connect to the LADI inputs on the CY7C964s.

The state of this pin is sampled immediately after the power-on reset period expires. If it is
sampled High, then the LADI signal will be active Low. If it is sampled Low, then the LADI
signal will be active High.

LAEN - Local Address Enable

Input: No
Output: Yes
Drive: 8 mA
Active: Programmable

The Local Address Enable signal enables the local address output buffer within the
CY7C964s. The state of this pin is sampled immediately after the power-on reset period
expires. If it is sampled High, then the LAEN signal will be active Low. If it is sampled Low,
then the LAEN signal will be active High.

In system designs that use the CY7C960 with four CY7C964s, this signal is connected to only
the least significant device and is active High by default via a weak internal pull-down resistor.
The LAEN inputs of the other three devices are tied High, or controlled by external logic
allowing multi-port local bus accesses. This convention allows the CY7C960 to disable the
address from the least significant CY7C964 so that it can source the least significant byte of
local address during block transfer operations.

LEDI - Latch Enable Data In

Input: No
Output: Yes
Drive: 8 mA

LEDI is designed to control a transparent latch of the type used within the CY7C964. If this
output is Low, data from the VMEbus flows through to the local data bus. Asserting this signal
High closes the latch, maintaining the data present at the rising edge. System designs that
use the CY7C960 with CY7C964s can tie this output directly to the associated LEDI input on
all of the CY7C964s.

Pin Description

3-28

LEDO - Latch Enable Data Out

Input: No
Output: Yes
Drive: 8 mA

LEDO is designed to control a transparent latch similar to the type used within the CY7C964.
If this output is Low, data from the local data bus flows through to the VMEbus. Asserting this
signal High closes the latch, maintaining the data present at the rising edge. System designs
that use the CY7C960 with CY7C964s can tie this output directly to the associated LEDO
input on all of the CY7C964s.

DENO* - Data Enable Out

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The DENO* output controls the VMEbus data bus drivers in the CY7C964s. When data is to
be driven onto the VMEbus, a Low level is driven from this output. A High level on this output
signifies that the VMEbus drivers are high impedance. This pin should be connected to all
the DENO* pins on the CY7C964s.

DENIN*, DENIN1* - Data Enable In Signals

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The DENIN* and DENIN1* outputs control the latching of sections of the VMEbus data. These
two control signals in association with the local SWDEN* signal allow all VMEbus transfer
widths to be transmitted to the local peripherals. These signals are intended to be connected
to the DENIN* and DENIN1* inputs on all the CY7C964s to enable the local bus drivers. See
section 3.6.3, Swap Buffer Control.

ABEN* - Address Bus Enable

Input: No
Output: Yes
Drive: 8 mA
Active: Low

ABEN* is the VMEbus address bus enable out signal. The CY7C960 asserts this signal Low
during VMEbus D64 block transfer read operations, to enable the second longword of data
information onto the VMEbus. This output should be connected to the corresponding ABEN*
inputs on all four CY7C964s. A pull-up resistor is also needed on this pin for proper operation.

Pin Description

3-29

STROBE - CY7C964 Strobe Control

Input: No
Output: Yes
Drive: 8 mA

The STROBE output allows the CY7C960 to control the register loading on the CY7C964s.
Loading the CY7C964 Address Mask and Compare registers requires assertion of the
STROBE signal, with the LDS signal providing the signal that determines which of the two
registers, mask or compare, is loaded. The STROBE output performs this function during
system initialization. Designs that use four companion CY7C964s should tie this output to the
associated STROBE input on all four CY7C964 devices.

D64 - CY7C964 D64 Control

Input: No
Output: Yes
Drive: 8 mA

The D64 output informs external hardware that a D64 VMEbus block transfer operation is in
progress. When a D64 VMEbus address decode cycle is valid this signal asserts High. De-
signs that use four companion CY7C964s should tie this output to the associated D64 input
on all four CY7C964 devices.

SWDEN* - Swap Data Enable

Input: No
Output: Yes
Drive: 8 mA
Active: Low

The SWDEN* signal controls a local swap buffer. This buffer is used to move data to the proper
section of the local data bus during appropriate byte and word width transfers. The CY7C960
local bus ordering convention matches that of the MC68020. This signal asserts Low when
a byte or word width transfer, which always are moved on D[15:0] of the VMEbus, must end
up on D[31:16] of the local data bus. (See section 3.6.3, Swap Buffer Control.)

3-30

3.4
 Programming the CY7C960

The VMEbus board that is designed to use the CY7C960 has what might be called a person-
ality. This encompasses such things as DRAM (speed and amount), I/O circuitry, SRAM, and
other matters under the control of the board designer. To a large extent, this personality has
to be known to the CY7C960. Some portion of this personality is determined when the board
is developed, and is not changed during the board’s lifetime. Other aspects of the personality
could conceivably change from time to time, such as the address to which the board responds,
or the type of VMEbus transaction that it recognizes. All of this information must be provided
to the CY7C960 each time the power is cycled or SYSRESET* is asserted. The designer
might choose to provide switches that convey part of the personality, or he may rely upon
some other VMEbus board to download the information. The CY7C960 has been designed
to support these diverse programming requirements.

First consider the address on the VMEbus to which the board responds. This may be a very
simple application which has only one address range within which to respond; or it may be a
complex address map involving AM Code discrimination, and multiple address ranges. In
either case, the external address comparator circuitry needs to be programmed with the slave
address ranges in which the application will respond. The CY7C960 supports the loading of
this address comparator circuitry from either local circuitry, or from the VMEbus.

For configuration of the other parameters of the user’s application a serial bit stream is used.
The CY7C960 contains approximately 380 programmable bits, each of which must be set to
the right value for the user’s application in order to ensure correct functionality (see Figure
3-9). There are two methods that can accomplish this: the VMEbus can be used to pass
parameters from a VMEbus master to the CY7C960, or a local serial PROM can be used.

Figure 3-9. CY7C960 Initialization Block Diagram

PDATA

REGION/
AM

TableDRAM

RAS/
CAS
Timing

Refresh
Timing/
Enable

ROW/
COL
Polarity

DBE

DBE
Refresh
Enable

PolarityDBE
Timing/

REGION
Table

PCLK
Clock Divider (CLK/80)

DRAM
/IO
Mode

CS

PolarityOutput
pattern/

REGION
Table

Decode
Delay
Time

Serial Shift Register

Programming the CY7C960

3-31

Thus in summary, the slave address map can be obtained either from local circuitry or the
VMEbus, and the configuration data can likewise be obtained either from the VMEbus or from
local circuitry.

The CY7C960 is designed for use with the CY7C964 device. The CY7C964’s address and
mask registers can be used during the configuration process and the CY7C960 provides
timing and control signals during initialization that are intended to load these address and
mask registers. If the target application does not use the CY7C964’s registers as part of the
slave address decoder, these signals can be used by user-defined circuitry to configure the
address decoder. Refer to Section 4, The CY7C964 Bus Interface Logic Circuit, for more
information regarding the signals used to configure the address and mask registers.

The LAEN signal is programmed during the power-on reset period. This signal is used by the
CY7C960 to control the external three-state buffer connected to LA[7:0], enabling the
CY7C960 itself to drive LA[7:0] at certain times. If using the CY7C964, LAEN is required to
be active High; other devices may require LAEN to be active Low. During the power-on reset
period the LAEN pin is sampled to determine whether it is pulled up externally, and if so the
LAEN output becomes an active Low signal.

3.4.1 Configuration Bit Stream

The 380 bits that make up the configuration data are provided to the CY7C960 by either a
series of VMEbus transactions, or by a local serial device such as a serial PROM. The various
fields within the bit stream are used to determine the behavior of the CY7C960, and hence
the application, after configuration is complete. For the duration of the configuration process
two pins, LA[2:1], assume the roles of serial clock and serial data signals. Another pin, PREN*,
is used to enable the external serial device during configuration.

The CY7C960 expects the serial data to arrive on pin LA[2] so if the VMEbus configuration
method is used, it is the responsibility of the remote VMEbus master to encode the desired
configuration stream into 380 VMEbus cycles whose VME address A[2] is controlled by the
desired configuration data bit. Likewise, if using a local serial device, the data output from the
device shall be connected to LA[2].

To assist in the generation of the correct configuration data file, there is a configuration program
available, called WinSvic, that runs on a PC using Windows. This program has extensive help
menus which can be used to better understand the configuration bit stream. See section 3.4.6
for more details on this development tool.

For applications using a local serial device the serial clock may be generated by the CY7C960,
or it may be provided to the CY7C960 by external circuitry.

The CY7C960 determines which method of configuration is desired, and whether to drive a
serial clock or not, as part of the power-on process. This is described in the next section.

Programming the CY7C960

3-32

3.4.2 Operation at Power-On or Reset

The CY7C960 contains a power-on reset circuit. When power is applied to the device this
circuit causes the internal state to be reset. All outputs become three-state until the first rising
edge of the clock input is recognized after the internal power-on reset circuit terminates. (The
time period of the on-chip power-on-reset circuit depends upon the characteristics of the
power supply, but is guaranteed by design to be less than the time period of the rising power
ramp.) Also, if a Low level is applied to the SYSRESET* input the CY7C960 immediately
three-states its output drivers, resets its internal state and waits for the first clock edge before
taking any action. SYSRESET* does not have to be High for the CY7C960 to commence the
configuration operation, but must be High for normal operation to proceed after configuration.

PREN* is asserted Low four clocks after the assertion of SYSRESET*, or after a power-on
reset. If an external serial device is connected, the first bit must be programmed to be zero.
If the VMEbus is to be used, an external pull-up must provide a High level. The PDATA signal
(LA[2]) is sensed 40 CLK periods after the assertion of PREN*. If PDATA is sensed to be High,
PREN* is driven High one CLK period later.

Also, the CY7C960 senses the level of two pins: LAEN and PCLK (LA[1]). LAEN is sensed
to determine whether the signal is desired to be high or low true. PCLK is sensed to determine
whether the pin is to be an input or an output. The point at which these signals are sensed is
40 CLK periods after the assertion of PREN*. LAEN has an internal pull-down of approximately
470 kohms. PCLK has no internal resistor. Whichever level is sensed on LAEN is driven from
the pin one clock period after it has been sensed. If PCLK is determined to be pulled High,
then it is driven Low by the CY7C960 one CLK period after it was sensed: subsequently the
CY7C960 will provide a clock output (of frequency CLK÷80). If PCLK is pulled Low, then
external circuitry must provide the serial clock signal and must not drive the PCLK input High
until at least 40 CLK periods following the falling edge of PREN*.

If the CY7C960 is providing the PCLK signal, the period of each half-cycle is 40 CLK periods,
leading to a PCLK frequency of 1 MHz (CLK÷80). PDATA is required to be stable at each
falling edge on PCLK, when the PDATA is clocked into the serial configuration register inside
the CY7C960. Similarly, if the PCLK signal is provided externally, the PDATA input must be
stable at the falling edge of PCLK. The frequency applied to the PCLK pin from an external
source does not have to be synchronous to the CLK input as the PCLK input is synchronized
internally. The minimum half cycle time for the PCLK input is 50 ns: there is no maximum time
as the design is static.

If SYSRESET* is driven Low by a device on the VMEbus, then the CY7C960 reacts in a
manner similar to the power-on reset: all outputs become three-state until the first rising edge
of the clock (following the falling edge of SYSRESET*), then the PREN* signal is driven Low
and the initialization cycle commences. Note that the configuration cycle commences prior
to the SYSRESET* signal going inactive: this allows the CY7C960 to complete the configu-

Programming the CY7C960

3-33

ration cycle within the 200-ms VMEbus specification for SYSRESET* minimum active time if
the Serial PROM method is used.

If a front panel reset switch is to be used, then external circuitry combines the two sources
of reset (VMEbus SYSRESET* and switch reset), and connects the result to the SYSRESET*
pin. The behavior of the CY7C960 is, of course, identical in the two different methods of
applying reset. (Note, however, that if a manual reset is performed while VMEbus activity is
taking place, the CY7C960 will ignore any VMEbus transactions to any and all Regions until
the configuration has been loaded. This may cause the system timer to timeout, and the
transaction will cause a BERR*.)

Following the reset and configuration sequence, the CY7C960 performs a DRAM refresh
operation (if enabled to do so in the configuration sequence). This is illustrated in Figure 3-
10. This allows a “warm” reset whereby data in DRAM is preserved across reset operations
that do not involve power-down. The length of the refresh depends upon the DRAM configu-
ration selected during initialization: the possible values are from zero bursts to 128 bursts,
each burst being four CAS*-before-RAS* cycles whose cycle timing is taken from the config-
ured values. During the long refresh operation, the CY7C960 monitors the VMEbus: if a
transaction is directed to the CY7C960 which does not require the use of the DRAM circuitry
(for example, a transaction addressed to a Region where DRAM is not enabled), the trans-
action is completed normally. If the DRAM access is required, the cycle cannot complete until
the refresh burst is ended. The detail of the behavior depends upon the transaction: a read
operation of any sort cannot commence until refresh is complete; for write operations, the
first write cycle is DTACK’ed because the CY7C960 always posts write data, but subsequent
write cycles will not be acknowledged until the DRAM refresh burst has completed and the
posted data has been written to DRAM. In all cases, the CY7C960 completes the transaction
correctly.

Following the power-on or reset configuration sequence, and the refresh burst (if enabled),
the CY7C960 will respond to any VMEbus transfers that are enabled by the configuration.

Figure 3-10. Refresh Burst after Initialization

Reset/Initialization finishes
RESET REFRESH BURST (scaled to REFRESH BURST PERIOD)

REFRESH BURST PERIOD

if programmed, DBE follows CAS during refresh bursts.

RAS

CAS

DBE

ROW

COL

Programming the CY7C960

3-34

3.4.3 VMEbus Method

After 40 clock periods, the CY7C960 senses the value of PDATA and PCLK. The VMEbus
initialization method is automatically invoked by the CY7C960 if its PDATA pin is at logic 1 at
power on or during a system reset. (This may be easily accomplished by using a pull-up
resistor for the local address bus.) If PDATA is indeed High at this time, then after SYSRESET*
is deasserted on the VME backplane, CY7C960 asserts its interrupt request line. This interrupt
should be connected to IRQ2* of the VMEbus backplane as the initialization interrupter inside
CY7C960 is hard-coded to respond to that level. (After configuration is complete, the user-
programmed interrupt level is used, but this must match the actual hardware level connected
on the backplane. Therefore if the user wishes to use a level other than 2, external circuitry
is necessary to switch the IRQ output pin to the different VMEbus IRQ signal after initialization.)
See section 3.5.6.

The VMEbus Interrupt Handler must provide a level 2 interrupt acknowledge cycle: the inter-
rupt acknowledge daisy-chain will ensure that the CY7C960 closest to the handler will respond
to the IACK cycle. When the IACK cycle is detected, CY7C960 asserts its LDEN pin, which
provides a signal for enabling initialization interrupt status ID (user defined) onto the local
data bus. This status comes from user-defined external circuitry such as jumpers or latches.
The CY7C964s are controlled by the CY7C960, and hence pass the vector to the VMEbus.
CY7C960 will acknowledge the next VMEbus master write qualified by the A16 (supervisory
or nonprivileged) or CR/CSR AM code and write the VMEbus data to the address registers
of the CY7C964s. Thus, the CY7C964s are now primed to react to that VMEbus address,
unmasked, as the action of writing the compare register clears the mask register in the
CY7C964. The interrupt acknowledge cycle and the following single master write cycle must
be indivisible for guaranteeing system integrity (the board has yet to be positioned in the
VMEbus slave address map, and therefore will respond to ANY A16 or CR/CSR write cycle).
If this indivisibility is not possible, then the local method of configuration must be used.

From this point, CY7C960 expects a series of A16 (or CR/CSR) master write transactions to
be written to the address just programmed. As the board address has now been set in A16
or CR/CSR space, there is no requirement for indivisibility. (There is a requirement that the
AM code for each write transaction be the same as that used in the first transaction: start with
A16, stay with A16; or start with CR/CSR, stay with CR/CSR.) Each transaction carries a
single configuration bit (just like the serial PROM method). The bit must be encoded on the
VMEbus A[2] signal. CY7C960 counts the transactions. After the last transaction of the serial
stream is acknowledged, two more transactions are required, with the same address and AM
code. The data from these transactions are loaded into the compare and mask registers of
the CY7C964s to complete the initialization transaction sequence: the signals that control the
loading of the CY7C964 registers are LDS and STROBE (driven by the CY7C960), and MWB*
and BLT*, (pulled High).

The REGION[3:0] inputs to the CY7C960 should be driven by the user’s external slave address
map decoder. For the very first VMEbus write cycle following the IACK cycle, the REGION

Programming the CY7C960

3-35

inputs are ignored. Since the write cycle is not qualified with address (i.e., REGION), it must
immediately follow the IACK cycle. For subsequent configuration cycles the REGION inputs
must be driven with “xx00” if the CR/CSR AM Code is used; and with “xxx0” (x = don’t-care)
if one of the two A16 AM Codes is used. Note that this system allows the user to connect the
VCOMP (compare) outputs from the appropriate CY7C964 directly to the related REGION
input as a simple configuration address map decoder. If the user requires a more complex
address map, the configuration requirement is easily accomplished.

It should be understood that certain device behavior is not available during the configuration
sequence. Obviously, no VMEbus slave operations can take place other than the configuration
sequence itself. The CY7C960 does not provide AM Codes from the LA[7:2] pins until after
the configuration sequence has completed as the bit that enables this operation is embedded
in the configuration sequence. Similarly, the first IACK cycle is self timed because the bit which
enables IACK cycles to be locally handshaked is embedded in the configuration data.

Figure 3-11 shows the timing of the start of the VMEbus initialization sequence, and Figure
3-12 shows the end.

In summary, the sequence starts by setting the address of the CR/CSR space, then the CR/
CSR is used to load the CY7C960, and finally the board’s Slave Address is loaded. CY7C960
exits initialization mode and, after the refresh burst if so enabled, is ready for service. (Note
that this initialization sequence is compliant with the Auto Slot ID utility of the VME64 speci-
fication.)

Programming the CY7C960

3-36

Figure 3-11. VMEbus Initialization Start

IRQ LEVEL

IRQ LEVEL

STATID

A16 or CR/CSR

CONTROL ADDRESS

 if CR/CSR then ”xx00” if A16 then ”xxx0”

CTRL.

PDATA=1 PDATA=0 PDATA=1

DON’T CARE CTRL. + PDATA CTRL. + PDATA CTRL. + PDATA

STATID

DON’T CARE

SYSRESET*

AM

AS*

IRQ*

IACK*

IACKIN*

IACKOUT*

WRITE*

A

D

DS0*

DS1*

DTACK*

LD

STROBE

REGION

LA

LADI

LAEN

LEDI

LDEN

DENIN

DENO

PREN

LDS

Programming the CY7C960

3-37

Figure 3-12. VMEbus Initialization End

A16 or CR/CSR

COMP. + PDATA COMP. COMP.

PDATA=0

NEW BASE ADDRESS (NBA) ADDRESS MASK

N. B. A. NBA ADDR. MASK

SYSRESET*

AM

AS*

IRQ*

IACK*

IACKIN*

IACKOUT*

WRITE*

A

D

DS0*

DS1*

DTACK*

LD

STROBE

REGION

LA

LADI

LAEN

LEDI

LDEN

DENIN

DENO

PREN

LDS

Programming the CY7C960

3-38

3.4.4 Serial PROM Method

Following the assertion of SYSRESET*, or a power-on reset, CY7C960 drives PREN* Low
and, after 40 CLK periods, senses the state of PDATA and PCLK. If the PDATA pin is Low, the
serial method of configuration is used. The PCLK pin is sampled at this same point to deter-
mine clock direction. If PCLK is High (as controlled by an external resistor), CY7C960 will
drive PCLK to strobe serial data into the CY7C960 from a serial PROM. If PCLK is sensed
Low (as controlled by an external resistor), PCLK becomes the clock input of the CY7C960
serial program register. This option is to allow for programming the CY7C960 from a local
microprocessor.

Once serial configuration has commenced, it continues for a predetermined number of clock
pulses on the PCLK pin. If PCLK is sourced by the CY7C960, the clock frequency is CLK
divided by 80 (maximum rate of 1 MHz), allowing industry-standard serial PROMS to be used.
If PCLK is an input, the CY7C960 expects the PCLK signal to begin in the Low state, then
toggle at a rate not to exceed 10 MHz. Regardless of PCLK direction, the rising edge on PCLK
is assumed to clock the external serial device, and the falling edge is used by the CY7C960
to sample the PDATA input into the internal configuration data stream. PDATA is taken by the
CY7C960 one CLK period after the High-to-Low transition of PCLK. When the correct number
of data bits have been sampled by the CY7C960, PREN* is driven High. This PREN* transition
can be used to disable external clock circuitry.

Once the entire stream of configuration data has been read into the CY7C960, the CY7C964s
(or the external slave address decoders) are now to be configured. If the last bit of the serial
bit stream was a 0 (Low), the CY7C960 assumes that the CY7C964s are to be configured
using local resources. Therefore, the user-defined address and mask data (from latches or
jumpers) are enabled onto the local bus by a combination of the LDEN*, STROBE, and LDS
signals. LDEN* is driven Low when the CY7C960 detects that the serial PROM data has been
loaded, and then LDS selects first the address register (High) then the mask register (Low).
The CY7C960 controls the signal, STROBE, to ensure correct operation. Following the reg-
ister load operation, LDEN* is driven High to disable the user’s latches.

The CY7C960 performs the refresh burst, if so enabled, and is ready for service. The serial
configuration portion of this operation takes approximately 380 µsec if the CY7C960 is pro-
viding the PCLK signal, and hence can be completed within the period of a normal VMEbus
SYSRESET*. If the configuration sequence is invoked from a manual reset, it should be noted
that the CY7C960 ignores any VMEbus activity until the entire configuration sequence is
completed. VMEbus response during the long refresh burst is as described above.

Figure 3-13 shows the start of the Serial programming sequence, and Figure 3-14 shows the
end. SYSRESET* is Low as the sequence starts. This illustrates that serial programming can
be completed before the VMEbus SYSRESET* period (200 ms) ends. There is no actual
requirement that SYSRESET* be Low.

Programming the CY7C960

3-39

The first bit of PROM data after PREN* goes Low is 0: subsequent bits contain appropriate
programming information. After the final bit of PROM Data has been read as a 0, the
CY7C964s are programmed. First LDEN* and STROBE go Low, then STROBE goes High to
load the Address Compare Register. While LDEN* remains Low, one clock after STROBE
goes High, LDS is driven Low to select the Mask Data. A second STROBE pulse is issued to
complete the process. The pulsewidth of STROBE assertion is 40 CLKs High/40 CLKs Low.
See Section 4, The CY7C964 Bus Interface Logic Circuit, if using CY7C964s.

The CY7C960 board is now ready for service, once SYSRESET* goes High.

Figure 3-13. Serial Method Start

Figure 3-14. Serial Method End

3.4.5 Combination Method

The third method of initializing the CY7C960 is simply a combination of the above two methods.
The serial PROM is used to load the configuration data stream, then VMEbus transactions
are used to load the address and mask registers of the CY7C964s. The serial device operates
as described above, except that the final bit is programmed to 1. This is a flag to the CY7C960
to use the VMEbus for the CY7C964 configuration. First the CY7C960 drives PREN* High
and asserts the IRQ* output, which must be connected to the VMEbus IRQ line designated
in the configuration data stream that was just loaded. This interrupt request must be inter-
preted by the interrupt handler in a similar manner to that described earlier for the VMEbus

SERIAL DATA from PROM

SYSRESET*

PREN*

PDATA

PCLK

COMP. MASK

SYSRESET*

LD

LDEN*

PREN*

PDATA

PCLK

STROBE

LDS

Programming the CY7C960

3-40

method: the interrupt acknowledge cycle causes CY7C960 to enable the initialization status
vector using LDEN*. CY7C960 then interprets the next A16 (or CR/CSR) write transaction to
load the CY7C964 address register with the control address. Then it expects the next two
A16 (or CR/CSR) write transactions (to the address just loaded) to be the address and mask
data for the CY7C964s. See section 3.5.6.

Following receipt of these three transactions the CY7C960 initialization is complete.

Regarding the interrupt level used in this combination method: though any level can be used,
if it is desired to be compliant with auto slot ID level 2 should be used.

Figure 3-15 shows the timing of the signals involved in the CY7C964 Address and Mask
register programming that occurs at the end of the serial load sequence. Following the receipt
of the final bit of serial data, CY7C960 waits for a High on SYSRESET* (if SYSRESET* is
Low). Then IRQ* is driven Low. The resultant IACK cycle (AS* #1) causes CY7C960 to drive
LDEN* Low, which causes local circuitry to drive a vector that is passed to the VMEbus. The
interrupt handler must be programmed to then write the CR/CSR base address (AS* #2). This
can use the CR/CSR AM Code, or one of the two A16 AM Codes. Note that, as the board
has not yet been programmed, the VMEbus Address, and hence the REGION inputs to
CY7C960 are not significant. The implication of this is that the IACK cycle and the first write
cycle must be indivisible on the VMEbus. The CY7C964s are primed to receive the Address
Compare data as STROBE previously went Low while LDS was High. DENIN* and DENIN1*
go Low, which drives the latched VMEbus data onto the local bus. This is the Address Compare
register value, the CR/CSR base address value. The CY7C960 drives STROBE High, latching
the value into the CY7C964 Compare register (and clearing the Mask register in the process).
Now the CY7C964s have a meaningful value to compare against VMEbus address, and the
REGION inputs to the CY7C960 become significant. If A16 cycles are used the CY7C960
expects the value “xxx0” on REGION[3:0], or if CR/CSR cycles are used, “xx00”. The next
two write cycles must be of the same AM Code as the first write cycle, but they do not have
to be indivisible. AS* #3 provides the “final” address for the board’s slave address map, and
AS* #4 provides the associated mask pattern. Note that during cycle #3 LEDI goes High: this
latches the value of the VME data bus inside the CY7C964. Then during cycle #4, while the
VMEbus is carrying the mask value, the data held from cycle #3 is loaded into the Address
Compare register (STROBE going High), then LDS and STROBE toggle, selecting the Mask
Register. Finally, LEDI goes Low allowing the Mask data to flow from the VMEbus, and
STROBE goes High loading the Mask register. The CY7C964s are now primed to respond
to the appropriate address.

Programming the CY7C960

3-41

Figure 3-15. Combination Method Timing

3.4.6 Configuration Software

To assist in developing and debugging CY7C960 configurations for specific applications,
Cypress has developed a Windows-based program called WinSvic. This program assists in
configuration by leading the designer through all the steps needed to successfully generate
the file that will be used to configure the CY7C960 during initialization

Vector CR/CSR Base Address Compare Register Mask Register

CR/CSR Code CR/CSR Code CR/CSR Code

IRQ Level 2 Don’t Care CR/CSR Base Address CR/CSR Base Address

Don’t Care CR/CSR Base Address

xxxx xx00 xx00

1 2 3 4

CR/CSR Base Compare Comp Mask

AM

AS*

REGION

IRQ*

IACK*

WRITE*

A

D

DS0*,DS1*

DTACK*

LDEN*

PREN*

LA

LADI

LAEN

DENIN*

LD

LEDI

LDS

STROBE

Programming the CY7C960

3-42

WinSvic presents device configuration graphically as a set of nested menu forms. The main
screen provides for selection of basic options, such as DRAM/IO versus I/O mode, Decode
Delay, and the method by which the CY7C960 is to be configured (Serial, Serial/VME, or
VME). Selecting options changes the availability of submenu forms. For example, when
DRAM/IO mode is selected, the I/O configuration submenu button is greyed out.

Selecting I/O mode allows the designer to move into the IO submenu. Here the polarity of the
six available chip select outputs are individually specified, and for each Region, the pattern
to be driven from the Chip Selects when that Region is addressed. Chip Select Assert Time
is also specified for each individual Region.

A second submenu, the AM Code dialog box, allows specification of which AM codes are to
be accepted as valid for each Region. The special AM codes, CR/CSR, USER1, USER2,
LOCK, and SERIAL, are also enabled and assigned in this submenu.

If DRAM/IO mode is selected, the designer can access the DRAM submenu to specify various
DRAM configuration options. DRAM timing parameters such as, RAS*/CAS* Delay, RAS*
PreCharge, and CAS* Assert are specified in terms of CY7C960 CLK periods. Refresh con-
trols, DRAM Region enables, Chip Select pattern and polarity, and ROW/COL control polarity
are all selectable from this form.

Once the appropriate submenus have been negotiated, the main menu is revisited, and the
configuration file can be written to disk using the appropriate button or menu choice.

Context sensitive help is available, and the program can write existing names for modification
and adjustment. WinSvic guides the designer through the configurability of the CY7C960,
making clear the relationship between operating modes and programmable features.

3.4.7 Programmable Features

During configuration the CY7C960 functionality is selected, and many timing parameters are
set. For more information on the individual functions read the appropriate chapter of this
document. The following two tables serve as a brief outline of the various functions.

The CY7C960 can be viewed as having two sections: Local Bus side, and VMEbus side. Table
3-1 indicates the programmable functions that the user employs to affect the behavior of the
local side of the chip. The part has two basic modes of operation: DRAM/IO and I/O. A bit in
the configuration bit stream selects between the two modes. Table 3-2 illustrates what control
the user has over the VMEbus responses.

Programming the CY7C960

3-43

Table 3-1. Local Bus Programmable Functions

Table 3-2. VMEbus Programmable Functions

Programmable Function DRAM Mode I/O Mode

Polarity of data byte enable pins All 4 either hi or low true All 4 either hi or low true

Chip Select Output Pattern 3 signals 6 signals

DBE assert timing If DRAM disabled in region, 3 to
18 clock periods

3 to 18 clock periods

Chip Select Output Polarity Individually selected hi or low Individually selected hi or low

Polarity of ROW/COL signals Individually selected hi or low Not Available

RAS/CAS Delay 2 to 9 clock periods Not Available

RAS Precharge 5 to 12 clock periods Not Available

CAS Assert Time 3 to 10 clock periods Not Available

CAS Precharge 1 to 8 clock periods Not Available

Refresh burst period (1 to 255) * 256 clock periods Not Available

Enable Refresh Selectable Not Available

Use DBE pins for refresh Selectable Not Available

Number of Regions 0 to 8 0 to 16

Enable DRAM Region access Individually Not Available

Function Programmable Response

Decode delay from Address Strobe 2 to 5 clock periods

User group 1 (AM Code 18 - 1F hex) Any 1 region, or none

User group 2 (AM Code 10 - 17 hex) Any 1 region, or none

CR/CSR Any 1 region, or none

Serial Any 1 region, or none

Lock Any 1 region, or none

Block Transfers, including MBLT Any number of regions

Data Access Any number of regions

Program Access Any number of regions

Supervisory Access Any number of regions

Non Privileged Access Any number of regions

A64 Transfers Any number of regions

A40 Transfers Any number of regions

A32 Transfers Any number of regions

A24 Transfers Any number of regions

A16 Transfers Any number of regions

D32/D64 Transactions Any number of regions

Interrupt Level for IACK response 1 to 7

3-44

3.5
 VMEbus Interface

Description
3.5.1 Definition of Terms

DSi* Either or both of DS0* and DS1*, the VMEbus data strobe signals

DSA* The first of DS0* or DS1* to be asserted

DSB* The second of DS0* or DS1* to be asserted

6U, 3U The two most common sizes for VMEbus boards

3.5.2 Overview

The CY7C960 and its companion part, the CY7C964, provide a VMEbus interface that is fully

compliant with IEEE 1014 rev C (original VMEbus specification) and the VME64 specification.

Table 3-3 lists the slave accesses that are supported on the VMEbus.

Table 3-3. VMEbus Transactions Recognized by the CY7C960

VMEbus
Cycle Type Description

D8, D16, D32 8-, 16-, and 32-Bit Single Cycle Accesses. The VMEbus Master asserts DSi*, and the
CY7C960 responds with DTACK*. Data is transferred in one cycle.

ADO Address Only. A VMEbus Master broadcasts an address on the bus without any data
strobe assertion. There is no data phase and no local access associated with this cycle.

ADOH Address Only With Handshake. A VMEbus Master broadcasts an address on the bus
and asserts data strobes. The CY7C960 will handshake the address broadcast by
asserting DTACK* Low in response to the assertion of data strobes. There is no data
phase and no local access associated with this cycle. (The CY7C960 asserts Chip
Selects, but not DBE.)

MD32 Multiplexed 32-Bit Single Cycle Access. A VMEbus Master broadcasts a 40-bit address
using the address and data lines. The CY7C960 will handshake the address broadcast
by asserting DTACK* Low in response to the assertion of data strobes. The Master then
initiates another cycle that uses 16 bits of the data bus and 16 bits of the address bus
to transfer 32 bits of data in single bus cycle. This transaction is typically used in 3U
applications.

D8:BLT,
D16:BLT,
D32:BLT

8-, 16-, and 32-Bit Block Transfers. The VMEbus Master asserts DSi*, the CY7C960
handshakes with DTACK*. The Master continues with DSi* assertions. When AS* is
deasserted, the block transfer is ended.

VMEbus Interface Description

3-45

MD32:BLT Multiplexed 32-Bit Block Transfer. A VMEbus Master broadcasts a 40-bit address using
the address and data lines. The CY7C960 will handshake the address broadcast by
asserting DTACK* Low in response to the assertion of data strobes. The Master then
initiates a series of cycles that use 16 bits of the data bus and 16 bits of the address
bus to transfer 32 bits of data in each cycle of the burst. This transaction is typically
used in 3U applications.

D64:MBLT Multiplexed 64-Bit Block Transfer. A VMEbus Master broadcasts a 32- or 24-bit address
on the address lines or a 64-bit address on the address and data lines. The CY7C960
will handshake the address broadcast by asserting DTACK* Low in response to the
assertion of data strobes. The Master then initiates a series of cycles that use 32 bits
of the data bus and 32 bits of the address bus to transfer 64 bits of data in each cycle
of the burst. When AS* is deasserted, the block transfer is ended.

D8:RMW,
D16:RMW,
D32:RMW

8-, 16-, and 32-Bit Read-Modify-Write Cycles. A VMEbus Master reads data from the
slave board, modifies that data, and writes it back to the board in a single transaction.
The CY7C960 provides DTACK* in response to each DSi* assertion.

MD32:RMW Multiplexed 32-Bit Read-Modify-Write. A VMEbus Master broadcasts a 40-bit address
using the address and data lines. The CY7C960 will handshake the address broadcast
by asserting DTACK* Low in response to the assertion of data strobes. The Master then
initiates a cycle that reads 16 bits of the data bus and 16 bits of the address bus, modifies
that data, and writes the data back in a single VMEbus access. This transaction is
typically used in 3U applications. The CY7C960 provides DTACK* in response to each
DSi* assertion.

D32:UAT 32 Bit Unaligned Transfer. A VMEbus Master transfers 16 or 24 bits of data using a
single cycle access. For example, a Master may transfer 16 bits of data using VMEbus
data Byte 1 and Byte 2. The CY7C960 provides DTACK* in response to the DSi* asser-
tion.

A16, A24, A32,
A40, A64

The CY7960 can be programmed to respond to any of the address-based AM codes.

CR/CSR Configuration ROM/Control and Status Register accesses. The CY7C960 can be pro-
grammed to respond to this AM Code.

SERIAL Serial cycles. The extension to the VMEbus specification defines the use of certain
reserved AM Codes for this serial data interface. The CY7C960 can be programmed to
respond to these AM Codes.

LOCK LOCK cycles. The CY7C960 provides limited support by acknowledging the address
broadcast from the VMEbus Master. No local signals are driven. The CY7C961 device
provides a complete LOCK facility.

USER 16 VMEbus AM codes grouped as USER1(18–1F) and USER2 (10–17). The CY7C960
can be programmed to respond to these transactions.

IACK The VMEbus Interrupt Handler provides an IACK cycle in response to a VMEbus inter-
rupt. The CY7C960 responds to IACK cycles as appropriate.

Table 3-3. VMEbus Transactions Recognized by the CY7C960 (continued)

VMEbus
Cycle Type Description

VMEbus Interface Description

3-46

There are many features of the CY7C960 interface solution which can be combined in various
ways and augmented with external decoder logic to configure a slave board to respond in any
of 16 VMEbus address regions. The CY7C960 can be programmed to respond to a subset
of the transaction types listed in Table 3-3 when they occur within user-specified regions of
VMEbus address space. (Refer to Programming the CY7C960 for complete details on how
to configure the device.) This section will describe how the CY7C960 uses its AM code
programming and REGION inputs to respond to certain transactions within certain address
regions and how the CY7C960 is selected by a Master. As the CY7C960 is designed to handle
the complexity of the VMEbus transaction processing without external assistance, it is not
necessary to understand the internal circuitry to any great extent. The following two sections
provide the basic knowledge needed to use the device: the rest of the chapter can be viewed
as reference material.

3.5.3 Region Mapping

The CY7C960 receives VMEbus address decoder information on its REGION inputs. Slave
selection begins by decoding these inputs. There are four REGION inputs available when the
CY7C960 is configured as an IO controller and three REGION inputs when it is configured
as a combination DRAM/IO controller. Refer to the Local Interface Description for details on
these configurations. The IO controller configuration will be assumed for the purpose of this
discussion.

The purpose for providing this large number of Regions is to allow a board to respond differ-
ently to the various VMEbus transactions that can be enabled. Each Region can have its own
“personality.” For example some respond to block transfers, some do not. One or more of the
16 decoded Regions can be designated as the “unselected” regions. The way this is done is
described in the next section.

The CY7C964s are configured to drive the VME address onto the local address bus. VMEbus
addresses flow through and allow external decode logic to take advantage of the VMEbus
buffering provided by the CY7C964 transceivers. In the case of A64 and A40 transactions,
the CY7C960 provides two signals, DENIN* and DENIN1*, which can be used to instruct the
external decoder circuitry when to sample the VMEbus data signals (available on the local
data bus, buffered by the CY7C964 devices) for this multiplexed address information. Thus,
the user may choose to implement a comparator externally of any complexity and drive the
REGION inputs from this external circuit.

The amount of time the CY7C960 waits before sampling the REGION inputs is specified
during initialization. The parameter is called Decode Delay. The CY7C960 starts counting the
number of clocks that occur from the assertion of AS* by the VMEbus Master. When the
number of clocks equal the Decode Delay, the CY7C960 samples the four REGION inputs to
determine which one of 16 possible address regions the cycle is directed towards.

Decode delay starts with the sampling of DSB* instead of AS* in the case of multiplexed
address cycles such as A64. This is to allow address information to arrive on the VME data bus.

VMEbus Interface Description

3-47

If the minimum decode delay is specified, then the REGION inputs must be stable when AS*
is sampled Low. If the maximum decode delay is specified, then the REGION inputs must be
stable five clocks after AS* assertion. See Figure 3-16 for an example of a Decode Delay of
3 clock periods.

Figure 3-16. Decode Delay Example

3.5.3.1 AM/LA Multiplexing

The AM/LA Multiplexing feature of the CY7C960 is an extension to the Region Mapping
capability described above and is enabled by setting a bit in the serial programming stream.
This feature adds even more flexibility for mapping slave accesses to specific regions by
providing VMEbus AM code information on LA[7:2] during the slave decode period of a VME-
bus transaction. During this period the CY7C964s are driving upper address information on
LA[31:8] and the CY7C960 is driving AM codes on LA[7:2]. With this feature enabled, external
circuitry can be implemented to decode both address and AM code information in parallel
during the decode delay period.

To demonstrate the power of this feature, consider a VME slave with one A24 CSR region
and one A32 memory region with LOCK support. It is not sufficient to monitor just the VMEbus
address lines because they may satisfy both the A24 and A32 decode conditions. For this
application an external decoder must monitor the VMEbus AM lines in order to discriminate
between A24 CSR and A32 LOCK cycles. This would require connecting AM[5:0] to both the
CY7C960 and the external decoder, a violation of the VMEbus specification on signal loading.
With the addition of local AM signalling, the CY7C960 and CY7C964s are the only load on
the VMEbus and together they pass all available VMEbus addressing information to the local
side of the interface for decode processing.

AM/LA multiplexing begins immediately after initialization. The address transceivers on the
CY7C964s are enabled onto the upper bytes of the local address bus while the address
transceivers on the CY7C960 are enabled onto the least significant byte. VMEbus addresses
flow through the CY7C964s and VMEbus AM codes flow through the CY7C960 as shown in
Figure 3-17.

ValidInvalid

AS*

Clk

REGION[3:0]

Decode Delay

VMEbus Interface Description

3-48

Figure 3-17. AM/LA Multiplexing with Decode Delay = 2T

The assertion of LADI is the event used to latch the local AM codes presented on LA[7:2]
within an external decoder. The CY7C960 local address transceivers are disabled and the
CY7C964 local address transceivers are enabled one clock after LADI assertion. The VMEbus
signals A[7:1] and LWORD* will flow through to LA[7:0] of the least significant CY7C964 at
this time. The CY7C960 then stores the values presented to it on LA[1] and LWORD* to
complete the slave decode process. These values are used to compute the correct data byte
enable pattern during the data phase of the access.

Figure 3-18 shows the effect of introducing Decode Delay to the address phase of a slave
access when AM/LA Multiplexing is enabled. The timing of AS* sampling, LADI assertion,
and local address bus transition from AM[5:0] to LA[7:1] and LWORD* remain the same as
in Figure 3-17 while the duration of LA[7:1], LWORD*, and the time to valid chip selects will
increase according the number of Decode Delay clocks programmed at initialization.

Figure 3-19 represents the same slave access as in Figure 3-17 except that AM/LA multiplex-
ing is turned off. In this case, all four CY7C964s are enabled onto the local bus while the
CY7C960 is waiting to be accessed by a Master. The CY7C960 will not drive the local address
bus until the second and subsequent beats of a Block Transfer.

VALID AM CODE

AM[5:0]

VALID

 CY7C964 drives LA[7:1] CY7C960 Drives

VALID

AM

AS*

LADI

CS

LAEN

LA[7:0]

LA[31:8]

REGION

DBE

CLK

VMEbus Interface Description

3-49

Figure 3-18. AM/LA Multiplexing with Decode Delay = 5T

Figure 3-19. AM/LA Multiplexing Disabled with Decode Delay = 2T

VALID AM CODE

AM[5:0]

VALID

 CY7C964 drives LA[7:1]

VALID

CY7C960 Drives

AM

AS*

LADI

CS

LAEN

LA[7:0]

LA[31:8]

REGION

DBE

CLK

VALID AM CODE

VALID

CY7C960 Drives

VALID

CY7C964 Drives LA[7:1]

AM

AS*

LADI

CS

LAEN

LA[7:0]

LA[31:8]

REGION

DBE

CLK

VMEbus Interface Description

3-50

3.5.4 Bus Holdoff

The Bus Holdoff feature of the CY7C960 provides the ability to three-state the slave interface
chip set (CY7C960 and CY7C964s) and suspend slave decode activity in order to easily dual-
port devices mapped as VMEbus slave resources. This feature also extends the functionality
of the CY7C961 by allowing local configuration of its master DMA channel. The feature is
enabled by setting a bit in the serial programming stream.

The mechanism for Bus Holdoff is overlaid on the CY7C960 LACK pin. When Bus Holdoff is
enabled, LACK acquires a local bus grant function in addition to its previously described local
transaction acknowledge function. By controlling LACK deassertion, it is possible to suspend
all local response of the slave interface chip set, effectively delaying the next VMEbus slave
access until LACK is reasserted.

While the CY7C960 is in its holdoff state, output signals DBE, RW, CS, and LA are three-
state, and control signals DENIN[1:0]* and LAEN three-state the LD and LA pins of the least
significant CY7C964 device. LAEN on the most significant CY7C964s must also be externally
controlled during Bus Holdoff. This holdoff configuration is intended to allow simple design of
address, data, and control multiplexing to achieve dual-ported local memory architectures.

The CY7C960 Bus Holdoff feature conceptually allows cycle stealing by other local bus mas-
ters. This is accomplished by using an output of the CY7C960, the LADI signal, as an interface
busy signal. A local bus arbiter can monitor LADI and deassert LACK within two clocks after
a deassertion edge on LADI. LADI deassertion represents the end of a VMEbus transaction
regardless of whether it was decoded by the CY7C960 interface. If LACK is deasserted in
the bus holdoff window, the local bus is three-state until LACK is again asserted. If LACK is
deasserted outside the holdoff window, LACK performs its local acknowledge function.

3.5.4.1 Transaction Type Detection

There is another internal decoder: the CY7C960 decodes AM[5:0] and forms an internal
Address Modifier Decode Word after the same Decode Delay interval that is used for sampling
the REGION inputs. As the VMEbus specification dictates that AM Codes be stable prior to
the assertion of AS* then the Decode Delay is unnecessary, but is used for convenience.

Two fields result from decoding the AM Codes: Address Size and Modifiers. Table 3-4 provides
a definition of the CY7C960’s classification of AM Codes.

VMEbus Interface Description

3-51

Figure 3-20. Local Bus Holdoff

r

Table 3-4. AM Code Decode

Address
Size Modifier VMEbus Transactions

A64 A64 block transfer (BLT); A64 single cycle access; A64 64-bit block transfer
(MBLT); A64 lock command (LCK); A64 serial access

A40 A40 block transfer (BLT); A40 single cycle access; A40 lock command (LCK); A40
serial access

A32 A32 supervisory block transfer (BLT); A32 supervisory program access; A32 su-
pervisory data access; A32 supervisory 64-bit block transfer (MBLT); A32 non-
privileged block transfer (BLT); A32 non-privileged program access; A32 non-
privileged data access; A32 non-privileged 64-bit block transfer (MBLT); A32 lock
command (LCK); A32 serial access

A24 A24 supervisory block transfer (BLT); A24 supervisory program access; A24 su-
pervisory data access; A24 supervisory 64-bit block transfer (MBLT); A24 non-
privileged block transfer (BLT); A24 non-privileged program access; A24 non-
privileged data access; A24 non-privileged 64-bit block transfer (MBLT); A24 lock
command (LCK); A24 serial access

A16 A16 supervisory access; A16 non privileged access; A16 lock command (LCK);
A16 serial access

SUPER Supervisory access

NPRIV Non-Privileged access

PROG Program access

BLT Block transfer (inc. MBLT)

LONG 32 or 64 bit access (not 8 or 16)

LOCK A64 lock command (LCK), A40 lock command (LCK), A32 lock command (LCK),
A24 lock command (LCK), A16 lock command (LCK)

SERIAL A64 serial, A40 serial, A32 serial, A24 serial, A16 serial

CR/CSR Configuration ROM/Control and Status Register

U1, U2 User Defined (U1 includes AM Codes 18–1F, U2 includes 10–17)

CLK

LACK

LADI

RW

LAEN

LA

LD

DENIN

DBE

CS

VMEbus Interface Description

3-52

It should be noted that the parameter LONG is derived from a combination of DSi*, LWORD*,
and AM Code. For more information on AM Code definitions, it is recommended that the
VMEbus Specification be consulted.

The reason that the CY7C960 decodes the AM Code this way is to allow the user to enable
VMEbus transactions selectively by AM Code classification. For example, a transaction with
AM Code “0C” would result in the following settings: A32, SUPER, BLT, LONG. The CY7C960
would react to the transaction only if all four categories were enabled for the addressed Region.
The CY7C960 consults a look-up table, configured during initialization, to determine whether
the transaction is enabled or not. Table 3-5 is an example of how this table could be pro-
grammed.

Table 3-5. Major AM-to-Region Mapping Example

If the CY7C960 is configured according the table above, then it will respond as slave under
the following conditions.

If the REGION inputs are “0000”, then the CY7C960 will respond to A64 block transfers of
type BLT or MBLT.

If the REGION inputs are “0001”, then the CY7C960 will respond to A40 block transfers of
type D8:BLT, D16:BLT, or MD32:BLT.

If the REGION inputs are “0010”, then the CY7C960 will respond to A32 supervisory program
accesses of type D8, D16, or D32 (single cycle).

If the REGION inputs are “0011”, then the CY7C960 will respond to A24 non-privileged data
accesses of type D8, D16, or D32 (single cycle).

REGION A64 A40 A32 A24 A16 SUPER NPRIV PROG DATA BLT LONG

0 ✓ ✓ ✓ ✓

1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓ ✓

5 ✓ ✓ ✓ ✓ ✓ ✓ ✓

6

7

8

9

10

11

12

13

14

15

VMEbus Interface Description

3-53

If the REGION inputs are “0100”, then the CY7C960 will respond to A24 supervisory program,
and A16 supervisory accesses of type D8 or D16 (single cycle). Note that D32s will not be
responded to in this region because LONG is not set.

If the REGION inputs are “0101”, then the CY7C960 will respond to any A32 AM Code other
than A32 LOCK and A32 SERIAL which must be enabled separately (see below).

If the REGION inputs are any other value, then the CY7C960 will assume that the cycle is
intended for another board and will not respond.

LOCK, SERIAL, USER, and CR/CSR AM codes are treated somewhat differently from the
“mainstream” codes. Each of these codes can be assigned to only a single specific REGION.
Since these transactions are typically mapped to a single address space on a board, it was
not necessary to include them in all 16 rows of the main REGION/AM decode lookup table.
The user simply selects which, if any, of these transactions should be decoded and assigns
a valid REGION pattern to them.

Table 3-6 shows an example: A32 LOCK transactions are enabled in Region 0; A40 and A16
SERIAL transactions are enabled in Region 8; User AM codes in group 1 are enabled in
Region 10; the remaining two classifications are disabled (but had they been enabled they
would have been enabled for Region 2).

Table 3-6. Minor AM-to-Region Mapping Example

If the VMEbus transaction is determined by the above process to be enabled for the Region
being addressed, then the CY7C960 internal flag DECODE is set, allowing local activity to
commence. Figure 3-21 shows a flowchart representation of the process of decoding a VME-
bus Transaction.

A slave board that uses the CY7C960 can be programmed to respond in a wide variety of
ways with a fine control on decode granularity by using the CY7C960’s Region Mapping
features. The following sections and the AC timing diagrams at the end of this document are
intended for users who need to know further details of the features described above.

AM Classification A64 A40 A32 A24 A16 Enable Region

LOCK ✓ ✓ 0

SERIAL ✓ ✓ ✓ 8

USER1
(AM Codes 18 - 1F)

These do not have an associated address size

✓ 10

USER2
(AM Codes 10 - 17)

2

CR/CSR 2

VMEbus Interface Description

3-54

Figure 3-21. Flowchart for Decoding VMEbus Transactions

3.5.5 Decode Delay Timing

Slave decode delay timing is a process that conceptually begins whenever AS* is sampled
low on the rising edge of CLK. However, at this time the CY7C960 slave decoder must wait
for all local activity to clear before processing a VMEbus cycle. This is because it is possible
for a local cycle to be in progress without a Master on the VMEbus.

For example, in the case of a posted slave write, the VMEbus Master is allowed to leave the
bus with data still to be processed in the interface. If this is the case, then the local address
bus will be holding an address from this posted write. Likewise, there are situations where
the CY7C960 will perform a read-ahead cycle. This happens when block transfer reads do
not terminate on a 256-byte boundary. The on-board slave decoder must wait for this address

Decode REGION & AM
Code Inputs

Is Address Size
enabled for Region

CR/CSR or

Yes

No

No

Are Modifiers
Enabled for Region

Yes

Yes

Successful Decode

Yes

No

AS* LOW and
Decode Delay

Expired
No

Start

User-AM

VMEbus Interface Description

3-55

to clear and allow enough time for the new address to arrive and become stable on the local
bus.

