
APPLICATION
NOTE

AP-325

March 1994

Guide to First Generation
Flash Memory
Reprogramming

APPLICATIONS ENGINEERING STAFF

Order Number: 292059-002



Information in this document is provided in connection with Intel products. Intel assumes no liability whatsoev-
er, including infringement of any patent or copyright, for sale and use of Intel products except as provided in
Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer
Products may have minor variations to this specification known as errata.

*Other brands and names are the property of their respective owners.

²Since publication of documents referenced in this document, registration of the Pentium, OverDrive and
iCOMP trademarks has been issued to Intel Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call 1-800-879-4683

COPYRIGHT © INTEL CORPORATION, 1995



GUIDE TO FLASH MEMORY REPROGRAMMING

CONTENTS PAGE

INTRODUCTION TO
REPROGRAMMING ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

You Are in Control ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

FUNDAMENTALS OF FLASH
OPERATION ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 1

Adaptive vs. Brute Force Algorithms ÀÀÀÀÀÀÀÀ 1

Moving Charge & Other Factors You
Should Know ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 2

ERASUREÐTHE GOLDEN RULE ÀÀÀÀÀÀÀÀÀ 5

Margin for Error ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 5

Most Common Development Issues ÀÀÀÀÀÀÀÀ 6

Device Initialization and Reset ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 6

The Erase Algorithm Interpreted ÀÀÀÀÀÀÀÀÀÀÀÀ 8

The Program Algorithm Illuminated ÀÀÀÀÀÀÀÀ 10

Ramifications of the Golden Rule ÀÀÀÀÀÀÀÀÀÀ 10

CONTENTS PAGE

DEBUGGING YOUR CODE AND OTHER
TIPS ON TESTING ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

Software Drivers Save You Time ÀÀÀÀÀÀÀÀÀÀ 11

Timers, Test Loops and Assembly Level
Programming ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

ProgrammingÐThe Key to Proper
Erasure ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 11

16- and 32-Bit Systems ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Logic Analyzers and In-Circuit
Emulators ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Testing Your SoftwareÐOne More
Time ÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 12

Watchdog Timer Debug Circuit ÀÀÀÀÀÀÀÀÀÀÀÀ 13

TROUBLE SHOOTING GUIDE ÀÀÀÀÀÀÀÀÀÀÀÀ 14

Determining the Root Cause ÀÀÀÀÀÀÀÀÀÀÀÀÀÀ 14





AP-325

INTRODUCTION TO
REPROGRAMMING

You Are in Control

Rewriting any type of memory requires hardware or
software control. Traditional EEPROM designers com-
bined all control functions into each chip’s periphery.
This provided a highly functional chip but at a high
price. On the other hand, DRAM designers provided a
bulk memory with little integrated peripheral circuitry.
Each system designer then accommodated the DRAM
with external refresh signals and learned quickly that
failure to refresh yielded non-functioning memory
boards. Initially, software drivers controlled DRAM
refresh; today controllers provide the same function.

Similarly, early disk drives required every user to write
software to manipulate drive head movement. Failure
to follow drive specifications and algorithms caused ir-
reversible head crashes. Leading-edge engineers faced
these challenges and triumphed, as evidenced by the
sophisticated systems available today.

Since 1988, thousands of engineers have written soft-
ware to direct flash memory reprogramming. With first
generation flash memories, one sends a control signal to
a device to begin and end programming or erasure. It is
a simple process implemented on more than 40 million
units, however care must be taken. If algorithms are
not properly followed, a device may be rendered inop-
erable. This document discusses proper software and
debug technique, which yields dependable first genera-
tion flash memory operation. First generation products
include the 28F256A, 28F512, 28F010 and 28F020. All
second and third generation Intel Flash Memories con-
tain automated program and erase routines.

FUNDAMENTALS OF FLASH MEMORY
OPERATION

Adaptive vs Brute Force Algorithms

Many designers use EPROMs regularly. Few consider
the programming algorithms because the PROM pro-
grammer vendors take care of that function.

Two types of algorithms are in use today:

# Adaptive Algorithms

# Brute Force Algorithms

Adaptive algorithms such as Intel’s Quick-Pulse Pro-
gramming and Quick-Erase algorithms reduce pro-
gramming time. A feedback mechanism recognizes
when each byte has been programmed sufficiently. You
may ask how is the point of sufficiency determined?

One simply adds the net effects of VCC and tempera-
ture variations, and superimposes on those factors the
normal EPROM charge leakage to obtain the answer.
The next question is how can these factors be checked?

NOTE:

EPROM and EEPROM charge leakage occurs over a
very long timeÐtypically 100 years. Reliability papers
often discuss charge leakage in terms of the memory’s
data retention characteristic.

If you look at EPROM programming algorithms, you
will notice that VCC is elevated during programming.
The elevated VCC acts as the feedback mechanism for
the adaptive algorithm. Reading the device and check-
ing for program completion is called verification, or
margining. (One is checking the margin to VCC fluctua-
tions.) For example, if the part can be verified at 6.25V,
then it can withstand the fluctuations and normal
charge leakage.

During the past few years most major EPROM manu-
facturers have converted to adaptive algorithms. The
algorithm loops back and programs a byte again if the
first program operation does not verify at the elevated
voltage.

Brute force algorithms simply program each byte mul-
tiple times, typically with long program durations. This
type of algorithm has no in-system margin verification.
That is they assume but never verify program margin to
the typical environment effects.

