
TRANSTECH TTGS
GRAPmCSSERVER

USER MANUAL

VERSION 1.0 4:9:1989

TRANSTECH DEVICES LIMITED
UNIT 17, WYE INDUSTRIAL ESTATE

LONDON ROAD
HIGH WYCOMBE

BUCKINGHAMSHIRE
HPIIILH
ENGLAND

TELEPHONE (+44) 0494464303
FAX (+44) 0494 463686

2 TTGDOOl

Contents

1 Introduction 2

2 Function Overview 3

3 Server Interface 3

4 Server software 3

5 Initialisation 6

6. Colour Tables 7

7 Screen Support 8

8 Windows 8

9 Colour Selection 8

10 Text Support 8

11 Function Overview 9

12 Examples \ 19

13 Error Codes 25

1 Introduction

The Transtech Graphics Server (TTGS), consists of about fifty elementary graphics primitives,
which can be used to manipulate, points, vectors, circles, arcs, rectangles, and polygons. It also
includes support for text, and windows.

The Server is written exclusively in occam and is accessed via a channel interface. This ensures
that the Server can be accessed from any of a wide range of high level languages, usually by
means of a simple interface procedure (stub) which interfaces directly with the Server channels.

TTGDOOI

2 Function Overview-

3

Table I lists all the functions supported in the TTG Server, their Op.Codes and parameters.
The majority of these functions are compatible with the Inmos B0071ibrary. Those functions not
compatible with the B007 library are marked with an asterisk in table \. . All the parameters
are of type INT32 (signed integer) 1 unless indicated otherwise, e.g BYTE.

3 Server Interface

The TTG Server is accessed through a pair of transputer channels. The input channel is used to
pass all reques~, and the output channel is used by the Server to return results. The TTG Server
actually consist~of a stand alone process which serves these channels, and runs concurrently
with the user application. This means that the TTG Server process can be used as a graphics
server, processing requests from any number of processes, multiplexed on the command/reply
channels.

command

--------->
<---------

reply

4 Server softw-are

TTG
SERVER

The Server was developed in occam under the IMS D700d Transputer Development system. As
such it is currently available in source form only on IBM PC 5~" disks. However, the supplied
bootable binary of TTGS (TTGS.btl) can be loaded onto a TTG TRAM running under any
host, it is only necessary to transfer TTGS.btl to the appropriate medium.

To install the software, place the floppy in drive A of your PC and type 'a:install'. Further
instructions will follow, then all files will be copied.

The supplied floppy contains a directory source in which can be found

TOPLEVEL.TOP this is a TDS (IMS D700d) top-level file, and contains the source ofTTGS
plus some examples. All other supplied formats can be derived from this source. Within this
TDS toplevel file can be found

INote that it is highly unlikely that a 16-bit version of this server will ever be produced, and for efficiency
the TTG Server source uses INT throughout. However, if a 16-bit Transputer were to attempt to communicate
with a 32-bit TTG Server, it would need to use INT32 explicitly.

4

Op.Code Function Parameters
1 c.plot.point xl,yl
2 c.draw.line xl,yl,x2,y2
3 c.draw.circle xCentre, yCentre, radius
4 c.draw.arc xl,yl,x2,y2, x3,y3
5 c.draw.rectangle x, y, xLength, yLength
6 c.draw.polygon numberOfSides, xl, yl, ... , XB, yn
7 c.fill. polygon x,y
8 c.move x,y
9 c.move.rel deltaX, deltaY
10 c.clear.screen colourValue
11 c.select.screen screenNumber
12 c.display.screen screenNumber
13 c.flip.screen
14 c.copy.screen destinationScreenNumber
15 c.clear.window colourValue
16 c.select.window windowNumber
17 c.display.window windowNumber, x, y
18 c.set.window xDimension, yDimension
19 c.set.draw.mode mode
20 c.draw.char characterNumber
21 c.define.char charNumber, [8] BYTE bitMap
22 c.write.string noBytesText, [] BYTE text
23 c.untyped.string
24 c.write.number number
25 c.scroll
26 c.jump.scroll
27 c.rotate quarterTurns
28 c.reflect.x
29 c.reflect.y
30 c.line.feed
31 c.carriage.return
32 c.set.colour colourValue, redj-~n, blue
33 c.select.fg.colour colourValue
34 c.select.bg.colour colourValue
35 c.select.colour.table tableNumber
36 c.set.mask.reg mask
37 c.set.xwidth plot pixel width
38 c.set.yheight plot pixel height
39 c.get.pixeLcoloUI
40 c.line.frequency lineFrequency
41 c.frame.rate frameRate
42 c.interlace boolean
43 c.pixeLclock pixelFrequency
47 c.display.x xSize in pixels
48 c.display.y ySize
44 c.init.crt
45 c.quick.fill xseed, yseed
46 c.write.file. to.screen [ySize][xSize] BYTE image