The internal AM decoder then signals whether the first cycle will be an address broadcast
cycle. Since MBLT and MD32 transactions use the address bus for data transfers, a Master
initiating these transactions will first issue an address broadcast so the Slave can capture the
starting address before the address bus changes into a data transfer bus. This address
broadcast cycle also occurs for transactions that use the VME data bus as an address bus.
These cycles include all A64 and A40 transactions since the width of the VME address bus
is only 32 bits (24 bits for 3U boards).

If there will be no address broadcast cycle, then the decode delay timeout begins with AS*.
An internal timer counts up to the programmed decode delay. If an address broadcast cycle
is signalled, then the CY7C960 will wait for the DSB* event and then count up to the pro-
grammed decode delay.

In either case, after the decode delay has expired, the CY7C960 will determine if the address-
ing information for this cycle falls with its programmed address space. If it does, then an
internal flag signals other internal circuitry that the cycle is a valid slave decode for the board.
If it does not, then the internal slave decoder will wait until AS* is sampled High and then
return to an idling state waiting for the next VMEbus cycle.

3.5.6 Slave Addressing Before Initialization

The CY7C960 can be programmed in one of three ways. The interface can be programmed
from the VMEbus, the local bus, or a combination of the VME and local buses. If the CY7C960
is programmed using the VMEbus or the combination method, slave address information and
device programming is loaded using a methodology compliant with the VMEbus Auto Slot ID
specification using either a CR/CSR or A16 AM code. The configuration ROM/control and
status register (CR/CSR) capability described by the latest revision of the VMEbus specifica-
tion provide a mechanism for board identification and automatic initialization. Auto Slot ID is
an optional method of assigning the CR/CSR base address to each VMEbus board. This Auto
ID slave uses a level 2, D8 interrupter along with additional board specific hardware to obtain
the CR/CSR base address. An Auto ID Master, called the Monarch, uses a level 2, D8 Interrupt
Handler to acknowledge the Auto ID interrupt and assigns a base address to the slave board.
Specifically, this Auto ID slave:

1. generates a level 2 interrupt if PDATA is sampled Low after power-on or a negative edge
on SYSRESET*. (IRQ* must be connected to IRQ[2]* on the VMEbus.)

2. waits for and responds to the level 2 IACK cycle initiated by the Monarch.

3. asserts LDEN* thereby enabling a Status/ID byte that is sourced by external local hard-
ware.

4. presents the Status/ID byte on the VMEbus. (all 32 bits of VMEbus data are driven)

VMEbus Interface Description

3-56

5. drives DTACK* Low and releases IRQ*.

The Monarch must then:

1. write the base address of this board using a single cycle write with a CR/CSR or A16 AM
code. If a CR/CSR AM code is used, then all subsequent programming cycles must use
a CR/CSR AM code. Likewise, if an A16 AM code is used, then all subsequent program-
ming cycles must use an A16 AM code. It is mandatory that this access be indivisible with
the previous IACK cycle on the backplane to avoid collisions with

2. program the CY7C960 internal registers using a series of single-cycle writes to the base

address of the slave if the VMEbus Initialization Method is used. These accesses require

a bit pattern of ‘xx00’ on REGION[2:0] if a CR/CSR AM code is used and ‘xxx0’ if an A16

AM code is used.

3. initialize the CY7C964 compare and mask registers using two single writes to the base

address of the slave. These two writes will reassign the CR/CSR base address of the

slave to its new base address in the system.

3.5.7 Address and Data Strobe Event Processing

Another process begins in parallel with slave decoding. The following sequence of events
occurs whenever AS* is sampled Low by the CY7C960:

• The internal AM decoder signals whether the first cycle will be an address broadcast
cycle. Since MBLT and MD32 transactions use the address bus for data transfers, a Master
initiating these transactions will first issue an address broadcast cycle so the Slave can
capture the starting address before the address bus changes into a data transfer bus.
This address broadcast cycle also occurs for transactions that use the VME data bus as
an address bus. These cycles include all A64 and A40 transactions since the width of the
VME address bus is only 32 bits.

• The value of LWORD* is latched and held for the duration of the transaction. LWORD* on
the VMEbus must be connected to A[0] on the least significant CY7C964 because
LWORD* is captured by the CY7C960 on LA[0]. This does not present a problem because
A[0] on the VMEbus is encoded on the VMEbus data strobes.

• The local address that has been flowing through the CY7C964s will now be latched. An
important consideration to note here is that the transaction may be intended for another
slave on the backplane and that slave may respond very quickly on its DTACK* or BERR*
lines. Since the Master is permitted to remove the address after the responding Slave
drives DTACK* or BERR* Low, the CY7C960 will signal the CY7C964 to latch its local
address lines at this time in order to capture the addressing information before it can be
removed. This is accomplished by the assertion of LADI from the CY7C960 to the
CY7C964.

VMEbus Interface Description

3-57

The CY7C960 then waits for the DSB* and DECODE events. The DSB* event is defined by
the VMEbus specification, which states that maximum skew between the assertions DS1*
and DS0* Low by a Master shall be no more than 20 ns at the Slave. When the CY7C960
samples either DS1* or DS0* Low by CLK, it waits two clocks and then sets an internal flag
called DSB*. This two clock waiting period is designed to accommodate any data strobe skew
within specification by ensuring that both strobes have had time to arrive before the device
decodes addressing information from the strobes.

The DECODE event is another internal flag that is set ‘true’ or ‘false’ depending on whether
the CY7C960 has been selected. Refer to the previous sections on slave address decoding
for a description of this process.

Several things happen when these two events occur. Data size information is decoded from
the values on DS1*, DS0*, LA[1], and LWORD*. This information is used to determine local
byte enable patterns (DBE[3:0]), data byte swapping control (SWDEN*), and local address
counting. The CY7C960 also disables the drivers on the least significant CY7C964 and begins
to drive the starting address for the transaction on LA[7:0].

If either of these two events fail to occur, then the CY7C960 will wait until it samples AS* High,
deassert LADI thereby letting VME address flow through to local address on the CY7C964’s,
and return to an idling state waiting for the next AS* Low event.

3.5.8 Slave Data Transfer Acknowledgment

Slave data transfers are acknowledged by a Low assertion of the DTACK* output. All asser-
tions of DTACK* require the assertion of the internal DECODE and DSB* flags. If these two
conditions are present, then DTACK* will be asserted Low on the backplane when

• the internal AM decoder signals that an address broadcast cycle is in progress. Address
broadcast cycles do not generate local chip selects.

• the cycle is a slave read of any type. The CY7C960 will assert DTACK* Low when its local
controller sets an internal flag that indicates data has been read from the local board and
the data is being held in the interface (CY7C964s).

• the cycle is a slave block transfer write of any type. This is the case where data is posted
in the interface and the VMEbus Master is allowed to start the next cycle or terminate the
transaction. While the Master is starting the next cycle or terminating, the CY7C960 local
controller writes the posted data to the local board. Slave write posting of block transfer
cycles allow the CY7C960 to transfer data at a maximum rate of 80 Mbytes/s for MBLT
bursts and 40 Mbytes/s for BLT bursts.

• the cycle is a single-cycle slave write of any type and the CY7C960 local controller has
finished writing the data to the local board. This is the case where data is not posted in
the interface and the VMEbus Master must wait for the write transfer to complete before
starting the next cycle or terminating.

VMEbus Interface Description

3-58

3.5.9 Slave Write Posting

Slave write posting is a means of obtaining maximum data transfer performance by decoupling
the VMEbus from the local board. Every slave write data transaction is latched in the
CY7C964s for further processing by the CY7C960 local controller and the VMEbus Master
is allowed to begin its next cycle or terminate the transaction.

In other words, the VMEbus Master drives DSi*, and the CY7C960 drives DTACK* before the
data has reached the local bus.

Data is latched in the interface when DSB* occurs during a slave write to a valid address
region. At this time the CY7C960’s local controller initiates a write cycle to the local board.
This pipelined architecture allows fast VMEbus cycles that are not delayed by local affects
such as DRAM refresh bursts, or resource contention. When the local cycle is complete, the
data latches are opened and new data is allowed to flow into the interface. Also, LA[7:0] is
incremented according to the data width of the transaction after the local board acknowledges
that the posted data has been written.

3.5.10 Slave Read-Ahead Cycles

Slave read-ahead cycles are also used to achieve maximum data transfer rates for block
transfer reads. When the CY7C960 completes a read cycle to a VMEbus Master during a
block transfer operation, it will read ahead on the local bus in order to have data ready for the
next cycle of the burst.

Data is read from the local board, latched in the interface, and driven on the VMEbus data
lines when DSB* arrives to start a slave block transfer read from a valid address region. Note
that all 32 bits of data are driven on the VMEbus data lines, regardless of data size. The
CY7C960 asserts DTACK* Low to signal that the data is ready to be taken. When the VMEbus
Master releases the data strobes, the CY7C960 stops driving the VMEbus data lines and
LA[7:0] are incremented according to the data width of the transaction. The CY7C960 then
performs another local read in preparation for the next cycle of the read burst.

Since there is no indication to the slave as to how long a block transfer will be or when it will
terminate, it is possible to have a read-ahead cycle occur that does not get transferred to the
Master. In other words, the Master could terminate before, during, or after the read-ahead
and the local data that was read would not be transferred to the VMEbus. However, the
CY7C960 will not read ahead at a 256 byte boundary even if 2k byte boundaries are in effect
as is the case for some MBLT transactions. The read circuitry was implemented this way in
order to provide a means of averting read-ahead cycles and is possible because the CY7C960
drives LA[7:0], which enables it to detect when the address is about to overflow.

Also, as in the case of MBLT and MD32 transactions, there can be two local accesses to be
processed for one VMEbus access. The CY7C960 handles all the pipelining and multiplexing

VMEbus Interface Description

3-59

control that must take place in the interface to accommodate reads or writes when the VME
data bus is wider than the local data bus.

3.5.11 Interrupt Cycle Support

There are six pins associated with interrupt requesting on the VMEbus: IRQ*, IACK*, IACKIN*,
IACKOUT*, LDEN*, and LIRQ*. There are two ways an interrupt can be signalled on the
VMEbus backplane: a local interrupt request or a reset.

A power-on, system reset, or local reset condition causes the device to implement its initial-
ization protocol. Refer to sections 3.4.3 and 3.4.5 for details on initialization.

LIRQ* is the input to the device from local circuitry demanding an interrupt cycle. If the LIRQ*
signal is asserted Low, the CY7C960’s IRQ* pin is asserted Low. The local circuitry should
remove LIRQ* after the interrupt has been acknowledged: The CY7C960 simply drives the
state of LIRQ* onto IRQ*. Figure 3-22 illustrates the relationship between LIRQ* and IRQ*.
s60 represents the assert and deassert delays.

Figure 3-22. Interrupt Signal Timing

The CY7C960 actively drives the value of IACKIN* to IACKOUT* in conformance with the
rules for VMEbus D8 Interrupt Acknowledge Cycles. If it is driving IRQ* and IACK* is sampled
Low and IACKIN* is sampled Low and AS* is sampled Low, then LA[3:1] is compared with
the programmed interrupt request level. If they are not equal then the Low IACKIN* is driven
to IACKOUT*. If they are equal, then IACKOUT* remains High and LDEN* is driven Low to
enable an external Status/ID vector onto the local data bus. This vector is in turn enabled onto
the backplane and the VMEbus Interrupt Handler is acknowledged by a Low transition on the
DTACK* line.

It is important to note that, while the CY7C960 is a D8 interrupter, it drives all 32 bits of VMEbus
data on the backplane with the assertion of DENO* to the CY7C964s. If the user wishes to
provide only 8 bits of status ID, then the value of the upper bytes should be set to FF hex to
ensure full compliance with the VMEbus specification. If the user wishes to provide 16 or 32
bits of status ID, then the interrupt handler should be programmed to handle the provided
width. The CY7C960 does not attempt to differentiate between 8-, 16-, or 32-bit interrupt
acknowledge cycles.

IRQ*

LIRQ

s60 s60

VMEbus Interface Description

3-60

3.5.12 Interrupt Handshake Support

The CY7C960 can be programmed at initialization to wait for a local acknowledge signal
before terminating an IACK cycle. LACK is the local signal used to suspend completion of an
IACK cycle until the local interrupter is ready to present a STATUS/ID vector to the VMEbus
Interrupt Handler.

If the Handshake bit is set the CY7C960 will sample the state of the LACK pin three clocks
after it samples a Low level on its IACKIN* pin during a VMEbus IACK cycle. If LACK is High
at this time, then the CY7C960 will wait until LACK is Low before terminating the cycle with
a falling edge on DTACK*.

If the Handshake bit is not set, the CY7C960 will ignore the state of the LACK pin and DTACK*
the VMEbus Interrupt Handler four clocks after sampling a valid IACKIN*.

Handshake support is available immediately after local completion of the Combination Initial-
ization Method or after full completion of the VMEbus or Local Initialization Methods. Refer
to Chapter 3.4 for details on the three programming methods.

3-61

3.6
CY7C964 Interface

3.6.1 CY7C964 Overview

The CY7C960 is designed for use with the CY7C964 VMEbus Interface Logic Circuit. This
device is fully described in Section 4, The CY7C964 Bus Interface Logic Circuit. The CY7C960
provides all the control and timing for the interface with the CY7C964. Interface timing as
generated by the CY7C960 is designed for CY7C964 delay characteristics.

The CY7C964 contains a collection of counters, latches, and multiplexers used to facilitate
data handling during any of the many VMEbus data transactions. Three-state high drive
buffers allow direct connection to VME and local address and data busses. Additionally, the
CY7C964 contains an address comparator with mask function to allow the CY7C964 to form
part of the user’s slave address decoder. Defined as a companion to the VIC068A/VIC64
devices, the CY7C964 has been designed into many high-performance VME64 CPU boards.
In concert with the CY7C960, it performs the functions of address decoder, D64 data multi-
plexer, and local address counter, to facilitate the design of high-performance slave systems.

3.6.2 CY7C964 Connections

The signals that are provided by the CY7C960 for use by the CY7C964 are: LADI, LEDI,
LEDO, DENO*, ABEN*, DENIN*, DENIN1*, LAEN, STROBE, LDS, and D64 using dedicated
pins. These signals are described in the pin description section.

LADI (Latch ADdress In) controls a transparent latch which connects the VMEbus address
to the local address. The default state of the signal ensures that the VMEbus address is driven
to the local pins, allowing the implementation of VMEbus address decoder circuitry on the
local address bus. The LAEN (Local Address ENable) input is tied High on all but the least
significant CY7C964 to ensure that the local address is always enabled. The least significant
CY7C964 has its LAEN pin controlled by the CY7C960 to allow the CY7C960 to source the
LSB of address during block transfers when the address has to increment by 1, 2, or 4
(dependent on the transfer type: single, double, or quad byte). Note that in order to take
advantage of the “local bus holdoff” feature of the CY7C960, it is necessary to control LAEN
of the upper 3 CY7C964 devices. LAEN must be driven Low during holdoff.

LEDI (Latch Enable Data In) and LEDO (Latch Enable Data Out) control the VMEbus and
local data transfer latches in the CY7C964. Data read from local resources must be set up
to LEDO for burst transfers, while LEDI provides data hold time during burst transfers when
data is captured from the CY7C964. These signals, by holding data in the interface allow
“write posting” and “read-ahead” performance features.

CY7C964 Interface

3-62

DENO* (VMEbus Data ENable Out) and the pair of signals, DENIN* and DENIN1* (local Data
ENable IN) are normally used for local and VMEbus data enable. DENIN* and DENIN1* are
also active during address broadcast of A64 and A40 VMEbus transactions. They are used
to inform an external address decoder when the data bus can be sampled for the high-order
address information.

During D64 and MD32 data cycles, the function of DENO* and DENIN*/DENIN1* are identical
to LEDO and LEDI respectively. A two-stage pipelined latch inside the CY7C964 is controlled
in the data sourcing case by LEDO and DENO* working in concert, and in the data capture
case by LEDI and DENIN*/DENIN1* working in concert.

Each VMEbus data cycle is served by two local data cycles. The second cycle for slave read
must set data up to the falling edge of DENO*. For slave write, data hold on the second cycle
is provided by the assertion of DENIN* (D64) or DENIN1* (MD32).

LDS is used during D64/MD32 slave write transfers to control the VMEbus address to local
data demultiplexing, and during the initialization period to control the selection of the address
mask and compare registers. During multiplexed slave data capture, LDS is the signal which
controls data hold time with respect to the deassertion of CAS* and/or DBE.

ABEN* (VME Address Bus ENable) is active only during multiplexed data transactions to
enable the VMEbus address pins during D64 or MD32 transfers.

D64 is the signal that informs the CY7C964s that the data phase of multiplexed data transfer
is in progress and the on-chip pipelining should be used to multiplex or demultiplex the local
data. The CY7C964 is expressly designed to demultiplex D64 and MD32 VME transactions
to a non-multiplexed 32 bit local data bus.

STROBE is a timing signal used to load the on-chip address mask and compare registers of
the CY7C964. It can be considered a latch enable signal which latches local data when High.

The on-chip counters of the CY7C964 are used for local address counting during slave D64
block transfers if the VMEbus master bursts to 2 Kbyte boundaries. Therefore the counter
chains must be enabled by connecting the appropriate carry-out to carry-in pins. The VMEbus
counters of the CY7C964 are not used by the CY7C960.

It is recommended that the following connections be made to ensure correct operation during
the Reset period: Pull-up resistors attached to ABEN*, DENO*; pull-down resistors attached
to LAEN and LADI. These connections prevent CY7C964 drivers from turning on during the
brief periods of three-state operation during reset.

The CY7C964 has several signals which are not used for slave operations: BLT*, FC1, LADO,
and MWB*. LADO and FC1 must be tied Low. BLT* and MWB* must be tied High for correct
operation.

Figure 3-23 shows how the control signals for the CY7C964 are driven during initialization to
load the Address Compare and Mask Registers. The significant signals are LDS, which selects

CY7C964 Interface

3-63

which register to load, and STROBE, which actually strobes the data on the local bus into the
appropriate register.

Figure 3-23. Example of CY7C964 Control Timing

3.6.3 Swap Buffer Control

The CY7C960 is designed to control the swap buffering necessary for handling D8 and D16
VMEbus transactions in combination with 32-bit local memory. Figure 3-24 illustrates how
VMEbus byte lanes relate to local memory. Note that the CY7C960 coordinates control of
SWDEN* with DENIN*/DENIN1*. The CY7C964 Byte(0) and Byte(1) drivers are turned off
during slave write transfers when SWDEN* is active. Because DENIN*/DENIN1* are used as
latch control signals during multiplexed data transactions (D64 and MD32) DENIN* signaling
to CY7C964 Byte(0) and Byte(1) must be modified by external logic IF (and only IF) and board
is to handle BOTH D64 and A40/MD32 slave write transactions. The required circuitry is
shown at the top of the figure below.

COMP. MASK

SYSRESET*

LD

LDEN*

PREN*

PDATA

PCLK

STROBE

LDS

CY7C964 Interface

3-64

Figure 3-24. Swap Buffer Design

B
Y

T
E

(2
)

C
Y

7C
96

4

’245

C
Y

7C
96

4
C

Y
7C

96
4

C
Y

7C
96

4

B
Y

T
E

(0
)

B
Y

T
E

(1
)

B
Y

T
E

(2
)

B
Y

T
E

(3
)

’245

D
B

E
[3

]
D

B
E

[2
]

D
B

E
[1

]
D

B
E

[0
]

R
/W

*
S

W
D

E
N

*
D

E
N

IN
*

D
E

N
IN

1
*

V
M

E
bu

s
B

Y
T

E
 L

A
N

E
S

B
Y

T
E

(3
)

B
Y

T
E

(0
)

B
Y

T
E

(1
)

B
Y

T
E

(0
)

B
Y

T
E

(1
)

Cross-connect DENIN*s
 on upper bytes!

L
O

C
A

L
M

E
M

O
R

Y

Additional logic only if MD32 and D64 supported on same board

D64

LDS

DENIN1*
Byte(0–1)

DENIN*
Byte(0–1)

DENIN1*

DENIN*

3-65

3.7
 Interfacing without CY7C964

3.7.1 Reduced Cost, Fewer Features

Many board designs need only simple VMEbus slave interfaces. The CY7C960 used in com-
bination with Cypress FCT Logic family devices meets this need perfectly. A complete interface
can be built using the CY7C960 in combination with industry standard latches, transceivers,
and latched transceivers.

This interface supports Rev C VMEbus: A16, A24, A32 D8, D16, D32, D32UAT, RMW, in other
words, a complete interface excluding the performance and multiplexed address features of
VME64.

Because the CY7C964 was designed as an integrated replacement for a pair of bidirectional
transceivers controlling address and data in the VMEbus interface, the number and sense of
signals controlling transceiver function have been preserved in the design of the CY7C960.
This makes direct connection and control of discrete devices straightforward.

Figure 3-25 illustrates just such an implementation. One pair of CY74FCT16543T devices
handles the bidirectional data path while a pair of CY74FCT162373T devices provides for
latching and driving 32 bits of address from the VMEbus to the local side of the interface. A
swap buffer, implemented with a CY74FCT162245T device is optional depending on the
VMEbus transactions the slave interface is intended to accept.

The pull-up resistor shown is required to program the polarity of the LAEN output of the
CY7C960. LAEN is three-stated at power-on or warm reset. The logic level sensed on LAEN
during the first initialization cycle determines the deasserted state of LAEN during normal
operation. In this case, the deasserted state is required to be High.

The FCT543 devices are rated 64 mA sink current and 32 mA source current over commercial
temperature range. The FCT245 and FCT373 devices have balanced 24 mA output drive.

In Figure 3-25 all components are drawn to relative scale assuming the CY7C960 in a 64-pin
thin quad flat pack. The FCT Logic devices are depicted in thin shrunk small outline packages.
The total footprint area of the interface as shown is only 1.08 sq. in. for the 6 chips. This
compares to the slightly larger CY7C960/CY7C964 solution requiring 1.16 sq. in. using 5
identical packages. The CY7C961/CY7C964 chip set occupies 1.34 sq. in. All of these inter-
face sets have thin package profiles suitable for mounting on the back side of a VMEbus
board without violating mechanical clearance requirements.

Interfacing without CY7C964

3-66

Figure 3-25. VMEbus Interface Implemented with CY7C960 and FCT Logic Family.

VCC

LAEN

LADI

R/W*

SWDEN*

LEDI

CY74FCT162245T

C
Y

74
F

C
T

16
54

3T
C

Y
74

F
C

T
16

54
3

T
C

Y
74

F
C

T
16

23
7

3T
C

Y
74

F
C

T
16

23
73

T

VMEbus P2

VMEbus P1

LD[15:0]

LD[31:16]

C
Y

7
C

96
0

LA[31:2]
DENIN1*

DENIN*

LEDO

DENO*

A
[2

3:
1]

, L
W

O
R

D
*

A
[3

1:
24

]
D

[3
1:

16
]

D
[1

5:
0]

>10k

VCC

>10k

3-67

3.8
 DRAM Control Description

3.8.1 Overview

The CY7C960 contains a high-performance DRAM controller, developed to take advantage
of DRAMs operating in Fast Page Mode. By using Fast Page Mode devices, VMEbus MBLT
transfer rates of 80 Mbyte per second are attainable with DRAM RAS*-access times of 70
ns. With appropriate buffering on the DRAM address and control signals, 16 Mbytes of DRAM
can be directly accommodated (using 4-Mbit devices). With minimal external decoding logic
generating multiple RAS*/CAS* signals, larger memory arrays can be controlled. When higher
capacity DRAM devices become readily available, the memory arrays increase accordingly.

The CY7C960 is configured by the user to work with local DRAM during the initialization
sequence. This configuration determines the function of several pins (RAS*, CAS*, ROW,
COL, and REGION3/CS2). RAS* and CAS* provide the well-known address strobe signals
for the DRAM array, ROW and COL provide address enable signals for strobing the row and
column addresses into the DRAM array. If DRAM mode is selected during the configuration
sequence, then the REGION3/CS2 pin becomes the CS2 output: 8 regions are available in
DRAM mode requiring only three REGION decode inputs.

Figure 3-26 shows an example of the use of the DRAM control signals. ROW enables the
upper bits of the local address bus to be latched in the DRAM by RAS*. COL enables the
lower address bits to be latched by the use of the Data Byte Enable signals. In the example
chosen, the DBE signals are connected to the CAS* inputs of the DRAMs, and the CY7C960
has been programmed to provide refresh timing on the DBE pins (DBE Refresh Enabled)

The LACK input may be used to acknowledge DRAM cycles. If LACK is tied Low, then the
cycle is self timed using the programmed values for CAS* assert and CAS* precharge. The
user may prevent DRAM CAS* bursts by the use of the LACK signal. This is done by main-
taining LACK High until the DRAM CAS* burst is to be permitted. Once LACK is driven Low
and CAS* is asserted by the CY7C960, the DRAM access is no longer affected by LACK until
RAS* deasserts, signaling the end of the current access (useful in dual-port applications to
hold off VMEbus accesses to DRAM).

DRAM Control Description

3-68

Figure 3-26. DRAM Signal Usage

3.8.2 Types of DRAM

The CY7C960 controls Fast Page Mode DRAMs. This is an industry standard mode of oper-
ation. For 80 Mbyte/second burst transfer rate, 70-ns (RAS*-access) devices, or faster, should
be used. The CY7C960 can be configured to operate with a wide range of DRAM timings.
For example, if an 80-MHz clock is applied to the device the range of timings is given below.
If a lower frequency is used the times scale as shown in the AC Timings Specification (see
Chapter 3.12).

The access time of a page-mode DRAM is determined by two factors: the time from application
of RAS* to the data becoming available, and the time from application of CAS*. The fastest
method for getting bursts of data out of or into memory is to maintain RAS* Low, and cycle
CAS*. The access time for the first cycle is determined mainly by the RAS* access time, but
subsequent cycles are shorter, determined by the CAS* access time. The amount of data
that can be transferred in one burst is bounded by the size of the DRAM’s row. When a row
boundary is encountered it is necessary to reassert RAS, and hence another long cycle
occurs.

DRAM ARRAY
1 MEG x 8

LA[21:12]

R
O

W
 B

U
F

F
E

R
C

O
LU

M
N

 B
U

F
F

E
R

LA[11:2]

DBE[3:0]

COL

ROW

RAS

LD[31:24]

LD[23:16]

LD[15:8]

LD
[1

5:
8]

LD[7:0]

LD
[7

:0
]

R/W

A9-A0

DRAM Control Description

3-69

3.8.3 VMEbus Implications

VMEbus transfers match DRAM Page Mode Accesses quite closely. When AS* is asserted
the first cycle is generally longer than subsequent cycles, especially if the transaction involves
an address broadcast cycle. For optimizing the slave’s performance, RAS* is driven whenever
AS* goes LOW. This starts the page mode cycle to the DRAMs. If the VMEbus transaction is
not intended for the CY7C960, then RAS* is deasserted, and no DRAM cycle occurs. If the
transaction is directed to the CY7C960, and the cycle type is enabled for the Region being
addressed, then a DRAM cycle occurs. The programmable delays for DRAM cycle timing are
then used as the cycle progresses. The first cycle therefore uses the RAS*/CAS* Delay
parameter to ensure that the RAS* access time for the DRAM is met, and CAS* assert and
precharge time parameters ensure that the shorter CAS* access time is used for subsequent
cycles.

When a VMEbus boundary is encountered (256 byte for BLT, 2048 byte for MBLT), the address
is rebroadcast by the VMEbus master. This causes AS* to cycle, which in turn causes RAS*
to cycle. This ensures that no problems occur due to overflowing a page boundary in the
DRAM, as the local address is aligned to the VME address. Put another way, the maximum
number of transfers that can occur between RAS* cycles is 256. Even the smallest page mode
DRAMs have page lengths that are a multiple of this number, so a page boundary in the
DRAM is guaranteed to correspond to an address boundary on the VMEbus. Therefore RAS*
is guaranteed to cycle at DRAM page boundaries.

3.8.4 Refresh Cycles

The CY7C960 contains a refresh controller. The refresh period and function enable are set
during device configuration. The controller can be enabled to generate CAS* before RAS*
Refresh cycles at preprogrammed intervals. The controller employs a hidden refresh strategy
and is fully integrated into the response of the CY7C960 local interface. Each time a refresh
interval expires, a burst of 4 CAS* before RAS* refresh cycles is scheduled. At the next
opportunity a refresh burst will be generated. During DRAM accesses, refresh is allowed at
double longword address boundaries. Refresh is blocked during burst accesses to I/O regions
if the DBE refresh enable feature is enabled. Refresh is always allowed between slave ac-
cesses and does not interfere with transaction decoding. If refresh cannot occur before ad-
ditional intervals expire, a proportional number of additional CAS* before RAS* cycles will be
scheduled. Overflow and consequent loss of refresh control timing occurs if 256 intervals
elapse without a refresh burst.

3.8.5 Refresh Timing

The CY7C960 DRAM control can be programmed by specifying 4 parameters which are part
of the initialization bit stream. These 4 parameters are RAS*/CAS* Delay Time, CAS* Assert

DRAM Control Description

3-70

Time, CAS* Precharge Time, and RAS* Precharge Time. Each is a 3-bit eight valued field.
Table 3-7 relates the programmed values for three of the parameters to the timing diagram
of Figure 3-27. CAS* Precharge Time (not shown) is used to adjust the minimum deassertion
time between CAS* assertions during CAS* bursting. The DRAM timing is designed to support
60-ns fast page mode DRAM.

Figure 3-27. Programming DRAM Timing

Table 3-7. DRAM Timing

3.8.6 DBE Refresh Enable Feature

Refresh control behavior is fundamentally affected by the DBE refresh enable feature of the
CY7C960. If the feature is off, refresh is mutually exclusive with DRAM accesses, but is
unrestricted when a DRAM access is not in progress. During I/O accesses, CAS* before RAS*
refresh bursts can occur at any time with respect to access to I/O regions. R/W*, DBE, and
CS* outputs are oblivious to activity on RAS* and CAS*. DRAM RAS* and CAS* signals can
be connected directly to the CY7C960, while DRAM OE and WE signals must be gated with
the CY7C960 COL signal to provide the distinction between DRAM access and DRAM refresh.
The COL signal is inactive except during CAS* cycles of DRAM access.

A CAS* Assert Time – 1 2T – 9T

B RAS* Precharge Time – 3 2T – 9T

C RAS* Precharge Time – 3 2T – 9T

D RAS* Precharge Time 5T – 12T

E RAS* Precharge Time 5T – 12T

F CAS* Assert Time 3T – 10T

G RAS*/CAS* Delay Time 2T – 9T

A B C D E

G

F

VALIDCS

RAS*

CAS*

ROW

COL

DBE[0]

DRAM Control Description

3-71

If the DBE refresh enable feature is turned on, refresh will be mutually exclusive with DRAM
accesses and I/O accesses. This is a necessary consequence of providing refresh CAS*
behavior on the DBE signals. With the feature enabled, CS is deasserted and R/W* driven
High during refresh bursts. This mode allows the use of CS signals to explicitly select DRAM
and the use of DBE signals as byte addressable CAS signals. DRAM OE and WE can be
gated by CY7C960 CS signaling. Where possible, the refresh occurs in parallel with user
transactions such as I/O transactions with no DRAM enabled.

Figure 3-27 shows a refresh burst delaying a DRAM access with DBE Refresh Enable turned
on. Note that R/W* (not shown) is High, and ROW and COL are inactive during the refresh
burst. The four DBE signals (only one is shown) and CAS* toggle in concert with RAS* for
four cycles. After a RAS* precharge time, row and column addresses are established and
CS, R/W*, RAS*, CAS*, and DBE appropriate to the DRAM access are asserted.

Figure 3-28. Refresh after Initialization

3.8.7 Refresh and Reset

If the CY7C960 is reset by a front panel switch, independently from the VMEbus SYSRESET*,
a “Warm Reset” is supported whereby DRAM data is preserved across the reset period. The
initialization sequence, whether Serial, Combo, or VMEbus method, is followed immediately
by a DRAM Refresh burst of appropriate length. Figure 3-28 illustrates this behavior. The
actual length is calculated by the CY7C960 based upon the refresh timing parameters just
loaded by the initialization sequence. The assumption is made that the DRAM was being
refreshed normally up to the point that the local Reset signal was generated, so the CY7C960
calculates the number of refresh cycles needed based upon the time taken by the Serial
Method of configuration (380 µsec). The reason for this is that the VMEbus method of con-
figuration is faster under normal circumstances so the worst case for refresh purposes is
Serial. Note however that if the VMEbus method is delayed substantially for any reason (for
example Bus occupancy or bus tenure problems) then the refresh burst may not be sufficient
to maintain DRAM contents. If warm reset is desired, the Serial configuration method is
recommended.

Reset/Initialization finishes
RESET REFRESH BURST (scaled to REFRESH BURST PERIOD)

REFRESH BURST PERIOD

if programmed, DBE follows CAS during refresh bursts.

RAS*

CAS*

DBE

ROW

COL

DRAM Control Description

3-72

During the extended refresh burst following a reset, the CY7C960 handles transactions nor-
mally. The user is cautioned that creating a local bus condition which blocks refresh after
warm reset could overflow the refresh controllers hidden refresh counter which is limited to
storing 256 refresh intervals.

Figure 3-29 shows the timing of the signals associated with a series of standard VMEbus
transactions. The figure shows three back-to-back transactions: a LOCK cycle, an A64/D16
BLT, and an A24 Serial single cycle I/O transaction. The CY7C960 is configured as the
responding slave to all three. The LOCK cycle is DTACKed, but no local activity takes place
as the CY7C960 does not provide full LOCK support. The A64/D16 BLT write commences
with an address broadcast cycle followed by 13 data beats. A refresh burst interrupts local
bus activity, delaying the write of the last word. CY7C960 response to the I/O transaction is
delayed until the local bus is ready. The A24 I/O transaction then completes.

DECODE delay

Block transfer to DRAM
REFRESH BURST

LCK A64/D16 BLT A24/Serial

VAL ADD VALID

VALID

VALID VALID

ADD

ADD

01 45 8923 67

LA0 LA4LA2 LA6 LA10 LA14 LA18LA8 LA12 LA16 LA20 LA22 LA24

01 2425

"10”

VALID

etc

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

LA

REGION

LADI

CS

LD

LEDI

DBE

SWDEN*

RAS*

CAS*

ROW

COL

LACK

DENIN*

R/W*

Figure 3-29. DRAM Transaction Timing

45 8923 67 etc.

"10”

DRAM Control Description

3-73

The LOCK cycle illustrates DRAM mode RAS* behavior. RAS* will always assert in response
to VMEbus AS* assertion when CY7C960 is ready, regardless of transaction decode status.
This behavior speeds up response for transactions that are decoded. It generates a harmless
RAS*-only refresh signaling for transactions that are not decoded. Local bus hold-off always
blocks RAS* assertion while LACK is deasserted. The CY7C961 should be used if full LOCK
cycle support is desired.

The A64/D16 BLT write shows the posted nature of block writes. RAS* latches the flowthrough
address during the address broadcast. The CY7C960 latches data in the interface with the
LEDI signal and drives DTACK* as it begins local bus write activity. The CS outputs are driven
with the pattern appropriate for the Region being addressed. CS signals are set up to the
CAS* burst and remain valid through a burst. SWDEN* and DBE signals indicate the bytes
valid for each data cycle. The BLT progresses, with the CY7C960 incrementing local address-
es, and providing CAS*, DBE, and SWDEN* appropriate to each DRAM access.

In the example illustrated, a DRAM Refresh occurs at the end of the BLT, prior to the completion
of the last local write. ROW and COL signals go inactive, and the four CAS* before RAS*
cycles occur. Then the CY7C960 drives the original ROW address on the local address bus
and drives ROW and RAS* to relatch the ROW address in the DRAMs. Next, COL, CAS*,
DBE, and SWDEN* are driven appropriately, and the posted data in the CY7C964s is written
to DRAM.

While this delayed write is going on, the A24 Serial VMEbus cycle has commenced that is
also addressed to the CY7C960 board. Note that the cycle is extended until the previous local
activity, refresh and posted data, has completed. Then the VME cycle is DTACK’ed, the data
is posted (it is another write operation), and the local signals are driven appropriately. In this
case the single cycle is addressed to a Region where DRAM is disabled, so no CAS* occurs
The chip select pattern is driven by the CY7C960 along with the correct DBE and SWDEN*.

Those developers familiar with VMEbus transactions will know of the challenge associated
with handling multiplexed, posted Write transactions together with address boundary cross-
ing, and high priority refresh cycles. The CY7C960 handles all possible cases without inter-
vention or monitoring being necessary. For example, a refresh burst may preempt the local
writing of the last 64-bit MBLT transaction posted prior to a 2K boundary crossing. The
CY7C960 completes the refresh burst, but in parallel, the rebroadcast VMEbus address is
signalled by AS* toggling and DS* going Low. This address broadcast cycle cannot be com-
pleted immediately: first CY7C960 drives RAS* to relatch the PREVIOUS page address which
is still held on the local address bus by the CY7C964s. Next, two CAS* cycles occur in order
to write the two 32-bit longwords that were posted from the 64-bit write. CY7C960 then goes
through a complete decode cycle to ascertain whether the newly-broadcast VMEbus address
is still in an enabled Region: if so it cycles RAS* to latch the NEW page address, in parallel,
DTACKing the VMEbus address broadcast cycle. Then the block transfer continues normally.

DRAM Control Description

3-74

3.8.8 Local Acknowledge Behavior

In some applications it may be desirable to delay DRAM cycles. In these cases, the local
signal LACK is used. If LACK is Low, CAS* is asserted at the appropriate time. If LACK is
High when RAS*/CAS* delay time expires, then CAS remains deasserted: when LACK goes
Low CAS* is asserted. This provides a mechanism for holding off DRAM accesses if desired.
Note that this operation is limited to the FIRST CAS* after RAS* is asserted, not a cycle-by-
cycle basis. Anytime RAS* is asserted the opportunity to delay the cycle occurs.

If LACK is High for a considerable period of time, the refresh burst will become due. CY7C960
initiates the refresh burst. After the refresh burst is complete, the part continues awaiting the
arrival of LACK. If LACK has gone Low during the refresh burst the cycle completes without
further delay.

Figure 3-30 shows the use of LACK. An A32/D16 BLT Read commences: the CY7C960
determines that it is addressed and the transfer is enabled, and so drives the local signals
appropriately. ROW and RAS* latch the ROW address in the DRAMs, and soon after SWDEN*
is driven because of the need to swap byte lanes for the addressed data bytes. But the local
circuitry cannot, for some reason, allow the access, and LACK remains High. Therefore,
CY7C960 maintains ROW active, and does not drive COL, CAS*, or DBE until LACK has
been driven Low by the local circuitry. Once LACK has gone Low, the BLT commences.

3.8.9 DBE Signal Behavior

The Data Byte Enable signals are used to indicate which local data bytes are active for the
current cycle. They do not necessarily reflect the VMEbus data byte lanes being used for the
transfer. For example, if a VMEbus D16 transfer is selected, and the most significant two
bytes, LD[31:16], are enabled onto the local bus by DBE[1:0], the VMEbus specification
ensures that those two bytes are carried on D[15:0]. CY7C960 provides the SWDEN* signal
for controlling a swap buffer if D8 or D16 transfers are required.

For DRAM cycles the timing of the DBE[3:0] signals is identical to CAS*. In some applications
this means that the appropriate DBE pin can be connected to the CAS* input for one byte
width of DRAM. For accesses to Regions where DRAM is not enabled, the DBE timing is
taken from the programmed value for DBE Assert Time. See Chapter 3.9, I/O Control De-
scription, for more details.

If DRAM refresh is enabled, then the DBE pins can be configured to provide the refresh burst
if desired. If DBE Refresh is enabled during initialization, all four DBE pins carry the same
refresh timing that is driven on the CAS* pin. If DBE refresh is disabled, then all four signals
are not driven due to refresh.

DRAM Control Description

3-75

3.8.10 Formal Signal Description

3.8.10.1 RAS*, CAS*, ROW, COL

RAS*, the DRAM Row Address Strobe, is an active Low signal that is used by the DRAM to
latch the Row address internally. The falling edge of RAS* is timed with respect to the local
address being driven by the CY7C964s so that there is sufficient set-up time prior to the falling
edge for all commonly available DRAMs.

BYTE(0-1) BYTE(2-3)

0-1 2-3

VALID LA0 LA2 LA4

VALID

”0f” - A32/D16 SUPERVISORY BLT

”1100” ”0011”

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

LA

ROW

COL

RAS*

CAS*

LACK

LADI

LAEN

LD

SWDEN*

LEDI

DENIN*

LEDO

DENO*

DBE

LDS

RW

VALID

Figure 3-30. LACK in DRAM Cycles

DRAM Control Description

3-76

CAS*, the DRAM Column Address Strobe, is an active Low signal that is used by the DRAM
to latch the column address internally. The falling edge of CAS* is timed with respect to the
local address being driven by the CY7C964s so that there is sufficient set-up time prior to the
falling edge for all commonly available DRAMs.

ROW, a signal provided by CY7C960 whose polarity is programmable, is intended to multiplex
the row address signals to the address pins of the DRAM array prior to the falling edge of
RAS*. ROW is set up 1 clock period before the falling edge of RAS*, and held 1 clock period
beyond the falling edge of RAS* to guarantee that all common multiplexing circuitry has
sufficient set-up and hold time.

COL, a signal provided by CY7C960 whose polarity is programmable, is intended to multiplex
the column address signals to the address pins of the DRAM array prior to the falling edge
of CAS*. COL is set up 1 clock period before the first falling edge on CAS*, and held active
for the duration of the VMEbus transaction as appropriate.

Neither ROW nor COL become active for refresh bursts.

3.8.11 Programmable Features

3.8.11.1 Refresh Enable

A bit is set during initialization that enables refresh activity.

3.8.11.2 Cycle Timing

The following parameters are set during configuration: RAS* Precharge (min. 5, max 12
clocks); CAS* precharge (min. 1, max 8 clocks); CAS* assert (min. 3, max 10 clocks); RAS*/
CAS* delay (min. 2, max 9 clocks)

With an 80-MHz clock, and 100-nsec RAS* access time DRAMs, an example would be RAS*
precharge 7 clocks, CAS* precharge 1 clock, RAS*/CAS* delay 2 clocks, CAS* assert 3 clocks.

3.8.11.3 Refresh Period

CAS* before RAS* refresh cycles occur in bursts of 4. The timing is taken from the cycle timing
just described. The time interval between bursts is programmable during configuration to be

where N is a value between 1 and 255.

For example, if a DRAM was used with R rows requiring to be refreshed every t msec, then N

would be found as follows

N 256×() clockperiod×

N int
4
R
---- t

10
3

---------×
1

256
----------×

1
clockperiod
---------------------------------×

 =

DRAM Control Description

3-77

In the case of a 256 row device with a refresh period of 4 msec and a clock rate of 80 MHz,
N turns out to be 19 (13hex). The period between bursts in this case would be seen to be
about 61 µsec.

3.8.11.4 DBE Refresh

The DBE pins can be configured to provide the CAS* timing for refresh bursts. If this is not
enabled, then the DBE pins do not toggle during refresh bursts.

3.8.11.5 DBE Polarity

The polarity of the DBE pins can be programmed as a group during initialization.

3.8.11.6 ROW, COL Polarity

The polarity of the ROW and COL pins can be programmed individually during initialization.

3-78

3.9
 I/O Control Description

The CY7C960 has two basic modes of operation: DRAM mode and I/O mode. The user
selects the mode during configuration. This section describes the I/O mode of operation.

In I/O mode the CY7C960 does not provide the timing signals required by DRAM, such as
RAS*/CAS*. The pins that provide these signals in DRAM mode are therefore available for I/
O functions in I/O mode, and are used as Chip Select Outputs.

The signals that form the Local I/O Mode Functionality are CS[5:0], LACK, and DBE[3:0].

Figure 3-31 shows the block diagram of the CY7C960 in I/O mode. It is, as may be expected,
very similar to the block diagram of the DRAM/IO Mode (see Introduction). The DRAM control
block is disabled, and hence does not appear in the figure, and the pins thus freed are reused
as Chip Selects. One additional Region Input (REGION[3]) is provided in I/O mode, allowing
16 Regions to be individually configured.

Figure 3-31. I/O Mode Block Diagram

10010011011
00101101100
11000110101
00000001000
10101011111
11000111001
10110011000
00000000000

10010011011
00101101100
11000110101
00000001000
10101011111
11000111001
10110011000
00000000000
00110011000
11100011111
00001000110

Data Byte
Lane

Decoder

VME Control
Interface

AS*
DS0*
DS1*

DTACK*
WRITE*

CY7C964 Controller

D
64

S
T

R
O

B
E

D
E

N
O

*
D

E
N

IN
*

D
E

N
IN

1*
LA

D
I

LA
E

N

LE
D

I

LE
D

O
A

B
E

N
*

LD
S

Timing Generator

SYSRESET*
Power-On

Reset
Generator

VME Interrupt
Interface

IRQ*
IACK*

IACKIN*
IACKOUT*

LI
R

Q
*

REGION/
AM TableAM[5:0]

REGION[3:0]

Local Address
Controller

LA[7:0]

Data Byte
Enable

Controller

DBE[3:0]

Chip Select
Output Pattern

Table
CS[5:0]

LACK

Local
Control
Circuit

PREN*

R/W*
SWDEN*

LDEN*

CLK

Introduction to the VIC068A

3-79

3.9.1 Region Mapping

The CY7C960 introduces the concept of Region Mapping for I/O control. The CY7C960
provides up to 16 Regions when in I/O mode, selected by REGION[3:0]. The external Slave
Address Map Decoder drives the REGION inputs in response to changes in the VMEbus
address signals. When the CY7C960 detects the start of a valid transaction on the VMEbus
(AS going Low) the REGION inputs are used to point into a table that contains entries for
each possible VMEbus Transaction Type. The table entries are programmed during the ini-
tialization process, and are not adjustable after configuration is complete. If the VMEbus
transaction is enabled in the table, then the CY7C960 proceeds. If the transaction is disabled
then the CY7C960 takes no action and assumes that the VMEbus cycle is intended for another
board. Further information is provided in the VMEbus Chapter.

This provides great flexibility in address mapping. For example, two separate VMEbus boards
can occupy the same address in VMEbus space: one can react to 32/64 bit data transfers,
the other can react to only 8/16 bit data transfers. Or one can selectively respond to block
transfers, the other single cycles.

Each of the 16 Regions has a unique entry in the table, allowing for fine granularity in the
Slave Address Map, and providing a wide range of options if the user cares to use them. If a
simple Slave Address Map is desired, then the companion CY7C964 contains comparator
circuitry which could be used, and the majority of the 16 possible regions could be selectively
disabled.

Table 3-8 shows the use of the Region AM Code programming table. In this example, only
transactions directed to Regions 0 through 4 could result in the CY7C960 driving DTACK*.
Furthermore, only A64 supervisory block transfers, of any data width, are enabled in Region
0. The other Regions have different types of VME transaction enabled.

Introduction to the VIC068A

3-80

Table 3-8. Example of Region AM Code Enabling

3.9.2 Chip Select Output Control

The six pins dedicated to I/O mode output, CS[5:0], can be configured during the initialization
process in a flexible manner. Once the CY7C960 has detected that the VMEbus cycle is valid
and enabled for the Region being addressed, then a pattern is driven from the Chip Select
Outputs (CS[5:0]). The pattern is found in a table that contains entries for each possible
Region, in a manner similar to the Region AM Code Enabling Table (Table 3-8). The entries
are programmed during initialization and are not changeable after configuration is complete.

The user can select the polarity of each individual Chip Select Output to be High or Low true.
This sets the output pattern when no VMEbus cycle has been decoded to drive the enabled
Regions. In other words, this pattern is the relaxed state of the CS[5:0] pins. To effect a change
in one or more of the 6 Chip Select pins, the appropriate bit or bits of the Chip Select Output
Control Table (Table 3-9) entry (for the desired Region) are set. Any VMEbus transaction that
is enabled for the Region it maps to will then cause that pattern to be driven from the CS[5:0]
pins.

Table 3-9 provides an example of how the Chip Select Programming and Polarity may be set.
The state of CS[5:0] after initialization becomes 000111, because the polarity field determines
the unselected state of the signals. Any transaction directed to Regions 8, or 12 through 15,
will not result in a CS[5:0] change as no CS programming has been entered for those Regions.

REGION A64 A40 A32 A24 A16 SUPER NPRIV PROG DATA BLT LONG

0 ✓ ✓ ✓ ✓

1 ✓ ✓ ✓ ✓

2 ✓ ✓ ✓ ✓

3 ✓ ✓ ✓ ✓

4 ✓ ✓ ✓

5

6

7

8

9

10

11

12

13

14

15

Introduction to the VIC068A

3-81

Regions 0 through 7 cause CS[2:0] patterned to be driven. Regions 9, 10, and 11 cause
CS[5], CS[4], and CS[3] to change respectively.

Table 3-9. Example of Chip Select Output Control

An access to Region 0 therefore would cause the pattern 000000 to be driven. Region 9 would
cause 100111.

3.9.3 Chip Select Output Timing

3.9.3.1 Overview

When a valid VMEbus transaction is decoded that maps to a Region with a Chip Select Pattern
enabled, the pattern is driven from the CS[5:0] pins after the VMEbus DSi* signal goes true.
Then the appropriate DBE signals are driven. After either the self-timed delay or the LACK
handshake, the VMEbus DTACK* is driven and the DBE pins are disabled. If the VMEbus
transaction is a block transfer, the CS[5:0] pattern is maintained and the DBE pins toggle
interlocked with the VMEbus handshake mechanism. After the final transfer, signified by AS*
going inactive, the CS[5:0] pins return to the relaxed state.

REGION CS[5] CS[4] CS[3] CS[2] CS[1] CS[0]

0

1 ✓ ✓ ✓

2 ✓ ✓

3 ✓ ✓

4 ✓

5 ✓ ✓

6 ✓

7 ✓

8

9 ✓

10 ✓

11 ✓

12

13

14

15

Polarity L L L H H H

Introduction to the VIC068A

3-82

3.9.3.2 Read-Aheads

In VMEbus block read transactions, the CY7C960 optimizes performance by performing read-
ahead cycles whenever possible. Therefore, if the AS* signal is slow going inactive, an extra
DBE cycle may occur. The data read locally is not passed to the VMEbus and the cycle
completes as soon as the AS* signal goes inactive.

To guarantee that a read-ahead cycle will not occur, it is necessary to deassert AS* at the
same time that DSi* is deasserted. This of course is a VMEbus master transaction, not under
the control of the CY7C960.

3.9.3.3 Local Acknowledge Timing

The CY7C960 provides the option of handshaking local accesses, or having the access be
self-timed. The LACK pin provides the handshake. The time period for the self-timed access
is programmed during configuration to be a value between 3 and 18 clock periods. When a
VMEbus access causes the local cycle to commence, Chip Select goes active followed by
the appropriate DBE pins. The width of the DBE signal is controlled: after the expiration of
the access time, if LACK is Low the cycle terminates. If LACK is High, the cycle is extended
until LACK goes Low.

Therefore, if the user ties LACK Low, the width of the DBE pulse is determined only by the
programmed value for the Region’s CS Access Time field. Each Region can have a unique
value for this field. The user may also choose to Handshake the cycles with LACK, in which
case the minimum width is set by the Access time field, and the maximum time is determined
by LACK.