Many flash memories that specify a brute force algo-
rithm may fail to retain data for 10 years. Additionally,
they may not read the data correctly even at specified
VCC and temperature extremes.

Intel’s flash memory program and erase algorithms are

both adaptive. They offer margin verification without

requiring users to elevate VCC in-system. When issued
a command to program verify, the memory’s command
register logic taps an internally-generated elevated VCC
from the user-supplied external VPP (12V). This is why
it is essential that you provide the specified VPP voltage
and follow the given adaptive algorithms. Intel’s adap-
tive algorithms, combined with the command register
architecture, assures reliable code and data storage and
dependable system operation.

Figure 1 shows an example of an adaptive byte pro-
gramming algorithm. Appendix A compares the algo-
rithm in Figure 1 to a brute force approach.

1



AP-325

292059–1

Figure 1. The flow chart shows the fundamental

nature of an adaptive algorithm. Based on the

outcome of program verification, the flow may

loop back for another program operation.

Moving Charge and Other Factors You
Should Know

This section discusses the mechanics of flash memory
programming. For most system designers, transistor-

level discussions were last heard in college. We may
recall that DRAM consists of a storage capacitor and a
transistor. We remember this clearly because failure to
refresh that capacitor causes systems to malfunction. In

like fashion, one should understand the fundamentals

of flash memory reprogramming. The understanding

will enable error-free memory operation and reliable

system performance.

In simplest terms, each data bit equates to a memory
cell. Intel’s flash memory uses one transistor per cell
with the smallest possible architecture. This delivers
the lowest cost per bit and highest capacity, levering
system software (rather than bulky, complex cells) for
reprogramming control.

Figure 2 shows a simplified cross section of Intel’s flash
memory transistor. Note the structure; the cell is a
stacked gate MOS transistor. An isolated floating gate
stores the memory charge. The floating gate consists of
a layer of (conductive) polysilicon surrounded by (non-
conductive) oxide layers.

On a DRAM cell, each transistor connects to a capaci-
tor which stores the memory charge. The major differ-
ence between flash memory and DRAM derives from
their cell structure. The DRAM cell loses its charge if
not refreshed within a few milliseconds. On the other
hand, the flash memory floating gate maintains its
charge for typically 100 years. The structure is isolated
and insulated by the field and gate oxidesÐhence the
name ‘‘floating’’ gate.

ETOX Flash Memory Cell*

292059–2
*Patented Intel Processes

Figure 2. Simplicity of design assures increasing densities, manufacturability and reliability.

These are the attributes that drive mainstream memories.

2



AP-325

CONTRARY TO INTUITION

CHARGE e DATA ‘‘0’’

NOT DATA ‘‘1’’

PROGRAMMING:
ADDS CHARGE TO FLOATING GATE
x DATA e 0

ERASURE:
REMOVES SOME CHARGE FROM FLOATING GATE
x DATA e 1

PROGRAMMING DATA WITH MIXED 0s and 1s:
x ONLY DATA ‘‘0’’ BITS GET CHARGED
x DATA ‘‘1’’ BITS REMAIN UNCHARGED

Changing the memory contents is simple. Figure 3
shows two memory cellsÐone being erased and one
being programmed. Erasure removes charge from all
bits simultaneously. Programming adds charge to se-
lected bits. During erasure, not all charge is removed.
The erase verify operation tells the system when
enough charge has been removed. At that point, the
flash memory behaves like a U.V.-erased EPROM.

Removing too much charge by erasing too long renders

the memory unprogrammable. Excessive erasure lowers

the cell threshold to the point where the transistor is

always on and always reads data ‘‘1’’. (Recall that the

cell threshold, Vt, determines when the transistor turns

on or off.) You must control the erase timing within the

algorithm specifications on first generation flash mem-

ories.

A second erase consideration relates to the first. Prior
to erasing the chip, you must blanket program all bytes
to data 00h, regardless of the previous data. This step
equalizes the charge on all transistors.

If you skip this step and proceed directly to erasure, an
interesting thing happens. Consider a typical byte pro-
grammed with data 0AAh (1010 1010b). While pro-
gramming this data, bits with data ‘’1’’ remain erased
(charge removed), and bits with data ‘‘0’’ are pro-
grammed (charged added). Following programming,
normal read operations sense whether a memory tran-
sistor has more or less charge and drives the outputs
accordingly.

3



AP-325

Erasure

Removes Charge from Floating Gate

292059–3
Field from Vgs forces electrons from floating gate.

Programming

Adds Charge to Floating Gate

292059–4
Vgs l Vt turns transistor on creating source-drain channel (Ids);

Field from Vgd attracts electrons from channel current towards floating gate.

Figure 3. Flash memory cells during erasure and programming. Note the

movement of charge on and off the floating gate. The charge adjusts the

cell threshold, which tells the outputs whether a bit (transistor) is on or off.

4



AP-325

Erasure then removes charge from all bits. The bits that
have had charge added (data ‘‘0’’) have some quantity
of charge removed; bits with less charge (data ‘‘1’’)
have charge removed as well. This is akin to excessively
erasing the data ‘‘1’’ bits. Pre-programming all bits to
data ‘‘0’’ equalizes the charge which allows for con-
trolled, uniform erasure of all bits in the device (i.e., all
1,048,576 bits in a 28F010).

The sections entitled ‘‘Margin for Error’’ and the
‘‘Erase Algorithm Interpreted, Program all Bytes to
00h’’ discuss this concept in greater detail.