* 50 c.fast.clear colour
51 c.define.gcursor [16][16] BYTE pixel, BYTE edgeChar,

transparentChar, interiorChar, edge, interior
52 c.remove.gcursor
53 c.draw.gcursor x,Y
54 c.wait.vblank

255 c. terminate

Table 1: Miscellaneous TTGS Functions

TTGDOOl

TTGDOOl 5

TTGconst.tsr this filed fold contains a library, which contains the definitions of the command
op codes .and return codes used by TIGS.

TTGS.tsr contains library this filed fold contains a library, which in turn contains the SC
of TIGS. To use TTGS in an application it is necessary to include the lines

#USE "TTGconst.tsr"
#USE "TTGS.tsr"

within your application.

PROGRAM TTGS source this is the configuration harness used to generate the supplied
TTGS.btl file. It is set up to accept commands down link 1. This can be changed if desired,
and recompiled.

EXE TTG server as exe this is a TDS 'executable', and runs within the Inmos D700D. This
will typically be used from the TDS to"arwe any of the Transtech range of graphics devices, and
the application code will need to be included within the EXE. Note that to be usable in this
form the TIG TRAM must the one running the TDS.

various folds labelled EXE example contain examples illustrating how to drive TIGS. To
run the examples, first point at PROGRAM TTGS source and press ALT-4 to boot TIGS
into the TIG TRAM, then get the example EXE (using ALT-5) and run the example (using
ALT-6).

Visible at the root of the floppy is

TTGS.BTL this is a standalone bootable image. This is standalone version of the TIG Server
can be booted direct into a Transtech Graphics module using the afserver or iserver. The
supplied image assumes that commands will be received down link 1. Experienced users can
use this file for dynamic code loading, and this is illustrated in the C examples later in this
document. Dynamically loading the .BTL file is simpler than using the .CSC, but for true
maniacs

TTGS.CSC this is an extracted code fold and resides within the library fold described above.
This is suitable for dynamic code loading, and will typically be used from within occam or
'C' programs for dynamically loading the TIG Server process onto a TIG TRAM. Intimate
knowledge of .CSC file format is required to use this.

A TIG Server can be driven by an occam program as follows:

[nparams]IIT32 parameters:
IIT32 command. reply:
SEQ

to.ttglib ! command
SEQ i =0 FOR SIZE parameters

to.ttglib ! parameters [i]
trom.ttglib ? reply

6 TTGDOOl

5 Initialisation

The main elements of the TTG Server which require initialisation are the Video Timing Gen
eration parameters for your particular monitor. There are a total of six parameters which need
to be defined, as follows:

line.frequency
frame.rate
pixel. clock
display. x
display.y
interlace

the total number of scan lines per screen.
the total number of frames per second.
the rate at which pixels are output (video data rate).
the number of displayable pixels per scan line.
the total number of displayed scan lines.
interlaced, or non interlaced display operation.

Typical values are listed below.

VAL line.frequency
VAL frame.rate
VAL pixel. clock
VAL display.x
VAL display.y
VAL BOOL interlace

IS 34800:
IS 60:
IS 26000000:
IS 612:
IS 512:
IS FALSE:

-- 34.8 KHz
-- 60 Hz frame rate
-- 26 MHz pixel clock

The TTG Server boots up in the most sensible state for any given graphics card - for example
the TTGl boots with the above values as default, whereas the .TTG3 boots with x.size = y.size
=1024, pixel.clock =85000000.