Figure 3-32 provides an example of one of the most challenging VMEbus Transactions—the
A40/MD32 Read-Modify-Write Cycle. Once the CY7C960 determines that the transaction is
directed to a Region for which it is enabled, the address broadcast cycle is DTACKed and the
Read cycle commences. The appropriate pattern is driven on the Chip Select signals. Two
16-bit local accesses are needed to construct the MD32 VMEbus transaction, and SWDEN*
and DBE signals are driven appropriate to the address requested. Once the 32 bits of data
are latched into the CY7C964s and enabled onto the VMEbus signals (A[15:1], LWORD*, and
D[15:0]) the VMEbus DTACK* is driven. The WRITE* signal is toggled by the VMEbus master,
signifying an RMW cycle. The CY7C960 responds to the subsequent DSi* assertion by latch-
ing the state of A[15:1], LWORD*, and D[15:0] in the CY7C964s, thus posting the data, and
completing the VMEbus cycle by driving and releasing DTACK*. The local cycle continues by
reasserting the previously-latched lower 24 bits of address on the local address bus and
driving SWDEN* and DBE signals appropriately for the address to be written. Two local cycles
occur to write the MD32 data.

Introduction to the VIC068A

3-83

Figure 3-32. I/O Cycle Timing

Figure 3-33 shows an example of read-ahead operation. The transaction shown is an A32/
D16 BLT, 2 transactions (4 bytes) long. In this example, DRAM is enabled for the Region being
addressed so the DRAM control signals are shown in addition to the Chip Select signals. The
two VMEbus Read Cycles are completed normally, and the local signals, SWDEN*, DBE, and
Chip Selects are driven appropriately for the address being transferred. The 16-bit local data
is driven on the correct VMEbus data signals (D[15:0]). After the second DTACK from the
CY7C960, the VMEbus Master releases AS*, signifying the end of the block transfer. But
meanwhile, the CY7C960 has provided another read sequence to the local circuitry. In this
case, CAS* and DBE have been driven and the data has been presented by the local circuitry
to the CY7C964 local data pins. When AS* is detected High, the CY7C960 simply drives all
local controls inactive and terminates the local cycle with no ill effects.

”34” - A40/MD32 RMW cycle

ADDRESS

ADDRESS

BYTE(0-1)

BYTE(2-3)

BYTE(0-1)

BYTE(2-3)

VALID

VALID

”10” ”10”

”1100” ”0011” ”1100” ”0011”

LA0 LA2 VALID LA0 LA2

VALID

VALID

01 23 BYTE(0-1) BYTE(2-3)

AM

AS*

WRITE*

A

DS0*

DS1*

D

DTACK*

REGION

CS

LA

LADI

LAEN

LD

DENIN

LEDO

DENO

SWDEN

DBE

LACK

RW

LEDI

Introduction to the VIC068A

3-84

Figure 3-33. Example of Read-Ahead Timing

3.9.4 Data Byte Enable Usage

Table 3-10 indicates which Data Byte Enable signals are active for all possible VMEbus
Transactions. The polarity assumed for the DBE pins is LOW true.

”0f” - A32/D16 SUPERVISORY BLT

VALID

BYTE(0-1)

”1100” ”001

01 23

VALID LA0 LA2 LA4

”1100”

01

VALID

VALID

BYTE(2-3)

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

LA

ROW

COL

RAS

CAS

LACK

LADI

LAEN

LD

SWDEN

LEDI

DENIN

LEDO

DENO

DBE

LDS

RW

Introduction to the VIC068A

3-85

Table 3-10. DBE Signal Truth Table

3.9.5 Using I/O In DRAM Mode

When the CY7C960 is configured for DRAM, three pins remain for use as Chip Select Outputs,
CS[2:0]. When a transaction takes place that maps to a Region where DRAM is enabled the
Chip Select output pattern for that Region is driven from CS[2:0]. The DBE pins are driven
with timing appropriate for a DRAM access (CAS* timing parameters configured during ini-
tialization). When a transaction takes place that maps to a Region where DRAM is disabled,
then the Chip Select pattern for that Region is driven from CS[2:0], and the DBE pins are
driven with timing appropriate for an I/O access (DBE assert time configured during initializa-
tion).

DS1* DS0* LA1
LA0

(LWORD*) DBE3 DBE2 DBE1 DBE0

Byte 0 1 0 1 1 1 1 0

1 0 0 1 1 1 0 1

0 1 1 1 1 0 1 1

1 0 1 1 0 1 1 1

Word 0 0 0 1 1 1 0 0

0 0 1 1 0 0 1 1

Longword 0 0 0 0 0 0 0 0

Unaligned 0 1 0 0 1 0 0 0

1 0 0 0 0 0 0 1

0 0 1 0 1 0 0 1

3-86

3.10
 Design Considerations

3.10.1 Design Philosophy

The CY7C960 and the CY7C961 each share the basic VMEbus slave circuitry, and each has
a common design philosophy. The most basic foundation for the design was that of achieving
high performance in whatever system the devices were placed. For the CY7C960, that phi-
losophy determined the hierarchical partitioning of the design into several independent blocks,
each with its own state machine. The coexistence of these state machines demanded a fully-
synchronous internal design in order to remove the necessity for block-to-block synchroniza-
tion circuitry, or pipelining. Thus the internal operations are all designed to take place within
one clock period, so that results from one state transition are available to other blocks in the
cycle that they occur. No “analog” delays are employed in the design, and the standard
VMEbus timings are determined by counting clock periods internally. The clock input frequen-
cy that the two parts expect to see is 80 MHz: at this frequency all the VMEbus timings are
assured. The design is fully static, and the clock frequency must therefore be considered
when specifying the configuration of the application. All parameters that are a function of
clock period are specified as such (e.g., 3T + 4 nsec) in the AC timing tables (Chapter 3.12).

There is a comprehensive set of timing diagrams in Chapter that should be consulted to
determine the relationship of the various signals. Where possible, there are AC timing pa-
rameters specified in Table 3-16. In general, however, the diagrams will give a better under-
standing of the operation of the parts than a table of numbers.

3.10.2 CY7C964 Interface

The operation of the interface is described in Chapter 3.6, and in Section 4, The CY7C964
Bus Interface Logic Circuit. The background to this section may be of interest.

The first controller produced by Cypress for the VMEbus community was the ubiquitous
VIC068A—the current industry-standard controller. This device was intended to be used in
concert with the state of the art in low-cost drivers—then “ACT” logic devices such as ‘543s
and ‘245s. The control outputs from the VIC068A were crafted to interface cleanly with these
devices. Thus LEDI, LEDO, DENIN*, DENO*, etc. from the VIC068A were signals whose
timing was designed to turn the drivers on or off, and latch the data and address buses, at
appropriate times for the VMEbus transfers. When the VIC64 was introduced it inherited the
identical timings, because the VIC64 was socket-compatible with the VIC068A. The CY7C964
was designed as a glueless companion to VIC64, replacing the ACT logic with a higher level

Design Considerations

3-87

of integration to allow the increased functionality of the VME64 specification to be implemented
in similar board space. So it also inherited the control signal timing of the VIC068A.

Several of the control signals perform double duty, such as LDS and MWB*, which are used
during the comparator load sequence in the CY7C964. But in general, the signals controlling
the ‘964 are the original buffer control signals from the VIC068A.

Therefore, when the CY7C960 and ‘961 were designed, they had to conform to the original
control timing imposed by the VIC068A in order to use the popular CY7C964. Therefore the
control signals have the same names, functions, and timings as the original VIC068A and the
VIC64. One advantage of this is that applications that do not require the sophistication of the
VME64 specification are not forced into employing the sophisticated CY7C964—the control
signals work with the FCT family of devices that are also offered by Cypress. These devices
allow simpler applications to achieve cost goals without sacrificing performance. The limita-
tion, as should be expected, is that the more complex VMEbus transactions are not imple-
mented unless the CY7C964 is employed.

3.10.3 Local Bus Philosophy

The CY7C960 and ‘961 are very flexible in the way they deal with local circuitry. However,
they are not intended to compete with their more sophisticated cousins, VIC64 and VIC068A.
Whereas VIC068A and VIC64 have a local bus arbitration circuit, on-chip DMA engine, and
local interrupt circuitry, the ‘960 and ‘961 are conceptually much simpler. On the surface, the
pinout reveals a simple local acknowledge handshake, and a local interrupt input. The ‘961
also provides a local bus error function. Beneath the surface, there is another level of com-
plexity that can be invoked by applications that need somewhat more local bus control.

The CY7C960 was intended to be the highest priority on the local bus. In other words, the
‘960 assumes that when a VMEbus slave transaction occurs, nothing will prevent it from
reading or writing local transactions other than the local acknowledge handshake. The local
cycle starts with no regard for other masters which may be accessing local resources. This
optimizes VMEbus performance, preventing VMEbus cycles being extended by local bus
contention. However, this philosophy is not beneficial in all cases. Some rudimentary control
over the local bus may be needed from time to time by other devices.

To cater to this situation the CY7C960 can be prevented from starting a local cycle, or a refresh
of local DRAM. To explain this operation, first consider the VMEbus activity. Whenever AS*
is asserted by a VMEbus master, the CY7C960 will drive RAS* Low, and the VMEbus address
is driven onto the local address bus by the CY7C964s. This happens whether the CY7C960
is addressed or not, in order to optimize performance. The problem for local bus ownership
is that there is no way to predict when AS* will go active. Hence the only way to guarantee
that AS* is not about to go Low, is to watch it go High. Then the AS* minimum High time
provides a window of opportunity for the local master to capture the local bus from the
CY7C960. The local signal which can be used to monitor AS* going High is LADI. This signal
also indicates DRAM refresh activity, thus preventing a conflict between the local bus master

Design Considerations

3-88

and a local DRAM refresh cycle. The local acknowledge signal is used to capture the local
bus: if enabled to do so by a bit in the configuration sequence, the LACK pin prevents the
start of a ‘960 local cycle. If LACK is driven High (or is High already) when the window
described earlier occurs, then no local signals are driven by the ‘960 whatever happens on
the VMEbus. Control signals to the ‘964 are driven to cause the least significant ‘964 to be
three-stated and the local bus master can now perform local cycles without fear of intervention
or DRAM refresh. LAEN of the remaining ‘964s must be controlled by external logic. The local
bus is given back to the CY7C960 upon the assertion of LACK (Low).

In some applications, VMEbus traffic may not provide enough opportunities—AS* may not
cycle frequently. In such a case, the local master can still acquire the local bus by driving
LACK High, waiting a period of time (2T) then examining LADI. If LADI is still inactive then
the local bus is available. If LADI is active, then the VMEbus transaction has begun and the
‘960 is about to start a local bus access.

Note that, while the local bus is not available to the CY7C960, any VMEbus accesses to the
CY7C960 will hang until the local bus is again available. Also, the refresh engine will be unable
to refresh the DRAM; when LACK is driven Low, the refresh engine has priority and will burst
all the missed refresh cycles (256 bursts) before the CY7C960 will respond to a VMEbus cycle.

Note that this function is enabled by a bit in the configuration bit stream. If the bit is not enabled,
then the CY7C960 cannot be prevented from DRAM refresh, or from starting a local cycle.
The function of LACK is then simply to control the completion of local cycles allowing for slow
or asynchronous local peripherals.

3.10.4 Read-Ahead Cycles

The CY7C960 does not read ahead single-cycle transfers, but it does perform read-ahead
cycles when acting as a slave to a VMEbus BLT read operation. There are two ways to prevent
CY7C960 performing the read-ahead, both involving the VMEbus Master: terminate the block
transfer at a 256-byte address boundary; or remove AS* with the final DS* deassertion.

Read-ahead is implemented to allow a higher performance to be achieved, as otherwise the
slave board will be unable to provide data within the specified timing for minimum transaction
period.

There are considerations when designing FIFO-based slave circuitry in order to guarantee
that the master will be given an error-free block transfer. The FIFO going empty during the
progress of a block transfer Read will not be a problem, assuming that the circuitry external
to CY7C960 intercepts the read strobe until the FIFO has data, and does not acknowledge
the local cycle until the data has in fact been transferred to the CY7C960. The problem occurs
when a data block is desired that is not aligned to 256-byte address boundaries. The final
transfer of desired data will be followed by a read-ahead cycle which will, unless intercepted
in some way, clock exactly one more data location from the FIFO.

Design Considerations

3-89

In most applications this will not be a problem, as the system design is usually organized so
that the FIFO goes empty after the final desired data byte has been read, and the following
read-ahead will not be relevant. Once AS* has gone inactive on the VMEbus, the CY7C960
understands that the data transfer is complete. It drives all local signals inactive, whether or
not the cycle has been locally acknowledged. This effectively discards the read-ahead.

In some cases the FIFO may contain relevant data at all times, and a read-ahead cycle would
result in loss of data. These applications must either ensure that the data is aligned to 256
byte address boundaries, or ensure that AS* and DS* go inactive together, thereby ensuring
that the final cycle is not followed by a read-ahead.

3.10.5 Write Posting

A similar consideration is inherent in the BLT Write operation. A common system configuration
on VMEbus is that the slave “posts” the write data and acknowledges the VMEbus cycle prior
to the local acknowledge. This optimizes performance: without BLT write posting, performance
is substantially degraded, approximating that of a well-designed single cycle transfer.

During a BLT Write transfer, if the local circuitry detects an error or is unable to complete the
transaction, then the local circuitry will not acknowledge the posted data. This causes the
VMEbus to extend the current cycle (the one immediately AFTER the posted transaction) and
the system timer will timeout, causing a BERR* and allowing the Master to perform error
recovery.

In the event that the final local cycle of a block does not terminate correctly, there is no
mechanism for communicating this error to the Master. The cycle has already been DTACKed,
and the bus ownership has been relinquished. This is a problem common to all VMEbus Slave
Write Posting applications.

The CY7C960 posts all BLT write transactions. If the system designer has a problem with
write posting due to the last-cycle issue, then single cycle transfers must be used. CY7C960
does not post single cycle write data.

3.10.6 VMEbus Error Considerations

Because of pinout limitations the CY7C960 does not monitor or drive BERR*, the VMEbus
error handshake. In the case where the VMEbus cycle terminates with a BERR*, indicating
that the local data was in fact needed but was not provided before the VMEbus timer expired,
CY7C960 cannot see BERR*, but still sees AS* go inactive. The CY7C960 always terminates
the local cycle in response to AS* going inactive. In this case it is the responsibility of the
Master to take action following the BERR*. The CY7C960 continues to operate normally.

3-90

3.11
 CY7C961 Description

3.11.1 Introduction

The CY7C961 is a CY7C960 Slave VMEbus Interface Controller with the addition of a master
block transfer capability. Full-featured Slave boards can be built, using the CY7C961, that
offer a flexible Master block transfer facility for bursting data across the VMEbus. The CY7C961
can receive its instructions from a VMEbus Master or by programming registers locally. The
CY7C961 interprets the instructions and then moves data accordingly as a VMEbus Master.
This optimizes performance and bus utilization.

The CY7C961 is a true superset of the CY7C960. Signal pins have been added to control
CY7C964 DMA functions. Unidirectional VMEbus pins have been changed to bidirectional.
A few additional signals have been provided to complete a master interface, such as a data
port and VMEbus requester signals. As a VMEbus Slave, the CY7C961 behaves in every
respect like the CY7C960. It has more pins, a master block transfer facility, and (because of
the addition of BBSY*) full lock cycle support.

From a system perspective, this CY7C961 master block transfer capability can be viewed as
a DMA channel which resides on the slave card, and is controlled by a dual ported on-chip
register file. It is possible to program the DMA channel from the VMEbus or from the local
side of the interface, or both. Once programmed, the CY7C961 acquires the VMEbus and
transfers data in one of 20 user-selected protocols.

Circuitry on the local side of the CY7C961 sees the same control signals as were described
for the CY7C960. For example, the REGION inputs to the CY7C961 are driven by an external
address decoder. The address decoder sits on the local address bus, which is driven from
the CY7C964s. The local memory or I/O involved in the data transfer is enabled through the
CS outputs and the DRAM control signals from the CY7C961, so they must be configured
correctly for the REGION inputs being driven.

CY7C961 Description

3-91

Figure 3-34. CY7C961 Block Diagram

This implies that the VCOMP* outputs from the CY7C964s cannot form part of the address

decoder for master operations, because they are looking not at the local address, but at the

VMEbus address, which by definition must be pointing somewhere other than the CY7C961’s

address space.

Figure 3-34 shows the block diagram of the CY7C961. It is very similar to the CY7C960 block

diagram (see Introduction), with the addition of some CY7C964 control signals, signals need-

ed to support VMEbus Master Transactions, and other minor changes.

3.11.2 CY7C961 Lock Cycle Support

3.11.2.1 Overview

Lock commands are Address-Only-Cycles-With-Handshake (ADOH) cycles that are used to
lock the other port(s) of multiported resources, where one port is on VMEbus. Each Slave’s
resource that is addressed with a lock command is to lock out all other accesses to that
resource. Use of a lock command signifies the start of a locked sequence of VMEbus cycles

10010011011
00101101100
11000110101
00000001000
10101011111

10010011011
00101101100
11000110101
00000001000
10101011111
11000111001
10110011000
00000000000

Refresh
Controller

Data Byte
Lane Decoder

VME Control
Interface

AS*
DS0*
DS1*

DTACK*
WRITE*

BR*
BBSY*
BERR*
BGIN*

BGOUT*

Timing Generator

DRAM
Controller

R
A

S
*

C
A

S
*

R
O

W
C

O
L

SYSRESET*
Power-On

Reset
Generator

VME Interrupt
Interface

IRQ*
IACK*

IACKIN*
IACKOUT*

LI
R

Q
REGION/
AM Table

AM[5:0]

REGION[2:0]

Data Byte
Enable

Controller

DBE[3:0]

Chip Select
Output Pattern

Table
CS[2:0]

Local Control
Circuit

PREN*

R/W*
SWDEN*

LDEN*

CLK

SELECTLM

DMA Controller

Local Address
Controller

LA[7:0]

DMA Channel
Registers

LD[7:0]

LOCK
Controller

CY7C964 Controller

D
64

S
T

R
O

B
E

D
E

N
O

*
D

E
N

IN
*

D
E

N
IN

1*
LA

D
I

LA
E

N
LE

D
I

LE
D

O
A

B
E

N
LD

S
M

W
B

*
B

LT
*

LA
D

O
F

C
1

LA
E

N
32

1
V

M
E

C
N

T

LACK
LBERR*

CY7C961 Description

3-92

which ends with the end of the current VMEbus Master’s bus tenure. The CY7C961 allows
locked cycles to be decoded, and drives a local lock indicator while the ensuing VMEbus
locked sequence is in progress.

3.11.2.2 Description

Each of the lock commands (A16, A24, A32, A40, A64) consists of an address phase which
is presented to the VMEbus and handshaken by the targeted Slave. The CY7C961 can be
programmed to decode lock commands on any ONE of its 16 decode regions. Any combina-
tion of the five lock commands can be enabled for that region, but only one lock indicator
signal is provided. When a lock command is decoded, the CY7C961 drives its MWB pin Low
to indicate the beginning of the locked VMEbus sequence. The lock indication on MWB will
be maintained as long as BBSY* or AS* remains asserted to the CY7C961. A decoded lock
cycle will not cause chip selects or byte enables to become active. A decoded lock cycle will
not interfere in any way with slave accesses to the CY7C961. Figure 3-35 shows the timing
of the various signals associated with LOCK cycles.

The MWB signal is active during block transfer register accesses and during CY7C961 master
block transfers. MWB indicates a default lock condition during master block transfer. This
should be considered when designing the local resource lock control circuitry in which MWB
is used. If the lock default is not needed during master block transfers, the CY7C961 signal
FC1 can be used to disable lock during master block transfers.

3.11.3 CY7C961 Master Block Facility

3.11.3.1 Overview

The CY7C961 Master Block Facility provides “block transfer on demand” capability for slave
cards built around the Cypress CY7C961/CY7C964 chip set. This facility allows DMA control
by writing a short series of commands to the CY7C961/CY7C964 chip set, telling it how much
data to move, where to get it from, where to put it, and what transfer protocol to use while
moving it. Blocks can be moved over the VMEbus as indivisible single cycles or BLTs. The
protocol menu includes D8, D16, D32, MD32, or D64. A16, A24, A32, A40, and A64 address
spaces can be specified. Burst lengths from 16 bytes to 8 megabytes can be requested. Eight
registers accessible from the VMEbus or the local side of the interface make the facility simple
to configure and simple to control. The facility has a busy semaphore, a VMEbus Interrupt on
completion feature with a programmable statusID byte, and a built in requester and bus grant
daisychain.

CY7C961 Description

3-93

Figure 3-35. LOCK Cycle Timing

It is expected that the system designer will choose either local programming of the DMA
channel or VMEbus programming and design decode and other support circuitry based on
that choice. There is nothing in the design of the CY7C961 to prevent dual porting of the DMA
control registers, but dual porting, like multi-master VMEbus control requires polling of the
CY7C961 control register semaphore and/or added complexity in hardware and software
design.

VMEbus locked sequence

DECODE delay

REFRESH BURST

Block transfer to DRAM

LCK

LOCK Indicator remains lentil AS* is deasserted after BBSY* has been deasserted.

A64/D16 BLT A24/Serial

VAL ADD VALID

VALID

VALID VALID

ADD

ADD

01 45 8923 67

LA0 LA4LA2 LA6 LA10 LA14 LA18LA8 LA12 LA16 LA20 LA22 LA24

01 45 8923 67 2425

”10” ”10”

VALID

etc.

etc.

BBSY*

MWB*

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

LA

REGION

LADI

CS

LD

LEDI

DBE

SWDEN*

RAS*

CAS*

ROW

COL

LACK

DENIN*

R/W*

CY7C961 Description

3-94

3.11.3.2 Master Block Transfer Control from VMEbus

All control of the master block facility is by register access. Eight registers are designed to be
accessed over the VMEbus by single cycle VME masters. In order to reach the Master Block
facility, the VMEbus address must cause the SELECTLM* signal and a valid REGION vector
to be asserted to the CY7C961. Refer to Figure 3-36 for the register access detail. The
assertion of SELECTLM* blocks any local response by the CY7C961. Instead, internal gating
and external buffer control signaling appropriate to the register access specified by LA[4:2]
is substituted. The CY7C961 asserts DTACK* for valid register accesses or BERR* if an error
access is attempted. Eight registers are defined, selected by LA[4:2].

3.11.3.3 Master Block Transfer Control from Local Side of Interface

All control of the master block facility is by register access. Eight registers are designed to be
accessed directly through control of LA[4:2], LD[31:0], R/W*, and SELECTLM*. The “local
bus holdoff” feature of the CY7C961 must be enabled and the CY7C961 must be in its “holdoff”
state before register access is begun. (See section for a complete description of “Local Bus
Holdoff.”) In order to reach the Master Block facility, LA[4:2] and R/W are set up to the assertion
of the SELECTLM*. For register write cycles, LD[31:0] must also be set up to SELECTLM*.

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

LA

LADI

REGION

SELECTLM

DENIN

LD

LEDO

RW

CS

RAS

DBE

VALID VALID

A[4:2]=”010”

TLM1

A[4:2]=”010”

TLM1

LA[4:2]=”010” LA[4:2]=”010”

TLM1

VALIDVALID

TLM1

No Chip Select Response

Figure 3-36. DMA Control Register Access from VMEbus

CY7C961 Description

3-95

The response of the CY7C961 is self-timed and no acknowledge handshake is provided.
SELECTLM* must be asserted for a minimum of 100 ns (eight CLK periods) and LA[4:2], R/
W*, and LD[31:0] must be driven valid until SELECTLM* is deasserted. On register reads,
CY7C961 drives LD[7:0] two clocks after SELECTLM* is sampled asserted and three-states
LD[7:0] one clock after SELECTLM* is sampled deasserted. Refer to Figure 3-37 for Local
Register access signaling.

Figure 3-37. DMA Control Register Local Access

The CY7C961 provides control signals to the CY7C964 to control the loading of registers
inside the device for operations such as establishing the local starting address and the VME-
bus starting address, both of which could be 32-bit quantities stored inside the CY7C964s.

If an illegal register access is attempted, the CY7C961 will signal by driving LBERR* Low
within two clocks after SELECTLM* is asserted. LBERR* deasserts one clock after SE-
LECTLM* is sampled deasserted.

3.11.3.4 Programming the Master Block Facility

In general, the set-up programming is very simple. First the semaphore must be read. This
register read unlocks the facility. Next, values are written to Transfer Length, Transfer Type,
Upper Address (optional), and Master Block StatusID (optional). These parameters need not
be refreshed each time the facility is used. After that, the VME Starting Address is written,
then Local Starting Address and GO. This last register write operation starts the block transfer.
The CY7C961 will assert BR* and, upon being granted the VMEbus, move data until the
transfer length is exhausted.

Note that the CY7C961 can be programmed through the initialization bit stream to release
and re-request the VMEbus at every 256-byte boundary as DMA transfer progresses. This

DATA from CY7C961

Register Address

VALID

DATA to CY7C961/CY7C964

CLK

LADI

LACK

RW

LAEN

LA[4:2]

LD(write)

SELECTLM

LD(read)

LBERR

CY7C961 Description

3-96

behavior can be useful in providing VMEbus access to high-priority traffic interleaved with the
DMA transaction.

If more than one VMEbus master is to control the block transfer facility, or if the facility is dual-
ported between a local and one or more VMEbus masters, the Semaphore Test & Set register
can be polled by any master to determine if the facility is “idle” or “busy.” If the polling result
is “idle”, that register read sets the semaphore to “busy”, eliminating the need for a read-
modify operation. The semaphore can be written to “idle.” The semaphore is changed by the
register write, but this operation is always acknowledged with an error response by the
CY7C961.

The semaphore is reset by the CY7C961 on block transfer completion. To do another block
transfer requires a minimum of three register accesses, namely, (1) read Semaphore Test &
Set, (2) write VME Starting Address, and (3) write Local Starting Address and GO. Of course
any of the set-up parameters can be read (with some limitations) or written before writing the
GO register. Once the Local Starting Address and GO register is written, all register write
attempts are greeted with error acknowledge, cancellation of the DMA operation, and reset
of the semaphore. Register reads are always permitted.

The CY7C961 is equipped with BERR* and LBERR* inputs which can be used to interrupt a
DMA transfer at any time after it is started (BBSY* is asserted). No consideration as to the
timing of BERR* or LBERR* assertion with respect to the progress of the DMA needs to be
given. These signals provide a mechanism for aborting DMA transfers in favor of higher priority
VMEbus traffic.

Table 3-11. Master Block Transfer Control Registers

3.11.3.5 Register Definitions

The following descriptions apply equally to VMEbus register and local register access, but
are written from the VMEbus perspective. Local access occurs in the context of “local bus
holdoff” as previously described, and has as its error response LBERR* substituted for BERR*.

LA[4:0] Register Function

000xx Semaphore Test & Set (read only)

001xx Transfer Length Multiplier 0 (TLM0)

010xx Transfer Length Multiplier 1 (TLM1)

011xx Transfer Type

100xx Local Starting Address and GO

101xx VME Starting Address

110xx A40/A64 Upper Address

111xx Master Block StatusID & Interrupt Enable

CY7C961 Description

3-97

3.11.3.5.1 Semaphore Test & Set (read only)

Location 000xx is a semaphore test and set. It is a read cycle. CY7C961 responds with the
current value of the semaphore. If the Master Block resource of the CY7C961 is idle, this read
will return logic “1” on LD0 which is reflected on D0 of the VME data bus. This register read
causes the semaphore to be set to busy. The CY7C961 will now respond to additional register
accesses. Any subsequent read of the semaphore will return logic “0” on LD[0] and D[0]
indicating that the block transfer resource is “busy.”

The semaphore is cleared by the CY7C961 upon completion of a block transfer or when an
illegal combination of register values is held when a transfer is attempted. If the interrupt on
completion feature is enabled, semaphore clear is delayed until the interrupt generated by
block transfer completion is serviced. When BERR* is received during a block transfer, the
transfer terminates and the semaphore is cleared. If the interrupt on completion feature is
enabled, an interrupt will be signaled on termination and the semaphore clear is delayed until
that interrupt is serviced.

Any write to location 000xx will cause the CY7C961 to drive BERR* and clear the semaphore.
If access to any of the seven other defined registers is attempted before the semaphore is in
the “busy” state, CY7C961 will BERR* those attempts and the semaphore will remain in the
idle state.

The CY7C961 drives status conditions on LD[6:1] passed through to D[6:1] of the VMEbus
during semaphore read. The normal value for these status bits is logic “1.” A logic “0” on any
bit indicates a condition which would prevent a block transfer from starting (cause CY7C961
to BERR a write to Local Starting Address and GO). Table 3-12 summarizes the semaphore
Test and Set Status Bit functions.

Table 3-12. Semaphore Test and Set Status Bits

A logic “0” on bit 1 means that interrupt on completion is enabled and a block transfer has
terminated or completed, but the interrupt signalled on termination/completion has not yet
been serviced by a VMEbus interrupt handler. Bit 0 is always logic “0” in this case since the

Status Bit Error Indication

bit 0 Semaphore. (Logic “1” if idle)

bit 1 Master Block interrupt is pending.

bit 2 Transfer Length Multiplier registers are 0.

bit 3 Transfer Type is undefined.

bit 4 Data size is incompatible with VME or local starting address.

bit 5 Address alignment violated on multiplexed data BLT.

bit 6 VME starting address has not been updated.

bit 7 BERR* or LBERR* asserted during transaction.

CY7C961 Description

3-98

semaphore must be in state “busy.” Any attempt to access other registers of the block transfer
facility while bit 1 is logic “0” will be BERRed by the CY7C961. This status bit will clear with
the pending interrupt.

A logic “0” on bit 2 indicates that both registers Transfer Length Multiplier1 and Transfer Length
Multiplier0 contain values of zero. The transfer length multiplier must be nonzero. To clear this
status bit, a nonzero value must be written to either Transfer Length Multiplier register.

A logic “0” on bit 3 indicates the value in the transfer type register is undefined. To clear this
condition, a valid code must be written to the Transfer Type register. (See Transfer Type below.)

A logic “0” on bit 4 means that either the local starting address or VME starting address is
not compatible with the programmed data size. This error condition amounts to specifying
unaligned starting addresses for a block transfer. For example, a local starting address with
an LSB of 0x03 specified with a data size of D16 would result in an unaligned transfer request.
Similarly, a VME starting address LSB of 0x02 specified for a D32 operation would start at
an unaligned address. Either condition would cause this status bit to be logic “0.” This status
bit is computed on the current values of VMEbus and local starting addresses. Since the Local
Starting Address and GO register is written at the time a block transfer is started, an alignment
error on the local starting address will always cause CY7C961 to assert BERR*. A subsequent
read of the Semaphore Test and Set will indicate the error on this status bit.

A logic “0” on bit 5 indicates violation of a restriction placed on starting address when the
transaction type is multiplexed data. The restriction is that VME starting address [7:0] be equal
to local starting address [7:0]. This restriction is in addition to the address alignment require-
ment described with respect to status bit 4 above. The restriction applies expressly to transfer
type codes: “0110011x”, “0110111x”, “0111010x”, “0101011x”, “0101111x”, and “0111111x”.
This status bit is computed on the current values of VMEbus and local starting addresses.
Since the Local Starting Address and GO register is written at the time a block transfer is
started, a violation of this restriction may be created when a new local starting address is
written causing CY7C961 to assert BERR*. A subsequent read of the Semaphore Test and
Set will indicate the error on this status bit.

A logic “0” on bit 6 indicates that the VME starting address has not been written since the last
master block transfer was started. This status bit is cleared by writing a new VME Starting
Address.

3.11.3.5.2 Transfer Length Multiplier(1 & 0)

Two registers, Transfer Length Multiplier1 and Transfer Length Multiplier0 hold respectively
the MSB and LSB of a 16-bit transfer length multiplier parameter. The transfer length of a
block transfer in bytes can be computed by multiplying the transfer length multiplier by a block
length factor for that transfer type. The block length factor is a function of the transfer data
size as shown in Table 3-13.

CY7C961 Description

3-99

Table 3-13. Transfer Length Calculation

For example, if TLM1= 4 and TLM0 = 6 and the data size is D32 (specified in the Transfer
Type register), then the transfer length for the block transfer would be 64 X 1030 = 65,920
bytes. The number of data cycles is always 16 times the transfer length multiplier, so the data
bytes transferred is obviously proportional to the width of the transaction. The transfer length
multiplier registers are read/write with data sent/received on LD[7:0] and reflected on D[7:0]
of the VMEbus. Bit 2 of the Semaphore Test and Set status word will be logic “0” if both
TLM1and TLM0 are set to 0. This is an error condition which will block a transfer start. Both
registers are cleared to 0 after power up or SYSRESET*.

3.11.3.5.3 Transfer Type

The Transfer type register specifies which of 22 possible block transfer operations is to be
performed. The user can select from among A40BLT, D64MBLT, D32BLT, D16BLT, D8BLT,
and single cycle block move options. The 8-bit hex codes shown in Table 3-14 are valid
contents of the transfer type register:

Data Size Block Length Factor TLM1,TLM0 Transfer Length

D8 16 Bytes X TLM[15:0] = BYTES

D16 32 Bytes X TLM[15:0] = BYTES

D32 64 Bytes X TLM[15:0] = BYTES

D64 128 Bytes X TLM[15:0] = BYTES

Table 3-14. Transfer Type Field—Block Transfer Operations

Transfer Type[7:0] AmCode Block Transfer Desc ription

20,21,22,23,24,25 3F A24 supervisory block transfer (D8BLT or D16BLT or D32BLT)

A8,A9,AA,AB,AC,AD 3E A24 supervisory program access (D8 or D16 or D32)

B0,B1,B2,B3,B4,B5 3D A24 supervisory data access (D8 or D16 or D32)

66,67 3C A24 supervisory 64-bit block transfer (MBLT)

28,29,2A,2B,2C,2D 3B A24 nonprivileged block transfer (D8BLT or D16BLT or D32BLT)

B8,B9,BA,BB,BC,BD 3A A24 nonprivileged program access (D8 or D16 or D32)

A0,A1,A2,A3,A4,A5 39 A24 nonprivileged data access (D8 or D16 or D32)

6E,6F 38 A24 nonprivileged 64-bit block transfer (MBLT)

40,41,42,43 37 A40 block transfer (D8BLT or D16BLT)

74,75 37 A40 32-bit block transfer (MD32)

90,91,92,93,94,95 2D A16 supervisory access (D8 or D16 or D32)

98,99,9A,9B,9C,9D 29 A16 nonprivileged access (D8 or D16 or D32)

CY7C961 Description

3-100

Bits [2:1] of the Transfer Type register specify the data size of the block transfer. Table 3-15
defines this Transfer Type field. The CY7C961 checks for consistency between transfer type
and data size. Illogical combinations will be reported on Semaphore Test and Set status bit
3 as an undefined transfer type and will prevent the start of a block transfer.

Table 3-15. Transfer Type Field—Data Size

Bit 0 of the Transfer Type register specifies block transfer data direction. Logic “1” specifies
master read with data moving to the CY7C961 interface, logic “0” specifies master write with
data moving from the CY7C961interface to a VMEbus slave.

The transfer type register is read or written with data transmitted on LD[7:0] and reflected on
D[7:0] of the VMEbus. Illegal codes cause block transfer to abort when the GO transaction is
received. Both undefined transfer type fields and illogical transfer type data size combinations
will BERR when Local Starting Address and GO is written.

3.11.3.5.4 Local Starting Address & GO

The Local starting address and GO register is used to write the local block address to be
used in the DMA block transfer. This address can be up to 32 bits of address information
provided as VME data when the register is written. Local starting address is loaded directly

10,11,12,13,14,15 0F A32 supervisory block transfer (D8BLT or D16BLT or D32BLT)

C0,C1,C2,C3,C4,C5 0E A32 supervisory program access (D8 or D16 or D32)

C8,C9,CA,CB,CC,CD 0D A32 supervisory data access (D8 or D16 or D32)

56,57 0C A32 supervisory 64-bit block transfer (MBLT)

18,19,1A,1B,1C,1D 0B A32 nonprivileged block transfer (D8BLT or D16BLT or D32BLT)

D0,D1,D2,D3,D4,D5 0A A32 nonprivileged program access (D8 or D16 or D32)

D8,D9,DA,DB,DC,DD 09 A32 nonprivileged data access (D8 or D16 or D32)

5E,5F 08 A32 nonprivileged 64-bit block transfer (MBLT)

48,49,4A,4B,4C,4D 03 A64 block transfer (D8BLT or D16BLT or D32BLT)

7E,7F 00 A64 64-bit block transfer (MBLT)

Transfer Type [2:1] Block Transfer Data Size

00 D8

01 D16

10 D32

11 D64

Table 3-14. Transfer Type Field—Block Transfer Operations (continued)

Transfer Type[7:0] AmCode Block Transfer Desc ription

CY7C961 Description

3-101

into the CY7C964’s local address counters C1 and the CY7C961 local address register. A
read of the local starting address will yield only the LSB of the starting address on LD[7:0]
reflected on D[7:0] of the VME data bus.

The CY7C961 signal BLT* is driven low for 2 CLK periods to load the local address into the
CY7C964s from the LD bus. The value of LD on the rising edge of BLT* is stored in the
CY7C964 counter C1. Refer to Figure 3-38.

The control function of this register is activated only for writes to the register. GO causes the
start of the block transfer by signaling the CY7C961 requester to take the VMEbus and begin
the transfer. Once CY7C961 acquires the VMEbus, it will not release the VMEbus until the
block transfer finishes or is terminated by a BERR* during a transfer attempt. BBSY* is re-
leased when the transfer length count is exhausted, not at VMEbus boundary crossings. Any

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

LAEN321

BLT*

MWB*

LA

LADI

REGION

SELECTLM*

LD

DENIN*

LEDO

R/W*

CS

RAS*

DBE

BR*

BBSY*

VALID VALID

VALID VALID

LOCAL START ADDR BYTE0 BYTE1 BYTE2 BYTE3 BYTE4

Local Start Address latched on rising edge of BLT

VALID VALID LA0 LA1 LA2 LA3 LA4

VALID VALID VALID

VALID B0 B1 B2 B3 B4

VALID

0 1 2 3 0

Figure 3-38. Local Starting Address and Go, Block Tran sfer Start Timing

CY7C961 Description

3-102

write to a set-up register after the GO transaction will be BERRed by CY7C961, the block
move aborted, and the semaphore reset.

3.11.3.5.5 VME Starting Address

The VME Starting Address register is used to write the VMEbus block address to be used in
the DMA block transfer. This address can be up to 32 bits of address information written as
VME data to the CY7C961. It is actually stored in latch L9 of the CY7C964s and the LSB of
the address is also captured by the CY7C961 to facilitate counting to the VME address
boundary. A read of the VMEbus Starting Address will yield only the LSB of the starting
address on LD[7:0] reflected on D[7:0] of the VME data bus. Note that this specifier is a true
byte address. The CY7C961 takes care of VMEbus LWORD* and DS1*/DS0* encoding. This
register must be written each time a block transfer is executed. Bit 6 of the Semaphore Test
and Set status register will indicate when the VME starting address has not been updated.
This requirement guarantees that the CY7C964 and CY7C961 will be using the same VMEbus
starting address.

3.11.3.5.6 A40/A64 Upper Address

A40/A64 Upper Address register is not a register residing in either the CY7C961 or CY7C964.
Instead, it is a facility for reading/writing extended address information to external hardware
on the slave card that is not part of the CY7C961/CY7C964 interface. Latch and enable
signaling allows for reading and writing during register access as well as data enable during
address broadcast as the DMA block transfer runs. A40 and A64 extensions are supported.

The latch signal for capturing extended address from the local data bus is (SELECTLM* &
LEDI) where LEDI is a CY7C961 output. The active Low enable for driving the latched data
onto the local data bus is (LDEN* | MWB*). If the extended address is to be incremented,
VCOUT* of the appropriate CY7C964 and LADO are used as count enable and clock respec-
tively for extended address counting. Refer to Figure 3-39 for signaling.

The latch signal is designed to latch up to 32 bits of upper address from LD[31:0] passed
through the interface from VME D[31:0] when Upper Address is written. The enable signal is
designed to allow the stored address to be read from the VMEbus when Upper Data is read,
as well as to enable the stored address onto LD when the master block transfer address
broadcast requires it.

3.11.3.5.7 Master Block StatusID & Interrupt Enable

Master Block status ID & Interrupt Enable is a CY7C961 register which holds the Master Block
statusID byte. This register can be read or written. Bits 7–1 of the register will be reflected in
the statusID byte sourced by CY7C961 when the Master Block interrupt is serviced. Bit 0
controls enabling of interrupt on completion: logic “1” enables interrupt on completion.

CY7C961 Description

3-103

When the interrupter status is read by the handler, bit 0 of the statusID indicates completion
status. Logic “1” means normal completion. Logic “0” means abnormal termination (BERR*
or LBERR* was received during block transfer). The interrupter is a Release on Acknowledge
(ROAK) interrupter. If interrupt on completion is enabled, CY7C961 will reset its semaphore
on interrupt acknowledge. If interrupt on completion is not enabled, CY7C961 will reset its
semaphore with BBSY deassertion at the end of the DMA block transfer. Refer to Figure 3-
40 for Interrupter timing.

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

LA

LADI

REGION

SELECTLM*

LD

LDEN*

MWB*

LEDI

DENIN*

LEDO

R/W*

CS

RAS*

DBE

VALID VALID

A[4:2] = “110” A[4:2] = “110”

UPPER ADDR UPPER ADDR

LA[4:2] = “110” LA[4:2] = “110”

VALID VALID

UPPER ADDR U.A.

Enable Upper Address
!(MWB+LDEN)

Latch Upper Address 25 ns
(!SELECTLM * LEDI)

No Chip Select Response

Figure 3-39. Upper Address Register Access Timing

CY7C961 Description

3-104

AM

AS*

IRQ*

IACK*

IACKIN*

WRITE*

VMECNT

A

D

DS0*

DS1*

DTACK*

MWB*

LA

LADI

REGION

CS

LD

LEDI

DENIN*

LEDO

LACK

DBE

RAS*

R/W*

BBSY*

“0a” - A32/D32 supervisory program access

A_last-8 A_last-4 A_last IRQ_level

St. Id

LA_last-8 LA_last-4 LA_last IRQ_level

Status/Id

Figure 3-40. Interru pter Timin g

CY7C961 Description

3-105

3.11.4 Pin Description Addendum

The following signals are either additional to, or redefined from, the CY7C960 pin descriptions
in Chapter 3.3.

3.11.4.1 VMEbus Signals

AM[5:0] - VMEbus Address Modifier

Input: Yes
Output: Yes
Drive: 48 mA

Signals AM[5:0] are the VMEbus Address Modifier I/Os. When inputs, these signals are used
to decode the VMEbus data transaction type. The CY7C961 provides support for both pre-
defined and user-defined VMEbus Address Modifiers. During master block transfers VMEbus
AM codes are driven out on these signal pins.

AS* - VMEbus Address Strobe

Input: Yes
Output: Yes
Drive: 64 mA
Active: Low

LA7
LA6
LA5
LD7
LA4
SELECTLM*
LBERR*
IRQ*
N/C
LA3
LAEN321
Gnd
AM5
LA2
BBSY*
Vcc
LA1
N/C
DS1*
N/C
LWORD*
FC1
LDS
DENIN1*
LAEN

P
R

E
N

S
W

D
E

N
R

A
S

*/
C

S
4

LD
3

C
A

S
*/

C
S

5
LD

4
N

/C
A

M
2

N
/C

R
O

W
/C

S
2

LD
5

C
O

L/
C

S
3

A
M

1
G

nd
B

R
*

D
B

E
0

A
M

0
N

/C
V

cc
LD

6
D

B
E

1
G

nd
D

B
E

2
D

B
E

3
R

/W
*

D
E

N
O

*
IA

C
K

O
U

T
*

IA
C

K
IN

*
B

G
O

U
T

*
IA

C
K

*
M

W
B

*
N

/C A
S

*
N

/C
LA

D
I

S
T

R
O

B
E

B
G

IN
*

A
B

E
N

*
D

TA
C

K
*

G
nd

N
/C

D
S

0*
N

/C V
cc

B
LT

*
S

Y
S

R
E

S
E

T
*

LA
D

O
D

64
LE

D
O

LE
D

I

LACK
LIRQ*

LDEN*
LD1
CS0
Vcc
LD2
CS1
N/C

AM3
REGION3/CS2

AM4
Vcc

BERR*
Gnd

VMECNT
REGION2

LD0
CLK
N/C

WRITE*
N/C

REGION1
REGION0

DENIN*

CY7C961

TQFP

Top View

Pin 1

CY7C961 Description

3-106

Address Strobe is the VMEbus signal that informs VMEbus slaves that a valid address is on
the VMEbus. This signal is used by the CY7C961 to qualify the VMEbus Address Modifiers
AM[5:0] and REGION[3:0] inputs to determine if a valid slave cycle should be performed.
During master block transfers VMEbus AS* is driven out on this signal pin.

DS0*,DS1* - VMEbus Data Strobes

Input: Yes
Output: Yes
Drive: 64 mA
Active: Low

DS0* and DS1* are the VMEbus Data Strobes. As inputs, these signals inform the CY7C961
that the data phase of the VMEbus cycle has begun. These signals in conjunction with the
VMEbus LWORD* (connected to LA[0]) signal encode the data transfer width or number of
bytes, 1 through 4. This information is necessary to enable the appropriate CY7C964 data
bytes. During master block transfers VMEbus DS0* and DS1* are driven out on these signal
pins.

WRITE* - VMEbus Write Line

Input: Yes
Output: Yes
Drive: 48 mA
Active: Low

The VMEbus WRITE* line specifies the data direction of the VMEbus data cycle in progress.
If this signal is asserted then a VMEbus WRITE operation is in progress. During such a
transaction, if the VMEbus address decodes properly, the CY7C961 responds by asserting
the local R/W* signal and performing the appropriate local cycle. During master block trans-
fers, VMEbus WRITE* is driven out on this signal pin indicating the direction of data for the
DMA transfer.

DTACK* - VMEbus Data Acknowledge

Input: Yes
Output: Yes
Drive: 64 mA
Active: Low

The DTACK* signal is asserted by the CY7C961 when a valid VMEbus transaction is in
progress and has remained valid for the proper length of time. The assertion of this signal
informs the VMEbus Master that the slave has either accepted the data during write operations
or has sourced the data during read operations. This signal is a rescinding output. During
master block transfers, the CY7C961 receives VMEbus data acknowledge from the target
slave.

CY7C961 Description

3-107

BR* - VMEbus Request

Input: No
Output: Yes
Drive: 48 mA
Active: Low

Signal BR* is the VMEbus Request output. This output is open-collector with a low state sink
current of 48 mA. It is asserted by the CY7C961 when the VMEbus is required for a block
transfer.

BGIN* - VMEbus Bus Grant In

Input: Yes
Output: No
Active: Low

BGIN* is a VMEbus Bus Grant In signal. It is generated by the VMEbus arbiter and signals
that CY7C961 may use the VMEbus. BGIN* and BGOUT* signals form a bus grant daisy chain.

BGOUT* - VMEbus Bus Grant Out

Input: No
Output: Yes
Drive: 8 mA
Active: Low

BGOUT* is a VMEbus Bus Grant Out signal. It is driven Low by the CY7C961 in response to
an assertion of the BGIN* signal when CY7C961 does not want to use the VMEbus.

BBSY* - VMEbus Bus Busy

Input: Yes
Output: Yes
Drive: 64 mA
Active: Low

BBSY* is the VMEbus bus busy signal. It is driven Low by the CY7C961 to indicate the VMEbus
is being used for a block transfer. When the block transfer operation is done, CY7C961 drives
BBSY* High and then three-states the signal. In response to decoded VMEbus lock cycles,
the CY7C961 monitors BBSY* to determine when a locked VMEbus sequence is ending.

BERR* - VMEbus Bus Error

Input: Yes
Output: Yes
Drive: 48 mA
Active: Low

BERR* is the VMEbus bus error signal. It is driven Low by CY7C961 in two cases. First,
decoded slave accesses which attempt to illegally configure the CY7C961 block transfer
facility will result in a BERR* acknowledge. Second, BERR* will be signaled to acknowledge
a slave block data cycle if LBERR* is sampled asserted at the time VMEbus DSA* was received

CY7C961 Description

3-108

by the CY7C961. BERR* is three-stated on the deassertion of VMEbus signals DS0* and
DS1*. CY7C961 monitors BERR* during master block transfer operation, truncating the block
transfer if a BERR* acknowledge is detected. BERR* assertion will also signal the end of any
locked VMEbus sequence.

3.11.4.2 Local Buffer Control Signals

BLT*

Input: No
Output: Yes
Drive: 8 mA
Active: Low

BLT* is driven Low for 2 clock periods during the block transfer register access “Local starting
address and GO.” The local starting address for block transfer is latched into CY7C964 internal
counters on the High-going edge of this signal. The CY7C961 BLT* pin should be connected
to the BLT* pin of each CY7C964 in the interface.

MWB*

Input: No
Output: Yes
Drive: 8 mA
Active: Low

MWB* is driven Low by CY7C961 during the block transfer register access “Local starting
address and GO.” It remains in the Low state throughout master block transfer except at 256-
byte local boundaries. When a 256-byte local boundary is crossed, MWB* will be pulsed High
for one clock period. The High to Low transition on this pulse increments the interface
CY7C964 local block counters. MWB* is deasserted on completion of a block transfer. MWB*
also signals VMEbus lock status. MWB* is driven Low on decode of a VMEbus lock cycle. It
is deasserted when the VMEbus lock sequence is complete. The CY7C961 MWB* pin should
be connected to the MWB* pin of each CY7C964 in the interface.

LADO

Input: No
Output: Yes
Drive: 8 mA

LADO is pulsed High by CY7C961 at VMEbus 256-byte boundaries during master block
transfers. LADO is driven High at the same time VMEbus data strobes are asserted for the
last cycle of the address page. LADO is driven Low one clock after DTACK* is detected Low
in that cycle. The High to Low transition on LADO increments the VMEbus block counters of
the interface CY7C964s. The CY7C961 LADO pin should be connected to the LADO pins of
all interface CY7C964s EXCEPT the one connected to VMEbus addresses A[7:1].

CY7C961 Description

3-109

FC1

Input: No
Output: Yes
Drive: 8 mA
Active: High

FC1 is driven High by CY7C961 at the beginning of the block transfer’s VMEbus tenure. It is
deasserted at the end of the block transfer’s VMEbus tenure. The CY7C961 FC1 pin should
be connected to the FC1 pins of each CY7C964 in the interface. This signal can serve as a
DMA complete indicator for local control purposes.

VMECNT

Input: No
Output: Yes
Drive: 8 mA

VMECNT is a clock signal driven by CY7C961 to the LADO pin of the CY7C964 connected
to VMEbus addresses A[7:1]. This signal adjusts the VMEbus block counter of this CY7C964
to source LWORD correctly for D8 and D16 block transfers. VMECNT also burst clocks this
block counter to $h00 in cases where the VMEbus block starting address is not aligned to a
256-byte boundary. The clock pulse width is one CLK period.