ERASUREÐTHE GOLDEN RULE

Erasure removes charge from all memory cells in paral-
lel. This lowers the cells’ threshold voltages from the
programmed level (6.5V) below VCC to the erased level
(3.2V) The device continues erasing until told to stop

by the verify command or until the integrated stop-tim-

er counts down.

Margin for Error

Allowing erasure to continue too long depletes the
charge in floating gates. So you askÐhow long is too

long? Figure 4 shows the margin for error of a typical
device. Following the algorithm would have stopped
erasure after 1 second. Cell depletion occurred after 10
seconds giving a 10x margin for error. This 10x margin
exists if the erased cell erases in 1 second or 10 seconds
(i.e., within the algorithm limits). This chart shows one
typical example where the device happened to take 1
second to erase.

Flash memory has generous margin for error over the
stopping point defined by the algorithm. The stopping
point is defined as the point when all bytes in the chip
verify to FFh data. The erase operation duration
(Twhwh2) is specified at 10 ms g 500 ms. Five hun-
dred microseconds offers substantial allowance for sys-
tem latency during erasure and even for slop in the
timer generation. Processors or controllers can execute
many lines of code in 500 ms, and the margin for error
simply adds another guardband.

Proper software and system design will never rely on

the additional margin for error. Remember, you control

the program code and system operation during erasure.

Once you have fully debugged your driver code, the

issue of software control disappears entirely.

292059–5

Figure 4. The logarithmic-decaying nature of erasure allows for 10x

error in erase time before a device becomes inoperable. Remember,

each device has its own erase time, thus the use of an adaptive algorithm.

5



AP-325

Most Common Development Issues

Having covered the fundamentals of flash memory re-

programming, let’s move on to the system’s hardware

and software perspectives. The following list of ques-

tions might have occurred to you . . .

# You have defined a system power supply with regu-
lated 5V and 12V outputs (VCC and VPP). Due to
the smaller capacitive load on the VPP supply, VPP
powers up much faster than the VCC supply. Will
this affect the device?

# How does the flash command register architecture
reset?

# Suppose your code sends a signal to start erasure,
and never tells it to stop?

# Suppose your software delay timers are not calibrat-
ed. Instead of stopping erasure after ten millisec-
onds, the code issues the stop command after 10
seconds?

# Suppose your 6 ms timer used between the erase and
erase verify modes is only 2 ms?

# Suppose you decide to skip the first erase operation
(program all bytes to zero) because the device is al-
ready programmed with data?

# Suppose you are programming and erasing devices
in a 16- or 32-bit system?

The answer to all these questions can be found in the
following sections. The questions and the reasons all
relate to the discussion of how the cell works.

Device Initialization and Reset

Many logic devices which contain command or control
registers also have a reset pin. This pin serves two pur-
poses: it resets the device’s internal logic; and it syn-
chronizes the device’s clock to the system clock.

Intel’s first generation flash memory command register
and reprogramming circuitry reset to the read mode by
three means:

1. raising or lowering VPP with VCC e 5V;

2. raising VCC with VPP e 12V;

3. issuing the reset command twice in succession.

NOTE:

Method 3 stops erasure or programming as well as re-
sets the chip.

A few cases require closer consideration.

Case 1. The System Controls VPP with a Switch

Assuming VCC is stable with VPP switches on, then the
command register defaults to the read mode. No pow-
er-on reset is required.

Designers might opt to include the VPP switch for
either (or both) of two reasons. The first reason is pow-
er minimization. Depending on the technology used, a
voltage regulator or pump’s efficiency can range from
40%–85%. Switching off the VPP supply minimizes
system power consumption. See Appendix B for an ex-
ample VPP generation circuit with ON/OFF control
capability.

The second reason is absolute data protection. This fea-
ture is not available to 5V-only EEPROM because the
reprogramming voltages are generated internally. On
that class of memory device, logic glitches can spuri-
ously change data during system power up or power
down. Flash memory’s 12V power requirement offers
absolute control over these concerns; with VPP below
VCC a 2V, data protection is guaranteed. Internally,
the electric fields are simply too weak to spuriously
write data.

Case 2. VPP Powers Up before VCC

Systems with VPP hardwired to a regulated transformer
might encounter this case. Typically, VCC will charge
many more bypass capacitors than VPP. VCC will
therefore power up much more slowly.

The flash memory power-down (VCC e 0V) default
state blocks VPP from disturbing the array. These con-
ditions hold while VCC is below E2V. Once VCC rises
above E2V, the internal logic kicks in and resets the
device to the read mode. (This is analogous to the inter-
nal VPP reset condition described in Case 1.)

Should the three control pins glitch during the power-
up phase (CElow, WElow, and OEhigh), then the com-
mand register acts to filter the data. The command port
will only react to the correct command sequence.

Designers might opt to hardwire VPP for a number of
reasons. The first reason is cost minimization. A regu-
lated 12V secondary from a transformer is commonly
available. Adding a switch or a power supply sequencer
adds cost and complexity. The second reason involves
consideration of the end application. Using the flash
memory as a read/write memory requires optimization
for the write cycle. Powering VPP on before each write
would waste considerable time.

6



AP-325

292059–6

Bus
Command Comments

Operation

Standby Wait for VPP Ramp to
VPPH (e 12.0V)(1)

Use Quick-Pulse
Programming

Initialize Addresses,
Erase Pulse Width, and
Pulse Count

Write Set-Up Data e 20H
Erase

Write Erase Data e 20H

Standby Duration of Erase
Operation (Twhwh2)

Write Erase Addr e Byte to Verify;
Verify Data e A0H; Stops

Erase Operation
Standby tWHGL

Read Read Byte to Verify
Erasure

Standby Compare Output to
FFH, Increment Pulse
Count

Write Read Data e 00H, Resets
the Register for Read
Operations.