If different values are required (for more details refer to the relevant Transtech Graphics Device
User Guide), then parameters are modified by individual calls to the TTG Server. The TTG
Server maintains internal state for each of the definable parameters, and the VTG is only changed
when the init.crt is sent. So for example:

err =TTG(c_line_frequency, 38000);
err = TTG(c_frame_rate. 52);
err = TTG(c_pixel_clock. 25000000);
err =TTG(c_interlace. FALSE);
err = TTG(c_x_size, 512); 1* maps on to c.displayx *1
err = TTG(c_y_size. 612); 1* and displayy *1

can be used from PARALLEL C to initialise the VTG.

NB the TTG Server calls an internal routine initCRTC() on receiving the init.crt command,
with the current parameter values. This routine is described in more detail for specific graphics
modules in the relevant User Guide. So if the user wishes to access the device directly, refer to
the User Guide and the illitCRTC() example.

TTGDOOl

BITS RANGE EFFECT
0-1 0-3 green intensity
2-3 0-3 red intensity
4-5 0-3 blue intensity
6-7 0-3 intensity bias

Table 2: Pixel fields for colour table 0

colourValue Colour Range
0-15 grey scale
16 - 31 null to red
32 - 47 null to green
48 - 63 null to blue
64 - 79 null to yellow
80 - 95 null to cyan

96 - 111 null to magenta
112 - 127 low blue plus red to green
128 - 143 low red plus green to blue
144 - 159 low green plus blue to red
160-175 medium blue plus red to green
176-191 medium red ~ green to blue
192 - 207 medium green plus blue to red
208 - 223 full blue plus red to green
224 - 239 full red plus green to blue
240 - 255 full green plus blue to red

Table 3: look-up 'table ranges for Table 1

6 Colour Tables

7

The TTGS library supports four internal colour tables. The desired current colour table can be
selected by the function select.colour.table.

Table 0: IBM Standard
This has colours partitioned' amongst the eight bits of each pixel, with 2 bits per colour and 2
bits to bias any of the colours. Bias value 0 has no effect, 1 intensifies the red, 2 intensifies the
green, and 3 intensifies the blue.

Table 1: TTG Standard
The colour look-up table entries can be summarised as follows:

Table 2 Grey Scale
This table is the default table for monochrome images. It consists of 256 grey levels from 0
(dark) to 255(white).

Table 3 Dithered colour
This table is the default table for true colour. Each byte contains a 3-bit red field (bits 0..2) a
3-bit green field (bits 3..5) and a 2-bit blue field (bits 6 and 7). This table gives a good range of
spectral hues and full-colour images can be efficiently dithered down to 8 bits using this table,
the dithering operation requiring only bit masks, shifts and adds.

8 TTGDOOl

7 Screen Support

The TTG Server provides support for drawing into double buffered frame stores.

The following functions are provided for controlling the display screen: select.screen, dis
play.screen, clear.screen, Hip.screen, to select the screen to be drawn into and displayed, to
clear the draw screen, and to flip between the draw screen.s. The copy.screen function copies
the contents of one screen to another.

8 Windo'Ws

The TTG Server provides limited support for windows. Any selected window exists in all the
available screens. set.window sets up a window with a given width and length and returns an
I.D for the allocated window. clear.window and select.window perform the same operations
on a window as the equivalent functions do on a screen. display.window defines \vhere on the
screen the window should be placed.

scroll and jump.scroll can be used to scroll the current window. The two functions give
smooth scroll, and character scroll respectively.

9 Colour Selection

The look-up table can be dynamically modified using the set.colour function. This com
mand overwrites the selected table entry. The foreground and background colours for all tex
tual and primitive display functions is selected by the two functions select.fg.colour and se
lect.bg.colour.

The function get.pixel.colour returns the value for any pixel on the current draw screen.

The set.pixel.mask. function can be used to setup the mask register in the look-up table. This
register is ANDed with all displayed pixels, so it can be used to rapidly select pixels drawn. Can
be useful for selecting single bit images for rapid animation.

10 Text Support

The TTGS Server also provides limited text support. Simple functions are provided to write
single characters (draw.char), strings (write.text , and numbers (draw.number). A total
of 256 characters are supported. The text characters are all ASCII compatible, and there
are an additional 31 graphics characters. Note that any of these characters can be redefined
dynamically. The full character set is defined below:

TTGDOOl

0-31
32-57
58-96
97-126
127-255

graphics
"#$Xt'()*+,+-./0123456789
ABCDEFGHIJKLKlOPQRSTUVWXYZ(\]~_

abcdefghijklmnopqrstuvvxyz{
graphics

9

The server also supports a number of text drawing modes, which enables the overlaying of text
planes. This is discussed further in the definition of the set.draw.mode function.