LAEN321

Input: No
Output: Yes
Drive: 8 mA
Active: High

LAEN321 is driven Low for four CLK periods during the block transfer register access “Local
starting address and GO.” The High to Low transition happens one clock before the High to
Low transition on BLT*. LAEN321 is used in conjunction with BLT* and MWB* to place the
interface CY7C964s in BLT_STATE. The CY7C961 LAEN321 pin should be connected to the
LAEN pins of all interface CY7C964s EXCEPT the one connected to VMEbus addresses
A[7:1].

3.11.4.3 Local Signals

LD[7:0] - Local Data Signals

Input: Yes
Output: Yes
Drive: 8 mA

LD[7:0] make up the local bidirectional data bus. These pins should be connected to LD[7:0]
of the interface CY7C964 connected to VMEbus data D[7:0]. During block transfer register
accesses and block transfer complete interrupt acknowledge accesses, data is read from or
written to the CY7C961 via this data port.

CY7C961 Description

3-110

SELECTLM* - Select Load Master Signal

Input: Yes
Output: No
Active: Low

SELECTLM* is a chip select for accessing the eight CY7C961 registers that control the block
transfer facility. A decoded VMEbus slave cycle for which SELECTLM* is also asserted will
be interpreted by CY7C961 as a block transfer register access. SELECTLM* timing should
imitate that of the REGION input.

LBERR* - Local Bus Error Signal

Input: Yes
Output: Yes
Drive: 8 mA
Active: Low

LBERR* has three distinct functions. First, it provides a mechanism for aborting DMA transfers
in progress. At any time after the GO register access completes, LBERR* may be asserted
to cause DMA completion (with error status). If interrupt on completion is enabled, IRQ* will
be asserted within two CLK periods after LBERR* assertion. A second function of LBERR*
is as an error signaling mechanism for slave block transfer. Each time the VMEbus DSA*
signal is asserted to the CY7C961, the state of the LBERR* signal is sampled. If it is asserted,
that VMEbus cycle will receive a BERR* acknowledge instead of a DTACK* acknowledge.
The third function of LBERR* is as an error acknowledge output for DMA register accesses
during “local bus holdoff.” LBERR* will be asserted (driven low) by CY7C961 to indicate an
error condition during a register access in progress. Note that LBERR* is always driving out
of the CY7C961 during “local bus holdoff.”

R/W* - Read/Write

Input: Yes
Output: Yes
Drive: 8 mA

R/W* is the local signal that determines if the cycle in progress is a read operation or a write
operation. The CY7C961 asserts this signal Low during write operations.

When accessing the Master Block Facility from the local side of the interface - R/W* is an
input to the CY7C961. The local bus holdoff feature of the CY7C961 must be enabled before
register access is initiated.

3.11.4.4 Master Block Transfer Performance

From the perspective of local bus timing, there is no difference between local bus signaling
for master DMA and slave accesses. The master block facility uses the same circuits and the
same self-timed acknowledge constants as the slave. Master block transfers sample REGION

CY7C961 Description

3-111

at each 256-byte boundary. This allows a block transfer to, for example, start in an SRAM
region and transparently cross a hardware boundary into a DRAM region.

The master block facility has performance limits set by CY7C961 internal synchronous state
machines. 6 CLK periods is the minimum required per VMEbus data cycle for master write
operations, 7 CLK periods for master read VMEbus data cycles. Local bus signaling limits
D64 transfer rates to 80 megabytes per second, and MD32 to 40 megabytes/second. The
performance of D32 block transfer is limited by VMEbus slave response, with an ideal slave
response making block read performance of 40 megabytes/second and block write perfor-
mance of 50 megabytes per second possible. These are, of course, burst maximums. Sus-
tained D64 block transfer rate will be 73 megabytes/second to an ideal slave with local cycles
set up for 50 ns.

The block transfers using single-cycle protocol will be considerably slower than the true block

protocols because the CY7C961 must increment the CY7C964 after each data cycle. For

D32 this represents an 8 CLK period overhead. Transfer rate will not exceed 20 megabytes/

second. D16 single-cycle protocol will be down around 12 megabytes/second. D8 single-cycle

will top out at 5.5 megabytes/second.

For BLT transfers, CY7C961 will cross VME address boundaries without releasing the VME-

bus unless the Interleave function is programmed ON in the serial bit stream. Address strobe

will be cycled and address rebroadcast. BBSY does not have an early release mode, and is

asserted throughout the block transfer. D64MBLT will rebroadcast at 256-byte boundaries. If

single-cycle accesses are specified, the block move will consist of an indivisible packet of

single-cycle transfers sufficient to satisfy the transfer length parameter, transfer type dictating

the AM code used.

CY7C961 Description

3-112

3.11.5 Examples of Block Transfers

Figure 3-41. A64/D64 MBLT Master Write

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

LA

MWB*

LDEN*

LD

LEDO

DENIN*

RAS*

DBE

LACK

R/W*

BBSY*

 “00” - A64/D64 MBLT

ADDRESS ADDRESSDATA0 DATA8 DATA16 DATA24 DATA32

UPP. ADDR. UPP. ADDR.DATA4 DATA12 DATA20 DATA28 DATA36

VALID (DRAM REGION)

VALID VALID

LA0 LA4 LA8 LA12 LA16 LA20 LA24 LA28 LA32 LA36 LA40 LA44

UPPER ADD. UPPER ADD.

CY7C961 Description

3-113

Figure 3-42. CY7C961 A64/D64 MBLT Master Read Example

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

LA

MWB*

LDEN*

LD

LEDI

DENIN*

RAS*

DBE

LACK

R/W*

BBSY*

“00” - A64/D64 MBLT

BOUNDARY

ADDRESS

UPP. ADD.

ADDRESS

UPP. ADD.

VALID (DRAM REGION)

VALID VALID

LA0 LA4 LA8 LA12 LA16 LA20 LA24 LA28 LA32 LA36 LA

UPPER ADD. UPPER ADD.0 4 8 12 16 20 24 28 32 36 40

“01” “01” “01” “01” “01” “01” “01”

CY7C961 Description

3-114

Figure 3-43. CY7C961 A40/D16 BLT Master Read Example

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

LA

LDEN*

LD

LEDI

DENIN*

RAS*

DBE

LACK

R/W*

BBSY*

“37” - A40/D16 BLT

ADDRESS

UPP. ADDR.

VALID (DRAM REGION)

VALID

LA0 LA2 LA4 LA6 LA8 etc.

UPPER ADD. B01 B23 B45 B67 B89 etc.

“10” “10”

01 01 0123 23 23

CY7C961 Description

3-115

Figure 3-44. A32/D32 Single Cycle Write Example

AM

AS*

WRITE*

VMECNT

A

D

DS0*

DS1*

DTACK*

MWB*

LA

REGION

CS

LD

LEDO

LACK

DBE

RAS*

R/W*

BBSY*

“0e” - A32/D32 supervisory program access

Burst clock increments CY7C964

A0 A4 A8 A12 A16

D0 D4 D8 D12 D16

MWB increments LA

LA0 LA4 LA12LA8 LA16 LA20

3-116

3.12
 AC Parameters

This addendum contains waveforms that describe the behavior of the CY7C960/961/
CY7C964 interface for a variety of transaction types and timings. A table of AC parameters
is referenced to the waveforms. Note that “T” refers to the CLK input period. Note also that
parameters are not indicated on the waveforms everywhere they apply. These waveforms
were captured during in-system simulation and reflect accurately the behavior that can be
expected.

Clock Input

Note:

1. A 60/40 to 40/60 duty cycle must be maintained.

Num. Characteristic Min. Max.

Frequency of Operation (MHz) 30 80

1 Cycle Time (ns) 12.5 33.3

2, 3 Clock Pulse Width (Measured from 1.5V to 1.5V) Note 1 Note 1

4, 5 Rise and Fall Time (ns) — 5

Table 3-16. AC Parameters

Parameter Description Min Max Reference Notes

p1 DECODE Delay 2T 5T 2

p2 RAS*/CAS* Delay 2T 9T 2

p3 CAS* Width/DBE Width 3T 18T 2, 7

p4 CAS* Precharge 1T 8T 2

p5 RAS* Precharge 5T 12T 2

t2 LD to D 19 ns Waveform 5 3

t3 A to LA 20 ns Waveform 5 3

t4 D to LD 22 ns Waveform 20 3

0.8V

2.2V

4 5

1

32

AC Parameters

3-117

t5 LD to A Propagation Delay 22 ns Waveform 11 3

t7 ABEN* falling to A Output Enable Delay 12 ns Waveform 11 3

t8 DENO* falling to D Output Enable Delay 16 ns Waveform 5 3

t9 ABEN* falling to D Output Enable Delay 17 ns Waveform 11 3

t11 LAEN rising to LA 12 ns Waveform 18 3

t12 DENIN* falling to LD Output Enable Delay 18 ns Waveform 9 3

t13 DENIN1* falling to LD Output Enable Delay 21 ns Waveform 23 3

t15 ABEN* rising to A High-Z 12 ns Waveform 22 3

t16 DENO* rising to D High-Z 15 ns Waveform 3 3

t17 ABEN* rising to D High-Z 15 ns Waveform 22 3

t19 LAEN falling to LA High-Z 15 ns Waveform 18 3

t20 DENIN* rising to LD High-Z 18 ns Waveform 9 3

t23 A valid to VCOMP* falling 21 ns Waveform 3 3

t25 LD set-up to LEDO rising 7 ns Waveform 22 3

t26 LD hold to LEDO rising 0 ns Waveform 22 3

t28 LD set-up to DENO* falling 0 ns Waveform 22 3

t29 LD hold to DENO* falling 7 ns Waveform 22 3

t37 A, D set-up to LEDI rising 7 ns Waveform 23 3

t38 A, D hold after LEDI rising 0 ns Waveform 23 3

t45 LD set-up to STROBE rising 5 ns 3

t46 LD hold after STROBE rising 5 ns 3

t74 LDS rising to LD valid 24 ns Waveform 23 3

t75 LDS falling to LD valid 24 ns Waveform 23 3

t138 LADI falling to LA[31:8] valid 18 ns Waveform 18 3

s1 CLK period 12.5ns 33.3ns Waveform 4

s2 CLK pulse width 5 ns Waveform 4

s3 AS* falling edge to CS p1 + 1T p1 + 2T Waveform 1

s4 DSA* falling edge to CS 1T 2T Waveform 4

s5 AS* falling edge to REGION valid p1 – 1T Waveform 18

s6 AS* falling edge to RAS* falling 2T 3T Waveform 6

s7 ROW set-up to RAS* falling 1T Waveform 3

s8 PREN* falling to PCLK rising 80T Waveform 26

s9 COL set-up to CAS*, DBE falling 1T Waveform 3

s10 ROW deassertion to CAS* falling, DBE 1T Waveform 6

s11 LACK* rising set-up to prevent CAS* falling p2 – 1T Waveform 25 4

s12 LACK* falling to CAS* falling,DBE 2T 3T Waveform 25

s13 DSA* falling to CAS* falling,DBE 3T 4T Waveform 4

s14 SWDEN* set-up to CAS* falling,DBE 1T Waveform 12

Table 3-16. AC Parameters (continued)

Parameter Description Min Max Reference Notes

AC Parameters

3-118

s15 SWDEN* hold after CAS* rising,DBE 0 Waveform 12

s16 LA set-up to CAS* falling, DBE 1T Waveform 12

s17 LA hold after CAS* rising, DBE 0 Waveform 12

s18 RAS*,COL,LAEN,R/W* hold after CAS*
rising, DBE

1T Waveform 12

s19 DSA* falling to DTACK* falling 2T 3T Waveform 20

s20 RAS*,COL,LADI hold after AS* rising 2T 3T Waveform 3

s21 CAS* falling, DBE to DTACK* falling (read) p3 Waveform 3 7

s22 CAS* falling, DBE to DTACK* falling (write) p3 + 1T Waveform 4 7

s23 DSA* rising to CAS* falling, DBE 2T 3T Waveform 14

s24 DSA* falling to CAS* falling,DBE 3T 4T Waveform 16

s25 WRITE* falling to R/W* falling 1T Waveform 4

s26 LACK* falling to DBE deassert 3T 4T Waveform 24

s27 LACK* set-up to DBE assert 0 Waveform 24

s28 LD set-up to DBE deassert (read) 5 ns Waveform 6

s29 LD hold after DBE deassert (read) 5 ns Waveform 6

s30 LD set-up to DBE assert (write) 1T Waveform 11

s31 LD hold after DBE deassert (write) 0 ns Waveform 11 6

s32 AM valid to DENIN*,DENIN1* falling 1T 2T Waveform 9

s33 DSA* rising to DENIN*,DENIN1* rising 1T 2T Waveform 9

s34 PREN* falling to PDATA valid 39T Waveform 26 5

s35 PCLK period 1000T Waveform 26 5

s36 PDATA set-up to PCLK falling 1T Waveform 26 5

s37 PDATA hold after PCLK falling 3T Waveform 26 5

s38 IACKIN* falling to LDEN* falling 2T 3T Waveform 7

s39 LDEN* falling to DTACK* falling 6T Waveform 7

s40 AS* falling to LADI rising 1T 2T Waveform 1

s41 AS* falling to DBE assertion 5T + p1 6T + p1 Waveform 1,2

s42 DBE asserted width p3 Waveform 1,2 7

s43 WRITE High to R/W* High 1T Waveform 4

s44 DSB High to DTACK* High 1T 2T Waveform 1,2

s45 AS* High to LADI High 1T 2T Waveform 2

s46 AS* High to CS deasserted 1T 2T Waveform 2

s47 AS* falling to DENIN* asserted T + p1 2T + p1 Waveform 2

s48 DSA* falling to DENO* asserted 2T + p1 3T + p1 Waveform 1

s49 DSA* falling to LEDO rising 3T + p1 + p3 4T + p1 + p3 Waveform 1 7

s50 DSA* rising to DENO* rising 0 1T Waveform 1

s51 DSA* rising to LEDO falling 1T 2T Waveform 1

Table 3-16. AC Parameters (continued)

Parameter Description Min Max Reference Notes

AC Parameters

3-119

Notes:

s52 RAS* rising to CAS* falling (Refresh) (p5 – 3)T Waveform 13

s53 CAS* falling to RAS* falling (Refresh) 1T Waveform 13

s54 RAS* falling to CAS* rising (Refresh) (p3 – 1)T Waveform 13

s55 CAS* rising to RAS* rising (Refresh) (p5 – 3)T Waveform 13

s56 RAS* Precharge (Refresh) (p5 – 2)T Waveform 13

s57 RAS* cycle time (Refresh) (p3 + 2p5 – 5)T Waveform 13

s58 RAS* Precharge p5 Waveform 13

s59 AS* falling to REGION hold 3T Waveform 18

s60 LIRQ* to IRQ* 0 1T Waveform 8

s61 R/W*, LA, LD set-up to SELECTLM* falling 10 ns Waveform 21

s62 R/W*, LA, LD hold after SELECTLM* rising 0 ns Waveform 21

s63 SELECTLM* falling to LD valid 2T 3T Waveform 21

s64 SELECTLM* rising to LD Z 2T 3T Waveform 21

s65 LACK rising to LBERR* High 0 1T Waveform 21

s66 SELECTLM* falling to LBERR* falling 1T 2T Waveform 21

s67 SELECTLM* rising to LBERR* rising 1T 2T Waveform 21

s68 LACK falling to LBERR* Z 0 1T Waveform 21

s69 SELECTLM* minimum assertion 8T Waveform 21

s70 SYSRESET* falling to PREN falling Waveform 19

s71 PREN* pulse width Waveform 19

s72 SYSRESET* rising to IRQ* falling Waveform 19

2. This parameter is a constant set when the CY7C960
is programmed at initialization.

3. This parameter is a CY7C964 performance
parameter.

4. This parameter is timed from RAS falling and speci-
fies the latest deassertion of LACK to inhibit the CAS
burst.

5. This parameter applies when CY7C960 is sourcing
PCLK.

6. Hold time is guaranteed by CY7C964 delay from LE-
DI, DENIN*, or LDS to LD. The CY7C960/CY7C964
design favors falling edge capture of data. LA, LD, and
DBE differential delay must be carefully managed for
rising edge capture.

7. p3 represents two independent programmable fields.
CAS Assert width applies for DRAM access. DBE
width is a program set. A unique value is associated
with each “region” I/O access.

Table 3-16. AC Parameters (continued)

Parameter Description Min Max Reference Notes

AC Parameters

3-120

Waveform 1. Single Cycle Read Access (I/O Mode)

s42

s44

s3

s40

s49 s51

s48 s50

s41

SINGLE CYCLE READ ACCESS (I/O)

VALID VME ADDRESS

DATA

VALID

DATA

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

LEDO

DENO*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-121

Waveform 2. Single Cycle Write Access (I/O Mode)

s42

s44

s4 s46

s45

s47

s41

SINGLE CYCLE WRITE ACCESS(I/O)

VALID VME ADDRESS

VALID

VALID

VALID

DATA

DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-122

Waveform 3. Single-Cycle Read Access (DRAM Mode)

t16

s21

t23

s7 s20

s9

s20

s20

SINGLE CYCLE READ ACCESS (DRAM)

VALID

VALID VME ADDRESS

VALID

VALID

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

DENO*

CLK

REGION

CS

RAS*

ROW

CAS*

COL

LA

LACK

LADI

LAEN

LD

LEDO

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-123

Waveform 4. Single Cycle Write Access (DRAM Mode)

s1 s2

s22

s4

s43

s13

s25

SINGLE CYCLE WRITE ACCESS(DRAM)

VALID

VALID

VALID AME ADDRESS

VALID

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

CAS*

ROW

COL

LA

LADI

LAEN

LD

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LACK

R/W*

AC Parameters

3-124

Waveform 5. Single-Cycle Read-Modify-Write Access (I/O Mode)

t8 t2

t3

SINGLE CYCLE READ MODIFY WRITE ACCESS (I/O)

VALID VME ADDRESS

VALID

VALID

VALID

VALID VALID

VALID VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDO

DENO*

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-125

Waveform 6. Single-Cycle Read-Modify-Write Access (DRAM Mode)

s6

s10

s29

s28

SINGLE CYCLE DRAM READ MODIFY WRITE ACCESS (DRAM)

VALID VME ADDRESS

DATA DATA

VALID

VALID

DATA DATA

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

REGION

CS

ROW

RAS*

CAS*

COL

LA

LADI

LAEN

CLK

LD

LEDO

DENO*

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LACK

R/W*

AC Parameters

3-126

Waveform 7. IACK CYCLE Self-timed

s39

s38

VALID VME ADDRESS

VALID

VALID

VALID

LIRQ

IRQ*

A

IACK*

IACKIN*

AS*

WRITE*

D

DS0*

DS1*

DTACK*

CLK

LDEN

LA

LACK

LADI

LAEN

LD

LEDO

DENO*

R/W*

AC Parameters

3-127

Waveform 8. IACK Cycle Handshake

s60

VALID VME ADDRESS

VALID

VALID

LIRQ*

IRQ*

A

IACK*

IACKIN*

AS*

WRITE*

D

DS0*

DS1*

DTACK*

CLK

LDEN*

LA

LACK

LADI

LAEN

LD

LEDO

DENO*

R/W*

AC Parameters

3-128

Waveform 9. Multiplexed Address Read-Modify-Write Access (I/O Mode)

t20 t12

s32 s33

MULTIPLEXED ADDRESS READ MODIFY WRITE ACCESS (I/O)

VALID VALID

VALID VALID

VALID

VALID

VALID

VALID

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDO

DENO*

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-129

Waveform 10. Multiplexed Address Read-Modify-Write Access (DRAM Mode)

MULTIPLEXED ADDRESS READ MODIFY WRITE DRAM CYCLE

DATA

Addr.

Addr. DATA

VALID

VALID

Addr. DATA DATA

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

CAS*

ROW

COL

LA

LADI

LEDI

LD

LEDO

DENO*

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LACK

R/W*

AC Parameters

3-130

Waveform 11. MD32 Read-Modify-Write Access (I/O Mode)

t7 t5

t9

s31

s30

Addr.

Addr.

VALID

VALID

Addr. Addr + 2 Addr. Addr + 2

Addr.

DATA DATA

DATA DATA

DATA DATA DATA DATA

MD32 READ MODIFY WRITE ACCESS (I/O)AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

ABEN*

D64

LDS

LEDO

DENO*

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-131

Waveform 12. MD32 Read-Modify-Write Access (DRAM Mode)

s18

s15

s14 s16

s17

s18

s18

s18

MD32 READ MODIFY WRITE ACCESS (DRAM)

Addr.

Addr.

VALID

VALID

Addr. Addr + 2 Addr Addr + 2

Addr. DATA DATA DATA DATA

DATA DATA

DATA DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

SWDEN*

CAS*

LA

ROW

COL

LADI

LAEN

LEDI

LD

LEDO

DENO*

DENIN[0]*

DENIN[1]*

ABEN*

D64

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LACK

R/W*

LDS

AC Parameters

3-132

Waveform 13. Single-Cycle Write and CAS before RAS Refresh

s57
s56 s58s55 s53

s52
s54

SINGLE CYCLE WRITE and CAS BEFORE RAS REFRESH

VALID VME ADDRESS

DATA

VALID

VALID

VALID

DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

CAS*

ROW

COL

LA

LADI

LAEN

LD

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LACK

R/W*

AC Parameters

3-133

Waveform 14. Block Transfer Read (Slow VME)

s23

 BLOCK TRANSFER READ (SLOW VMEbus)

Addr.

DATA DATA DATA

VALID

VALID

Addr Addr + 2 Addr + 4 Addr + 6

DATA DATA DATA DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDO

DENO*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-134

Waveform 15. Block Transfer Read (Slow Local)

BLOCK TRANSFER READ (SLOW LOCAL)

Addr.

DATA DATA DATA DATA

VALID

VALID

Addr Addr + 2 Addr + 4 Addr + 6

DATA DATA DATA DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDO

DENO*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-135

Waveform 16. Block Transfer Write (Slow VMEbus)

s24

BLOCK TRANSFER WRITE (SLOW VMEbus)

Addr.

DATA DATA DATA DATA

VALID

VALID

Addr Addr + 2 Addr + 4 Addr + 6

DATA DATA DATA DATA

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-136

Waveform 17. Block Transfer Write (Slow Local)

Addr.

DATA DATA DATA DATA DATA

VALID

VALID

Addr Addr + 2 Addr + 4 Addr + 6

DATA DATA DATA DATA

BLOCK DATA TRANSFER WRITE (SLOW LOCAL)AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

LA

LACK

LADI

LAEN

LD

SWDEN*

LEDI

DENIN[0]*

DENIN[1]*

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-137

Waveform 18. AMCODE or LA and Decode Timing

s5
s59

t138

t11 t19

VALID AM CODE

VALID VME ADDRESS

VALID LOCAL ADDRESS [31:8]

VALID LOCAL ADDRESS [7:0]AM CODE

VALID

VALID

AM

AS*

A

DS0*

DS1*

DTACK*

CLK

REGION

LADI

LA[31:8]

LAEN

LA[7:0]

CS

RAS*

ROW

AC Parameters

3-138

Waveform 19. VMEbus Initialization Method

s71

s70

s72

CR/CSR

CR/CSR CR/CSR

CR/CSR

SYSRESET*

PREN*

IRQ*

AM

A

WRITE*

IACK*

AS*

DS1*

DTACK*

LAEN

AC Parameters

3-139

Waveform 20. Block Transfer Write (DRAM Mode)

s19

t4

VALID

REV ”C” Block Transfer

DATA DATA DATA DATA

VALID VALID VALID

DATA DATA DATA DATA

VALID

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DTACK*

CLK

LADI

LA

LAEN

REGION

CS

DENIN[0]*

LD

LEDI

RAS*

CAS*

R/W*

AC Parameters

3-140

Waveform 21. Local Bus Holdoff (and CY7C961 Register Access)

s69

s62

s61

s63 s64

s65 s66 s67 s68

DATA from CY7C961

Register AddressAM AM

VALID

DATA to CY7C961/CY7C964

CLK

LADI

R/W*

LAEN

LA[4:2]

LD(write)

SELECTLM*

LD(read)

LBERR*

LACK

AC Parameters

3-141

Waveform 22. D64 Block Read Access (DRAM Mode)

t25
t26

t28
t29

t15

t17

D64 BLOCK READ ACCESS (DRAM MODE)

Addr.

VALID

AM CODE

data data data data data data

Addr Addr + 4 Addr + 8 Addr + 12 Addr + 16 Addr + 20

DATA DATA DATA

DATADATA

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

CAS*

ROW

COL

LA

LADI

LAEN

LACK

ABEN*

LD

LEDO

DENO*

D64

DBE[0]

DBE[1]

DBE[2]

DBE[3]

R/W*

AC Parameters

3-142

Waveform 23. D64 Block Write Access (DRAM Mode)

t37
t38

t13 t74 t75

D64 BLOCK WRITE ACCESS (DRAM MODE)

ADDR DATA DATA DATA

DATA DATA DATA

ADDR ADDR + 4 ADDR + 8 ADDR + 12 ADDR + 16AM CODE

DATA DATA DATA DATA DATA

VALID

VALID

AM

AS*

WRITE*

A

D

DS0*

DS1*

DTACK*

CLK

REGION

CS

RAS*

CAS*

ROW

COL

LA

LADI

LAEN

LEDI

LD

DENIN[0]*

DENIN[1]*

ABEN*

D64

DBE[0]

DBE[1]

DBE[2]

DBE[3]

LDS

R/W*

AC Parameters

3-143

Waveform 24. LACK Handshake (I/O Mode)

Waveform 25. LACK Handshake (DRAM Mode)

s27

s26

VALID

VALID

AM

AS*

CS

SWDEN*

DBE[0]

DBE[1]

LACK

DBE[2]

DBE[3]

s12

s11

1 or 0 1 or 0

AS*

DS1*

DTACK*

CLK1

CS

RAS*

CAS*

ROW

COL

DBE[0]

LACK

AC Parameters

3-144

Waveform 26. Local Initialization Method

s34
s8

s35 s37 s36

Serial DATA from PROM

SYSRESET*

PREN*

PCLK

PDATA

3-145

3.13
 DC Performance

Specifications
Table 3-17. VMEbus Signals AS*, DS1*, DS0*, DTACK*

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH =

2.4
–16 mA

2.4
–10 mA

2.4
–9 mA

V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL =

0.6
64 mA

0.6
60 mA

0.6
52 mA

V

IL Maximum
Input Leakage
Current

VCC = Max.,
GND < VIN < VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min., IIN = –18 mA –1.2 –1.2 –1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
Outputs Disabled

±10 ±10 ±10 µA

Introduction to the VIC068A

3-146

Table 3-18. VMEbus Signals AM5, AM4, AM3, AM2, AM1, AM0, IRQ*, BERR* [1]

Note:

1. The BERR* signal has an on-chip pull-up resistor. For this signal the IOZ value is modified by Table 3-21.

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH =

2.4
–16 mA

2.4
–10 mA

2.4
–9 mA

V

VOL Minimum
Low-Level
Output Voltage

VCC = Min.,
IOL =

0.6
48 mA

0.6
44 mA

0.6
38 mA

V

IL Maximum
Input Leakage
Current

VCC = Max.,
GND < VIN < VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min., IIN = –18 mA –1.2 –1.2 –1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
Outputs Disabled

±5 ±5 ±10 µA

Introduction to the VIC068A

3-147

Table 3-19. All Other Output Signals [2]

Note:

2. Some signals have an on-chip pull-up or pull-down resistors. For these signals IOZ value is modified.

Table 3-20. Capacitance - All Signals

Table 3-21. Pullup/Pulldown Current - All Signals

Table 3-22. Operating Current (CY7C960/CY7C961)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH =

2.4
–16 mA

2.4
–10 mA

2.4
–9 mA

V

VOL Minimum
Low-Level
Output Voltage

VCC = Min.,
IOL =

0.6
20 mA

0.6
18 mA

0.6
16 mA

V

IL Maximum
Input Leakage
Current

VCC = Max.,
GND < VIN < VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min., IIN = –18 mA –1.2 –1.2 –1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
Outputs Disabled

±5 ±5 ±10 µA

Parameters Description Test Conditions Max. Units

CIN Input Capacitance TA = 25°C, f = 1 MHz,
VCC = 5.0V

10 pF

COUT Output Capacitance 10 pF

Parameters Description Test Conditions Typ. Max.

IPU Input Pullup
Current

TA =–55°C, VCC = 5.5V
VIN = GND

100 mA 250 µA

IPD Input Pulldown
Current

TA = –55°C, VCC = 5.5V
VIN = VCC

–100 mA –250 µA

Parameters Description Test Conditions Max. Units

IDD Maximum Operating
Current

No external DC load 100 mA

3-148

3.14
 Package Diagrams

64-Pin Thin Quad Flat Pack A64

Package Diagrams

3-149

100-Pin Plastic Thin Quad Flat Pack (TQFP) A100

Package Diagrams

3-150

64-Lead Plastic Thin Quad Flatpack N65

Section 4

The CY7C964 Bus

Interface Logic Circuit

4-4

4.1
 Introduction

The CY7C964 is a flexible collection of byte (8-bit) wide transceivers, latches, counters,
multiplexers, and comparators that provide bus interface designs with a low-cost alternative
to PLDs, ASICs, or discrete logic devices. It is based on a standard cell design that incorpo-
rates patented line drivers for reduced ground bounce and high noise immunity. The CY7C964
is a companion part to Cypress’s VIC068A, VIC64, CY7C960, and CY7C961 VMEbus inter-
face controller devices. It is completely compatible with all operating modes of these devices,
such as dual-address path, block transfer boundary crossing conditions, block transfer initial-
ization cycle, local DMA control, and D64 VMEbus block transfers. Signal-naming conventions
correspond directly to the VIC068A/VIC64/CY7C960/961 buffer control signals, and the
CY7C964 can be directly connected to these corresponding signals.

The CY7C964 can also be used as a generic-interface building block. Some examples include
low-cost slave VMEbus controllers, VSB interfaces, or other interface applications. CY7C964s
are cascadable, allowing easy interfacing to buses of any width. By combining multiple logic
functions into one discrete part, the CY7C964 saves board space and reduces power con-
sumption, which is becoming increasingly important to designers.

4-5

4.2
 Features

• Directly connects to VIC068A, VIC64, CY7C960, or CY7C961

• Has internal counters for block transfer and local DMA address control

• Has internal multiplexers for D64 64-bit VMEbus block transfers

• Has internal comparators for address decoding

• Supports VIC068A/VIC64 dual-address-path option

• Has cascadable operation

• Directly drives VMEbus address and data bus signals

• Directly drives local address and data bus signals

• Reduces components for a compact board design

• Has low power requirements

• Is available in a 64-pin TQFP or 68-pin PGA

4-6

4.3
 Interfacing to Cypress

VMEbus Interface
Controllers

Previously, interfacing the VIC068A to the VMEbus required a significant number of LSI and
MSI devices. With the advent of 64-bit VMEbus block transfers and the VIC64, the external
discrete device count for a full functional interface has expanded. The CY7C964 has been
developed to combat this problem by incorporating the functions of much of this external logic
into a single package. Using the CY7C964 shortens system design, debug, and manufacturing
cycle times. Design engineers are relieved from the burden of performing critical or worst-
case timing analysis on the VMEbus and VIC buffer control signals. Local control signals
other than those directly interfaceable to the interface controllers have been kept to a minimum.

A full function D64 VMEbus interface implemented using the CY7C964, VIC64, and all VME-
bus interface local support logic includes the following features:

• block transfer support for D16, D32, and D64 VMEbus transfers

• dual-path address operation (allowing single-cycle transfers during master block transfer
interleave periods)

• slave block transfers during master block transfer interleave periods

• fully programmable slave VMEbus address decoding

• write posting

• the VIC mail box interrupt message support

The interface can be broken into five functional sections for the purpose of discussion. These
sections are:

• VMEbus signal group

• Buffer control signal group

• CY7C964 local signal group

• CY7C964 address comparator and local signal group

• Local data swap buffer logic

The focus of this section is the CY7C964. Each of the interface functional blocks are examined
from this perspective. For additional information on the signals described within this section,
consult the VMEbus Specification (IEEE 1014) and/or the section of this book that describes
the controller you are connecting.

4.3.1 VMEbus Signal Group

This group includes the VMEbus address and data signals. Each CY7C964 provides support
for 8 bits of VMEbus address and data. Three CY7C964s are necessary for 32-bit interface

Interfacing to Cypress VMEbus Interface Controllers

4-7

applications when used with the VIC068A or VIC64. Four CY7C964s are used with CY7C960
and CY7C961 for full-function slave interfaces. The A[7:0] and D[7:0] transceivers on the
CY7C964 furnish a high drive strength, allowing direct connection to the respective address
and data signals on the VMEbus backplane. With any of Cypress’s family of VMEbus interface
controllers generating the control information, the CY7C964s meet VMEbus worst-case timing
and drive-strength requirements for all forms of data transfers.

Table 4-1. VMEbus Signals

4.3.2 Buffer Control Signal Group

This group includes all of the address and data buffer control signals. A major design time
savings is realized using the CY7C964s as all of these signals directly connect to the chosen
controller or are wired to a steady state value. The buffer control interface is simple and
straightforward with a few minor exceptions. Table 4-2 specifies these connections for the
VIC068A and VIC64 controllers.

Signal Description Interface Comments

D[7:0] VMEbus compatible data signals Directly connect to VMEbus P1 and P2
connectors

A[7:0] VMEbus compatible address signals Directly connect to VMEbus P1 and P2
connectors

Table 4-2. Buffer Control Signals Connection for VIC068A and VIC64

Signal Description Interface Comments

LADO Latch address out Directly connect to VIC LADO on all CY7C964s

LADI Latch address in Directly connect to VIC LADI on all CY7C964s

LEDO Latch enable data out Directly connect to VIC LEDO on all CY7C964s

LEDI Latch enable data in Directly connect to VIC LEDI on all CY7C964s

ABEN* VMEbus address bus enable Directly connect to VIC ABEN* on all CY7C964s

DENO* Data enable output Directly connect to VIC DENO* on all CY7C964s

D64 D64 block transfer mode enable Directly connect to VIC64 SCON/D64 pin on all
CY7C964s. Tie this input LOW on all CY7C964s
when using VIC068A.

BLT* Block transfer enable Directly connect to VIC BLT* on all CY7C964s

LAEN Local address enable Directly connect to VIC LAEN on all CY7C964s

DENIN* Primary data enable in signal Directly connect to VIC DENIN1* on NMSB and
MSB CY7C964s, directly connect to VIC DENIN*
on LSB CY7C964

DENIN1* Companion data enable in signal Directly connect to VIC DENIN* on NMSB and
MSB CY7C964s, directly connect to VIC
DENIN1* on LSB CY7C964

Interfacing to Cypress VMEbus Interface Controllers

4-8

4.3.3 CY7C964 Local Signal Group

The CY7C964 local signal group consists of the VMEbus and local block-transfer counter
count-enable daisy-chains. These signals enable the local and VMEbus higher-order address
counters; two local address counters (a master block transfer and a slave block transfer) and
a single VMEbus address counter. The local address counters share the LCIN*/LCOUT*
count-enable daisy-chain. These signals are multiplexed within the CY7C964 and enable
counting for the proper counter depending on the current state of the interface. The VCIN*/
VCOUT* daisy-chain is dedicated to the VMEbus address counter on the device. When the
VCIN* or LCIN* are held Low, counting is enabled for the appropriate counters within the
device. The VCIN* or LCIN* signals do not advance the counters, they just enable counting.
The counters increment when these signals are active and the proper increment count control
logic sequence occurs. The controller advances the address counters at the proper time
during VMEbus and local DMA block transfer operations. For further information on the counter
advance control sequence, refer to Chapter 4.5, CY7C964 Operation.

Table 4-3. CY7C964 Local Signals for VIC068A and VIC64

4.3.4 CY7C964 Address Comparison and Local Signal
Group

The implementation of this group of CY7C964 signals is application specific. The MWB* signal
and FC1 signal have been included in this section because they are locally generated signals
required by the VIC and output directly from the CY7C961. These two signals differ slightly
on the VIC; MWB* is an input only, while FC1 is a bidirectional signal that can be driven by

Signal Description Interface Comments

LCIN* Local address counter count enable On LSB CY7C964, tie this input Low. On the NMSB
device, directly connect to the LCOUT* of the LSB
device. For the MSB CY7C964, connect to the
LCOUT* of the NMSB device.

LCOUT* Local address counter carry out On LSB CY7C964, connect this output to the LCIN*
input. On the NMSB CY7C964, connect this output
to the MSB LCIN* input. For the MSB device do not
connect this output.

VCIN* VMEbus address counter count
enable

On LSB CY7C964, tie this input Low. On the NMSB
device, directly connect to the VCOUT* of the LSB
device. For the MSB CY7C964, connect to the
VCOUT* of the NMSB device.

VCOUT* VMEbus address counter carry out On LSB CY7C964, connect this output to the VCIN*
input. On the NMSB CY7C964, connect this output
to the MSB VCIN* input. For the MSB device do not
connect this output.

Interfacing to Cypress VMEbus Interface Controllers

4-9

the VIC. On the CY7C964 the MWB* and FC1 signals are inputs. These signals should be
directly connected to the respective local signals on VIC or CY7C961. For CY7C960 designs,
MWB* should be connected to VCC and FC1 should be connected to GND.

The CY7C964s contain a high-performance programmable VMEbus address equality com-
parator. The comparator is controlled by two internal, write-only registers: a mask and a
compare register. The mask register enables and disables bits of the comparator, and the
compare register stores the data pattern that inputs are compared against. VCOMP* is the
active-Low comparator match output signal. VCOMP* is driven Low by the CY7C964 when
the bit pattern on pins A[7:0] match enabled bits of the compare register. Setting mask register
bits to 0 enables the corresponding bits of the compare register. Loading bits of the mask
register with 1s places bits of the compare register in don’t care or “match anything” state.
Loading the mask register with all 0s forces the compare register to match all bits of the pattern
on A[7:0]. Setting the mask register to all 1s effectively disables the on-board comparator.
VCOMP* will always be Low.

These registers are loaded by supplying the proper data on LD[7:0] and the register address
on MWB* and LDS signals. The STROBE input is used to qualify the address and latch the
data into the proper internal register. Figure 4-1 and Figure 4-2 show the waveforms needed to
load the compare and mask registers.

This load cycle operates as follows:

1. The state of LDS and MWB* are latched on the falling edge of STROBE.

2. The data is loaded into the selected register on the rising edge of the STROBE signal.

3. MWB* must be held inactive (High): the state of LDS selects the register to load.

4. If LDS is High at the falling edge of STROBE, the compare register will be loaded; if LDS
is Low the data is written to the mask register.

Table 4-4. CY7C964 Address Comparison and Local Signals for VIC068A and VIC64

Signal Description Interface Comments

FC1 Function code 1 signal Directly connect on all CY7C964s to the same
local signal that drives the FC1 signal on the VIC.

MWB* Module wants VMEbus Directly connect on all CY7C964s to the same
local signal that drives the MWB* signal on the
VIC.

LDS Load register select signal Should be directly connected to LA2 for VIC sys-
tems with 32-bit local bus. Refer to text below for
further information.

STROBE Latch register control signal Chip select-like signal for CY7C964 internal
comparator mask and comparison registers. See
text below for further information.

VCOMP* VMEbus address comparator output Needs a small amount of external glue logic to
validate an combine signals in a parallel high-
performance fashion.

Interfacing to Cypress VMEbus Interface Controllers

4-10

Figure 4-1. Mask Register Load Timing

Figure 4-2. Compare Register Load Timing

This load cycle can be generated by decoding a separate address region or chip select signal
for the CY7C964 comparator registers. In applications with a 32-bit local bus, it is desirable
to load all three CY7C964s in parallel by having the host processor perform a 32-bit write
cycle to the address region that will activate STROBE. The select signal for the address region
is connected to the STROBE input on all CY7C964s. Boards that implement VIC068A or
VIC64 interface should connect LDS to LA2, thereby decoding the mask register at the base
address of the address region and the compare register at the base address + 4. LDS also controls
the operation of the D64 block transfer data multiplexer/demultiplexer. If it is not connected to LA2,
this logic will not operate properly. For CY7C960 and CY7C961 designs, LDS is connected directly
to the controller.

t43 t44

t47

t45 t46

Load CY7C964 Mask Register

MWB*

LDS

STROBE

LD[7:0] Data Valid

t43 t44

t47

t45 t46

Load CY7C964 Compare Register

MWB*

LDS

STROBE

LD[7:0] Data Valid

Interfacing to Cypress VMEbus Interface Controllers

4-11

The mask and compare registers can be set to select any contiguous address region on the
VMEbus. These registers do not preload and therefore power up in an unknown state. It is
advisable to initialize these registers as soon as possible in the system boot sequence. Note
that the act of writing the compare register clears the mask register.

The CY7C964 comparator output signal VCOMP* supplies the result from the equality com-
pare logic. VCOMP* drives Low when the input matches the loaded conditions. The CY7C964
VCOMP* signals are not directly compatible with the VIC SLSEL0* and SLSEL1* slave select
signals. The short (10 ns) address set-up time to AS* active for VMEbus slave boards does
not meet the worst case compare out delay of the CY7C964 VCOMP* signal. combining this
with the potential output glitching that can occur with an asynchronous comparator can cause
problems for the VIC. It is recommended that the VCOMP* signal be externally filtered prior
to being used with the VIC SLSEL0* or SLSEL1* signal. Most applications will require some
external comparison logic to combine VCOMP* signals from the NMSB and MSB device,
furnishing finer grained VMEbus decoding: this logic can also be used to filter the CY7C964
VCOMP* signals. Note that CY7C960 and CY7C961 have a built-in decode delay feature,
which eliminates the need for external filtering.

4.3.5 Local Data Swap Buffer Logic

Local Data Swap Buffer logic is a requirement for all 32-bit local bus designs that perform 8-
or 16-bit transfers. The swap buffer moves data to and from the lower section of the VMEbus,
D[15:0], to the upper segments of the local bus, D[31:16]. VMEbus requires that all 8- and
16-bit data transfers be performed on the D[15:0] section of the bus. The CY7C964s work
properly with the VIC-controlled or CY7C960/961-controlled swap buffer. For the VIC case,
if an isolation buffer is implemented, care should be taken to ensure that the local data bus
is driven to the least-significant CY7C964 during address/mask register programming cycles.
One way to ensure this is to assert the CS* and PAS* signals to the VIC068/VIC64, thus
causing VIC to assert the ISOBE* signal to the isolation buffer.

4-12

4.4
 Signal Descriptions

4.4.1 VMEbus Signals

A[7:0]

Input: Yes
Output: Yes, three-state
Drive: 48 mA

These are VMEbus-compatible address signal transceivers that can be directly connected to
the VMEbus. A0 is the least-significant address bit. In flow-through modes of operation, these
signals correspond one for one with local interface signals LA[7:0].

In VMEbus interface applications, including those using the VIC068A, VIC64, CY7C960, or
CY7C961, these signals should be connected to the VMEbus address bus sequentially.

In CY7C960/961 designs, A0 on the least-significant CY7C964 should be connected to the
VMEbus LWORD* signal.

D[7:0]

Input: Yes
Output: Yes, three-state
Drive: 48 mA

These are VMEbus-compatible data signal transceivers that can be directly connected to the
VMEbus. D0 is the least-significant data bit. In flow-through modes of operation, these signals
correspond one for one with local interface signals LD[7:0].

In VMEbus interface applications, including those using the VIC068A, VIC64, CY7C960, or
CY7C961, these signals should be connected to the VMEbus data bus sequentially.

4.4.2 Local Signals

LA[7:0]

Input: Yes
Output: Yes, three-state
Drive: 8 mA

These are medium drive-strength local address transceivers that allow direct connection to
memory, microprocessors and/or peripheral controllers. LA0 is the least-significant local ad-
dress signal. In flow-through operating modes, these signals correspond one for one with the
VMEbus signals A[7:0].

Signal Descriptions

4-13

When implementing conventional VMEbus interfaces or using the CY7C964 with the
VIC068A, VIC64, CY7C960, or CY7C961, these signals should be connected to the local
address bus sequentially.

LD[7:0]

Input: Yes
Output: Yes, three-state
Drive: 8 mA

These are medium drive-strength local data transceivers that allow direct connection to mem-
ory, microprocessors and/or peripheral controllers. LD0 is the least-significant local data sig-
nal. In flow-through operating modes, these signals correspond one for one with the VMEbus
signals D[7:0].

When implementing conventional VMEbus interfaces or using the CY7C964 with the
VIC068A, VIC64, CY7C960, or CY7C961, these signals should be connected to the local
data bus sequentially.

ABEN*

Input: Yes
Output: No

This is the VMEbus Address Bus ENable control signal. This signal controls the state of the
VMEbus address transceivers A[7:0]. When asserted (driven Low), the transceivers are con-
figured as outputs and are enabled.

When using the CY7C964 with the VIC068A, VIC64, CY7C960, or CY7C961 to implement
VMEbus interfaces, this input should be connected to the ABEN* output of the controller.

BLT*

Input: Yes
Output: No

This signal controls the VIC-compatible block transfer operations that require local Direct
Memory Access (DMA). If this input is driven Low, the CY7C964 will operate in the appropriate
VIC-compatible block transfer mode (dependent on the states of the other buffer control logic).

When using the CY7C964 with the VIC068A, VIC64, or CY7C961, this signal can be directly
connected to the controller BLT* pin. A rising edge of BLT* increments the local address
counters if LCIN* is Low. Refer to the LCIN* signal description and Chapter 4.5, CY7C964
Operation, for the further information on the local address counter function.

Signal Descriptions

4-14

D64

Input: Yes
Output: No

This signal is used to indicate to the CY7C964 that a VMEbus D64 block transfer is in progress.
When High, the CY7C964 is instructed to use the high-performance two-state pipeline and
multiplex or demultiplex 64-bit data to and from the VMEbus address bus.

When used in conjunction with the VIC64, CY7C960, or CY7C961, this pin can be directly
connected to the SCON*/D64 signal. For applications that only support 32-bit block transfers,
as is the case with the VIC068A, this input should be tied Low.

DENIN*

Input: Yes
Output: No

The Data ENable IN signal is used to control the three-state data transceivers LD[7:0]. If a
logic Low level is presented to this input, LD[7:0] transceivers will be enable. In conventional
VMEbus designs, this signal would need to be driven during master read or slave write
operations.

When used in conjunction with the VIC068A, VIC64, CY7C960, or CY7C961, this input is
typically connected to DENIN1* for CY7C964’s controlling bus data lines D16 through D31,
and DENIN* for the CY7C964’s controlling bus data lines D8 through D15.

DENIN1*

Input: Yes
Output: No

The Data ENable IN 1 signal is used in conjunction with DENIN* to latch data from the VMEbus
and provide a second enable control of the LD[7:0] transceivers for D64 transactions.

When used in conjunction with VIC64, CY7C960, or CY7C961, this input is typically connected
to DENIN* for CY7C964’s controlling bus data signals D16 through D31, and DENIN1* for
the CY7C964’s controlling bus data signals D8 through D15.

DENO*

Input: Yes
Output: No

The Data ENable Out signal is used to control the three-state transceivers D[7:0]. If a logic-
Low level is presented to this input, the D[7:0] transceivers will be enabled. In conventional
VMEbus design, the D[7:0] signals will be directly connected to the VMEbus. Used in this
manner, this input must be asserted during master writes and slave read operations.

When used in conjunction with the VIC068A, VIC64, CY7C960, or CY7C961, this signal
should be connected to the DENO* output on the controller.

Signal Descriptions

4-15

FC1

Input: Yes
Output: No

The Function Code 1 input is used by the CY7C964 during block transfer operations to
determine the source for the local address signals LA[7:0]. If the input is driven High, the
internal Local DMA counter is selected as the source for LA[7:0]. If this input is Low, the Slave
Block Transfer counter is the source for LA[7:0].

When used with the VIC068A, VIC64, or CY7C961, this signal can be directly connected to
the FC1 pin of the controller. The controller will drive this pin to the proper level for slave or
block transfer operations when it is master of the local system bus.

When used with the CY7C960, this signal should be tied to GND.

LCOUT*

Input: No
Output: Yes
Drive: 8 mA

The Local Carry Out signal is used by the CY7C964 for cascading the local address counter
chains. This signal will drive Low when the local address counter has reached the maximum
count (255). The signal generates a synchronous count enable for the next-most-significant
CY7C964 in the cascade chain. This signal alone does not cause the local address counter
to increment.

When cascading the CY7C964s, this signal should be connected to the LCIN* pin of the next
most significant device. Refer to the description of the LCIN* pin for further information on the
operation of the local address counters.

LDS

Input: Yes
Output: No

The Local Data Select input has two main functions: (1) as a control input for the data to
address bus multiplexer during D64 VMEbus block transfers, (2) as a select bit for configuring
the CY7C964 address comparison and mask registers. Refer to Chapter 4.5, CY7C964 Op-
eration, for further information about how data is steered to and from the VMEbus address
bus during block transfers. Typically this input will be connected to LA2 for VIC controllers and
to the LDS output of CY7C960/961.

When configuring the CY7C964 internal address mask and address compare registers, this
pin in conjunction with MWB* selects which registers to load. During a comparator register
load cycle, LDS High will select the Address Compare register; otherwise the Address Mask
register will be selected.

Signal Descriptions

4-16

LADI

Input: Yes
Output: No

The Latch ADdress In signal controls a transparent VMEbus to local address latch within the
CY7C964. When this input is High, the device will latch the data present on A[7:0]. This
function is useful when building VMEbus interfaces for latching the VMEbus address during
a slave access. If LADI is Low, the internal address latch will be in a flow-through mode. LADI
is also used to increment the slave block transfer local address counter. LADI is used in
conjunction with LAEN to control the operation of the VMEbus to local address section of the
CY7C964. For more information, refer to the description of LAEN.

When using the CY7C964 to implement VMEbus interfaces, this signal is used to maintain
the local address during slave read and write cycles. For VMEbus designs that use a Cypress
controller, this input should be connected to the LADI output of the controller.

LAEN

Input: Yes
Output: No

The Local Address ENable signal controls the three-state enable for signals LA[7:0]. When
this signal is High, LA[7:0] drive the address local bus. Driving the signal Low places LA[7:0]
in the high-impedance/input state.

When using the CY7C964 to implement VMEbus interfaces, this signal is driven High to
maintain the local address VMEbus during slave cycles. For VMEbus interfaces using the
VIC068A or VIC64, this pin should be connected to the LAEN output on the VIC. For CY7C960/
961 designs, only the least-significant CY7C964 is connected to the LAEN output of the
controller.

LEDI

Input: Yes
Output: No

The Latch Enable Data In signal controls a transparent VMEbus-to-local-data-bus latch within
the CY7C964. When this input is High, the device will latch the data present on D[7:0]. This
function is useful when building VMEbus interfaces for latching the VMEbus data during a
master or slave access. If LEDI is Low, the internal address latch will be in a flow-through mode.

LEDI is used in conjunction with DENIN* and DENIN1* to control the operation of the address
VMEbus-to-local-data section of the CY7C964.

When implementing VMEbus interfaces with the CY7C964, LEDI can be used to maintain the
local data during VMEbus master read and slave write cycles. For VMEbus designs that use
a Cypress controller, this input should be connected to the LEDI output of the controller.

Signal Descriptions

4-17

LEDO

Input: Yes
Output: No

The Latch Enable Data Out signal controls a transparent local-data-to-VMEbus-data latch
within the CY7C964. When this input is High, the device will latch the data present on LD[7:0].
This function is useful when building VMEbus interfaces for latching the VMEbus data during
a master or slave access. If LEDO is Low, the internal address latch will be in a flow-through
mode.