Standby Wait for VPP Ramp to
VPP 1(1)

NOTES:
1. The VPP power supply can be hard-wired to the device or switchable. When VPP is switched, VPP 1 may be ground,
no-connect with a resistor tied to ground, or less than VCC a 2.0V.
2. Erase verify is performed after chip-erasure. A final read/compare may be performed (optional) after the register is
written with the read command.
3. CAUTION: The algorithm MUST BE FOLLOWED to ensure proper and reliable operation of the device.

Figure 5. Quick-Erase Algorithm for Intel’s First Generation Product Line

7



AP-325

Case 3. Warm Resets

Warm resets, where the system maintains power while
rebooting, requires closer inspection. Consider the situ-
ation where the system is reprogramming the flash
memory and a hardware or software reset occurs.

The boot software would not realize that programming
or erasure is ongoing and would not know to stop the
reprogramming operation. Therefore safeguard against
this condition with one of two means: 1) ensure that
control logic switches VPP off during reset; or 2) reset
the flash memory before resetting the processor. For a
software reset, simply add the flash memory reset com-
mand to the interrupt sequence. For hardware resets,
wire the reset switch to the interrupt controller instead
of directly to the reset input. Hardware resets would
then execute the software interrupt sequence. Intel’s
second and third generation flash memories all include
a H/W reset pin (RPÝ) formally called PWDÝ. This
pin is essential for any device with automation or em-
bedded algorithms.

The Erase Algorithm Interpreted

The following section offers a block by block explana-
tion of the Quick-Erase algorithm shown in Figure 5.
Understanding the reasons behind a function will en-
able you to appreciate the importance of following the
algorithm explicitly. Deviations will negatively affect
the part’s performance and should not be attempted.
Note: the effect may not be immediately apparent.

Apply VPPH (Optional, see Discussion on Device Ini-

tialization)

Switch on the local VPP supply prior to erasure and
programming. The time required for VPP to reach its
steady state 12 g 0.6V depends on the capacitive load
and the impedance of the printed circuit board trace. If
you measure this delay on a wire-wrapped prototype
system, remember that temperature, printed circuit
traces and the board’s layout change the load seen by
the VPP generator. Allow VPP sufficient time to ramp
before proceeding with the next step.

Program All Bytes to 00hxData e 00h?

Prior to erasure, blanket program all addresses in the
flash memory to 00h (charge state), regardless of the

previous data. Verify that each address equals 00h be-
fore proceeding to the next address. If you use only part
of the memory array, you still need to pre-program the
entire array for erasure. An example where this is an
issue is using a 512K in a 256K socket. A second exam-
ple is a system where internal microcontroller memory
overlaps the external flash memory space.

Programming data 00h equalizes the charge on every
bit in the array. This is necessary because erasure re-
moves charge from all cells regardless of their previous
state.

For example, reconsider the byte containing AAh data
(1010 1010b). If you skip the pre-program step, then
during erasure when the data ‘‘0’’ bits get charge re-
moved, the previously erased bits (data ‘‘1’’) lose addi-
tional charge. This drives the cell threshold a little low-
er. The next time you erase the chip and change the
code, the threshold will drop to 2.8V.

If the memory transistor is not pre-programmed to data
‘‘0’’ before the next erasure, then its threshold will drop
on successive reprogramming cycles (denoted by E3,
E4, etc. in Figure 6). Repeated violations of the blanket
programming requirement drives the threshold to the
point where the transistor is stuck on (data e ‘‘1’’).

Variable Initialization

Initialize two variables and a constant: ADDR (ad-
dress), PLSCNT (pulse count), and TEW (erase pulse
width). The pulse count increments from 0 to a maxi-
mum of 1000 erase tries. The erase pulse width remains
constant at 10 ms. The address increments from the
flash memory starting address to the ending address
during verification.

8



AP-325

292059–7

Figure 6. Successful erasure requires blanket programming all bytes to

the data ‘‘0’’ level first. This prevents threshold decline on successive erase

cycles (E2, E3, etc.). Very low thresholds cause the chip to malfunction.

Write Erase Set-Up Command

Write the erase set-up command (20h) to any flash
memory address. This prepares the selected device for
erasure, but does not activate the process. A second
erase command (20h) is required. Any other data writ-
ten to the flash memory between the set-up and erase
commands will abort the sequence. Once the process is
started, it will not stop until told to do so. The correct
stop erasure command is Erase Verify (A0h). However,
any command including the Reset command is an ille-
gal sequence and will stop erasure as well.

Write Erase Command

The erase command starts the erase process. Internally,
the device switches the voltages on all memory cell
drains, gates, and sources to the erase configuration.

Time Out Tew (10 ms)

Start your software or hardware timer. Until com-
manded to verify or until the integrated stop-timer
counts down, the flash memory continues the erase pro-
cess. Therefore, assign a high priority to the timer in-

terrupt. If a higher priority interrupt occurs, stop the
erase process and switch contexts (store all variables,
registers, etc.). This will allow reentry into the erase
procedure in a controlled fashion.

Write Erase Verify Command

Write the erase verify command (A0h) to the flash
memory at the address given by the ADDR variable.

The erase verify command performs many tasks. Inter-
nally, the device stops erasure and latches the given
address for verification. Additionally, the command
changes the voltages on the memory cell drains, gates
and sources to the erase verify configuration.