11 Function Overvie'W

draw.line

Parameters: xl, yl, x2, y2
Reply: e.ok on success else error code

Function: draw a straight line between the two specified points in the current draw screen.

plot.point

Parameters: x, y
Reply: e.ok on success else error code

Function: plot a single pixel at the defined postion within the current draw screen.

draw.circle

Parameters: xCentre, yCentre, radius
Reply: e.ok on success else error code

Function: draw a circle of defined radius at the defined postion within the current draw screen.

draw.arc

Parameters: xl,yl, x2,y2, x3,y3
Reply: e.ok on success else error code

Function: draw an arc specified by the three points defined postion within the current draw
screen.

10

draw.rectangle

Parameters: x, y, xLength, yLength
Reply: e.ok on success else error code

TTGDOOI

Function: draw a rectangle. x,y defines the top left vertex, xLength,yLength, the size of the
rectangle. The rectangle is drawn into the current draw screen.

draw.polygon

Parameters: numberOfSides, xl,yl, ..., xn,yn
Reply: e.ok on success else error code

Function: Draw a polygon with the specified number of sides into the current draw screen.

fill.polygon

Parameters: x, y
Reply: e.ok on success else error code

Function: Fill an arbitrary polygon enclosing the specified point. The polygon is filled with
the current foreground colour. Any point within the polygon may be selected. This algorithm
fills an area bounded by the current foreground colour, so x,y must be within the boundary
(not on the boundary) of the desired polygon, which has already been drawn in the current
foreground colour.

quick.fill

Parameters: x, y
Reply: e.ok on success else error code

Function: Fast fill a convex polygon enclosing the specified point. The polygon is filled with the
current foreground colour 0

draw.char

Parameters: character.Number
Reply: e.ok on success else error code

Function: Draw the given ASCII character at the current cursor position.

write.string

Parameters: noBytesText, Text

TTGDOOl

mode Foreground Background
0 Replace Replace
1 AND AND
2 OR OR
3 XOR XOR
4 Replace no change
5 AND no change
6 OR no change
7 XOR no change

Table 4: Text display modes

Reply: e.ok on success else error code

11

Function: write a text string to the current cursor position. The string wraps around the
edge of the screen, or window.

write.number

Parameters: number
Reply: e.ok on success else error code

Function: Write the given number (base 10) to the current cursor position.

define.char

Parameters: charNumber, rowOne, ... ,rowEight
Reply: e.ok on success else error code

Function: Allows user to program characters. The function expects an 8*8 bit mapped im
age of the character, so a total of 8 bytes must be given. Each byte specifies eight consecutive
pixels, starting with the top row. Bit 7 (i.e char AND 128) is the far left bit of the row.

set.draw.mode

Parameters: modeNumber
Reply: e.ok on success else error code

Function: The Server supports several text drawing modes. The mode defines the operation
applied as new character grids (8*8 pixels) are combined with the existing screen text.

The colour values of the foreground and background pixels are modified according to the mode
as defined in Table 4.

rotate

12

Parameters: quarterTurns
Reply: e.ok on success else error code

Function: Following this command, all characters displayed are rotated through the defifJe~

number of quarter turns. 0 = no rotation, 1 = 90deg, 2 = 180deg, 3 = 270deg.

reflect.x

Parameters: None
Reply: e.ok on success else error code

Function: Text is reflected in the X plane. This can be used in combination with rel~<:•. ~·

to reflect in both planes.

reflect.y

Parameters: None
Reply: e.ok on success else error code

Function: Text is reflected in the Y plane. This can be used in combination with relecLx
to reflect in both planes.

move

Parameters: xPosition, yPosition
Reply: e.ok on success else error code

Function: Move text cursor to the absolute position specified.

move.reI

Parameters: dx, dy
Reply: e.ok on success else error code

Function: Move text cursor relative to the current position.

carriage.return

Parameters: None
Reply: e.ok on success else error code

Function: Moves the cursor to the left hand edge of the currently selected window, or SCT~.iL

on the current line.