LEDO is used in conjunction with DENO* to control the operation of the local-to-VMEbus-
data section of the CY7C964.

When implementing VMEbus interfaces with the CY7C964, LEDO can be used to maintain
the VMEbus data during VMEbus master write and slave read cycles. For VMEbus designs
that use a Cypress controller, this input should be connected to the LEDO output of the
controller.

LADO

Input: Yes
Output: No

The Latch Address Out signal controls a transparent local-to-VMEbus address latch within
the CY7C964. When this input is High, the device will latch the data present on LA[7:0]. This
function is useful when building VMEbus interfaces for latching the local address during a
master transfer. If LADO is Low, the internal address latch will be in a flow-through mode.

LADO is used in conjunction with ABEN* to control the operation of the local-to-VMEbus
address section of the CY7C964.

When using the CY7C964 to implement a VMEbus interface, this signal can be used to
maintain the local address during VMEbus slave read and write cycles. For VMEbus designs
that use a VIC068A, VIC64, or CY7C961, this input should be connected to the LADO output
of the controller.

LCIN*

Input: Yes
Output: No

Local Carry IN is a synchronous count enable for both the local master block transfer and
slave block transfer local address counters. LCIN* is multiplexed within the CY7C964 and can
be routed to either local block transfer address counter. When connected to the master block
transfer local address counter, if LCIN* is driven Low, a falling edge on the BLT* signal will
increment the address count. When this input is connected to the slave block transfer counter
and driven Low, a rising edge of LADI will increment the address count.

When cascading CY7C964s, this signal should be connected to the LCOUT* signal of the
next-least-significant device.

Signal Descriptions

4-18

MWB*

Input: Yes
Output: No

The Module Wants Bus is a decoding/control signal for the CY7C964 that allows the device
to discern the cycle type. When MWB* is active (Low), the CY7C964 assumes that a block
transfer initiation cycle or a single-cycle VMEbus transfer is pending. Subsequent assertion
of BLT* allows the CY7C964 to enter block transfer mode.

MWB* is also used to decode accesses to the CY7C964 address Mask and Compare regis-
ters. To load these registers, MWB* must be inactive (High).

STROBE

Input: Yes
Output: No

The STROBE signal controls the loading of the internal Address Mask and Compare registers.
This signal operates in the same manner as an active-Low chip select for these registers.
When STROBE is Low and MWB* is High, data present on LD[7:0] will be loaded into either
the Address Mask or Compare registers.

Refer to Chapter 4.5, CY7C964 Operation, for further information on the use of MWB* to load
the Address Mask and Compare registers.

VCOMP*

Input: No
Output: Yes
Drive: 8 mA

The VMEbus COMPare signal indicates whether the address presented on A[7:0] matches
the pattern of the internal Address Compare register. If the two values are determined to
match, VCOMP* will drive Low. (Note: The Address Mask register can mask bits of the
Compare register, causing these bits to match anything.)

This signal is the output of an asynchronous comparator and is therefore susceptible to
glitching during address transitions on A[7:0]. When used in conjunction with the VIC64 or
VIC068A for conventional VMEbus implementations, these signals should be de-glitched
externally. The decode delay feature of the CY7C960/961 eliminates the need to de-glitch for
slave controller designs. External logic is required to cascade VCOMP* comparison outputs.

VCIN*

Input: Yes
Output: No

VMEbus Carry IN is a synchronous count enable for the local address counters. When VCIN*
is Low and the device is not operating in the Dual-Address-Path mode, a rising edge on the
LADO signal will increment the VMEbus address counter.

Signal Descriptions

4-19

When cascading CY7C964s, this signal should be connected to the VCOUT* signal of the
next-least-significant device.

For more information on the Dual-Address-Path mode, refer to Chapter 4.5, CY7C964 Oper-
ation.

VCOUT*

Input: No
Output: Yes
Drive: 8 mA

The VMEbus Carry Out signal is used by the CY7C964 for cascading the VMEbus address
counter chains. This signal will drive Low when the VMEbus address counter has reached
the maximum count (255). The signal generates a synchronous count enable for the next-
most-significant CY7C964 in the cascade chain. This signal alone does not cause the VMEbus
address counter to increment.

When cascading the CY7C964s, this signal should be connected to the VCIN* pin of the next-
most-significant device. Refer to the description of the VCIN* pin for further information on
the operation of the VMEbus address counters.

4-20

4.5
CY7C964 Operation

4.5.1 Overview

The CY7C964 is a general-purpose bus interface device that provides seamless support for
the entire family of VMEbus interface controllers. The part is also suitable for many other
general-purpose bus interface applications. Figure 4-3 is the block diagram of the device,
showing the array of latches, multiplexers, and counters.

Figure 4-3. CY7C964 Block Diagram

This section of the document dissects the high-level block diagram into lower-level functional
blocks. General operational and timing information is presented on a block-by-block basis.
This information is provided for designers who wish to implement generically-controlled in-
terfaces. The tables show the control signal logic sequence needed to operate or communi-
cate with each of the functions. Timing parameters are included, which reference the switching
characteristics listed later in this document.

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

S5

CY7C964 Operation

4-21

The CY7C964 operation is controlled by the combination of external control signals and
internal state logic. Three internal asynchronous state bit control the operating mode of the
device. These bits are referred to as BLT_STATE, BLT_INIT, and DUAL_PATH. The
BLT_STATE bit is set during block transfer operations. The block transfer initiation cycle gen-
erates a rising edge on the BLT_INIT signal. The DUAL_PATH signal is the output of a trans-
parent latch within the device that latches the state of LADO. These internal state bits must
be in the proper state to use and communicate with the internal logic of the device. The
functional tables include references to these signals when their state is required for the op-
eration. The designer must perform the appropriate cycle to the device to set or clear these
latches as needed prior to the desired functional cycle. The internal latch signals and all other
control signals that are not called out within the tables for a specific operation can be consid-
ered don’t cares.

Table 4-5. Examples of References to Control Signals Within Functional Tables

Figure 4-4. CY7C964 Block Diagram: Address Counters and Address Multiplexers

Note 1: BLT_STATE=(/BLT* • /MWB*)+(BLT_STATE • (/BLT*+/MWB*+LAEN))

Note 2: BLT_INIT=(/BLT_STATE • /BLT* • /MWB*)+(BLT_INIT • /BLT* • /MWB*)

Note 3: DUAL_PATH=(LADO • BLT_INIT)+(DUAL_PATH • /BLT_INIT)

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

S5

CY7C964 Operation

4-22

4.5.2 Master Block Transfer Local Address Counter (C1)

Master Block Transfer Local Address Counter supplies the local address to LA[7:0] during
master block transfer operations. This 8-bit synchronous counter is cascadable using the
LCIN*/LCOUT* daisy-chain. The counter powers up in an uninitialized state and must be
initialized for predictable operation. The counter loads from LD[7:0] when both MWB* and
BLT* control signals are active (Low). To enable the counter onto LA[7:0], an internal asyn-
chronous latch (BLT_STATE) must be set and Local Address Multiplexer S5 must select
counter C1. A falling edge on MWB* or BLT* increments C1. FC1 controls S5. If it is High, as
shown in Table 4-7, C1 is selected. The internal latch and S5 multiplexer must also be in the
proper state to increment the counter. For further information on the S5 Local Address Mul-
tiplexer, see section 4.5.3.

Table 4-6. Master Block Transfer Local Address Counter Operation

Logic Functional Description Operational Description Required Condition Parameter

C1 Load counter LD[7:0] valid to falling edge of
MWB*

BLT*=0, LAEN=0 Set-up t48

Hold t49

LD[7:0] valid to falling edge of
BLT*

MWB*=0, LAEN=0 Set-up t50

Hold t51

Increment counter MWB* falling edge to LA[7:0]
valid

LAEN=1, FC1=1,
BLT_STATE=1[1]

Prop t54

BLT* falling edge to LA[7:0] valid LAEN=1, FC1=1,
BLT_STATE=1[1]

Prop t54

LCIN* valid to MWB* falling
edge

LAEN=1, FC1=1,
BLT_STATE=1[1]

Set-up t52

Hold t53

LCIN* valid to BLT* falling edge LAEN=1, FC1=1,
BLT_STATE=1[1]

Set-up t52

Hold t53

Counter carry out at ter-
minal count

MWB falling edge to LCOUT*
valid

LAEN=1, FC1=1,
BLT_STATE=1[1]

Prop t55

BLT* falling edge to LCOUT*
valid

LAEN=1, FC1=1,
BLT_STATE=1[1]

Prop t55

LCIN* valid to LCOUT* valid LAEN=1, FC1=1,
BLT_STATE=1[1]

Prop t56

Minimum pulse widths BLT* LAEN=1, FC1=1,
BLT_STATE=1[1]

t57

MWB* t57

CY7C964 Operation

4-23

4.5.3 Local Address Multiplexer (S5)

The Local Address Multiplexer S5 routes the outputs of counters C1 or C2 to signals LA[7:0].
The local address counter carry chain LCIN*/LCOUT* is also controlled by this multiplexer. If
FC1 is High, counter C1 drives LA[7:0] and LCIN*/LCOUT* are visible/driven by C1, respec-
tively. When FC1 is Low, C2 drives LA[7:0] and is attached to the LCIN*/LCOUT* daisy-chain.

4.5.4 Slave Block Transfer Local Address Counter/Latch
(C2)

The Slave Block Transfer Local address counter provides two functions: a counter for slave
block transfer operations and a transparent address latch for VMEbus slave operations. When
the latch control signal LADI is held Low the counter is in a transparent mode: Logic levels
present will flow through the device to the inputs of the local address multiplexer S5. FC1
controls the S5 multiplexer and must be Low to select counter C2 as the source for LA[7:0].
Driving either LADI or D64 High exclusively latches the data present on A[7:0]. The counter
increments if LCIN* is Low, D64 is High, and a rising edge occurs on LADI. The contents of
the counter/latch are enabled onto the local data bus when LADI and FC1 are Low and D64
is High. Counter C2 is not initialized at power-up; for predictable operation the counter should
be loaded prior to use.

Table 4-7. Local Address Multiplexer Operation

Logic
Functional
Description Operational Description

Required
Condition Parameter

S5 Select C1 counter FC1 rising edge to LA[7:0] valid Prop t85

Select C2 counter FC1 falling edge to LA[7:0] valid Prop t86

Select C1 carry chain FC1 rising edge to LCOUT* valid Prop t88

Select C2 carry chain FC1 falling edge to LCOUT* valid Prop t87

CY7C964 Operation

4-24

4.5.5 Master Block Transfer VMEbus Address Counter (C3)

The VMEbus Master Block Transfer Address stores and increments the VMEbus address
during master block transfer operations. The counter loads from LA[7:0] on the rising edge
of MWB* provided that the internal asynchronous latch BLT_STATE is set. The contents of
the counter are enabled onto the A[7:0] pins if the internal asynchronous latch bits BLT_STATE
and multiplexer S3 are in the appropriate state. Depending on the state of DUAL_PATH, either
the rising or the falling edge of LADO increments C3. Counter C3 uses the VCIN*/VCOUT*
counter daisy-chain. This counter is uninitialized at power-up and should be initialized prior
to use for predictable operation.

Table 4-8. Slave Block Transfer Local Address Counter/Latch Operation

Logic Functional Description Operational Description Required Condition Parameter

C1 Load counter A[7:0] valid to D64 rising edge LADI=0 Set-up t58

Hold t59

A[7:0] valid to LADI rising edge D64=0 Set-up t60

Hold t61

Increment counter LADI rising edge to LA[7:0] D64=1, FC1=0 Prop t64

LCIN* active to LADI rising edge D64=1 Set-up t62

Hold t63

Counter carry out at
terminal count

LADI rising edge to LCOUT* D64=1, FC1=0 Prop t65

Minimum pulse width LADI t66

CY7C964 Operation

4-25

4.5.6 VMEbus Address Latch (L8) and Multiplexer (S3)

The VMEbus Address Latch and Multiplexer selects the source for the VMEbus address
signals A[7:0]. The information supplied to A[7:0] originates at one of three sources: the D64
block transfer data pipeline latch L2, the VMEbus master block transfer counter C3, or the
VMEbus address latch L8. Table 4-10 shows how to latch information into the VMEbus address
latch L8 and control the selection of the source for signals A[7:0]. Latch L8 is uninitialized at
power-up and for predictable operation should be loaded prior to use.

Table 4-9. Master Block Transfer VMEbus Address Counter Operation

Logic Functional Description Operational Description Required Condition Parameter

C3 Load counter LA[7:0] valid to rising edge of
MWB*

BLT_STATE=1[1]

BLT_INIT=1
Set-up t67

Hold t68

Increment counter LADO falling edge to A[7:0] BLT_STATE=1[1]

DUAL_PATH=1[3]

BLT_INIT=0

Prop t69

LADO rising edge to A[7:0] BLT_STATE=1[1]

DUAL_PATH=0
BLT_INIT=0

Prop t70

VCIN* valid to LADO rising/fall-
ing edge

Set-up t134

Hold t135

Counter carry out LADO falling edge to VCOUT*
valid

BLT_STATE=1[1]

DUAL_PATH=1[3]

BLT_INIT=0

Prop t71

LADO rising edge to VCOUT*
valid

BLT_STATE=1[1]

DUAL_PATH=0
BLT_INIT=0

Prop t72

Minimum pulse width LADO (High) t73

LADO (Low) t73

Table 4-10. VMEbus Address Latch and Multiplexer Operation

Logic
Functional
Description Operational Description Required Condition Parameter

S3 Select L8 D64 falling edge to A[7:0] valid BLT_STATE=1[1] Prop t83

S3 Select L8 ABEN* falling edge to A[7:0] valid BLT_STATE=1[1] Prop t84

S3 Select L8 D64 falling edge to A[7:0] valid BLT_STATE=0 Prop t81

L8 Load L8 LA[7:0] valid to LADO rising edge Set-up t40

L8 Load L8 LA[7:0] valid to LADO rising edge Hold t41

CY7C964 Operation

4-26

4.5.7 VMEbus Address Comparator

The VMEbus Address Comparator is made up of three logic elements: an address mask
register, address compare register, and a high-performance, 8-bit, equality comparator. The
compare and mask registers control the compare logic. The mask register contains an 8-bit
value that enables or disables bits of the comparator. The compare register contains an 8-bit
pattern. The enabled bits of the compare register are matched against the value on A[7:0]. If
a match is detected (all active bits equal), the VCOMP* output pin is driven Low. Neither the
compare register nor the mask register are preset at power-up and must be initialized for
predictable operation. The act of writing the compare register clears the mask register. This
prevents any inadvertent address compares during the configuration process. See Chapter
4.3 for further information on the VMEbus address comparator.

Figure 4-5. CY7C964 Block Diagram: VMEbus Address Comparator

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

S5

CY7C964 Operation

4-27

Table 4-11. VMEbus Address Comparator Operation

4.5.8 VMEbus D64 Block Transfer Data Pipeline and
Multiplexer

Latches L1 and L2 form a two-stage high-performance data pipeline for D64 block transfer
operations. These latches load from the local signals LD[7:0], but drive VMEbus address
signals A[7:0]. Latches L3 and L4 load from the local data signals LD[7:0] and in combination
with multiplexer S2 drive D[7:0]. On the first cycle of a D64 block transfer, data on LD[7:0] is
written to latch L1. During the second local data fetch of a D64 block transfer operation
(D64=1), data from LD[7:0] is written to latch L3 and the data within latch L1 moves to L2.
Two fetches must be performed to form the 64-bit block transfer data word. During non-D64
modes of operation (D64=0), data from LD[7:0] is written to latch L4. This is the normal data
path from LD[7:0] to D[7:0] for all non-D64 operation. Because all the latches are implemented
on transparent latches, L2 may be loaded from LD[7:0] when L1 is transparent (LEDO=0).
None of the latches are initialized at power-up. Therefore, for predictable operation, these
latches should be written prior to their use.

Logic Functional Description Operational Description Required Condition Parameter

L10 Select compare register LDS, MWB* valid to STROBE
falling edge

LDS=1, MWB*=1 Set-up t43

Hold t44

Load compare register LD[7:0] valid to STROBE
rising edge

Set-up t46

Hold t47

L11 Select mask register LDS, MWB* valid to STROBE
falling edge

LDS=0, MWB*=1 Set-up t43

Hold t44

Load mask register LD[7:0] valid to STROBE
rising edge

Set-up t46

Hold t47

Compare out A[7:0] valid to VCOMP* valid Prop t23

A[7:0] valid to VCOMP*
invalid

Prop t24

Minimum pulse width STROBE minimum pulse width t47

CY7C964 Operation

4-28

Figure 4-6. CY7C964 Block Diagram: D64 Block Tran sfer Data Pipe line and Multiplexer

Table 4-12. VMEbus D64 Block Tran sfer Data Pipeline and Multipl exer Operation

Logic Functional Description Operational Description Required Condition Parameter

L1 Load register LD[7:0] valid to LEDO rising edge Set-up t25

Hold t26

L2 Load register LD[7:0] valid to DENO*
falling edge

LEDO=0 Set-up t28

Hold t29

Drive A[7:0] D64 rising edge to A[7:0] valid BLT_STATE=1 Prop t82

L3 Load register LD[7:0] valid to DENO*
rising edge

Set-up t25

Hold t26

L4 Load register LD[7:0] valid to LEDO rising edge Set-up t131

Hold t132

S2 Multiplexer selects L3
drive D[7:0]

D64 rising edge to D[7:0] valid Prop t78

Multiplexer selects L4
drive D[7:0]

D64 falling edge to D[7:0] valid Prop t79

Minimum pulse width DENO* t30

LEDO t27

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

S5

CY7C964 Operation

4-29

4.5.9 VMEbus D64 Block Transfer Data Demultiplexer

The VMEbus D64 block transfer data demultiplexer moves data from D[7:0]/A[7:0] to LD[7:0].
The demultiplexer consists of three latches—L5, L6, and L7—and an output multiplexer, S1.
During D64 block transfer operations (D64=1), data is written to latches L6 and L7 simulta-
neously on the rising edge of LEDI. Multiplexer S1 then selects either latch L6 or L7, depending
on the state of LDS as a source for LD[7:0]. In most applications, LDS should be connected
to LA2, showing that L7 contains even 32-bit words (addresses 0, 8, 1016...) and L6 contains

odd 32-bit words (address 4, C, 1416...). Latch L6 is also used for non-D64 operating modes. None

of these latches are initialized at power-up and for predictable operation should be initialized prior
to use.

Figure 4-7. CY7C964 Block Diagram: D64 Block Tran sfer Data Demultiplexer

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

S5

CY7C964 Operation

4-30

Table 4-13. VMEbus D64 Block Tran sfer Data Pipeline and Demultiplexer Operation

Logic Functional Description Operational Description Required Condition Parameter

L5 Load register D[7:0] valid to DENIN* falling
edge

DENIN1*=0, LEDI=0 Set-up t31

Hold t32

Load register D[7:0] valid to DENIN1*
falling edge

DENIN*=0, LEDI=0 Set-up t34

Hold t35

L6 Load register D[7:0] valid to LEDI rising edge LEDO=0 Set-up t37

Hold t38

L7 Load register A[7:0] valid to LEDI rising edge LEDO=0 Set-up t37

Hold t38

S1 Select L5 LDS rising edge to LD[7:0] valid D64=1 Prop t74

D64 rising edge to LD[7:0]
valid

LDS=1 Prop t76

Select L7 LDS falling edge to LD[7:0] valid D64=1 Prop t75

Select L6 D64 falling edge to LD[7:0]
valid

Prop t77

Minimum pulse width DENIN* t33

DENIN1* t36

LEDI t39

4-31

4.6
 CY7C964 Alternate BLT
Initiation Operation for

VIC068A and VIC64
Another method of loading the VMEbus block transfer address counters exists within the
CY7C964. This method has been placed within its own section of the document because it
is not completely compatible with the VIC block transfer initiation cycle.

The CY7C964 determines the source for loading the VMEbus master block transfer counter
C3 by monitoring the arrival sequence of the MWB* and BLT* signals. For typical block transfer
initiation cycles, the assertion of MWB* occurs prior to the assertion of the BLT*. The VMEbus
master block transfer counter C3 loads from the local address pins, LA[7:0], as described
within section 4.5.5.

Reversing the arrival order of these two signals changes the operation of the device. This is
done at system design time by swapping the BLT* and MWB* inputs to the CY7C964. For
proper operation, these signals must continue to operate in the same manner as they do on
the VIC, even though they are no longer connected to the associated input pins on the
CY7C964 which have the same name. Swapping these signals on the device changes the
way that the VMEbus master block transfer counter C3 is loaded. In this mode it loads from
the local data bus via latch L9. All other functions within the device operate in the same manner
as described in Chapter 4.5.

Loading C3 is accomplished with a local cycle similar to the cycles needed to load the mask
and compare registers. This cycle operates as follows: LDS is driven High, (most likely this
signal is connected to LA2), the MWB* input pin of the CY7C964 is driven Low, (this pin is
actually connected to the open collector BLT* output of the VIC), and STROBE is asserted.
The local data bus should be driven to the appropriate value for the address to load into the
C3 counters. STROBE is deasserted and the data is latched into L9 within the CY7C964.
The local address decode signal used to assert MWB* on the CY7C964, (BLT* on the VIC),
must be a three-state or an open-collector output. This signal must not be driven High or the
VIC will be unable to perform block transfers.

A normal master block transfer initiation cycle is then performed, with one minor exception.
The lower 8 bits of address LA[7:0] which are controlled by the VIC, must contain the desired
lower address. This is needed because the VIC operates in the typical block transfer initiation
mode. The upper address LA[31:8] will be ignored by the CY7C964s during the initiation cycle.

This mode of operation allows the VMEbus master block transfer address counters to be
loaded independent of the VMEbus address. This has advantages in some designs, but C3
cannot be used to source single cycle transfer addresses. This limitation should be considered
while performing the design analysis to use this mode.

CY7C964 Alternate BLT Initiation Operation for VIC068A and VIC64

4-32

Table 4-14. Master Block Transfer Local Address Counter Operation

Figure 4-8. CY7C964 Alternate BLT Operation Block Diagram

Logic Functional Description Operational Description Required Condition Parameter

L9 Select register LDS, MWB* valid to STROBE
falling edge

LDS=1, MWB*=0 Set-up t43

Hold t44

Load register LD[7:0] valid to STROBE
rising edge

Set-up t45

Hold t46

Minimum pulse width STROBE t46

LA[7:0]

D[7:0] A[7:0] VCOMP

LD[7:0]

L3

S2

L4

S1

L5 L7

L6

L1

L2

L8

C3

C2

C1

L10 L11

Comp

S3

L9

S5

4-33

4.7
 DC Performance

Specifications
Table 4-15. VMEbus Signals (A[7:0], D[7:0])

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±10 ±10 ±10 µA

DC Performance Specifications

4-34

Table 4-16. Non-VMEbus Signals

Table 4-17. Operating Current

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.00 – VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±5 ±5 ±5 µA

ICC VCC Maximum
Operating
Supply Current

VCC = Max.,
All Outputs Disabled

25 25 25 mA

Parameters Description Test Conditions Max. Units

IDD Maximum Operating
Current

No external DC load 50 mA

4-35

4.8
 AC Performance

Specifications

Parameter Description
Min. All

Grades [1]
Max.

(Com’l)
Max.
(Ind)

Max.
(Mil) Unit Comment

t1 LA[7:0] to A[7:0] propagation delay[2] 15 16 18 ns

t2 LD[7:0] to D[7:0] propagation delay 16 17 19 ns

t3 A[7:0] to LA[7:0] propagation delay 17 18 20 ns

t4 D[7:0] to LD[7:0] propagation delay[2] 19 20 22 ns

t5 LD[7:0] to A[7:0] propagation delay[2] 19 20 22 ns D64=1

t6 A[7:0] to LD[7:0] propagation delay[2] 19 20 22 ns D64=1

t7 ABEN* active to A[7:0] output enable
delay[2]

11 11 12 ns

t8 DENO* active to D[7:0] output enable de-
lay[2]

14 15 16 ns

t9 ABEN* active to D[7:0] output
enable delay

14 15 17 ns D64=1

t10 D64 active to D[7:0] output enable delay[2] 13 14 15 ns ABEN*=0

t11 LAEN active to LA[7:0] output enable
delay[2]

10 11 12 ns

t12 DENIN* active to LD[7:0] output enable
delay

15 16 18 ns

t13 DENIN1* active to LD[7:0] output enable
delay[2]

18 19 21 ns D64=1

t14 D64 active to LD[7:0] output enable
delay[2]

18 19 21 ns DENIN1*=0

t15 ABEN* inactive to A[7:0] High-Z output
disable delay[2]

8 10 12 ns

t16 DENO* inactive to D[7:0] High-Z output
disable delay[2]

12 14 15 ns

t17 ABEN* inactive to D[7:0] High-Z output
disable delay[2]

12 14 15 ns D64=1

t18 D64 inactive to D[7:0] High-Z output
disable delay[2]

14 15 16 ns ABEN*=0

t19 LAEN inactive to LA[7:0] High-Z output
disable delay[2]

13 14 15 ns

t20 DENIN* inactive to LD[7:0] High-Z output
disable delay[2]

14 16 18 ns

t21 DENIN1* inactive to LD[7:0] High-Z
 output disable delay[2]

14 16 18 ns D64=1

t22 D64 inactive to LD[7:0] High-Z
output disable delay[2]

19 21 24 ns DENIN1*=0

AC Performance Specifications

4-36

t23 A[7:0] to VCOMP* High-to-Low
propagation delay

18 19 21 ns

t24 A[7:0] to VCOMP* Low-to-High
 propagation delay

16 17 19 ns

t25 LD[7:0] set-up time to LEDO rising edge 7 ns

t26 LD[7:0] hold time after LEDO rising edge 0 ns

t27 LEDO minimum pulse width 7 ns

t28 LD[7:0] set-up time to DENO* falling edge 0 ns LEDO=0

t29 LD[7:0] hold time after DENO* falling edge 7 ns LEDO=0

t30 DENO* minimum pulse width 10 ns

t31 D[7:0] set-up time to DENIN* falling edge 5 ns DENIN1*=0, LEDI=0

t32 D[7:0] hold time after DENIN* falling edge 5 ns DENIN1*=0, LEDI=0

t33 DENIN* minimum pulse width 10 ns

t34 D[7:0] set-up time to DENIN1* falling edge 5 ns

t35 D[7:0] hold time after DENIN1* falling
edge

5 ns

t36 DENIN1* minimum pulse width 10 ns

t37 D[7:0], A[7:0] set-up time to LEDI rising
edge

7 ns

t38 D[7:0], A[7:0] hold time after LEDI rising
edge

0 ns

t39 LEDI minimum pulse width 10 ns

t40 LA[7:0] set-up time to LADO rising edge 5 ns

t41 LA[7:0] hold time after LADO rising edge 5 ns

t42 LADO minimum pulse width 10 ns

t43 MWB*, LDS set-up time to STROBE
falling edge

0 ns

t44 MWB*, LDS hold time after STROBE
falling edge

5 ns

t45 LD[7:0] set-up time to STROBE rising
edge

5 ns

t46 LD[7:0] hold time after STROBE rising
edge

5 ns

t47 STROBE minimum pulse width 10 ns

t48 Local master block transfer address
counter C1 LD[7:0] set-up time before
MWB* falling edge

0 ns BLT*, LAEN=0

t49 Local master block transfer address
counter C1 LD[7:0] hold time after MWB*
falling edge

5 ns BLT*, LAEN=0

t50 Master block transfer local address
counter C1 LD[7:0] set-up time to BLT* fall-
ing edge

0 ns MWB*, LAEN=0

t51 Master block transfer local address
counter C1 LD[7:0] hold time after BLT*
falling edge

5 ns MWB*, LAEN=0

Parameter Description
Min. All

Grades [1]
Max.

(Com’l)
Max.
(Ind)

Max.
(Mil) Unit Comment

AC Performance Specifications

4-37

t52 LCIN* set-up time to MWB* falling edge 5 ns BLT_STATE, LAEN,
FC1=1

t53 LCIN hold time after MWB* or BLT* falling
edge

0 ns BLT_STATE, LAEN,
FC1=1

t54 MWB*, BLT* falling edge to LA[7:0]
propagation delay

21 22 25 ns BLT_STATE, LAEN,
FC1=1

t55 MWB*, BLT* falling edge to LCOUT* prop-
agation delay

24 25 28 ns BLT_STATE, LAEN,
FC1=1

t56 LCIN* to LCOUT* propagation delay[2] 17 18 20 ns BLT_STATE, LAEN,
FC1=1

t57 BLT*, MWB* minimum pulse width 10 ns

t58 Slave block transfer local address counter
C2, A[7:0] set-up time to D64 rising edge

5 ns LADI=0

t59 Slave block transfer local address counter
C2, A[7:0] hold time after D64 rising edge

5 ns LADI=0

t60 Slave block transfer local address counter
C2, A[7:0] set-up time to LADI rising edge

5 ns D64=0

t61 Slave block transfer local address counter
C2, A[7:0] hold time after LADI rising edge

5 ns D64=0

t62 LCIN* set-up time to LADI rising edge 8 ns D64=1

t63 LCIN* hold time after LADI rising edge 0 ns D64=1

t64 LADI rising edge to LA[7:0] valid
propagation delay

15 16 18 ns D64=1, FC1=0

t65 LADI rising edge to LCOUT* valid
 propagation delay

20 21 24 ns D64=1, FC1=0

t66 LADI minimum pulse width 10 ns

t67 Master block transfer VMEbus address
counter LA[7:0] set-up time to MWB*
rising edge

5 ns BLT_STATE=1,
BLT_INIT=1

t68 Master block transfer VMEbus address
counter LA[7:0] hold time after MWB*
rising edge

5 ns BLT_STATE=1,
BLT_INIT=1

t69 LADO falling edge to A[7:0] valid
 propagation delay

23 24 27 ns BLT_STATE,
DUAL_PATH=1,
BLT_INIT=0

t70 LADO rising edge to A[7:0] valid
 propagation delay[2]

24 25 28 ns BLT_STATE=1,
DUAL_PATH=0,
BLT_INIT=0

t71 LADO falling edge to VCOUT* valid
propagation delay

26 27 30 ns BLT_STATE,
DUAL_PATH=1,
BLT_INIT=0

t72 LADO rising edge to VCOUT* valid
propagation delay[2]

30 33 36 ns BLT_STATE,
DUAL_PATH=0,
BLT_INIT=0

t73 LADO minimum High or Low pulse width 10 ns

t74 LDS rising edge to LD[7:0] valid
propagation delay[2]

20 21 24 ns D64=1

t75 LDS falling edge to LD[7:0] valid
propagation delay

20 21 24 ns D64=1

Parameter Description
Min. All

Grades [1]
Max.

(Com’l)
Max.
(Ind)

Max.
(Mil) Unit Comment

AC Performance Specifications

4-38

t76 D64 rising edge to LD[7:0] valid
propagation delay[2]

21 22 24 ns

t77 D64 falling edge to LD[7:0] valid
propagation delay

21 22 24 ns

t78 D64 rising edge to D[7:0] valid
propagation delay[2]

16 16 18 ns

t79 D64 falling edge to D[7:0] valid
propagation delay[2]

19 19 21 ns

t80 D64 rising edge to A[7:0] valid
propagation delay[2]

15 16 18 ns BLT_STATE=0

t81 D64 falling edge to A[7:0] valid
propagation delay[2]

16 17 19 ns BLT_STATE=0

t82 D64 rising edge to A[7:0] valid
propagation delay[2]

19 19 22 ns BLT_STATE=1

t83 D64 falling edge to A[7:0] valid
propagation delay

20 21 23 ns BLT_STATE=1

t84 ABEN* falling edge to A[7:0] valid
propagation delay[2]

11 11 12 ns BLT_STATE=1

t85 FC1 rising edge to LA[7:0] valid
propagation delay[2]

14 15 17 ns

t86 FC1 falling edge to LA[7:0] valid
propagation delay

17 18 20 ns

t87 FC1 falling edge to LCOUT* valid
 propagation delay[2]

17 18 20 ns

t88 FC1 rising edge to LCOUT* valid
propagation delay

17 18 20 ns

t89 LADO set-up time to MWB*, BLT* rising
edge

0 ns BLT_STATE=1

t136 LADO hold time after MWB*, BLT* rising
edge

7 ns BLT_STATE=1

t137 BLT* set-up time to MWB* falling edge 5 ns

t90 BLT* hold time after MWB* falling edge 5 ns

t131 LD[7:0] to DENO* falling edge set-up 5 ns

t132 LD[7:0] after DENO* falling edge 5 ns

t133 LCIN* hold time after BLT* falling edge 5 ns

Notes:

1. All minimum times guaranteed by design, not tested.

2. Guaranteed, not tested.

Parameter Description
Min. All

Grades [1]
Max.

(Com’l)
Max.
(Ind)

Max.
(Mil) Unit Comment

4-39

4.9
 Pin Description

4.9.1 Pin Definitions

QFP
Pin No.

PGA
Pin No. Signal Name Type Description

1 E1 GND Power Ground

2 L2 LD7 Three-state I/O Local data transceiver 7

3 K3 LDS Input Register select bit

4 L3 FC1 Input Function code 1 control signal

5 K4 STROBE Input Comparator register load control signal

6 L4 MWB* Input Module wants VMEbus control signal

7 K5 LCOUT* Output Local address counters carry out signal

8 L5 GND Power Ground

9 K6 VCOMP* Output VMEbus address comparator out signal

10 L6 VCOUT* Output VMEbus address counter carry out signal

11 K7 LADO Input Latch address out control signal

12 L7 LADI Input Latch address in control signal

13 K8 LEDI Input Latch enable data in control signal

14 L8 LEDO Input Latch enable data out control signal

15 K9 A7 Three-state I/O High drive address transceiver 7

16 A3 GND Power Ground

17 A2 VCC Power VCC

18 K11 D7 Three-state I/O High drive data transceiver 7

19 J10 A6 Three-state I/O High drive address transceiver 6

20 J11 D6 Three-state I/O High drive data transceiver 6

21 H10 A5 Three-state I/O High drive address transceiver 5

22 H11 D5 Three-state I/O High drive data transceiver 5

23 G10 A4 Three-state I/O High drive address transceiver 4

24 G11 D4 Three-state I/O High drive data transceiver 4

25 L9 GND Power Ground

26 F11 A3 Three-state I/O High drive address transceiver 3

27 E10 D3 Three-state I/O High drive data transceiver 3

28 E11 A2 Three-state I/O High drive address transceiver 2

Pin Description

4-40

29 D10 D2 Three-state I/O High drive data transceiver 2

30 D11 A1 Three-state I/O High drive address transceiver 1

31 C10 D1 Three-state I/O High drive data transceiver 1

32 K10 VCC Power VCC

33 B10 GND Power Ground

34 A10 A0 Three-state I/O High drive address transceiver 0

35 B9 D0 Three-state I/O High drive data transceiver 0

36 A9 ABEN* Input High drive address bus enable signal

37 B8 DENO* Input High drive data bus enable signal

38 A8 D64 Input D64 mode enable control signal

39 B7 BLT* Input Block transfer control signal

40 B2 VCC Power VCC

41 B6 VCIN* Input VMEbus address counter count enable
signal

42 A6 LCIN* Input Local address counter count enable
signal

43 B5 LAEN Input Local address enable control signal

44 A5 DENIN1* Input Data enable in 1 control signal

45 B4 DENIN* Input Data enable in control signal

46 A4 LA0 Three-state I/O Local address transceiver 0

47 B3 LD0 Three-state I/O Local data transceiver 0

48 F10 GND Power Ground

49 A7 VCC Power VCC

50 B1 LA1 Three-state I/O Local address transceiver 1

51 C2 LD1 Three-state I/O Local data transceiver 1

52 C1 LA2 Three-state I/O Local address transceiver 2

53 D2 LD2 Three-state I/O Local data transceiver 2

54 D1 LA3 Three-state I/O Local address transceiver 3

55 E2 LD3 Three-state I/O Local data transceiver 3

56 L10 GND Power Ground

57 F2 LA4 Three-state I/O Local address transceiver4

58 F1 LD4 Three-state I/O Local data transceiver 4

59 G2 LA5 Three-state I/O Local address transceiver 5

60 G1 LD5 Three-state I/O Local data transceiver 5

61 H2 LA6 Three-state I/O Local address transceiver 6

62 H1 LD6 Three-state I/O Local data transceiver 6

QFP
Pin No.

PGA
Pin No. Signal Name Type Description

Pin Description

4-41

4.9.2 Pin Configurations

63 J2 LA7 Three-state I/O Local address transceiver 7

64 J1 VCC Power VCC

K2 GND Power Ground

K1 VCC Power VCC

B11 GND Power Ground

C11 VCC Power VCC

QFP
Pin No.

PGA
Pin No. Signal Name Type Description

PQFP/CQFP/TQFP
Top View

1GND
2LD7

3
4

LDS

5
FC1

6

7

8GND
9
10
11LADO
12LADI
13LEDI
14

A7 15

GND

48 GND

47 LD0
46 LA0
45

44

43 LAEN

42
41

40 VCC
39

38 D64
37

36

35
34

D0

33
A0

GND

17
V

C
C

64
V

C
C

18

A
6

63
LA

7
19

D
6

62
LD

6
20

A
5

61
LA

6
21

D
5

60
LD

5
22

A
4

59
LA

5
23

58
LD

4
24

D
4

57
LA

4
25

G
N

D
56

G
N

D
26

A
3

55
LD

3
27

D
3

54
LA

3
28

A
2

53
LD

2
29

D
2

52
LA

2
30

A
1

51
LD

1
31

D
1

50
LA

1
32

49
V

C
C

DENIN1*
DENIN*

LCIN*

VCIN*

BLT*

DENO*

ABEN*

STROBE

MWB*

LCOUT*

VCOUT*

16

LEDO

V
C

C

VCOMP*

D
7

Pin Description

4-42

11 10 9 8 7 6 5 4 3 2 1

A

B

C

D

E

F

J

K

L

G

H

GND

VCC

A2

A3

D4

D5

D6

D7

GND

D1

D2

D3

GND

A4

A5

A6

A0

VCC

GND

ABEN*

D0

A7

GND

D64

DENO*

LEDI

LEDO

VCC

BLT*

LCIN*

VCIN*

LADO

LADI

VCOMP*

VCOUT*

DENIN1*

LAEN

LCOUT*

GND

LA0

DENIN*

STROBE

MWB*

GND

LD0

LDS

FC1

VCC

VCC

LD1

LD2

LD3

LA4

LA5

LA6

LA7

GND

LD7

LA1

LA2

LA3

GND

LD4

LD5

LD6

VCC

VCC

A1

68-Pin Ceramic PGA
Bottom View

Index Mark
On Top

4-43

4.10
Package Diagrams

64-Pin Thin Quad Flat Pack A64

Package Diagrams

4-44

68-Pin Grid Array (Cavity Up) G68

Package Diagrams

4-45

64-Lead Plastic Thin Quad Flatpack N65

Package Diagrams

4-46

64-Lead Ceramic Quad Flatpack (Cavity Up) U65

Section 5

The VAC068A VMEbus
Address Controller

5-1

5.1
Introduction to the VAC068A

5.1.1 Features Summary

When used with the VIC068A (VMEbus Interface Controller), the VAC068A (VMEbus Address
Controller) forms a complete VMEbus master/slave interface solution. The VAC068A is in-
tended for use solely with VIC068A. The following feature list is VAC068A specific but uses
VIC068A implementations for items such as boundary crossing, dual-path, interprocessor
communications facilities, and block transfers.

• Complete VMEbus and I/O DMA capability for 32-bit processors, including 42 program-
mable registers for configuration and control of:

— slave address decode

— UARTs

— programmable I/O signals

— local I/O

— interrupt source

• Provides complete local memory map decoding. Separate segments on local interface
available for:

— DRAM

— VME Subsystem Bus (VSB)

— Shared Resource

— Local I/O

— EPROM

• Provides complete VMEbus memory map decoding. Separate segments are available for:

— two VMEbus slave decodes

— interprocessor communication facilities

• Supports block transfers over 256-byte boundaries:

— address counters for VMEbus A[31:8] and local LA[31:8]

— supports dual-path feature of the VIC068A

— supports implementation of the VSB interface

— includes local DMA capability

• Dual UARTs on chip:

— double buffered on transmit, quad-buffered on receive

— programmable baud rate from 300 to 9600 baud

Introduction to the VAC068A

5-2

• Miscellaneous:

— supports unaligned transfers

— programmable DSACKi* for local I/O

— programmable timer and interrupts

— programmable I/O signals (dual function)

— buffer control signals for direct connection to ’543s

5.1.2 General Description

The VAC068A is a programmable address decode controller and VMEbus DMA extension for
the VIC068A. When used in conjunction with the VIC068A, the VAC068A maximizes perfor-
mance of a master/slave VMEbus interface module. It also substantially reduces power con-
sumption and board space when compared to discrete implementations. The VAC068A con-
tains programmable registers that allow the user to easily define VMEbus address decoding.
These are:

• A24 address space overlay register

• three programmable VMEbus boundary registers

• separate A16 address space with programmable D16 or D32 data size

The VAC068A reserves address space for local I/O resources, DRAM, and EPROM. Access
to these address spaces forces the proper chip select signal on the VAC068A. The chip select
outputs are CS*, IOSEL5–0*, DRAMCS*, and EPROMCS*. DRAM address space is hard
coded to start at $0000 0000 to follow normal VMEbus address space conventions. Program-
mable address options also exist for the purpose of asserting VSB select (VSBSEL*) and
shared resources chip select (SHRCS*).

The VAC068A contains address counters and control logic to allow for block transfer over
256-byte boundaries.

Additional features include 13 programmable input/output signals (PIO signals) that can be
programmed for the following functions:

• 13 general-purpose I/O signals

• two serial I/O transmit and receive channels (A and B)

• three interrupt signals

• shared resource chip select

• I/O read and I/O write

• I/O selects 2–5 for slower 8-bit peripheral devices

Note: IOSEL0* and IOSEL1* have dedicated pins on the VAC068A.

The I/O selects have reserved address space and may use the local address bus or the IDbus.
When the IDbus is used, programmable cycle end and DSACK control may be programmed
in the corresponding DSACK control register.

Introduction to the VAC068A

5-3

Programmable DSACKi* control also exists for EPROM and shared resource selects. DSAC-
Ki*s may also be disabled if the user wishes to provide this function. There is also a program-
mable timer and interrupt mapping on either PIO7, PIO10, or PIO11 for the following inter-
rupting functions:

• timer interrupt

• UART A and B interrupt

• mailbox interrupt

• PIO4, PIO7, PIO8, or PIO9

The VAC068A uses the VIC068A data direction (DDIR) and swapping signals (SWDEN*) for
direction control and unaligned transfers.

The VAC068A connects directly to the local address bus LA[31:8] and the VMEbus address
A[31:8] signals. It also connects to the local data bus through the IDbus ID[15:8]. VAC068A
uses the IDbus to provide VMEbus data signal connection D[15:8], although external buffers
and line drivers are required. The VIC068A directly drives the VMEbus data signals D[7:0],
address signals A[7:1], and local address LA[7:1] and data signals D[7:0].

Both parts utilize Cypress’s patented output drivers and were designed with high-performance
standard cells using a 1-micron CMOS process. Thirteen ground and nine power pins are
provided.

5-4

5.2
VAC068A Signal

Descriptions
5.2.1 VMEbus Signals

A[31:8]

Drive: 64 mA (all)
Type: Three-state I/O

These are the VMEbus address signals.

AS*

Type: Input

This is the VMEbus address strobe signal. It responds to both VIC068A- and VMEbus-gen-
erated address strobes.

ID[15:8]

Drive: 16 mA
Type: Three-state I/O

These are the isolated data bus signals. They are used to interface local data [15:8] to the
VMEbus D[15:8] in conjunction with transparent latching bidirectional I/O buffers. They also
are used to interface with local 8-bit I/O peripherals via the Device Location and DSACKi*
Control registers.

5.2.2 CPU/Local Interface Signals

LD[31:16]

Drive: 16 mA
Type: Three-state I/O

These are the local data bus signals. They are used to write or read the local data bus and
for writing and reading the on-chip control registers.

Note: The IDbus connects to LD[15:8] and VIC068A connects to LD[7:0].

VAC068A Signal Descriptions

5-5

LA[31:8]

Drive: 16 mA
Type: Three-state I/O

These are the local address bus signals. They are used as inputs during a VMEbus master
cycle and to access on-chip control registers. They are used for output during local or slave
accesses.

PAS*

Type: Input

This is the local-processor address strobe. It indicates to the VAC068A that a valid address
is present on the address bus. This signal is typically driven by either VIC068A or the local
processor.

R/W*

Type: Input

This is the local read/write signal. When High, this signal indicates that the current cycle is a
read. When Low, the current cycle is a write. This signal is typically driven by either the
VIC068A or the local processor.

RESET*

Type: Input

This is the reset for the VAC068A. It is used alone or in conjunction with WORD* to reset the
VAC068A internal registers. There are two reset types that may be implemented, and both of
them are discussed in the reset section.

WORD*

Drive: 16 mA
Type: Input/Three-state output

This signal is active under programmable control from the appropriate region attribute register
and controls the length of the data field. When it is asserted, the data path is 16 bits wide.
When deasserted, a 32-bit data path is set. It is also used as an input in conjunction with
RESET* to set VAC068A registers. It is typically connected to the VIC068A as an output.

ASIZ1, ASIZ0

Drive: 16 mA
Type: Three-state output

These are the address size signals. They are used to specify the address size of an access.
They are active under programmable control from the appropriate region attribute register.
These signals are typically driven to VIC068A along with WORD* to determine address and
data path size.

VAC068A Signal Descriptions

5-6

ASIZ0 ASIZ1 Addressing Mode

0 0 User-defined
0 1 A32
1 0 A16
1 1 A24

DSACK1/0*

Drive: 16 mA
Type: Three-state I/O (rescinding)

These are the data sizing acknowledge signals. They are generated for any of the VAC068A
device select outputs except CS* and VSBSEL* accesses. DSACK0* or DSACK1* can be
selectively disabled or enabled in the DSACK1* Control register.

FC2/0

Type: Inputs

These are the function code signals. They are used by the VAC068A to determine the local
access type and are typically driven by the local processor or the VIC068A as shown in the
following tables:

(Per 680X0 User’s Guide)

FC2 FC1 FC0 Cycle

0 0 1 User Data Space
0 1 0 User Program Space
1 0 1 Supervisor Data Space
1 1 0 Supervisor Program Space
1 1 1 CPU Space

(Per section 1.2.2 of this Handbook)

FC2 FC1 Cycle

0 0 Slave Block Transfer
0 1 Local DMA
1 0 Slave Access
1 1 DRAM Refresh

MWB*

Drive: 16 mA
Type: Output

This is the module-wants-bus signal. It is asserted under programmable control of the appro-
priate region attribute register and indicates that a VMEbus access is occurring. This signal
is typically connected to the VIC068A.

VAC068A Signal Descriptions

5-7

FCIACK*

Drive: 16 mA
Type: Output

This is the local interrupt acknowledge signal. It indicates that the current cycle is an interrupt
acknowledge cycle. This signal is typically connected to the VIC068A. It is asserted during
local VAC068A interrupt cycles, or when HIACKEN is enabled in the PIO Direction register
or when IOSEL5* address space is accessed when enabled in the PIO Function register.

DRAMCS*

Drive: 16 mA
Type: Output

This is the DRAM chip select signal. It is asserted when the local address maps into region
0 as defined by the DRAM Upper Limit Address register. It is also asserted when redirection
is enabled in the VAC068A Decode Control register.

EPROMCS*

Drive: 16 mA
Type: Output

This is the EPROM chip select signal. It is asserted after a global reset, during a local access
to EPROM address space, and during redirection of SLSEL1* on the local bus via the
VAC068A Decode Control register.

FPUCS*

Drive: 16 mA
Type: Output

This is the floating-point-unit chip select signal. It is asserted when a floating-point coproces-
sor access is occurring. This is decoded from the processor function codes or under program-
mable control in the PIO Function register to be asserted in the IOSEL4* address range.

VSBSEL*

Drive: 16 mA
Type: Output

This is the VSB (VME Subsystem Bus) select signal. It is used to identify accesses to a
daughterboard or VSB. It is asserted when enabled from the appropriate region attribute
register.

REFGT*

Drive: 16 mA
Type: Output

This is the refresh grant signal. It is asserted during a DRAM refresh cycle and is typically
decoded from the VIC068A function codes (FC1 and FC2).

VAC068A Signal Descriptions

5-8

LBR*

Type: Input

This is the VIC068A local bus request signal. It is used to signal the VAC068A when the
VIC068A requests the local bus. It is typically connected to the VIC068A LBR* signal.

CS*

Drive: 16 mA
Type: Output

This is the VIC068A chip select signal. It is asserted when the fixed address of the VIC068A
is present on the local address bus. This signal is typically connected to the VIC068A chip
select signal (CS*).

BLT*

Type: Input

This is the block transfer signal. It is used to determine when a block transfer is in progress
and to increment internal address counters during a boundary crossing. This signal is typically
connected to the VIC068A.

CACHINH*

Drive: 16 mA
Type: Open Collector Output

This is the cache inhibit signal. It is asserted when enabled in either the Region Attribute
registers or in the A24 Space Base Address register. It is also asserted on access to the
DRAM Mailbox and VMEbus A16 address space (Region 6). It may be connected to the CDIS
signal on 680X0-type processors.

LDMACK*

Drive: 16 mA
Type: Output

This is the local DMA activity signal. It is asserted when there is DMA activity mapped into a
particular region. It is typically decoded from the VIC068A function codes (FC1 and FC2).

CPUCLK

Type: Input

This is the CPU clock signal. It is typically connected to the system CPU clock. Maximum
frequency is 50 MHz.

VAC068A Signal Descriptions

5-9

SLSEL0*

Drive: 16 mA
Type: Output

This is the slave select 0 signal. It is asserted when enabled by a comparison of its base
address register and the address on the VMEbus. It indicates to the VIC068A that a slave
operation is pending.

SLSEL1*

Drive: 16 mA
Type: Output

This is the slave select 1 signal. It is asserted when enabled by a comparison of its base
address register and the address on the VMEbus. It indicates to the VIC068A that a slave
operation is pending.

ICFSEL*

Drive: 16 mA
Type: Output

This is the interprocessor communications signal. It is asserted under programmable control
of a comparison of its base address register and the address on the VMEbus. It indicates a
VIC068A interprocessor communication access.

IOSEL1/0*

Drive: 16 mA
Type: Output

These are 2 of the 6 I/O select signals. They are asserted when the local bus address matches
their fixed memory location. They are also used in conjunction with the IDbus when pro-
grammed in the PIO Function register.

5.2.3 Parallel I/O-Shared Function Signals

The functions of these signals are programmed in the PIO Function register. When the cor-
responding bit is set in this register, the signal is the shared function. When the corresponding
bit is cleared, the signals operate in the general-purpose parallel I/O mode (PIO).

PIO0–TXDA

Drive: 16 mA
Type: Input/Three-state output

The PIO0–TXDA signal is programmed to serve either as General-Purpose I/O pin bit 0, or
as an output for the UART Channel-A Transmit signal.