Time Out 6 ms

This time out accounts for the internal slew rate of
switching the memory array from the erase to the erase
verify configuration. Do not attempt to read from the
device before 6 ms has passed; the device will appear to
still be programmed. This is because you have not al-
lowed sufficient time for the memory to change config-
urations. Your code will then interpret this as a need
for extra erase operations, and will continue erasing the
device.

NOTE:

6 ms is a minimum specification. You can use the
10 ms timer developed for the programming algo-
rithm.

9



AP-325

Read Data from Device

Read the data at the address given by the ADDR vari-
able. This should be the same address driven with the
erase verify command.

Data e FFh?

Compare the output data at address ADDR to FFh. If
the data equals FFh, then that address has been erased.
Continue verification until the last address has been
verified or until the maximum erase pulse count (1000)
has been reached. Typically, most devices will fully
erase within 50–100 erase loops.

Last Address x Increment Address

Check the ADDR variable to see if the last address has
been verified. If not, increment the ADDR variable and
re-write the erase verify command. Remember to write
the erase verify command to address ADDR, since the
verify command latches the address. Also, if your sys-
tem has 64K byte segment boundaries, be sure to incre-
ment the base pointer every 64K byte addresses.

Write Read Command

After full chip verification, write the read command
(00h) to switch the device to read mode. If you plan to
reprogram the device immediately, this step is not nec-
essary.

Apply VPPL (Optional)

Switch VPP off. With VPP left on, the command regis-
ter offers data protection by requiring a precise se-
quence to initiate programming or erasure. However,
VPP controls overall command register operation.
Turning VPP off disables the command register, thus
providing absolute data protection. Without the high
voltage, the reprogramming mechanisms cannot occur
and the component becomes a read only memory
(ROM).

Abort/Reset

Whenever a system error condition occurs (reset or re-
boot), write the Reset command (FFh) to each flash
memory twice in succession. This is a good initializa-
tion practice in systems leaving VPP at 12V. The proc-
essor would be unaware if prior to the reset, it had been
in the middle of erasure, and this sequence aborts era-
sure.

The Program Algorithm Illuminated

The full algorithm will not be interpreted here, al-
though a few items should be noted. You can find a
conceptual version of the Quick-Pulse Programming al-
gorithm in Chapter 2, Figure 1, and the complete flow
chart in Appendix C.

First, similar to erasure, a two-write sequence starts
programming. The first write is the Program Set-Up
Command which primes the chip for programming.
The chip then latches the address and data to be pro-
grammed on the second write. You can abort program-
ming by writing the Reset Command twice in succes-
sion instead of the data to be programmed.

Second, the device continues programming until com-
manded to stop by the Program Verify Command.
Similar to the Erase Verify Command, this command
performs a couple of functions. Internally, it halts pro-
gramming and latches the given address for verifica-
tion. Additionally, the command changes the voltages
on the memory array’s drains, gates, and sources to the
program verify configuration.

The cell programming mechanism is self-limiting.
However, do not assume that programming all twenty-
five 10 ms operations in one pass is the best way to
attain reliable operation. To a certain degree, program-
ming stresses the memory cell. The stress is considera-
bly lower than that applied to EEPROM (2 MV/cm
lower to be specific). But why stress a component with-
out cause? The adaptive Quick-Pulse Programming al-
gorithm with its fast program operations, minimizes all
stresses and affords the greatest reliability.

Finally, after writing the Program Verify Command to
the device, wait a minimum of 6 ms before reading the
device. The time out accounts for the internal slew rate
of switching the memory array from the program to
program verify configuration. Do not attempt to read
from the device before 6 ms has passed; the device may
appear unprogrammed. Your code will then interpret
this as a need for extra program operations. It may
needlessly reach the 25 operation limit, even though the
byte most probably programmed on the first pass.

Ramifications of the Golden Rule

Always follow the erase command with an erase verify

command to stop erasure. Interrupt-driven systems
must give high priority to servicing the reprogramming
timer interrupts. Systems that reset upon a watchdog
time-out must reset the flash memory device before re-
booting. (See discussion on device initialization.) Like-
wise any non-maskable interrupt should software- or
hardware-reset the flash memory before performing a
context switch.

Use an oscilloscope to calibrate all time delays before

attempting erasure. The delay modules include the
6 ms, 10 ms, and 10 ms timer routines.

Blanket program all addresses to 00h data before eras-

ing. Verify correct implementation of the programming
algorithm with a PROM programmer before attempt-
ing erasure. (Chapter 4 explains how this can be done.)

10



AP-325

16- and 32-bit systems require special attention. Each
flash device has its own erase characteristic. Do not
assume that if the low byte of a data word is not erased,
then the high byte must not be either.

Always follow the listed guidelines and take care while
developing your code to eliminate the erase control
issue. Consider it similar to implementing any control
function. Once the code is debugged and stable, the
issue goes away.

You might ask, is it not possible to control erasure
through hardware? The alternative to software control
is integrated hardware control or an external controller.
Intel ofers a complete line of high density, cost-effective
products with integrated hardware control, often called
automation. Whether software or hardware controlled,
Intel’s ETOX Flash Memory offers the most reliable,
dense, manufacturable, and fastest read/write nonvola-
tile memory. Other EEPROM approaches have draw-
backs of multiple transistors per memory cell. This
property negatively affects all those attributes offered
by Intel’s ETOX flash memory.