TTGDOOI

line.feed

Parameters: None
Reply: e.ok on success else error code

13

Function: Moves the cursor down by the height of the characters being drawn. The screen,
or window is scrolled when the command is issued on the bottom line.

select.screen

Parameters: screenNumber
Reply: e.ok on success else error code

Function: select a screen as the current draw screen. All future operations will draw into
this screen.

display.screen

Parameters: screenNumber
Reply: e.ok on success else error code

Function: select a screen as the current display screen. The contents of the display screen
will be displayed.

clear.screen

Parameters: colourValue
Reply: e.ok on success else error code

Function: clear the current draw screen ~,he defined colour.

fast.clear•screen

Parameters: colour
Reply: e.ok on success else error code

Function: certain TRANSTECH TTG cards support an ultra high-speed screen clear. This
utilises a feature of modern video RAMs, but is subject to certain constraints - the function
must take place during frame fiyback, and the pixel mask register must be set to zero. This
function clears a whole bank of video RAM to colour, meeting all these constraints, so the
user need not wait.vblank beforehand. The function always clears the invisible screen, i.e the
bank currently not selected for display. For a l024xl024 display, this function takes less than
500pSeconds, i.e less than 500 picoSeconds per pixel.

Hip.screen

14

Parameters: None
Reply: e.ok on success else error code

Function: flips between display screens.

copy.screen

Parameters: sourceScreenNumber, destinationScreenNumber
Reply: e.ok on success else error code

Function: copy the entire contents of one screen to another.

set.window

Parameters: xDimension, yDimension
Reply: window number

TTGDOOI

Function: Sets up a window with a given width and length. The number of the window is
returned.

select.window

Parameters: windowNumber
Reply: window number

Function: Select a given window as the current draw window. All future operations draw
into this window.

display.window

Parameters: windowNumber
Reply: e.ok on success else error code

Function: Select a given window as the current display window. The selected window is dis
played.

clear.w indow

Parameters: colourValue
Reply: e.ok on success else error code

Function: clear the given window to the defined colour.

TTGDOOl

jump.scroll

Parameters: None
Reply: e.ok on success else error code

Function: The current draw window is scrolled vertically by one character height.

scroll

Parameters: None
Reply: e.ok on success else error code

Function: The current draw window is scrolled vertically by one line.

set.colour

Parameters: colourValue, red, green, blue
Reply: e.ok on success else error code

15

Function: writes a colour look-up table entry. Defines the red,green, and blue components
of the given colourValue, which may be any of the 0..255 table locations. Each primary colour
may have range 0..255.

select.fg.colour

Parameters: colourValue
Reply: e.ok on success else error code

Function: select the given colourValue as the current foreground colour. All subsequent text
and primitives will appear in this colour. ~\,

select.bg.colour

Parameters: colourValue
Reply: e.ok on success else error code

Function: select the given colourValue as the current background colour. All subsequent text
background will appear in this colour.

get.pixel.colour

Parameters: x, y
Reply: colourValue

Function: return the colourValue of the selected pixel on the current draw screen.

16

select.colour.table

Parameters: tableNumber
Reply: e.ok on success else error code

Function: select one of the three built in colour tables.

set.mask.register

Parameters: mask
Reply: e.ok on success else error code

TTGDOOl

Function: set the mask register in the look-up table to the defined value. This value is ANDed
with input pixel before the pixel is presented to t~ook-uPRAM.

set.xwidth

Parameters: width
Reply: e.ok on success else error code

Function: set the character pixel width. Defaults to 1, giving characters 8 pixels wide. When
not set to 1, all plot operations e.g line drawing, text will generate fat pixels.

set.yheight

Parameters: yheight
Reply: e.ok on success else error code

Function: set the character pixel height. Defaults to 1, giving characters 8 pixels high. When
not set to 1, all plot operations e.g line drawing, text will generate tall pixels.

line.frequency

Parameters: frequency
Reply: e.ok on success else error code

Function: change the line frequency used in all subsequent init.crt requests.

frame.rate

Parameters: frameRate
Reply: e.ok on success else error code

Function: change the frame rate, which is used in all subsequent init.crt requests.