VAC068A Signal Descriptions

5-10

PIO1–RXDA

Drive: 16 mA
Type: Input/Three-state output

The PIO1–RXDA signal is programmed to serve as either General-Purpose I/O pin bit 1, or
as an input for the UART Channel-A Receiver signal.

PIO2–TXDB

Drive: 16 mA
Type: Input/Three-state output

The PIO2–TXDB signal is programmed to serve as either General-Purpose I/O pin bit 2, or
as an output for the UART Channel-B Transmit signal.

PIO3-RXDB

Drive: 16 mA
Type: Input/Three-state output

The PIO3–RXDB signal is programmed to serve as either General-Purpose I/O pin bit 3, or
as an input for the UART Channel-B Receiver signal.

PIO4–IORD*

Drive: 16 mA
Type: Input/Three-state output

The PIO4–IORD* signal is programmed to serve as either General-Purpose I/O pin bit 4, or
as an output for the read enable signal (local I/O accesses).

PIO5–IOWR*

Drive: 16 mA
Type: Input/Three-state output

The PIO5–IOWR* signal is programmed to serve as either General-Purpose I/O pin bit 5, or
as an output for the write enable signal (local I/O accesses).

PIO6–IOSEL3*

Drive: 16 mA
Type: Input/Three-state output

The PIO6–IOSEL3* signal is programmed to serve as either General-Purpose I/O pin bit 6,
or as an output for the IOSEL3* enable signal (local fixed-map I/O select).

PIO7–Interrupt Request

Drive: 16 mA
Type: Input/Three-state output

The PIO7–Interrupt Request signal is used as either General-Purpose I/O pin bit 7, or as an
output for interrupt requests on one of PIO 7, 10, or 11 (programmed in the Interrupt Control
register).

VAC068A Signal Descriptions

5-11

PIO8–IOSEL4*

Drive: 16 mA
Type: Input/Three-state output

The PIO8–IOSEL4* signal is programmed to serve as either General-Purpose I/O pin bit 8,
or as an output for the IOSEL4* enable signal (local fixed-map I/O select). IOSEL4* accesses
also assert FPUCS* when so programmed in the PIO Function register.

PIO9–IOSEL5*

Drive: 16 mA
Type: Input/Three-state output

The PIO9–IOSEL5* signal is programmed to serve as either General-Purpose I/O pin bit 9,
or as an output for the IOSEL5* enable signal (local fixed-map I/O select). IOSEL5* accesses
also assert FCIACK* when so programmed in the PIO Function register.

PIO10–Interrupt Request

Drive: 16 mA
Type: Input/Three-state output

The PIO10–Interrupt Request signal is used as either General-Purpose I/O pin bit 10, or as
a programmed interrupt request as programmed in the Interrupt Control register.

PIO11–Interrupt Request

Drive: 16 mA
Type: Input/Three-state output

The PIO11–Interrupt Request signal is used as either General-Purpose I/O pin bit 11, or as
an output for interrupt requests as programmed in the Interrupt Control register.

PIO12–SHRCS*

Drive: 16 mA
Type: Input/Three-state output

The PIO12–SHRCS* signal is programmed to serve as either General-Purpose I/O pin bit
12, or as an output for shared resource chip select.

PIO13–IOSEL2*

Drive: 16 mA
Type: Input/Three-state output

The PIO13–IOSEL2* signal is programmed to serve as either General-Purpose I/O pin bit
13, or as an output for the IOSEL2* enable signal (local fixed-map I/O select).

VAC068A Signal Descriptions

5-12

5.2.4 Data Flow Control Signals

These signals are inputs to VAC068A and are connected to outputs from VIC068A.

SWDEN*

Type: Input

This is the swap data enable signal. It is used in conjunction with DDIR* to swap data to or
from the Isolated Data bus signals ID[15:8] to the Local Data LD[15:8] bus. This signal is
typically connected to the VIC068A.

DDIR

Type: Input

This is the data direction signal. It is typically connected to the VIC068A.

LADO

Type: Input

This is the latch address out signal. It is used to latch the local address out to the VMEbus.
It is typically connected to the VIC068A. LADO is also used to increment internal address
counters during a VMEbus boundary crossing.

LADI

Type: Input

This is the latch address in signal. It is used to latch the local address from the VMEbus.

LAEN

Type: Input

This is the local address bus enable signal. It is used by the VAC068A to indicate that the
VIC068A has bus mastership of the local bus.

ABEN*

Type: Input

This is the VMEbus address enable signal. It is used to indicate that the VIC068A is driving
the VMEbus address bus.

VAC068A Signal Descriptions

5-13

Figure 5-1. VAC068A Block Diagram

LOCAL
COUNTER/
LATCH

Local Address (31:8)

Local Data (31:8)

BLT*
LAEN
LADI

BLT*
ABEN*
LADO

VMEbus
COUNTER/
LATCH

VMEbus ADDRESS

LOCAL
MAP DECODE

VMEbus
MAP DECODE

LOCAL
STATUS/
CONTROL

LOCAL I/O
MAP DECODE

RESET

SIZE
CONTROL

VAC068A
REGISTER
MAP

IDbus LATCH

6

2

4

6

2

2

2

14

7

3

2

3

MWB*
DRAMCS*
EPROMCS*
CACHINH*
CS*
VSBSEL*

LBR*
PAS*

R/W*
FC2-0

FCIACK*
FPUCS*
REFGT*
DSACK1/0*
LDMACK*

IOSEL1/0*

GENERAL-
PURPOSE I/O

IORD/WR*
IOSEL5/2*
SHRCS*

OR

SIO
 TXDA
 RXDA
 TXDB
 RXDB

INTERRUPT
REQUEST

AS*

ICFSEL*
SLSEL0*
SLSEL1*

RESET*

WORD*

ASIZ1/0

ID[15:8]

DDIR
SWDEN*

5-14

5.3
VAC068A Overview

5.3.1 Applications

The VAC068A is a complementary chip to Cypress’s VIC068A VMEbus Interface Controller.
As the VAC068A is intended to work exclusively with the VIC068A, the user should be familiar
with VIC068A operation. Section 1 of this book must be used in conjunction with the VAC068A
section to fully understand the operation of the chip set.

The VAC068A includes drivers and receivers to interface directly to the local address and
data bus. For connection to the local address bus, the VIC068A drives the lower local address
bus signals LA[7:0] and the VAC068A drives the upper local address bus signals LA[31:8].
For the local data bus, the VIC068A drives LD[7:0] and the VAC068A drives LD[31:8].

For the VMEbus address signals, the VIC068A drives A[7:1] and the VAC068A drives A[31:8].
VMEbus data signals D[7:0] are driven directly by the VIC068A. The VAC068A uses an
alternate IDbus to drive the next eight VMEbus data bits D[15:8] with an external ’543. An
external ’245 is needed to swap between LD[15:8] and ID[15:8]. The upper VMEbus data
signals D[31:16] are driven through external ’543s and enabled by the VIC068A buffer control
signals. Thus the only additional logic required with the VIC068A and the VAC068A for a
complete VMEbus and local interface are two ’543s and three ’245s for direction and isolation
of data signals from ID[15:8]. The VAC068A internally includes one of the two swap buffers
required for unaligned transfers (see VAC068A block diagram). The internal swap buffer
moves the ID bus data from ID[15:8] to LD[31:24].

The VAC068A IDbus also allows slower I/O devices to be utilized with system processor clock
rates of 25 MHz or higher. This is accomplished by I/O read, I/O write, and DSACKi* program-
mable time delays. These parameters are set in the DSACKi* Control register along with
assertion and recovery times for local I/O chip selects (IOSELi*).

When the IDbus is used to interface to slower 8-bit peripherals, certain registers must be
configured. These are the DSACKi* Control register, PIO Function register, and the Device
Location register. Region 5 of the VAC068A address map defines each of six different address
areas for these 8-bit peripherals with separate I/O select signals for each address area. Two
of these select signals have dedicated pins and the other selects are shared with the pro-
grammable I/O signals. To enable these devices on the ID bus, the corresponding bit in the
Device Location register must be set.

The VAC068A provides VMEbus address decoding when functioning as a slave. This is
accomplished by two separate slave select base address registers. These registers are com-
pared to the respective VMEbus address signals and, when a match occurs, the correspond-

VAC068A Overview

5-15

ing SLSELi* signal is asserted to the VIC068A. The address resolution of slave selects is 64
Kbytes; i.e., only the upper 16 bits are compared. For A16 slave selects, bits 26 and 27 of
slave select 1 must be used. This is enabled in the Decode Control register.

In addition to VMEbus slave selects, the VAC068A can assert a variety of chip selects to the
local module. These are activated by internal comparators that compare the local or the
VMEbus address to the VAC068A address map. Two means exist for asserting the chip
selects. One is when the local address matches the corresponding region address. The other
is when redirection is enabled in the Decode Control register. When the VAC068A’s own
VMEbus slave select address is detected and redirection is enabled in the Decode Control
register, the corresponding chip select is asserted. For example, the VAC068A can assert
DRAMCS* (after VIC068A asserts LBR* and receives a LBG*) in response to the detection
of its own slave select 0 address on the local bus. The slave select address is located in the
SLSEL0 Base Address register. SLSEL1* may be redirected to EPROMCS*, DRAMCS*,
SHRCS*, or VSBSEL* (if it is enabled in the Decode Control register) when the slave select
1 address is detected on the VMEbus address bus.

The VAC068A also provides address decode for local I/O devices (IOSEL0–5*), the VIC068A
(CS*), and local resources. The upper address range is reserved for VMEbus short address
space (A16), and can be programmed for either automatic D32/D16 decode (based on A16),
D16, or D32 data path.

The VAC068A includes local and VME address counters required to support VMEbus block
transfers. These counters automatically increment when a 256-byte boundary is crossed. The
VAC068A also contains a dual-address path that allows VIC068A master accesses to the
VMEbus during the interleave period of a block transfer.

The VAC068A may be used in conjunction with the VIC068A for local DMA transfers. This
includes transfers from memory to local I/O or across the VSB (VME Subsystem Bus). That
is, the VIC068A/VAC068A architecture allows design of VSB and I/O LSI devices that utilize
DMA capability.

The VAC068A decodes processor and VIC068A signals to identify the current state of the
local module. For example, the function codes are decoded from the VIC068A to interpret
whether the current local cycle is a slave block transfer, normal slave transfer, local DMA
cycle, or DRAM refresh cycle. The result of this decode is used to determine the slave cycle
type and to assert the signals LDMACK* (local DMA activity) or REFGT* (refresh grant).

FC2 FC1 CYCLE

0 0 Slave Block Transfer
0 1 Local DMA
1 0 Slave Access
1 1 DRAM Refresh

The VAC068A includes circuitry to decode the processor’s function codes. This is used to
supply floating-point-unit chip select (FPUCS*) to the modules coprocessor.

VAC068A Overview

5-16

The VAC068A also identifies if the current cycle is an interrupt acknowledge cycle. This is
done through the assertion of FCIACK* by the VAC068A when any one of these three con-
ditions occur:

• function code bits 0–2 are all set to 1s

• bit 30 of the PIO Direction register is set and an access is made to $FFFF FFxx and
function code inputs are NOT all set to 1s

• bit 31 of the PIO Function register is set and there is an access to local I/O 5 address space

The VAC068A local interrupts can occur on any of three interrupt-request output signals:
PIO7, PIO10, or PIO11. These signals are enabled as output interrupt signals through the
PIO Function register.

Enabling/disabling specific interrupts is accomplished in the Interrupt Control register. This
register also specifies the mapping of interrupts on PIO7, 10, or 11. Normally, the PIO7, 10,
or 11 signals are connected to the VIC068A LIRQi* signals. The Interrupt Status register may
be read to determine which interrupt condition is causing the output to be asserted. The
conditions causing these interrupts are:

• programmable timer

• mailbox access

• UART channel A or B service

• programmable I/O signals PIO4, PIO7, PIO8, or PIO9

The timer, mailbox, and PIO4, 7, 8, and 9 interrupts are active Low and edge triggered. The
interrupt request goes inactive when the local processor clears its respective bit in the Interrupt
Control register.

To disable the UART channel A and B interrupts, the user must first determine what caused
the UART interrupt. The cause of the interrupt is located in the respected UART Serial I/O
Channel Interrupt Status register. This register is read-only. Once the cause is determined,
the respective bit in the UART Serial I/O Channel Interrupt Mask register must be disabled.
Upon completion of this activity, the Interrupt Control register bit may be cleared.

Other signals the VAC068A decodes include:

• BLT* (local block transfer address counter)

• LBG* (VIC068A local bus activity)

The VAC068A also decodes the VIC068A buffer control signals. These include:

• SWDEN* (swap data enable)

• DDIR (data direction)

• LAEN (local address enable)

• LADO (latch address out)

• LADI (latch address in)

• ABEN* (VME address bus enable)

VAC068A Overview

5-17

The VAC068A also furnishes status and size signals to the VIC068A and the local processor.
These include:

• WORD* for data size

• ASIZ1/0 for address size

• LDMACK* for local DMA activity

• CACHINH* cache inhibit signal

• REFGT* for refresh grant

The VAC068A also includes shared-function programmable I/O signals. These dual-function
pins are defined in the PIO Function register. When not serving as general-purpose I/O signals
they may be used for:

• dual UART channels (A and B)

• I/O read enable for local I/O

• I/O write enable for local I/O

• local I/O chip selects (2–5)

• shared-resource chip select

The VAC068A also includes a timer with prescaler, programmable DSACKi* control, and a
chip select (ICFSEL*) for access to the VIC068A global and module switches from the VME-
bus.

5.3.2 VMEbus Address Decoding

The VAC068A’s VMEbus address map consists of an address region for VMEbus A16 master
cycles. The A24 Space Base Address register specifies where the A24 address overlay is for
A24 master cycles. This register also contains the bits to program the data size of the A16
and A24 master cycles. An automatic decode of the data size is accomplished through the
VAC068A by monitoring LA[16] for A16 space and LA[24] for A24 space. If this address signal
is High, a D16 data path is selected (WORD* asserted). If this address bit is Low, a D32 data
path is selected (WORD* deasserted). A fixed data size option also exists.

There are three programmable regions that can be programmed to assert MWB*, VSBSEL*,
or SHRCS*. MWB* signals the VIC068A to acquire the VMEbus for a master access. Any or
all regions are capable of this operation. VSBSEL* and SHRCS* are chip selects to module
resources.

The VAC068A also has two slave select base address registers, two slave select mask reg-
isters, and an interprocessor communications select address register. The slave select base
address registers and mask registers are used to decode valid slave selects and generate
SLSELi* to the VIC068A. Any of A32, A24, or A16 slave access can occur. The ICFSEL
address register is used to access the VIC068A global and module switches from the VMEbus.

VAC068A Overview

5-18

5.3.2.1 Master Access

There are five types of master accesses that may be accomplished with the VAC068A. They
are:

• A32 address with programmable data size

• A24 address with D16

• A24 address with D32

• A16 address with D32

• A16 address with D16

5.3.2.2 Programmable VMEbus Space

Any or all of the three programmable regions can be used to set up VMEbus accesses by
defining an address range and programming the attribute register to assert MWB*. The ad-
dress range is configured by programming the Boundary 2 or 3 Address registers. When the
Region Attribute register is set for MWB* assertion, the VIC068A arbitrates for the VMEbus.
The corresponding ASIZ1/0, WORD*, and CACHINH* settings are driven upon the assertion
of the processor address strobe (PAS*). See Section 1 of this book for details on VMEbus
master transfers.

5.3.2.3 A24 VMEbus Space

The A24 Base Address register specifies an A24 address space overlay. This overlay is 32
Mbytes in size. The data path may be D16, D32, or automatically decoded. Bit 24 of the A24
Base Address register determines if the entire region is D16 or D32. Automatic decode is
enabled through bit 20 of the A24 Base Address register. The A24 address space data path
is determined by LA[24]. If LA[24] is High, the data path is D16. If LA[24] is Low, the data path
is D32. WORD* is driven accordingly on these master cycles.

This address space can be divided into two 16-megabyte blocks if automatic decode of LA[24]
is enabled. The first 16 Mbytes are D32 and the second 16 Mbytes are D16. If automatic data-
path decoding is not used, bit 24 of the register determines the data path of the entire 32-
Mbyte overlay. The A24 address space may be overlaid on the top of any of the three pro-
grammable regions (1, 2, or 3) regardless of what it is set for (i.e., VSBSEL*, MWB*, SHRCS*,
or inactive).

The VAC068A compares the upper 7 bits [31:25] of the A24 Base Address register to local
address bits LA[31:25] and, upon a match, overlays 32 Mbytes of A24 address space on the
programmed region. When this overlay occurs, MWB* is asserted and an A24 VMEbus master
cycle takes place. The VAC068A drives WORD*, ASIZ1/0, and CACHINH* as specified by
the settings of the A24 Base Address register.

The requirements for forcing A24 address accesses are that it must fall between the address
range of $02 and $FE00 0000 and that the A24 overlay address is above the DRAM region
(region 0). This address space decode cannot be disabled.

VAC068A Overview

5-19

As in a programmable master access, MWB* is asserted and the VIC068A requests the
VMEbus and initiates the transfer per VMEbus protocol.

5.3.2.4 A16 VMEbus Space

The upper address space, starting at $FFFE 0000 and continuing to $FFFF FFF0, is reserved
for A16 VMEbus accesses. This address space is fixed and should not be used for any other
purpose. There are two ways to set up the data size for A16 master accesses. The first is to
allow the VAC068A to automatically decode LA[16]. This is similar to the automatic decode
of the A24 VMEbus space. If LA[16] is High, the data path size is D16 (WORD* asserted). If
LA[16] is Low, the data path size is D32 (WORD* deasserted). This decode reflects region 6
of the VAC068A address map as A16/D32. The other option is to set bit 22 in the A24 Space
Base Address register. This enables bit 21 of the A24 Space Base Address register to control
the data path size. If bit 21 is set, the data path is D32 (WORD* deasserted). If bit 21 is clear,
the data path is D16 (WORD* asserted). CACHINH* is always asserted during VMEbus A16
access and is not programmable.

Region 6 and the programmable regions provide the only way for an A16 access to take place
when using the VAC068A. As before, MWB* assertion triggers the VIC068A to acquire the
VMEbus and initiate the VMEbus transfer.

5.3.3 VMEbus Slave Access

The VAC068A contains four registers to define VMEbus slave address decode. These are
the Slave Select 1 and Slave Select 0 Base Address registers, and Slave Select 1 and Slave
Select 0 Address Mask registers. The VAC068A also contains an Interprocessor Communi-
cations Select register. This is used to access the VIC068A global switches, module switches,
and communication registers.

The base address registers are loaded with the address that determines a valid slave select
to assert SLSEL0* or SLSEL1*. The mask registers are used to qualify which bits in the base
address register are to be compared to its respective VMEbus address signal. When a bit is
set in the mask register, it allows the base address register contents to be compared to the
corresponding VMEbus address signal. If the compare matches, the corresponding SLSELi*
is asserted. If clear, no compare is made and the VAC068A does not care what value is on
that particular VMEbus address signal. It is important to use these mask bits with care. It is
possible to get multiple slave selects if a small number of mask bits are set (i.e., 0s in the
high-order mask bits).

The lower VMEbus address bits may also be compared for an A16 slave access. This is
accomplished by setting bit 26 of the Decode Control register. When this bit is set, VMEbus
A[15:8] is compared to the Slave Select 1 Base Address register bits [31:24]. This allows the
user to decode VMEbus short address space and assert any of DRAM, EPROM, VSB, or
shared resources chip selects. The chip select is determined using bits 28–29 in the Decode
Control register.

VAC068A Overview

5-20

The VAC068A address decoder constantly compares the register values to the VMEbus
address, and when a match occurs it asserts the proper slave select signal. When SLSELi*
is asserted to the VIC068A, the VIC068A asserts LBR* (qualified by VMEbus AS*), which is
also connected to the VAC068A’s LBR* signal. When LBG* is asserted by the modules local
bus arbiter, the following sequence occurs:

1. The VIC068A asserts LAEN with valid FC2/1, SIZ1/0, and LA[7:0].

2. The VAC068A asserts LA[31:8].

3. The VIC068A asserts PAS* and DS*.

4. The VAC068A drives ASIZ1/0 and WORD*, then asserts the proper chip select.

5. The VAC068A asserts DSACK0/1* (if enabled).

6. The VIC068A times out SAT delay.

7. The VIC068A asserts DTACK* and VAC068A deasserts DSACK0/1* with PAS* deasser-
tion.

8. the cycle completes, VAC068A three-states its address signals

Slave select 0 is always associated with DRAMCS*. This assumes that a local bus grant on
assertion of SLSEL0* results in an access of local DRAM. Similarly, slave select 1 can be
enabled to assert any of the following chip selects:

• SHRCS*

• EPROMCS*

• DRAMCS*

• VSBSEL*

This chip select is asserted according to the Decode Control register bits 28–29 (FFFD 14xx).

Slave select 1 is only asserted when slave select 0 is not asserted per an internal interlock.
Slave select 0 is asserted for slave transfers matching its base address register (and when
the proper mask bits are set) or redirection of the local address to DRAM and DRAMCS*
assertion.

If both slave selects are in use and each is enabled for a different address space, it is possible
for both SLSEL0* and SLSEL1* to be asserted simultaneously as in the following case:

When bit 26 is set in the Decode Control register, the VAC068A compares the VMEbus
address signals A[15:8] to SLSEL1* Base Address register bits [31:24]. If a match occurs
with SLSEL0* address bits [31:24] and VME address signals A[31:24], qualified by the
address mask register, then both selects are asserted. The slave select address mask
register would also have to be enabled for a compare of these address bits. When this
occurs, and the two slave selects are mapped to different regions, the local module must
decide which slave select has precedence.

VAC068A Overview

5-21

If both SLSEL0* and SLSEL1* are asserted and point to the same device (i.e., DRAMCS* via
SLSEL1* redirection in the Decode Control register) or they are decoded at non-overlapping
address ranges in the same address space, no conflict should arise. In this case, to access
the full address space, slave select 0 should correspond to the larger address space for access
to the Mailbox region.

For recognition of the slave select address on the local bus, additional comparators monitor
the local bus for the SLSEL0* address range. If this function is enabled in the Decode Control
register bit 19, the VAC068A asserts DRAMCS* when it recognizes a valid slave address on
the local address bus. This allows the local processor to access data in DRAM at the same
address as other modules on the VMEbus.

Additionally, the slave address may be determined by using the VIC068A’s ability to assert
LBERR* when it sees a qualified slave select. This is called self-access. The resulting oper-
ation is:

• VMEbus BERR* is driven by the VIC068A

• LBERR* is driven by the VIC068A

• the VIC068A Bus Error Status register indicates a self-access has occurred

The Interprocessor Communications Facility Select register is another type of slave select. It
enables an A16 access to VIC068A internal global switches, module switches, and commu-
nication registers. This register compares VMEbus A[15:8] to each of the two bytes in the
register. When a match occurs, the VAC068A asserts ICFSEL* to the VIC068A. The upper
byte is normally used for global accesses to the four Interprocessor Communications Global
switches. If used for this function, all VAC068A (and all other non-VAC068A modules) must
be set to the same value. The lower byte is used to access the Interprocessor Communications
Module switches and Interprocessor Communications registers. When used for this function,
the values must be different for each VMEbus module. Section 1 of this user’s guide should
be referenced when accessing specific switches and registers.

5.3.4 Local Memory Map Decoding

The VAC068A segments the local processor’s address space into a number of fixed- and
variable-sized segments with a resolution of 64 Kbytes (i.e., bits [31:16]). Separate segments
are available for:

• DRAM

• VMEbus subsystem bus select (VSBSEL*)

• shared resource chip select (SHRCS*)

• EPROM

• local I/O (I/O selects 5–0, VIC068A and VAC068A register access)

The DRAM, VSBSEL*, and Shared Resource segments are programmable. These regions
occupy address space from $0000 to $FFFD FFFF. DRAM is hard-coded to start at $0000

VAC068A Overview

5-22

0000, thus making it region 0. The means for sectioning VSBSEL* or SHRCS* in regions 1,
2, or 3 are in the respective Region Attribute register. Boundary Address registers 2 and 3
divide the respective contiguous regions. Each of these regions has the following attribute
settings associated with it:

• cache inhibit (CACHINH*)

• address size (ASIZ1/0)

• data word size (WORD*)

In addition to the above programmable segments that may be assigned boundaries and
attributes, fixed-size attribute segments are mapped to EPROM and local I/O, which include
IOSEL5–0* and the VIC068A and VAC068A register maps. Areas also exist for assertion of
MWB* in any of the three programmable regions, VME A16 address space, and an A24
address overlay space (see Figure 5-2 for graphical representation).

5.3.4.1 DRAM Decode

DRAM is hard-coded to start at $0. This region continues to the value programmed into the
DRAM Upper-Limit Mask register. The minimum value that can be programmed in this register
is 0000 0001. A 256-byte region is always available for the DRAM mailbox area. This register
value is also the starting address for region 1.

An interrupt can be enabled in the Interrupt Control register to indicate an access to the
mailbox address space. DRAMCS* is asserted for $0000 00xx after the Force EPROM mode
is exited.

The DRAM Upper-Limit Address register is NANDed with the local address bus LA[31:16] to
determine the output of the compares. If any are Low, the access is not to DRAM. If all
compares are High, then DRAM is being accessed and DRAMCS* is asserted.

There is another way to assert DRAMCS* and access DRAM address space using bits in the
Decode Control register to redirect the Slave Select 0 address when it is present on the local
address bus. Qualification of DRAMCS* assertion may be with or without PAS* assertion.
This is programmable in the Decode Control register. DSACKi* control for DRAM access is
also available in the Decode Control register. DRAM accesses may be set for a 32-bit data
path, or VAC068A DSACKi* may be three-stated and external DSACKi* generation used. The
three-state option is useful for processors that need synchronous termination of DRAM access
as with the Motorola 68040.

For redirection of the SLSEL0* address, bit 19 in the Decode Control register must be set.
The slave select base address register must be present on the local address bus. If this bit
is clear, DRAMCS* is not asserted when the SLSEL0* address is present on the local bus.
The correct mask bits must be set to enable a compare of the address bits.

The user may also elect to enable qualification of DRAMCS* with PAS* asserted by setting
bit 30 in the Decode Control register. This bit is normally set to condition the VAC068A to look
only at the address during the proper time period.

VAC068A Overview

5-23

Figure 5-2. VAC068A Memory Map

It should be noted that DRAMCS* is always asserted during a VMEbus SLSEL0* cycle unless
redirection is disabled. DSACKi* may also be three-stated on LAEN assertion for VMEbus
slave cycles. This is accomplished using bit 31 of the Decode Control register. The user may
chose to set the DSACKi* delay for DRAM accesses in the Decode Control register using bits
17–18. The time intervals are in CPUCLK cycles, from 0 to 3.

The upper 256 bytes of DRAM serve as a mailbox area. If the mailbox interrupt is enabled
via the Interrupt Control register, a write to the upper 256 bytes of DRAM via SLSEL0*
interrupts the local processor with the specified interrupt signal.

Address 0000 0000

Region 0
Local DRAM

Programmable Boundary 1

Region 1
Map to:
 VMEbus
 VSBbus
 Shared Resource

Programmable Boundary 2

Region 2
Map to:
 VMEbus
 VSBbus
 Shared Resource

Programmable Boundary 3

Region 3
Map to:
 VMEbus
 VSBbus
 Shared Resource

Address FF00 0000

Region 4
EPROM

Address FFF0 0000

Region 5
Local I/O:FFF0 XXXX IOSEL0*

FFF2 XXXX IOSEL1*
FFF4 XXXX IOSEL2*
FFF6 XXXX IOSEL3*
FFF8 XXXX IOSEL4*
FFFA XXXX IOSEL5*
FFFC XXXX CS*
FFFD XXXX VACSEL

Address FFFE 0000

Region 6
VMEbus A16

Address FFFF FFFF

A 24 Address Overlay
[32 Mb VMEbus A24]

In any 1 of the 3

Note: A24 Overlay must not cross

VAC068A Overview

5-24

5.3.4.2 Programmable Decode

Following the DRAM Upper-Limit Mask register are two Boundary Address registers. These
registers define the next three regions of address space that may be assigned to any of the
following chip selects or VMEbus access:

• SHRCS* (Shared Resource Chip Select)

• VSBSEL* (VMEbus Subsystem Bus Select)

• inactive (not programmed)

Normally SHRCS* is used as an SRAM chip select, although it can be used for any shared
resource on the module including DRAM. When used in this fashion, it has no effect on the
VIC068A block transfers with local DMA.

When configured for “inactive,” the region attributes are still driven as programmed when the
region is accessed. These attributes can be qualified with PAS* when enabled in the Decode
Control register bit 20.

Since the DRAM Upper-Limit Mask register defines the upper address space of DRAM, it is
also the starting address for region 1. This means that the Boundary 2 Address register
specifies the upper limit of region 1 and the starting address of region 2. The Boundary 3
Address register specifies the upper address limit of region 2 and the starting address of
region 3. Care should be exercised in programming region 3 so that it does not overlap the
EPROM address space. If this occurs, EPROMCS* is asserted with the chip select pro-
grammed in the Region 3 Attribute register. If this situation arises, external logic must decode
chip selects.

5.3.4.3 EPROM Decode

The EPROMCS* address starts at $FF00 0000 and continues to $FFEF FFFF. This gives the
user 15 Mbytes of dedicated EPROM address space. When the user accesses this address
space, the VAC068A asserts EPROMCS*. The default EPROM data size is 32 bits. Different
EPROM data sizing is selected by setting signals ID8 or ID9 upon power-up reset. If ID9 is
Low during RESET*, a 16-bit data path is selected. If ID8 is Low during RESET*, an 8-bit
data path is selected. After reset, the user must configure the data size acknowledge in the
EPROM DSACKi* Control register bits 27 and 28. It is assumed that the IORD*, IOWR*, and
IOSEL* assertion/recovery times are not to be used for EPROM accesses.

The DSACKi* Control register also allows for different-speed EPROM to be used on the
module. Bits 29–31 are used to set proper DSACKi* assertion timing or disable DSACKi*
assertion by VAC068A altogether.

The EPROMCS* timing should be determined upon power-up by loading the DSACKi* time
in the DSACKi* Control register. There is also a “Force EPROM” mode that the VAC068A
initially enters upon power-up. This mode is exited by any memory access in the EPROM
address space ($FF00 0000 to $FFEF FFFF).

VAC068A Overview

5-25

5.3.4.3.1 Forced EPROM Mode

The map decode function is overridden at power-up to force read accesses to EPROM inde-
pendent of its mapping until the EPROM address appears on the local address bus. This
implies a jump to EPROM address space ($FF00 0000 to $FFEF FFFF) should be one of the
first instructions in the boot-up sequence. An initialization routine is given in Chapter 20. This
routine or a similar one should be initiated after exiting from system reset. When the forced
EPROM mode is exited, DRAMCS* is asserted for address $0000 00xx.

5.3.4.4 Local I/O Select Decode

The local I/O address space begins at $FFF0 0000 and ends at $FFFD FFFF. IOSEL5–0*
accesses, VIC068A registers, and VAC068A registers reside in this address space. This
address space is available to the local module only. The IOSELi*s each occupy 128 Kbytes
of address space starting at $FFF0 0000 to $FFFA 0000. The VIC068A register accesses
start at $FFFC 0000 and the VAC068A register accesses start at $FFFD 0000. Thus each
register map consumes 64 Kbytes of address space. The upper limit for this region is $FFFD
FFFF. Each IOSEL5–0* has an individual DSACKi* Control register associated with it.
IOSEL5–0* also have a Device Location Register attribute that enables the particular IOSEL5–
0* device to be located on the ID bus. IOSEL5/2* do not have their own dedicated signal on
the VAC068A, instead they share a PIO signal function and must be enabled in the PIO
Function register. IOSEL1/0* signals have their own pin and do not share functionality.

In the DSACKi* Control register, it is possible to set IORD* and IOWR* assertion and deas-
sertion parameters. These are commonly called “cycle end control.” Cycle end control is
defined as a means to provide increased hold time to peripheral devices located on the local
module. Qualification of IORD* or IOWR* deassertion is either with PAS* or when the DSACKi*
assertion delay has elapsed. For assertion of IORD* or IOWR*, the delay is programmed in
half CPUCLK cycles after PAS* assertion. The IORD* and IOWR* assertion and recovery
delay is not used for EPROM or shared resources selects.

IOSEL5–0*s are available to the user in one of two modes of operation. The first mode is
when they are located on the local address and data bus. This is the typical operating condition.
The second mode is when they are used on the ID bus. This mode is used when slow
peripherals reside on the local module.

When the ID bus is used, the Device Location register should be properly programmed. This
register indicates to the VAC068A which device is located on the ID bus. Latching is provided
internal to the VAC068A. When using the IOSEL5–0*, no I/O device access is allowed to start
until the select signal for the previously accessed I/O device has been deasserted for the
number of clock cycles configured in the DSACKi* Control register. Programmable attributes
for IOSEL5–0*s in the DSACKi* Control register are:

• assertion delay for the IOSEL5–0* from PAS* in half CPUCLK cycles (otherwise assertion
is with PAS*)

• deassertion delay (recovery time) for IOSEL5–0* inactive in CPUCLK cycles

VAC068A Overview

5-26

EPROMCS* and SHRCS* devices do not use these timing parameters.

The VAC068A registers are also located in region 5 address space. They are accessed at
local address $FFFD 0000 through $FFFD 0029. Accesses to these registers occur on the
local address and data bus. Acknowledge occurs with the assertion of DSACK1*. These
registers are not byte-accessible and must be set upon power-up to configure the VAC068A
operational mode. The undefined bits are read as 1s. When all registers are configured, the
VAC068A ID register must be written to enable decode and control functions.

5.3.5 Local Decode Control/Status

The VAC068A decodes function codes FC2–0 to provide status and control signals to the
local module. These signals include:

• FCIACK* for local interrupt acknowledge cycle

• FPUCS* for floating-point coprocessor chip select

• REFGT* for refresh grant

• LDMACK* for local DMA activity

• CACHINH* for cache inhibit status

5.3.5.1 Function Code Decode

The VAC068A decodes FC2–0 from the processor and FC2–1 from the VIC068A. To deter-
mine when function codes from the VIC068A are to be decoded, the signal LAEN must be
asserted. For local processor function decodes, LAEN is not asserted. The functions decoded
on the local bus from the VIC068A are one of the following:

• slave transfer (normal)

• slave block transfer

• DRAM refresh cycle

• local DMA

When these activities are detected by the VAC068A, the proper output signals are asserted.
When the VIC068A drives the function codes (defined in Section 1 of this book) the REFGT*
and LDMACK* signals are decoded and asserted.

When decoding local processor cycles (LAEN deasserted), the VAC068A is capable of as-
serting FCIACK* and FPUCS*. These signals can only be generated when the local processor
function codes specify CPU space (FC2–0 = 111). The FCIACK* signal, used for interrupt
acknowledge to the VIC068A, is asserted when FC2–0 = 111 and LA[17:15] = 111. The
FPUCS* signal, used to select a floating-point coprocessor, is asserted when FC2–0 = 111
and LA[17:13] = 10001.

VAC068A Overview

5-27

Care should be taken when these signals are used in a robust system that makes use of
coprocessors or other parts of CPU space as only those local address bus bits listed are
decoded.

FPUCS* may also be asserted through an access to IOSEL* region 4. This is enabled by
setting bit 31 of the PIO Function register.

Assertion of FPUCS* is further qualified by bit 16 in the Decode Control register. This allows
the assertion of FPUCS* to occur either when the CPUCLK goes Low or when PAS* is
asserted.

Both FCIACK* and FPUCS* are inhibited when the VIC068A owns the local bus (LAEN is
asserted).

5.3.6 Programmable Input/Output

The programmable I/O (PIO) signals of the VAC068A provide a general-purpose I/O facility
that can alternatively be programmed to provide IORD* (I/O read), IOWR* (I/O write), IOSEL5/
2* (I/O selects), interrupt, SHRCS*, or Serial I/O (asynchronous serial I/O) functions. Multiple
registers are used to configure the operation of these pins and read status of a particular
function. These include PIO Function, Data Out, Pin, and Direction registers.

When the PIO signals are configured in the PIO Function register as general-purpose I/O
signals, the user may choose to use these signals to support the serial I/O function on
VAC068A (i.e., RTS, CTS, DCD).

Bits 30 and 31 of the PIO Function register have special functions. Bit 30 enables a debounce
delay circuit associated with PIO9 (see section 5.3.8.1). When bit 31 is set, it enables the
user to assert FPUCS* on accesses to IOSEL4* address space and assert FCIACK* on
accesses to IOSEL5* address space. This is useful for decoding an interrupt acknowledge
cycle to obtain the status/ID of a service routine.

The PIO Data Output register contains data to be put out on the PIO pins that are defined as
outputs. Reading this address causes the data bus to be driven with the contents of the
register. Writing to this register causes the value in the PIO Data Output register to be driven
on the PIO pins that are defined as outputs in the PIO Function register.

The PIO Pin register can be read to examine the data being presented on the PIO inputs.
This register is a read-only register. Reading the PIO Pin register does not affect the contents
of the PIO Data Output register. Writing to the Pin register causes a DSACK1* assertion, but
has no effect on the data present on the PIO pins.

The PIO Direction register specifies the direction of the PIO signals. When set the signal is
an output, when cleared it is an input. This register has no effect if the corresponding PIO
Function Register bit is set to disable the general-purpose I/O capability of that pin. Bit 30 of
the PIO Direction register has a special function (HIACKIN). It allows FCIACK* to be asserted
on accesses to $FFFF FFxx. This is used to allow non-680x0 processors to assert FCIACK*.

VAC068A Overview

5-28

5.3.6.1 Serial I/O

The VAC068A contains a dual, full-duplex UART. Each channel is double-buffered on transmit
and quad-buffered on receive. The UARTs always transmit two stop bits and require a single
stop bit on receive.

The UART Serial I/O Channel A and B Mode registers allow configuration for:

• looping of transmitter or receiver

• break transmission or no break

• enable the transmitter/receiver pair

• transmitter/receiver reset and run

• baud rate selection from 300 to 9600 baud as well as intermediate frequencies (via the
CPU Clock Divisor register)

• 7 or 8 data bits per character

• odd, even, or no parity generation and check

The CPU Clock Divisor register must be loaded with a value to produce the correct baud rate
generation. Examples are given in the register description section for different CPUCLK rates.

Each UART contains a four-byte-deep FIFO (UART Channel A and B Receiver FIFO register)
for receiving serial information. These FIFOs are accessed through the receiver FIFO regis-
ters. Included in these registers are indications of errors in parity, frame, and break detection.
Once a character is read, the next character becomes available to read.

The Channel A and B Transmit Data registers are accessed from the local data bus. They are
loaded with the data to be transmitted. When enabled to run, the next character may be written
into the register.

The Interrupt Control register is configured to indicate which interrupt signal (PIO7, 10, or 11)
is driven as a serial I/O interrupt. Serial I/O interrupts are not cleared by disabling the UART
interrupt alone. The following sequence should be followed when handling a serial I/O inter-
rupt:

1. Determine which UART channel (A or B) interrupt is pending in the Interrupt Status reg-
ister.

2. Determine the cause of the interrupt in the UART Channel (A or B) Interrupt Status register.

3. Mask the interrupt in the UART Channel (A or B) Interrupt Mask register.

4. Service the interrupt based on the status.

5. Clear the Interrupt Control register for the specific UART interrupt.

The UART Channel A or B Interrupt Mask registers can be configured to interrupt the local
module for other conditions. These conditions include:

VAC068A Overview

5-29

• transmitter empty; transmitter ready

• single character received

• FIFO full

• break change

• parity error

• frame error

• overrun

5.3.6.2 I/O Select

The VAC068A incorporates individual local I/O select signals. IOSEL1* and 0 are individual
signals and are not multiplexed with other function. IOSEL2* through IOSEL5* share functions
with PIO13, PIO6, PIO8, and PIO9 signals, respectively. As stated previously, these signals
have the ability to communicate on the local data bus LD[31:16] or the ID bus ID[15:8].

The Device Location register specifies mapping of the IOSEL5–0* signals. When a bit is set,
it indicates that the respective IOSEL5–0* is located on the ID bus instead of the local data bus.

The PIO Function register controls the multiplexed signal selection. When a bit is cleared, the
signals are in the general-purpose I/O mode, otherwise they have the shared function.

IOSEL4* has a special function associated with it. When PIO Function register bit 31 is set,
FPUCS* is asserted on accesses to IOSEL4* address space. Additionally FCIACK* is as-
serted on access to IOSEL5* address space. Another way to assert FCIACK* is to set bit 30
in the PIO Direction register (HIACKEN). When this bit is set, FCIACK* is asserted on access
to $FFFF FFxx.

The other signals of concern when using the IOSEL5–0* function are IORD* (I/O Read) and
IOWR* (I/O Write). These signals are multiplexed with PIO3 and PIO4 respectively. Control
for IORD* and IOWR* is located in the DSACKi* Control register. If these signals are to be
used as IORD* and IOWR*, the PIO Function register must be set accordingly.

CACHINH* is enabled by bit 23 in the A24 Space Base Address register for accesses to region
5. This includes IOSEL5–0*, VIC068A, and VAC068A register accesses.

5.3.7 Interrupt Support

The VAC068A may be configured to generate up to three interrupt requests that are designed
to connect to local interrupt request signals on the VIC068A. The interrupting functions are
serial I/O, timer, mailbox, and PIO interrupt. The various interrupt requests can be multiplexed
on up to three of the PIO signals, as configured in the Interrupt Control register. These interrupt
requests are typically connected to the VIC068A LIRQi* signals.

VAC068A Overview

5-30

5.3.7.1 Interrupt Status Register

The Interrupt Status register allows the processor to determine which of several possible
events caused an interrupt. Except for the UARTs, a serviced interrupt request is withdrawn
when the processor clears its mapping bit in the Interrupt Control register ($FFFD 16xx). A
separate Interrupt Status register is implemented for each of the serial I/O channels (channel
A at $FFFD 25xx and channel B at $FFFD 26xx). These are cleared by determining the cause
in the Interrupt Status register, then masking the interrupt in the Interrupt Mask register, then
clearing the interrupt in the Interrupt Control register.

5.3.7.2 PIO Interrupt

The interrupt output signals share functions with PIO7, PIO10, and PIO11. These output
signals are mappable from any of the following sources:

• timer (register-controlled)

• SIO Channel A and B (register-controlled)

• mailbox (access to upper 256 bytes of DRAM address space)

• PIO4 (user defined)

• PIO7 (user defined)

• PIO8 (user defined)

• PIO9 (user defined)

An interrupt request is generated if a falling edge is present on PIO4, 7, 8, or 9 input signals
and output on PIO7, 10, or 11. The PIO interrupts are enabled in the Interrupt Control register.
The interrupt sources are active Low and edge-triggered (except UART channel A and B).
PIO4, PIO7, and PIO8 can be used for VSB write post failure, parity error, or any other user-
defined interrupt. PIO9 has a special debounce delay when enabled in the PIO Function
register. A change of state on this input is not recognized until it has been stable for 255
CPUCLK cycles. This provides a debounce delay of 26.7 ms when a 9600 baud rate is
generated from the CPU Clock Divisor register.

5.3.7.2.1 Timer Interrupt

The timer interrupt is enabled by loading a value into the Timer Data register and configuring
the Timer Control register per the user’s requirement. The timer consists of a 16-bit program-
mable timer with a 6-bit prescaler. Interaction with the timer is by means of a Timer Control
register and a Timer Data register. The control register contains a 6-bit prescaler, which is
loaded with a count value. The carry of this counter clocks the value loaded in the Timer Data
register. A run/load bit and a once/continuous bit are also included. A prescale value of 0
results in a DC prescale output. When the timer control register is read, LD[15:8] are driven
with the instantaneous state of the prescaler counter and the value loaded in the prescale
counter. Whenever the timer overflows, or when it is disabled, the timer is loaded with the
contents of the Timer Data register. When the Timer Data register is read, the data bus is

VAC068A Overview

5-31

driven with the instantaneous state of the timer (e.g., the 16-bit counter). The prescaler counter
is clocked by CPUCLK.

5.3.7.2.2 Serial I/O Interrupt

The SIO channel A and B interrupts are enabled in the UART Serial I/O Channel Interrupt
Mask registers. UART A and B interrupts are the only interrupts that are level-sensitive and
not edge-triggered. All others are edge-triggered. Any of several interrupting conditions on
the UART ports may cause an interrupt. These include transmit ready, transmit shift register
empty, receiver FIFO full, received character ready, break change received, and error condi-
tions such as overrun, frame, or parity. They can be masked in the UART Interrupt Mask
registers (A at $FFFD 23xx and B at $FFFD 24xx) and monitored in the UART Interrupt Status
register (A at $FFFD 25xx and B at $FFFD 26xx). The SIO interrupts are cleared in the UART
Interrupt Mask registers.

5.3.7.2.3 Mailbox Interrupt

The mailbox interrupt is enabled in the Interrupt Control register. It is generated by writing to
the top 256 bytes of local DRAM as defined by the DRAM Upper-Limit Address register. This
mailbox region is always present in the VAC068A DRAM address space. The mailbox interrupt
is activated by a slave access using SLSEL0* or when the local processor’s access to the
SLSEL0* address is redirected to local DRAM. It may also be generated by redirecting
SLSEL1* to DRAM in the Decode Control register. The CACHINH* signal is asserted on
accesses to the mailbox region.

5.3.8 Miscellaneous Features

Individual features of the VAC068A including the PIO9 Debounce, ID bus, DSACKi* control,
local DMA support, and IORD* and IOWR* are discussed here.

5.3.8.1 PIO9 Debounce

PIO9 has a special debounce circuit associated with it. This makes it suitable for mechanical
switch interrupt input. Switch debouncing is accomplished using a counter. The counter is
clocked at the maximum rate of the baud rate timing chain. Because of the debounce circuit,
PIO9 must be held Low for 255 clock cycles of this counter in order to generate an interrupt.
This provides a debounce circuit delay of 26.7 ms if a 9600 baud rate is generated from the
CPU Clock Divisor register. The debounce delay is enabled by bit 30 of the PIO Function
register.

5.3.8.2 Isolated Data Bus

The VAC068A pinout includes ID[15:8], the isolated data bus. On the module, a ’245 is con-
nected between LD[15:8] and ID[15:8] and a ’543 is connected between ID[15:8] and D[15:8].
The VAC068A provides the data swap connection between D[15:8] and LD[31:24]. Analysis

VAC068A Overview

5-32

has shown that connecting peripheral controller chips directly to the 68030’s data bus is difficult
at higher processor-clock frequencies. Accordingly, systems using the VIC068A/VAC068A
should be designed to connect low-speed peripheral devices to ID[15:8]. The VAC068A en-
ables this data path on accesses to such I/O devices, as well as when SWDEN* is asserted
by the VIC068A, and provides data latching and output enable control to ease interface timing.
The DDIR signal provides direction flow.

5.3.8.3 Programmable DSACKi* Timing

The VAC068A generates DSACKi*s with programmable timing for each of its device select
outputs (i.e., IOSEL5–0*, SHRCS*, and EPROMCS*) except the VSBSEL*, the VIC068A,
and the VAC068A register accesses.

Upon power-up, DSACKi* sizing for EPROM space is as follows. For an EPROM data path
of 16 bits, force ID[9] to a 0 at power-up. If an 8-bit data path is needed, force ID[8] to 0 at
power-up. The default DSACKi* assertion for EPROM (prior to the DSACKi* EPROMCS*
Control register being written) is for a 32-bit data path (ID8 and ID9 High).

The VAC068A asserts DSACKi*s on the processor access to DRAM with programmable wait
state timing (set in the DSACKi* Control register). When used with the Motorola 68020, the
VAC068A three-states its DSACKi* drivers on DRAM access to allow either the VAC068A or
external logic to control their timing. When used with a synchronous local bus, the VAC068A
allows for termination of DRAM accesses externally. On VME slave and VIC068A DMA cycles,
the VAC068A asserts DSACKi* with minimum delay, following the assertion of local processor
address strobe PAS*. This allows the high-resolution DSACKi*-to-DTACK* delay timer in the
VIC068A to delay until data is valid. (See VIC068A registers $C7 and $A7.)

5.3.8.4 VIC068A/VAC068A DMA Support

The VAC068A provides upper-address counters and control logic for both the VMEbus ad-
dress bus A[31:8] and the local address bus LA[31:8] to extend the address range from 8 bits
to 32 bits. This allows for crossing of 256-byte boundaries on either the local or VMEbus
during block transfers. VIC068A/VAC068A DMA always has local memory as the source or
destination of data. The data is transferred to either the VME interface or local I/O port in a
pass-through mode. VMEbus block transfer DMA is a dual-address operation in which the
source and destination are required to be on opposite sides of the VME interface. Data is
transferred to/from some address in the local memory from/to some address accessed via
the VMEbus. Memory-to-memory transfers, where both the source and sink address are local
memory, are not supported.

In the VIC068A-supported module-based local DMA operation, DMA data transfers to/from
the specified local memory address across an interface boundary to the local destination.
This destination cannot be local memory. Thus, it allows the implementation of a VSB and/or
daughterboard interface with DMA capability or fixed-address I/O operation as would be
appropriate with a SCSI or Ethernet implementation.

VAC068A Overview

5-33

There is also a dual-address path between the local bus and VMEbus that permits VMEbus
accesses during periods of processor activity or during the interleave time between block
transfers. The VAC068A also supports block transfers as a slave by latching incoming address
information on the falling edge of AS*.

5.3.8.5 IORD* and IOWR*

The VAC068A generates IORD* and IOWR* as alternate I/O read and write signals. These
outputs are synchronous to CPUCLK with a 0–2 clock delay from assertion IOSEL5–0* to the
assertion of IOWR* or IORD* as well as the usual DSACKi* delay assertion. The IOSELi*
outputs may be combinatorial with a minimum delay, or synchronous with a clock period delay
to insure address set-up time. The IOSELi*s also have a programmable minimum deassertion
time, since most peripheral controller chips cannot handle back-to-back accesses. These
features significantly reduce the amount of support logic otherwise required to interface pe-
ripherals to the 68K.

5.3.8.6 I/O Recovery Timer

The VAC068A provides a programmable recovery time between individual I/O device access-
es (IOSEL5–0* High). This timer function is provided when a value is written to the Recovery
Time bits in the DSACKi* Control registers. No IOSEL5–0* device access is allowed to start
until the select signal for the previously accessed IOSEL5–0* device has been deasserted
for the programmed number of clock cycles.

5.3.8.7 IACK Cycle Emulation for Non-680X0 Processors

The VAC068A provides two alternatives to 680X0 function code decoding for asserting the
FCIACK* signal. This allows non-680X0-type processors to emulate the 680X0’s interrupt
acknowledge hardware protocol. If bit 31 of the PIO Function Register is set, accesses to
IOSEL5* address space results in FCIACK* being asserted, while accesses to the IOSEL4*
address space results in FPUCS* being asserted. If bit 30 of the PIO Direction register is set,
then accesses to $FFFF FFxx results in FCIACK* being asserted, independent of the function
codes.

5.3.8.8 Cache Inhibit Output

The VAC068A provides a CACHINH* (cache inhibit) signal typically connected to the corre-
sponding input of the local processor. CACHINH* is asserted on any A16 access and is
programmable in regions 1, 2, 3, 5, and in the A24 overlay region. For regions 1, 2, and 3,
this is configured in the corresponding region attribute register. It is enabled for local I/O device
access with bit 19 in the A24 Base Address register. For the A24 overlay, CACHINH* is enabled
by setting bit 23 in the A24 Base Address register. CACHINH* is always asserted on redirected
access of DRAM, and access to the top 256 bytes of DRAM if the mailbox interrupt is enabled.