DEBUGGING YOUR CODE AND
OTHER TIPS ON TESTING

As with any software checkout, a few simple principles
enable complete flash memory algorithm debug. The
following sections offer some hints to make your job
easier.

Software Drivers Save You Time

Intel saves you time by offering various processor-fami-
ly flash memory drivers. You simply edit the files to
suit your system. Then assemble the driver, link, and
locate it, and you are ready for debug.

These drivers offer the framework for successful flash
memory reprogramming, and require some customiza-
tion to fit your particular system. If your processor’s
driver is not available, you may use the available driver
software as an example. One caution in advance: The
drivers have been written in assembly language to give
the most speed- and memory- efficient code. However,
most people prefer high-level programming.

High-level programming can be used for everything ex-

cept software-timer generation. Compilers may give

different routines with different object code on each

compilation. Therefore, the timers must be either hard-

ware-based or coded in assembly language. Software

timers also present some risk if there is a frequency
upgrade change on the controlling processor. Regener-
ate and check your timer routines whenever the system
clock rate changes.

Timers, Test Loops and Assembly
Level Programming

Timing circuits or software play the most crucial role in
flash memory reprogramming. Good timers precisely
control their function; sloppy timers produce faults. An
example of a sloppy timer is one produced by a compil-
er. Each time high-level languages recompile, the low-
level object coding may change. Thus, a timing loop
may be 10 ms one compilation, and much longer or
shorter the next time.

You can check your timing method with the following
simple technique. Develop test loops which call the var-
ious timers’ routines. For example, implement the 6 ms,
10 ms, and 10 ms timers used with the 28F512 and
28F010. If you have a spare port or peripheral output,
use it to trigger an oscilloscope. Follow the trigger call
with the timer routines. If you do not have a spare port,
write to the flash memory address space before and
after each timer call. You can trigger the oscilloscope
off of the flash memory CEÝ signal. Remember to
power-down the system and remove the flash memory
before attempting these methods.

Once the timer code has been verified, you can link and
locate it to a higher-level erase/program algorithm im-
plementation.

ProgrammingÐThe Key to Proper
Erasure

Earlier sections described the importance of program-
ming 00’s prior to erasure. This procedure equalizes the
charge on all memory cells; following this step all bits
erase in unison.

A conclusive debug technique can check your program-
ming software. Simply use your software to program
zeroes into the flash memory and then verify this step
using a conventional PROM programmer. Load the
PROM programmer’s buffer with all zeroes and com-
pare the buffer to the flash memory. If your program-
mer does not service the flash memory, call the compa-
ny for the latest software upgrade. Alternatively, one
can easily rig the 512K flash memory to look like a
512K EPROM. Simply jumper VCC on a 32-pin socket

11



AP-325

to a few pins. Note that the 27512 EPROM and
28F512 flash memory have different intelligent identifi-
er codes. Override the identifier code check to use this
method. See Figure 7 for socket details.

Some microcontrollers have limited address space or
internal memory that masks certain external address
space. Even if you do not use sections of the flash mem-
ory, you must still access these sections to program ze-
roes before erasure. Map and decode port bits to access
unused address space, and verify that all bytes are pro-
grammed to zero before proceeding with erasure.

292059–8

Figure 7. A 28F512 can be read in a PROM

programmer as a 27512 by jumpering the

appropriate pins to VCC. The same method

applies to the 28F010.

16- and 32-Bit SystemsÐ
Achieving Optimum Reprogramming
Throughput

Erasing flash memory in 16- and 32-bit systems re-
quires special consideration. One could implement the
program and erase algorithms in a byte-wise fashion,
but this is time-consuming. Alternately, one can treat
the multiple flash memory as a data word, and gain
optimum performance.

The primary consideration with the latter approach is
that one device may program or erase faster than the
other(s). Subsequent programming or erasure of a slow-
er device compromises the functionality of the faster
device by subjecting it to the slow-device timing.

Consider an example of erasure in a 16-bit system. Af-
ter 10 passes through the erase operations, both devices
verify through address 07C3h. Then at address 07C5h,
the processor reads data word 83FFh.

Since erase data is FFFFh, a few bits in the upper byte/
device have not erased. The natural flow of the algo-
rithm would dictate another erase operation. But what
about the lower device? Could it be completely erased?

Of course it could be; every device erases at a different
rate and the algorithm has only checked up to address
07C5h.

You can take advantage of the data rate of wider data
buses by utilizing the command register, the reset com-
mand and an analysis of erasure. Each erase operation
is 10 ms. Each byte verification takes 6 ms. Therefore,
erasure takes three orders of magnitude longer than
verification. Optimization for erasure yields the opti-
mum performance because verification is a second
order effect.

Let us reconsider the previous example. At address
07C5h, the data word does not verify. On the next erase
operation edit the erase (and erase verify) command
word such that only the high byte gets the erase com-
mand, and the low byte gets a reset command. (i.e.,
change the command word from 2020h to 20FFh).

See Application Note AP-316 for a detailed flow chart
for this approach. Note this document is based on the
28F256; however, most concepts carry through to the
higher density devices. (Literature Order number
292046).

Logic Analyzers and In-Circuit
Emulators

Many programmers use logic analyzers and in-circuit
emulators to debug code. These approaches are fine for
flash memory algorithm debug if certain conditions are
met.

1. Check timing routines with an oscilloscope; there is
no alternative.

2. Know your code and set breakpoints intelligently.
One designer had the bad luck of throwing in a
breakpoint in the middle of the program 00’s loop.
After stepping through a couple of byte program 00
loops, he called the erase flow routine. Can you iden-
tify the problem?