TTGDOOl

interlace

Parameters: enabled
Reply: e.ok on success else error code

17

Function: a boolean which defines whether interlaced output is enabled. This defaults to FALSE
on startup.

display.x

Parameters: xSize
Reply: e.ok on success else error code

Function: set number of pixels per scan line. Certain TTG cards only support a fixed number
of pixels per line, in which case this function has no effect.

display.y

Parameters: ySize
Reply: e.ok on success else error code

Function: set number of scan lines to display. Certain TTG cards only support a fixed number
of scan lines, in which case this function has no effect.

select.gcursor

Parameters: [16][16] BYTE cursor,
BYTE edgeChar, transparentChar, interiorChar,
BYTE colourOfEdge, colourOfInterior
Reply: e.ok on success else error code

Function: this function can be used to re-define the graphics cursor. The function expects
an 16*16 BYTE array, each character defines a single pixel of the cursor. e.g.

char cursor[16] [16] ={ 000 ",

0+0 It,

0+0 ",

0+0 te,

0+0 ",

000000+0000000 It,

0++++++++++++++0",

0++++++++++++++0",

.. 000000+0000000 .. ,

.. 0+0 ",

It 0+0 It,

It 0+0 ",

It 0+0 It,

18

In this example:

edgeChar =
transparentChar =
interiorChar =
colourOfEdge =
colourOfEdge =

'0 J ;

J J.,
J +' ;
10;

256;

It

It

0+0

000

.. ,.. };

TTGDOOl

The parameter edgeChar defines the character to be interpreted as the cursor edge, the trans
parentCharparameter defines the character used to denote the transparent background and the
interiorChar parameter defines the character used to denote the interior of the cursor. The
border colour of the cursor is given by colourO/Edge, and the background colour is given by
colourO/Interior. The transparent colour is of cOyfse 0, so that the transputer's MOVE2D
operations can be used. ~

remove.gcursor

Parameters: None
Reply: e.ok on success else error code

Function: remove the graphics cursor from the current display screen. Its· previous draw lo
cation is stored by the Server.

draw.gcursor

Parameters: x, y
Reply: e.ok on success else error code

Function: draw the graphics cursor at the defined position. This position is stored for the
following remove.gcursor operation.

wait.vblank

Parameters: None
Reply: e.ok

Function: do not proceed until vertical blanking is in progress. Used for synchronising frame
flipping to prevent screen shearing.

TTGDOOI

12 Exalllpies

19

Here are some program fragments illustrating use of the TTG Server. There are two ways of
using the TTG server - it will either run concurrently with the application, if the application
is to run on the graphics card, or it will run in isolation on the graphics card, with another
application processor communicating with it via a link.

These examples assume the latter 2, that the TTG Server is running on another processor
communicating with the one running the example code. The most common set-up will be - a
TRANSTECH TMB08 motherboard (or equivalent) in a PC, with a TRANSTECH TIM 6 (or
equivalent) in site 0, plus a TTG graphics TRAM (e.g TTGl, TTG3) in site 1. This is the
assumed configuration, but different configurations are trivial.

The examples are given in occam (IMS D700D or IMS D705B) and C (3L Parallel C).

The first example sets up the system to a known state, selecting video parameters and a colour
table. Here is the occam :-

CHAN OF ANY toTTG :
PLACE toTTG AT 2
CHAN OF ANY fromTTG
PLACE fromTTG AT 6

-- on TMB08, siteO link2 ==> site1 link1

#USE ttTTGconsts.tsr"
-- for the TOOLSET this would be #IICLUDE "TTGconsts.occ"

PROC-TTGcommand (INT reply, VAL liT command)
-- only used for parameterless commands
SEQ

toTTG command
fromTTG ? reply

PROC TTGparams (lIT reply, VAL liT command, VAL 0 liT params)
-- used for all commands with liT parameters
SEQ

toTTG command
SEQ i =0 FOR SIZE params

toTTG ! params [i]
fromTTG ? reply

lIT reply
SEQ

TTGparams
TTGparams
TTGparams
TTGparams

(reply, c.line.frequency, [34800])
(reply, c.frame.rate, [60])
(reply t c. interlace, [INT FALSE])
(reply t c. pixel. clock t [25000000])

2The version of TTGS supplied with each TRANSTECH graphics card includes examples of each method of
operation.