VAC068A Overview

5-34

CACHINH* can be asserted for all region 5 local I/O device selects (IOSEL5-0*), including
VIC068A and VAC068A register accesses and region 6 (VMEbus A16) master accesses, and
it may be asserted in the individual region attribute registers ($FFFD 09xx region 1, $FFFD
0Axx region 2, and $FFFD 0Bxx region 3), including the A24 address space overlay.

CACHINH* is deasserted in the remainder of DRAM and in region 4, the EPROM address
space.

5-35

5.4
VAC068A Operation

5.4.1 Resetting the VAC068A

There are two reset methods on the VAC068A. A global reset clears all registers and a soft
reset (interrupt reset) masks all interrupt requests.

5.4.1.1 Global Reset

A global reset is initiated by either asserting the RESET* signal for 1K processor clock cycles
or asserting RESET* in conjunction with WORD*. Both global reset types reset all VAC068A
registers to their default values.

To execute the first type of global reset, the RESET* signal must be held Low for more than
1K CPUCLK cycles. If RESET* is held for less than 1K CPUCLK cycles, a soft reset occurs.

5.4.1.1.1 Power-On Reset

The other option to execute a reset of VAC068A registers is to assert RESET* for at least 5
CPUCLK cycles and then assert WORD* in conjunction with RESET* for at least 10 CPUCLK
cycles. This also resets all VAC068A internal registers.

Following a global reset, memory map and slave address decodes (other than EPROM and
Local I/O address space) are disabled until a local processor write occurs to the VAC068A
ID register.

5.4.1.2 Soft Reset

A soft reset is initiated by asserting RESET* and holding it for less than 1K CPUCLK cycles.
This function masks all interrupt requests but does not affect the memory map configurations.

5.4.1.3 RESET* Termination

Upon the termination of the RESET* operation, EPROMCS* is asserted for all processor read
cycles, independent of the processor address. EPROMCS* DSACKi* timings default to the
maximum time and 32-bit data size. To modify the EPROM data size, hold either ID bus ID[9]
Low upon power-up during RESET* for 16-bit data size, or hold IDbus ID[8] Low for 8-bit data
size. Upon completion of the FORCE EPROM mode, the user must configure DSACK*s in
the DSACKi* Control register per the data size on the module. The Force EPROM mode is
exited upon an access to the EPROM address space ($FF00 0000 to $FFEF FFFF). This
dictates that a jump to EPROM should be one of the first instructions in the boot sequence.

VAC068A Operation

5-36

The default EPROM timing and data sizes are disabled by the first write to the EPROM
DSACKi* Control register.

5.4.2 System Initialization

After reset and before VAC068A registers are initialized, only EPROM, the VIC068A, and the
VAC068A may be accessed. As stated previously, processor reads are forced to EPROM and
use the slowest DSACKi* timing. Once the EPROM address space is accessed on the local
address bus, the force EPROM mode is exited. The user is expected to set DSACKi* timings
for reliable module operation. The following sequence of events is anticipated after power-up
reset:

1. The VAC068A samples ID[8,9] on the rising edge of RESET* to get the default EPROM
data path width.

2. CPU reads the reset vector table entry (address $0000) and loads it into the interrupt
stack pointer.

3. VAC068A asserts EPROMCS*, then DSACKi* is asserted after 7 CPUCLK cycles.

4. CPU captures $FF00 0008 (32-bit mode) from the data bus.

5. CPU reads address $0000 0004. The VAC068A asserts EPROMCS*, then DSACKi* cycle.

6. CPU captures data from the data bus.

7. CPU reads $FF00 0008.

8. The VAC068A asserts EPROMCS*, then DSACKi* after 7 clocks.

9. CPU reads, writes to a VAC068A register other than EPROM DSACKi* Control to verify
proper operation.

10. Write remainder of VAC068A registers to fully define memory map.

11. Write VAC068A ID register $FFFD 29xx to enable select and decode outputs.

12. Read/write sufficient addresses to verify map decoding.

5.4.3 Configuring the Local Memory Map

Sections 5.4.3 and 5.4.4 describe a sample memory map definition. The specific registers
and configuration values are given.

The example assumes the module contains 4 Mbytes of DRAM, 16 Mbytes of VSB space in
region 1, and 256 Kbytes of SRAM in the shared resource area. All are 32 bits in width.

VAC068A Operation

5-37

5.4.3.1 DRAM Size

The module DRAM memory area (region 0) starts at address $0000 0000 and ends at the
address configured in the DRAM Upper-Limit Mask register ($FFFD 05xx). For the 4 Mbytes
required by this example, this register is loaded with $003F. Unlike regions 1 and 2, region 0
is required to be the DRAM memory area.

To support a local mailbox area, the DRAM area must contain at least 256 bytes of address
space.

5.4.3.2 VSB Space

VSB Space is configured in region 1. This requires setting bits 27 and 26 of the Region 1
Attribute register ($FFFD 09XX) to 10 to assert VSBSEL* when the local address falls into
the address range for region 1. The lower address limit for region 1 is specified as the first
address beyond the DRAM area configured in the DRAM Upper-Limit Mask register. The
upper address limit for this region is configured in the Boundary 2 Address register ($FFFD
06xx) with $013F to allocate a 16-Mbyte space directly above the DRAM area.

5.4.3.3 VMEbus A32, D32 Access

The VMEbus accessible address space is configured in region 2. This requires setting bits
27 and 26 of the Region 2 Attribute register ($FFFD 0Axx) to 11 to assert MWB* when the
local address falls into the address range for region 2. The lower address limit for region 2 is
specified as the first address beyond the VSB space configured in the Boundary 2 Address
register. The upper address limit for this region is configured in the Boundary 3 Address
register ($FFFD 07xx). This register is loaded with $FEFB to allocate all other address space—
except 256 Kbytes for a shared resource area and the top 16 Mbytes for local resources and
EPROM—to the VMEbus.

5.4.3.4 Shared Resource Area

The shared resource area is configured in region 3. This requires setting bits 27 and 26 of
the Region 3 Attribute register ($FFFD 0Bxx) to 01 to assert SHRCS* when the local address
falls into the address range for region 3. The lower address limit for region 3 is specified as
the first address beyond the VMEbus area configured in Boundary Area 3 Address register.
The upper address limit for region 3 is fixed at $FEFF FFFF.

5.4.3.5 EPROM Space

The VAC068A supports a fixed EPROM space from $FF00 0000 to $FFEF FFFF. These
address limits may not be modified. When any address in this range is accessed, the VAC068A
asserts EPROMCS*.

VAC068A Operation

5-38

5.4.4 Configuring the VMEbus Address Map

The module address map for slave accesses from other VMEbus masters is configurable in
multiple areas. For this example, the 4 Mbytes of DRAM and the 256 Kbytes of SRAM in the
shared resource area are both mapped to other addresses on the VMEbus through the two
slave select areas.

5.4.4.1 SLSEL0* Access

The SLSEL0* address range is used to define VMEbus access to the 4 Mbytes of module
DRAM. SLSEL0* accesses can only be mapped to region 0 (DRAM). This memory is mapped
into the $0880 0000 to $08BF FFFF address range using the SLSEL0* Base Address and
Address Mask registers. The base address register is used to specify the required logic level
of the upper address bits to be compared, while the mask register is used to specify which
bits to compare. To map the specified space, the SLSEL0* Base Address register ($FFFD
03xx) is loaded with $0880 and the SLSEL0* Address Mask register ($FFFD 02xx) is loaded
with $FFC0. This includes the A[31:22] address bus signals in the address comparison.

Because the SLSEL0* space is defined here to be A32 space, it is necessary to also configure
the VIC068A Slave Select 0 Control register 0 (SS0CR0) for A32 address modifier codes and
D32 address space.

By enabling redirection for the SLSEL0* region, it is possible for the local processor to access
the 4 Mbytes of DRAM in both the region 0 and SLSEL0* areas of the address map. Redirection
is enabled for the SLSEL0* area by setting bit 19 in the Decode Control register ($FFFD 14xx).
With this bit set, local processor accesses to either memory area will assert DRAMCS* and
not assert SLSEL0*.

A VMEbus slave access to the SLSEL0* memory area (with proper AM codes) will assert
both SLSEL0* (to the VIC068A) and DRAMCS*.

5.4.4.2 SLSEL1* Access

The SLSEL1* area can be configured to map VMEbus slave accesses into any of four areas
on the module: EPROM, DRAM, VSB, or Shared Resource. The specific area is configured
in the Decode Control register ($FFFD 14xx). For this example, the Shared Resource area
is mapped into VMEbus space by setting bits 29 and 28 of the Decode Control register to 10.

The 256-Kbyte SRAM is mapped into the $C0 0000 to $CF FFFF address range using the
SLSEL1* Base Address and Address Mask registers. The base address register is used to
specify the required logic level of the upper address bits to be compared while the mask
register is used to specify which bits to compare. To map a 256-Kbyte address space for
SLSEL1 in the SHRCS region, the SLSEL1* Base Address register ($FFFD 01xx) is loaded
with $xxC0 with the SLSEL1* Address Mask register ($FFFD 00xx) is loaded with $00FC. By
clearing the upper 8 bits of the SLSEL1* Address Mask register, the A[31:24] address bus

VAC068A Operation

5-39

signals are excluded from the address comparison. This configures the shared resource to
appear in A24/A32 address space by setting bit 27 of the Decode Control register.

Because the SLSEL1* space is defined here to be A24/A32 space, it is necessary to also
configure the VIC068A Slave Select 1 Control register 0 (SS1CR0) for A24 or A32 address
modifier codes and D32 address space.

When redirection for SLSEL1* is enabled by setting bit 20 of the Decode Control register, and
an address in the SLSEL1* address mask range is present on the VMEbus, SHRCS* is
asserted. Thus, a valid VMEbus slave access to SRAM occurs. If the SLSEL1* address is
present on the local bus, no SLSEL1* assertion occurs.

 If bit 20 in the Decode Control register is not set, no chip selects are asserted when the
VMEbus address is within the SLSEL1* mask address range.

5.4.4.3 ICFSEL* Access

Decoding of VMEbus Interprocessor Communications Facility accesses are accomplished
through the ICFSEL* Address register ($FFFD 04xx). The two bytes of this register are both
compared with A[15:8]. An exact match of these address bus signals with either byte causes
the VAC068A to assert ICFSEL* to the VIC068A. This allows both global (or group) and
module specific select addresses to be configured. The low address bits (A[7:0]) are used to
select which specific module switches and registers are to be accessed.

Present convention is to use the upper byte of the ICFSEL* Address register to specify the
global select address and the lower byte for the module specific address. Loading this register
with $F00F would then specify that all A16 accesses to $F0xx are addressed globally, while
a similar access to $0Fxx would only be responded to by a module.

These same ICF registers and switches are accessed by the local processor in the $FFFC
xx5F through $FFFC xx7F range.

5.4.4.4 VME A24 Master Cycle

The A24 space for VMEbus master accesses may be mapped to any 32-Mbyte section of the
programmable regions. This is configured in the A24 Base Address register bits [31:25]. The
value placed in these bits is compared to the local address bus LA[31:25]. Because any value
may be placed in these register bits, it is possible for the A24 space to overlay other regions
of the local address map. Values should be greater than $02 and less than $FE.

For this example, the A24 Base Address register ($FFFD 08xx) is loaded with $F000. This
assigns the local address range of $F000 0000 to $F1FF FFFF to A24 space. This exists in
the local address space presently assigned as VMEbus space in region 2. Any local processor
access to this space causes the VAC068A to drive ASIZ0/1 with 11 to force the VIC068A to
assert the proper AM codes for A24 addressing.

The data bus size for these A24 master accesses may also be configured in the A24 Base
Address register for either D16 or D32 operation.

VAC068A Operation

5-40

5.4.4.5 VME A16 Master Cycle

VMEbus A16 master cycles are fixed at the top 128 Kbytes section of the address map ($FFFE
0000 to $FFFF FFFF). Other bits in the A24 Base Address register are used to configure the
data bus width (D32 or D16) and cache inhibit control.

5.4.4.6 Decode Control Register

To completely specify the VAC068A behavior as a VME slave device, the Decode Control
register ($FFFD 14xx) must be configured. Bits [29:28] must be set to 10 to select SHRCS*
for assertion in response to a LAEN when SLSEL1* is asserted and FC2/1 specifies a VME
slave access. Bit 27 must be set for A24 (or A32) operation. Bits [25:23] must be set to 1 in
the general case. If any of these bits is a 0, the slave select output is independent of VAS*.
Otherwise, the output is only asserted when VAS* is asserted. Since the qualification of the
slave selects is done midway through the address decode process, timing verification must
demonstrate that it is done early enough to avoid glitches.

Bits [20:19] are normally set to 1. When this is the case, local CPU accesses to addresses
within the SLSEL0* or SLSEL1* range, respectively, result in the device chip select, DRAMCS*
for SLSEL0* or SHRCS* for SLSEL1*, being asserted instead of MWB*. Otherwise, MWB*
is asserted and a VME access occurs. When these redirection bits are set to 0, the VIC068A
should be programmed to assert BERR* and LBERR* when it sees a valid slave select when
it is bus master. This allows software to determine its own slave select address. If the redi-
rection bits are not set to 1, attempted access to a module’s slave address results in a VME
bus timeout. Bit 22 provides a means of qualifying decodes of the local address map with PAS*.

5.4.5 VME Master Access

For VAC068A-controlled VMEbus accesses, the local address must be set up 10 ns before
PAS* is asserted. After the VAC068A decodes an address that maps to VMEbus, the VAC068A
asserts MWB* and sets ASIZ0/1 and WORD* High or Low according to the appropriate region
attribute register. The VIC068A then obtains bus mastership and asserts ABEN*. The
VAC068A uses ABEN* to enable its VME address drivers. The access completes when the
VIC068A asserts DSACKi* or LBERR*. When ABEN* is deasserted, the VMEbus address
drivers must three-state before the VIC068A deasserts both BBSY* and AS*.

When write-posting is enabled, the VIC068A asserts LADO to freeze the address outputs.
Accordingly, the address path through the VAC068A is transparent when LADO is Low and
latched when LADO is High.

5.4.6 VME Slave Operation

The VAC068A continuously monitors the VMEbus address bus for any of the SLSEL0*,
SLSEL1*, and ICFSEL* addresses. When it detects such an address, qualified by AS* if so

VAC068A Operation

5-41

enabled, it asserts the proper select output. The LADI input is used to insure that the address
presented to the local bus remains stable throughout the slave access. This is accomplished
by latching the local address outputs when LADO is High. The VIC068A may respond to an
asserted slave select output with a local bus request and subsequent slave transfer. The
VIC068A qualifies each slave select with the address modifier field and data strobe.

5.4.6.1 Slave Transfer Sequence

The following sequence of events occurs on a slave transfer:

1. The VAC068A asserts SLSEL0* (or SLSEL1* or ICFSEL*).

2. The VIC068A qualifies SLSEL0* with address modifiers and data strobe(s) and asserts
VICLBR*.

3. Module logic arbitrates for the local bus and asserts LBG* to the VIC068A. The VIC068A waits
for local-cycle-end plus 3 CLK64M clocks, then asserts LAEN, sets FC2/1 to 10 to distinguish
slave transfer from DMA or refresh, drives LA[7:0] appropriately, and enables the data path (DDIR,
SWDEN*, DENIN*, DENIN1*, DENO*).

4. The VAC068A uses LAEN to enable its local address drivers and FC2/1 to select the
VMEbus as the address source. Approximately 1 CLK64M clock from LAEN assertion,
the VIC068A asserts PAS*.

5. Upon PAS* assertion, the VAC068A asserts DSACK0/1* and asserts the appropriate
device select output (DRAMCS*, EPROMCS*, VSBSEL*, or SHRCS*).

6. The local memory reads/writes at the address on the local bus.

7. The VIC068A times out the DSACKi* to DTACK* delay, then asserts the LEDO output to
capture the data in the bus interface latches, deasserts the local strobes, and asserts
DTACK*. At some time previous to DTACK* assertion, the VIC068A asserts LADI to freeze
the local address.

8. The VAC068A deasserts DSACK1/0* when PAS* is deasserted.

9. The VAC068A three-states its address drivers when LAEN is deasserted.

5.4.7 VME Master Block Transfer

The following sequence occurs on a master block transfer:

1. The local CPU initializes the VIC068A for a DMA block transfer, then asserts address and
PAS* that maps to the VMEbus.

2. The VAC068A decodes the address and asserts MWB*, along with WORD* and ASIZ1/
0 according to the appropriate Region Attribute registers.

3. The VIC068A detects MWB* asserted, requests the VMEbus, and asserts BLT*.

VAC068A Operation

5-42

4. The VAC068A detects BLT* asserted and loads LD[31..8] into its DMA address counter
for driving the local address and loads LA[31..8] into the BLT address counter for driving
A[31..8].

5. The VIC068A receives VMEbus mastership and asserts LBR*.

6. Module logic arbitrates for the local bus and asserts LBG* to the VIC068A.

7. The VIC068A waits for local-cycle-end plus 3 CK64M clocks, then asserts LAEN, sets
FC2/1 to 01 to distinguish DMA from a slave transfer or refresh, drives LA[7:0] appropri-
ately, and enables the data path (DDIR, SWDEN*, DENIN*, DENIN1*, DENO*).

8. The VAC068A uses LAEN to enable its local address drivers with the DMA address and
uses FC2/1 to select the DMA counters as the address source.

9. The VAC068A asserts LDMACK* when LAEN is asserted and the function codes reach
the DMA (VME or local) state.

10. Approximately 1 CLK64M clock from LAEN assertion, the VIC068A asserts PAS* and DS*.

11. Upon PAS* assertion, the VAC068A asserts DSACKi*.

12. The local memory reads/writes at the addresses on the local bus as they are incremented
and strobed by the VIC068A and VAC068A.

13. After burst counter expiration in the VIC068A, PAS* is deasserted. If a 256-byte boundary
crossing occurs, BLT* or LADO is pulsed to increment the appropriate counter. Next, LBR*
and LAEN are deasserted. If BLT* remains asserted, the address counters are preserved.
If LADO toggles twice while LBR* is asserted, the local address counter is incremented.
If BLT* toggles twice while LBR* is asserted, the local address counter is incremented.
When BLT* or LAEN deassert, the local address drivers are three-stated. The DSACKi*
drivers three-state soon thereafter as permitted by their rescinding circuit. When both
BLT* and LBR* are deasserted, the DMA block transfer is over.

VAC068A Operation

5-43

5.4.8 VIC068A/VAC068A Interconnect Diagram

Figure 5-3. VIC068A/VAC068A Interconnect Diagram

VAC068 VIC068ARBITER
LOGIC

ABEN*
DDIR
LAEN
LADI

LADO
SWDEN*

BLT*
LBR*

WORD*
ASIZ0
ASIZ1

DSACK0*
DSACK1*

R/W*
MWB*

CS*
PAS*
AS*

FCIACK*
SLSEL0*
SLSEL1*
ICFSEL*

FC2
FC1
FC0

ABEN*
DDIR
LAEN
LADI
LADO
SWDEN*
BLT*
LBR*
WORD*
ASIZ0
ASIZ1
DSACK0*
DSACK1*
R/W*
MWB*
CS*
PAS*
AS*
FCIACK*
SLSEL0*
SLSEL1*
ICFSEL*
FC2
FC1

VIC068A BUFFER
CONTROL

BLT
CONTROL

680x0
SIGNALS

5-44

5.5
VAC068A Register Map and

Descriptions
Base address for the VAC068A register set is $FFFD 00xx. Register size is up to 16 bits wide
and accesses are acknowledged by using DSACK1*. The 16-bit registers are NOT byte
accessible. For single-byte registers, the unused bits are read as 1s. Register values are
listed in Table 5-1.

Table 5-1. Register Values

Local Address Register List Size

FFFD 00xx SLSEL1* Address Mask Register 16 bits

FFFD 01xx SLSEL1* Base Address Register 16 bits

FFFD 02xx SLSEL0* Address Mask Register 16 bits

FFFD 03xx SLSEL0* Base Address Register 16 bits

FFFD 04xx ICFSEL* Base Address Register 16 bits

FFFD 05xx DRAM Upper-Limit Mask Register 16 bits

FFFD 06xx Boundary 2 Address Register 16 bits

FFFD 07xx Boundary 3 Address Register 16 bits

FFFD 08xx A24 Base Address Register 13 bits

FFFD 09xx Region 1 Attribute Register 6 bits

FFFD 0Axx Region 2 Attribute Register 6 bits

FFFD 0Bxx Region 3 Attribute Register 6 bits

FFFD 0Cxx IOSEL4* DSACK Control Register 16 bits

FFFD 0Dxx IOSEL5* DSACK Control Register 16 bits

FFFD 0Exx SHRCS* DSACK Control Register 16 bits

FFFD 0Fxx EPROMCS* DSACK Control Register 16 bits

FFFD 10xx IOSEL0* DSACK Control Register 16 bits

FFFD 11xx IOSEL1* DSACK Control Register 16 bits

FFFD 12xx IOSEL2* DSACK Control Register 16 bits

FFFD 13xx IOSEL3* DSACK Control Register 16 bits

FFFD 14xx Decode Control Register 16 bits

FFFD 15xx Interrupt Status Register 8 bits

FFFD 16xx Interrupt Control Register 16 bits

FFFD 17xx Device Location Register 6 bits

VAC068A Register Map and Descriptions

5-45

The base address location for the VAC068A register set is $FFFD 00xx. All VAC068A registers
are cleared during a global reset and remain intact during a soft reset. Only interrupts are
masked during a soft reset. Unused or reserved bits may read as a 0 or a 1. The VAC068A
ID register remains intact through all resets.

The VAC068A registers are accessed from the local address/data signals and acknowledged
as a 16-bit access by DSACK1* assertion. They may only be accessed as a 16-bit word.
CACHINH* is asserted during accesses to the VAC068A registers. The VAC068A Identifica-
tion register must be written after reset to enable VAC068A operation.

FFFD 18xx PIO Data Out Register 14 bits

FFFD 19xx PIO Pin Register 14 bits

FFFD 1Axx PIO Direction Register 15 bits

FFFD 1Bxx PIO Function Register 16 bits

FFFD 1Cxx CPU Clock Divisor Register 8 bits

FFFD 1Dxx UART Channel A Mode Register 12 bits

FFFD 1Exx UART Channel A Transmit Data Register 8 bits

FFFD 1Fxx UART Channel B Mode Register 12 bits

FFFD 20xx UART Channel A Receiver FIFO 11 bits

FFFD 21xx UART Channel B Receiver FIFO 11 bits

FFFD 22xx UART Channel B Transmit Register 8 bits

FFFD 23xx UART Channel A Interrupt Mask Register 6 bits

FFFD 24xx UART Channel B Interrupt Mask Register 6 bits

FFFD 25xx UART Channel A Interrupt Status Register 8 bits

FFFD 26xx UART Channel B Interrupt Status Register 8 bits

FFFD 27xx Timer Data Register 16 bits

FFFD 28xx Timer Control Register 8 bits

FFFD 29xx VAC068A ID Register 16 bits

SLSEL1* Address Mask Register

Local Address $FFFD 00xx

Bits 31:16 A set bit in any of the positions enables a comparison of the correspond-
ingly numbered local and VMEbus address bits for the purpose of assert-
ing SLSEL1*.

Table 5-1. Register Values (continued)

Local Address Register List Size

VAC068A Register Map and Descriptions

5-46

When either bits A[31:24] or A[23:16] match the VMEbus address bits A[15:8], ICFSEL* is
asserted. These two different 8-bit compares are used for asserting ICFSEL* to the VIC068A
for differentiating between module-based or global functions.

This register contains an address mask used to specify the upper address limit of the DRAM
memory area located in region 0. The local address bits LA[31:16] are logically ANDed with
the NOT of their respective bits in this register and, if all AND outputs are Low, DRAMCS* is
asserted. A simpler way to view this is if any 1 is present on the address bus where a corre-
sponding 0 exists in the DRAMCS* Upper-Limit Mask register, DRAMCS* is not asserted.

The logic function used for this compare is a masking operation rather than a full magnitude
compare. It is advised that only exact binary multiples be specified for the DRAM memory

SLSEL1* Base Address Register

Local Address $FFFD 01xx

Bits 31:16 The contents of this register are compared under a bitwise mask compare
to both the local and VMEbus address bits for the purpose of asserting
SLSEL1*.

SLSEL0* Address Mask Register

Local Address $FFFD 02xx

Bits 31:16 A set bit in any of the positions enables a comparison of the correspond-
ingly numbered local and VMEbus address bits for the purpose of assert-
ing SLSEL0*.

SLSEL0* Base Address Register

Local Address $FFFD 03xx

Bits 31:16 The contents of this register are compared under a bitwise mask compare
to both the local and VMEbus address bits for the purpose of asserting
SLSEL0*.

ICFSEL* Base Address Register

Local Address $FFFD 04xx

Bits 31:24 The upper half of this register is compared to VMEbus address [15:8] for
the purpose of asserting ICFSEL*. When a match occurs between register
bits [31:24] and the VMEbus address signals A[15:8], ICFSEL* is assert-
ed.

Bits 23:16 The lower half of this register is compared to VMEbus address [15:8] for
the purpose of asserting ICFSEL*. When a match occurs between register
bits [23:16] and VME address signals A[15:8], ICFSEL* is asserted.

DRAM Upper-Limit Mask Register (Boundary 1)

Local Address $FFFD 05xx

VAC068A Register Map and Descriptions

5-47

size (i.e., 1 Mbyte, 2 Mbytes, 4 Mbytes, etc.) to avoid having holes in the local address map.
While it is not necessary to fully populate a defined area, DRAMCS* will be asserted if an
access is attempted to the area, even if there is no memory present.

This register is cleared up on power-up and on global resets. Following exit from the force
EPROM mode, accesses to $0000 00xx will assert DRAMCS* even if no value has been
loaded into the mask register.

This register contains the lower address limit for region 2 and the upper address limit for region
1. Its contents are compared to local address bits LA[31:16]. If the address is less than the
value of this register, and neither DRAM nor A24 space (configured in the A24 Base Address
register) access occurs, the access is valid for this region.

This register contains the upper address limit for region 2 and the lower limit for region 3. The
upper address limit for region 3 is the EPROM address space ($FF00 0000). Its contents are
compared to the local address bits LA[31:16]. If the address is less than the value in this
register and neither DRAM or A24 space is being accessed, the access is valid for this region.
If the address is greater than or equal to the value in this register yet less than EPROM space,
a region 3 access occurs.

Boundary 2 Address Register

Local Address $FFFD 06xx

Boundary 3 Address Register

Local Address $FFFD 070xx

A24 Base Address Register

Local Address $FFFD 08xx

Bits 31:25 These are compared to local address bits LA[31:25] for the purpose of
overlaying an A24 address space in any one of the three regions described
by their respective boundaries. Local access to this address space forces
a master access to VMEbus A24 space. The area specified must be above
the DRAM upper limit. Note: Valid values for bits [31:25] are greater than
$02 and less than $FE

Bit 24 This bit is decoded along with bit 20 to determine the A24 data path size
for the entire 32-Mbyte range. If bit 24 is cleared, a D16 data path is
selected. If bit 24 is set, a D32 data path is selected. This bit is only
interpreted if bit 20 is cleared.

Bit 23 When set, this bit selects A24 CACHINH* (cache inhibit). When cleared,
no CACHINH* for A24 address space accesses.

VAC068A Register Map and Descriptions

5-48

Bit 22 When set, this bit enables bit 21 to determine the data path size of the
A16 address space (region 6). When cleared, this bit enables the local
address bit LA[16] to decode data path size. If LA[16] is High, a D16 data
path is enabled (WORD* asserted). If LA16 is Low, a D32 data path is
enabled (WORD* deasserted).

Bit 21 When set, this bit along with bit 22 causes region 6 (VMEbus A16 address
space) to have a D32 data path (WORD* deasserted). When cleared, this
bit causes region 6 to have a D16 data path (WORD* asserted).

Bit 20 When set, this bit enables the local address bit LA[24] to determine the
data path size for A24 master accesses. When LA[24] is High, the data
path size is D16. When LA[24] is Low, the data path is D32. When bit 20
is cleared, bit 24 decodes the data path size for the entire A24 address
space.

 Bit 19 When set, this bit enables CACHINH* on accesses to VIC068A register
accesses, VAC068A register accesses, and any of the six IOSEL0-5 local
I/O address areas. When cleared, CACHINH* is not asserted on access
to these address spaces.

Region 1–3 Attribute Registers

Local Address $FFFD 09xx Region 1 Attribute register.

Local Address $FFFD 0Axx Region 2 Attribute register.

Local Address $FFFD 0Bxx Region 3 Attribute register.

Bit 31 When set, this bit enables WORD* to be asserted upon access.

Bit 30 When set, this bit enables ASIZ1 to be driven Low upon access.

Bit 29 When set, this bit enables ASIZ0 to be driven Low upon access.

Bit 28 When set, this bit enables CACHINH* to be asserted upon access.

Bits 27:26 Follow this table:

Bit 27 Bit 26 Mode

0 0 Inactive
0 1 Shared resources chip select
1 0 VSB resource chip select
1 1 MWB select (VMEbus request)

DSACKi* Control Registers

Local Address $FFFD 0Cxx – IOSEL4* DSACKi* Control register
(I/O Select Address = $FFF8 0000 to $FFF9 FFFF).

Local Address $FFFD 0Dxx – IOSEL5* DSACKi* Control register
(I/O Select Address = $FFFA 0000 to $FFFB FFFF).

Local Address $FFFD 0Exx – SHRCS* DSACKi* Control register
(I/O Select Address is programmable).

A24 Base Address Register

VAC068A Register Map and Descriptions

5-49

Local Address $FFFD 0Fxx – EPROMCS* DSACKi* Control register
(I/O Select Address = $FF00 0000 to $FFEF FFFF).

Local Address $FFFD 10xx – IOSEL0* DSACKi* Control register
(I/O Select Address = $FFF0 0000 to $FFF1 FFFF).

Local Address $FFFD 11xx – IOSEL1* DSACKi* Control register
(I/O Select Address = $FFF2 0000 to $FFF3 FFFF).

Local Address $FFFD 12xx – IOSEL2* DSACKi* Control register
(I/O Select Address = $FFF4 0000 to $FFF5 FFFF).

Local Address $FFFD 13xx – IOSEL3* DSACKi* Control register
(I/O Select Address = $FFF6 0000 to $FFF7 FFFF).

Bits 31:29 These bits determine the delay from PAS* assertion to assertion of
DSACKi* in CPUCLK cycles per the following table:

000 = 1 cycle
001 = 2 cycles
.
.
111 = 8 cycles

Bit 28 When set, this bit enables DSACK1*. When cleared, DSACK1* is inactive.

Bit 27 When set, this bit enables DSACK0*. When cleared, DSACK0* is inactive.

Bits 26:24 These bits determine the recovery time for IOSELi* in integer multiples of
the CPUCLK as follows:

000 = 1 CPUCLK cycle
001 = 2 CPUCLK cycles
.
.
111 = 8 CPUCLK cycles

The VAC068A recovery time (time between assertions of device select
outputs) is controlled by two separate timers; one for even-numbered
IOSEL5-0* device select outputs and one for odd-numbered IOSEL5–0*
device select outputs. Because of the shared usage of these counters,
the user must insure that an IOSEL5–0* access to a device that uses the
same counter (odd or even IOSEL5–0* address) is not allowed to start
(not issued by the local processor) until the previous access has been
deasserted for the required number of CPUCLK cycles. These counters
operate only on IOSEL5–0* accesses. It is assumed that accesses to
EPROMCS* or SHRCS* do not require a recovery time and should set
the value of these bits of their DSACKi* Control register to 000.

Bits 23:22 These bits determine the assertion delay for IORD* from PAS* in 1/2
CPUCLK cycles (i.e., 0.5, 1, 1.5, 2).

Bits 21:20 These bits determine the assertion delay for IOWR* from PAS* in 1/2
CPUCLK cycles (i.e., 0.5, 1, 1.5, 2).

DSACKi* Control Registers (continued)

VAC068A Register Map and Descriptions

5-50

If bits 18 and 19 are cleared, IOSEL5–0* is always deasserted when PAS* is deasserted. To
use early cycle end control on read cycles, the data must be latched until captured by the
local processor, independent of the deassertion of the control signals. This latching function
is provided in the VAC068A for devices located on the ID bus signals ID[15:8].

No odd-numbered I/O device access is allowed to start until the select signal for the previously
accessed odd-numbered I/O device has been deasserted for the programmed number of
clock cycles. The same is true for even-numbered device selects. Recovery time is metered
only for IOSEL5–0*. All other devices are assumed to not need a recovery time. Accordingly,
the recovery time field for SHRCS* and EPROMCS* should be set to 0.

Bits 19:18 These bits determine the assertion delay for IOSEL5–0* from PAS* in 1/
2 CPUCLK cycles (i.e., 0.5, 1, 1.5, 2).

Bit 17 When cleared, the IORD* signal is deasserted when PAS* is deasserted.
When set, IORD* is deasserted when the time specified in the DSACKi*
Assertion Delay (bits 31:29) has elapsed. This is used to provide additional
hold time for the peripheral device.

Bit 16 When cleared, the IOWR* signal is deasserted when PAS* is deasserted.
When set, IOWR* is deasserted when the time specified in the DSACKi*
Assertion Delay (bits 31:29) has elapsed. This used to provide additional
hold time for the peripheral device.

Decode Control Register

Local Address $FFFD 14xx

Bit 31 When set, assert DSACKi* on slave accesses to DRAM during VIC068A
local bus cycles (except DRAM Refresh). When cleared, three-state
DSACKi* on slave accesses to DRAM during VIC068A local bus cycles.

Bit 30 When set, qualify DRAMCS* assertion with PAS* assertion. When
cleared, assert DRAMCS* on address space match.

Bits 29:28 These bits specify what local resource select is asserted on SLSEL1*
assertion when redirection of SLSEL1* is enabled (bit 20).

00 = EPROMCS*
01 = VSBSEL*
10 = SHRCS*
11 = DRAMCS*

Bit 27 When set, compare VMEbus A[31:16] to SLSEL1* base address register
[31:16]. When cleared, no compare. This is used to allocate SLSEL1* in
an A32/A24 space. This bit is normally set if SLSEL1* redirect is enabled.
(Bit 20 below)

Bit 26 When set, compare VMEbus A[15:8] to SLSEL1* base address register
[31:24]. When cleared, no compare. This is used to allocate SLSEL1* in

VAC068A Register Map and Descriptions

5-51

This register is read-only. Bits of this register are cleared by accessing the interrupt control
register and clearing the control bits for that particular interrupt.

Bit 25 When set, qualify SLSEL0* decode with VMEbus AS*. When cleared, no
qualification.

Bit 24 When set, qualify SLSEL1* decode with VMEbus AS*. When cleared, no
qualification.

Bit 23 When set, qualify ICFSEL* decode with VMEbus AS*. When cleared, no
qualification.

Bit 22 When sets, qualify boundary decodes (except DRAM) with PAS*. When
cleared, no qualification.

Bit 21 When set, acknowledge DRAM access as 32-bit port (both DSACK0/1
asserted). When cleared, three-state DSACK0/1*s on DRAMCS*.

Bit 20 When set, redirect SLSEL1* area accesses on local bus to local resource
specified in bits 29:28. When cleared, no redirect for SLSEL1*.

Bit 19 When set, redirect SLSEL0* area accesses on local bus to DRAM. When
disabled, no redirect.

Bits 18:17 Assertion delay for DSACKi* upon access to DRAM (assertion of
DRAMCS*) in CPU clock cycles per the following table:

00 = 0 CPUCLK cycles
01 = 1 CPUCLK cycles
10 = 2 CPUCLK cycles
11 = 3 CPUCLK cycles

Bit 16 When set, FPUCS* is asserted on assertion of PAS*. When cleared,
FPUCS* is asserted on CPUCLK.

Interrupt Status Register

Local Address $FFFD 15xx

Bit 31 When set, this bit indicates that a PIO9 interrupt is pending.

Bit 30 When set, this bit indicates that a PIO8 interrupt is pending.

Bit 29 When set, this bit indicates that a PIO7 interrupt is pending.

Bit 28 When set, this bit indicates that a PIO4 interrupt is pending.

Bit 27 When set, this bit indicates that a mailbox interrupt is pending.

Bit 26 When set, this bit indicates that a timer interrupt is pending.

Bit 25 When set, this bit indicates that a UART A interrupt is pending.

Bit 24 When set, this bit indicates that a UART B interrupt is pending.

Decode Control Register (continued)

VAC068A Register Map and Descriptions

5-52

Note that each interrupt service routine should clear its interrupt’s map bits momentarily in
order to clear the interrupt request output. Each interrupt is active Low and edge-triggered
except UART A and B, which are event triggered and hold until cleared by clearing the interrupt
in the Int Mask register. An interrupt request output is asserted only if a falling edge on an
interrupt request input occurs while its map bits are non-zero. PIO9 must be held Low for at
least 2.8 ms in order to generate an interrupt request.

Interrupt Control Register

Local Address $FFFD 16xx

Bits 31:30 These bits specify the mapping of PIO9 interrupt to one of the three signals
as detailed in the following table.

Bits 29:28 These bits specify the mapping of PIO8 interrupt to one of the three signals
as detailed in the following table.

Bits 27:26 These bits specify the mapping of PIO7 interrupt to one of the three signals
as detailed in the following table.

Bits 25:24 These bits specify the mapping of PIO4 interrupt to one of the three signals
as detailed in the following table.

Bits 23:22 These bits specify the mapping of the mailbox interrupt to one of the three
signals as detailed in the following table.

Bits 21:20 These bits specify the mapping of the UART A interrupt to one of the three
signals as detailed in the following table.

Bits 19:18 These bits specify the mapping of the UART B interrupt to one of the three
signals as detailed in the following table.

Bits 17:16 These bits specify the mapping of the timer interrupt to one of the three
signals as detailed in the following table.

Odd bit Even bit Function

0 0 Disabled
0 1 Enable to PIO7
1 0 Enable to PIO10
1 1 Enable to PIO11

Device Location Register

Local Address $FFFD 17xx

Bit 21 When set, IOSEL5* active on the ID bus.

Bit 20 When set, IOSEL4* active on the ID bus.

Bit 19 When set, IOSEL3* active on the ID bus.

Bit 18 When set, IOSEL2* active on the ID bus.

Bit 17 When set, IOSEL1* active on the ID bus.

Bit 16 When set, IOSEL0* active on the ID bus.

VAC068A Register Map and Descriptions

5-53

This register specifies mapping of the input/output select device on the ID bus. If any bit is
set, it indicates that the corresponding device is located on ID[15:8]. This allows the VAC068A
to control the internal Buffer and Latch on the ID bus when these devices are accessed.
SWDEN* swaps the data from/to ID[31:24] to ID[15:8] and DDIR controls the data direction.

This register is used for writing to the PIO signals [13:0] defined as outputs. PIO[13:0] corre-
spond directly to LD[29:16]. When read, the value in the register is driven onto the local data
bus LD[29:16]. When written, the value in the register is driven onto those PIO[13:0] signals
defined as outputs in the PIO Function register. To set or clear a single PIO[13:0] bit, the
register must be read and a logical AND or OR operation performed on the bit, then the value
is written back into the register.

This register is read-only and reflects the instantaneous value on those PIO[13:0] signals
configured as inputs. Reading this register takes the logic value at the PIO[13:0] signal and
drives it onto the local data bus LD[29:16]. Writing to this register causes a DSACK1* assertion
and has no effect on the contents of the register.

PIO Data Out Register

Local Address $FFFD 18xx

Bit 29 PIO13 or LD[29] signal output value.

Bit 28 PIO12 or LD[28] signal output value.

Bit 27 PIO11 or LD[27] signal output value.

Bit 26 PIO10 or LD[26] signal output value.

Bit 25 PIO9 or LD[25] signal output value.

Bit 24 PIO8 or LD[24] signal output value.

Bit 23 PIO7 or LD[23] signal output value.

Bit 22 PIO6 or LD[22] signal output value.

Bit 21 PIO5 or LD[21] signal output value.

Bit 20 PIO4 or LD[20] signal output value.

Bit 19 PIO3 or LD[19] signal output value.

Bit 18 PIO2 or LD[18] signal output value.

Bit 17 PIO1 or LD[17] signal output value.

Bit 16 PIO0 or LD[16] signal output value.

PIO Pin Register

Local Address $FFFD 19xx

Bits 29:16 Reflect the status of PIO signals [13:0] respectively (i.e., bit 29 = PIO 13,
etc.).

VAC068A Register Map and Descriptions

5-54

Interrupt request functions (bits 27, 26, and 23) are mapped in the Interrupt Control register
($FFFD 16xx).

PIO Direction Register

Local Address $FFFD 1Axx

Bit 30 When set, this bit enables FCIACK* assertion upon access to $FFFF FFxx
independent of the function codes. This is useful for interrupt acknowledge
emulation for non-68K processors.

Bits 29:16 These bits correspond directly to PIO signals [13:0]. When set, the direc-
tion of the PIO signals are output from VAC068A. When cleared, the
direction of the PIO signals [13:0] are input to VAC068A. These register
bits have no effect if the corresponding PIO Function register bits ($FFFD
1Bxx) are set.

PIO Function Register

Local Address $FFFD 1Bxx

Bit 31 When set, this bit asserts FCIACK* upon access to IOSEL5* address
space independent of the function codes. Also, access to IOSEL4* ad-
dress space asserts FPUCS*. When cleared, access to IOSEL4* and
IOSEL5* address space does not affect the FCIACK* and FPUCS* sig-
nals.

Bit 30 When set, this bit enables the debounce delay associated with PIO9 (i.e.,
26.7-ms debounce circuit delay). See PIO9 Debounce delay description
for further details. When cleared, the debounce delay is disabled.

 Bits 29:16 These bits select whether the shared function of the PIO pins are enabled.
If set, the signal is always an output and operates with the shared function
per the following table. If cleared, the signals operate in the PIO mode.

Bit General Purpose Shared Function

29 PIO signal 13 IOSEL2* address range $FFF4 0000 select
28 PIO signal 12 Shared resources chip select output
27 PIO signal 11 Interrupt request pin 11 (output)
26 PIO signal 10 Interrupt request pin 10 (output)
25 PIO signal 9 IOSEL5* address range $FFFA 0000 select
24 PIO signal 8 IOSEL4* address range $FFF8 0000 select
23 PIO signal 7 Interrupt request pin 7 (output)
22 PIO signal 6 IOSEL3* address range $FFF6 0000 select
21 PIO signal 5 I/O write signal
20 PIO signal 4 I/O read signal
19 PIO signal 3 UART B receive data signal
18 PIO signal 2 UART B transmit data signal
17 PIO signal 1 UART A receive data signal
16 PIO signal 0 UART A transmit data signal

VAC068A Register Map and Descriptions

5-55

CPU Clock Divisor Register

Local Address $FFFD 1Cxx

Bits 31:24 These bits set the 16X baud rate clock for use with the VAC068A UART.
This register is loaded into an up-counter that continuously counts from
the loaded value to $FF and reloads on the next clock.
The table below gives examples of some CPU clock frequencies and the
respective divisor to generate a baud rate of 9600.

CPU Clock CPU Clock Divisor Register

16 MHz $96
16.67 MHz $93
20 MHz $7C
25 MHz $5B
30 MHz $3B
33 MHz $27

Note: Baud rate = CPUCLK/(Divisor * 16)

UART Channel A and B Mode Register

Local Address $FFFD 1Dxx Channel A Mode register.

Local Address $FFFD 1Fxx Channel B Mode register.

Bit 31 When set, parity check and generate are enabled. When cleared, parity
generate and check are disabled.

Bit 30 When set, even parity check and generate are enabled. When cleared,
odd parity check and generate are enabled.

Bit 29 When set, 8 data bits per character are enabled. When cleared, 7 data
bits per character.

Bit 28:26 These bits set the baud rate for both the transmitter and receiver. The
highest baud rate is derived from the CPU Clock Divisor register. The
subsequent baud rates are a division of 2 from the previous baud rate.
An example follows:
111 = baud rate of 9600
110 = baud rate of 4800
.
.
000 = baud rate of 75

Bit 25 When set, it allows the character receiver to run. When cleared, the re-
ceiver is reset.

Bit 24 When set, it allows the character transmitter to run. When cleared, the
transmitter is reset.

Bit 23 When set, it enables the transmitter. When cleared, the transmitter is
disabled.

Bit 22 When set, it enables the receiver. When cleared, the receiver is disabled.

VAC068A Register Map and Descriptions

5-56

The A and B Receiver FIFO registers are read-only.

Bit 21 When set, a continuous break is sent. When cleared, break is disabled.

Bit 20 When set, this bit enables looping of the transmitter output to the receiver
FIFO register. When cleared, looping is disabled.

UART Channel A and B Transmit Data Register

Local Address $FFFD 1Exx Channel A Transmit Data register.

Local Address $FFFD 22xx Channel B Transmit Data register.

Bits 31:24 These bits are loaded with data to be transmitted via the TXD* output
when configured in the PIO Function register and enabled in the UART
Mode register. Enable respective transmitters BEFORE loading these reg-
isters.

UART Channel A and B Receiver FIFO Register

Local Address $FFFD 20xx Channel A Receiver FIFO register.

Local Address $FFFD 21xx Channel B Receiver FIFO register.

Bit 26 When set, this bit indicates that a break error for this byte was detected;
otherwise no break error.

Bit 25 When set, this bit indicates that a frame error for this byte was detected;
otherwise no frame error.

Bit 24 When set, this bit indicates that a parity error for this byte was detected;
otherwise no parity error.

Bits 23:16 Received characters.

UART Channel A and B Interrupt Mask Register

Local Address $FFFD 23xx Channel A Interrupt Mask register.

Local Address $FFFD 24xx Channel B Interrupt Mask register.

Bit 31 When set, enable interrupt on single character. When cleared, disable
interrupt.

Bit 30 When set, enable interrupt on receiver FIFO full. When cleared, disable
interrupt.

Bit 29 When set, enable interrupt on break change. When cleared, disable in-
terrupt.

Bit 28 When set, enable interrupt on overrun, framing, or parity error. When
cleared, disable interrupt.

Bit 27 When set, enable interrupt on transmitter ready. When cleared, disable
interrupt.

UART Channel A and B Mode Register (continued)

VAC068A Register Map and Descriptions

5-57

The pending interrupt must be disabled in this register, serviced, and then cleared in the
Interrupt Control register.

This read-only register contains the interrupt status conditions causing the interrupt
generated.

Note: Refer to the Timer Control register for more information on RUN/LOAD and ONCE/
CONTINUOUS.

Bit 26 When set, enable interrupt on transmitter empty. When cleared, disable
interrupt.

UART Channel A and B Interrupt Status Register

Local Address $FFFD 25xx Channel A Interrupt Status register.

Local Address $FFFD 26xx Channel B Interrupt Status register.

Bit 31 When set, this bit indicates that an interrupt has occurred because a
character in the receiver is ready to be read.

Bit 30 When set, this bit indicates that an interrupt has occurred because the
receiver FIFO is full.

Bit 29 When set, this bit indicates that an interrupt has occurred because a break
change was detected.

Bit 28 When set, this bit indicates that an interrupt has occurred because a parity
error was detected.

Bit 27 When set, this bit indicates that an interrupt has occurred because a
framing error was detected.

Bit 26 When set, this bit indicates that an interrupt has occurred because a
overrun error was detected.

Bit 25 When set, this bit indicates that an interrupt has occurred because the
transmitter is ready for another character.

 Bit 24 When set, this bit indicates that an interrupt has occurred because the
transmitter is empty.

Timer Data Register

Local Address $FFFD 27xx

Bits 31:16 This register contains the data for loading the VAC068A internal watchdog
timer. This data is loaded into a 16-bit up-counter when RUN/LOAD is
Low as well as under control of the reload circuitry when ONCE/CONTIN-
UOUS is Low. When the contents of this register are read, the value of
the timer is driven onto the data bus, not the value loaded into the register.
The counter clock input is driven from the carry out of the prescale counter.

UART Channel A and B Interrupt Mask Register (continued)

VAC068A Register Map and Descriptions

5-58

Note: After a global reset and the completion of loading all other registers, this register must
be written in order for the VAC068A to enable its decode and compare functions.

Timer Control Register

Local Address $FFFD 28xx

Bit 31 ONCE/CONTINUOUS: When cleared, the timer counts continuous and
interrupt at the end of expiration. If this bit is set, the timer counts once
and stops.

Bit 30 RUN/LOAD: When set, the count is enabled and dependent on bit 31 for
control of count cycles. When cleared, the counter is disabled.

Bits 29:24 Prescale Load Value: These bits are loaded into the prescale counter.
Bits 29 through 24 correspond directly to D5 through D0 respectively. The
upper two bits of the prescale output (D6, D7) are tied High and not
displayed in the register. The prescale counter carry out clocks the count
value loaded into the Timer Data register.

Bits 23:16 Prescaler Value: These bits are read-only. They contain the instantaneous
value of the prescale counter. Bits 23 through 16 correspond directly to
the prescaler counter output Q7 through Q0 respectively.

VAC068A Identification Register

Local Address $FFFD 29xx

Bits 31:20 Constant: These bits are predefined and cannot be changed. A read or
write to this register does not affect these bits.

Bits 19:16 Revision number: These bits contain the chip revision number.
VAC068–F5 – 1AC0
VAC068A – 1AC1

5-59

5.6
VAC068A AC Performance

Specifications
Clock Input

AC Specifications

Num. Characteristic

Commercial Military

Min. Max. Min. Max.