3. Single step through your reprogramming code, if and
only if, the flash memory device is removed from the
system.

Testing Your SoftwareÐOne More
Time

Some flash memories specify 100 erase/program cycles.
This is a minimum specification; Intel Flash Memories
cycle 100,000 times. With this in mind, feel free to
check and recheck reprogramming operations. There is
no reliability risk in doing so.

12



AP-325

One confidence-raising test is similar to that done on
systems: stress the system/software by executing test
code numerous times consecutively. Set the reprogram-
ming drivers in a loop, and let them run 20–40 times.
On each consecutive pass, use a constant data pattern
such as 0AAh. This tests the reprogramming code from
a quasi-static perspective. Missing is the true system
environment. In the true system environment, multiple
inputs compete with the flash memory for interrupt pri-
ority. Also, RF noise from motors can cause spikes and
glitching on VPP or VCC. Additionally, fully loaded
systems or partially loaded systems might have differ-
ent VPP response characteristics or noise levels. Signals
that look clean in the lab, might not be all that clean in
the true operating environment. Therefore, flash repro-
gramming tests should be done in the true system envi-
ronment as a final test.

Watchdog Timer Debug Circuit

This section describes a simple tool you can build for
debugging your code. Since Intel’s first generation
Flash Memories contain integrated stop-timers, this
tool offers no real benefit. It is simply shown in case a
designer is debugging code for alternate sources. An
EPLD watches the flash memory data bus and control
signals for the erase sequenceÐerase set-up, erase, and
erase verify commands. Once the CPU initiates erasure,
the debug tool starts a 15 ms timer. Should the timer
count down prior to receiving the erase verify com-
mand, then the circuit switches VPP off.

This tool does not check for the other items discussed
in the Tips on Testing section; you must still check
those yourself.

Figure 8 shows the circuit schematic. The EPLD
source code and the name of an Intel EPLD applica-
tions engineer is located in Appendix D.

292059–9

Figure 8. Watchdog Timer Debug Circuit

13



AP-325

TROUBLE SHOOTING GUIDE

Determining the Root CauseÐ
Software Error vs Device Damage

The three major indications of a flash memory problem
are labeled in the following section. The subsequent
paragraphs define potential root causes to investigate.

I. The Device Does Not Program

Did it program before?

A. No.

1. Trigger your oscilloscope on CEÝ while prob-
ing VPP. Verify that VPP has reached a steady-
state 12V when the device is first written.

2. Set the time-base to 10 ms/division (the dura-
tion of the program operation). Trigger on
CEÝ and probe WEÝ (look at both traces).
Check the duration of the 10 ms program oper-
ation time delay. Also, check the duration of
the 6 ms delay between writing the program
verify command and read.

3. Look for ringing on VPP when VPP has been
switched on. Over-voltage stress on VPP (ring-
ing with amplitude greater than 13V) will de-
stroy VPP’s silicon structure.

4. Power the system down and back up. Look for
destructive glitches on VCC or VPP (greater
than 7V and 13V respectively).

5. Verify erasure and programming on a PROM
programmer (if available). Fill the programmer
buffer first with 00h data and program the buf-
fer to the flash memory. Then erase the device,
and repeat with AAh data. Repeat the last step
with 55h data. This sequence fully exercises the
array, the input buffers and the output buffers.
If all tests pass then check for a hardware or
software error.

B. Yes.

1. Have you done anything that may have ESD
zapped the devices (i.e., touched the devices
while not being grounded, re-wired the proto-
board with the components socketed, etc.)? If
yes, check part as outlined in section 1.A.5.

2. Have you attempted erasure? If yes, verify
your algorithm as outlined in Chapter 4. Also,
implement the in-system intelligent identifier
mode. If the device outputs an incorrect code,
then either an output has been zapped or the
golden rule has been violated. Section 1.A.5
describes a method of checking for ESD dam-
age.

II. The Device Does not Erase

Did it erase before?

A. No.

Follow steps 1–5 outlined in section I. When
performing step 2, adjust the oscilloscope time
base to 10 ms/div.

B. Yes.

Has the board design, clock rate or software
changed? System clock rates directly affect the
accuracy of software timers. See AP-316 for a
discussion on software timing versus clock rate.

III. The Device Erases Spuriously

Exercise all system functions while monitoring the
flash memory chip selects. Verify that I/O mapped
addresses or logic are not accidentally selecting the
flash memory. For example, the space bar charac-
ter sent from a keyboard controller happens to be
20h. If the flash memory is accidentally selected
while this data is on the bus, then erasure will com-
mence on the following cycle when the condition
occurs again.

14



AP-325

APPENDIX A

TWO APPROACHES TO ALGORITHMS

Adaptive

292059–10

Brute Force

292059–11

V EfficientÐ

Max Time e (10 a 6 ms) * 25
e 400 ms

Typ Time e (10 a 6 ms) * 1
e 16 ms

V ReliableÐ

Verify Command slews internal voltages to simu-
late elevated VCC.

V SlowÐ

Max Time e (100 ms * 12) a 3 ms
e 4200 ms

Typ Time e (100 ms * 10) a 1.5 ms
e 2.5 ms

V QuestionableÐ

Unknown margin to VCC and temperature
swings, as well as cell leakage.

Figure 9. Left and right flow charts compare Intel’s (adaptive) Quick-Pulse Programming

algorithm and another company’s (brute force) approach to flash memory programming.