20

TTGparams (reply, c.x.size, [512])

TTGparams (reply, c.y.size, [512])
TTGcommand (reply, c.init.crt)
TTGparams (reply, c.select.screen, [0])
TTGparams (reply, c.display.screen, [0])

This code would compile and run as an EXE. Here the equivalent C :-

#include <stdio.h>
#inc1ude <chan.h>

#define SERVER_CODE "TTGS.btlU

#define SEEK_SET 0
#define SEEK_END 2

#define LIIE_FREQ 34800
#define FRAME_RATE SO
#define PIXEL_CLOCK 25000000

#include "ttglib.hlt

1* Define Library interface channels *1
extern CHAI *to_ttglib, *from_ttglib;

1* Global data *1

TTGDOOl

static CHAR *in_links[4] = {LinkOInput,Link1Input,Link2Input,Link3Input};
static CHAI *out_links[4] ={LinkOOutput,Link10utput,Link20utput,Link30utput};

1* function declarations *1
void errore);
int read_binary();
int setup_vtg();

int main(argc, argv, envp, in_ports, ins, out_ports, outs)
int argc, ins, outs;
char *argv0, *envp 0 ;
CHAI *in_ports0, *out_ports 0 ;
{

int result, fsize;
char *code;
int link;

1* pickup server link argument *1
if (argc < 2) {

error(ItSYHTAX: cdemo <link.no>u,O);
return(-1);

TTGDOOl

}

link = atoi(argv[1]);

1* assign"channel pointers *1
to_ttglib = out_links[link];
from_ttglib = in_links[link];

1* read library binary *1
if «fsize = read_binary(tcode» <= 0) return(-1);

21

1* BOOT it *1

printf("TTG Server BOOTED through link Y.d!\n" ,link);

free(code); 1* free code buffer *1

1* SETUP the VTG *1

if (! setup_vtg(» return(-1);

1* select + display screen 0 *1
TTG (SELECT_SCREEI, 0) ;
TTG (DISPLAY_SCREEN~ 0);

if «result =TTG(c_terminate» != e_ok) {
error(Ufailed to terminate TTGS" ,result);
return(-1);

}

return(O);
}

void error(mssg, err)
char *mssg;
int err;
{

printf("ERROR: ~s [Xd]\n",mssg,err)i
}

int read_binary(codebuffer)
char **codebufferi
{

char *code;
int result, fsize;
FILE *fp;

1* read library *1
if «fp = fopen(SERVER_CODE,"rb lt » -- (FILE *)HULL) {

22

error(ltfailed to open TTGServer code".fp);
return(-1);

}

if ((result=fseek(fp,O,SEEK_ElD» == -1) {
error(Ufseek failed".result);
return(-1);

}

if ((fsize=ftell(fp» == -1) {
error(ltftell failed",result);
return(-1);

}

if ((result=fseek(fp,O,SEEK_SET» == -1) {
error(ttfseek failed",result);
return(-1);

}

if «code = malloc(fsize+10» == (char *)IULL) {
error(ltInsufficient Memory for code".O);
return(-1);

TTGDOOl

}

if «result=fread(code,sizeof(char),(fsize),fp» != (fsize» {
error(ltFailed to read whole filett,result);
return(-1);

}

fclose(fp);

*codebuffer = code;
return(fsize);

}

int setup_vtg()
{

1* return code buffer address *1

int result;
if «result = TTG(c_line_frequency, LIIE_FREQ» != e_ok) {

error("error on line frequencylt,result);
return(O);

}

if «result = TTG(c_frame_rate, FRAME_RATE» != e_ok) {
error(Uerror on frame rate",result)i
return(O);

}

if «result = TTG(c_pixel_clock. PIXEL_CLOCK» != e_ok) {
error(lterror on frame ratetl.result);
return(O);

}

if «result = TTG(c_init_crt» != e_ok) {
error(Uerror on init_crt",result);
return(O);

}

return(1);
}

TTGDOOl 23

This is a substantially larger example than the preceding occam. The C example in fact dynam
ically boots the file TTGS.btl out of a link, specified at the command line. After compilation
and linkage, the command edema 2 will run the demo.