Frequency of Operation (MHz) 1 50 1 40

1 Cycle Time (ns) 20 1000 2.5 1000

2, 3 Clock Pulse Width (Measured from 1.5V to 1.5V) 11.25

4, 5 Rise and Fall Time (ns) 5 5

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

GLOBAL RESET

1 RESET*[0] to WORD*[L] 1 5T 5T 5T

2 WORD*[0] to RESET* High,
WORD*[H]

1 10T 10T 10T

REGISTER WRITE

1 LA[31:8], FCi, R/W* Valid to
PAS*[L] (Set-Up Time)

1 10 10 10

2 LD[31:16] Valid to
DSACKi*[L] (Set-Up Time)

1 5 5 5

3 PAS*[0] to DSACKi*[L] 1 6 + 1T 35 + 2T 5 + 1T 36 + 2T 5 + 1T 40 + 2T

4 PAS*[1] to DSACKi*[H] 1 5 29 4 30 4 33

5 PAS*[1] to LA[31:8], FCi, R
/W* (Hold Time)

1 5 5 5

6 PAS*[1] to LD[31:16]
Invalid

6 33 5 34 5 36

REGISTER READ

1 LA[31:8], FCi, R/W* Valid to
PAS*[0] (Set-Up Time)

1 10 10 10

0.8V

2.2V

4 5

1

32

VAC068A AC Performance Specifications

5-60

2 PAS*[0] to DSACKi*[L] 6 35 + 1T 5 36 + 1T 5 40 +1T

3 PAS*[0] to LD[31:16] Valid 9 51 + 1T 8 53 + 1T 7 58 +1T

4 PAS*[1] to DSACKi*[H] 5 17 4 17 5 18

5 PAS*[1] to LA[31:8], FCi,
R/W* (Hold Time)

1 5 5 5

6 PAS*[0] to LD[31:16]
Invalid

2 6 + 3T 44 + 35T 5 + 3T 44 + 3.5T 5 + 3T 45 + 3.5T

LOCAL ACCESS VIA LOCAL BUS

1 LA[31:8], FCi, R/W* to
PAS*[0] (Set-Up Time)

1 10 10 10

2 PAS*[0] to ASIZ1/0,
WORD* Valid

7 33 6 34 6 37

3 PAS*[0] to Chip Select[L] 3, 4 6 33 5 34 5 38

4 PAS*[0] to DSACKi*[L] 5 PI1 + 6 PI1+24+1T PI1 + 5 PI1+25+1T PI1 + 5 PI1+28+1T

5 PAS*[0] to IORD*/IOWR*[L] 6 PI3 + 6 PI3+47+1T PI3 + 6 PI3+48+1T PI3 + 5 PI3+53+1T

6 PAS*[1] to LA[31:8], FCi,
R/W* (Hold Time)

1 5 5 5

7 PAS*[1] to ASIZ1/0 WORD*
Invalid

7 37 7 38 6 42

8 PAS*[1] to Chip Select*[H] 3 4 34 3 35 3 39

9 PAS*[1] to DSACKi*[H] 4 16 4 17 4 18

10 PAS*[1] to IORD*[H] /
IOWR*[H]

6 PI3 + 4 PI3+21+1T PI3 + 3 PI3+22+1T PI3 + 3 PI3+25+1T

LOCAL ACCESS VIA VMEbus

1 PAS*[0] to ASIZ1/0,
WORD* Valid

7 33 6 34 6 37

2 PAS*[0] to Chip Select[L] 7 6 33 5 34 5 38

3 PAS*[0] to DSACKi*[L] 8 PI2 + 6 PI2+29+1T PI2 + 5 PI2+30+1T PI2 + 5 PI2+33+1T

4 PAS*[0] to IORD*[L],
IOWR*[L]

6 PI3 + 6 PI3 + 47+1T PI3 + 6 PI3+48+1T PI3 + 5 PI3+53+1T

5 PAS*[1] to ASIZ1/0,
WORD* Invalid

7 37 7 38 6 42

6 PAS*[1] to Chip Select[H] 6 4 34 3 35 3 39

7 PAS*[1] to DSACKi*[H] 9 5 17 4 17 4 18

8 PAS*[1] to IORD*[H],
IOWR*[H]

6 PI3 + 4 PI3+21+1T PI3 + 3 PI3+22+1T PI3 + 3 PI3+25+1T

VMEbus SLAVE/SLAVE BLOCK ACCESS

1 AS*[0] to SLSELi*[L] or
ICFSEL*[L]

3 24 3 25 2 27

2 LAEN[1] to LA[31:8] Valid 4 24 3 25 3 27

3 AS*[1] to SLSELi*[H] or
ICFSEL*[L]

6 20 5 21 5 23

4 LAEN[0] to LA[31:0]
Invalid

12 30 10 31 10 33

VMEbus MASTER ACCESS

1 LA[31:8], FCi, R/W* to
PAS*[0] (Set-Up Time)

1 10 10 10

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VAC068A AC Performance Specifications

5-61

2 PAS*[0] to ASIZ1/0,
WORD* Valid

7 33 6 34 6 37

3 PAS*[0] to MWB*[L] 11 30 10 32 10 35

4 ABEN*[0] to A[31:8] Valid 3 17 2 18 2 20

5 PAS*[1] to LA[31:8], FCi,
R/W* (Hold Time)

1 5 5 5

6 PAS*[1] to ASIZ1/0,
WORD* Invalid

7 37 7 38 6 42

7 PAS*[1] to MWB*[L] 3 31 2 32 2 36

8 ABEN*[1] to A[31:8]
Invalid

2 10 1 10 1 11

MASTER BLOCK TRANSFER INITIATION CYCLE

1 LA[31:8], FCi, R/W* Valid to
PAS*[0] (Set-Up Time)

1 10 10 10

2 PAS*[0] to ASIZ1/0,
WORD* Valid

7 33 6 34 6 37

3 PAS*[0] to DSACKi*[L] 6 + 1T 35 + 2T 5 + 1T 36 + 2T 5 + 1T 40 + 2T

4 PAS*[0] to MWB*[L] 11 30 10 32 10 35

5 PAS*[1] to ASIZ1/0,
WORD* (Hold Time)

7 37 7 38 6 42

6 PAS*[1] to DSACKi*[H] 5 17 4 17 4 18

7 PAS*[1] to MWB*[H] 3 31 2 32 2 36

8 ABEN*[0] to A[31:8] Valid 3 17 2 18 2 20

9 LAEN[1], FCi Valid to
LA[31:8] Valid

4 24 3 25 3 27

10 LAEN[1], FCi Valid to
LDMACK*[1]

1 27 1 28 1 31

BOUNDARY CROSSING

1 BLT*[1] to LA[31:8]
Incremented

1 27 1 28 1 33

2 LADO[0] to A[31:8]
Incremented

7 28 5 29 4 33

PIO OUTPUT

1 LA[31:8], FCi, R/W* Valid to
PAS*[0] (Set-Up Time)

1 10 10 10

2 LD[31:16] to PAS*[0]
(Set-Up Time)

1 5 5 5

3 PAS*[0] to PIO[13:0] Valid 4 + 1T 54 + 2T 3 + 1T 56 + 2T 3 + 1T 63 + 2T

4 PAS*[0] to DSACKi*[L] 6 + 1T 35 + 2T 5 + 1T 36 + 2T 5 + 1T 40 + 2T

5 PAS*[1] to DSACKi*[H] 4 16 4 17 4 18

6 PAS*[1] to LA[31:8], FCi,
 R/W* (Hold Time)

1 5 5 5

7 PAS*[1] to LD[31:16]
Invalid

6 44 5 44 5 45

PIO INPUT

1 LA[31:8], FCi, R/W* Valid to
PAS*[0] (Set-Up Time)

1 10 10 10

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VAC068A AC Performance Specifications

5-62

Notes:

1. Guaranteed, but not tested.

2. Maximum time to LD[31:16] invalid is PAS*[0] + 3.5T or PAS*[1], whichever occurs first.

3. Chip select can be any of DRAMCS*, EPROMCS*, SHRCS*, VSBSEL*, FPUCS*, CS*, or IOSELi*.

4. The Decode Control register provides facilities to condition DRAMCS* or boundary decodes with the assertion
of PAS*.

5. PI1 is the programmable interval for EPROMCS*, SHRCS*, and IOSELi* in the DSACKi* Control register.

6. PI3 is the programmable interval for IORD* and IOWR* in the Decode Control register.

7. Chip select can be any of DRAMCS*, EPROMCS*, SHRCS*, or VSBSEL*.

8. PI2 is the programmable interval for EPROMCS*, SHRCS*, DRAMCS*, or VSBSEL* in the Decode Control
register.

9. SLSELi* redirection is enabled in the Decode Control register.

Figure 5-4. VAC068A Global Reset

2 PIO[13:0] to PAS*[0]
(Set-Up Time)

1 5 5 5

3 PAS*[0] to DSACKi*[L] 6 35 + 1T 5 36 + 1T 5 40 + 1T

4 PAS*[0] to LD[31:16] Valid 9 51 +1T 8 53 + 1T 7 58 + 1T

5 PAS*[1] to DSACKi*[H] 4 16 4 17 4 18

6 PAS*[1] to LA[31:8], FCi,
R/W* (Hold Time)

1 5 5 5

7 PAS*[1] to LD[31:16]
Invalid

6 44 5 44 5 45

Operation Notes

Commercial Industrial Military

Min. Max. Min. Max. Min. Max.

VAC068A AC Performance Specifications

5-63

Figure 5-5. VAC068A Register Write

Figure 5-6. VAC068A Register Read

VAC068A AC Performance Specifications

5-64

Figure 5-7. Local Resource Access via Local Bus

Figure 5-8. Local Resource Accesses via VMEbus

VAC068A AC Performance Specifications

5-65

Figure 5-9. VMEbus Accesses – Slave

Figure 5-10. VMEbus Accesses – Master

VAC068A AC Performance Specifications

5-66

Figure 5-11. Master Block Transfer – Initialization Cycle

VAC068A AC Performance Specifications

5-67

Figure 5-12. Master Block Transfer – Local and VME Boundary Crossing

VAC068A AC Performance Specifications

5-68

Figure 5-13. PIO Operation – Output

Figure 5-14. PIO Operation – Input

VAC068A AC Performance Specifications

5-69

Figure 5-15. Master Block Transfer – Local and VMEbus Boundary Crossing (DMA Write Cycle)

5-70

5.7
VAC068A Signal List and

Pinout
Table 5-2. VMEbus Signals

Name
PGA
Pin

QFP
Pin Type Description

A08 A8 139 Three-State I/O VMEbus Address Signals

A09 B8 138 Three-State I/O VMEbus Address Signals

A10 A7 142 Three-State I/O VMEbus Address Signals

A11 B7 144 Three-State I/O VMEbus Address Signals

A12 A6 143 Three-State I/O VMEbus Address Signals

A13 B6 145 Three-State I/O VMEbus Address Signals

A14 A5 147 Three-State I/O VMEbus Address Signals

A15 B5 148 Three-State I/O VMEbus Address Signals

A16 A4 149 Three-State I/O VMEbus Address Signals

A17 A3 150 Three-State I/O VMEbus Address Signals

A18 B4 151 Three-State I/O VMEbus Address Signals

A19 B3 153 Three-State I/O VMEbus Address Signals

A20 A2 154 Three-State I/O VMEbus Address Signals

A21 C3 156 Three-State I/O VMEbus Address Signals

A22 B2 157 Three-State I/O VMEbus Address Signals

A23 A1 158 Three-State I/O VMEbus Address Signals

A24 B9 134 Three-State I/O VMEbus Address Signals

A25 A9 137 Three-State I/O VMEbus Address Signals

A26 B10 132 Three-State I/O VMEbus Address Signals

A27 A10 136 Three-State I/O VMEbus Address Signals

A28 B11 129 Three-State I/O VMEbus Address Signals

A29 A11 133 Three-State I/O VMEbus Address Signals

A30 A13 128 Three-State I/O VMEbus Address Signals

A31 A12 130 Three-State I/O VMEbus Address Signals

AS* D2 6 Input VMEbus Address Strobe Signal

ABEN* E2 9 Input VMEbus Address Bus Enable Signal

VAC068A Signal List and Pinouts

5-71

Table 5-3. Local Signals

Name
PGA
Pin

QFP
Pin Type Description

ASIZ0 P1 34 Three-State I/O Identifies VMEbus Address Size

ASIZ1 M3 35 Three-State I/O Identifies VMEbus Address Size

BLT* F1 16 Input DMA Control Signal

CACHINH* P13 73 Open Collector Input Data Cache Inhibit to Processor

CPUCLK N3 36 Input CPU Clock Input

CS* D14 111 Output Chip Select to VIC068A Signal

DDIR C1 8 Input Swap Data Direction Buffer

DRAMCS* N11 72 Output DRAM Chip Select

DSACK0* P5 49 Three-State I/O Data and Size Acknowledge

DSACK1* R3 48 Three-State I/O Data and Size Acknowledge

EPROMCS* P12 71 Output EPROM Chip Select

FC0 P2 37 Input CPU, VIC068A Function Code Input

FC1 R1 38 Input CPU, VIC068A Function Code Input

FC2 N4 43 Input CPU, VIC068A Function Code Input

FCIACK* N2 33 Output Interrupt Acknowledge Cycle

FPUCS* R13 70 Output Floating-Point Coprocessor Select

ICFSEL* H1 19 Output Interprocessor Communications Select

ID08 K1 23 Three-State I/O Isolated Local Data Signals

ID09 K2 25 Three-State I/O Isolated Local Data Signals

ID10 J2 24 Three-State I/O Isolated Local Data Signals

ID11 L1 27 Three-State I/O Isolated Local Data Signals

ID12 L2 28 Three-State I/O Isolated Local Data Signals

ID13 M1 29 Three-State I/O Isolated Local Data Signals

ID14 N1 30 Three-State I/O Isolated Local Data Signals

ID15 L3 32 Three-State I/O Isolated Local Data Signals

IOSEL0* R15 78 Output Local I/O Device Chip Select

IOSEL1* J14 94 Output Local I/O Device Chip Select

LA08 P14 77 Three-State I/O Local Address Signals

LA09 M13 83 Three-State I/O Local Address Signals

LA10 P15 85 Three-State I/O Local Address Signals

LA11 N13 76 Three-State I/O Local Address Signals

LA12 N14 84 Three-State I/O Local Address Signals

LA13 L13 87 Three-State I/O Local Address Signals

LA14 M14 86 Three-State I/O Local Address Signals

LA15 L14 89 Three-State I/O Local Address Signals

VAC068A Signal List and Pinouts

5-72

LA16 N15 88 Three-State I/O Local Address Signals

LA17 K14 92 Three-State I/O Local Address Signals

LA18 M15 90 Three-State I/O Local Address Signals

LA19 K15 96 Three-State I/O Local Address Signals

LA20 L15 93 Three-State I/O Local Address Signals

LA21 J15 97 Three-State I/O Local Address Signals

LA22 H14 98 Three-State I/O Local Address Signals

LA23 H15 99 Three-State I/O Local Address Signals

LA24 G14 104 Three-State I/O Local Address Signals

LA25 G15 102 Three-State I/O Local Address Signals

LA26 F14 105 Three-State I/O Local Address Signals

LA27 F15 103 Three-State I/O Local Address Signals

LA28 E15 107 Three-State I/O Local Address Signals

LA29 F13 106 Three-State I/O Local Address Signals

LA30 C15 110 Three-State I/O Local Address Signals

LA31 E14 108 Three-State I/O Local Address Signals

LD16 P6 52 Three-State I/O Local Data Signals

LD17 R6 56 Three-State I/O Local Data Signals

LD18 P7 54 Three-State I/O Local Data Signals

LD19 R4 50 Three-State I/O Local Data Signals

LD20 R7 57 Three-State I/O Local Data Signals

LD21 R5 53 Three-State I/O Local Data Signals

LD22 P8 58 Three-State I/O Local Data Signals

LD23 N7 55 Three-State I/O Local Data Signals

LD24 N8 60 Three-State I/O Local Data Signals

LD25 R8 59 Three-State I/O Local Data Signals

LD26 R9 62 Three-State I/O Local Data Signals

LD27 P9 64 Three-State I/O Local Data Signals

LD28 R10 63 Three-State I/O Local Data Signals

LD29 P10 65 Three-State I/O Local Data Signals

LD30 R11 67 Three-State I/O Local Data Signals

LD31 P11 68 Three-State I/O Local Data Signals

LADO D3 3 Input Latch VMEbus Address Out Signal

LADI E1 13 Input Latch Local Address In Signal

LAEN P3 44 Input Local Address Bus Enable Signal

Table 5-3. Local Signals (continued)

Name
PGA
Pin

QFP
Pin Type Description

VAC068A Signal List and Pinouts

5-73

LBR* G3 15 Input Local Bus Request to VIC068A Signal

LDMACK* E3 7 Output Local DMA is in Progress

MWB* R12 69 Output Module Wants Local Bus Signal

PAS* R2 45 Input Processor Address Strobe

PIO0/TXDA C11 127 Three-State I/O General-Purpose I/O or UART A Transmit
Signal

PIO1/RXDA B12 126 Three-State I/O General-Purpose I/O or UART A
Receive Signal

PIO2/TXDB A14 125 Three-State I/O General-Purpose I/O or UART B Transmit
Signal

PIO3/RXDB B13 124 Three-State I/O General-Purpose I/O or UART B
Receive Signal

PIO4/IORD* F2 12 Three-State I/O General-Purpose I/O or I/O Read Signal

PIO5/IOWR* C12 123 Three-State I/O General-Purpose I/O or I/O Write Signal

PIO6/
IOSEL3*

B14 117 Three-State I/O General-Purpose I/O or I/O Select 3 Signal

PIO7/
Interrupt

C13 116 Three-State I/O General-Purpose I/O or Interrupt
Request Signal

PIO8/
IOSEL4*

D13 115 Three-State I/O General-Purpose I/O or I/O Select 4 Signal

PIO9/
IOSEL5*

B15 114 Three-State I/O General-Purpose I/O or I/O Select 5 Signal

PIO10/
Interrupt

C14 113 Three-State I/O General-Purpose I/O or Interrupt
Request Signal

PIO11/
Interrupt

D1 10 Three-State I/O General-Purpose I/O or Interrupt
Request Signal

PIO12/
SHRCS*

D15 109 Three-State I/O General-Purpose I/O or Shared
Resources Chip Select Signal

PIO13/
IOSEL2*

B1 5 Three-State I/O General-Purpose I/O or I/O Select 2 Signal

REFGT* G1 17 Output Refresh Grant Signal

RESET* R14 74 Input System Reset Signal

R/W* P4 46 Input Read/Write Signal

SLSEL0* H2 18 Output Slave Select 0 Signal

SLSEL1* J1 22 Output Slave Select 1 Signal

SWDEN* C2 4 Input Swap Data Enable Signal

VSBSEL* G2 14 Output VSB Chip Select Signal

WORD* M2 31 Output 16-Bit Data Access Signal

Table 5-3. Local Signals (continued)

Name
PGA
Pin

QFP
Pin Type Description

VAC068A Signal List and Pinouts

5-74

Table 5-4. Power Supply Signals [1]

Name
PGA
Pin Type Description

VDD A15 Input Power Input

VDD C5 Input Power Input

VDD C7 Input Power Input

VDD C9 Input Power Input

VDD H3 Input Power Input

VDD Core H13 Input Power Input

VDD J13 Input Power Input

VDD N5 Input Power Input

VDD N10 Input Power Input

VDD Input Power Input

VDD Input Power Input

VDD Input Power Input

VDD Input Power Input

VDD Input Power Input

VDD Input Power Input

VSS C4 Input Ground

VSS C6 Input Ground

VSS C8 Input Ground

VSS C10 Input Ground

VSS E13 Input Ground

VSS F3 Input Ground

VSS G13 Input Ground

VSS Core J3 Input Ground

VSS K3 Input Ground

VSS N6 Input Ground

VSS N9 Input Ground

VSS N12 Input Ground

VSS K13 Input Ground

VSS Input Ground

VSS Input Ground

VSS Input Ground

VAC068A Signal List and Pinouts

5-75

Note:

1. For QFP power supply signals, see .

VSS Input Ground

VSS Input Ground

VSS Input Ground

VSS Input Ground

VSS Input Ground

Table 5-4. Power Supply Signals [1] (continued)

Name
PGA
Pin Type Description

VAC068A Signal List and Pinouts

5-76

.

VAC068A Signal List and Pinouts

5-77

Table 5-5. Pinout for VAC068A Plastic and Ceramic Quad Flatpack (160-Pin): Cavity Up

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

1 VSS 32 ID15 63 LD28 94 IOSEL1*

2 VSS 33 FCIACK* 64 LD27 95 VDD

3 LADO* 34 ASIZ0* 65 LD29 96 LA19

4 SWDEN* 35 ASIZ1* 66 VDD 97 LA21

5 PIO13-IOSEL2* 36 CPUCLK 67 LD30 98 LA22

6 AS* 37 FC0 68 LD31 99 LA23

7 LDMACK* 38 FC1 69 MWB* 100 VDD Core

8 DDIR 39 VSS 70 FPUCS* 101 VSS

9 ABEN* 40 VSS 71 EPROMCS* 102 LA25

10 PIO11 41 VDD 72 DRAMCS* 103 LA27

11 VSS 42 VDD 73 CACHINH* 104 LA24

12 PIO4-IORD* 43 FC2 74 RESET* 105 LA26

13 LADI 44 LAEN 75 VSS 106 LA29

14 VSBSEL* 45 PAS* 76 LA11 107 LA28

15 LBR* 46 R/W* 77 LA8 108 LA31

16 BLT* 47 VDD 78 IOSEL0* 109 PIO12-SHRCS*

17 REFGT* 48 DSACK1* 79 VDD 110 LA30

18 SLSEL0* 49 DSACK0* 80 VDD 111 CS*

19 ICFSEL* 50 LD19 81 VSS 112 VSS

20 VDD 51 VSS 82 VSS 113 PIO10

21 VSS Core 52 LD16 83 LA9 114 PIO9-IOSEL5*

22 SLSEL1* 53 LD21 84 LA12 115 PIO8-IOSEL4*

23 ID8 54 LD18 85 LA10 116 VDD

24 ID10 55 LD23 86 LA14 117 PIO6-IOSEL3*

25 ID9 56 LD17 87 LA13 118 VDD

26 VSS 57 LD20 88 LA16 119 VSS

27 ID11 58 LD22 89 LA15 120 VSS

28 ID12 59 LD25 90 LA18 121 VDD

29 ID13 60 LD24 91 VSS 122 VDD

30 ID14 61 VSS 92 LA17 123 PIO5-IOWR*

31 WORD* 62 LD26 93 LA20 124 PIO3-RXDB

VAC068A Signal List and Pinouts

5-78

125 PIO2-TXDB 134 A24 143 A12 152 VDD

126 PIO1-RXDA 135 VDD 144 A11 153 A19

127 PIO0-TXDA 136 A27 145 A13 154 A20

128 A30 137 A25 146 VSS 155 VSS

129 A28 138 A9 147 A14 156 A21

130 A31 139 A8 148 A15 157 A22

131 VSS 140 VSS 149 A16 158 A23

132 A26 141 VDD 150 A17 159 VDD

133 A29 142 A10 151 A18 160 VDD

Table 5-5. Pinout for VAC068A Plastic and Ceramic Quad Flatp ack (160-Pin): Cavity Up (continued)

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

Pin
No. Pin Name

VAC068A Signal List and Pinouts

5-79

Figure 5-16. VAC068A Pin Grid Array (PGA), Bottom View

A B C D E F G H J K L M N P R

1

2

3

4

5

6

9

10

11

12

13

14

15

7

8

A23

A20

A17

A16

A14

A12

A10

A08

A25

A27

A29

A31

A30

P102/
TXDB

VDD

A22

A19

A18

A15

A13

A11

A09

A24

A26

A28

PIO13/
IOSEL2*

PIO1/
RXDA

PIO3/
RXDB

PIO6/
IOSEL3*

PIO9/
IOSEL5*

DDIR

SWDEN*

A21

VSS

VDD

VSS

VDD

VSS

VDD

VSS

PIO0/
TXDA

PIO5/
IOWR*

PIO7

PIO10

LA30

PIO11

VAS*

LADO

LOCATOR
PIN

PIO8/
IOSEL4*

CS*

PIO12/
SHRCS*

LADI

ABEN*

LDMACK*

BLT*

PIO4/
IORD*

VSS

VSS

LA31

LA28

LA29

LA26

LA27

REFGT*

VSBSEL*

LBR*

VSS

LA24

LA25

ICFSEL*

SLSEL0*

VDD

VDD

LA22

LA23

SLSEL1*

IDI0

VSS

VDD

IOSEL1*

LA21

ID8

ID9

VSS

VSS

LA17

LA19

ID11

ID12

ID15

LA13

LA15

LA20

ID13

WORD*

ASIZ1

LA9

LA14

LA18

ID14

FCIACK*

CPUCLK

FC2

VDD

VSS

LD23

LD24

VSS

VDD

DRAMCS*

VSS

LA11

LA12

LA16

ASIZ0

FC0

LAEN

R/W*

DSACK0*

LD16

LD18

LD22

LD27

LD29

LD31

EPROMCS*

CACHINH*

LA8

LA10

FC1

PAS*

DSACK1*

LD19

LD21

LD17

LD20

LD25

LD26

LD28

LD30

MWB*

FPUCS*

RESET*

IOSEL0*

VAC068A Signal List and Pinouts

5-80

Figure 5-17. VAC068A Quad Flatpack (QFP), Top View

1VSS 120 VSS
2VSS 119 VSS
3LADO* 118 VDD
4SWDEN* 117 PIO6-IOSEL3*
5PIO13-IOSEL2* 116 VDD
6AS* 115 PIO8-IOSEL4*
7LDMACK* 114 PIO9-IOSEL5*
8DDIR 113 PIO10
9ABEN* 112 VSS
10PIO11 111 CS*
11VSS 110 LA30
12PIO4-IORD* 109 PIO12-SHRCS*
13LADI 108 LA31
14VSBSEL* 107 LA28
15LBR* 106 LA29
16BLT* 105 LA26
17REFGT* 104 LA24
18SLSEL0* 103 LA27
19ICFSEL* 102 LA25
20VDD 101 VSS
21VSS 100 VDD
22SLSEL1* 99 LA23
23ID8 98 LA22
24ID10 97 LA21
25ID9 96 LA19
26VSS 95 VDD
27ID11 94 IOSEL1*
28ID12 93 LA20
29ID13 92 LA17
30ID14 91 VSS
31WORD* 90 LA18
32ID15 89 LA15
33FCIACK* 88 LA16
34ASIZ0 87 LA13
35ASIZ1 86 LA14
36CPUCLK 85 LA10
37FC0 84 LA12
38FC1 83 LA9
39VSS 82 VSS
40VSS 81 VSS

41
V

D
D

16
0

V
D

D
42

V
D

D
15

9
V

D
D

43
F

C
2

15
8

A
23

44
LA

E
N

15
7

A
22

45
PA

S
*

15
6

A
21

46
R

/W
*

15
5

V
S

S
47

V
D

D
15

4
A

20
48

D
S

A
C

K
1*

15
3

A
19

49
D

S
A

C
K

0*
15

2
V

D
D

50
LD

19
15

1
A

18
51

V
S

S
15

0
A

17
52

LD
16

14
9

A
16

53
LD

21
14

8
A

15
54

LD
18

14
7

A
14

55
LD

23
14

6
V

S
S

56
LD

17
14

5
A

13
57

LD
20

14
4

A
11

58
LD

22
14

3
A

12
59

LD
25

14
2

A
10

60
LD

24
14

1
V

D
D

61
V

S
S

14
0

V
S

S
62

LD
26

13
9

A
8

63
LD

28
13

8
A

9
64

LD
27

13
7

A
25

65
LD

29
13

6
A

27
66

V
D

D
13

5
V

D
D

67
LD

30
13

4
A

24
68

LD
31

13
3

A
29

69
M

W
B

*
13

2
A

26
70

F
P

U
C

S
*

13
1

V
S

S
71

E
P

R
O

M
C

S
*

13
0

A
31

72
D

R
A

M
C

S
*

12
9

A
28

73
C

A
C

H
IN

H
*

12
8

A
30

74
R

E
S

E
T

*
12

7
P

IO
0-

T
X

D
A

75
V

S
S

12
6

P
IO

1-
R

X
D

A
76

LA
11

12
5

P
IO

2-
T

X
D

B
77

LA
8

12
4

P
IO

3-
R

X
D

B
78

IO
S

E
L0

*
12

3
P

IO
5-

IO
W

R
*

79
V

D
D

12
2

V
D

D
80

V
D

D
12

1
V

D
D

5-81

5.8
DC Performance
Specifications

Table 5-6. VMEbus Signals (AS*, DS1*, DS0*, BCLR*, SYSCLK)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA, 56 mA, 64 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output
Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±10 ±10 ±10 µA

Introduction to the VIC068A

5-82

Table 5-7. VMEbus Signals (Low Drive. All VMEbus Daisy-Chain Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output
Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

Introduction to the VIC068A

5-83

Table 5-8. VMEbus Signals (Medium Drive. All non-High, non-Low Drive Signals, All VAC068A
VMEbus Signals.)

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –3 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 48 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.6–2.4

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN=–18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output
Leakage
Current

VCC = Max.
VOUT = 0.6/2.4V
All Outputs Disabled

±5 ±5 ±10 µA

Introduction to the VIC068A

5-84

Table 5-9. Non-VMEbus Signals

Table 5-10. Capacitance

Table 5-11. Operating Current

Parameter Description Test Conditions Comm. Industrial Military Units

VIH Minimum
High-Level
Input Voltage

2.0 2.0 2.0 V

VIL Maximum
Low-Level
Input Voltage

0.8 0.8 0.8 V

VOH Minimum
High-Level
Output Voltage

VCC = Min.,
IOH = –8 mA

2.4 2.4 2.4 V

VOL Maximum
Low-Level
Output Voltage

VCC = Min.,
IOL = 8 mA

0.6 0.6 0.6 V

IL Maximum
Input Leakage
Current

VCC = Max.,
VIN = 0.00/VCC

±5 ±5 ±5 µA

VIK Input Clamp
Voltage

VCC = Min. IIN= –18 mA –1.2 –1.2 –1.2 V

VIK Input Clamp
Voltage

VCC = Min. IIN = 18 mA VCC+1.2 VCC+1.2 VCC+1.2 V

IOZ Maximum
Output
Leakage
Current

VCC = Max.
GND < VOUT < VCC
All Outputs Disabled

±5 ±10 µA

Parameters Description Test Conditions Max. Units

CIN Input Capacitance TA = 25°C, f = 64 MHz,
VCC = 5.0V

5 pF

COUT Output Capacitance 7 pF

Parameters Description Test Conditions Max. Units

IDD Maximum Operating
Current

No external DC load 150 mA

5-85

5.9
Package Diagrams

145-Pin Plastic Grid Array (Cavity Up) B144

Package Diagrams

5-86

145-Pin Grid Array (Cavity Up) G145

Package Diagrams

5-87

160-Lead Plastic Quad Flatpack N160

Package Diagrams

5-88

160-Lead Ceramic Quad Flatpack (Cavity Up) U162

G-1

Glossary

245 7400-family part type that is an 8-bit (octal) bus transceiver with controls for
direction and enabling of drivers.

543 7400-family part type that is an 8-bit (octal) bus transceiver with controls for latch
enable, output enable, and direction flow.

68K A Motorola 68000, 68010, 68020, 68030 or 68040 microprocessor.

accelerated mode A mode of operation where the VIC068A will continuously assert the PAS* signal
for the duration of a DMA operation. The VIC068A expects the DSACK* signal
to be continuously asserted for the duration of the DMA operation as well.

arbitration timeout A timeout that occurs when no module responds to a VMEbus bus grant.

assertion The forcing of a signal to its TRUE state.

base address The starting point of an address region defined by the mask register.

block tran sfer length The total length, in bytes, of a block transfer. In terms of the VIC068A, a block
transfer may or may not contain more then one burst.

block tran sfer w/DMA A VIC068A block transfer mode in which the VIC068A obtains local bus master-
ship and performs a VMEbus block transfer utilizing DMA on the local bus.

boundary crossing The crossing of a 256-byte local or VMEbus boundary during a block transfer.

buffer control signals VIC068A signals which control the operation of external address and data latch-
es/buffers.

burst length The length, in VMEbus transfers, of a VMEbus block transfer burst. In terms of
the VIC068A, there may or may not be more then one burst per block transfer.

byte An 8-bit unit of data.

clock-tick interrupt An optional, periodic interrupt issued by the VIC068A.

daisy-chain A type of VMEbus signal in which a signal level is propagated from board to
board starting from slot 1 and ending with the last occupied slot.

data size The size of a VMEbus data transfer independent of the physical bus size (byte,
word, etc.).

deadlock In the context of the VIC068A, this is a condition where the local bus requires
the use of the VMEbus and the VMEbus requires the use of the local bus. In this
condition, the VIC068A requires the current local bus master remove its bus
tenure to let the VMEbus access proceed.

Glossary

G-2

deassertion The forcing of a signal to its FALSE state.

DMA Direct Memory Access. With the VAC068A, this refers to either DMA to the
VMEbus or DMA to another interface controller.

DMAAT0 Module-based DMA Transfer Access Timing. The data acquisition timing the
VIC068A uses for the first transfer of a module-based DMA transfer. This timing
is programmed in bits 3-0 in the SSiCR1.

DMAAT1 Module-based DMA Transfer Access Timing. The data acquisition timing the
VIC068A uses for the second and subsequent transfers of a module-based DMA
transfer. This timing is programmed in bits 7-4 in the SSiCR1.

DST The local data strobe minimum assertion timing. This timing is programmed in
bit 4 of the LBTR.

dual-path A mode of operation which allows a single-cycle master operation to be per-
formed by the VIC068A during interleave periods.

fair requester A VMEbus requester who waits until all requests on its particular VMEbus request
level are inactive before requesting the VMEbus.

Force EPROM A VAC068A mode of operation that asserts EPROMCS* after reset.

global switch A local interrupt issued by a VMEbus module to multiple VMEbus slaves.

IMAC Indivisible Multiple Address Cycle.

initiation cycle The local cycle which initiates a VMEbus block transfer with local DMA.

interleave period The period of time between block transfer bursts.

interprocessor communication facilities
Various VIC068A register and facilities available by VMEbus accesses.

IPL Interrupt priority level.

ISAC Indivisible Single Address Cycle

local (local side) Resources that connect to the non-VMEbus signals of a VIC068A or VAC068A.

longword (lword) A 32-bit unit of data.

mail box An area of memory reserved for passing messages.

mask The comparison of only selected address bits for the purpose of specifying a
range of don’t-care conditions.

master block transfer A mode of operation where the VIC068A performs a VMEbus block transfer.

master read The act of transferring data from a VMEbus slave to a VMEbus master.

master write The act of transferring data from a VMEbus master to a VMEbus slave

Glossary

G-3

master write posting A VMEbus master operation where the VIC068A captures outgoing VMEbus
write data and acknowledges the local side immediately. This removes the VME-
bus access time from local resources.

MBAT0 Master Block Transfer Access Timing. The data acquisition timing the VIC068A
uses for the first transfer of a master block transfer with local DMA. This timing
is programmed in bits 3-0 in the SSiCR1.

MBAT1 Master Block Transfer Access Timing. The data acquisition timing the VIC068A
uses for the second and subsequent transfers of a master block transfer with
local DMA. This timing is programmed in bits 7-4 in the SSiCR1.

module A VMEbus circuit card.

module-based DMA A mode of operation where the VIC068A transfers data from one local resource
to another utilizing DMA.

module switch A local interrupt issued by a VMEbus module to a single VMEbus slave.

MOVEM block transfer A VIC068A block transfer mode in which the local resource maintains local bus mas-
tership while having the VIC068A perform transfers using block transfer protocol on the
VMEbus.

non-accelerated mode A mode of operation where the VIC068A will toggle the PAS* signal for each transfer
of a DMA operation. The VIC068A expects the DSACK* signal to toggle for each transfer
of the DMA operation as well.

port size The physical size of the VMEbus modules data bus (D8, D16, D32, etc.)

pseudo cycle A block transfer with local DMA, initiation cycle

redirection Re-mapping VMEbus slave select address ranges to a specific local chip select output.

region An area of memory defined by one of three boundary registers in the VAC068A.

rescinding output A three-state output which is first driven High before it is three-stated.

RMC An indivisible read-modify-write cycle.

SAT Slave Access Timing. The data acquisition timing the VIC068A uses while performing
a slave transfer. This timing is programmed in bits 3-0 in the SSiCR1.

SBAT0 Slave Block Transfer Access Timing. The data acquisition timing the VIC068A uses for
the first transfer of a slave block transfer. This timing is programmed in bits 3-0 in the
SSiCR1.

SBAT1 Slave Block Transfer Access Timing. The data acquisition timing the VIC068A uses for
the second and subsequent transfers of a slave block transfer. This timing is pro-
grammed in bits 7-4 in the SSiCR1.

self-access A condition where the VIC068A, as the VMEbus master, has selected itself as the
VMEbus slave.

Glossary

G-4

slave block transfer A mode of operation where the VIC068A is slave to a VMEbus block transfer.

slave read The act of transferring data from a VMEbus slave to a VMEbus master.

slave write The act of transferring data from a VMEbus master to a VMEbus slave

slave write posting A VMEbus operation where the VIC068A captures incoming VMEbus write data and
acknowledges the VMEbus immediately. This removes the local access time from VME-
bus resources.

transfer timeout A timeout that occurs when no module responds with an acknowledge to a data transfer.

turbo A mode of operation in which the VIC068A reduces certain delays including set-up
times.

UART Universal Asynchronous Receiver Transmitter.

VAC068A VMEbus Address Controller.

valid slave select A fully qualified request for slave operations.

VIC068A VMEbus Interface Controller.

VITA VMEbus International Trade Association.

VSB VMEbus Subsystem Bus.

word A 16-bit unit of data.

	Table of Contents
	Introduction
	How to Use This Book
	Section 1: The VIC068A VMEbus Inteface Controller
	1.1 Introduction to the VIC068A
	1.1.1 Description
	1.1.2 Features Summary

	1.2 VIC068A Signal Descriptions
	1.2.1 VMEbus Signals
	1.2.2 Local Signals
	1.2.3 Buffer Control Signals

	1.3 Overview of the VIC068A
	1.3.1 Resetting the VIC068A
	1.3.2 The VIC068A VMEbus System Controller
	1.3.3 VIC068A VMEbus Master Cycles
	1.3.3.1 Master Write-Posting
	1.3.3.2 Indivisible Cycles
	1.3.3.3 Deadlock
	1.3.3.4 Self-Access

	1.3.4 VIC068A VMEbus Slave Cycles
	1.3.4.1 Slave Write-Posting

	1.3.5 Address Modifier (AM) Codes
	1.3.6 VIC068A VMEbus Block Transfers
	1.3.6.1 MOVEM Master Block Transfers
	1.3.6.2 Master Block Transfers with Local DMA
	1.3.6.3 Slave Block Transfers

	1.3.7 VIC068A Interrupt Generation and Handling Facilities
	1.3.8 Interprocessor Communication Facilities

	1.4 System Controller Operations
	1.4.1 VMEbus Arbitration
	1.4.2 The VMEbus Arbitration Timeout Timer
	1.4.3 The VMEbus Transfer Timeout Timer
	1.4.4 The BGi Daisy-Chain Driver
	1.4.5 The IACK* Daisy-Chain Driver

	1.5 VIC068A VMEbus Master Operations
	1.5.1 VMEbus Requests
	1.5.2 Release Modes
	1.5.2.1 Release On Request (ROR)
	1.5.2.2 Release When Done (RWD)
	1.5.2.3 Release On Clear (ROC)
	1.5.2.4 VMEbus Capture and Hold (BCAP)
	1.5.2.5 Release Under RMC* Control

	1.5.3 VIC068A VMEbus Master Write Cycle
	1.5.4 VIC068A VMEbus Master Read Cycle
	1.5.5 Master Write Posting
	1.5.6 Indivisible Cycles
	1.5.6.1 Indivisible Single-Address Cycles (ISACs)
	1.5.6.2 Indivisible Multiple-Address Cycles (IMACs)

	1.5.7 Deadlock
	1.5.7.1 Undetectable Deadlocks

	1.5.8 Self-Access
	1.5.9 VMEbus/Local Bus Data and Port Size
	1.5.10 Fair Request Timeout
	1.5.11 Address-Only Cycles
	1.5.12 The Address Modifiers for Master Cycles

	1.6 VIC068A VMEbus Slave Operations
	1.6.1 The Valid Slave Select
	1.6.2 The Local Bus Request
	1.6.3 The Local Bus Grant
	1.6.4 Local Bus Timing
	1.6.5 VMEbus/Local Bus Data and Port Size
	1.6.6 The Latched Bus Interface
	1.6.7 Slave Write Posting
	1.6.8 Slave Acknowledge Timing (SAT)

	1.7 VIC068A Control Register Access
	1.7.1 Control Registers
	1.7.2 Control Register Access

	1.8 Interprocessor Communication Facilities
	1.8.1 Valid ICF Selection
	1.8.2 Interprocessor Communication Registers
	1.8.3 Interprocessor Communication Global Switches
	1.8.4 Interprocessor Communication Module Switches

	1.9 Interrupts
	1.9.1 VMEbus Interrupter
	1.9.2 The VIC068A VMEbus Interrupt Handler
	1.9.3 Local Interrupt Handler
	1.9.4 The FCIACK Cycle
	1.9.5 The Error/Status Interrupts
	1.9.6 Interrupt Priority Order
	1.9.7 Clock-Tick Interrupt Generator
	1.9.8 Interrupt Control Registers

	1.10 VIC068A Block Transfer Functions
	1.10.1 VIC068A Master Block Transfer
	1.10.1.1 Block Transfers with Local DMA
	1.10.1.2 MOVEM Block Transfers
	1.10.1.3 Buffer Control Signals During Master Block Transfers
	1.10.1.4 Performing Block Transfers to VMEbus Slaves Not Supporting Block Transfers

	1.10.2 VIC068A Slave Block Transfers
	1.10.3 Buffer Control Signals During Slave Block Transfers
	1.10.4 Using the CY7C964 for Additional Block Transfer

	1.11 Miscellaneous Features
	1.11.1 Resetting the VIC068A
	1.11.1.1 Internal Reset
	1.11.1.2 Global Reset
	1.11.1.3 System Reset
	1.11.1.4 Power-On Reset

	1.11.2 The Local Bus Timeout Timer
	1.11.3 The DRAM Refresh Controller
	1.11.4 Rescinding Outputs
	1.11.5 Turbo Mode
	1.11.6 Metastability Delays

	1.12 VIC068A Register Map and Descriptions
	1.13 VIC068A AC Performance Specifications
	1.14 VIC068A Signal List and Pinouts
	1.15 VIC068A Simulation Waveforms
	1.16 DC Performance Specifications
	1.17 Package Diagrams

	Section 2: The VIC64 VMEbus Interface Controller
	2.1 Introduction
	2.2 Compatibility
	2.3 64-Bit Operations
	2.3.1 VMEbus Specification
	2.3.2 Address Modifier Codes
	2.3.3 Boundary Crossing
	2.3.4 External Circuit Complexity

	2.4 VIC64: Additional Information
	2.4.1 VIC64 Signal Description (Chapter 1.2)
	2.4.2 System Controller Operations (Chapter 1.4)
	2.4.3 VMEbus Master Operations (Chapter 1.5)
	2.4.3.1 D64 Master Write Cycles
	2.4.3.2 D64 Master Read Cycles

	2.4.4 VMEbus Slave Operations (Chapter 1.6)
	2.4.4.1 D64 Slave Read Cycles
	2.4.4.2 D64 Slave Write Cycles

	2.4.5 Interrupts (Chapter 1.9)
	2.4.6 VIC64 Block Transfer Functions (Chapter 1.10)
	2.4.6.1 D64 Transfers, VMEbus Boundary Crossing

	2.4.7 Miscellaneous Features (Chapter 1.11)
	2.4.7.1 Selection of System Controller Functionality
	2.4.7.2 Enhanced Turbo Mode

	2.4.8 Register Map and Descriptions (Chapter 1.12)
	2.4.8.1 Interprocessor Communications Register 5
	2.4.8.2 Block Transfer Definition Register
	2.4.8.3 Release Control Register
	2.4.8.4 Block Transfer Length Register 2

	2.4.9 AC Performance Specifications (Chapter 1.13)

	2.5 DC Performance Specifications
	2.6 Pin Configurations
	2.7 Package Diagrams

	Section 3: The CY7C960/961 Slave VMEbus Interface Controller
	3.1 Introduction
	3.1.1 Feature List
	3.1.2 Family Overview
	3.1.3 CY7C960 Architectural Overview
	3.1.4 Key Concepts
	3.1.4.1 Local Bus Concepts
	3.1.4.2 VMEbus Concepts

	3.1.5 Address Mapping

	3.2 System Block Diagrams
	3.3 Pin Description
	3.3.1 VMEbus Signals
	3.3.2 Local Signals
	3.3.3 Local Buffer Control Signals

	3.4 Programming the CY7C960
	3.4.1 Configuration Bit Stream
	3.4.2 Operation at Power-On or Reset
	3.4.3 VMEbus Method
	3.4.4 Serial PROM Method
	3.4.5 Combination Method
	3.4.6 Configuration Software
	3.4.7 Programmable Features

	3.5 VMEbus Interface Description
	3.5.1 Definition of Terms
	3.5.2 Overview
	3.5.3 Region Mapping
	3.5.3.1 AM/LA Multiplexing

	3.5.4 Bus Holdoff
	3.5.4.1 Transaction Type Detection

	3.5.5 Decode Delay Timing
	3.5.6 Slave Addressing Before Initialization
	3.5.7 Address and Data Strobe Event Processing
	3.5.8 Slave Data Transfer Acknowledgment
	3.5.9 Slave Write Posting
	3.5.10 Slave Read-Ahead Cycles
	3.5.11 Interrupt Cycle Support
	3.5.12 Interrupt Handshake Support

	3.6 CY7C964 Interface
	3.6.1 CY7C964 Overview
	3.6.2 CY7C964 Connections
	3.6.3 Swap Buffer Control

	3.7 Interfacing without CY7C964
	3.7.1 Reduced Cost, Fewer Features

	3.8 DRAM Control Description
	3.8.1 Overview
	3.8.2 Types of DRAM
	3.8.3 VMEbus Implications
	3.8.4 Refresh Cycles
	3.8.5 Refresh Timing
	3.8.6 DBE Refresh Enable Feature
	3.8.7 Refresh and Reset
	3.8.8 Local Acknowledge Behavior
	3.8.9 DBE Signal Behavior
	3.8.10 Formal Signal Description
	3.8.10.1 RAS*, CAS*, ROW, COL

	3.8.11 Programmable Features
	3.8.11.1 Refresh Enable
	3.8.11.2 Cycle Timing
	3.8.11.3 Refresh Period
	3.8.11.4 DBE Refresh
	3.8.11.5 DBE Polarity
	3.8.11.6 ROW, COL Polarity

	3.9 I/O Control Description
	3.9.1 Region Mapping
	3.9.2 Chip Select Output Control
	3.9.3 Chip Select Output Timing
	3.9.3.1 Overview
	3.9.3.2 Read-Aheads
	3.9.3.3 Local Acknowledge Timing

	3.9.4 Data Byte Enable Usage
	3.9.5 Using I/O In DRAM Mode

	3.10 Design Considerations
	3.10.1 Design Philosophy
	3.10.2 CY7C964 Interface
	3.10.3 Local Bus Philosophy
	3.10.4 Read-Ahead Cycles
	3.10.5 Write Posting
	3.10.6 VMEbus Error Considerations

	3.11 CY7C961 Description
	3.11.1 Introduction
	3.11.2 CY7C961 Lock Cycle Support
	3.11.2.1 Overview
	3.11.2.2 Description

	3.11.3 CY7C961 Master Block Facility
	3.11.3.1 Overview
	3.11.3.2 Master Block Transfer Control from VMEbus
	3.11.3.3 Master Block Transfer Control from Local Side of Interface
	3.11.3.4 Programming the Master Block Facility
	3.11.3.5 Register Definitions

	3.11.4 Pin Description Addendum
	3.11.4.1 VMEbus Signals
	3.11.4.2 Local Buffer Control Signals
	3.11.4.3 Local Signals
	3.11.4.4 Master Block Transfer Performance

	3.11.5 Examples of Block Transfers

	3.12 AC Parameters
	3.13 DC Performance Specifications
	3.14 Package Diagrams

	Section 4: The CY7C964 Bus Interface Logic Circuit
	4.1 Introduction
	4.2 Features
	4.3 Interfacing to Cypress VMEbus Interface Controllers
	4.3.1 VMEbus Signal Group
	4.3.2 Buffer Control Signal Group
	4.3.3 CY7C964 Local Signal Group
	4.3.4 CY7C964 Address Comparison and Local Signal Group
	4.3.5 Local Data Swap Buffer Logic

	4.4 Signal Descriptions
	4.4.1 VMEbus Signals
	4.4.2 Local Signals

	4.5 CY7C964 Operation
	4.5.1 Overview
	4.5.2 Master Block Transfer Local Address Counter (C1)
	4.5.3 Local Address Multiplexer (S5)
	4.5.4 Slave Block Transfer Local Address Counter/Latch (C2)
	4.5.5 Master Block Transfer VMEbus Address Counter (C3)
	4.5.6 VMEbus Address Latch (L8) and Multiplexer (S3)
	4.5.7 VMEbus Address Comparator
	4.5.8 VMEbus D64 Block Transfer Data Pipeline and Multiplexer
	4.5.9 VMEbus D64 Block Transfer Data Demultiplexer

	4.6 CY7C964 Alternate BLT Initiation Operation for VIC068A and VIC64
	4.7 DC Performance Specifications
	4.8 AC Performance Specifications
	4.9 Pin Description
	4.9.1 Pin Definitions
	4.9.2 Pin Configurations

	4.10 Package Diagrams

	Section 5: The VAC068A VMEbus Address Controller
	5.1 Introduction to the VAC068A
	5.1.1 Features Summary
	5.1.2 General Description

	5.2 VAC068A Signal Description
	5.2.1 VMEbus Signals
	5.2.2 CPU/Local Interface Signals
	5.2.3 Parallel I/O-Shared Function Signals
	5.2.4 Data Flow Control Signals

	5.3 VAC068A Overview
	5.3.1 Applications
	5.3.2 VMEbus Address Decoding
	5.3.2.1 Master Access
	5.3.2.2 Programmable VMEbus Space
	5.3.2.3 A24 VMEbus Space
	5.3.2.4 A16 VMEbus Space

	5.3.3 VMEbus Slave Access
	5.3.4 Local Memory Map Decoding
	5.3.4.1 DRAM Decode
	5.3.4.2 Programmable Decode
	5.3.4.3 EPROM Decode
	5.3.4.4 Local I/O Select Decode

	5.3.5 Local Decode Control/Status
	5.3.5.1 Function Code Decode

	5.3.6 Programmable Input/Output
	5.3.6.1 Serial I/O
	5.3.6.2 I/O Select

	5.3.7 Interrupt Support
	5.3.7.1 Interrupt Status Register
	5.3.7.2 PIO Interrupt

	5.3.8 Miscellaneous Features
	5.3.8.1 PIO9 Debounce
	5.3.8.2 Isolated Data Bus
	5.3.8.3 Programmable DSACKi* Timing
	5.3.8.4 VIC068A/VAC068A DMA Support
	5.3.8.5 IORD* and IOWR*
	5.3.8.6 I/O Recovery Timer
	5.3.8.7 IACK Cycle Emulation for Non-680X0 Processors
	5.3.8.8 Cache Inhibit Output

	5.4 VAC068A Operation
	5.4.1 Resetting the VAC068A
	5.4.1.1 Global Reset
	5.4.1.2 Soft Reset
	5.4.1.3 RESET* Termination

	5.4.2 System Initialization
	5.4.3 Configuring the Local Memory Map
	5.4.3.1 DRAM Size
	5.4.3.2 VSB Space
	5.4.3.3 VMEbus A32, D32 Access
	5.4.3.4 Shared Resource Area
	5.4.3.5 EPROM Space

	5.4.4 Configuring the VMEbus Address Map
	5.4.4.1 SLSEL0* Access
	5.4.4.2 SLSEL1* Access
	5.4.4.3 ICFSEL* Access
	5.4.4.4 VME A24 Master Cycle
	5.4.4.5 VME A16 Master Cycle
	5.4.4.6 Decode Control Register

	5.4.5 VME Master Access
	5.4.6 VME Slave Operation
	5.4.6.1 Slave Transfer Sequence

	5.4.7 VME Master Block Transfer
	5.4.8 VIC068A/VAC068A Interconnect Diagram

	5.5 VAC068A Register Map and Descriptions
	5.6 VAC068A AC Performance Specifications
	5.7 VAC068A Signal List and Pinout
	5.8 DC Performance Specifications
	5.9 Package Diagrams

	Glossary