A-1





AP-325

APPENDIX B

292059–12

VPP R1 R2
Resistor

Out Tolerance

12.0V 10.7k 1.24k 1%

Figure 10. Basic flash memory VPP voltage supply with ON/OFF control.

When VPP COMMAND goes low, the Linear Technology LT1072 switching regulator produces 12V.

This circuit is just one example of a VPP supply.

B-1





AP-325

APPENDIX C
QUICK-PULSE PROGRAMMING ALGORITHM

292059–13

Bus
Command Comments

Operation

Standby Wait for VPP Ramp
to VPPh (e 12.0V)(1)

Initialize Pulse-Count

Write Set-Up Program Data e 40H

Write Program Valid Address/Data

Standby Duration of Program
Operation (tWHWH1)

Write Program(2) Verify Data e COH; Stops
Program Operation

Standby tWHGL

Read Read Byte to Verify
Programming

Standby Compare Data
Output to Data
Expected

Write Read Data e 00H, Resets
the Register for
Read Operations.

Standby Wait for VPP Ramp
to VPPl

(1)

NOTES:
1. The VPP power supply can be hard-wired to the device or switchable. When VPP is switched, VPP I may be ground,
no-connect with a resistor tied to ground, or less than VCC a 2.0V.
2. Program Verify is only performed after byte programming. A final read/compare may be performed (optional) after the
register is written with the Read command.
3. CAUTION: The algorithm MUST BE FOLLOWED to ensure proper and reliable operation of the device.

C-1





AP-325

APPENDIX D
WATCHDOG TIMER CIRCUIT

EPLD Source Code and Applications Contact Person

Thom Bowns PLFG Applications
Intel
January 5, 1989
Rev. 008
5AC312
Watchdog timer to cut VPP from FLASH if erase cycle too long.
OPTIONS: TURBO 4 ON
PART: 5AC312

INPUTS: CLK, DO@3, D1@4, D2@5, D3@6, D4@7, D5@8, D6@9, D7@10,
nCE@2, nWE@11, TIMER IN@13, RESET@14, AHR@15

OUTPUTS: TIMCLR@23, TIMST@22, LED@21, VPP@20

NETWORK:
CLK 4 INP (CLK)
D0 4 INP (D0)
D1 4 INP (D1)
D2 4 INP (D2)
D3 4 INP (D3)
D4 4 INP (D4)
D5 4 INP (D5)
D6 4 INP (D6)
D7 4 INP (D7)
nCE 4 INP (nCE)
nWE 4 INP (nWE)
TIMER IN 4 INP (TIMER IN)
RESET 4 INP (RESET)
AHR 4 INP (AHR) % RESET active high if AHR is high %
COND1 4 NOCF (C1d) % Conditions 1–4 are routed %
COND2 4 NOCF (C2d) % through combinatorial feedbacks %
COND3 4 NOCF (C3d) % to reduce product term count. %
COND4 4 NOCF (C4d) % %
CLR 4 NOCF (CLRd)

EQUATIONS:
CLRd 4 RESET * AHR 0 !RESET * !AHR;
TIMEOUT 4 /TIMER IN;
C1d 4 (/nCE * /nWE * 20H); % Write 20 %
C2d 4 (/nCE * /nWE * a0H); % Write A0 %
C3d 4 (/nCE * /nWE * /20H); % Write other than 20 %
C4d 4 (/nCE * /nWE * /A0H); % Write other than A0 %
20H 4 /D7 * /D6 * /D5 * /D4 * /D3 * /D2 * /D1 * /D0;
A0H 4 /D7 * /D6 * /D5 * /D4 * /D3 * /D2 * /D1 * /D0;

D-1



AP-325

MATCHING: WATCHDOG
CLOCK: CLK

STATES: [ VPP LED TIMST TIMCLR XSB ]
START [ 0 0 0 0 0 ]

S1 [ 1 0 0 0 0 ]
S2 [ 1 0 1 0 0 ]
S3 [ 1 0 1 1 0 ]
S4 [ 1 0 0 1 0 ]
S5 [ 1 0 1 1 1 ]
S6 [ 1 0 1 0 1 ]
S7 [ 0 1 1 0 0 ]

% TRANSITION STATEMENTS %

START: S1 % From power up, go to S1 right away %
S1: IF COND1 THEN S2 % If write 20, go to next state %
S2: IF /COND1 THEN S3 % Until not write 20, hold %

IF CLR THEN S1
S3: IF COND1 THEN S4 % If another write 20, start timer %

IF COND3 THEN S7 % If write other than 20, error %
IF CLR THEN S1

S4: S5 % Trigger timer then go to S5 loop %
S5: IF COND2 THEN S6 % If write A0, stop timer %

IF TIMEOUT THEN S7 % If timer times out,
go to error state %

IF COND4 THEN S7 % If write other than A0, error %
S6: S1 % Stop timer and go back to S1 %
S7: IF CLR THEN S1 % Error state. wait for a RESET. %

END$

EPLD Pinout

5AC312

292059–14

D-2



AP-325

APPENDIX E

Checklist: Most Common Mistakes that May Lead to Excessive Erasure

# not programming all bytes to 00 data prior to erasure;

# not observing the 6 ms set-up times between programming or erasure and verification;

# attempting to program before VPP is at 12V (Capacitive Load)

# not latching the erase verify address with the erase verify command, or changing the address on the subsequent
read cycle;

Chapters three and four discuss the correct methods of developing and debugging code to diminish the possibility of
making these mistakes.

E-1