Now an occam example which fills a triangle parameters and a colour table. Here is the occam

include constants, define procedures

PRoe triangle (VAL INT colour, VAL [2] liT pO, p1, p2)
INT reply, xcen, ycen :
SEQ

TTGparams (reply, c.seleet.fg.colour, [colour])
TTGparams (reply, c.draw.line, [pO[O], pO[1], p1[O], p1[1]])
TTGparams (reply, c. draw . line , [p1[0], p1 [1] J p2 [0], p2 [1]])
TTGparams (reply, c.draw.line, [p2[O], p2[1], pO[O], pO[1]])
xcen := «pO[O]+p1[0])+p2[0])/3
yeen := «pO[1]+p1[1])+p2[1])/3
TTGparams (reply, c.quick.fill, [xeen, ycen])

INT reply
SEQ

TTGparams (reply, c.line.frequency, [34800])
TTGparams (reply, c. frame. rate, [60])
TTGparams (reply, c.pixel. clock, [25000000])
TTGcommand (reply, c.init.ert)
TTGparams (reply, c.select.screen, [0])
TTGparams (reply, c.display.screen, [0])
TTGparams (reply, c. clear. screen, [0])
triangle (30, [10, 10], [400, 90], [180,450])

and again the equivalent C :-

#inelude <stdio.h>
#include <chan.h>

#define SERVER_CODE "TTGS.btllt

#define SEEK_SET 0
#define SEEK_END 2

#define LIIE_FREQ 34800
#define FRAME_RATE SO
#define PIXEL_CLOCK(25000000

#include "ttglib.h"

24

1* Define Library interface channels *1
extern CHAI *to_ttglib, *from_ttglib;

1* Global data *1

TTGDOOl

static CHAI *in_links[4] = {LinkOlnput,Link1Input,Link2Input,Link3Input};
static CHAB *out_links[4] = {LinkOOutput,Link10utput,Link20utput,Link30utput};

1* function declarations *1
void errore);
int read_binary();
int setup_vtg();

int main(argc, argv, envp, in_ports, ins, out_ports, outs)
int argc, ins, outs;
char *argvD. *envpD;
CHAN *in_ports [], *out_ports 0 ;
{

int result, fsize;
char *code;
int link;

1* pickUp server link argument *1
if (argc < 2) {

error("SYIlTAX: cdemo <link.no>",O);
return(-1);

}

link =atoi(argv[1]);

1* assign channel pointers *1
to_ttglib =out_links[link];
from_ttglib = in_links[link];

1* read library binary *1
if «fsize = read_binary(tcode» <= 0) return(-1);

1* BOOT it */

printf("TTG Server BOOTED through link Xd!\n" ,link);

free(code); 1* free code buffer *1

1* SETUP the VTG */

if (! setup_vtg(» return(-1);

1* select + display screen 0 *1
TTG (SELECT_SCREEN, 0);

TTGDOOI

TTG (DISPLAY_SCREEN, 0);
TTG (CLEAR_SCREEN, 0);

25

triangle (30,'---_1Q, 10 J 400, 90, 180, 450);

if «result = TTG(c_terminate)) != e_ok) {
error("failed to terminate TTGS" ,result) ;
return(-1);

}

return(O);
}

void triangle (c, xO, yO, xi, y1, x2, y2)
int c, xO, yO, xi, y1, x2, y2;
{

int xcen, ycen;

TTG (SELECT_FG_COLOUR, c);
TTG (DRAW_LINE, xO, yO, xi, y1);
TTG (DRAW_LINE, x1, y1, x2, y2);
TTG (DRAW_LIIE, x2, y2, xO, yO);

xcen = (xO+x1+x2)/3;
ycen = (yO+y1+12)/3;
TTG (QUICK_FILL, xcen, ycen);

}

For brevity, setup_vtg, read_binary and error were omitted from this second example.

13 Error Codes

The following error codes may be returned by the TIG Server.

I·Error I Code I
e.ok 0
e.out.of.drawing.range -1
e.invalid.screen -2
e.invalid.window -3
e.no.window.store -4
e.too.many.windows -5
e.unknown.drawing.mode -6
e.invalid.rotation -7
e.invalid.colour -8
e.char.out.of.range -9
e.string.length.exceeded -10
e.invalid.colour.table -11
e.invalid.comrnand -12

Table 5: Error Codes

	Contents
	1 Introduction
	2 Function Overview
	3 Server Interface
	4 Server software
	5 Initialisation
	6 Colour Tables
	7 Screen Support
	8 Windows
	9 Colour Selection
	10 Text Support
	11 Function Overview
	12 Examples
	13 Error Codes

